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ABSTRACT

This thesis addresses the problem of how a listener groups together acoustic compo-
nents which have arisen from the same environmental event, a phenomenon known
as auditory scene analysis. A computational model of auditory scene analysis is
presented, which is able to separate speech from a variety of interfering noises.

The model consists of four processing stages. Firstly, the auditory periphery is
simulated by a bank of bandpass filters and a model of inner hair cell function. In
the second stage, physiologically-inspired models of higher auditory organization -
auditory maps - are used to provide a rich representational basis for scene analysis.
Periodicities in the acoustic input are coded by an autocorrelation map and a cross-
correlation map. Information about spectral continuity is extracted by a frequency
transition map. The times at which acoustic components start and stop are identified
by an onset map and an offset map.

In the third stage of processing, information from the periodicity and frequency
transition maps is used to characterize the auditory scene as a collection of sym-
bolic auditory objects. Finally, a search strategy identifies objects that have similar
properties and groups them together. Specifically, objects are likely to form a group
if they have a similar periodicity, onset time or offset time.

The model has been evaluated in two ways, using the task of segregating voiced
speech from a number of interfering sounds such as random noise, “cocktail party”
noise and other speech. Firstly, a waveform can be resynthesized for each group
in the auditory scene, so that segregation performance can be assessed by informal
listening tests. The resynthesized speech is highly intelligible and fairly natural.
Secondly, the linear nature of the resynthesis process allows the signal-to-noise ratio
(SNR) to be compared before and after segregation. An improvement in SNR is
obtained after segregation for each type of interfering noise. Additionally, the per-
formance of the model is significantly better than that of a conventional frame-based
autocorrelation segregation strategy.
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Chapter 1

Introduction

In most listening situations, a mixture of different sounds reaches our ears. For
example, at a crowded party there are many competing voices and other interfering
noises, such as music. Similarly, the sound of an orchestra consists of a number of
melodic lines that are played by a variety of instruments. Nonetheless, we are able
to attend to a particular voice or a particular instrument in these situations. How
does the ear achieve this segregation of concurrent sounds?

Cherry [48] noted this phenomenon in 1953, and called it the “cocktail party prob-
lem”. Since then, the perceptual separation of sound has been the subject of ex-
tensive psychological research. Recently, a coherent account of this work has been
presented by Bregman [24]. He contends that the mixture of sounds reaching the
ears is subjected to an auditory scene analysis, which occurs in two stages. In the
first stage, the acoustic signal is decomposed into a number of sensory components.
Subsequently, components which are likely to have arisen from the same environ-
mental event are recombined into perceptual structures that can be interpreted by
higher-level processes.

Although auditory scene analysis is documented comprehensively in the literature,
there have been few attempts to investigate the phenomenon with a computer model.
In this thesis, a computational investigation of auditory scene analysis is presented.
The model draws upon psychological findings, and also exploits recent advances in
the understanding of auditory physiology and anatomy.

In this first chapter, section 1.1 discusses the motivation behind the model. Sec-
tion 1.2 addresses some theoretical issues that arise in the modelling of perceptual
processes, and these are related to auditory scene analysis theory in section 1.3.
Previous approaches to sound source segregation are described in section 1.4. Fi-
nally, the limitations of these approaches and some possible solutions are discussed
in section 1.5.



Practical Applications

1.1 Practical Applications

Undoubtedly, computational models of auditory scene analysis will contribute to
the understanding of hearing. Additionally, they have a number of practical appli-
cations, which are considered below.

Automatic Speech Recognition

The need for efficient methods of communication between humans and informa-
tion processing machines has stimulated research into automatic speech recognition
(ASR) systems. Generally, ASR devices convert the incoming speech waveform into
a series of short-term spectral estiinates, which are matched with stored templates or
statistical models. This approach works well in quiet acoustic environments. How-
ever, speech is normally heard in the presence of other interfering sounds, whose
spectral characteristics combine with those of the speech signal. As a result of
this distortion, ASR systems cannot find the correct match to the incoming speech
spectrum, and the recognition performance decreases. For example, Ghitza [93]
demonstrates that the error rate of a template-matching recognizer doubles at a
signal-to-noise ratio (SNR) of approximately 15 dB.

In contrast, human listeners with normal hearing have no difficulty in recogniz-
ing speech at such SNR levels. This observation suggests that models of auditory
processing could provide a robust front-end for automatic speech recognition in
noise. So far, research in this area has concentrated on modelling the initial spectral
analysis that is performed by the auditory system, with limited success (Beet [11],
Robinson et al. [223], Ghitza [93], Hunt and Lefebvre [123]). If the performance of
automatic recognizers is to approach that of human listeners, higher-level processes
which underlie the ability of the auditory system to segregate concurrent sounds
must also be modelled.

Virtual Reality and Visualization by Ear

The term “virtual reality” describes a collection of human-computer interface tech-
nologies that attempt to create interactive environmental simulations. Currently,
the majority of virtual reality research is concerned with the generation of visual
images (Rheingold [216]). However, it is clear that auditory images play an equally
important role in the perception of an environment. Hence, models of auditory scene
analysis may contribute to the design and testing of convincing virtual worlds.

A related application area is scientific visualization, which aims to provide informa-
tive representations of large data sets. Currently, visualization is dominated by the
use of three-dimensional colour graphics. However, certain phenomena are difficult
to display in this manner. In particular, the temporal structure of a data set cannot
easily be interpreted from a sequence of visual images. Conversely, the auditory
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system is highly sensitive to temporal structure. Hence, by transforming a data
set into the auditory domain, it may be possible to “visualize it by ear” (Kendall
[129]). Clearly, the data must be mapped onto an auditory stimulus in a meaningful
manner, so that relevant changes in the data are accompanied by changes in the
auditory percept. Models of auditory scene analysis may assist in the design of
appropriate mappings.

Hearing Impairment

It is well known that many listeners with sensorineural hearing loss have difficulty in
understanding speech, particularly in noisy environments (for example, see Festen
and Plomp [85]). This condition may arise as a result of defects in many different
parts of the auditory system, and is not usually corrected by the use of a conventional
hearing aid. Essentially, a hearing aid amplifies both the speech and the interfering
sounds, so that no improvement in the SNR is obtained (Duquesnoy and Plomp
[81]). Rather, as Summerfield [265] points out,

“The primary role of the ideal hearing aid would be to attenuate interfer-
ing noises, echoes, and the sounds of competing talkers while amplifying
a target voice.” (page 921)

A model of auditory scene analysis could provide the basis for such a device.

Automatic Music Transcription

Automatic music transcription systems are useful tools for the analysis of musical
performance, segmentation of audio recordings and generation of manuscript (Chafe
and Jaffe [45], Moorer [189], Chafe et al. [46]). In order to assign a pitch and
a duration to the notes of each melodic line in a piece of polyphonic music, a
transcription system must segregate the sounds of the different instruments. A
model of auditory scene analysis could provide a means of achieving this initial
segregation (Mellinger [170]).

1.2 Signals, Symbols and Marr

A central problem in the modelling of perceptual processes is how to build invariant
representations of continuously varying sensory information. For example, auto-
matic speech recognition aims to relate continuous acoustic evidence to discrete
phonetic symbols. The task of bridging this representational gap has been called
the signal-to-symbol transformation (Green et al. [102]).

The following section describes a theory of visual processing proposed by David
Marr, in which intermediate representations are used to bridge the gap between

3
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signal and symbols. Subsequently, the influence of Marr’s representational scheme
on speech and hearing is assessed, and some problems of his approach are considered.

1.2.1 Marr’s Computational Theory

Over the last 15 years or so, research in machine vision has been strongly influ-
enced by the computational theory of Marr [159, 160]. The central tenet of Marr’s
approach is that perceptual information processing must be understood at several
levels of explanation. He called the levels the computational theory (function), repre-
sentation and algorithm (process) and hardware implementation (mechanism). Marr
argued that these levels are only loosely related, so that the explanation at one level
should be quite independent of the explanation at the other two. For example, the
algorithm of an information processing device should be understood independently
of the hardware used to implement it.

In particular, Marr stressed the importance of the level of computational theory.
Previous approaches to the understanding of vision had drawn strong conclusions
from neurophysiology and psychophysics (for example, see Barlow [9]). Marr pointed
out that these approaches described the behaviour of cells or subjects, but did not
attempt to ezplain the behaviour. In contrast, his level of computational theory
emphasizes the function of perceptual processing:

“The nature of the computations that underlie perception depends more
upon the computational problems that have to be solved than upon
the particular hardware in which their solutions are implemented...an
algorithm is likely to be understood more readily by understanding the
nature of the problem being solved than by examining the mechanism
(and the hardware) in which it is embodied.” (page 27)

Marr viewed vision as a hierarchy of representational transformations, each of which
makes some entity or type of information explicit. At each stage, the input and
output of the representation is explicitly defined, together with the algorithm for
performing the transformation. His computational framework for vision consisted of
three representational stages. Initially, a rich description of intensity level changes is
constructed, called the primal sketch. The second stage, the 21-D sketch, operates on
the primal sketch to make depth and orientation of visible surfaces explicit. Finally,
a 3-D model representation is derived from the 21-D sketch, which describes the
spatial organization of shapes and their three-dimensional structure.

Additionally, Marr [159] proposed four principles for guiding the organization of
complex symbolic processes. The principle of ezplicit naming states that a collection
of data which is to be described as a whole should first be given a name. This
principle is central to the idea of symbolic computation, since it allows the data to
be manipulated as a single entity. The principle of modular design states that a large
computation should be implemented as a collection of small modules, which must



Signals, Symbols and Marr

be as independent of one another as possible. The principle of least commitment
states that nothing should be done which may later have to be undone. Finally,
the principle of graceful degradation states that a system should be robust when the
data is degraded, so that at least some of the required computation is delivered.

1.2.2 Representational Approaches in Speech and Hearing

In contrast with the work in machine vision, research in speech and hearing has
largely failed to recognize the potential benefits of a representational approach.
Currently, the majority of automatic speech recognition systems employ hidden
Markov modelling and connectionist modelling techniques, which do not use an
intermediate representation besides an initial spectral transformation. Indeed, some
workers have proposed techniques for identifying linguistic units directly from the
speech waveform (Nulsen et al. [192]). Attempts to bridge the gap between signals
and symbols with such a giant leap have met with little success.

Nonetheless, a few workers have applied Marr’s levels of explanation and principles
of organization to automatic speech recognition. Green and Wood [103] describe
an intermediate representation for acoustic-phonetic processing, which they call the
speech sketch, after Marr. The first version of the speech sketch identified formant
frequencies by LPC analysis, and described their time-frequency movement with
piecewise linear contours. A semivowel recognition task was used to evaluate the
system, in which the speech sketch contours were matched against descriptions of
typical formant behaviour. Subsequently, Green et al. [100] have implemented the
speech sketch in an object-oriented knowledge framework. Although the speech
sketch does not attempt to model auditory processing, the authors note that an
auditory representation could be used as the basis for the system. Preliminary work
on such an auditory speech sketch is reported in Cooke and Green [53].

A similar representational approach has been described by Riley [220]. He proposed
a composite symbolic description of the speech signal, called the schematic spectro-
gram, in which onsets, offsets, formant peaks and gross spectral balance were made
explicit. Riley’s model identified formant contours by tracking the ridges in a time-
frequency representation of speech. Subsequently, the ridges were associated with
acoustic correlates by using formant uniqueness and continuity constraints. Seneff
[242] has described a similar skeleton spectrogram, which is obtained by tracking the
peaks in an auditory-based “synchrony spectrum”.

Recently, a number of workers have described models of auditory processing that are
strongly influenced by Marr’s representational approach. For example, Holdsworth
et al. [117] have applied Marr’s principle of modular design to the construction of
a multi-representation auditory model. Their system consists of a simulation of
auditory nerve activity, which provides the input to tonic, phasic and coincidence
processing modules. In the tonic module, periodicities in the auditory nerve firing
patterns are emphasized by a triggered temporal integration mechanism (see also
Patterson et al. [201]). The phasic module simulates an array of cochlear nucleus

|
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onset cells in order to detect the start of acoustic events in different frequency regions
(see section 2.2.2). Finally, the coincidence module correlates onset cell responses
across frequency in order to sharpen the temporal response.

A similar model has been described by Mellinger [170], in which separate modules
extract onset and frequency transition information. Also, Cooke [52] has recently
proposed a time-frequency representation of auditory synchrony information, which
he calls synchrony strands. Both of these models provide the representational basis
for auditory scene analysis strategies, and are discussed in section 7.4.

1.2.3 Problems with the Marrian Approach

Although the arguments in favour of the Marrian philosophy are strong, it should
be noted that it has some potential problems. The first of these arises from the
fact that Marr’s three levels of explanation are only loosely related. As Marr [160]
observes:

“There is a wide choice available at each level, and the explication of
each level involves issues that are rather independent of the other two.”

(page 25)

In practice, the rather unconstrained choice at each level of explanation can lead
to an unprincipled model. An appropriate choice of representation is especially
important, since any particular representation makes certain information explicit
at the expense of other information, which may be hard to recover. The solution
to this problem adopted here is to employ representations that are motivated by
the known topographical organization of the higher auditory system. Effectively,
the model uses representations that the auditory system itself is likely to construct.
The details of this approach are given in chapter 2.

Edelman [83] has questioned the validity of information processing models of the
nervous system, including Marr’s approach. In particular, Edelman claims that
information processing models place too strong an emphasis on the need for precise
point-to-point wiring in neural structures:

“It is surprising to observe that neurobiologists...can believe that precise
algorithms are implemented and that computations and calculations of
invariances are taking place inside neural structures. These beliefs per-
sist despite the presence of the enormous structural and functional vari-
ances that exist in neural tissue - variances that would doom any equiva-
lent parallel computer to producing meaningless output...the algorithms
proposed by these workers to explain brain functions work because they
have been designed to work according to ingenious and precise math-
ematical models...there is no evidence that they actually occur in the
brain.” (page 42)
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Edelman’s solution to this problem is the theory of neuronal group selection. Instead
of assuming that the brain works in an algorithmic manner, the theory proposes
that the nervous system functions by ‘selecting’ groups of neurons that respond to
a particular sensory input. As such, it regards the brain as a selective system which
operates in a manner resembling Darwinian natural selection. Certainly, Edelman’s
theory does not have the attractive simplicity of information processing models.
Whether it offers a better explanation of the function of the nervous system is an
open question.

It is interesting to note that the approaches of Edelman and Marr may not be
completely incompatible. Certain aspects of Edelman’s theory fit very naturally
into a representational scheme, as discussed in section 7.5.

1.3 Auditory Scene Analysis

Over the last 20 years, experimental psychologists have developed a body of knowl-
edge that effectively constitutes a computational theory of hearing. Recently, this
effort has culminated in the publication of a comprehensive account by Bregman
[24].

Bregman argues that the function of audition is to perform an auditory scene anal-
ysis of the mixture of sounds reaching the ear. This term describes the task of
segregating the sensory components that arise from particular environmental events
into separate perceptual representations. Bregman refers to these perceptual repre-
sentations as streams, whereas the term source is used to denote a physical entity
which gives rise to a series of acoustic events. For example, the playing of a violin is
a source, whereas the mental experience of a violin playing is a stream. The phrase
acoustic event is used to denote a single experienced event which may extend over
time. In our example, each note that the violin plays is an acoustic event.

There are a number of similarities between the framework for audition proposed
by Bregman and Marr’s framework for vision (Williams et al. [280]). Firstly, both
theories have their foundation in the Gestalt principles of perceptual organization
(see chapter 3). However, Bregman notes that

“Gestalt psychology did not emphasize the relevance of these principles
to the practical task of scene analysis.” (page 654)

as does Marr [160]. Secondly, both accounts attempt to identify the computational
problem that is faced by a perceptual process. Finally, the theories of Bregman
and Marr both concentrate on primitive (unlearned) grouping processes rather than
schema-based (learned) mechanisms. Given these similarities, it is perhaps rather
surprising that Bregman does not make any reference to Marr’s influential analysis
of visual processing.

In his book, Bregman identifies a number of principles that the auditory system
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appears to use to group acoustic components together. For example, components
which start and end at the same time are likely to be grouped into the same percep-
tual stream. Similarly, acoustic components which are harmonically related, have
the same pattern of amplitude fluctuation or originate from the same spatial loca-
tion tend to be fused. Auditory grouping principles are discussed in detail in chapter
4, and implementations of some of these principles provide the basis for the scene
analysis strategy presented in chapter 5.

1.4 Previous Work

This section reviews some previous approaches to sound source segregation. Non-
auditory attempts to segregate simultaneous talkers and musical sounds are dis-
cussed first, followed by approaches that are based on models of auditory processing.

1.4.1 Segregation of Simultaneous Talkers

A number of workers have described schemes for segregating the speech of simulta-
neous talkers, which are not based on models of auditory processing. For example,
Parsons [198] proposes a harmonic selection technique, which aims to separate the
harmonics of two competing voices. Initially, Parson’s system obtains short-term
spectral estimates of the acoustic input by application of a discrete Fourier trans-
form. Subsequently, an algorithm attempts to identify two sets of harmonically-
related peaks in each short-term spectrum, which are assumed to have arisen from
the two voices. The pitch of each voice is computed from its harmonic series, and
this information is used to maintain the continuity of the talkers over time. Finally,
the system reconstructs a waveform from the harmonics of each voice, which can be
assessed for intelligibility and naturalness.

Recently, Denbigh and Zhao [71] have described two techniques for segregating the
speech of simultaneous talkers. In the first technique, a single microphone is used
to record the voices of the two speakers. Two pitch values are identified from short-
term spectral estimates of the recorded signal, as described above, and each value
is allocated to the voice which has the closest average pitch. Additionally, Denbigh
and Zhao’s system compares adjacent spectra in order to identify the onset of a new
voice. This allows the pitch tracking algorithm to lock onto weak voiced sounds,
and increases the accuracy of pitch estimates when both voices are simultaneously
active. Given a pitch contour for a target voice, the system extracts the harmonics
of the voice using a comb filter and resynthesizes a waveform for listening tests.

This approach assumes that the two voices have different average pitch values (a male
and a female speaker were used for evaluation), and fails when the pitch contours
cross. In an attempt to rectify these problems, Denbigh and Zhao describe a second
technique which records from two separated microphones. The pitch values are
obtained from each recording as before. However, pitch continuity and directional
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information (obtained from the phase spectra of the two inputs) are used to assign
each pitch value to the appropriate voice. Informal testing of this system suggests
that the interfering voice is almost completely removed, but the resynthesized target
voice is of low quality.

Varga and Moore [272] and Moore et al. [188] describe a technique for segregating si-
multaneous speakers which matches the input signal with concurrent hidden Markov
models. This approach is notable in that it employs a learned (schema-based) mech-
anism rather than unlearned (primitive) grouping processes (see section 3.4). In
fact, the system is not limited to segregating speech, since the Markov models can
be trained on other sounds. A similar technique has been proposed by Gramss and
Strube [99], which uses a neural network classifier rather than statistical models.

1.4.2 Segregation of Musical Sounds

Moorer [189] describes a non-auditory technique for segregating and transcribing
two simultaneous musical instruments. Initially, his system finds candidate pitches
by identifying periodicities in the signal waveform. Then, the harmonics of each
candidate pitch are extracted by a bank of bandpass filters. A second periodicity
detector operates on the output of each filter to determine whether the harmonic
is active. Subsequently, an algorithm deduces the pitches that are actually present
from the harmonic information, and uses a number of constraints to assign the notes
to their correct instruments. Finally, the system prints out a score in conventional
music notation. Good results are obtained by Moorer on his test pieces, but the
system is limited to segregating harmonic sounds and fails if the pitches are glid-
ing. Additionally, the system cannot segregate coincident harmonics of different
fundamentals, so it fails if the two instruments are playing an octave apart.

A more sophisticated transcription system has been described by Chafe et al. [46]
and Chafe and Jaffe [45]. Initially, their system performs a high-resolution spec-
tral transformation of the acoustic input. Individual harmonics are identified and
tracked over time using information about changes in the spectrum and amplitude
envelope. Subsequently, the notes belonging to each melodic line are identified from
the harmonics present, using a prior: knowledge about the characteristics of the
instrument sounds (for example, their envelope shapes).

Although the system described by Chafe and Jaffe does not attempt to model au-
ditory processing, the authors note that

“The particular problem in polyphony is to group spectral components
into sources in roughly the same fashion as the ear.” (page 1291)

A recent auditory-based approach to the segregation of musical sounds has been
described by Mellinger [170]. His system is discussed in the following section and in
section 7.4.
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1.4.3 Models of Auditory Source Segregation

A number of workers have attempted to model the perceptual segregation of dou-
ble (simultaneous) synthetic vowels. Scheffers [233] investigated the role of pitch
differences between two vowels in the segregation process. When the vowels were
unvoiced, or both had the same fundamental frequency, listeners were able to iden-
tify them with a performance that was above chance level. Presumably, subjects
were using information about spectral shape to segregate the vowels in this case. Ad-
ditionally, the identification performance for voiced vowels improved if a difference
in fundamental frequency was introduced. Performance increased with increasing
difference in fundamental, and asymptoted at 1-2 semitones. Scheffers concluded
that listeners could use differences in spectral shape and fundamental frequency to
segregate simultaneous vowels.

In an attempt to model these findings, Scheffers developed a two-stage simulation of
auditory processing. The first stage identified the two fundamental frequencies that
provided the best fit to the peaks in a simulated auditory spectrum. Subsequently,
the auditory spectrum was sampled at integer multiples of each fundamental to
give an estimate of the spectral profile of each vowel. In the second stage of the
model, the segregated vowel spectra were matched against stored templates. Schef-
fers found that the overall identification performance of the model was poorer than
that of human listeners. Additionally, the model failed to show the same pattern of
improvement in performance with increasing fundamental frequency separation.

Assmann and Summerfield [8] have compared four different modéls of double vowel
identification. Firstly, a “place” scheme estimated the spectra of the two vowels
from the distribution of power output across an auditory filterbank, in a similar
manner to Scheffer’s model. Secondly, a “place-time” model was employed, which
segregated the vowels on the basis of the periodicities in each filter channel. Each
of these two approaches were studied in two versions. A “linear” model used the
outputs of the auditory filterbank directly, whereas a “nonlinear” version applied
a compressive nonlinearity to the filter outputs. Assmann and Summerfield found
that the nonlinear place-time model came close to predicting listener’s performance.
However, like Scheffer’s model, it failed to show a gradual improvement in identifi-
cation performance with increasing separation of fundamental frequency. Recently,
an extension of Assmann and Summerfield’s place-time scheme has been described
by Meddis and Hewitt [169], which is able to reproduce the effects of fundamental
frequency separation. Additionally, other models of double vowel segregation have
been proposed by Gardner [88] and Summerfield et al. [266]. The details of the
Meddis and Hewitt scheme are described later, in section 5.2.1.

The spectral characteristics of vowel sounds are constant over time, and hence
schemes for double vowel segregation operate on a single auditory excitation pat-
tern. Relatively few auditory models have been described which are able to segregate
time-varying sounds. An early attempt is the system described by Weintraub [277],
which uses periodicity information to segregate the voices of simultaneous speakers.
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Summary and Discussion

However, his model is speech-specific and uses a priori knowledge about the number
of voices that are present. Recently, Cooke [52] and Mellinger [170] have described
segregation systems that do not make strong assumptions about the number of ac-
tive sound sources, or their characteristice. The models of Weintraub, Cooke and
Mellinger all have some similarities with the system presented here, and they are
discussed in detail in section 7.4.

Beauvois and Meddis [18] describe an auditory model in which stream segregation
phenomena occur as emergent properties of low-level processing. The model is able
to reproduce some simple examples of auditory stream segregation, but does not
incorporate a mechanism for grouping components in different spectral regions.

[

1.5 Summary and Discussion

In this chapter, the concept of auditory scene analysis has been introduced. It has
been argued that a representational model of auditory processing should be adopted,
in analogy with the theory of visual processing proposed by Marr. The motivation
for modelling auditory scene analysis has been stated, and previous auditory and
non-auditory approaches to sound source segregation have been reviewed.

There have been surprisingly few attempts to model the phenomenon of auditory
scene analysis, despite an extensive literature accumulated over 20 years of psycho-
logical research. Previous approaches to source segregation have seldom attempted
to model auditory processing, and have been motivated by applications such as
speech enhancement rather than by computational studies of hearing.

In general, previous approaches have suffered from two major limitations. Firstly,
in an attempt to simplify the problem, strong assumptions have been made about
the number and type of sound sources present. Automatic music transcription
systems employ @ priori knowledge of the number of instruments that are playing
and their acoustic characteristics. Similarly, schemes for speech processing generally
assume that the interfering source is another talker with a different average pitch.
These assumptions do not hold in natural acoustic environments, where many sound
sources with unknown characteristics may be active at the same time.

A second limitation of previous source segregation systems arises from the fact that
they have been heavily influenced by conventional speech processing techniques.
Specifically, they represent the acoustic signal as a series of short-term spectral
estimates, so that no information about temporal continuity is taken into account.
In fact, time and frequency are intrinsically linked in the sounds that we hear.
Hence, strategies for source segregation should treat time and frequency as equally
important dimensions of the acoustic signal.

The model described here addresses these problems by characterising the auditory
scene as a collection of symbolic time-frequency objects. Subsequiently, objects which
have similar properties are identificd by a search strategy and combined into explicit

11
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Overview of the Thesis

groups. This approach does not make strong assumptions about the number or
type of sound sources present. Additionally, the scheme presented here differs from
most models of auditory processing in that it builds multiple representations of the
auditory scene. Periodicities, frequency transitions, onsets and offsets are made
explicit at an early stage of processing by separate auditory representations. Hence,
the system constructs an auditory equivalent of Marr’s primal sketch. Further, the
model is physiologically principled, since the representations that are used are based
on the known topographic organization of the higher auditory system.

1.6 Overview of the Thesis

A schematic diagram of the model is shown in figure 1.1, which illustrates the
auditory representations that are used at each stage of processing.

In the following chapter, the structure and function of the auditory system is re-
viewed, with particular emphasis on higher levels of the auditory pathway. It is
argued that physiological studies of orderly topographic arrays of neurons - audi-
tory maps - provide a better means of explaining auditory function than studies of
single cells. Chapter 3 reviews those aspects of auditory scene analysis theory that
are relevant to the remainder of the thesis.

Chapter 4 describes the auditory map representations that are used in the model,
together with the physiological and psychophysical evidence that supports them.
A model of the auditory periphery is presented, which provides the input to the
auditory maps. In chapter 5, a technique for forming symbolic auditory objects from
the map representations is presented. A strategy for searching the auditory scene
is described, which groups objects that have a similar pitch contour, onset time or
offset time. The model is evaluated in chapter 6, using two methodologies. Firstly,
a waveform can be resynthesized from a group of objects, allowing the results of
the segregation process to be assessed in listening tests. Secondly, a technique for
comparing signal-to-noise ratios before and after segregation is presented, which
allows the performance of the model to be quantified in an intuitive manner.

13



Chapter 2

Structure and Function of the
Auditory System

{
In this chapter, the physiology and anatomy of the auditory system is reviewed. The
discussion concentrates on those aspects of higher auditory structure and function
that are relevant to the following chapters of this thesis, and is not intended to be
exhaustive.

Section 2.1 describes the anatomy and physiology of the auditory periphery, includ-
ing the response properties of auditory nerve fibres. Section 2.2 reviews the higher
auditory system, and describes two possible mechanisms by which higher centres
may detect features in the sensory input.

2.1 Auditory Periphery

The peripheral part of the auditory system extends as far as the auditory nerve,
where neural activity is initiated. Functionally, the auditory periphery can be di-
vided into outer, middle and inner ears. The structure and function of each compo-
nent is briefly reviewed below. Comprehensive discussions can be found in Pickles
[205], Russell [229], Palmer [196] and Wilson [281].

2.1.1 Outer and Middle Ears

The outer ear consists of the pinna (the part we actually see), together with an ezter-
nal auditory canal which leads to the tympanic membrane (eardrum). The external
auditory canal forms an acoustic resonator, which increases the sound pressure at
the tympanic membrane between frequencies of 2 kHz and 7 kHz.

14
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The motion of an object in the environment gives rise to pressure changes in air,
which travel down the external auditory canal and cause the tympanic membrane to
vibrate. These vibrations are transmitted to the oval window by three small bones
(ossicles), which comprise the middle ear. The ossicles act as an energy-coupling
mechanism, which matches the low impedance at the tympanic membrane to the
higher impedance of the cochlear fluids.

2.1.2 Inner Ear

The inner ear consists of a tapered, spirally-coiled tube called the cochlea. Two
structures, Reissner's membrane and the cochlear partition, divide the cochlea into
three fluid-filled chambers along its length. The cochlear partition consists of a thin
basilar membrane, together with the organ of Corti. The basilar membrane varies
in stiffness and width along its length, being stiffest and narrowest at the base of
the cochlea.

Vibration of the ossicles distorts the oval window, and causes movement of the
incompressible cochlear fluids. These pressure changes interact with the varying
stiffness of the basilar membrane to produce a travelling wave, which is propagated
along the length of the membrane. In the case of a pure tone stimulus, a sharp peak
occurs in the travelling wave at a distance along the basilar membrane related to the
frequency of the stimulus. High frequency tones produce a peak towards the basal
end of the basilar membrane, and low frequency tones produce a peak towards the
apical end. Hence, the basilar membrane appears to perform a spectral analysis, in
which frequency is converted to a place representation.

The frequency-sensitive movements of the basilar membrane are converted into nerve
impulses by hair cells, which form part of the organ of Corti. Hair-like processes,
called stereocilia, extend from the cells and couple with the tectorial membrane,
which covers the organ of Corti. Movement of the basilar membrane generates a
shearing action between the organ of Corti and the tectorial membrane, causing the
stereocilia to bend. These deflections modulate the membrane potential of the hair
cells, causing depolarization and release of a neurotransmitter. The neurotransmitter
diffuses across a short gap to an auditory nerve fibre, where it can initiate a nerve
impulse.

Hair cells are divided into two groups, known as inner and outer hair cells. Although
the outer hair cells are more numerous, the large majority of auditory nerve fibres
innervate inner hair cells. The function of outer hair cells is uncertain, but they
may contribute to the frequency selectivity of the basilar membrane by actively
amplifying the travelling wave (Ashmore [7]).
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Auditory Periphery

2.1.3 Responses of Auditory Nerve Fibres

The properties of auditory nerve fibre responses have been the subject of exten-
sive research, initially with simple stimuli such as pure tones and clicks (Kiang et
al. [130]) and more recently with speech (Delgutte and Kiang [66, 67, 68, 69, 70]).
Here, some of the important properties are reviewed.

Average Rate Response

One method of quantifying the response of an auditory nerve fibre is to measure its
average rate, which is obtained by counting the number of nerve impulses that occur
within a particular time period. In the absence of any stimulation, auditory nerve
fibres discharge at a spontaneous rate. When stimulated, the response of a fibre
remains at the spontaneous rate unless the stimulus intensity exceeds the fibre’s
threshold. Auditory nerve fibres with a high threshold have a low spontaneous rate,
and vice versa. Above threshold, the average rate of a fibre increases approximately
linearly with the intensity of the stimulus, until the discharge rate becomes saturated.
Beyond this point, further increases in stimulus intensity do not give concomitant
increases in average rate.

Liberman [147] suggests that auditory nerve fibres should be divided into three
populations on the basis of their spontaneous rates. He proposes the categories high
(spontaneous rates greater than 18 spikes/sec), medium (rates between 0.5 and 18
spikes/sec) and low (rates less than 0.5 spikes/sec). High spontaneous rate fibres
account for the majority of Liberman’s sample (61%), with the medium (23%) and
low (16%) spontaneous rate fibres being less abundant.

Frequency Selectivity

The frequency selectivity of an auditory nerve fibre can be determined by measuring
its threshold as a function of the frequency of a tonal stimulus. A tuning curve
obtained in this manner indicates that the fibre has a low threshold at a particular
frequency, called the characteristic frequency. The characteristic frequency of an
auditory nerve fibre is closely related to the position of its inner hair cell on the
cochlear partition, and the sharpness of tuning is similar to that of the basilar
membrane if active mechanics are assumed. |

Temporal Response

The response of an auditory nerve fibre to a sustained stimulus, such as a tone
burst, is not constant over time. After an initial peak of activity at the onset of the
tone, the average rate decreases rapidly for 10-20 ms, and then decreases gradually
towards a steady state. This phenomenon is known as adaptation. At the offset
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of the stimulus, activity falls below the spontaneous rate, and then returns to the
spontaneous rate after a brief recovery period. This pattern of activity is similar to
that shown on the far left of figure 2.1.

So far, the response of auditory nerve fibres has only been considered in terms of their
rate of firing. However, information about the stimulus is also carried in the fine
time structure of auditory nerve responses. Below stimulus frequencies of 4-5 kHz,
auditory nerve fibres tend to synchronize to a particular phase of the stimulating
waveform. This phenomenon, called phase-locking, arises because of two factors.
Firstly, the inner hair cells only initiate nerve firings during upward deflections of
the basilar membrane. Secondly, the likelihood of firing is greatest when the upward
deflection of the basilar membrane is maximal.

Phase-locking is maintained over a wide dynamic range. When an auditory nerve
fibre is stimulated by a low-frequency tone at an intensity below its threshold, the
spontaneous discharges of the fibre exhibit phase-locking. Similarly, phase-locking is
preserved when the average rate of the fibre is saturated. Hence, it is possible that
the auditory system uses fine time structure to code certain stimuli at high intensi-
ties. For example, Sachs and Young [231, 288] have investigated the representation
of vowel sounds in the auditory nerve, in terms of average rate and phase-locked
responses. They found that the average rate response saturated at medium and high
intensities for the majority of auditory nerve fibres, so that the peaks in a vowel
spectrum were poorly defined. In contrast, phase-locking to the frequency compo-
nents of a vowel was preserved at high stimulus intensities. Note, however, that
auditory nerve fibres with low spontaneous rates did preserve the spectral profile in
their average firing rates, even up to the highest intensities used.

Masking

In the auditory nerve, one stimulus may obscure or reduce the response to another.
This phenomenon is known as masking. For example, if the firing rate of an auditory
nerve fibre is saturated in response to one stimulus, a superimposed stimulus will
not be able to increase the firing rate any further (Smith [255]). This effect is rather
like the visual phenomenon of occlusion (see section 3.1). Masking in the auditory
nerve is also demonstrated by the phenomenon of two-tone suppression. In this
effect, the average rate of an auditory nerve fibre that is responding to a tone can
be reduced by a second tone with an appropriate frequency and intensity. There is
good evidence that this phenomenon arises as a result of nonlinearities in the basilar
membrane mechanics (Patuzzi et al. [202]).

2.2 Higher Auditory System

This section presents an overview of the anatomy and physiology of the higher
auditory system, with an emphasis on possible mechanisms of feature detection.
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Comprehensive reviews can be found in Moore [181], Aitken [5], Hackney [105],
Palmer [196] and Irvine [124]. Again, early research on the higher auditory system
employed simple stimuli such as pure tones (for example, see Pfeiffer [203]). More
recently, complex sounds such as speech have been used (Blackburn and Sachs [20}).

2.2.1 General Anatomy

The higher auditory system projects from the cochlea to the auditory cortex through
a series of nuclet, which process and relay the neural information in parallel. At
each stage of the system there are nuclei for the left and right ears, and most
ascending neurons may connect with nuclei on the opposite side as well as with
nuclei on the same side. These bilateral connections provide the facility for interaural
comparisons.

At all stages of the higher auditory system, descending pathways run parallel to the
ascending tracts. The function of these projections is poorly understood, and they
are not considered in this review. However, it is interesting to note that the scheme
for reentry of auditory information discussed in section 7.5 requires ascending and
descending neural pathways.

