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SUMMARY

This thesis reports on an investigation carried
out to study the effect of flaring and turning movements on
the performance of roundabout entries.

A computer simulation program was developed to carry
out the investigation. The model simulates an entry with two
lanes at the approach section and four at the stop line. It
can be modified easily to simulate straight entries by.
changing the input and one DATA statement.

Data were collected at three public road sites at
Sheffield to validate the model. A method of analysing the
data was developed to obtain values of the gap-acceptance
parameters. The values arrived at were used subsequently as
input into the model to allow direct comparison of observed
and simulated values. The comparison concluded that the model
represents adequately the real conditions.

The results produced showed that average delay for
below-capacity operation is reduced by at least 40% when an
entry is flared. Capacity improvement, measured as the
effective number of lanes of a flared approach, is shown to be
influenced by the circulating flow. There is an improvement
of 50% for all studied casesfor circulating flow of 2300 veh/hr
and more.

Turning proportions do not affect capacity of straight
entries but do affect that of flared entries. There is a
difference of 25 - 30% between the extreme values depending on
the proportion of left-turning vehicles. Turniﬁg proportions

affect delays of both straight and flared entries. Minimum
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delay was obtained for combinations which include 30 - 40%

left-turning proportion.
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CHAPTER 1

INTRODUCTION




1.1 Roundabout Design

Intersection control is one of the most important
areas of traffic engineering theory and practice, as the per-
formance of any road system and management scheme ultimately
depends on the successful design of the intersections.

The cheapest mode of control is the priority junction
where one of the intersecting road flows has priority over the
traffic on the other roads. This type is suitable for low flows at
the minor road. If the combination of the flows reaches certain
critical values, the delays incurred by the minor road vehicles
exceed acceptable limits. Then, alternative methods of control
have to be installed. They include traffic signals, grade-
separated layouts and roundabouts.

The first gyratory systéms were introduced in Paris
in 1907 at the Place de l1'Etoile and at the Place de la Nation.
They were introduced in Britain in 1925, the Aldwych Island being
one of the first in London.

The initial mode of operation of roundabouts did not
include a precise definition of the priority of any single
stream of traffic at each entry. The two opposing streams
were supposed to merge. In practice, however, one or the other
of the streams sometimes established priority, forcing the
opposing one to wait for suitable gaps in order to continue along
its intended path. At high flows in more than one entry,
therefore, it became possible for the roundabout to lock. The
only solution to that problem, available at the time, was to
increase the size of the roundabout, allowing more storage
space between entries. The increase of cost associated with
larger size layouts, and the decrease of sites that such layouts

could be applied usefully, forced researchers to look to altern-



ative ways of improving the performance of roundabouts.

The turning point came in November 1966, when priority
to the right was introduced at roundabouts in Britain. This
measure prevented any locking, thus stabilizing the flows through
the junction and reducing the delays. This allowed the develop-
ment of design layouts not conforming to the pre-1966 conventions.
Size was not significant any longer. It was established that
smaller size islands and junctions did give improved perform-
ances. New designs suggested include roundabouts with small
and mini size islands, layouts incorporating more than one
island, and wider entries at the stop line. This design implies
that at the stop line there are more lanes for the queueing
traffic than further back, on the approach road. However, the
above new designs have not replaced completely the conventional
large central island roundabouts, which still are used widely,
especially at grade-separated intersections. More recently,
traffic signals have been introduced in some sites to prevent
very long queues and delays suffered in one, or more entries
with very heavy flows when the circulating flow is also very

heavy.

1.2 Roundabout Capacity Theory

Before the introduction of the priority to the right
rule at the roundabouts, their capacity was predicted using
formulae based on the proportion of the traffic weaving within
each section. Since 1966, however, and the establishment of a
clearly defined priority, weaving does not take place anymore.
Up to 1975 the official design formula for conventional round-

abouts was based on the weaving proportion; subsequently, however,



a modified formula was introduced for these layouts which did
not include any weaving parameters. Recently, the T.R.R.L. has
published a unified formula to apply both at conventional
roundabouts and at new layouts with small island and flared
entries.

The methods and formula proposed by various
researchers to predict capacities can be divided broadly into
two categories, (1) using gap-acceptance theories or (2)
relating the capacity to the geometry of the site by empirical
observations. (See Chapters 2 and 4 for a detailed presentation

of the various suggested methods.)

1.3 Roundabout Delay Theory

Until recently the delay suffered by the entering
flows has been estimated either by stochastic or deterministic
methods. The former predict adequately delays below capacity,
but their predictions tend to infinity as the entering flow
approaches capacityy the latter predict zero delay for entering
flow below capacity, being better for situations where the capacity
is exceeded considerably. The Transport and Road Research
Laboratory has proposed time dependent methods of estimating
delay which give more realistic results in the region around
capacity, being the.region of most interest.from the point of

view of delays (See Chapter 2).

1.4 The Objectives of this Study

During previous work by the present author (Natsinas,
1979), a computer simulation model was developed. That model
simulated a single entry to a roundabout with flared lanes,

whose approach had two lanes flaring to four at the stop line.



No restrictions Qere introduced for the lanes used by the
entering vehicles that might have been determined by turning
movements. The model predicted capacities for the entry as a
whole for different combinations of circulating and entering
flows and gap acceptance values.

The current project aimed initially to validate the
existing simulation model by comparing observed values to the
predicted ones. The collection of the data is reported in
Chapter 3. For the comparison to be wvalid, similar conditions
as the ones applying to the real situation have to be created
by the simulation. The simulation program uses constant values
for gap acceptance parameters. During the analysis of the
data it became obvious that the abstraction of such parameters
was not as straightfoward as envisaged. A lengthy comparison
of the available methods became necessary, as well as the
development of a new method. Chapter 4 describes the work
relating to this aspect.

The computer model was enhanced to include the
simulation of turning movements by clearly defining the
allowable paths through the entry for each vehicle. The
estimation of delay also was improved. Hence, the effect of
turning movements on delay and capacity could be studied. The
model is described in Chapter 5. Chapter 6 includes the
results of the validation and of the improved simulation,
which include an estimation of the effective number of lanes
of the flared entry. The final conclusions of the study are

in Chapter 7.



CHAPTER 2

LITERATURE REVIEW: CAPACITY AND DELAY AT ROUNDABOUTS
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Roundabouts as a method of controlling junctions have
been employed since the beginning of the century. The first
gyratory systems were introduced in Paris in 1907 at the Place
de 1'Etoile and at the Place de la Nation. 1In Britain they
were introduced in 1925 in London, the Aldwych Island being one
of the first ( RRL, 1965). Before the Second World War several
roundabouts were used at by-pass roads.

Roundabouts in Britain initially operated without a
clearly defined priority ﬁor any of the two streams of traffic
at each entry. Entering traffic had to merge with the circ-
ulating. When the entering flow gained priority over the
circulating then it could become possible for the whole junction
to block. In order to improve this aspect of the operation of
roundabouts the offside priority rule was introduced in 1966.
This changed radically the operation of roundabouts and gave
rise to completely different approaches to their design.

This Chapter concentrates on methods of predicting the
capacity and delay at roundabouts since the introduction of the
priority rule. Also included are sectiors on the new layouts

of roundabouts and official design procedures.

2.2 Roundabout Operation Before the Priority Rule

Under no clearly defined priority, the operation of
roundabouts was based on the weaving of the entry and the
circulating traffic streams between successive entry and exit
points. Since the 1930's several attempts had been made to
estimate the capacity of the weaving sections of roundabouts.
However, the most thorough investigation was performed in

1955 and 1956 at the Road Research Laboratory by Wardrop



(Wardrop, 1957). The investigation tested a number of
different weaving sections on an artificial test track at
Northolt Airport. The study resulted in the following formula
for the capacity of each weaving section:

108w(l + e/w) (1 - p/3)
1 +w/Q

pcu/hr (eq. 2.1)

where Q: the capacity of the weaving section (pcu/hr)

w: the weaving width (£ft)

e: the average entry width (ft)

p: the proportion of traffic weaving

2: the weaving length (ft)

Figure 2.1 shows the above dimensions.

Subsequent observations at public road sites
indicated good agreement in some cases, while in others the
calculated capacity overestimated the observed. For this
reason the value of the practical capacity, Qp’ was given as

80% of the calculated value

Qp .= 0.80 Q (pcu/hr) (eg. 2.2)

This relationship was adopted as the official design formula.
Under light or moderate traffic flows the roundabouts
functioned satisfactorily, but when the demand approached the
capacity locking occurred frequently. This. became more
pronounced as the late 1950's and early 1960's saw an increase
in car ownership and use. Under heavy flows locking was more
likely to occur at smaller roundabouts because of the small
amount of storage space within the junction. One way, therefore
of attempting to avoid locking was to design larger roundabouts.

This, however, reduced the possibilities of using roundabouts,



especially in urban areas.

At the same time a series of experiments with off-
side priority had been conducted. Several local authorities
had introduced offside priority since 1956. 1In 1963, Blackmore
drawing from the existing experience up to that time concluded
that at roundabouts where the priority-to-the-right rule had
been introduced there was an increase in the capacity and
reductions in delay and accidents. However, he observed that
if the offside rule was followed strictly the capacity would

decrease.

2.3 Roundabout Operation Since the Introduction of

the Offside Priority Rule

In November 1966 the priority-to-the-right rule was
introduced for all roundabouts throughout Britain. Thus, the
opposing traffic streams do not weave any more, but, instead,
the whole of the roundabout resembles a series of linked
T-junctions. The circulatory and entering flows become
analogous to the major and minor road flows.

The Road Research Laboratory (RRL, 1969) conducted a
series of controlled experiments studying the performance
of roundabouts after the new rule was introduced. They reported
that the improvement_of performance associatgd with the new
mode of operation was not due to an increase in capacity at
high demand. Greater capacity at high demand was observed at
roundabouts operating under the previous conditions. These
high flows, however, were very unstable at saturation and could
not be relied as a measure of capacity. The major source of
improvement originated from the complete removal of the

Possibilities of locking.



They 1looked also at ways of improving further the
capacity. Up to then the available ways of improving the
capacity of a roundabout was either by increasing its size or
by converting it to a multi-level intersection. As both these
solutions were very expensive, alternative methods were
sought, such that the increase in capacity could be achieved
with less expense. One of their observations was that the
offside rule improved the performance, and removed locking,
even from roundabouts with small central islands. They con-
cluded that the major factor controlling capacity was the
shape of the junction.

Blackmore (1970) observed that roundabout capacity
was improved if the diameter of the central island Qas
reduced to one third of the diameter of the circle inscribed
within the outer kerb line of the roundabout. The capacity
was observed to increase more if the entering traffic was
deflected to the nearside which would prevent congestion and
allow the central island diameter to be reduced further.

The Road Research Laboratory followed the test track
experiments by another series conducted on public roads to
confirm the above findings.

The first test was at Peterborough (Jervis, 1970)
in 1968 where signalé controlling a junction were replaced by
a series of small réundabouts. The observa£ions showed an
increase in capacity of up to 23% as the central island
diameter decreased and an overall reduction in delay of up to
50%, though delay at peak hour was not reduced as much. In

the early 1970's further tests were carried out at Colchester,
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Swindon, Sheffiéld, Halesowen, Hemel Hempstead and Slough.

The findings of these tests are summarized by Blackmore and

Marlow (1975). At these experiments several designs were

tested including mini, multiple and ring layouts. They all

showed improvement in capacity and reduction of delay,

ranging from 7% to 35%. Blackmore and Marlow compared the

small island layouts to the ring junctions. They concluded

that the single island ones are more conventional, simpler

in design and installation, easier to be understood by drivers,

that they give more capacity for 5-arm sites, greater assurance

against locking, higher speeds and lower journey times; ring

junctions on the other hand are unconventional and, therefore,

difficult to understand, but more safe once familiar, they

control speeds at lower levels, aﬁd are better for pedestrians.
The new layouts have a better safety record where

the previous method of control was traffic signals or major/

minor priority junctions. However, accidents increase where

they replace roundabouts with larger central islands.. This

was reported by Blackmore and Marlow (1975) and Green (1977).
Figures 2.2 to 2.8 show the layouts of the new

designs.

2.4 The Need for New Design Formulae

The priority-to-the-right rule changed radically the
way roundabouts operate. As mentioned before, weaving does
not occur any more, the junction resembling a series of linked
T-junctions. The new types of roundabouts introduced after
1966 had dimensions outside the limits of Wardrop's formula.
However, that formula remained as the official design formula

for conventional roundabouts until 1975, although the newer
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small-island layouts were designed in accordance with eq. 2.13.
In 1973, results of two research projects were
published which showed that Wardrop's formula was no longer
satisfactory for the design of roundabouts. Murgatroyd (1973)
showed that the predictions of that formula (egq. 2.1) were

overestimating capacity or underestimating it if the 80%

practical capacity (eq. 2.2) was used. As the proportion of

traffic weaving was no longer relevant he suggested that p
should have a value of 1.0 in the formula, i.e. all the traffic
should be assumed to weave.

Ashworth and Fiéld (1973) examined the assumed linear
relationship of capacity and the weaving proportion in Wardrop's
formula with data from two sites in Sheffield. Thefe was no
correlation between the two Variables, with a slope not
significantly different from zero at either site. The observed
capacities were considerably different from both the full and
80% practical capacity values.

Ashworth and Laurence (1974) pursued further the
examination of the application of Wardrop's formula. Obser-
vations from 21 weaving sections were used. The conclusion
of the study were that: (1) The capacity of roundabouts is not
affected by the proportion of weaving traffic. (2) Observed
capacities were approximately 70% of the maximum theoretical
capacity as a whole; However, there was coﬁsiderable scatter
for individual entries indicating that Wardrop's formula was
no longer reliable. (3) If the weaving proportion was éssumed
to equal 1.0, the practical capacity predictions were approx-
imately correct overall, but they still produced considerable

scatter for individual entries.
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Since then a number of alternative formulaehave
been produced to predict the capacity. They are described in

the subsequent sections.

2.5 Gap Acceptance Models

Before 1966, Tanner (1962) had developed a model of
operation of T-junctions based on the gap acceptance behaviour
of drivers. Once the operation of roundabouts became similar
to that of T-junctions, his model and the gap acceptance para-
metexs formed the basis of a large portion of the research to
develop new formulae relating to roundabout performance.

Tanner (1962, 1967) derived the following capacity

formula for priority junctions:

q, (1 - B;q,)

. 2.
9 a; (=8, “B,4; (eq. 2.3)
e (1 - e )
with the following assumptions
(1) The major stream flow consists of a single traffic

stream equal to qﬁveh/s); there is a minimum headway, Bl(sec),
between successive vehicles in the major stream.

(2) The entering vehicles arrive at the intersection at

a rate greater than qz(veh/s), where d, is the entry capacity.
(3) Bz(sec) is the minimum headway of successive entering
vehicles.

(4) The critical gap, a(sec) is assumed constapt for all
drivers.

The above formula formed the basis of a significant poftion

of the subsequent research on the capacity of roundabouts.

Wohl and Martin (1967) considered roundabouts
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operating under no clearly defined priority. They assumed that
weaving did occur, but they introduced the concept of the

critical gap in their formula:

_ R+l T ‘
CmaX = R % loge(R+l) (eg. 2.4)

where Cmax: the capacity of a weaving section, (hwveh"ﬂés)
R: the weaving ratio = ql/q2 where q, and q, are
the weaving flows through the section,
T: the duration of flow in seconds
t: the critical gap in seconds.

The above formula can be aerived from Tanner's (Eq. 2.3).
In 1971, Bennett suggested that Tanner's formula

could be used for predicting capacities of roundabout entries

as follows:

qg (1-8q,.) .
qL - qS(OL"B) _qu (eq. 2.5)
e (1 - e )
where qr,° the entry flow (veh/s),

dg: the circulating flow (veh/s),

a: the minimum gap accepted in the circulating flow (sec)

B: the minimum headway in the circulating flow (sec),

Y: the move-up time in the entry flow (sec)

He observed that another factor affecting the capacity
is the number of enﬁry lanes. He used 90% 6f q;, as the practical
capacity.

Ashworth and Field (1973) derived an alternative
model for capacity prediction. They based it on Wohl and
Martin's approach, with the difference that parameter R was
defined as the ratio of circulating (Ql) to entering (Q,)

flows. Then by plotting loge(2R+l) vs Q they obtained the
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following equation

2Q1

(eg. 2.6)
Ql/llOO_l

Q,
e

valid for 2-lane entries to roundabouts of the type studied.

(Q1 and Q2 are both in veh/hr).

In 1974, Horman and Turnbull proposed a simplification

of Tanner's formula. They assumed the minimum circulating

headway Bl, to be equal to zero, equivalent to a two-lane

circulating flow. This reduced Tanner's formula to
i B (eq. 2.7)
q = — eq. M
(1 - e )

For a 2-lane entry the capacity Q2 = 2q2(veh/s).
They found the predictions successful if suitable o and 32 values
were used. They also proposed that 80% of the above value was
a practical though conservative estimate.

Armitage and McDohald (1974) modified Tanner's
formula to take into account the effect of flared entries.

They assumed that:

(1) when vehicles are entering, they move forward in the

ranks in which they are waiting,

(2) when they are gqueuing all available spaces would be
filled by the vehicles.
The formula they derived is

Q, (1 - 8Q))
Q, (a=B)
e

.,Q ( ) ( )
- e - e . o o

9,
(1 - e
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where a: the critical gap (sec),

B: the minimum circulating headway (sec),
Y: the minimum entering headway (sec).

N: the number of lanes.at the stop lane,

Cl: the number of carlengths back to the first loss

of lane,

Cn: the number of carlengths back to the nth loss

of lane,

Q1: the circulating flow (veh/s),

Q,: the entry capacity (veh/s) .

This formula waé found to provide accurate estimates
of capacity at 15 roundabouts studied.

Following the earlier work leading to eq. 2.6,
Ashworth and Laurence (1975, 1977,.1978) examined a series of
models to predict capacity. Based on the analysis of results

from 42 roundabout sections in different parts of Great Britain,

they proposed the following equation as the most satisfactory:

N Q1
e -1
where Ql: the circulating flow (veh/hr),

QZ: the entry capacity (veh/hr),
N: the number of standard width entry lanes
(standard entry width = 3.65m),

A 3600/t,

t=a=621
a: the critical gap (sec),
32: the move-up time (sec).

For the purposes of developing the above model o and
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B, were assumed to be equal. A value of A = 1120 gave the
best-fit to the observed data, i.e. t = 3.21 sec.

They also found that the linear equation
Q2 = N(868 - 0.2Ql) (eg. 2.10)

was satisfactory for the range of data examined but appeared
likely to be inaccurate for low circulating flows.

Armitage and McDonald (1977,1978) also extended their
previous work by developing an approach using the concepts of
lost time and saturation flow. They assumed that each
circulating vehicle is associated with a certain length of lost.
time, L seconds, during which it is not possible for. vehicles
to enter. At all other times vehicles enter at the saturation
flow rate, qs(veh/sec).

The capacity formula they propose is
'ql(L—Bl)

9, = g (1 - 8,q;) e (eq. 2.11)
where q,: the circulating flow (veh/s)

Bl: the minimum headway for circulating vehicles that

have been held up (sec)
The parameters L and q, were related to geometric characteristics
of the roundabouts. For a further discussion of this aspect
see section 4.3 in Chapter 4.

Roundabouts are not widely used in continental
Europe. However some work has been done on gap-acceptance
models to predict capacities at priority junctions. A model
developed in Germany by Harders is described in the OECD (1975)

publication "Capacity of at-grade junctions”. The formula is
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dpax - o (eg. 2.12)

where Dax’ the maximum minor flow (veh/hr)

Q: the major priority flow (veh/hr)
ot
2

a:'-———

3600
=9 (-
3600 (£17t2)
tlz the minimum gap acceptable by drivers (sec)
t2: the minimum time interval required for one vehicle

to follow another from the minor stream-termed the

"following-gap" . (sec).

2.6 Empirical Capacity Models

Most of the work under this heading tries toArelate
the capacity of roundabouts to geometric characteristics of
the junctions. The majority of this work has been developed at
the Transport and Road Research Laboratory.

The first attempt to describe the performance of
the new layouts was carried out at the TRRL and reported by
Blackmore (1970). The formula suggested deals with the whole

of the junction and gives a single value of capacity.
Q = K() w+/a) (eq.2.13)

where Q: the capacity (pcu/hr)
K: an efficiency coefficient
Jw: the sum of the basic road widths in metres used
by traffic in both directions to and from the junction
a: the area of widening, i.e. the area within the
intersection including islands, if any, lying outside

the area of the basic crossroads (m2) (see Fig. 2.9).
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Blackmére reported that the highest capacities obtained
by different junction types were approximately egqual for the
same values of parameter a.

In 1969 Grant investigated some roundabouts in
Aberdeen with dimensions outside the limits of the Wardrop
equation. He treated each approach separately as a priority
junction and developed a graphical relationship between the
capacity of each entry and the dimensions of the entry. He
observed that smaller gaps than usual were accepted at the small
roundabouts, resulting invhigh capacities.

Murgatroyd (1973), while examining the wvalidity of
Wardrop's formula, proposed an alternative one. It is similar

to Wardrop's with p = 1.00 and with a subtractive constant:

0 = 90wl(1++w§/£‘7) - 1100 (pCU./hr) (eq. 2.14)

The above symbols have the same significance as for
Wardrop's equation (eqg. 2.1), and again all dimensions are in

feet.

In 1974 Maycock proposed a model from which the
capacity is determined by the conflict of entering traffic with
traffic already using the circulation. He proposed a linear

model approximating Tanner's relationship:
q = qm(l - c/cm) (egq. 2.15)

where qg: the maximum.entry flow (pcu/hr),
c: the corresponding circulating flow,
9, and Cnt constants specific to the roundabout.
qn would be equal to the entering flow when there is

no circulating flow, while<%nisthe circulating flow at which no

entering flow would be possible.
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The research carried out at TRRL since then has been
concentrated on estimating predictive equations for the constants

in equation 2.15. These constants were related to geometric

parameters of each roundabout. 1Initially two sets of equations

were published, one for conventional the other for offside

priority roundabouts. Eventually one unified formula was

de#eloped. Here the formulae relating to conventional round-
abouts will be described, as well as the unified set, kecause

they are the basis of the design methods of TE Design Note
No. 1, (see section 2.7).

The equations for conventional roundabouts were

presented by Philbrick (1977). The linear model was presented

in the following form

QE = F - fc Q¢ . (egq. 2.16)
where Qp: the entry flow (pcu/hr),

Qc: the circulating flow (pcu/hr),

fc and F constants for each site.

