
Recognisable languages over free

algebras

Kei Tsi Daniel Cheng

PhD

University of York

Mathematics

June 2021.

Abstract

This thesis considers notions of recognisability for languages over (universal) alge-

bras. The main motivation here is the body of work on recognisable languages over

the free monoid, which in particular connects several, equivalent, approaches. The

free monoid X∗ on a set X consists of all finite strings of elements of X; these

are thought of as words, and hence a subset of X∗ is known as a language (i.e. a

collection of words). The term is then used for a subset of any (free) algebra.

Our first approach to recognisability is via finite index of syntactic congruences;

the latter may be defined for any kind of algebra. We consider how to define syntactic

congruences in the most efficient way: absolutely, or with regard to a particular

class of algebras or languages. We give examples where only finitely many terms are

needed to determine syntactic congruences. For a particular class of free algebras

we find an infinite list of terms, each built from the previous, and give an example

of a language such that we need to check terms of every kind. Using syntactic

congruences we consider closure properties of recognisable languages. We give many

examples, including critical examples of languages that are themselves free algebras

(in some sense) but are contained in the free inverse monoid.

Our second approach is in the context of unary monoids. We introduce a new

kind of formal machine we call a +-automaton. Our main result in this regard is

to show that a language over a free unary monoid has syntactic congruence of finite

index if and only if it is recognised by a +-automaton. This result exactly parallels

the well known result for languages over free monoids.

Contents

Abstract . 2

Contents . 2

List of Figures 4

Preface . 5

Acknowledgements . 9

Declarations . 10

1 Preliminaries 11

1.1 (Left) ample monoids . 12

1.2 Weakly (left) E-ample/(left) restriction monoids 14

1.3 (Left) Ehresmann monoids and (left) adequate monoids 19

1.4 The free inverse monoid FIM(X) on X 20

1.4.1 The free left ample and free ample monoids 24

1.5 Automata . 24

1.6 The Schützenberger product of monoids 27

1.7 Universal algebra . 29

2 Syntactic congruences 35

2.1 Syntactic congruences on universal algebras 35

2.2 Syntactic congruences on one sided Ehresmann monoids 39

2.3 Syntactic congruences on two-sided Ehresmann monoids 44

2.3.1 Syntactic congruences on two-sided Ehresmann monoids where

idempotents are central . 47

2.3.2 When the language is finite 49

2.3.3 An example where we need our full list of unary term functions 52

2.3.4 Syntactic congruences on two-sided Ehresmann monoids where

the language is the set of idempotents 53

3 Recognisability of languages using syntactic congruences 54

3.1 Example . 61

3.2 Closure properties of recognizable languages 61

3.3 Recognizable languages in FLA(X) and FIM(X) 64

2

4 Finite state automata accepting languages in free unary monoids 66

4.1 +-automata . 66

4.2 Automata - NDAs . 71

4.3 Example . 74

5 Syntactic congruences of different languages 78

5.1 Syntactic Congruence of FA(X) in FIM(X) 80

5.2 Syntactic Congruence of FLA(X) in FIM(X) 80

5.3 Syntactic Congruence of X∗ in FIM(X) 85

5.4 Syntactic Congruence of linear elements in FIM(X) 89

Bibliography 93

3

List of Figures

1.1 relation between various type of monoid 21

4.1 +-automata example . 70

4.2 multiplication table for P . 71

4

Preface

One of the most celebrated interactions between mathematics and theoretical com-

puter science is the study of languages, beginning with and motivated by the classic

theory of languages over free monoids, which we briefly recall. The free monoid X∗

on a set X consists of all finite strings of elements of X; these are thought of as

words, and hence a subset L of X∗ is known as a language. The heirarchy now known

as the Chomsky Heirarchy [3] classifies languages according to their complexity and

was put forward by the American intellectual Noam Chomsky in 1956. At the lowest

level of the heirarchy we have the class of recognisable languages. From the point of

view of monoid and semigroup theory, free monoids play a significant role, since (al-

most by definition) every monoid is a morphic image of a free one. Free monoids are

combinatorially simple devices, and although congruences on monoids are notori-

ously complex one can hope to handle congruences on free monoids with more ease.

One characterisation of recognisability of a language L over a free monoid X∗ is

that its syntactic congruence ∼L has finite index, that is, X∗/ ∼L is a finite monoid.

Another is that L is recognised by a finite state device we refer to as an automaton;

these are the simplest kind of ‘abstract machine’ and change states according to their

inputs from a finite set. If that set is X, then strings of inputs are simply words

over X. The sets consisting of words taking an automaton from an initial state to

a final state form precisely the class of recognisable languages over X. There are

several other characterisations of recognisable languages, but we focus in this thesis

on the two given above. For further details on the many approaches to recognisable

languages over free monoids, we refer the reader to [10, 21, 26, 30]. As indicated

in those texts the most significant names in the early days of establishing the deep

connections between automata, recognisable languages over the free monoid, and

finite monoids and monoids include M.P. Schützenberger, R. McNaughton, J.A. Br-

zozowski and I. Simon. There is also a connection with formal logic, explored by

authors such as H. Straubing.

Given the body of work on languages over free monoids, it is natural to consider

the relation between algorithmic and algebraic properties of subsets of other free

algebras, or indeed, of other algebras. For consistency these are also referred to as

languages. There is a large body of literature, mostly in the realm of theoretical

computer science and logic, on this topic. Elements of free algebras are expressed by

terms, and these have a tree-like structure in that they are built up from sub-terms

by using the basic operations of the algebra. This has led to a study in theoretical

computer science of languages over trees, and tree automata (see, for example, [9, 6]).

This direction of study is not concerned with the algebraic properties of free algebras

[22, 1].

We take a different viewpoint. A particular motivation for us has been [34] “On

free inverse monoid languages” by Pedro V. Silva [34]. This itself builds on ideas of

5

reversible automata [35]; see also [27]. The reasons for taking this as our starting

point are several. First, free inverse monoids have a natural description as a type of

bi-rooted tree called a Munn tree [29]; this is equivalent to a formulation using prefix

closed subsets of reduced words over free groups, and as these are easier to write

down, our results are phrased in those terms. An excellent account may be found in

[21]. Inverse monoids form a variety of unary algebras where the unary operation is

written a 7→ a−1. Free inverse monoids are naturally associated with automata for

which one can reverse the transitions [34]. They form the perfect bridge to other

varieties of unary and biunary monoids. For example, a monoid congruence on an

inverse monoid is a unary monoid congruence, but this is not true of other varieties

of unary monoids. From another point of view, free left restriction monoids (which

coincide with free left ample monoids) are contained as submonoids of of free inverse

monoids, closed under a unary operation a → aa−1 = a+. A similar statement is

true for free restriction monoids (which coincide with free ample monoids); these are

contained as submonoids of free inverse monoids, closed under the unary operation

a→ aa−1 = a+ and a 7→ a∗ = a−1a.

The variety of left restriction monoids and the bigger variety of left Ehresmann

monoids form the main specific varieties of unary monoids that we consider. Simi-

larly, the variety of restriction monoids and the bigger variety of Ehresmann monoids

form the main specific varieties of biunary monoids that we consider. These vari-

eties have importance since they arise from many directions (and hence have ac-

quired many names), are very natural in that there are many examples made from

mappings. Of particular note is that every left restriction monoid embeds into the

full transformation monoid TX on a set X, where the unary operation is α 7→ Iimα,

and the monoid of binary relations on a set X is Ehresmann. It follows from the

work on relation algebras (see, for example, [18]) that not every Ehresmann semi-

group is a subalgebra (as a biunary semigroup) of some relation semigroup. For an

introduction to the topic of representability by semigroups of relations augmented

with extra operations, see [32]. The theory of (left) Ehresmann and (left) restriction

semigroups has been pushed forward by many authors in recent years. We recom-

mend [19] for a survey of the development of some of the ideas and [13, 14, 2, 24, 23]

for background to the free algebras in these classes.

The structure of this thesis is as follows. In Chapter 1 we give all the necessary

premliminaries to follow the work in this thesis, in particular an introduction to

(left) ample monoids (Section 1.1), (left) restriction monoids (Section 1.2), (left)

Ehresmann monoids (Section 1.3), automata (Section 1.5), the free inverse monoid

(Section 1.4), Schützenberger products (Section 1.6) and universal algebra (Sec-

tion 1.7). We give references to further reading in those sections.

In Chapter 2 we consider syntactic congruences on universal algebras. If L ⊆ A

where A is an algebra, then the syntactic congruence defined on A by L is the

6

largest congruence such that L is a union of ∼L-classes. We show in Lemma 2.1.5

that ∼L always exists and in Theorem 2.1.7 that it may be defined by considering

only unary term operations. Syntactic congruences have also been considered in

[4, 8] and there is some overlap here. However, these articles are focussed on the

relation of syntactic congruences to other special congruences. We then consider

syntactic congruences on left Ehresmann monoids (and hence also on left restriction

and left ample monoids), where here we can reduce the term operations we need to

consider to two kinds. We note that [8] also tackles the question of reducing the

list of unary term operations one considers, but uses the classification of algebras

according to whether the varieties in question are finitely-generated and congruence

distributive; we do not know whether the varieties we consider have these properties

but prove all our results directly. We then consider (two-sided) Ehresmann monoids

which, perhaps surprisingly, are harder to handle, even in the restriction case. We

give an infinite (but nevertheless specific) list of unary terms that determine the

syntactic congruence in Theorem 2.3.3. We give a number of illustrations, and in

Subsection 2.3.3 present an example of a language over a free restriction monoid such

that no finite sub-list of the terms will suffice to determine the syntactic congruence.

In Chapter 3 we consider further syntactic congruences on arbitrary universal

algebras. In Theorem 3.0.5 we prove a result that allows us to pull back information

from an algebra to its preimage, and show how this may be applied. Our next task is

to consider the closure properties under Boolean operations of classes of recognisable

languages, which we do in Section 3.2. For languages over free unary monoids it

makes sense to also consider product. In Proposition 3.2.9, using an adaptation of

the construction of Schützenberger product, we show that the class of recognisable

languages over unary monoids is closed under product.

Chapter 4 returns to the focus on specific classes of free algebras; here is free

unary monoids. We introduce the notion of +-automata, which are finite state

automata equipped with an additional binary operation on their state set. As for

ordinary automata, they come in two kinds, deterministic and non-deterministic,

and we show that this does not matter in the sense the classes of languages accepted

are the same. Our main result of this chapter is Theorem 4.2.6, which shows that

a language over a free unary monoid has syntactic congruence of finite index if and

only if it is accepted by a +-automaton.

Throughout we have illustrated our results and techniques by looking at lan-

guages over free (left) restriction monoids. These monoids are contained (in a sense

described earlier) in free inverse monoids. In Chapter 5 we consider the syntac-

tic congruences of the free ample monoid, the free left ample monoid and the free

monoid on a set X within the free inverse monoid FIM(X) on X. We also consider

the syntactic congruence of the ‘linear’ subset on FIM(X). Here we find some nice

behaviour: in the first two cases, the congruence is related to the least group con-

7

gruence on FIM(X) and in the latter two cases, the syntactic congruence is forced

to be trivial.

8

Acknowledgements

With my full gratitude I would like to express my thanks to God that has made

things happen. It is beyond words.

I am thankful to my Ph.D. supervisor Victoria Gould, for her kindness and

support, also for her guidance, partience, postive attitude and belief in me. Her

suggestion and encouragement have helped me along the way and I am lucky to

have her as my supervisor.

I am grateful for my Department’s support, particularly the other member of

my TAP panel, Brent Everitt, and support staff Nicholas Page.

In addition, I would like to thank Kar Ping Shum, Roland Wong, Chee Chen

Tung and Philip Wu from Hong Kong for their private financial sponsorship. I

would also like to acknowledge my Department’s financial support by scholarships

in return for some teaching and The Institute of Mathematics and its Applications

for the part-time opportunity. I would like to thank Victoria Gould, Kar Ping Shum

and Mee Lin Luk, whom had made great effort in pushing things forward, including

the whole applying process in 2014 and 2015.

It has been a pleasure to meet Stuart Jackson-Bayles, Open Door Practitioner in

my University, and Ka Lok Chan, social worker in Stewards Take Your Way Club-

house in Hong Kong, and I am particularly grateful for them talking and listening

when I encounter emotional and mental problem. Also, it is so grateful to Glen and

Honey Farmer I know in York Vineyard Church. Glen accompanied me every time

to see the early intervention team, and the couple took care of my parents when

they came to York when I was in hosiptal.

Last but not least, I am fortunate to have such loving family. I would like to

thank my family who accompany me and take good care of my living during the

Leave of Absence and after resuming study.

9

Declaration

I declare that this thesis is a presentation of original work and I am

the sole author. This work has not previously been presented for an

award at this, or any other, University. All sources are acknowledged as

References.

10

Chapter 1

Preliminaries

In this chapter we include the definitions, essential properties and results fundamen-

tal to the understanding of mathematics in this thesis. We assume the reader has a

working knowledge of semigroup theory, as may be found in [21] and [5]. We usually

denote a monoid by M and the set of idempotents of M by E(M).

Much of monoid theory (and, more broadly, semigroup theory) focusses on the

existence and behaviour of idempotents. We recall that a monoid M is regular if for

each a ∈ M there exists b ∈ M such that a = aba. If in addition we have b = bab

then we say that b is an inverse of a; we may denote an inverse of a by a′. Note

that every element in a regular monoid has an inverse: if there exists b such that

aba = a, then define a′ = bab and observe that

aa′a = ababa = aba = a, a′aa′ = bababab = babab = bab = a′.

It is well known that M is regular if and only if every R-class of M contains an

idempotent or, equivalently, every L-class contains an idempotent. Indeed, if a =

aba then abR aL ba and ab, ba ∈ E(M). Here R and L are Green’s relations R
and L, which form the backbone of the classical theory of regular semigroups. If

M is regular and the idempotents of M commute, so that E(M) is a semilattice

(a commutative semigroup of idempotents), then the idempotent in the R-class of

a is unique, as is the idempotent in the L-class of a. Further, every element of a

has a unique inverse, which we may denote by a−1. So, in an inverse monoid we

have a unary operation a 7→ a−1. From this we can also construct unary operations

a 7→ aa−1 = a+ and a 7→ a−1a = a∗. Throughout this thesis we will be equipping

monoids with additional unary operations. If M has one additional basic1 unary

operation we say that M is a unary monoid and if M has two additional basic

operations we say it is a biunary monoid. Many of the algebras studied in this

thesis are unary or biunary monoids, which arose in attempts to generalise the

theory of regular monoids.

1See Section 1.7: we mean it is preserved by morphisms, substructures etc.

11

In Section 1.1 we give the background to (left) ample monoids. These were

introduced by Fountain in [11] and [12] and were earlier called (left) type A. In

Section 1.2 we take the same approach to weakly (left) E-ample/restriction monoids;

these arose from many sources, in particular as an attempt to model partial maps.

In Section 1.3 we give a brief introduction to (left) Ehresmann and (left) adequate

monoids, which extend the classes of (left) restriction and (left) ample monoids.

Lawson in [25] was key to highlighting the significance of (left) Ehresmann monoids.

The foregoing classes of monoids may be approached from two directions, one as

monoids and the other as biunary or unary monoids. Inverse monoids are also

unary monoids; we present in Section 1.4 the free inverse monoid FIM(X) using the

approach of McAlister triples.

We then change tack and in Section1.5 we give a brief recap of the theory of au-

tomata over free monoids. In Section 1.6 we give an introduction to Schützenberger

product of monoids, which we need to adapt to a specific purpose in Section 3.2.

Finally in Section 1.7 we give a brief summary of the notions of universal algebra

that we will use.

1.1 (Left) ample monoids

The results here are well known. Readers may refer to [16] for further details and

reference. There are three ways to approach left ample monoids. We begin with

their representation by maps, and take this as our definition.

Definition 1.1.1. A monoid M is left ample if it is isomorphic to a submonoid of

a symmetric inverse monoid IX which is closed under the unary operation α 7→ α+,

where α+ = αα−1 = Idom α, i.e. the identity map on the domain dom α of α.

Right ample monoids are defined dually. That is, a monoid is right ample if it

isomorphic to a submonoid of IX′ which is closed under the unary operation α 7→ α∗,

where α∗ = α−1α = Iimα. We say that a monoid M is ample if it is both left and

right ample; note that we cannot assume X = X ′.

Clearly inverse monoids are ample, but the latter class is much wider: ample

monoids are not in general regular.

We now explain how (left, right) ample monoids have abstract characterisations

obtained from the generalizations R∗ and L∗ of Green’s relations R and L respec-

tively, and as such form quasi-varieties of algebras.

The relation R∗ is defined on a monoid M by the rule that for any a, b ∈ M,

a R∗ b if and only if for all x, y ∈M,

xa = ya if and only if xb = yb.

12

It is easy to see that R∗ is left congruence, and we show here that R∗ is a generali-

sation of R.

Lemma 1.1.2. For any monoid M, we have R ⊆ R∗, and R = R∗ if M is regular.

Proof. Suppose a R b, then a = bs and b = at for some s, t ∈M. For all x, y ∈M, if

xa = ya, then xb = xat = yat = yb. Dually, if xb = yb, then xa = xbs = ybs = ya.

So a R∗ b and hence R ⊆ R∗.
Suppose that M is regular and let a, b ∈M with a R∗ b. Then for all x, y ∈M,

xa = ya if and only if xb = yb. Let x = 1, the identity of the monoid, and y = aa′,

where a′ is an inverse of a, as certainly a = aa′a, then a R∗ b implies b = aa′b.

Similary, substitute x = 1, and y = bb′ gives a = bb′a. Hence a R b.

If M is left ample, then it follows from our definition that E(M) is a semilattice,

every a ∈M is R∗-related to a unique idempotent and, denoting this idempotent by

a+ we have that (xe)+x = xe, for any x ∈ M, e ∈ E(M). Indeed, these conditions

provide an alternative description of left ample monoids.

Our third promised description is as a quasi-variety. Let M be a unary monoid,

that is, a monoid with an additional basic unary operation, which we denote by

a 7→ a+. Then M is left ample if and only if it satisfies the quasi-identities:

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x

and

xz = yz ⇒ xz+ = yz+.

In this case, a+ is the unique idempotent in the R-class of a, and E(M) = {a+ :

a ∈M}. Note that the only non-identity is xz = yz ⇒ xz+ = yz+. This cannot be

replaced by an identity since, if it could, the class of left ample monoids would form

a variety and hence be closed under morphic image. To see that the latter could

not possibly hold, it is enough to consider the free monoid on a set X∗ which is

left ample with a+ = ε for all a ∈ X∗; if left ample monoids formed a variety every

monoid would be left ample, which is clearly nonsense.

The relation L∗ is the dual of R∗ and may be used in a dual way to give an

abstract characterization of right ample monoids. The unique idempotent in the

L∗-class of a, where it exists, would be denoted by a∗. Right ample monoids form

a quasi-variety of unary monoids, with defining (quasi)-identities the left/right dual

of those above. A monoid is ample if it is both left and right ample; hence ample

monoids form a quasi-variety of biunary monoids, where we take both sets of (quasi)-

identities as our defining set. In the case if M is inverse, then a+ = aa−1 and

a∗ = a−1a for all a ∈M ; clearly, any inverse monoid is certainly ample.

Note that any submonoid of an inverse monoid that is closed under + and ∗

is ample. However, it is undecidable whether a finite ample monoid embeds as a

submonoid of an inverse monoid in a way that preserves both + and ∗ [17].

13

1.2 Weakly (left) E-ample/(left) restriction monoids

In this section, we are extending the class of (left) ample monoids in an analogous

way to the way in which (left) ample monoids extend the class of inverse monoids.

That is, we consider further extensions of Green’s relations R and L. The reader

may refer to [14] for further details and references.

Let E be a set of idempotents contained in a monoid M ; at this stage we do not

insist that E = E(M). The relation R̃E on M is defined by the rule that for any

a, b ∈M, a R̃E b if and only if for all e ∈ E,

ea = a if and only if eb = b,

that is, a and b has the same set of left identities from E. The relation R̃E is

certainly an equivalence; however, unlike the cases for R and R∗, it need not be left

compatible. The following shows that R̃E contains R∗.

Lemma 1.2.1. For any monoid M and E ⊆ E(M), we have R ⊆ R∗ ⊆ R̃E, with

both inclusions equalities if M is regular and E = E(M).

Proof. With Lemma 1.1.2 at hand, we only need to prove R∗ ⊆ R̃E and R̃E ⊆ R if

M is regular and E = E(M). Also, the proof itself is somewhat similar to Lemma

1.1.2. Suppose a R∗ b, substituting x = e for some e ∈ E and y = 1 in the definition

of R∗ will see that a R̃E b, and hence R∗ ⊆ R̃E.

Suppose that M is regular and E = E(M). Suppose a R̃E b, so that for all

e ∈ E, we have ea = a if and only if eb = b. Now substitute e = aa′, as certainly

aa′a = a then aa′b = b. On the other hand, substitute e = bb′, giving bb′a = a.

Hence a R b, and we can conclude that R̃E ⊆ R.

In general, however, the inclusions in Lemma 1.2.1 can be strict. Similarly we

have:

Lemma 1.2.2. If e, f ∈ E, then e R f if and only if e R∗ f if and only if e R̃E f.

Proof. From Lemma 1.2.1, we know that

e R f ⇒ e R∗ f ⇒ e R̃E f.

To prove

e R̃E f ⇒ e R f,

we see that if e R̃E f, by definition of R̃E, we have ef = f and fe = e, and this in

turn implies e R f.

Note that for an arbitrary set E of idempotents in M, any idempotent e ∈ E is

a left identity of its R̃E-class, as we now show:

14

Lemma 1.2.3. If a R̃E e, then ea = a.

Proof. By the definition of R̃E, a R̃E b if and only if

∀e ∈ E, ea = a if and only if eb = b.

Let b = e, the right hand side holds as e is an idempotent. Then left hand side gives

us ea = a.

For any monoid where idempotents commute, the set of commutative idempo-

tents form a semilattice. For if e, f are idempotents, and ef = fe, then (ef)2 =

efef = eeff = ef.

Lemma 1.2.4. If E is a semilattice, e, f ∈ E and e R̃E f, then e = f.

Proof. By definition of R̃E, since e ∈ E, ee = e implies ef = f. As R̃E is symmetric,

f R̃E e, and hence fe = e. Now since E is commutative, we have fe = ef, and

hence e = f.

It is then easy to see that if E form a commutative subsemigroup of M, or simply

we say E is a semilattice, then any R̃E-class contains at most one idempotent from

E. If every R̃E-class does have an idempotent of E, we again have a unary operation

a 7→ a+, where a+ is now the unique idempotent of E in the R̃E-class of a.

Definition 1.2.5. Let M be a monoid and E ⊆ E(M). Then M is weakly left E-

ample (or left restriction) if and only if E is a semilattice, every R̃E-class contains

an idempotent of E, the relation R̃E is a left congruence, and the left ample identity

(AL) holds:

ae = (ae)+a ∀a ∈M and e ∈ E (AL).

As in the previous section, we can define left restriction monoids by a represen-

tation. It is a fact that M is left restriction if and only if M is a submonoid of some

partial transformation semigroup on X, PT X , closed under +, where here again

α+ is the identity in the domain of α. It is clear that a left ample monoid is left

restriction.

It is important to note that if M is a weakly left E-ample monoid, then E =

{a+ : a ∈ M}. We refer to E as the distinguished semilattice or the semilattice of

projections of M . Moreover, the identity of M must lie in E, for we must have

that 1+ = 1. In the case that E = E(M), we drop the “E” from the notation and

terminology, for example, we write R̃E(M) more simply as R̃.
The relation L̃ and L̃E are the dual of R̃ and R̃E; Similar to the ample cases,

weakly right E-ample monoids (right restriction monoids) may be defined in terms

of these relations, where again we denote the dual of the operation + by ∗. Combining

15

together, a monoid is weakly E-ample if it is both left and right weakly E-ample

where

E = {a+ : a ∈M} = {a∗ : a ∈M}.

The latter condition ensures that the semilattices of projections of M as a left and

as a right restriction monoid coincide.

Now we give some technical results which will be useful in subsequent chapters.

Note since all ample monoids are weakly E-ample, results for the latter also apply to

the former. The first follows immediately from the fact that in a weakly left (right)

E-ample monoid, R̃E (L̃E) is a left (right) congruence. The relation ≤ appearing

in its statement is the natural partial order on E : given e, f ∈ E, we define e ≤ f

if there exists g ∈ E such that e = gf.

Lemma 1.2.6. Let M be a weakly left E-ample monoid. Then for any a, b ∈ M

and e ∈ E :

(i) e+ = e;

(ii) (ab)+ = (ab+)+;

(iii) (ea)+ = ea+;

(iv) (ab)+ ≤ a+.

Proof. (i) e+ and e are both idempotent in the R̃E-class of e, by Lemma 1.2.4, they

must be the same.

(ii) b has a unique idempotent from E in its R̃E-class, namely b+. So b R̃E b+.

As R̃E is a left congruence, ab R̃E ab
+. This means they have the same idempotent

from E in their R̃E-class, so (ab)+ = (ab+)+.

(iii) Substituting a = e and b = a in (ii), we have (ea)+ = (ea+)+. However as

E is a semilattice, ea+ ∈ E. So (ea)+ = (ea+)+ = ea+.

(iv) Since ab R̃E (ab)+ we have

a+(ab) = ab ⇔ a+(ab)+ = (ab)+.