Auditory nerve fibres projecting from the organ of Corti enter the first auditory
nucleus of the brainstem, the cochlear nucleus. This nucleus is divided into an-
teroventral (AVCN), posteroventral (PVCN) and dorsal (DCN) regions, on the basis
of differences in the distribution of cell types. Generally, cells of the AVCN have
properties that are similar to those of auditory nerve fibres, and may function as
a simple relay to higher centres. In contrast, neurons of the DCN have complex
response properties, and may play a role in enhancing spectral or temporal infor-
mation. The properties of neurons in the PVCN are intermediate to those of the
other two regions.

Ascending fibres from the AVCN and DCN enter the superior olivary complex
(SOC). This nucleus is the lowest in the brainstem that receives input from both
ears. Hence, it probably plays a role in sound localization.

The principal nucleus of the auditory midbrain is the inferior colliculus, which
receives input from the SOC, DCN and PVCN. As such, it appears to combine
the complex signal analysis of the cochlear nucleus with the sound localizing ability
of the SOC. Hence, the inferior colliculus may simultaneously code the complexity
of sounds, and their location in space.

Neurons from the inferior colliculus project via the medial geniculate body to the
auditory cortez. The response properties of cortical cells are very complex, and
probably underlie high-level functions such as auditory memory, discrimination of
temporal patterns, attention and source segregation.
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Figure 2.1: Classification of cochlear nucleus neurons on the basis of their temporal
response. Time i3 represented on the abscissa, and average rate i3 represented on

the ordinate. Adapted from Pfeiffer [203].

2.2.2 Responses of Single Cells

The properties of neurons in the higher auditory system differ in two important
respects from those of auditory nerve fibres. Firstly, auditory nerve fibres always
respond to a tone presented above threshold with an increase in firing rate (ezci-
tatory response). In contrast, tonal stimuli can reduce or abolish the spontaneous
activity of many higher auditory neurons (inhibitory response). Secondly, whereas
single auditory nerve fibres have qualitatively uniform properties, cells of the higher
auditory system exhibit a multitude of different morphologies and response patterns.

In the visual system, neurons appear to respond preferentially to certain features
of a stimulus, such as lines and edges of a particular orientation (Hubel and Weisel
[120]). Higher auditory neurons with particular response patterns may act as specific
feature detectors in a similar manner. Hence, a number of workers have attempted
to classify the responses of higher auditory neurons, and to relate each response type
to a cell morphology and functional role. Two classification schemes are considered
below.

Classification by Pattern of Temporal Response

One of the earliest schemes for classifying higher auditory neurons is found in the
work of Pfeiffer [203]. He classified cells of the cochlear nucleus on the basis of the
pattern of their temporal response to brief tone bursts, delivered just above thresh-
old at the characteristic frequency of the neuron. Pfeiffer originally identified four
response types, and gave them the descriptive names primarylike, pauser, onset and
chopper (see figure 2.1). Primarylike cells have a pattern of temporal response simi-
lar to that of auditory nerve fibres, with an initial peak of activity at stimulus onset
which adapts to a lower rate. Pauser cells show an initial onset response, followed
by a period of no activity and then a gradual increase in average rate. Onset cells
produce a sharp peak in activity at the start of the stimulus, and then either no
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activity or a low level of sustained activity. Chopper cells fire repetitively during a
tone burst, at a rate that is unrelated to the period of the stimulating waveform.
Since Pfeiffer’s original classification, a number of additional response types have
been described, including primarylike-with-notch, buildup, negative responder, ez-
traordinary, off and on-off (Godfrey et al. [95], Abeles and Goldstein [1], Shofner
and Young [250], Blackburn and Sachs [19]).

Attempts to correlate these response patterns with morphological cell types have
met with mixed success. In the cochlear nucleus, primarylike responses appear to
originate from the spherical bushy cells of the AVCN (Rhode et al. [217]). Similarly,
chopper responses probably originate from stellate cells in the AVCN and PVCN
(Rhode et al. [217]), and onset responses appear to be generated by the octopus cells
of the PVCN (Rouiller and Ryugo [228]). However, it has proved difficult to match
response patterns with cell types in areas beyond the cochlear nucleus. For example,
Ryan and Miller {230] have identified single cells in the inferior colliculus which can
show onset, primarylike and pauser responses depending on the intensity of the
stimulus. Hence, classification by Pfeiffer’s scheme can be potentially misleading.
This problem is compounded by the fact that the response of a neuron to a time-
varying stimulus cannot generally be predicted from its response to a static tone.

Similarly, it has generally proven difficult to associate a functional role with a par-
ticular response pattern. The properties of primarylike units in the cochlear nucleus
resemble those of auditory nerve fibres, suggesting that they act as a simple relay
to higher centres. Chopper units appear to enhance particular rates of amplitude
modulation (Kim et al. [132]). However, many diverse functions have been proposed
for other response types. For example, it has been suggested that onset units may
code periodicity, intensity or interaural onset time disparities (Mgller [177], Young
et al. [289], Rhode and Smith [218]). Clearly, the extent to which different response
types code particular features is currently rather uncertain.

Classification by Pattern of Excitation and Inhibition

Evans and Nelson [84] have proposed a scheme for classifying higher auditory neu-
rons according to their excitatory and inhibitory properties, which has subsequently
been developed by other workers (Young [287], Shofner and Young [250]). Neurons
are classified by their response areas, which indicate the distribution of excitatory
and inhibitory responses as a function of stimulus frequency and intensity (see fig-
ure 2.2). In the cochlear nucleus, five main response area types have been described
(Type I, II, III, IV and V), together with two other response types which do not
readily fit into this classification scheme (Type I/II and II/I1I).

Correlation of response areas with morphological cell types has been reasonably suc-
cessful. Type I units have a single excitatory response area without any inhibitory
regions, and probably correspond to spherical bushy cells in the AVCN (the pri-
marylike units of Pfeiffer). Similarly, Type III responses probably originate from
stellate cells of the PVCN. However, there is a many-to-one relationship between
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Figure 2.2: Classification of cochlear nucleus neurons on the basis of their ezcita-
tory and inhibitory response areas. Question marks indicate variable or uncertain

features. From Young [287].

certain cell types and response areas. For example, globular bushy cells and octopus
cells of the PVCN may both have a Type I/III response area (Palmer [196]).

The prediction of the function of a neuron from its response area is fraught with
difficulties. For example, the strong inhibitory regions of Type IV units might
suggest that the cells would respond preferentially to narrowband stimuli, such as
pure tones. In fact, Type IV units respond very well to broadband noise (Voigt and
Young [274], Spirou and Young [257]). Clearly, it is not currently possible to assess
the role of cells with complex response areas in the detection of complex features.

2.2.3 Auditory Maps

So far, it has been assumed that single higher auditory neurons are responsible for
detecting features in the sensory input. However, the detection of a feature could
also be defined by the pattern of activity over a group of neurons. The difference
between these two organizations is analogous to the difference between a photograph
and a hologram (Pickles [205]). In a photograph, each point represents one point
in space, whereas in a hologram each point represents many points in space, and
a single point in space can only be reconstructed by the integration of information
from many points in the hologram. Certainly, many of the more complex features
will only be represented in the latter form. Indeed, complex features that are not
represented by the activity of single cells must be represented by the activity of

many cells.
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Figure 2.3: Cochleotopic organization in the higher auditory system of the cat. Each
drawing represents a section along the organ of Corti superimposed onto schematic
views of a higher auditory nucleus. From Moore[181].

In fact, there is good evidence that the functional units of neural processing are
groups of cells, rather than single cells. A recurring motif in neurophysiology is the
map, a term which describes an array of neurons that are systematically tuned for
a particular parameter value (Knudsen et al. [138]). Some of thesec maps appear to
perform neural computations. Such computational maps transform the representa-
tion of information into a place-coded probability distribution, so that the computed
value of a parameter is represented by the location of maximum activity in the neu-
ral array. In contrast, many maps are not computational, and simply reproduce the
peripheral representation of information at higher centres.

The majority of computational maps discovered so far appear to process sensory
information. For example, line-orientation sensitive cells in the visual cortex are
mapped in an orderly manner (Hubel and Weisel [120]). Similarly, maps have been
identified in the higher auditory system which appear to code frequency, intensity,
spatial location and complex sounds. The physiology of these auditory maps is
discussed below.

Cochleotopic Maps

The existence of a precise mapping of the cochlea at every level of the higher audi-
tory system has been recognised for some time (Whitfield [278]). This cochleotopic
organization is characterised by the orderly arrangement of neurons into a system-
atic progression of characteristic frequency. As such, cochleotopic organization is
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an example of a non-computational neural map. Cochleotopic arrangement in the
higher auditory system is summarised in figure 2.3. '

Within a cochleotopic framework, neurons of similar characteristic frequency are
organized into sheets called iso-frequency laminae (Clopton [50]). These laminae
may take the form of flat planes, or may be arranged in concentric rings rather
like the layers of an onion. Hence, cochleotopic organization implies the projection
of a one-dimensional structure (the organ of Corti) onto two-dimensional sheets of
cells. There is good evidence that the second dimension in higher auditory centres is
used to represent other acoustic parameters, in a framework that is orthogonal to the
frequency plane (Moore [181]). Clearly, this arrangement gives rise to computational
auditory maps. A number of these maps are discussed on the following pages.

Maps of Intensity

Recall from section 2.2.2 that many neurons in the higher auditory system have
inhibitory regions in their response areas, which may or may not be activated de-
pending on the intensity of a stimulus. Hence, it is possible to define a best intensity
for these neurons, which is the stimulus intensity at which the maximal average rate
is observed.

There is strong evidence for a topographic representation of best intensities in the
auditory cortex of the echo-locating bat (Suga and Manabe [263]). Frequency is
represented cochleotopically within concentric laminae, and intensity is represented
on a circular axis. This arrangement is illustrated in figure 2.4. Whether a map
of intensity is found outside of the cortex or in other species is presently uncertain,
although there is some evidence for a similar map in the auditory cortex of the cat
(Phillips et al. [204]).

Maps of Complex Sounds

Many cells in the higher auditory system respond preferentially to certain rates
of frequency and amplitude modulation. In some nuclei, these cells appear to be
topographically organized.

Schreiner and Langner [237] have described a map of periodicity in the inferior
colliculus of the cat, in which neurons are systematically tuned to a particular rate
of periodic amplitude modulation. Similar maps may exist in the auditory cortex
of the cat (Schreiner and Urbas [239]) and the midbrain of Guinea fowl (Langner et
al. [144]). These maps are discussed in detail in section 4.2.2. Additionally, Shamma
and Chettiar [247] and Mendelson et al. (171, 172] have identified maps of preferred
frequency sweep rate in the auditory cortex. These maps may play a role in the
coding of spectral shape, and are discussed in section 4.4.2.
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Figure 2.4: Representation of best intensities in the auditory cortez of the echo-
locating bat. In the mapped area (right), iso-frequency laminae are shown by solid
lines, and iso-intensity contours are shown by dashed lines. Numbers indicate the
best intensity, in dB, associated with each circular contour. From Moore[181], re-
drawn from Suga and Manabe [263)].

Maps of Auditory Space

At the level of the SOC and above, the majority of auditory neurons are influenced by
stimulation of either ear (Wise and Irvine [282]). Some of these binaurally-responsive
neurons are sensitive to interaural time differences (ITDs), and are thought to en-
code the spatial location of low frequency sounds. Others are sensitive to interaural
intensity differences (IIDs), and may encode the spatial location of high frequency
sounds (Hirsch et al. [115]).

A very accurate map of auditory space has been identified in the midbrain of the
barn owl (Knudsen [137], Knudsen and Konishi [139]). Neurons sensitive to IIDs
and ITDs are systematically arranged in separate computational maps, which encode
elevation and azimuth respectively. Subsequently, these two maps are combined into
a higher-order map of auditory space. In mammals, maps of auditory space appear
to be less well defined. However, there appear to be maps of ITD in the guinea pig
(King and Palmer [134]) and cat (Bojanowski and Schwarz [22]). Additionally, King
and Hutchings [135] have identified a map of auditory space in the midbrain of the
ferret.

General Properties of Auditory Maps
All computational maps, including the auditory maps described in this chapter,

share a number of fundamental properties (Knudsen et al. [138]). Here, the impli-
cations of these shared properties are discussed.
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Firstly, neurons in a map tend to respond to a broad range of parameter values,
although their tuning curves are peaked. For example, neurons in the map of line
orientation in the visual cortex respond weakly to almost any orientation, but they
respond maximally to a small range of orientations (Schiller et al. [235]). Addition-
ally, maps are highly redundant, and contain many neurons that are tuned to the
same parameter value. This redundancy may play an important role in learning, as
discussed in section 7.5.

Secondly, the neurons of a computational map perform preset computations, in
parallel, on the incoming signal. Hence, maps do not require input from higher
centres in order to perform their computations, although their behaviour may be
modified by descending influences (Middlebrooks and Knudsen [173]). Note that
“preset” does not necessarily imply that the maps are genetically hardwired. The
basic pattern of connectivity in a map is undoubtably genetically determined, but
details can be modified by experience. For example, visual experience contributes
to the formation of line-orientation maps in the visual cortex (von der Malsburg and
Cowan [158]). Interestingly, maps in one sensory system can be modified by inputs
from a different sensory system (Harris [111]). For instance, the development of a
map of auditory space can be influenced by visual inputs (King and Moore [133]).

Finally, mapsl appear to represent parameters, and a range of parameter values, that
are functionally significant. For example, Knudsen et al. [138] suggest that

“The generation of a map indicates that the parameter is being evaluated
at that particular site in the nervous system, and that the value of the
parameter is crucial for subsequent processing.” (page 57)

A similar conclusion has been reached by Schreiner and Langner [237]:

“It could be argued that the identification of a systematically represented
response parameter in a given nucleus is evidence that the ‘mapped’ pa-
rameter represents a dimension of perceptual space or contributes to the
selection of combinations of information bearing parameters in a subse-
quent establishment of dimensions of perceptual space.” (page 1835)

In an auditory context, we might expect parameters to be mapped that are impor-
tant for tasks such as pitch analysis and source segregation. The following chapters
of this thesis suggest that this is indeed the case.

Advantages of Mapping

It is advantageous to perform computations in neural maps for a number of rea-
sons (Knudsen et al. [138]). Firstly, the nervous system requires fast strategies for
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processing large amounts of sensory information. Maps, which perform preset com-
putations rapidly in parallel, are ideally suited for such as task. Furthermore, the
results are presented in a simple, systematic form.

Secondly, when parameter values are represented in a computational map, further
processing can be based on relatively straightforward schemes of connectivity. For
example, the map of auditory space in the barn owl is obtained by the simple
convergence of maps of ITD and IID. Additionally, the output of any map is always
represented as the location of a peak of activity within an array of neurons. Hence,
the nervous system can employ a single strategy for reading the information, and

can combine information from different modalities in a straightforward manner.
f
Finally, when a parameter is represented in topographic form, other neural mecha-

nisims can operate to sharpen or modify the response pattern. For example, lateral
inhibition can only be applied to mapped information, such as a cochleotopic array
(Shamma [245]). Similarly, the general form of auditory maps allows the comparison
of particular parameter values at different characteristic frequencies. For example,
section 4.2.6 describes a scheme in which adjacent channels of a periodicity map are
compared using a simple cross-correlation mechanism.

2.3 Summary and Discussion

In this chapter, the basic physiology and anatomy of the auditory system has been
reviewed. Additionally, two possible mechanisms for feature detection in the higher
auditory system have been considered. Firstly, features may be represented by the
activity of single neurons. Secondly, features may be represented by the pattern of
activity over an orderly topographic array of neurons, called a computational map.

Levels of Explanation

It is clear from section 2.2.2 that schemes which classify neurons according to the
pattern of their temporal or excitatory/inhibitory responses can be misleading. Sim-
ilarly, the prediction of a feature detecting function for a single neuron on the basis
of its response properties has proven to be difficult. As Pickles {205] observes,

“There seems to be a continuum of response characteristics along every
category of response that has been analysed. It is not therefore cer-
tain that we are justified in asserting that the degree to which any one
complex feature is extracted results from anything other than a random
arrangement of excitation and inhibition on the constituent neurons.”
(page 179)

One possible solution to this problem is to model the detailed physiology of the
higher auditory system without attributing functional roles to particular neuron
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types. Then, the ability of the model to code certain features can be determined
empirically. For example, Pont and Damper [208, 209] have described a model of
the DCN, in which models of particular cell types are connected according to a
detailed physiological “wiring diagram”. Apparently, the model makes a categorical
distinction between synthetic speech stimuli with different voice onset times, in the
same way as human listeners.

Again, this approach suffers from a number of potential problems. Firstly, the
auditory nervous system is highly complex and subject to considerable variation
between individuals. Hence, it may never be possible to understand it in terms of a
detailed “wiring diagram”. Secondly, this problem is exacerbated by the fact that
anatomical and physiological data are obtained from animals such as the cat, rather
than from the human auditory system. For example, Adams [2] and Moore [182]
find substantial differences between the detailed anatomy of the cochlear nucleus in
humans and cats. Adams concludes that:

“Until more evidence becomes available, it is not reasonable to speculate
on the functions or targets of cells in the human cochlear nucleus. It is
reasonable to assume, however, that the physiology of this nucleus in
humans is quite different from that of cats, given the marked difference
in the composition of the nucleus between the species.” (page 1260)

Clearly, this questions the validity of using a “wiring diagram” model of the auditory
system to explain human psychophysical phenomena. Finally, detailed physiological
models are generally based on incomplete information. For example, the cochlear
nucleus model of Pont and Damper gives realistic responses to pure tones and noise,
but has not been calibrated with modulated stimuli. Recall from section 2.2.2 that
the response of a higher auditory neuron to a time-varying sound cannot usually
be predicted from its response to a static sound. Nonetheless, Pont and Damper’s
model is used to process speech, which is highly modulated in time and frequency.

These criticisms suggest that the auditory system should be modelled in terms of
general principles of functional organization. Clearly, auditory maps are an impor-
tant source of information for such an approach, since they indicate which parame-
ters are likely to be functionally significant, and how the parameters are organized.
Additionally, the topography of a map may indicate the mechanism by which the
map performs its computation (Knudsen et al. [138]).

Maps and Marr

The arguments made in the previous section are similar to those underlying Marr’s
[160] computational approach to vision (see section 1.2.1). Studies that attempt to
ascribe feature detecting roles to neurons on the basis of their physiological prop-
erties ignore the questions that Marr stresses in his level of computational theory,
namely “what is the goal of the computation?” and “why is it appropriate?”. Ad-
ditionally, Marr stresses the need to understand the function of an information
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processing device independently of the representations, algorithms and hardware
that it uses. Effectively, single unit studies jump straight to the level of hardware,
without considering the other levels of explanation. Here, we emphasize the role
that the neurons of the higher auditory system play in providing the functional ba-
sis for a sensory analysis, rather than their individual feature detecting properties
or detailed physiology.

A potential problem with the Marrian approach is that the number of possible
representations is large, and the choice of representation is rather unconstrained
(see section 1.2.3). Marr [160] notes that neurophysiology can inform the choice of
representation, as long as the underlying computational theory is well understood:

“Neurophysiology...can help us to understand the type of representa-
tions being used...But one has to exercise extreme caution in making
inferences from neurophysiological findings about the algorithms and
representations being used, particularly until one has a clear idea about
what information needs to be represented and what processes need to
be implemented.” (page 26)

Clearly, computational maps indicate the type of representations that the auditory
system is using and, together with psychological investigations, the kind of infor-
mation that is being represented. Hence, computational maps fit naturally into the
Marrian philosophy.
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Chapter 3

Principles of Auditory Scene
Analysis

{

The term auditory scene analysis describes the ability of the auditory system to seg-
regate the acoustic components that arise from different events in the environment
into separate perceptual representations (see section 1.3). In Bregman'’s [24] termi-
nology, the physical entity which gives rise to a series of acoustic events is called a
source, and the perceptual representation of the events is called a stream.

This chapter presents an overview of some of the principles underlying auditory scene
analysis. The review is not intended to be exhaustive. Rather, it describes only those
aspects of auditory scene analysis theory which are relevant to the following chapters
of this thesis. The reader is directed to the book by Bregman for a comprehensive
account.

3.1 Principles of Perceptual Organization

In the early part of this century, the Gestalt psychologists (for example, Koftka [140])
formulated a theory describing many of the principles of perceptual organization.
The German word “Gestalt” means “pattern”, and the theory proposed a number of
rules governing the manner in which the brain forms mental patterns from elements
of its sensory input. Although the Gestalt principles of perceptual organization were
generally described first in relation to vision, they are equally applicable to audition.
Here, a number of Gestalt principles are reviewed, and examples from the auditory
and visual domains are given.
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Figure 3.1: Illustration of the Gestalt principle of closure. On the left, there is a
tendency to close (complete) the black line behind the grey rectangle. On the right,
closure does not occur because there is no evidence that the line is occluded, rather
than interrupted.

Common Fate

The Gestalt principle of common fate describes the tendency to group sensory ele-
ments which change in the same way at the same time. A visual illustration of this
principle is the demonstration by Johansson [126] that, in a collection of randomly
moving dots, two dots which have a correlated trajectory are perceived as parts of
the same object. In this example, the common motion of the two dots promotes
their perceptual fusion.

The principle of common fate can equally be applied to audition, since frequency
components which belong to the same acoustic source tend to vary in a coherent
manner. Specifically, they tend to start and stop together (common onset and
common offset), change in amplitude together (common periodicity and common
amplitude modulation) and change in frequency together (common frequency mod-
ulation). These factors are discussed in detail in the following chapter.

Additionally, there is some evidence that common fate can combine information from
the auditory and visual modalities. For example, it is easier to recognize speech in
a noisy environment when the speaker’s face is visible (Dodd [78]).

Closure
|

The Gestalt psychologists noticed a tendency to close (complete) certain perceptual
forms. For example, the left panel of figure 3.1 is likely to be interpreted as a line that
is obscured by a grey rectangle, even though the line is actually incomplete. Note
that in order for closure to occur, there must be some evidence that the perceptual
form is obscured, rather than interrupted. This is apparent from the right panel
of figure 3.1, where the grey rectangle obscuring the line has been removed. Here,
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Grouping by Similarity Grouping by Proximity

Figure 3.2: Illustration of the Gestalt principles of similarity and prozimity. On the
left, the black and white hezagons are grouped because they have a similar colour.
One the right, two groups of black hezagons are seen, because the members of one
group are closer to each other than they are to the members of the other group.

Adapted from Bregman [24].

there is little tendency to close the gap, and the figure is perceived as two isolated
lines. !

The left panel of figure 3.1 can be used to illustrate an equivalent effect in audition.
If part of a tone (black line) is deleted and replaced with a brief burst of random
noise (grey rectangle), the tone is heard to continue through the noise, even though
it is not physically present (Miller and Licklider [174]). This phenomenon is known
as the auditory continuity effect. If the noise burst is absent, so that the stimulus
resembles the right panel in figure 3.1, continuity is abolished and a gap is heard in
the tone. A similar continuity effect can be demonstrated when speech is alternated
with noise bursts (Dirks and Bower [77]). In this case, the missing speech sounds
are perceptually restored. Clearly, this is a useful perceptual mechanism, since the
speech of a talker is often interrupted by other sounds in the acoustic environment.
The auditory continuity effect is discussed further in section 4.4.1.

Similarity and Proximity

Another Gestalt principle of perceptual organization states that elements will be
grouped if they are similar. This effect is illustrated in the left panel of figure 3.2,
where the black and white hexagons form different subgroups because of the simi-
larity of their colour. In audition, sounds with a similar pitch, intensity, timbre or
spatial location will tend to form a perceptual group. For example, van Noorden
[193] presented listeners with a sequence of tones which had the same frequency,
but alternated between two intensities. When the difference between the two inten-
sities was large, the sequence of loud tones and the sequence of quiet tones formed
different perceptual streams. However, when the intensity of the tones was similar,
a single stream was perceived. Hence, a similarity in intensity promoted perceptual

grouping.
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Figure 3.3: Illustration of the Gestalt principle of good continuation. On the left,
the black bars have good continuity and are perceived as a single, partly obscured,
form. On the right, the black bars have poor continuity and there is no tendency to
group them perceptually. Adapted from Bregman[2{].

A related factor is the Gestalt principle of proximity. Essentially, this states that
the closer the elements of a set are to one another, the greater is the tendency to
group them perceptually. A visual illustration of this principle is shown in the right
panel of figure 3.2. Here, the black hexagons form two perceptual groups, since the
members of one group are closer to one another than they are to the members of
the other group.

In audition, acoustic components can be grouped according to their proximity in
time or their proximity in frequency. For example, Bregman and Campbell [27]
presented listeners with a sequence of alternating high-frequency and low-frequency
tones. When the tones were presented slowly, subjects heard the tones in their
correct sequence. However, at a faster rate of presentation, the high-frequency and
low-frequency tones tended to segregate into different perceptual streams. Hence,
the close proximity of the tones in time promoted their perceptual fusion. Similarly,
Bregman and Pinker [30] have shown that tones in a repeating sequence are more
likely to form a group if they are close in frequency (see section 4.3.1).

Good Continuation

The Gestalt psychologists noted that the smoothness of a change promoted the
perceptual integration of changing elements. A visual example is shown in figure
3.3. On the left, the black bars either side of the grey rectangle tend to be perceived
as a single partly obscured form, because of the “good continuation” of their lines.
On the right, the black bars do not have good continuity and there is no tendency
to group them perceptually.

The principle of good continuation can also be applied to audition, since sounds
tend to change smoothly in frequency, intensity, location and pitch. Hence, a
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smooth change in these properties indicates a continuation of the same sound source,
whereas an abrupt change indicates that a new source has become active. Darwin
and Bethell-Fox [61] have demonstrated this effect, using repeated synthetic formant
patterns that changed smoothly between two vowels. When the pitch of the patterns
was constant, a single sound source was heard that contained semivowels and liquid
consonants. However, when a discontinuous, stepped pitch contour was imposed
on the patterns, they segregated into two perceptual streams that predominantly
contained stop consonants. Apparently, the segregation produced illusory silences in
each stream during the portions of the pattern attributed to the other stream, and
these silences were interpreted, together with the gliding formants, as stop conso-
nants. Darwin and Bethell-Fox confirmed that this effect was due to discontinuities
in the pitch contour, rather than concomitant changes in energy.

Some other experimental investigations of good continuation are reviewed in the
following chapter. Bregman and Dannenbring [28] have shown that the tendency of
a sequence of high and low frequency tones to segregate into two streams can be re-
duced by connecting successive tones with frequency transitions (see page 79). Also,
Ciocca and Bregman [49] have investigated continuity using the auditory equivalent
of the visual patterns shown in figure 3.3 (see page 80).

The Figure-Ground Effect

When viewing a visual scene, it is possible to attend to a particular element so that
it stands out perceptually from the remainder of the scene. The Gestalt psycholo-
gists called this the “figure-ground effect”. An analogous effect occurs in audition.
For example, in a crowded cocktail party, it is possible to attend to a particular
conversation, so that the other voices form a kind of background. Similarly, when
listening to a piece of polyphonic music, we attend principally to one melodic line at
a time. Hence, it appears that the acoustic environment is segregated into a number
of streams, and that a single stream is selected for conscious analysis at a particular
instant.

The tendency of listeners to attend separately to different streams has been demon-
strated by Bregman and Campbell [27]. They presented subjects with a repeating
sequence containing three high-frequency tones and three low-frequency tones, in
which the high and low tones alternated. When asked to judge the order of the
tones, the majority of listeners reported hearing all of the high tones followed by the
low tones, or all of the low tones followed by the high tones. Apparently, listeners
were attending separately to the order in each frequency-based stream, and then
concatenating the two remembered sequences.

There is good evidence that stream segregation arises principally as a result of pre-
attentive grouping mechanisms. For example, Bregman and Rudnicky [31] have
demonstrated that tones in an unattended stream can capture tones from an at-
tended stream. Hence, a second stream can exist even though it is not the subject
of conscious analysis. Nonetheless, it is also clear that attention may influence the
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formation of perceptual streams. This point has been illustrated by van Noorden
[193], using a sequence of alternating high-frequency and low-frequency tones. When
the interval between the tones was about seven semitones, frequency proximity cues
were ambiguous and listeners could hear segregation or fusion depending on their
attentional focus. Specifically, subjects could attend to the high and low frequency
tones in separate streams, or could attend to all of the tones in the same stream.

Note that the figure-ground effect is closely related to the Gestalt principle of good
continuation. When an abrupt change occurs in the acoustic environment, the
attention of a listener is drawn to that change, so that it becomes the “figure”
against the other sounds in the acoustic “background”. Clearly, this is a useful
perceptual mechanism, since attention is directed to new and potentially important

events in the acoustic environment. |

3.2 Simultaneous and Sequential Grouping

Bregman and Pinker [30] make a distinction between simultaneous and sequential
grouping processes. Simultaneous processes group the components of a source that
occur at the same time, but at different spectral locations. Sequential processes
group acoustic components that have arisen from the same source over time. In
the time-frequency domain, these two phenomena can be regarded as “vertical” and
“horizontal” grouping respectively. For example, the visual grouping of the black
bars in the left panel of figure 3.3 is a sequential process.

It is useful to distinguish these two aspects of perceptual organization, since they are
influenced by different properties of the acoustic input. Simultaneous grouping is
affected by frequency proximity and common fate (common onset, offset, periodicity,
amplitude modulation and frequency modulation). In contrast, sequential grouping
is influenced by many of the factors that define the similarity and good continuation
of successive sounds. These include their pitch, temporal proximity, intensity and
spatial location.

Although simultaneous and sequential grouping processes are influenced by different
factors, it is clear that they can interact to solve a scene analysis problem. Indeed,
many experiments have exploited the competition between simultaneous and se-
quential organization, such as the paradigm used by Bregman and Pinker [30] (see
section 4.3.1). A similar paradigm is shown in figure 3.4 (Bregman and Tougas [32]).
Here, listeners were presented with a repeating cycle consisting of a tone A followed
by a pair of tones B and C. In some conditions, a tone D was also included, other-
wise a silent gap was left which was the same length as D. Subjects were asked to
judge how clearly A and B could be heard as a repeating pair. When D was present,
the AB grouping was more prominent. Apparently, C and D tended to form a se-
quential group so that the simultaneous fusion of B and C was weakened. Hence,
it was easier for A to capture B into a sequential stream, and the AB pattern was
heard more clearly. This result implies that simultaneous and sequential grouping
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Figure 3.4: Schematic diagram of the stimulus used by Bregman and Tougas. A
pure tone A alternates with a pair of tones B and C. In some conditions, a tone D
is also included in the repeating cycle. From Bregman and Tougas[32].

processes can compete for the same acoustic event.

Note that in order to group the components of a single source over time, the audi-
tory system has to solve a temporal correspondence problem. Specifically, sequential
grouping mechanisms must be able to relate the auditory representation of an acous-
tic event at a particular time with the representation of the same event at a later
time. This problem, and a possible solution, are discussed in section 4.4.

3.3 The Principle of Exclusive Allocation

The Gestalt psychologists describe a principle of belongingness, which states that
a perceived boundary in the mental representation of a drawing always belongs to
some organization in the figure. A familiar visual example of this principle is shown
in figure 3.5, which is perceived either as a vase or two faces. When the vase is
seen, the lines separating the white and black areas belong to the vase and define
its shape. Similarly, when the faces are seen, the same lines belong to the faces.

Note that in figure 3.5, the lines separating the black and white areas never belong
to the vase and the faces at the same time. This observation leads to another orga-
nizational principle, which Bregman [24] calls the principle of ezclusive allocation.
This principle states that a sensory element should not be used in more than one
organization at a time. In fact, this assumption has been implicit in several of the
examples already mentioned in this chapter, since competition between grouping
processes cannot arise without exclusive allocation. For example, in figure 3.4 se-
quential and simultaneous streams are competing for B and C. This implies that B
and C cannot belong to both streams at the same time. Another example is the
Bregman and Rudnicky experiment discussed on page 33.

Although the principle of exclusive allocation always appears to apply when sounds
do not overlap in time, it may be violated when sounds are concurrent. For example,
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Figure 3.5: The vase-face illusion of the Gestalt psychologists.

a violation of the principle of exclusive allocation occurs in the “duplex” perception
of speech (Rand [210]). Here, spectral information is used twice, once to define a
speech sound and once to define a non-speech sound. Other violations occur in pitch
perception, where a mistuned harmonic of a complex tone can be heard as a part of
two sources (Moore et al. {185]). These examples, and several others, are discussed
in detail in section 5.5.

Intuitively, it seems reasonable that the principle of exclusive allocation should be
violated in some circumstances. Since many sources are usually active in the acoustic
environment at a particular time, several sounds may contribute to the energy in
a certain spectral region (Bregman [23]). Hence, it is desirable to be able to share
energy between several perceptual organizations.

3.4 Primitive and Schema-Based Segregation

Bregman [24] makes a distinction between primitive and schema-based organiza-
tion. Primitive segregation employs innate grouping rules, such as common fate
and good continuation, which use neither past learning nor voluntary attention. In
contrast, schema-based segregation employs learned knowledge of familiar sounds in
the acoustic environment, such as music and speech.

Schemas appear to extract the spectral components that they require directly from
the auditory scene. Hence, they act as a complete scene analysis process, and are
not necessarily dependent upon a prior analysis of the sensory input by primitive
grouping mechanisms. An example of schema-based grouping occurs in the percep-
tual restoration of speech that has been interrupted by a brief burst of noise (see
page 31). Presumably, a schema for the interrupted word is activated, which selects
certain spectral components from the noise burst and interprets them as parts of
the missing speech sound.
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Another property of schema-based mechanisms is their ability to regroup spectral
components that have been previously segregated by primitive processes. This point
can be illustrated with a synthetic, two-formant speech sound in which each formant
is excited on a different fundamental frequency (Bregman [24]). When presented
with this stimulus, listeners hear the two formants individually, but also hear a
speech sound corresponding to both formants. Apparently, the two formants have
been segregated by primitive processes because they have a different fundamental,
but a schema has recombined them to form a speech percept. Other examples of
schema-based segregation are discussed in section 5.5.

3.5 Summary and Discussion

This chapter has reviewed some of the principles underlying auditory scene analysis,
many of which correspond to the rules of perceptual organization proposed by the
Gestalt psychologists.

The basic tenet of Gestalt psychology is that grouping is determined by competi-
tion between the “forces of attraction” of perceptual elements. Other theories have
stressed rule-based mechanisms of perceptual organization, rather than attractional
forces. For example, Jones [127] proposes a theory in which sound is represented
within the subjective dimensions of pitch, loudness and time. Rules attempt to pre-
dict the position of a new sound in this three-dimensional space from the positions
of a sequence of previous sounds. If the prediction is good, the new sound is inte-
grated into the sequence. Theories of this type suffer from a number of difficulties
(Bregman [24]). Firstly, rule-based descriptions of a stimulus cannot explain the
perception of random sequences. Additionally, the theories fail when there is no
rule to guide the organization of a particular stimulus.

Recall from section 2.2.3 that properties such as periodicity, spatial location, inten-
sity and frequency modulation appear to be mapped in the higher auditory system.
As might be expected, these properties are also cues which can be used to achieve
the perceptual segregation of sound sources. The next chapter presents computa-
tional models of several auditory maps, which provide a basis for the scene analysis
strategy described in chapter 5.
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Chapter 4

Primitives for Auditory Scene
Analysis

This chapter describes a computational model of the auditory periphery, and models
of periodicity, onset, offset and frequency transition maps. The psychophysical and
physiological motivation for each map is discussed in detail, followed by a description
of the model and some sample output.

Maps for extracting periodicity information from auditory nerve firing patterns are
described in section 4.2. Onset and offset maps are described in section 4.3, fol-
lowed by a map of frequency transition in section 4.4. Finally, some other grouping
primitives that are not employed in the model are discussed in section 4.5.