The relationship of fC and F to traffic and geometric

parameters was examined. It was concluded that no traffic

parameter significantly explained the results, while from the

geometric ones the following were significant:

e, : the entry width (m) which was the most significant

factor,

r,: the radius of entry (m),

w: the section width (m).

The two best relationships for the parameters were

0.0449 (2e1 - w) + 0.282 (eq.2.17)

233 e; (1.5 - 1//r‘1) - 255 (eq.2.18)

£
c

F
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Philbrick concluded that the new formulae were much
more successful than Wardrop's formula at predicting the within-
sections variation of QE and Qc' but that the equations chosen
were unlikely to represent the final solution for design
purposes.

The unified formulae were presented by Kimber (1980).

The general form is:

Q = k(F - f Q) when £ Q < F
€ cc ce (eg.2.19)
= 0 when £ Q9 > F
cC
where k =1 - 0.00347(¢ -30) - 0.978((2) - 0.05),

F= 303 Xos

fc = 0.210 tD(l + 0.2 x2),

tD =1+ 0.5/(1 + exp(D - 60) A0) ),
X, =V + (e-v) /(1+29),

S = (e-v) /2 (= 1.6(e—v)/2')

where the geometric parameters used.are (with their respective
ranges): |
e: the entry width, 3.6 - 16.5 (m),
v: the approach road half-width, 1.9 - 12.5 (m)
2: the average effective length over which the flare
is developed, 1 - « (m),
L : approximately z' = 1.6,
S: the shafpness of flare, S = (e—&)/g, 0 - 2.9,
D: the inscribed circle diameter, 13.5 - 171.6 (m),
¢: the angle of entry, 0 - 77 (degrees),
r: the entry radius, 3.4 - « (m)
The primary elements of design are e and % (or 2').-A method

has been described allowing the equations to be corrected to
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take account of local operating conditions at overloaded

existing sites. Also, the following form of the equation has

been proposed:

( e, - v el -y 1
AQe = lif:ffs__ li_xfislj (303 - 0.042 tD Qc) (eg.2.2¢

This equation allows the prediction of the effect on capacity of

a change in the geometric parameters from Sl’ e, and ll to

1
SZ’ e, and zz. S1 and 82 are the initial and final values of

the sharpness of flare.

In 1982, Semmens extended the unified formula to

cover grade-separated roundabouts. The modified formula

suggested was

Q, = L.11F- £ 0 . (eq.2.21)

where all parameters have the same significance as for the

unified formula.

277 Official Design Formulae in Britain

Wardrop's formula was the official design formula for
conventional layouts until 1975. The formula, as given in

"Layout of Roads in Rural Areas" Ministry of Transport, 1968),

is the following:

_282w(1 + em) (1 -p/3)
Qp = T+ w/2 (eq.2.22)

which is the practical capacity, Qp = 80% Qm, where Qm is the
maximum theoretical capacity; e, w and £ are in metres. The
above value of Qp was corrected depending on various layout
characteristics, eg gradient and angles of entry or exit.

The above formula was not amended until 1975. After
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the priority rule was introduced various researchers, mentioned
in section 2.4, demonstrated that Wardrop's formula was no
longer applicable. This led to the publication of an interim
design formula for conventional roundabouts until a new compre-
hensive one was developed. |

Technical Memorandum H2 /75, (Department of the
Environment, 1975), included both this interim formula and one
introduced previously for use with the new layouts with small
islands and flared entries.

H2 /75 defined the following types of roundabopts:
(a) Conventional: a'roundabout having an one-way carriage-
way, which may be composed of weaving sections, around a
circular or asymmetrical central island and normally‘without
flared entries. | -
(b) Small: a roundabout having an one-way circulatory
carriageway around a central island 4 metres or more in diameter,
and with flared approaches.
(c) Mini: a roundabout having an one-way circulatory
carriageway around a flush or slightly raised circular marking
less than 4 metres in diameter, with or without flared
entries.
(d) Double: an individual junction with two small or
mini roundabouts either contiguous or connected by a short link
road.
(e) Multiple: an individual junction with three or more
small or mini roundabouts either contiguous or interconnected
by short link roads.
(£) Ring Junctions: a junction having a two-way circu-
latory carriageway around a central island linking mini-

roundabouts at the mouth of each entry to the junction.
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These types are illustrated in Iigs. 2.2 to 2.8.

For small, mini and double roundabouts Blackmore's

formula (eq. 2.13) was suggested.
Q, = K(Jw + va) veh /hr

where K has a value between 40 and 70, depending on the type of

roundabout and the number of approach arms. 85% Qp is used for

design purposes.

For conventional roundabouts, the practical capacity

of each "weaving section" was proposed to be estimated by the

following formula:

~

0, = 160Y(inz/elm) (veh /hr) - (eg. 2.23)

which is the same as eqg.2.22 with the (1 - p/3) term removed and
the constant being 160 rather than 282. Again, a value of 85%

Qp is suggested.
T.E. Design Note No. 1, (Department of Transport,

1978) , considers Philbrick's formula (eq. 2.16, 2.17, 2.18) for

conventional roundabouts. Because of the interim nature of

that formula, H2 /75 was not modified. However, designers were

advised to examine the effect of applying Philbrick's formula
to the design of conventional roundabouts, particularly for
those situations in which its use would overcome difficulties

with land-take, earthworks or the environment. It was then

proposed that in order to adopt a layout based on the new

formula specific approval should be obtained, being a departure

from standards.
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2.8 The Estimation of Delay

The development of a unified formula for roundabout
capacity at TRRL, (see section 2.7), was part of a wider
examination of traffic behaviour at road junctions. This
included an investigation of the methods available for pre-
dicting delays at priority junction. They concluded that the
existing methods were not satisfactory, and therefore, they
produced a new set of formulae relating to delay. This section
describes all these methods briefly.

The methods previous to the ones suggested by TRRL can

be divided into two groupé. The first is based on steady state
queueing theory, the second on deterministic queueing theory.
Kimber and Hollis (1978, 1979) and Catling (1977) deécribe the
disadvantages of both groups. Models belonging to the first’
group (e.g. Tanner, 1962) are suitable for situations where the
demand flow and the capacity of entries are constant over the
period of interest. However, at cases of varying flow and when
the capacity is exceeded by the demand flow steady state
theories predict infinite queues and é&clays. This is contra-
dicted by the actual behaviour of traffic flows, which when
demand is close to capacity, or even exceeds it for short
periods, the development of the queue and the increase in delay
lags behind the predictions of steady state theory. Models
based on deterministic queueing theory (e.g. 4ay and Keller,
1967) assume that queues grow at a rate determined by the excess
of demand over capacity and decay when the demand is less than
the capacity at a rate equal to the difference. This ignores
the statistical nature of traffic arrivals and departures and

seriously underestimates the delay unless the capacity is
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exceeded by a considerable margin. In fact zero delays are
predicted until demand reaches capacity, contrary to experience.

Therefore, both sets of models perform worse at the
region when capacity and demand are equal or of similar value
which, Kimber and Hollis observe, in practical terms is the
most important region of operation. They proceeded to develop
an alternative model based on time-dependent demand-capacity
interaction.

They define u as the capacity.and q the demand flow.
They assume that these values vary in time, and that they
represent average values ét each fraction of the period of
interest. Each section of this period revresents a vpossible
set of arrivals to the queue and departures from it; The
proportion of occurrences of a queue of n vehicles at time t is
pn(t). Both the average‘éueue length and average vehicular
delay can be derived as functions of time from pn(t).

Hollis, Semmens and Denniss (1980) report on a
computer program to model capacities, queues and delays at
roundabouts which is based on an approximate method of the
above principle. This employs a co-ordinate transformation
technique to smooth the steady state stochastic relationship
for queue length or vehicle delay into the over-capacity
deterministic results obtained by integrating the excess of
demand over capacity. An example of a graph is given in Fig. 2.10.

The queue lengths and delays are calculated according
to the following rules:

Over a short time interval, t, with capacity u and
demand g assumed constant, traffic intensity is defined as
P = gq/M. Several cases exist depending on p, the queue at the

start of the time interval Lo' and the equilibrium queue length
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L =p/(1 - p).
If En is a queueing function defined for x (a time

variable) by:
E(x) = 0.5 {((ux(1-p) +,1)2 + . 4puX)% - (ux(1-p) + 1)} (eqg.2.24

then the average queue length, L, after a time, t, is given by
the following expressions:
(1) for p 2 1: L(t) = In(t+to) where to = LO(L6+1)/
U (p(Lo+ 1) - LO)
(ii) for p < 1:
(a) 0 < Lo < 2: L(t) = En(t+t07
where to=LO(Ld+1)/h(p(Ld+1)—Lo)
(b) Lo = Q: L(t).=
() 2 < Lo < 22: L(t) = 22 - In(t+to)
where
to=(22-Lo)(22—Ld+l)/h(p(Zl—Ld+1)-(2£-Lo)j
(a) Lo > 23 LO + (p - LO/KLO + 1))ut 0 <t < tc
t:L(t)=

22 - Ih(t-tc) t > tc

where t, = (22-Lo)/h(p - Lo/(LO'F.l)

These equations reprgsent the growth or decay in
queue length within the time interval t. The total average
delay during this time is obtained by integrating the épprop—
riate queue length equation over the time interval.

Thus, given the demand flow, g, and capacity, u for
a short time interval and the queue length at the beginning of
the interval, the equations above allow the queue length at
the end of the interval to be calculated. Therefore if any

period is divided into a sequence of short time intervals the
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queues at the end and beginning of each period can be estimated.
The program allows variation of both g and u at every interval.
The program can be used to assess the efficiency both
of existing roundabout layouts and of new designs. They
announce that there are plans to enhance the model to include
geometric delays and to allow optimisation of geometric

dimensions.
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TYPICAL CONVENTIONAL ROUNDABOUT LAYOUTS.

A. At Grade Junction,

B. Grade Separated Junction.
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R 40
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.iDimensions in Metres.
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EXAMPLES OF SMALL ROUNDABOUT
LAYOUTS AT NEW 3 WAY JUNCTIONS.

A. For total design flow 3200 veh/hr.
Approach roads all 7-3m wide.

B. For total design flow 5000 wveh/hr.
Approach roads dual 7-3m and single 7-3m wide.

— —— — —

Scale 1:1000 Figure 2.3



EXAMPLES OF SMALL ROUNDABOUT LAYOUTS
AT NEW 4 WAY JUNCTIONS -

A. For total design flow 2750 veh/hr with 20% HGV
Approach roads single 10m and 7:3m wide

\
\
¥
I

B. For total design flow 3500 th hr
' Approach roads dual 7-3m and single 7-3m wide

Scalea 121000
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EXAMPLE OF GRADE SEPARATED
JUNCTION LAYOUT INCORPORATING .
SMALL ROUNDABOUTS.

zigure 2.5
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EXAMPLES OF MINI-ROUNDABOUT LAYOUTS
AT EXISTING JUNCTIONS.

A. 3 way 'T' Junction.

Sign 611-1

10}

()

(=
-7
11
1
/]

gyratory circulation (if space
permits).

p
?
Kerb may be realigned to promote '.\

B. 4 way Junction.

H / Hatched deflection line.

Scale 1:500 Figure .7
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EXAMPLES CF DOUBLE ROUNDABOUT LAYOUTS
AT EXISTING JUNCTIONS.
See paragraphs 71 & 72.

A. 4 way Junction with large right turning flows.

B. 4 way Scissor Junction.

Figure 2.8

Scale 1:1000
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CHAPTER 3

COLLECTION OF DATA
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J.1 Introduction

The development of a simulation model does not
require the collection of large number of data. 1In the present
study, data were required on two occasions. The first one was
the validation of model SIMC developed previously, (see Chapter
5); the second was to provide an indication of the way entering
vehicles position themselves at the available lanes, taking
into account their turning movement.

Both sets of data observations were not extensive and
were conducted over a brief period of time, (generally 30

minutes) .

3.2 The Collection of Gap-Acceptance Data

Data were required to vaiidate the simulation program
developed previously, which formed the basis of the present
work. Program SIMC uses constant values for the critical gap
and the move-up time to produce an estimate of the capacity
associated with each circulating flow value. The observations,
at this stage, were required to provide values for the circul-
ating and entering flows, and for the gap-acceptance parameters.
Therefore,‘the sites had to fulfil certain criteria: at least
one of the entries had to operate at capacity for a congiderable
length of time; a suitable vantage point had to be available for

positioning the video camera andrecorder used for data recording;
no pedestrian crossings or other forms of traffic control:
should be affecting the approach to the entry; and the entry
should have more than one lane.

Preliminary investigations showed that very few

sites, fulfilling all the above criteria, were available in
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Sheffield. It was observed that, in general, each lane of the
entries behaved in a different way. This was particularly
true for the nearside lane at the entry position. It was
decided to treat each lane of the entries separately, rather
than assume each entry as a unifﬁrm entity. The peculiarities
of each site are discussed below, in greater detail.

Three sites near the centre of Sheffield were con-

sidered acceptable:

(1) Moore Street Roundabout,
(2) Castle Sguare Roundabout, and
(3) Park Square Roundabout.

Moore Street Roundabout (Figure 3.1) is at the junction
of the Inner Ring Road, Moore Street and Ecclesall Road.

During the morning peak pefiod heavy delays and long queues occur
at Ecclesall Road entry. This entry carries traffic approaching
the city centre, while large volume of traffic uses the Inner
Ring Road, resulting in the heavy delays and long queues along
Ecclesall Road. The entry has four lanes at the stop line;

the nearside one is used by a large number of buses, while a

bus stop is positioned near the stop line. Thus, the nearside
lane is not continuously saturated. Therefore, it was decided
not to'take into account the data from that lane. Similarly
lane 2 was not saturated for long enough periods for the data
related to it to be suitable for capacity calculations;

Castle Square Roundabout (Fig. 3.2) is very near the
city centre, it forms the junction of Arundel Gate, High Street,
Angel Street and Commercial Street. During the morning peak
period heavy flows are observed along Arundel Gate and from
Commercial Street towards Angel Street. The flow entering

from Commercial Street forms the majority of the circulating
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flow at the Arundel Gate entry. There are long queues and

delays at Arundel Gate as a result of this. It is of interest

to note that High Street is used mainly by buses as it is a

no-through road for all other classes of vehicles. Two immed-

iate results are that (1) only a small proportion of the

entering flow at Arundel Gate turns left; and (2) the circul-

ating flow has a high percentage of buses. This arrangement of

allows vehicles from the nearside lane of Arundel Gate to

flows

merge with the circulating flow, rather than accept offered
gaps. Data from the other two lanes only were taken into
account.

Park Square Roundabout (Fig. 3.3) is a large size

roundabout, having six entries and seven exits. It is near the
city centre and provides the entry to the main link road with

the M1 Motorway. The entry from where data was collected is

the Corn Exchange which is the immediately previous entry to the
Parkway (the M1 link road). During the evening peak period
heavy flows from Sheaf Street and Commercial Street, directed

towards the Parkway, cause long queues and delays to traffic

entering from Corn Exchange. The entry has four lanes at the

stop. line, however the flow from the nearside one is not
serioﬁsly impeded by the circulating flow, allowing entering
vehicle to filter into the junction and exit at the Parkway.

It should be noted that traffic entering from the Parkway
during the morning peak period was subjeéted to extremely

long delays; to alleviate this condition traffic signals have
been installed to the junction since the observations collected
for this project, changing radically the operation of this

roundabout.

At all sites tke entry under study was recorded
SHEFFIELD ¢
UNIVERSITY
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using a SONY AV3420CE portable monochrome video tape recorder,
belonging to the Civil and Structural Engineering Department of
the Wiversity of Sheffield. The duration of each observation
was thirty minutes as all of the entries were not saturated for
longer periods. The resulting tapewas subsequently transferred
in the laboratory onto another tapeon which a time base was
superimposed using a National NV.8030 recorder and an Aston

. WG IT video number generator to generate the time base. This
tape subsequently was analysed by being played back on a monitor
using the slow and stop motion facilities of the National
recorder. The time base Qas accurate to an 1/50th of a second.
Therefore the available gaps of the circulating flow as offered
to the entering traffic could be easily abstracted.‘ The headway
measurements were concerned with the time interval between
successive vehicles moving along the circulating carriageway,
though not necessarily in the same traffic lane. These head-
ways are referred to also as 'gapsf; however this does not imply
that the quantity measured was the inter-vehicle time gap.

The abstraction of the headway data although simple was long

and tedious, however the most important advantage of using

video tapes, over other automated methods of recording, is

that a permanent record of the whole operation of the junction
becomes available. Thus if any supplementary details are
required they can be abstracted using the same videotape.

The quantities abstracted included the size of all the
accepted gaps of the circulating flow, the number of vehicles
entering each gap from each lane of the entry, the total
circulating flow and the composition of the flows. Table 3.1

includes the results of the analysis of the traffic volumes for
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all three sites. It should be noted that two-wheeled vehiclés,
classified under motorcycles, were included only for the
circulatory flow. It was assumed that they did not have any
effect on the entering flow as, usually, they did not follow

the lane markings and entered additionally to other vehicles.

3.3 Turning Movements and Lane Occupancy

The simulation program developed during this study
assigns each entering vehicle to specific positions at the
entry, according to its turning movement (see Chapter 5). It
was decided to carry out a limited series of observations to
obtain an indication of how vehicles use the entry. The obser-
vations were carried out at the Brook Hill Roundabout near the
lniversity (Fig. 3.4). The roundabout has five arms; the one
studied was Ipper Hanover Street which forms part of the Inner
Ring Road. During the evening peak period there are heavy
flows along Brook Hill towards Western Bank and Bolsover
Street, and along Netherthorpe Road towards 1pper Hanover
Street; (Netherthorpe Road forms part of the Inner Ring Road
also). The observations were carried out over four days.

Each period lasted 40 minutes which was divided into four 10

minute sections per lane. The results are included in Table 3.2.

It was possible also to analyse the lane usage of one of the
entries recorded at Moore Street Roundabout. The results of
this analysis are included in Table 3.3.. The observations at
Brook Hill Roundabout were carried out manually using hand
tallies. The Moore Street Roundabout figures were abstracted
from the video tape used to obtain the gap-acceptance data and
circulation flows. This same tape could have provided a

similar analysis of turning movements of the entries from
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Ecclesall Road. However, this distribution was affected by the
presence of buses at the nearside lane due to the bus stop

near the stop line. Therefore, the choice of lane would have
been affected by other factors apart from the intended exit.

As can be seen from the tables, the nearside lane at
the 4-lane Upper Hanover Street entry is used almost exclusively
by left-turning vehicles, the next two lanes, again almost
exclusively, are used by straight through traffic, while the
offside lane is mainly used by right-turning vehicles. The
Clarence Street entry of the Moore Street Roundabout has only
three lanes. Here, the nearside lane was used heavily by
straight through traffic, it must be noted, however, that the
left-turning volume is very low. The offside lane flow included
a small number of straight through vehicles but comprised mainly
right-turning vehicles. The assumptions made about the use of
the lanes of the entry in the simulation model are included

in Chapter 5.
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TABLE 3.2
Day Entry Total flow Flow per exit (veh/10 min)
Lane (veh/10min)
1 2 3 4 5
Tuesday 1 12 o 0 4 8 0]
04/05/82 2 37 o} 2 35 o 0
3 55 1 44 10 0 0O
4 23 22 1 o o 0
Wednesday 1 10 0o o) 1 8 1
05/05/82 2 42 o 4 38 o 0
3 60 1 38 21 o o
4 22 20 2 o] O 0O
Thursday 1 6 o) 0 0 6 )
06/05/82 2 45 0 2 43 o 0
3 76 3 57 16 o o
4 15 15 0 0] 0 0
Friday 1 12 0] 0 3 9 o)
07/05/82 2 39 ol 3 36 o 0
3 68 3 51 14 o o
4 19 18 1 0] o 0
Total 1 40 o o} 8 31 1
2 163 o | 11 1532 0 0
3 259 8 1190 61 o 0
4 79 75 4 (0] 0 0
TABLE 3.2 Turning Movements and Lane Usage Observations at

Brook Hill Roundabout, Upper Hanover Street entry.
Lane numbers 1 offside, 4 nearside

Exit numbers 1 Western Bank

Bolsover Street

Netherthorpe Road

Brook Hill

Upper Hanover Street

U WN
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TABLE 3.3

Entry Total flow Flow per exit (veh/30min)
Lane (veh/30 min)

1 2 3 4
1 82 0] 13 58 1
2 110 0 106 4 0
3 116 20 95 1 (0]
TABLE 3.3 Turning Movements and Lane Usage Observations

at Moore Street Roundabout, Clarence Street
entry (28/02/80)

Lane numbers 1
Exit numbers 1
2

3
4

offside, 3 nearside
Moore Street

St. Mary's Gate
Ecclesall Road
Clarence Street
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Tigure 3.1 Moore Street Roundabout
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Figure 3.2 Castle Square Roundabout
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CHAPTER 4

GAP ACCEPTANCE CHARACTERISTICS OF THE ENTERING VEHICLES AND THE

MINIMUM HEADWAY OF THE CIRCULATING FLOW
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4.1 Introduction

The computer program, developed to simulate an
entry into a roundabout, is designed to generate individual
entry vehicles which progress through the queue of traffic
until they reach the stop line, where they reject or accept
the gaps in the circulating flow as they are presented to
them; (for further description of the model see Chapter 5).
This entails the assignment to the entering vehicles of a set

of parameters related to their gap-acceptance behaviour. The

* >

parameters involved are the critical gap, o, and thé move;up
time, B. The critical gap is a measure of the minimum length
in time, between circulating vehicles, for the first wvehicle
in the queue to join the circulating flow; the move-up time
is a measure of the additional length required for any sub-
sequent queueing vehicles to accept the same gap. Another
parameter involved is the minimum headway, t, of the circul-
ating flow. i

The values of these parameters are significant as
they describe the performance of the queueing vehicles in the
simulation and the size of gaps offered to them. For the
model to give realistic predictions these parameters must have
values that correspond to observed data.

This Chapter describes various methods to obtain
these values from observations proposed by previous research.
It suggests some modifications to these methods, and finally
describes the analysis of the collected data tb obtain the
values used to validate the simulation.

Notation: There has been no uniform notation

which has been universally adopted by previous researchers in
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this field. The conventions used here are:

a the critical gap (sec)

B the move-up time (sec)

T the minimum circulating headway (sec).
These notations will be applied throughout this Chapter. When
previous research, which has used different notation, is
described the present notation will be used instead. However,

it will be made clear that a change has taken place from what

was the original notation.

4,2 Gap Acceptance Studies

The study of parameters associated with the accept-
ance of gaps was initially related to priority junctions and
pedestrians crossing roads at non-signalized positions.