But a+(ab) = (a+a)b = ab, so that a+(ab)+ = (ab)+. Hence we have (ab)+ ≤ a+.

Lemma 1.2.7. Let M be a weakly right E-ample monoid. Then for any a, b ∈ M
and e ∈ E :

(i) e∗ = e;

(ii) (ab)∗ = (a∗b)∗;

(iii) (ae)∗ = a∗e;

(iv) (ab)∗ ≤ b∗.

16

Proof. Dual of Lemma 1.2.6.

It is worth noting that the condition for + in Lemma 1.2.6 (ii) above is actually

equivalent to saying Ker+ is a left congruence. Here Ker+ = {(a, b) : a+ = b+} is

the kernel of the +-operation. If M is a left restriction monoid, the + operation

maps every element to the idempotent of its R̃E-class. Thus Ker+ = R̃E, and the

later is a left congruence by the definition of left restriction monoid. However, even

if we relax the condition that requires M to be a left restriction monoid, but only

requires the + operation to be an idempotent operation ((x+)+ = x+), the equation

in Lemma 1.2.6 (ii) still equivalent to saying Ker+ is a left congruence. This is

summed up by the following:

Lemma 1.2.8. If x 7→ x+ is a unary operation on a monoid and (x+)+ = x+, then

(xy)+ = (xy+)+ if and only if Ker+ is a left congruence.

Proof. Recall that a (Ker+) b⇔ a+ = b+.

We prove the (⇐) first. If Ker+ is a left congruence, then for all a we have

a+ Ker+ a

which implies that for all a, b,

ba+ Ker+ ba

and so

(ba+)+ = (ba)+.

Note the above is not true without using the condition (x+)+ = x+.

Now we proceed with the other way (⇒). Suppose that (ba+)+ = (ba)+, for all

a, b ∈M . If a Ker+ b, we have a+ = b+. So for any c,

(ca)+ = (ca+)+ = (cb+)+

= (cb)+,

so ca Ker+ cb.

Similar to left ample monoids, we have another description of left restriction

monoids, this time, as a variety. Let M be a unary monoid, then M is left restriction

if and only if it satisfies the identities:

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

In this case, a+ is the unique idempotent in the R̃E-class of a, and we have that

E = {a+ : a ∈M}. Dually, M is right restriction if and only if satisfies the left/right

dual of the above, with + replaced by ∗, and restriction if it satisfies both sets of

17

identities together with

(x+)∗ = (x∗)+ and (x∗)+ = x+.

The latter identities are to guarantee that the semilattices projections of M as a

left/right restriction monoid coincide.

If M is an inverse monoid, the natural partial order of M is defined by

u ≤ v ⇔ u = uu−1v.

In a left ample monoid or left restriction monoid M , we have something similar, in

which the natural partial order of M is defined by

u ≤ v ⇔ u = u+v.

In the above we can replace u+ by any e ∈ E, since if u = ev then u+v = (ev)+v =

ev+v = ev = u. Clearly then the restriction of ≤ to E coincides with the usual

semilattice ordering.

Lemma 1.2.9. Let M be a left restriction monoid. The natural partial order defined

above is actually a partial order compatible with the multiplication.

Proof. 1. (reflexivity) u ≤ u, since u+u = u.

2. (antisymmetry) If u ≤ v and v ≤ u, u = u+v and v = v+u. So we have

u = u+v+u. Since E is a semilattice,

u = v+u+u = v+u = v.

3. (transitivity) If u ≤ v and v ≤ w, u = u+v and v = v+w then we have

u = u+v+w. Since E is a semilattice, u+v+ ∈ E so by the above observation

we have u ≤ w.

It is clear that ≤ is right compatible. To see that it is left compatible suppose

u ≤ v so that u = ev or some e ∈ E. Then if w ∈M we have

wu = w(ev) = (we)v = (we)+wv,

so that wu ≤ wv, as required.

Note that if M is restriction and u = ev, where e ∈ E, then u = v(ev)∗; together

with the dual observation we see that the natural order in M may be defined as a

left or as a right restriction monoid, with no ambiguity.

18

1.3 (Left) Ehresmann monoids and (left) adequate

monoids

In this section, we define the classes of (left) Ehresmann monoids and (left) adequate

monoids. The former are varieties and the latter quasi-varieties. (Left) Ehresmann

monoids extend the class of left restriction monoids and (left) adequate monoids

extend the class of (left) ample monoids. Essentially, we obtain these classes by

dropping the conditions allowing us to change the position of idempotents (ae =

(ae)+a, etc.). However, in doing so, we need to lengthen our list of (quasi)-identities.

Note that we do not have the neat representation theorems, even in the one-sided

case, that we saw in Section 1.1 or Section 1.2.

Definition 1.3.1. Let M be a monoid. Then M is a left Ehresmann monoid if

and only if there is a subset E ⊆ E(M) such that E is a semilattice, every R̃E-

class contains an idempotent of E, and the relation R̃E is a left congruence. Right

Ehresemann monoids are defined dually and a monoid is Ehresmann if it is left and

right Ehresmann with respect to the same E.

We say that E is the distinguished semilattice of M, or the semilatice of projec-

tions.

Also, similarly, we have another description of left Ehresmann monoids, this time,

as a variety with signature (2,1,0). According to [15], let M be a unary monoid,

then M is left Ehresmann if and only if it satisfies the identities:

x+x = x, (x+)+ = x+, x+y+ = y+x+, (x+y+)+ = x+y+,

x+(xy)+ = (xy)+, (xy)+ = (xy+)+.

Putting E = {a+ : a ∈ M} it follows from the identities that E is a semilattice,

called the distinguished semilattice or the semilattice of projections. We have also

that a+ is the unique idempotent in the R̃E-class of a.

A unary monoid (where we denote the unary operation by a 7→ a∗) is right

Ehresmann if it satisfies the left/right dual of the identities governing left Ehresmann

monoids. A binunary monoid is Ehresmann if it satisfies the identities of both left

and right Ehresmann monoids, together with (a+)∗ = a+ and (a∗)+ = a∗, which

again give that the semilattices of projections coincide.

For completeness we give the definition of a (left) adequate monoid, although we

will not need to use this in what follows.

Definition 1.3.2. Let M be a monoid. Then M is a left adequate monoid if and

only if E(M) is a semilattice and every R∗-class contains an idempotent of E. Right

adequate monoids are defined dually and a monoid is adequate if it is left and right

adequate.

19

Clearly, (left) ample monoids are (left) adequate. The converse is not true in

general. We do not comment further here on (left) adequate monoids, although they

may be defined by quasi-identities.

1.4 The free inverse monoid FIM(X) on X

We begin by recalling the construction of the free inverse monoid FIM(X), implicitly

using the construction of an E-unitary inverse semigroup from a McAlister triple.

Our account follows that in [21] and [14]. The reader is also referred to [29] and [31].

We first outline the construction of the free monoid and the free group for clarity

and completeness.

To begin with, let X be a non-empty set, which is often referred as an alphabet.

By a word w over X we mean a finite string w = x1 · · ·xn, where xi ∈ X, 1 ≤ i ≤ n

and n ≥ 0; the length of w is n. The empty string, which has length 0, is also

considered as a word, which is normally denoted by ε or 1. The free monoid, which

is denoted by X∗, is given by

X∗ = {w | w is a word over X},

where the binary operation is juxtaposition. We often associate x ∈ X with the

corresponding word of length 1 in X∗ by the standard embedding.

We can define a partial order relationship ≤ in X∗. Given v, w ∈ X∗, we say that

w ≤ v if and only if w = vw′ for some w′ ∈ X∗.

In this case we say v is a prefix of w.

To describe free groups, we get the help from the description of free monoid.

Given a non-empty set X, let X−1 = {x−1 : x ∈ X} be a set in one-one corre-

spondence with X in a way such that X ∩ X−1 = ∅. Consider the free monoid on

X ∪X−1. A word w ∈ (X ∪X−1)∗ is reduced if it contains no sub-word of the form

xx−1 or x−1x. If we can turn w ∈ (X ∪X−1)∗ into another v ∈ (X ∪X−1)∗ through

a process of insertion and deletion of sub-words of the form xx−1 or x−1x, then we

call w and v to be equivalent. It turns out that any word in w ∈ (X ∪ X−1)∗ is

equivalent to a unique reduced word wr. The free group FG(X) on X is then the

set of reduced word in (X ∪X−1)∗, equipped with the binary operation · where

w · v = (wv)r.

Note that we may consider X∗ as a submonoid of FG(X). We are now armed

with the description of free group we need in the construction of free inverse monoid.

20

inverse monoid

left ample monoid

left adequate monoid left restriction monoid

left Ehresmann monoid

Figure 1.1: relation between various type of monoid

21

For a reduced word w ∈ FG(X), let w = x1 · · ·xn, we define

w↓ = {1, x1, x1x2, . . . , x1 · · · xn},

to be the set of prefixes of w in (X ∪ X−1)∗. We also say that a finite non-empty

subset A of FG(X) is prefix closed if

w ∈ A⇒ w↓ ⊆ A.

We then define

g · A = {g · w : w ∈ A}.

For later use, we remark it is well-known ([21, Section 5.10, p.203], [14]) that if

w, z ∈ FG(X), then

(w · z)↓ ⊆ w↓ ∪ w · (z↓),

and

w−1 · w↓ = (w−1)↓.

Lemma 1.4.1. For any w ∈ FG(X), w↓ is prefix closed.

Proof. Let w = x1 · · ·xn in its reduced form, where x1, . . . , xn ∈ X ∪ X−1. If g ∈
w↓, then g = x1 · · ·xi for some i ≤ n. Then g↓ = {1, x1, x1x2, . . . , x1 · · ·xi} ⊆
{1, x1, x1x2, . . . , x1 · · ·xn} = w↓. So w↓ is prefix closed.

Lemma 1.4.2. If A,B ⊆ FG(X) are prefix closed sets, then we have A ∪B is also

prefix closed. In other words, The union of two prefix closed sets is prefix closed.

Proof. The union of two finite non-empty sets is must be finite and non-empty. Now

let w ∈ A∪B, without loss of generality, let w ∈ A. Since A is prefix closed, w↓ ⊆ A.

So w↓ ⊆ A ∪B.

Lemma 1.4.3. The intersection of two prefix closed sets is prefix closed.

Proof. Note that 1 is always in a prefix closed set, so the intersection must be non-

empty. Let A and B are two prefix closed sets. Since they are both finite, so is

A ∩ B. Suppose w ∈ A ∩ B. Since w ∈ A, this implies w↓ ⊆ A. Dually, w↓ ⊆ B.

Therefore, we have w↓ ⊆ A ∩B, and hence A ∩B is prefix closed.

Lemma 1.4.4. If A is prefix closed, then for any w ∈ FG(X), we have w↓ ∪ w · A
is also prefix closed.

Proof. The set w↓∪w ·A is finite and non-empty as both w↓ and A are prefix closed.

Now let v ∈ w↓ ∪ w · A. If v ∈ w↓ then v↓ ⊆ w↓ as w↓ is prefix closed. Otherwise

v ∈ w·A, so v = w·w′, where w′ ∈ A. Then v↓ = (w·w′)↓ ⊆ w↓∪w·(w′)↓ ⊆ w↓∪w·A as

A is prefix closed. In any case v↓ ⊆ w↓∪w ·A and hence the later is prefix closed.

22

Let Y denote the set of subset of FG(X) that are prefix closed. In other words,

Y = {A ⊆ FG(X) | A is prefix closed.}

We note that if A ∈ Y , then 1 ∈ A. There is a natural action of FG(X) on Y . For

g ∈ FG(X), A ∈ Y we define

g · A = {g · h | h ∈ A};

Note that g · A need not be in Y .

Lemma 1.4.5. Let A ∈ Y and g ∈ FG(X). Then

g−1 · A ∈ Y if and only if g ∈ A.

Proof. See [21, Section 5.10, P.204]

Definition 1.4.6. The free inverse monoid FIM(X) on X is then given by

FIM(X) = {(A, g) ∈ Y × FG(X) | g−1 · A ∈ Y} = {(A, g) | A ∈ Y , g ∈ A},

with multiplication given by

(A, g)(B, h) = (A ∪ g ·B, gh).

Here we need to show that FIM(X) is closed under this operation. By 1.4.4, we

have g↓ ∪ g · B ∈ Y . As g ∈ A, we know that g↓ ⊆ A. So by 1.4.2, A ∪ g · B =

A ∪ g↓ ∪ g ·B ∈ Y . On the other hand, as h ∈ B, we have gh ∈ g ·B ⊆ A ∪ g ·B.
Once again we can consider X∗ as a submonoid of FIM(X), and the standard

embedding of X into FIM(X) is given by ι : X → FIM(X), where

xι = ({1, x}, x).

By routine checking, we can see the following. As usual in an inverse monoid,

s+ means ss−1 and s∗ means s−1s.

Lemma 1.4.7. In FIM(X):

(i) the identity is ({1}, 1);

(ii) the semilattice of idempotents is E(FIM(X)) = {(A, 1)|A ∈ Y};

and for any (A, g) ∈ FIM(X) we have that

(iii) (A, g)−1 = (g−1 · A, g−1);

(iv) (A, g)+ = (A, g)(A, g)−1 = (A, 1);

23

(v) (A, g)∗ = (A, g)−1(A, g) = (g−1 · A, 1).

It is a consequence of the above that for any (A, g), (B, h) ∈ FIM(X) we have

(A, g)R (B, h) if and only if A = B

and

(A, g)L (B, h) if and only if g−1A = h−1B.

1.4.1 The free left ample and free ample monoids

Inside FIM(X) sits both the free left ample monoid FLA(X) and free ample monoid

FA(X) on X, which are unary and biunary submonoids of the free inverse monoid.

Remarkably, the free (left) ample monoid coincides with the free (left) restriction

monoid; see [14].

Specifically, the unary monoid FLA(X) has elements

FLA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗, A ⊆ X∗}

so that as a ∈ A above, we must have

FLA(X) = {(A, a) ∈ FIM(X) | A ⊆ X∗};

the multiplication as in FIM(X) and unary operation

(A, a)+ = (A, 1).

The biunary monoid FA(X) has elements

FA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗}

with multiplication as in FIM(X), and unary operations given by

(A, a)+ = (A, 1) and (A, a)∗ = (a−1A, 1).

1.5 Automata

The term finite state automata describes a class of models of computation that are

characterised by having a finite number of states. With input strings from a finite

alphabet, that is, words from a free monoid on a finite set, the system transits from

one state to another. This is standard material and may be found in [26], [20] and

[10].

24

Definition 1.5.1. An alphabet is a finite non-empty set X. A letter is an element

of X.

Definition 1.5.2. Let X be a finite non-empty set of alphabet. A finite state

automaton is a quintuple A = (X,Q,E, I, T) where

• Q is a finite set called states,

• E ⊆ Q×X ×Q,

• I ⊆ Q is a set of initial states,

• T ⊆ Q is a set of final states.

Elements in E have the form of a triple (p, x, q) where p, q ∈ Q and x ∈ X. These

are called edges. The edge (p, x, q) begins at p, ends at q, and carries the label x.

A path in A (of length n ≥ 1) is a finite sequence of edges

(p1, x1, q1), (q1, x2, q2), . . . , (qi−1, xi, qi), (qi, xi+1, qi+1), . . . , (qn−1, xn, qn).

Definition 1.5.3. Given a finite state automaton A = (X,Q,E, I, T), the reverse

automaton is A% = (X,Q,E%, T, I) with

(p, x, q) ∈ E% ⇔ (q, x, p) ∈ E.

Definition 1.5.4. A finite state automaton A = (X,Q,E, I, T) is accessible if for

any q ∈ Q, there exists a path starting from an initial state q0 ∈ I ending at q.

Definition 1.5.5. An automaton is [30, Chapter 2]:

1 trim - if both A and A% are accessible;

2 deterministic - if

– A has at most one initial state.

– for all (q, x) ∈ Q×X, there is at most one edge (q, x, p) in A;

3 complete - if

– A has exactly one initial state;

– for all (q, x) ∈ Q×X, there is exactly one edge (q, x, p) in A.

If A is deterministic, for all p ∈ Q, x ∈ X, we can define a partial function,

which is called the state transition function, or next state function δ : Q ×X → Q

by assigning δ(p, x) = q if (p, x, q) ∈ E. If A is complete, then it is a function. In

this case we may denote A by a quintuple

A = (X,Q, δ, q0, T)

25

where δ is the next state function and q0 is the unique initial state. Throughout this

thesis, we will assume a deterministic finite state automata (DFA) to be trim and

complete.

We now extend the next state function δ to have the domain Q × X∗. We set

δ(q, ε) = q for all q ∈ Q, and if δ(q, w) is defined for all q ∈ Q and |w| = n, then

δ(q, wx) = δ(δ(q, w), x), ∀x ∈ X. By induction, δ is defined in Q ×X∗. The reader

can check that for any w, v ∈ X∗,

δ(q, wv) = δ(δ(q, w), v).

This is because if wv = x1 · · ·xn, then both sides equal

δ(· · · δ(q, x1), · · ·xn).

Next we talk about languages.

Definition 1.5.6. A language (over X) is a subset of X∗. A language L is finite if

|L| <∞.

Definition 1.5.7. (i) Let q0 be the initial state of a DFA A. A word w ∈ X∗ is

accepted by A if δ(q0, w) ∈ T, and w ∈ X∗ is rejected by A if δ(q0, w) /∈ T.

(ii) The language recognised by A is

L(A) = {w ∈ X∗ | δ(q0, w) ∈ T},

that is, the set of words that A accepts.

(iii) A language L ⊆ X∗ is recognisable if there exists a DFA A with L = L(A).

Let L be a language over X. We now define ∼L on X∗, which will be a crucial

concept in this work. We give it here via a formula, but we will see there is an

equivalent abstract formulation.

Definition 1.5.8. Let u, v ∈ X∗. Then u ∼L v if and only if for all x, y ∈ X∗,

xuy ∈ L⇔ xvy ∈ L.

One can check that ∼L is a congruence, which is called the syntactic congruence of

L.

The set of congruence classes M(L) = {[w] | w ∈ X∗} then becomes a monoid

under

[u][v] = [uv],

called the syntactic monoid of L. In fact, ∼L is the largest congruence such that L

is a union of classes.

26

The following is well-known.

Theorem 1.5.9. Let L be a language over X. Then L is recognised by a DFA if and

only if its syntactic congruence has a finite index, i.e. |M(L)| <∞.

1.6 The Schützenberger product of monoids

In [33] Schützenberger introduced a product M � N of monoids M and N . In [37]

Straubing extended it into a n-ary product. Here we focus on the binary product

case. Consider the set M × N to be the set of all pairs (x, y), x ∈ M , y ∈ N.

We define an action of m ∈ M on the left of M × N, given by m(x, y) = (mx, y);

an action of n ∈ N on the right of M × N is defined dually by (x, y)n = (x, yn).

For P ⊆ M × N, m ∈ M , n ∈ N we let mP = {m(x, y) : (x, y) ∈ P} and

Pn = {(x, y)n : (x, y) ∈ P}.
The Schützenberger product M �N has the underlying set

M �N =

{(
m P

0 n

)
: m ∈M,n ∈ N,P ⊆M ×N

}

equipped with multiplication, which is given by(
m P

0 n

)(
m′ P ′

0 n′

)
=

(
mm′ mP ′ ∪ Pn′

0 nn′

)
.

It is not hard to verify that the Schützenberger product M � N is a monoid with

identity

(
1 ∅
0 1

)
.

The product has been used in a number of problems about recognizable sets [33],

[37]. To understand this, first we define the notion of recognisability by a monoid:

Definition 1.6.1. We say L is recognised by M if there exists a morphism ϕ1 :

X∗ →M such that L = (Lϕ1)ϕ
−1
1 .

Definition 1.6.2. If L,K ⊆ X∗, then LK = {w1w2 | w1 ∈ L,w2 ∈ K}.

One of the results is that if L,K ⊆ X∗, and M,N are monoids, in which L is

recognised by M, and K is recognised by N, then LK is recognised by M �N.
To show this, we first let ϕ1 be a morphism from X∗ to M , and ϕ2 be a morphism

from X∗ to N . For w ∈ X∗, define

Ω(w) = {(w1ϕ1, w2ϕ2) | w1w2 = w} ⊆M ×N.

For example, let X = {a, b, c}, and w = abc. Then

Ω(w) = {((abc)ϕ1, 1), ((ab)ϕ1, cϕ2), (aϕ1, (bc)ϕ2), (1, (abc)ϕ2)}.

27

Now define a map ϕ : X∗ →M �N by

wϕ =

(
wϕ1 Ω(w)

0 wϕ2

)
.

Lemma 1.6.3. The map ϕ is a homomorphism.

Proof. Let v, w ∈ X∗. Then

vϕwϕ =

(
vϕ1 Ω(v)

0 vϕ2

)(
wϕ1 Ω(w)

0 wϕ2

)
=

(
(vw)ϕ1 vϕ1Ω(w) ∪ Ω(v)wϕ2

0 (vw)ϕ2

)
,

whereas

(vw)ϕ =

(
(vw)ϕ1 Ω(vw)

0 (vw)ϕ2

)
.

So, it is suffices to verify that vϕ1Ω(w) ∪ Ω(v)wϕ2 = Ω(vw). If x ∈ Ω(w), there

exist w1, w2 ∈ Σ∗, with w1w2 = w such that x = (w1ϕ1, w2ϕ2). Then (vϕ1)x =

vϕ1(w1ϕ1, w2ϕ2) = ((vw1)ϕ1, w2ϕ2) and vw1w2 = vw. So (vϕ1)x ∈ Ω(vw) and

we have (vϕ1)Ω(w) ⊆ Ω(vw). Similarly, Ω(v)(wϕ2) ⊆ Ω(vw), hence vϕ1Ω(w) ∪
Ω(v)wϕ2 ⊆ Ω(vw). For the opposite inclusion, let (u1ϕ1, u2ϕ2) ∈ Ω(vw). Then

u1u2 = vw. This implies that either u1 = vy, w = yu2 or v = u1y, u2 = yw.

In the former case (u1ϕ1, u2ϕ2) = vϕ1(yϕ1, u2ϕ2) ∈ vϕ1Ω(w) and in the latter

case (u1ϕ1, u2ϕ2) = (u1ϕ1, yϕ2)wϕ2 ∈ Ω(v)wϕ2. As a result, Ω(vw) ⊆ vϕ1Ω(w) ∪
Ω(v)wϕ2.

Now is the time to prove the main result of this section.

Theorem 1.6.4. [30, Chapter 5] Let L,K ⊆ X∗ and let M,N be monoids. If L is

recognised by M, and K is recognised by N, then LK is recognised by M �N.

Proof. Let ϕ1 : X∗ →M be a morphism such that L = (Lϕ1)ϕ
−1
1 , and ϕ2 : X∗ → N

be a morphism such that K = (Kϕ2)ϕ
−1
2 . Now let ϕ : X∗ →M �N be the morphism

wϕ =

(
wϕ1 Ω(w)

0 wϕ2

)
.

We prove that LK = ((LK)ϕ)ϕ−1. Obviously LK ⊆ ((LK)ϕ)ϕ−1. To prove the

opposite inclusion, let w ∈ ((LK)ϕ)ϕ−1. Then wϕ ∈ (LK)ϕ, so that wϕ = (uv)ϕ

for some u ∈ L and v ∈ K. Now

wϕ = (uv)ϕ

=

(
(uv)ϕ1 Ω(uv)

0 (uv)ϕ2

)
.

This implies Ω(w) = Ω(uv). In particular, (uϕ1, vϕ2) ∈ Ω(uv) = Ω(w). As a result,

there exists (w1, w2) ∈ X∗, w1w2 = w such that (w1ϕ1, w2ϕ2) = (uϕ1, vϕ2). Then

28

w1ϕ1 = uϕ1 implies w1 ∈ uϕ1ϕ
−1
1 ⊆ Lϕ1ϕ

−1
1 = L. Similarly w2 ∈ K and hence

w = w1w2 ∈ LK.

1.7 Universal algebra

A (universal) algebra is a set together with a collection of finitary operations, which

are considered as basic in the sense they must be preserved by morphisms and

congruences. We give the full defininitions below. Our main examples will be

semigroups, monoids, inverse semigroups and unary and biunary monoids. Our

account follows that in [7] and [28].

Definition 1.7.1. We denote the set of natural number {1, 2, 3, . . .} by N and the

set N ∪ {0} by N0.

For a set A and n ∈ N we denote by An the n-fold direct power of A, that is,

the set of all n-tuples of elements of A; we interpret A0 as a one-element set.

Definition 1.7.2. Let B,C be sets. A function f from B to C, denoted by f :

B → C, is a subset of B × C such that for each b ∈ B, there is exactly one c ∈ C
such that (b, c) ∈ f. We may write bf = c and b 7→ c. Let A be a set and n ∈ N0.

An operation of rank n on A is a function from An to A.

Binary operations, such as the addition and multiplication of numbers that we

are familiar with, are operations of rank 2. Semigroups, monoids and groups are

equipped with a binary operation (that is associative). We call operations of rank

1 on A unary operations and identify them with the functions from A into A.

One example is such as the operation of taking inverses when studying inverse

semigroups, or the operation of a 7→ a+ in a left ample semigroup. We call operations

of rank 0 nullary or constants and identify them with their unique values. A common

example of a nullary operation that we consider is the identity of a monoid.