4.1 Auditory Periphery

Over the past decade, a large number of models of the auditory periphery have been
described in the hearing science and speech technology literature. Many of these
models have been motivated by the convergence of psychophysical and physiological
estimates of auditory frequency selectivity, and by the belief that a model of periph-
eral auditory processing will provide an improved spectral analysis for automatic
speech recognition systems.

Since the auditory periphery has been modelled so extensively, no new modelling
work is attempted here. Rather, existing models of each stage of peripheral audi-
tory processing are selected “off the shelf”, and assembled into a complete system.
Generally, models have been chosen that are in closest agreement with the available
experimental data, although computational expense has also been considered.

The auditory periphery can be divided into three main functional components, the
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outer and middle ear resonances, basilar membrane filtering and inner hair cell
transduction (see section 2.1). A model of each component is described below, and
the parameter settings are summarized in table 4.1.

4.1.1 Outer and Middle Ear Resonances

The outer and middle ears are approximately linear for small to moderate sound
intensities, and hence their resonances can be modelled by a linear filter. Although
it is possible to model the transfer function of the outer and middle ears very closely
(Deng and Geisler [75], Meddis and Hewitt [167]), a simple high-pass filter of the

form
y[t] = z[t] — 0.95 * z[t — 1] (4.1)

was considered to be an acceptable approximation for the functional approach
adopted here. In equation 4.1, z[t] is the amplitude of the input at time t.

4.1.2 Basilar Membrane Filtering

The frequency selective properties of the basilar membrane are generally modelled as
a transmission-line, or as a filterbank. Additionally, a number of models manipulate
spectra obtained by a discrete Fourier transform (Goldhor [97], Scheffers [234)).
Transmission-line models approximate the basilar membrane by a series of sections
that vary in their mechanical properties, and they are usually implemented as a
cascade of filters (Lyon [156], Dolmazon [79]). However, models of this type tend
to be computationally expensive (Deng and Gesiler [75]), so they are not pursued
here.

A more efficient method of modelling the basilar membrane is to employ a filter-
bank, in which each filter simulates the frequency response of a particular point
along the cochlear partition (Ghitza [93], Seneff [243], Cooke [52]). Like any filter,
the frequency response of an auditory filter can be completely characterized in the
time domain by its response to a brief click, called the impulse response. Physio-
logical measurements of auditory nerve fibre impulse responses have been made by
de Boer and Kuyper [16] and Carney and Yin [44], using a “reverse correlation”
paradigm. The filterbank used here is based on an analytical approximation of their
experimental data, the gammatone function proposed by de Boer and de Jongh [15].
The gammatone filter of order n and centre frequency fo Hz is given by

gt[t] = t" " exp[—27t] cos[27 fot + ¢Jult] (4.2)

where u[t] is the unit step function

ult] = { 1 ift >0 (4.3)

0 otherwise
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and b is related to the bandwidth. The name “gammatone” is originally due to
Aertsen and Johannesma (3], and is derived from the observation that the term
before the cosine in equation 4.2 is the statistical gamma distribution, and the
cosine term is a pure tone of frequency fo Hz and phase ¢.

Patterson et al. [200] have compared the gammatone filter with the psychophysically-
derived “rounded-exponential” models of human auditory filter shape. They found
that the gammatone filter of order 4 provides a very close fit to the simplest member
of the rounded-exponential family, the roex[p] filter, over a 60 dB range. Hence, the
gammatone function provides the basis for a model of basilar membrane filtering
that is in good agreement with first-order physiological and psychophysical estimates
of auditory frequency selectivity.

For the computational model described here, it is advantageous to compensate for
the phase delays introduced by the filterbank. Specifically, phase is critical in the
comparison of onset and offset times in different frequency channels (see section 4.3),
and the performance of the frequency transition map is improved if the filterbank is
phase-compensated (see section 4.4). Holdsworth et al. [116] describe two methods
of phase compensation for the gammatone filter, both of which are used here. Firstly,
the peaks of the envelopes of each impulse response can be aligued by introducing
a time lead

n-1

2rh

te= (4.4)

to the output of the filter. Secondly, a peak in the temporal fine structure can be
aligned with the peak in the envelope by a phase correction

¢e = =27 fol. ! (4.5)

Substituting into equation 4.2, this gives the phase-compensated filter

gte = (t + t)" Lexp[—27b(t + t.)] cos[2m fot]u,[t] (4.6)
where
1 ift > —t,
uelt) = { 0 otherwise (4.7)

in which the peak impulse response at t = 0 is aligned for each characteristic fre-
quency. Here, a digital approximation of the gammatone filter suggested by Cooke
[62] is employed, where an “impulse-invariant” transform is used to convert from
the continuous domain to the digital domain. Cooke compares three methods of
digital approximation, and concludes that an impulse-invariant transform gives the
closest fit to the ideal magnitude, phase and impulse responses of the filter.
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Parameter | Description Value | Units
n gammatone filter order 4
number of filters 128
lowest filter centre frequency | 50 Hz
highest filter centre frequency { 5000 | Hz
filter spacing 0.2 ERB

Table 4.1: Parameter settings for the peripheral auditory model.

Auditory filters are distributed across frequency according to their bandwidths,
which increase quasi-logarithmically with the centre frequency of the filter (see fig-
ure 4.27). Here, the gammatone filters are spaced on the equivalent rectangular
bandwidth (ERB) scale of Moore and Glasberg [183]. Specifically, 128 overlapping
filters were spaced equally in ERB-rate in the range 50 Hz to 5000 Hz, corresponding
to a distance of approximately 0.2 ERB between adjacent centre frequencies. Using
more than 128 filters does not significantly improve the performance of the model,
and introduces an additional computational burden.

4.1.3 Inner Hair Cell Transduction

Mechanical motion of the basilar membrane is converted into spikes in the auditory
nerve by inner hair cells. This transduction process gives rise to phase-locking,
compression, saturation and adaptation effects (see section 2.1.3).

Movement of the basilar membrane displaces the stereocilia of inner hair cells, caus-
ing changes in the cell's receptor potentials. The relationship between stereocilia
displacement and receptor potential is nonlinear, and is thought to underlie the
phase-locking, compression and saturation behaviour observed in the auditory nerve.
Generally, the nonlinearity is modelled as a sigmoidal function (Seneff [243], Shamma
[246), Meddis [164], Cooke [52]), although simple half-wave rectifiers have also been
used (Lyon [156]). Adaptation phenomena are thought to be caused by depletion
of neurotransmitter at the inner hair cell-auditory nerve synapse. Simple models of
adaptation employ a single reservoir of neurotransmitter (Schroeder and Hall [240],
Oono and Sujaku {195]), but these are unable to reproduce several important as-
pects of the physiological data. More recent models (Smith and Brachman [256],
Schwid and Geisler [241}) employ multiple reservoirs, and give better agreement with
experimental findings at the cost (in general) of increased computational expense.

The model of inner hair cell transduction employed here is the multiple-reservoir
scheme proposed by Meddis [164, 165, 166]. In a recent review of eight inner hair
cell models, Hewitt and Meddis [113] concluded that the Meddis model was in closest
agreement with the physiological findings, and had the additional advantage of being
computationally efficient. Given the simulated basilar membrane motion from the
gammatone filter, the Meddis model returns the probability of a spike occurring in
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the auditory nerve. Here, the model is configured according to the parameters given
in [165), which simulate an auditory nerve fibre with a high spontaneous firing rate.

{

4.1.4 Auditory Periphery Representations

Figure 4.1 shows a representation of average firing rate in the auditory nerve for
the ten noise sources used in chapter 6. Here, the spike probabilities from the
Meddis hair cell model have been integrated over a 20 ms Hamming window, and
displayed at 10 ms intervals. Regions of spectral dominance in speech (harmonics
and formants) are clearly represented as dark bands of intense firing activity. Note
that environmental sounds such as the speech, music and laboratory noise elicit a
more complex pattern of response than synthetic sources (noise bursts, 1 kHz tone,
telephone and siren). l

4.1.5 Summary and Discussion

In this section, a model of the auditory periphery has been described which incorpo-
rates outer/middle ear, basilar membrane filtering and inner hair cell transduction
effects. The model provides a probabilistic representation of firing rates in the audi-
tory nerve, which forms the input to the auditory maps described in the remainder
of this chapter.

The gammatone filters used here provide a good approximation to the frequency
analysis performed by the basilar membrane, but they fail to replicate two experi-
mental findings. Firstly, the fourth-order gammatone filter has a symmetric magni-
tude response, whereas auditory filters are known to be asymmetric, with a longer
tail at low frequencies (Patterson et al. [200]). However, there is little asymmetry
in the passband of auditory filters (Lutfi and Patterson [155]), so this may not be
a serious deficiency. Secondly, the gammatone is a linear filter which has the same
bandpass characteristic regardless of stimulus intensity. In fact, auditory nerve fi-
bres appear to respond in a nonlinear manner, with broader tuning curves at high
intensities (Rose et al. {227]). Recently, several models of basilar membrane filtering
have been proposed which incorporate nonlinear effects (e.g. Jenison et al. [125]),
and these may provide a more accurate simulation of auditory frequency analysis.

For good performance of the onset, offset and frequency transition maps described
later in this chapter, it was necessary to phase-compensate the gammatone filter-
bank. There is some evidence that the auditory system compensates for its own
phase characteristic. For example, the psychophysical experiments of Patterson
[199] suggest that the phase lag of the cochlea does not affect the perception of
timbre. Patterson concludes that

“It appears that the auditory system accommodates for the propaga-

tion delay in the cochlea and that it can, therefore, be omitted from
perceptual models of hearing.” (page 1585)
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n0: 1kHz tone n5: siren

Figure 4.1: Average auditory nerve firing rate representations of the ten noise
sources. Time is displayed on the abscissa, and channel centre frequency is dis-
played on the ordinate.
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Note that phase-compensation does not affect the autocorrelation map described
in section 4.2.3, since across-channel phase differences in the map are intrinsically
corrected by the autocorrelation analysis.

4.2 Periodicity

This section presents models of two maps that extract periodicity information from
auditory nerve firing patterns. First, the psychophysical and physiological motiva-
tion for the maps is discussed.

4.2.1 Psychbphysical Motivation

In this section, evidence is reviewed that perceptual grouping mechanisms integrate
regions of auditory nerve activity which have a common periodicity. Since auditory
nerve fibres tend to fire at integer multiples of the period of a stimulus (see section
2.1.3), and it is unlikely that two sounds will have identical fundamental frequencies
at the same time, neural activity with a related periodicity is likely to have arisen
from the same acoustic source.

Since periodic sounds have a pitch, which generally corresponds to the fundamental
frequency, auditory processes that group components according to common period-
icity are intrinsically linked with mechanisms of pitch analysis. Therefore, the review
in this section addresses two related points. Firstly, evidence is presented that the
auditory system uses periodicity information in order to calculate pitch. Secondly,
evidence is reviewed that differences in pitch assist the perceptual segregation of
concurrent periodic sounds.

Evidence for the Role of Periodicity in Pitch Perception

Theories of pitch perception can be categorized into two classes, pattern recognition
models and temporal models. Both types of theory have been proposed to account
for the observation that the pitch of a complex tone can be perceived when there is
no spectral component at its fundamental frequency.

Pattern recognition models, typified by the theory of Goldstein [98], propose a cen-
tral mechanism which finds the best fitting harmonic series for a set of resolved
frequency components. This type of model is supported by the fact that low, re-
solvable harmonics tend to dominate the pitch percept (Ritsma [221]). However,
pattern recognition theories are unable to explain the (weak) pitches evoked by pe-
riodically interrupted noise bursts (Miller and Taylor [175]) and stimuli containing
only high, unresolved harmonics (Moore and Rosen [187]). Consequently, alterna-
tive models have been proposed which emphasize the role of temporal information
in the auditory nerve. Temporal theories, such as the “duplex” scheme proposed
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by Licklider [152], assume that adjacent harmonics are not completely resolved, so
that the pitch of a complex tone is represented in the periodicity of auditory nerve
firings.

Clearly, the pattern recognition and temporal theories disagree on the relative im-
portance of resolved and unresolved harmonics, and neither model can account for
all of the experimental findings. Hence, theories of pitch perception have recently
been proposed which combine pattern recognition and temporal mechanisms by in-
tegrating periodicity information from resolved and unresolved harmonic regions
(Moore [179], Meddis and Hewitt [168, 167]). Models of this type are able to ex-
plain the majority of psychophysical pitch phenomena, and are supported by recent
experimental observations (Carlyon et al. [42], Houtsma and Smurzynski [119]). For
example, Carlyon et al. have shown that listeners can detect differences between the
fundamental frequencies of two groups of components in different spectral regions,
when only one of the groups is resolved by the auditory periphery.

Evidence for the Role of Pitch in Perceptual Grouping

The previous section suggests that the auditory system combines regions of neural
activity which have a common periodicity in order to calculate pitch. Here, evidence
is reviewed that similar mechanisms contribute to the perceptual segregation of
sounds which have a different fundamental frequency.

One of the first demonstrations of an effect of common fundamental was provided by
Broadbent and Ladefoged [34]. They employed a synthetic speech stimulus in which
the first two formants were delivered to separate ears of their subjects. When the
formants had the same fundamental frequency, the large majority of listeners heard
a single voice. However, when the first two formants were synthesized on different
fundamentals, listeners reported hearing more than one voice. This result suggests
that frequency components which have a common fundamental tend to be grouped
into the same perceptual stream.

Broadbent and Ladefoged’s results demonstrate the importance of a common fun-
damental frequency in determining the number of voices that are heard, but they
do not suggest whether grouping by fundamental contributes to phonetic catego-
rization. This question has been addressed by Darwin and his colleagues, using a
perceptually ambiguous four-formant syllable for which the first three formants are
heard as /ru/, and the first, third and fourth formants are heard as /li/. Darwin
[58] found that when all four formants were synthesized on the same fundamental,
listeners predominantly heard /ru/. However, when the second formant was synthe-
sized on a different fundamental to the others, there was in increase in the number of
subjects who heard /li/. Hence, the formant with a different fundamental frequency
tended to be excluded from the perceived phonetic category of the syllable. Gardner
et al. [90] extended this paradigm to include a range of fundamental frequency dif-
ferences, and found that large differences in fundamental were necessary to produce
a change in phonetic percept. For smaller differences, the second formant was heard
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as a separate source but the phonetic category of the syllable was unchanged.

Scheffers [233] has investigated the effect of differences in fundamental frequency on
the perception of simultaneous (double) vowel sounds. His results suggest that a
difference in pitch between two vowels can assist their perceptual segregation (see
section 1.4.3). When listeners were presented with vowels on the same fundamental,
Scheffers found that they were able to identify both vowels with a performance that
was above chance level (45%). However, introducing a difference in fundamental
frequency between the vowels improved identification performance, which increased
to 62% correct for a 1 semitone difference. Further increases in difference between
the fundamentals did not yield a better performance. The generality of these findings
has been confirmed by Blokx and Nooteboom [12] using continuous natural speech,
and by Chalikia and Bregman {47] using nonspeech pulse trains.

The results of double vowel studies have been interpreted in terms of a “harmonic
sieve”, which is similar in concept to Goldstein’s model of pitch perception men-
tioned earlier (Duifhuis et al. [80], Scheffers [234]). This theory proposes that the
components of a harmonic series can be identified by a “sieve” which has “holes”
at integer multiples of its fundamental frequency. Harmonics that are aligned with
holes in the sieve “fall through” and contribute to the vowel percept, whereas com-
ponents which are misaligned are blocked. Hence, when the harmonics of two vowels
with different fundamental frequencies are present at the same time, each vowel can
" be isolated by a sieve that is aligned with its fundamental.

Moore et al. [185] have quantified the width of holes in the harmonic sieve using a
mistuning paradigm. They presented listeners with a harmonic complex in which
one component was mistuned, so that its frequency was not an integer multiple of the
fundamental. For mistunings of up to 3%, the mistuned harmonic made a normal
contribution to the pitch of the complex. However, components mistuned by more
than 3% began to be rejected by the harmonic sieve, and made a smaller contribution
to the perceived pitch. Additionally, listeners heard components that were mistuned
by 2-3% as a separate sound source. Similar findings have been reported by Darwin
and Gardner [63] in the context of speech perception. These results suggest that
perceptual mechanisms tolerate a small difference in the frequency (or periodicity)
of a harmonic when grouping components which have a common fundamental.

In a recent study, Carlyon et al. [42] have shown that listeners are able to compare
fundamental frequencies across a wide spectral region. Clearly, comparisons of this
kind could provide a means of segregating concurrent periodic sounds.

4.2.2 Physiological Motivation
Physiology of Single Cells

Periodicity appears to be coded and enhanced by neurons at many levels of the
auditory system. In the auditory nerve, information about the periodicity of a
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Figure 4.2: Map of periodicity in the inferior colliculus of the cat. Neurons with the
same best modulation frequency (BMF) are arranged in concentric rings within iso-
frequency sheets, with higher BMFs concentrated in the centre of each sheet. From
Schreiner and Langner [237], figure 3.

stimulus is represented by the tendency of fibres to phase-lock to the stimulating
waveform (see section 2.1.3). For example, Miller and Sachs [176] have demonstrated
that the period of voiced speech is coded in the temporal responses of auditory
nerve fibres, and that this representation is stable at high stimulus intensities and
in background noise.

There is good evidence that periodicity is actively enhanced at higher levels of the
auditory system. Neurons that are tuned to specific rates of periodicity have been
identified in the cochlear nucleus (Frisina et al. [86]), inferior colliculus (Rees and
Mgller [214]) and the auditory cortex (Schreiner and Urbas [239]). Additionally,
certain types of onset cell in the cochlear nucleus exhibit almost perfect phase-
locking to the fundamental frequency of a synthetic vowel, and are said to have
“pitch-period following” responses (Kim and Leonard [131], Palmer and Winter
[197]). The phase-locking properties of onset cells are discussed further in section
4.3.2.

In the auditory cortex of the bat, Suga et al. [264] have identified neurons that
respond to combinations of two or more harmonically related tones. Although the
bat is highly specialized for echolocation, it is possible that similar neural circuits
underlie mechanisms of pitch perception and grouping by common fundamental in
the human auditory system.

Topographic Organization
If periodicity is a perceptually important acoustic parameter, then it is likely to be

represented in an orderly manner in the higher auditory system (see section 2.2.3).
Indeed, there is good evidence that periodicity information is systematically mapped
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Fast Rate of Periodicity ————( Slow Rate of Periodicity
Short Autocorrelation Delay Long Autocorrelation Delay

Figure 4.8: Schematic of the autocorrelation map. Each neuron is tuned to a par-

ticular rate of periodicity, depending on its autocorrelation delay time.

in at least one auditory nucleus.

In the auditory cortex, Schreiner and Urbas [239] have identified a systematic rela-
tionship between preferred rate of periodicity and characteristic frequency. Neurons
are tuned to a best modulation frequency in the range 3-100 Hz, either in terms of
their firing rate or degree of synchronization to a periodic stimulus.

Schreiner and his colleagues have also described a similar organization in the infe-
rior colliculus of the cat and the midbrain of Guinea fowl (Schreiner and Langner
[237], Langner et al. [145, 144]). In the inferior colliculus, cells with the same best
modulation frequency are arranged in concentric rings within each iso-frequency
plane (see figure 4.2). Neurons are tuned to rates of periodicity between 10 Hz and
1000 Hz, with higher best modulation frequencies concentrated in the centre of each
sheet of cells. Additionally, separate iso-frequency sheets in the inferior colliculus
are connected by interneurons (Oliver and Morest [194]), and hence the nucleus has
a suitable architecture for comparing periodicities in different frequency regions.
This type of organization might provide a basis for pitch analysis or grouping by
common periodicity.

4.2.3 A Model Periodicity Map

This section presents a model of a map of periodicity which is based on the “du-
plex” theory of pitch perception proposed by Licklider [152] (see section 4.2.1). The
essence of the “duplex” scheme is that a spectral analysis in the frequency domain is
performed simultaneously with a periodicity analysis in the time domain. Licklider
suggests that periodicities in the temporal fine structure of auditory nerve firing
patterns can be identified by an autocorrelation analysis at each characteristic fre-
quency, an operation which is equivalent to building a histogram of the time intervals
between each spike and every other spike.
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Autocorrelation is a mathematical technique in which a signal is multiplied by a
time-delayed version of itself. For a periodic sound, the autocorrelation function
shows a peak at the time delay corresponding to the period of repetition. Hence,
the map of periodicity employed here is a two-dimensional representation in which
neurons at each characteristic frequency are tuned to a series of different auto-
correlation time delays (see figure 4.3). Similar computational models based on
Licklider’s theory have been proposed by Weintraub [277], Gardner [88], Slaney and
Lyon [252], Assmann and Summerfield [8] and Meddis and Hewitt [168, 167], and
have been named “autocorrelograms” or “correlograms”. However, the model de-
scribed here will be referred to as an autocorrelation map, to emphasize the point
that Licklider’s scheme is compatible with the general framework of auditory map
representations described in section 2.2.3.

For an auditory filter with characteristic frequency f, the running autocorrelation
c['] at a time delay At is given by

oo

ct, fat) =Y r[t =T, flr[t - T — At, flw[T] (4.8)
i=0
where
T =idt - (4.9)

and r[-] is the probability of a spike in the auditory nerve, derived from the Meddis
hair cell model (see section 4.1). The window w[T} limits the summation over time,
and takes the form of a decaying exponential

w[T] = exp [_TV’E] (4.10)

with time constant N, as originally suggested by Licklider. Hence, the more distant
a spike is in time, the less is contributes to the autocorrelation. When comparing
periodicity information in different frequency channels, it is preferable to normalize
equation 4.8 so that the autocorrelation function is not influenced by the average
firing rate in the auditory nerve. The normalized response of a neuron in the map
is given by

c(t, f, At]

acml[t, f,At] = . .0]

(4.11)

where c[t, f,0] is equivalent to the energy in the auditory filter channel. Together,
equations 4.8 to 4.11 define the computational model. The free parameters of the
model are discussed below, and summarized in table 4.2.
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Parameter | Description Value Units
At autocorrelation time delay | 0.0625 to 20.0 | ms
N window time constant 10.0 ms
dt sample period 0.0625 ms

Table 4.2: Parameter setiings for the autocorrelation map.

Range of Autocorrelation Delays

Autocorrelation functions were computed for values of At between 0.0625 ms (the
sample period dt) and 20 ms (corresponding to a pitch of 50 Hz), in steps of dt. The
longest delay of 20 ms was considered to be a sensible upper limit for the period of
voiced speech, and the shortest delay was imposed by the sampling rate used in the
model.

Window Time Constant

The window time constant N determines the temporal resolution of the autocorre-
lation map. Autocorrelation functions computed with a long time window have an
advantage in extracting the periodicity of static, noisy sounds. Conversely, auto-
correlation functions computed with a short time window are able to identify rapid
fluctuations in periodicity which are smoothed out by longer windows.

In his original paper, Licklider {152] suggests that an appropriate value for the time
constant N is 2-3 ms, although he does not give any justification. More recently,
Viemeister [273] has derived a similar value (2.5 ms) using a paradigm in which
the detectability of amplitude modulation is used to estimate auditory temporal
resolution. However, both of these windows seem too short to give an accurate
measurement of the period of sounds with a low pitch, such as male speech. A
longer window (10 ms) is suggested by the work of Plack and Moore [206], although
this value varies with characteristic frequency and stimulus intensity, and the shape
of their window is approximately Gaussian rather than the exponential suggested
by Licklider. The longer time window was found to be more satisfactory, and hence
N was set to 10 ms in equation 4.10.

4.2.4 Autocorrelation Map Representations

An autocorrelation map for the synthetic vowel /a/, with fundamental frequency
120 Hz, is shown in the upper panel of figure 4.4. Channel centre frequency is
represented on the ordinate and autocorrelation delay is represented on the abscissa.
The periodicities in each channel are clearly delineated, and common periodicities
in different frequency regions form vertical lines in the figure.
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Figure 4.4: Autocorrelation map (top) and summary autocorrelation (bottom) for
the synthethic vowel /a/, with fundamental frequency 120 Hz. The positions of the
first four harmonics (H0-H3) and three formants (F1-F3) are indicated on the right.

Common periodicities in the individual channels of the map can be emphasized
by averaging the autocorrelation functions over frequency. This representation has
been called the summary autocorrelation by Meddis and Hewitt [168], and is defined

by
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where M is the number of auditory filter channels used in the model (in this case,
128). The summary autocorrelation s[-] for the vowel is shown in the lower panel
of figure 4.4, and can be interpreted as showing the relative probability of each
pitch period. Hence, a large peak occurs in the summary autocorrelation at a delay
corresponding to the pitch period of the vowel (8.3 ms). Peaks also occur at integer
multiples of the pitch period, which correspond to subharmonics of the pitch (in

LI I R B LI

-— HO

this example, only the first subharmonic at 16.6 ms is visible).

Note that this scheme is compatible with the idea that mistuned components of a
harmonic complex are rejected by a “harmonic sieve” (see page 46). A component
that is slightly mistuned will slightly displace the peak in the summary autocor-
relation function. However, a component that is mistuned by a large amount will
give rise to a separate peak in the summary autocorrelation, without affecting the

position of the pitch period peak.
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It is instructive to display summary autocorrelations as a function of time, in which
the probability of a pitch is indicated by the darkness of the image. Summary
autocorrelations plotted in this manner are shown in figure 4.5 for the ten noise
sources. For periodic sounds such as the speech, siren and 1 kHz tone, variations in
the pitch (lowest contour) and its subharmonics (other contours) are clearly repre-
sented. Conversely, nonperiodic sounds such as the random and laboratory noise,
which do not evoke a pitch percept, fail to generate any coherent activity. The noise
bursts are periodic, but they are spaced too far apart in time to evoke a pitch. Note
also that sources with a high average pitch (the tone, siren and female speakers)
give rise to a greater number of subharmonics than sources with a low average pitch
(the male speaker).

4.2.5 Summary and Discussion

This section has presented a model of a map of periodicity, which is based on
Licklider’s duplex theory of pitch perception. The map codes information about
periodicity at each characteristic frequency, and will form the basis for grouping
components with a common pitch in the algorithm presented in chapter 5.

Although autocorrelation-based models of pitch perception are able to account for
a wide range of psychophysical pitch phenomena (see Meddis and Hewitt [168, 167]
for a review), their physiological plausibility has been questioned. For example,
Summerfield et al. [266] have suggested that autocorrelation is too computationally
intensive to form the basis for a mechanism of pitch analysis. This criticism as-
sumes that the auditory nervous system performs calculations in a serial manner,
like a conventional digital computer. However, biological neural networks oper-
ate in parallel, and are able to perform many computations simultaneously. Since
autocorrelation is highly amenable to parallel computation, it is unlikely to be a
prohibitively time-consuming process. Indeed, autocorrelation maps implemented
on parallel computer architectures can achieve real-time performance (Slaney [254]).
Additionally, other representations have been proposed which are qualitatively simi-
lar to autocorrelation maps, but are much less computationally intensive (Patterson
[201)).

A more serious problem facing autocorrelation models is that of finding a physiologi-
cal mechanism which can generate the required time delays. In his original proposal,
Licklider [152] suggests that the autocorrelation is performed by a chain of neurons
with different synaptic delays, but a physiological counterpart of this arrangement
has yet to be identified.

Nonetheless, it is well known that the auditory system is able to create and use
time delays. Neurons that are sensitive to differences in the time of presentation of
a stimulus at the two ears have been identified in the medial superior olive (Gold-
berg and Brown [96]), superior colliculus (Hirsch et al. [115]) and inferior colliculus
(Rose et al. [226]). It is likely that these cells encode the spatial location of low
frequency sounds by performing a cross-correlation of the temporal response from
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each ear (Yin and Chan [284]). Additionally, systematic maps of time delay have
been identified in the midbrain of the owl (Knudsen and Konishi [139]) and cat (Bo-
janowski and Schwarz [22]), as discussed in section 2.2.3. However, the time delays
represented in these maps are considerably shorter than the 20 ms or so required for
a periodicity analysis. Neurons with longer delays, of up to 24 ms, have been identi-
fied in the medial geniculate body of the bat (Suga [262]). The mechanism of these
cells appears to involve contributions from axonal delays and self-inhibitory oscilla-
tions. These findings suggest that long delay lines are plausible in the mammalian
auditory system.

Alternatively, time delays could originate from phase differences along the basilar
membrane, as suggested in the “stereausis” model of binaural processing proposed
by Shamma et al. [248]. Slaney and Lyon [253] describe a modification of the
autocorrelation map based on this idea.

Although Licklider’s scheme of delay lines is attractive in its simplicity, it is possible
that the auditory system codes periodicity information in a different manner. For
example, it was noted in section 4.2.2 that neurons in the inferior colliculus are
systematically arranged according to their best modulation frequencies, and that this
organization could provide the basis for across-frequency comparisons of periodicity
information. Hence, the autocorrelation map described here should be regarded as
a functional description of periodicity coding in the auditory system, which does
not make strong assumptions about the underlying physiological mechanisms.

4.2.6 A Cross-Correlation Map

It is evident from figure 4.4 that the autocorrelation map contains redundant infor-
mation. Contiguous sections of the auditory filterbank respond to the same spectral
dominance, so that channels with centre frequencies close to a harmonic (H0-H3)
or formant (F1-F3) have a similar pattern of periodicity. This redundancy provides
an early constraint which can be used to group channels of the autocorrelation map
that are responding to the same acoustic component. A similar observation has mo-
tivated the DOMIN algorithm of Carlson and Granstrém [40], Cooke’s [52] “place
groups”, Ghitza’s [92] “in-synchrony bands” and the “pseudospectrum” described
by Deng and Geisler [72].

Regions of the autocorrelation map that have a similar pattern of periodicity can
be identified by cross-correlating the responses of adjacent frequency channels. For-
mally, the similarity at time ¢ of two channels with centre frequencies f; and f5 is
given by

23 A acmt, f1, Atlacmlt, fa, At]

T acacm|t, f1, At)2 + T A, acm|t, f2, At)? (4.13)

sim[f1, f2,t] =

The cross-correlation is energy-normalized, so that a difference in the average am-
plitude of two channels does not affect their similarity score. Consequently, sim/[]
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Figure §{.6: Autocorrelation map (left panel) and cross-correlation map (right panel)
for the synthetic vowel /a/. Rectangles in the cross-correlation map correspond to
groups of channels that extend over frequency and different thresholds of similarity.

has a value between zero (no similarity in periodicity) and unity (identical pattern
of periodicity). '

Given this metric, it is necessary to decide how good the similarity score of adjacent
channels in the autocorrelation map must be in order for them to form a group. The
approach employed here is to construct a cross-correlation map, which indicates the
groups that are formed at a series of different similarity scores. A cross-correlation
map for the synthetic vowel /a/ is shown in the right panel of figure 4.6. Like other
auditory maps, it is a two-dimensional organization in which characteristic frequency
and a tuned parameter (in this case, threshold similarity score) are represented on
orthogonal axes. Adjacent channels of the autocorrelation map that have a value of
sim[-] equal to or greater than the threshold similarity score are allowed to form a
group. At the highest similarity threshold, no groups occur since adjacent channels
are not identical. However, as the threshold is relaxed, channels with a similar
pattern of periodicity begin to group together. In the figure, groups of channels
that extend across frequency and different thresholds of similarity are represented
by rectangles, and are referred to as periodicity groups.

This technique is reminiscent of the “dendrogram” method of acoustic-phonetic
segmentation described by Withgott et al. [283] and Glass and Zue [94). Whereas
the dendrogram identifies changes in the spectrum over time, the cross-correlation
map identifies changes in periodicity over frequency. However, the principle is the
same, since both techniques attempt to find features in a representation that are
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Figure 4.7: Periodicity groups selected by application of a similarity threshold. If
adjacent channels have a similarity score equal to or greater than 0.98, then they
are selected as a group.

stable across different scales of comparison.

Clearly, the cross-correlation map in figure 4.6 contains many alternative groups at
different thresholds of similarity. Three strategies for identifying groups which are
most representative of stable areas of periodicity are considered below.

Similarity Threshold

The simplest way of selecting groups from the cross-correlation map is to set a
threshold similarity value. For example, in figure 4.7 groups are selected that rep-
resent channels with a sim[-] value equal to or greater than 0.98. A problem with
this approach is that the choice of threshold is somewhat arbitrary. Additionally,
setting a hard threshold may result in the loss of information about good groups,
which is a violation of Marr’s “principle of least commitment” (see section 1.2.1).

Length Stability Criterion

Generally, groups in the cross-correlation map that represent stable areas of period-
icity tend to survive over a number of different similarity thresholds. Hence, good
groups can be selected by a criterion which chooses a group if it has no descendents
with a greater length along the similarity axis. Figure 4.8 shows periodicity groups
selected in this way. In the figure, the descendents of a group lie to its immediate
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left (and therefore occur at a higher threshold similarity score).

The length stability criterion performs well at low characteristic frequencies, but
good groups in the high frequency channels are missed. This is because there is
more variation in the temporal fine structure of adjacent auditory filters at high
frequencies, so that single channels survive over many similarity thresholds and are
chosen in preference to more representative groups.

Area Stability Criterion

The problems of the length stability criterion can be overcome by identifying groups
that are stable across frequency as well as across similarity threshold. Specifically,
periodicity groups are selected if they have no descendents with a greater area in
frequency-similarity space. An area stability criterion of this type has previously
been proposed in a different context by Withgott et al. [283].

Groups selected by the area stability criterion are shown in figure 4.9. As required,
areas of similar periodicity in the vicinity of harmonics and formants have been
identified.

4.2.7 Cross-Correlation Map Representations

Periodicity groups for the ten noise sources, selected from the cross-correlation map
by an area stability criterion, are shown in figure 4.10. Harmonics and formants of
speech are clearly represented, whereas noise sources give rise to many small, ran-
domly distributed groups. Similarly, the 1 kHz tone and siren produce large groups
across a wide frequency range, and periodicities in the telephone and rock music
sources are delineated. It is instructive to compare figure 4.10 with the auditory
nerve firing rate representations in figure 4.1.

4.2.8 Summary and Discussion

In this section, a cross-correlation map has been proposed which groups auditory
filter channels with a similar pattern of periodicity. The map successfully identi-
fies the location of spectral dominances, such as harmonics and formants of voiced
speech.

There is good evidence that the auditory system is able to perform a cross-correlation
analysis. In the anteroventral cochlear nucleus, Carney [43] has identified neurons
which receive convergent inputs from auditory nerve fibres with different charac-
teristic frequencies, and have responses that are consistent with a coincidence or
cross-correlation mechanism. Hence, it is possible that a cross-correlation is per-
formed directly on auditory nerve responses, rather than after a periodicity analysis
as suggested here.
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Deng and his colleagues (Deng and Geisler [72], Deng et al. [75], Deng and Kheirallah
[76]) have proposed an algorithm for cross-correlating auditory nerve responses,
which locates spectral dominances in a similar manner to the cross-correlation map
described in this section. Their algorithm is less computationally intensive than
the one presented here, since it does not require an autocorrelation analysis of each
channel. However, the autocorrelation map provides information for mechanisms of
grouping and pitch extraction, and has the advantage that phase differences between
adjacent channels are intrinsically corrected.