Gap acceptance became relevant to studies of roundabouts only
after the introduction of priority-to-the-right rule in 1966.
The operation of a roundabout was likened to that of a series
of T-junctions, and Tanner's formula of capacity prediction for
priority junctions was applied to roundabouts (Tanner 1962,
Tanner 1967). Tanner's formula uses two parameters relevant
to the minor stream, the critical gap, o, and the minimum
headway, 82. The latter is defined as the time between
successive vehicles accepting the same gap, therefore 62 is
analogous to the move-up time, B, used in the present study.
Before the introduction of the priority rule at roundabouts,
a lot of research was carried out relating to the estimation
of the critical gap parameter for T-junctions. After 1966
this research has become relevant to roundabouts. Simultan-

eously, other models of theoretical gap-acceptance behaviour
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Cooper et al (1977), Wennell and Cooper (1981) ). Other
distributions used were the shifted negative exponential
(Herman and Weiss (1961), McNeil and Morgan (1962), Blumenfeld
and Weiss (1979) ), the Erlang distribution (Blunden et al
(1962) ), and the Pearson Type III (Gamma) distribution

(Drew (1967) ). McNeil and Morgan (1968) have developed a
method of building up a distribution from the available data
rather than fitting a theoretical model on the data. One
problem associated with the inclusion of all offered gaps in
the acceptance probability distribution has been the bias
introduced by the inclusion of comparatively more rejections
by drivers with large critical gaps. This inclusion results
in critical gap values larger than the true values. To avoid
this bias, Greenshield et al (1947) included in their analysis,
only the lags whereas Blunden et al (1962) used an equal number
of accepted and rejected gaps by first assuming that all gaps
larger than the one accepted by a driver would also be
accepted and that all gaps shorter than the ones he rejected
would also be rejected,and then factoring the latter to
equalise the two totals. Drew (1967) used only the accepted
gaps and the largest rejection of each driver. Ashworth
(1968, 1970) quantified the bias, assuming a fixed critical
gap for each driver, and proposed as the corrected median

critical gap, L the following

0, = m —szq (eg.4.1)

where m: the median value of the observed gap acceptance
distribution (sec)
52: the variance of the observed gap acceptance

distribution (secz)
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have been developed that use more complex descriptions than

Tanner's formulae. These models usually assume that the critical

gap follows some distribution between drivers rather than
assume a single value for a. The analysis of the data pro-
vides a measure of the mean or median and of the variance of
this distribution. 1In the following sections some of these
methods of analysis will be presented. It should be noted that
all the methods included in sections 4.2.1 - 4.2.4 provide

a measure of the critical gap only. The present study was
interested in methods estimating both the critical gap and

move-up time parameters. These methods are described in

sections 4.3 and 4.4 in more detail.

4.2.1 The Critical Gap as the Median of a Distribution

Most methods suggested are variations of the one
introducted by Greenshields et al (1947). Here only the lags
offered were considered and the percentage acceptance of each
size group was determined. A lag is defined as the time
interval between the arrival of the side road vehicle at the
stop line and the passage of the next major road vehicle.

Their method defined the critical lag as the one with 50%

probability of being accepted. Since then other researchers

have used all available data in the acceptance distribution,
i.e. both offered lags and gaps. A number of different
theoretical distributions have been fitted to the data to
obtain the median value. The most common distributions

applied were the normal distribution (Worrall et al (1967),

Ashworth (1968, 1969, 1970), Ashworth and Bottom (1977),

Powell and Glen (1978) ) and the lpj—-normal distribution

(Solberg and Oppenlander (1966), Wagner (1966), Ashton (1971),
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g: the major road (circulating) flow (veh/sec).
Figure 4.1 shows a typical example of a cumulative gap-
acceptance distribution. Miller (1971) compared the last
three methods using simulated data, and determined that the
methods proposed by Blunden et al (1962) énd Drew (1967)
gave very biased results, while the correction given by
Ashworth (1968, 1970) did remove the bias and gave satisfact-
ory results.

Ashworth and Bottom (1977) carried out repeated
observations on a number of drivers entering into major roads
from a T-junction. That enabled them to build acéeptance
" probability distributions for each driver. To obtain each
driver's mean critical gap they fitted cumulative normal
distributions on each driver's data. ’

Blumenfeld and Weiss (1978, 1979), analysing the
same data, used a shifted negative exponential distribution
to describe each driver's behaviour. The mean value and the
variance of the distribution can be expressed in terms of the

two parameters which define each driver's distribution.

4.2.2 Raff's Critical Lag

One of the first definitions of a gap-acceptance
parameter was by Raff and Hart (1950). They only considered
lags presented to the minor road flow. They defined as
critical lag, L, the size lag for whichthe nurber of accepted
lags shorter than L is the same as the number of rejected
lags longer than L. The value of L was determined graphically
as shown in Fig. 4.2. They noted that if lags and gaps are
considered together, the percentage of intervals accepted

for a particular size is not a true measure of the proportion
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of drivers who accept such gaps, since several rejected
intervals, but only one acceptable, may be counted for each
driver.

Similar definitions were used by other researchers,
specifically Drew (1967), Armitage and McDonald (1974),
and Bendtsen (1972).

Ashworth (1970) compared Raff's critical lag to the
mean o of the critical gap distribution. When this distribution
has variance 52, and the circulating (major road) flow is
q veh/sec, the relationship is L = o = szq/2. Thus it is
incorrect to equate the two parameters aéart from the case of
a constant critical gap associated with a step function.

Miller (1971) arrived at the same relationship.

He compared this method with other estimators of critical gaps

to conclude that it is biased.

4.2.3 Other Methods to Determine the Critical Gap

When the distribution of the acceptance probability
is known Maximum Likelihood Estimates (MLE) equations can be
derived to give the maximum likelihood values of the gap
acceptance parameters. Moran (1966) and Miller (1971)
derived MLE equations assuming normal distributions. Miller
compared ﬁis method to eight other esﬁimators to conclude that
the maximum likelihood method and Ashworth's method both gave
satisfactory results, the MLE method being slightly more
precise but, also, more laborious. Since then Maher and
Dowse (1982) have used MLE methods (see section 4.4.2).

Ramsey and Routledge (1973) evaluated the critical
gap using a histogram of all offered gaps and a histogram of

the accepted gaps. They assume that all drivers are consistent
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and their method estimates the proportion of drivers in each
gap range having critical gap less than or equal to the middle
value of the range. Troutbeck (1975) compared this method with
the ones included in Miller's (1971) comparison and determined
that it is not better than the MLE or Ashworth's method. This
method has the disadvantage that in certain conditions it cah
result in negative values. Troutbeck showed that the mean
critical gap in the Ramsey—Routledge method is equal to the
mean accepted gap minusthe reciprocal of the flow (or the
average offered gap). Figure 4.3 shows the histograms used in
this method.

The critical gap has been related to the speed of
the approaching vehicles (Cooper et al (1976), Cooper et al
(1977) ). In these studies the accepted’and rejected gaps were
classified according to the speeds of the approaching
vehicles and a log-normal gap acceptance function was fitted to
the data in each 5 mile/hour speed-band. Median accepted gaps
for each speed, V, were expressed in terms of both time, T,
and distance, D (=VT). The median accepted gap is expressed
in terms of a constant time and a constant distance. They
.note that in their method it was not possible to remove the

flow bias and derive ‘'absolute' gap acceptance functions.

4.2.4 Gap Acceptance Theoretical Models

The value of the critical gap has been associated
with a number of theoretical models of the acceptance behaviour
of minor.road vehicles. Plank (1982) has grouped all these
models into four categor;es, as follows:

Model (1) The gap-acceptance distribution is a step

function. All drivers have the same critical gap, and
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consistently accept all gaps greater than or equal to the
critical gap, and reject all gaps less than the critical
gap. This is the model used by Tanner (1962).

Model (2) Individual drivers follow a step function
gap-acceptance distribution, but the critical wvalue is a.
variable distributed over the population of drivers, i.e. the
drivers are consistent but not homogeneous. This is the model
used by Ashworth (1968, 1969, 1970) and by Miller (1971).

Model (3) The minimum acceptable headway is described
by a probability distribution but is the same for
all drivers, i.e. they are homogeneous but not consistent.
This is the model used by Herman and Weiss (1961) and by
ﬁlumenfeld and Weiss (1978, 1979).

Model (4) Each driver has a gap acceptance dis-
tribution given by F(t;w) where parameter F(t) is the prob-
ability of accepting a gap of size t, while parameter w has
a distribution over the driver population, i.e. the drivers
are neither homogeneous, nor consistent.

Model (4) is the most sophisticated and will most
accurately describe the true situation. However, Plank
suggests that any of the other models will still yield
reasonable results with less practical and mathematical
difficulty.

Ashworth and Bottom (1977) showed that Model (3)
is a more appropriate simplification than Model (2), since the
major source of variability in gap acceptance is within
drivers rather than between them.

Blumenfeld and Wediss (1978, 1979) support this
conclusion. They also compare the statistics for Models

(2) and (4) as well as for Models (1) and (3). They conclude
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that the simplified models (1) and (2), compared with

models (3) and (4) respectively, lead to an accurate estimate
of the true average delay, a slightly overestimated probability
of no delay (highway transparency) and capacity of the minor

road, and seriously overestimated variance of delay.

4.2.5 The Move-Up Time, B

Tanner (1962, 1967) uses, in his capacity and delay
formulae, the parameter B which is defined as the time between
successive vehicles accepting the same gap. According to this
theory a gap, T, would be accepted by one vehicle if it is
equal or greater than the critical gap, ¢, i.e. if T 2 a,
by two vehicles if T > g + B, and by n if T 2 o + (n-1)Rg.

The estimation of the move-up time has not received the same
attention as the critical gap. In general the value of g

has been assumed to be constant in the theoretical models of
gap—acceptance, although a few researchers have proposed a
specific move-up time for each position in the queue of
entering vehicles. In most cases the value of B has been
abstracted as the mean of the observations of the extra time
that vehicles in the queue after the leading one need to
accept the same gap (Bendtsen (1972), Uber (1978), Powell

and Glen (1978)).Cooper and Wennell (1978) used the median

of the distribution. Armitage and McDonald (1974) chose the
value of B such that when the critical gap is calculated, by
a modified Raff method, the two together have the effect that
the total observed entries are equal to the total number of
entries predicted from the same gap data. Pearson and Ferreri
(1961) and Worrall et al (1967) built cumulative acceptance

distributions for the extra time used by subsequent vehicles in
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a merging platoon. Although they do not report any values as
the move-up time or by any other definition, Worrall et al
conclude that there is no significant difference among the
acceptance distributions for the second, third, and fourth
vehicles in line in a multiple merge. See Fig. 4.4 for an

example of the acceptance probability curves.

Bendtsen (1972) gives different B values for the
second, third, fourth and any subsequent vehicle which are
progressively smaller, 4.2, 3.9, 3.8, 3.7 sec respectively.

Uber (1978) gives the following values for the same
vehicles 3.54, 3.53, 3.74 and 4.10 sec.

Cooper and Wennell (1978) report values for the second,

third and any subsequent vehicles, which were 2.9, 3.2,

2.9 sec respectively.

The last three studies were conducted at priority
T-junctions. Powell and Glen (1978) studied gap acceptance at
roundabouts. They arrived at one value for all vehicles in
a multiple acceptance. However, they suggested different
values for the various types of roundabouts they studied.

The values they suggest ranged from 2.0 to 3.3 sec.

It is of interest to note that some roundabout
capacity models proposed by Wohl and Martin (1967), Ashworth
and Field (1973) and Ashworth and Laurence (1975) assume the

move-up time to be equal to the critical gap.
The methods discussed in the following sections

provide values for both gap-acceptance parameters simultaneously.

4.3 The Work of Armitage and McDonald

Armitage and McDonald conducted a series of studies
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on roundabout performance during the 1970's. The investigation
included the prediction of gap acceptance parameters from
roundabout geometry and they proposed a method for obtaining
these parameters from observed data using a least squares
best-fit curve.

Armitage and McDonald (1977, 1978) assumed that
roundabouts operate as a series of linked T-junctions. They
were interested in developing a formula that would predict the
capacity and not the delay of the entering vehicles. This
allowed them to use assumptions that gave simpler formulae.
Thus they developed two concepts incorporated in their
capacity formula. They were the concepts of lost time and
saturation flow. Lost time is assumed to be a period
associated with the passage of each vehicle of the circul-
ating flow. During this time no entry vehicle can join the
circulating flow, while at all other times they join at a
constant rate which is the saturation flow.

The formula they proposed as the most useful is
the following:

-q, (L-1 )

g, = gg(1 - 1q) e (eq. 4.2)
where d,: entering flow (veh/s)

d,: circulating flow (veh/s)

qg: saturation flow (veh/s)

L : lost time (s)

T : minimum headway of circulating flow (s)

For further description of their capacity formula
see Chapter 2 section 5. Originally they used the

notation Bl for the minimum headway.
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They related the gap-acceptance parameters, dg s L and
T, to the geometric characteristics of the layout. In order
to achieve this they collected data on all of the above
parameters at a large number of public road sites and also in
a series of test track experiments conducted by the Transport
and Road Research Laboratory. Each of the sites was described
by the geometric factors shown in Fig. 4.5. They tested all
three gap-acceptance parameters against all these character-

istics. The formulae they proposed are the following:

0.12 EO + 0.04(E1 + EO) for non-flared entries (eqg.4.3)

g =
qq = 0.12(EO + F1(E1 + EO)/(F1 + 69) ) for flared entries
(eg. 4.4.)
L = 2.3 + 0.006K1 - 0.04 W2 ' (eq.4.5)
. = .12 .. + 0. Ly = . .4.
T(4) 1/(0.1 EO(J) 0 O4(E1(J) EO(J)) ) (eq.4.6)

where all the geometric notations are as defined in Fig. 4.5.
The subscripts (i) and (j) in eq. 4.6 signify the following:

(i) : parameters relating to the study entry

(j): parameters relating to the immediately

previous entry.

Five different methods were used to estimate the
minimum circulating headway. Briefly, these methods were:
(1) the theoretical headway distribution was fitted to
the observed headway data by the method of moments;

(ii) the theoretical headway distribtuion was fitted to
the observed headway data by minimizing XZ;
(iidi) the minimum circulating headway was related to the

mean rejected headway;
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(iv) after estimating dg and L, T was varied to give a
least squares fit to the flow data;

(v) T was assumed to be the reciprocal of the satur-
ation flow of the arm from which the main circulating flow
emerges.

Method (iv) was described as the most consistent, with the
disadvantage that for certain flow conditions it did not give
satisfactory results; however Armitage and McDonald preferred
to use method (v) as can be seen from equation 4.6 where the
denominator of the right-hand side is the expression for the
saturation flow.

The other two parameters, dq and L, were estimated
together by the method of least squares. Taking the simplest
case of a single lane of traffic entering a roundabout, two
straight lines were fitted to a plot of the number of entries
(y) during each gap against the length, (x), of the gap. The
line for x £ L was y = 0, while for x 2 L, it was y = qs*(x—L).
This is illustrated by Fig. 4.6 for a 2-lane entry where the
model is fitted to some sample data and compared with the
conventional gap-acceptance step function model which uses
parameters 0 and B. The model uses both accepted and rejected
gaps. However it should be noted that all rejected gaps less
than L have a zero contribution to the least squares value.
Also all accepted gaps less than L have a constant contrib-
ution since the line for x = L cannot change slope being
defined as y = 0. Therefore those points have no influence
on the slope of the line for x > L which determines q,- As
L decreases more rejected gaps are contributing to the sum of

the squares of differences, but it is not possible to know in
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advance which rejected gaps shculd or should not be abstracted

from the data. This results in a considerable number of

rejected gaps which although abstracted from the data, are

not utilized finally. It should be noted that the rejected

gaps will be numerous and proportionally the majority of all

the gaps, especially at high circulating flows. Therefore

this method is very inefficient in the use of data which have

to be manually abstracted.

It should be noted that Fig. 4.6 refers to a 2-lane

entry of a roundabout. The slope indicated by qg on the figure

is in fact half the value of the actual slope. This is
necessary in order to estimate the saturation flow per lane.
Also, it should be noted that no rejected gaps less than L

were included on the diagram.

It is of interest to examine the relationship

between the parameters dg and L, used by Armitage and McDonald,
and the parameters critical gap, o, and move-up time, B8,

as used in the present study. As can be seen from Fig. 4.6,

the move-up time, B, is the reciprocal of the saturation flow,

dgr and the critical gap, a, is related to L and gy as is

shown in eq. 4.7

- B _ 1
o = L + 5 = L+ z*qs (eq. 4.7)
1
— —_— - 4.8
B a, (eq )

These two relationships allow the reinterpretation
of the data given in Armitage and McDonald (1977) into the

conventional parameters. These are included in Table 4.1.
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This is useful in providing a direct comparison with the
results obtained by the analysis of the present study for
both observed and simulated data.

It should be noted, however, that the values of dg
as supplied in Armitage and McDonald (1977, Appendix 1)
might be a source of errors. In that study it is not
mentioned whether the values given have been divided by the
number of lanes for each site. If they have consistently
followed the practice of dividing the slope by the number of
lanes, as indicated in Fig. 4.6, then the values provided can
be used to calculate B by equation 4.8. Otherwise serious
errors can be introduced. Studying the results of Table 4.1
the values of B calculated as above often appear very low,
sometimes they are less than 1 second. This suggests that the
values of dg given are for the whole entry and are not per lane.
However, among the data provided for each site, the number of
lanes is not included, therefore it is difficult to justify
any other use of the dq value. .

The gap-acceptance parameters estimated in the above
way have been grouped according to area and whether the site
was a public road or a test track at TRRL. For each group the
average values of a and B were calculated. They are included
in Table 4.2. The mean values over all the sites are the

following

a 2.86 sec
B = 1l.43 sec.
The o value compares favourably with values proposed

by other researchers. However, the B value is lower than any
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proposed by Bennett (1971), Horman and Turnbull (1974) and
Armitage and McDonald (1974). The lowest suggested value by
any of the above is 2.00 seconds. This dis&repancy must arise
because the dq values have not been divided by the number of
lanes of each entry.

Furthermore, there are no data relating to the actual
use of the entries, some of the plans included in the 1977
report do not indicate the number of lanes each entry was
designed to have, and finally the entry width, El1, as defined
(see Fig. 4.5) does not represent a satisfactory alternative
to the number of lanes.

From the above, it follows that if B is under-
estimated so will be the value for a, the critical gap, as the
two are related. This can be seen in equation 4.7. Therefore,
both averages given above should not be considered accurate,

as both underestimate the true wvalues.

4.4 Some Linear Models Suggested by Previous Research

The analysis of data to abstract values for gap-

acceptance characteristics is similar for both T-junctions

and roundabouts. In both cases the entry/minor road vehicles
give way to circulating/major road vehicles while they wait for
a suitably long gap to enter or cross the priority flow.
Therefore the concepts of "critical gap" and “move-up time"

are relevant to both situations. Some previous research

into gap acceptance at T-junctions has proposed models for
estimating these parameters which are directly relevant to the
current project. They are described in more detail in the

following section.
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Some aspects of T-junction operation are significantly
different from roundabout operation. They have to be taken into
account when the models for T-junctions are compared with
models for roundabouts. The major points of difference are:

(1) The major road flow can be in two directions while
the circulating flow is always one directional;

(2) The minor road vehicles can either merge with the
stream coming from the right or cross that stream and merge
with the stream from the left;

(3) There might be right-turning major road vehicles
whose queue can inhibit the right-turning minor road vehicles;
(4) The major road vehicles usually have higher speeds
than the circulating ones at roundabouts since they do not have
to slow down as they approach the junction;

(5) The design of a T-junction minor road and an entry
road to a roundabout differ in such ways as to be easier for
vehicles to enter from a roundabout entry than from a minor
road at a T-junction, for example flaring is almost exclus-
ively used at roundabouts, there is better visibility at
roundabouts éspecially for vehicles not at the give way line etc.

From the above it is clear that methods developed
for T-junctions are not directly relevant for roundabout
operation. However, the analysis of the acceptance behaviour
by minor road vehicles can distinguish left- and right-
turning streams. In such cases the relationships for the
left-turning minor road stream have simila;ities with
roundabout operation. Even in such cases, however, only the-
form of the relationship is relevant and not the reported

values for the gap acceptance parameters which tend to be
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larger than the respective ones for roundabouts.

4.4.1 Description of the Models

The four models described here are linear relation-
ships between the number of vehicles entering, N, and the
gap~-length in seconds, T.

Pearson and Ferreri (1961l) examined queue acceptance
in terms of the percentage of gaps of a given size accepted
by streams of vehicles entering a freeway. From their gap
acceptance distributions, they derived a linear relationship

between N and T:

N = 0.28 T - 1.07 (eg. 4.9)

They claim a high correlation coefficient for this relation-
ship but the method of derivation is not clear.

In 1974, Watson proposed a capacity model for
roundabouts-which related the gap—acceptance parameters to the
~geometry of the site. He reported that N and T have a linear
relationship. The two gap-acceptance parameters used were m
and ¢, where m was the slope of the straight line and c¢ the
intercept with the y-axis. In the regression no rejected
gaps are included, data from the whole entry are included, and
N is assumed to be the independent variabie. In his analysis
Watson does not relate the gap-acceptance parameters of his
method to the critical gap and the move-up time, but the

relationships are as follows

>
"
g~

=

(c+-;-)
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However, the values he reports are not strictly comparable to

the ones in this study as they refer to the entrance as a

whole.

He does suggest, though, that the two parameters are

related by

m = 0.45¢c + 0.16
which he rounds up to
c = 2m

According to this

1 1
a _ﬁ(2m+§)

= A

= 2 + 50

= B

= 35 + 2

Uber (1978) considered the behaviour of queues of

turning vehicles moving into large gaps at a T—junction
controlled by a STOP sign. The relationship he derived between
N and T is based on the median start-up times of the first

and subsequent vehicles making a left turn and the median

remainder rejected lag:

N = 0.297 - 0.74 (eq. 4.10)

Cooper and Wennell (1978) proposed two models which
they call "the direct linear relationship" and "the explanatory
model" respectively.. Both models are developed to describe
a merging and a crossing manoeuvre. iny the merging

relationships are mentioned here.
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The direct linear relationship is

T = 2.8N + 4.9 (eg. 4.11)
The explanatory model takes the form

T = S8 + N.M+ R (eg. 4.12)

where S: median start-up time (sec)
M: median move-up time (sec)
R: median residual gap (sec)

This relationship becomes
T = 3.0N + 3.0 (eq. 4.13)

for the merging manoeuvre they were studying. Theyv consider
the explanatory model more useful as it enables the effect of
changes in the individual components of queue acceptance

on the overall relationship to be evaluated.