An algebra is a set equipped with a collection of operations:

Definition 1.7.3. Let A be a non-empty set and let F = {Fi : i ∈ I} be a set

where Fi is an operation of finite rank on A for each i ∈ I. Then the ordered pair

A = (A,F) is called an algebra. We shall also write as

A = (A,Fi : i ∈ I).

Here A is called the universe of (A,F), the operations Fi are referred to as funda-

mental or basic operations of (A,F) for each i ∈ I, and I is called the index set of

(A,F).

Definition 1.7.4. Any operation t (of any finite arity) on A that is made up from

the basic operations, projections and composition, is called a term function of A.

29

In universal algebras, we need to consider the signature of an algebra.

Definition 1.7.5. Let I be the index set of algebra A = (A,F), and ρ : I → N0 be

a function given by i 7→ ρi, where ρi is the rank of Fi. Then (ρi)i∈I is the signature

of A. If I is finite, say I = {1, · · · , n}, we may write (ρ1, · · · , ρn) for the signature.

Note that if ρi = 0, then Fi : A0 → A and as we have remarked it is associated

with some ai ∈ A.
So, an algebra has signature (2) if it has a single binary operation (and no others).

For example, a semigroup, which can be written as

S = (S, ·).

Of course, for S to be a semigroup, it must also satisfy the identity for associativity,

that is, (xy)z = x(yz). We mean by the latter that for any a, b, c ∈ S we have

(ab)c = a(bc). Notice that we tend to drop · for the binary operation and use

juxtaposition. A monoid has signature (2, 0),

M = (M, · , 1),

and if it is a unary monoid, it has signature (2, 1, 0), like an inverse monoid

I = (I, · ,−1 , 1).

In the same way a biunary monoid has signature (2, 1, 1, 0), and so on.

Note that there can be more than one type of algebra with the same signature.

A group is an algebra with signature (2, 1, 0), written as

G = (G, · ,−1 , 1),

where the −1 in the signature in this case refers to the group inverse.

An algebra of a certain signature can also be considered as an algebra of another

signature. For example, an inverse monoid can be considered as a monoid, which

itself can be considered as a semigroup. We will be careful to specify which signatures

we are using.

Definition 1.7.6. Let A = (A,F) and B = (B,G) be algebras of the same signa-

ture, where F = {Fi : i ∈ I} and G = {Gi : i ∈ I} are sets of basic operations such

that for each i ∈ I, Fi and Gi have the same rank ρi. Let f be a function from A to

B. Then f is a morphism if for any i ∈ I and a1, a2, ..., aρi ∈ A,

(Fi(a1, a2, ..., aρi))f = Gi(a1f, a2f, ..., aρif).

If ρi = 0, that means f is taking a constant in A to constant in B. For example, if

30

A and B are both monoids, then a monoid morphism f should send the identity of

A into that of B. That is, 1Af = 1B.

The following follows from induction on the number of basic operations needed

to build a term function.

Corollary 1.7.7. Let A and B be algebras of the same type and t(x1, ..., xn) be a

term function. Suppose θ : A→ B is a morphism and a1, ..., an ∈ A. Then

(t(a1, ..., an))θ = t(a1θ, ..., anθ).

Without further mention, we shall assume morphisms are between algebras of

the same signature. A morphism θ : S → T, where S and T are monoids, is a

(2, 0)-morphism if

(i) (aθ)(bθ) = (ab)θ,

(ii) 1Sθ = 1T ,

for a, b ∈ S.
If S, T are left ample monoids, a map θ : S → T is a morphism if it satisfies (i),

(ii) and

(iii) (a+)θ = (aθ)+,

for all a ∈ S.

Inverse monoids are special. Let S, T be inverse monoids and let θ : S → T satisfy

(i) and (ii), that is, it is a (2, 0)-morphism. Then (by judicious use of Lallement’s

Lemma), it is a consequence that

(iii) a−1θ = (aθ)−1

for all a ∈ S, that is, θ is a (2, 1, 0)-morphism.

The counterpart to morphisms are congruences on algebras, which we now define.

Roughly speaking, an equivalence relation on an algebra A = (A,Fi : i ∈ I) is a

congruence if it is compatible with all the basic operations, as we explain below.

Definition 1.7.8. Let A = (A,Fi : i ∈ I) be an algebra and let σ be an equivalence

relation on A. Then σ is a congruence if for each basic operation Fi, if the rank of

Fi is ρi and a1, . . . , aρi , b1, . . . , bρi ∈ A and aj σ bj for all 1 ≤ j ≤ ρi, then

Fi(a1, . . . , aρi) σ Fi(b1, . . . , bρi).

We note that in the above, if ρi = 0 then the given condition is automatically

satisfied.

The following follows from induction.

31

Corollary 1.7.9. Let A = (A,Fi : i ∈ I) be an algebra and let σ be a congruence

on A. Let t(x1, . . . , xn) be an n-ary term function on A. If a1, . . . , an, b1, . . . , bn ∈ A
and aj σ bj for all 1 ≤ j ≤ n, then

t(a1, ..., an) σ t(b1, ..., bn).

For example, on an inverse semigroup S, a (2, 1)-congruence σ must satisfy:

For any a, b, c, d ∈ A, if a σ b and c σ d, then

(i) ac σ bd;

(ii) a−1 σ b−1.

Again, inverse monoids are special in the sense that if (i) holds then (ii) follows.

But, this is not the case for a general (2, 1)-congruence.

In general, a binary relation H on an algebra A is a subset of A×A. If H ⊆ A×A,
then u 〈H〉 v if u = v or ∃ a sequence u0, u1, . . . , un such that u = u0 and un = v,

where for each 1 ≤ i ≤ n, we have ui−1 = ti(a1, . . . , aj−1, p, aj+1, . . . , ami
) and

ui = ti(a1, . . . , aj−1, q, aj+1, . . . , ami
), where (p, q) or (q, p) ∈ H and ti(x1, . . . , xmi

)

is a term function.

Lemma 1.7.10. Let A be an algebra and let H be a subset of A× A. Then 〈H〉 is

a congruence containing H and is the smallest such congruence.

Proof. To prove 〈H〉 is reflexive, we see that for any u ∈ A, u = u. So u 〈H〉 u.
To prove 〈H〉 is symmetric, let u, v ∈ A. Then u 〈H〉 v if and only if u = v or

∃ a sequence u0, u1, . . . , un such that u = u0 and un = v, where for each 1 ≤ i ≤ n, we

have ui−1 = ti(a1, . . . , aj−1, p, aj+1, . . . , ami
) and ui = ti(a1, . . . , aj−1, q, aj+1, . . . , ami

),

where (p, q) or (q, p) ∈ H. If u = v, then v = u and so v 〈H〉 u. For the

other case, v = un, . . . , u1, u0 = u is a sequence where for each 1 ≤ i ≤ n, we

have ui = ti(a1, . . . , aj−1, q, aj+1, . . . , ami
) and ui−1 = ti(a1, . . . , aj−1, p, aj+1, . . . , ami

)

where (p, q) or (q, p) ∈ H.
To prove 〈H〉 is transitive, let u, v, w ∈ A such that u 〈H〉 v and v 〈H〉 w. If

either u = v or v = w, then u 〈H〉 w. Otherwise, ∃ a sequence u0, u1, . . . , un such that

u = u0 and un = v, and ∃ a sequence v0, v1, . . . , vn such that v = v0 and vn = w. Then

we have a sequence u0, u1, . . . , un = v0, v1, . . . , vn, where if for each pair of adjacent

term in the sequence, they are in the form of ti(a1, . . . , aj−1, p, aj+1, . . . , ami
) and

ti(a1, . . . , aj−1, q, aj+1, . . . , ami
), where (p, q) or (q, p) ∈ H.

We have shown that 〈H〉 is an equivalence relation. We must now prove that

〈H〉 is compatible with the basic operations, or, equivalently, the term functions.

Let t(x1, . . . , xl) be a term function and elements pk, qk ∈ A where (pk, qk) ∈〈H〉 for

1 ≤ k ≤ l. We need to prove

t(p1, . . . , pl) 〈H〉 t(q1, . . . , ql).

32

By transitivity, it suffice to prove: for any fixed c2, . . . cl and (p′, q′) ∈〈H〉, we have

t(p′, c2, . . . cl) 〈H〉 t(q′, c2, . . . cl).

Having the other variables fixed, we can consider consider t as having a single

variable. So we have to prove

t(p′) = t(p′, c2, . . . cl) 〈H〉 t(q′, c2, . . . cl) = t(q′).

If p′ = q′, certainly t(p′) = t(q′). Otherwise ∃ a sequence u0, u1, . . . , un such that p′ =

u0 and un = q′, where for each 1 ≤ i ≤ n, we have ui−1 = ti(a1, . . . , aj−1, p, aj+1, . . . , ami
)

and ui = ti(a1, . . . , aj−1, q, aj+1, . . . , ami
), where (p, q) or (q, p) ∈ H. Letting si(x) =

t(ti(a1, . . . , aj−1, x, aj+1, . . . , ami
)), we have t(ui−1) = si(p) and t(ui) = si(q). So we

get the sequence t(u0), t(u1), . . . , t(un) we want. As t(p′) = t(u0) and t(un) = t(q′),

from the definition of 〈H〉, we deduce t(p′) 〈H〉 t(q′).
Note if (u, v) ∈ H, we can let n = 1, u0 = u = t(u) and u1 = v = t(v) where

t(x) = x. Then (u, v) ∈〈H〉, and H ⊆〈H〉.
Let σ be a congruence in A that contains H, and u 〈H〉 v. Then if u = v, then

u σ v. Otherwise, by Corollary 1.7.9, we know that for each 1 ≤ i ≤ n, we have

ui−1 = t(a1, . . . , aj−1, p, aj+1, . . . , ami
) σ t(a1, . . . , aj−1, q, aj+1, . . . , ami

) = ui,

as (p, q) or (q, p) ∈ H ⊆ σ. Since σ is transitive, we have u = u0 σ un = v. As a

result, 〈H〉⊆σ and hence 〈H〉 is the smallest congruence containing H.

Let σ be a congruence on an algebra A = (A,Fi : i ∈ I), and let

A/σ = {[a] | a ∈ A}.

Then on A/σ we can define operations F̄i, corresponding to Fi, for each i ∈ I by

F̄i([a1], · · · , [an]) = [Fi(a1, · · · , an)]

where ρi = n, and [ai] is the σ-class of ai. If i = 0, the constant associated with F̄i

is [a], where a is the constant associated with Fi. The fact that σ is a congruence

easily yields that each F̄i is well defined. In this way, we turn A/σ into an algebra

of the same signature as A.

For example, if S is an inverse semigroup and σ is a congruence then S/σ becomes

a (2, 1)-algebra where

(i) [a][b] = [ab];

(ii) [a]−1 = [a−1],

33

for a, b ∈ S. In fact, S/σ is then an inverse semigroup; [21]. Note that we may

denote the congruence class of a ∈ S by aσ rather than [a].

Finally we connect morphisms and congruences. Let A be an algebra and sup-

pose ρ is a congruence on A. Then we can define a morphism, the natural map

ρ\ : A→ A/ρ by

aρ\ = [a].

Lemma 1.7.11. Let ρ\ be defined above. Then ρ\ is indeed a morphism with ker ρ\ =

ρ.

Proof. Let F = {Fi : i ∈ I} be the set of basic operations of A such that for each

i ∈ I, Fi has rank ρi. For any i ∈ I and a1, a2, ..., aρi ∈ A,

(Fi(a1, a2, ..., aρi))ρ
\ = [Fi(a1, a2, ..., aρi)]

= Fi([a1], [a2], ..., [aρi])

= Fi((a1)ρ
\, (a2)ρ

\, ..., (aρi)ρ
\).

Also, let a, b ∈ A. Then a ker ρ\ b, if and only if aρ\ = bρ\, which is equivalent

to [a] = [b], and hence to a ρ b.

For the proof of the next result we refer the reader to any standard text. For

example, [28].

Proposition 1.7.12. Let A,B and C be algebras of the same signature. Let θ :

A→ B and ψ : A→ C be morphisms where ψ is onto and kerψ ⊆ ker θ. Then there

exists a unique morphism ϕ : C → B such that for all a ∈ A, (aψ)ϕ = aθ.

Corollary 1.7.13. Let A and B be algebras of the same signature. Let θ : A→ B

be a morphism. Then

A/ ker θ ∼= Aθ.

Proof. In Proposition 1.7.12 let C be A/ ker θ and ψ : A→ A/ ker θ be the natural

map (ker θ)\. That is, aψ = [a] where [a] is the congruence class of a with respect

to ker θ. Since ψ is onto and kerψ = ker θ, from Proposition 1.7.12 there exists

a unique morphism ϕ : A/ ker θ → B such that for all a ∈ A, (aψ)ϕ = aθ. So

([a])ϕ = aθ. Note that for all b ∈ Aθ ⊆ B, b = aθ = ([a])ϕ for some a ∈ A. Also if

([a′])ϕ = ([a])ϕ, then a′θ = aθ and hence [a′] = [a] as kerψ = ker θ. As a result ϕ is

1-1 and onto between A/ ker θ and Aθ and the result follows.

34

Chapter 2

Syntactic congruences

In Chapter 1 we defined a syntactic congruence on a free monoid. In this chapter

we show how to extend this notion to arbitrary universal algebras.

2.1 Syntactic congruences on universal algebras

It is well known and easy to see that the notion of a syntactic congruence of a subset

of a free monoid can be extended to arbitrary monoids (see, for example, [34]). We

give a short account of how this works.

Definition 2.1.1. Let M be a monoid and let L ⊆ M be a subset. The syntactic

congruence ∼L of L is the largest congruence such that L is a union of congruence

classes.

To see that this definition does not clash with that of Chapter 1.5 we prove the

following.

Proposition 2.1.2. [21]. Let M be a monoid and let L ⊆M . Then u ∼L v if and

only if for any x, y ∈M we have

xuy ∈ L⇔ xvy ∈ L.

Proof. For the moment, let κ be the relation defined on M as in the statement.

Clearly κ is an equivalence relation. Now, if u, v ∈ M with uκ v and p ∈ M , then

for any x, y ∈M we have:

x(pu)y ∈ L⇔ (xp)uy ∈ L⇔ (xp)vy ∈ L⇔ x(pv)y ∈ L,

so that pu κ pv. Thus κ is left compatible with the monoid multiplication and dually

it is right compatible. It follows easily that κ is a congruence.

If u ∈ L and uκ v, then as 1u1 ∈ L we have v = 1v1 ∈ L. Thus L is a union

of κ-classes. Finally, if L is a union of ρ-classes for some congruence ρ, then given

35

any u, v ∈M with u ρ v, we have for any x, y ∈M that xuy ρ xvy, so that as L is a

union of ρ-classes,

xuy ∈ L⇔ xvy ∈ L,

so that uκ v.

We have demonstrated that κ is ∼L, as required.

We now turn our attention to arbitrary (universal) algebras. Here we cannot

hope for a simple form, involving just one explicit condition where we can explicitly

give the term functions that describe the syntactic congruence, so we will give a

definition along the lines of Definition 2.1.1, aiming for simple forms in some special

cases of interest.

Let A be an algebra, with universe A. Associated with A are two lattices: the

lattice of equivalence relations on A, which is denoted by E(A), and the lattice of

congruences on A, which is denoted by C(A). Of course E(A) contains C(A) as

a set. As the intersection of equivalences (congruences) is again an equivalence

(congruence), it is clear that C(A) is a meet sublattice of E(A). What is more

remarkable is that C(A) is a join sublattice of E(A). This follows from standard

results in universal algebra, that tell us that the join, that is, the least upper bound,

in E(A) of a set of congruences is indeed a congruence [28]. As a consequence, the

join of a collection of congruences in E(A) coincides with the join in C(A).

A subset L ⊆ A is said to be an A-language or a language over A. Let CL = {νi :

i ∈ I} be the collection of all congruences on A such that L is a union of νi-classes

for each νi. If we can prove that the join of all the congruences in CL is still in CL,
i.e. such that L is a union of congruence classes, then clearly this join will be the

largest congruence such that L is a union of classes.

Theorem 2.1.3. Let A be an algebra, with universe A, and L ⊆ A. Let CL = {νi :

i ∈ I} be the collection of all congruences in A such that L is a union of νi-classes

for each νi. Then the join ρ =
∨
i∈I νi is the largest congruence such that L is a

union of ρ-classes.

Proof. Since the join of a collection of congruences in the lattice of equivalences

is a congruence, it follows that ρ is a congruence. As ρ is a join in the lattice of

equivalences, it folllows that ρ is the product (in the semigroup of binary relations)

of the relations νi, i ∈ I. Thus a ρ b if and only if ∃n s.t.

a = a0 ν1 a1 ν2 a2 ν3 . . . νn an = b,

where νi ∈ CL for all 1 ≤ i ≤ n [28]. Suppose a ∈ L and a ρ b. Then a0 = a ∈ L and

since ν1 ∈ CL, L is a union of ν1-classes, so that a1 ∈ L. Similarly, a2 ∈ L and so on.

Finally, we have b = an ∈ L. As a result , L is a union of ρ-classes. We have shown

36

that ρ ∈ CL. As the join of all congruence is in CL, ρ must be the largest congruence

in CL.

We can now define a syntactic congruence on A. We refer the reader here to the

work of Clark, Davey, Freese, Jackson, Maróti and McKenzie [4, 8].

Definition 2.1.4. Let A be an algebra, and L ⊆ A. The syntactic congruence of L,

∼L, is defined as the largest congruence in A such that L is a union of congruence

classes.

We can say that L is saturated by a congruence if L is a union of congruence

classes, but we tend not to use this terminology.

Proposition 2.1.5. Let A be an algebra, with universe A, and L ⊆ A. Then ∼L
always exists.

Proof. We have shown that the join of elements in CL is still in CL. The result

follows by observing that the equality relation is a congruence on A such that L is

a union of congruence classes, so that CL is always non-empty.

Given that ∼L always exists, the natural question second is to ask, how can we

describe ∼L?

We now outline a general process for finding ∼L, which we will later specialise.

First we consider unary term functions. Let t(x1, · · · , xn) be a term with n free

variables in the free term algebra on the signature of A, where n ≥ 1. Choosing

elements a2, . . . , an ∈ A we define

t(x) : A→ A by t(x) = t(x, a2, . . . , an).

We refer to t(x) as a unary term function.

For example, ifM is an Ehresmann monoid, then t(x) given by t(x) = ((mx)+n)∗u

where m,n, u ∈M is a unary term function.

Proposition 2.1.6. Let A be an algebra, and L ⊆ A. If ρ is a congruence on A

such that L is a union of ρ-classes, then for any u, v ∈ A with u ρ v, and for any

unary term function t(x), we have

t(u) ∈ L⇔ t(v) ∈ L.

Proof. To see this, suppose t(x, x2, . . . , xn) is a term in the signature of A. Then if

a2, . . . , an ∈ A and u, v ∈ A with u ρ v we must have

t(u, a2, . . . , an) ρ t(v, a2, . . . , an)

37

as ρ is a congruence. Hence as L is a union of ρ-classes, t(u, a2, . . . , an) ∈ L if and

only if t(v, a2, . . . , an) ∈ L. In other words, (with some abuse of notation,) t(u) ∈ L
if and only if t(v) ∈ L.

Theorem 2.1.7. (cf. [8]) Let A be an algebra, and L ⊆ A. Then for any u, v ∈ A
we have u ∼L v if and only if for any unary term function t(x)

t(u) ∈ L⇔ t(v) ∈ L.

Proof. We know that ∼L is defined as the largest congruence in A such that L is a

union of congruence classes. From Proposition 2.1.6, in particular, if u ∼L v, then

t(u) ∈ L if and only if t(v) ∈ L.

On the other hand, suppose that L ⊆ A and ρ is defined by the rule that for any

unary term function t(x), we have u ρ v if and only if

t(u) ∈ L⇔ t(v) ∈ L.

Clearly this is an equivalence relation. Suppose that F (x1, · · · , xn) is a basic oper-

ation, t(x) is a unary term function and ai ρ bi for 1 ≤ i ≤ n. For 1 ≤ i ≤ n let

Fi(x) = t(F (a1, · · · , ai−1, x, bi+1, · · · , bn)). Then

t(F (a1, · · · , an)) ∈ L ⇔ Fn(an) ∈ L
⇔ Fn(bn) ∈ L
⇔ Fn−1(an−1) ∈ L
...

⇔ F1(a1) ∈ L
⇔ F1(b1) ∈ L
⇔ t(F (b1, · · · , bn)) ∈ L.

Thus ρ is a congruence as it is an equivalence and respects all basic operations.

Note that t(x) = x is also a term. Let a ∈ L and suppose that a ρ b. Then

t(a) = a ∈ L, so t(b) = b ∈ L. Hence L is a union of congruence classes. As ∼L is

the largest congruence on A such that L is a union of congruence classes, ρ ⊆∼L .
But ∼L⊆ ρ as ∼L itself satisfies the condition that t(u) ∈ L ⇔ t(v) ∈ L for any

unary term function t(x). Hence the equality follows.

Now the game becomes limiting different kinds of t(x) that one needs for different

kinds of algebra. We do this directly, without recourse to properties of the lattice

of congruences or the nature of the varieties concerned, as in [8]. Moreover, we look

for specific (lists of) terms, rather than arguing for their existence.

From Proposition 2.1.2 we know that for a general monoid M , which is a (2,0)-

algebra, the syntactic congruence is given by the rule that for all u, v ∈ M,u ∼L v
if and only if for all term functions of the kind t(x) = pxq, where p, q ∈M , we have

38

that

t(u) ∈ L ⇔ t(v) ∈ L.

Corollary 2.1.8. Let M be an inverse monoid and let L ⊆ M . Regarding M

as a (2, 1, 0)-algebra, the syntactic congruence ∼L is given by the rule that for all

u, v ∈M, we have u ∼L v if and only if for all term functions of the kind t(x) = pxq,

where p, q ∈M, that

t(u) ∈ L ⇔ t(v) ∈ L.

Proof. From the above, the relation described is the largest monoid congruence such

that L is a union of classes. But by the result of Chapter 1.7, a monoid congruence

on an inverse monoid is a unary monoid congruence (and certainly the converse is

true).

2.2 Syntactic congruences on one sided Ehresmann

monoids

We consider the case of left Ehresmann monoids; the case for (right) Ehresmann

monoid is the left/right dual, where we replace + by ∗.

Definition 2.2.1. Let M be a left Ehresmann monoid. Given an M -language L,

we define ≈L by the rule that for all u, v ∈M we have

u ≈L v

if and only if for all x, y, s, t ∈M :

1.

xuy ∈ L ⇔ xvy ∈ L

2.

x(sut)+y ∈ L ⇔ x(svt)+y ∈ L

We are going to show that this ≈L is equal to the relation ∼L .

Proposition 2.2.2. The relation ≈L is an unary monoid congruence.

Proof. To show that a relation is a unary monoid congruence, we need to show that

it is an equivalence, and respects both multiplication and + operation. That is, if

u ≈L v and u′ ≈L v′, then uu′ ≈L vv′ and u+ ≈L v+.
It is easy to show that ≈L is an equivalence. We now show that ≈L is compatible

with multiplication.

39

Let u ≈L v and u′ ≈L v′. Then

x(uu′)y ∈ L ⇔ xu(u′y) ∈ L
⇔ xv(u′y) ∈ L as u ≈L v
⇔ (xv)u′y ∈ L
⇔ (xv)v′y ∈ L as u′ ≈L v′

⇔ x(vv′)y ∈ L.

Also,

x(suu′t)+y ∈ L ⇔ x(su(u′t))+y ∈ L
⇔ x(sv(u′t))+y ∈ L as u ≈L v
⇔ x((sv)u′t)+y ∈ L
⇔ x((sv)v′t)+y ∈ L as u′ ≈L v′

⇔ x(svv′t)+y ∈ L.

Hence uu′ ≈L vv′.
Finally we must show that ≈L respects the + operation. Let u ≈L v. Then

xu+y ∈ L ⇔ x(1u1)+y ∈ L
⇔ x(1v1)+y ∈ L as u ≈L v
⇔ xv+y ∈ L.

By Lemma 1.2.6 and the fact that idempotents commute,

x(su+t)+y ∈ L ⇔ x(su+t+)+y ∈ L as (ab)+ = (ab+)+

⇔ x(st+u+)+y ∈ L as a+b+ = b+a+

⇔ x(st+u)+y ∈ L as (ab)+ = (ab+)+

⇔ x(st+u1)+y ∈ L
⇔ x(st+v1)+y ∈ L as u ≈L v
⇔ x(st+v)+y ∈ L
⇔ x(st+v+)+y ∈ L as (ab)+ = (ab+)+

⇔ x(sv+t+)+y ∈ L as a+b+ = b+a+

⇔ x(sv+t)+y ∈ L as (ab)+ = (ab+)+.

Therefore u+ ≈L v+.

We now show that ≈L is the largest congruence such that L is a union of con-

gruence classes. Since ≈L says that for certain unary term functions t(x) we have

t(u) ∈ L if and only if t(v) ∈ L it follows from Proposition 2.1.6 that ∼L⊆≈L.

However, we demonstrate this directly below.

Proposition 2.2.3. The relation ≈L is the largest (2, 1, 0)-congruence such that L

is a union of congruence classes.

Proof. First we need that L is indeed a union of ≈L-classes. Let a ∈ L and a ≈L b.