One property of Deng’s model is particularly relevant to the work presented here.
Specifically, it was found that the ability of his cross-channel correlation algorithm
to identify spectral dominances was best when the basilar membrane model incorpo-
rated a nonlinear level-dependent damping component. This simulated the tendency
of auditory nerve tuning curves to broaden at high intensities (see section 4.1.5), and
was necessary to reproduce the synchrony capture phenomenon observed in physio-
logical studies (Sinex and Geisler [251], Shamma [244], Deng and Geisler [73], Deng
et al. [74]). Synchrony capture occurs when a high intensity component produces
more response synchrony to itself than is predicted by linear models of auditory
nerve tuning curves. For example, the second formant of a nasal consonant-vowel
syllable typically captures the synchrony response of fibres that have characteristic
frequencies well above the second formant frequency, including those near the third
formant (Deng and Geisler [73]). Hence, similar patterns of periodicity occur across
wide bands of characteristic frequencies, so that regions of the auditory filterbank
that are responding to the same component are very distinct. Therefore, although
the cross-correlation map described here is very effective, is it likely that its perfor-
mance could be improved by incorporating nonlinearities in the auditory filterbank
which reproduce synchrony capture effects.

4.3 Omnsets and Offsets

This section presents computational models of an onset map and an offset map.
The psychophysical and physiological motivation for the maps is discussed first.
Subsequently, the models are described.

4.3.1 Psychophysical Motivation

In normal listening situations, it is unlikely that independent sound sources will
start and end at the same time. There i8 good evidence that the auditory system
exploits this fact by grouping together acoustic components which have the same
onset and offset times. This behaviour is an example of the Gestalt principle of
“common fate”, which was discussed in section 3.1.

The perceptual effects of onset and offset asynchrony have been investigated by
Bregman and Pinker [30], using a paradigm that exploits the competition between
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Figure 4.11: Schematic diagram of the stimulus used by Bregman and Pinker. A
pure tone A alternates with a pair of tones B and C. From Bregman and Pinker

[30].

simultaneous and sequential grouping mechanisms. They presented listeners with a
repeating sequence consisting of a pure tone A alternating with a pair of tones B
and C, as shown in figure 4.11. When A and B were close in frequency and B was
asynchronous with C, A tended to pull B into a sequential stream (A-B-A-B) and C
was isolated as a continuous tone (C-C-C-C). However, in conditions where B and
C had synchronous onsets and offsets they tended to form a simultaneous group
(BC-BC-BC-BC), and A was isolated as a continuous tone (A-A-A-A) regardless of
its closeness in frequency to B. Similar results have been obtained by Dannenbring
and Bregman [57], using a stimulus in which a pure tone alternates with a complex
of three tones. Clearly, common onset and offset times are able to promote the
fusion of components that would otherwise belong to separate streams.

Evidence for the importance of onsets and offsets in source segregation has also
come from investigations into the perception of musical sound. Rasch [211] played
subjects two chords consisting of a high frequency (target) tone which was obscured
by a louder (masking) tone at a lower frequency. Listeners were asked to judge
whether the frequency of the target tone had moved up or down in the second
chord. When the target and masker had synchronous onsets and offsets, so that the
only grouping cue was fundamental frequency, thresholds for the task were between
0 and -20 dB. Hence, the target was obscured by a masker that was any louder than
20 dB relative to the level of the tone. However, delaying the onset of the masking
tone lowered this threshold by about 10 dB for every 10 ms of onset disparity. When
the masker and tone were asynchronous by 30 ms, subjects could still perform the
task even though the relative level of the masker to the tone was as high as 60 dB.
Rasch observes that onset disparities of 30-50 ms are typical in performed music
[212], and that these asynchronies undoubtedly contribute to our ability to hear out
the melodic line of each instrument in a polyphonic piece.

Darwin and Ciocca [62] have investigated the role of onset asynchrony in pitch
perception. They asked listeners to judge the pitch of a harmonic complex in which

61



Onsets and Offsets

one of the resolved harmonics was mistuned. When the mistuned harmonic started
160 ms before the other components of the complex, it made a reduced contribution
to the perceived pitch. Its contribution was abolished if it started more than 300 ms
before. These results suggest that mechanisms of pitch perception must take into
account the temporal history of the components of a complex in order to exclude
those that differ in onset time. Darwin and Ciocca’s experiment is discussed further
in chapter 5, where a scene analysis algorithm is presented which is compatible with
some of their findings.

Onset asynchrony also seems to play a role in speech perception. For example,
Darwin [58] describes an experiment in which an onset lead of 300 ms was introduced
to the second formant of the synthetic “ru-li” stimulus described in section 4.2.1.
Listeners tended to report hearing “li”, indicating that the asynchronous formant
was making a reduced contribution to the syllable. However, the effect was quite

weak.

Rather more convincing evidence for the role of onset and offset asynchrony in
speech perception has come from experiments that investigate the conditions under
which a tone is integrated into the first formant of a vowel. Darwin [59, 60] and
Darwin and Sutherland [65] constructed a continuum of sounds between the vowels
/1/ and /e/, which differ only in the position of their first formant peaks. When a
tone was added synchronously to the first formant region of each vowel, the vowel
percept changed in a manner that reflected the altered position of its formant peak.
However, introducing an onset asynchrony of 30 ms to the tone allowed listeners to
segregate it from the vowel, so that the original vowel quality was heard. Roberts
and Moore [222] have demonstrated that this effect is obtained regardless of whether
the tone is added at a harmonic or inharmonic frequency.

So far, it has been assumed that changes in the vowel percept are due to grouping
mechanisms which segregate the tone from the vowel. However, the results could
also be explained by peripheral adaptation at the frequency of the leading tone.
Evidence that adaptation cannot account for all of the effects of onset asynchrony
has come from two sources.

Firstly, Darwin and Sutherland [65] demonstrated that the grouping between the
leading part of the tone and its continuation into the vowel could be weakened
by adding a harmonic of the leading tone which started at the same time, but
stopped when the vowel started. Listeners were more likely to hear a change in the
vowel colour, indicating that the two leading tones formed a separate perceptual
group which ended at the start of the vowel. Darwin and Sutherland quantified the
changes in vowel percept, and concluded that grouping mechanisms accounted for
at least half of the effects of onset asynchrony.

Secondly, Darwin [59, 60], Roberts and Moore [222] and Darwin and Sutherland
[65] have shown that a tone which stops 30 ms after a vowel also contributes less
to the vowel percept than a tone which is simultaneous with it. Offset asynchrony
effects cannot be explained by peripheral adaptation, which is unable to operate
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retroactively. It should be noted that in all of these experiments, the effects of
offset asynchrony were weaker than those of onset asynchrony. The differences were
largest when long (320 ms) vowels were used, presumably because listeners had time
to decide the phonetic identity of the vowel before they heard the lagging portion
of the tone (Darwin and Sutherland [65]). Studies using shorter vowels of 50-80 ms
duration find offset effects that approach the magnitude of onset effects, but are still
weaker due to the contribution of adaptation to onset asynchrony (Darwin {59, 60],
Roberts and Moore [222]). This point will be discussed again in chapter 5.

Although experiments on speech perception have indicated that onset and offset
asynchronies are a powerful cue for perceptual grouping, they raise a paradox. In
natural speech, formants move rapidly in frequency so that nearby harmonics are
amplified and attenuated at different times. If it is only synchronous harmonics
which can be grouped into a formant, then the majority of speech would be unin-
telligible. Exactly how this problem is avoided is not clear. However, Darwin [60]
has shown that there is a limit to the amount of energy which ‘can be incorporated
into a harmonic of a vowel without causing it to be segregated as a separate tone.
This result suggests the existence of speech-specific constraints which compete with
perceptual grouping mechanisms. As Darwin and Sutherland [65] point out,

“Onset and offset time can be used to separate perceptually harmonics
that do contribute to a vowel from those that do not. But such times
constitute neither necessary nor sufficient conditions for grouping the
harmonics of a single voice. Other principles must be used to ensure
that the rapidly modulated harmonics of normal speech are grouped
together, and that components occurring simultaneously by accident can
be rejected.” (page 206)

These considerations have implications for the manner in which onset and offset
effects can be incorporated into a model of primitive perceptual grouping, and are
discussed again in chapter 5.

4.3.2 Physiological Motivation
Physiology of Single Cells

Cells which respond with a brief burst of activity at the onset or offset of a tonal
stimulus are found throughout the higher auditory nuclei, including the cochlear
nucleus (Shofner and Young [250]), inferior colliculus (Bock et al. [13]) and the
auditory cortex (Abeles and Goldstein [1]). A typical onset cell response is shown
in figure 4.12 (see also figure 2.1).

In the model presented here, it is proposed that onset and offset cells provide a
physiological basis for the perceptual mechanisms which group synchronous acoustic
events together. However, although it is reasonable to suppose that neurons which
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Figure {.12: Onset cell response to a 25 ms pure tone delivered at its characteristic
frequency. The plots on the left show the membrane potential for three presentation
of the tone, and the plot on the right shows the number of spikes elicited. From
figure 8 of Romand [225].

fire at the start and end of an applied stimulus are coding onsets and offsets in some
way, it should be noted that they may have other functions. The precision with
which onset cells preserve timing information makes them equally suited to coding
periodicity or interaural timing disparities (Rhode and Smith [218]). Additionally,
the wide dynamic range of some onset cells suggests that they may encode intensity
(Young et al. [289]). Clearly, the diversity of functions which have been proposed
for onset cells emphasizes the pitfalls of single neuron studies which were discussed
in chapter 2.

Onset and offset responses are obtained from a variety of morphological cell types,
which have different mechanisms of action (Romand [225]). In this work, it is
assumed that onset responses are caused by an ezcitatory input to the cell at the start
of the stimulus, followed by an inhibitory input which prevents activity throughout
the remaining stimulation. Onset cells with this mechanism are common in the
cochlear nucleus, and have been classified as type ON-IN by Rhode and Smith
[219]. Offset cell responses probably arise through a similar mechanism of action,
in which excitation is delayed relative to inhibition.

Topographic Organization

It has already been shown that periodicity information is represented within an
orderly framework in the higher auditory system. Although there is no direct phys-
iological evidence, it seems plausible that onsets and offsets are mapped in a similar
way.

If onset and offset cells are organized in auditory maps, then the tuned parameters
could be inhibitory delay for onset maps, and ezcitatory delay for offset maps. The
delay before excitation or inhibition determines the rate of amplitude change that
the cells are responsive to. For example, an onset cell with a short inhibitory delay
will be sensitive to rapid increases in amplitude that occur over short periods of
time, but will respond less to a stimulus with a slow rise time. Conversely, an onset
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Figure 4.13: Schematic of the Onset map. Cells in the map are tuned according to
their sensitivity to the rise time of an onset, which is determined by the delay of
inhibition relative to excitation that each cell receives. The length of an open arrow
corresponds to the delay of an input.

cell with a long inhibitory delay will detect increases in amplitude that occur over
long periods of time, but will locate rapid rises in amplitude with poorer temporal
resolution than a short-delay cell. Hence, onset cells could be arranged in a two-
dimensional framework with characteristic frequency represented on one axis, and
inhibitory delays ranging from short (rapid amplitude rise) to long (slow amplitude
rise) represented on the other. Similarly, offset cells could be arranged in a map
according to their excitatory delay, varying from short (rapid fall in amplitude) to
long (gradual fall in amplitude). Schematics of the onset and offset maps are shown
in figures 4.13 and 4.14.

Maps of this form would be valuable, because natural sounds have different rise
and fall times. For example, musical instruments have rise times that vary between
20 and 80 ms (Rasch {212]) and fricative speech sounds, such as /s/ and /f/, have
slower rise times than stops such as /p/ and /t/ (Stevens [259]). These differences
are perceptually important. Rasch [211] has shown that differences in rise time are as
effective as onset disparities in promoting the perceptual segregation of simultaneous
tones. Additionally, Cutting and Rosner [55] have reported that listeners are able
to categorize musical and speech sounds according to rise time.

There is some physiological evidence for the hypothetical onset and offset maps
proposed here. Firstly, it is clear that the maps require a series of inputs which are
delayed by gradually increasing amounts of time. It might be supposed that these
inputs are provided by another map, in which the time delay before the cells respond
to stimulation (a property called latency) is systematically represented. Such a map
has been found in the inferior colliculus of the cat (Schreiner and Langner [237],
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Figure {.14: Schematic of the Offset map. Cells in the map are tuned according
to their sensitivity to the fall time of an offset, which is determined by the delay of
ezcitation relative to inhibition that each cell receives. The length of an open arrow
corresponds to the delay of an input.

Langner et al. [145]) and rat (Horikawa and Murata [118]). Cells with the same
latency are arranged in contours within iso-frequency sheets, as shown in figure 4.15.
Secondly, Swarbrick and Whitfield [268) have identified neurons in the auditory
cortex which respond selectively to certain slopes of triangularly-modulated noise
bursts. This suggests that information about rise and fall times is being coded at
high levels of the auditory pathway.

4.3.3 A Model Onset Map

The onset cell model presented here is intentionally abstract. Although it is possible
to construct cell models which reproduce the available physiological data very closely
(e.g. Hewitt et al. [114]), such a level of detail was considered unnecessary for the
functional approach adopted in this work.

The response of a typical ON-IN cell to a brief tone burst at its characteristic
frequency is illustrated in figure 4.12. Recall that the mechanism of ON-IN cells
involves an excitatory input at stimulus onset, followed by an inhibitory input which
is delayed by a few ms. Electrical changes caused by these inputs, called excitatory
or inhibitory post-synaptic potentials (EPSPs or IPSPs), are integrated across time
by the onset cell membrane. The potential difference across the cell membrane,
called the membrane potential, is shown on the left of figure 4.12. At the start of
the tone, the cell receives EPSPs which raise the membrane potential past firing
threshold so that a spike is generated. Following this, the membrane potential falls
and is kept low throughout the remainder of the stimulus due to the arrival of IPSPs.
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Figure {.15: Map of latency in the inferior colliculus of the cat, showing the dis-
tribution of latencies within a single iso-frequency sheet. Contours on the right are
labelled with the latency time in ms. From figure 6 of Schreiner and Langner [237].

At the end of the tone, inhibition ceases and the membrane potential rapidly returns
to its resting level.

This mechanism can be approximated by writing the membrane potential p,,[t] as
a leaky sum of the excitatory and inhibitory inputs to the cell,

Ponlt] = Ponlt — lca + Epypr(t] — Ipgprt — Aty] (4.14)

where
€4 = exp [—ﬂ] (4.15)
Td

The firing rate of the onset cell, son[t], is determined by the value of the membrane
potential when it exceeds a threshold Th,

_ ) ponlt] for pen[t] > Th
sonlt] = { 0 otherwise (4.16)

In equation 4.14, E,,, and I,,, represent the magnitudes of the excitatory and
inhibitory inputs, At; determines the delay before inhibition and 74 sets the rate
at which the membrane potential decays to its resting level. 'The input r[t] is the
envelope of the auditory nerve response at the characteristic frequency of the onset
cell, obtained by integrating the output of the Meddis hair cell model over 20 ms
with a Hamming window. Using the envelope of the auditory nerve response is a
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Parameter | Description Value | Units
Epsp size of excitatory post-synaptic potential | 1.00 | mV
Ipsp size of inhibitory post-synaptic potential | 1.01 mV
Td membrane potential time constant 1.5 ms
Aty delay before inhibition 1-15 | ms
Atg delay before excitation 1-15 | ms
Th firing threshold 0 mV

Table 4.3: Parameter settings for the onset and offset cell models.

convenient way of modelling the convergence of many inputs onto an ON-IN cell,
which causes a loss of phase-locking at frequencies greater than about 1 kHz (Rhode
and Smith [218]).

The value of each parameter in the model is discussed below, and summarized in
table 4.3.

Strength of Excitation and Inhibition

When presented with a continuous tone at its characteristic frequency, an ON-IN cell
only fires at the start of the stimulus. This suggests that the delayed inhibitory input
must be stronger than the excitatory input (Godfrey et al. [95]), a view supported
by the fact that ON-IN cells in the cochlear nucleus receive strong inhibition from
at least two sources (Shofner and Young [250]).

In the model, this effect is approximated by setting the size of the inhibitory input
I,,p larger than the excitatory input E,,p. The values are given in table 4.3. Note
that although the parameters are quoted in mV, their values have not been chosen
to quantitatively model changes in the membrane potential.

Membrane Potential Time Constant

The parameter 74 determines the time taken for the membrane potential to decay
to 1/e of its maximum deviation from the resting level. Godfrey et al. [95] have
noted that ON-IN cells are able to fire on every click in a pulse train at rates of up
to 400-700 clicks/sec, which suggests that the membrane can reset within a few ms
of firing. Accordingly, 74 was set to a short value (1.5 ms) in the model.

Delay Before Inhibition

As discussed in section 4.3.2, the time delay before inhibition At is a tuned pa-
rameter which varies systematically across one dimension of the onset map. It is
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Figure §.16: Onset map representations of speech, showing the effect of varying the
delay before inhibition. The utterance is “critical equipment needs proper mainte-
nance”, spoken by a female (TIMIT database). The ordinate of the onset maps is
channel centre frequency (50Hz-5kHz).

assumed that the delayed inputs are provided by a map of Iatlency, as described by
Langner and his colleagues [145, 237] in the cat and Horikawa and Murata [118] in
the rat. These workers found that the latencies represented in the maps varied in
the range 5-20 ms. This suggests a maximum difference in latency of 15 ms, which
provides an upper limit for the delay of inhibition relative to excitation in the onset
map. The minimum inhibitory delay is assumed to be 1 ms, which is typical of
interneuron latencies. Figure 4.16 shows onset map representations of speech for
several different values of At;. The abrupt onsets of the stops /k/ and /p/ are
precisely localized in the short-delay (1 ms) map, whereas the gradual onsets of the
nasals /m/ and /n/ only appear in the maps with longer inhibitory delays (5 ms
and 10 ms).
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Firing Threshold

The firing threshold Tk is set depending on the inhibitory delay of the ON-IN model.
Cells with short inhibitory delays (1-2 ms) only produce positive output at abrupt
onsets, so in these cases Th can be set to zero. For cells with longer delays, Th can
be increased to remove activity caused by small fluctuations in amplitude over large
time intervals (see figure 4.16). In all of the examples shown here, Th was set to
zero.

4.3.4 Onset Map Representations

Figure 4.17 shows onset map representations of the ten noise sources used in chapter
6, for onset cells with inhibitory delays of 5 ms. Sources such as the 1 kHz tone,
noise bursts, telephone and speech have abrupt onsets which are clearly delineated
in the maps.

The siren presents something of a paradox. Although the envelope of the signal has
no abrupt increases in amplitude, it elicits a large response from the onset map.
This phenomenon arises because the siren changes rapidly in frequency (see figure
4.1). As the concentration of energy moves from one auditory filter to the next,
it causes an abrupt increase in activity which is detected by the onset map. Since
the map is intended to provide the basis for grouping auditory events by common
onset, this situation could potentially cause an onset group to be formed where none
should exist. A similar problem has been identified by Mellinger [170] in his model.

Two solutions to this problem are considered here. One is suggested by the fact that
ON-IN cells in the cochlear nucleus usually give an inhibitory response to sweeping
tones, or fail to respond at all (Rhode and Smith [219]). This is because the cells
receive inhibitory inputs from frequencies that are adjacent to their characteristic
frequency. Hence, tones which sweep up or down in frequency trigger inhibition
before they reach the excitatory area of the cell, and fail to elicit an onset response.
The model presented here does not have this property, because inhibition is assumed
to come only from the same characteristic frequency as the excitatory input. There-
fore, a suitable modification of equation 4.14 to prevent the onset cell responding to
moving dominances is given by

N

Pon(t] = Pon[t — 1Jca + Epoprlcfot] = Insp Y rlcf + fit — At)] (4.17)
f=—-N

where N is the number of frequency channels that contribute inhibitory input to
the cell, and r[cf,] is the envelope of the auditory nerve response at characteristic
frequency cf and time t.

A second solution to the problem is to use short (1-2 ms) inhibitory delays in the
onset map. Onsets due to sweeping dominances tend to rise gradually (although
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Figure 4.17: Onset map representations of the ten noise sources. Time i3 repre-
sented on the abscissa, channel center frequency (50Hz-5kHz) is represented on the
ordinate.
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Figure 4.18: Offset map representations of speech, showing the effect of varying the
delay before excitation. See the text for details.

this depends on the sweep rate), and hence the response of a short-delay cell will be
small.

In fact, neither of these solutions needs to be adopted here, because the scene
analysis algorithm presented later is unlikely to be affected by “phantom onsets”
caused by a moving dominance. This point is discussed again in chapter 5.

4.3.5 A Model Offset Map

The mechanism of cells which respond at the offset of an applied stimulus is not
well understood, and little physiological data is available to inform modelling studies.
Intuitively, detecting an offset of energy is rather like the “reverse” of detecting an
onset, which suggests that offset cells might receive their excitatory and inhibitory
inputs in the opposite order to onset cells. Hence, an offset cell mechanism is
proposed here in which excitation is delayed relative to inhibition.

For example, consider the response of an offset cell to a tone burst at its characteristic
frequency. At the start of the stimulus, the cell immediately receives strong IPSPs,
followed by delayed EPSPs which are swamped by the inhibition. Hence, the cell
is unable to fire for the duration of the tone. However, when inhibition ceases at
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the end of the stimulus, delayed EPSPs continue to arrive at the cell, raising the
membrane potential above threshold and causing a spike to be generated.

Modifying equation 4.14 so that the delayed input is excitatory, the membrane
potential poss[t] of an offset cell is given by

Posflt] = Pogslt = l]ca + Epoprt — Atg] — Ipepr|t] (4.18)
where ¢4 is defined by equation 4.15, and the firing rate sosf[t] of the cell is given
by

_ po,f[t] for poff[t] >Th

sofslt] = { 0 otherwise (4.19)
Except for Atg, the parameters here are the same as those in equations 4.14-4.16,
and are set to the values in table 4.3 by similar reasoning. As discussed in section
4.3.2, the delay before excitation Atg is a tuned parameter in the offset map, which
determines the rate of amplitude fall that each cell is most sensitive to. Figure
4.18 shows offset map representations of speech for several values of Atg. Abrupt
offsets caused by closures (/kcl/ and /pcl/) are identified by the map with a short
(1 ms) excitatory delay, whereas the more gradual offsets of vowels generate a larger
response in the maps with long excitatory delays (5 ms and 10 ms).

4.3.6 Offset Map Representations

Figure 4.19 shows offset map representations of the ten noise sources used in chapter
6, for offset cells with excitatory delays of 5 ms. The 1kHz tone, noise bursts,
telephone and speech all have abrupt offsets, and these are clearly delineated in the
maps.

The siren presents a similar problem for the offset map as it does for the onset map.
As the concentration of energy moves out of the response area of one auditory filter
and into the response area of the next, a rapid decrease in activity occurs which
is detected by the offset map. Although these “phantom offsets” do not present
a problem for the scene analysis algorithm described in chapter 5, they could be
eliminated by modifying the offset model in a similar way to the onset model, so
that inhibition arises from frequencies surrounding the characteristic frequency of
the cell. Hence, the modified offset cell membrane potential is given by

N
poff[t] = poff[t - I]Cd + Ep,pT[Cf,t - AtE] - Ips;a z T[Cf + f, t] (4-20)
f=—N

where the new parameters N and r[cf,t] are the same as those described for the
modified onset cell model in equation 4.17.
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4.3.7 Summary and Discussion

In this section, physiologically-motivated models of onset and oiffset maps have been
described. The maps are effective at identifying the times at which auditory events
start and stop, and will provide the basis for grouping synchronous events together
in the algorithm presented in chapter 5.

A number of simplifying assumptions have been made in the model presented here.
Firstly, it was considered advantageous from an information-processing point of
view to separate onset cells and offset cells into two distinct populations (maps).
However, it should be noted that onset and offset responses can be recorded from
the same auditory neuron, depending on the intensity of the stimulus (Shofner and
Young [250]). Hence, it is doubtful whether the auditory organization of onset and
offset cells is as discrete as the hypothetical maps suggest.

In fact, offset responses can be observed in the onset map and vice versa, as illus-
trated in the map representations of the 1 kHz tone in figures 4.17 and 4.19. Fol-
lowing the onset of the tone, rapid adaptation occurs in the auditory nerve which
registers as an offset. Similarly, when the tone ends there is an increase in activity
as the auditory nerve recovers to its spontaneous rate, which registers as an onset.
However, these effects are small and do not present a problem for the scene analysis
algorithm described later.

Secondly, it has been assumed that the excitatory and inhibitory inputs to the cell
models arise from the same characteristic frequency. Although this assumption is
physiologically unrealistic, it simplifies the models considerably. A minor problem
is that a moving dominance can generate “phantom” activity in the onset and offset
maps, but this is unlikely to affect the scene analysis algorithm.

Finally, the architecture of the maps assumes that onsets and offsets are detected by
within-channel mechanisms, and that higher-level processes look across frequency
channels to identify synchronous components. However, it is possible that low-level
neural mechanisms exist which operate across different frequency regions in order
to detect common onsets and common offsets directly. Clearly, further physiological
evidence is needed to clarify this point.
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4.4 Frequency Transition

In this section, a computational model of a frequency transition map is presented.
First, the psychophysical and physiological evidence that supports the model is
reviewed.

4.4.1 Psychophysical Motivation

An early problem facing perceptual grouping mechanisms is how to match the audi-
tory representation of an acoustic event at a particular time with the representation
of the same event at a later time. This task is the auditory analogue of the corre-
spondence problem which arises in the perception of visual motion (Ullman [271]).

It is likely that the auditory system uses two cues, frequency prozimity and align-
ment on a common time-frequency trajectory, to solve the correspondence problem
(Tougas and Bregman [270]). These are analogous to the Gestalt principles of prox-
imity and good continuation that were discussed in section 3.1. Since many natural
sounds (such as speech) consist of glides in frequency, it might be supposed that
trajectory is an important grouping cue. The following sections present evidence
that the auditory system measures frequency transitions, and that it uses this infor-
mation to group frequency components across time according t[o their trajectories.

Evidence that the Auditory System Codes Frequency Transition

Steiger and Bregman [258] have investigated the auditory coding of frequency tran-
sition using a stimulus similar to the one in figure 4.11. Instead of using static tones,
a gliding tone A was alternated with a pair of gliding tones B and C. This pattern
was repeatedly presented to listeners, who were asked to judge whether A and B
were in the same perceptual stream. When A and B glided in frequency at the same
rate, A tended to pull B into a sequential stream so that C was heard as a separate
tone. However, when the glide rates of A and B differed, B and C tended to fuse
into a rich-sounding complex which alternated with A. This result suggests that
the auditory system is able to measure the rate of a frequency transition, and that
components which would otherwise belong to the same stream can be segregated if
they change in frequency at a different rate.

Other evidence for the auditory coding of frequency transition has come from psy-
chophysical adaptation studies. These experiments attempt to demonstrate that a
particular sensory “channel” exists as a neural organization by trying to fatigue it
with an appropriate conditioning stimulus. Kay and Matthews [128] have found evi-
dence for channels sensitive to frequency modulation using an adaptation paradigm.
They presented listeners with a conditioning tone which was sinusoidally frequency
modulated at a particular rate, followed by a test tone whose extent of frequency
deviation was varied to find the point where the modulation was just detectable.
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When the modulation rates of the conditioning tone and test tone were similar, the
ability of listeners to detect the modulation in the test tone was greatly reduced.
For modulation frequencies between 3Hz and 30Hz, the frequency deviation of the
test tone had to be increased to three times that of the conditioning tone before the
modulation became detectable. Furthermore, this effect was tuned to modulation
rate, 8o that when the rates of the test tone and the conditioning tone differed by a
few Hz, the adaptation effect was reduced.

Kay and Matthews also demonstrated that adaptation was largely independent of
the carrier frequencies of the conditioning and test tones, and that the frequency
modulation channels were not adapted by amplitude modulated stimuli which had
the same periodicity and spectral shape. Similarly, square-wave frequency modu-
lation (abrupt changes in frequency) did not affect the detectability of sinusoidal
modulation (Green and Kay [101]). Hence, the channels appear to be tuned to
gliding transitions in frequency, rather than some other property of the stimulus.
Indeed, channels which are sensitive to other acoustic features may also exist. Regan
and Tansley [215] and Tansley and Suffield [269] have found evidence for channels
tuned to amplitude modulation, which are similar to frequency modulation channels
in their adaptation properties.

The interpretation of Kay and Matthew’s experiment is complicated by the fact
that it used rapid, periodic frequency modulations of a type which seldom occur in
environmental sounds. Gardner and Wilson [91] have investigated frequency mod-
ulation channels using more natural stimuli. They presented listeners with tones
which swept upward or downward in frequency, and were similar in duration and
range to second formant transitions of speech. The threshold for single upward
sweeps was increased by a factor of two or three following conditioning by repetitive
upward sweeps, but was unaffected by repetitive downward sweeps. Similarly, con-
ditioning by repetitive downward sweeps only increased the threshold for downward
sweeps. These results suggest the existence of channels which are specifically tuned
to upward or downward frequency transitions. Channels of this kind could provide
the basis for the findings of Steiger and Bregman that were discussed earlier.

It should be mentioned that adaptation studies have been the subject of some con-
troversy. For example, Moody et al. [178] replicated Gardner and Wilson’s exper-
iment and found that the differences between adapted and nonadapted thresholds
decreased with continued testing. This result, and a similar investigation by Wake-
field and Viemeister [275], suggest the involvement of cognitive factors rather than
the adaptation of a neural organization. However, Rees and Kay [213] have pre-
sented evidence for the existence of frequency modulation channels without using
an adaptation paradigm, so the argument for auditory mechanisms which detect
frequency transition remains quite convincing.
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Figure {.20: Stimuli used by Bregman and Dannenbring, showing the three types of
transition between a high frequency tone (H) and a low frequency tone (L). Adapted
from Bregman and Dannenbring [28].

Evidence that the Auditory System Uses Frequency Transition

In the previous section, evidence that the auditory system measures frequency tran-
sitions was reviewed. Here, evidence is presented that perceptual mechanisms use
frequency transitions to group components which lie on a common trajectory.

Bregman and Dannenbring [28] have investigated the role of trajectory in the percep-
tion of rapid sequences of alternating high and low frequency tones. They presented
listeners with cycles of the three stimuli shown in figure 4.20. In the ramped condi-
tion, there was a continuous frequency transition between the high and low tones,
whereas in the discrete condition there was no transition. A semi-ramped stimulus
was also used, in which there was a partial transition between the two tones. Lis-
teners tended to report that the discrete stimulus segregated into a stream of high
frequency tones and a stream of low frequency tones, whereas the ramped stimulus
was heard as one stream and the semi-ramped condition gave an intermediate effect.
Bregman and Dannenbring concluded that the partial transition in the semi-ramped
stimulus helped to pull the two tones into the same stream by “pointing” to the fre-
quency region of the next tone. They also observed that transitions similar to the
semi-ramped stimulus occur in speech, and suggested that these trajectories might
prevent speech sounds with different spectral characteristics from segregating into
different streams.

In a related experiment, Cole and Scott [51] have provided direct evidence for the
role of trajectories in speech perception. They asked listeners to judge the order
of consonant-vowel syllables in a repeating sequence, for normal syllables and for
syllables in which the smooth transitions in frequency between the consonant and the
vowel had been removed. Subjects found it more difficult to judge the order of the
transitionless syllables, and heard the sequence segregate into separate perceptual
streams consisting of consonants and vowels. This result supports Bregman and
Dannenbring’s hypothesis that trajectories are important in binding speech sounds
into a unified stream.

When part of a tone is deleted and replaced by a louder burst of random noise,
listeners hear the tone continuing through the noise, even though the tone is not
physically present. This phenomenon is known as the auditory continuity effect,
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Figure 4.21: Stimuli used by Ciocca and Bregman. The slope of tones entering and
eziting a noise burst (grey rectangle) are varied. Subjects report the best continuity
though the noise when the prenoise and postnoise tones lie on a common trajectory
(bold lines). Redrawn from Ciocca and Bregman [49].

and is an example of the Gestalt principle of closure (see section 3.1). Ciocca and
Bregman [49] have presented evidence that the trajectory of the tone preceding and
following the noise burst affects the perception of continuity. They played listeners
the stimuli shown in figure 4.21. The tone preceding the noise either swept upward
in frequency, swept downward in frequency or was static. The slope of the tone
following the noise was varied in the same way, but the starting frequency was either
the same, higher or lower than the frequency at which the preceding tone entered
the noise burst. For each stimulus, listeners were asked to judge how strongly the
tone continued through the noise. When the slope of the prenoise and postnoise
tones was the same, the strongest continuity was reported for tones which lay along
a common trajectory (dark lines in the figure). Ciocca and Bregman concluded that,
under certain circumstances, the auditory system is capable of extrapolating time-
frequency trajectories in order to make a good continuation. Recently, Kluender and
Jenison [136] have performed similar experiments and come to the same conclusion.

It should be pointed out that some of the results reviewed in this section are open to
interpretation. For example, Steiger and Bregman [258] have noted that in the semi-
ramped stimulus used by Bregman and Dannenbring (figure 4.20), the end of the
high frequency tone and the start of the low frequency tone are closer together than
they are in the discrete stimulus. Hence, the observed results could be explained
by a frequency proximity effect as well as by a frequency trajectory effect. Addi-
tionally, several investigations of auditory continuity have failed to find an effect
of trajectory (Steiger and Bregman [258], Tougas and Bregman [270], Dannenbring
[66]). However, all of these experiments used stimuli consisting of repeating cycles,
whereas the studies reviewed here used a single presentation of each stimulus and
found a trajectory effect. Since natural sounds (such as speech) do not repeat in
a cyclical manner, it would be unwise to discount trajectory effects on the basis of
null results from experiments which use repetitive patterns (Kluender and Jenison

(136)).
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4.4.2 Physiological Motivation
Physiology of Single Cells

Some of the most extensive evidence for the coding of frequency transition by au-
ditory neurons has come from studies on the bat, which uses frequency modulated
tones for echolocation (Suga [261]). However, frequency transition also appears to
be coded by non-echolocating mammals. In the cat and rat, neurons sensitive to
frequency transition have been identified in the cochlear nucleus (Mgller [177]), in-
ferior colliculus (Watanabe and Ohgushi [276]) and auditory cortex (Whitfield and
Evans [279]). Generally, neurons which respond to frequency modulated stimuli are
more prevalent at higher levels of the auditory pathway. Indeed, the majority of
cells in the auditory cortex respond preferentially to modulated sounds, and some
do not respond to static stimuli at all (Whitfield and Evans [279]).

The psychophysical adaptation experiments of Kay and Matthews, discussed in
section 4.4.1, suggest the existence of channels which are tuned to a particular rate
of sinusoidal frequency modulation. There is good physiological evidence to support
their findings. For example, Whitfield and Evans [279] have described neurons in the
auditory cortex which respond optimally to particular modulation rates in the range
2-20 Hz, which is similar to the range of modulation rates which Kay and Matthews
used in their study. Also, Britt and Starr [33] and Mendelson and Cynader [171]
have described neurons that are tuned to the rate of discrete frequency sweeps.

Similarly, Gardner and Wilson found psychophysical evidence for channels tuned to
upward and downward frequency transitions. Neurons which respond selectively to
the direction of a frequency sweep have been identified in the auditory cortex by

Whitfield and Evans [279] and Mendelson and Cynader [171]. These neurons may
provide a physiological basis for Gardner and Wilson’s findings.

Again, it must be emphasized that the results of single cell studies should be in-
terpreted with caution. Although it is reasonable to suppose that neurons which
respond to specific rates and directions of frequency transition are coding this infor-
mation in some way, there is no direct evidence linking cell responses to perceptual
effects.

Topographic Organization

It was argued in section 2.2.3 that acoustic parameters which are perceptually impor-
tant are likely to be represented within an orderly framework in the higher auditory
system. As expected, frequency transition appears to be mapped in this way.