Considering equations 4.9, 4.10, and 4.11 it is of
interest to note that Cooper and Wennell interchange ﬁhe
dependent and independent variables. Instead of treating T
as the independent variable they assume it is the dependent
variable. They regard T as inappropriate to be the independ-
ent variable for the data they were usingf since they are
sampled from continuous distributions 6f‘gap sizes for fixed,
integer, values of N.

They also comment on the applicability of the term
"regression" for such models. They note that the distribution
of the lengths of gaps accepted by a given number of vehicles
is markedly skew, i.e. there is always a larger number of gaps

at the lower values of the range. This is contrary to the
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normality assumption of any linear regression model. There-
fore they do not use the term "regression” for the direct
linear relationship. They conclude that the explanatory
model is better than the direct linear relationship for the

analysis of queue acceptance.

4.4.2 The Comparison of Models by Maher and Dowse

Maher and Dowse (1982) compared six models of
predicting gap—-acceptance parameters. They included four
simple linear models, the Armitage and McDonald method, and
a method using Maximum Likelihood Estimates (MLE) which they
developed. The four simple linear models were regressions of
Non T, and T on N, firstly using all the data, and secondly,
excluding the rejected gaps.

As to the applicability of the term regression they
comment that the model assumptions, of either (i) independent
errors with zero mean and constant variance, or (ii) normally
distributed errors, do not hold in these cases. They'con-
clude that any special status which least squares regression
might hold as a method is inappropriate, but the validity
of any method of estimating o and B depends on the assumptions
made about the underlying mechanism of gap-acceptance.

They tested the six methods for unbiassedness and
efficiency. A method is unbiassed if the estimator § has
a mean (or expected) value of 6, i.e. E(8) = 6. A method is
asymptotically unbiassed if E(8)»> © as, the sample size,

n»». The most efficient one is that which has minimum mean

squared error, i.e. E(E—e)2 is minimum. The relative

efficiency of two unbiassed estimators is the ratio of their
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mean squared errors or variances, Var(Gl)/Var(Gz). The efficiency

of an estimator depends on the statistical assumptions made.
If one can be confident of the model assumed then the best

estimator can be used, if not a robust or insensitive to

model assumption estimator should be used. The disadvantage

of any MLE method is that specific probabilistic model
assumptions need to be made, the form of the estimates being
specific to that model. Furthermore the estimates need to be

calculated by means of some numerical iterative scheme for

maximising the likelihood function.

In their comparison for bias they conclude that three
of the six methods are not seriously biassed; the MLE method,
Armitage and McDonald's, and the linear model assuming T as

the dependent, N as the independent variable while excluding

all rejected gaps.

Comparing the relative efficiencies, they conclude
that the MLE method is the most efficient, while Armitage and

McDonald's method was more efficient than the simple linear

model.

4.5 The Development of a Simple Linear Model

As has been suggested by previous research of
Pearson and Ferreri (1961), Uber (1978) and Cooper and Wennell
(1978) there can be a direct linear relationship between the
size of the gap and the number of vehicles entering during the
gap. Their findings are described in more detail in section

4.4, Here, the development of such a linear model is

described.

4.5.1 Theoretical Aspects of Linear Regression

Mood and Graybill (1963) define a simple linear model
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as following:

"Let Y, Yor eees y, be uncorrelated, observable
random variables such that y; = @ +Bxi + e;. where o and B are
unknown parameters, xi are observable mathematical (non-
random) variables, and e; are uncorrelated, unobservable
réndom variables with mean 0 and variance 02, where 02 is
not a function of a, B, or xi“.

Two points of interest arise concerning the use of
such a linear model with the type of data involved in the
current study. The first is the definition of dependent and
independent variables, the second is the distribution of the
variables.

From a purely explanatory point of view it would
seem obvious to define as dependent variable the number of
vehicles entering while the size of the gap is defined as
the independent variable.

However, from the point of view of errors due to
observational mistakes, it is wvery unlikely that any should
be present in the counting of the number of entries’ associated
with each gap. On the other hand such errors are much more
likely in the estimation of the size of the gaps. Furthermore,
the number of entering vehicles is a step function while the
distribution of the gap lengths accepted by a given number of
vehicles is markedly skew i.e. there are more smaller such
gaps than longer ones. Thus the normality assumption of
linear regression models is violated. This does not allow the
full benefits of the linear regression method to be exploited.
However, it does not invalidate the use of a linear model.

It points to the possibility of introducing modifications to
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produce reasonable predictions, accepting the fact that the
least squares regression assumptions will not be met. Thus,
the term "least squares regression" will not be used, instead
the model will be referred to as "simple linear". This is in
line with the arguments of Cooper and Wennell (1978). It is
termed "simple" to distinguish it from the two-line model
proposed by Armitage and McDonald.

The justification of such a model will be dependent
on its ability to successfully analyze data and provide
values for the gap-acceptance parameters which are as near to
their true values as it is possible to determine. In order to
arrive at the best model,data with known gap-acceptance
parameters have been produced using computer simulation.
These data are analyzed using the available linear models.

This way the model producing the best results can be chosen.

4.5.2 Simulated Data

The data for the checking were produced using a
computer program simulating a continually saturated single-
lane entry to a roundabout. The program is given in Appendix 2.
It assumes a shifted negative exponential distribution for
the circulating flow. It allows changes in the values of the
critical gap, o, the move-up time, B, the circulating flow
and the minimum headway, T. Values of the gap-acceptance
parameters a and B were constant throughout the simulation
for the initial runs, although later work allowed variation in
these parameters (see section 4.5.8). The period of the
simulation can be extended indefinitely, however, the pseudo-

random generating subroutine has a cycle of 16384; therefore
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the pattern of the circulating flow repeats itself after 16384
gaps. The actual simulated time thus depends on the circul-
ating flow.

The accepted gaps were divided in groups of limited
number (see section 4.5.7 on sample size effects). Each group
was then analyzed and thg gap—-acceptance parameters calculated:

Below the following aspects of the analysis are discussed

1. The use of rejected gaps, (section 4.5.3).

2. The effect of extreme values, (section 4.5.4).

3. The use of weights in the model, (section 4.5.5).
4, The definition of dependent and independent

variables, (section 4.5.6).
5. The effect of sample size, (section 4.5.7).
6. The use of variable gap characteristics as input to
the simulation, (section 4.5.8).
Finally section 4.6 compares the overall performance of the
models tested. Throughout the section the notation used is
N, for the number of vehicles accepting a gap, and T, the

length of the gap.

4.5.3 The Use of Rejected Gaps

As mentioned in section 4.3, Armitage and McDonald
included only the rejected gaps greater than L, the lost time.
The data on which the analysis is performed have such dis-
tributions that the number of gaps will always be disprop-
ortionally larger at the value N = 0, i.e. for no acceptances,
than at all other values of the dependent variable. This.
influencesthe slope and the intercept of the linear model.

The effect of excluding the rejected gaps was

tested by analyzing sets of simulated data with and without
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the rejected gaps. The results of the analysis are shown
in the table below. The table shows the results from two

‘'sets of input values for the gap-acceptance parameters

input values predicted values predicted values
for simulation with rejected gaps without rejected gaps
(1)
B: 2.25 3.33 2.40
a: 4.27 3.51 3.84
(ii)
B: 2.25 3.03 2.49
a: 3.99 3.36 3.45

It can be seen that for both sets of data the
predictions were improved when the rejected gaps were not
included in the analysis. As expected, the most marked
improvement was for the value of B, which is the reciprocal of the

slope of the straight line. The above results also point to a
feature that was observed consistently throughout the study
of the linear model, i.e. the predictions for B were always
in much better agreement with the input values than the
predictions for a. The explanation can be that the value of
o is obtained by extrapolating outside the range of the used
data to find the intercept, while B is related directly to the
slope of the linear model.

Finally, the inclusion of rejected gaps would,
obviously, use a larger part of the collected data since
accepted gaps tend to be in a minority position in relation
to the total number of gaps available. However, abstracting
the data (e.g. from video tapes) involves considerable labour
which is disproportionally increased if the rejected gaps are

required. It is interesting to note in this respect, that
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Armitage and McDonald's two-line least squares method
involves the abstraction of all or most of, the rejected
gaps since the value of L, the infercept, is not known in
advance, while the majority of these rejected gaps, the ones

less than L, will not in fact be considered in the analysis.

4.5.4 Extreme Values

The distribution of the circulating flow used in
the simulation was shifted negative exponential (see section
4.3. for a more detailed description). This distribution
allows the occasional large gap to be present even though in
reality such gaps are often more common than suggested by
the theoretical distribution. When the simulated data were
divided in groups, the frequency of large gaps per group
was very small; often no such gap was present. Furthermore,
it was difficult to define a consistent way of determining the
lower limit of these extreme values. For example, the
simulated gap distribution based on a circulating floﬁ of

0.44 veli/s had only a few gaps allowing 4 vehicles to enter,
less allowing 5 vehicles, and none allowing more than 5
vehicles. The 20 groups into which these gaps were divided
were analyzed with and without the gaps allowing 4 or 5
vehicles to enter. The results are given in Table 4.3 which
also includes the results of analyzing the same groups but
reversing the definition of dependent and independent
variables (see section 4.6). As can be seen from the table,
some groups did not have gaps of length that were large
enough to be excluded, and therefore, no gap-acceptance values

are shown under the heading "highest values excluded"”. The
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exclusion of top values decreased the values of o, and increased
the value of B at all groups. The effect on the mean wvalue

over all 20 groups is shown on Table 4.4. In the case of
assuming the number of entries as the dependent variable,
exclusion decreased the accuracy of the prediction of the mean
but also reduced the standard deviation. In the case of the

gap size as dependent variable, the prediction was improved,
giving the best results of the four sets. However, the criterion
for excluding extreme values was not satisfactory, as it could
not be explicitly defined. The effect of exclusion of large
~gaps for data collected in the field would be very uncertain

as the total number of gaps would be very small compared to the
simulated data. It was decided therefore to develop other
procedures for ensuring reasonable predictions without

resorting to exclusion of the extreme values.

4.5.5 The Use of Weights

In general, weights are introduced into a least
squares analysis to counterbalance distributions of data which
overrepresent certain parts of the range, since the latter
may introduce inaccuracies in the parameters of the analysis.
The distribution of the gaps is of a type that more smaller
gaps are present than larger. This would occur with either
a negative exponential or a shifted negative exponential
distribution assumed for the circulating flow. This over-
representation of the smaller gaps would be observed not only
over the whole range but also each value of the step function
describing variable N would exhibit a similar distribution, for

example there should be more smaller gaps accepted by two
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vehicles than larger ones. Two weights were suggested, one

for each distribution:

w = 9t (eg. 4.13)

for the negative exponential distribution

£(t) = qe It (eg. 4.14)
and q(t-T )
W = e ¥ q° (eg. 4.15)

for the shifted negative exponential distribution

f(t) = __];__ e_ (t_T)/t_T)

= (eg. 4.16)
t-T

where W: the weight
g: the floﬁ (veh/sec)
t: the size of the gap (sec)
f(t): the probability density function

: the minimum headway of the circulating flow (sec)

s

ot

: 1/q9 (sec/veh)

As the circulating flow in the simulation program was assumed
to have a shifted negative exponential distribution the weight
applied was eq. 4.15. Tables 4.5 and 4.6 contain the results
of weighted analysis of simulation data based on two sets of
initial values. They contain results from analysing the data
using two definitions of dependent/independent variables. The
means and standard deviations of the predictions over all the
groups are included in Table 4.7. All four predictions are
satisfactory, while the definition of number of entries as

dependent variable gave better predictions in set (i), and the
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definition of gap size as dependent variable resulted in better
predictions for set (ii) of the initial values. The predictions
of the follow-up time, B, are in much better agreement with

the input values than the predictions of the critical gap,

a. Similarly the standard deviations associated with the mean
of B are less than half of theAstandard deviations associated
with a. This indicates that the confidence associated with the
prediction of individual groups is less for the critical gap
than the move-up time. The importance of this fact is that
observed data collected at a half period during the peak

period are likely to be less than 500 accepted gaps which is
the number included in each of the groups analysed here

(see section 4.5.7).

4.5.6 Dependent and Independent Variables

Previous research on gap-acceptance, which has
proposed linear models, has not determined the optimum
definition of dependent and independent variables. Pearson and
Ferreri, Uber, Armitage and McDonald assume the number of
vehicles accepting a gap, N, as the dependent variable while
Cooper and Wennell, Maher and Dowse prefer the gap size, T, as
the dependent variable (see sections 4.3 and 4.4). Some
justifications for using T as the dependent variable are
included at section 4.5.1. Therefore it was decided to test
both definitions.

Tables 4.8, 4.9. 4.10. 4.11 and 4.12 include the
results of using both definitions, both weighted and unweighted
analysis. Table 4.7 contains the mean and standard deviations

using weighted analysis only. As mentioned in the previous
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section, this did not allow a conclusive decision. Table 4.13
includes the results for the same sets of initial values but
for unweighted analysis. The predictions overall are worse
than the ones of weighted analysis. However, standard
deviations are much lower. Comparing the results of the two
definitions, the results of analysis using the gap size (T)

as the dependent variable are much better. The conclusion

of these two sections is that best mean values are provided

by weighted analysis while the standard deviation associated
with the mean values is much smaller for unweighted analysis

which assumes T as the dependent variable.

4.5.7 Effect of Sample Size

Another point investigated was the effect of
reducing the sample size on the predictions and especially on
the standard deviation of the mean over all the groups.

The groups up to now consisted of 500 accepted gaps. However
during a half-hour observation period the accepted gaps are
usually much less. The groups of one set were divided up to
form groups of 200 vehicles. Tablé4.l4 shows the results.
Table 4.15 is a collection of the respective results for a
sample size of 500 vehicles. Comparison of the results shows
that the reduction in sample size affected the prediction
only by 0.01 sec while it increased the standard deviation by
only a vefy small amount. Therefore the predictions based on
a sample size of 200 are not significantly worse than those

based on a sample size of 500.
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4.5.8 The Effect of Assuming the Gap

" Characteristics not Constant

Up to now the simulation assumed that o and B are the
same for all drivers. This simplifying assumption was
replaced by defining distributions of values for both the
parameters. The distribution used was normal in each case.
The simulation was carried out only for one set of initial
values. Each entry vehicle was assigned its own critical
gap and move-~up time with the restrictim that no value should
be outside the following range m + 2s > x 2 m - 2s where m
is the input mean and s the input standard deviation. The
accepted gaps were divided into 20 groups of 500 acceptances
each. The analysis was performed as described previosuly.

Tables 4.1t and 4.17 show the results of this set of simulation
data.

The predictions compare with the input values
equally well as the predictions for constant o and B .
The standard deviation of the mean, however, is slightly larger
than in the previous cases. (Compare Table 4.17 with
Tables 4.14 and 4.15.) The increase is very small and does not

invalidate the method when o and B vary between drivers.

4,6 Comparison of the Simple Linear Model and

Armitage and McDonald's Two-line Model

As has been described in section 4.3, Armitage and
McDonald have proposed a'model which fits two straight lines
to the data. This model is only slightly more complicated
to apply once the data have been abstracted but requires the

abstraction of rejected gaps. The simple linear model requires
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the abstraction of the accepted gaps only. If the two models
give equally satisfactory predictions, the simple linear model
would be easier to apply since it involves less labour in
abstracting the data.

The‘moéels tested with the Armitage and McDonald method
are the following: (1) A weighted linear model assuming the
gap size, T, as the dependent variable, and the number of
entries, N, as the independent variable. (2) An unweighted
linear model, SRTN assuming the same dependent and independent
variables as in (1). (3) An unweighted linear model, SRNT, with
the dependency inverted. The reason that another weighted
model was not used was that, as section 4.5.5 demonstrated, the
performance of the two weighted models was similar.

The test was carried out on computer simulation data
generated using 5 sets of initialAvalues. Tables 4.18,

4,19, 4.20, 4.21, 4.22 include the detailed results of the
analysis of each group of the simulated data using tte
Armitage and McDonald method. The comparison is summarised

in Tables 4.23 and 4.24. Table 4.23 includes the mean values
and standard deviations of the predictions over all the
simulated data groups of each input values set, for all 4
methods of analysis;

Comparison of the mean value of the predictions
demonstrates that the method provided by far the best results
is the weighted linear model. This can be seen in Fig. 4.7
for the predictions of the critical gap and in Fig. 4.9 for
the move-up time. For the critical gap, the weighted linear
model gives the best prediction in all five cases; while for
the move-up time, it gives the best prediction in two cases.

The main problem of this method is the very high standard

deviations associated with the predictions. This is
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demonstrated on Fig. 4.8 and Fig. 4.10. Therefore, the
predictions derived from any one group of data is very likely
to vary from the true value. This becomes very important when
the method is applied on observed data; in such cases the
number of data points available is restricted compared with
simulated data. The other three methods had much lower
standard deviations, of.a similar order.

These three methods are compared in Table 4.24.
Sincé the standard deviations were of a similar order only
the means are compared. The Armitage and McDonald method
consistently overestimates o, the range of percentage over-
estimations is 3.3% - 6%. The linear models consistently
underestimate a, SRTN by -4.0% to -7% and SRNT by -8.7% to
-15.7%. The predictions of B are much better, the Armitage
and McDonald method underestimates B by -1.6% to -5.0%, SRTN
has a range of -1.0% to +1.1%, while SRNT overestimates B
by 3.2% to 10.4%, SRNT provides the worst predictions in both
cases. The other two methods predict values much closer
to the input values. According to the criteria set out in
the beginning of the section the linear model SRTN was adopted

for the analysis of the data collected for this study.

4.7 Application of the Simple Linear Model on Observed Data

The simple linear model described in the previous
sections was applied to the data collected from the three
roundabouts in Sheffield as described in Chapter 3. As the
data abstracted were sepérated into gap acceptances for each
lane, the model was applied separately on each lane providing
parameters in each case. The values arrived at are included

in Table 4.25. As can be seen, the results show some difference
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between the predictions for each lane. Consistently the value
of the criticai gap of the offside lane is higher than for

any of the other lanes. This is more pronounced in the cases
of the Castle Square and the Park Square Roundabouts. The
explanation could be that vehicles. using the offside lane

tend to be right-turning. Their manoceuvre usually involves
circulating near the island, therefore they have to take into
account the flow pattern of all streams circulating. The
manoeuvre can be described as involving merging and weaving.

Also, often the angle they approach the give-way

line is sharper than at the other lanes, especially the flared

. . . . . v "
ones. Their manoeuvre has some similarities to "crossing

at a priority T-junction. Vehicles turning left or going

straight ahead have only to merge with the nearside circulating

flow stream.

The difference in the predicted values of the move-up
time does not demonstrate any consistent pattern. The higher

values observed at Castle Square Roundabout may be associated

with the poor visibility ot vehicles in the gueue at Arundel Gate.

4.8 The Minimum Headway of the Circulating Flow

4.8.1 Introduction

The simulation model developed in the previous
research (Natsinas, 1979) assumed that the headway distribution
of the circulating flow follows a shifted negative exponential
distribution. The input to the program included a variable,
TAU, that described the minimum allowable headway of the
distribution. During that research the value of TAU was

assumed to be constant and equal to 1 sec.
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When the model was validated by comparing its
predictiors to observed data, it became important to examine
critically the behaviour of TAU in the simulation. One of the
first tests was to examine the sensitivity of the capacity
predictions to variations of the minimum headway. It soon
became obvious that the predictions were very sensitive to
the TAU value. For example, one of the simulation runs
assuming 2596 veh/hr circulating flow, predicted a capacity
u =774 veh/hr for v = 0.50 sec and y = 129 veh/hr for v = 1.00 sec

It was considered necessary to examine in more
detail the suitable models for the headway distribution, as
well as, the suitable value of TAU if a shifted negative
exponential distribution was used. This section looks at
some theroetical models proposed for the headway distribution,
presents the results of the analysis of the observed and
simulated data, and concludes by proposing the use of shifted
negyative exponential distributién with the minimum headway
equal to 0.20 sec.

Note on notation: throughout the section the notation
followed is the following

7: the minimum headway of the circulating flow.

4.8.2 Distributions of Traffic Headways

The description of the traffic distribution along a
road has attracted considerable attention from traffic
engineers and statisticians. Statistical distributions are
useful in describing a wide variety of phenomena where there
is a high element of randomness. Such distributions can be
divided into counting and interval distributions. Counting

distributions describe the occurrence of events that can be
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counted, while interval ones describe the distribution of the
time intervals between events. In this section one counting
distribution has been included, the Poisson distribution -
and the following interval distributions: the negative
exponential, the shifted negative exponential, the Pearson

Type III and Schuhl's composite headway model.

4.8.2.1 The Poisson Counting Distribution

The use of this distribution in trafffic studies was
introduced by Kinzer (1934), Adams (1936) and Greenshields et
al (1947). This distribution gives the probability of any
number of vehicles to arrive during a period of given length.

If this probability is P(xL its mathematical formulation is

P(x) = —m— (eg. 4.17)

where

m: the mean number of arrivals expected in the given

time

e: the base of natural logarithms = 2.71828

Figure 4.11 shows the distribution for m = 5.

The Poisson distribution is appropriate for describ-
ing discrete random events. Gerlough and Huber (1975) note
that it will provide satisfactory results when the traffic
flow is liéht and it is not affected by any disturbing control
systems. However, at high flow or when there is some cyclic
disturbance the Poisson distribution does not describe the
conditions adequately.

The Poisson distribution has equal mean and variance.

Therefore, if the observed data have markedly different mean

and variance the Poisson distribution is not suitable.
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4,8.2.2 The Negative Exponential Distribution

The Poisson distribution is discrete. However,
another traffic characteristic of interest is the interval
between the occurrence of events, for example the gap size
between successive vehicles along a road.

Adams showed that P(0), i.e. the probability of
zero arrivals using the Poisson counting distribution, is also
the probability for a headway equal or greater than t, the
time interval used in the Poisson distribution. If h is the

headway then
= o 4t
P(h 2 t) = e (eg. 4.18)

where
g: the average flow (veh/sec).

The probability of a headway being less than t is
= -gt
P(h<t) =1-=-¢ (eg.4.19)

The distributions of equatiors 4.18 and 4.19 are
shown in Fig. 4.12.

Furthermore
P(tl < h < t2) = e - e (eq. 4.20)

The negative exponential distribution predicts the
greatest number of headways in the smallest time interval
between t = 0 éec and t = t1 sec, where t1 is the time interval
considered. This coincides with observations only when traffic
flows are light and there are several lanes available to the
traffic.

