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ABSTRACT

Iron oxides such as magnetite, maghemite and cobalt ferrite are of huge impor-

tance to biomedical applications where they are used in cancer treatments and

drug delivery. The ability to fine tune their magnetic properties for these applica-

tions has seen great interest in recent years. While they have been studied for

centuries in bulk form, their properties at the nanoscale have only seen a surface

level of understanding. In this thesis, I present a state-of-the-art investigation

into the strength and scaling of these materials using an atomistic model to

simulate them on a scale comparable to realistic applications. By forming an

accurate model of the materials, outlining their structure, exchange interactions

and anisotropy, each material is simulated with unprecedented detail, showing

the changes in the overall system as the individual atomic spins move. This study

shows how finite size effects lower the magnetic properties, such as the Curie

temperature and magnetisation scaling of the system depending on the size and

shape of the particle. As they are modelled at the atomic scale, the sublattices

of each material have been investigated, showing that the overall properties

are a symptom of multiple interacting components which can behave differently

to each other and scale differently with temperature. In addition to simulating

each material on its own, core-shell particles consisting of combinations of each

material have also been investigated to better understand the behaviour of each

system when the relative sizes of the core and shell are changed, as well as the

overall properties of the particle which can be fine tuned for different applications.
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1
INTRODUCTION

1.1 Origins of Magnetism

While in modern times magnets play an important role in almost all parts of our

life, being integral to electronics of all forms, their history stretches to the first

great scientists and mathematicians who studied the world around them. The

first magnetic materials were found across the globe in iron rich areas, where

lodestones affected by the strong fields in lighting became weakly attracted to the

Earth’s magnetic field. Centuries would pass before these magnetised rocks would

be studied closely to better understand their origins and properties, with one

of the first truly scientific studies being done by William Gilbert who published

"De Magnete" in 1600 [4]. Moving ahead several centuries further, magnets of all

forms are being used in electronics for data storage, with a rapid need for faster,

and more dense media fuelling further research into the properties of magnetic

materials.

The origin of magnetism within these materials is from the electrons bound to

every atom in the system. The electrons possess both orbital and spin magnetic

moments, the former relating to the movement of the electronic charge about

the nucleus, while the latter comes from an intrinsic property of the elementary

particle, its spin. The orbital moment of electrons is typically small due to the

strong electrostatic interaction with the crystal field however the spin moment of

the electrons can be a significant contribution depending on the atomic species.

Typically, the moments of each electron bound by an atom align such that they

form pairs of opposite magnetic moments, with parallel orientations of the same
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energy state disallowed by the Pauli exclusion principle. This is the case for most

materials which exhibit diamagnetism. In the presence of a magnetic field, a

purely diamagnetic material opposes the field.

Other forms of magnetism are possible due to unpaired electrons, which

leave the atoms with a net angular momentum. This results in several different

behaviours depending on how the magnetic moments align.

1.1.1 Types of Magnetism

Figure 1.1: Types of magnetism. In the absence of a magnetic field, spins in
a paramagnet, (a), are randomly oriented. In a ferromagnet, (b), the spins tend
to align in parallel, causing a net magnetic field. In an antiferromagnet, (c),
neighbouring spins prefer to align antiparallel causing the material to have
zero net magnetisation. Ferrimagnets behave similarly to antiferromagnets (c)
however the neighbouring spins have unequal moments, leaving a net overall
magnetic field.

While diamagnets oppose an applied field, paramagnets are weakly attracted

to them. The unpaired electrons in paramagnetic materials will tend to align

along the direction of the magnetic field, forming a net magnetic moment. In

the absence of a field, or when the field is moved away from the paramagnetic

material, the electrons do not stay aligned as the interaction is weak and thermal

energy is able to move the spins into random orientations (Figure 1.1a).

When two atoms close to each other have unpaired electrons, there is a proba-

bility that an electron will jump from one atom to another, known as Heisenberg

exchange [5]. This interaction couples the two neighbouring atoms and can cause

the spin moments to align without the influence of an external magnetic field.

With certain materials, notably the transition metals such as nickel, iron and

cobalt, spin moments are large and align in parallel (Figure 1.1b). These materials

are called ferromagnets and have a net spontaneous magnetic moment. Similarly,

in antiferromagnetic materials, neighbouring spins take part in another form
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of coupling where the spins are aligned antiparallel to each other. The material

is made up of two competing sublattices with equal moments which cause the

overall material to have a zero net magnetic moment and therefore no field.

One further state of ordered magnetism is called ferrimagnetism, which shares

some of the properties of ferro and antiferromagnets. In a ferrimagnet, two

competing sublattices exist where neighbouring spins align antiparallel, however

the moments on the electrons in each sublattice are unequal leading to a dominant

spin orientation in the material. Due to the dominant orientation, the material

exhibits a net magnetic moment. Ferrimagnetism was one of the last forms of

magnetic ordering to be discovered after research by Louis Néel in 1948[6]. From

this research we now know that the first magnetic material found in lodestones,

an iron oxide called magnetite, was a ferrimagnet.

1.2 Motivation for Research

The magnetic properties of small particles have become hugely important in

the last 50 years due to their intrinsic properties that make them ideal for

various applications. Nanoparticles can be made to relatively specific sizes, close

to the sizes of cells, proteins and genes, allowing them to interact with every

level of cellular biology. Depending on the material, these nanoparticles can be

biocompatible, such as magnetite which is readily detected in the brain [7], or in

the case of cobalt ferrite, where studies are still being performed to determine the

level of cytotoxicity [8], these nanoparticles can also be coated in biocompatible

non-magnetic materials.

Due to their magnetic properties, these particles can be manipulated by an

external magnetic field opening up a host of biomedical applications. Drug delivery

is a promising field due to the current problems caused by the usage of non-specific

chemicals which are administered in high dosages, causing significant side effects

[10–12]. The aim of magnetic carriers is to target specific sites and reduce the

amount of systemic distribution of the cytotoxic drug, reducing side effects. This

also leads to a reduction in dosage which further reduces adverse effects.

Varying magnetic fields can also be used, transferring energy from the exciting

field to the nanoparticle. Due to Néel relaxation, the particles then output energy

in the form of heat, which affects the surrounding area. The field of hyperthermia,

a form of cancer treatment, has seen groups around the world studying different

materials to find an ideal method of delivering toxic amounts of thermal energy
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Figure 1.2: Iron oxides in the global system. Iron oxides are widespread
in nature and present in almost all compartments of the global system. Their
frequency in nature makes them cheap and relatively easy to process for many
different applications. Figure from reference [9].

to targeted bodies such as tumours [13, 14]. Experimental investigations of the

applications of magnetic materials for hyperthermia date back to 1957 when

Gilchrist et al. [15] heated various tissue samples with 20-100 nm size particles of

maghemite exposed to a 1.2MHz magnetic field. Ideally these nanoparticles would

be used to heat targeted regions while leaving nearby healthy tissues intact.

In addition to biomedical applications, iron oxide nanoparticles of magnetite

and maghemite have been used to remove heavy metals from contaminated water

such as industrial wastewater produced by electroplating [16]. The magnetic

nanoparticles possess large surface areas, high numbers of surface active sites

and ideal magnetic properties leading to high adsorption efficiency and removal

rate of contaminants. Using an external magnetic field, the particles can also

be separated from the contaminants and reused. Since they do not suffer from

reduced performance after successive usage, the particles can then be removed

post treatment.
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Iron oxide nanoparticles have hugely benefited from recent research, and it is

now possible to consistently reproduce particles with a desired surface structure

[17]. Their surfaces frequently reconstruct, and the resulting surfaces can exhibit

markedly different electronic and magnetic structures to the bulk compound.

Interface engineering offers an interesting opportunity to improve performance

and apply the particles to newer fields of research such as spintronics where

studies into magnetite had recently stagnated due to the presence of a magnetic

dead layer at the interface [18]. It may now be possible to reconstruct the surface

of iron oxide nanoparticles to avoid this issue [17].

While years of research have gone into studying the formation of nanoparticles,

their surfaces and structure, far fewer studies have laid out an in-depth analysis

of the magnetic properties of the particles specific to their size and mineral

content. Surface effects drastically alter the properties of the particles away from

that of bulk, leading to more research being required to fully understand the

materials. Here, an opportunity for different methods of study arises. Most of

the applications mentioned here make use of iron oxide nanoparticles less than

30 nm in diameter, particularly in biomedical applications as above this size

particles will quickly be endocytosed by macrophages and removed from the body

[19]. At this scale it becomes more difficult to synthesise consistent nanoparticle

shapes and sizes however a different approach, such as theoretical modelling and

simulation, allows for studying these materials with relative ease and can help to

study more complex materials made up of different elements.

Micromagnetic modelling is a commonly used technique which helps to study

large uniform magnetic systems by treating continuous regions of similar spins

as single units and simulating the system by evaluating the magnetic properties

at each unit. For nanoparticles around 30 nm in size, a more detailed approach is

possible and, in many cases, necessary. In nanoparticles of this size, the number of

atoms is typically around 100 thousand to 1 million, making fine grain atomistic

simulations, which treat each atomic moment individually, possible on modest

hardware. This can lead to more detailed analysis of the systems under question,

revealing the properties of the system as well as any sublattices which exist in

more complex materials. In many systems, the spin configuration is also complex,

and cannot be grouped well into similar domains, leading to atomistic modelling

being the easiest way to accurately represent their structure.

This general approach to studying iron oxides is not new [20, 21], however it

is still nascent, with the current state of research requiring large scale approx-
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imations to modelling and the current output being low in resolution, dealing

with only the smallest scale nanoparticles around 6 nm in size, and few other

published data sets for particle shapes and sizes. In addition, not all materials

currently have the information available to be modelled accurately. In studies

which use the popular 3D Heisenberg model to simulate iron oxides, the largest

contribution to the magnetic properties of the system comes from the exchange

interaction of the neighbouring spins. These interactions can be defined by a set

of constants which are unique to each material. While for the most well studied

materials, such as magnetite, these values have been well studied, most other

iron oxides are simulated using borrowed sets of exchange from differing materi-

als, or use exchange values calculated from mean field models with significant

approximations, which have not been tested appropriately in multiple works and

show some disagreement with past studies.

This work attempts to bridge together the current available information on

three materials, the well-studied magnetite and its close neighbours maghemite

and cobalt ferrite. This is done by creating a complete set of atomistic models,

which agree well with current experimental data. In particular we study their

temperature scaling properties, as well as the finite size effects which affect

all systems at the nanometre scale. The VAMPIRE software package has been

used to create high quality data for these magnetic properties, as well as other

areas of interest such as spin switching, and core-shell nanoparticles made up of

combinations of these materials.

1.3 Thesis Outline

To start we shall cover the various methods used throughout the thesis in Chapter

2, with an in depth look at the 3D Heisenberg Hamiltonian and the methods

used to solve it as well as visualisation methods to better understand our results.

Chapter 3 then introduces the core elements of this thesis concerning magnetite,

its history, current state of understanding and finally simulations of the material

in bulk form, with Chapter 4 focusing on nanoparticles of magnetite and their

finite size effects. Chapters 5 and 6 cover similar materials in maghemite and

cobalt ferrite respectively, going over the differences of these materials and mag-

netite and performing similar simulations and analysis. Chapter 7 puts together

some of the information from previous chapters to look at mixed iron oxide core-

shell nanoparticles and how they behave depending on their constitution. Finally,

Chapter 8 concludes this thesis, covering the main points of the thesis as well as
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outlining future work.
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2.1 Introduction

Modelling of magnetic materials has become a necessity for assessing and predict-

ing the usability of different materials for specific purposes. Without it, it would

be difficult for magnet based appliances to reach their current level of speed,

reliability and efficiency. Early models, such as that developed by Ernst Ising

[22], were used to understand phase changes in magnetic materials by modelling

the system as a lattice of spin-up or spin-down magnetic dipole moments. This

simplified system would be affected by heat but tend to equilibrium over time,

creating magnetic phases.

Most modern day magnetic materials modelling is done using micromagnetics

[23, 24] which predicts the behaviour of systems of sub-micrometer length scales.

While this approach is more complex that the Ising model it must still make

significant approximations; rather than account for every atomic spin, dipoles are

grouped forming a continuous vector field. Here it is assumed that due to exchange

interactions, the atomic dipoles within a small volume are mostly aligned and

their averaged behaviour is a good approximation to that of individual spins. One

of the downsides of this method is that it struggles to correctly model systems

where short range spin fluctuations are large or can deviate from nearby spins

quickly. In addition, non-uniform systems made up of multiple materials pose a

significant hurdle to micromagnetics as complex crystal structures often involve

short range interactions between divergent spins. To remedy this a different

approach is required, which gives up some of the benefits of micromagnetics in
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being able to model very large uniform systems but instead allows for a much

higher resolution and detailed understanding of nanometre scale magnetism.

Atomistic modelling is now one of the most promising tools available in under-

standing magnetic materials. Atomistic spin models are based on the principle

that each atom possesses a local magnetic moment located on the lattice site. This

assumes that all the electrons are localised around the atom which could be at

odds with metals containing 3D outer electrons such as iron where the electrons

are loosely bound, however ab-initio calculations of the electron density show that

even in 3D ferromagnetic materials the spin polarisation is well localised to the

lattice site [25]. These localised moments are known as magnetic moments and

their magnitudes depend on the atomic species.

2.2 Heisenberg Hamiltonian

The Heisenberg spin model encapsulates the essential physical components of a

magnetic material at the atomic level. Its aim is to describe the interactions of

each atomic spin moment, µs, and its neighbouring moments within the system

and possible external magnetic field. The energy contributions of each interaction

are summed together to make up the overall energy of the system. Thus, the spin

Hamiltonian, H , can be written in the following form:

H =Hexchange +Hanisotropy +Happlied (2.1)

This describes the energy contributions of the exchange interaction, the

magnetic anisotropy and any externally applied magnetic field. The exchange

and anisotropy energies are intrinsic to the material however the applied field,

Happlied, is usually the result of an external system, such as a nearby magnetic

material or an effective field from an electric current. The energy of the applied

field is given by:

Happlied =−∑
i
µsSiBapplied (2.2)

where µs is the spin magnetic moment and Si the spin vector at site i. The lowest

energy configuration corresponds to the spins aligning along the applied field, B.
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2.2.1 Exchange Interaction

The dominant contribution of the spin Hamiltonian in ferromagnetic materials is

the exchange field, which arises due to the symmetry of the electron wavefunc-

tion and the Pauli exclusion principle which affects the orientation of spins in

overlapping electron orbitals [26]. To understand how this interaction arises, we

can examine the simple case of the helium atom. Consider an electron in a state

ψa(r1) at r1 and another at state ψb(r2) at r2, the combined wavefunction of the

system, Ψ(r1,r2), can be defined as a linear combination of the individual election

wavefunctions which must be a solution to the Schrödinger equation:

Ψ(r1,r2)=ψa(r1)ψb(r2) (2.3)

[
− ~2

2m
∇2

1 −
~2

2m
∇2

2 −
2e2

r1
− 2e2

r2
+ e2

r12

]
Ψ(r1,r2)= EΨ(r1,r2) (2.4)

Here E is the energy of the system and is equal to Ea +Eb, the energy of

electrons a and b. r12 is the separation between the two electrons and corresponds

to the interaction between them. The electrons are indistinguishable therefore

ψa(r2)ψb(r1) is also a solution to the Schrödinger equation, hence the following

must be true:

|Ψ(r1,r2)|2 dr1dr2 = |Ψ(r2,r1)|2 dr1dr2 (2.5)

There are two possibilities from this equation: Ψsym, the wavefunction is

symmetric as Ψ(r1,r2) =Ψ(r2,r1) or the wavefunction is anti-symmetric, Ψanti,

as −Ψ(r1,r2)=Ψ(r2,r1). We can form a general solution to the wavefunction using

either state:

Ψsym(r1,r2)= 1p
2

[
ψa(r1)ψb(r2)+ψa(r2)ψb(r1)

]
(2.6)

Ψanti(r1,r2)= 1p
2

[
ψa(r1)ψb(r2)−ψa(r2)ψb(r1)

]
(2.7)

As electrons are bound by the Pauli exclusion principle, and two identical

electrons cannot occupy the same quantum state, the overall wavefunction must
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be anti-symmetric. So far we have not included the spin component of the wave-

function, with α = spin up, β = spin down, which also come in symmetric and

anti-symmetric forms. There are eight possible configurations of the two electron

spin states [26]:

ψa(r1)αaψb(r2)αb ψb(r1)αaψa(r2)αb

ψa(r1)αaψb(r2)βb ψb(r1)βaψa(r2)αb

ψa(r1)βaψb(r2)αb ψb(r1)αaψa(r2)βb

ψa(r1)βaψb(r2)βb ψb(r1)βaψa(r2)βb

(2.8)

The anti-symmetric wavefunctions for the system can be constructed by taking

appropriate linear combinations of the products in 2.8. If the total wavefunction

is to be anti-symmetric, either the spin-dependent part must be anti-symmetric

and the spatial part symmetric, or vice versa. Doing this we end up with four

functions:

Ψ(r1,r2)= 1p
2

[
ψa(r1)ψb(r2)−ψa(r2)ψb(r1)

]
αaαb

Ψ(r1,r2)= 1p
2

[
ψa(r1)ψb(r2)−ψa(r2)ψb(r1)

]
βaβb

Ψ(r1,r2)= 1p
2

[
ψa(r1)ψb(r2)−ψa(r2)ψb(r1)

] 1p
2

[
αaβb +αbβa

]
Ψ(r1,r2)= 1p

2

[
ψa(r1)ψb(r2)+ψa(r2)ψb(r1)

] 1p
2

[
αaβb −αbβa

]
(2.9)

The spin components are eigenfunctions of the operators representing the

total spin, S, of the two particles and of their total z-component. In the first

three states the electron spins are aligned in parallel, while in the fourth they

are antiparallel. The first three functions have their total spin quantum number

S = 1, and the quantum numbers associated with the z-component equal to 1,

-1 and 0 respectively. Collectively, these states are known as a triplet ΨT , with

energy ET . The fourth function has zero spin, S = 0, and is know as a singlet

ΨS with energy ES. Hence we can condense the four states into two possible

wavefunctions:

ΨT = 1p
2

[
ψa(r1)ψb(r2)−ψa(r2)ψb(r1)

]
χT

ΨS = 1p
2

[
ψa(r1)ψb(r2)+ψa(r2)ψb(r1)

]
χS

(2.10)
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with energies:

ET =
∫ ∫

Ψ∗
TH ΨT dr1dr2

ES =
∫ ∫

Ψ∗
SH ΨSdr1dr2

(2.11)

with the assumption that the spin parts of the wave function χT and χS are

normalised, the difference between the two energies is:

ES −ET = 2
∫ ∫

ψ∗
a(r1)ψ∗

b(r2)H ψa(r2)ψb(r1)dr1dr2 (2.12)

If we consider two spin half particles coupled by an exchange interaction, the

joint operator Stot = S1 ·S2, so S2
tot = S2

1 +S2
2 +2S1 ·S2. Therefore, the difference

between single and triplet states can be parameterized by AS1 ·S2. Combining

these two particles results in a joint entity with spin quantum number S = 0

(singlet) or S = 1 (triplet) depending on the relative orientation of the two spins.

The eigenvalues of S2
tot are S(S+1) so for the singlet case S1 ·S2 =−3/4 whereas

for the triplet case S1 ·S2 = 1/4 [27].

Hence the Hamiltonian can be written in the form:

H = 1
4

(ES +3ET)− (ES −ET)S1 ·S2 (2.13)

This Hamiltonian can be split into two terms, a radial component Hrad and

a spin component Hspin = (ES −ET)S1 ·S2. From this we define an exchange

constant, Jex:

Jex = 1
2

(ES −ET) (2.14)

or more simply the spin Hamiltonian is:

Hspin =−2JexS1 ·S2 (2.15)

When Jex is negative, an anti-ferromagnetic arrangement is more favourable

(ES < ET ), while if Jex is positive, a ferromagnetic arrangement is more favourable
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(ET < ES). This is a simple example for the interactions of two identical electrons

however it forms the basis for more complex systems with higher numbers of

electrons. In the extended Heisenberg model, an approximation to the exchange

treats all spins in the systems as pairs of electrons leading to the overall exchange

Hamiltonian:

Hexchange =−∑
i< j

Ji jSi ·S j (2.16)

where Si and S j are spins of atoms i and j. The form of Ji j depends on the form of

the interaction. In the simple case this interaction is isotropic, depending on the

relative orientation of the spins not their particular directions. In more complex

materials it forms a tensor with components:

J i j =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (2.17)

In practice, the values of Ji j can be calculated (typically approximated) us-

ing ab-initio methods or by fitting experimental results [28, 29]. The energies of

exchange are around 1-2eV which is usually much larger than the next largest con-

tribution and gives rise to magnetic ordering temperatures around 300-1300K[30].

While equation 2.16 takes into account all spins in the system, the exchange

energy is dependent on the distance between each spin. The energy contributions

from spins further than second or third nearest neighbours is often small, hence

it is often approximated to be only nearest neighbour exchange.

2.2.2 Magnetocrystalline Anisotropy

While the exchange energy affects the interatomic spin interactions, the anisotropy

energy determines the preferred directions of the atomic moments. Anisotropy

can be caused by several different mechanisms, such as overall system structure

in the case of elongated particles, which causes an overall shape anisotropy as

the demagnetising field will not be equal for all directions causing spins to align

along the axis of elongation. The most common form of anisotropy is magnetocrys-

talline anisotropy which is a result of the crystal symmetries interacting with

the spin-orbit coupling of the electron. Magnetocrystalline anisotropy can form in

different flavours, the simplest being uniaxial anisotropy, where the spins prefer

to align along a single axis, called the easy axis. This form of anisotropy usually
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exists when there is a distortion along a single axis of the material, such as in

hexagonal systems. The uniaxial single-ion anisotropy single energy is given by

the expression:

Huniaxial =−ku
∑

i
(Si ·e)2 (2.18)

where ku is the uniaxial anisotropy energy per atom and e is the easy axis

vector. In cubic systems a different form of magnetocrystalline anisotropy usually

occurs: cubic anisotropy. Materials such as iron and nickel have multiple preferred

anisotropy directions which are separated in energy level leading to one direction

being preferred. This type of anisotropy is usually much weaker than uniaxial

anisotropy. The axes are typically called the easy, medium and hard axes, in order

of increasing energy. Cubic anisotropy can be described by the following equation:

Hcubic =
+kc

2

∑
i

(S4
x +S4

y +S4
z) (2.19)

where kc is the cubic anisotropy energy per atom and Sx, Sy and Sz are the

components of the spin moment S.

2.3 Integration Methods

The Heisenberg Hamiltonian provides a robust method of finding the energy of the

system however methods for calculating time evolution or thermal fluctuations is

still required. In addition, it is important to show the temperature dependence of

the system as well as its ground state, therefore methods for relaxing the system

are also needed. There are several possible models that can find the ground state

of the system. Some require a time-dependent simulation of the system while

others are time-independent and relax to the ground state. Two such methods are

presented here: the stochastic Landau-Lifshitz-Gilbert equation for calculating

spin dynamics, and the Monte Carlo method for calculating static properties.

2.3.1 Spin Dynamics

Landau and Lifshitz [31] first described the time-dependent behaviour of a mag-

netic materials (specifically ferromagnets) by using equation 2.20, named after

its authors, created from looking at magnetic resonance experiments.

14



2. MODELLING METHODS

∂m
∂t

=−γ[m×B+αm× (m×B)] (2.20)

Here, m is a unit vector describing the direction of the sample magnetisation,

B is the effective field acting on the system, γ called the gyromagnetic ratio is the

ratio of its magnetic moment to its angular momentum, and α, a phenomenological

damping constant which is dependent on the material. The physical origin of the

Landau-Lifshitz equation can be explained by splitting equation 2.20 into two

terms. The first refers to the quantum mechanical precession of spins around an

applied field. The second term containing the damping constant α accounts for

energy dissipation from the system. Energy transfer occurs due to the coupling

of the atomic moments to a heat bath. The strength of the coupling is linked to

the value of the damping constant, which determines how quickly the atomic

moments align to the applied field.

Gilbert would later show that this method yields incorrect dynamics for ma-

terials with high damping [32] and adjusted the damping parameter to have

a maximum value, called critical damping, when α = 1. The altered equation

is known as the Landau-Lifshitz-Gilbert equation, or LLG, and was originally

used to describe macroscopic magnetisation of a sample, however in principle the

equation applies equally well to micromagnetics and is often used in this field

[33].

The LLG can be formulated for atomistic simulations by excluding extrinsic

spin interactions, such as from demagnetising fields or surface defects. Here,

only intrinsic damping contributions from the spin-lattice and spin-electron in-

teractions are considered. To distinguish the macroscopic damping parameter α,

which includes all damping contributions, from the microscopic, we use a different

parameter, λ. The LLG equation can be described by:

∂Si

∂t
=− γ

(1+λ2)
[Si ×Bi

eff +λSi × (Si ×Bi
eff)] (2.21)

where Si is a unit vector representing the direction of the magnetic spin moment of

site i and Bi
eff is the net magnetic field on each spin. The atomistic LLG describes

the interaction of an atomic spin moment with an effective magnetic field. The

effective field at the site i can be calculated as:

Bi
eff =− 1

µs

∂H

∂Si
(2.22)
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where µs is the local spin moment.

2.3.2 Langevin dynamics

So far we have described the time-dependent behaviour of a system using the LLG

however equations 2.21 and 2.22 are independent of temperature and only apply

at zero Kelvin. At high temperatures, the magnetic properties of the system can

change completely as the energy of the temperature fluctuations becomes higher

than that of the exchange and the system transitions to a paramagnetic state.

To take this behaviour into account, Brown developed a new approach by using

Langevin Dynamics [34]. The thermal effects are modelled as a Gaussian white

noise term affecting each atomic site where increasing the temperature increases

the width of the Gaussian distribution. This in turn represents stronger thermal

fluctuations. The Gaussian distribution is three dimensional with a mean of zero

and the instantaneous thermal field on each spin is given by:

Bi
thermal =Γ(t)

√
2λkBT
γµs∆t

(2.23)

where kB = 1.38064852×10−23 J is the Boltzmann constant, T the simulation

temperature, λ the Gilbert damping parameter, γ the gyromagnetic ratio, µs the

magnitude of the magnetic moment and ∆t the integration time step. Hence

combining equations 2.22 and 2.23 the modified effective field at site i is:

Bi
eff =− 1

µs

∂H

∂Si
+Bi

thermal (2.24)

2.3.3 Time Integration of the LLG

An integration scheme is required to solve the LLG to determine the time evo-

lution of a system of spins. Due to the physical nature of the problem, there are

limitations on the solvers we can use. The principal requirement for a solver [35]

is that the magnitudes of the spins are conserved. The most simple but robust

solver that satisfies this requirement is the Euler method which assumes a linear

change in spin direction in a single time step. Nowadays the Euler method is

seldom used due to the popularity of improved Euler methods [36] such as the

Runge-Kutta family of methods, which are more stable and reduce the number of

steps required to calculate the next spin position.
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A popular second order, two stage, Runge-Kutta method is known as the Heun

method [37] which employs a predictor-corrector algorithm allowing for larger

time steps and a possible large speed up in calculation time. The Heun scheme

does not conserve energy and must be continually renormalized to predict correct

dynamics. Despite other schemes existing which would intrinsically preserve

energy, there is often a computational cost incurred in their usage that outweighs

the possible benefits. Hence the simplicity and ease of application of the Heun

method makes it a popular choice in magnetics simulations[30, 37].