40

Then 1a1 = a ∈ L, so 1b1 = b ∈ L. Hence L is a union of congruence classes.

Now suppose ρ is a (2, 1, 0)-congruence and L is a union of ρ-classes. Let a ρ b.

Then for all x, y, s, t ∈M, we have xay ρ xby, and since sat ρ sbt, we have (sat)+ ρ

(sbt)+, and hence x(sat)+y ρ x(sbt)+y. As L is a union of ρ-classes, we have xay ∈ L
if and only if xby ∈ L and x(sat)+y ∈ L if and only if x(sbt)+y ∈ L. Hence a ≈L b.
As ρ ⊆≈L for arbitrary (2,1,0)-congruence ρ, ≈L is the largest one of the kind.

As by Definition 2.1.4, the syntactic congruence ∼L is the largest congruence in

an algebra such that L is a union of congruence classes, we have the following.

Theorem 2.2.4. Let M be a left Ehresmann monoid and let L be a language over

M . Then ∼L is the relation ≈L.

We have shown that for syntactic congruences over left Ehresmann monoids we

need only two kinds of unary terms to determine them. Note that Theorem 2.2.4

does not appear to simplify for arbitrary left ample monoids. Unfortunately, the

results for Ehresmann monoids will be more complicated. To further generalize

with syntactic congruence to arbitrary unary or binary monoid, we see that without

the axiom for left Ehresmann monoid, the proof of Proposition 2.2.2 does not work.

We show that Theorem 2.2.4 is indeed an extension of the characterisation for

inverse monoids (in [34], for example). Of course we already know this in some sense

since monoid congruences on an inverse monoid are inverse monoid congruences, but

we now check directly. That is to say we show that the second kind of terms for ∼L
are redundant in an inverse monoid.

Proposition 2.2.5. In an inverse monoid M, if for all x, y ∈M,

xuy ∈ L⇔ xvy ∈ L,

then for all x, y, s, t ∈M,

x(sut)+y ∈ L⇔ x(svt)+y ∈ L.

Proof. For clarity, since now we have yet to prove syntactic congruence in left Ehres-

mann monoid is an extension of the one in inverse monoid, we now denote them by

∼EL and ∼IL respectively. Note since an inverse monoid is regular, R = R̃. As a+

is the unique idempotent in R̃a,
1 it is the unique idempotent in Ra, and is equal to

aa−1. We would hope that ∼IL also respects the + operation in an inverse monoid,

and we show directly this is the case.

Suppose that u, v ∈M and for all x, y ∈M ,

xut ∈ L⇔ xvy ∈ L.
1Here as usual we use non-script letters to denote the classes of relations defined by script letters

41

Then u ∼IL v. Consider the standard homomorphism from M to the quotient M/ ∼IL
It is well known [21] and observed in Chapter 1 that the image M/ ∼IL is an inverse

monoid with [a]−1 = [a−1]. So

u ∼IL v ⇔ [u] = [v]

⇔ [u−1] = [u]−1 = [v]−1 = [v−1]

⇔ u−1 ∼IL v−1.

As ∼IL is a congruence, u+ = uu−1 ∼IL vv−1 = v+. Hence for any x, y, s, t ∈M

u ∼IL v ⇒ sut ∼IL svt
⇒ (sut)+ ∼IL (svt)+

⇒ x(sut)+y ∼IL x(svt)+y.

Thus

x(sut)+y ∈ L⇔ x(svt)+y ∈ L,

as claimed.

From now on we will continue with∼L rather than∼EL and∼IL without ambiguity.

We now give an example of an application of Theorem 2.2.4.

Lemma 2.2.6. Let M be a left Ehresmann monoid, and let E be the semilattice of

projections. Suppose that uv ∈ E implies both u, v ∈ E. Then ∼E has classes, E

and M \E. Moreover, the syntactic congruence of E on the left Ehresmann monoid

M coincides with that on the monoid M .

Proof. Since E is a semilattice, if both u, v ∈ E, then uv ∈ E. So uv ∈ E if and

only if both u, v ∈ E.

Suppose that u, v ∈ E. Then for all x, y ∈M, we have

xuy ∈ E ⇔ x, y ∈ E ⇔ xvy ∈ E.

Further, for any s, t we have

x(sut)+y ∈ E ⇔ x, y ∈ E
⇔ x(svt)+y ∈ E.

Thus u ∼E v.

Further, if we are given that for all x, y ∈ M we have xuy ∈ E if and only if

xvy ∈ E, then taking x = y = 1 we deduce that u ∈ E if and only if v ∈ E and

then from the above that u ∼L v where M is regarded as left Ehresmann.

Below we demonstrate with an illustrative example.

42

Let M be a monoid acting on the left of a semilattice Y with identity by monoid

morphisms. This means there is a map M × Y → Y, (m, y) 7→ m · y such that

m · 1Y = 1Y , 1M · y = y,m · (n · y) = mn · y,m · (yz) = (m · y)(m · z).

Then we can form the semidirect product Y oM with operation

(y,m)(z, n) = (y(m · z),mn)

and putting

(y,m)+ = (y, 1)

we have that Y oM is left ample [14], (so certainly left Ehresmann).

By taking certain M and certain Y , we describe some examples of languages and

their syntactic congruences.

Let X be a set and let M = X∗. Let Y be the power set of X∗ equipped with

the operation of union. Then Y is a monoid semilattice with identity ∅. M acts on

Y by

m · y = {mw : w ∈ y}.

Let E be the language of idempotents E = E(Y oM). By considering the second

co-ordinates of idempotents, we see that if (y,m)(z, n) = (y(m · z),mn) ∈ E then

mn = 1. Since m,n ∈ M = X∗, we get m = n = 1 and hence (y,m), (z, n) ∈ E.
By Lemma 2.2.6, u ∼L v is equivalent to u ∈ E if and only if v ∈ E, that is, the

syntactic congruence of E has just two classes.

It is easy from the left-right dual that if M is a right Ehresmann monoid, and L

is a M -language, then the syntactic congruence of L is given by:

for all u, v ∈M we have u ∼L v if and only if for all x, y, s, t ∈M :

1.

xuy ∈ L ⇔ xvy ∈ L

2.

x(sut)∗y ∈ L ⇔ x(svt)∗y ∈ L.

The left-right dual of Proposition 2.2.2, and hence Theorem 2.2.3, clearly holds.

Both left-sided and right-sided cases hold with much simplified term functions as

there are corresponding identities that simplify the behaviour of the unary operation.

However, the 2-sided case is more complicated as + and ∗ operators are interwined.

43

2.3 Syntactic congruences on two-sided Ehresmann

monoids

To proceed with the case of two-sided Ehresmann monoids, we first define some

specific biunary term functions.

For i ∈ N0, let li, ri ∈M. Define:

t0 terms: t0(x) = l0xr0

ti terms for i ≥ 1 consist of two kinds of terms, t+i and t∗i

t1 terms:

t+1 term: t+1 (x) = l0(l1xr1)
+r0

t∗1 term: t∗1(x) = l0(l1xr1)
∗r0

t2 terms:

t+2 term: t+2 (x) = l0(l1(l2xr2)
+r1)

∗r0

t∗2 term: t∗2(x) = l0(l1(l2xr2)
∗r1)

+r0

t3 terms:

t+3 term: t+3 (x) = l0(l1(l2(l3xr3)
+r2)

∗r1)
+r0.

t∗3 term: t∗3(x) = l0(l1(l2(l3xr3)
∗r2)

+r1)
∗r0.

...

so that the + and ∗ in the brackets alternate. Alternatively, we can define t0(x) =

l0xr0, t
+
1 (x) = t0((l1xr1)

+), t∗1(x) = t0((l1xr1)
∗), and recursively define t+i+1(x) =

t∗i ((li+1xri+1)
+) and t∗i+1(x) = t+i ((li+1xri+1)

∗) for i ≥ 1.

Now we are going to use the above list of terms to determine the syntactic

congruence of a language over a (two-sided) Ehresmann monoids.

Definition 2.3.1. Let M be an Ehresmann monoid. Given an M -language L, define

the relation ≈L by the rule that for any u, v ∈ M we have u ≈L v if and only if for

all l0, l1, · · · ∈M and for all r0, r1, · · · ∈M :

1.

t0(u) ∈ L ⇔ t0(v) ∈ L

2. For all n ∈ N,
t+n (u) ∈ L ⇔ t+n (v) ∈ L

t∗n(u) ∈ L ⇔ t∗n(v) ∈ L.

First of all, we show:

Proposition 2.3.2. The relation ≈L is a bi-unary monoid congruence.

44

Proof. To show that a relation is a bi-unary monoid congruence, we need to show

that it is an equivalence, it respects multiplication, and it respects the unary oper-

ations + and ∗. That is, if u ≈L v and u′ ≈L v′, then uu′ ≈L vv′, u+ ≈L v+ and

u∗ ≈L v∗.

It is easy to show that ≈L is an equivalence.

We now show ≈L is compatible with multiplication. Let u ≈L v and u′ ≈L v′.
Then for a t0 term t0(x) = l0xr0 we have

l0(uu
′)r0 ∈ L ⇔ l0u(u′r0) ∈ L

⇔ l0v(u′r0) ∈ L as u ≈L v
⇔ (l0v)u′r0 ∈ L
⇔ (l0v)v′r0 ∈ L as u′ ≈L v′

⇔ l0(vv
′)r0 ∈ L.

For a tn term, where we may take t+n (x) = l0 . . . (lnxrn)+ . . . r0, we have

l0 . . . (lnuu
′rn)+ . . . r0 ∈ L ⇔ l0 . . . (lnu(u′rn))+ . . . r0 ∈ L

⇔ l0 . . . (lnv(u′rn))+ . . . r0 ∈ L as u ≈L v
⇔ l0 . . . ((lnv)u′rn)+ . . . r0 ∈ L
⇔ l0 . . . ((lnv)v′rn)+ . . . r0 ∈ L as u′ ≈L v′

⇔ l0 . . . (lnvv
′rn)+ . . . r0 ∈ L.

and where we take a t∗n-term, say t∗n(x) = l0 . . . (lnxrn)∗ . . . r0, we have dually that

l0 . . . (lnuu
′rn)∗ . . . r0 ∈ L ⇔ l0 . . . (lnu(u′rn))∗ . . . r0 ∈ L

⇔ l0 . . . (lnv(u′rn))∗ . . . r0 ∈ L as u ≈L v
⇔ l0 . . . ((lnv)u′rn)∗ . . . r0 ∈ L
⇔ l0 . . . ((lnv)v′rn)∗ . . . r0 ∈ L as u′ ≈L v′

⇔ l0 . . . (lnvv
′rn)∗ . . . r0 ∈ L.

Hence uu′ ≈L vv′.

We now show ≈L is compatible with the operation +. Let u ≈L v. Then for a

t0-term t0(x) = l0xr0 we have

l0u
+r0 ∈ L ⇔ l0(1u1)+r0 ∈ L

⇔ l0(1v1)+r0 ∈ L as u ≈L v
⇔ l0v

+r0 ∈ L.

By Lemma 1.2.6 and the fact that idempotents commute, for a t+n -term t+n (x) =

45

l0 . . . (lnxrn)+ . . . r0, we have

l0 . . . (lnu
+rn)+ . . . r0 ∈ L ⇔ l0 . . . (lnu

+r+n)+ . . . r0 ∈ L as (ab)+ = (ab+)+

⇔ l0 . . . (lnr
+
n u

+)+ . . . r0 ∈ L as a+b+ = b+a+

⇔ l0 . . . (lnr
+
n u)+ . . . r0 ∈ L as (ab)+ = (ab+)+

⇔ l0 . . . (lnr
+
n u1)+ . . . r0 ∈ L

⇔ l0 . . . (lnr
+
n v1)+ . . . r0 ∈ L as u ≈L v

⇔ l0 . . . (lnr
+
n v)+ . . . r0 ∈ L

⇔ l0 . . . (lnr
+
n v

+)+ . . . r0 ∈ L as (ab)+ = (ab+)+

⇔ l0 . . . (lnv
+r+n)+ . . . r0 ∈ L as a+b+ = b+a+

⇔ l0 . . . (lnv
+rn)+ . . . r0 ∈ L as (ab)+ = (ab+)+

and for a t∗n-term t∗n(x) = l0 . . . (lnxrn)∗ . . . r0, we have

l0 . . . (lnu
+rn)∗ . . . r0 ∈ L ⇔ l0 . . . (ln(1u1)+rn)∗ . . . r0 ∈ L

⇔ l0 . . . (ln(1v1)+rn)∗ . . . r0 ∈ L using a tn+1 term

and as u ≈L v
⇔ l0 . . . (lnv

+rn)∗ . . . r0 ∈ L.

It follows that u+ ≈L v+.
To show ≈L respects the ∗ operation is dual.

This completes the proof that ≈L is a biunary monoid congruence.

Next, we need show that ≈L is the largest congruence such that L is a union of

congruence classes.

Theorem 2.3.3. The relation ≈L is the largest bi-unary monoid congruence such

that L is a union of congruence classes. That is, ≈L is the syntactic congruence ∼L.

Proof. First we need that L is indeed a union of ≈L-classes. Let a ∈ L and suppose

that a ≈L b. Then consider the t0 term t0(x) = l0xro where by letting l0 = r0 = 1.

We have 1a1 = a ∈ L, so 1b1 = b ∈ L. Hence L is a union of congruence classes.

Now suppose ρ is a (2, 1, 1, 0)-congruence and L is a union of ρ-classes. Let a ρ b.

Then by Proposition 2.1.6 we have t(a) ∈ L if and only if t(b) ∈ L for any (2, 1, 1, 0)-

unary term function. Hence in particular this applies to the terms ti, i ≥ 0 that we

have defined. Hence a ≈L b. As ρ ⊆≈L for arbitrary (2, 1, 1, 0)-congruence ρ, the

relation ≈L is the largest one of the kind. Hence ≈L is the syntactic congruence

∼L.

Now we know that the congruence ≈L is indeed the syntactic congruence in L,

we have proved:

Corollary 2.3.4. The syntactic congruence ∼L of a language L inside a two-sided

Ehresmann monoid M is given by:

46

for all u, v ∈M we have that u ∼L v if and only if for all elements l0, l1, · · · and

r0, r1, · · · in M :

1.

t0(u) ∈ L ⇔ t0(v) ∈ L

2. For all n ∈ N,
t+n (u) ∈ L ⇔ t+n (v) ∈ L

t∗n(u) ∈ L ⇔ t∗n(v) ∈ L

We now formalise our approach in the following, the proof of which follows that

of Theorem 2.3.3.

Theorem 2.3.5. Let A be an algebra, let T be the set of all unary term operations

and let T ′ be a subset of T such that t(x) = x ∈ T ′. Let L ⊆ A. Define the relation

≈L given by the rule that u ≈L v if for all t(x) ∈ T ′ we have

t(u) ∈ L⇔ t(v) ∈ L.

If ≈L is a congruence, then ≈L =∼L.

Proof. We know that u ∼L v if and only if for all unary term functions t(x) we have

t(u) ∈ L⇔ t(v) ∈ L.

So if u ∼L v and t(x) ∈ T , then t(u) ∈ L if and only if t(v) ∈ L. Whereas u ≈L v if

and only if for all t(x) ∈ T ′, we have t(u) ∈ L if and only if t(v) ∈ L. This means

that ∼L⊆≈L . Now if ≈L is a congruence, and u ≈L v, then as t(x) = x ∈ T ′, we

have if u ∈ L, then t(u) ∈ L, so t(v) ∈ L, and so v ∈ L. This means L is a union of

≈L classes, so ≈L⊆∼L . Hence ≈L =∼L.

2.3.1 Syntactic congruences on two-sided Ehresmann monoids

where idempotents are central

The list of unary term functions at the beginning of the Section 2.3 seems compli-

cated. However, there are special cases where the list can be simplified. The first

case is when the idempotents are central, that is, when ea = ae for all a ∈ M and

e ∈ E = E(M).

To see what we can get when idempotents are central, we first define s+1 (x) =

px+q and s∗1(x) = px∗q.

Proposition 2.3.6. Let M be an Ehresmann monoid with central idempotents.

Then + and ∗ coincide, i.e., a+ = a∗ for all a ∈M.

47

Proof. Let a ∈ M . We know that a+a = a, so aa+ = a as idempotents are central.

Then (aa+)∗ = a∗, so (a∗a+)∗ = a∗, which means a∗a+ = a∗. Hence in E, we have

a∗ ≤ a+. Dually, we obtain a+ ≤ a∗ so that a∗ = a+.

So s+1 (x) = px+q = px∗q = s∗1(x). We can define s1(x) = px+q. Next we see that

the + and ∗ operations “can be distributed” into the brackets.

Lemma 2.3.7. If M is Ehresmann with elements of E being central, then for any

s, t ∈M we have

(st)+ = s+t+ and dually (st)∗ = s∗t∗.

Proof. We have

(st)+ = (st+)+ = (t+s)+ = (t+s+)+ = t+s+ = s+t+.

and the case for ∗ holds as + and ∗ coincide.

In fact we have:

Proposition 2.3.8. Let M be an Ehresmann monoid with central idempotents.

Then it is actually restriction monoid.

Proof. All we need to do is to check the ample identities. In fact, as + and ∗ coincide,

it suffice in checking that the left ample identity holds.

(ab+)+a = (b+a)+a = (b+a+)+a = b+a+a = b+a = ab+.

In the language of Theorem 2.3.5 the next result is saying that to determine syn-

tactic congruences in Ehresmann monoids with central idempotents we can restrict

our set of unary term operations to those of the form t0 and s.

Proposition 2.3.9. Let M be an Ehresemann monoid with central idempotents and

let L ⊆ M . Then ∼L coincides with ≈L, where for any u, v ∈ M we have u ≈L v

if and only if for all p, q ∈M we have

puq ∈ L iff pvq ∈ L,

pu+q ∈ L iff pv+q ∈ L.

Proof. Let u, v ∈M be such that u ≈L v. Then for any k ∈M, and for all p, q ∈M,

pukq ∈ L iff pvkq ∈ L

48

and
p(uk)+q ∈ L iff pu+k+q ∈ L

iff pv+k+q ∈ L
iff p(vk)+q ∈ L.

We have shown that uk ≈L vk and dually, ku ≈L kv. So if h ≈ k then we obtain

uh ≈ vh ≈ vk,

so that is a semigroup congruence.

Still with u ≈L v, for all p, q ∈M, first using the s(x) term we have

pu+q ∈ L iff pv+q ∈ L.

Further, using s(x) terms again,

p(u+)+q ∈ L iff pu+q ∈ L iff pv+q ∈ L iff p(v+)+q ∈ L,

so that u+ ≈L v+. (Of course, u∗ ≈ v∗ as + and ∗ coincide.) So ≈L is a (2, 1, 1)-

congruence. As p, q ∈M is arbitrary, by setting p = q = 1, we have u ∈ L iff v ∈ L,
which means L is a union of congruence classes. It follows from Theorem 2.3.5 that

∼L coincides with ≈L.

2.3.2 When the language is finite

Another case where we hope for simplification is when the language L is finite, where

we hope that we need terms ti for only finitely many i ∈ N0.

To this end we define the relations ∼L,i.

Definition 2.3.10. Let the relation ∼L,i be determined by t0, t1, . . . , ti. That is,

u ∼L,i v means

tj(u) ∈ L iff tj(v) ∈ L for all 0 ≤ j ≤ i.

To simplify notation, we would usually refer to ∼L,i as ∼i, where L is known.

Lemma 2.3.11. With the above definitions we have

∼0⊇∼1⊇ . . . ⊇∼i⊇ . . .

Proof. It suffices to prove that ∼i⊇∼i+1 for any i ∈ N0. Recall that u ∼i v means -

tj(u) ∈ L iff tj(v) ∈ L for all 0 ≤ j ≤ i.

So u ∼i+1 v means

tj(u) ∈ L iff tj(v) ∈ L for all 0 ≤ j ≤ i+ 1,

49

so that

tj(u) ∈ L iff tj(v) ∈ L for all l 0 ≤ j ≤ i

certainly holds. Hence u ∼i v. That is, ∼i⊇∼i+1 .

Lemma 2.3.12. We have ⋂
i∈N0

∼i=∼L .

Proof. We know that u ∼L v means

tj(u) ∈ L iff tj(v) ∈ L for all 0 ≤ j,

so that certainly

tj(u) ∈ L iff tj(v) ∈ L for all 0 ≤ j ≤ i

holds. Hence u ∼i v. That is, ∼i⊇∼L which gives us that
⋂
i∈N0 ∼i⊇∼L.

Conversely, if u
⋂
i∈N0 ∼i v, we have u ∼i v for all i ∈ N0, then by definition for

any i ∈ N0 and for any term ti(x), we have ti(u) ∈ L if and only if ti(v) ∈ L (since

u ∼i v), and so we deduce u ∼L v as required.

We hope that for any finite set L we can show ∼i=∼L for some i, which means

that when we are expressing ∼L we need only check that for finitely many types of

terms ti we have ti(u) ∈ L if and only if ti(v) ∈ L, in order to deduce that u ∼L v.

We can show this is true in the special case that M is the free ample monoid on X.

The description of the free ample monoid FA(X) is given in Subsection 1.4.1.

First, let M be an Ehresmann monoid and let L ⊆M . Let

H = HL = {x ∈M | tj(x) ∈ L for some j}

and K = M \H. Then, given u, v ∈ K, for any ti(x), we have ti(u) /∈ L and ti(v) /∈ L
so the statement:

ti(u) ∈ L iff ti(v) ∈ L

for all i ≥ 0 is true! If u ∈ H and w ∈ K, then ∃ i with ti(u) ∈ L but ti(w) /∈ L.

Then u 6∼L w. So K is a ∼L-class. Note also that u 6∼i w, and because

∼0⊇∼1⊇ . . . ⊇∼i⊇ . . . ,

we have u 6∼j w for all j ≥ i.

We now focus on the case where M = FA(X) is free ample on X and let L ⊆
FA(X).

Lemma 2.3.13. For a finite language L in M = FA(X), the set H = HL is finite.

Proof. Before we prove the lemma, we first prove:

50

Lemma 2.3.14. Let (A, a), (B, b) ∈ M . If t((B, b)) = (A, a) for some term t(x),

then |B| ≤ |A| and the letters of the words in B have to be letters in the words of

A.

Proof. We first remark that A ⊆ FG(X) is prefix closed, a ∈ A and a ∈ X∗.
If t(x) = x, then we have (A, a) = (B, b), and it is clear that |B| = |A| ≤ |A|

and the letters of the words in B have to be letters in the words of A.

If t(x) = s(x)u(x) and t(B, b) = (T, t), s(B, b) = (S, s) and u(B, b) = (U, u),

then (T, t) = (S, s)(U, u). As a result T = S ∪ s · U. As s ∈ S ⊆ T and U ⊆ s−1 · T ,

we have |S| ≤ |T |, s ∈ T and also |U | ≤ |s−1 · T | = |T |.
If t(x) = s+(x), with t(B, b) = (T, t) and s(B, b) = (S, s), then (T, t) = (S, s)+ =

(S, 1) and hence |T | = |S|.
If t(x) = s∗(x), with t(B, b) = (T, t) and s(B, b) = (S, s), then (T, t) = (S, s)∗ =

(s−1 · S, 1) and hence |T | = |S|.
Also in the above 3 cases, the letters of the words in S and U have to be letters

in the words of T . The result is clear if S ⊆ T. On the other hand, for any g ∈ T,
g−1 · T = {(g−1t)r|t ∈ T}. Thus the words in g−1 · T are made up of letters of words

in T .

It follows by induction on the number of basic operations needed to construct

the unary term t(x) such that t((B, b)) = (A, a) that |B| ≤ |A| and the letters of

the words in B have to be letters in the words of A.

As a result, if |A| = k, then as |B| ≤ k, and the words of B are made up from

the letters of A, there are only finitely many choices for B and hence as b ∈ B, only

finitely many choices for b and so only finitely many choices for (B, b). Hence if L

is finite, there are only finitely many (A, a) ∈ L and thus finitely many (B, b) have

terms ti(x) such that ti((B, b)) ∈ L. So H = HL is finite.

We now have the following situation. Let L ⊆ FA(X) be finite and let H,K be

as given. Then we have FA(X) = H ∪K, where H is finite, H ∩K = ∅ and K is

contained in a single ∼L-class. We know therefore that H is a union of ∼L-classes.

We have

∼0⊇∼1⊇ . . . ⊇∼i⊇ . . .

Let ∼Hi be the equivalence relation on H given by

h ∼Hi k iff h ∼i k.

We partition H into ∼H0 -classes. We then partition H into ∼Hi -classes; sooner or

later we find an i ≥ 0 such that the partition given by ∼Hi is the same as that given

by ∼Hj for any j ≥ i. This implies for h, k ∈ H, such that h ∼i k, then for all j ∈ N,
tj(u) ∈ L iff tj(v) ∈ L. This gives us h ∼L k.

51

We now prove:

Theorem 2.3.15. If L is a finite language over FA(X), then ∼L =∼j for some

j ≥ 0.

Proof. Let i ≥ 0 be as above. We know that ∼i⊇∼L .
Suppose h ∼i k. If h, k ∈ H then from above, h ∼L k. If h, k ∈ K then we know

h ∼L k.

Suppose h ∈ H and k ∈ K and h ∼i k. If also h′ ∈ H and k′ ∈ K and h′ ∼i k′,
by transitivity of ∼i, we have h′ ∼i k′ ∼i k ∼i h, since k ∼L k′ and ∼L⊆∼i. Hence

h ∼i h′. So, if exists, there is at most one ∼L-class in H is contained in the same

∼i-class as K.