The agreement becomes poor as soon as the traffic

increases in intensity when interaction between vehicles
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increases. At high flow situations vehicles move in platoons
with a minimum headway between successive vehicles. This is
more pronounced if headways along one lane only are observed.
In such conditions, the number of very small headways reduces,
the largest number of observed headways being around the value
of the minimum gap. Gerlough and Huber demonstrated the
disagreement between theoretical and observed headways using
the probability density curve, Fig. 4.13.

Because of this disagreement a number of different

distributions have been used which predict fewer small headways.

4,8.2.3 The Shifted Negative Exponential Distribution

This distribution introduces a minimum allowable

headway, t. Equation 4.18 becomes

P(h>t) = e (E-T)/(t-T) (eq. 4.19)
where

t = é the mean headway (sec)

The shifted negative exponential distribution

cumulative curve is shown in Fig. 4.14.

4.8.2.4 Schuhl's Composite Headway Model

Schuhl (1955) proposed a model which assumes some
vehicles in a flow to be in bunches having a minimum headway,
while the rest to flow in a random manner. The probability
of a headway h being less than t is

-t/t -(t-1) /t,~t)
P(h<t) = (1 -g)[1l-¢e ity 601 - e 2777 (eq. 4.22)

where
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0: the proportion of restrained vehicles

: the mean headway of the restrained vehicles (sec)

T: the minimum headway of the restrained vehicles (sec)

Cowan (1975) has proposed that the minimum headway should be

considered as a random variable within the bunches of

restrained wvehicles.

4.8.2.5 The Pearson Type III Distribution

The generalised equation for the Pearson Type III

(or Gamma) distribution is

where

k-1
£(t) = £ (qk)

k -gkt
[ (K) €

(eq. 4.23f

k: a constant

q: the traffic flow (veh/sec)

rk) = z dz : the gamma function

r k-1 -z
z=0

When k is a positive integer TI'(k) = (k-1)! and
k-1

£(t) = & (gk) X &Ikt (eq. 4.24)
(k-1) !

which is the Erlang distribution.

The major advantage of the Erlang distribution is

that it can describe headway distributions ranging from

complete random flow (k=1) to completely regular flow (k=«).

Fig. 4.15 shows four of the Erlang family of curves.

4.8.3 Analysis of Collected Data

The circulating flow data collected at Castle Square

: the mean headway of the free-flowing vehicles (sec)
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Roundabout were analysed to provide both a counting and a
headway distribution. The results are shown in Tables 4.26
and 4.27. The data from Moore Street Roundabout were analysed
to provide just a counting distribution, see Table 4.28.

The observed distributions were examined to establish
if the simpler theoretiéal models, i.e. the Poisson counting,
the negative exponential and the shifted negative exponential
distributions could be used.

Using the observed headway distribution for the Castle
Square data the value of k in the Erlang distribution was

derived. In that distribution k is given by

_ (mean)2
variance

The mean of the distribution was 3.42 sec, the standard

deviation 3.15 sec, and the variance 9.92 secz.

2
3,422 11.696 _
kK = 97— = 597 = 1.173

When this value is rounded to the nearest integer k became 1
and the Erlang distribution was reduced to the negative
exponential. It should also be noted that the ratio (mean/
standard deviation) equalled 1.085, which is very close to
unity.

The observed counting distributions were examined
to establish if the data, when grouped into fifteen second
intervals, are random. Each data point representing the number
of arrivals per 15 sec interval was regressed on the corres-
ponding value for the immediate previous 15 sec interval.

For the data to be random, with 95% conficence, the correlation



103

coefficient of the regression should lie within the range
1.96
Vn

results of the regressions are given in Table 4.29. As can be

s

¢+ Wwhere n is the number of pairs of data points. The

seen the hypothesis for either roundabout cannot be rejected.

The above analysis suggests that the use of the
Poisson counting distribution and either the simple or the
shifted negative exponential interval distribution is suitable
for the traffic conditions observed.

The data were therefore compared with theoretical
distributions using the Xz—test. The two observed counting
distributions were first compared to the theoretical Poisson
counting distribution. In neithér case was the observed
distribution rejected at the 5% level, (see Tables 4.30 and
4.31). However, it was found that the headway distribution at
Castle Square Roundabout could not be accepted as similar to
either a theoretical negative exponential distribution or a
shifted negative exponential distribution with 1 = 0.27 sec
(see Table 4.32). (The figure of 0.27 sec was arrived at as
the difference of the mean and the standard deviation of the
observed distribution and gives a theoretical distribution
having the same mean and variance as the observed distribution
of headways).

Since the analysis so far had proved inconclusive
in suggesting a suitable value for 1, it was decided to use the
simulation program to produce headways based on a shifted
negative exponential distribution. The value of the shift,

T, was input to the simulation together with the other flow
characteristics. The value.of T was varied from 0.0 to 1.0

sec and the circulating flow used was the value obtained at
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the study sites. The headways produced by the simulation were
then analysed to provide counting distributions for each of
the separate values of T. These distributions were then used
as theoretical distributions to compare them with the observed
ones. This method would allow the determination of whether
the best model to descfibe the real flows was the simple
negative exponential or a shifted negative exponential;
furthermore, it should be possible to arrive at a suitable
value for the shift, T.

For Castle Square, three values of 1 were used in the
simulation, 0.00, 0.50 and 1.00 sec. When the observed
counting distribution was compared, the hypothesis that it was
the same as the simulated could not be rejected for the cases
of T=0.00 and T = 0.50 sec, while it was rejected for
T=1.00 sec. For Moore Street, the hypothesis was not
rejected for 1 = 0.00 sec, only; both other cases were rejected..

The simulated flows were then analysed to produce
headway distributions using values of 1 varying from 0.0 to
1.0 sec in 0.1 sec increments. These were compared with the
headway distribution obtained at Castle Square but the
hypothesis that they were similar was rejected for all values
of T. However the ones that came nearest to the wvalue that
would have permitted no rejection were in the region of
T=20.60 - 0.75 sec, contrary to expectations. Inspecting the
results it could be seen that the main contributors to the
difference were the intervals 0 - 1.0 sec and 1.0 - 2.0 sec,
the first two, which contain the smallest offered gaps. This
can be seen in Table 4.32 which shows the Xz—test for two
theoretical exponential distributions and the observed. The

agreement in all other intervals was reasonable.
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From the point of view of which gaps influence the
behaviour of the entry flow, it is obvious that the most
important ones are the ones which would allow vehicles to join
the circulating flow, i.e. the ones larger than the critical
gap. Therefore, the precise distribution of the gaps less than
2 seconds in the two categories would not influence at all the
capacity and delay of the entering vehicles. What is of more
importance is that the total number of gaps in these two
categories combined is similar in both simulated and observed
distributions. Therefore, it was decided to repeat the
Xz-test by combining the first two intervals of the distrib-
utions. The results were radically different from the previous
analysis. The values of 1 for which the hypothesis was not
rejected were in the range of 0.00 to 0.40 sec with the value
of t = 0.20 sec giving the lowest X2 value. As this value
was also the mid-point of the range, it was decided to adopt
T = 0.20 sec as the value to be used in the roundabout

simulation model. (See Table 4.33 for the X2 values obtained

at this stage of the analysis.)



106

TABLE 4.1

No.[ Location of Sites ag B L o
1| Redbridge Roundabout, Southampton 0.9984 1.00 | 3.1631 3.66
2 Millbrook Roundabout, Southampton 0.7868 1.27 1 2.0787 2.71
3 Sports Centre Roundabout, Southampton 0.4579 2.18 | 1.4232 2.52
4| Winchester Road Roundabout, Southampton |[0.7771 1.29 | 2.2733 2.92
5 Hounsdown Roundabout, Southampton 0.6944 1.44 | 2.2335 2.95
6 | Casham Roundabout, Portsmouth 1.0847 0.92 | 1.9960 2.45
7 " " " 0.4735 2.11 {1 0.7166 1.77
8 | Hilsea Roundabout, Portsmouth 1.0095 0.99 | 2.7865 3.28
9 " " " 1.2575 0.80 | 2.0652 2.46
10 | Fareham Roundabout 0.7183 1.39 | 2.0949 2.79
11| Roundabout Hotel, Fareham 0.8422 1.19 | 3.0088 3.60
12 | whitton, London area 0.7350 1.36 | 1.7984 2.48
13 " " " 0.7252 1.38 | 2.0478 2.44
14 " " " 0.8211 1.22 ] 2.2243 2.83
15 » " " 0.9170 1.09 | 2.1710 2.72
16 | A310/316 Junction Roundabout, London area|0.8602 1.16 | 1.9632 2.54
17 " " " " 0.7656 1.31 | 2.3876 3.04
18 " " " " 0.7650 1.31 | 2.0720 2.73
19 " " " " 0.6468 1.55 | 1.8935 2.67
20 | Turk's Head Roundabout London area 0.7538 1.3311.9621 2.63
21 " " " " 0.9713 1.031}2.9132 3.43
22 " " " " 0.6489% 1.54]1.9166 2.69
23 " " " " 0.6353 1.57 { 1.7402 2.53
24 Stoke Roundabout, Guildford 0.8059 1.24 | 2.0173 2.64
25 Stoke Roundabout, Guildford 0.6899 1.45 ] 3.1383 3.86
26 | Tite Hill Roundabout, Surrey 0.3699 2.70 | 2.3442 2.70
27 | Runnymede Roundabout, Surrey 0.9174 1.09 | 2.0177 2.56
28 | Crooked Billet Roundabout, London area 1.3457 0.74 | 2.0154 2.39
29 " " " " 1.2693 0.79 | 2.3913 2.79
30 " " " " 1.0287 0.97 | 1.4641 1.95
31 " " " " 0.8394 1.19 | 2.2579 3.15
32 Bedfont Roundabout, London area 0.8726 1.15 | 1.9767 2.55
33 " " " 0.8191 1.22 {1.8316 2.44
34 | Thames Ditton Roundabout, London area 0.4236 2.36 § 2.2808 3.46
35 | Nottingham Roundabout 1.0244 2.41 | 0.9762 2.90
36 | Durham Roundabout 0.4939 2.04 | 2.0247 3.05
37 Blue House Roundabout, Newcastle 0.7890 2.6111.2674 3.24
38 | TRRL Test Track Experiment 0.2893 2.68 | 3.4566 4.40
39 " " " " 0.3575 3.42 1 2.7972 4,22
40 " " " " 0.5177 2.83 | 1.9316 3.79
4] " " 0.6180 1.62 | 2.2360 3.05
42 " 0.3217 3.11 | 2.2190 3.77
43 " 0.3795 2.64 | 2.5417 3.86
44 " 0.6190 1.62 | 2.4613 3.27
45 " 0.9025 1.11§{1.7072 2.26
46 " 0.5149 1.94 | 1.5258 2.50
47 " 0.4616 2.17 | 1.8218 2.91
48 " 0.9707 1.03 | 2.6552 3.17
49 " 0.9289 1.08]2.2902 2.83
50 " 0.7027 1.42 11.9442 2.66
51 " 0.8300 1.20 | 1.9547 2.56




107

TABLE 4.1 (continued)

No.| Location of Sites qS B L o

52 T.R.R.L. Test Track 1.0670| 0.94 | 1.6174 2.09
53 " 0.9028 | 1.11]1.5891 | 2.14
54 " 0.8777 1.14 ] 1.5116 2.08
55 " 0.8300 1.20}1.5731 2.18
56 " 0.9592 1.04 | 2.2080 2.75
57 " 0.9694 1.03 ] 2.3797 2.90
58 " 1.0568 0.95 | 2.187 2.66
59 " 1.2013 0.83 ]| 2.0239 2.44
60 " 1.0153 0.98 11.93377} 2.43
6l " 0.9701 1.03 11.7645 2.28
62 " data of last site not available

Table 4.1 The sites studied by Armitage and McDonald and the results
of the regression on the collected data
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TABLE 4.4
o B
mean st.dev. mean st. dev.
all values 3.793 0.437 2.858 0.378
(i)
excluded top 3.457 0.212 3.158 0.207
all values 4.125 0.283 2.681 0.273
(ii)
excluded top 4.003 0.243 2.781 0.261

TABLE 4.4 Comparison between predictiors based on the inclusion
and exclusion of top values and on two definitions

of the dependent variable;

set (i) assumes as dependent variable the number of
entries .

set(ii) assumes as dependent variable the size of
the gaps

initial values o = 4.01 sec B8 = 2.77 sec g = 0.44 veh/sec
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Table 4.5
NT TN
B o B o
1 2.95 3.17 2.89 3.34
2 2.94 3.17 2.86 3.39
3 2.68 3.71 2.65 3.83
4 2.95 3.20 2.92 3.33
5 2.88 3.23 2.79 3.47
6 3.04 2.89 3.02 3.02
7 2.89 3.30 2.84 3.48
8 2.87 3.25 2.86 3.35
9 2.86 3.54 2.82 3.70
10 2.87 3.41 2.72 3.72

Gap- acceptance parameters estimated by linear
models initial value a = 3.50 sec,B = 2.80 sec,
g = 0.26 veh/sec
NT: N, dependent; T, independent variables

TN: T, dependent; N, independent variables

N: the number of entering vehicles per gap

: the length of the gap (sec)

B: move-up time (sec)

a: critical gap (sec)

g: circulating flow (veh/sec)

both methods of analysis were weighted linear models
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TABLE 4.6
NT TN
B o B o
1 2.07 2.27 2.04 2.36
2 1.91 2.56 1.87 2.68
3 1.88 2.61 1.81 2.78
g 4 2.04 2.17 2.04 2.22
. 5 2.03 2.46 1.93 2.69
6 1.85 2.79 1.82 2.93
7 1.84 2.74 1.80 2.86
8 1.99 2.47 1.94 2.65
9 2.19 2.09 2.17 2.19
10 2.09 2.24 2.05 2.36

Gap-acceptance parameters estimated by linear
models. initial value o = 2.50 sec,B = 2.00 sec,
qg = 0.35 veh/sec
method of analysis (both weighted linear models)
NT: N, dependent, T, independent variables
TN: T, dependent, N, independent variables

N: the number of entering vehicles per gap

T: the length of the gap (sec)

a: move-up time (sec)

B: critical gap (sec)

g: circulating flow (veh/sec)
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TABLE 4.7

mean st.dev. | mean st.dev.

NT 2.44 0.240 1.99 0.116
(1)
TN 2,57 0.267 1.95 0.125
NT 3.29 0.225 2.89 0.093
(ii)
TN 3.46 0.237 2.84 0.104
TABLE 4.7 Comparison between predictions

Mean and standard deviation of predictions using

weighted least squares analysis

Two sets of initial values

(i) o = 2.50 sec,B = 2.00 sec,q = 0.35 veh/sec

(ii) a = 3.50 sec,B = 2.80 sec,q = 0.26 veh/sec

Two definitions of dependent/independent variables

NT: number of entries (N), dependent; gap sire (T)
independent '

TN: gap size (T), dependent, number of entries (N),
independent
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TABLE 4.8
WRNT SRTN . SRNT
B a 3] o B o
1 2.54 2.84 2.73 2.52 2.45 2.80
2 2.33 3.26 2.62 2.66 - | 2.39 2.90
3 2.25 3.35 2.69 2.60 2.39 2.91
4 2.56 2.58 2.61 2.69 2.46 2.86
5 2.42 3.16 2.78 2.51 2.52 2.77
6 2.74 2,75 2.89 2.48 2.62 2.74
7 2.23 3.47 2.81 2.60 2.43 2.95
8 2.42 3.16 2.71 2.55 2.50 2.76
9 2.71 2.63 2.85 2.42 2.61 2.66
10 2.54 2.92 2.83 2,48 2.50 2.79
11 2.51 2.91 2.82 2.41 2.53 2.69
12 2.53 2.92 2.83 2.45 2.49 2.75
13 2.63 2.82 2.71 2.58 2,52 2.79
14 2.51 3.03 2.78 2.51 2.55 2.75
15 2.40 3.07 2.65 2.58 2.44 2.81
16 2.75 2.68 2.98 2.32 2.56 2.70
17 2.50 2,95 2.72 2.59 2.49 2.81
18 2.47 3.07 2.72 2.51 2.46 2.79
19 2.54 2,93 2.73 2.53 2.50 2.79
20 2.40 3.46 2.77 2.53 2.57 2.73
TABLE 4.8 Gap-acceptance parameter estimation

Input balues a = 3.00 sec,B = 2.50 sec,q = 0.30 veh/sec
Methods of analysis (simple linear models)
WRNT: weighted, N: dependent, T: independent variables
SRTN: unweighted, T: dependent, N: independent variables
SRNT: unweighted, N: dependent, T: independent variables

N: the number of entering vehicles per gap

T: the length of the gap (sec)

B: move-up time (sec)

0 critical gap (sec)

g: circulating flow (veh/sec)
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TABLE 4.9

WRNT SRTN SRNT

] o 3] o B o
1 2.42 3.33 2.51 2.89 2.60 2.74
2 2.44 3.13 2.49 2.84 2.57 2.71
3 2.50 2.91 2.46 2.91 2.58 2.76
4 2.63 1.85 2.50 2.87 2.56 2.76
5 2.52 3.01 2.52 2.90 2.60 2.77
6 2.60 2.63 2.48 2.92 2.57 2.77
7 2.42 3.07 2.47 2.79 2.58 2.63
8 2.52 2.97 2.52 2.81 2.60 2.67
9 2.48 3.26 2.52 2.90 2.59 2.78
10 2.44 3.16 2.46 2.93 2.57 2.79

TABLE 4.9 Gap-acceptance parameter estimation

Input values a = 3.00 sec, B = 2.50 sec,g = 0.20 veh/s
Method of analysis (all simple linear models)
WRNT: weighted; N: dependent, T: independent variables
SRTN: unweighted; T: dependent, N: independent variables
SRNT: unweighted; N: dependent, T: independent variables

N: the number of entering vehicles per gap

T: the length of the gap (sec)

B: move-up time (sec)

a: critical gap (sec)

g: circulating flow (veh/sec)



116

TABLE 4.10
WRNT SRTN SRNT
B o B o B o
1 2.07 2.27 1.96 2.34 2.19 2.11
2 1.91 2.56 1.91 2.41 2.11 2.22
3 1.88 2.61 1.94 2.39 2.20 2.13
4 2.04 |.2.17 1.98 2.39 2.10 2.25
5 2.03 2.46 2.03 2.36 2.25 2.14
6 1.85 2.79 1.97 2.40 2.17 2.19
7 1.84 2.74 1.97 2.41 2.29 2.12
8 1.99 2.47 2.00 2.33 2.17 2.16
9 2.19 2.09 2.08 2.24 2.26 2.05
10 2.09 2.24 1.97 2,32 2.23 2.08

TABLE 4.10 Gap-acceptance parameter estimation

Input values o = 2.50 sec;B = 2.00 sec;q = 0.35 veh/s
Methods of analysis (all simple linear models)
weighted; N: dependent, T:
unweighted; T: dependent, N:independent variables
unweighted, N: dependent, T: independent variable:
N: the number of entering vehicles per gap

WRNT :
SRTN:
SRNT:

independent wvariables

T: the length of the gap (sec)

B: move-up time (sec
a: critical gap (sec)

g: circulating flow (veh/sec)
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TABLE 4.11

WRNT SRTN SRNT
B o B o B o

2.61 3.99 2.64 3.74 2.85 3.51
2.93 3.46 2.77 3.56 3.05 3.26
2.68 3.98 2.75 3.58 2.98 3.31
2.62 4,27 2.77 3.58 2.94 3.39
2.86 3.67 2.75 3.73 2.95 3.50
2.64 4.01 2.71 3.65 3.00 3.35
2.97 3.39 2.79 3.71 2.96 3.49
2.82 3.63 2.75 3.60 2.97 3.36
2.82 3.62 2.70 3.73 2.92 3.47
2.76 4.08 2.88 3.57 3.11 3.30

O WOoO~JOUId WN -

(=]

TABLE 4.11 Gap- acceptance parameter estimation
Input values o = 3.85s,8 = 2.75s, g = 0.26 veh/s
Method of analysis (all simple linear models)
WRNT: weighted, N: dependent, T: independent variables
SRTN: unweighted, T: dependent, N: independent variables
SRNT: unweighted, N: dependent, T: independent variables
N: the number of entering vehicles per gap
T: the length of the gap (sec)
B: move-up time (sec)
o: critical gap (sec)
g: circulating flow (veh/sec)
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TABLE 4.12 Gap-

TABLE 4.12
WRNT SRTN SRNT
B o B o B o
1 2.95 3.17 2.82 3.29 3.08 3.02
2 2.94 3.17 2.87 3.12 3.12 2.84
3 2.68 3.71 2.77 3.32 2.94 3.12
4 2.95 3.20 2.78 3.40 3.01 3.14
5 2.88 3.23 2.81 3.21 3.08 2.92
6 3.04 2.89 2.85 3.26 3.06 3.01
7 2.89 3.30 2.82 3.36 3.05 3.11
8 2.87 3.25 2.79 3.33 3.03 3.06
9 2.86 3.54 2.90 3.23 3.14 2.95
10 2.87 3.41 2.87 3.25 3.24 2.88

acceptance parameter estimation

Input values a =3.50s,B= 2.€0, g = 0.26 veh/s
Methods of analysis (all simple linear models)

WRNT
SRTN
SRNT

N
T
B:
a
q

: weighted; N: dependent; T: independent variables
: unweighted; T: dependent; N: independent variable
unweighted; N: dependent; T: independent variable
: the number of entering vehicles per gap

: the length of the gap (sec)

move-up time (sec)

: critical gap (sec)

¢ circulating flow (veh/sec)
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TABLE 4.13

mean st.dev. | mean ’ st.dev

NT 2.15 0.062 2.20 0.062
(1)
TN 2.36 0.053 1.98 0.047
NT 3.01 0.104 3.08 0.081
(ii)
TN 3.28 0.081 2.83 0.043
TABLE 4.13

Mean and standard deviation of predictions
using unweighted least squares analysis
Two sets of initial wvalues -
(i) o = 2.50 sec,B = 2.00 sec,g = 0.35 veh/sec
(ii) o = 3.50 sec,B = 2.80 sec,g = 0.26 veh/sec
Two definitions of dependent/independent variables
NT: number of entries (N), dependent; gap size
(T) , independent
TN: gap size (T), dependent; number of entries
(N) , independent
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TABLE 4.14

T on N Non T

B mean 2.450 2.385
st.dev. 0.102 0.097

0 mean 2.832 3.024
st.dev. 0.238 0.225

TABLE 4.14 Mean predictions using reduced sample size of
200 gaps per group
Input value a = 2.95s,8 = 2.42 sec, g = 0.20 veh/sec