The predictor-corrector algorithm functions as follows: first the predictor step

calculates a spin direction S
′
i by performing one Euler integration step:

S′
i =Si +∆S∆t (2.25)

where

∆S=− γ

(1+λ2)
[Si ×Bi

eff +λSi × (Si ×Bi
eff)] (2.26)

The effective field is then recalculated with the predicted spin positions and

this step is repeated for every spin in the system. The corrector step then performs

another Euler integration step and uses the predicted spin positions and revised

field to calculate the final configuration by averaging the results. The completed

integration step is given by:

St+∆t
i =Si + 1

2
[∆S+∆S′]∆t (2.27)

where

∆S′ =− γ

(1+λ2)
[S′

i ×Bi′
eff +λS′

i × (S′
i ×Bi′

eff)] (2.28)

The corrector step is also performed for every spin in the system and the overall

process is repeated many times to determine the time-dependent properties.

The speed of the algorithm is dependant on the size of the time step, ∆t.
Ideally one would like to use the largest time step possible to simulate systems

quickly or for a long time. In micromagnetics, the minimum time step is a well
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defined quantity since the largest field (typically the exchange term) defines the

precession frequency. For atomistic simulations using Langevin dynamics, the

effective field becomes temperature dependant. Hence for atomistic models, the

most difficult region to integrate is in the immediate vicinity of the Curie point.

This leads to a straight forward method for testing the parameter: a time step

size is chosen appropriately if the mean magnetisation varies smoothly around

the Curie temperature of the system. If the chosen time step is low enough, the

Heun scheme and LLG will be able to simulate realistic time-dependent dynamics

for magnetic systems.

2.3.4 Monte Carlo Methods

By using the LLG, an investigation of the time-dependent dynamics will reveal

realistic physical dynamics from the starting point of the simulation through to

the equilibrium point where the system is fully relaxed. In some cases, these

dynamics are not required and only the eventual equilibrium point is needed.

The Monte Carlo Metropolis algorithm is a simple but robust method that offers

a more optimal method to determine equilibrium properties when intermediate

dynamics are not necessary [38].

Applied to a classical spin system, the Monte Carlo Metropolis algorithm

works by choosing a random spin i, and changing its direction, Si, to a new trial

position S′
i. The difference in energy ∆E = E(S′

i)−E(Si) between the initial and

final position is calculated and the trial move is accepted or rejected according to

a probability, P, such that:

P = exp
(
− ∆E

kBT

)
(2.29)

If ∆E is negative, the final state is lower in energy and the trial move is

accepted (P > 1). If the probability is less than 1, and ∆E is positive, the value

is compared to a random number between 0-1 and the move is accepted if the

probability value is higher, allowing for thermal fluctuations to cause a small

increase in energy trial move. This process is repeated for every spin in the system

and after each move is accepted or rejected, the result is a single Monte Carlo

step.

The typical requirements for a Monte Carlo algorithm are ergodicity and

reversibility, i.e. all spin movements must be possible and the probability of a

move from position Si to S′
i must be the same as the probability of a move from S′

i
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to Si. The latter follows from equation 2.29 as the probability is only dependent

on the initial and final energies. The former, ergodicity, is also true as any spin

trial move is possible however their probabilities can be drastically different. At

high temperatures, most moves are roughly equally probable, however at low

temperatures, large spin deviations are very unlikely, leading to most trial moves

being rejected. For an efficient algorithm, an acceptance rate of around 50% is

desired.

Figure 2.1: Monte Carlo trial moves. The three possible trial moves proposed
by Hinzke and Nowak for the Monte Carlo Metropolis algorithm: (a) spin flip; (b)
Gaussian perturbation; and (c) random movement. Figure from Ref. [30]

Figure 2.2: Monte Carlo sampling. Trial moves using the random sampling
(a) and Gaussian perturbation (b) methods. The random sampling shows good
coverage of the unit cell with no bias, while the Gaussian move shows trial moves
centred around the initial spin position along the positive z-axis. Figure from Ref.
[30]

Hinzke and Nowak [39] developed an efficient algorithm which uses three

different trial moves: a spin flip, a Gaussian perturbation and a random move,

illustrated in Figure 2.1. While each method alone does not necessarily satisfy

ergodicity, a combination of the methods creates a non-zero probability for every

possible spin movement. The spin flip moves a spin to an antiparallel position,

Si = −S′
i, much like an Ising model spin movement. The Gaussian trial move

takes a spin and moves it by a small amount according to the following expression:
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S′
i =

Si +σgΓ

|Si +σgΓ|
(2.30)

where σg is the width of a cone around the initial spin and Γ is a Gaussian

distributed random number. The size of the cone depends on temperature and is

usually of the form

σg = 2
25

(
kBT
µB

)1/5
(2.31)

At low to medium temperatures, small spin movements are more likely, and

the Gaussian trial move is favoured. Finally, the random spin movement chooses

a position on the unit sphere according to

S′
i =

Γ

|Γ| (2.32)

ensuring ergodicity for the complete algorithm. The three possible move are

performed one at a time, chosen randomly, for each spin in the system per Monte

Carlo step.

2.4 Temperature Rescaling

The Heisenberg model we have introduced can be used to effectively model mag-

netic materials of all forms, using ab initio or experimental input parameters to

produce well defined output. On comparison with experimental results however,

many properties such as temperature scaling behaviour of magnetisation or spe-

cific heat have been shown to depart from those expected from experiment. The

major contributing factor to this effect is the classical nature of the model, where

spins are defined as localised classical atomic spins si =µSi on the surface of the

unit sphere, |si| = 1. At the lowest level, magnetic materials, and in particular

spins, behave according to quantum mechanical effects and are constrained to

particular eigenvalues. While at the macroscopic level, a quantum mechanical

system and a classical one is able to take on all possible values of overall spin

direction due to an averaging out of individual spins, this does not yield the same

thermodynamic effects.

To remedy the disparity between quantum and classical models, a tempera-

ture rescaling mechanism has been developed by Evans et al. [40]. To derive an

20



2. MODELLING METHODS

appropriate scaling method, we compare the magnetisation and temperature rela-

tionship for each approach. First we consider the total magnetisation M(T)= 〈S〉
and the normalised magnetisation m(T)= M(T)/M(0K). In the low temperature

limit, m can be calculated as:

m = 1− 1
N

∑
k

nk (2.33)

where N is the number of spins and the sum is over the spin-wave occupation

number of wave vector k. Classically, the occupation number of a spin wave of

energy εk corresponds to the high-temperature limit of the Boltzmann law in

reciprocal space:

nk = kBT/εk (2.34)

however quantum mechanically they are bosonic modes of the spin lattice and

therefore follow the Bose-Einstein distribution:

nk = 1/[exp(εk/kBT)−1] (2.35)

The spin wave energy should be the same irrespective of the model used, hence

the difference in the magnetisation predicted by quantum and classical models

is due to their different statistical behaviours. We now examine the behaviour of

both models in a low and high temperature phase. At low temperatures equation

2.33 has a well-known result [41]:

mclassical(T)≈ 1− 1
3

T
TC

(2.36)

where TC is the Curie temperature which has the same value for both classical

and quantum systems. Similarly in the quantum Heisenberg case:

mquantum(T)≈ 1− 1
3

s
(

T
TC

)3/2
(2.37)

we obtain the Bloch law [26]. Here s is a slope factor which is a function of the

spin quantum number, the Watson integral and the Riemann ζ function. Equating

equations 2.36 and 2.37 we find:
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Tclassical

TC
= s

(Tquantum

TC

)3/2
(2.38)

which relates the low temperature quantum magnetisation to a rescaled classical

magnetisation. In the high temperature phase close to TC, the spin-wave energy

is high and ε/kBT → 0. Hence 1/[exp(εk/kBT)−1] ≈ εk/kBT. Spin quantisation

is therefore not a factor in the high temperature phase. At high temperatures

the magnetisation should scale according to a power law, m(τ)= (1−τ)β, where

τ= T/TC and β is a critical exponent often cited as 1/3 for the Heisenberg model

[42].

The low temperature behaviour of classical and quantum systems can be

related using a relatively simple equation and the high temperature behaviour for

both cases tends to equality. Evans [40] suggests that a good relation between both

regimes for all temperatures can be modelled using the Curie-Bloch equation:

M(τ)= (
1−τα)β (2.39)

This equation is a direct extrapolation of low temperature behaviour according

to Bloch’s law and high temperature behaviour near the critical exponent. α is

the only fitting parameter required to relate the classical and quantum scaling at

all temperatures. With the assumption that β is the same for both classical and

quantum systems, we can fit experimental data using equation 2.39 to find the

appropriate value of α for our system. We are then able to rescale the temperatures

of simulated results according to:

Tsim

TC
=

(Texp

TC

)α
(2.40)

which should yield results much closer to experiment with a better qualitative

magnetisation scaling. This technique has already been applied to elemental

ferromagnets and shows very good agreement with the experimentally measured

magnetisations for all studied materials [40].

2.5 VAMPIRE Software Package

The modelling methods explained in this chapter have been implemented into

VAMPIRE, an open-source atomistic spin dynamics software package developed
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Figure 2.3: Rescaling applied to Fe and Co. Blue points show the simulated
data points using a Monte Carlo approach. These are fit using the Curie-Bloch
equation and shown with blue curves. The gold curves show the experimentally
measured temperature-dependent magnetisation, Ref. [43] for cobalt, (a), and Ref.
[44] for iron, (b). The gold points are the simulated data points, rescaled using
equation 2.40. Both sets of data show excellent agreement with experimental
results. Insets are plots of relative error of the rescaled magnetisation compared
to the experimental data. Figure from Ref. [40].

at the University of York [30]. This package is authored by Richard Evans and

the computational magnetism group at the University of York and is available

for personal research according to the rules of the GNU General Public License

or GPL. The code base is written in C++ and can run on most hardware, in

either serial, parallel or GPU modes. Most results in this thesis are calculated

using the VAMPIRE software package which handles simulation as well as data

output. In addition, this work made extensive use of the Viking Cluster, a high

performance compute facility provided by the University of York, which was used

to run VAMPIRE.

2.6 Visualisation

The VAMPIRE software package outputs data such as temperature or magnetisa-

tion values in plain text. Most of the plots using the data presented in the thesis

are made using Gnuplot [45], a portable command-line driven graphing utility.

In addition to raw data, VAMPIRE is able to output spin coordinate data such as

positions and spin directions for output using external programs. Atomic positions

can be displayed using chemical structure visualisation software such as Jmol

[46] or Rasmol [47].

A component of the work done for this thesis was rewriting the spin’s direction

visualisation output in VAMPIRE. Alongside common simulation output such as
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magnetisation or field strength which are easily accessible from the data output,

system visualisation forms a crucial component of data analysis as it provides a

more easily readable form of visual output, as well as allowing for much easier

system set up and testing. As ferro, ferri and anti-ferromagnetic systems have

significantly different spin structures, spin visualisation is a relatively quick and

easy method for parameter verification before starting simulations. Visualisation

of the initial system state can save hours of wasted simulation time by catching

simple errors in system set-up. In addition, spin visualisation can complement

plots of output data as together they form a more complete picture of the magnetic

properties being investigated. To render this data, external programs such as

POV-Ray [48] are used.

The reliability of spin visualisation is therefore of crucial importance both to

the user and to any desired recipients of the final data. A significant issue with

spin visualisation is the type of colour map and its parent colour space used to

colour individual elements. A colour map can be thought of as a line or curve

drawn through a three dimensional colour space, or an organisation of colours

collected arbitrarily or by using mathematical rigour (for example Adobe RGB

or sRGB [49]). An effective colour map presents a list of colours which can be

structured and allows the communication of metric information. The latter has

become a common issue in widely used vendor colour maps due to a few different

factors separate to those related to the representation when displayed digitally

due to viewing angle or display calibration. Colours can be represented as a

tuple of values between 0-255(RGB) or 0-1(HSL) and while it is possible to create

a colour map consisting of equally spaced positions between these values, the

relationship between the distance of the colours from each other is non-linear with

human perception of colour difference. It is therefore common for colour maps to

contain perceptually uniform or flat regions of colour which may vary significantly

in RGB value but be very difficult to distinguish using only human perception.

Put differently, human perception can cause distinct groups of colours to become

essentially indistinguishable from each other leading to a loss or corruption in

conveyed information. While not directly related, colour maps used to address

colour blindness can also be adjusted. In addition to colour, lightness can pose

another barrier due to high brightness or saturation causing perceived colour

blending [50]. Most studies looking at colour perception in scientific data analysis

have been restricted to cartographic applications [51, 52] however inspired by the

work done by Peter Kovesi [53] this theory has been applied to the visualisation

output of VAMPIRE.
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Figure 2.4: Comparison of commonly used colour maps and perceptually
uniform colour maps designed by Kovesi [53]. To show their differences they
are shown on top of a sine wave gradient superimposed on a ramp function which
provides a set of constant magnitude features presented at different offsets. High
saturation regions such as red or green are blurred in the base colour maps but
can be adjusted to have reduced intensity and higher perceptual uniformity in
the modified maps. Image from Ref. [54]

This change is particularly relevant to spin direction visualisation as the data

varies over a continuous range, leading to high likelihoods of similarly oriented

groups of spins positioned closely to each other. As an example, consider a system

in a low temperature regime being modelled using the Monte Carlo method

explained earlier. Due to the low temperature, the most likely Monte Carlo trial

move is the Gaussian move as spin flips and random movements occur when the

system is higher in energy and are more likely to be rejected. This would lead to

small spin deviations centred around the initial positions of the spins. Depending

on the colour map used, deviations from the initial spin direction by as much as

10% can appear as the same colour as the initial direction leading to a simple

misunderstanding of the generated results. Vortex configuration systems, such as

permalloy [55], pose a significant issue as they are usually represented by a colour

wheel which uses a high saturation continuous colour spectrum, susceptible to

reduced colour perception.

To remedy this issue, where possible, any spin visualisation shown in this

thesis is made using a perceptually uniform colour map which makes as clear

as possible the difference in similar value spin orientations while making little
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sacrifice in colour fidelity and visual appeal. A comparison of colour maps used in

this work and common maps supplied by different vendors is shown in Figures

2.4 and 2.5.

Figure 2.5: Comparison of two cyclic colour maps. (a) is a perceptually uni-
form colour map and (b) is the "HSV" colour map commonly used in Matlab [56].
(b) suffers from radial artefacts around the bright saturated areas while (a) has
an almost uniformly smooth colour gradient except for small irregularities around
blue.

Figure 2.5 was made in VAMPIRE. To create this, a synthetic system of 2D

spins in a grid was created with all spins oriented perfectly along a circumference

around the centre. To help with readability, the spins are represented as coloured

spheres as opposed to arrows to fill in all white space. Figure 2.5(a) has a percep-

tually uniform colour map applied to the spin colour and shows a smooth gradient

throughout the image with small artefacts on the edges of the blue area. 2.5(b)

has a different cyclic colour map taken from the "HSV" map used in Matlab [56],

which is made up of a linear increase of values in the RGB colour space, with

no additional factoring in of human perception. In 2.5(b), radial artefacts extend

from the centre of the image outwards in the pink, yellow and cyan areas which

is mainly due to the high saturation in these areas which blurs the grid lines

made by the spheres. The possible issues caused by the usage of non perceptually

uniform colour maps is therefore twofold, being able to cause a loss of visual data

by blurring high saturation areas, as well as causing visual artefact, which might

at first appear as physical phenomena inside the studied material.

In addition to colour accuracy, several options have been added to VAMPIRE

to help with image creation for both this work and future users of the software.

Large systems pose a significant problem in visualisation due to the large amount
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of memory and rendering time required for hundreds of millions of spins. To help

with this, it is possible to ignore spins behind the outer layer of atoms, which

are required for the simulation but can be effectively removed for visualisation

purposes. In addition, sometimes it is only the spins on a cross section or within the

block of simulated material that is of particular interest. With the latest changes,

it is possible to cut a cross section of the system to reveal a plane of spins across

any axis. Finally, the last option added to VAMPIRE POV-Ray visualisation is suited

to ferri or antiferromagnetic materials as it can flip the colour of antiparallel

spins. In antiferromagnetic materials, two competing sublattices show up in

visualisation as antiparallel arrows in different colours. Due to the change in

colour, the overall image exhibits a blurry quality as the two opposite colours

are on adjacent spins. To remedy this, the usual arrow shape of the spins are

conserved, making it obvious that the material is still antiferromagnetic, however

the colours of one sublattice are swapped to match those opposing. This makes

the overall direction of the spins more obvious, hence domains of spins oriented in

slightly different directions can be more easily identified.

Almost all these additions have been used in creating visualisation for this

thesis and are now implemented in the latest available versions of the VAMPIRE

software package.

2.7 Conclusion

In this chapter we have discussed the fundamentals of atomistic spin models,

simulation methods for finding both time-dependant and time-independent states

of magnetic systems, and visualisation methods for better understanding our

results. In the next chapter we shall apply these methods to magnetite, a well-

known magnetic material, to better understand its magnetic properties in both

bulk and nanoparticle form.
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MAGNETITE

3.1 Introduction

Magnetite is the oldest known magnetic substance, found in lodestones, it was

the first major discovery of magnetism by ancient peoples. It is also the most

magnetic of all the naturally occurring minerals on Earth. On its own, it does

not ordinarily retain a permanent magnetisation, however with the inclusion of

minerals such as ions of titanium and manganese, its coercivity rises enough to

be a permanent magnet [57]. Pieces of magnetite were used in China as early as

300BC as compasses, and references to lodestones can be found in Greek texts

such as "Theogony" by Hesiod, where the Titan Cronus was given a lump of

magnetite instead of his son Zeus. In addition, the mineral was also broken down

as a source for iron, which gave the first glimpse into the crystal structure of the

material.

Magnetite is an iron oxide known as a ferrite, initially thought to be ferro-

magnetic such as plain iron. In a paper published in 1948, L. Néel showed that

this was not the case and that there existed several distinct forms of magnetism,

magnetite itself being ferrimagnetic [6]. Ferrimagnets were found to behave some-

what similarly to ferromagnets, both carrying a spontaneous magnetisation which

disappears above a critical point, Figure 3.1. The magnetic properties of ferrites

are a result of their complex crystal structures.

Ferrites can be divided into two major groups, also shown in Figure 3.2:
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Figure 3.1: Temperature dependence of magnetic properties of a typical
ferrimagnet, NiO·Fe2O3 [58]. The fractional magnetisation σ0/σs decreases
more quickly with higher temperature than that of iron.

Figure 3.2: The crystal lattices of ferrites. Cubic lattices have sides of equal
length with 90° angles between each side, while hexagonal lattices have a side of
unequal length and angles α=β= 90°, γ= 120°

1. Cubic ferrites have the general formula MO·Fe2O3 where M is a divalent

metal ion, like Co, Ni, Cu, Mn, Ti. These ferrites have high magnetic suscep-

tibility and lower coercivity, and are classified as soft magnetic materials,

often used as RF transformers due to their easily reversible magnetisation

and low energy dissipation. A notable exception to this is Cobalt ferrite,

often dubbed a semi-hard magnet due to its higher relative susceptibility
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and magnetostriction.

2. Hexagonal ferrites are permanent magnets which do not demagnetise easily.

The most common hard ferrites are strontium and barium ferrite which have

seen use in recording media and general permanent magnet applications.

While the minerals found in these ferrites were often distinguishable, knowl-

edge of the ionic and spin configuration was required to understand their magnetic

properties. Oxygen O2- ions are non-magnetic and the spin configuration of the

metal ions can be understood using Hund’s rule. This states that spins in a par-

tially filled shell are arranged to produce the maximum spin unbalance consistent

with the Pauli exclusion principle [59]. Applied to elements in the first transition

series; the outermost shell is 3d and can contain 10 electrons, 5 spin up and 5

spin down. The first five will be of the same orientation, say spin up, while the

sixth must be spin down due to the Pauli exclusion principle. Hence, an Fe2+ ion

with 6 outer electrons will have a magnetic moment of 5−1= 4 µB. More magnetic

moments can be found in Table 3.1.

Ions
Number

of 3d
Electrons

Spin-Only
Moment

in µB
Sc3+ Ti4+ 0 0

Ti3+ V4+ 1 1
Ti2+ V3+ Cr4+ 2 2

V2+ Cr3+ Mn4+ 3 3
Cr2+ Mn3+ Fe4+ 4 4

Mn2+ Fe3+ Co4+ 5 5
Fe2+ Co3+ Ni4+ 6 4

Co2+ Ni3+ 7 3
Ni2+ 8 2

Cu2+ 9 1
Cu+ Zn2+ 10 0

Table 3.1: Spin-only moments of ions of first transition series

Applying this to nickel ferrite, NiO·Fe2O3, which contains one divalent nickel

ion and two trivalent iron ions, with magnetic moments of 2 µB and 5 µB respec-

tively. A parallel alignment of the spins as expected in a ferromagnetic arrange-

ment would require a positive exchange force between the ions and results in a

total of 12 µB per formula unit, however the measured saturation magnetisation

σ0 at 0 K is 56 Am2/kg, which corresponds to 2.3 µB per formula unit. Hence the

magnetic moments cannot be aligned parallel in this material.

This was noticed by Néel who assumed that distinct A and B sites in the

material shared a negative exchange force, as in antiferromagnetic materials. The
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A sites would be spontaneously magnetised in one direction, while those on the

B sites would be opposite. The magnitudes of these spontaneous magnetisations

would not be equal however, leading to a net magnetisation for the material.

3.2 Modelling Magnetite

3.2.1 Structure

The A and B sites postulated by Néel are a result of the structure of magnetite

which we shall expand on here. Magnetite can be split into eight formula units, or

8×7= 56 ions per unit cell. Large oxygen ions make up most of the unit cell and

form a face-centred cubic arrangement. The metal ions occupy spaces in between

the oxygen and form two distinct sites. A sites, or tetrahedral sites, are at the

centre of a tetrahedron whose corners are made up of oxygen ions. Similarly, the

B sites, or octahedral sites, are at the centre of an octahedral crystal symmetry

site.

Multiplicity Wyckoff Letter Site Symmetry Coordinates

8 a -43m 1/8,1/8,1/8) (7/8,3/8,3/8)

8 b -43m (3/8,3/8,3/8) (1/8,5/8,1/8)

(0,0,0) (3/4,1/4,1/2)
16 c .-3m

(1/4,1/2,3/4) (1/2,3/4,1/4)

(1/2,1/2,1/2) (1/4,3/4,0)
16 d .-3m

(3/4,0,1/4) (0,1/4,3/4)

(x,x,x) (-x+3/4,-x+1/4,x+1/2)
(-x+1/4,x+1/2,-x+3/4) (x+1/2,-x+3/4,-x+1/4)
(x+3/4,x+1/4,-x+1/2) (-x,-x,-x)

32 e .3

(x+1/4,-x+1/2,x+3/4) (-x+1/2,x+3/4,x+1/4)

(x,1/8,1/8) (-x+3/4,1/8,5/8)
(1/8,x,1/8) (5/8,-x+3/4,1/8)
(1/8,1/8,x) (1/8,5/8,-x+3/4)
(7/8,x+1/4,3/8) (7/8,-x,7/8)
(x+3/4,3/8,3/8) (-x+1/2,7/8,3/8)

48 f 2.m m

(7/8,3/8,-x+1/2) (3/8,3/8,x+3/4)

Table 3.2: Wyckoff positions for Fd-3m crystal structures

Due to the complexity of the unit cell, we can divide it into eight octants. Four

corners, shown in grey in 3.3c, contain the 16 octahedral sites 3.3b, while those

shown in blue contain the 8 tetrahedral sites 3.3a. Figure 3.3d shows how these

octants join together.
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Figure 3.3: Crystal Structure of cubic ferrites. Atomic radii drawn roughly to
scale, both iron ions are around half the radius of the oxygen ions.

Studies on various materials with similar crystal structures have shown that

these sites are not unique and belong to cubic crystal structures of the family

Fd-3m, known as spinels. Atomic sites are constrained to specific positions in

these crystal groups and can be reconstructed using Wyckoff positions shown

in Table 3.2. The Fd-3m group contains many positions, most of which are left

unoccupied by the cubic ferrites, however through various studies over the 20th

century and the usage of experimental techniques such as X-ray crystallography,

we know that the 8a, 16d and 32e sites are occupied [60–62].

The Wyckoff positions can be used as fractional coordinates for atomic positions

in a cubic ferrite unit cell. Here, the 8a sites refer to the eight tetrahedral positions,

the 16d sites the octahedral positions and the 32e sites the oxygen ions. The 32e
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sites are not given simply with coordinates but involve an additional parameter, x
in Table 3.2. In oxide spinels, this is known as the oxygen positional parameter

and is represented by the symbol u, rather than the more general x. u typically

has a value close to 0.25 and varies between about 0.24 and 0.275 depending

on the specific spinel being studied and its purity. At a value of 0.25, the anions

form a perfect tetrahedral coordination about the 8a site and regular octahedra

around the 16d sites. An increase in u reflects a displacement of oxygen ions in

the [111] direction, causing the tetrahedral site to enlarge at the expense of the

octahedral site. The bond lengths within these sites should remain the same. As

the parameter u is tied to the bond lengths of the A and B sites or, put differently,

to the ionic radii of the cations, we can work out a value for the parameter using

the following formulas, where a is the lattice constant:

RTet = a

√
3

(
u− 1

8

)
(3.1)

ROct = a

√
3u2 −2u+ 3

8
(3.2)

RTet ROct
Fe2+ 0.615 0.74
Fe3+ 0.485 0.645
O2- 1.38 1.38

Table 3.3: Ionic radii (in Å) of divalent and trivalent iron as well as oxy-
gen in spinels. Data adapted from Ref. [63]

The ionic radii in spinel oxides have been studied by Shannon and Prewitt

[64, 65] and revised by O’Neill and Navrotsky [63] to calculate the value of the

oxygen positional parameters. The values relevant to magnetite are shown in

Table 3.3. From this, the accepted value of u in magnetite is 0.2548.