Mendelson and his colleagues have investigated the distribution of neurons sensitive
to frequency transition in the auditory cortex of the cat (Mendelson and Cynader
[171], Schreiner et al. [238], Mendelson et al. [172]). They found that neurons

sensitive to upward or downward frequency sweeps were concentrated in different
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Figure §.22: Map of frequency transition. As a result of the differences in inhibitory
strength above and below characteristic frequency (CF), each cell in the map is tuned
to a spectral shape (centre panel) and direction of frequency transition (right panel).
Shaded triangles in the left panel represent inhibition, open triangles represent ezci-
tation. Redrawn from Shamma and Chettiar [247].

parts of the cortex, and that preferred sweep rate varied systematically across a

smooth gradient. |

Similar findings have been reported by Shamma and Chettiar [247] and Shamma et
al. {249] for the auditory cortex of the ferret. Their results suggest that the prefer-
ence of neurons for particular directions of frequency transition varies systematically
along iso-frequency planes in the cortex, as shown in figure 4.22. The selectivity of
a cell for the direction of a frequency sweep correlates with the strength of the
inhibitory inputs that the neuron receives from above and below its characteristic
frequency. For example, neurons sensitive to upward sweeps have strong inhibition
at frequencies above the characteristic frequency. ’

A consequence of this organization is that neurons in the map also respond preferen-
tially to spectral shapes which have least energy at the frequencies where inhibition
is strongest (centre panel in figure 4.22). Hence, it is possible that the map codes
information about the gradient of the acoustic spectrum as well as the direction of
frequency transitions. As such, the map is an auditory analogue of the edge orien-
tation columns identified in the visual cortex by Hubel and Wiesel [120]. This point
will be mentioned again in the following section.

4.4.3 A Model Frequency Transition Map

In this section, a computational model of a map of frequency transition is presented
which is motivated by the psychophysical and physiological evidence reviewed ear-
lier. The map provides a solution to the correspondence problem by extracting
information about the movement of spectral peaks across time and frequency from
firing patterns in the auditory nerve. It should be emphasized that the map is not
intended to provide a basis for grouping acoustic components which share a common
rate of frequency modulation. This point is discussed in section 4.5.2.

A schematic of the frequency transition map is shown in figure 4.23. Cells in the map
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Figure {.23: Schematic of the frequency transition map. Cells in the map are tuned
to different rates of frequency transition, according to the time-frequency orientation
of their receptive fields.

are arranged in a two-dimensional framework, with characteristic frequency repre-
sented on one axis and frequency transition represented on the other. Each neuron
is tuned to a particular rate and direction of frequency sweep, depending on the
orientation of its receptive field. Similar schemes have been proposed by Mellinger
[170] and, in a non-auditory context, by Riley [220]. Also, some preliminary work
on the map has been reported in Brown and Cooke [35).

The firing rate of each neuron in the map is determined by convolving its receptive
field with the simulated auditory nerve response. Hence, for a cell with characteristic
frequency f and receptive field orientation 8, the firing rate s{t, f, 6] at time ¢ is given

by
N M
slt, £,6)= 3_ D rlt+i,f+lgolisi] (4.21)
i=—N j=—M
where 2N and 2M define the width in time and frequency of the receptive field gg[],

and r[] represents the probability of firing in the auditory nerve. The parameters

of the model are discussed in detail below, and their values are summarised in table
44.

Form of the Receptive Field

Each neuron in the map is required to be tuned to a particular rate of frequency
transition. This implies that the receptive field of a cell must elicit a maximal
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Figure 4.24: Form of the receptive field employed in the map. The function consists
of an ezcitatory central lobe (light area), and two flanking inhibitory lobes (dark
areas) which confer directional selectivity.

response when it is aligned with a dominance which is moving at the cell’s preferred
rate. Several forms of receptive field could be used to satisfy this condition. The
one used here is based on a function suggested by Riley [220], defined as

32
g[taf] ={ _a_fQG[tvf] : (422)

- GI f1- —LGlt, f] (4.23)
[ro ,1

where G[t,f] is a two-dimensional Gaussian

t2 f2 .
G[t, f]=exp —m + m (4.24)

of standard deviation o; and oy in time and frequency. A plot of the receptive field
g[t, f] is shown in figure 4.24. It consists of a central excitatory (positive) region,
and two flanking inhibitory (negative) regions which confer directional selectivity.
The width of the receptive field was taken to be eight standard deviations, therefore
N = 40, and M = 40y in equation 4.21.

In the form presented in equations 4.22-4.24, g[¢, f] responds maximally when it is
centred on a dominance that is static in frequency, such as a pure tone (see figure
4.23). Receptive fields that are tuned to particular rates and directions of frequency
transition are obtained by rotating g[t, f] in the time-frequency plane. The operator

cosf@ sind t
—8ind cosf f

Rolt, f] = (4.25)
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Figure 4.25: Slice through g[t, f] at t = 0. The arrangement of a central ezcitatory
region and two inhibitory regions is similar to the receptive fields in the frequency
transition map described by Shamma.

rotates a point by 8 radians in time and frequency, and thus the receptive field at a
particular orientation may be written as

gG[ta f] = gR0[t? f] (4-26)

For example, figure 4.23 shows three receptive fields at rotations of —x/4, 0 and
« /4 radians, which are tuned to downward sweeping, static and upward sweeping
dominances respectively. '

The form of receptive field used here can be justified in two ways. Firstly, a cross-
section in frequency through g[t, f] reveals a pattern of excitation and inhibition
which is similar to the receptive fields of neurons in the frequency transition map
described by Shamma (figures 4.22 and 4.25). Hence, the map proposed here can
be seen as an extension of Shamma’s map into two dimensions, in which spectral
gradients are measured across time as well as across frequency. Secondly, g[t, f] is a
physiologically plausible function. As discussed in section 4.4.2, the visual analogue
of a map of frequency transition is the edge-orientation map identified by Hubel
and Wiesel [120] in the striate cortex. Neurons in the edge-orientation map have
receptive fields which are very similar to the ones used here (figure 4.26).

Relative Width in Time and Frequency

The parameters g; and oy in equations 4.23 and 4.24 determine the width of the
receptive field in time and frequency. The choice of oy and o5 depends on a tradeoff
between time resolution and frequency resolution, which has been expressed as the
uncertainty principle

AtAf ~ 1 (4.27)
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Figure 4.26: Receptive fields of edge-orientation sensitive cells in the visual cortex.
Type C has a central excitatory lobe (crosses) and flanking inhibitory lobes (trian-
gles), similar to the receptive field used here. From Hubel and Wiesel [120], figure
2.

by Gabor [87]. This identity states that a fine frequency analysis is simultaneously
associated with a coarse time analysis, and vice versa. In the specific case here,
the values of o, and o reflect a compromise between time-frequency localization
and directional selectivity (Riley [220]). When oy # oy, the receptive field has
good selectivity in time-frequency, which gives it an advantage in separating cross-
ing dominances. Such situations can arise when formants “cross” in natural speech
(Kuhn [142]), and when several acoustic sources are active at the same time. How-
ever, when 0, = o optimum localization in time-frequency results, and bends in the
trajectory of a dominance are resolved more effectively. Since many environmental
sounds change rapidly in frequency (such as the speech and siren noise sources),
accurate localization was considered important and therefore oy was set to the same
value as oy.

Absolute Width in Frequency

When considering the width of the receptive field across frequency, it is convenient
to assume that the spacing of auditory filters is logarithmic. On a logarithmic scale,
frequency transitions which move at the same rate have the same slope, irrespective
of the initial and final frequency. Hence, it can be assumed that neurons centred
on different characteristic frequencies in the map have receptive fields which occupy
the same number of auditory filter channels, and sweep rates can be specified in
convenient units such as octaves per second (oct/sec).

Clearly, this assumption i8 an approximation because the auditory filters in the
model are spaced on an ERB-rate scale, which is not perfectly logarithmic (see
section 4.1.2). Figure 4.27 shows the relationship between channel number and
channel centre frequency for filters spaced on logarithmic and ERB-rate frequency
scales. Although similar, the ERB-rate scale is rather more linear than a strictly
logarithmic scale. This discrepancy would present a problem if the map formed
a basis for grouping components with common rates of frequency modulation, be-
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Figure 4.27: Comparison of auditory filter spacing on logarithmic (solid line) and
ERB-rate (dotted line) frequency scales. Although similar, the ERB-rate scale is
rather more linear.

cause dominances moving at the same rate in different frequency regions will not
have exactly the same slope. However, the map is concerned only with tracking
dominances across time, so the error between the ERB-rate and logarithmic scales
was considered acceptable.

Unfortunately, there is little psychophysical or physiological data to inform the
choice of frequency width for the receptive field. However, there are some practical
considerations. Receptive fields that are wide in frequency do not localize spectral
peaks as well as receptive fields which are narrow in frequency. Conversely, the
narrowness of a receptive field in frequency is limited by the number of auditory
filters used in the model. For a filterbank with 128 channels in the range 50 Hz to
5 kHz, a frequency spread of 7 channels (approximately 1.4 ERB) was found to be
a good compromise. In this case, the central excitatory lobe of g[t, f] occupies 3
channels, and the inhibitory lobes occupy 2 channels either side.

Absolute Width in Time

Several factors determine the choice of time width for the receptive field. Firstly,
it is desirable for the receptive field to be at least as wide as the longest pitch
period expected for a periodic source, otherwise it will be integrating auditory nerve
activity over an uneven temporal window. Since the lowest pitch expected is 50 Hz
(see section 4.2.3), this suggests a lower limit of 20 ms for the time width. An
experiment by Steiger, reported in Bregman [24], suggests an upper limit. Steiger
found that listeners perceived short (50 ms) glides that were aligned on a common
trajectory and separated by 10 ms noise bursts as a continuous sweep in frequency.
However, if static tones were substituted for the glides, subjects heard an uneven
“gtaircase” rising in frequency rather than a smooth transition. Hence, it appears
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Parameter | Description Value Units

N half-width in time of receptive field 15 ms

M half-width in frequency of receptive field | 0.7 ERB

ot standard deviation in time N/4 ms

o standard deviation in frequency M/4 ERB
range of frequency transition rates -20 to 20 | oct/sec
spacing of frequency transition rates 1.82 oct/sec

Table 4.4: Parameter settings for the frequency transition map.

that the auditory system is able to measure the slope of a frequency glide in 50 ms
or less.

Similar findings have been reported by Nabelek and Hirsh [190], who found that the
ability of listeners to discriminate between different rates of frequency transition
was optimal for sweep durations of 30 ms. Additionally, formant transitions in
speech usually occur over a duration of 30-40 ms (Lehiste and Peterson [146]), and
Liberman et al. [149] have shown that transitions in this range are important for
the identification and discrimination of different speech sounds.

Consequently, the time width of the receptive field was set to 30 ms in the model.
Since the frequency spread was 7 auditory filter channels, 30 ms of auditory nerve
firings were collapsed into 7 bins in order to give the receptive field an equal width
in time and frequency.

Range of Frequency Transition Rates

Since the map is intended to detect frequency transitions in many types of envi-
ronmental sounds, it is necessary to know the maximum rate at which sweeps in
frequency are likely to occur. Some of the most rapid changes gn frequency are ob-
served in formant transitions of speech, which can be as fast as 50 oct/sec (Liberman
et al. [150]). However, the majority of formant transitions occur at rates of less than
20 oct/sec (Lehiste and Peterson [146]), and this seemed a reasonable upper limit to
use in the map. Hence, neurons were tuned to a maximum upward transition rate
of 20 oct/sec, and a maximum downward transition rate of -20 oct/sec.

Spacing of Receptive Fields

A final consideration is the distribution of receptive fields along the frequency tran-
sition axis of the map. If many closely-spaced receptive fields are used, nearby
neurons will be tuned to very similar rates of frequency sweep, and the map will be
redundant. Conversely, if the receptive fields are spaced too far apart, the range of
frequency transition rates will not be adequately covered.
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Figure 4.28: Plot of the tuning curve I'[0] for the receptive field g[t, f], where 6 has
been converted into oct/sec. The receptive field elicits a mazimum response at the
sweep rate to which it is tuned (0 oct/sec).

In psychophysical terms, the spacing between receptive fields in the map is equivalent
to the smallest difference in frequency transition rate that listeners are able to detect.
Unfortunately, it is difficult to measure a “pure” difference in detectability between
two sweep rates, because sweeps at different rates also differ in their duration or
extent of frequency deviation. Hence, listeners may use time or frequency differences
to distinguish between two frequency transitions, rather than differences in sweep
rate per se (Pollack [207]).

Since there is a lack of reliable psychophysical data, the spacing of the receptive
fields in the map has to be determined by practical considerations. The approach
used here is to define a tuning curve for the receptive field g[t, f], which quantifies
its selectivity to different rates of frequency sweep. Riley [220] has shown that the
tuning curve I'[8, €] for g[t, f] is given by

29
I[0, €] o Sl (4.28)
\/1 + [¢2 — 1]sin?6
where
=
= (4.29)

and @ is the slope (in radians) of a pure tone rising linearly in log frequency. Since
oy and oy are set to the same value in the model, £ is unity and 4.28 reduces to

0] = cos? 8 ; (4.30)

A plot of the tuning curve I'[f] is shown in figure 4.28, where 8 has been recalculated
as sweep rate in oct/sec. As expected, the receptive field elicits an optimal response
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0.2

-10 -5 0 6 10

Frequency Transition Rate (oct/sec)

Figure 4.29: Receptive fields are spaced so that their tuning curves overlap at their
3dB points. A reduction of 3dB from the peak response occurs at a sweep rate of
0.91 oct/sec. ,

|
when it is aligned with a frequency transition which moves at its preferred rate (0
oct/sec, a static tone).

When spacing bandpass filters, it is conventional to overlap them at a frequency
where the output of each filter has fallen by 3 dB relative to its output in the
passband. This point corresponds to a reduction in power by a factor of 2, and
a reduction in amplitude by a factor of v/2. The same principle can be used here,
since I'[4] is a bandpass function. Hence, the receptive fields are spaced so that their
tuning curves overlap at the sweep rate where the response has fallen by a factor of
v/2 relative to the response at the neuron’s preferred rate. Solving from figure 4.28,
the amplitude of response falls to 1/ V2 at a sweep rate of 0.91 oct/sec. Therefore,
neurons in the map are tuned to rates of frequency transition at intervals of 2 x 0.91
= 1.82 oct/sec, in order to make their tuning curves overlap at their 3 dB points
(figure 4.29). V

4.4.4 Frequency Transition Map Representations

The siren noise source provides a good demonstration of the frequency transition
map. Plots of the distribution of activity in the map for the first cycle of the siren,
taken at 20 ms intervals, are shown in figure 4.30. This diagram can be interpreted
by referring to the auditory nerve representation of the siren (figure 4.1) and the
schematic of the map shown in figure 4.23. Initially, the concentration of energy
is in the centre of the map, indicating that the siren is static in frequency. As the
siren falls in frequency, neurons tuned to downward sweeps are activated on the left
of the map. Subsequently, the concentration of energy moves to the right of the
map as the siren sweeps upward in frequency. Hence, for a sinusoidally frequency
modulated tone, the peak of activity in the map follows an elliptical path over time.
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Figure 4.30: Frequency transition map representations of the siren noise source. In
each plot, channel centre frequency (50Hz-5kHz) is represented on the ordinate and

sweep rate (-20 oct/sec to 20 oct/sec) is represented on the abscissa.

009

e

o7y 4 -y ——r

- e ad

1004 “ ”
— - »
4 *w ’1

1907 o \\ el

- rd
by V4
™ L} ”
1 “ ’

} . .

" A - A

\ v

§ “‘..a,

-y -

2 o

w <

p
»
4 1o " « s [ oo "
Time [ms}]

Figure 4.31: Location and orientation of dominances for the first cycle of the siren
noise source. Each vector corresponds to the position of a mazimum in the frequency

transition map representations shown above.
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Figure §.32: Spectral dominances are identified by locating mazima along the fre-
quency azis of the map, equivalent to sliding the receptive field across frequency (left
panel). The orientation of a dominance is found by locating the mazimum along
the frequency transition azis of the map, equivalent to rotating the receptive field in
time-frequency (right panel).

Clearly, not all of the information in figure 4.30 is useful, since the map is intended
to track peaks in the auditory nerve response, whereas the map measures the rate of
frequency transition at every characteristic frequency. Dominances can be located
in the map by looking for maxima along the frequency axis when 8 = 0. This
operation can be visualized as sliding the receptive field g[t, f] across frequency, in
order to find the channels at which it responds optimally (left panel of figure 4.32).
Formally, spectral peaks in the map occur at characteristic frequencies which satisfy
the condition

%s[t, £,0]=0 | (4.31)

This technique for identifying spectral peaks is generally very reliable, since g[t, f]
is sufficiently wide to ensure that a moving dominance generates activity in the map
along the line where 6 = 0.

The direction in which a dominance is moving is determined by locating the max-
imum along the sweep rate axis at the characteristic frequency of the spectral
peak. This operation can be visualized as rotating the receptive field g[t, f] in
time-frequency, centred on the spectral peak, in order to find the orientation at
which it elicits an optimal response (right panel in figure 4.32). Formally, the rate
of frequency transition at a particular characteristic frequency is given by

Solt,£,6] = 0 (4.32)
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Therefore, points in the map which satisfy conditions 4.31 and 4.32 define the po-
sition and sweep rate of a spectral dominance. These points can be identified by
using a finite difference approximation to the differentials, checking the sign of zero
crossings to ensure that a maximum has been found rather than a minimum. Fig-
ure 4.31 shows the position and orientation of dominances for the siren noise source.
Spectral peaks are represented by vectors, which have a size related to the amplitude
of the peak in the map, and a direction related to the rate of frequency transition.
Clearly, the map forms an ideal basis for tracking spectral peaks across time.

Similar representations of the ten noise sources are shown in figure 4.33. The move-
ment of dominances in the 1kHz tone, siren, telephone and music are clearly de-
lineated, and the harmonics and formants of male and female speech are well rep-
resented. Conversely, noise sources do not generate any coherent activity in the
fr(?quency transition map.

4.4.5 Summary and Discussion

In this section, a physiologically and psychophysically-motivated model of a map
of frequency transition has been presented. The map provides a solution to the
auditory correspondence problem by coding information about the movement of
spectral dominances across time and frequency.

The model assumes that the auditory system extrapolates trajectories in order to
track spectral peaks across time. Although there is reasonable psychophysical evi-
dence for this, it should be noted that trajectory effects are much weaker in audition
than they are in vision. Bregman [24] suggests that this is because visual objects
tend to have a momentum associated with them, whereas auditory objects do not.
For example, there is no inertia in the vocal tract which ensures that a falling
transition in frequency will continue to fall. However, the absence of inertia for fre-
quency transition does not rule out the possibility that a primitive auditory process
measures and extrapolates time-frequency trajectories.

A related point concerns the analogy, discussed in section 4.4.2, between the fre-
quency transition map and edge-orientation columns in the visual cortex. Kay and
Matthews [128] suggest that some caution is needed when comparing auditory and
visual organization. In the visual system, time and space constitute two separate
characteristics of a stimulus arriving at the retina. However, frequency and time
are intrinsically linked in acoustic stimuli, and there is a relationship along the
cochlear partition between space and frequency (see section 2.1.2). Hence, in the
visual pathway temporal and spatial characteristics of stimuli may be completely
separable, whereas in the auditory pathway they may not. However, despite this
complication it is still instructive to compare similarities in the organization of the
auditory and visual systems.

It has also been assumed in the model that the input to the frequency transition map
is auditory nerve firing rate. A problem with this approach is that separate spectral

.
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Figure {.33: Frequency transition map representations of the ten noise sources.
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peaks are not resolved in the auditory nerve at medium to high stimulus intensities.
Sachs and Young (231, 232] have studied this effect using synthetic vowels, and have
suggested two contributing factors. Firstly, auditory nerve fibres saturate at high
intensities, so that small variations in amplitude are not accompanied by changes in
firing rate. Secondly, high intensity components are able to suppress the auditory
nerve response to other components, reducing the contrast in the spectral pattern
(see section 2.1.3).

Since the gammatone filterbank does not model nonlinear suppression effects, only
the problem of firing rate saturation is considered here (see section 4.1.5). One
solution is to assume that the frequency transition map rece|ives its input from
auditory nerve fibres which have a low spontaneous firing rate (high threshold).
Sachs and Young [231] found that these fibres, which account for approximately
16% of the auditory nerve population, maintain peaks in the rate spectrum at high
stimulus intensities when lower threshold fibres become saturated. Another solution
would be to use a representation of temporal information in the auditory nerve as
input to the map, since this does not degrade at high intensities (Young and Sachs
[288]). For example, the synchrony spectrum described by Seneff [243] would provide
a suitable input.

4.5 Other Grouping Primitives

This section reviews three other potential grouping primitives, common amplitude
modulation, common frequency modulation and common spatial location. These cues
are examples of the Gestalt principle of “common fate”, which was discussed in sec-
tion 3.1. They are not included in the computational model either because the
experimental findings are insubstantial or controversial, or because their implemen-
tation is beyond the scope of the current work.

4.5.1 Common Amplitude Modulation

The components of a single sound source tend to vary in amplitude in a coherent
manner, and it is likely that the auditory system exploits this fact by grouping
spectral regions which have a common pattern of amplitude modulation (AM). In
principle, grouping by common AM is similar to the onset and offset grouping ef-
fects described in section 4.3, except that it involves a smaller scale of amplitude
change. Also, note that common AM is distinguished from common periodicity by
the fact that the amplitude modulation need not be periodic. Rather, it appears
that grouping by common AM involves the correlation of instantaneous changes in
amplitude, rather than a comparison of repetition rate.

Bregman et al. [26] have investigated the effects of common AM using a stimulus
similar to the one shown in figure 4.11, in which an amplitude modulated tone A
was alternated with a pair of amplitude modulated tones B and C. When B and C
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Figure 4.34: Visual analogy of co-modulation masking release (CMR). A tone (left
panel) is masked with a narrow band of amplitude modulated noise (centre panel).
When co-modulated noise is added at flanking frequencies, the detectability of the
tone is improved (right panel). After Bregman [25].

were modulated at the same rate, they tended to fuse into a single perceptual group.
Although this effect was weak, Bregman et al. [29] repeated the experiment using a
larger range of AM mistuning between B and C, and found a correspondingly larger
effect. Hence, it appears that common AM can promote the perceptual grouping of
spectral components.

Two observations suggest that this result cannot be explained by a pitch analysis
mechanism, such as the autocorrelation map described in section 4.2.3. Firstly, B
and C tended to fuse if they had common AM regardless of whether their frequency
components were aligned in a harmonic series. Secondly, if B and C were modulated
at the same rate but with a different phase, their tendency to form a group was
reduced. However, mechanisms which group components for the purpose of deriving
a pitch are known to be unaffected by phase. This is evident in the autocorrelation
map, where across-channel phase differences are corrected by the autocorrelation
analysis. Therefore, Bregman’s experiment probably illustrates a process which
correlates instantaneous changes in amplitude at different characteristic frequencies.
Further experiments are required to confirm this hypothesis.

Hall et al. [108] have also described an effect which could be'due to grouping by
common AM. They reduced the detectability of a tone by masking it with a narrow
band of noise that was amplitude modulated at a slow, irregular rate. The masking
effect was maximal when the noise had the same bandwidth as the auditory filter
centred on the frequency of the tone. Further increases in the bandwidth of the
noise reduced the masking effect, so that the tone became more detectable. This
effect only occurred when the noise was amplitude modulated, suggesting that lis-
teners were able to compare the pattern of AM in different auditory filters in order
to improve the detectability of the tone. Hence, Hall et el. named the phenomenon
co-modulation masking release (CMR). Additionally, they noted its potential impor-
tance as a mechanism of perceptual grouping:

“Many real-life auditory stimuli have intensity peaks and valleys as a
function of time in which intensity trajectories are highly correlated
across frequency. This is true of speech, of interfering noise such as
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‘cafeteria’ noise, and of many other kinds of environmental stimuli. We
suggest that for such stimuli the auditory system uses across-frequency
analysis of temporal modulation patterns to help register and differenti-
ate between acoustic sources.” (page 56)

A visual analogy of Hall’s experiment is shown in figure 4.34. CMR effects have also
been demonstrated by Schooneveldt and Moore [236] using separate bands of noise,
one centred on the tone and another at a distant (flanking) frequency. When the
noise bands were coherently amplitude modulated, a CMR was obtained.

Two explanations for these findings have been suggested by Buus [38]. Firstly, the
auditory system may correlate AM across different characteristic frequencies, so that
the auditory filter centred on the tone can be identified by its different modulation
pattern. This mechanism is compatible with a scene analysis interpretation, in
which channels with common AM fuse into a perceptual group and channels with
different AM are segregated. Alternatively, Buus suggests that the noise at flanking
frequencies might indicate when the amplitude of the masker is at a minimum.
Given this information, the auditory system could “listen in the dips” to improve
the detectability of the tone. There is some support for both of these explanations,
but neither can account for all of the experimental findings (see Moore [180] for a
review). For example, Hall and Grose [106] have shown that a CMR can be obtained
in situations where across-frequency modulation disparities and dip-listening cues
are absent. This result and others (Hall et al. [107], Grose and Hall [104]) suggest
that CMR occurs as a result of flexible mechanisms which exploit many different
cues.

An effect which appears to act in the opposite direction to CMR has been identified
by Yost and Sheft [285] and Moore et al. [186], in which the outputs of auditory
filters tuned away from the frequency of a signal degrade signal detection. Yost and
Sheft found that the threshold for detecting sinusoidal AM of a component was in-
creased in the presence of another component sinusoidally-amplitude modulated at
the same rate, even when the second component was remote in frequency from the
first. They called this phenomenon modulation detection interference (MDI). Moore
et al. describe a similar effect. They masked a tone with a sinusoidally-amplitude
modulated complex, and added another sinusoidal AM complex at a flanking fre-
quency. When the masker and flanking components had the same modulation rate,
the detectability of the tone was impaired. Since this phenomenon could not be
explained in terms of a single auditory filter, Moore et al. called it across-channel

masking (ACM).

Yost and Sheft [286] interpret MDI/ACM in terms of channels which are tuned to a
particular rate of AM (see section 4.4.1). Spectral components that have a similar
rate of modulation are assumed to excite the same AM channel, which promotes
their perceptual fusion. However, this interpretation is controversial. Moore et
al. [184] have found that ACM is broadly tuned for AM rate, a result which is not
compatible with a grouping explanation. If components with substantially different
AM rates were allowed to fuse, many errors in grouping would be made. Also, it was
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found that a flanking frequency modulated component could degrade the detection
of a signal masked by an AM complex, and vice versa. Hence, it seems unlikely that
channels specific for AM can account for the MDI/ACM phenomenon.

In conclusion, there is reasonable evidence that common AM promotes the percep-
tual grouping of spectral components. However, the underlying mechanisms are not
well understood, 8o no modelling work was attempted.

4.5.2 Common Frequency Modulation

When the fundamental frequency of a complex sound is modulated, all of its com-
ponents change frequency in the same direction at the same time. The auditory
system might exploit this regularity by grouping components which have a similar
pattern of frequency modulation (FM), since they are likely to belong to the same
acoustic source. However, evidence for a grouping mechanism based on common

FM is weak.

It should be noted that the principles of grouping by common FM and grouping by
harmonicity are closely related. Although the harmonics of a modulated fundamen-
tal exhibit common FM, they also maintain their harmonicity over time. Therefore,
a ‘demonstration of grouping by common FM must show that it is the motion of
frequency components which promotes their perceptual fusion, rather than the fact
that they are harmonically related.

McAdams [162] has examined the effects of common FM using two different types
of fundamental frequency modulation, vibrato (periodic) and jitter (aperiodic). Lis-
teners were presented with a mixture of three vowels synthesized on different fun-
damentals, and were asked to judge the prominence of each vowel. When vibrato
and jitter were imposed on the fundamental of a vowel, it became more prominent.
However, the relation between the modulation applied to one vowel and the mod-
ulation applied to the other two vowels did not influence prominence. Therefore,
common FM did not help to segregate the components of the different vowels from
the mixture.

A similar result has been reported by Gardner and Darwin [89], using the /I/-/e/
phoneme boundary paradigm described in section 4.3.1. Recall that this technique
quantifies the contribution of a harmonic to a vowel by measuring changes in the
vowel’s phonetic quality. When one harmonic of the vowel was frequency modulated
at a different rate or phase from the others, it still made a full contribution to
the vowel percept. Hence, common FM does not appear to affect the grouping of
frequency components into a phonetic category. Further evidence supporting this
conclusion has come from an experiment which used the synthetic “ru-li” stimulus
described in sections 4.2.1 and 4.3.1 (Gardner et al. [90]). When the second formant
of the syllable was frequency modulated at a different rate from the others, it still
contributed fully to the syllable percept. However, subjects reported hearing the
second formant as a separate sound source.
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In conclusion, these results suggest that common FM has no influence on the per-
ceptual grouping of frequency components. It may, however, influence the number
of sound sources that are heard.

Two reasons for the absence of an effect of common FM in perceptual grouping have
been proposed. Firstly, Summerfield [267] suggests that harmonicity may be such
a powerful grouping cue that it achieves all the segregation that can occur, leaving
nothing for common FM to contribute. To test this hypothesis, he investigated the
detectability of a “target” vowel in the presence of a “masker” vowel, under various
conditions of FM. The vowels were synthesized with their components randomly
displaced from their harmonic frequencies, so that harmonicity cues were reduced.
However, when there was a difference in FM between the two vowels, no increase
in the detectability of the target vowel was obtained. Therefore, common FM was
not used to grdup the components of a vowel in a situation where harmonicity cues
were sub-optimal.

A second explanation for the absence of a common FM effect, which is supported by
Summerfield’s findings, is that listeners are simply unable to detect across-frequency
differences in FM. Carlyon [41] has recently addressed this point. He presented
subjects with a pair of complex tones which were frequency modulated in a coherent
or incoherent manner. When the tones were inharmonic, listeners were unable to
distinguish coherent FM from incoherent FM. Carlyon concluded that there is no
across-frequency mechanism specific for the detection of common FM. Note that
this interpretation is consistent with the MDI/ACM effect described in the previous
section, in which the presence of modulation in one frequency region impairs the
detection of modulation in another frequency region.

4.5.3 Spatial Location

One of the strongest scene analysis principles is common spatial location. Acoustic
components that originate from the same location in space tend to be assigned to
the same stream, whereas those arising from different locations tend to be assigned
to different streams.

There is good evidence that masking is reduced when a signal and a masker are
perceived to be at different spatial locations (see Moore [179] for a review). This
spatial release from masking is illustrated by the phenomenon of binaural masking
level difference (BMLD). For example, consider a situation in which a mixture of a
tone and white noise is presented to both ears of a listener. The level of the tone
is adjusted until it is just masked by the noise. Let the level at this point be L.
Now, if the phase of the tone is shifted by 180 degrees, it becomes audible again.
As before, the tone can be adjusted to a new level L, so that it is just masked by
the noise. The difference between the two levels Ly — L is known as the binaural
masking level difference. For low frequency signals (around 500 Hz), the BMLD
may be as large as 15 dB. A BMLD may also be obtained when there is a difference
in intensity between the two ears. For example, consider a case in which the tone
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and noise are presented to one ear only, and the level of the tone is adjusted so that
it is just masked. When the noise alone is now added to the other ear, the tone
becomes audible again.

The BMLD phenomenon has been observed for complex tones; speech sounds and
clicks as well as for pure tones. In general, it appears that the ability of a listener
to detect a masked signal is improved when the signal and masker have a different
phase or intensity at the two ears, relative to the case where they have the same
phase and intensity. Such differences only occur in natural acoustic environments
when the signal and masker have a different spatial location. Hence, an implication
of the BMLD effect is that a signal will be easier to detect when it is located in a
different position in space from a masking sound.

It should be noted that a BMLD can be obtained in situations where the signal and
masker are not subjectively well separated in space (Carhart et al. [39]). Addition-
ally, the largest BMLDs are obtained for phase differences which are greater than
those that occur in natural listening situations. In fact, the only necessary condition
for obtaining a BMLD is that the signal or masker should be out of phase at the
two ears. Hence, in scene analysis terms, the BMLD phenomenon can be explained
by a mechanism that groups components which have a common interaural phase
difference, rather than a mechanism that groups components by common spatial
location per se (Bregman [24]).

Binaural grouping processes have also been illustrated by Kubovy et al. [141], who
presented subjects with a mixture of eight continuous tones at both ears. The
frequencies of the tones corresponded to the notes in a musical scale, and initially
the tones had the same phase in each ear. However, when the phase of a tone
in one ear was shifted relative to its phase in the other ear, the tone stood out
perceptually from the other components and was heard to originate from a different
spatial location. By shifting the phase of a sequence of tones, the experience of a
melody could be created. Listeners were not able to hear the melody if the stimulus
was presented monaurally. This result suggests that a difference in the relative phase
of a tone at the two ears allowed it to be perceptually segregated from the other
components in the mixture.

No attempt to simulate binaural auditory processing has been made in the model
presented here, and hence the scene analysis algorithm described in the following
chapter does not use information about spatial location. However, note that inter-
aural time and intensity differences appear to be represented in auditory maps (see
section 2.2.3). Models of these maps could be incorporated into the system at a
later stage.
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Chaptér 5

A Strategy For Auditory Scene
Analysis

In this chapter, primitives from the auditory maps are used to construct a repre-
sentation of auditory objects. Subsequently, a search strategy is described which
groups objects that have similar properties.

The formation of auditory objects from periodicity and frequency transition prim-
itives is described in section 5.1. Techniques for grouping objects by common pe-
riodicity and common onset/offset are proposed in sections 5.2 and 5.3. In section
5.4, a strategy for searching the auditory scene is described. Finally, section 5.5

discusses some theoretical and computational issues.
(

5.1 A Representation of Auditory Objects

5.1.1 Motivation

In the previous chapter, evidence was presented that perceptual grouping mech-
anisms use properties of common onset, offset and periodicity to group acoustic
components together. But properties of what? So far, the auditory representation
of an acoustic source has been considered only in terms of the activity in sepa-
rate neural maps over time. Clearly, a representation of auditory events is required
which combines the information from the different maps, and is amenable to the
application of grouping principles in a scene analysis strategy.

An important issue to be considered here is the representation of time. The majority
of auditory models that have been described in the literature employ a frame-based
representation of time, such as the one shown in figure 4.1. In a frame-based scheme,
the activity at each characteristic frequency is coded as a one-dimensional vector of
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parameters at regular time intervals. Generally, this representation is used because
the output of the auditory model is required in a form that is compatible with
frame-based automatic speech recognition systems (Beet [11], Ghitza [93], Hunt and
Lefebvre [123]). Similarly, frame-based representations of time have been employed
in the majority of systems which attempt to segregate simultaneous sounds (Parsons
[198], Scheffers [234], Stubbs and Summerfield [260], Varga and Moore [272]).

Although the frame-based representation in figure 4.1 provides a good visual de-
scription of acoustic events, it is inadequate as a basis for auditory scene analysis.
Specifically, it does not contain any information about the way in which acoustic
components vary across time. The importance of temporal continuity has been noted
by a number of workers, notably Darwin and Gardner [64], Riley [220], McAulay
and Quatieri [163], Heinbach [112] and Cooke [52]. For example, Riley observes that

“When we look at a spectrogram, we are not confined to examining
them one-dimensionally along single frequency slices, but instead we see
a two-dimensional time and frequency surface. In other words, time is
not used as a parameter that varies over a family of spectra, but as one
of the intrinsic dimensions of the representation.” (page 18)

Consequently, the approach described here employs an auditory representation in
which time is made explicit. The auditory scene is characterized as a collection
of auditory objects, which describe the movement of spectral components in time
and frequency. The work of Green et al. [102], Riley [220] and Cooke [52] suggests
that a representation of this type is very expressive in computational terms. For
example, Riley considers a situation in which two time-frequency contours (such as
speech formants) are competing for the same label. In a frame-based representation
where the contours are sampled over n frames, there are 2" ways of labelling the
points along each component. However, if each contour is represented by a single
temporally-extended object, there are only two possible labellings.