TABLE 4.15

T on N NonTT

B mean 2.430 2.389
st.dev. 0.093 0.094

o mean 2.882 3.024
st.dev. 0.229 0.213

TABLE 4.15 Mean prediction using sample size 500 per group
Same input values as in Table 4.14
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TABLE 4.16
no.of entries on gap size gap size on no. of entries
group a B a B
1 2.91 2.71 3.34 2.60
2 3.37 2.63 3.48 2.59
3 3.40 2.49 3.63 2.40
4 3.38 2.50 3.56 2.45
5 3.56 2.42 3.68 2.40
6 3.07 2.65 3.41 2.57
7 3.30 2.52 3.67 2.39
8 3.85 2.27 3.95 2,25
9 3.66 2.34 3.98 2.25
10 3.49 2.47 3.80 2.37
11 3.29 2.48 3.37 2.47
12 3.17 2.65 3.44 2.56
13 3.14 2.59 3.38 2.54
14 3.50 2.44 3.74 2.38
15 3.47 2.53 3.73 2.45
16 3.72 2.41 3.87 2.37
17 2,93 2.65 3.31 2.56
18 2.78 2.69 2.96 2.67
19 3.40 2.46 3.74 2.33
20 2.98 2.65 3.34 2.54
TABLE 4.15 Results of applying proposed method on simulation

data that involve normally distributed values of
the gap acceptance parameters

Input values

0: mean
R: mean

3.50 sec, standard deviation 0.50 sec
2.50 sec, standard deviation 0.25 sec

)
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TABLE 4.17

T on N NonT T

B mean 2.53 2.46
st.dev. 0.122 0.118
o mean 3.32 3.57

st.dev. 0.287 0.255

Input values

B o
l
mean 2.50 3.50
st. dev 0.25 0.50

TABLE 4.17 Overall averages of the results of applying
proposed method on simulation data assuming
gap acceptance parameters to be normally
distributed.
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TABLE 4.18

1.98 C.427 [ 2.34 3.15
2.02 0.429 |2.33 3.1¢
2.05 0.431 [2.32 3.21
1.98 0.419 {2.39 3.17
2.00 0.421 (2.38 3.19
1.83 0.396 | 2.53 3.09
2.09 0.426 | 2.35 3.26
1.97 0.422 | 2.37 3.16
1.89 0.405 | 2.46 3.12
10 2.00 0.420 | 2.38 3.19
11 1.90 0.418 | 2.39 3.10
12 2.07 0.434 12.31 3.22
13 1.99 0.418 | 2.39 3.19
14 2.05 0.422 | 2.37 3.24
15 1.92 0.422 [ 2.37 3.11
16 2.00 0.420 | 2.38 3.19
17 1.98 0.418 [ 2.39 3.19
18 1.90 0.415 | 2.41 3.10
19 1.99 0.422 | 2,37 3.18
20 2.09 0.421 { 2.37 3.281

O 00~ U 0N =

TABLE 4.18 Gap-acceptance parameter estimation
Input values o =3.00 sec, 8 = 2.50 sec,q = 0.30 veh/sec
Method of analysis Armitage and McDonald
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TABLE 4.19
L dg B o
1 1.99 0.410 | 2.43 3.21
2 1.80 0.405 | 2.47 3.03
3 1.89 0.411 | 2.43 3.11
4 1.79 0.402 | 2.49 3.03
15 1.90 0.404 | 2.47 3.13
6 1.89 0.406 | 2.46 3.12
7 1.80 0.411 | 2.44 3.02
8 1.79 0.401 | 2.49 3.04
9 1.90 0.404 | 2.48 3.13
10 1.98 0.414 | 2.41 3.19

TABLE 4.19 Gap-acceptance parameter estimation

Input values o = 3.00 sec,B = 2.50 sec,q = 0.20 veh/s
Method of analysis Armitage and McDonaid
TABLE 4.20
L qS B . o

1 1.70 0.54 1.87 2.63

2 1.69 0.53 1.88 2.63

3 1.70 0.53 1.89 2.64

4 1.69 0.52 1.92 2.65

5 1.70 0.52 1.93 2.66

6 1.69 0.52 1.91 2.64

7 1.69 0.52 1.92 2.65

8 1.68 0.52 1.91 2.63

9 1.69 0.52 1.93 2.66
10 1.70 0.53 1.88 2.64

TABLE 4.20 Gap-acceptance parameter estimation
Input values o = 2.50 sec,B = 2.00 sec = 0.35 veh/s

g
Method of Analysis Armitage and McDonald®
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TABLE 4.21
L dg B o
1 2.74 0.387 | 2.58 4.03
2 2.64 0.377 | 2.65 3.87
3 2.64 0.378 | 2.65 3.96
4 2.63 0.376 | 2.66 3.96
5 2.64 0.370 }2.70 3.99
6 2.75 0.383 | 2,61 4.06
7 2.73 0.371 | 2.69 4,08
8 2.75 0.385 | 2.60 4.05
9 2.69 0.377 |2.65 4.02
10 2.64 0.365 12.74 4.01

TABLE 4.21 Gap-acceptance parameter estimation
Input values o = 3.85s,B = 2.75s, q = 0.26 veh/s
Method of Analysis Armitage and McDonald

TABLE 4.22
L dg B o
1 2.30 0.367 | 2.72 3.66
2 2.19 0.366 | 2.73 3.56
3 2.39 0.377 | 2.65 3.72
4 2.30 0.364 | 2.74 3.67
5 2.30 0.373 | 2.68 3.64
6 2.29 0.363 | 2.75 3.67
7 2.39 0.369 | 2.71 3.74
8 2.30 0.367 4 2.72 3.66
9 2.29 0.361 | 2.77 3.68
10 2.28 0.363 1} 2.75 3.66

TABLE 4.22 Gap-acceptance parameter estimation
Input values a = 3.50s, B = 2.80s,qg = 0.26 veh/s
Method of Analysis Armitage and McDonald
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TABLE 4.23
AMM WRNT SRTN SRNT
input
values |mean st.dev.| mean st.dev mean st.dev. | mean st.dev.
q 0.30
0 3.00 3.18 0.053 3.00 0.256 2.73 0.074 2.53 0.087
B 2.50 [2.38 | 0.048 2.50 0.143 2.50 0.064 2.76 0.092
q 0.20
0 3.00 |3.10 | 0.069 2.93 0.428 2.88 0.048 2.74 0.052
B 2.50 (2.46 | 0.028 2.50 0.073 2.49 0.025 2.58 0.013
q 0.35
0 2.50 [2.64 0.012 2.57 0.267 2.36 0.053 2.15 0.062
B 2.00 (1.90 | 0.022 1.95 0.125 1.98 0.047 2.20 0.062
q 0.26
0 3.85 [4.01 | 0.043 3.81 0.293 3.65 0.075 3.39 0.092
B 2,75 |2.65 0.049 2.77 0.130 2.75 0.063 2.97 0.071
q 0.26
o 3.50 |3.67 0.048 3.46 0.237 3.28 0.081 3.01 0.105
B 2.80 [2.72 0.036 2.84 0.104 2.83 6.043 3.08 0.081
TABLE 4.23 Comparison of predictions by various methods
AMM: Armitage and McDonald
WRNT: weighted linear model, number of entries (N) dependent variable
SRTN: unweighted linear model, gap size (T) dependent variable
SRNT: unweighted linear model, number of entries (N) dependent variable
g: circulating flow (veh/sec)
0: critical gap (sec)
B: move-up time (sec)
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TABLE 4.25
Site Lane B (sec) o (sec)
NO.
Moore St. Roundabout 1 1.77 2.82
Ecclesall Rd entry 2 1.59 2.72
3 1.68 2.80
Castle Sg Roundabout 1 2.60 3.75
Arundel Gate entry 2 2.59 3.22
Park Square Roundabout 1 1.89 3.50
Corn &xchange entry 2 2.18 3.42
3 2.19 3.10

TABLE 4.25 Results of analysis of gap acceptance data
from observations at public sites in Sheffield

The lane numbers start at the offside and increase
as they approach the nearside lane

All three sites had one more lane, the nearside
one, which did not provide adequate data to be
analysed
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TABLE 4.26
Time interval. (sec) Observed Frequency
0.00-1.00 52
1.01-2.00 162
2.01-3.00 84
3.01-4.00 43
4.01-5.00 32
5.01-6.00 21
6.01-7.00 26
7.01-8.00 15
8.01-9.00 10
9.01-10.00 11
>210.01 19

Table 4.26 Castle Square Roundabout Observed frequency of
headways in circulating flow

TABLE 4.27

Arrivals per 15 sec interval Observed Frequency

1
7
18
16
25
23
12
11
7

oAU WNEKO

v

TABLE 4.27 Castle Square Roundabout Observed frequency of
arrivals per 15 sec interval in circulating flow
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TABLE 4.28

Observed Frequency

VCodoubdwbh+=O

— —
CLOUVOANHHOOOO

TABLE 4.28 Moore Street Roundabout Observed frequency of
arrivals per 15 sec interval in circulating flow

Site

TABLE 4.29
No. of groups +1.96 regressesion correlation coefficient
vn
Castle Square Roundabout 60 +0.25 -0.05
Moore Street Roundabout 54 +0.27 0.10

TRABLE 4.29 Checking for Randomness in the Circulating Flow Data
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TABLE 4.30
No. of Poisson Expected Observed 02/E
passing Probab. Frequency Frequency
vehicles
0. 0.0123 58.0 1 58
1 0.0540 7
2 0.1188 14.3 18 22.7
3 0.1743 20.9 16 12,2
4 0.1917 23.0 25 27.2
5 0.1687 20.2 23 26.2
6 0.1237 14.8 12 9.7
7 0.0778 9.3 11 13.0
28 0.0787 9.4 7 5.2
1.0000 119.9 120 123.8
df = 7 x% = 3.8 < 12.59 @ 0.05%

TABLE 4.30 X2 test, Poisson counting distribution

with Castle Square Roundabout data



132

TABLE 4.31
No. of Poisson Expected Observed Oz/E
passing Probab. Frequency Frequency
vehicles
0 0.0000 " 0 4
1 0.0002 0
2 0.0012 0
3 0.0043 S.4 0 20.9
4 0.0116 1
5 0.0250 n 1 v
6 0.0450 12
7 0.0694 7.5 6 4.8
8 0.0936 10.1 8 6.3
9 0.1124 12.1 15 18.6
10 0.1214 13.1 9 6.2
11 0.1192 12.9 8 5.0
12 0.1072 11.6 10 8.6
13 0.0851 9.6 14 20.4
14 0.0687 7.4 10 13.5
215 0.1317 14.2 14 13.8
1.0000 108 108 118.1
df = 10 x? = 10.1 < 15.51 @ 0.05%

TABL/ 4.31 xz-test Poisson counting distribution with
Moore Street Roundabout data
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TABLE 4.33
2
T (sec) X af
0.00 11.36 8
0.10 10.47 7
0.20 10.20 7
0.30 10.67 7
0.40 12.00 7
0.50 14.37 7
0.60 17.19 6
0.70 22.50 6
0.80 29.71 6
0.90 39.28 6
1.00 51.87 6
Acceptance @ 5% Xg.ob = 14.07 for 7 degrees of freedom

TABLE 4.33 xz-test;,Simulated headway distributions and
Castle Square Roundabout data
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CHAPTER 5

THE SIMULATION PROGRAM
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5.1 Introduction

Computer simulation models have been developed ever
since general-purpose computers became readily available in the
mid-50's. Short historical summaries are given by Lewis and
Michael (1963) and Gerlough and Huber (1975). Lewis and
Michael reported that already in 1956, three digital computer
simulations were published in the traffic engineering literature.

Drew (1968) defined computer simulfaltion as a dynamic
representa£ion of some part of the real world, achieved by
building a computer model énd moving it through time. The térm
computer model denotes a model which is not intended to be
solved analytically but rather to be simulated on an electronic
computer.

Simulation is a working analogy. It involves the
construction of a working model presenting similarity of prop-~
erties or relationships to the real problem under study. Thus
complex traffic situations can be studied in the laboratory
rather than the field. This allows the study of longer periods
than it would@ be possible in reality; the repetition of certain
combinations of relevant parameters with only slight modifications
to determine the precise contribution to the problem of each
parameter; and the comparison of alternative solutions for

specific problems without the expense of in-situ long-term

testing.

5.2 Generation of Random Numbers

One of the most important features of simulating
traffic is the ability to generate random events. Such a

generation takes place in two steps: First, a random number
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following a uniform (rectangular) distribution is generated.
Second, this random number is treated as a probability to
substitute into an appropriate distribution function in order
to solve for the associated event. (Gerlough and Huber, 1975;
Gordon, 1969). |

Any phenomenon whose behaviour is not predictable by
any obvious deterministic law and whose numerical values satisfy
several tests of randomness, to ensure, for example, that each
decimal digit occurs with equal frequency without any serial
correlation, is accepted as random. Programs for computers can
be written which will output a sequence of numbers which satisfy
the various statistical tests of randomness that have been
devised. Random numbers generated in a non-random fashion are
called pseudorandom numbers.

The following is such a process. An assumed starting
number, Ro’ is multiplied by an appropriate multiplier, k.
The remainder of the division by an integer M is the next
random nymber, Rl' which is used to generate a subsequent

random number. The relationship can.be expressed as

R = kR mod M (eg.5.1)

m m-1
The above will give a sequence of pseudorandom numbers in the
range 1 to (M-1). Ro must be an odd integer in the range
l to (M-1). If the numbers of the sequence are divided by M
they will give a sequence of random fractions in the region
0 to 1. The cycle of random numbers is repeated after M/4
operations.of equation 5.1.

The following is an example of the operation of the

routine. If the initial values of the parameters are: k = 5,
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=
il

w
=
1l

16, then

1 = 5 * 5 mod 16

Il
[le]

5 * 13 mod 16 = 1

R
R2 5 % 9 mod 16 = 13
Ry
R

4 = 5 * 1 mod 16 = 5
The length of the cycle can be increased to such a
value that would not allow any periodicity to the generated
numbers to be observed. However, this value may be limited by
the maximum integer value the computer accepts.
One advantage of the pseudorandom processes is that
if the same initial number is used the same sequence will result.

Thus, exactly the same traffic flow conditions can be tested

for each modification of the simulated system.

5.3 Production of the Desired Random Variate

Figure 5.1 shows how the pseudorandom fractions can
be converted to the desired distribution. The figure shows
the cumulative probability distribution of variable X. The
fraction generated by the method described above is interpreted
as a probability and is used as an argument to enter the dis-
tribution giving the value of X as the function.

As an example, consider the conversion to a shifted

negative exponential distribution. The cumulative form F(t) =

P(h £ t) is:
F(t) = 1 - e~ (E-T)/(t=T) (eq. 5.2)
where t: the mean headway (sec)

t: headway (sec)

T: the shift (sec)
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Let F(t) = r, the random fraction in the range O to 1. Taking

logarithms of both sides of equation 5.2

= loge(l -r) = logeR

R=1-1r is equally random in the range O to 1.

Solving the above for t

r’.
i

T+ (€t - 1) (-logeR)

t = 14+ (E-1) (loge%{) (eq. 5.3)

Equating T with O, equation 5.3 reduces to the negative

exponential distribution

1
e 3 (eg. 5.4)

5.4 The Program SIMC

The current prcject is an improvement of a simulation
model built previously (Natsinas, 1979). That model simulated
a flared entry to a roundabout but did not take into account
vehicle turning movements. This section will describe briefly

that model, called SIMC.

The assumptions incorporated in the model SIMC were:

1. The circulating flow is a negative exponential
distribution.
2. The layout of the simulated entry consists of a two

lane approach road flaring to four lanes at the stop line. Thus
the row of yvehicles at the stop line has 4 positions, the second
row from the stop line has 3 positions, while subsequent rows

have 2 positions.

3. There is a 2 sec minimum headway for each lane of the
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approach road resulting in a maximum gaow of 1800 veh/hf/lane.
4, All entry vehicles have the same critical gap,
ALPHA, and the same move~up time, BETA.
5. All vehicles are passenger cars.
6. Vehicles are assigned at the approach lanes without
consideration of their turning movements.
7. Queueing vehicles move into the flare only from the
feuiately adjoining approach lane.
8. Queueing vehicles can move either only forward or
forward and sideways simultaneously. They move sideways as
many lanes as rows they move forward.
9. When queﬁeing vehicles move sideways through one or
nore rows they take the same time as when they move only forward
through the same number of rows.
10. The available positions in the flare are filled only
after the entering flow has stopped, i.e. when the entering flow
is not inhibited by circulating vehicles the extra places of the
flare are not utilised.

The program of SIMC consisted of a MASTER segment and
a SUBROUTINE RANDOM which generates the pseudorandom fractions.
The program was written in FORTRAN IV to be run on the ICL 1906E€
computer at the University of Sheffield.

The MASTER segment consisted of the following main

parts, divided according to the function they performed:

1. Generation of circulating and entering vehicles.
2. Assignment of a position in the queue of entering
vehicles.

3. Assignment of the earliest departure time.

4, Check of possibility of entry.
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5. Entering or alternatively updating of the departure
time.
6. Moving-up of wvehicles remaining in the queue at the

end of a gap.

7. Calculation of parameters of interest, 'figures of
merit’'.

The output consisted of the capacity, the average delay over

the simulated period and the entries per lane.

5.5 The Development of SPHT

The model developed previously, SIMC, did not take
into account turning movements. The implication of this assump-
tion is that any generated vehicle could be assigned at any
position of the entry, resulting in lower delays and, possibly,
higher capacities that expected. Introducing realistic modelling
of turning movemert could extend the usefulness of the model in
the region of flows when the junction operates under or near
capacity. It is in that region that average delay is more likely
to be affected by turning movements. Further, the inclusion
of turning movements would allow differentiation of the delay
suffered by each traffic stream. The previous version allowed
only one overall average delay estimation. Such a value is
likely to be exceeded significantly for vehicles performing
specific turning movements.

In developing SPHT the following assumptions, upon
which SIMC was based, were retained: 2 - 5, 8 and 9 (see
section 5.4).

The following assumptions were made about turning

movements:
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1. The entering vehicles can turn right, left or follow
a straight through direction. This would imply that the entry
forms part of a roundabout with at least 4 arms.
2. Straight through vehicles can use both approach lanes,
right turning only the offside, and left turning only the near-
side lane.
3. At the flared part of the entry, straight through
vehicles can use all lanes at the row before the stop line,
but only the same lanes at the stop line, i.e. they can not use
the nearside flared posit:".on. Right-turning vehicles can use
only the offside lane. Left-turning vehicles can use only the
extra lanes provided by the flare, i.e. they can use one lane at
the row before the stop line and two lanes at the stop line.
4, Each vehicle has a preference in the order of lanes
it can occupy at each row (if it is allowed to choose from more
than one position). This preference order depends on what
turning movement the vehicle is assigned. Right turning vehicles
are not affected by this as they are allowed only at the offside
lane. For straight through vehicles, it implies that when there
is a high right-turning proportion they would use, mostly, the
second lane along from the offside. Left-turning vehicles
prefer to follow the nearside positions along the whole entry,
both at the approach portion and at the flared part.
5. The distribution of circulating traffic was assumed
to be shifted negative exponential.

Some further aspects of the model are mentioned below:
(a) The method of simulation was of the event scanning
type. This resulted in more complex logic but permitted faster
_runs on the computer, especially for conditions of high

circulating and demand flows.
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(b) Three in.itial numbers for the pseudorandom fraction
generating routine were used. This allowed the production of
three completely different pseudorandom fractions sequences used
to generate the circulating flow vehicles, the demand flow
vehicles, and the assignment of turning movement to each demand
flow vehicle.

'(c) Each demand flow vehicle was assumed to have arrived
when it was generated. The time of arrival could be the time of
its entry into the circulating flow had there not been any delay
due to congestion.

(d) The model does not take into account the delay of the
vehicles remaining in the queue at the end of the simulation
period. Thus, the average delay estimates refer to the delay of
the vehicles which entered during the period of simulation.

(e) ' The simulated period, during which measurements were
taken, was 3600 sec. The complete simulated period was 3900 sec,
which allowed 300 sec of initial transient time used to develop
the demand and entry queue.

(f) The nature of simulation does not allow the exact
production of the requested traffic conditions. The circulating
flow generated differs from the one input into the model.
Similarly the input proportion of turﬁing movements is different
from the proportions as simulated. This aspect of the simulation
is developed further in the following Chapter. It should be
mentioned that validation of the modelled effect of the turning
proportions on roundabout performance is very difficult as such
observations in public road sides are almost impossible.

(g9) The program was written in FORTRAN IV - 1966 to be run
on the PRIME-750 A computer of the University of Sheffield.

The final version of the model, the simulation of 3900 sec of
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real time would take 10 to 40 sec
the volume of the circulating and
proportions.

5.6 Description of SPHT

A simplified flow chart

shown in Fig. 5.2. SPHT consists
routine RANDOM.

The MAIN segment can be
according to their function:
(a) Generation of
and cumulative headways
(b) Generation of

The turning movement of

circulating vehicles.

of CPU time depending on

demand flow and on the turning

of the simulation program is

of a MAIN segment and sub-

divided in the following parts

The individual

of the circulating vehicles are calculated.
entry vehicles and turning movements.

the vehicle is established using the

same random generating algorithm as for generating the circul-

ating and entering vehicles. The
entering headways are calculated.

(c)

Assignment of position and departure time.

individual and cumulative

The turning

movement of the entering vehicle determines the position of the

vehicle in the queue.

The position associated with the

earliest departure time is the one preferred by the entering

vehicle.

(d) Entry check.

The departure times are compared with

the arrival time of the next circulating vehicle and the number,

if any, of possible entries is noted.

(e)

Updating of departure times.

Any queueing vehicle

which refuses an offered gap has its departure time updated to

account for the incurred delay.

()

Moving-up sequence.

When the junction operates at or

above capacity, most gaps that are accepted by some queueing
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vehicles are not of such length to allow the complete discharge
of the queue. 1In cases when vehicles remain in the queue this
sequence moves them forward and re-—assigns them in new positions
depending on their turning movement.

(g9) Calculations. These are performed in two positions.
After each vehicle enters into the circulating flow, its
individual delay and other relevant characteristics are computed.
The overall figures are calculated after the simulation period
has ended.

Subroutine RANDOM generates the pseudorandom fractions
required to generate the circulating and entering vehicles as
well as the turning movement of the entering vehicles. Each sequence
is initiated by a different initial value, therefore each one is
different and can be varied independently gy the other two.