The complete 56 atom unit cell of magnetite, including extra tetrahedral ions

around the cell border, is shown in Figure 3.4. The tetrahedral and octahedral

block are packed very closely together within the unit cell, with Figure 3.4 only

showing the completed symmetries within the primitive unit cell. The lattice

constant of magnetite above the Verwey transition is reported as 8.396 Å [9].
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Figure 3.4: Full unit cell of magnetite. Tetrahedral iron ions are shown in blue,
octahedral ions in grey and oxygen in red. Atomic radii not shown to scale. The
glass bonds show the nearest neighbour interactions, and the tetrahedral and
octahedral blocks are also shown to demonstrate their symmetry within the unit
cell.

3.2.2 Cation Occupancy

The cations which take up the tetrahedral and octahedral sites vary for each

spinel material. In the mineral spinel MgAl2O4 the Mg2+ ions are in the A sites

while the Al3+ ions are all in the B sites. This is called the normal spinel with

other examples of normal spinels being zinc and cadmium ferrite. Many other

ferrites have the inverse spinel structure where the divalent atoms are on B

sites and the trivalent ions are equally divided between A and B sites. Using

parentheses and closed brackets to distinguish between the two sites, they can

be generalised as (B)[AB]O4. Magnetite, as well as other iron, cobalt and nickel

ferrites are inverse spinels.

The two spinel types explained here should be regarded as extreme cases

as many other spinel materials exist in between these two states, a random

assortment of divalent and trivalent ion distributions can also occur. As the cation

occupancy will affect the bond lengths of the A and B sites, the degree of inversion,
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or the fraction of tetrahedral sites which are occupied by trivalent atoms also has

a large effect on the oxygen positional parameter mentioned previously.

3.2.3 Phase Changes

Néel’s paper [6] on ferrites prompted further studies into the magnetic properties

of these materials however years earlier it was a paper written by Evert Verwey

which began a still ongoing study into the electronic structure of magnetite [66].

In it he started with some of the assumptions we have so far covered concerning

the mixed B site occupation of Fe2+ and Fe3+ ions;

“Fe3O4 has a very remarkable crystal structure involving a probably statistical

distribution of both Fe2+ and Fe3+ ions at equivalent lattice points.”

In this paper, Verwey examined a transition in the properties of magnetite

around 120 K. He cited changes in the magnetic properties, specific heat and

lattice constant of the material. This anomaly would come to be recognised as a

first-order phase transition later named after Verwey. At 124 Kelvin, magnetite

undergoes a structural change becoming monoclinic, the lattice parameters a, b, c
are no longer equal and the angles are no longer all 90°. The exact causes for this

transition are still heavily debated today [67], however they are related to the B

site iron atoms. Initially, a purely ionic picture was assumed, postulating that

conductivity occurred via the hopping of electrons on the octahedral sublattice

(Fe2+− e− 
 Fe3+). Below the Verwey transition, this electron exchange would be

frozen out and with a long-range charge order established between the cations.

For the next 40-50 years since Verwey’s paper, many studies were done on

the transition to find whether it occurred over a single or multiple stages, as

this was suggested by the existence of multiple peaks in the specific heat and

could be a possible reason for the large changes in conductivity before and after

the transition. Some of these issues would be resolved after a meeting in 1979

arranged by Sir Nevill Mott in Cambridge focusing on the transition. Studies done

on magnetite after the meeting benefited hugely from some of the insight it gave

on sample preparation. Researchers learned that only by carefully preparing high-

quality single crystals could these questions be addressed. The Verwey transition

is highly dependent on the quality of the system being studied and defects such

as oxygen vacancies, or the existence of small quantities of maghemite, hematite

or other impurities, as well as system shape and size, can affect the temperature

or even existence of the transition. An excellent paper on the history of studies on

the Verwey transition as well as developments up to 2002 was written by Walz
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Figure 3.5: Energy levels of the Feoct ions of magnetite. The majority up
spin band and minority down spin band are split by an exchange energy ∆EX .
For both Fe2+ and Fe3+ ions five electrons occupy the majority t2g and eg levels.
The extra electron of the Fe2+ ion occupies the minority t2g band, which is the
only band located at Ef, giving rise to half-metallic behaviour. The high room
temperature conductivity of magnetite is attributed to the hopping of this down
electron between Feoct sites. Figure from Ref. [68]

[67].

Several theories have been proposed to explain the electrical properties of

magnetite above the Verwey transition. One theory focuses on band conduction,

where two octahedral iron atoms distribute their eleven d-electrons across two

distinct bands, with ten spin-down electrons occupying a lower energy band

and one electron in a higher energy band that crosses the Fermi level and is

responsible for the metallic conduction (see Figure 3.5). This model does not

suggest an increase in conductivity up to room temperature which is inconsistent

with experimental data. Other models focus on small-polaron hopping i.e. slow

moving electrons which distort the local lattice (small implying that the distortion

is smaller than or equal to the lattice constant). Ihle and Lorenz [69, 70] have

proposed that conductivity arises from a superposition of small-polaron band and

small-polaron hopping mechanisms, which agrees better with experimental data.

In more recent years, researchers have turned to a Density functional the-

ory (DFT) approach to study the electronic conductivity of magnetite. This is a

computational quantum mechanical approach that is often used to investigate
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the ground state of materials by taking advantage of the periodicity of the unit

cell to simulate bulk properties. The computational cost of simulating a system of

many interacting electrons is reduced by simulating an energetically equivalent

system of non-interacting electrons in an external effective potential, such as

the local-density approximation (LDA), which is based upon the exchange and

correlation energy density in a uniform gas. Computational cost can be further

reduced by dividing the total number of electrons, with which computational time

scales, into inner electrons and valence electrons. Inner core electrons are strongly

bound and do not play a significant role in chemical binding of atoms. Particularly

in metals and semiconductors, these inner electrons screen the nucleus from the

valence electrons and can therefore be approximated by using a pseudopotential

which replaces the potential felt by the valence electrons.

Early DFT calculations, performed as early as 1984 [71], were used to cal-

culate the band structure of magnetite however these calculations were not yet

completely reliable due to the relative crudeness of approximations which had

to be used at the time due to the lack of computational power [72]. The LDA

is another problem for materials such as magnetite which have more strongly

correlated electrons and is often remedied with the usage of a Hubbard-like term

(which helps to approximate interacting particles). This approach is known as

DFT+U. A summary of this method and its usage on magnetite is provided in Ref.

[73].

The exact distinction between divalent and trivalent iron ions in the octahedral

lattice remains a contentious issue however it is generally agreed that the high

temperature phase of magnetite does not distinguish between them [74]. The

oxidation states below the Verwey transition are often reported to vary between

2.4+ and 2.9+ [75].

3.2.4 Anisotropy

So far we have a clear understanding of the structure of magnetite, its unit cell

atom positions and their occupation at various temperatures. Next, we shall

cover the main forces which affect its magnetic properties. The anisotropy, here

referring to the magnetocrystalline anisotropy, is intrinsic to the crystal and

describes the magnetic properties of a material according to the direction its spins

are aligned. In cubic crystals, there are three principal directions along which the

spins can align, shown in Figure 3.6: the 〈100〉, 〈110〉 and 〈111〉 directions.

Different materials can be aligned along any of these directions however the
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Figure 3.6: Principal anisotropy directions in a body centred cubic crys-
tal. The bracket notation denotes a family of orientations along the symmetry of
the system.

energy, or field, required to do this is different for each orientation and specific

to each material. The directions are therefore referred to as easy, medium and

hard axes depending on the field required to fully magnetise a material in that

direction, from lowest energy required to highest, respectively. As an example,

Figure 3.7 shows the field strength (in Oersteds) required to magnetise iron along

each of the directions. Iron has an easy axis along the 〈100〉 direction, and only

requires a few tens of Oersteds to be fully magnetised in this direction. This

requirement is significantly increased to align iron along 〈110〉 or 〈111〉. In fact,

the easy axis of a material describes the spin configuration in a demagnetised

sample. The notation for 〈100〉 describes not only a spin orientation along the

positive x-axis, but also along directions of the same symmetry i.e. [100], [010],

[001], [100], [010] and [001]. Hence in a demagnetised state, an iron disk cut

along (001) will be made up of many small domains aligned in approximately

equal proportion to the following four axes: [100], [010], [100], [010].

Spins aligned along the easy axis require energy to move to a different axis,

this is the energy barrier that must be overcome to move large domains of spins.

Hence a crystal aligned along a hard axis is at a local minimum in energy, higher

than the lowest, easy axis state. This energy is called the crystal anisotropy

energy E and in 1929, a Russian physicist Akulov showed that it can be expressed

in terms of a series expansion of the direction of cosines of Ms. Taking a, b, c as
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Figure 3.7: Magnetisation curves for iron. Iron requires only a few tens of
Oersteds to reach the saturation magnetisation in the 〈100〉 direction, its easy
axis, while hundreds of Oersteds are required to fully magnetise it along 〈110〉 or
〈111〉. Figure adapted from Ref. [58].

the angles Ms makes with the crystal axes and α, β, γ the cosines of these angles,

called direction cosines. The energy is then:

E = K0 +K1(α2
1α

2
2 +α2

2α
2
3 +α2

3α
2
1)+K2(α2

1α
2
2α

2
3)+ ... (3.3)

where K0, K1, K2 are constants for different materials and dependent on temper-

ature. K0 is independent of angle and often ignored as we are usually interested

in changes in energy due to an Ms rotation. K2 is also sometimes ignored as it is

often much smaller than K1.

In magnetite, the low temperature phase present a problem due to having

different anisotropy constants K1 and K2. From Figure 3.8, we can see that as we

approach the Verwey transition from room temperature, the constants begin to

change in their behaviour and trend upwards to positive values. This does not fit

well into Equation 3.3 which does not account for such a phase change. Thanks to

the work done by Abe et al. however, we do have an indication of the anisotropy

scaling at very low temperatures, which should correspond to magnetite in the

room temperature spinel structure. Below the transition the anisotropy is strongly
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Figure 3.8: Magnetite anisotropy constants variation with temperature.
These values change significantly below the Verwey temperature. K1 data from
Abe et al. [76], K2 data from Kakol et al. [77].

negative [76], starting at around −2.8×104J/atom and, putting aside the phase

transition, tends linearly upwards to 0 around 500 K.

To use the bulk cubic anisotropy values from Ref. [77], we need to convert

them to atomistic magnetocrystalline anisotropies, ku, according to the following

Equation [30]:

ku = Kua3

nat
(3.4)

where Ku is the macroscopic anisotropy constant, a is the lattice constant and nat

is the number of magnetic atoms in the unit cell. For our simulations it would also

be ideal to have a value for the anisotropy of each lattice. Due to the difference in

ionic species and symmetry of the ions within the unit cell, the two lattices likely

do not have the same anisotropy. Here we are therefore making an approximation

by using the measured bulk anisotropy as an average of the contributions of the

A and B sites.
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3.2.5 Exchange

While the magnetocrystalline anisotropy has a significant effect on the overall spin

directions of a material, its energy is much lower in magnitude to the exchange

energies which interact between the individual spins of the system. Heisenberg

described the quantum mechanical interaction by the Hamiltonian1:

Hexc =−∑
i 6= j

JŜi · Ŝ j (3.5)

where Si and S j are operators describing the localised spins on two adjacent

atoms. J is an exchange constant, which has dimensions of energy (though often

expressed in Kelvins by dividing it by the Boltzmann constant, kB). An exchange

constant J > 0 indicates a ferromagnetic interaction where spins tend to align

parallel, while J < 0 indicates antiferromagnetic exchange where the spins align

antiparallel.

Figure 3.9: Oxygen mediated superexchange. Cations such as iron or man-
ganese can undergo superexchange where the oxygen allows a spin up and spin
down electron to be shared between the cations. This happens due to the hybridis-
ation of the cation 3d shells and the oxygen 2p shells.

Exchange does not only occur between neighbours but can be mediated. This

is the case in magnetite where the exchange is carried over the oxygen atoms

between the cations. This is called superexchange and occurs due to the hybridi-

sation of the 3d iron orbitals and the 2p oxygen orbitals. Figure 3.9 shows the

overlap of the orbitals. The superexchange interaction J involves simultaneous

virtual transfer of two electrons with the instantaneous formation of an excited

state. The size of J depends on the interatomic distances and the bond angle. The

Goodenough-Kanamori rules, reformulated by P. W. Anderson, provide a simple

way to understand the classes of superexchange [78]:
1depending on convention, a constant of 2 is sometimes included in the equation, here it is

factored into the exchange constant
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1. When two cations have lobes of singly occupied 3d orbitals which point

towards each other giving large overlap and hopping integrals, the exchange

is strong and antiferromagnetic. This is the usual case, for 120-180° M −
O−M bonds.

2. When two cations have an overlap integral between singly occupied 3d
orbitals which is zero by symmetry, the exchange is ferromagnetic and

relatively weak. This is the case for about 90° M−O−M bonds.

3. When two cations have an overlap between singly occupied 3d orbitals and

empty or doubly occupied orbitals of the same type, the exchange is also

ferromagnetic, and relatively weak.

In Figures 3.3 and 3.4, we can see the three different types of interactions in

magnetite: Fetet - Fetet (FeAA), Feoct - Feoct (FeBB) and Fetet - Feoct (FeAB). These

interactions have different bond lengths and angles however we can make some

assumptions on their relative sizes and sign. The FeAB bonds correspond well

to the first category presented by Anderson, they are between 120-180° degrees

and expected to be antiferromagnetic, with negative exchange values. The FeBB

bonds fall into the second category of bond types, they are weak ferromagnetic 90°

bonds with positive exchange. Finally, the FeAA exchange is difficult to evaluate

as the angles between the ions can vary depending on which ions are chosen. The

bond length is larger than that of FeAB and FeBB, hence the strength of exchange

should be relatively weak. The sign of exchange is also ambiguous however this

interaction is likely antiferromagnetic (due to relative positions) and negative.

JAA JBB JAB

Uhl and Siberchicot [28] -0.11 +0.63 -2.92
Néel [79] -1.50 +0.04 -2.00
Glasser and Milford [80] 0 +0.24 -2.40
Möglestue [81] -1.52 +0.31 -2.42

Table 3.4: Calculated and experimental values of nearest-neighbour ex-
change constants in Fe3O4. All values in units of meV. Adapted from Ref. [28]

A first-principles study of exchange integrals in magnetite was carried out

by Uhl and Siberchicot [28]. In this paper they find the exchange integrals using

spin-spiral configurations to calculate the spin-wave spectrum. Table 3.4 shows

their results, as well as other theoretical and experimental values from previous

papers. We can see some similarities between the values: the FeAB interactions

are antiferromagnetic and the largest, as expected from Anderson’s description.
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The FeBB interactions are much smaller, with most values given being an order of

magnitude lower than the FeAB interactions. The FeAA interactions present the

largest variance as the results of Néel and Möglestue suggest they are close to

the FeAB interactions in magnitude. The results presented by Uhl and Siberchicot

are most commonly found in the literature and generally regarded as accurate,

hence we shall be using these values as a starting point for our calculations.

3.3 Simulating Magnetite

Magnetite is the first material we consider in this thesis. The aim is to understand

the data produced, keeping in mind our initial assumptions and the properties

discussed in the previous chapter. As this work is being done using the VAMPIRE

simulation package, we have unprecedented access to single spin level data which

is still rare to see in current research papers. At the same time, we shall still be

able to compare micromagnetic level behaviour to similar theoretical works which

studied this material [20, 21, 82] as well as the experimental data for the overall

system properties such as the Curie temperature.

3.3.1 First Simulation

We can simulate a small system with periodic boundary conditions (PBCs) to

approach bulk properties. To recap some of the system parameters we have

discussed in this chapter:

• The system is cubic with a lattice constant of a = 8.397Å

• There are three unique materials:

– Tetrahedral site iron 3+ ions with spin moment 5 µB

– Octahedral iron ions in a mixed 2.5+ state with spin moment 4.5 µB

– Non-magnetic oxygen 2- ions

• The anisotropy direction is 〈1̄1̄1̄〉, with a negative anisotropy constant.

• The exchange interaction values (in meV) are JAA =−0.11, JBB = 0.63 and

JAB =−2.92.

As a first simulation we can find the equilibrated magnetisation of a PBC

particle. To keep simulation time low, we shall use a system of around 8 nm width
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or 10 times the lattice constant. As we are creating an initial fixed system with

spins perfectly oriented in the 〈111〉 direction, we expect to see small change in

the magnetisation over the equilibration, however to make sure the system is in

a relaxed state, the value must converge over a significant number of time steps.

We first look at the normalised values for the spin x, y and z component.
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Figure 3.10: Unit vector magnetisation for a periodic boundary condition
magnetite particle. It is difficult to tell the overall spin orientation of the system
or the overall magnetisation.

In Figure 3.10, the x, y and z components of each spin is averaged out resulting

in continuous but erratic behaviour. There are several possible reasons for this: the

spins could have enough energy to rotate relatively freely and are not bound by the

material anisotropy; the spins have enough energy to move out of the easy axis and

access the medium and hard axes; or the spins have low energy and move only be-

tween the 8 easy axis directions [111], [1̄11], [11̄1], [111̄], [1̄1̄1], [1̄11̄], [11̄1̄], [1̄1̄1̄]

will still be common. We can output the spin configuration from VAMPIRE at the

end of the simulation to analyse the spin components in more detail.

By looking at each spin direction, we can tally the number of spins aligned

with the 〈111〉, 〈110〉 and 〈100〉 directions. To allow for small movements due

to thermal effects, we say that all spins lying within 15° of an axis are aligned

with it. As the number of directions for each axis are different (for example, there

are only 6 〈100〉 directions compared to 12 〈110〉) we also divide by the relative

area. Figure 3.11 shows this data against system temperature. At 0K, the spins
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Figure 3.11: Fe3O4 spin orientation vs temperature. Spins within 15° of the
anisotropy axes against system temperature. Above around 200 K the anisotropy
energy is overcome completely and the spins are no longer bound to these axes.

are fully aligned along the 〈111〉 axis, 2
3 along [111] and 1

3 along [1̄1̄1̄]. Below 50

K there isn’t enough energy to move a significant number of spins off the easy

axis. Here the spins only transition between 〈111〉 directions. As the temperature

increases, the spins start to explore higher energy directions and very quickly,

by around 300K, are no longer bound by the system anisotropy. This is expected

as the exchange dominates the magnetic properties of magnetite which has a

relatively low anisotropy.

Hence the room temperature system has more than enough energy to allow

spins to move relatively freely. The system should however still be magnetised, or

have an overall non-zero magnetisation, as it is far below the Curie temperature

of magnetite. To see this we need to look at the normalised magnetisation:

|m| = |∑iµiSi|∑
µi

(3.6)

These are calculated as the normalised sum of the components multiplied by

their moments, with units m = M/Ms. The overall system magnetisation will give

a better idea of how strongly the system is magnetised at higher temperatures.
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Figure 3.12: Convergence of magnetisation for a periodic boundary con-
dition magnetite particle. After 105 steps, the magnetisation is already close
to convergence at around 0.2266m.

Figure 3.12 shows the normalised magnetisation against Monte Carlo time

steps. As explained in Chapter 2, at each time step, a single spin is moved; either

a spin flip, a random direction or a Gaussian perturbation. For output clarity and

I/O performance, the magnetisation value is recorded every 1000 time steps and

for the first recorded data point (not shown in Figure 3.12) the magnetisation

is slightly higher at 0.2279m. This quickly lowers over 50×103 steps to around

0.2266m where the magnetisation is close to converged. Hence in spite of the large

changes in average x,y and z components of the spins, the overall magnetisation

of the system after reaching equilibrium has only changed by 0.1% from its initial

configuration.

It is important to note that Figures 3.12 and 3.10 do not show a realistic

physical relaxation over a fixed time as they do not involve time-dependent

dynamics. Rather, they are calculated from a statistical Monte Carlo simulation

over a number of time steps. In practice, to make sure the magnetisation is

converged, a simulation is normally run for around a million time steps in total.

For this example, the end magnetisation hovered around 0.22618 to 0.22621m.

The number of steps required for convergence is important for several reasons:

first the system can reach a local energy minimum which is higher than the
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global i.e. the spin configuration is not completely relaxed. This can occur if the

system is first heated enough to allow spins to explore non 〈111〉 directions with

a higher probability, and then cooled slowly to allow it to relax along a medium

or hard anisotropy axis such as 〈100〉. The second reason is for computational

efficiency. An 8 nm system equilibrium simulation with PBCs is small enough

to require only 2 hours of simulation however larger simulations will require

more time to compute and possibly more time to converge and will therefore take

exponentially longer times for increasing system sizes. It is important to minimise

wasted simulation time to not take up excess computational resources.

While the number of steps to convergence for the last simulation is verified,

it cannot be assumed to be the same for other temperatures. The Monte Carlo

method requires spin moves to be accepted and rejected based on current temper-

ature, hence low temperature simulations close to 0 K will have a significantly

larger number of rejected moves while high temperature simulations around the

Curie temperature will have a larger number of accepted moves and will take

longer to converge to constant magnetisation. Figure 3.13 shows the comparison

between a system relaxing at 10 K versus a system at 850 K. At 10 K, the mag-

netisation value changes by very small amounts (around 10−5m) while at 850 K

the magnetisation relaxes from 5.6m to 4.4m.

Figure 3.13: Fe3O4 magnetisation at 10 and 850K. Low temperature equili-
bration simulations relax quickly to constant values of magnetisation as most
spin movements are rejected. At very high temperatures, the magnetisation does
not converge as quickly and fluctuates due to constant spin reorientation.

We conclude that around 200k time steps will achieve a reasonable level

of magnetisation convergence for all temperatures. Where possible, such as for
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system sizes lower than 12 nm, a minimum of 1 million time steps can be used for

high quality data with relatively minimal time loss.

3.4 Magnetisation Curves

One of the best ways to verify the validity of our simulation is to study the Curie

temperature predicted. We have shown that we are able to relax a magnetite

system to a stable state using a Monte Carlo method. Next, we can perform

multiple of these simulations to find the relaxed magnetisation values at different

temperatures, in particular around the Curie point of magnetite, at 858 K [58].

There are several ways to go about this; one would be to simulate magnetite

starting at 0 K and increasing the temperature slowly to make sure the system

has relaxed after each temperature increment. In this case, the start and end

point of each temperature change is a realistic relaxed state and linked to the

next as the simulation is continuous. It is also possible to extract the same data

by running many separate simulations starting at a high energy state with a

fixed temperature and allowing the system to relax at that temperature. While

the simulation starting points will likely be relatively unphysical, given enough

Monte Carlo spin movements, the final relaxed state should be the same. There

are various reasons to use each method however as we are only interested in the

end points of each temperature step, each method is valid. If the Monte Carlo

method employed can only be run single threaded (most Monte Carlo methods run

in serial as it can be difficult to validate parallel methods), then it is usually faster

to use the latter method as each temperature can be run as a separate simulation

and therefore the workload can be parallelized over many computational cores.

Figure 3.14 shows the magnetisation curve for a 6 nm magnetite system with

periodic boundary conditions. The data for this plot is made up of magnetisation

points at 10 K intervals. While each data point came from a separate simulation,

the plot appears perfectly continuous due to being fully relaxed. At zero Kelvin we

expect the system to be fully magnetised, and this is indeed the case even though

the initial magnetisation is around 0.3m. Magnetite is made up of two antiparallel

sublattices initialised in the [111] and [1̄1̄1̄] directions. It does not start at exactly

3.33m as these sublattices are made of different cations with slightly different

moments. Due to the way we calculate the normalised magnetisation (Equation

3.5) these moments are used to calculate the overall magnetisation.

Between 0-800 K the system increases in energy but maintains a magnetised

state. The spins are able to explore most directions as they are not bound by
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Figure 3.14: Magnetisation vs temperature for a 6 nm PBC system. At 0 K
the system is fully magnetised and lowers in magnetisation as the temperature
increases until the Curie point is reached around 860 K. Here the magnetisation
is close to zero and the system is in a paramagnetic state.

the material anisotropy above around 200 K however they maintain an overall

direction. As the energy increases this becomes less likely as the spins are more

likely to make larger orientation changes until the system reaches the Curie point.

Here the system should be fully demagnetised however according to Figure 3.14

it never reaches exactly 0 magnetisation. This is most likely linked to the periodic

boundary conditions: in a periodic system the spins repeat over a regular distance,

in this case 6 nm or around 7 unit cell lengths, hence there is increased correlation

in the spins. If the boundary distance is small, the correlation increases as the

spins affect each other more easily, while if the boundary distance is large this

effect should be minimal. Due to a statistical effect proportional to the number

of atoms in the system, we also expect the magnetisation to never reach exactly

0 K as the spins must be oriented perfectly randomly or conversely in a highly

ordered and antiparallel manner to exactly cancel each other out. At all times it

is likely that there is a small remnant magnetisation (≤ 0.05m) for systems less

than 50 nm diameter. This value disappears slowly as the system tends to a bulk

state.
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While preliminary theoretical investigations of the saturation magnetisation

scaling with temperature suggested that a discontinuity occurs at the Curie

temperature [58], it is now known that the transition from ferro/ferrimagnetic

to paramagnetic occurs gradually. This gives rise to two possible Curie points,

TC and Tp, shown in Figure 3.15. Tp is usually defined as the point where the

magnetisation reaches zero however as this does not occur for small systems, it

can instead be defined as the point where the magnetisation reaches a constant

(or near constant) value. TC is instead found by extrapolating the magnetisation

below the critical point and finding its intersection with the x-axis. This value

also coincides with the point at which the experimentally attained susceptibility

goes to infinity, or where 1/χexp = 0. This Curie point is what we shall refer to as

the Curie temperature going forwards. The gradual transition to a paramagnetic

state is attributed to spin clusters, small groups of atoms, which retain parallel

spins over a small temperature range above TC. These small domains exist within

the overall disordered spin structure and gradually disappear as the temperature

is increased. This contrasts with the long-range spin ordering which exists below

TC and is measured as the spontaneous magnetisation.

Figure 3.15: TC and Tp points. The two types of Curie points are usually 10-30
K apart, with TC being extrapolated from the magnetisation before the phase
change and Tp usually being the point where the magnetisation equals zero.
Figure adapted from Ref. [58]

The magnetisation scaling data can be used to test the modelling methods

we have used so far. Here we have so far employed the Monte Carlo method to

find the equilibrium state of the system at all temperatures. We can also use

the LLG to test the same end point. The LLG (as it is implemented in VAMPIRE

using the Heun integration scheme and Langevin dynamics) should simulate the

time-dependent relaxation of the system and while we are not yet interested in
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Figure 3.16: Magnetisation vs temperature for a 6 nm PBC system done
using a Monte Carlo method and LLG integration. Both sets of data agree
well and are fully converged. The LLG method requires more time steps to fully
relax around the system Curie temperature.

the dynamics as the material cools, the end point should be very close to the data

we achieved with the MC method.