The following section describes a strategy for the formation of auditory objects,
which uses primitives supplied by the frequency transition and periodicity maps. In
section 5.1.3, auditory object representations of the ten noise sources are discussed.

f

5.1.2 Formation of Auditory Objects

It was noted in section 4.4.1 that a correspondence problem must be solved in order
to make temporal relations explicit. Specifically, it is necessary to match the audi-
tory representation of an acoustic event at a particular time with the representation
of the same event at a later time. The solution to this problem described in section
4.4.1 was a frequency transition map, which extracts information about the move-
ment of spectral peaks over time. Additionally, it was noted in section 4.2.6 that
spectral peaks tend to recruit the response of a contiguous section of the auditory
filterbank. A cross-correlation map was proposed, from which periodicity groups are
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Figure 5.1: Formation of auditory objects. Spectral peaks are tracked across time
using information about frequency transition and periodicity groups.

selected by an area stability criterion. The periodiéity groups delineate areas of the
auditory filterbank which are responding to the same spectral dominance.

Given the frequency transition and periodicity group primitives, auditory object
formation proceeds as shown in figure 5.1. The locations and directions of move-
ment of spectral peaks are derived from the frequency transition map at each time
instant, and the frequency spread of each peak is determined by matching it with
a periodicity group. Spectral dominances are tracked across time by a birth-death
strategy, which predicts the movement of peaks from one frame to the next. The
resulting auditory objects are shown at the bottom of the figure. Here, each grey
shape is a single object which defines the path of a spectral dominance across time
and frequency. Note that the width of an object corresponds to the number of
auditory filter channels that it dominates.

Birth-Death Peak Tracking

Spectral peaks are tracked across time by a birth-death strategy, similar to the
procedures described by McAulay and Quatieri [163] and Cooke [52]. Four iterations
of the process are shown in figure 5.2.

Initially, the location and orientation of each spectral peak in a particular time slice
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STEP 1
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Figure 5.2: Formation of auditory objects by a birth-death tracking procedure. Spec-
tral peaks (black dots) which lie within the predicted acceptance region of an auditory
object are recruited together with their corresponding periodicity groups (grey rect-
angles). Peaks that are not recruited are “born” as new objects (step 2), and objects
“die” if they are unable to recruit new peaks (step 3).

are derived by finding the maxima in the frequency transition map, as described in
section 4.4.4. Subsequently, the movement of a peak at time ¢ to a new frequency
channel f at time t 4 1 is predicted by a simple linear extrapolation of the peak’s
orientation. In practice, it is desirable to allow some tolerance in the predicted
position of the peak, so an acceptance region w|f] is computed which is centred on
f. Formation of an auditory object then proceeds according to the following three
rules:

Rule 1: For an existing object at time ¢, a peak that lies within the acceptance
region w(f] at time ¢+ 1 is recruited to the object. If the recruited peak falls within
the boundaries of a periodicity group, then the frequency spread of the object at
time t + 1 is taken as the width of the periodicity group. Otherwise, the object is
assumed to occupy one channel of the filterbank at time ¢ + 1 (steps 2,3 and 4 in
the figure).

Rule 2: If an existing object at time t is unable to recruit a new peak at time ¢t +1,
the object “dies” (step 3 in the figure).

Rule 3: Peaks at time ¢ 4+ 1 which do not fall within the acceptance region of an
existing object are “born” as new objects. Periodicity groups are matched to the
new object as described in the first rule (step 2 of the figure).

The use of an acceptance region around the predicted location of a peak is consistent
with the findings of Ciocca and Bregman [49], which were discussed in section 4.4.1.
They found that when asked to judge the continuity of a glide through a band of
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noise, listeners tolerated a disparity in the starting frequency of the post-noise glide
(see figure 4.21). Unfortunately, Ciocca and Bregman did not quantify the width
of the acceptance region for different glide slopes, so their data cannot be used to
calibrate the model here. Instead, the width of w([f] was derived empirically. A
tolerance of one channel either side of the predicted peak position (corresponding
to a w[f] of 0.6 ERB) was found to be suitable. Wider acceptance regions tended
to produce longer objects, but increased the number of tracking errors.

It should be noted that two types of conflict can occur during the birth-death track-
ing process. Firstly, two objects may compete for the same spectral peak. In this
case, the longest object recruits the peak, and the other “dies”. Secondly, two
spectral peaks may occur within the same periodicity group. This condition occurs
infrequently, and is generally due to a failure of the cross-correlation map to identify
the boundary between two spectral dominances. When this conflict arises, the same
periodicity group is matched with both peaks.

Not all of the auditory objects are retained for further processing. Specifically,
objects that span fewer than two time frames are eliminated. Although this is a
violation of Marr's “principle of least commitment” (do nothing which may have
to be undone later), it is desirable to “clean up” the representation at this stage.
Very short auditory objects are unlikely to have a significant acoustic correlate,
and removing them eases the computational load on the subsequent scene analysis
strategy.

5.1.3 Auditory Object Representations.

Auditory object representations of the ten noise sources are shown in figure 5.3. It is
instructive to compare this figure with the periodicity group and frequency transition
map representations in figures 4.10 and 4.33. Note that individual harmonics and
formants of speech are generally represented as a single object. Noise sources give
rise to many small, randomly distributed objects, although some structure is visible
in the laboratory noise source.

5.2 Grouping by Common Periodicity

In the model described here, periodicities in the firing patterns of auditory nerve
fibres are extracted by an autocorrelation map (see section 4.2.3). This section
proposes a strategy for segregating concurrent periodic sounds, which partitions the
channels of the autocorrelation map into groups that are likely to have the same
fundamental frequency. The basic principles of this strategy are illustrated first,
using a simple double vowel stimulus. Subsequently, the application of the strategy
to the grouping of auditory objects is described. Before proceeding, it is instructive
to consider some previous autocorrelation-based approaches to source segregation.
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Figure 5.3: Auditory object representations of the ten noise sources. Time is dis-

played on the abscissa, and channel centre frequency (50Hz-5kHz) is displayed on
the ordinate.
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Figure 5.4: Autocorrelation map for the double vowel /a/ (fundamental frequency
112 Hz) and /e/ (fundamental frequency 100 Hz). Note that a peak at the pitch
period of each vowel occurs in the summary autocorrelation function.

5.2.1 Previous Work

Two autocorrelation-based segregation strategies are reviewed here, which have been
proposed by Assmann and Summerfield [8] and Meddis and Hewitt [169]. Both
attempt to model the perceptual processes underlying the ability of human listeners
to identify concurrent vowels with different fundamental frequencies (see sections
4.2.1 and 1.4.3). As such, they are limited to processing static sounds, and operate
on a single frame of an autocorrelation map. However, the strategies could equally
be applied to successive frames of a map in order to segregate time-varying stimuli.
Weintraub [277] describes a separation system based on this principle, which is
discussed in chapter 7.

Assmann and Summerfield (A&S) propose several schemes for segregating double
vowels. Their “nonlinear place-time” model is considered here, which employs an
autocorrelation map of the form described in section 4.2.3. Initially, a summary
autocorrelation function is formed from the map (see section 4.2.4), and the two
largest peaks in the summary are identified. The delays at which these peaks occur
are assumed to correspond to the pitch periods of the two vowels. Subsequently, the
spectrum of each vowel is estimated by sampling the channels of the autocorrelation
map at the delay corresponding to the vowel’s pitch period. Hence, two “synchrony
spectra” are obtained, which indicate the degree of synchronization to each vowel in
the auditory nerve. By matching these spectra against reference templates, vowel
identification performance can be quantified. In fact, the A&S model comes close
to predicting the overall accuracy of listeners responses. However, it is unable to
replicate the finding of Scheffers [233] that identification performance improves with
larger differences in fundamental frequency between the two vowels.

.
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Figure 5.5: Segregation of the double vowel by the Meddis and Hewitt strategy. The
group of channels on the left corresponds to the /e/, and the group on the right
corresponds to the /a/.

A more successful strategy, in terms of predicting human performance, has been
proposed by Meddis and Hewitt (M&H). Given that there are two vowels present
with different fundamental frequencies, the M&H scheme partitions the autocorre-
lation map into two mutually exclusive sets of channels. Initially, the largest peak
in the summary autocorrelation is identified, and this is taken to be the pitch period
of the dominant vowel. Channels with a peak in their autocorrelation functions at
this delay are removed from the map, and matched with a template. The remain-
ing channels are assumed to belong to the second vowel, and are matched with a
template in a similar manner. Hence, only the pitch of the most dominant vowel is
estimated. This is advantageous, since the second pitch is often weak, and may be
an unreliable cue for segregation (Meddis and Hewitt [169]). The M&H scheme is
able to model Scheffer’s findings quite closely, and shows an improvement in per-
formance when the difference in fundamental frequency between the two vowels is
increased.

The M&H strategy is illustrated in figure 5.5, for the mixture of two vowels /e/ and
/a/ shown in figure 5.4. The vowels have fundamental frequencies of 100 Hz and 112
Hz respectively, corresponding to a difference in fundamental of two semitones. In
the mixture, the largest peak in the summary autocorrelation occurs at a delay of
10.0 ms, which is the pitch period of the /e/. The channels of the map with a peak
at this delay are shown in the left panel of figure 5.5. Note that the peak at 10.0 ms
in the summary autocorrelation of this map is now more clearly defined, indicating
that some segregation has been achieved. The remaining channels are assumed to
belong to the /a/, as shown in the right panel of figure 5.5. Here, the peak in the
summary autocorrelation at a delay of 8.93 ms, corresponding to the pitch period
of the /a/, has become relatively larger. However, there is still a significant peak at
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Figure 5.6: Autocorrelation map of the vowel /a/ (fundamental 112 Hz) and siren
noise source. Note that the summary autocorrelation contains many peaks which
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might be incorrectly interpreted as the pitch period of a source.
{

10.0 ms delay, suggesting that the two vowels have not been completely segregated.

Although the A&S and M&H strategies are able to model the identification of double
vowels quite closely, they suffer from a number of disadvantages. In particular, the
schemes do not generalize in situations where several arbitrary sound sources are
active at the same time. For example, both the A&S and M&H strategies require
a priori knowledge of the number of sound sources that are present. Consider the
A&S scheme, which attempts to find the pitch period of each source by identifying
peaks in the summary autocorrelation function. For stimuli 6ther than synthetic
double vowels, this is a non-trivial problem. The point is illustrated in figure 5.6,
which shows an autocorrelation map of the vowel /a/ mixed with the siren noise
source. As before, the fundamental frequency of the vowel is 112 Hz. Although
there are only two sources present, there is a multitude of peaks in the summary
autocorrelation. Clearly, the A&S strategy would have great difficulty in identifying
the number of sources present and assigning a pitch period to each one. The M&H
scheme overcomes the problem of multiple peaks by identifying the pitch period of
the dominant source, and partitioning the channels of the map into two mutually-
exclusive sets. But what if there are more than two sound sources present? The

M&H strategy does not generalize in this case.

A related criticism of the M&H scheme is that listeners can often hear both pitches in
a double vowel, and are able to indicate which vowel has the higher pitch and which
has the lower pitch (Summerfield et al. [266]). Similarly, Beerends and Houtsma [10]
have found that listeners are often able to correctly identify the pitches of concurrent
two-tone complexes, for differences in fundamental frequency of two semitones or
more. It seems unlikely, therefore, that segregation is based only on the most dom-
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inant pitch. Note also that the M&H scheme is quite sensitive to small variations
in the channel autocorrelation functions of the map. This is apparent in figure 5.5.
Several low-frequency channels which should belong to the /e/ have been incorrectly
assigned to the /a/, because their peaks near to 10.0 ms are slightly displaced. A
possible solution to this problem is to allow a tolerance in the position of the chan-
nel pitch period peak. However, Meddis and Hewitt [169] found that allowing a 1%
tolerance in peak position did not improve the performance of their model. Another
solution might be to allow a wider tolerance at lower characteristic frequencies, since
there tends to be more variation in the broader peaks of low frequency channels.

Another point concerns the relationship between the pitch system and perceptual
grouping mechanisms. The A&S and M&H segregation strategies assume that the
pitch of a source is identified first, and then this pitch is used to group the compo-
nents of the source together. However, Bregman [24] notes that this is unlikely to
be the case:

“The pitch system acts to group harmonically related partials. We might
conclude that this grouping is then used to derive other properties of the
now segregated partials. This description implies a one-way transaction,
the pitch system influencing the grouping system and not vice versa.
However, this appears not to be true. There is evidence that the pitch
that is calculated can depend on cues other than harmonicity, cues that
we might think of as operating outside the pitch system.” (page 247)

This point has been demonstrated by McAdams [161], using a paradigm in which
the odd and even harmonics of an oboe sound were separated and sent to different
speakers. When the two sets of harmonics were coherently frequency modulated,
a single source was heard with a single pitch. However, when the odd and even
harmonics were incoherently modulated, two sounds were heard that had different
pitches. Hence, it appears that perceptual grouping determines pitch, rather than
vice versa. This conclusion may also be supported by the finding of Darwin and
Ciocca [62] described in section 4.3.1, which indicates that a harmonic with a differ-
ent onset time makes a reduced contribution to the pitch of a complex tone. Note,
however, that Darwin and Ciocca’s data could be explained by peripheral adapta-
tion at the frequency of the leading harmonic, rather than by perceptual grouping
mechanisms. An effect of grouping could be confirmed by a demonstration that
differences in offset affect perceived pitch, for the reasons discussed in section 4.3.1.
Clearly, this is a research issue.

Finally, the A&S and M&H segregation strategies both suffer from the problem of
overlapping harmonics (Assmann and Summerfield [8]). Consider the autocorrela-
tion map of the double vowel /a/ (fundamental 112 Hz) and /e/ (fundamental 100
Hz) shown in figure 5.4. The channel of this map with centre frequency 898 Hz is
shown in figure 5.7. It is dominated by the eighth harmonic of the /a/, which has
a frequency of 896 Hz. Peaks occur in the autocorrelation function at the period
of this harmonic (1.12 ms) and at integer multiples of this period. A large peak
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Figure 5.7: Autocorrelation function for the channel of the map with centre frequency
898 Hz. The channel is dominated by the eighth harmonic of the vowel /a/, which
has a frequency of 896 Hz. A large peak occurs at the pitch period of the /a/ (8.93
ms), and a smaller peak occurs at 10.04 ms which is near to the pitch period of the

/¢/-

occurs at a delay of eight periods (8.93 ms), which corresponds to the pitch period
of the /a/. However, there is also a smaller peak at a delay of nine periods (10.04
ms), which is close to the pitch period of the /e/ (10.0 ms). Since the /e/ is the
dominant vowel in the mixture, the M&H strategy initially removes the channels
of the map which have a peak at a delay of 10.0 ms. Consequently, the channels
dominated by the 896 Hz harmonic of the /a/ are incorrectly assigned to the /e/
(see figure 5.5). A similar error is made by the A&S strategy, since the peak in
the channel autocorrelation function at 10.04 ms is almost as large as the peak at
8.93 ms. Hence, the “synchrony spectrum” sampled at the pitch period of the /e/
contains spurious energy in the region of 896 Hz. This point is discussed further in
the next section.

5.2.2 A New Strategy

In this section, a new autocorrelation-based segregation strategy is presented which
avoids many of the limitations of the A&S and M&H schemes. Firstly, the basic
principles of the new strategy are discussed. Following this, the application of the
strategy to the grouping of auditory objects is described.

Principles of the Strategy

Recall from section 4.2.4 that the summary autocorrelation of a periodic sound has
peaks at integer multiples of the pitch period, as well as a peak at the pitch period
itself. In order to reduce the influence of these “false” pitch peaks on the segrega-
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Figure 5.8: Summary autocorrelation functions before weighting (upper panel) and
after weighting (lower panel). The “false” peak at twice the pitch period of the /a/
(17.86 ms) has been attenuated by the weighting.

tion strategy described here, a weighting is applied to the summary autocorrelation
which attenuates peaks at longer delay times. Specifically, a modified summary
autocorrelation

M
WY S~ pemlt, £, A1) (5.1)

swlt, At] = ——
M
f=1

is computed, where the weighting function w[At] is defined by

At
Atma::

w[At] = 1.0 - 0.9 (5.2)

as suggested by Weintraub [{277]. Here, Atmqz is the longest autocorrelation delay,
and the other parameters are defined in section 4.2.3. The function w[At] imposes
a linear weighting on the summary autocorrelation, which varies from 1.0 at zero
delay to 0.1 at the longest delay. This ensures that the peak at the pitch period of
a source is larger than the peaks at integer multiples of the pitch period.

The weighted summary autocorrelation s, [t, At] is an average measure of the peri-
odicities present in the autocorrelation map. As such, it indicates the likelihood of
a pitch period At occurring in the map at time ¢. Similarly, the channel autocor-
relation functions acm|t, f, At] indicate the likelihood of a particular pitch period
occurring in a channel of the map. Therefore, the product of these two quantities
gives an estimate of the probability! that a channel f belongs on a pitch period At
at time ¢,

Pr(t, f, At] = acmlt, f, At]s,[t, At (5.3)

'Note that the term “probability” is used loosely. Pr(t, f,At] is not a true probability since, in
general, 3_,, Prlt, f,At] £ 1.
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Figure 5.9: Segregation of the double vowel by the new strategy. The group of chan-
nels on the left corresponds to the /e/, and the group on the right corresponds to the

//.

From equation 5.3, it is possible to predict the pitch period that a channel is most
likely to belong on. Specifically, the predicted pitch period pl[t, f] is given by the
autocorrelation delay at which Pr[t, f, At] is highest,

plt. f] = max Prlt, f, 5¢) (5.4)

Here, plt, f] is computed for values of At between 2 ms and 20 ms, corresponding
to pitches in the range 50 Hz to 500 Hz (see section 4.2.3). Segregation can now be
achieved by application of the following grouping principle:

Channels of the autocorrelation map are grouped together if they have
the same predicted pitch period plt, f].

This strategy is illustrated in figures 5.8 and 5.9, for the double vowel /a/ and /e/
shown in figure 5.4. Initially, the weighted summary autocorrelation is computed,
which is shown together with the conventional summary autocorrelation is figure
5.8. The spurious peak at twice the pitch period of the /a/ (17.86 ms) has been
attenuated by the weighting, as required. Subsequently, the pitch period of each
channel is predicted, and channels with the same pitch period are grouped. The two
largest groups found by this process, which account for 80% of the channels in the
map, are shown in figure 5.9. The group on the left of the figure has a pitch period
of 10.0 ms, and corresponds to the /e/. Similarly, the group on the right has a pitch
period of 8.93 ms, and corresponds to the /a/. The remaining channels of the map
form small groups, or fail to group at all.
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Figure 5.10: Segregation of the vowel /a/ from the siren noise source by the new
strategy. The group of channels on the left corresponds to the /a/, and the group on
the right corresponds to the siren.

This approach has a number of advantages when compared with the A&S and M&H
strategies. Firstly, no prior knowledge of the number of sources present in the stim-
ulus is required. Rather, the number of groups that are formed is determined by the
number of different predicted pitch periods. Secondly, because the strategy deter-
mines the most likely pitch period for each channel, it tolerates small irregularities
in the channel autocorrelation functions. For example, a comparison of figures 5.5
and 5.9 shows that the new strategy has correctly assigned several low-frequency
channels to the /e/ that were incorrectly grouped with the /a/ by the M&H scheme.
Thirdly, the new strategy does not attempt to identify a global pitch for each source.
Rather, it predicts a local pitch for every channel in the map, and groups channels
with the same local pitch. This approach is consistent with the view that grouping
determines the perceived pitch of a source, rather than vice versa. Additionally, the
strategy is robust in situations where there are many spurious peaks in the sum-
mary autocorrelation function. For example, the mixture of the vowel /a/ and siren
noise source, shown in figure 5.6, was previously considered as a difficult stimulus
for the A&S and M&H segregation strategies. The two largest groups found by the
new scheme for this mixture are shown in figure 5.10. Inspection of the summary
autocorrelation functions suggests that the vowel and siren have been segregated
very effectively.

It is also apparent from figure 5.9 that the new strategy is able to solve the problem
of overlapping harmonics. The channels in the region of 896 Hz have been assigned to
the /a/, as required. Note that this result is not due to any change in the dominance
of the two vowels caused by the weighting of the summary autocorrelation function.
If the M&H scheme were to use the weighted summary autocorrelation, it would
still produce the groups shown in figure 5.5, since the largest peak still occurs at
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the 10.0 ms pitch period of the /e/ (see figure 5.8). Rather, the new strategy is
able to solve the problem of overlapping harmonics because of two factors. Firstly,
channels of the autocorrelation map are allocated exclusively to one source. This
point is discussed further in section 5.5. Secondly, the strategy uses information
about the height of the pitch period peak in the summary autocorrelation and in
the channel autocorrelation. The A&S and M&H schemes do not take both of these
factors into account.

Although the new strategy solves the problem of overlapping harmonics in many
situations where the A&S and M&H schemes cannot, it is not guaranteed to do so in
every case. Again, consider the double vowel /a/ and /e/. The channels near to 896
Hz are correctly assigned by the new strategy because the product of the summary
and channel autocorrelation functions at the pitch period of the /a/ is larger than
the product at the pitch period of the /e/ (see figures 5.7 and 5.8). However,
if the pitch period peak of the /a/ in the weighted summary autocorrelation was
much smaller than the pitch period peak of the /e/, the strategy would fail and
the channels near to 896 Hz would be incorrectly grouped with the /e/. This
problem could be minimized by exaggerating the differences in peak height in the
channel autocorrelation functions. One way of achieving this would be to square
the autocorrelation function in each channel of the map.

Another strategy for solving the problem of overlapping harmonics has been pro-
posed by Summerfield et al. [266]. They attempt to identify local pitches in an
autocorrelation map by convolving adjacent channels with Gabor functions. How-
ever, this approach is computationally expensive and fails at low frequencies where
harmonics are resolved.

Grouping Auditory Objects by Common Periodicity

The implementation of the new segregation strategy described in this section exploits
the fact that temporal continuity has been made explicit in the auditory object
representation. Rather than comparing predicted pitch periods at each time frame,
a temporally-extensive pitch contour is computed for each object in the auditory
scene. Subsequently, objects are grouped if their pitch contours are similar.

As before, the probability of each pitch period is predicted by computing the product
of the channel and summary autocorrelation functions. However, auditory objects
generally occupy more than one channel of the autocorrelation map at each time
frame (see section 5.1.2). Therefore, a local summary autocorrelation is computed,
which averages the channel autocorrelation functions over the frequency spread of
the object. For an auditory object which occupies channels f; to f2 of the auto-
correlation map at time ¢, the local summary autocorrelation [, fi, f2, At] is given
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by
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where acm|t, f, At] is the channel autocorrelation function defined in equation 4.11.
Note that the effect of this averaging will be small, since the channels occupied by an
object are, by definition, very similar. Now, using the same rationale as for equation
5.3, the probability of the object belonging on a particular pitch period At at time
t is given by

PT[t,fl,fg, At] = l[t, fi, f2, At]sw[t, At] (5.6)

Here, s, [t, At] is the weighted summary autocorrelation previously defined in equa-
tions 5.1 and 5.2.

As described in the last section, the most likely pitch period could be estimated
from equation 5.6 in a frame-by-frame manner. However, this approach does not
take advantage of temporal continuity. Instead, Pr[t, f1, f2, At] is computed at every
time frame occupied by the auditory object, and the best path through this series
of functions is found by a dynamic programming algorithm. Dynamic programming
(Cooper and Cooper [54]) is a mathematical technique in which a stepwise decision-
making process is used to find an optimal solution (in this case, the most likely pitch
contour for an auditory object).

Since the optimum pitch contour passes through peaks in Pr[¢, fi, f2, At] , the dy-
namic programming algorithm actually finds the best path through the series of
functions

_J Prit, fi, fo, O] if FqPrithifaa0 =0
mlt, At] = { 0 otherwise (57)

Here, m(t, At] is zero except at delays where a local maximum in the pitch probabil-
ity occurs. Equation 5.7 can be computed by using a finite difference approximation
to the differential, checking the sign of zero crossings to ensure that a maximum has
been found rather than a minimum.

Now, the dynamic programming algorithm proceeds as follows. The dynamic pro-
gramming score dsft, At] for a pitch period At at time frame t is defined as the
dynamic programming score at the previous frame, plus the transition score gained
by moving to the current pitch period. Formally, the recursive relation

dslt, At]={ gs[t—l,Atpreu]+maxAzts[Atp,-ev,At,t] ;tf’:,:tfgt, (5.5)
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Figure 5.11: Strategy for finding the most likely pitch contour for an auditory ob-
ject (highlighted in black). The product of the summary autocorrelation and local
summary autocorrelation gives the pitch probability. The best path through the pitch
probability corresponds to the pitch contour of the object.

is calculated for each time frame ¢ between the start time t, and end time t. of the
auditory object. The transition score ts[{Atprey, At, ] quantifies the cost of moving
from a pitch period Atyrey in the previous frame to a pitch period At in the current
frame, and is given by

_ (Bt Btyre)?

t3[Atprev, At, ] = m[t, At] exp [ 252 (5.9)
t

Hence, the transition score for a new pitch period depends upon its probability, and
its distance from the previous pitch period. The exponential term in equation 5.9
applies a Gaussian weighting to the pitch period difference, so that smaller changes
in pitch period give a higher transition score. In the absence of any experimental
data, the standard deviation §; of the Gaussian was derived empirically. A value of
0.6 ms was found to give good results.

A dynamic programming score ds[t,, At,] i8 computed for each initial pitch period
At,, and the pitch period with the highest score is taken to be the start of the
best path. Subsequently, the best path is retraced through the series of functions

.
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m[t, At] in order to determine the pitch contour. This process is repeated for each
object in the auditory scene.

Figure 5.11 illustrates the procedure for one object in a mixture of voiced speech
and the siren noise source. The local summary autocorrelation [[t, f}, f2, At] for
the object highlighted in black is shown in the middle right panel of the figure.
Multiplying I[t, f1, f2, At] with the summary autocorrelation s, [t, At] gives the pitch
probability Pr[t, fi, f2, At] , illustrated in the bottom right panel. Note that the
pitch contour of the object is clearly defined in this representation. The dynamic
programming algorithm finds the best path through the pitch probability function,
giving the pitch contour shown on the left of the figure. Pitch contours for the
remaining objects in this example are illustrated in figure 5.12. Two distinct groups
are visible, corresponding to the pitches of the speech and siren. Additionally, a
small number of contours occur at twice the pitch period of the speech, which are
due to sub-octave errors in the tracking procedure.

Given a predicted pitch contour for each object in the auditory scene, segregation
can now be achieved by application of the following grouping principle:

Auditory objects which overlap in time are grouped together if their pre-
dicted pitch contours are sufficiently similar.

For two objects that overlap in time, the similarity of their pitch contours p;[t] and
p2[t] can be quantified by the metric

. 1 [l - maft])?
sim[p1, pa] = -t +1 t;l exp [ 257 ] (5.10)

Here, t; and t3 define the first and last time frames at which the two objects overlap.
This similarity metric computes the average Gaussian-weighted difference between
the two pitch contours. As such, sim[p1,p2] varies between unity (indentical pitch
contours) and zero (very different pitch contours). The standard deviation &, of the
Gaussian determines the amount of tolerance in the comparison. Here, §, was set
to 0.3 ms by inspection.

Finally, two objects are allowed to form a group if their sim[p1, p2] score exceeds a
threshold value. In practice, the pitch contours of objects that belong to the same
source tend to be very similar, so the threshold can be set quite high. A value of
0.9 is used here. Clearly, this process groups auditory objects in a pairwise manner.
Section 5.4 describes a strategy for searching the auditory scene which forms larger
groups from these pairwise comparisons.

Superficially, the technique presented in this section appears to be similar to the
pitch tracking procedure described by Weintraub [277]. However, there are im-
portant differences between the two approaches. Firstly, Weintraub uses dynamic
programming to track a global pitch contour for each source. Here, we compute a
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Figure 5.12: Auditory object representation of speech and siren intrusion (upper
panel), and the pitch contours for each object (lower panel). Note that the pitch
contours cluster into two groups, corresponding to the pitch of each source.

loL:al pitch contour for each object, and group objects which are likely to belong to
the same source. The advantages of the latter approach have already been discussed
in section 5.2.1. Secondly, Weintraub’s system attempts to track the pitch period
of each source using a representation which is equivalent to the summary autocor-
relation function. Here, the pitch contour of an object is derived from its pitch
probability function. It is apparent from figure 5.11 that the summary autocorrela-
tion contains many peaks which can disrupt the tracking process. Conversely, the
pitch contour of an object is clearly defined in its pitch probability function, so that
tracking is relatively straightforward. Weintraub’s segregation| system is discussed
in detail in chapter 7.

5.3 Grouping by Common Onset and Common Offset

Recall from section 4.3.1 that the auditory system tends to group acoustic compo-
nents which have the same onset and offset time. A simple way of implementing this
process in the model would be to group auditory objects which start and end syn-
chronously. However, the birth-death tracking strategy described in section 5.1.2
tends to break an object in situations where a tracking error is likely to occur.
Therefore, the start and end times of an object do not necessarily correspond to the
appearance and disappearance of an acoustic event.

The onset and offset maps described in section 4.3 provide a solution to this problem,
since the presence of activity in the maps verifies that an onset or offset of an
acoustic event has occurred. Therefore, the following principle can be applied to
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group objects with a common onset or offset time:

Auditory objects which start or end synchronously are more likely to form
a group, providing that there is sufficient activity in the onset or offset
map at the appropriate time.

In practice, objects tend not to be exactly synchronous, so it is desirable to allow
a tolerance in the comparison of onset and offset times. Darwin [60] and Roberts
and Moore (222] find onset and offset segregation effects at disparities of 30 ms, so
the tolerance should clearly be less than this (see section 4.3.1). Here, objects are
judged to be synchronous if the difference between their start or end times is not
more than two time frames, corresponding to a tolerance of 20 ms.

Given the start or end time of an object, the onset or offset map is checked to
ensure than an acoustic event has actually started or stopped. Again, it is desirable
to allow a tolerance when comparing the start/end time of an object with the time
of activity in the onset/offset map. This is because auditory filters tend to ring at
their centre frequencies for a few milliseconds after an abrupt onset, which delays
the formation of periodicity groups. Similarly, periodicity groups may extend for
a few milliseconds after a sudden offset, because the filters continue to ring at the
frequency of the stimulus. Therefore, the activity act[t] in the onset or offset map
oft, f] at the start/end time ¢ of an auditory object is quantified by

fa 2
actlftj= Y Y olt+7,f] (5.11)
f=HT=-2
|

Here, f1 and f; define the range of channels in the filterbank occupied by the object
during its first (in the case of onset) or last (in the case of offset) time frame. As
before, a two frame (20 ms) tolerance is allowed either side of the start/end time t.
An onset or offset is indicated when the activity in the map act|t] exceeds a threshold
value. Here, onset and offset maps with a 1 ms delayed input are used, which respond
to abrupt changes in stimulus amplitude (see section 4.3.3). In practice, any activity
in these maps is a reliable indication than an onset or offset has occurred, so the
threshold can be set to zero.

When two auditory objects start or end at the same time, and L.n onset or offset is
indicated by the maps, the objects are more likely to form a group. In the model,
the tendency of two objects to group is increased by adding a constant weighting
to the similarity score sim[pi,ps] defined in equation 5.10. The weightings for
common onset and common offset are both set to 0.5. Recall from section 5.2.2 that
objects are allowed to fuse if their sim[p;, po] score exceeds a threshold value of 0.9.
Therefore, objects which have a common onset and a common offset will form a
group regardless of their pitch contour similarity, since their onset and offset score
(1.0) exceeds the threshold. However, objects with a common onset or a common
offset must also have a pitch contour similarity of at least 0.4, in order to exceed the
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Figure 5.13: Onset map (left) and auditory objects (right) for the harmonic complez
used by Darwin and Ciocca. The figures on the right indicate the similarity between
the lowest harmonic and the other harmonics. Note that the fourth harmonic, which
starts 30 ms before the other harmonics, has a low similarity score.

i

threshold and form a group. The reasons for imposing this constraint are discussed
in the next section.

The principles of this approach are illustrated in figure 5.13, which shows onset map
and auditory object representations of the 12-component harmonic complex used
by Darwin and Ciocca [62] (see section 4.3.1). The fourth harmonic of this complex
leads the remaining components by 30 ms. On the right of the figure, sim[p;,po]
scores are given for the similarity between the first harmonic and the other harmon-
ics. The first harmonic has a maximum score of 2.0, since it is effectively compared
with itself. Additionally, the other harmonics (except the fourth) have a similar
onset time, offset time and pitch contour as the first harmonic, so their scores are
near to 2.0. The fourth harmonic has a lower sim[p1,p2] value, since it does not
gain any score from common onset.

Note that in order to segregate the fourth harmonic from this complex, the grouping
threshold in the model would have to be raised above 0.9. Consequently, the model
cannot explain Darwin and Ciocca’s results in its current form. If the threshold
was raised, objects would only group if they had very similar pitch contours and a
common onset or offset. This would be undesirable, since the frequency components
of many environmental sounds (such as speech) start and stop at different times.
See section 5.5 for further discussion of this point.

In the model, the same weighting is applied to objects in the case of common onset
and common offset. Effectively, this assumes that perceptual grouping mechanisms
treat onsets and offsets as equally important events. For short stimuli, this is prob-
ably the case (see section 4.3.1). Darwin [60] and Roberts and Moore [222] find
offset effects that approach the magnitude of onset effects for short stimuli, and
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suggest that the remaining difference is due to the contribution of peripheral adap-
tation to onset asynchrony. However, the difference between onset and offset effects
is greater when longer stimuli are used. Whether this result reflects an increased
effect of adaptation, or a preference of perceptual grouping mechanisms for using
onsets rather than offsets, is a research issue.

Finally, the model presented in this section implies that there is an equivalence be-
tween synchrony and periodicity grouping cues. The validity of this hypothesis could
be investigated psychophysically. For example, it may be possible to quantify the
amount of onset asynchrony that is equivalent to a particular amount of mistuning
using the paradigm described by Darwin and Ciocca [62].

5.4 Searching the Auditory Scene

The process described in this section aims to partition the auditory scene into groups
of objects that are likely to belong together. An algorithmic search strategy is em-
ployed, which takes advantage of the time-frequency object representation described
in section 5.1.2. Similar schemes have recently been proposed by Cooke [52] and
Mellinger [170].

Currently, the strategy groups objects according to their periodicity, onset time, and
offset time. As such, the algorithm models primitive auditory scene analysis, and
does not attempt to use learned (schema-driven) grouping principles. Additionally,
the strategy is limited to searching for simultaneous organization in the auditory
scene, and is not able to group objects that are widely separated in time. However,
the time-frequency nature of the representation used here does allow the sequential

propagation of groups in situations where objects overlap.

5.4.1 Motivation

The issues that arise in formulating a strategy for searching the auditory scene have
been comprehensively discussed by Cooke [52]. Here, a new strategy is proposed
that is motivated by several of Cooke’s observations, although it is substantially
different from the algorithm described in his thesis. Cooke’s model is discussed in
detail in chapter 7.

Firstly, the strategy employed here assumes that every object in the auditory scene
must be allocated to a group. Hence, the search terminates when all of the objects
in the scene have been accounted for. In some cases, a group may consist of a single
object.

A second point concerns the allocation of objects between groups. Recall from
section 5.2.2 that channels of the autocorrelation map are allocated exclusively to
one source by the segregation strategy. Consequently, an auditory object cannot
belong to more than one group, and once it has been assigned to a group it is
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Figure 5.14: Rigid application of ezclusive allocation in the model does not prevent
the same groups from being found by searches that start from different objects. Here,
the same group in @ natural speech signal has been found by searches starting from
the four objects highlighted in black.

!
effectively “removed” from the auditory scene. The theoretical implications of this
approach are considered in section 5.5.