5.7 Input and Output of SPHT

The input consists of the following parameters:
Ql: the circulating flow (veh/hr);

Q2: the demand flow (veh/hr);

TAU: the minimum circulating headway (sec):
ALPHA: the critical gap (sec);

BETA: the move-up time (sec);

I9, J9, K9: initial numbers for the pseudorandom
fraction sequences;

NS: duration of simulation (sec);

AN: the number of position of the first row;

AP: the number of positions per row before the flare;
AL: the number of rows over which the flare is
developed;

OTL: a parameter, in seconds, which determines whether
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and at what simulated time detailed output should be
produced,; detailed output was used to check the working
of the program;

PR, PS, PL: the proportions of ‘the turning movements;
LNM: a 3-dimensional array describing the preferred

positions per row of each turning movement.

The output from the program could be detailed when
any modifications were carried out. This allowed thorough
checking of the performance after each modification. The final
calculations include the average delay per lane, per turning
movement and overall, the capacity of the entry, the number of
entries per lane and turning movement, and the number of

circulating vehicles.



X or Less

o
o

Probability of

o
@

o
b

[=}
tn

15
>

03

0.2

0.

1 1

157

Value of R

Random Fraction

Value of X
Corresponding to
Random Fraction

Variabie X
Generalized cumulative probability distri-
bution.

Figure 5.1



[Iggtidl va]uesl
Y

generation of

one .circulating
. venicle

generation of one
entering vehicle

158

A

& turning movement

entering
venicle arrive
after the
circulating

T NO

assign position in
queue and estimate
the earliest departure
tinme

entering
venicle enter

during current
gap
?

calculations

vehicles
left in
queue

—«

update the
departure times

YES

move-up sequence

Ifinal calculations %

Figure 5.2 Flow chart of SPHT



159

CHAPTER 6

RESULTS AND COMMENTS
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6.1 Introduction

The simulation model SPETY was used to establish
the effect of turning proportions on roundabout capacity and
delay. It was used to establish the relationship between
delay and the flow and gap-acceptance parameters. The per-

- formance of flared and straight entries was compared
throughout.

The chapﬁer also covers the validation of the model
using the observed capacity figures and the relationship

between input and simulated circulating flows.

6.2 Validation of the Model

The capacity estimates produced by the computer
model developed were compared with observed values of capacity
at three entries, to establish how realistically the model
behaved. The values of circulating and entering flows
abstracted from the videotaped data were used as the observed
values. As was explained in Chapters 3 and 4, the observed
sites were operating in a way that did not allow the abstraction
of a figure of capacity for the whole of the entry. Instead,
it was possible to estimate only the capacity of specific
lanes. Therefore, the comparison would be valid only if the
model simulated the operation of individual lanes. The model
has the ability of both simulating a single-lane entry and,
also, of providing estimates of the use of each lane. The
second case involves the simulation of a flared entry at such
conditions that the entry demand flow is greater than the
capacity of the entry as a whole. This ensures that the

capacity of each lane not directly affected by the flare is
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equivalent to the capacity of a single-lane entry.

The data collected at the three public road sites
in Sheffield provided values for the circulating and entry
flows, the gap-acceptance parameters and the minimum circ-
ulating headway for each site, (see Chapters 3 and 4). They
were used as input for the simulation except for the entering
flow. A sufficiently large demand flow was input to ensure
continuous queueing and capacity operation of the junction.
Therefore, the simulated conditions resembled the observed

as close as the model allowed.

Table 6.1 and figure 6.1 demonstrate the agreeement

between the observed and simulated values. The largest

percentage difference is 15.2% while the average percentage
difference (ignoring signs) is 7.4% and the standard
deviation of the percentage difference is 5.1%.

A further point of interest is the relationship
between the input value for the circulating flow and the ones

actually simulated. The agreement is demonstrated in

Table 6.2 and figure 6.2.

6.3 Roundabout Performance

The simulation model SP KT was used to model an

entry which had two lanes at the approach section and four

at the stop line. At times it was modified to allow the

simulation of a straight entry having two lanes throughout.
The modifications involved changes in the input values and in

a DATA statement in the program itself.

The simulation provided estimates of average delays

to queueing vehicles and entry flows for a wide range of flow
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and gap-acceptance parameters. The results were used to

study the effect on capacity, entry flow and delay of the gap-
acceptance parameters, the turning proportions and the circ-
ulating flow. Further, the performance of flared and straight
entries were compared. The following sections describe the
above in detail.

6.3.1 The Effective Number of Lanes

A measure of the increase in capacity due to
flaring that has been proposed (Ashworth & Laurence, 1977;
Laurence & Ashworth, 1979) is the effective number of lanes,
Ng- If a flared entry has N lanes at the stop line, Ng is
defined as the number of non-flared lanes that could have the

same capacity as the flared layout. They tentatively suggested

that there is a linear relationship between Ne and N:

Ne = 0.33N + 1.3 (eq 6.1)

N
The simulation model was used to predict the capacity of

flared and straight entries which, subsequently, were compared
to establish the effective increase in capacity. The compar-

ison was performed over the following ranges of values:

circulating flow (Ql) = 0.0 - 4000 veh/hr in

500 veh/hr steps,

I

critical gap (a) 2.00 - 3.50 sec in 0.50 sec steps,
move-~up time (B) = 1.50 - 3.00 sec in 0.50 sec steps.
Throughout it was assumed that a = B.

According to equation 6.1, a flared entry with N = 4

has an Ne = 2.62. The formula does not account for any other
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parameters. It was found that as capacity is a function of the

circulating flow so is the effective number of lanes. Values

of N, were calculated for all combinations of the above range.
Figure 6.3 is a plof of all the points obtained together with
an envelope within which all such points lie. The common

elements of behaviour are that:

(1) For all combinations of the gap-acceptance para-
meters, and Q, = 0.0 veh/hr the value of N, is equal to 2,

i.e. the flare is not contributing any extra capacity than a

two-lane straight entry.

(2) As Q, increases N, also increases but at
differing rates for the various gap-acceptance parameter

combinations. The wvalue of Ne = 3,00 (i.e. 50% increase in

capacity) was achieved by all such combinations for Q, = 2300

veh/hr approximately, while at Q, = 4000 veh/hr only the

combinations a = 3.50 sec, B = 2.50 sec and o = 3.50 sec,

B = 3.00 sec had achieved N, = 3.99 (i.e. almost 100%

increase in capacity). The value N, = 2.62 (suggested by
Ashworth & Laurence) was achieved by all combinations at
Q = 1525 veh/hr approximately. See figure 6.3a for com-

parison with observed values of Ne reported by previous

research.

(3) At each Q1 value, the range of Ne values over
all the gap-acceptance parameter combinations differed, the
largest range being at Q1 = 2000 veh/hr. The maximum Ne
at that value, was '3.52 while the minimum was 2.83, i.e. a

difference of 0.69 lanes. At Q1 = 0.0 veh/hr there was no

difference, while at Q1 = 4000.0 veh/hr the range was 0.31

lanes.

(4) The effect of the gap-acceptance parameters
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on the above range is shown on figures 6.4 and 6.5. Both
figures relate to the effective lanes obtained for Ql = 2000
veh/hr. Figure 6.4 is a plot of N, Vs a while figure 6.5

of Ne vs B. It can be seen that Ne is sensitive to the wvalue
of a, also, to the B values for a = 2.00 sec but not for

@ 2 2.50 sec. As can be seen from figure 6.4 Ne is directly
related to o, implying that the maximum effective lane number
is achieved when drivers have high critical gap values.

The conclusions reached from the above is that flared
entries are more beneficial and, therefore, justified for con-
aitions of medium to high circulating flows with driver
populations exhibiting slow gap-acceptance behaviour. Before-
and-after studies at roundabouts being converted to flared
layouts have so far reported only on the change in capacity.
It would be of interest to examine whether such changes are
accompanied, also, by changes in gap-acceptance parameters.

It is conceivable that at the new layouts, due to the.
capacity increase and hence due to the reduction of pressure
on individual drivers, their gap-acceptance parameters would
increase in value. This would result in agmgller increase in
capacity than would have been expected.

6.3.2 Entry Flow and Turning Proportions

The simulation was used to establish the effect of
turniﬁg proportions of the entering vehicles on the entry flow.
The term entry flow is used instead of capacity to indicate
that this section included the study of roundabout operation
under such conditions that the entry was not saturated.

The turning proportion was assumed to consist of at
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least 50% straight ahead traffic, while the other two
directions could each achieve a maximum of 50%. The set of

proportions used was the following

LT (%) ST (%) RT (3)
0 100 0
10 90 0
5 90 5
0 90 10
25 75 0
20 75 5
15 75 10
10 75 15
0 75 25
40 60 0
30 60 10
20 60 20
10 60 30
0 - 60 40
50 50 0
40 50 10
25 50 25
10 50 40
0 50 50

The above sets were considered that they covered
satisfactorily the range of vaiues that could be expected in
practice. The above turning proportions were used with two
sets of gap-acceptance parameters, which used the values of
two of the entry data sets recorded at the Sheffield sites and

analysed by the method described in Chapter 4. The values

used were
(1) o = 3.75 sec, B = 2.60 sec, lane 1 of Moore
Street Roundabout,
(2) o = 2.80 sec, B = 1.68 sec, lane 1 of Castle

Square Roundabout.
The values of the circulating flow, Ql' and of the entry demand

flow, Q2, were:
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le 500, 1000, 2000, 3000 veh/hr

Q,: 500, 1000, 1500, 2000 veh/hr.

Thus the effect of the turning proportions was examined using
two sets of gap-acceptance parameters which represented the
higher and lower possibilities of observed values. The above
analysis was carried out for flared and straight entriés.

Figures 6.6 to 6.9 show the results of the above
analysis for four selected sets of the possible combinatiéns
for both the flared and straight'entries. The results of the
remaining sets were similar, hence this selection was con-
sidered adequate. The first and second sets represent
operation of below saturation flow levels (figures 6.6 and
6.7), while the third and fourth sets represent operation with
the entry saturated, (figures 6.8 and 6.9). The conditions
of figures 6.6 and 6.7 allowed virtually the whole of the
demand flow generated to enter. 1In such below capacity cases
it can be seen that variation in turning proportion is not
affecting the entering flow for both flared and straight
entries.

At-capacity operation differs between the two types
of layout. Turning proportion does not affect capacity of
straight entries, while for flared the capacity is directly
related to the left-turning proportion, (figure 6.8a and
figure 6.9a). The explanation to this lies on the use of the
lanes. At flared layouts it was assumed, and supported by
observations, that the extra lanes near the stop line are used
by left-turners, (see Chapters 3 and 5). At 0% left turning

proportion, the nearside lane which is exclusively used by
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left-turning vehicles, is not used at all. Therefore the entry
becomes equivalent to a three-lane entry. The gradual decrease
in capacity with a reduction in the left-turning proportion
is also associated with the difficulty such vehicles have in
reaching the flared area, since they share the nearside
approach lane with straight-through vehicles.

The entering flows for the flared approach, of
figure 6.6, have a difference of the extreme values of 9
veh/hr (2.0%), whilst for the straight entry, it is 5 veh/hr,
(1.1%). Similarly for figure 6.7 the flared approach
difference was 7 veh/hr (0.7%) and for straight 20 veh/hr
(2.1%). As can be seen the variation is small, further there
is no discernable pattern in the variation over the left-
turning percentage.

The flows of the straight approach for figures
6.8b and 6.9b present similar values, respectively 20 veh/hr
(3.9%) and 6 veh/hr (3.7%). However, the flared approach
represents a much wider range. The difference betweeﬁ the
extreme values is 196 and 79 veh/hr respectively (24.4% and
30.7%). The effective numbers of lanes of the maximum and
nminimum values respectively are 3.65 and 3.05 for figure
6.8, while for figure 6.9 they are 3.91 and 3.11.

6.3.3 Delay and Turning Proportion

The simulation model estimates values for the average
delays incurred by vehicles of the entering flow while
queueing to join the circulating flow. The simulation runs
over which delay was estimated lasted one hour. Over this

period the values of the circulating and entry demand flows
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were assumed constant. Therefore, the delays estimated by
the model increased rapidly as the entry became saturated and
entry capacity was exceeded. If the simulation period was
increased the delays would increase indefinitely. From this
point of view, the model has the same disadvantages as equil-
ibrium state prediction formulae, and which are overcome by
time-dependent methods, (see Chapter 2). Thus, the model is
only suitable for studying delays suffered at conditions
below and around capacity. The effect of turning proportion,
flow and gap—-acceptance parameters on delay has been studied
for both flared and straight approaches. The relationship
between delay and turning proportion is dealt with in this
section, the next section covers the relétionship between
delay and the flow and gap-acceptance parameters. It should
be noted that the results presentéd here are a selection of the
values produced.

The data relevant to this section are presented in
figures 6.10 - 6.25. The first eight, figures 6.10 - 6.17,
present the data for the flared layout only, while figures
6.18 - 6.25 repeat the above data together with the data for
the straight entry allowing direct comparisons to be made.

From figures 6.10 - 6.17 an overall pattern of the
variation of delay over the range of percent of left-turn
used is emerging. Maximum delay is obtained for the combin-
ation: left-turn = 0%/straight = 50%/right-turn = 50%. For
each straight proportion, delay is a maximum when left-turn =
0%. Delay decreases as the left-turn proportion increases;

however, the graphs for the smaller straight proportions
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exhibit a minimum average delay with 30 - 40% left-turn
proportion; while for 50% straight proportion, there is an

increase in average delay as the left-turn proportion approaches

its 50% maximum value.

The maximum delay at 0% left—-turn is caused by the
effective reduction of the entry from four to three lanes.
The rise of delay at maximum left-turn is associated with the

smallest straight through values used. At such conditions

the effective number of lanes is reduced again as the high

number of left-turners prevent the full use of certain positions

at the stop line.

Comparing the performance of flared and straight
approaches (figures 6.18 - 6.25) the percentage increase in
delay with straight entries has been determined for all data

points. They are included in tables at the Appendix. From

the eight cases presented, seven produce differences which on
average are above 60%, i.e. the straight entries have -qn

average delays exceeding the ones of flared entries by 60%

or more. The averages are over all the turning proportion

for each set of flow and gap-acceptance parameters. The only

exception to the above relationship is the delays associated

with the following parameters: Ql = 500 veh/hr, C& = 500 veh/hr,

o = 2.80 sec, B = 1.68 sec. In this case, although the average

difference was only 10.6% the straight entry delays were
consistently higher than the flared entry ones.

The conclusion of this study is that conversion
of straight to flared entries is associated with delay

reductions of 40% or more in most cases for operation below
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and around capacity. Ashworth & Mattar (1974) studied

delays at Brook Hill roundabout before and after flaring.

They reported the following delay savings: a.m. peak = 34.5%,
off-peak = 28.6% and p.m. peék = 22.6%. It should be noted that
these figures refer to delay savings for traffic at all five

approaches of the roundabout (shown in figure 3.4).

6.3.4 Delay and Flow and Gap-Acceptance Parameters
The analysis to determine the effects of the above
parameters was based on estimates produced by the simulation

model assuming a constant set of turning proportions (left-turn

It

= 20%/straight 60%/right-turn = 20%), while varying the
other parameters over the following range
Ql = 500, 1000, 2000 and 3000 veh/hr,

500, 1000, 1500 and 2000 veh/hr,

L @)
N
i

a = 2.00, 2.50, 3.00 and 3.50 sec,

B =1.50, 2.00, 2.50 and 3.00 sec.

The figures that are included relevant to this
section are only a small selection demonstrating the points
described below. They are typical of the results not included.

For all combinations delay increases at fast rates as
the entry approaches and exceeds capacity. Figures 6.26 -
6.29 demonstrate the relationship between delay, the circulating
flow and the demand flow. Figures 6.30 - 6.33 show the relation-
ship between delay and the critical gap, while figures 6.34 -
6.37 show the relationship between the delay and move-up
time.

Figures 6.26 - 6.29 indicate that the delay increases

only slowly with the circulating flow as long as the entry is
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not operating at or near capacity; also at below capacity
operation average delay is not greatly affected by the volume
of the entry demand flow. Similarly, the insensitivity of
delay to the move-up time parameter at below-capacity

operation is indicated by figures 6.30 - 6.37.
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[ SimulatedQ
Input 1
0, Random Number Generator Initial Number
11113 3 13
500 476 499 499
1000 996 1004 965
1500 1506 1450
2000 2012 2000 1958
2500 2506 2460
3000 3029 2993 2979
3500 3491 3518
4000 4010 4011

Table 6.2 Agreement between input and simulated
circulating flow
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1. ashworth and Laurence (1977): The value of circulating flow
is the mean of the values observed before and after flaring
;. Fang (1976): One effective number of lanes was arrived per
site, corresponding to a range of circulating flows, i.e.
it was assumed that tne circulating flow did not influence

the effective number.

4,0 | Straight Line » Fang’s Results
o 1 Ashworth & Laursnce
3,5
3.0
o
O
c
®
- 2.5
Y-
0
L
0
0
£
5
>
m 2.0
>
o
)
2
Y.
J
1.5 L 1 : { ! 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Circulating Flow, veh/hr

Figure 6.3a Effective Number of Lsnes
and Circulating Flow
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CHAPTER 7

CONCLUSIONS
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A computer'simulation model has been developed to
study the performance of entries to roundabouts. It allowed
the comparison of straight and flared entries and the study of
the effect of turning movements, flow characteristics, and the
gap acceptance parameters on delay and capacity associated with
such entries. Further, the abstraction of gap-acceptance
parameters from data collected at roundabouts was examined
and a method for such abstraction was proposed.

1. Several methods for estimating the gap-acceptance
parameters were tested. It was concluded that a model which
fits a single line to the accepted gaps only, predicts adequately
both the critical gap and the move-up time.

2. The predictions of capacity by the computer sim-
ulation model were compared with observed values. That gap-
acceptance parameter values used as input to the model were
abstracted from the observed data. While the agreement was

not exact, it was though to be sufficient and the predictions
did not exhibit consistent overestimation or underestimation.

3. The concept of the effective number of lanes was used
as a measure of the increase in capacity associated with the
conversion of a two-lane entry from straight to flared. It

was found that the effective number of lanes is a function of
the circulating flow and, secondarily, of the critical gap.

The full use of the extra lanes provided by flaring, is only
achieved at very high circulating flows. A value of 50%
increase in capacity has been achieved by all studied conditions
for a circulating flow of 2300 veh/hr approximately.

4, Reduction to delay associated with conversion from

straight to flared entries is on average 40% or more for
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operation below and around capacity.

5. Delay increases only slowly with the circulating

flow as long as the entry is not operating at or near capacity.

6. The turning proportions of the entering flow were

introduced into the simulation model and the effect on entry

flow and delay was studied. In below-capacity operation the

turning proportion is not affecting the entering flow for both
flared and straight entries. At above-capacity operation,
turning proportion does not affect the capacity of straight
entries but it does affect the capacity of flared entries.
Highest capacity is obtained for the maximum left-turning

proportion and lowest for zero left-turn proportion; the

difference being of the range 25 - 30%. Turning proportions

affect delays for both flared and straighh%t entries. Minimum
delay was obtained for combinations which include a left-
turning proportion of 30 - 40% and maximum delay for zero
left-turn.

7. This work could not conclude in the production of a

mathematical relation between the parameters studied. Further

it did not study the effects of the proportion of heavy goods
vehicles in the flows or of gradient on roundabout performance.

Such study would entail the collection of more data and has to

be left for further work in this area. Finally, it must be

noted that despite the advantages computer simulation has
(mentioned in Chapter 5), its major disadvantage is that one is

never certain that such a model is consistently behaving as it
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should. Therefore any change in input parameters outside the

tested range can make evident shortcomings of the model.
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APPENDIX 1

THE OBSERVED DATA COLLECTED AT THREE ROUNDABOUTS IN SHEFFIELD
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APPENDIX 2

THE COMPUTER SIMULATION PROGRAMS
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APPENDIX 2a

DOUBLE PRECISION R

INTEGER*4 I

A= 2.95
B = 2.42
I=4,91
Q = 0.44
TAU = 1.0

1 CALL RANDOM (I,R)
ITT = ITT + 1
H = TAU + (1./Q - TAU) * ALOG(1/R)
IF (H.LT.A) GOTO 5
IF(H.GE.A.AND A.LT. A+B) IE = 1
IF(C.GE. A+B) GOTO 3
GOTO 4

3 FH =H - A

FD = FH/B

IE

FD + 1

4 W = EXP(Q*(T-TAU)/(1.-Q*TAU) )

MTA = MTA + 1
IF (MTA.GT.500)MTA = 1
WRITE(6,2) IE,H,W,ITT,MTA
FORMAT (16,F6.2,F7.2,217)
IF (ITT.GT.16834 . AND.MTA.EQ.500)GOTO 6
GOTO 1

6  CALL EXIT
END
SUBROUTINE RANDOM
DOUBLE PRECISION R
INTEGER*4 I
I 12541
I = MOD(I,65536)
R = I/65536
RETURN

END
Computer Simulation Program for Single Entry to Round&bout
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APFENDIX 2D

Computer Simulation Program SFHET

DIHENSION K1(20,4),T21(26,4),DELAY(20,4),T3(20,4),T4(4),

1 T21L(4),T2AP(4) ,EN(4),LN(20,4),6PNO(4),64FP(4,500,2),
2 CHGF(4),1DLAC4),IDGP(4,3),HT(3),HR(3),PF{3,4,3),LNH(3,3,2),

3 WU{4),CAC4),NT(4),TIL(4),T35(4),LCOUR{T),TDLNI4),TDTH(T),

4 AVDOLN(4) ,AVDTH(3),CLPP(3),5T0F(2)

REAL*B RJ,NT

INTEGER+4 I19,J9,K9,TICT

INTEGER SX,Al,AN,AF, AL, W, AX,4P1,A2,ALL ,GPNO,GPS,PF,5TGP
FPARAHETER (HIN=1,HAX=2,NTO=10,NT01=3)

DATA K1/742%1,18%0,1,19%0/,5X/1/,HCH/0/,TICT/0/

READ (3,5061) 01,02,TAU,ALFHA,BETA,I7,47,K?,NS5,8N, AP AL ,0TL
URITE (6,502) @1,082,TAU,ALPHA,BETA,I1%,J9,K7,N5,40,4F,aL
FORWAT(2F5.0,3F5.2,414,312,F5.0)

FORMAT(/" Q@1 @2 Tall a4LPHA BETA I J K NS/
1"V/H V/H SEC SEC  SEC”,21X,"SEC’//2F5.0,3F6.2,414/
2 /’The configuration of the entry is “/
3 AN = 12,7 AP = 7,12,7 AL = 7,12/}
CIF (NS.BT.4000) GOTO 120

READ (5,503) PR,PS,FL, (((LNH(I1Z,JZ,KZ)},17=1,3},J7=1,3),KI=1,2}
1 ,{HT(12),1Z=1,3),(HR(IZ),1Z2=1,3)
2 J(UUPF(1Z,J2,K1},42=1,4),11=1,3),Ki=1,3)

URITE(6,504) PR,PS,PL,(((LNM(IZ,JZ,KI),1Z7=1,3}),4Z=1,3},KZ=1,2)
1, HT(IZ),12=1,3),(#R(IZ},12=1,3)
2 U(PF(IZ,JZ,KZ),J2=1,4),Ki=1,3),17I=1,3)
FORMAT(3FB.5,1812/412/(412))

FORHAT(//“The proportions of the turning movements are’/

1 “Right turn’,F6.2,° Straight”,F4.2,7 Left turn’,Fé.2//
2 “the lanes they can use are’/
3 “Hinimum 7,914/ Maximun 7,714/

“HT matrix = 7,313,7 HR matrix = *,313//

‘Preference Hatrices for each turning movement’/

“ Right ture  Straight Left turn’/(2X,412,5X,412,5X,412))
CALL RANDON(I?,RJ)
H1 = TAU+(3600/81-TAU)*ALOG(1/RJ)
T4 = T1+H1
IF (T1.6T.301.AND.T1.LT.NS) TICT = TICT+1

IF (T1.6T.0TL) HCH=1

IF (H1.LT.ALFHA) GOTO 11

H6O = O

D0 12 #3=1,4P

o T

h
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GPNO(i3) = GPNO(KI)}+1
NOG = GPHO(H3)

GAPFi{H3,NOG,1) = T1-H1

GAFP(H3I,N0G,2) = T1 .