The LLG method employed by VAMPIRE uses Langevin dynamics to simulate

materials at non-zero temperatures. Thermal fluctuations are modelled as a

Gaussian noise function proportional to the system temperature. Because of this

data around the Curie point of the system is prone to errors and must be given

extra time to converge. Figure 3.16 shows the previous data compared with one

done using the LLG. We can see that the two data sets agree well with each

other with minimal differences in the low temperature range where T <<TC and

in the high temperature range where T >> TC. Around the Curie temperature

the two plots diverge very slightly due to the small errors around the Curie

temperature using the LLG. The data points around the Curie temperature were

allowed to converge for ten times longer than the points outside this range and

the percentage difference between the Monte Carlo data and the LLG reduced

significantly however this can still be further improved. Nonetheless we are

satisfied with the accuracy of both methods using the current chosen parameters
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and they already agree well with each other.

3.4.1 Spin visualisation

Figure 3.17: Visualisation of the spin behaviour with increasing tempera-
ture. The spins transition from fully to partially ordered as temperature increased
towards TC. After the critical point the system is paramagnetic, and the spins are
randomly oriented.

Figure 3.17 shows a graphical representation of the spins in an 8 nm PBC

system of magnetite. The non-magnetic oxygen atoms have been removed leaving

only the iron ions. In addition, the system is pruned to show only a thin slice
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of the fully simulated material for visual clarity. These images were the result

of Monte Carlo simulations used to find the equilibrated state of magnetite at

various temperatures.

Starting at 0K, the system starts fully magnetised with each sublattice ori-

ented along the easy axis. Here, yellow spins point along the positive axis, while

blue spins are negative. The bright green and magenta coloured spins are oriented

perpendicular to these and transitional colours are used in between.

Due to the lack of thermal energy, spins are essentially locked into the easy

axis orientation for temperatures close to 0 K. With a significant increase to

thermal energy, at 200 K, the spins start to move out of their initial orientation,

which can be seen from the new spin colours which deviate from the 0 K yellow

and blue.

In spite of the new spin orientations in the system, a long-range ordering

occurs over the whole system as it is still magnetised below its Curie temperature.

The 400 and 600 K images show that many spins reorient into the 〈100〉 axis and

there is still a clear distinction between spins on the tetrahedral and octahedral

axes which remain mostly antiparallel. At 600 K this is slightly less clear as small,

localised, clusters of spins become oriented randomly.

At 800 K it is difficult to visually discern a long range ordering of the spins.

The system is only 50 K below the Curie temperature and the transition to a

paramagnetic state has begun. Somewhat opposite to the 400 K image, it is

possible to spot clusters of aligned spins indicating that the system remains

slightly magnetised. Finally at 1000 K the system has passed TC and is fully

demagnetised. The distribution of colours in the visualisation is roughly equal as

there is no overall spin direction and any spin orientation is allowed.

3.4.2 Sublattice Magnetisation

Earlier in the chapter we looked at the spin direction values of the system on a

single spin level. Another method we can use to more closely examine the physical

properties of our system is to look at the individual sublattices of magnetite.

VAMPIRE is able to output material based properties of the system, such as

the material magnetisation, and since these materials are distinct, not just in

number but also spin moment and exchange, it is worth looking at differences

in their magnetic properties. The overall magnetic properties of the system are

a symptom of these smaller scale properties and while most experimental data
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is only able to study the overall scaling, we can instead extract data for the

individual sublattices.
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Figure 3.18: Fe3O4 sublattice magnetisation. Magnetisation vs temperature
for a PBC system showing the overall magnetisation as well as the individual
sublattice magnetisations, normalised independently. The sublattices start fully
magnetised in their respective directions. The overall magnetisation is a result of
the 2

3 octahedral and 1
3 tetrahedral contributions.

The octahedral sublattice of magnetite, composed of a mixed valence state of

Fe2.5+ ions makes up two thirds of the total magnetic atoms in the system and is

initialised in the [111] direction, while the tetrahedral sublattice, containing only

Fe3+ atoms makes up the remaining third and is initialised in the opposite [1̄1̄1̄]

direction.

As we look at magnetisation values for each sublattice individually, they start

at 0 K fully magnetised in their respective directions, shown in Figure 3.18. This

shows more clearly the difference in magnetisation of the sublattices to the much

weaker overall system. With increasing temperature the system demagnetises at

seemingly the same rate for all components until the Curie temperature. Here it

is difficult to assess exactly where each material reaches TC, whether this is the

same for the overall system and the sublattices, as the values cannot easily be

discerned by eye. A fitting method is required to check the Curie temperatures
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of the various components as it is a non-trivial question whether the TC point

should be the same.

3.5 Calculating the Curie Temperature

The Curie point of magnetite has already been mentioned several times as the

temperature region around 850 K. Figure 3.18 clearly shows the system tending

to a demagnetised state in this region and we have already suggested a reason for

the magnetisation never reaching exactly 0 K. The value of TC is mainly dictated

by the exchange interaction values of magnetite however it can deviate from the

bulk value for various reasons including material imperfections, surface defects

and system shape. In ideal conditions bulk magnetite has a Curie temperature

of 858 K [58] however our current model employs PBC and will not necessarily

produce the same value. We need to find an appropriate method for extracting the

Curie temperature of our system to better understand how parameter changes

such as system size and shape will affect the system.

The temperature dependence of magnetisation at low temperatures can be

approximated using Bloch’s law [83]:

M(T)= M(0)
(
1−τ 3

2

)
(3.7)

Here M(0) is the spontaneous magnetisation at 0 K and τ= T/TC. Alone this

equation does not approximate well the magnetisation around the critical point

[84] where:

M(T)∝ (TC −T)β (3.8)

Hence we use an interpolation of equations 3.7 and 3.8 to form the Curie-Bloch

equation:

M(τ)= (
1−τα)β (3.9)

where α is an empirical constant, here equal to 1 as we are modelling classical

physics. The parameter β is a critical exponent related to the Curie temperature

of the system [85] and often linked to a universality class which suggests that

the value of the exponent changes only with the model used (such as Heisenberg
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or Ising) [42, 86] and macroscopic parameters such as system dimensions. While

this fitting method is very commonly used for the temperature dependence of

the magnetisation, other fitting models are also used such as one developed by

Kuz’min [87]:

M(τ)=
(
1− sτ

3
2 − (1− s)τp

)β
(3.10)

Here s and p are used as fitting parameters, p > 3/2 and s > 0. Notice that if

the system is treated as a pure Bloch ferromagnet, i.e. s = 1, p = 3/2 and α= p,

equations 2.39 and 3.10 are identical, demonstrating the same physical origin

of these equations. We now can fit the overall magnetisation of the 6 nm PBC

system we have simulated however it is necessary to make small adjustments to

both equations to resolve the initial and final values of the plots. Both equations

expect a ferromagnetic MvsT, starting at 1m at 0 K and finishing at 0m at the

Curie point. To resolve this we use two parameters, A and B, which are set to the

initial and final (in temperature) magnetisation values of our simulation.

A = M(0)

B = M(1000)

M(τ)= A
(
1−τα)β+B (3.11)

M(τ)= A
(
1− sτ

3
2 − (1− s)τp

)β+B (3.12)

Using this modification, both fitting equations can handle ferrimagnetic sys-

tems which do not reach a magnetisation value of 0m at high temperature. Figure

3.19 shows the fitting, done using Gnuplot [45], which employs the nonlinear

least-squares (NLLS) Marquardt-Levenberg algorithm. Using both methods, the

Curie temperature was calculated to be 878.4 K with a standard error < 0.5 K

while β was calculated to be 0.563 (±0.0023) using the Curie-Bloch equation and

0.0565 (±0.0074) using the Kuz’min equation. This shows excellent agreement

using both fitting methods, however the s and p parameters used in Equation

3.10 showed a high sensitivity to change and relatively higher standard error. Due

to the relative simplicity of the Curie-Bloch equation, we shall use it by default

when fitting magnetisation plots in the future.
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Figure 3.19: Fitting the MvsT curve of a 6 nm PBC particle using the
Curie-Bloch and Kuz’min equations. The two fitting methods agree very well
with each other and overlap. Predicted TC is 878.4 K and β≈ 0.564.

We now have a calculated value for the Curie temperature of our 6 nm PBC

system, at 878.4K, which is somewhat higher than the cited 858 K for an ideal bulk

system. These values are different enough to warrant questioning the methods

we have used to calculate our value. There are various possible reasons for our

calculated value to be different:

• Physical model

• Material parameters

• System properties

• Fitting method

For now we shall assume that the physical model used, i.e. the Heisenberg

Hamiltonian, and the Monte Carlo method used as the base for this simulation,

is accurate. Moving from this, the material parameters most likely to affect

the Curie temperature of the system are the exchange interaction values, which

correlate directly to the Curie temperature of the system. A percentage increase or
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reduction of the exchange interaction magnitudes will cause a similar percentage

increase or reduction in the Curie temperature, hence the values currently used

may be slightly higher than required. Next, the system properties could also be

affecting the Curie temperature. For example, we have chosen a block particle as

a base with periodic boundary conditions. The periodic nature of our system could

easily increase the overall spin correlation if it is in effect over a short enough

distance. With an overall system size of only 6 nm, less than 10 times the lattice

constant, it is very likely this is having a non-negligible effect. Finally, the fitting

method may also be at fault. While the equations suggested seem physically

sound, there are enough degrees of freedom to allow for statistical errors. If we

take a closer look at the fitting and evaluate it by eye, the low temperature region

shows much better fitting than the area around the critical point. Due to the

asymptotic decrease in magnetisation around TC, both models struggle to follow

the data points well.

It is very likely that each of these factors is affecting the calculated Curie

temperature. An easy fix to this issue would be to change the exchange parameters

by a factor, to achieve the same calculated TC as the ideal, however this would

be a very lazy approach and would not reflect on the accuracy of our model or

methods used. The physical properties of the system, its shape, size and surface

properties will be explored in later chapters as, while they may be having lesser

effects here, changes will be much more apparent when we are no longer trying

to approximate bulk conditions. To improve our fitting methods, we can look to

reduce the degrees of freedom used in our equations, either by constraining β or

TC, or attempt to calculate the system Curie temperature from other data.

3.5.1 Fitting Sublattice Magnetisation

In addition to fitting the overall material magnetisation, we can also use the

Curie-Bloch equation to fit the sublattice magnetisation which will not necessarily

predict the same Curie temperature or β values. Each sublattice experiences

different values for the exchange and can therefore have a subtly different critical

point. We use the Curie-Bloch equation to fit the sublattice magnetisation in

Figure 3.20.

While the sublattice appear to have very similar shapes, we can first compare

the fitted values of β: 0.297 and 0.399 for the tetrahedral and octahedral sub-

lattices respectively, with an asymptotic standard error less than 1.6%. These

values are very distinct from each other and the overall system which had a fitted
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Figure 3.20: Fitting the sublattice magnetisation of a 6 nm PBC system
using the Curie-Bloch equation (2.39). The tetrahedral sublattice has a fitted
TC of 854 K while the octahedral sublattice has a fitted TC of 866 K.

β= 0.564. The shape of the curves is therefore quite different for all components

of the system. The predicted TC fall much more closely together at 854 K and

866 K again for the tetrahedral and octahedral sublattices respectively with an

error less than 0.25% using a nonlinear least-squares fitting algorithm. It is still

quite difficult to determine the exact reason for the variation in these parameters,

whether it is truly a symptom of the underlying physics or a fitting error however

the fact that the overall fitted Curie temperature does not lie between those pre-

dicted for the sublattices might suggest that the fitting method must be refined

further as explained in the previous section.

3.6 Specific Heat

In thermodynamics the specific heat is often used as a measure to determine

the amount of energy required for one unit of mass of a material to cause an

increase of one unit in temperature. This value is not necessarily constant with

temperature as more energy can be required to heat a material from 100 K

than from 0 K. Phase transitions also have a large effect on the specific heat,

for example the specific heat of water at 20°C is 4182J/K ·kg, while for ice just
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below 0°C it is only 2093J/K ·kg. If we consider a material being heated through

a phase transition, such as melting ice or boiling water, and assume that the

phase transition occurs spontaneously, then we expect three values for the specific

heat between the phase transitions, assuming that the value is constant with

temperature between these points. A plot of temperature against enthalpy change

is shown in Figure 3.21.

Figure 3.21: Temperature enthaply relationship of 1 mol of water through
its phase changes under constant pressure. This graph shows that the tem-
perature of a water sample does not change during phase transitions as heat flows
in or out of it due to latent heat. Figure adapted from Wikipedia [88]

The enthalpy of water is related to the specific heat by the following equation:

Q = mc∆T (3.13)

Where Q is the heat gained or lost, m the mass of the object multiplied by

its specific heat c and ∆T is the change in temperature. From this, the specific

heat of water can be calculated using the gradient of the plot. We can see that the

plot does not curve between the phase changes hence the specific heat of water

is constant during its solid, liquid and gas phase. During the phase transition

the plot is flat, suggesting that the specific heat is undefined during the phase

transition. To explain this, we must look at the specific heat differently. Outside

of a phase transition, energy is being used to agitate the material and increase

its temperature. During a solid phase the atoms are confined and have a reduced

degree of freedom. When the melting point is reached, the energy is no longer
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raising the temperature of the material but instead being used to fuel the transi-

tion from solid to liquid. As the atoms of water are more free to move around, they

have a higher degree of freedom, and their heat capacity is increased. The phase

change is therefore observed as a discontinuity in the specific heat of a material.

While we have used the solid to liquid and liquid to gas phase changes of

water to illustrate the behaviour of specific heat, it is not only relevant to these

types of phase changes. Magnetite undergoes a structural phase change at the

Verwey transition and will therefore have a discontinuity in its specific heat at

this point. However, we are not modelling this phase change (atomic positions are

being modelled as constant) and therefore cannot probe this behaviour. Instead

we model a different type of phase change at the Curie point. Here the material

transitions from being ferrimagnetic with an overall ordered spin orientation

which reacts more strongly to an external applied field, to a paramagnetic state

where the spins are randomly oriented and only weakly respond to an external

magnetic field.

The specific heat of a magnet can be defined in several ways however the

general idea is always to reflect the number of spins deviating from a fully

magnetised state per degree temperature increase. As we are dealing with a

magnetic material, there are two possible types of specific heat that we encounter:

an electronic specific heat, which tracks the energy input into the lattice, the

thermal vibrations and kinetic energy of the valence electrons; and a magnetic

specific heat where energy goes into disordering the spins. If the two components

were separated, the electronic specific heat would be linear in temperature while

the magnetic component is related to the gradient of the M vs T curve and should

therefore show a peak at TC.

In VAMPIRE, the specific heat of the system is defined as:

Cv =
(〈U2〉−〈U〉2)

kBT2 (3.14)

Where U is the internal energy of the system. From the equation we can

see that we are studying the standard deviation of the internal energy. This is

expected to be low when the system is at low temperatures, with well aligned

spins and minimal deviations. When the system is high in energy, spin directions

are distributed randomly and there is high variance, the standard deviation is

high. It will therefore reach a maximum at the Curie temperature where this
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system is in a highly disordered state, and then decrease as the temperature is

further increased, according to Equation 3.14. It is worth noting that as we do not

model lattice dynamics, we are only focused on the magnetic specific heat, hence

this data will deviate from experimentally calculated specific heat which contains

both electronic and magnetic components.
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Figure 3.22: Convergence of specific heat for different temperatures of a
6 nm PBC magnetite particle. The convergence is relatively slow and similar
for all temperatures. Around room temperature it reaches a converged value
faster than the simulations at very low temperature or at the Curie point.

To achieve well converged data for the specific heat it is necessary to visualise

its convergence with the number of Monte Carlo time steps. This is shown in

Figure 3.22. The magnitude of the specific heat at a converged state is relatively

similar for low and high temperatures however it is slightly faster around room

temperature. The number of times steps required for convergence is noticeably

higher than what was needed for converging the magnetisation as here we are us-

ing millions of time steps while for the magnetisation only hundreds of thousands

were needed, hence for good data we need to run the simulation for longer.

Looking at the specific heat as a function of temperature we see that there is

indeed a peak at the Curie point however the specific heat does not tend to zero at

low temperatures or immediately after TC as we see in the magnetisation. Above
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Figure 3.23: Specific heat scaling of a 6 nm PBC magnetite particle. The
peak denotes the position of the Curie point.

the Curie temperature excess heat goes towards increasing the temperature of

the system, requiring less energy as the temperature increases further. The shape

of the plot follows 1/T2 behaviour as expected from Equation 3.14. If we were also

modelling structural phase changes, it would reach another peak around 1600

K as this is the melting point of magnetite. Below the Curie temperature we see

a steady increase in the specific heat as more energy is required to agitate the

system just below the phase transition. At low temperatures, the specific heat

is approximately constant, around 1.8kB per spin, before increasing towards TC.

This is mostly a symptom of the model used. Close to zero Kelvin, the input energy

should not be able to move the spins as they are quantum systems constrained to

particular eigenvalues. As the model used is the Classical Heisenberg Hamilto-

nian, this is not the case here and spins are allowed to move anywhere along the

unit sphere, hence for T > 0, thermal fluctuations give rise to a non-zero specific

heat.

By doing simple fitting on this data, with the help of an increased resolution

of 1 K around the critical point, we can extract the predicted Curie temperature

from the peak by looking at the intersection of two lines fitted to either side of the

peak. This comes out to be around 857K, noticeably lower than the value given by
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fitting the magnetisation using Equation 2.39. This could indicate that the specific

heat peaks at a value of TC consistently lower than the magnetisation however

for now we have only one sample to indicate this and would need to repeat the

simulation, possibly with different parameters to compare the two methods. A

possible approach could also be to assume the value from the specific heat as more

correct and use it as a constant in fitting the magnetisation. From this we will get

an altered value of β, the critical exponent, and a slightly different shape to the

overall fitted curve.

3.7 Susceptibility

Another magnetic property we can look at is the magnetic susceptibility tradition-

ally used to assess the behaviour of a magnetic material with an external field.

In the absence of an external field, the susceptibility measures the difficulty in

changing the spin orientation of a material. At low temperatures far below the

critical point of a magnetic material, the spin orientations are strongly ordered,

such as in ferro, ferri and antiferromagnetism. While highly correlated, the mate-

rial has a very low susceptibility due to a very large amount of energy required to

separate the spins. At higher temperatures the materials do not necessarily have

all their spins aligned in the same directions however domains can form which

preserve the spin orientations within local clusters. Size becomes an important

factor in these scenarios as the domains cannot form if the number of spins is to

small or the system is finite in size and below a critical length.

The susceptibility is calculated using the following formula [30]:

χα =
∑

iµi

kBT
(〈m2

α〉−〈mα〉2) (3.15)

where χα is the magnetic susceptibility and α= x, y, z,m giving the directional

components of the susceptibility as well as the longitudinal susceptibility χm.

Hence it is proportional to the standard deviation of the magnetisation. From this

we expect the susceptibility of a material to be low far below and above the Curie

temperature as a low standard deviation indicates that values tend to be close to

the mean. In the low temperature region magnetisation fluctuation is low, spins

are well ordered and strongly aligned in one direction, hence small spin deviations

should be close to the mean as there isn’t enough energy for the spins to explore

exited states. Around the critical point the average spin direction is random, and

the system exhibits high fluctuations in the magnetisation, causing a peak in
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the susceptibility. Above TC, all spin directions are treated similarly and the

susceptibility decreases as T is increased. This formulation of the susceptibility

is quite different to the experimentally measured values of χ or 1/χ, which are

less commonly used when discussing nanoparticles as its measurement becomes

difficult and artificial. As such the formulation of susceptibility in Equation 3.15

is best used for investigating the Curie temperature of the system.

To achieve well converged data for the susceptibility, many millions of Monte

Carlo time steps must be used. Compared to the magnetisation, at least ten times

the number of steps is used to have a relatively smoothly varying susceptibility

versus temperature plot. The convergence also scales with temperature as values

for susceptibility around the critical point take noticeably longer to converge

than data points further away. Even for relatively small systems around 10 nm

diameter, susceptibility data is the most time consuming to calculate however

it should give a very good indication of the Curie temperature as this should

be indicated by a simple peak. It is difficult to fit the susceptibility due to its

discontinuity at TC and therefore the sample rate around this point is increased.

While the susceptibility behaviour is smooth away from the critical point, we

perform one equilibration simulation per 10 K temperature step however around

TC, this is increased to one simulation per 1 K temperature step to fully capture

the peak of the susceptibility as well as any sharp increases or decreases in its

value. For a PBC system of around 6 nm size, each simulation can take around

twelve hours to complete on a single core of a modern Intel Xeon processor

(released around 2017).

The susceptibility for a 6 nm PBC particle is shown in Fig. 3.24. At low

temperatures the spins are aligned close together and there isn’t enough energy

for the spins to diverge from each other significantly. As the temperature increases

the standard deviation increases as it is more likely for spins to follow random

directions, as seen in Figure 3.11. At the Curie point, the system transitions to a

disordered state as it is now paramagnetic and the susceptibility peaks. As the

system is heated further, the average spin orientation is random and the standard

deviation lowers again due to the overall properties becoming uniform.

To extract a value for TC, we can fit two curves on each side of the susceptibility

and find their intersection. This shows that the predicted Curie temperature for

this system is around 862 K which lies somewhere in between the values predicted

by the magnetisation and the specific heat. Before making a comparison of these

values, we can also study the sublattice susceptibility of the system to check
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Figure 3.24: Susceptibility vs temperature curve of a 6 nm PBC magnetite
particle. The susceptibility is very low below the Curie temperature as the
average spin directions are still ordered and the standard deviation of the spins
is small. At the Curie temperature there is a sharp discontinuity as the spins
transition from an ordered to disordered (paramagnetic) state.

whether these are predicted to be different, as shown with the magnetisation, or

if they lie closer together.

Figure 3.25 compares the sublattice susceptibilities to the overall susceptibil-

ity of the system which is an order of magnitude lower in size. To understand why

this is the case we must consider the sublattices individually as on their own they

are mostly made up of spins oriented in similar directions, as least during the low

temperature phase, which are still strongly correlated to each other. When we add

up the contributions of both sublattices, we are now comparing spins which have

much larger difference in their directions as the two sublattices are antiparallel at

low temperatures. This creates a distinction between the intra-sublattice suscep-

tibility, that of the sublattices individually, and the inter-sublattice susceptibility

which is the result of the overall contributions and represented by the "Total" line

on Figure 3.25. An illustration of these two modes is shown in Figure 3.26.

The overall behaviour for the plots remains the same irrespective of the

magnitudes of the components. We can now extract the Curie temperatures
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Figure 3.25: Susceptibility vs temperature curves for the overall and sub-
lattice susceptibilities of a 6 nm PBC system. The magnitude of the overall
susceptibility is much lower than that of the individual sublattices. This shows the
difference between the changes in susceptibility for an individual lattice where
most spins point in the same overall direction as opposed to the spins on different
sublattices which are antiparallel.

predicted by the susceptibility for the sublattices by a simple fit, or in this case

due to the relatively simple peak, we can use a rough estimate at the peak of

each plot. Looking closely at the data, its possible to see that each peak lies at the

same point along the x-axis, at a temperature of 862 K. This is a surprising result

relative to that seen from the magnetisation as we now have the same Curie

point predicted by all components of the system. It is possible that the clarity of

the susceptibility data, which takes the longest time to converge to well relaxed

values, makes it easier to extract correct values for the Curie temperature if we

assume that they should be the same for all components of the system however

for now we do not have enough information to make a good decision on which

method is the most reliable for calculating the overall Curie temperature. The

three methods presented so far, the magnetisation, specific heat and susceptibility,

give TC values which lie relatively close to each other; however we need more data

to make a final decision, hence we shall continue to use at least the magnetisation

and susceptibility to analyse the predicted TC with future simulations.
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Figure 3.26: Visualisation of the difference between inter and intra-
sublattice spin modes. The inter-sublattice spins lead to high susceptibilities
for the individual sublattices, while intra-sublattice spins compete which results
in much lower susceptibilities when sampling the system as a whole.

3.8 Rescaling

High temperature effects such as the Curie temperature can be studied closely

using our current methods and compared to values found in experiment, how-

ever at low temperatures the Classical Heisenberg Hamiltonian fails to correctly

replicate the quantum mechanical behaviour of spins. This leads to more obvious

issues such as the high specific heat values at low temperatures shown in Figure

3.23, as well as more nuanced issues in the magnetisation scaling. If we make a

comparison of our current data set with experimentally obtained saturation mag-

netisation plots (figure 3.27), we can see a significant deviation from experiment

to theory, down to the same quantum mechanical effects the classical theory fails

to model. At all points below TC the magnetisation is underestimated using the

classical model. In experiment the magnetisation is maintained above 90% of the

fully saturated value below room temperature and falls much more steeply as it

approaches the critical point. It is therefore difficult to make justified statements

about the magnetisation drop-off at mid to high temperatures using only a classi-

cal model. To remedy this, we make use of a rescaling method explained in section

2.4 developed by Evans et al.

According to this method, a temperature rescaling can be applied to the

classical model by using one additional scaling parameter, α, as shown in Equation

2.40 below:

Tsim

TC
=

(Texp

TC

)α
(2.40)

We assume that the Curie temperature remains the same for both the classical
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Figure 3.27: Comparison of simulated and experimental magnetisation
scaling. The gold curve shows magnetite for a simulated system using the Clas-
sical Heisenberg Hamiltonian while the blue points are experimental data from
Pauthenet et al. [82] (data points are shown with a cubic spline interpolation).
Both plots are scaled to have the same TC as this is expected to remain the
same and the experimental data comes from a sample of bulk magnetite hence it
reaches zero at TC. At all points below TC, the magnetisation is higher than the
calculated value by varying amounts along the temperature range.

and the quantum model, a modest assumption as quantum effects decrease

drastically at higher temperatures and are expected to vanish at and above TC.

To find alpha we can fit experimental data according to the Curie-Bloch equation:

M(τ)= (
1−τα)β (2.39)

As we are dealing with experiment, α is no longer one as in Equation 3.9.

Here, β is expected to have the same value irrespective of model due to the nature

of universality classes [42]. The material parameters have not changed; hence we

are able to fit our current data for α. We have so far simulated relatively small

periodic boundary conditions systems of magnetite of 6 nm size. The value of β

can change depending on the size of system used hence it is better to use as large

as possible an initial system size to lower the change of increased spin correlation
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due to PBCs. Using a system of 16 nm diameter or 20 lattice lengths of magnetite

in each direction, we find the value of β= 0.55. Next we need to fit experimental

plots of the saturation magnetisation of magnetite to the Curie-Bloch equation,

constraining both β= 0.55 and TC = 862 K and fitting for α.
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Figure 3.28: Experimental saturation magnetisation scaling of Fe3O4. Dif-
ferent experimental curves for the bulk magnetisation scaling of magnetite can be
found from Pauthenet et al. [82] (blue), Muxworthy et al. [89] (gold) and Belov et
al. [90] (brown). Results from Muxworthy and Pauthenet are similar with approx-
imately equal scaling, while the sample used in Belov may have not been a bulk
system or one with impurities due to the drastically different scaling displayed.