Suppose h ∈ H and h ∼i k for some (equivalently, all) k ∈ K. Then ∃ ih > i

with tih(h) ∈ L but tih(k) /∈ L. Thus h 6∼l k for all l ≥ ih. Let j be the maximum

of {ih | h ∈ H}. Together with the fact that ∼Hl =∼Hi for any l ≥ i, and h ∼i k for

all i and for all k, h ∈ K, we have ∼l=∼j for any l ≥ j, thus ∼j =∼L .

Note that Theorem 2.3.15 holds for any Ehresmann monoid M whenever H is

finite.

2.3.3 An example where we need our full list of unary term

functions

The aim of this subsection is to give an example of a language over an ample monoid

such that ∼L 6=∼i for any i ≥ 0. Again we take a free ample monoid M = FA(X),

where here we choose X to be

X = {ai, b, ui, vi : i ≥ 0}.

Let L be the language consisting of the following elements:

u0a0v0

u1(u0a1v0)
+v1

u2(u1(u0a2v0)
+v1)

∗v2
...

To see ∼L 6=∼i for any i ≥ 0, first see for any term t(x) (other than t(x) = 1) we

have t(b) /∈ L. Certainly then t0(b) /∈ L, t+i (b) /∈ L and t∗i (b) /∈ L for any i > 0

and any choice of l0, l1, . . . , r0, r1, Consider the t0 term t0(x) = u0xv0. We have

t0(a0) ∈ L but t0(b) /∈ L. So a0 6∼0 b.

We have a1 ∼0 b, since for any t0 term, t0(a1) = l0a1r0 /∈ L and we know

t0(b) /∈ L. On the other hand, taking the t+1 term t+1 (x) = u1(u0xv0)
+v1, we have

t+1 (a1) ∈ L but t+1 (b) /∈ L. So, a1 6∼1 b, and hence ∼1⊂∼0.

52

In general, for any i ≥ 0, we have ai+1 ∼i b as for any choice of t0(x) or tj(x),

j ≤ i, we have t0(ai+1), tj(ai+1), t0(b), tj(b) /∈ L. However, ai+1 6∼i+1 b, for if we take

t+i+1(x) = ui+1(. . . (u0ai+1v0)
+v1 . . .)vi+1

we have t+i+1(ai+1) ∈ L, but t+i+1(b) /∈ L. So, ∼i+1⊂∼i for all i, and we need all

terms for ∼L.

2.3.4 Syntactic congruences on two-sided Ehresmann monoids

where the language is the set of idempotents

Yet another case where there is simplification is when the language is the set of

idempotents of the free ample monoid. What follows is analogous to Lemma 2.2.6.

Lemma 2.3.16. Let M be an Ehresmann monoid, and let E be the semilattice of

projections. Suppose that uv ∈ E implies both u and v ∈ E. Then ∼E has classes,

E and M \ E. Moreover, the syntactic congruence of E on the Ehresmann monoid

M coincides with that on the monoid M .

Proof. Since E is a semilattice, if both u and v ∈ E, then uv ∈ E. So uv ∈ E if and

only if both u and v ∈ E.

Suppose that u, v ∈ E. Then for all x, y ∈M, we have

xuy ∈ E ⇔ x, y ∈ E ⇔ xvy ∈ E.

Further, for any t(x) = t+i (x) or t(x) = t∗i (x) and any a ∈ FA(X) we have t(a) =

l0er0 for some e ∈ E, so that

t(u) ∈ E ⇔ l0, r0 ∈ E
⇔ t(v) ∈ E.

Thus u ∼E v.

Further, if we are given that for all x, y ∈ M we have xuy ∈ E if and only if

xvy ∈ E, then taking x = y = 1 we deduce that u ∈ E if and only if v ∈ E and

then from the above that u ∼L v where M is regarded as Ehresmann.

Below we would demonstrate an illustrative examples:

Let M be the free ample monoid, L = E = E(M). If uv ∈ E, by taking the

homomorphism to X∗ we end up with second co-ords being 1, so u, v ∈ E. By

Lemma 2.3.16, u ∼L v is equivalent to u ∈ E if and only if v ∈ E.

There are further examples of syntactic congruence of different languages in

Chapter 5.

53

Chapter 3

Recognisability of languages using

syntactic congruences

In the previous chapter we considered syntactic congruences on universal algebras,

focussing on left and two-sided ample and Ehresmann monoids. Here we begin our

consideration of recognisable languages in universal algebras, using the notion of the

syntactic congruence. In a later chapter we will investigate connections with finite

state automata.

The following definition is familiar for monoids [34].

Definition 3.0.1. Let A be a universal algebra and let L ⊆ A. We say that

L ∈ Rec A if and only if A/ ∼L is finite.

If L is in Rec A, we say that L is recognisable.

Lemma 3.0.2. Given the definition of recognisable language in Definition 3.0.1,

L ∈ Rec A if and only if there is a morphism from φ : A → N where N is finite

such that L = Lφφ−1.

Proof. If L ∈ Rec A, then A/ ∼L is finite. Define φ : A → A/ ∼L by aφ = [a].

Obviously, L ⊆ Lφφ−1. To show that Lφφ−1 ⊆ L, let a ∈ Lφφ−1. Then aφ = a′φ for

some a′ ∈ L. Hence [a] = [a′] which means a ∼L a′. As L is a union of ∼L-classes.

a ∈ L. As a result, Lφφ−1 ⊆ L, so that L = Lφφ−1.

On the other hand, suppose there is a morphism from φ : A → N where N

is finite such that L = Lφφ−1. Let a ∈ L and a′ ∈ A be such that aφ = a′φ,

in other words, a kerφ a′. Now a′ ∈ aφφ−1 ⊆ Lφφ−1 = L, hence L is a union of

kerφ-classes. As ∼L is the largest congruence such that L is a union of congruence

class, kerφ ⊆∼L . As a result, we have |A/ ∼L | ≤ |A/ kerφ| = |N | <∞, and thus

L ∈ Rec A.

It is important to relate recognizable languages in similar algebras, that is, al-

gebras with the same signature, because we can connect recognizable languages to

54

algebras with better understood structures. The good news is that, we can show

that a language is recognizable if and only if its pre-image is recognizable.

Suppose A and B are two similar algebras, that is, that they have the same

signature. Also suppose that θ : A→ B is a surjective homomorphism from A onto

B. To relate the languages of the algebras, what we do is to relate their syntactic

congruences. Let L ⊆ B and K = Lθ−1 ⊆ A; we will relate the syntactic congruence

∼K of K and the syntactic congruence ∼L of L. In particular, we would like to show

that (a, b) ∈∼K if and only if (aθ, bθ) ∈∼L .
Define

νL∼K
= {(a′, b′) : a′ = aθ and b′ = bθ for some a, b ∈ A s.t. (a, b) ∈∼K} ⊆ B×B.

Lemma 3.0.3. The relation νL∼K
is a congruence on B such that L is a union of

congruence classes.

Proof. First we need to prove that νL∼K
is a congruence.

Let us prove that it is reflexive. Since θ is surjective, for all a′ ∈ B, there

exists a ∈ A such that a′ = aθ. Since ∼K is a congruence, (a, a) ∈∼K . Therefore

(a′, a′) ∈ νL∼K
.

Let us prove that it is symmetric. If a′, b′ ∈ B is such that (a′, b′) ∈ νL∼K
, then

there exists a, b ∈ A s.t. a′ = aθ, b′ = bθ and (a, b) ∈∼K . Since ∼K is a congruence,

(b, a) ∈∼K , and hence (b′, a′) ∈ νL∼K
.

Let us prove that it is transitive. If a′, b′, c′ ∈ B such that (a′, b′), (b′, c′) ∈ νL∼K
,

then there exists a, b1, b2, c ∈ A such that a′ = aθ, b1θ = b′ = b2θ, c
′ = cθ and

(a, b1), (b2, c) ∈∼K . As b1θ = b′ = b2θ, b1 ker θ b2. Note since K = Lθ−1, ker θ is

a congruence such that K is a union of ker θ-classes. Therefore, ker θ ⊆∼K as ∼K
is the largest congruence with K as a union of congruence classes. So b1 ker θ b2

implies b1 ∼K b2. By the transitivity of ∼K we have (a, c) ∈∼K , so (a′, c′) ∈ νL∼K
.

Let us prove that it is compatible with basic operations. Let F be any basic

operation of rank n. For each i = 1, . . . , n, let a′i, b
′
i ∈ B, be such that (a′i, b

′
i) ∈ νL∼K

.

Then there exists ai, bi ∈ A such that a′i = aiθ, b
′
i = biθ and (ai, bi) ∈∼K . As

(ai, bi) ∈∼K and ∼K is a congruence,

(F (a1, . . . , an), F (b1, . . . , bn)) ∈∼K ⇒ ((F (a1, . . . , an))θ, (F (b1, . . . , bn))θ) ∈ νL∼K

⇒ (F (a1θ, . . . , anθ), F (b1θ, . . . , bnθ)) ∈ νL∼K

⇒ (F (a′1, . . . , a
′
n), F (b′1, . . . , b

′
n)) ∈ νL∼K

Then we need to prove that L is a union of νL∼K
-classes. Suppose a′ ∈ L, and

(a′, b′) ∈ νL∼K
. Then a′ = aθ for some a ∈ K, b′ = bθ for some b ∈ A such that

(a, b) ∈∼K . Therefore, as K is a union of ∼K-classes, b ∈ K, and b′ = bθ ∈ Kθ = L.

So L is a union of νL∼K
-classes.

55

On the other hand, we define

νK∼L
= {(a, b) : (aθ, bθ) ∈∼L} ⊆ A×A.

Lemma 3.0.4. The relation νK∼L
is a congruence such that K is a union of con-

gruence classes.

Proof. As before, we need to prove that νK∼L
is a congruence. First we prove it

is reflexive. This follows since for all a ∈ A, we have (aθ, aθ) ∈∼L, since ∼L is a

congruence, and so (a, a) ∈ νK∼L
.

Then let us prove it is symmetric. We have

(a, b) ∈ νK∼L
⇒ (aθ, bθ) ∈∼L, (3.1)

⇒ (bθ, aθ) ∈∼L as ∼L is a congruence, (3.2)

⇒ (b, a) ∈ νK∼L
. (3.3)

Next, we prove it is transitive.

(a, b), (b, c) ∈ νK∼L
⇒ (aθ, bθ), (bθ, cθ) ∈∼L, (3.4)

⇒ (aθ, cθ) ∈∼L as ∼L is a congruence, (3.5)

⇒ (a, c) ∈ νK∼L
. (3.6)

We also need to prove it is compatible with basic operations. Let F be a basic

operation of rank n, and suppose (ai, bi) ∈ νK∼L
for all i = 1, . . . , n. Then

(aiθ, biθ) ∈∼L (∀i = 1, . . . , n),

⇒ (F (a1θ, . . . , anθ), F (b1θ, . . . , bnθ)) ∈∼L, as ∼L is a congruence,

⇒ ((F (a1, . . . , an))θ, (F (b1, . . . , bn))θ) ∈∼L, as θ is a homomorphism,

⇒ (F (a1, . . . , an), F (b1, . . . , bn)) ∈ νK∼L
.

Finally, we need to prove that K is a union of νK∼L
-classes. Suppose a ∈ K,

and (a, b) ∈ νK∼L
. Then (aθ, bθ) ∈∼L . Because a ∈ K = Lθ−1, aθ ∈ L. Also since

L is a union of ∼L-classes, we have bθ ∈ L, therefore b ∈ Lθ−1 = K.

The above lemmas have proved half of the following:

Theorem 3.0.5. Let A,B be similar algebras, θ : A → B be a surjective homo-

morphism. Let L ⊆ B and K = Lθ−1 ⊆ A, and ∼L,∼K , νL∼K
, νK∼L

be defined as

above. Then ∼L= νL∼K
and ∼K= νK∼L

.

Proof. As νL∼K
is a congruence such that L is a union of congruence classes, we

know that νL∼K
⊆∼L . Similarly, as νK∼L

is a congruence such that K is a union of

congruence classes, we know that νK∼L
⊆∼K . To prove that ∼L⊆ νL∼K

, suppose

(a′, b′) ∈∼L, and let a, b ∈ A be such that a′ = aθ, b′ = bθ. Then (a, b) ∈ νK∼L
⊆∼K .

56

By the definition of νL∼K
, (a′, b′) ∈ νL∼K

. Hence νL∼K
= νL. On the other hand, to

prove that ∼K⊆ νK∼L
, suppose (a, b) ∈∼K . Then (aθ, bθ) ∈ νL∼K

=∼L, hence by

the definition of νK∼L
, (a, b) ∈ νK∼L

. Hence νK∼L
=∼K .

One can see from the above proof that:

Corollary 3.0.6. For any a, b ∈ A, we have (a, b) ∈∼K if and only if (aθ, bθ) ∈∼L .

Finally we have:

Theorem 3.0.7. Let A,B be similar algebras, θ : A → B be a surjective homo-

morphism. Let L ⊆ B. Then

L ∈ Rec B⇔ Lθ−1 ∈ Rec A.

Proof. LetK = Lθ−1, Corollary 3.0.6 implies that (a, b) ∈∼K if and only if (aθ, bθ) ∈
∼L . Hence there is a one-one correspondence between A/ ∼Lθ−1 and B/ ∼L, which

takes [u]∼K
to [uθ]∼L

, thus |A/ ∼Lθ−1 | is finite if and only if |B/ ∼L | is finite.

Now given K ⊆ A, K is said to be ker θ-closed if K is a union of ker θ-classes.

Theorem 3.0.8. Let A,B be similar algebras, θ : A → B be a surjective homo-

morphism. Let K ⊆ A. The following are equivalent:

1. K is ker θ-closed;

2. K = Kθθ−1;

3. K = Lθ−1 for some L ⊆ B;

4. ker θ ⊆∼K .

Moreover, if K satisfies any one of the above condition, K ∈ Rec A⇔ Kθ ∈ Rec B.

Proof. (1)⇒(2) Suppose K is ker θ-closed. We always have K ⊆ Kθθ−1. To show

that Kθθ−1 ⊆ K, let a ∈ Kθθ−1. Then aθ ∈ Kθ, and hence aθ = bθ for some b ∈ K.
By the definition of ker θ, a ker θ b. Hence a is also in K.

(2)⇒(3) Suppose K = Kθθ−1. Let L = Kθ. Then Lθ−1 = Kθθ−1 = K.

(3)⇒(4) Suppose K = Lθ−1 for some L ⊆ B. Let a ∈ K and a ker θ b. Then

aθ ∈ L and bθ = aθ ∈ L, hence b ∈ Lθ−1 = K. Hence ker θ is a congruence such

that K is a union of congruence class. By the definition of ∼K , ker θ ⊆∼K .

(4)⇒(1) Suppose ker θ ⊆∼K . Let a ∈ K and a ker θ b. Then a ∼K b. By the

definition of ∼K , K is a union of ∼K , hence b ∈ K. Therefore K is ker θ-closed.

The final remark follows from Theorem 3.0.7 by letting L = Kθ.

57

Here we require A,B to be similar algebras. The thing we build on is the free

term algebra, and other similar algebras can be considered as factors of this via

a congruence. Let us take the signature of Ehresmann monoids (2,1,1,0) as an

example. Let X be a countable set, which can be finite or infinite. We define the

elements of the free term algebra FTS(X) on X of the signature S = (2, 1, 1, 0)

inductively as follows:

We first include the elements in X. That is, x ∈ FTS(X) for all x ∈ X. We then

add in an extra symbol for each nullary operation, that is, 1 ∈ FTS(X). Then we

define the rest of the algebra inductively using the unary and binary operations.

If s, t ∈ FTS(X), then s · t ∈ FTS(X), s+ ∈ FTS(X) and s∗ ∈ FTS(X). Here ·
is a symbol for the binary operation, and + and ∗ are symbols for the two unary

operations of the signature (2,1,1,0). Then we can make FTS(X) into an algebra by

defining the operations as above for any s, t ∈ FTS(X).

Taking as an example, for x, y ∈ FTS(X), we have the following elements of

FTS(X) :

1, x , y , y+, x+ · (x · y)∗ · y , (y+)+, x · y+, x · (y · y), (x · y) · y , (x · x) · x.

The object we built is the free term algebra with signature (2, 1, 1, 0).

If A is any algebra in the same signature as FTS(X), and θ : X → A is a map,

then θ can be extended uniquely to a morphism φ from FTS(X) to A by inductively

putting

1FTS(X)φ = 1A

and for all x ∈ X,
xφ = xθ.

Let s, t ∈ FTS(X) be defined inductively as above. If sφ and tφ are defined, then we

can define (s · t)φ = (sφ)(tφ), (s+)φ = sφ+ and (s∗)φ = sφ∗. Then φ is well defined

and a morphism. Note that if w ∈ FTS(X), then w has a unique expression as a

sequence of symbols (from x, the set of basic operational symbols, and brackets.)

From the free term algebra, we obtain other algebras that can be defined by

identities. We can define congruence relations induced by these identities, and the

quotient set defined in the natural way is then isomorphic to our target algebra.

Formally we have:

Proposition 3.0.9. Let T = FTS(X) be a free term algebra with signature S. Let

FAS(X) be a free algebra of the same signature S, determined by a set of identities

{li = ri : i ∈ I} for some index set I. Let H = {(li, ri) : i ∈ I} be the relation on T

determined by the identities. Then FAS(X) ∼= T/〈H〉.

Proof. As T itself is a free algebra on X, there is a map α : X → T where nα = n

for all n ∈ X. Suppose θ : X → S, where S is an algebra of signature S and S

58

satisfies the identities. Then there is a morphism φ : T → S such that αφ = θ.

Now for any (li, ri) ∈ H, liφ = riφ as S satisfies the identities. So H ⊆ kerφ, and

so as 〈H〉 is the smallest congruence containing H, 〈H〉 ⊆ kerφ. So by Proposition

1.7.12 we can define φ̄ : T/〈H〉 → S by [u]φ̄ = uφ. We now have ᾱφ̄ = θ, where ᾱ :

X → T/〈H〉 is given by nᾱ = [n]. Hence T/〈H〉 is a free algebra determined by the

identities. Since such free algebra is unique up to isomorphism, FAS(X) ∼= T/〈H〉.
Notice also that T/〈H〉 satisfies all the identities li = ri, i ∈ I.

The above is a general result for varieties, below there are a few observations,

which are special cases.

For example, as we have seen, you can consider a unary monoid as a monoid with

an additional unary operation +. It has a signature S = (2, 1, 0). The free unary

monoid on X is a unary monoid FU(X) together with a map α : X → FU(X) with

the property that, for every unary monoid U and every map θ : X → U, there is

a unique morphism φ : FU(X) → U such that αφ = θ. We will get the free unary

monoid by taking the free term algebra FTS(X) and factoring by the congruence

generated by

{((s · t) · u, s · (t · u)), (1 · s, s), (s · 1, s) : s, t, u ∈ FTS(X)}.

According to [16], a semigroup is left restriction if and only if it satisfies

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

On the other hand, for any set X, the free left restriction monoid and the free left

ample monoid coincide. Thus we can get the free left ample monoid FLA(X) by

factoring FTS(X) by the congruence generated by

{((s · t) · u, s · (t · u)), (1 · s, s), (s · 1, s),

(s+s, s), (s+t+, t+s+), ((s+t)+, s+t+), (st+, (st)+s) : s, t, u ∈ FTS(X)}.

We give a structure theorem for FLA(X) in Chapter 1.

Further, factoring FTS(X) by the congruence generated by

{((s · t) · u, s · (t · u)), (1 · s, s), (s · 1, s), (s+, 1) : s, t, u ∈ FTS(X)}

will yield a monoid with an additional unary operation that is constant with its

image at the monoid identity. That is, the free monoid X∗, but in an augmented

signature.

Given a set X, let FU(X), FLE(X), and FLA(X) be the free unary monoid, free

left Ehresmann monoid, and free left ample monoid on X respectively. Also now we

assume M be a left ample monoid generated by X. If we regard X as a subset of

59

FU(X), FLE(X), FLA(X) andM, then we naturally obtain unary monoid morphism

θ : FU(X)→ FLE(X), ϕ : FLE(X)→ FLA(X), and ψ : FLA(X)→ M. Moreover,

each of these morphisms is onto. If both A and B are left Ehresmann monoid,

take A to be FLE(X), and B to be FLA(X) as an example, we can show, as an

illustration of Theorem 3.0.7:

EXAMPLE 3.0.10. Let L ⊆ FLA(X). Then

L ∈ Rec FLA(X)⇔ Lϕ−1 ∈ Rec FLE(X).

Proof. We use the description of ∼L given in Section 2.2. Suppose u, v ∈ FLE(X)

are such that u ∼Lϕ−1 v. As ϕ is surjective, for all a′, b′, c′, d′ ∈ FLA(X), there exist

a, b, c, d ∈ FLE(X), such that a′ = aϕ, b′ = bϕ, c′ = cϕ, d′ = dϕ. We have

a′(uϕ)b′ ∈ L ⇔ aϕuϕbϕ ∈ L
⇔ aub ∈ Lϕ−1

⇔ avb ∈ Lϕ−1

⇔ aϕvϕbϕ ∈ L
⇔ a′(vϕ)b′ ∈ L.

Furthermore,

a′(c′uϕd′)+b′ ∈ L ⇔ aϕ(cϕuϕdϕ)+bϕ ∈ L
⇔ a(cud)+b ∈ Lϕ−1

⇔ a(cvd)+b ∈ Lϕ−1

⇔ aϕ(cϕvϕdϕ)+bϕ ∈ L
⇔ a′(c′vϕd′)+b′ ∈ L.

So, uϕ ∼L vϕ.
Similarly, if uϕ ∼L vϕ, then for all a, b, c, d ∈ FLE(X),

aub ∈ Lϕ−1 ⇔ aϕuϕbϕ ∈ L
⇔ aϕvϕbϕ ∈ L
⇔ avb ∈ Lϕ−1,

and also
a(cud)+b ∈ Lϕ−1 ⇔ aϕ(cϕuϕdϕ)+bϕ ∈ L

⇔ aϕ(cϕvϕdϕ)+bϕ ∈ L
⇔ a(cvd)+b ∈ Lϕ−1.

This implies u ∼Lϕ−1 v.

So we have established a one-one correspondence between FLE(X)/ ∼Lϕ−1 and

FLA(X)/ ∼L, thus |FLE(X)/ ∼Lϕ−1 | is finite if and only if |FLA(X)/ ∼L | is

finite.

The case for right Ehresmann monoid can be treated dually.

60

The previous theorems rely on the language in A to be the pre-image of a

homomorphism. However, this is not always the case. Next we consider examples

of A,B and θ : A→ B and K ⊆ A such that K is not a union of ker θ-classes.

Let FLA(X) be the free left ample monoid on X, and let X∗ be the free monoid

on X in the augmented signature. Let θ : FLA(X) → X∗ be given by (A, a)θ = a.

Then θ is an onto morphism. If L ⊆ X∗, then Lθ−1 ⊆ FLA(X). If (A, a) ∈ Lθ−1,
we have (A, a)θ = a ∈ L and so (B, a) ∈ Lθ−1 for any (B, a) ∈ FLA(X). Thus, for

example, taking any x ∈ X where we have the singleton K = {({1, x}, x)} would

be such that K 6= Lθ−1 for any subset L of X∗, since if K = Lθ−1 we would have

{({1, x, x2}, x)} ∈ K.

3.1 Example

Recall in Chapter 1.4 that every element a ∈ FIM(X) can be written in the form

of a = (A, a). In this form, FLA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗, A ⊆ X∗} =

{(A, a) ∈ FIM(X) | A ⊆ X∗} as a ∈ A and FA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗}.

EXAMPLE 3.1.1. If A = FU(X),FLA(X) or FA(X) and L is finite, then L ∈
Rec A.

Proof. By Theorem 2.1.7, for any u, v ∈ A we have u ∼L v if and only if for any

unary term function t(x)

t(u) ∈ L⇔ t(v) ∈ L.

If A = FU(X), for each w ∈ L, there can only be finitely many u ∈ A such that

t(u) = w, where t(x) is a unary term function. This follows since the expression of

an element in FU(X) is unique except for the position of brackets. Since L is finite,

there can only be finitely many u ∈ A such that for some unary term function t(x),

we have t(u) ∈ L.
From the proof of Lemma 2.3.13, we have that if L is finite, then

KL = {w ∈ FA(X) : t(w) ∈ L for some unary term function t(x)}

is finite. Clearly this will also hold for FLA(X).

So in all cases, there are finitely many u ∈ A such that t(u) ∈ L. All others

u ∈ A with t(u) /∈ L for any term t must lie in a single ∼L-class. As a result, there

can only be a finite number of ∼L-classes and thus L ∈ Rec A.

3.2 Closure properties of recognizable languages

In this section we consider closure properties of Rec A. We begin with Boolean

operations.

61

Proposition 3.2.1. Let A be a universal algebra and L ⊆ A be a language in A.

Then L ∈ Rec A implies that Lc = A \ L ∈ Rec A.

Proof. If L ∈ Rec A, then A/ ∼L is finite. Let φ : A→ A/ ∼L be the quotient map

from A onto A/ ∼L, defined by wφ = [w] where [w] is the ∼L congruence class of

w.