IF (NDG.GT.NG0) NGO = NOG
CONTINUE

IF (HCH.E@.1) WRITE(6,311)
{ (((GAPP(IZ,JZ,KZ),KZI=1,2),12=1,2)},4Z=1,NGO)
IF (HCH.EQ.1) WRITE(6,510) H1,T1,TICT
FORMAT(/HT  7,F8.4,7 Tt 7,F190.2,° TICT ~,14)
FORMAT(/"Gaps greater than alfa’/{2F7.2,3X,2F7.2))
b0 20 H2=1,AN
IF (K1(1,42).EQ.2) GOTO Sé
CONTINUE
IF (MCH.EB.1) WRITE(4,331) IGEN
FORHAT({“IGEN = 7,14}
IF (IGEN) 30, 30, 44
CALL RANDOM(J9,RJ)
H2 = (36060/02)+a4L0G(1/RJ)
T2 = T2+H2
IF (T2.GT.NS) GOTO 120
IF (T1,6T.0TL) HCH=1
D0 32 #3=1,4P
LFP = GPNO(ii3)
LPH = 0
IF {LPF.EQ.0) GOTO 33
D0 33 H4=1,LFF
IF (GAPP{i15,14,2).6T.T2) 6GGTO 33
LFH = LFH#1
CONTINUE
IF {LPH.ER.Q) GOTO 32
DO 34 Wé=1,LPP
GAFP (NS, MNé, 1)

GAFF (H5,N&+LFH, 1)

LI 1}

GAPP(ii5,H4,2) = GAFF(iHS,H4+LFH,2)
CONTINUE
GFNO(H5) = GPND(HS)-LPH
CHGF (#3) = GAFP(¥53,1,2)
CONTINUE -
IGEN = 1

CALL RANDOM(K9,RJ)
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IF (RJ.LE.FR) LAN=1
IF (RJ.GT.FR.AND.RJ.LE.PR+FS) LAi=2
IF (RJ.GT.PR+PS)} LAN=3
IF (HCH.E@.1) URITE(4,530) H2,T2,LaN,T1
530 FORMAT(AX, H2¢,8%, T2 LAN‘,8X, T17/F6.4,F10.2,14,F10,2)
4 DO 40 H2=1,HT0
H5 = H2
IF (M2.6T.AL) H5 = AL
HIA = LNH{(HS,LAN,HIN)
HAA = LNH(HS,LAN,HAX)
IF (HCH.EQ.2) WRITE(&,542) LaN,ii2,dIA,HAd

342 FORHAT( turn row  min max lanes”/214,2X,214)
HXR = HAA-HIA+]
D0 40 H4=1,HXR
N3 = PF(#5,H4,LAN)
HST = H3
IF (HST.6T.AF) NST = AP
IF (STOP(HST).EQ.1.AND.K1{NTO,H5T).EQ.2) GOTOQ 47
IF (K1{H2,H3).NE.1} GOTO 40
IF (MH3.LT7.AP.OR.M2.GE.AL) GOTD 46
IF (K1CH2+41,H3).NEL 1, AND K (241 ,H3-1).8E.1) BOTD 40
44 IF (HCH.EQ.1} WRITE(4,5401 (T4(1Z),1Z=1,4d}
340 FORHAT(“T4 HATRIX /4F8.2)
IF (H2.G6T.1.0R.HXR.EQ.1) GOTO 41
THIN=T4{H3)
I8 = #3
DO 42 N2=1,#XR
A2 = PF{H2,N2,LAN)
IF (T4(A2}.GE.THIN) GDTD 42
THIN = T4(A2)
I = A2
42 CONTINUE
H3 = 1@
41 §X = W2
Al = H3
GOTO 43
40 CONTINUE
A3 IGEN = 1
6010 10

47 60TO 30
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43 T21(5%,41) = T2
IF (A1.GE.AP) AX = AP
IF (A1.LT.AP) AX = Al
IF (T2.6T.90000.AND.T21(5X,A1).LT.T2AP(AX)+2.)
1 T21(8X,A1) = T2AF(AX)+2,
IF (T21(SX,A1).6T.T1) GOTO 43
H1 = K1+t
K1(5X,A1) = 2
LN(SX,A1) = LA
T2AF(AX) = T21(SX,A1)
IF (A1.GE.AP) LAP = LAP+1
IGEN = 0
IF (HCH.EB.1) WRITE(4,541) SX,A1,K1(SX,A1),LN(SX,A1),T21(5X,A1)
541 - FORMAT(’POSITION ASSIGNED TO EV-/
1§ A KI(S,A) LN(S,A) T21(5,A)"/214,219,F10.2)
IF (5X.EQ.1) 6BT0 51
IF (A1.LT.AF) GOTO 50
IF (A1.GT.AP.OR.SX.GE.AL) GOTO 158
D0 157 #7=8X,4L
IF (K1(H7,A1).EQ.2) GOTO 50
157 CONTINUE
158 IF (T24(5X,A41).LT.T3LAP+BETA) T3(SX,A1) = T3LAP+KETA
IF (T21(SX,A1).GE.T3LAF+BETA) T3{SX,A1) = T21{8X,A1)
IF (T3(5X,A1).LT.T3(5X-1,A1)+BETA) T3(5X,A1) = TI(5X-1,A1)+BETA
TILAP = T3{SX,Al)
GOTO 151
50 IF (T21(8X,A1).LT.T3{SX-1,A1)+BETA) T3(5X,al)
IF (T21(SX,A1).GE.T3(5X-1,A1)+BETA) T3(SX,a1)
60TO 151
51 IF (TA(A1).GE.T21(5X,A1)) T3(5X,A1)
IF (TA(A1).LT.T21(5X,A1)) T3(SX,Al)
IF (A1.LT.4P) GOTO 54
IF (A1.GT.AP) GOTO 52
0 152 HB=2,AL
IF (K1(i48,41).EQ.2) GOTO 154
152 CONTINUE
60T0 52
196 IF (K1(1,A1-1).EQ.1) GOTO 153
H0O = 1
0 154 HO=2,AL

T3(8X-1,A1)+8ETA
T21(5%,4a1)

T4(al1)
T21{5X,A1)

nodi
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32

a3
34
151

150

a8

33

37
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IF (K1(H0,A1-1).EQ.2) GOTO 154
K00 = HoO-1
GOTO 155
CONTINUE
IF (T3(00,d1~1).6T.T3¢1,A11) T3¢1,41) = T3(i00,A1-1)+BETA
50TD 52
IF (T4(AT-1).6T.T3(1,A10) T3U1,A1) = T4iai~1)
D0 53 H2=AP,AN
IF (T4(H2).LT.T21(5X, a1 }+BETA) T4{H2) = T21{53X,a41)+BETA
CONTINUE
TA(A1) = T4(A1)+1000
H3 = &t
IF (K3.6T.AP) #3 = AP
IF (GAPP(H3,1,2).E0.0.0) 6070 55
IF (T3(SX,A1)+ALPHA.GT.GAPP(#3,1,2)) 60TO 59
IF (GAPP{H3,1,1).6T.T3(5X,A1)) T3(5X,Al) = GAPP({3,1,1)
IF (H3.GE.AP.AND.T3(5X,A1).6T.T3LAP) T3LAP = T3(5X,A1)
60TD 55
GPJ = GPNO(H3)
IF (GFJ.EQ.0) GPJ = 1
D0 S8 NJ=1,GPJ

GAPF(H3,NJ,1) = GAFP(H#I,NJ+1,1)
GAPF(H3,NJ,2) = GAFF(H3,NJ+1,2)
CONTIMUE
GPNO(H3) = GPNO(H3)-1
GOTO 150

D3 57 IZ=1,NT01
IF(HCH.EQ.1)URITE(,601) (K1 {(1Z,J7),JZ=1,4) , (LN(IZ,JZ),JZ=1,80)
CONTINUE
IF (HCH.ER@.1) WRITE(4,331) T3(5X,A1),T3LAP,(T4(IZ},1Z=1,AN]
FORHAT(“T3(S,A)=",F8.2," T3LAP=,F8.2/°T4 MATRIX = 7,4F8.2)
D0 60 M2=1,NTO
00 40 M3=1,AN
IF (K1(M2,43).NE.2) GATO &0
IF (T1,LT.T3¢i2,M3)+alFHA) GOTO 40
IC = IC+1
K1{#2,83) = 3
IF (T3L(H3).LT.301.0R.TIL(M3).GT.NS) GOTD 49
LNA = LN(H2Z,H3)
LCSUH{LNA) = LCSUN(LNA)Y+1
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DELAY(H2,83) = T3(if2,43)-T21({1H2,H3)
TOTD = TOTD+DELAY(#2Z,i3)
TOLN(#3) = TOLN{HIY+DELAY(H2,H3)
TOTH(LNA) = TDTH{LNAJ+DELAY(H2Z,H3)
NT(H3) = TIL(H3)
IF (LNA.NE.J.OR.H2.EQ.1) GOTO 41
EH(AN) = EN(AN)+1
GOTO 40
é1 EN(H3) = EN(MII+I1
40 CONTINUE
IF (IL.6T.0) GOTO 80
70 DO 71 M2=1,NT0
Bo0 71 mM3=1,AN
IF (K1(¥2,M3).NE.2) GOTO 71
IF (¥2.NE.1) GOTO 72
IF (T1.6T.T3(t2,H3)) T3{H2,83) = T1
IF (T3(H2,#3).6T.N5.AND.H3.LE.AP) STOF{H3)
IF (T3(H2,M3).6GT.NS.AND.MI.GT.AF) STOF{4F)
G070 71
72 IF (M3.LT.AP) GOTO 74
DO 75 N3I=i3,an
IF (Li(H2-1,N3).EB.LH{A2,H3)) GOTO 74
75 CONTINUE
N3 = H3
74 IF (T3(12,H3).LT.BETA+T3(K2-1,R3)} T3(H2,H3)
1 T3{42-1,N3)+BETA
GoTO0 71
74 IF (T3(#2,H3).LT.BETA+T3(1§2-1,83)) T3(¥2,i43)
i T3(N2-1,M3)+BETA
71 CONTINUE
i IF (HCH.EQ@.1) URITE(4,570) T3LAP, ({T341Z,J7),J2=1,4N),12=1,NTO1)
370 FORHAT( T3LAP=*,FB.2/ HATRIX OF UPDATED T3°/4F8.2/(4F3.2))
DO 77 1I=t,4P
IF (STOP(II).EQG.0) GOTO 78
77 CONTINUE
6070 120
78 IF (HCH.EQ.1) WRITE(S,531) IGEW
IF (IGEM) 30, 30, 44
80 JB = §
1D = ¢

#ou
p—

i
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IF (MCH.E@.1} WRITE(4,530)
580 FORHAT(“RECORD AND CALCULATE PARAHS FOR ALL EVS‘/
1+ JB 1D 13 T2 DELAY TOTH”,
2 ¢ ROW LANE  LN")
DO 81 H2=1,NTO
DO 82 H3=1,aN
IF (K1(i#2,i43).HE.3) GOTO 82

JB = JB+1

K1(#2,d3) = 1

1D = 10+

T21L(H3) = T21{H2,H3)
LZ = LN{(#2,H#3)

N3 = H3

IX6 = 1

IF (H3.GT.AP) N3 = AF
IF (T3(M2,H3).6T.GAPF(N3,1,2)) IX6 = 2
IF (DELAY(H2,43).€0.0.00) GOTO 182
IF (CHGP(N3).EQ.GAPP(N3,IXG,2)) GOTO 88
CHGP(H3) = GAPP(N3,IXG,2)
182 DO 180 LKZ=1,3
IDGP(N3,LHZ) = 0
180 CONTINUE
IDGPIN3,LZ) = 1
IDLA(N3) = 1
GOTO 89
88 IDGP(N3,LZ) = IDGF(N3,LZ) + 1
IDLA(N3) = IDLACNZI+1 :
89 IF (H3.LT.AP.OR.AP.EQ.AN) GOTO 83
IF (IDGP(N3,LZ).LE.HT(LZ).AND.IDLALN3) .LE.HR{N3)) GOTO 83
AP1 = AP+
DO 84 ILF=AP1,AN
T4(ILF) = T3{M2,H3)+BETA
IF (T4CILF)4BETA.GT.T1) T4(ILF) = T1
84 CONTINUE
83 T4(H3) = T3(H2,H3)+BETA
IF (TA(HDI+BETALBT.T1) T4{#3) = T
T3L(HI) = T3(H2,HI)
IF (WCH.ER.1) URITE(4,581) JB,ID,T3Ci2,1H3),T21(iH2,H3),
1 DELAY (#2,H3),TOTD, N2, H3, LN (#2,#3), TOLAINS) , IDGP (N3,L2)
581 FORHKAT(2I4,2F8.2,F$.2,F10.2,215,15/
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‘gum entries of lan=2 for gap :7,15/
“sum entries of turn for 3mp :7,I5)
T3(H2,id3) = 0.0
T21(i2,83) = 0.0
LN(H2,H3) = 0
IF (IV.E@.IC) GOTO 85
CONTINUE
JB=0
CONTINUE
IC=0
IF (HCH.E®.1) WRITE{6,582) (EN(1Z),IZ=1,AN)
FORHAT(“Lane totals /4F10.2)
DO 181 N3=1,AN
IF {(WW(N3).EQ.0.AND.T3L(N3).GE.301) GOTG 84
GOTO 181
UU(N3) = 1
TIS(N3) = TIL(NI)
CONTINUE
IF (HCH.EQ.1) URITE(4,370) T3LAP,({T3(1Z,42),dZ=1,aN},12=1,RT01)
IF (HCH.E@.1} WRITE(6,583) ((LN(IZ,JZ),JZ=1,AN},I1Z=1,NT01)
FORHAT( Hatrix of turn moves /412/{(412})
IF (T2.67.M58) GOTO 120
IF (PR.EQ.1.00,UR.FL.EQG,1.00.0R.PS.ER.1.30) GOTO 92
b0 94 LPF=1,3

IF (LFF.EB.1) PC = PR
IF (LPF.ER.2) PC = PS
IF (LFF.EG.3) PC = FL

IF (PC.ER.0.00) GOTO 94
b0 90 N3=1,4N
Lad = PF{1,N3,LPF)
IF (LeA.EG.0) G6OTO 90
IF (HCH.E@.1) URITE{(4,590) (T3L(IZ),IZ=1,4N)
FORMAT( T3L of lawnes 1,2,3,4 : “,4F10.2)
IF (T3L(LAA).LT.NS) GOTO 91
CONTINUE
CONTINUE
GOTO 120
D0 93 N3=1,AN
IF (T3L(N3).GT.NS) GOTOD 120
COHTINUE
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110
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102
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IF (#1-1D.6T.0) GOTO 110
Wi o= 0
LaP = 0
SX = 1
GOTO 31
ALL = NTO-1
DO 103 M2=1,ALL
D0 103 H#3=1,AHN
IF (K1(#2,#3).NE.1) GOTO 103
NNZ = H2+1
N3 = H3
DO 102 N2=NN2,NTO
IF (K1(N2,¥3).EQ.1) 6OTO 102
IF (K1(N2,M3).E0.0.AND.H3.NE.ILNH(12,3,2)) GOTO 103
IF (K1(H2,N3).EQ.0.AND.H3.EQ.LNH(H2,3,2)) GOTO 116
LC = LN(NZ,N3)
5 = H2
W4 = H3
IF (#2.6T.AL) H5 = AL
IF(N3.LT.LNN(M5,LC,1) OR.H3.6T.LN#{(HS,LC,2))6OTO 103
IF (LC.NE.3.0R.N2.NE.2) GOTO 104
IF (K1(1,4).EQ.1) H4 = 4
GOTO 104
N3 = N3-1
IF (N3.LT.1) 60TO 103
GOTO 117
CONTINUE
GOTO 103
K1(H2,H4)
K1(N2,N3)
T21(H2,H4) = T21(N2,N3)
T3(H2,44) = T3(N2,N3)
=L

2

[}

-

LN(H2,H4) = LN(N2,N3)

T21¢N2,N3) = 0.0

TI(NZ,NF) = 0.0

LN(NZ,N3) = 0
CONTINUE

DO 109 K2=2,NTO
D0 109 ¥3=1,4N
IF (K1(H2,H3).NE.2) GOTO 109



108

106
109

401
1

123
122
12

120

124

127

239

6070 107
IF (N3.LT.NHN) LLCH = LCH+1
IF (N3.GT.NHX) LCH = LCH+1

IF (LCH.E@.2) GOTO 109
CONTINUE
CONTINUE
DO 101 IZ=1,HTOI
IF(HCH.EQ. 1IWRITE(4,601) (K1 (1Z,JZ),JZ=1,AN), {LNCTZ, JZ), JZ=1, AR)
FORMAT(412,4X,412)
CONTINUE
W1 = N1-ID
LAP = 0
DO 121 H2=1,AN
IF (K1(1,42).EQ.1) GOTO 121
IF (H2.GE.AF) LAP = LAP+1
TA(H2) = T3(1,H2)+1000+BETA
IF (M2.LT.AP) GOTO 121
D0 122 N2=H2,4N
IF (K1(1,N2).EQ.2) 6OTO 122
DO 123 N3=2,NTO
IF (K1(N3,H2).EQ.1) T4(N2) = T3(1,H2)+BETA
IF (K1(N3,H#2).EQ.2) T4(N2) = T3(N3,M2)+BETA
IF (T4(N2)+BETA.GT.T1) T4(N2) = T1
CONTINUE
CONTINUE
CONTINUE -
G0TO 70 :
AVERD = TOTD/(EN(1)4EN(2)+EN{II+EN(4))
DO 126 H2=1,AN
IF (EN(M2).EG.0) GOTO 124
AVDLN{N2) = TDLN(H2)/EN{N2)
CONTINUE
D0 127 K2=1,3
LCSTO = L.CSTO+LCSUK(N2)
IF (LCSUM(H2).EQ.0) GOTO 127
AYDTH(H2) = TDTH(N2)/LCSUN(N2)
CONTINUE
D0 125 N3=1,AN
IF ((NT(N3)-T3S(N3)).EQ.0.0) GOTO 125
CAIN3) = EN(N3)*3400.7(NT(N3)-T3S(i¥3))



107

112
114

113
115

it

240

LE = LN(N2,M3)

KM2 = N2

HH3 = H3

N2 = H2

N2 = N2 - 1

IF (N2.LT.1) GOTO 109

NS = N2

IF (N2.GT.AL) NS = AL

NN = LNH(NS,LB,1)

N#X = LNM(N3,LB,2)

NDN = HM3-(HN2-N2)

NDX = MH3+(HH2-N2)

IF (NMN.LT.NDN) NHN = NDN
IF (NMX.GT.NDX) NMX = HDX
LCH = ¢

HAN = A2

DO 106 LFP=1,HAN
IF (N2.EQ.1.AND.LB.EQ.3) GOTO 112
N3 = MHI+LFP/2#(-1)#+(LFP)
IF (N3.LT.NHN.OR.N3.GT.NHX) GOTO 108

650TD 113
N3 = AN+
N3 = N3-1

IF (N3.LT.NHN) GOTO 109
IF (K1(N2,M3).NE.1) GOTO 114
6070 115

IF (K1(N2,M3).NE.1) GOTO 104
KI(N2,N3)= 2

K1(HH2,HH3) = 1

T21(N2,N3} = T21(HM2,HH3)

T3(N2,N3) = TI(HN2,MM3)
LN(N2,N3) = LN(NN2,NMH3)
T21(#H2,#43) = 0.0
TIC(HNZ,HH3) = 0.0
LN(HH2,HN3) = ¢

H¥2 = N2

HH3 = N3

DO 111 1Z=1,5
IF(HCH.EQ. 1)URTTE(6,601) (K1(IZ,JZ),JZ=1,4), (LR{IZ,J2),J2=1,4)

CONTINUE



129
420
124

421

241

CARP = CAP+CA(N3)
CONTINUE
Do 128 wX9=1,3
CLPP(}X9} = FLOAT(LCSUR(HXT))/FLOAT(LCSTO)
CONTINUE
WRITE (4,422) TiICT
FORHAT (“The total number of circulating vehs :7,15)
WRITE (6,623)
FORKAT (“Per Lane’,12X,” Per Turn’/
1 “Lane Delay Capac. Turn Veh. £ Delay’)
D0 124 M2=1,4AN
IF (#2.6T.3) GOTO 129
WRITE(6,620) H2,AVDLN(H2),CA(N2),H2,LCSUN(H2),CLPP(K2),AVDTH(H2)
GOTO 124
WRITE(4,620) 42,AVDLN(H2),CA(H2)
FORMAT(I4,FB.2,F8.2,218,F6.3,F8.2)
CONTINUE
WRITE (6,621) AVERD,CAP,LCSTO
FORHAT(Y Tot”,2F8.2,112)
STOF
END
SUBROUTINE RANDOH(I?,RJ)
REAL*8 RJ
I9=125+I9
19=H0D(19,45534)
RJ=19/65536.
RETURN
END
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APPENDIX 3

DIFFERENCE IN DELAY OBTAINED AT STRAIGHT AND FLARED ENTRIES
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