This step proves to be difficult due to the lack of magnetisation scaling data

available. Much like the exchange constants, magnetisation scaling data can be

hard to find from recent studies, and often much older papers must be relied upon.

This brings to question the validity of the data as, depending on the material, it

becomes difficult to assess the quality of the material and the conditions it has

been studied in. So far we have shown data from Pauthenet et al. [82] however

several other examples of Fe3O4 magnetisation scaling with temperature have

been found [89, 90]. They are shown in Figure 3.28. The data from Pauthenet

is often cited in more recent theoretical papers on magnetite, in spite of the

low number of experimental data points used to make the plot, while the data

from Muxworthy and Belov is smoother however both papers fail to describe
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exactly how the data is fit. Comparing the plots, the scaling from Muxworthy and

Pauthenet is very similar, with relatively small changes in magnetisation for all

values of temperature. The data from Belov suggests that the system studied

was not bulk as the magnetisation lowers less steeply towards the magnetisation,

suggesting very high values of β. The scaling of the MvsT plot from Belov also

appears to be different as the magnetisation is higher at low temperatures. It

is difficult to make a judgement on which data set is truer to bulk magnetite

however it is more likely that the data sets of Pauthenet and Muxworthy are

appropriate.

To fit the data well we shall constrain the Curie temperature to the value we

have fit previously, 862 K, but allow the value of β to change. This gives room for

our proposed value of β to be optimised but also acts as a fail-safe if our initial

value is in error. Using Equation 2.39 and a fitting program such as Gnuplot [45],

which uses a nonlinear least-squares fitting algorithm, we can find a value for α.

The fitting is shown in Figure 3.29 and the proposed values of α and β in Table

3.5.
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Figure 3.29: Fitting the experimental magnetisation scaling from Pau-
thenet [82] and Muxworthy [89]. While the proposed fit for Muxworthy follows
the data points more clearly, this is likely due to the data already being produced
from a fit in the original paper, while the data points from Pauthenet are explicitly
stated as experimentally produced data points.
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α β

Pauthenet 1.951 0.5557
Muxworthy 1.985 0.5004
Belov 2.399 0.8231

Table 3.5: Calculated values for α and β for experimentally produced
magnetisation scaling with temperature. Values from Belov [90] deviate
significantly from those expected (β≈ 0.55). Data from Pauthenet [82] and Mux-
worthy [89] is likely more reliable and produce values more in line with current
results.

Assuming our proposed value of β is correct, we see that the proposed mag-

netisation scaling from Belov is likely incorrect for bulk magnetite. β= 0.8231 is

significantly different to any other proposed value and likely due to significant

errors in experimental methods or samples with high impurity content. The pro-

posed values for β from Muxworthy and Pauthenet lie much more closely to those

found in our simulations and produce similar values for α. As explained earlier,

it is difficult to assess the methods used to extract the magnetisation data in

the original paper from Muxworthy, as experimental data points are not shown

and the curve is of seemingly high quality suggesting it is a fit. The data from

Pauthenet, despite being the oldest, clearly shows the original data points, which

have been used here. As the proposed value of β= 0.5557 is inline with the value

we have already calculated, we shall also make use of the fit value of α= 1.951.

It is worth expanding on the value of β ≈ 0.55 we have suggested so far as

we have now fit a value for it from external data which seems to agree with the

current assumptions. β, originally from the critical point scaling as shown by

Chikazumi [84], is a critical exponent related to the magnetisation of the system

around the ferro/ferrimagnetic to paramagnetic phase transition. Further, these

exponents are described as being independent of the details of the system (such as

the materials involved) but proportional to general properties such as theoretical

model, system size and interaction length. As such, they are linked to Universality

classes which aim to calculate upper limits for the exponents which depend on the

model (Heisenberg, Ising etc.) [42]. The general idea for the Universality classes

is that systems which do not exhibit finite scale properties have critical exponents

whose values tend to a limit. For the 3D Heisenberg model, β is approximately

1/3. This seems to agree with previous work done using the Heisenberg model,

which found that elemental ferromagnets had a value of β≈ 0.34.

When initially fitting the value of β to magnetite, the value 0.55 was a worrying

sign due to the large discrepancy between its value for magnetite, the suggested
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Co Fe Ni Gd
TC (K) 1395 1049 635 294
β 0.340 0.339 0.341 0.339

Table 3.6: Fitted values of β for elemental ferromagnets. Calculated using
a classical spin model simulation and the Curie-Bloch equation with α= 1. Table
adapted from Ref. [40].

limit for the Heisenberg model and previous data from Evans et al. [40]. With

external data suggesting this value is correct, the next logical question is to ask

why the value is so different. Earlier, in sections 3.4.2 and 3.5.1 we showed the

magnetisation scaling of the tetrahedral and octahedral sublattices of magnetite,

and provided values for their β of 0.297 and 0.399 respectively. These values are

also distinctly different to the overall value of β however they are much closer to

the reference value of around 1/3. As the magnetic properties of magnetite are a

result of the competing properties of the two sublattices, perhaps the new value of

β for magnetite originates from the sublattices. To make a fair comparison, these

values are fit from a 6 nm PBC system, which is only around 9 unit cell lengths of

magnetite. As the value of β should reach a limit for more bulk like systems, we

should first fit the sublattice β for a 16 nm system as we have done for the overall

value.

Figure 3.30 shows that the values of β do not change significantly in periodic

boundary condition systems. The tetrahedral and octahedral fits show β ≈ 0.3

and 0.4 respectively. While it would be easy to point out that the average of these

values lies clearly within the expected range of β for its universality class values,

this still does not explain why the overall value of β for magnetite is 0.55. In

addition, the sublattices should not be considered wholly separate as they do

of course interact due to exchange and influence the magnetisation scaling of

each other. The exact reason why magnetite displays such different values of β is

uncertain however this may be a wider symptom of ferrimagnetic materials with

competing sublattices as a whole.

We can now use the rescaling parameter α = 1.951 to adjust our magnetisation

scaling and compare this to the original data from Pauthenet. To do this we apply

Equation 2.40 to the temperature points of our data set for a 16 nm system under

periodic boundary conditions, to best approximate bulk. In addition, as the data

from Pauthenet et al. is normalised to a value of 1 for both magnetisation and

temperature, we have done the same for our simulated data for comparison.
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Figure 3.30: The tetrahedral and octahedral sublattices of a 15.96 nm PBC
magnetite system. Fit according to the classical Curie-Bloch equation, with no
rescaling, the tetrahedral lattice has a slightly lower TC = 855 K and β= 0.301,
while the octahedral lattice has a fit TC = 864 K and β= 0.399.

Figure 3.31 shows that our data agrees very well with the experimental points

for Pauthenet which we have used to correct the low temperature scaling of the

system. Below τ= 0.8 or roughly 700K, the data sets are almost overlapping. This

is in large part due to the α rescaling parameter which more heavily affects the

low temperature region; however it is also an indication that the majority of the

parameters, constants and models used so far to simulate magnetite are at least

close to those found in experiment. Above this temperature, the data sets do not

agree perfectly however they remain close. Here the dominant fitting parameter

is β, which is in fact slightly different for both curves. In the experimental case,

β is around 0.56, while for our data β is fit to 0.53. Lower values of β result in

steeper approaches to the Curie point which is what we can see in Figure 3.31.

Above the critical point the plots cannot match as the bulk experimental data

stops at the Curie temperature where the magnetisation reaches zero, whereas

for our simulation with a finite number of spins, even with PBCs, there is a small

remnant magnetisation.

We also revisit the specific heat of magnetite using this new rescaling method
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Figure 3.31: Comparison of simulated magnetisation scaling using a
rescaling parameter. With α = 1.951 the data agrees very well with experimen-
tal data from Pauthenet et al. as the low temperature scaling of the magnetisation
correctly models the required quantum mechanical effects.

to fix the low temperature scaling. In a quantum model, the specific heat is

expected to start from zero and rise slowly as there is not enough energy for spins

to explore higher direction eigenvalues. The rescaled specific heat corrects the low

temperature behaviour by using the rescaled temperature calculated in Equation

2.40 and substituting into Equation 3.14. With this, the specific heat correctly

starts at 0kB per spin at zero Kelvin and maintains a low value until the critical

point.

Tresc =TC

(Texp

TC

)α
(3.16)

Cv =
(〈U2〉−〈U〉2)

kBT2
resc

(3.17)

Assuming the value of α is correct, it is almost always worth using the rescal-

ing method however there are a few downsides to using it unilaterally. For the

magnetisation scaling with temperature, it is very important to use the rescaling

75



3. MAGNETITE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0  200  400  600  800  1000

S
p
e
c
if
ic

 H
e
a
t 
(k

B
 p

e
r 

s
p
in

)

Temperature (K)

Figure 3.32: Rescaled specific heat of 6 nm magnetite with PBC. By apply-
ing the quantum rescaling method, we can correct the specific heat scaling at
low temperature which used to start at a finite value near 0 K. The rescaled
plot accurately models the low magnetic specific heat due to the constrained spin
directions.

to achieve the correct indication of magnetisation drop off. The magnetisation

curve supplies important data for the whole temperature range. In the case of

specific heat and susceptibility, these plots provide data which is less relevant

further away from the critical point. The susceptibility in particular bears less

resemblance to experimentally measured susceptibilities and is mostly used here

to accurately measure the Curie point. Hence, quantum rescaling becomes an

unnecessary venture as the vast majority of change it causes in the results occurs

away from the critical point where quantum effects are minimal. In addition, to

apply the rescaling method, it is required to know the position of TC beforehand,

which in some cases required running the same simulation twice. Because of

this, the rescaling will mostly be used to achieve correct magnetisation scaling, a

relatively low computational cost data output, while it will be used less for calcu-

lating the susceptibility or specific heat, which can take an order of magnitude (or

higher) longer computational time to achieve.
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Figure 3.33: Plot of the restoring torque for different temperatures as a
function of angle from the z-axis. The maximum of the torque occurs at 22.5°
and is independent of temperature.

3.9 Anisotropy

While we have been looking more closely at the temperature effects which occur

at the Curie temperature of the system, some effects, such as those dominated

by the magnetocrystalline anisotropy, are only visible at low temperatures. In

Section 3.2.4 we considered the anisotropy constant K1 of magnetite which defines

the strength of the cubic anisotropy in magnetite, however we do not get a clear

picture of the temperature scaling of this constant in our simulations. To do this

we can employ a constrained Monte Carlo algorithm [91].

For our magnetisation curves we have allowed the system to reach an equili-

bration state at each temperature point. All spins in the system are allowed to

rotate freely and reach their lowest energy configuration. For this simulation we

shall instead constrain spins in one of the sublattices to a fixed orientation and

allow all other spins to rotate freely, being simulated using the traditional Monte

Carlo method. Figure 3.33 shows the restoring torque as a function of the angle

from the z-axis.

The torque is calculated as the integral of the anisotropy energy and has

the form of 0.5sin4θ as a result of this. In fact, the 0 K torque and anisotropy
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Figure 3.34: Plot of the restoring torque as a function of temperature. The
torque (and anisotropy energy) does not disappear completely until the system
reaches the Curie temperature however the increased thermal energy of the
system makes it difficult to observe anisotropic effects above room temperature.

for a given particle can be found by plotting this equation multiplied by the 0

K anisotropy constant and the number of atoms in the system. The shape is

independent of temperature, however an increase in temperature causes a reduc-

tion in the amplitude of the curve, also indicating the reduction in the effective

anisotropy energy. We can also plot the maximum of the torque with respect to

temperature, shown in Figure 3.34. Compared to the magnetisation, the torque,

and by association the anisotropy, lowers much more quickly with increasing

temperature, maintaining a peak value for only a few Kelvin before decreasing

linearly between 100 K to 600 K. Near and above the Curie temperature the

torque is zero while the anisotropy maintains a constant low value.

We can also study the relationship between the magnetocrystalline anisotropy

and the magnetisation. From the studies done by Akulov [92] and refined by

Callen and Callen [93], cubic anisotropy scales with the magnetisation according

to an M10 law. Figure 3.35 shows that our simulated anisotropy scaling follows

the M10 law for high values of magnetisation, where the temperature is low. As

the magnetisation lowers, the discrepancy between the calculated data and theory

could come from the fact that the theory assumed a mean-field approach, where

the exchange interactions are equal and long ranged. In the simulations exchange
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Figure 3.35: Plot of the anisotropy scaling with magnetisation. The
anisotropy follows the M10 law at high magnetisation, when the system is fully
magnetised and at low temperatures

interactions were limited to nearest neighbours only.

3.10 Conclusion

As magnetite is a well-studied material we are able to form a high quality model

of atomistic spin dynamics. The structure of the unit cell of magnetite and related

ferrites has been used to form a Hamiltonian made up of two components, the

tetrahedral and octahedral sublattices of magnetite, which together form the

overall magnetic properties of the system. This required a good understanding of

the exchange constants and anisotropy energy of magnetite.

From our simulations we have also compared various methods for calculating

precise values of physical parameters such as the Curie temperature and critical

exponents of the system. The temperature scaling of magnetite has been explored

for PBC systems which approximate bulk conditions, allowing us to compare our

data with the experimental work done previously. With the help of a rescaling

parameter, we were also able to correct the temperature dependent scaling to

accurately reflect the quantum mechanical effects which take place in real world

magnetic materials.
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Next we shall explore how the properties of magnetite vary when it is in

nanoparticle form and subject to topological effects.
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4
FINITE SIZE SCALING AND PARTICLE ELONGATION

4.1 Introduction

At small sizes where the number of atoms in a magnetic particle are in the order of

103 to 105, statistical effects occur due to the finite number of spins. These effects

are described as finite size effects, with early studies into magnetic applications

by D. P. Landau and K. Binder [94, 95] who used Ising models and Monte Carlo

methods to predict how this affects more simple systems. This area of study

has remained popular with other groups focusing on specific materials such as

the recent work done by Jun Wang [96] looking at barium hexaferrite platelets.

The finite size scaling (FSS) occurs irrespective of the dimensionality of the

system, either in 3D nanoparticles, or 2D thin films [20, 97]. While this analysis

has already been applied to magnetite [20, 98] using both experimental and

computational approaches, much of the studies performed relied on simplifications

such as particularly small systems sizes with low sampling at these scales, or

model approximations such as the Ising model which fails to accurately model

magnetite due to its constrained spin directions. This makes it difficult to model

the intra and inter sublattice effects shown in chapter 3.4.2. Experimental studies

have additional complexity due to the possibility of imperfect samples, particularly

when dealing with less stable materials. It can also be very difficult to study

nanoparticles with constrained sizes and more often a range of particle sizes

is observed. The purity of the samples is also not easy to control as magnetite

nanoparticles can exhibit rust, the formation of maghemite or hematite as well

as other impurities depending on the materials and methods used to create the
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sample.

Here, we try to model finite size systems using the 3D Heisenberg model and

study both the overall magnetic properties, as well as any differences that occur

at the sublattice level, to form a complete data set of finite size scaling from small

particles of the order of one unit cell, to a system which approaches, at least

asymptotically, a bulk magnetite system.

So far we have covered various magnetic properties we can use to assess the

system. Periodic boundary condition systems give a good benchmark for bulk

system properties, and we can now compare this with finite size systems which

have broken exchange interactions at the surface. There are various types of

finite size systems that we can explore, which highlight different properties. Here

these shall be divided into spherical and faceted systems. Spherical nanoparticles

can be formed, depending on experimental methods used, for various iron oxide

nanoparticles [17] however these are often less stable. For this work, they have

the benefit of maintaining the ratio of each sublattice despite their size. As the

surface is terminated at the same radius over the whole particle, no sublattice

or surface termination is preferred or dominant over another. Faceted particles

suffer from exactly this issue. Many different types of faceted iron oxide particles

have been seen in experiment [9, 99], their structures depending on the surface

orientation and termination. In addition to finite size effects, these particles

are usually dominated by the sublattice which terminates their composition. Of

course, the separation between these types of particles is not always obvious as

a highly faceted particle may be approximately spherical however we shall only

deal with perfectly spherical nanoparticles and faceted particles with only two or

three different surface orientations.

4.1.1 Spherical Nanoparticles

First we can look at spherical particles as they simplify two aspects of the finite

size scaling that we will examine: the shape and surface. Roughly spherical parti-

cles can be formed in experiment and are often coated in silicon, for biomedical

applications [100]. Their surfaces are usually not perfectly spherical however for

now we shall approximate this and assume an ideal sphere.

To start we can look at the finite size scaling properties of spherical particles

of diameters ranging between 2 and 16 nm diameter, or up to 20 unit cell widths.

At this size range, we are dealing with fine nanoparticles containing up to roughly

100,000 magnetic atoms. Figure 4.2 shows the finite size scaling of these nanopar-
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Figure 4.1: Comparison of the surface of spherical and faceted nanopar-
ticles. While the spherical particle has a smooth transition between the layers of
the sublattices at the surface, the faceted particle is dominated by an outer (red)
oxygen and (blue) tetrahedral iron layer.

ticles. The exact diameters chosen are multiples of the lattice constant to maintain

an ordered increase in particle size. As a side effect of recording susceptibility data

at the same time, this magnetisation data is highly converged for each system,

with the smallest requiring only minutes to calculate on modern hardware while

for the largest it can take a full day to achieve high quality results.

For now, the magnetisation data is shown with no rescaling applied to first

compare this data with the initial MvsT data. At 0 K the particles start at roughly

the same magnetisation, and do not follow any order. This is down to the exact

proportions of ions in the system but is roughly the same. From this point, the

magnetisation lowers for each size however there is a noticeable spread in the

magnetisation of the smallest system and the largest, increasing until just before

the phase change at TC. This change in magnetisation is around 10-15% lower for

the 2 nm system over the low temperature range. In practice this becomes impor-

tant for nanoparticle usage as the range of particle diameters produced in practice

will therefore have a significant effect on the overall saturation magnetisation of

the sample.

At the other end of the data, we see that smaller particles exaggerate the

statistical effects seen above TC. The 2 nm particle in particular comes to rest

in a paramagnetic state with 0.05m. At the lowest diameter, this particle is

somewhat of an anomaly as it does not exactly follow the same scaling behaviour

as all other particles. Looking at a visualisation of the particle, it becomes clear

83



4. FINITE SIZE SCALING AND PARTICLE ELONGATION

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  200  400  600  800  1000

T
o
ta

l 
M

a
g
n
e
ti
s
a
ti
o
n
 (

M
/M

s
)

Temperature (K)

2.52nm

4.20nm

5.88nm

7.56nm

9.24nm

10.92nm

12.60nm

14.28nm

15.96nm

Figure 4.2: Finite size scaling of spherical magnetite nanoparticles be-
tween 2 and 16 nm diameter. While not bulk, the particles with increased size
tend towards the largest, 16 nm system.

why this is the case. Containing under a thousand atoms, only a few hundred

of which are magnetic, at this size the particle cannot be perfectly spherical, it

is only 3 unit cells of magnetite in diameter. The facets of the underlying unit

cell become apparent, creating flat surfaces and missing corners. Above this size,

the particles follow a more ordered scaling as each particle succeeding particle is

indeed approximately spherical.

At the Curie point, denoted by the dashed red line, we observe a new behaviour.

The phase change occurs at lower temperatures for smaller particles and is

sharper as the size increases. This is an early indication that fitting for the exact

exponent, β, and Curie temperature using the magnetisation alone will be a

difficult process and can be aided significantly with susceptibility data. Starting

from the 4 nm particle, as we have explained that the 2 nm case can be somewhat

of an anomaly, we can see that the magnetisation levels off earlier by around

20-30 K. The high temperature behaviour for nanoparticles is therefore highly

dependent on the particle size.

When we apply rescaling, using the values of β and TC calculated from the

susceptibility, to correct the classical low temperature behaviour, the magneti-

sation scaling changes significantly below TC. Below room temperature, there
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Figure 4.3: 2 nm particle of magnetite. At 2 nm, the system is barely large
enough to be cut in a roughly spherical shape due to the underlying unit cell
structure.

is barely any change in the magnetisation which lowers by around 10% for all

sizes. As the temperature rescaling does not affect the Curie temperature point

of any system, we still see clearly that the Curie point occurs earlier for smaller

nanoparticles.

The differences between rescaled and non-rescaled data is most apparent

when looking at the magnetisation scaling. The low temperature magnetisation

should deviate slowly from its value at 0 K and decrease more quickly towards

TC. This is not the case in the classical data as the magnetisation decreases in

an almost linear fashion. The overall susceptibility is difficult to distinguish and

therefore we shall only show the rescaled susceptibility here. In general, the

susceptibility shows thinner peaks at all sizes when rescaled and maintains near

zero susceptibility for the whole of the low temperature region. Figure 4.5 shows

the susceptibility scaling for these nanoparticles.

The susceptibility peaks can be used to accurately find the Curie temperature

of each system however we can see that the peaks not only differ in temperature

but also magnitude. At lower particle sizes, the susceptibility peaks are both

broader and lower. This is possibly due to the increased ability in larger particles

for small pockets of spin domains to align more closely to each other, leading

to increased spin correlation and hence an increase in the magnitude of the

susceptibility. The susceptibility data also makes it much easier to see by how

much the critical point decreases in temperature for smaller particles. Here, the 2

nm system peaks around 100 K lower than the largest system. This decrease in

the Curie temperature is relatively minor for systems above 8 nm but becomes
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Figure 4.4: Rescaled magnetisation scaling for spherical nanoparticles.
The lowering of the magnetisation is much more gradual, and each curve reaches
TC more steeply.

much larger below this threshold. The exact values of the Curie temperature and

β extracted from the magnetisation and susceptibility plots are shown in Table

4.1 and plots of this data, as well as sublattice scaling data is shown in Figure 4.6.

Particle Diameter (nm) Curie Temperature (K) β

2.52 680 0.670
4.20 780 0.679
5.88 809 0.635
7.56 829 0.620
9.24 835 0.601
10.92 843 0.603
12.60 844 0.587
14.28 847 0.582
15.96 850 0.579

Table 4.1: Fit β and TC for spherical magnetite nanoparticles. The Curie
temperature increases toward bulk values with increased particle size while the
exponent lowers slowly.

For all components of the nanoparticle the Curie temperature decreases with

particle size however the overall Curie temperature is predicted to be lower than

that from the sublattices. This might be due to the individual lattices individually

maintaining some level of magnetisation close to TC. At higher temperatures,
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Figure 4.5: Rescaled susceptibility scaling for spherical nanoparticles.
The magnitude of susceptibility increases with size and is possibly related to
domain formation in larger particles.

the data points lie exactly on top of each other due to the 1 K temperature

resolution. What is somewhat surprising from this data is the near levelling off of

the Curie temperature at the largest particle sizes. 16 nm diameter particles are

still considered to be fine and should be far from bulk properties however within

the parameters set out for this study, the Curie temperature is close to reaching a

bulk state. Compared to some of the periodic boundary condition systems looked

at earlier, the largest TC fitted here is around 850K, 8 K lower than experimental

bulk TC and around the same value of TC extracted from our 16 nm PBC system.

Hence, it is the contributions from the structural strain at the surface of the

nanoparticle, and the formation of antiphase boundaries which cause the different

magnetic properties to bulk.

The β scaling is quite different however as it does not seem to be fully con-

verged for the 16 nm particle. The individual sublattices are relatively flat, with

noticeably difference values for β at all sizes. Due to the sublattices having differ-

ent values of β to the overall system, it is difficult to use rescaling on the sublattice

data as they require different values of α. Ideally a value of alpha is found by

fitting the Curie-Bloch equation to experimental sublattice data, however no such

data currently exists. The overall α exponent can be used as a substitute however

it is likely to be inaccurate for the sublattices.

87



4. FINITE SIZE SCALING AND PARTICLE ELONGATION

Figure 4.6: Curie temperature and β scaling with size for the overall and
sublattice components of spherical nanoparticles of magnetite. The Curie
temperature tends to bulk with increasing size while the value of β has not
converged fully.

4.1.2 Faceted Nanoparticles

The method used to generate arbitrarily faceted nanocrystals is shown in Figure

4.8. We first create a large single crystal of magnetite of size 4r along each spatial

direction where 2r is the intended particle size. We then define fractional radii

along the different crystal directions r100, r110 and r111 defining the extent of

truncating planes along the respective crystal directions in the positive quadrant
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Figure 4.7: Head on look at the surface of a faceted nanoparticle. Red spins
show tetrahedral atoms while blue spins are octahedral. Due to the nature of
faceting, one ionic species dominates the surface of the nanoparticle.

(|x|, |y|, |z|). Atoms between these planes and the origin are retained within the

particle and the rest are deleted, leaving a faceted nanoparticle. The choice of

relative radii therefore selects the shape of the particle, for example if r100 = 2r,

r110 = 2r and r111 = r
p

3 this will construct a regular octahedron particle with

diagonal diameter 2r.

[001]

[100]

[010]

[111]

[110]

Figure 4.8: Schematic illustration of how faceted nanoparticles are con-
structed. The particles are cut from a single crystal of magnetite. Planes per-
pendicular to the [100], [010], [001], [110] and [111] crystal directions define the
limits of the particle along each direction as a function of particle size r. Atoms
between the origin and all defined planes are kept within the particle.
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Faceted nanoparticles require extra care when analysing magnetisation data

as the system tends to be dominated by one of the sublattices which can deviate

the system from an overall magnetisation of around a third. In addition, when

changing the size of the nanoparticle to study finite size scaling data, it is difficult

to maintain the same surface type for each system as there are several layers of

tetrahedral and octahedral iron atoms with different densities and the faceted

particle generation does not distinguish between the ionic species. This can lead

to magnetisation data as shown in Figure 4.9 where a spread of magnetisation

values at 0 K leads misleading magnetisation curves for the given data set. The

intersection point of the curves is not a physical phenomenon but arises due to

the statistics of the data. It is therefore required to normalise the data set as

rescaling cannot be applied properly without the curves starting from the same

(or very close) starting point.
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Figure 4.9: Non-normalised MvsT of faceted Fe3O4. Faceted particles of vary-
ing size cause a spread of magnetisation curves due to the different overall
densities of each sublattice between the particles. The intersection point arises
due to the statistical properties of the size distribution.

Once the data is normalised, the magnetisation curves are very similar to

those seen in the spherical nanoparticles. The plots for the smallest, 2 nm, system

is better behaved as the system can be cut more easily into a faceted particle and

contains more atoms overall than a spherical particle of equivalent diameter.
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Figure 4.10: Normalised MvsT of faceted Fe3O4. After normalisation, the
magnetisation versus temperature curves of faceted particles such as cubeoctahe-
dra are similar to those produced by spherical nanoparticles. Faceted particles
generally contain more atoms than cubeoctahedra, due to how their diameter is
measured, leading to a more ordered set of FSS data.