One potential problem in rigidly applying a principle of exclusive allocation is that
the search strategy may find different organizations in the auditory scene if it starts
from different objects. For example, consider a situation in which a frequency com-
ponent can belong to two harmonic series, so that different groups are competing for
the same object. If components were grouped according to their harmonic relations,
the object would be assigned arbitrarily to the harmonic series that was identified
first by the search strategy. However, the algorithm proposed here does not suffer
from this problem, for two reasons. Firstly, objects are grouped according to the
similarity of their predicted pitch contours, rather than by harmonicity per se. It
is very unlikely that the pitch contours of two groups will be so similar that they
will compete for the same objects. Secondly, exclusive allocation is not imposed at
the level of the search strategy. Rather, it emerges as a consequence of the fact that
objects are assigned to a single predicted pitch contour. This point is illustrated by
figure 5.14, which shows that the same groups are found by searches that start from
different objects.

In practice, the search time can be reduced by starting from “dominant” objects in
the auditory scene, as suggested by Cooke [52]. Here, the length of an object is taken
a8 an indication of its dominance, although other metrics (such as time-frequency
area) could also be used. Long objects generally give rise to large groups, and are
likely to have a significant acoustic correlate. Therefore, the search for a new group
starts with the longest object in the auditory scene, and long objects are recruited
to groups before shorter objects.
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5.4.2 A Search Strategy

The algorithm used to search the auditory scene is shown in figure 5.15, in the
form of a flow diagram. Since exclusive allocation applies, objects are essentially
“removed” from the scene when they are assigned to a group. The algorithm iterates
until there are no ungrouped objects left.

Initially, the longest object in the auditory scene is selected as the start of a new
group. Then, every object remaining in the scene is considered as a possible match
(focus) to the group. A similarity score sim[pi,p2] is calculated between the pitch
contour of the focus object and every object in the group that it overlaps, as de-
scribed in section §.2.2. Subsequently, the score is adjusted if the objects being
compared have a common onset or a common offset (see section 5.3). If the focus
object has a sim[p1,p2] score greater than 0.9 for every object in the group that
it !overlaps, it is added to the group. This process iterates until the group cannot
recruit any more objects. Then, a new group is started if there are any objects
remaining in the auditory scene.

Note that objects are recruited to groups under very tight constraints. Specifically,
a focus object can only be recruited to a group if it is sufficiently similar to all
the members of the group that it overlaps in time. This constraint is imposed to
prevent small objects in a group from acting as a “bridge” to dissimilar objects. For
example, a focus object which generally has a different pitch contour to a group,
but is similar for a short time, could be recruited by an object in the group that
spans the period when the pitch tracks are similar. Checking that the focus object
is consistent with every member of the group alleviates this problem.

An example of the search strategy is shown in figure 5.16, for the grouping of a voiced
speech signal. The search starts from the longest object in the auditory scene, which
in this case corresponds to the fundamental (recall from figure 5.14 that the search
could be initiated from another object with the same results). Subsequently, objects
with a similar pitch contour (lower panel in each diagram) are recruited to the group,
longest first. The algorithm proceeds very efficiently, and identifies the majority of
the objects which belong to the group by iteration 36. The group is terminated
at iteration 84, when no more objects can be recruited. Note that although this
strategy only seeks simultaneous organization, the nature of the auditory object
representation allows a group to extend across time as well as across frequency.

5.4.3 Exaniples of Grouping

Several examples of grouping by the model are illustrated in figures 5.17 to 5.20, for
stimuli in which an intrusive noise has been added to voiced speech. In each figure,
the upper left panel shows the auditory objects for the speech and the upper right
panel shows the objects for the noise. The middle panel illustrates the resulting
mixture, and the largest group found by the search strategy is shown at the bottom
of the figure. '
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Figure 5.15: Flow diagram for the search strategy. See tezt for details.
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shown in the upper panel of each diagram, and the pitch contours of the objects
(50H2-5kHz) is represented on the ordinate.

Figure 5.16: Ezample of the search strategy for voiced speech. Auditory objects are
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Figure 5.18: Segregation of voiced speech (v9) from a random noise intrusion (nl).
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Figure 5.20: Segregation of voiced speech (v6) from a speech intrusion (n7).
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In figure 5.17, the intrusion is a 1 kHz tone. The largest group found in the mixture
corresponds to the speech, and the tone has been almost completely removed. Note
that a conventional autocorrelation scheme would have difficulty in segregating this
mixture, since tonal stimuli give rise to many spurious peaks in the summary au-
tocorrelation function (see section 5.2.1 and figure 5.10). The segregation of speech
from random noise, shown in figure 5.18, has been less successful. However, the
grouping strategy has recovered a number of harmonics that are visible in the mix-
ture. Figure 5.19 illustrates the segregation of speech from a “trill” telephone. The
intrusion has significant energy in the frequency regions of speech formants, so that
only the low harmonics of the speech are clearly defined in the mixture. This group
of harmonics has been successfully recovered by the search strategy. Finally, figure
5.20 shows a mixture of two speech signals. Again, most of the objects belonging to
the voiced speech have been recovered.

5.4.4 Derivation of Global Properties from Groups

Many properties of an acoustic source, such as pitch, timbre, loudness and direction,
are derived from groups of frequency components rather than individual compo-
nents. Bregman [24] calls these global properties. In this section, the derivation of
pitch and timbre from groups of auditory objects is considered.

Derivation of pitch from a group of objects can be achieved in two ways. Firstly,
a summary autocorrelation can be computed at each time frame by averaging the
autocorrelation functions of channels that are included in the group. Formally, the
summary autocorrelation at time delay At for a group of channels G[t] is given by

M
s,lt, Af] = -Al? S glt, f, A (5.12)
B
where
if
oft, £, ={ pemlts 8 1S € Gt (5.19)

Here, M is the number of channels occupied by the group at time t, and acm|t, f, At]
is the autocorrelation function of channel f. Summary autocorrelation functions of
this form are illustrated in the lower panels of figures 5.9 and 5.10. If the segregation
has been successful, s,4[t, At] contains a large peak at the pitch period of the group.
Again, note that derivation of global pitch in this manner is consistent with the view
that grouping determines perceived pitch, rather than vice versa (see page 110).

Alternatively, the global pitch of a group can be computed by averaging the local
pitch contours of every object in the group. In practice, a weighted mean pylt] of
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Figure 5.21: Derivation of global pitch contours from groups of objects. Three groups

are shown (one is highlighted in black), which consist of objects from a mizture of
speech and a siren intrusion. Note that the pitch contours cross in several places.

the local pitch contours is used, where

TN pli, uli, 1]
T w1

pglt] = (5.14)

and

wli,t] = foli, 1] - fili, 4] + 1 | (5.15)

Here, N is the number of objects in the group, pl[t, t] is the pitch contour of object ¢ at
time ¢, and f}[¢,t] and fs[¢,t] define the range of frequency channels occupied by an
object. The weight w(i, t] ensures that objects with a wide frequency spread make a
larger contribution to the mean than objects with a narrow frequency spread. Figure
5.21 shows global pitch contours derived in this way for three groups in a mixture of
speech and a siren intrusion. Note that a conventional autocorrelation scheme would
have difficulty in segregating this mixture, since the pitch contours of the two sources
cross in several places. However, the time-frequency representation employed here
allows the mixture to be separated quite effectively (a similar observation has been
made by Cooke [52]). Although a subharmonic of the pitch has been incorrectly
tracked for the second half of the siren, this has not affected the ability of the search
algorithm to segregate the two sources.
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Parameter | Description Value | Units
w(f] width of birth-death acceptance region 0.6 ERB
) standard deviation of transition score Gaussian | 0.6 ms
op standard deviation of similarity score Gaussian | 0.3 ms

threshold similarity score for group formation | 0.9

score weighting for common onset 0.5

score weighting for common offset 0.5

Table 5.1: Parameter settings for the pitch tracking strategy and search algorithm.

Meddis and Hewitt [169] suggest a method for deriving timbre from an autocor-
relation map. The summary autocorrelation function defined in equation 4.12 is
partitioned into two sections, corresponding to a “pitch region” at longer delays and
a “timbre region” at shorter delays. Hence, the “timbre region” of the summary
autocorrelation function contains information about the higher-frequency compo-
nents of the group. However, it is not clear where the boundary between the two
regions should be placed, and the regions may overlap in certain situations. Further
research is needed to resolve these problems.

5.5 Summary and Discussion

This chapter has presented a representation of objects in the auditory scene, and a
search strategy which groups objects with a similar pitch contour, onset time and
offset time. The parameter settings used in this part of the model are summarized
in table 5.1. On the following pages, a number of theoretical and computational
issues are discussed.

Exclusive Allocation of Objects

The model assumes that the principle of exclusive allocation is rigidly applied, so
that an object can only belong to one group. This assumption is supported by several
experiments, such as the one by Bregman and Pinker [30] discussed in section 4.3.1.
Here, a tone A was alternated with a pair of tones B and C, as shown in figure
4.11. Recall that B either grouped sequentially with A, or formed a simultaneous
organization with C. The principle of exclusive allocation clearly applies in this
example, since B cannot belong to both groups at the same time.

Nonetheless, it is clear that there are many situations in which the principle of exclu-
sive allocation is violated. An example occurs in the “duplex” perception of speech,
described by Liberman et al. [151] and Rand {210]. Liberman [148] presented listen-
ers with a synthetic three-formant syllable at one ear, from which the third formant
transition was removed. When the missing transition was played simultaneously to

.
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the opposite ear, it contributed to the percept of the syllable but was also heard as
an isolated “chirp”. Clearly, the principle of exclusive allocation is violated in this
case, since the formant transition is heard as a part of two sounds. Several other
examples of “duplex” perception have already been reviewed, such as the findings
of Moore et al. [185] described in section 4.2.1. Here, a component of a harmonic
complex that was mistuned by 2-3% contributed fully to the pitch of the complex,
but was also heard as a separate source. Hence, the mistuned harmonic was shared
by two organizations at the same time. Similarly, Gardner et al. [90] found that
a formant of a synthetic syllable which was incoherently frequency modulated still
contributed to the syllable percept, but was heard as a separate sound (see section
4.5.2).

These results, and those of similar experiments, have led Bregman [24] to conclude
that

“The principle of exclusive allocation does not describe the activity
of primitive scene analysis. The latter involves competitions between
groupings, but such competitions do not have to be resolved in an all-
or-nothing manner.” (page 637)

Although this is probably the case, rigid application of the principle of exclusive
allocation in the model has a number of advantages. Firstly, exclusive allocation
of channels by the autocorrelation map segregation strategy allows the problem of
overlapping harmonics to be solved in many situations. Secondly, assigning objects
to a single group simplifies the search algorithm. For example, there is no redun-
dancy in the groups that are found which needs to be resolved at a later stage (see
the discussion of Cooke’s thesis in chapter 7).

It should be stressed that an object which could belong to two groups is not assigned
arbitrarily. Rather, the object is assigned to the group that it is most likely to belong
to, on the basis of its predicted pitch contour. Whether this is a serious limitation
of the model is a question that requires further research. Certainly, relaxation of the
exclusive allocation constraint would demand a new strategy for solving the problem
of overlapping harmonics, which was able to share channels of the autocorrelation
map between groups.

Default Condition: Separation or Fusion?

In the model, it is assumed that objects in the auditory scene are segregated unless
there is evidence to group them together. However, segregation may not be the
default condition of organization. Rather, the auditory system may prefer to fuse all
the components in the auditory scene, so that objects are only segregated when there
is evidence for doing so. Bregman [24] makes an observation that may distinguish
between these two alternatives. He notes that although white noise contains random
fusion and segregation cues, it is heard as a coherent sound rather than a multitude

.
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of components in different frequency regions. This suggests that fusion is the default
condition, rather than segregation.

It would be relatively straightforward to make fusion the default condition in the
model. For example, an object could be rejected from a group if its sim[p;,po]
score with the members of the group was sufficiently low. Whether this approach
would have any advantages over the algorithm presented here is an issue for further
research.

Divisibility of Auditory Objects

Once formed, auditory objects are not subjected to any further modification in the
model. For example, an object cannot be split across time or frequency. A possible
limitation of this approach is suggested by an experiment by Darwin and Sutherland
[65], reviewed in section 4.3.1. They measured the changes in vowel percept that
were caused by adding a tone to the first formant region of a vowel. In one condition,
the tone started 30 ms before the vowel, so that the stimulus was similar to the one
shown in figure 5.13. When a harmonic of the leading tone was added which stopped
as the vowel started, listeners were more likely to hear a change in the vowel colour.
This suggests that the two leading tones formed a separate perceptual group, which
ended at the start of the vowel.

Currently, the model cannot reproduce this result, since it requires the object rep-
resenting the leading tone to be broken at the point where the vowel starts. This
action would be a violation of Marr’s “principle of least commitment”, since it de-
mands that an earlier decision (the formation of an object) should be undone at a
later stage of processing. Clearly, this limitation questions the validity of the time-
frequency object representation used here. Further research is required to address
this issue.

Sensitivity to Similarity Threshold

Hard thresholding is generally avoided until the last stage of the model, where a
similarity threshold is applied to determine whether objects should form a group.
Clearly, the similarity threshold is an important parameter of the model, but its
value has been chosen somewhat arbitrarily.

In practice, this is not a serious limitation. The search strategy tends to find sim-
ilar groups over a wide range of sim[p;,po] thresholds, since the pitch contours of
separate sources are generally very different. Additionally, the autocorrelation map
segregation strategy usually tracks the pitch of an object very reliably, so that ob-
jects belonging to the same source have very close pitch contours (see figure 5.16).
This point is illustrated in figure 5.22, which shows the longest group found in a
mixture of two speakers for a range of similarity thresholds. A qualitatively similar
organization has been identified in each case. However, a high threshold is preferred
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Similarity Ttweshoid 0.9 Similarity Threshold 0.8

%

Figure 5.22: Largest group found in a mizture of two speakers for four different
threshold similarity scores. The group is qualitatively similar in each case.

here, since it reduces the chance of inappropriately grouping objects in cases where
the pitch contours are close.

Sequential Grouping
|

Currently, the search strategy only seeks simultaneous organization in the auditory
scene. However, it is clear that components which are widely separated in time
may belong to the same source, such as a sequence of speech sounds from a sin-
gle speaker. Many properties influence the sequential grouping of sounds, such as
timbre, spatial location, temporal proximity, fundamental frequency, intensity and
spectral shape (Bregman [24]). Incorporating these grouping principles into the
model is a challenging task for future research.

Schema-Based Grouping

Recall from section 3.4 that listeners are able to use learned (schema-based) prin-
ciples to segregate concurrent sounds. A schema for a particular sound appears to
become active when the components that it requires are present in the auditory
scene, even when no cues for primitive grouping are available. For example, Schef-
fers [233] found that listeners could identify the constituents of a double vowel with
a performance that was above chance, even when the vowels started and stopped
at the same time and had the same fundamental frequency (see sections 1.4.3 and

4.2.1).

Currently, only primitive (data-driven) grouping principles are employed in the

.
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Figure 5.23: Grouping with and without common onset and common offset cues.
Synchrony cues allow objects with small irregularities in their pitch contours to be
recruited to a group.

model. However, the auditory object representation is equally suited to the ap-
plication of schema-driven grouping principles, and the search strategy is flexible
enough to allow top-down information to influence the groups that are formed. For
example, a schema which requires a group of objects could increase their similarity
scores, 8o that the objects are more likely to fuse. A possible role for auditory maps
in the formation and application of schemas is discussed in chapter 7.

I

Retroactive Effects in Grouping

In the search algorithm, objects at a particular time can be recruited to a group that
starts at a later time. This assumes that perceptual grouping mechanisms are able
to operate retroactively. There is good evidence that this is the case. For example,
Darwin [60] has shown that a harmonic which stops after the other components of
a vowel can be excluded from the vowel percept (see section 4.3.1). Additionally,
Ciocca and Bregman [49] have demonstrated that the perceived continuity of a
gliding tone through a band of noise is affected by the characteristics of the post-
noise glide (see section 4.4.1). Here, no limit is set on how far the scene analysis
strategy can search back through time. In practice, however, perceptual grouping
mechanisms may operate over a temporal window of a few hundred milliseconds.

Role of Common Onset and Common Offset

Grouping by common onset and common offset is subject to tight constraints in
the model. Generally, objects must have some similarity in their pitch contours (a
sim[p1,p2] score of at least 0.4) in order for common onset and common offset to
be effective. If synchrony was a sufficient condition for grouping, onset and offset
groups could be propagated inappropriately. Specifically, the search algorithm could
form a “staircase” of objects in which adjacent components had similar onset/offset
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times, but the onset/offset times of non-adjacent components were widely separated.

Figure 5.23 illustrates a typical situation in which grouping by common onset confers
an advantage. Without onset cues, a large component of the group has been excluded
because its pitch contour contain small irregularities (left panel). Grouping by
common onset allows the object to exceed the similarity threshold and fuse with the

group (right panel).

Note that this approach is consistent with the suggestion of Darwin and Sutherland
[65] that common onset and common offset are neither necessary nor sufficient con-
ditions for grouping the components of speech (see section 4.3.1). Additionally, the
form of the model is compatible with Darwin and Ciocca’s [62] suggestion that dif-
ferent perceptual mechanisms may interpret onset time differences in different ways.
For example, mechanisms of pitch perception appear to be more tolerant of onset
time differences than mechanisms of vowel perception. In the model, this could be
simulated by weighting the sim[p,p2] score of two synchronous objects differently
for different perceptual mechanisms.
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Chapter 6

Evaluation of the Model

Two methods for evaluating sound source segregation in the model are considered
here. Firstly, a technique for resynthesizing a waveform from a group of objects in
the auditory scene is described, which allows segregation performance to be qual-
itatively assessed in informal listening tests. Secondly, the resynthesis technique
allows a comparison of the relative levels of the signal and noise waveforms before
and after segregation, so that performance can be quantified as an improvement in
signal-to-noise ratio.

6.1 Resynthesis

A number of workers have used resynthesis to determine whether an auditory rep-
resentation preserves perceptually important features of the acoustic input (Cooke
[52], Ghitza [92], Heinbach [112], Hukin and Damper {122]). For example, Hukin and
Damper assess the adequacy of their auditory model by comparing the perceived
phonetic categories in original and resynthesized speech signals. The non-auditory
work of McAulay and Quatieri [163] and Lienard [153] adopts a similar approach.
Resynthesis also provides a convenient means of assessing the performance of sys-
tems that attempt to segregate concurrent sounds (Parsons [198], Weintraub [277],
Boll [14], Naylor and Boll [191}, Cooke [52], Denbigh and Zhao [71]). By listening
to the segregated output, it is possible to estimate the amount of signal that has
been retained, and the amount of noise intrusion that has been rejected.

It should be noted that validation-by-resynthesis suffers from a number of potential
problems. Firstly, perceptual restoration may disguise inadequacies in the resyn-
thesized waveform by “filling in” missing parts of the signal. Secondly, Cooke [52]
points out that the resynthesized waveform will be subjected to any nonlinearities
twice, once in the model and once in the auditory system of the listener. Finally,

.
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Figure 6.1: Resynthesis of a waveform from auditory objects. A mask is derived from
a group of objects, which indicates the time-frequency regions of the gammatone filter
output that belong to the group. These regions of the filter output are summed to
produce the resynthesized waveform.

assessment of segregation performance by resynthesis may be influenced by the per-
ceptual grouping mechanisms of the listener. Nonetheless, resynthesis is a useful
technique for rapid evaluation of the model’s performance.

6.1.1 Resynthesis From Auditory Objects

The resynthesis technique employed here is similar to the scheme proposed by Wein-
traub [277]. Figure 6.1 illustrates the process for a mixture of speech and a siren
intrusion, although the technique can be applied to any arbitrary input.

Segregation in the model produces a number of groups of objects, as described in
section 5.4. The first stage in resynthesizing a waveform for a group is to form
a mask (see the figure). If a channel of the auditory filterbank is occupied by an
object in the group at a particular time frame, the value of the mask at that time
and channel is unity. Otherwise, the value of the mask is zero. Hence, the mask
consists of an array of binary weights, that indicate which frequency channels of the
filterbank belong to the group at each time frame.

Subsequently, a resynthesized waveform is constructed from the gammatone filter
output (see section 4.1.2). In order to remove any across-channel phase differences,
the output of each filter is time-reversed, filtered a second time, and time-reversed
again. Then, each time-frequency region of the phase-corrected filter output is

.
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multiplied by the corresponding weight in the mask. The weights are applied to 20
ms segments of the filter output, which overlap by 10 ms and are windowed with
a raised cosine. Finally, the resynthesized waveform is obtained by summing the
weighted filter outputs across all channels of the filterbank.

6.1.2 Informal Listening Tests

The validity of the resynthesis technique has been confirmed by resynthesizing a sig-
nal when every element in the mask is unity, so that all of the time-frequency regions
of the filterbank output are included (see the appendix). Speech resynthesized in
this way is completely indistinguishable from the original utterance. Additionally,
segregated speech has been resynthesized from each of the 100 mixtures described
in section 6.2.3. Generally, the resynthesized speech is highly intelligible and quite
natural. The best exemplars occur when the noise intrusion is narrowband (1 kHz
tone, siren), and the worst occur when the noise is random and wideband (laboratory
noise, random noise).

|
Clearly, it is difficult to describe the quality of resynthesized speech in a written
document. Hence, an audio cassette is included with this thesis, which contains
recordings of a variety of resynthesized signals. The contents of the tape are cata-
logued in the appendix.

Essentially, listening to the resynthesized waveform of a group is equivalent to “at-
tending” to a particular stream, so that the stream becomes more prominent than
the background. This is the auditory equivalent of the Gestalt “figure-ground phe-
nomenon”, which was discussed in section 3.1. It is clear, however, that the auditory
system does not completely remove unattended streams. For example, when attend-
ing to a particular conversation in a “cocktail party” situation, we are still aware
of the other conversations in the background. This effect can be simulated in the
model by attenuating the time-frequency regions of the gammatone filterbank that
do not belong to a group, rather than completely removing them!. Several examples
are given on the audio tape, where the outputs of unattended channels have been
reduced to 5% of their normal amplitude.

6.2 Quantitative Evaluation

A new method for quantitative evaluation of the model is presented in this section,
which allows signal-to-noise ratios to be compared before and after segregation.
Fi‘rst, some previous approaches to quantitative evaluation are discussed.

!The author is grateful to Ray Meddis for thi; suggestion.
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6.2.1 Previous Work

Four methods of evaluation are discussed in this section, with regard to their com-
parability, ease of interpretation and speed of execution.

Modelling Human Performance on a Specific Task

One method of evaluating a model is to compare its performance on a particular task
with the performance of human listeners on the same task. For example, Scheffers
[233], Assmann and Summerfield [8] and Meddis and Hewitt [169] have investigated
the ability of a model to predict the performance of human listeners in identifying
the constituents of a double vowel. This work has already been discussed in sections
5.2.1 and 1.4.3.

This approach suffers from a number of potential problems. Firstly, a model which
can predict human performance is not necessarily correct. For example, the A&S
and M&H schemes both come close to predicting the overall accuracy of listeners
responses, but the two models differ in many important aspects. Secondly, close
quantitative agreement between a model and human performance data can be due
to “fine tuning” of the model on the test stimuli. Meddis and Hewitt [169] note that

“The overall level of correct responses is broadly comparable for the
model and human listeners. This correspondence should not be overem-
phasized, however, because of the many opportunities which the modeller
has to optimize performance on a small data set.” (page 239)

Thirdly, a model which accurately reproduces overall human performance may give
highly deviant predictions of the performance on individual exemplars of the test
set (Assmann and Summerfield [8]). Finally, although it is possible to model early
auditory processing quite closely, higher-level perceptual mechanisms are usually
modelled very crudely. For example, the M&H segregation scheme uses ad hoc
decision rules to determine how many vowels are present.

Automatic Music Transcription

Potentially, a segregation system could be evaluated by determining its ability to
accurately transcribe a piece of music. Mellinger [170] describes a system for seg-
regating musical sounds, but he evaluates the model visually rather than quantita-
tively. As a result, it is difficult to assess the performance of his model. Mellinger’s
system is discussed in detail in chapter 7.
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Intelligibility Tests

If a resynthesis path is available from a model, human listeners can assess the
intelligibility of the segregated output in formal listening tests (Hanson and Wong
(109], Hanson et al. [110}). However, this approach may be time consuming, and
subjects require training in order to perform the task.

Alternatively, listeners can be replaced in intelligibility tests by an automatic rec-
ognizer. This allows comparatively rapid processing of large test sets. Generally,
the test stimulus is speech (Weintraub [277], Gramss and Strube [99]), although the
same principle can be applied to other stimuli (Varga and Moore [272]). A potential
problem with this approach is that interpretation of results may be difficult if an
auditory representation is used as input to the recognizer. For example, Beet [11]
has demonstrated that a mismatch can exist between an auditory front-end and a
conventional speech recognition system. One solution to this problem is to resynthe-
size a waveform for a segregated source, and present this directly to an unmodified
recognition architecture (Weintraub [277]).

Mixture Component Identification

Cooke [52] describes a scheme that determines which components in a mixture are
likely to belong to one source, and which components are likely to belong to an-
other. This methodology allows intuitive metrics to be computed which indicate,
for example, the percentage of a segregated mixture that belongs to one source.
However, the technique is rather dependent on the specific representation used in
Cooke’s model, so it is difficult to compare his results with those of other workers.
Cooke’s system is discussed in detail in section 7.4.

6.2.2 Comparison of Signal-to-Noise Ratios

In this section, a new technique is described which allows a signal-to-noise ratio
(SNR) to be computed before and after segregation by the model. This evaluation
methodology is fast, simple to implement and leads to an easily interpreted metric.
Additionally, quoting the performance of the model in terms of an improvement in

SNR allows the results here to be compared with those of other workers.
|
Generally, the sounds in the test set of mixtures used here are non-stationary (see

section 6.2.3). Therefore, a running short-term SNR is computed, which takes the
form

v ls?[t + i]] 6.1)

snrlt] = 2 arctan | ==
x Tiso nllt +1]

where s and n are the speech and noise waveforms respectively. Here, a 10 ms non-
overlapping window of size w is used, and results are expressed as the mean snr|t]
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Figure 6.2: Derivation of the proportions of signal and noise in a segregated wave-
form. Note that in this ezample, nearly all of the siren intrusion has been removed
from the speech.

over every time frame t in the mixture.

Following segregation by the model, all of the noise intrusion n may have been re-
moved within a particular time window (an example is shown in figure 6.2). Clearly,
this is a very good result, but it gives rise to an infinite SNR. Hence, an arctangent
compression is applied in equation 6.1, which ensures that snr(t] is always finite.
In practice, this leads to a highly intuitive metric. When there is no signal in the
mixture, snr(t] is zero. Similarly, when there is no noise in the mixture, snrft] is
unity. A snrlt] of 0.5 indicates that the levels of signal and noise are equal.

In order to express the performance of the model as an improvement in SNR, it
must be possible to obtain separate signal and noise waveforms after segregation.
A property of the resynthesis procedure described in section 6.1.1 allows this to
be achieved. Recall from section 4.1.2 that the gammatone filter is linear. Con-
sequently, the resynthesis process is also linear, since it essentially consists of two
passes of gammatone filtering and an across-channel summation. Linear systems
satisfy the property of superposition, which states that the response of the system
to two inputs presented simultaneously is equal to the sum of the responses when
the two inputs are presented individually. Formally, for a linear system R,

!
R(s +n] = R[s] + R[n] (6.2)

Now, consider the case where the system R represents the resynthesis of a waveform
from a particular mask, and s and n represent the signal and noise respectively.
Equation 6.2 implies that the proportion of signal in a segregated mixture can
be obtained by resynthesizing the signal waveform from the mask, and that the
proportion of noise can be obtained by resynthesizing the noise waveform from the

Y
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Figure 6.3: Demonstration that the resynthesis process is linear. The two waveforms
R{s+n] and R[s]+ R[n] are almost identical, as indicated by the difference waveform
in the bottom panel.

mask. Hence, separate signal and noise waveforms can be obtained from a segregated
mixture. Furthermore, this technique can be applied to any representation from
which a linear resynthesis path is available.

This process is illustrated in figure 6.2, for the segregated mixture of speech and siren
shown at the bottom of figure 6.1. Resynthesis of the speech waveform from the mask
gives R([s], the proportion of speech in the segregated mixture. The proportion of
siren R[n] in the segregated mixture is obtained in a similar manner. This approach
has a number of useful properties. Firstly, it is possible to compute snr(t] after
segregation. Secondly, visual examination of the resynthesized waveforms indicates
how much of the signal has been retained, and how much of the noise has been
removed. For example, it is clear from figure 6.2 that nearly all of the siren intrusion
has been removed by the model. Finally, it is possible to listen separately to the
proportion of signal and proportion of noise in the segregated output. Hence, the
degradation of the signal and noise waveforms after segregation can be assessed in
informal listening tests.

If the resynthesis path is linear, equation 6.2 implies that the resynthesized waveform
in figure 6.1 can be obtained by summing the two resynthesized waveforms in figure
6.2. Comparison of R[s+n] and R[s]+ R[n] in figure 6.3 confirms that this is indeed
the case. Equation 6.2 also implies that

R[s+n]— R[s] - R[n] =0 (6.3)

This difference waveform is shown in the bottom panel of figure 6.3. It is nearly
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Figure 6.4: Waveforms of the ten noise sources. From Cooke [52], with permission.

always zero, as required. In practice, the energy in the difference waveform is always
less than 1% of the energy in the resynthesized mixture. This amount of error was
considered to be quite acceptable, and can mainly be attributed to rounding errors
in the digital irpplementation.

6.2.3 The Mixture Test Set

In recent years, psychological studies of auditory scene analysis have prompted a
number of computer models. With the arrival of a coherent text from Bregman [24],
this trend seems likely to continue. Clearly, standardized evaluation techniques are
required in order to compare the strengths and weaknesses of different models. The
SNR metric described in the last section allows the results here to be compared
easily with those of other workers. Similarly, the quantitative evaluation in this
chapter uses the database of speech and noise mixtures employed by Cooke [52].

Although the majority of segregation systems have been evaluated using the task
of separating speech from other interfering speech (Weintraub [277], Parsons [198],
Naylor and Boll [191], Hanson and Wong [109]), it is clear that a wide variety of noise
intrusions occur in natural listening environments. Hence, Cooke’s test set contains
a range of different noise sources, including synthetic stimuli (1 kHz tone, random
noise) and environmental sounds (music and “office” noise). The waveforms of these
intrusions are shown in figure 6.4. Additionally, various auditory representations of
the intrusions have already been illustrated in chapters 4 and 5.

.
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ID | Speaker | Utterance

v0 | speaker 1 | I'll willingly marry Marilyn

vl » Why were you away a year, Roy?
v2 » Why were you weary?

v3 " Why were you all weary?

v4 ” Our lawyer will allow you a rule
v5 | speaker 2 | I'll willingly marry Marilyn

v6 ” Why were you away a year, Roy?
v7 » Why were you weary?

v8 ? Why were you all weary?

v9 ? Our lawyer will allow you a rule

Table 6.1: Voiced utterances used in the mizture test set. From Cooke [52], with
permission. ,

Here, the model is evaluated on a set of 100 mixtures, obtained by adding the
waveforms of each of the 10 intrusions to each of the 10 utterances listed in table 6.1.
The sentences were spoken by two male speakers. Note that fully voiced utterances
have been used, since the model (and Cooke’s model) is not able to sequentially
group a stream of voiced-unvoiced speech sounds (see section 5.5).

Combining separate speech and noise waveforms has a number of advantages over
recording speech in the presence of environmental noise. Firstly, the SNR can be
computed before and after segregation. Secondly, speakers tend to compensate for
the presence of an interfering noise, so that their speech level becomes louder and
their voice characteristics change (Lombard [154]). This could affect the evaluation
of a model by intelligibility testing, particularly if an automatic recognizer is used.

6.2.4 Results

Each of the 100 mixtures of speech and noise in the test set were processed by the
model. The groups corresponding to the speech were identified visually from the
auditory object representation, or by listening to the resynthesized waveforms of
each group. In every case, the speech corresponded to the longest group of objects
that the model identified in the mixture.

Two performance metrics are used here. Firstly, the proportions of speech and noise
in each group have been derived, allowing the mean snr[t] to be computed after seg-
regation as described in section 6.2.2. Similarly, the mean snr[t] has been computed
for the original mixture, so that performance can be quantified as an improvement in
SNR. Secondly, the number of non-zero time-frequency regions (TFR) in the mask
is determined for each group. This gives an estimate of how much of the auditory

scene has been recovered by the grouping process.
l
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Figure 6.5: Comparison of mean snr|t] before and after segregation using periodicity,
onset and offset grouping cues.

In each of the noise conditions the voiced utterances v0-v9 gave similar results
using the SNR and TFR metrics. Hence, the results for each intrusion n0-n9 have
been averaged over the 10 utterances. Where grouping has been evaluated with no
intrusions, results are expressed individually for v0-v9.

Segregation With Periodicity, Onset and Offset Cues

Figure 6.6 shows the distribution of snrt] values in the original mixtures of speech
and noise. The snr[t] values for each intrusion have been averaged over the 10
voiced utterances, and partitioned into 13 bins. Recall that a low snr[t] indicates
that there is less signal than noise in the mixture. Hence, many of the histograms
in figure 6.6 have significant activity in the lower bins. In particular, the leftwards
skew of the random noise (nl) and siren (n5) histograms indicates that the SNR in
these mixtures is very unfavourable.

The snr(t] distributions after segregation by the model using periodicity, onset and
offset grouping cues are shown in figure 6.7. A pronounced shift to the right is visible
in all of the histograms, indicating that the majority of the noise has been rejected.
This trend is especially noticeable in the random noise and siren histograms. Ad-
ditionally, note that the largest bin in the siren histogram now occurs at an snrt]
near to 1, indicating that the intrusion has been almost completely removed. This
result would be anticipated from figure 6.2.

‘
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nO: 1 kHz tone n1i: random noise n2: noise bursts n3: laboratory noise n4: rock music

[
n5: siren n6: telephone n7: female speech n8: male speaech n9: female speech

Figure 6.6: Distribution of signal-to-noise ratios in the original miztures. The snrt]
13 represented on the abscissa, between values of 0 (no signal) and 1 (no intrusion).

i

n0: 1 kHz tone ni: random noise n2: noise bursts n3: laboratory noise n4: rock music

n5: siren n8: telephone n7: female speech n8: male speech n9: female speech

Figure 6.7: Distribution of signal-to-noise ratios after segregation by the model using
periodicity, onset and offset grouping cues. The snrlt] is represented on the abscissa,
between values of 0 (no signal) and 1 (no intrusion).
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A convenient way of summarizing these results is to plot the mean snr[t] for each
noise source, as shown in figure 6.5. It is apparent that segregation by the model
has improved the mean snr[t] in each case. For some intrusions (n0, nl1 and n5) the
improvement is very significant.

Segregation With Periodicity Cues Only

The manner in which grouping principles have béen implemented in chapter 5 allows
the contribution of different cues to be determined. For example, figure 6.8 compares
the mean snr(t] before and after segregation for grouping with and without onset and
offset cues. In four cases (n0, n1, n4 and n7) grouping by common onset and common
offset gives a small advantage compared to grouping only by common periodicity.
For the remaining intrusions, segregation performance with and without onset/offset
cues is the same. Note that in one condition (n2), maximum performance is obtained
using periodicity cues alone, so it is not possible to assess whether grouping by onset
and offset would have anything further to contribute.

Figure 6.9 shows the percentage of TFRs that have been included in the mask of each
group, with and without onset/offset cues. As expected, more TFRs are included
in the masks when onset and offset cues are used. This confirms that grouping by
common onset and common offset is effective in recruiting more objects to a group
than would be recruited by periodicity cués alone. However, the benefits are small,
as would be expected from the discussion in section 5.5.