Note that by the definition of syntactic congruence, L is a union of ∼L-classes.

Hence Lc = A \ L is also a union of ∼L-classes.

As ∼Lc is the largest congruence such that Lc is a union of congruence classes,

we have ∼L⊆∼Lc . However, as L = (Lc)c, by substituting L by Lc, we see that

∼Lc⊆∼(Lc)c=∼L . Hence ∼L=∼Lc and therefore A/ ∼Lc is finite.

EXAMPLE 3.2.2. Let A be an algebra.

1. A ∈ Rec A as A × A is the largest congruence in A with A as the only

congruence class. Then ∼A= A× A and A/ ∼A is singleton.

2. φ ∈ Rec A as φ = Ac.

Lemma 3.2.3. If ρ and σ are two congruences on A, then |A/(ρ ∩ σ)| ≤ |A/ρ| ·
|A/σ|.

Proof. Note that the intersection of two congruence is a congruence. Define a map-

ping g : A/(ρ ∩ σ)→ A/ρ×A/σ by a(ρ ∩ σ) 7→ (aρ, aσ) for all a ∈ A.
Then g is well-defined and one-one as

a(ρ ∩ σ) = b(ρ ∩ σ) ⇔ a (ρ ∩ σ) b

⇔ a ρ b and a σ b

⇔ (aρ, aσ) = (bρ, bσ).

To show that g is a morphism, we have

(a(ρ ∩ σ)b(ρ ∩ σ))g

= (ab(ρ ∩ σ))g

= ((ab)ρ, (ab)σ)

= (aρ, aσ)(bρ, bσ)

= (a(ρ ∩ σ))g(b(ρ ∩ σ))g.

To show that g is a morphism, let F be an arbitary basic operation in A with

rank n. Then F induces operations of the same rank in A/(ρ ∩ σ), A/ρ and A/σ.

62

Now let a1, . . . , an ∈ A. We have

(F (a1(ρ ∩ σ), . . . , an(ρ ∩ σ)))g

= ((F (a1, . . . , an))(ρ ∩ σ))g

= ((F (a1, . . . , an))ρ, (F (a1, . . . , an))σ)

= (F (a1ρ, . . . , anρ), F (a1σ, . . . , anσ))

= F ((a1ρ, a1σ), . . . , (anρ, anσ))

= F ((a1(ρ ∩ σ))g, . . . , (an(ρ ∩ σ))g).

Then |A/(ρ∩ σ)| ≤ |A/ρ×A/σ| = |A/ρ| · |A/σ|, with equality if g is onto.

Proposition 3.2.4. If L,K ∈ Rec A then L ∩K ∈ Rec A.

Proof. As ∼L and ∼K are congruences, so is ∼L ∩ ∼K . If a (∼L ∩ ∼K) b, then

a ∼L b and a ∼K b. If a ∈ L ∩K, then a ∈ L and a ∈ K. As L and K are unions of

their respective syntactic congruence classes, b ∈ L and b ∈ K, and hence b ∈ L∩K.
This means that L∩K is a union of congruence classes of ∼L ∩ ∼K , in other words,

∼L ∩ ∼K∈ CL∩K . So ∼L ∩ ∼K ⊆∼L∩K .

Now if L,K ∈ Rec A, then both ∼L and ∼K have finite index. By Lemma 3.2.3,

∼L ∩ ∼K has finite index. Therefore ∼L∩K has finite index, and L∩K ∈ Rec A.

Corollary 3.2.5. If L1, L2, . . . Lm ∈ Rec A, then L1 ∩ L2 ∩ . . . ∩ Lm ∈ Rec A.

Proof. Proposition 3.2.4 and induction.

Corollary 3.2.6. If L,K ∈ Rec A, then L ∪K ∈ Rec A.

Proof. We have L∪K = (Lc∩Kc)c; hence result by Propositions 3.2.1 and 3.2.4.

Corollary 3.2.7. If L1, L2, . . . Lm ∈ Rec A then L1 ∪ L2 ∪ . . . ∪ Lm ∈ Rec A.

Proof. Proposition 3.2.6 and induction.

Corollary 3.2.8. If L,K ∈ Rec A then L \K ∈ Rec A.

Proof. We have L \K = L ∩Kc; hence result by Proposition 3.2.1 and 3.2.4.

The final result in this section is more special, and deals with languages over

FU(Σ) for some alphabet Σ.

Proposition 3.2.9. Let L,K ∈ Rec FU(Σ). Then LK ∈ Rec FU(Σ)

Proof. Recall the Schützenberger Product in Chapter 1.6. IfM,N are unary monoids,

define a unary operation + in M �N by(
m P

0 n

)+

=

(
m+ {(m+, 1), (1, n+)}
0 n+

)
,

63

which turns M � N into a unary monoid. On the other hand, if ϕ1 : FU(Σ) → M

is a morphism such that L = (Lϕ1)ϕ
−1
1 , and ϕ2 : FU(Σ) → N is a morphism such

that K = (Kϕ2)ϕ
−1
2 , we define

Ω(w) = {(w1ϕ1, w2ϕ2) | (w1, w2) ∈ FU(Σ), w1w2 = w}.

Since v+ ∈ FU(Σ) can only be written as a product v+1 or 1v+, we have then

Ω(v+) = {(v+ϕ1, 1), (1, v+ϕ2)} for any v ∈ FU(Σ). So

(v+)ϕ =

(
v+ϕ1 Ω(v+)

0 v+ϕ2

)
=

(
v+ϕ1 {(v+ϕ1, 1), (1, v+ϕ2)}

0 v+ϕ2

)
= (vϕ)+.

Together with Lemma 1.6.3, ϕ is a unary monoid homomorphism. The rest of the

proof is just an analogy of Theorem 1.6.4.

3.3 Recognizable languages in FLA(X) and FIM(X)

We begin this section by noting that although FLA(X) and FIM(X) are algebras of

the same signature, their unary operations are different. The underlying universes

as sets which have the relation that FLA(X) ⊆ FIM(X), and thus it makes sense

to consider languages as a subset of both FLA(X) and FIM(X) and study their

properties as languages sitting inside both structures.

Theorem 3.3.1. Let L ⊆ FLA(X) ⊆ FIM(X). Then L ∈ Rec FIM(X) implies that

L ∈ Rec FLA(X)

Proof. Suppose we have ∼L⊆ FLA(X) × FLA(X) and ∼′L⊆ FIM(X)2 (FIM(X)2

means FIM(X)×FIM(X)) as the syntactic congruence of L in FLA(X) and FIM(X)

respectively. We now consider∼′L ∩FLA(X)2. Suppose u, v ∈ FLA(X) are such that

u ∼′L v. By Theorem 2.2.5, the syntactic congruence ∼′L on FIM(X) can be treated

as a special case of left Ehresmann monoid syntactic congruence. As FLA(X)2 is

a congruence in FLA(X), ∼′L ∩FLA(X)2 is also a congruence in FLA(X). Also as

u ∼′L v, we have for all x, y, s, t ∈ FIM(X),

xuy ∈ L ⇔ xvy ∈ L (3.7)

x(sut)+y ∈ L ⇔ x(svt)+y ∈ L. (3.8)

As FLA(X) ⊆ FIM(X), we have Equation (3.7) and (3.8) holds for all x, y, s, t

in FLA(X). As a result, u ∼L v. Therefore, ∼′L ∩FLA(X)2 ⊆∼L .
Now if L ∈ Rec FIM(X), then∼′L has finite index. On the other hand, ∼′L ∩ FLA(X)2

is the restriction of ∼′L in FLA(X), so the number of congruence class of ∼′L
∩ FLA(X)2 is less than or equal to that of ∼′L, and hence finite. Finally, since

64

∼′L ∩ FLA(X)2 ⊆∼L, it follows that ∼L also has finite index and thus L is in

Rec FLA(X).

In the proof of the above theorem, we have established that ∼′L ∩ FLA(X)2 ⊆
∼L, where ∼L and ∼′L are the syntactic congruence of L in FLA(X) and FIM(X)

respectively. In general we do not have equality. In particular, Chapter 5 show us

what ∼L and ∼′L like when L = FLA(X).

65

Chapter 4

Finite state automata accepting

languages in free unary monoids

In this chapter, we focus our attention on languages over unary monoids. We inves-

tigate the relationship between recognizable languages in the sense of Chapter 3 and

languages recognised by finite state automata. We need to first develop a notion of

a finite state automata reading elements of the free unary monoid.

Recall in Chapter 3 that the free unary monoid can be obtained from the free

term algebra with signature (2,1,0) by factoring it with the congruence generated by

relations according to the associative law and the fact 1 is a multiplicative identity.

4.1 +-automata

Let L be a language over a free unary monoid or a free left ample monoid or a

finite set. We wish to relate recognisability of L in terms of syntactic congruences

to recognisability using a version of a finite state automaton. We now introduce a

new class of finite state automata that will provide this connection.

Let Σ be a finite set and let us define a +-automaton A+ to be a 6-tuple

A+ = (Σ, Q, δ, q0, F, P)

where

(Σ, Q, δ, q0, F)

is a DFA over Σ and P : Q × Q → Q. Please be reminded that all ingredients are

finite.

Let FTS(Σ) be the free term algebra on Σ with signature S = (2, 1, 0). We know

how the domain of δ is extended from Q×Σ to Q×Σ∗. We now extend the domain

of δ to Q× FTS(Σ) inductively as follows:

1. δ(q, ε) = q;

66

2. δ(q, uv) = δ(δ(q, u), v);

3. δ(q, u+) = P (q, δ(q0, u)),

where u, v ∈ FTS(Σ).

In other words, let tm = tm(x1, . . . , xn) be a term in FTS(Σ) formed by us-

ing m operations from x1, . . . , xn ∈ Σ. If the m-th operation is multiplication, i.e.

tm = uv, we have δ(q, tm) = δ(q, uv) = δ(δ(q, u), v). If the m-th operation is the

unary operation, i.e. tm = u+, we have δ(q, tm) = δ(q, u+) = P (q, δ(q0, u)). Thus

by induction, and the note in Chapter 3 concerning uniqueness of expressions of

elements in FTS(X), we have uniquely defined δ(q, t) for any term t ∈ FTS(Σ).

It is important to note that in the above definition, we actually want to use

FU(Σ) in replacement of FTS(Σ). In FU(Σ), any multiplication of any element u

with the identity ε give rise to itself, that is, uε = εu = u. Also we have the

associative law. These are not present in FTS(Σ). So we have to show that these

are preserved in the above definition.

Lemma 4.1.1. According to the above definition, for all q ∈ Q and u, v, w ∈
FTS(Σ) :

1. δ(q, uε) = δ(q, εu) = δ(q, u);

2. δ(q, (uv)w) = δ(q, u(vw)) = δ(δ(δ(q, u), v), w).

Proof. 1. According to the definition,

δ(q, uε) = δ(δ(q, u), ε) = δ(q, u).

Similarly,

δ(q, εu) = δ(δ(q, ε), u) = δ(q, u).

2. According to the definition,

δ(q, (uv)w) = δ(δ(q, uv), w) = δ(δ(δ(q, u), v), w).

Similarly,

δ(q, u(vw)) = δ(δ(q, u), vw) = δ(δ(δ(q, u), v), w).

On TQ, the full transformation monoid on Q, we now define a unary operation.

For any α ∈ TQ, we define α+ by

qα+ = P (q, q0α).

67

For each u ∈ FTS(Σ), we define σu by

qσu = δ(q, u),

so that σu ∈ TQ.

Now δ : Q× FTS(Σ) → Q gives us a map θ : FTS(Σ) → TQ given by wθ = σw.

So for all q ∈ Q, q(wθ) = qσw = δ(q, w).

Lemma 4.1.2. The above defined θ is a morphism.

Proof. For any q ∈ Q, u, v ∈ FTS(Σ),

q((uv)θ) = qσuv = δ(q, uv) = δ(δ(q, u), v) = δ(qσu, v) = (qσu)σv = q(σuσv) = uθvθ.

Also,

q(u+θ) = qσu+ = δ(q, u+) = P (q, δ(q0, u)) = P (q, q0σu) = qσ+
u = q(uθ)+.

Proposition 4.1.3. For all u, v, w ∈ FTS(Σ), ((uv)w)θ = (u(vw))θ.

Proof. On the L.H.S.,

((uv)w)θ = δ(q, (uv)w) = δ(δ(q, uv), w) = δ(δ(δ(q, u), v), w).

On the R.H.S.,

(u(vw))θ = δ(q, u(vw)) = δ(δ(q, u), vw) = δ(δ(δ(q, u), v), w).

Proposition 4.1.4. For all u ∈ FTS(Σ), (uε)θ = (εu)θ = uθ.

Proof. We have

(uε)θ = δ(q, uε) = δ(δ(q, u), ε) = δ(q, u).

Similarly,

(εu)θ = δ(q, εu) = δ(δ(q, ε), u) = δ(q, u).

Also,

uθ = δ(q, u).

From Propositions 4.1.3 and 4.1.4, we know thatH = {((uv)w, u(vw)), (uε, u), (εu, u)}
is contained in ker θ. As a result, by Proposition 1.7.12 we have a well-defined mor-

phism

θ̄ : FTS(Σ)/ 〈H〉= FU(Σ)→ TQ

68

by [w]θ̄ = wθ. We can also define

δ(q, [w]) = q([w]θ̄) = q(wθ).

In other words, as the free unary monoid can be obtained from the free term al-

gebra with signature (2,1,0) by factoring it with the congruence generated according

to the associative law and identity multiplication, we have:

Corollary 4.1.5. If w,w′ ∈ FTS(Σ) are such that [w] = [w′] in FU(Σ), then

δ(q, w) = δ(q, w′) for all q ∈ Q.

Usually in FU(Σ), we write θ instead of θ̄ and w instead of [w].

So, summarising, we can define δ with domain of Q× FU(Σ) as follows:

1. δ(q, ε) = q;

2. δ(q, uv) = δ(δ(q, u), v);

3. δ(q, u+) = P (q, δ(q0, u)),

where u, v ∈ FU(Σ).

We can also defined θ : FU(Σ)→ TQ as: for all q ∈ Q, q(wθ) = qσw = δ(q, w).

We remind the reader that the unary operation + in TQ is not the standard one.

You need to define L(A+) as

L(A+) = {w ∈ FU(Σ) : δ(q0, w) ∈ F}.

Theorem 4.1.6. Let L ⊆ FU(Σ). Then L is recognised by a finite unary monoid if

and only if L = L(A+) for a +-automaton A+.

Proof. Suppose that L = L(A+).

We have L ⊆ Lθθ−1, and for any w ∈ Lθθ−1 we have wθ = vθ for some v ∈ L =

L(A+). We have

δ(q0, w) = q0(wθ) = q0(vθ) = δ(q0, v) ∈ F

so that w ∈ L(A+) = L. Thus L = Lθθ−1. Since TQ is finite we have that L ∈
Rec FU(Σ).

Conversely, suppose that N is a finite unary monoid and φ : FU(Σ) → N is a

unary monoid morphism such that L = Lφφ−1. Let

A+ = (Σ, N, δ, 1, Lφ, P)

where for any x ∈ Σ we have

δ(q, x) = q(xφ), and P (q, p) = qp+.

69

q0

q1

q2

a a

a

Figure 4.1: +-automata example

We show by induction that δ(q, w) = q(wφ) for all w ∈ FU(Σ). This is true for

w = x ∈ Σ. Proceeding by induction for t = uv ∈ FU(Σ),

δ(q, t) = δ(δ(q, u), v) = δ(q(uφ), v) = (q(uφ))vφ = q(tφ),

and for t = u+ ∈ FU(Σ),

δ(q, t) = δ(q, u+) = P (q, δ(1, u)) = P (q, 1(uφ)) = q(uφ)+ = q(tφ).

So by induction on the complexity of t, we have δ(q, t) = q(tφ).

We then have that

w ∈ L(A+)⇔ δ(q0, w) ∈ Lφ⇔ 1(wφ) ∈ Lφ⇔ w ∈ Lφφ−1 = L.

Figures 4.1 4.2 give us the information to define a +-automaton.

Here Σ = {a}. Note that the multiplication table is left zero. That is, for any

q, p ∈ FU(Σ), P (q, p) = q. So for any u ∈ FU(Σ), δ(q, u+) = P (q, δ(q0, u)) = q. As

a result, for any term such that the last operation is the unary operation, +, does

not change the node inside the automata. For example, if u, v, w, x, y ∈ FU(Σ),

δ(q, u(vw+)+xy+) = δ(δ(δ(δ(q, u), (vw+)+), x), y+) = δ(δ(q, u), x) = δ(q, ux). Thus

the expression can be reduced so that all the terms with unary operation are elimi-

nated and it can be treated as an ordinary automaton. From the figure, we see that

starting from q0, the automaton would return to the accepting state whenever 3 a’s

have been inputted into it. As a result, the automaton accepts

(t0(a))+ap1(t1(a))+ap2(t2(a))+ · · · apn(tn(a))+,

where for 0 ≤ i ≤ n, ti(a) is a term function, and Σn
i=0pi = 3k, where k ∈ N0.

70

p
P q0 q1 q2

q0 q0 q0 q0
q q1 q1 q1 q1

q2 q2 q2 q2

Figure 4.2: multiplication table for P

4.2 Automata - NDAs

In the theory of automata over free monoids, it is well known that deterministic

automata may be replaced by non-deterministic ones. Here we show the same is

true for +-automata.

Definition 4.2.1. An NDA +-automaton A+ is a 6-tuple (Σ, Q,E, I, F, S) where

• Σ is a finite non-empty set, the alphabet;

• Q is a finite set of states;

• E ⊆ Q× Σ×Q;

• I ⊆ Q is a set of initial states;

• F ⊆ Q is a set of final states;

• S ⊆ Q×Q×Q.

From E we can define a function δ : Q × Σ → P(Q), where P(Q) is the power

set of Q and

δ(q, x) = {p | (q, x, p) ∈ E},

and from S we can define a function P : Q×Q→ P(Q), where

P (q, p) = {r | (q, p, r) ∈ S}.

Now we can extend the domain of the function δ from Q× Σ to Q× FU(Σ) by

induction on the term complexity. To start with, we define δ(q, ε) = {q}. Suppose we

know δ(q, u) for all q ∈ Q and u that are terms formed using n−1 or less operations.

Now consider δ(q, w) where w is terms formed using n operations. If w = uv,

δ(q, w) =
⋃

p∈δ(q,u)

δ(p, v);

whereas if w = u+,

δ(q, w) =
⋃

q0∈I, p∈δ(q0,u), q0∈I

P (q, p)

71

Definition 4.2.2. A word w ∈ FU(Σ) is accepted by an NDA A if

δ(q0, w) ∩ F 6= ∅ for some q0 ∈ I.

Definition 4.2.3. The language recognised by the NDA A is

L(A) = {w ∈ FU(Σ) | w is accepted by A}.

Proposition 4.2.4. Let L ⊆ FU(Σ). Then L is recognised by a +-automaton implies

that L is recognised by a NDA +-automaton.

Proof. Let L = L(A) where A = (Σ, Q, δ, q0, F, P) is a +-automaton. Put

E = {(q, a, δ(q, a)) | q ∈ Q, a ∈ Σ} ⊆ Q× Σ×Q,

I = {q0} and

S = {(q, p, P (q, p)) | q, p ∈ Q} ⊆ Q×Q×Q.

Now we have an NDA +-automaton

A′ = (Σ, Q,E, I, F, S).

Notice that the associated function δ′ of this NDA has δ′(q0, w) as a singleton for

any w ∈ FU(Σ), corresponding to δ(q0, w). Hence

w ∈ L(A) ⇔ δ(q0, w) ∈ F
⇔ δ′(q0, w) ∩ F 6= ∅
⇔ w ∈ L(A′).

As a result, L(A) = L(A′).

Notation. Let A = (Σ, Q,E, I, F, S) be an NDA. For T ⊆ Q,w ∈ FU(Σ), we

define

δ(T,w) = {q ∈ Q | q ∈ δ(p, w) for some p ∈ T},

also denoted by Tw. Note that Tw ⊆ Q, so there exists only finitely many sets of

the form Tw. On the other hand, for T1, T2 ⊆ Q, we define

P (T1, T2) = {q ∈ Q | q ∈ P (q1, q2) for some q1 ∈ T1, q2 ∈ T2}.

Note that q ∈ P (T1, T2) if and only if (q1, q2, q) ∈ S for some q1 ∈ T1, q2 ∈ T2.

72

Comments. For T, T1, T2 ⊆ Q, a, a1, . . . , an ∈ Σ, w, u, v ∈ FU(Σ) we have that

Tw =
⋃
p∈T{p}w

P (T1, T2) =
⋃
q1∈T1,q2∈T2 P (q1, q2)

Tε = T

Ta1a2 . . . an = (. . . ((Ta1)a2) . . . an)

(Tw)v = Twv

(Tw)u+ = P (Tw, δ(I, u))

∅w = ∅.

Proposition 4.2.5. If L = L(A) for an NDA +-automaton A, then L = L(A′) for

a +-automaton A′.

Proof. Let L = L(A) where

A = (Σ, Q,E, I, F, S)

is a NDA +-automaton. Construct a +-automaton

A′ = (Σ, Q′, δ, q0, F
′, P ′)

where
Q′ = {Iw : w ∈ FU(Σ)}

δ(T, a) = Ta for all T ∈ Q′, a ∈ Σ

q0 = I

F ′ = {T ∈ Q′ : T ∩ F 6= ∅}
P ′(T1, T2) = P (T1, T2) for all T1, T2 ∈ Q′.

Note that we have Q′ ⊆ P(Q), the power set of Q, so |Q′| <∞.
Also, for T1, T2 ∈ Q′, we have T1 = Iw1, T2 = Iw2 for some w1, w2 ∈ FU(Σ), so

P ′(T1, T2) = P (Iw1, Iw2) = P (Iw1, δ(I, w2)) = (Iw1)w
+
2 = Iw1w

+
2 ∈ Q′.

For T ∈ Q′, a ∈ Σ we have T = Iw for some w ∈ FU(Σ), so

δ(T, a) = δ(Iw, a) = (Iw)a = Iwa ∈ Q′.

Furthermore, q0 = I = Iε ∈ Q′. Finally we have that

w ∈ L(A′) ⇔ δ(q0, w) ∈ F ′

⇔ δ(I, w) ∈ F ′

⇔ Iw ∈ F ′

⇔ Iw ∩ F 6= ∅
⇔ w ∈ L(A).

73

In conclusion, we have

Theorem 4.2.6. Let L ⊆ FU(Σ) where Σ is finite. Then L is recognised by a

+-automaton if and only if L is recognised by a NDA +-automaton.

4.3 Example

This material comes from an analogy of [34, Section 2, P.350-352], in the setting of

ample monoids.

From an algorithmic standpoint, recognisable languages are defined in terms of

automata, and inverse automata are naturally related to FIM(X) through Munn

trees and hence are a very handy tool for the study of inverse semigroup [29],[36].

The class of languages accepted by inverse automata is described as that of i-

languages [34]. It is natural to ask if there is any analogy of inverse automata for

unary monoids and what kind of languages they accept.

We refer the reader to [34] for the definition of inverse automata and i-languages.

For the purposes of this section we will consider a third kind of +-automaton.

Namely, we allow the functions δ and P in the definition of a +-automaton to be

partial. We call such +-automata partial +-automata. By associating such a +-

automaton with a NDA +-automaton, as in Proposition 4.2.4, we easily see that we

have not changed the class of recognisable languages.

Suppose θ : FU(X) → FLA(X) is the natural unary monoid morphism from

FU(X) onto FLA(X), where we take X to be finite.

Definition 4.3.1. We say that a partial +-automaton A is returning if for all

u ∈ FU(X), if δ(q, u) exists, then δ(q, u+) exists and equals to q.

Given a language L ⊆ FLA(X), we say that L is closed if

∀u ∈ L, ∀v ∈ FLA(X), v ≥ u ⇒ v ∈ L,

and we say that L is elastic if

∀a, b ∈ L, a+b ∈ L.

In the following, we use the fact that θ is onto.

Theorem 4.3.2. Suppose L ⊆ FLA(X) is a language whose Lθ−1 is accepted by a

returning +-automaton A, i.e. Lθ−1 = L(A), then L is closed and elastic.

Proof. Let u ∈ L, v ∈ FLA(X) be such that v ≥ u, so that u = u+v by definition

of ≤ . Now let v′ ∈ vθ−1, and u′ ∈ uθ−1. Then (u′+v′)θ = (u′θ)+v′θ = u+v = u ∈

74

L. Therefore, u′+v′ ∈ Lθ−1, in other words, δ(q0, u
′+v′) ∈ F. Now u′ ∈ uθ−1 ⊆

Lθ−1 = L(A), so δ(q0, u
′) ∈ F exists, thus δ(q0, u

′+) = q0 also exists. Therefore

δ(q0, v
′) = δ(δ(q0, u

′+), v′) = δ(q0, u
′+v′) ∈ F and hence v′ ∈ L(A) = Lθ−1, thus

v ∈ L. Therefore, L is closed.

On the other hand, suppose a, b ∈ L. Let a′ ∈ aθ−1, and b′ ∈ bθ−1. Then

a′, b′ ∈ Lθ−1 = L(A). So δ(q0, a
′) ∈ F exists, and thus δ(q0, a

′+) = q0. Therefore

δ(q0, b
′) = δ(δ(q0, a

′+), b′) = δ(q0, a
′+b′), so δ(q0, a

′+b′) exists and is in F. So a′+b′ ∈
Lθ−1 and a+b = (a′+b′)θ ∈ L. Therefore, L is elastic.