4.1.3 Periodic Systems

From looking at both spherical nanoparticles and different faceted nanoparticles,

we can see that the general tendencies of finite size scaling are the same with

some small changes depending on the surface to volume ratio of the particle, with

spheres having the lowest, and the included complexity of faceted particles being

dominated by a particular surface leading to a spread of initial magnetisation

values at low temperature. There is however one further case of finite size scaling

that we can analyse which gives a key insight into the cause of the FSS effects.

Periodic boundary condition systems have so far been used to replicate bulk

properties by using a large cell of the material which is repeated using boundary

conditions on each axis. This method provides an easy way to simulate much

larger blocks of the material without needing to calculate the extra exchange

interaction associated with the larger system. The size of the initial block has a

large impact on the physics of the simulation however as small blocks down to the

size of the unit cell are not appropriate for all simulations. When the unit cell can

be used for hysteresis calculations where strong fields bound the spin orientation

and the external field becomes the largest component of the system Hamiltonian,
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in Curie temperature simulations, the spins must be able to relax naturally hence

the most significant component in the Hamiltonian is the exchange. In a PBC

system, spins on either end of the unit cell are repeated in the neighbouring block

and therefore influence the spins in adjacent blocks. With a small initial unit cell,

where the same spin can influence its replica in a neighbouring cell significantly,

this leads to an effective increase in the exchange strengths of the system. Hence,

depending on the initial system size, the Curie temperature as well as other

magnetic properties of the system can change depending on the system size (the

size of the original cell).
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Figure 4.11: Finite size scaling effects in PBC systems of magnetite with
core sizes between 2 and 16 nm. For all sizes, the Curie temperature is over-
estimated due to the higher effective exchange in the system.

For comparison with the nanoparticles seen earlier, we simulate PBC systems

of magnetite with a core cell size between 2-16 nm. We find that for all core sizes,

the Curie temperature is now overestimated, with the largest systems size, 16

nm, tending towards bulk. The deviation of the Curie temperatures from the

values found in experiment for bulk, 858K, is much lower than that found in the

nanoparticles where the smallest particles had a fit TC around 100 K lower than

bulk.

The main difference in system properties between the nanoparticles and PBC

systems is the lack of a surface on the periodic systems. There are no missing

exchange bonds as the system is continuous, therefore the surface is the main

92



4. FINITE SIZE SCALING AND PARTICLE ELONGATION

Figure 4.12: Curie temperature and β scaling of PBC systems of mag-
netite. The sublattices have a noticeably different TC scaling to the overall
system for low sizes. Unlike in nanoparticles, β quickly converges to a near
constant value for all components of the system, with lower values overall.

cause of the finite size effects we have seen so far in this chapter. This surface

effect is also separate from those derived from any tension found in synthesised

or natural nanoparticles as well as and shift of the surface structure as described

earlier in the chapter. Without being able to model these effects we have still

found significant reduction in the Curie temperature of the system as well as of

the saturation magnetisation at all temperatures.

For these systems, the critical exponent β, shown in Figure 4.12, also scales

slightly differently. From even the smallest periodic systems, β maintains a near

93



4. FINITE SIZE SCALING AND PARTICLE ELONGATION

constant value for all components of the system, unlike the nanoparticles where

the values for the overall system had not fully converged. The values for β are

still lowered across the board with the tetrahedral and octahedral sublattices at

0.313 and 0.392 respectively and the overall system at 0.541.

4.2 Particle Elongation

Particle size effects are not constrained to uniform size changes, some effects are

only observed when a single axis of the particle is increased. The magnetocrys-

talline anisotropy can be affected by particle elongation, changing the magnetic

properties of the system from superparamagnetic to a blocked ferrimagnetic

state. So far, we have covered intrinsic contributions to the anisotropy such as

uniaxial or cubic. Magnetite itself is subject to cubic anisotropy [101] however

this is not necessarily the largest contribution to the effective anisotropy, Keff.

Cubic anisotropy itself is much smaller than would be expected from the usual

anisotropy constants K1 and K2 due to the nature of the energy surface. The

effective anisotropy is Keff = K1/4 for 〈100〉 easy and Keff = K1/12 for 〈111〉 easy

axis systems, the latter being the case for most ferrites including magnetite.

Surface anisotropy can also have significant effects on the structural [102] and

magnetic properties [103], and is difficult to model due to its dependence on the

surface termination of the nanoparticles. While some surfaces such as the [100]

termination are found to have a large surface anisotropy contribution [104], these

surfaces are also likely to be unstable due to their polar nature at the interface.

As we cannot model structural changes at the surface of nanoparticles, and the

strength of the surface anisotropy is highly variable, we cannot correctly factor

it into our low temperature calculations. Shape anisotropy, or the anisotropy

contributions due to changes in the elongation of the system, are more easily

modelled and may also dominate the effective anisotropy [105].

Shape anisotropy is related to the demagnetising field, which opposes and is

caused by the magnetisation of the particle. The energy of the field is given by

Hdemag =
1
2
µ0M · ( ¯̄NM) (4.1)

where µ0 = 4π×10−7 is the permeability of free space, M is the vector magneti-

sation and ¯̄N is the demagnetisation tensor, which depends on the shape and

geometry of the system. For simple elongated systems which we shall use here,
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the off-diagonal components of the demagnetisation tensor are small and ¯̄N can

be approximated by a diagonal matrix:

¯̄N ≈


Nxx 0 0

0 Nyy 0

0 0 Nzz

 (4.2)

Hence Equation 4.1 expands to:

Hdemag =
µ0

2

(
Mx My Mz

)
Nxx 0 0

0 Nyy 0

0 0 Nzz




Mx

My

Mz

 (4.3)

Hdemag =
µ0

2
(NxxM2

x +NyyM2
y +NzzM2

z ) (4.4)

For a uniformly magnetised particle elongated along the z-axis the perpen-

dicular components of the demagnetising energy are the same. Considering the

change in energy for a rotation of the magnetisation in the x-z plane the z and

x components of the magnetisation are related by M2
x = (1−M2

z ). Applying the

substitution Mz = mzMs, where Ms is the saturation magnetisation, yields an

effective shape anisotropy of

Hshape =
µ0M2

s

2
(Nxx −Nzz)m2

z (4.5)

Combining the shape and cubic anisotropy contributions, we get

Heff(m)=+Kc

2
(m4

x +m4
y +m4

z)+ µ0M2
s

2
(Nxx −Nzz)m2

z (4.6)

where m is a unit vector with components mx, my, mz describing the magnetisa-

tion of the particle and Kc is the effective cubic anisotropy.

Nanoparticle elongation is not uncommon in experimental samples, with dif-

ferent elongation lengths in the range 0-20% [106]. While larger elongations will

have a stronger effect on the anisotropy, it is worth simulating the effect of elon-

gations within this range as they are more likely to occur. Figure 4.13 shows the

orientation dependence in spherical polar coordinates of the effective anisotropy
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Figure 4.13: Plots of the effective anisotropic energy surface for elon-
gated truncated octahedron nanoparticles. All particles have a lateral size
of 6 nm along the x, y directions but different elongations: 0% (a), 5% (b), 15%
(c), and 20% (d). The data shows that the cubic anisotropy makes a significant
contribution to the effective anisotropy for all elongations with rotational energy
barriers existing up to 15% elongation. Figure from Ref. [3].

energy for a 6 nm (in x and y) particle size for different z elongations. When the

particle is perfectly uniform, Fig. 4.13(a), the energy surface is completely cubic,

with 8 energy minima corresponding to the 〈111〉 crystal directions. When the

particle is elongated, the shape contributions to the anisotropy increase maxima

around the x,y-plane. This is effectively an increase in the energy barrier between

the stable energy minima of the easy axis directions. While the shape anisotropy

contributions grow to around five times larger than those of the cubic anisotropy,

at 20% elongation, the energy surface retains a cubic shape.

We can simulate elongated nanoparticles and their time-dependant behaviour

using the stochastic Landau-Lifshits-Gilbert equations described in Chapter

2.3.1. To show the effects of elongation on the particle anisotropy, the particle

size and temperature must be tuned as the cubic anisotropy energy maintains

a superparamagnetic state during the low temperature (<250 K ) regime. In

addition, particle elongations increase the magnetic volume of the particle by

a significant amount for large elongations, further strengthening the intrinsic

particle anisotropy. For our simulations, a temperature of 300 K with 12nm

nanoparticles was found to be a turning point at which the shape anisotropy

showed noticeable effects on the magnetisation dynamics of the system.
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Figure 4.14: Magnetisation components of elongated magnetite nanopar-
ticles. Plot of the time dependence of the magnetisation components for a 12
nm diameter octahedral nanoparticle for (a) 0%, (b) 10% and (c) 20% elongation
at T = 300 K. The z-component data shows a transition from a fully superpara-
magnetic regime for the isotropic particle to a partially blocked regime for a
particle with 20% elongation. The rotational components (transitions in x,y) are
superparamagnetic in all cases.

The magnetic relaxation of superparamagnetic nanoparticles is determined by

the energy barrier ∆E between stable minima, and is governed by the Arrhenius-

Néel law

τ= 1
f0

exp
(
∆E
kBT

)
(4.7)

where τ is the relaxation time, f0 ∼ 109 is the attempt frequency, kB =
1.380649×10−23 J/K is the Boltzmann constant and T is the temperature. The

energy barrier, ∆E, is determined from Equation 4.6. Figure 4.14 shows the

switching dynamics of a 12 nm diameter nanoparticle simulated over 100 ns

for different particle elongations. Uniform particles, Fig. 4.14(a), show super-

paramagnetic behaviour in x, y and z orientations. The thermal energy of the

system is enough to overcome the energy barrier and the system spends time
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equally in the 8 easy axis directions. A large time scale is required to see the

effects of particle elongation as even at 0% elongation, the system is metastable

along the different orientations, spending around 2-5 ns in each before switching.

At 10% elongation, Fig. 4.14(b), the spin switching has slowed and there are

fewer transitions along the ±z-axis due to the increased shape anisotropy. This

effect is not drastic however and despite the significant change in particle shape,

the increased number of magnetic volumes simultaneously increases the cubic

anisotropy which maintains a similar regime. At 20% elongation, Fig. 4.14(c),

the shape anisotropy and increased energy barrier has stopped more transitions

occurring. The system now spends around τ≈ 15 ns in each orientation. This is

still much shorter than the blocking times found in experimental measurements

of individual nanoparticles which are in the microsecond timescale [107], likely

indicating that surface anisotropy, which we are unable to show here, has a more

significant effect on small particles with elongations around 20%.

4.3 Conclusion

The temperature scaling properties of magnetite are heavily affected by finite

size effects. The magnetisation of nanoparticles can be reduced by more than 10%

at room temperature which is significant for applications which require a fine

understanding of the overall magnetic properties of a sample. In addition, the

shape of the nanoparticles may have more nuanced effects on the temperature

scaling due to the dominance of a sublattice at the surface of the particle. When

comparing PBC systems to nanoparticles, we find that most of these effects are

dependent on the surface to volume ratio of particle, with larger ratios causing

exponentially higher deviations of the magnetic properties from bulk. By using

methods from the previous chapter, we were able to accurately model the changes

to the Curie temperature and β parameter of the system when nanoparticles were

small, leading to longer phase transitions and difficult to fit magnetisation curves.

We have also modelled non-uniform changes to the particle size, which can

change the low temperature magnetic properties of the particle from a fully su-

perparamagnetic state to a partially blocked state, depending on the elongation

of the system along a particular axis. While this does not fully capture the ex-

perimental anisotropy of the nanoparticles, which are found to be fully blocked

for a longer time scale, we have developed a more sophisticated model of the

anisotropy which is important for the future development of magnetic hyperther-

mia where nanoparticle properties should have reproducible heating properties
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with a narrow distribution of size and magnetic properties.

Next, we shall look at a closely related material, maghemite, which shares

many traits with magnetite but is less stable and, because of this, less well

reviewed in the literature.
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MAGHEMITE

5.1 Introduction

Maghemite, not to be confused with magnetite, is another well-known magnetic

iron oxide that has been studied for more than a century. In nature it occurs

near iron oxyhydroxide rich minerals as a brown or yellow pigment in terrestrial

sediments and soils. Synthesis of impure maghemite has been documented since

the 19th century, according to the 1837 textbook of Schubarth [108]. The alchemist

Kunckel had already synthesised maghemite by heating metallic iron in air until

red-hot. Initially, likely due to impurities, the samples of maghemite were thought

to be paramagnetic and its use was restricted to pigments or as an abrasive

material. Through oxidation of magnetite, a method still used today, Baudisch

and Welo [109] explored the magnetic properties of maghemite but were not able

to distinguish these properties as being intrinsic to maghemite rather than a

remnant from magnetite or other iron oxide impurities.

Maghemite and its structure was characterised in the early 20th century,

noting the distinction between hematite, another iron oxide with a closely re-

lated chemical structure, and magnetite, which is structurally the closest. While

hematite, an antiferromagnetic material then thought of as paramagnetic (this

was before Néel developed the concept of antiferromagnetism [6]), was noted

to be stable, maghemite was found to be unstable even at room temperature

[110], with an inverse spinel defect structure. Much like magnetite, it was not

immediately realised that maghemite was not ferromagnetic, as in elemental iron,
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but ferrimagnetic due to its more complicated structure.

One of the first uses of maghemite had to do with one of the early technological

advances in the 1930-40s, the magnetic tape. Initially made using carbonyl iron,

these were later improved through the usage of magnetite and then maghemite

with the development of acicular (needle shaped) magnetic particles [111]. More

recently, they have been used along with other iron oxides for biomedical applica-

tions due to their biocompatibility and relative ease of synthesis. Paired with a

surface coating of various possible materials such as silica, PVA or dextran, it has

seen use as a magnetic drug carrier, able to carry cytotoxic drugs, or target anti-

bodies [112]. Another important field of study is magnetic hyperthermia involving

the catabolism of tumours by magnetic heating of the nanoparticles. These studies

date back to 1957 when Glichrist et al. heated various tissue samples with 20-100

nm size particles of maghemite exposed to a 1.2MHz magnetic field [15]. Finally,

maghemite nanoparticles are a promising material for adsorption of heavy metals

from industrial wastewater due to their adsorption efficiency and reusability and

recoverability, making them distinct from similar iron based materials which are

more difficult to recover and become a secondary waste product [16, 113].

5.2 Structure

The simple chemical formula of maghemite is Fe2O3 however there are several

other minerals that share the same formula. In the 1987 edition of his book,

Wells mentions four different Fe2O3 phases [114] which had been studied: the

thermodynamically stable, almost non-magnetic, hematite phase α-Fe2O3 which

has a trigonal corundum structure [115]; two less stable phases known as β-Fe2O3,

a body-centred cubic oxide which converts to hematite at high temperatures, and

ε-Fe2O3, a rhombic phase which is difficult to prepare without impurities [116];

and a probably cubic phase which would be known as γ-Fe2O3, due to a proposal

of Haber as γ-Fe2O3 can be made from dehydrating needle-shaped γ-FeOOH

crystals.

The exact structure of maghemite was uncovered through the oxidation of

magnetite. When Fe3O4 is oxidised directly, Fe2+ is converted to Fe3+ within

the spinel structure and compensating iron vacancies appear in the octahedral

sublattice. The defective spinel structure is remarkably robust and can accommo-

date the full range of stoichiometry between Fe3O4 and Fe2O3. In the extreme

case, all Fe is oxidised to Fe3+, and maghemite is formed. γ-Fe2O3 is metastable

against transformation to α-Fe2O3 but exists partly because the conversion from
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the spinel to corundum structure requires the O2- lattice to be converted from

face centred cubic (fcc) to hexagonal closest packed (hcp). In contrast, switching

between γ-Fe2O3, Fe3O4 and Fe1-xO is remarkably fluid because this only requires

a rearrangement of the cations within the fcc oxygen lattice. Impurities can make

this process more difficult. When oxidising magnetite it is important to have

no traces of hematite as these act as nucleation sites for the formation of more

α-Fe2O3.

Hence maghemite holds a similar structure to magnetite, but with iron vacan-

cies appearing in the octahedral sublattices. The exact nature of these vacancies

has also taken some time to understand. There are three different variations of

maghemite which can form depending on the size of the crystals and preparation

conditions [117], which have different orders for the vacancies:

• A cubic structure with random distributions of the vacancies (Fd-3m) [118]

• Vacancies distributed as the Li cations in LiFe5O8 (P4332) [119]

• An ordered distribution of the vacancies with tetragonal symmetry and a

three-fold doubling along the c-axis (P41212) [120]

Figure 5.1: Maghemite unit cell vacancies. Octahedral lattice iron vacancies
(green) occur in the P4332 crystal group structure. As this structure still involves
a measure of disorder, only 2/3 of these sites are actually vacant with a random
distribution of Fe3+ filling the rest.

The first studies that indicated a departure from the Fd-3m symmetry were

reported by Haul and Schoon [121], who noticed extra reflections in the powder

diffraction pattern of maghemite prepared by oxidising magnetite. In the space
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group P4332 of lithium ferrite, there are two types of octahedral sites, one with

multiplicity 12 in the unit cell, and one with multiplicity 4, which is the one

occupied by Li. In maghemite, the same symmetry exists if the Fe vacancies are

constrained to these Wyckoff 4b sites, instead of being distributed over all the

16 octahedral sites. This configuration still has a level of disorder as the 4b sites

have fractional iron occupancies. A more ordered vacancy distribution involves

a tetragonal distortion where the primitive unit cell is a superstructure with

lattice constants c/a ≈ 3. This ordered maghemite structure has the tetragonal

space group P41212. The exact positions of these vacancies have been refined by

Jorgensen et al. based on synchrotron x-ray powder diffraction data [120]. The

fractional positions are shown in Table 5.1.

Coordinates
Position label x y z
L1 7/8 3/8 1/24
L2 1/8 7/8 3/24
L3 5/8 5/8 5/24
L4 3/8 1/8 7/24
L5 7/8 3/8 9/24
L6 1/8 7/8 11/24
L7 5/8 5/8 13/24
L8 3/8 1/8 15/24
L9 7/8 3/8 17/24
L10 1/8 7/8 19/24
L11 5/8 5/8 21/24
L12 3/8 1/8 23/24

Table 5.1: Coordinates of the 12 possible vacancy sites in the maghemite
supercell. These positions correspond to the Wyckoff 4b sites of cubic space group
P4332, expanded to a 1×1×3 supercell. Table adapted from Ref. [118]

To determine which of these very similar structures is lower in energy, studies

have been done using DFT (explained in 3.2.3); Grau-Crespo et al. modelled both

systems to determine this and examine more closely the band structure of the

lower energy system [118]. The supercell for maghemite in the disordered phase

is shown in Figure 5.1. Each unit cell is isostructural with the magnetite unit cell

shown in Chapter 3, however the possible vacancy sites are highlighted in green.

These sites have a 1/3 Fe3+ occupation randomly distributed throughout. Figure

5.2 shows the P41212 phase of maghemite with thirty six missing bonds compared

to Figure 5.1, and eight missing Fe3+. This supercell exhibits no disorder and is

consistent throughout the material. This distribution of vacancies is distinctive as

it creates the maximum possible homogeneity of iron cations and vacancies over
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the possible sites. In this configuration, vacancies never occupy three consecutive

layers.

Figure 5.2: Maghemite supercell in the P41212 phase. Eight Fe3+ ionic po-
sitions are vacant compared to Figure 5.1, and these vacancies are consistent
throughout the material.

The conclusion of Grau-Crespo et al. was that the P41212 crystal structure

was able to relax to the lowest energy and would therefore be the most likely

candidate structure under most conditions. They also showed that for almost all

temperature values up to the Curie point, this configuration was the most likely

to occur by at least 98% probability. There is still however one final caveat to

the investigation of cation vacancies noted by the same paper and past studies.

Maghemite nanoparticles have been shown to lack vacancy ordering when below a

certain size [122]. Haneda et al. studied samples of maghemite particles between

9 and 30 nm with low magnetite or hematite content [123]. They found that

vacancies occurred only in the B-sites in a disordered state for particles below 20

nm diameter. The occurrence of the vacancies was higher in the surface layers

of the nanoparticles and was reduced with increasing particle size, making it

difficult to establish the cause as a size or surface effect. This would mean that

they follow the Fd-3m magnetite symmetry with a distribution of vacancies within

the octahedral sublattice when in ultrafine nanoparticle form.

For this work we have chosen to use the Fd-3m cubic symmetry for two main

reasons: as we are mainly investigating the magnetic properties of particles

below 20 nm in diameter, this is well within the suggested range for disorder of

the vacancies. In addition, Grau-Crespo suggests that it is surface effects that

may be contributing the most to the lack of ordered vacancies and below 20 nm,

the surface to volume ratio is very high making it possible for surface effects
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to dominate. For the second reason, as we shall see in later chapters, we shall

be investigating core-shell particles with magnetite cores and maghemite shells

where it is very likely that, in practice, the unit cell structure for both materials

will relax to accommodate both materials and therefore maghemite will be bound

more strongly to an Fd-3m crystal symmetry.

5.3 Parameters

Due to the uncertainty in the structure of maghemite due to its different phases as

well as possibilities of mixing with similar ferrites, it is often difficult to find con-

sistently used parameters for the material. The lattice constant of maghemite is

sometimes reported to be around 8.347 Å[17] however this value changes slightly

from paper to paper. In some experiments where maghemite was prepared by

oxidation of magnetite particles, lattice parameters between 8.347Å and 8.397Å

have been shown, suggesting a mixing of structures between maghemite and

magnetite [124]. In a DFT study, which determined the regular vacancy distribu-

tion in bulk maghemite, a relaxed lattice constant of 8.359Å was suggested [118],

however this is specific to the tetragonal structure of maghemite. For this study,

we shall use the most commonly reported value of 8.347Å, which seems to be used

in conjunction with cubic symmetry maghemite.

Another important parameter for maghemite is its Curie temperature which

has been used to identify the material, in particular due to its chemical compo-

sition being very similar to magnetite and hematite. There is much debate on

the exact value of this parameter for several reasons. Similar to the determina-

tion of the lattice parameter, it can be difficult to test the purity of the sample

being studied leading to averaged out values of Curie temperature somewhere

between magnetite and maghemite. Also, due to the metastability of maghemite,

it is difficult to study the temperature dependent properties of the material if it

is decomposing during the process. The actual temperature of conversion from

maghemite to hematite is also disputed with some papers suggesting very low

values close to room temperatures [125], while others record much higher tem-

peratures around 900 K [126]. This is likely due to sample contamination where

small hematite impurities act as nucleation sites, causing the material to decom-

pose more quickly. Initially it was assumed to be impossible to determine the

Curie temperature of maghemite for this reason. While some natural samples of

maghemite would convert completely to hematite before reaching TC, this is not

true for all geological variations of maghemite as others have reported thermal
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stability of around 870 K [127, 128], with a possible reason being the inclusion of

metallic impurities which help to stabilise the system. More recently, theoretical

studies of maghemite which can remove the possibility of metallic or other iron

oxide impurities have been done to determine the exact value of TC.

A recent study by Liu et al. in 2010 [125] looked at the magnetisation versus

temperature properties of various grain sizes of maghemite to determine their

Curie point. What they found was a strong dependence of the critical point on

the shape of the grains, in particular their spin orientation being in either a

multi-domain (MD) state with multiple different spin orientation regions, or a

single-domain (SD) state where most of the spins where magnetised in the same

direction. Larger particles can form multi-domain structures more easily as they

are heated as different spin domains are able to grow naturally when they are

far away enough from surface boundaries which would constrain spin direction

and domain growth. In small particles this is much more difficult as the spins do

not have enough space to form multi-domain structures and are influenced more

heavily by their nearby spin neighbours. At the same time, both particle types

were subject to the same rapid heating process to convert them from magnetite to

maghemite and after analysis of the particles by Mössbauer spectroscopy, only

the small single-domain particles were fully converted, while the larger particles

still showed high levels of magnetite.

The saturation magnetisation curves from Liu et al. [125] are shown in Figure

5.3, which has two plots, one for the MD particles, and one for the SD particles. We

can see without fitting the plots that the Curie temperature is lower for the MD

particles. The exact method for extracting the Curie temperature is not specified

however the Curie temperatures for the MD particles is around 850 K and for

the SD particles 910K, suggesting that the Curie temperature of maghemite is

higher than that of magnetite. This difference is important when we apply it to

the nanoparticles we are simulating as they are always within the small particle

single-domain phase, hence we expect a Curie temperature above 900 K. Aside

from the Curie temperature we note that the scaling behaviour of the magnetisa-

tion for these particles is also very different. The multi-domain particles maintain

a higher magnetisation, and therefore spin correlation, for higher temperatures,

while the single-domain particles see a steady decrease to the Curie point. At room

temperature there is a 20% difference in the magnetisation of the particles which

would need to be considered when using them for biomedical heating applications.

This temperature scaling demonstrates some of the differences between magnetite

and maghemite particles and is a strong reason for their usage in individual appli-
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Figure 5.3: Experimental saturation magnetisation plots for maghemite
grains of different sizes. The multi-domain particles have a predicted Curie
temperature of around 850K, while the smaller single-domain particles have a
Curie temperature of 910 K. Data adapted from Ref. [125].

cations. At lower temperatures, for example, the magnetite particles will remain

more strongly magnetised than those made of maghemite. This of course does not

take into account the magnitude of their magnetisation, as maghemite is reported

to have a higher overall saturation magnetisation [126]. Hence there is likely a

balance between the materials according to what temperature the material is

required for.

According to Liu, the grains used in the study were around 70% pure maghemite,

leaving 30% as other iron oxide impurities, most likely magnetite left over from

the original sample, and hematite formed during the heating process. As the Curie

temperature has risen, it is very likely that maghemite in a pure bulk system

would have a higher TC than magnetite. Hence for this work we shall expect

a bulk Curie temperature of maghemite of 950 K as this is often referenced in

the literature [9, 17]. There is an argument to be made that this value should

be lower, however for the purposes of this work, the absolute value of the bulk

Curie temperature expected is not as important as any deviations we shall see

from it due to shape or size changes. The bulk temperature is important as it is

used as a benchmark for when a simulation suggests a lowering or increasing of
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the critical point. The values of exchange used in our simulations are the largest

contributors to the system Curie temperature however if we change all exchange

values by the same factor, the system Curie point will change by a similar amount.

Hence, if in reality the Curie temperature of maghemite is 800K, we can divide all

exchange values by a constant to simulate a lower TC while preserving the ratio

of the exchanges which is much more important. These ratios, such as the ratio of

FeA-FeA (tetrahedral to tetrahedral exchange) compared to FeB-FeB (octahedral

to octahedral exchange) help to evaluate the overall magnetic properties of the

system as they define the temperature scaling.