Random Grouping

The significance of the previous results can be assessed by determining how well a
system would perform if it grouped frequency channels randomly at each time frame.
Figure 6.10 shows the mean values of snr(t] before and after random grouping.
As might be expected, the proportions of signal and noise in a random group are
approximately the same as they are in the original mixture. However, small increases
in snr[t] occur with some intrusions (n0, nl, n5 and n9). Comparison with figure
6.5 confirms that the performance of the model is significantly better than random
grouping for every condition.

Grouping With No Intrusion

Figure 6.11 illustrates the percentage of TFRs that are recruited when no intrusion
is\present, for each of the utterances v0-v9. Typically, about 35% of the TFRs are
recruited. Although this figure seems low, it should be noted that not every TFR
in the auditory scene will be occupied by an object (see figure 5.3). Also, errors in
the pitch contours of objects, or inadequacies in the grouping rules, may mean that
objects are excluded from a group. Resynthesis of the groups evaluated in figure
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Figure 6.8: Comparison of SNR before and after segregation by the model, with and
without onset/offset cues.
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Figure 6.9: Comparison of percentage TFRs recruited by the model, with and without
onset/offset cues. '
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Figure 6.10: Comparion of SNR before and after random grouping.
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Figure 6.11: Percentage of TFRs recruited by the model when no intrusions are
present.
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6.11 confirms that the utterances are highly intelligible and quite natural (see the
appendix).
[

Comparison With A Conventional Autocorrelation Strategy

It is instructive to compare the performance of the model with that of a conventional
frame-based autocorrelation segregation strategy. Here, a strategy similar to the one
proposed by Meddis and Hewitt [169] has been used. Initially, pitch contours were
derived for each of the 10 voiced utterances. This was achieved by computing a
summary autocorrelation representation for the clean speech, and identifying the
location of the largest peak in each time frame (see figure 4.5). Where necessary,
sub-octave errors were manually corrected. Subsequently, these pitch contours were
used to inform the segregation of the utterances from the noise intrusions. As
suggested by Meddis and Hewitt, an autocorrelation map was computed at each
time frame, and channels of the map which had a peak at the given pitch period
were allocated to the speech source.

Clearly, this approach gives the autocorrelation strategy an unfair advantage in the
comparison, since it has a priori knowledge of the pitch period of the speech at
each time frame. Normally, the pitch periods of the two sources would have to be
estimated from the summary autocorrelation function of the mixture. The results
here assume that this difficult task has been performed without any errors. As such,
the results represent the optimum performance of a frame-based autocorrelation
segregation strategy on the test set.

ﬁigure 6.12 shows the mean value of snr(t] after segregation, for the model and the
autocorrelation strategy. The performance of the model is better for every intrusion
except n9, for which it is the same. In the majority of conditions, the model also
recruits more TFRs than the autocorrelation strategy (see figure 6.13). Generally,
therefore, the model is able to recover more of the speech source from the auditory
scene. Undoubtedly, the poorer performance of the autocorrelation strategy arises
from the fact that frame-based schemes do not exploit temporal continuity.

Note that in two conditions (nl1 and n8), the autocorrelation strategy degrades the
mean snr(t] after segregation. This might be expected for the random noise intrusion
(n1), since it causes many peaks to occur in the channel autocorrelation functions.
If a spurious peak in a channel dominated by the noise intrusion coincides with the
pitch period of the speech source, the channel will be inappropriately grouped. The
problem of overlapping harmonics may contribute to the poor performance on n8, the
male speech intrusion (see page 110). From the pitch tracks of the speech intrusions
and the voiced utterances, the frequencies of the first 10 harmonics were calculated
at each time frame and compared for overlap. This informal analysis suggests that,
on average, overlapping harmonics occur more frequently for condition n8 (5.3% of
time frames) than for n7 (1.3%) or n9 (2.5%).
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Figure 6.12: Comparison of SNR before and after segregation by the model using

periodicity, onset and offset grouping cues, and by a conventional autocorrelation
scheme. L
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Figure 6.13: Comparison of TFRs recruited by the model using periodicity, onset
and offset grouping cues, and by a conventional autocorrelation scheme.
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6.3 Summary and Discussion

This chapter has presented methodologies for qualitative and quantitative evalua-
tion of sound source segregation in the model. A novel resynthesis technique has
been described, which allows the proportions of signal and noise in a mixture to be
quantified before and after segregation. The results of an evaluation on a test set
of 100 mixtures are very encouraging. In every condition, segregation by the model
improves the SNR of the original mixture, and performance is significantly better
than random. Additionally, the performance of the model is at least as good as
a conventional autocorrelation segregation strategy, and is substantially better for
some intrusions.

A possible limitation of the model arises from the fact that objects are exclusively
allocated to one group. When an intrusion is removed from the auditory scene,
it leaves a “gap” in the spectrum which can often be heard in the resynthesized
waveform. One solution to this problem may be to share the energy in an auditory
filter channel between sources (Weintraub [277]). Alternatively, an extrapolation
technique could be used to complete the missing parts of the spectrum. For speech,
a model of the vocal tract could provide estimates of the energy in spectral gaps.

T'he evaluation in this chapter uses the same database of 100 mixtures employed by
Cooke [52]. Although no formal comparison between his results and those presented
here is attempted, some informal observations can be made. His “results for the
positive evidence metric” (page 114) are roughly equivalent to the SNR evaluation
in figure 6.7. Generally, the two figures show a similar pattern of performance,
although the model here may have an advantage for the music (n4) and speech
(n7 and n8) conditions. A formal comparison would be required to confirm this.
Since Cooke’s model uses the same linear filterbank employed here, the resynthesis
technique described in section 6.2.2 could be applied to his auditory representation.
Hence, a direct comparison of the two models may be possible.

The performance of the model is generally much better than that of a conventional
autocorrelation segregation scheme. Several factors may contribute to this result.
Firstly, temporal continuity is made explicit in the model, whereas conventional au-
tocorrelation strategies operate on a frame-by-frame basis. Secondly, the strategy
used here is tolerant of variations in the position of peaks in the channel autocor-
relation functions (see page 113). Hence, the groups found by the model tend to be
larger (see figure 6.13). Finally, the model is able to solve the problem of overlapping
harmonics on many occasions. The results in figure 6.12 suggest that this may give
the model a significant advantage over other autocorrelation-based approaches.

It may be possible to isolate some of these factors, in order to assess their contribu-
tion to the overall performance of the model. For example, the segregation strategy
described in section 5.2.2 could be implemented in a frame-based manner. This
would allow the contribution of temporal continuity constraints to be quantified.

Given that the model only implements three grouping principles (common peri-

-
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odicity, common onset and common offset), the results of the evaluation are very
encouraging. The inclusion of other grouping cues may provide further increases in
performance. However, it is likely that large improvements in performance will only

be obtained by incorporating schema-based mechanisms (see section 7.5).
I
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Chapter 7

Summary and Conclusions

7.1 Summary of the Model

A model of auditory processing has been described, which uses information derived
from physiologically-motivated representations to group acoustic components that
are likely to belong to the same sound source. The model consists of four processing
stages. Firstly, the auditory periphery is simulated by a bank of bandpass filters
and a model of inner hair cell function. In the second stage, a number of auditory
map representations make particular properties of auditory nerve firing patterns
explicit. Periodicities in the auditory nerve are identified by an autocorrelation map.
Channels of the autocorrelation map which are responding to the same spectral
dominance, and therefore have a similar pattern of response, are combined into
periodicity groups. The times at which acoustic components start and stop are
identified by an onset map and an offset map. Information about spectral continuity
is extracted by a frequency transition map, which measures the orientation of spectral
dominances. In the third processing stage, periodicity groups are tracked across
time, using frequency transition information, and concatenated to form auditory
objects. Finally, auditory objects which have similar properties are grouped together.
Specifically, objects are likely to form a group if they have a similar pitch contour,
onset time or offset time.

The model has been evaluated using the task of segregating speech from a variety
of different noise intrusions. Performance has been assessed qualitatively by resyn-
thesis, and quantitatively by comparison of the signal-to-noise ratio (SNR) before
and after segregation. An improvement in SNR is obtained after segregation for
each noise condition. Additionally, the model performs significantly better than a
conventional frame-based autocorrelation segregation strategy.

Summaries of the model can also be found in [36] and [37].
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7.2 Original Contributions

The title of this thesis emphasizes a representational approach to modelling au-
ditory processing. Perhaps the most important characteristic of the model is its
physiologically-principled, multi-representational view of auditory function. Physio-
logical studies indicate that important acoustic parameters appear to be place-coded
in the higher auditory system, within orderly arrays of neurons called auditory maps.
Here, computational models of auditory maps have been employed to provide a rich
representational description of the auditory scene. Specifically, the maps extract
information about onsets, offsets, frequency transitions and periodicities in different
spectral regions.

This approach is similar in concept to the computational approach to vision de-
scribed by Marr (see section 1.2.1). Marr [159] suggested that the first stage in
the description of a visual image should be a rich representation of intensity-level
changes, which he called the primal sketch. In subsequent stages, a number of pro-
cesses operate on the primal sketch to identify more abstract levels of structure.
Similarly, the auditory maps employed here provide a primitive, but rich, represen-
tation of the auditory scene. These primitives form the basis for deriving abstract
time-frequency objects, which can be searched rapidly and effectively. Hence, au-
ditory maps play a central role in bridging the gap between an acoustic waveform
and its description as a collection of symbolic auditory objects.

Although auditory maps have been specifically applied to scene analysis in this the-
sis, they undoubtedly have a more general utility. For example, parameters such
as onset time and frequency transition are important cues for distinguishing speech
sounds (Stevens [259]). Hence, auditory maps could provide useful primitives for an
automatic speech recognition system. Indeed, the maps could be employed directly
in the two-stage system described by Green et al. [102], which uses knowledge of
acoustic features (for example, formant transitions) to refine the results of a conven-
tional hidden Markov model recognizer. Additionally, auditory maps might provide
a novel means of visualizing sound. In particular, an animated display of activity in
the frequency transition map could provide a useful visual representation of spectral
variation, as shown in figure 4.30. Similar animations of autocorrelation maps have
recently been described by Slaney and Lyon [252].

Section 6.2.2 presents a new scheme for quantitative evaluation of sound segregation
systems, which allows a highly intuitive SNR metric to be computed before and
after separation. The technique can be applied to any model from which a linear
resynthesis path is available. Hence, the results presented here can be compared
directly with those of other workers.

Another novel aspect of the model is the way in which it incorporates spectral con-
tinuity constraints into an autocorrelation-based segregation scheme. Additionally,
the model exploits redundancy in the autocorrelation map at an early stage, by
grouping adjacent channels that have a similar pattern of response. In contrast,
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other autocorrelation-based schemes treat each channel independently throughout
the grouping process. Further, the segregation strategy used here is able to solve
the problem of overlapping harmonics in many situations.

The ability of a conventional frame-based autocorrelation strategy to segregate
speech from a variety of noise intrusions has been quantified for the first time in
chapter 6. Additionally, the performance of a conventional autocorrelation scheme
has been compared with that of the model presented here. The results of this com-
parison suggest that the use of spectral continuity constraints in the model gives it
a significant advantage over frame-based approaches.

Finally, a distinctive feature of the model is that it relies heavily on periodicity
information. The auditory object representation does not contain any information
about average firing rates in the auditory nerve. Similarly, objects are grouped prin-
cipally by common periodicity, although average rate is used to identify objects with
a common onset or offset. Hence, the fine time structure of auditory nerve firings
appears to carry a wealth of information for source segregation. Note, however, that
average rate must be used at frequencies above 4-5 kHz, since phase-locking in the
auditory nerve is abolished.

7.3 Limitations of the Model

The model has a number of possible limitations, which have previously been dis-
cussed and are briefly reviewed below. Future developments of the model will address
many of these issues (see section 7.5).

The gammatone filters employed in the peripheral auditory model are linear. In
contrast, auditory filters are known to be nonlinear, with tuning curves that broaden
at high intensities. Note that a nonlinear filterbank could be used in the model, but
it would not allow a comparison of signal-to-noise ratios before and after segregation
(see section 6.2.2). '

Autocorrelation-based approaches to periodicity detection have been questioned on
the grounds of their physiological plausibility. In particular, there is no direct evi-
dence for the system of delay lines proposed by Licklider [152].

The movement of a spectral dominance can generate “phantom” activity in the onset
and offset maps. This is a minor problem, which does not affect the scene analysis
strategy.

In the model, auditory objects are segregated by default, and fused only when there
is good evidence for doing so. However, there is some evidence that fusion is the
default condition of organization, rather than segregation.

The principle of exclusive allocation is rigidly applied in the model, so that an object
can only belong to one group. In fact, there are many situations in which perceptual
grouping mechanisms violate the principle of exclusive allocation. Additionally, the

&
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allocation of an object to a single group leaves a “gap” in the spectrum, which may
be audible in a resynthesized waveform.

Once formed, auditory objects cannot be split across time or frequency. This is quite
a serious limitation, which prevents the model from explaining certain experimental
findings.

No sequential grouping is implemented in the model. For example, the model is
unable to group a sequence of voiced and unvoiced speech sounds that have arisen
from a single speaker.

Currently, only primitive (unlearned) grouping principles are employed in the model.
However, the auditory system is also able to use schema-based (learned) grouping
principles.

An arbitrary threshold is used to determine whether objects should form a group.
This is not a serious limitation, since qualitatively similar groups are found by the
model over a wide range of threshold values.

The auditory system uses binaural cues, such as timing and intensity differences
between the two ears, to group sounds that originate from the same spatial location.
No attempt has been made to model binaural auditory processing in the current
system.

7.4 Other Models

Weintraub

Weintraub [277] describes a model of auditory processing which attempts to seg-
regate the voices of two simultaneous speakers. His system consists of three main
processing stages. Firstly, the pitch period of each voice is determined. Secondly,
a Markov model is used to indicate how many voices are active, and whether they
are periodic or nonperiodic. Finally, an iterative algorithm estimates the amplitude
spectrum of each voice.

The first stage of processing employs the cochlear model proposed by Lyon [156].
A coincidence function is computed at the output of each auditory filter, giving a
representation that is similar to the autocorrelation map used here. Subsequently,
the coincidence functions are smoothed and averaged across all channels of the fil-
terbank. The resulting representation is equivalent to the summary autocorrelation
function described in section 4.2.4. Then, a dynamic programming algorithm is used
to track the peaks in the average coincidence function across time. The dominant
pitch period is tracked first, followed by the weaker pitch period.

In the second stage of Weintraub’s system, the number of active sources and their
characteristics are determined by a pair of Markov models. The Markov model for a
particular voice can be in one of seven states, corresponding to silence, periodic, non-
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periodic, onset, offset, increasing periodicity and decreasing periodicity. Transition
probabilities were obtained by training on a database of hand-labelled utterances.

The last stage of processing estimates the amplitude spectrum of each source, given
the current state of its Markov model. An initial spectral estimate is obtained from
pre-computed histograms, which relate the height of the coincidence function at the
pitch period of a voice to the voice’s actual spectral amplitude. Subsequently, this
estimate is iteratively refined using local spectral continuity constraints.

Weintraub evaluates his system very thoroughly. The accuracy of the pitch tracker,
Markov model and spectral estimation algorithm are independently assessed. Ad-
ditionally, he resynthesizes a waveform for each voice, and assess its intelligibility
using an automatic speech recognizer. For comparison, the recognition rates for
the original mixtures of two speakers are also determined. However, his results are
rather inconclusive. The system gives a small improvement in recognition rate for
male speakers, but degrades the recognition rate for female speakers.

There are some similarities between Weintraub’s model and the one presented here.
Both systems use autocorrelation-like techniques for periodicity detection, and em-
ploy dynamic programming to track pitch periods across time. However, the two
approaches also have substantial differences, which are discussed below.

Firstly, Weintraub’s model attempts to track the global pitch of each source (see
section 5.2.1). Additionally, his system does not exploit spectral continuity con-
straints during the pitch tracking process, so that it faces the difficult problem of
determining which pitch period belongs to which source at every time frame. The
solution adopted in his model is to assign the dominant pitch period to the voice
with the closest average pitch. Hence, Weintraub’s system is limited to segregating
speakers with different average pitch periods (a male and a female speaker are used
in his evaluation). He acknowledges the problems associated with this approach:

“Even if one could precisely determine both pitch periods, one still has to
determine which sound stream these pitch periods belong to. When both
talkers have the same average pitch period, determining which pitch pe-
riod belongs to which talker is a difficult problem which has no straight-
forward solution.” (page 139)

In contrast, the model described here computes a local pitch contour for each time-
frequency object in the auditory scene, and groups objects which have a similar local
pitch. Hence, spectral continuity constraints are exploited during the pitch tracking
process, and the problem of allocating pitch periods to sources does not arise.

A second criticism of Weintraub’s system is that it requires training on a particular
task. For example, the Markov model must be trained to distinguish periodic and
nonperiodic speech. Other sounds, such as a tonal intrusion, give rise to different
patterns of periodicity and would require separate training (see figure 5.6). Similarly,
the spectral estimation algorithm requires information that is pre-computed from
the isolated utterances of each speaker. In contrast, the model described here finds
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organization in the auditory scene independently of the number of sources present,
and their characteristics.

To conclude, Weintraub’s system has two main disadvantages with respect to the
model described here. Firstly, it is principally a frame-based scheme which fails to
make full use of temporal continuity constraints. Secondly, it has been designed to
solve the task of segregating two concurrent speakers, and does not generalize easily
to different types, or different numbers, of acoustic sources.

Cooke

Recently, Cooke [52] has described a model of auditory processing that is similar
in concept to the one presented here. The model consists of two stages. Firstly,
the auditory scene is characterized as a collection of time-frequency objects. Sec-
ondly, the objects are searched for coherent organization, and objects with similar
properties are fused into a single group.

In the first stage of processing, mechanical filtering in the auditory periphery is simu-
lated by a bank of gammatone filters. Subsequently, the frequency of the most dom-
inant component in the output of each filter is computed, using median-smoothed
instantaneous frequency. Regions of the filterbank that are responding to the same
dominant frequency are combined into place groups. Then, place groups are aggre-
gated over time, using a technique that is similar to the birth-death process described
in section 5.1.2. This aggregation process produces an explicit time-frequency rep-
resentation of synchrony in the auditory filterbank, which Cooke calls synchrony
strands.

The second stage of Cooke’s model employs a two-pass strategy for searching the
auditory scene. In the first pass, a synchrony strand is selected as the seed for a
search. Subsequently, interleaved stages of simultaneous and sequential propagation
recruit similar strands to the group containing the seed. The similarity of strands
is assessed by their harmonicity (using a harmonic sieve) and common amplitude
modulation (using envelope repetition rate and instantaneous amplitude fluctua-
tions). This process continues with a new seed until every synchrony strand in the
auditory scene has been allocated to a group. A second pass then combines related
groups of strands. Small groups that form a subset of larger groups are subsumed,
and groups with a similar derived pitch contour are fused.

Cooke evaluates his model on the test set of 100 mixtures of speech and noise that
are used here. He employs a technique that determines which synchrony strands
in a mixture are likely to belong to one source, and which are likely to belong to
another. This approach allows a number of intuitive metrics to be computed, such
as the percentage of intrusion that remains in a particular group. Cooke concludes
that his grouping rules have a significant effect in accurately combining the strands
which belong to the speech source.

The similarities and differences between Cooke’s model and the one presented here
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are now considered. Firstly, both systems remove redundancy in the auditory nerve
response at an early stage of processing. In Cooke’s model, auditory filters that are
responding to the same spectral dominance are identified by comparison of their
instantaneous frequencies. Here, channels of the autocorrelation map which have a
similar pattern of response are identified by a cross-correlation algorithm. The latter
approach has the advantage of being physiologically plausible (see section 4.2.8).

In both models, regions of spectral dominance are tracked across time using a trajec-
tory principle. However, the two systems obtain trajectory information by different
methods. Cooke’s model estimates the trajectory of a synchrony strand by mea-
suring the derivative of its frequency. Here, a map of frequency transition provides
information about the orientation of spectral peaks.

Another difference concerns the grouping cues that are used by the two models.
Cooke’s system employs harmonicity and common amplitude modulation to identify
objects that belong together. In contrast, the model described here uses common
periodicity, common onset and common offset. Additionally, the second pass of
Cooke’s scene analysis strategy combines groups that have a common pitch contour.
Here, common pitch contour is used to combine single objects during a one-pass
grouping process. Also, note that pitch contours derived from the autocorrelation
map are generally very smooth (see figure 5.16). In comparison, the pitch contours
that Cooke’s model derives from amplitude modulation information tend to be quite
erratic (figure 5.8 of his thesis).

A related point is that Cooke’s model uses different cues to group low and high
frequency components. Resolved components in low frequency regions are grouped
by a harmonic sieve, whereas unresolved components in high frequency regions are
grouped by common amplitude modulation. Cooke’s scene analysis strategy has to
perform a second pass in order to combine these two types of organization. In con-
trast, the model described here groups acoustic components by common periodicity,
regardless of whether they are resolved or unresolved. Hence, the auditory scene
can be searched efficiently in a single pass.- -

Auditory objects in the model described here are assigned exclusively to a single
group. In contrast, Cooke’s system allows the same object to belong to many groups.
Whether the latter approach has any advantages is a question for future research.
Certainly, rigid application of the principle of exclusive allocation allows the auditory
scene to be searched very efficiently. In Cooke’s model, multiple allocation of objects
produces many redundant groups, which need to be rationalized by a further stage
of processing.

Cooke evaluates his system thoroughly, but it is difficult to compare his results
with those of other workers. Although his performance metrics are intuitive, they
are rather specific to the synchrony strand representation. Here, a technique for
quantitative evaluation has been described, which can be applied to any model that
has a linear resynthesis path.

Finally, both systems are influenced by the computational approach to vision de-
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scribed by Marr. However, the model proposed here builds a multi-representational
description of the auditory scene, which is closer to Marr’s idea of a “primal sketch”
than Cooke’s synchrony strands. Effectively, Cooke’s model takes a single leap
between peripheral auditory activity and symbolic objects. Here, physiologically-
principled auditory maps act as intermediate representations, which provide a rich
database of information for the subsequent formation of auditory objects.

Mellinger

In a recent thesis, Mellinger [170] describes an auditory model that is tuned specifi-
cally for the segregation of musical sounds. Initially, Mellinger’s system uses Lyon’s
[156] cochlear model to provide a simulation of auditory nerve firing activity. Sub-
sequently, a number of feature maps operate on the auditory nerve representation
to extract information about onsets and frequency variation. Finally, an algorithm
tracks spectral peaks across time, and groups acoustic events that have a common
onset time or common frequency modulation.

The feature maps that Mellinger employs are similar in concept to the auditory maps
used here. Onsets are identified by convolving each auditory filter channel with a
bipolar operator, which effectively smooths and differentiates the filter output. A
technique for identifying offsets is also described, although Mellinger’s segregation
algorithm does not use offset information. The frequency variation of spectral dom-
inances is determined by two methods. Firstly, a map in which each receptive field
is tuned to a particular orientation measures the direction of movement of spectral
peaks. This technique is similar to the frequency transition map described in sec-
tion 4.4.3, although the form of the receptive fields is different. A second method
of extracting frequency variation information attempts to track the movement of
peaks in an autocorrelation map. Sounds that vary in frequency produce vertical
and horizontal motion in the autocorrelation map, corresponding to changes in fre-
quency and pitch period respectively. Mellinger describes an algorithm for following
these changes, although this method of detecting frequency variation is not used in
his segregation strategy.

In the last stage of Mellinger’s model, peaks in the auditory nerve representation are
tracked across time. Spectral components that generate activity in the onset map at
the same time are allocated to the same source. Additionally, spectral components
may be grouped if their pattern of frequency variation is similar.

Mellinger evaluates his model in a rather informal manner, by visually examining
the groups that are found in short pieces of music. The model appears to group
the frequency components of a single instrument reasonably well. However, it per-
forms poorly when two or more instruments are active at the same time. Mellinger
concludes that

“The model presented here fails to work in some musically significant
situations.” (page 183)

161



Future Research Directions

Although the overall structure of Mellinger’s system is similar to the model pre-
sented here, the two approaches differ in many important respects. Firstly, the cues
used in Mellinger’s system are common onset and common frequency modulation.
Here, they are common periodicity, common onset and common offset. Curiously,
Mellinger observes that

“harmonicity...is vitally important in musical sound, since most music
consists of pitched notes.” (page 190)

and yet his system makes no use of harmonic relations. As a result, his model is
unable to group frequency components that are slightly asynchronous and do not
exhibit frequency modulation. This problem occurs with piano music, for example.

Another difference between the two models concerns the use of frequency transition
information. The approach described here employs a frequency transition map to
solve the temporal correspondence problem (see section 4.4.1). In contrast, Mellinger
uses a similar map to provide a cue for grouping. Additionally, note that the use of
common frequency modulation as a grouping cue is unsupported by psychoacoustical
evidence (see section 4.5.2). A related point is that spectral peaks are tracked across
time using a proximity principle in Mellinger’s model, whereas a trajectory principle
is used here.

Similarly, onset information is used differently in the two systems. In Mellinger’s
model, activity in the onset map indicates that a new acoustic event has started.
Here, the start and end times of an auditory object are determined by a birth-death
peak tracking process, and the onset map is used to identify objects that start
synchronously. The latter approach has some advantages. For example, the onsets
of some sounds (such as a bowed string) are quite gradual, and may be difficult
to detect. In Mellinger’s scheme, an undetected onset causes an entire event to be
missed by the tracking procedure.

Finally, the performance of the model described here has been quantified using an
intuitive SNR metric. In contrast, Mellinger does not attempt any quantitative
evaluation. Hence, it is difficult to assess the performance of his system. Addition-
ally, Mellinger’s model incorporates eight different thresholds, which are fine-tuned
for a particular test sound. In the model proposed here, the application of hard
thresholds has been avoided until the final grouping stage, where a single (untuned)
threshold is applied.

7.5 Future Research Directions

Physiological Findings

The model described here already has a strong physiological foundation, and further
physiological data can be incorporated as it becomes available. In particular, it is
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likely that other auditory maps will be identified by physiological studies. For exam-
ple, the onset and offset maps hypothesized in section 4.3 have yet to be detected.
In practice, maps at high levels of the auditory system may be difficult to locate.
Generally, neurons have complex response properties, are tuned to a number of pa-
rameters and are arranged along irregular or convoluted axes (Knudsen et al. [138]).
Additionally, the size of a map can be very small. Maps in the visual cortex occupy
less than one square millimetre of the cortical surface (Hubel and Weisel [121]).
Clearly, physiological investigation of computational maps is a challenging area for
future research.

Equally, physiological data is available which has not been used in the current model.
For instance, stellate cells of the cochlear nucleus are known to enhance particular
rates of amplitude modulation (Kim et al. [132]). Hence, they could provide a more
principled basis for a map of periodicity than Licklider’s autocorrelation scheme.
Modelling studies of stellate cells have recently been described by Banks and Sachs
[17) and Hewitt et al. [114], and several other workers have proposed models of
cochlear nucleus function (Pont and Damper [208, 209], Ainsworth and Meyer [4]).
Also, the physiology of auditory space maps has been described in some detail (King
and Hutchings [135], Knudsen [137]). Models of these maps could be used to group
sounds with a common spatial location.

Finally, a number of workers have recently described nonlinear models of cochlear
filtering (Deng and Kheurallah [76], Ambikairajah and Jones [6]). The use of a
nonlinear filterbank in the model would give more realistic auditory nerve responses
(particularly to speech sounds) and could improve the performance of the cross-
correlation algorithm described in section 4.2.6.

The Representational Correspondence Problem

In the model described here, it is assumed that the auditory system builds multiple
map representations of the acoustic input.” An important question is how perceptual
grouping mechanisms coordinate activity between these maps, so that the represen-
tation of an acoustic component in one map can be related to its representation
in another map. In analogy with the temporal correspondence problem discussed
in section 4.4.1, we might refer to this task as the representational correspondence
problem.

Consideration of the topography of auditory maps suggests a partial solution to this
problem. Specifically, auditory maps are arranged within a common cochleotopic
framework, so that the values of different mapped parameters at the same charac-
teristic frequency can be easily compared. However, it is not clear how the activity
in different maps is correlated over time. In the computer model described here, this
problem does not arise because time has been made explicit. In biological systems,
time is continuously varying and there will be transmission delays between the var-
ious neural representations. A possible solution to this problem is to “time-stamp”
information, a technique which is used in distributed computer systems (Lamport
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Reentry Reentry
Map 1 Map 2 Map 1 - Map 2
Feature Feature Feature
Detector Detector 1 Detector 2
)
Input Input

Figure 7.1: Reentry as a solution to the representational correspondence problem.
On the left, the mapped output of a feature detector is continuously correlated with
successive mapped inputs. On the right, the mapped outputs of two different feature
detectors are continuously correlated.

[143]). However, this approach is unlikely to be used in the nervous system, since
it would incur a massive informational burden and an accurate “biological clock”
would be required.

An elegant solution to the representational correspondence problem has been pro-
posed by Edelman (82, 83]. He suggests that the output of computational maps may
be reentered onto other maps (for example, onto a map of the sensory input). This
scheme allows the reentered signal to be correlated with the mapped features of the
next input in a temporal sequence (see the left panel of figure 7.1). Effectively, this
architecture allows a continuous spatiotemporal representation of an input object.
Additionally, reentry provides a means of coordinating activity in different maps
without the need for an elaborate time-stamping system (right panel of figure 7.1).

In the model described here, reentry could provide a means of combining informa-
tion from different auditory maps. For example, a map could be constructed which
receives reentrant inputs from periodicity and frequency transition maps. A rep-
resentation of this kind could form the basis for identifying harmonically related
components that are moving together in frequency.

Maps, Schemas and Learning

Currently, the model described here only employs unlearned (primitive) grouping
principles. However, it is likely that a great deal of the auditory system’s ability to
segregate concurrent sounds is derived from learned (schema-based) processes.

Interestingly, Edelman [83] suggests that reentrant computational maps could play
an important role in learning. For example, consider the network in the right panel
of figure 7.1. If the two maps exhibit simultaneous activity, it is possible to link
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them by increasing the strengths of their mutual reentrant connections. A linkage
of this type could serve to associate certain simultaneously occurring features of a
stimulus. Additionally, the redundancy of computational maps may act to reduce
unreliability in this kind of distributed system (see section 2.2.3).

The above discussion suggests that auditory maps could play a role in the generation
and application of learned grouping principles. Interestingly, neural networks that
incorporate reentrant connections have already been applied to the problem of au-
tomatic speech recognition, with impressive results (Robinson et al. [223], Robinson
[224]). It is tempting to suggest that reentrant networks could give similar benefits
when applied to the problem of auditory scene analysis.

Other Grouping Principles

Currently, the model only implements a small number of grouping principles. In
particular, the system is unable to correlate nonperiodic amplitude modulation in
different spectral regions. A mechanism of this kind could underlie the phenomenon
of co-modulation masking release (see section 4.5.1). Additionally, the implementa-
tion of common onset and common offset in the model is incompatible with certain
experimental findings (see section 5.3). These points should be addressed during
further development of the system.

Spatial location is undoubtedly an important grouping cue. A number of workers
have described models of binaural auditory processing (Shamma et al. [248], Lyon
[157]), which could be incorporated into the system proposed here. Additionally,
segregation techniques which use information about spatial location have recently
been described by Bodden [21] and Denbigh and Zhao [71).

The most important grouping principles that are missing from the current model are
those for sequential integration, such as spectral shape, timbre, temporal proximity
and fundamental frequency. Note that the map of frequency transition identified_
by Shamma and Chettiar [247] could provide a basis for grouping by spectral shape
(see section 4.4.2).

Processing Speed

In its present form, the model requires approximately two hours of computation
time for every second of acoustic input. Clearly, an enormous increase in processing
speed is required before the system can be employed in practical applications, such
as automatic speech recognizers and hearing prostheses.

The use of computational maps has some advantages with respect to this problem.
Maps perform their computations in parallel, and could potentially run in real time
on a parallel computer architecture. Additionally, the maps execute many simple,
repeated operations, so it would be straightforward to implement them directly in
silicon.
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7.6 Summary and Conclusions

In this chapter, the model has been summarised and its limitations have been dis-
cussed. Additionally, some directions for future work have been suggested.

It is apparent from the review in section 7.4 that models of source segregation have,
thus far, concentrated on unlearned (primitive) processing. Certainly, there is a limit
to the performance that can be achieved by modelling only primitive mechanisms,
and learned (schema-based) process must also be incorporated. Future research
must address this issue if further progress is to be made in this challenging area of
research.

166



Appendix A

Audio Demonstration Cassette

This appendix catalogues the accompanying audio tape. The tape contains five
demonstrations. In the first, the segregation of speech from an interfering noise
is demonstrated by resynthesis. The second demonstration compares the perfor-
mance of the model and a frame-based autocorrelation scheme. The third and
fourth demonstrations illustrate some properties of the resynthesis process that are
discussed in section 6.2.2. Finally, a modified resynthesis scheme is demonstrated.

Demonstration One

You will hear

e Original mixture of speech and noise

e Resynthesized speech obtained after segregation by the model using periodic-
ity, onset and offset grouping cues

for each of the speech and noise combinations v9n0, v8nl, v7n2, v8n3, vin4, v9n5,
vln6, v3n7, v4n8 and vIn9. The characteristics of the speech and noise signals are
summarized in table 6.1 and figure 6.4 respectively. Generally, the best exemplars
occur with narrowband noise intrusions, such as the tone (n0) and siren (n5). The
worst example occurs with the random noise intrusion (n1). However, note that the
signal-to-noise ratio in this case is very low (see figure 6.6), and the speech in the
original mixture is barely intelligible.

167



Audio Demonstration Cassette

Demonstration Two
You will hear

¢ Original mixture of speech and noise

o Resynthesized speech obtained after segregation using a conventional frame-
based autocorrelation scheme

o Resynthesized speech obtained after segregation by the model using periodic-
ity, onset and offset grouping cues

for the mixtures of speech and noise listed above. In most cases, segregation by
the scheme presented here gives greater rejection of the noise intrusion and better
intelligibility of the resynthesized speech. This is particularly noticeable in examples
where the temporal continuity of the noise intrusion has been exploited, such as the
tone (n0) and siren (n5). See section 6.3 for a discussion of these results.

Demonstration Three
You will hear -

¢ Original utterance v0

e Utterance v0 resynthesized with all of the time-frequency regions of the audi-
tory filterbank included

This demonstration confirms that the resynthesis process reproduces the original
signal perfectly when all of the time-frequency regions of the filterbank are included
in the resynthesized waveform. See section 6.1.2 for details.

Demonstration Four

You will hear B
o Resynthesized speech/residual noise obtained after segregation of mixture vOn5
using periodicity, onset and offset grouping cues. The waveform is shown in
the top panel of figure 6.3.

e Sum of the proportion of speech and proportion of noise in the above example.
The waveform is shown in the centre panel of figure 6.3.

e Proportion of noise in the resynthesized speech/residual noise obtained after
segregation of mixture vOn5. The waveform is shown on the bottom right of
figure 6.2. '
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e Proportion of speech in the resynthesized speech/residual noise obtained after
segregation of mixture vOn5. The waveform is shown on the top right of figure
6.2.

The first two examples demonstrate that the resynthesis process is linear (see section
6.2.2). From the second two examples, it is clear that the segregation process has
degraded the siren intrusion to a much greater extent than the speech signal.

Demonstration Five

This demonstration has the same format as demonstration one, except that non-
selected channels of the auditory filterbank have been attenuated to 5% of their
normal amplitude, rather than completely removed. As a result, the naturalness of
the resynthesized speech is slightly improved. See section 6.1.2 for details.
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