We believe the reverse of Theorem 4.3.2 is true, which we leave as a conjecture

at this moment, but sketch how it may be proved.

To try to prove the reverse of Theorem 4.3.2, it seems that we need a minimal +-

automaton. Starting with a partial +-automaton, we can replace it with a standard

+-automaton by using a sink state, as follows.

Definition 4.3.3. Let A = (Σ, Q, δ, P, q0, F) be a +-automaton. A sink state of A
is a state s such that s /∈ F and for all q ∈ Q, x ∈ Σ we have

δ(s, x) = s = P (q, s) = P (s, q).

Sink state is unique in a +-automaton as we can see in the following:

Lemma 4.3.4. Let s be a sink state of a +-automaton A = (Σ, Q, δ, P, q0, F). Then

s is the only sink state, and for all w ∈ FU(Σ) we have δ(s, w) = s.

Proof. (Sketch) If s, s′ are both sink states, then s = P (s, s′) = s′. For the second

statement, use induction on the complexity of w.

Then we may make a partial +-automaton into a total +-automaton with a sink

state that accepts the same language:

Lemma 4.3.5. Let A = (Σ, Q, δ, P, q0, F) be a partial +-automaton. We make A
into a +-automaton A′ with set of states Q′ = Q ∪ {s} a sink state s by extending

the domain of δ to δ : Q′ × Σ→ Q′ and P to P ′ : Q′ → Q′ by defining

δ′(q, x) = s = P ′(r, p)

whenever δ(q, x) or P (r, p) is not defined, and

δ′(s, x) = s = P ′(s, p) = P ′(p, s) = P ′(s, s)

for all x ∈ Σ and p ∈ Q. Then L(A) = L(A′).

Lemma 4.3.6. Let A = (Σ, Q, δ, P, q0, F) be a +-automaton with sink state s. Then

putting Q′ = Q \ {s} and restricting δ and P so that

δ′ : Q′ → Q′, P : Q′ ×Q′ → Q′,

75

so that δ′ and P ′ are partial functions, we have that A′ + (Σ, Q′, δ′, P ′, q0, F) is a

+-automaton such that L(A) = L(A′).

The next task we need is to make a +-automaton trim.

Definition 4.3.7. LetA = (Σ, Q, δ, P, q0, F) be a +-automaton. We defineR(q, p) ⊆
Q inductively as follows. We have q, p ∈ R(q, p). If there is a word w = uv ∈ FU(Σ)

such that δ(q, w) = p then R(q, δ(q, u)) ⊆ R(q, p) and R(δ(q, u), p) ⊆ R(q, p). If

there is a word w = u+ ∈ FU(Σ) such that δ(q, w) = p then R(q, δ(q, u)) ⊆ R(q, p).

Definition 4.3.8. Let A = (Σ, Q, δ, P, q0, F) be a +-automaton with sink state s.

We say that A is tight if Q =
⋃
p∈F R(q0, p) ∪ {s}.

Conjecture 4.3.9. Let A = (Σ, Q, δ, P, q0, F) be a +-automaton. Let Q′ = Q \ Z
where Z is the set of states not occurring in

⋃
p∈F R(q0, p). We then restrict δ to δ′

and P to P ′ where

δ′ : Q′ × FU(Σ)→ Q′ and P ′ : Q′ ×Q′ → Q′

The resulting A′ is then a partial +-automaton, and L(A′) = L(A).

We then make A′ into a total +-automaton A′′ with sink state s as above. Then

A′′ is tight.

Definition 4.3.10. We say that a tight +-automaton A = (Σ, Q, δ, P, q0, F) with

sink state s is returning if, whenever δ(q, w) 6= s we have δ(q, w+) = q.

Note in the above, if δ(q, w) 6= s then q must lie in some R(q0, p) for some p ∈ F .

We now need to find a notion of minimal automaton, that involves an equivalence

on the set of states that is compatible with both δ and P . We put forward the

following as a solution.

We define a relation ∼ on Q by the rule that

∼= ∩i≥0 ∼i

where

q ∼0 q
′ ⇔ [q ∈ F iff q′ ∈ F]

and if ∼i has been defined then

q ∼i+1 q
′ ⇔ q ∼i q′ and

δ(q, w) ∼i δ(q′, w), P (q, p) ∼i P (q′, p) and P (p, q) ∼i P (p, q′)

for any w ∈ FU(Σ) and p ∈ Q.

It is clear that ∼ is an equivalence relation on Q, and denoting

Q̄ = {[q] : q ∈ Q}, F̄ = {[q] : q ∈ F}

76

and

δ̄([q], x) = [δ(q, x)], P̄ ([q], [p]) = [P (q, p)]

we have that δ̄, P̄ are well defined and

A = (Σ, Q̄, δ̄, P̄ , [q0], F̄)

is a +-automaton such that ∼ is equality on Q̄ and L(A) = L(A). Moreover, if A
is tight then so is A.

The proof that a closed elastic L ⊆ FLA(Σ) is accepted by a returning automa-

ton should now mirror that in the inverse case, but with many extra steps.

Conjecture 4.3.11. If L ⊆ FLA(X) is closed and elastic, then Lθ−1 = L(A) for

some returning +-automaton.

EXAMPLE 4.3.12. For example, L = {ε, x, x+} for some x ∈ X.

u = ε, v ≥ u ⇒ v = ε ∈ L,
u = x, v ≥ u ⇒ v = x ∈ L,

u = x+, v ≥ u ⇒ v ∈ {ε, x+} ⊆ L,

So L is closed. It is also easy to check L is elastic.

EXAMPLE 4.3.13. For example, L = {x, x+} for some x ∈ X. We see that

u = x+, v ≥ u ⇒ v ∈ {ε, x+},

But ε /∈ L. So L is not closed. But it is still elastic.

If L ⊆ FLA(X), we would like to know what does Lθ−1 looks like. For example:

EXAMPLE 4.3.14. Let L = {x+} ⊆ FLA(X) for some x ∈ X. Then Lθ−1 is a

unary subsemigroup of FU(X), containing {x+, (x+)+, x+x+, . . .}.

This then gives us that:

EXAMPLE 4.3.15. Let K = {x+} ⊆ FU(X), then K 6= Lθ−1 for any L ⊆
FLA(X).

77

Chapter 5

Syntactic congruences of different

languages

In this chapter, we discuss some examples of syntactic congruences of different lan-

guages inside FIM(X).

Recall that every element a ∈ FIM(X) can be written as a = (A, a), where A is

a finite, prefix closed subset of FG(X) and a ∈ A. We have

FLA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗, A ⊆ X∗},

so as a ∈ A we have

FLA(X) = {(A, a) ∈ FIM(X) | A ⊆ X∗}.

Further,

FA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗}.

For example we have

a+ = a a−1

= (A, a)(A, a)−1

= (A, a)(a−1A, a−1)

= (A ∪ aa−1A, aa−1)
= (A, 1).

Note that X∗ can be embedded as a subset of FIM(X) :

Proposition 5.0.1. Let X∗ be the free monoid of X. We have

X∗ ∼= {(a↓, a) ∈ FIM(X)|a ∈ X∗}.

Proof. Define a mapping x 7→ (x↓, x) for all x ∈ X∗. Then it is easy to check that

the map is a monoid homomorphism.

78

For x, y ∈ X∗, xy 7→ ((xy)↓, xy) = (x↓ ∪ xy↓, xy) = (x↓, x)(y↓, y).

Further, ε 7→ ({ε}, ε).
If (x↓1, x1) = (x↓2, x2), then their 2nd co-ordinates, i.e., x1 and x2, are equal.

Hence the map is an injection, which is clearly onto.

Identifying X∗ with its image in FLA(X), as sets,

X∗ ⊆ FLA(X) ⊆ FA(X) ⊆ FIM(X),

but they are of algebras of different signatures. We have FLA(X) and FIM(X) are

algebras of type (2,1,0), although their unary operations are different; FA(X) is an

algebra of type (2,1,1,0); X∗ is an algebra of type (2,0). Here we investigate the

syntactic congruence of languages such as these that are themselves sitting inside a

larger algebra. To make the things clearer, from now on we use ∼L,A instead of ∼L
for the syntactic congruence of a language L in an algebra A.

First, if the language L is equal to A, the underlying universe of the algebra,

then the universal relation, A×A is the certainly largest congruence, in which A is

the only (and hence a union of) congruence class. So ∼A,A= A× A = A2.

From Definition 2.2.1 we know that the syntactic congruence ∼L,FLA(X) has to

satisfy the condition that for all u, v ∈M,u ∼L v if and only if for all x, y, s, t ∈M :

1.

xuy ∈ L ⇔ xvy ∈ L

and

2.

x(sut)+y ∈ L ⇔ x(svt)+y ∈ L

However, Theorem 2.2.5 implies that we need only 1. to determine the congru-

ence ∼L,FIM(X) .

From Corollary 2.3.4 we know that ∼L,FA(X) has to satisfy the condition that

for all u, v ∈ M,u ∼L v if and only if for all l0, l1, . . . , r0, r1, · · · ∈ M and for all

n ∈ N :

1.

t0(u) ∈ L ⇔ t0(v) ∈ L

and

2.

t+n (u) ∈ L ⇔ t+n (v) ∈ L

t∗n(u) ∈ L ⇔ t∗n(v) ∈ L.

79

5.1 Syntactic Congruence of FA(X) in FIM(X)

We first state the following lemma without proof.

Lemma 5.1.1. If a ∈ FG(X) such that a, a−1 ∈ X∗, then a = ε.

Now consider ∼FA(X),FIM(X) .

Proposition 5.1.2. For all u, v ∈ FIM(X), if u ∼FA(X),FIM(X) v, then v u−1, u v−1 ∈
FA(X).

Proof. For all u, v ∈ FIM(X), u ∼FA(X),FIM(X) v if and only if for all x, y ∈ FIM(X),

x u y ∈ FA(X) ⇔ x v y ∈ FA(X).

Now let x = 1, and y = u−1. We have

1uu−1 = u+ ∈ FA(X) ⇔ 1v u−1 = v u−1 ∈ FA(X).

Since 1uu−1 = u+ ∈ FA(X) is true for all u ∈ FIM(X), we must have v u−1 ∈
FA(X). Dually, u v−1 ∈ FA(X).

Theorem 5.1.3. For all u, v ∈ FIM(X), u ∼FA(X),FIM(X) v if and only if u = v.

Proof. Recall that FA(X) = {(A, a) ∈ FIM(X) | a ∈ X∗}. So, if u ∼FA(X),FIM(X) v,

we now have vu−1 and uv−1 in X∗. As vu−1 = (uv−1)−1, by Lemma 5.1.1, vu−1 = ε.

This implies u = v. On the other hand, one can easily verify that if u = v, for

all x, y ∈ M, xu y ∈ FA(X) ⇔ xuy ∈ X∗ ⇔ xvy ∈ X∗ ⇔ x v y ∈
FA(X).

In other words, u ∼FA(X),FIM(X) v if and only if their corresponding reduced word

is the same. So,

Corollary 5.1.4. For any alphabet X, we have FIM(X)/ ∼FA(X),FIM(X)
∼= FG(X),

and hence ∼FA(X),FIM(X) is the least group congruence on FIM(X).

Proof. It is clear that ∼FA(X),FIM(X) is a group congruence. The fact it is the least

group congruence σ follows from the description of σ in [21].

5.2 Syntactic Congruence of FLA(X) in FIM(X)

Now consider ∼FLA(X),FIM(X) . Similar to the case where L = FA(X), we have

1uu−1 = u+ ∈ FLA(X) ⇔ 1v u−1 = v u−1 ∈ FLA(X).

However, not all u ∈ FIM(X) are such that u+ ∈ FLA(X).

80

Recall that FLA(X) = {(A, a) ∈ FIM(X)|A ⊆ X∗}. As a result,

a+ ∈ FLA(X)⇔ A ⊆ X∗ ⇔ a ∈ FLA(X).

Lemma 5.2.1. If u ∈ FLA(X), and u ∼FLA(X),FIM(X) v, then u = v.

Proof. From the above, if u ∈ FLA(X), then u+ ∈ FLA(X), and so if u ∼FLA(X),FIM(X)

v, then v u−1 ∈ FLA(X). Since u ∼FLA(X),FIM(X) v and FLA(X) is a union of

∼FLA(X),FIM(X) classes, v ∈ FLA(X). Dually we have u v−1 ∈ FLA(X). In this case

vu−1 and uv−1 are both in X∗ and this again implies u = v.

Define

H = {u | there exists x, y ∈ FIM(X) s.t. xu y ∈ FLA(X)} ⊆ FIM(X).

It is the set of u in FIM(X) that has non-empty context with respect to FLA(X).

Clearly,

Lemma 5.2.2. For all u, v /∈ H, u ∼FLA(X),FIM(X) v.

Proof. For any T ⊆ FIM(X), and u ∈ FIM(X),

CT (u) = {(x, y) ∈ FIM(X)× FIM(X) : xu y ∈ T}.

Then by our description of ∼T,FIM(X), which we now denote as ∼,

u ∼ v ⇔ CT (u) = CT (v).

So if u, v /∈ H, CFLA(X)(u) = CFLA(X)(v) = ∅ and so u ∼ v.

If u ∈ H, then there exists x, y ∈ FIM(X) such that xu y ∈ FLA(X).

Note that if we let x = (T, x), u = (U, u), y = (Y, y),

x u y = (T, x)(U, u)(Y, y)

= (T ∪ xU, xu)(Y, y)

= (T ∪ xU ∪ xuY, xuy).

Notice that xu y ∈ FLA(X) if and only if T ∪ xU ∪ xuY ⊆ X∗. So if xu y ∈
FLA(X), T ∪ xU ⊆ X∗ which is equivalent to xu ∈ FLA(X). Hence

Lemma 5.2.3. We have,

H = {u | ∃x ∈ FIM(X) s.t. x u ∈ FLA(X)}.

If u ∈ H, and u ∼FLA(X),FIM(X) v, then v ∈ H, and u = v.

81

Proof. From above, we have H ⊆ {u | ∃x ∈ FIM(X) such that xu ∈ FLA(X)}. As

we can let y = 1, we actually have {u | ∃x ∈ FIM(X) such that xu ∈ FLA(X)} ⊆ H

and hence the equality.

On the other hand, if u ∈ H, and u ∼FLA(X),FIM(X) v, then there exists x, y ∈
FIM(X) such that xu y ∈ FLA(X). So x v y is also in FLA(X) and hence v ∈ H.
In this case, as ∼FLA(X),FIM(X) is a congruence, we know xu ∼FLA(X),FIM(X) x v. As

both are in FLA(X), from the result before we can deduce that xu = xv, and thus

u = v.

On the other hand,

Proposition 5.2.4. If u ∼FLA(X),FIM(X) v, then for all g ∈ X∗,

U ⊆ g−1X∗ ⇔ V ⊆ g−1X∗.

Proof. Let ∼=∼FLA(X),FIM(X) . If u ∼ v, then for any g ∈ X∗,

g u ∈ FLA(X) ⇔ g v ∈ FLA(X)

Hence,

gU ⊆ X∗ ⇔ gV ∈ X∗

and the result follows.

In summary, we have shown the first part of the following:

Theorem 5.2.5. Let H = {u | ∃x ∈ FIM(X) s.t. xu ∈ FLA(X)}. Then u ∼FLA(X),FIM(X)

v if and only if either

1. u, v ∈ FIM(X) \H;

2. u, v ∈ H, u = v and for all g ∈ X∗,

U ⊆ g−1X∗ ⇔ V ⊆ g−1X∗.

Proof. We have proved the forward part, and the backward part for u, v ∈ FIM(X)\
H.

Now let u, v ∈ H such that u = v and for all g ∈ X∗, U ⊆ g−1X∗ if and only if

V ⊆ g−1X∗. Then gU ⊆ X∗ if and only if gV ⊆ X∗.

82

Now for all x = (T, x), u = (U, u), v = (V, v), and y = (Y, y) ∈ FIM(X)

T ∪ xU ∪ xuY ⊆ X∗

⇔ T ⊆ X∗ and xU ⊆ X∗ and xuY ⊆ X∗

⇔ T ⊆ X∗ and xU ⊆ X∗ and xuY ⊆ X∗ and x ∈ X∗ as x ∈ T
⇔ T ⊆ X∗ and xV ⊆ X∗ and xuY ⊆ X∗ and x ∈ X∗

⇔ T ⊆ X∗ and xV ⊆ X∗ and xvY ⊆ X∗ and x ∈ X∗ as u = v

⇔ T ⊆ X∗ and xV ⊆ X∗ and xvY ⊆ X∗ as x ∈ T
⇔ T ∪ xV ∪ xvY ⊆ X∗.

So xu y ∈ FLA(X) if and only if x v y ∈ FLA(X), i.e., u ∼FLA(X),FIM(X) v.

Corollary 5.2.6. Let u, v ∈ FLA(X). Then the following are equivalent:

1. u ∼FLA(X),FIM(X) v;

2. u = v;

3. u σ v, where σ is the minimum group congruence of FIM(X).

Proof. (1)⇒(2) Direct implication of Theorem 5.2.5, as FLA(X) ⊆ H.

(1)⇐(2) As both u and v are in FLA(X), U, V ⊆ X∗ = g−1gX∗ ⊆ g−1X∗ for all

g ∈ X∗. So U ⊆ g−1X∗ if and only if V ⊆ g−1X∗ holds true, and by Theorem 5.2.5,

we have u ∼FLA(X),FIM(X) v.

(2)⇔(3) Finally, it is well known [21, P.197] that u = v, if and only if u σ v.

Now we would like to further investigate what H looks like and give a more

explicit description of the relation u ∼FLA(X),FIM(X) v.

Lemma 5.2.7. Let H = {u | ∃x ∈ FIM(X) s.t. xu ∈ FLA(X)}. Then

H = {u = (U, u) | ∃x ∈ X∗ s.t. (x↓, x)(U, u) ∈ FLA(X)}
= {(U, u) | ∃x ∈ X∗ s.t. U ⊆ x−1X∗}.

Proof. From the above, we know that H = {u | ∃x ∈ FIM(X) s.t. xu ∈ FLA(X)}
and xu ∈ FLA(X) ⇔ T ∪ xU ⊆ X∗. The latter implies x ∈ X∗ and xU ⊆ X∗.

So we have shown that if there exists (T, x) such that (T, x)(U, u) ∈ FLA(X), then

there exists x such that xU ⊆ X∗ and thus U ⊆ x−1X∗.

Conversely, note that if ∃x s.t. xU ⊆ X∗, then x ∈ X∗. Hence x↓ ∪ xU ⊆ X∗

and thus (x↓, x)(U, u) ∈ FLA(X). So H = {u = (U, u) | ∃x ∈ X∗ s.t. (x↓, x)(U, u) ∈
FLA(X)} = {(U, u) | ∃x ∈ X∗ s.t. U ⊆ x−1X∗}, as desired.

Let x = x1 · · ·xn, where xi ∈ X, i = 1, . . . , n. Then the elements of x−1X∗

have the form x−1n · · ·x−11 w, where w ∈ X∗. So all reduced words in x−1X∗ look like

x−1n · · ·x−1i v, where v ∈ X∗, 1 ≤ i ≤ n. As U ⊆ x−1X∗, all the reduced words in U

have the same form.

83

There is a good reason for it–we define an order on (X−1)∗ by the rule that for

x1, x2 ∈ X∗,
x−11 ≤ x−12 if and only if (x−11)↓ ⊇ (x−12)↓.

Theorem 5.2.8. Let H = {(U, u) | ∃x ∈ X∗ s.t. U ⊆ x−1X∗}. Then for any

(U, u) ∈ H, there is a unique xu ∈ X∗ such that x−1u ∈ U, and U ⊆ x−1u X∗, that is,

all the reduced words in U have the form x−1n · · ·x−1i v, where xi ∈ X, i = 1, . . . , n,

xu = x1 · · ·xn, and v ∈ X∗.

Proof. Let (U, u) ∈ H, and x ∈ X∗ be such that U ⊆ x−1X∗. If x = x′1 · · ·x′m,
then we know all the reduced words in U have the form (x′m)−1 · · · (x′j)−1v for some

1 ≤ j ≤ m, v ∈ X∗. Among all such reduced words there is a smallest j, say j0, such

that (x′m)−1 · · · (x′j0)
−1v ∈ U for some v ∈ X∗. Define xu to be x′j0 · · ·x

′
m and simply

rename x′j0 , . . . , x
′
m to x1, . . . , xn.

Since all x′1, . . . , x
′
m ∈ X, so do x1, . . . , xn, and hence xu ∈ X∗. Now by con-

struction, x−1u v = x−1n · · ·x−11 v = (x′m)−1 · · · (x′j0)
−1v ∈ U for some v ∈ X∗. Since

U is prefix-closed, x−1u is also in U. Also, all reduced words in U have the form

(x′m)−1 · · · (x′j)−1w = x−1n · · ·x−1i w where i = j − j0 + 1.

Finally, the xu defined in this way is unique, and is independent of the choice of

x ∈ X∗ in the beginning. For if we choose another x̄ ∈ X∗ and result in another

x̄u, then x̄u ∈ X∗ and x̄u
−1 ∈ U ⊆ x−1u X∗. Hence x̄u

−1 has the form of x−1n · · ·x−1i ,

which means x−1u ≤ x̄u
−1. In duality we have x̄u

−1 ≤ x−1u and thus x−1u = x̄u
−1, or

xu = x̄u.

Corollary 5.2.9. Let xu be constructed as in Theorem 5.2.8, then (x↓u, xu)(U, u) ∈
FLA(X).

Definition 5.2.10. The unique xu in Theorem 5.2.8 is called the tail of u = (U, u).

In conclusion, we have

Theorem 5.2.11. Given (U, u), (V, v) ∈ H, let xu, zv ∈ X∗ be the tails of (U, u)

and (V, v) respectively. If (U, u) ∼FLA(X),FIM(X) (V, v), then xu = zv.

Proof. As (x↓u, xu)(U, u) ∈ FLA(X), we have (x↓u, xu)(V, v) is also in FLA(X). There-

fore, xuz
−1
v ∈ xuV ⊆ X∗. Dually zvx

−1
u ∈ zvU ⊆ X∗, and hence xu = zv.

Theorem 5.2.12. Given (U, u), (V, v). We have (U, u) ∼FLA(X),FIM(X) (V, v) if and

only if either

1. (U, u), (V, v) ∈ FIM(X) \H;

2. (U, u), (V, v) ∈ H, u = v and xu = zv, where xu, zv ∈ X∗ are the tails of (U, u)

and (V, v) respectively.

84

Proof. After Theorem 5.2.5 and the previous Theorem, all we left to prove is that

(U, u), (V, v) ∈ H, u = v and xu = zv implies (U, u) ∼FLA(X),FIM(X) (V, v).

Now we will be using Theorem 5.2.5. For all g ∈ X∗, if U ⊆ g−1X∗, then as from

Theorem 5.2.8 we have x−1u ∈ U, so x−1u ∈ g−1X∗. As xu = zv, we have z−1v ∈ g−1X∗,
so that, using Theorem 5.2.8, we have V ⊆ z−1v X∗ ⊆ g−1X∗X∗ ⊆ g−1X∗. The

reverse is also true. So by Theorem 5.2.5, we have (U, u) ∼FLA(X),FIM(X) (V, v).

5.3 Syntactic Congruence of X∗ in FIM(X)

Next we consider ∼X∗,FIM(X) . Let

CX∗(u) = {(w, z) ∈ FIM(X)× FIM(X) | w u z ∈ X∗},

the context of u, with respect to X∗, and

H = {u ∈ FIM(X) | CX∗(u) 6= ∅},

the set in FIM(X) that has non-empty context with respect to X∗.

As in the previous section, we have an analogous result forX∗ instead of FLA(X),

Lemma 5.3.1. For all u, v /∈ H, u ∼X∗,FIM(X) v.

Proof. Same as Lemma 5.2.2.

To understand the set of elements with non-empty context, we first introduce

the following terminology.

Definition 5.3.2. We say that u is linear if there exists w, v ∈ X∗ such that

U = (w−1)↓ ∪ v↓.

Note that if v ∈ X∗, v would be in the form v1 · · · vn, where vj ∈ X. If y ∈ v↓,
then y = v1 · · · vi for some i ≤ n. On the other hand, if y ∈ (v−1)↓, y = v−1n · · · v−1k ,

for some k ∈ {1, . . . , n}. Now we have the following technical result:

Proposition 5.3.3. If u = (U, u) = ((w−1)↓ ∪ v↓, u) is linear and y ∈ U, then

(y↓, y)−1u = ((y−1 · w−1)↓ ∪ (y−1 · v)↓, y−1 · u).

Proof. For any reduced words p, q ∈ FG(X) we have

(p · q)↓ ⊆ p↓ ∪ p · q↓.

First we know that (y↓, y)−1 = (y−1 · y↓, y−1) = ((y−1)↓, y−1). Hence

(y↓, y)−1u = ((y−1)↓, y−1)(U, u)

= ((y−1)↓, y−1)((w−1)↓ ∪ v↓, u)

= ((y−1)↓ ∪ y−1 · (w−1)↓ ∪ y−1 · v↓, y−1 · u).

85

Therefore, what we need to prove is

(y−1 · w−1)↓ ∪ (y−1 · v)↓ = (y−1)↓ ∪ y−1 · (w−1)↓ ∪ y−1 · v↓.