5.3.1 Anisotropy

Following on from the uncertainty in macroscopic properties of maghemite, we

find that current research is no clearer on theoretical modelling parameters

such as the magnetocrystalline cubic anisotropy constant K , or the exchange

interaction values. The nature of the anisotropy in maghemite is cubic, with an

easy axis direction of [111] and is likely to be very weak, lower than the anisotropy

of magnetite which is well known for having a relatively low bulk anisotropy. In

the literature it is possible to find a value of 4.7×104erg/cm3, cited from Krupička

et al. [129], however we do not have an idea of the temperature scaling of the

anisotropy, nor do we have any higher order anisotropy values. In addition, the

original source is no longer available and therefore further research into the

origin of this value is impossible. In spite of this, several theoretical modelling

papers [130, 131] use the same value and therefore it is currently the best choice

available. Using equation 3.3, the bulk cubic anisotropy can be converted to an

atomistic anisotropy, ku =−5.12×10−26J/atom.

5.3.2 Exchange

The exchange interaction values for magnetite we use are from Uhl and Siber-

chicot [28] who calculated them from first principles. This type of analysis does

not exist for maghemite, and the exchange values found in the literature come

from different sources. Two sets of exchange parameters for maghemite are listed

in Table 5.2, which come from proposed exchange values of different materials.

They are shown in units of Kelvin, as in the original paper where these values are

expressed as temperatures, and in units of energy (meV) which is more commonly

used today. These values are related by the simple equation E = kBT.

The first set of values should look familiar as they are from the same paper by
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Uhl and Siberchicot that discusses magnetite [28]. These values have been used in

recent work [130] to look at surface anisotropy in maghemite nanoparticles. While

this might look like a crude approximation, there are several compelling reasons

to use these values. Magnetite and maghemite are isostructural materials with

exchange occurring in similar ways, through oxygen mediated paths, and with

interaction distances being approximately equal. The tetrahedral interactions,

FeAA, could be very similar in maghemite as the ions are the same however the

interactions involving Fe2+ ions, FeAB and FeBB may see larger differences due to

the lack of Fe2+ in maghemite. Another set of values, used in several other papers

concerning atomic scale modelling of maghemite [131, 132] instead use interaction

values based on nickel ferrite, NiFe2O4. This is another good approximation for

maghemite as it is also isostructural, since NiFe2O4 is an inverse spinel, with

similar lattice parameters. NiFe2O4 has 6 pairs of exchange interactions as it

includes Fe3+, Fe2+ and Ni2+ ions and the exchange values used in maghemite

correspond only to Fe3+ interactions from these. This could be a big improvement

from the interaction values of magnetite as the ionic species is always the same.

JAA JAB JBB

From Fe3O4 meV -0.11 -2.92 0.63
K -1.3 -33.9 +7.3

From NiFe2O4 meV -1.81 -2.42 -0.74
K -21.0 -28.1 -8.6

Table 5.2: Proposed exchange interaction values for maghemite in units
of Kelvin and meV. These values are not specific to maghemite but adapted
from similar materials with isometric structures to maghemite and exchange
between Fe3+ ions.

The exchange parameters coming from NiFe2O4 are slightly more commonly

used in the literature on computational investigations of maghemite however

on analysing the values proposed there are a few possible issues. Both sets

of exchange values agree on the JAB interaction; it is the largest of the three

and antiferromagnetic. The JBB interaction value from NiFe2O4 is suggested to

be antiferromagnetic, rather than ferromagnetic as in magnetite, however its

relative strength is still small. This is at odds with our previous analysis of FeBB

in magnetite as the superexchange interaction occurs over a 90° angle (this can

be seen very clearly by looking at the unit cell, Figure 3.4) and should therefore

be a weak ferromagnetic interaction. Despite the relatively weak magnitude,

the sign difference should have a significant impact on the overall exchange.

Finally, the JAA interaction is suggested to be antiferromagnetic, as we assume in

magnetite. In this case the sign of the exchange is ambiguous as the exchange
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occurs infrequently in the unit cell and over large distances. It is because of this

that the relatively high magnitude of the JAA interaction taken from NiFe2O4

does not apply well to maghemite. The strength of an Fe3+-O2--Fe3+ interaction is

likely related to the number of such interactions within the unit cell and their

interaction ranges [133]. Here this interaction is both infrequent and over a

long range therefore it is much more likely to be the smallest interaction as in

magnetite. It is also worth pointing out that this interaction occurs in exactly

the same way, and between exactly the same species in magnetite, and should

therefore be the most transferable value between systems.

In Chapter 3.3, we have shown that the original exchange interaction values

suggested by Uhl and Siberchicot replicate the magnetic properties of magnetite

well, the predicted Curie temperature and magnetisation scaling (using quantum

rescaling) agree very well with experiment. As we lack the same quality of ex-

change interaction values for maghemite, it seems that the best starting values

are those of isostructural magnetite. This is of course an approximation; however

it is necessary due to the current lack of well-founded values available. As such,

we will have to adjust these starting values to replicate the Curie temperature of

maghemite, 950K, by multiplying each exchange value by a constant factor. By

doing this, we preserve the relative values of each exchange, and therefore the

scaling of magnetic properties and exponents, but maintain the Curie temperature

expected.

5.4 Simulating Maghemite

As we have now compiled a suitable set of parameters for modelling maghemite,

we can now investigate its temperature scaling properties. As with magnetite, we

begin with a small periodic boundary conditions system to approximate the bulk

properties of the system. To recap the parameters:

• The system is cubic with a lattice constant of a = 8.347Å

• There are three unique materials:

– Tetrahedral site iron 3+ ions with spin moment 5µB

– Octahedral site iron 3+ ions with spin moment 5µB

– Non-magnetic oxygen 2- ions

• Iron vacancies (11%) occur in the octahedral sublattice
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• The anisotropy direction is 〈1̄1̄1̄〉

• The exchange interaction values (in meV) are JAA =−0.12, JBB = 0.68 and

JAB =−3.15. These values correspond to the values in Table 5.2 multiplied

by approximately 1.08.

As with magnetite, the simulations are checked to ensure all final data points

are converged. The magnetisation reaches convergence very quickly as it equi-

librates after only 50k Monte Carlo time steps. The susceptibility and specific

heat values take longer to converge, relaxing over the first 100k time steps and

reaching equilibrium almost asymptotically. To ensure convergence for all temper-

atures and properties, most simulations are run until at least 1 million time steps.

The convergence for a 6 nm system around room temperature is shown in Figure

5.4. While the magnetisation looks like it is still erratic, this is simply a symptom

of scaling all data sets between 0-1 as the magnitudes of the magnetisation, sus-

ceptibility and specific heat are at different scales. The initial max value of the

magnetisation is 0.2288m and the lowest is 0.2291m therefore the magnetisation

is essentially a flat line and immediately converged. The susceptibility and specific

heat take much longer to converge properly and therefore require more time steps.

Rather than plotting the magnetisation, it is worth using the raw susceptibility

to find the value of TC for this system. For these initial simulations, we cannot

use any rescaling parameters as magnetisation scaling and the β parameter is

required first, however the susceptibility will be mostly unaffected by the classical

model as the most relevant data points occur around TC where quantum effects

no longer persist. With a precise point for TC we can fit the magnetisation curve

more easily for the exponent, β. According to Figure 5.5 the Curie temperature

occurs around 960K, with PBC finite size effects increasing the Curie temperature

moderately due to increased spin correlation through the periodic boundaries.

The sublattices also peak around 960 K (±0.5K), with the width of the peak of

each plot spanning around 100K, indicating the Curie temperature occurs in the

middle of a more gradual transition from ferrimagnetic to paramagnetic. As it is

a ferrimagnet, we also see the difference in magnitudes of the sublattice suscep-

tibilities and the overall susceptibility indicating the intra and inter-sublattice

modes (Figure 3.26). We now use this to more accurately fit the magnetisation

scaling versus temperature, still using only the classical model.

Using Gnuplot [45], we fit the magnetisation according to the classical Curie-

Bloch equation (3.9) and constrain the Curie temperature to 960K, from the
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Figure 5.4: Convergence of magnetic properties for maghemite. Conver-
gence of the magnetisation, susceptibility and specific heat for a 6 nm PBC system
of maghemite at 300 K using 1 million Monte Carlo time steps. All properties
have been scaled to lie between a value of 0-1 for visual clarity. The magnetisation
is fully converged very quickly, with the changes in value shown only representing
0.0001m, while the susceptibility and specific heat take several hundred time
steps to reach a converged value.

susceptibility. The fit performs very well, with asymptotic standard errors in the

derived β of less than 2%, for the fit of the overall system as well as the sublattices.

This data is shown in Figure 5.6.

As we have seen in the finite size scaling analysis of PBC systems, β is

expected to be moderately higher in a 6 nm system then in bulk however this

only by a small amount. The calculated β for the overall system is 0.505, lower

than that of magnetite and again far from the ideal version predicted for the

3D Heisenberg Hamiltonian of 1/3. As we are using exchange values based on

those from magnetite, and these values have the largest impact on the magnetic

properties of the system, it is not surprising that the value does not change

completely. It is the changes in anisotropy, the Fe3+ octahedral sublattice and iron

vacancies, that are the main causes of deviation from the results of magnetite.
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Figure 5.5: Susceptibility versus temperature scaling of 6 nm PBC
maghemite around the critical point. The peak of the susceptibility for the
overall system, as well as the sublattices, occur around 960K, moderately higher
than the bulk 950 K as expected from the small system size.

5.4.1 Rescaling Parameter

To improve our magnetisation scaling, it would be ideal to find the appropriate

rescaling parameter, α, for maghemite. Using this, we will be able to apply the

rescaling method to achieve more realistic low temperature behaviour. Unfortu-

nately, this is not an easy task as experimental magnetisation scaling versus

temperature behaviour for bulk maghemite is essentially non-existent. A review

of the literature on maghemite reveals many papers on the formation of nanopar-

ticles using different methods [126, 134–138] and none on bulk properties. This

is in part due to its stability and its formation process as well as the difficulty

in forming high purity maghemite grains. α itself will likely be slightly different

for nanoparticles compared to bulk due to the change in vacancy distribution

described in section 5.2. In addition, most of the experimental data does not cover

the whole temperature range from 0 K to TC, but starts at 0°C, omitting the low

temperature behaviour which is crucial for fitting α.

We have already come across one example of the magnetisation scaling of

maghemite earlier, by Liu et al. [125]. For this work, fine grains of magnetite,
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Figure 5.6: Magnetisation versus temperature scaling of 6 nm maghemite
with periodic boundary conditions. The fits are made using the classical
Curie-Bloch equation, with the Curie temperature constrained to 960 K. Calcu-
lated β for the overall system is 0.505, for the tetrahedral sublattice 0.326 and for
the octahedral sublattice 0.392.

either single domain or small multi domain particles (up to ≈ 50µm), were heated

to 975 K and maintained at this temperature for 10 minutes. The resulting powder

was found to be mostly made of of maghemite using Mössbauer spectroscopy, how-

ever some impurities remained in the sample, likely magnetite or hematite, which

showed a reduced Curie temperature, around 910 K. It is therefore likely that the

magnetisation scaling is a result of the largely maghemite system competing with

other iron oxide impurities. Much like the work from Liu, we also find studies on

the high temperature magnetisation scaling of maghemite by Özdemir et al. [126]

and van Oorschot et al. [135], as well as low temperature scaling by Lee [137].

Figure 5.7 combines these works to give an idea of the different scaling be-

haviours found. As the systems measured are of subtly different shapes and sizes

for each work, the magnetisation values and Curie temperatures have been nor-

malised. For some of the data which have already been normalised to a value of

1.0 at 0°C, all plots have been adjusted to lie along the same magnetisation vs tem-

perature curve. This constitutes a very rough fitting of experimental data however

the critical exponents should not change drastically from one system to another.

From our work on magnetite, β should be slightly reduced in nanoparticles but
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still close to the bulk value.
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Figure 5.7: Experimental data for the magnetisation scaling of
maghemite nanoparticles. Data from Lee et al. [137] in dark(a) and light(b)
blue, Liu et al. [125] in dark brown, Özdemir et al. [126] in light brown, and van
Oorschot et al. [135] in gold.

The low temperature scaling data for maghemite is from Lee et al. who used

two different methods to form maghemite. The (a) data set was made using a

pipette drop method, forming particles between 5-8 nm, while the (b) data set

used a piezoelectric nozzle method which formed smaller 3-5 nm particles. These

particles show a magnetisation scaling not in line with any other data set and are

likely affected by strong finite size effects as well as strain due to the incomplete

surface structure. Focusing on the (a) data set, we can form a smooth transition

between this data and the high temperature scaling plots.

The data from Özdemir and van Oorschot agree very well with each other

showing very similar scaling however the plots for each data set is distinct, with

slightly different saturation values. It is worth mentioning that the work done

by van Oorschot was reviewed by Özdemir, making it possible for experimental

methods to be improved through collaboration from each group. The maghemite

samples for these works were reported to be more than 95% pure maghemite, a

notable improvement over the samples used by Liu. This is apparent due to the

moderate change in scaling from each data set. To extract values for the critical

exponent β and rescaling parameter α, we use a combination of the low and high
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temperature data sets. While this is not ideal, it is currently the only way to get a

rough estimate for the α exponent of the system.
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Figure 5.8: Fitting exponents for maghemite. Fitting the low temperature
data set of Lee (a) and the mid to high temperature data set of Özdemir using
the Curie-Bloch equation (2.39). The Curie temperature is around 920K, with
β= 0.66 and α= 1.54.

As the Lee(a) and Özdemir (or van Oorschot) data sets seem to agree well

with each other, we can attempt to fit the data using the Curie-Bloch equation.

This fit is shown in Figure 5.8, with β = 0.66 and α = 1.54. Considering each

value individually, the fit β is relatively close to that from magnetite. As the

materials are similar in nature this is not unrealistic and is not necessarily an

indication of high magnetite content. α is somewhat lower than the predicted

value of magnetite however from communications with Jung Wei Lao (2011 PRD),

there is a high possibility that the α exponent is not the same for all sublattices of

maghemite. We have already explored the diverging values of β in magnetite and

so this phenomenon is not new. While the tetrahedral sublattice of maghemite is

fully ordered and therefore likely has an α exponent close to 2 [40], the octahedral

sublattice is disordered due to the iron site vacancies and can therefore have

a much lower exponent closer to 1. So far this is our best guess at the value

of the critical exponent of maghemite, mostly coming from the aforementioned

communication with Jung Wei Lao.

Maghemite still presents many difficulties in experiment and theoretical
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modelling. The exchange interaction values as well as the critical exponents are

very difficult to use accurately as there is very little high-quality information to

be found. Still, we shall use the information gathered so far to study, as well as

possible, the predicted properties of both bulk maghemite and nanoparticles.

5.5 FSS Properties of Maghemite

As maghemite is inherently unstable, it is not used as a bulk material but in-

stead as nanoparticles or needle shaped particles previously used in recording

media. Research into the properties of maghemite particles is therefore crucial

to their application. While in nanoparticle form, maghemite will exhibit finite

size effects, and these are very likely to be affecting many of the previous works

discussed in this chapter. Many experimental papers suggest Curie temperatures

for maghemite below the commonly referred to value of 950K, which is likely due

to the lowering of TC from FSS or other iron oxide impurities.

5.5.1 Periodic Boundary Conditions

In the case of maghemite, periodic boundary conditions do not offer a method of

comparing simulated bulk properties of maghemite to those found in experiment

as these values do not exist. In stead it offers an idea of how a bulk maghemite

system could behave. Like magnetite, PBCs remove the surface element of the

system and instead overestimate the magnetic properties due to an increase of

spin coordination throughout the material.

Figure 5.9 shows the non-rescaled MvsT of maghemite. The system with the

largest repeating cell approaches the properties of bulk with a Curie tempera-

ture around 950 K. If the Curie temperatures are normalised, we can compare

the curves of maghemite to the same data set for magnetite. The data is very

similar however for all temperatures maghemite maintains a higher normalised

magnetisation and falls more steeply at the critical point due to a higher β. This

is only comparing the classical behaviour of the magnetisation however. When

rescaled, magnetite is predicted to have a scaling exponent α= 1.951, while our

estimate of that in maghemite is α= 1.54. Higher values of alpha cause the low

temperature range of the magnetisation to remain high, forming a more box-like

curve, hence we expect that in experiment, magnetite nanoparticles will lose their

magnetisation more slowly with increasing temperature.

The sublattices of maghemite, shown in Figure 5.10, show distinct scaling
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Figure 5.9: Temperature versus magnetisation scaling for PBC
maghemite. The data has not been rescaled. As the system is periodic, smaller
unit cells cause TC to increase however the larger systems tend towards the
properties of bulk maghemite with a Curie temperature of 950 K.

behaviours, both more curved than the overall plot. No rescaling has been applied

as the α values for each sublattice is likely significantly different to the value

found for the total. As explained earlier however, the tetrahedral lattice likely has

an α exponent close to 2 as it is fully occupied.

5.5.2 Nanoparticles

Nanoparticles of maghemite have been studied extensively however the purity

of the material is often in question when the experimental results show reduced

Curie temperatures and Mössbauer spectroscopy suggests the presence of other

iron oxides. Finite size scaling effects in nanoparticles compound these issues as

small nanoparticles have their Curie temperature further reduced. From Figure

5.11 we see that all spherical nanoparticles of maghemite have a reduced Curie

temperature, down to 930 K for the largest system at 16 nm. This is in agreement

with the results seen in the literature by Özdemir and van Oorschot who studied

high purity nanoparticles of maghemite and found Curie temperature values

below the ideal 950 K [126, 135].

This reduction in the Curie temperature occurs uniformly in various nanopar-
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Figure 5.10: Magnetisation and susceptibility scaling of the sublattices of
maghemite. The sublattices behave differently to each other, with the octahedral
magnetisation lowering more quickly, and will therefore have differing β expo-
nents. Despite this, the susceptibility plots show that each lattice has a closely
aligned TC.

ticle shapes including spherical and faceted systems. The scaling is also roughly

proportional to the number of atoms in the system (for symmetric particles),

causing spherical systems to exhibit the lowest overall Curie temperature due to

having the lowest surface area to volume ratio.

5.6 Beta Scaling

So far we have only used the β parameter to describe and compare the mag-

netisation scaling of finite size systems for both magnetite and maghemite. The

parameter itself is not set in any way but is a result of the interactions of the

particular system. For bulk systems, the value of β is often used as a constant

and defined as a critical exponent however this carries several implications on

the value of the parameter.

In general, critical exponents describe the behaviour of a material around a

continuous phase transition. It is dependent on the size of the system, the interac-

tion range and the spin dimension (such as a 2D Ising model or 3D Heisenberg).
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Figure 5.11: Magnetisation scaling of spherical nanoparticles of
maghemite. All particles exhibit reduced Curie temperatures, with bulk TC
(960 K) denoted by the dotted line, including the largest sample of 16 nm which
has a TC around 930 K.

β is one such exponent, however α, which we have used to describe the classical

to quantum rescaling properties of the system, is not related to another critical

exponent typically denoted by the same symbol.

These constants can be derived using various and approximations such as

mean field theory (which approximates a stochastic model), in conjunction with

a model such as 2D Ising. The model and dimensionality of the system has a

significant effect on the value of the critical exponents which are then grouped

together into so called universality classes. Universality classes group together

critical exponents for systems of an ideal size. For example, we have already seen

that the β exponent varies according to system size and tends towards a constant

value. Bulk systems represent the ideal state where the critical exponent reaches

a constant value.

Focusing on β, this exponent is related to the magnetisation strength of a

system below the critical point, the Curie temperature, hence it is defined for the

ordered phase of the system where τ < 0 and τ = (T −TC)/TC. Further, β has a

well-defined value for the classical 3D Heisenberg model, typically around 0.34

[42]. This value can vary significantly for other models, for example using the
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Figure 5.12: Comparison of the Curie temperature scaling for periodic
boundary condition systems and various nanoparticle shapes. Both sys-
tem types tend towards bulk properties however the nanoparticles have consider-
ably reduced TC for all particle diameters.

mean field approximation it is 0.5. We can calculate β using the magnetisation

plots and Curie-Bloch equation to find the appropriate constant for our systems.

This has already been applied to spherical nanoparticles of magnetite in Figure

4.6 and here for periodic systems which more closely approximate ideal bulk

conditions in Figure 5.13.

So far, we have studied two materials which do not neatly fit into the typical

university class of classical 3D Heisenberg materials as they have β values

dependent on the component of the system under study. For both magnetite and

now maghemite, the β exponent does not tend to 0.37 for the overall material

or any of the sublattices. In stead it is significantly higher at 0.47 and 0.53 for

maghemite and magnetite respectively.

From communications with Ondrej Hovorka of the University of Southampton

in 2019, it is also possible that the universality classes are not only unique to the

model being used but instead also a symptom of the material under study. Hovorka

suggests that different materials can lead to drastically different critical exponent

and are not necessarily similar to materials which share the same properties.

Here we have found that the β exponent is roughly similar for all components
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Figure 5.13: β scaling for all components of maghemite. The overall value of
β tends to a value of 0.47, while the tetrahedral and octahedral sublattices tend
to 0.32 and 0.38 respectively.

of magnetite and maghemite however this need not be the case. Unfortunately,

it is difficult to find other materials which share the β values we have seen so

far in the literature and these materials and possibly other iron oxides form a

universality class of their own. At the same time, this does not fully explain the

phenomenon as the values we have calculated are close to convergence and do not

seem to be tending closer to each other.

5.7 Conclusion

Building from the model used on magnetite, we can make changes to the struc-

ture and material parameters to model maghemite. Many of the nanoparticle

properties of maghemite are difficult to study due to its instability while at the

same time we have no reference for the bulk properties either. In this Chapter we

have used exchange constant and anisotropy values which are not as rigorously

defined as in magnetite, however we are still able to form a mostly complete

model to study the temperature dependant magnetic properties of the system in

a simulated bulk, as well as nanoparticle form. As maghemite has been used in

biomedical applications, as well as been found to form as rust on pure magnetite

particles, it is important to have a clear picture of the effect maghemite has on
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the magnetic properties of nanoparticles at the nanometer scale.

Maghemite has also shown consistency in our results compared to those of

magnetite. The critical exponent β of maghemite shows values close to those

found in magnetite for all components, the overall system and sublattices. This

is a curious result as it is in stark contrast to most of the literature on the 3D
Heisenberg predicted value. This is possibly due to the materials belonging to

a separate universality class of their own, as suggested by Hovorka, or due to

separate parameters from size or shape which may be affecting the converged

value of the exponent.
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6
COBALT FERRITE

6.1 Introduction

The surface of iron oxides such as magnetite is widely studied due to its complexity

and variation. In addition to understanding the nature of surface structure, much

work has gone into understanding the adsorption properties of the material.

Adsorption, specifically adsorption on solid surfaces, is the adhesion of atoms, ions

or molecules due to surface energy differences between the original material, and

the compound. Iron oxides are able to integrate a significant number of materials

into their surfaces: hydrogen [139], water [140] and organic compounds [141, 142]

are of interest due to the catalytic reactions iron oxides take part in. The water-gas

shift reaction for example uses an iron-oxide based catalyst to convert water and

carbon monoxide to hydrogen gas and carbon dioxide [143].

Metal adsorption on Fe3O4 has also been intensely studied due to the use of

iron oxides as a support material in catalysis, however this interaction can go a

step further as some metals integrate themselves into the sub-layers or bulk of

the iron oxide, forming new materials. This does not occur for all metals, and the

process can be divided into two groups: non-ferrite-forming metals, such as Au,

Ag, Pd and Pt [144–146], and ferrite-forming metals such as Co, Ni, Cu, Mn, Ti

and more [147–149]. For this chapter we shall focus on one such metal ferrite,

formed by doping magnetite with cobalt.

Cobalt ferrite, in particular nanoparticles of cobalt ferrite, have seen interest

due to their many uses such as for permanent magnets [151], as high-performance
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Figure 6.1: Properties, synthesis methods and applications of cobalt fer-
rite. Figure adapted from Ref. [150]

anodes in lithium batteries [152] or as spin filters for spintronics applications

[153]. Like magnetite and maghemite, they have also been used in biomedical

applications due to their high magneto-crystalline anisotropy which originates

from the spin-orbit coupling at crystal lattice sites [14, 154, 155]. The heating

characteristics and magnetisation adaptability is of critical importance and can

be examined closely by atomistic simulation.

6.2 Structure

Cobalt ferrite grains are usually prepared from magnetite, in thin films [156] or

nanoparticles. Cobalt ions can be introduced to magnetite and readily incorporate

themselves into the surface. This behaviour is characterised best with the (
p

2 ×p
2 )R45° [100] magnetite surface reconstruction which is different to the regular

bulk structure of magnetite and is the lowest energy [100] termination. Iron
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vacancies form one level below the surface, separated by interstitial iron atoms

as shown in Figure 6.2(a). Cobalt adatoms bind to oxygen-bridging sites initially

but can also integrate themselves into the structure by filling one of the iron

vacancies. In this case, the interstitial iron ion is then moved into the remaining

vacancy [147] and the inverse spinel cation distribution is locally recovered. The

cobalt ions are also able to penetrate further into the system replacing iron ions

at sites (ii)-(v) in Figure 6.2(b).

Figure 6.2: Cobalt integration into magnetite surface. In the (
p

2 ×p
2 )R45°

[100] magnetite surface reconstruction, iron vacancies form under the surface,
separated by interstitial iron atoms, Feint. Cobalt ions adsorbed onto the surface
can bind to oxygen-bridging sites initially (a) and then incorporate themselves
into the bulk by filling one vacancy site as the Feint fills the other (b). Figure from
Ref. [156].

Configuration Energy (eV)
Co adatom -5.46
Cooct S -5.41
Cotet S-1 -5.27
Cooct S-2 -5.59
Cooct S-6 -5.75

Table 6.1: Energy differences for binding sites of Cobalt ions in the mag-
netite surface. Cobalt adatoms and surface sub-level 6 have the highest energy
differences and are the preferred sites for the Cobalt ions. Adapted from Ref. [156]

The associated energies for the cobalt substitutions was calculated by Gargallo-

Caballero et al. and these results are shown in Table 6.1. The cobalt adatoms are

more energetically favourable to iron replacements in the first few sub-surface

layers leading to some cobalt ions being left on the surface in experiment [147].

The lowest energy configuration is a cobalt substitution in the octahedral S-6

layer (shown in Figure 6.2(b)) which shows how cobalt ions are able to penetrate

into the material. The binding energies are higher for all octahedral sites than for
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the tetrahedral sites, which suggests that the cobalt ferrite structure involves an

iron only tetrahedral lattice and a mixed cobalt and iron octahedral lattice.