Recall that v, w ∈ X∗. Let v = v1 · · · vn, and w = w1 · · ·wm, we have two cases for

routine checking:

1. y ∈ v↓. In this case y = v1 · · · vi, for some i ≤ n.

y−1 · w−1 = v−1i · · · v−11 w−1m · · ·w−11 ;

(y−1 · w−1)↓ = {1, v−1i , v−1i v−1i−1, · · · , v−1i · · · v−11 , v−1i · · · v−11 w−1m , · · · , v−1i · · · v−11 w−1m · · ·w−11 }
= (y−1)↓ ∪ y−1 · (w−1)↓;

y−1 · v = vi+1 · · · vn;

(y−1 · v)↓ = {1, vi+1, vi+1vi+2, · · · , vi+1 · · · vn};
y−1 · v↓ = y−1 · {1, v1, v1v2, · · · , v1 · · · vn}

= {v−1i · · · v−11 , v−1i · · · v−12 , · · · , v−1i , 1, vi+1, vi+1vi+2, · · · , vi+1 · · · vn}
= (y−1)↓ ∪ (y−1 · v)↓.

Hence

(y−1 · w−1)↓ ∪ (y−1 · v)↓ = (y−1)↓ ∪ y−1 · (w−1)↓ ∪ (y−1 · v)↓

= (y−1)↓ ∪ y−1 · (w−1)↓ ∪ y−1 · v↓.

2. y ∈ (w−1)↓. In this case y = w−1m · · ·w−1k , for some k ∈ {1, . . . ,m}, and y−1 =

wk · · ·wm.

y−1 · w−1 = w−1k−1 · · ·w
−1
1 ;

(y−1 · w−1)↓ = {1, w−1k−1, w
−1
k−1w

−1
k−2, · · · , w

−1
k−1 · · ·w

−1
1 };

y−1 · (w−1)↓ = y−1 · {1, w−1m , w−1m w−1m−1, · · · , w−1m · · ·w−11 }
= {wk · · ·wm, wk · · ·wm−1, · · · , wk, 1, w−1k−1, · · · , w

−1
k−1 · · ·w

−1
1 }

= (y−1)↓ ∪ (y−1 · w−1)↓;
y−1 · v = wk · · ·wmv1 · · · vn;

(y−1 · v)↓ = {1, wk, wkwk+1, · · · , wk · · ·wm, wk · · ·wmv1, wk · · ·wmv1 · · · vn}
= (y−1)↓ ∪ y−1 · v↓.

Hence

(y−1 · w−1)↓ ∪ (y−1 · v)↓ = (y−1 · w−1)↓ ∪ (y−1)↓ ∪ y−1 · v↓

= (y−1)↓ ∪ y−1 · (w−1)↓ ∪ y−1 · v↓.

In conclusion, we have (y−1 ·w−1)↓ ∪ (y−1 · v)↓ = (y−1)↓ ∪ y−1 · (w−1)↓ ∪ y−1 · v↓, and

thus the proposition is true.

Corollary 5.3.4. If u = (U, u) is linear, then (y↓, y)−1u is also linear for all y ∈ U.

86

Proof. We can see in Proposition 5.3.3 that (y−1 · w−1)↓ in (X−1)∗ and (y−1 · v)↓

in X∗ in both cases. Therefore, (y↓, y)−1u = ((y−1 · w−1)↓ ∪ (y−1 · v)↓, y−1 · u) is

linear.

Proposition 5.3.5. Let y, z ∈ FIM(X). If y z is linear, then both y and z are linear.

Proof. Let y = (Y, y), and z = (Z, z). Then y z = (Y ∪ y · Z, y · z). For any v ∈ X∗,
since v↓∩Y is finite, there is no problem over the existence of maximal elements, that

is, elements of largest length. Say vy is a maximal element. So, as the intersection of

prefix closed sets is still prefix closed, so (vy)
↓ ⊆ v↓ ∩Y. As vy ∈ v↓, vy = v1 · · · vi for

some i ≤ n, where v = v1 · · · vn. If (v↓∩Y)\ (vy)
↓ 6= ∅, say v′y ∈ (v↓∩Y)\ (vy)

↓, then

as v′y ∈ (v↓ ∩ Y) ⊆ v↓, v′y = v1 · · · vj for some j ≤ n. Now j must be greater than i,

for otherwise v′y would be in (vy)
↓. But then as v′y ∈ v↓ ∩ Y it would contradict vy

being a maximal element in v↓∩Y. So (v↓∩Y)\ (vy)
↓ = ∅, and hence v↓∩Y = (vy)

↓.

Similarly, (v−1)↓ ∩ Y = (v′′y)↓, where v′′y = v−1n · · · v−1k , for some k ∈ {1, . . . , n}.
If y z is linear, then Y ∪ y · Z = (w−1)↓ ∪ v↓, where v, w ∈ X∗. In this case,

Y = (Y ∩ v↓) ∪ (Y ∩ (w−1)↓) = (vy)
↓ ∪ (w′′y)

↓, so y is linear.

Now since y ∈ Y ⊆ Y ∪ y · Z, by Corollary 5.3.4, since y z is linear, (y↓, y)−1y z

is also linear. Now (y↓, y)−1y z = (y−1 · y↓, y−1)(Y ∪ y · Z, y · z) = (y−1 · Y ∪ Z, z).

With an argument similar to above, we can see that z is linear.

Proposition 5.3.6. Let H = {u ∈ FIM(X) | CX∗(u) 6= ∅}. Then u ∈ H if and only

if u is linear.

Proof. We see that H is the set in FIM(X) that has non-empty context with respect

to X∗. In other words, u ∈ H if and only if there is w, z ∈ FIM(X) such that

w u z ∈ X∗. Now it is obvious that every element in X∗ is linear, so by Proposition

5.3.5, we see that u must also be linear.

On the other hand, suppose that u is linear. Let u = ((x−11)↓ ∪ x↓3, x2), where

x2 ∈ (x−11)↓ ∪ x↓3.
Claim. x1 · x2 · (x−12 · x3)↓ ⊆ x↓1 ∪ x1 · x

↓
3 = (x1 · x3)↓.

We then have that

(x↓1, x1)((x
−1
1)↓ ∪ x↓3, x2)((x−12 · x3)↓, x−12 · x3)

= (x↓1 ∪ x1 · (x−11)↓ ∪ x1 · x↓3, x1x2)((x−12 · x3)↓, x−12 · x3)
= (x↓1 ∪ x1 · x

↓
3 ∪ x1 · x2 · (x−12 · x3)↓, x1 · x3)

= (x↓1 ∪ x1 · x
↓
3, x1x3) ∈ X∗ as x1 · x2 · (x−12 · x3)↓ ⊆ x↓1 ∪ x1 · x

↓
3.

Hence u ∈ H.
Proof of Claim. Since x2 ∈ (x−11)↓ ∪ x↓3, we have two cases:

1. x2 ∈ (x−11)↓. Let x1 = x1,1 · · ·x1,h, and x3 = x3,1 · · ·x3,i, then x2 = x−11,h · · ·x
−1
1,k+1

87

for some k < h. Hence

x1 · x2 · (x−12 · x3)↓

= x1,1 · · ·x1,k{1, x1,k+1, x1,k+1x1,k+2, · · · , x1,k+1 · · ·x1,hx3,1 · · ·x3,i}
= {x1,1 · · ·x1,k, · · · , x1,1 · · ·x1,h, x1,1 · · · x1,hx3,1, · · · , x1,1 · · ·x1,hx3,1 · · ·x3,i}
⊆ {1, · · · , x1,1 · · ·x1,h} ∪ x1,1 · · · x1,h{1, · · · , x3,1 · · ·x3,i}
= x↓1 ∪ x1 · x

↓
3.

2. x2 ∈ x↓3. Let x1 = x1,1 · · ·x1,h, and x3 = x3,1 · · ·x3,i, then x2 = x3,1 · · · x3,k for

some k ≤ i. Hence

x1 · x2 · (x−12 · x3)↓

= x1,1 · · · x1,hx3,1 · · ·x3,k{1, x3,k+1, · · · , x3,k+1 · · ·x3,i}
⊆ x1,1 · · ·x1,h{1, x3,1, · · · , x3,1 · · · x3,i}
= x1 · x↓3
⊆ x↓1 ∪ x1 · x

↓
3.

Here is the main result of this section:

Theorem 5.3.7. For u, v ∈ H, u ∼X∗,FIM(X) v if and only if u = v.

Proof. (⇐) Trivial.

(⇒) Since u, v ∈ H, both u and v are linear. Let u = ((x−11)↓ ∪ x↓3, x2), and

v = ((y−11)↓∪ y↓3, y2). We know that x2 ∈ (x−11)↓∪x↓3 and y2 ∈ (y−11)↓∪ y↓3. Now since

(x↓1, x1)((x
−1
1)↓ ∪ x↓3, x2)((x−12 · x3)↓, x−12 · x3) = (x↓1 ∪ x1 · x

↓
3, x1x3)

We have as u = (U, x2) that (x↓1, x1)(U, u) = (x↓1 ∪ x1 · U, x1x2) = (T, x1x2) say,

so that we must have (x1x2)
↓ ⊆ T. Since x1x2 · ((x1x2)−1)↓ = (x1x2)

↓, it follows that

for any (K, k) we have (x↓1, x1)(U, u)(K, k) = (x↓1, x1)(U, u)((x1x2)
−1)↓ ∪K, k). As a

result,

(x↓1, x1)u(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 x3)

= (x↓1 ∪ x1 · x
↓
3, x1x3) ∈ X∗

That is, we have

(x↓1, x1)v(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 x3) ∈ X∗.

This gives

(x↓1 ∪x1 · (y−11)↓ ∪x1 · y↓3 ∪x1 · y2 · ((x1 ·x2)−1)↓ ∪x1 · y2 · (x−12 ·x3)↓, x1y2x−12 x3) ∈ X∗.

88



x↓1 ⊆ X∗

x1 · (y−11)↓ ⊆ X∗

x1 · y↓3 ⊆ X∗

x1 · y2 · ((x1 · x2)−1)↓ ⊆ X∗

x1 · y2 · (x−12 · x3)↓ ⊆ X∗.

Since x1 · (y−11)↓ ⊆ X∗, in particular x1 · y−11 is equal to some w ∈ X∗. This means

x1 = wy1 ≤ y1. Dually we have y1 ≤ x1. and hence they are equal. Similarly,

x1 · y2 · ((x1 · x2)−1)↓ ⊆ X∗

implies

x1 · y2 · (x1 · x2)−1 = w ∈ X∗

or

x1 · y2 = w(x1 · x2)

So x1 · x2 is a suffix of x1 · y2. Dually we have y1 · y2 is a suffix of y1 · x2. But we

know that y1 = x1. The statement becomes x1 · y2 is a suffix of x1 · x2. Hence we

know that x1 · y2 = x1 · x2, thus y2 = x2.

Now the expression

(x↓1 ∪x1 · (y−11)↓ ∪x1 · y↓3 ∪x1 · y2 · ((x1 ·x2)−1)↓ ∪x1 · y2 · (x−12 ·x3)↓, x1y2x−12 x3) ∈ X∗,

simplifies to

(x↓1 ∪ x1 · y
↓
3 ∪ (x1 · x2)↓ ∪ x1 · x2 · (x−12 · x3)↓, x1x3) ∈ X∗.

But, for the whole expression to be in X∗, we require the first coordinate to be

(x1 · x3)↓. In particular, x1 · y↓3 ⊆ (x1 · x3)↓, which mean x1 · y3 is a prefix of x1 · x3,
or that y3 is a prefix of x3. Dually we have x3 is a prefix of y3. Hence they are equal

and thus u = v.

5.4 Syntactic Congruence of linear elements in

FIM(X)

An interesting set arises from Definition 5.3.2, namely

L = {u ∈ FIM(X) | u is linear}.

What we would like is to investigate what is ∼L,FIM(X) . To begin with, let CL(u) =

{(w, z) ∈ FIM(X) × FIM(X)|w u z ∈ L}, the context of u, with respect to L, and

89

H = {u ∈ FIM(X)|CL(u) 6= ∅}, the set in FIM(X) that has non-empty context

with respect to L.

As in the previous sections, we have an analogous result for L.

Lemma 5.4.1. For all u, v /∈ H, u ∼X∗,FIM(X) v.

Proof. Same as Lemma 5.2.2.

Lemma 5.4.2. The set of u in FIM(X) that has non-empty context with respect to

L is actually L itself. In other words, H = L.

Proof. We proof by showing that u ∈ H if and only if u is linear. Suppose that

u ∈ H then there exist w, z such that w u z ∈ L. So w u z is linear. By Proposition

5.3.5, we know that u itself is linear.

Now suppose u is linear. Then 1u1 = u ∈ L. Hence (1, 1) ∈ CL(u) and thus

u ∈ H.

Similar to the result of previous section:

Theorem 5.4.3. For u, v ∈ H, u ∼L,FIM(X) v if and only if u = v.

Proof. (⇐) Trivial.

(⇒) Since u, v ∈ H, both u and v are linear. Let u = ((x−11)↓ ∪ x↓3, x2), and

v = ((y−11)↓ ∪ y↓3, y2). We know that x2 ∈ (x−11)↓ ∪ x↓3 and y2 ∈ (y−11)↓ ∪ y↓3. Now as

in the proof of Theorem 5.3.7, we know that

(x↓1, x1)u(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 · x3)
= (x↓1, x1)((x

−1
1)↓ ∪ x↓3, x2)(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 · x3)

= (x↓1 ∪ x1 · x
↓
3, x1x3)

= ((x1 · x3)↓, x1x3) ∈ X∗, and hence linear.

That is, we have

(x↓1, x1)v(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 x3) is linear.

This gives

(x↓1∪x1·(y−11)↓∪x1·y↓3∪x1·y2·((x1·x2)−1)↓∪x1·y2·(x−12 ·x3)↓, x1y2x−12 x3) is linear, hence



x↓1

x1 · (y−11)↓

x1 · y↓3
x1 · y2 · ((x1 · x2)−1)↓

x1 · y2 · (x−12 · x3)↓

are all subsets of X∗ ∪ (X−1)∗.

90

Since x1 · (y−11)↓ ⊆ X∗ ∪ (X−1)∗, we have x1 · y−11 ∈ X∗ ∪ (X−1)∗. This means

x1 = wy1, or we have y1 = wx1 for some w ∈ X∗.
Without loss of generality, let y1 = wx1. Now if w 6= ε, consider the last element

of w, say wl, and pick an element inX that is different from wl, say t. Then t·x1·y−11 =

t · x1 · (wx1)−1 = t · w−1 /∈ X∗ ∪ (X−1)∗. Now we consider

((t · x1)↓, tx1)u(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 · x3)
= ((t · x1 · x3)↓, tx1x3) ∈ X∗, and hence linear.

However,

((t · x1)↓, tx1)v(((x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 · x3)
= ((t · x1)↓ ∪ t · x1 · (y−11)↓ ∪ t · x1 · y↓3 ∪ t · x1 · y2 · ((x1 · x2)−1)↓ ∪ t · x1 · y2 · (x−12 · x3)↓, t · x1 · y2 · x−12 · x3)

cannot be linear as t · x1 · y−11 /∈ X∗ ∪ (X−1)∗. This contradicts u ∼L,FIM(X) v. Hence

it is only possible that w = ε, and y1 = x1.

Similarly, x1 · y2 · ((x1 · x2)−1)↓ ⊆ X∗ ∪ (X−1)∗ implies x1 · y2 · (x1 · x2)−1 ∈
X∗∪ (X−1)∗. This means x1 · y2 = w(x1 ·x2) or x1 ·x2 = w(x1 · y2) for some w ∈ X∗.

Similar as before, without loss of generality, let x1 ·y2 = w(x1 ·x2). Now if w 6= ε,

consider the last element of w, say wl, and pick an element in X that is different from

wl, say t. Then x1 ·y2 ·(t ·x1 ·x2)−1 = w(x1 ·x2) ·(t ·x1 ·x2)−1 = w · t−1 /∈ X∗∪(X−1)∗.

Now we consider

(x↓1, x1)u(((t · x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 · x3)
= ((t−1)↓ ∪ (x1 · x3)↓, x1x3), which is linear.

However,

(x↓1, x1)v(((t · x1 · x2)−1)↓ ∪ (x−12 · x3)↓, x−12 · x3)
= (x↓1 ∪ x1 · (y−11)↓ ∪ x1 · y↓3 ∪ x1 · y2 · ((t · x1 · x2)−1)↓ ∪ x1 · y2 · (x−12 · x3)↓, x1y2x−12 x3)

cannot be linear as x1·y2·(t·x1·x2)−1 /∈ X∗∪(X−1)∗. This contradicting u ∼L,FIM(X) v.

Hence it is only possible that w = ε, and x1 · y2 = x1 · x2. This implies y2 = x2.

As in Theorem 5.3.7, the expression

(x↓1 ∪ x1 · (y−11)↓ ∪ x1 · y↓3 ∪ x1 · y2 · ((x1 · x2)−1)↓ ∪ x1 · y2 · (x−12 · x3)↓, x1y2x−12 x3)

simplifies to

(x↓1 ∪ x1 · y
↓
3 ∪ (x1 · x2)↓ ∪ x1 · x2 · (x−12 · x3)↓, x1x3).

In the last step, we can note that both x1 · y3 and x1 · x3 are in both X∗ and

x↓1∪x1·y
↓
3∪(x1·x2)↓∪x1·x2·(x−12 ·x3)↓. For the whole expression to be linear, we require

91

that one has to be a prefix of another, i.e., x1 · y3 = (x1 · x3)w or x1 · x3 = (x1 · y3)w
for some w ∈ X∗.

Without loss of generality, let x1 · y3 = (x1 · x3)w, so y3 = x3 · w. Now if w 6= ε,

consider the first element of w, say w1, and pick an element in X that is different

from w1, say t. Then (x1 · x3) · t is not a prefix of x1 · y3, nor is x1 · y3 a prefix of

(x1 · x3) · t. Now we consider

(x↓1, x1)u(((x1 · x2)−1)↓ ∪ (x−12 · x3 · t)↓, x−12 · x3)
= ((x1 · x3 · t)↓, x1x3), which is linear.

However,

(x↓1, x1)v(((x1 · x2)−1)↓ ∪ (x−12 · x3 · t)↓, x−12 · x3)
= (x↓1 ∪ x1 · (y−11)↓ ∪ x1 · y↓3 ∪ x1 · y2 · ((x1 · x2)−1)↓ ∪ x1 · y2 · (x−12 · x3 · t)↓, x1y2x−12 x3)

cannot be linear as (x1 · x3) · t is not a prefix of x1 · y3, nor x1 · y3 is a prefix of

(x1 · x3) · t. This contradicts u ∼L,FIM(X) v. Hence it is only possible that w = ε, and

hence x1 · y3 = (x1 · x3). This implies y3 = x3 and thus u = v.

92

Bibliography

[1] A. Blumensath and D. Janin. A syntactic congruence for languages of birooted

trees. In Semigroup Forum, volume 91, pages 675–698. Springer, 2015.

[2] M. J. Branco, G. M. Gomes, and V. Gould. Left adequate and left ehresmann

monoids. International Journal of Algebra and Computation, 21(07):1259–1284,

2011.

[3] N. Chomsky. Three models for the description of language. IRE Transactions

on information theory, 2(3):113–124, 1956.

[4] D. M. Clark, B. A. Davey, R. S. Freese, and M. Jackson. Standard topolog-

ical algebras: syntactic and principal congruences and profiniteness. Algebra

Universalis, 52(2):343–376, 2005.

[5] A. H. Clifford and G. B. Preston. The algebraic theory of semigroups, Volume

II, volume 2. American Mathematical Soc., 1967.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications, 2007.

[7] C. Cornock. Restriction semigroups: structure, varieties and presentations.

PhD thesis, University of York, 2011.

[8] B. A. Davey, M. Jackson, M. Maróti, and R. N. McKenzie. Principal and

syntactic congruences in congruence-distributive and congruence-permutable

varieties. Journal of the Australian Mathematical Society, 85(1):59–74, 2008.

[9] M. Droste, D. Götze, S. Märcker, and I. Meinecke. Weighted tree automata over

valuation monoids and their characterization by weighted logics. In Algebraic

Foundations in Computer Science, pages 30–55. Springer, 2011.

[10] S. Eilenberg. Automata, languages, and machines, volume A. Academic press,

1974.

[11] J. Fountain. A class of right PP monoids. The Quarterly Journal of Mathe-

matics, 28(3):285–300, 09 1977.

93

[12] J. Fountain. Adequate semigroups. Proceedings of the Edinburgh Mathematical

Society, 22(2):113–125, 1979.

[13] J. Fountain. Free right type A semigroups. Glasgow Mathematical Journal,

33(2):135–148, 1991.

[14] J. Fountain, G. M. Gomes, and V. Gould. The free ample monoid. International

Journal of Algebra and Computation, 19(04):527–554, 2009.

[15] G. M. Gomes and V. Gould. Left adequate and left ehresmann monoids ii.

Journal of Algebra, 348(1):171–195, 2011.

[16] V. Gould. Notes on restriction semigroups and related structures. preprint at

http://www-users.york.ac.uk/∼varg1/restriction.pdf.

[17] V. Gould and M. Kambites. Faithful functors from cancellative categories to

cancellative monoids with an application to abundant semigroups. International

Journal of Algebra and Computation, 15(04):683–698, 2005.

[18] R. Hirsch, M. Jackson, et al. Undecidability of representability as binary rela-

tions. Journal of Symbolic Logic, 77(4):1211–1244, 2012.

[19] C. Hollings. From right PP monoids to restriction semigroups: a survey. Euro-

pean Journal of Pure and Applied Mathematics, 2(1):21–57, 2009.

[20] J. M. Howie. Automata and languages. Oxford University Press, Inc., 1992.

[21] J. M. Howie. Fundamentals of semigroup theory. Clarendon Oxford, 1995.

[22] D. Janin. Walking automata in free inverse monoids. In International Confer-

ence on Current Trends in Theory and Practice of Informatics, pages 314–328.

Springer, 2016.

[23] M. Kambites. Free adequate semigroups. Journal of the Australian Mathemat-

ical Society, 91(3):365–390, 2011.

[24] M. Kambites. Retracts of trees and free left adequate semigroups. Edin-

burgh Mathematical Society. Proceedings of the Edinburgh Mathematical So-

ciety, 54(3):731, 2011.

[25] M. V. Lawson. Semigroups and ordered categories. i. the reduced case. Journal

of Algebra, 141(2):422–462, 1991.

[26] M. V. Lawson. Finite automata. CRC Press, 2003.

[27] S. W. Margolis and J. C. Meakin. Inverse monoids, trees and context-free

languages. Transactions of the American Mathematical Society, 335(1):259–

276, 1993.

94

[28] R. McKenzie, G. F. McNulty, and W. Taylor. Algebras, lattices, varieties,

Volume I. Wadsworth & Brooks/Cole Advanced Books & Software Monterey,

California, 1987.

[29] W. D. Munn. Free inverse semigroups. Proceedings of the London Mathematical

Society, 3(3):385–404, 1974.

[30] J.-E. Pin. Varieties of formal languages. Plenum Publishing Co., 1986.

[31] H. E. Scheiblich. Free inverse semigroups. Proceedings of the American Math-

ematical Society, 38(1):1–7, 1973.

[32] B. M. Schein. Relation algebras and function semigroups. In Semigroup forum,

volume 1, pages 1–62. Springer, 1970.

[33] M. P. Schützenberger. On finite monoids having only trivial subgroups. Infor-

mation and control, 8(2):190–194, 1965.

[34] P. Silva. On free inverse monoid languages. Informatique théorique et applica-

tions, 1996.

[35] J. B. Stephen. Presentations of inverse monoids. Journal of Pure and Applied

Algebra, 63(1):81–112, 1990.

[36] J. B. Stephen. Presentations of inverse monoids. Journal of Pure and Applied

Algebra, 63(1):81–112, 1990.

[37] H. Straubing. A generalization of the Schützenberger product of finite monoids.

Theoretical Computer Science, 13(2):137–150, 1981.

95

	Abstract
	Contents
	List of Figures
	Preface
	Acknowledgements
	Declarations

	Preliminaries
	(Left) ample monoids
	Weakly (left) E-ample/(left) restriction monoids
	(Left) Ehresmann monoids and (left) adequate monoids
	The free inverse monoid FIM(X) on X
	The free left ample and free ample monoids

	Automata
	The Schützenberger product of monoids
	Universal algebra

	Syntactic congruences
	Syntactic congruences on universal algebras
	Syntactic congruences on one sided Ehresmann monoids
	Syntactic congruences on two-sided Ehresmann monoids
	Syntactic congruences on two-sided Ehresmann monoids where idempotents are central
	When the language is finite
	An example where we need our full list of unary term functions
	Syntactic congruences on two-sided Ehresmann monoids where the language is the set of idempotents

	Recognisability of languages using syntactic congruences
	Example
	Closure properties of recognizable languages
	Recognizable languages in FLA(X) and FIM(X)

	Finite state automata accepting languages in free unary monoids
	+-automata
	Automata - NDAs
	Example

	Syntactic congruences of different languages
	Syntactic Congruence of FA(X) in FIM(X)
	Syntactic Congruence of FLA(X) in FIM(X)
	Syntactic Congruence of X* in FIM(X)
	Syntactic Congruence of linear elements in FIM(X)

	Bibliography