Instead of looking at nanoscale systems we can ask what a bulk cobalt ferrite

system would look like. The system should be very similar to other iron oxides

and form a spinel structure. The first question is whether they form a normal

spinel structure with divalent atoms on the tetrahedral A sites and trivalent

atoms on the octahedral B sites. Early studies on cobalt ferrite done by O’Neill et
al. [63] looked at the oxygen positional parameter in cobalt ferrite and compared

the formulas of four different proposed structures which would correspond to

the general formula CoFe2O4. These are listed along with calculated lattice and

oxygen positional parameters in Table 6.2.

a(Å) u
1 (Co2+)[Fe3+

2 ]O4 8.4091 0.2596
2 (Fe3+)[Co2+ Fe3+ ]O4 8.3702 0.2536
3 (Co3+)[Fe2+ Fe3+ ]O4 8.3439 0.2516
4 (Fe2+)[Co3+Fe3+ ]O4 8.3004 0.2638

Table 6.2: CoFe2O4 lattice parameters. CoFe2O4 structures with different A
and B site occupancies, and their respective calculated lattice parameters and
oxygen positional parameters. Table adapted from Ref. [63].

The accepted values for the cobalt ferrite lattice parameter vary slightly

between sources, most likely due to slight differences in the studied samples. A

lattice constant of a = 8.38Å is listed in textbooks such as Cullity [58] and Roiter

and Paladino determined it to be 8.382±0.001Å [157]. This should indicate that

the (Fe3+)[Co2+ Fe3+ ]O4 structure is the most likely candidate, leading to the

overall structure of cobalt ferrite being inverse spinel, remaining isostructural

to magnetite. This is still an oversimplification of the structure of cobalt ferrite

as it is only the "ideal" structure for the system, where cobalt ions are randomly

distributed only in the octahedral sublattice and do not replace any of the A site

iron ions. Cobalt ions have been found to occupy tetrahedral coordination sites

in low quantities leading to the general formula (CoxFe1−x)[Co1−xFe1+x]O4[150].

The exact value of x is heavily dependent on temperature and method used to

form the cobalt ferrite. In some cases it can also lead to iron or cobalt deficient

systems of the formula Co1±xFe2∓xO4[63].

Bulk cobalt ferrite should form more readily with the ideal configuration of

cobalt ions only distributed within the octahedral lattice while within nanosys-

tems there is a higher degree of tetrahedral occupation. This can be difficult to
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model and is not necessarily useful data as the deviations from ideal structure

causes the overall magnetic properties to diverge. Hence for this study we shall

be using the ideal structure of CoFe2O4 nanoparticles as our base. The particles

will be inverse spinel, Fd-3m, and the magnetic properties presented shall be a

benchmark for cobalt ferrite behaviour.

6.3 Parameters

The Curie temperature of cobalt ferrite can be difficult to quantify much like the

lattice parameter. It does not have a constant value for all system sizes which

is most likely linked to the structural defects of the (CoxFe1−x)[Co1−xFe1+x]O4

system. As smaller nanoparticles are more likely to be mixed ferrites with x > 0,

the magnetic properties of the system such as the saturation magnetisation

and the Curie temperature can change. In a study by Franco et al. [158], the

saturation magnetisation of cobalt ferrite nanoparticles is 82% lower than in bulk,

351emu/cm3 and 425emu/cm3 for nanoparticles and bulk respectively.
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Figure 6.3: Magnetisation vs. temperature of bulk and nanoparticle
cobalt ferrite. Both axes have been normalised as the saturation magnetisation
and TC of nanoparticle and bulk cobalt ferrite is different; however the scaling
behaviour is not too dissimilar for each system indicating only a small change in
the exchange values. Bulk data from Ref. [29], nanoparticle data from Ref. [158].

Cobalt ferrite nanoparticles exhibit a Curie temperature higher than bulk
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and the temperature scaling behaviour changes due to structural changes, with

small amounts of cobalt ferrite in the tetrahedral lattice affecting the overall

system properties. A comparison of the scaling in nanoparticles and bulk is shown

in Figure 6.3. In nanoparticles the Curie temperature is predicted to be around

820-830 K using magnetisation and susceptibility data, while in bulk is it reported

as 795 K [29, 58], similarly the saturation magnetisation is 82% lower. In spite of

this, Figure 6.3 shows that the scaling for each system deviates only slightly and

the exchange values should still be heavily related.

As we are modelling cobalt ferrite as a perfect inverse spinel with no cobalt

ions in the tetrahedral lattice, bulk behaviour is expected and therefore to keep

our parameters consistent we shall use a Curie temperature of 795 K.

6.3.1 Anisotropy
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Figure 6.4: The temperature dependence of anisotropy K1 for cobalt fer-
rite. Calculated using Eqn. 6.1 and compared to magnetite. The plot uses a log
scale y-axis to show the difference in magnitude of the material anisotropies.
Magnetite data from Ref. [76]

The anisotropy of cobalt ferrite is well studied compared to that in other

iron oxides such as maghemite, mainly due to the effect of cobalt ions on the

system and the considerable number of uses for this material. Unlike magnetite,

maghemite and most other spinel forming metal ferrites, cobalt ferrite has a

cubic anisotropy with an easy axis in the [100] direction, with a relatively high
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magnitude. When looking at ferrites, in 1957, Shenker [159] determined the value

of the K1 constant in cobalt ferrite to vary with temperature according to the

following equation between 20-350 K.

K1 = 19.6×105 exp(−1.90×10−5T2) J/m3 (6.1)

Figure 6.4 shows the difference in anisotropy for magnetite and cobalt ferrite.

The cobalt causes a huge change in the material anisotropy, changing both the

direction and magnitude. Note that the anisotropy for magnetite at low tempera-

tures is constrained by the Verwey phase transition and magnetite has a negative

anisotropy below this point. Cobalt ferrite was speculated to have a similar phase

transition below 90 K however most papers studying the anisotropy show no

such behaviour [159–161]. The anisotropy of cobalt ferrite remains strong around

room temperature, K1 ≈ 4×105J/m3, however it is highest close to zero Kelvin, at

K1 ≈ 2×106J/m3.
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Figure 6.5: CoFe2O4 anisotropy scaling comparison. A comparison of the
anisotropy scaling with respect to temperature of cobalt ferrite from the studies
of Shenker [159] and Yoon [161]. The high temperature anisotropy is very similar
however at low temperatures the measured anisotropies diverge.

A more recent study by Yoon et al. [161] looked at the anisotropy scaling of

ultrafine cobalt ferrite nanoparticles of high purity (low tetrahedral cobalt and

complete inverse spinel structure) and found that the low temperature anisotropy
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was several times higher than previously reported, reaching 8×106J/m3. Both

studies are shown in Figure 6.5. The anisotropy is very high close to zero Kelvin in

the case of Yoon, and lowers greatly towards room temperature. Surface anisotropy

is likely the largest factor causing the discrepancy between the two data sets,

and is often several times larger in magnitude to the intrinsic magnetocrystalline

anisotropy of the material [162].

This discrepancy makes choosing an appropriate value for the anisotropy

constant of cobalt ferrite very difficult as it will affect low temperature magnetic

properties more heavily. For most scaling behaviour where the magnetic properties

around the Curie temperature are in focus, the room temperature value can be

used as the anisotropy will have little effect. When studying the low temperature

magnetic properties, the higher anisotropy strength will also be considered due to

the effects on spin-switching.

6.3.2 Exchange

The exchange interaction values for cobalt ferrite are less well reviewed in the

literature. Some papers list exchange interaction values for cobalt ferrite in a

2-lattice model [163] however this is a less than ideal approach to understanding

cobalt ferrite. In the 2-lattice model, the spinels are assumed to have the over-

all formula AB2O, with two lattices each containing a divalent species, A, and

trivalent species B. Following this there are three possible exchange values, JAA,

JAB and JBB. Maghemite is a good example for this model as although both A

and B species are Fe3+, the superexchange distances between tetrahedral and

octahedral iron ions are different and therefore the two can be treated differently.

The exchange interactions for the system can therefore be fully explained using

three parameters. This is the same system that was initially applied to magnetite

by Néel [6] who understood that two different ionic species existed in the octahe-

dral lattice but hoped that it could be approximated by one exchange value. This

assumption would turn out to be fruitful as (omitting more recent explanations

covered in Chapter 3) the Fe2+ and Fe3+ ions in magnetite form a mixed valence

state of Fe2.5+ above the Verwey transition and are mostly indistinguishable

[74, 164]. This allows the 2-lattice model to work well for magnetite.

In cobalt ferrite there are three distinct ionic species: tetrahedral Fe3+, octa-

hedral Fe3+ and octahedral Co2+, which in equal amounts make up all magnetic

atoms in the unit cell. In CoFe2O4 the octahedral ions do not form a mixed state

and are therefore represented as (A)[BB’]O. Hence there are six total interactions:
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JAA, JAB, JAB’, JBB, JB’B’ and JBB’, where B is octahedral Fe3+ and B’ is Co2+. This

approach is known as the 3-sublattice model and was approached by Srivastava et
al. [29] who calculated these values from molecular-field approximations by using

Ms vs. T and χ−1 vs. T data. Their results are shown in Table 6.3.

JAA JAB JAB’ JBB JB’B’ JBB’

CoFe2O4 meV -1.29 -2.24 -1.96 -0.65 4.04 -1.59
K -15 -26 -22.7 -7.5 46.9 -18.5

Table 6.3: 3-lattice exchange interaction values for cobalt ferrite. The
strongest interaction comes from the Co2+-Co2+ interaction while the JAA and JBB

are relatively weak.

According to his paper Srivastava shows that these values have good agree-

ment with experimental results, which is somewhat expected due to the initial

source for the exchange values. As the model used by Srivastava is different to

previous exchange values used here, it is likely that these values will require

some adjustment and fine tuning, without changing their relative strengths.

We should also assess the validity of the exchange constants against the

Goodenough-Kanomori rules [78]. The tetrahedral to octahedral interactions,

JAB and JAB’ fit well into the model. They are the strong antiferromagnetic

interactions, negative in sign, which occur over bond angles of 120-180°. As

with magnetite, this interaction is usually predicted to be the strongest. The

octahedral to octahedral interactions, JBB, JB’B’ and JBB’, are more complicated

as the sign and strength of the interactions are different. The iron to iron and

iron to cobalt interactions are negative while the cobalt to cobalt interactions is

very strong and positive. In the case of magnetite, this interaction is predicted to

be ferromagnetic and weak due to being a 90° angle. We know that cobalt has a

large effect on the anisotropy of the system and these exchange values suggest

that it also has a significant effect on the octahedral sublattice exchange too.

A rough averaging of these three exchange parameters would lead to a similar

overall value of exchange to magnetite or maghemite. Finally, the tetrahedral

to tetrahedral interaction is the most problematic as it should be closest to the

values we have seen in magnetite and maghemite which are much lower. The JAA

interaction is somewhat ambiguous as it occurs over an acute angle over large

distances. The sign is usually negative however the magnitude is usually low. It is

not uncommon however for the JAA in other iron oxides to be listed as the second

largest interaction and we can find several references to in the works of Uhl and

Siberchicot as well as for other metal ferrites studied by Srivastava [28, 29].
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As a comparison, we have also made an educated guess at the exchange con-

stants for cobalt ferrite starting again from the values used in magnetite. This has

the unfortunate side effect that the cobalt and iron contributions to the exchange

in the octahedral lattice are averaged out however we preserve a separation in

these lattices to correctly model the strong spin moment on cobalt ions as well

as their contribution to the overall system anisotropy. While cobalt ferrite is a

widely studied material and without the instability drawbacks of maghemite, it

has been difficult to find a suitable set of exchange parameters that is clearly a

good representation of experiment, as we have found with magnetite. The extra

set of exchange constants is another way to try out different initial parameters,

specifically those with the highest contribution to the system Hamiltonian.

6.4 Simulating Cobalt Ferrite

With the current set of parameters we have compiled for cobalt ferrite, we can

start to simulate the material using the same methods used in magnetite and

maghemite. Due to the uncertainty in the exchange parameters however, we shall

be using two sets of data, referred to as CFA, using the exchange parameters of

Srivastava et al., and CFB which uses exchange parameters based on magnetite.

To recap the parameters:

• The system is cubic with a lattice constant of a = 8.382Å

• There are four unique materials:

– Tetrahedral site iron 3+ ions with spin moment 5µB

– Octahedral site iron 3+ ions with spin moment 5µB

– Octahedral site cobalt 2+ ions with spin moment 4.6µB

– Non-magnetic oxygen 2- ions

• The anisotropy direction is 〈100〉

• Two sets of exchange parameters, CFA and CFB, with 6 constants each,

shown below in Table 6.4.

As with previous materials we first plot for the convergence of each data set.

The susceptibility and specific heat require a large amount of Monte Carlo time

steps to fully relax. Figure 6.6 shows the convergence, with each plot normalised

between 0 and 1 as each set varies significantly in magnitude. We are modelling
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JAA JAB JAB’ JBB JB’B’ JBB’

CFA -1.02 -1.76 -1.54 -0.51 3.18 -1.25
CFB -0.08 -2.16 -2.16 0.47 0.47 0.47

Table 6.4: Exchange values for CFA and CFB. CFA values are modelled on
the work of Srivastava et al. [29] multiplied by 0.787 to reproduce TC, while CFB
values are modelled on those of magnetite from Uhl and Siberchicot [28], also
multiplied by 0.741.

systems between 2-16 nm, with the largest particles containing around 1 million

atoms each. The largest systems tend to require more relaxation time and here

we have shown that our largest system of 16 nm converges fully within 1 million

time steps. As before while the magnetisation data is not as smooth as the

susceptibility or specific heat, this is mainly due to the small difference between

the initial max magnetisation at the start of the simulation and the final value.

The magnetisation varies by a small amount overall and typically produces smooth

data after only 300-500k time-steps.
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Figure 6.6: Convergence test for CoFe2O4. Testing the convergence of the mag-
netisation, specific heat and susceptibility for a 16 nm PBC system of cobalt ferrite
at 1000 K. A total of 1 million Monte Carlo time steps are used for convergence.

Before we closely examine any of the magnetic properties of the system, the two

sets of exchange parameters must be adjusted to keep the Curie temperature of

the system close to the predicted value of 795 K. The sets of exchange values must
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be multiplied by a constant to have the phase transition occur at the right position

in our simulations. The exchange constants used in CFA must be increased

significantly, by about 20%. This can be due to several factors, however the

differences in the models used is likely a contributing factor. Meanwhile, the

exchange parameters for CFB would end up with a Curie point around 850K, as

in magnetite, however they must be lowered by around 7% to correctly reflect the

lower critical point of cobalt ferrite.

The data sets do not agree perfectly, there is an approximately 5 K difference

in the peaks, with the exchange values of CFA being slightly too high, however

they both peak around 800 K, close to ideal value of 795 K. We can already see

some of the difference between the sets of exchange here as in the set derived

from magnetite the octahedral sublattices, including cobalt, behave very similarly,

both sharing the same exchange values and lying roughly between the cobalt

and octahedral plots from (a). The overall and tetrahedral components to the

susceptibility agree well with each other which is promising as these are a result

of completely separate exchange values.

Using the Curie temperature point predicted by the susceptibility we can

fit the magnetisation scaling according to the Curie-Bloch equation. This will

improve the fitting for small nanoparticles where finite size effects cause the

phase transition to occur more gradually and obscure the Curie temperature. In

Figure 6.8 we can compare the magnetisation scaling with temperature for both

sets of exchange, as well as the fit β values.

The magnetisation curves demonstrate similar properties to the susceptibility,

CFB behaves as if it is a 2-lattice model, with the cobalt and octahedral lattice

behaving exactly the same and having the same β exponent. Meanwhile Figure

6.8a shows varying β exponents for the octahedral sublattices. In addition, both

sets have varying β exponents for each component of the system. These are listed

for comparison in Table 6.5.

The β exponents for the tetrahedral sublattice agree well with each other.

Referring back the exchange constants, the JAA interactions are quite different

in each set, with the values from Ref [29] being the same in sign but an order of

magnitude larger, making the similarity in the scaling of the tetrahedral lattice

surprising. The overall β exponents are different due to the large difference in the

octahedral sublattice for each system. β= 0.45 is relatively high for an octahedral

β exponent compared to the values we have seen from magnetite and maghemite.
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Figure 6.7: Susceptibility for a 16 nm system of cobalt ferrite under PBCs.
Plot (a) shows the susceptibility of CFA, while plot (b) does the same for CFB.

Due to the shared exchange constants, the first column of Table 6.5 is very similar

to our results from magnetite.

6.4.1 Anisotropy

Cobalt ferrite has cubic anisotropy scaling, much like magnetite, however the

strength of the magnetocrystalline anisotropy is much stronger. Figure 6.9a shows
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Figure 6.8: Magnetisation scaling for a 16 nm system of cobalt ferrite
under PBCs. Plot (a) shows the magnetisation of CFA, while plot (b) shows the
data from CFB.

that the torque curves for cobalt ferrite behave in the same manner as that of

magnetite; a sinusoidal shape for the torque, with the peak occurring at 22.5°.

The temperature scaling of the anisotropy is notably different as can be seen

in Figure 6.9b. At low temperatures, the torque is an order of magnitude higher

than in magnetite, and the shape of the curve is more linear. This is likely due to

the source of the increased anisotropy being restricted to the cobalt ions in the
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CFA CFB
Total 0.57 0.53
Tetrahedral 0.32 0.31
Octahedral 0.45 0.40
Cobalt 0.37 0.40

Table 6.5: β exponents for 16 nm cobalt ferrite under PBCs. While the
tetrahedral exponents are similar, the octahedral sublattices in each system vary
significantly leading to the difference in the overall values.

Figure 6.9: Restoring torque and anisotropy scaling of CoFe2O4. (a) Plot of
the restoring torque for different temperatures as a function of angle from the
z-axis. (b) Plot of the restoring torque as a function of temperature.

octahedral sublattice, rather than the material as a whole. The anisotropy scaling

is very similar, also with a linear decrease in magnitude from 0 to around 450 K,

however the strength of the anisotropy remains around ten times larger than in

magnetite, even at high temperatures, as expected from Figure 6.4.

6.4.2 Particle Elongation

We can compare the superparamagnetic behaviour of cobalt ferrite to that of

magnetite seen in Chapter 4.2. Cobalt ferrite has a much larger cubic anisotropy

contribution which will therefore maintain the superparamagnetic state at higher

temperatures than that of magnetite. We found that in magnetite, around room

temperature, particle elongations caused a partially blocked state. To replicate

the same behaviour in cobalt ferrite, we can increase the temperature as well

as lower the particle size, reducing the number of spins and combined strength

of the anisotropy. Figure 6.10 shows the magnetisation components of elongated

truncated octahedral nanoparticles of 11 nm diameter at 550 K.

As the easy axis for the anisotropy of cobalt ferrite lies along the 〈100〉 direc-
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Figure 6.10: Magnetisation components of elongated CoFe2O4 nanoparti-
cles. Plot of the time dependence of the magnetisation components for an 11
nm diameter octahedral nanoparticle for 0%, 10% and 20% elongation at T=550
K. The transition from a fully superparamagnetic regime to a partially blocked
regime is shown by the stretched of constant spin orientation in all axes.

tions, this plot shows some change in behaviour to the magnetisation components

of magnetite. Two components of the spin oscillate around 0 while the remaining

component is 1. At 0% elongation we clearly see the movement of the system

between the 6 possible orientations with no bias to any direction. By looking at

the edge of the plots we can determine how long the spins remain aligned to one

direction, with the average time being approximately 2 ns for a uniform particle.

As the elongation is increased, we see a change in the spin behaviour as the

system spends more time in each state, 4-5 ns in the case of 10% elongation and

6-8 ns at 20%. We note that in this case there all axes are affected equally, with

the spins becoming partially blocked along the x, y and z orientations, unlike in

magnetite where an elongation of the system along the z-axis caused a partial

blocking of the z-component of the magnetisation.

Much like in magnetite, the shape anisotropy contribution caused by the

elongation, even at 20%, is not enough to lock the system into one particular

orientation and the system remains in a mostly superparamagnetic state, with a

longer relaxation time.
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6.4.3 Rescaling Parameter

While cobalt ferrite is widely studied for its biomedical applications, experimental

data for the saturation magnetisation of bulk cobalt ferrite is somewhat rare.

Along with high quality experimental data on the saturation magnetisation

scaling of magnetite, the work done by Pauthenet [82] also offers similar data for

cobalt ferrite. We have already shown that the experimental data of Pauthenet

agrees well with our simulations therefore the data for cobalt ferrite should

be of similar quality. In addition, the work done by Srivastava et al. on the

exchange constants of spinel ferrites shows several experimental results for

the magnetisation and susceptibility scaling of the studied materials, without

referencing the original source. We shall use these two sets of experimental data

to fit for the rescaling parameter α of cobalt ferrite.
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Figure 6.11: Experimental saturation magnetisation of cobalt ferrite,
from Pauthenet [82] and Srivastava [29]. Both plots are fit according to the
Curie-Bloch equation, and give α ≈1.8.

Figure 6.11 shows the fits for each data set to the Curie-Bloch equation. Both

data sets are close to linear when approaching TC which leads to high values of β.

The α fits are mostly tied to the initial drop in magnetisation at low temperatures

and are roughly equal to 1.8. This is close to the rescaling constant found for

magnetite, which is in line with previous discussions on the value of α for stable,

fully ordered systems, compared to lower values of α found in maghemite likely

due to iron vacancies.
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6.5 FSS Properties of Cobalt Ferrite

Much like magnetite and maghemite, cobalt ferrite is susceptible to changes in

magnetic properties due to finite size effects. Here we present a full set of FSS

analysis for our models of cobalt ferrite, CFA and CFB. First we demonstrate the

classic magnetisation scaling properties of both models, shown in Figure 6.12. The

models differ in magnetisation scaling mainly due to the difference in exchange

parameters. CFA also shows a different β exponent as the gradient of the plots

is more linear than those in CFB. This is linked to a higher overall β. While β

is expected to be higher than in bulk when the nanoparticle size is small, cobalt

ferrite also retains a higher overall value of β in bulk. This causes the Curie

temperature phase transition to occur more gradually as the magnetisation does

not drop as quickly at the critical point.

Figure 6.12: Classical magnetisation scaling of CFA(a) and CFB(b). The
finite size effects reduce the magnetisation as the particle size decreases.

The sublattice magnetisation can be split into three components, the tetrahe-

dral iron, octahedral iron and octahedral cobalt. Each lattice has distinct scaling

however the tetrahedral lattices of both CFA and CFB behave similarly due to

their like properties, while the octahedral sublattices vary, with the octahedral

lattice of CFA being much lower in normalised magnetisation overall. As the

octahedral sublattice makes up two thirds of the cobalt ferrite unit cell, this

division of the cobalt and iron components of the octahedral sublattice also spins

the system neatly into three equally sized components which are contributing to

the overall magnetic properties of cobalt ferrite.

We can apply quantum mechanical rescaling to our simulated data, in particu-

lar the CFA data set as it should be comparable to the work done by Pauthenet

and Srivastava (Figure 6.3). Figure 6.14a shows the rescaled magnetisation of
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spherical nanoparticles. While the 16 nm system shows a sharp turning point at

the Curie temperature, the smaller systems which are more strongly affected by

finite size effects show good agreement with the data from Srivastava (Figure

6.14b). In both works, the source of the experimental data is not disclosed, and

it is therefore possible that the samples studied were fine cobalt ferrite powders

which would also be subject to finite size effects. This would also explain the very

high values of β fit from the experimental plots which are very high compared to

any other value of β seen in magnetite or maghemite, or indeed the ’ideal’ value

of β = 0.34 linked to the 3D Heisenberg Hamiltonian [42].

Figure 6.13: MvsT of cobalt ferrite sublattices. Classical magnetisation scal-
ing of the sublattices of CFA (left column) and CFB (right column) including the
distinction between the iron and cobalt components for both systems.

Fitting the magnetisation we can also extract values for β for the overall
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and sublattice components of CFA, shown in Figure 6.15. As suggested by the

magnetisation scaling, the β exponent is distinct for all components of the system,

lowering as the particle size increases.

From the magnetisation scaling alone it is quite difficult to see how the β

exponent varies between CFA and CFB. This is shown more clearly in Figure

6.16, where the β scaling for CFA and CFB under periodic boundary conditions

is shown. This highlights the problems with using the exchange constants from

magnetite as a basis for the exchange of cobalt ferrite. While the tetrahedral

sublattice may be well behaved, the octahedral sublattice, which is made up of

distinct components, collapses onto the same curve for CFB. Overall, the β values

are also slightly higher in CFA, for all particle sizes.

Figure 6.14: Comparison of rescaled data and experiment. (a) Rescaled
magnetisation scaling of the CFA data set using α= 1.8. Due to the rescaling the
reduction in magnetisation with temperature increase occurs more gradually at
low temperatures. (b) The experimental data from Srivastava et al. [29] fits well
with the low diameter nanoparticle scaling.

The Curie temperature scaling for both systems is similar, with a reduction

in TC of about 18% for the smallest, 2.5 nm particles. With 1 K sampling in the

data output of our simulations, the Curie temperature fit using the Curie-Bloch

equation is almost always the same for the octahedral sublattice and the overall

material. The tetrahedral sublattice shows very minor deviations at low particle

diameters. Comparing the TC scaling with spherical nanoparticle of magnetite

and maghemite, the reduction in TC is consistent for all three ferrites. The finite

size effects on the Curie temperature are not strongly tied to the material type,

instead being more heavily affected by nanoparticle shape and size.

143



6. COBALT FERRITE

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  4  6  8  10  12  14  16

β

Particle Diameter (nm)

Total

Tetrahedral

Octahedral

Cobalt

Figure 6.15: β scaling of all components of CFA. The octahedral sublat-
tices have the lowest β values contrary to the behaviour seen in magnetite and
maghemite.

6.6 Conclusion

Cobalt ferrite, both in bulk and powder form, has been studied widely due to its

stability and strong magnetic anisotropy, making it suitable for many applications.

The nanoscale parameters however are relatively unexplored as the exchange

constants, which are crucial to forming an atomistic model of cobalt ferrite, have

not been refined to the same extent as those seen in magnetite. In this Chapter

we have covered two typed of cobalt ferrite, CFA and CFB, built using the same

structure but differing in exchange parameters to better understand the differ-

ences in a 2 and 3-lattice model, as well as highlight the changes in the sublattice

behaviour.

In comparing the two models we find that the overall magnetisation and

susceptibility scaling remains similar while the octahedral sublattice shows

significant changes, with a separation in the critical exponents for the iron and

cobalt components, when using the 3-lattice exchange constants.

Due to the strong anisotropy arising from the cobalt ions in the system, the

material shows different low temperature spin behaviour to magnetite, with

the superparamagnetic phase being maintained well above room temperature.
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Figure 6.16: β and TC scaling of cobalt ferrite. β scaling of CFA and CFB
under periodic boundary conditions, and TC scaling for spherical nanoparticles.

Elongated nanoparticles of cobalt ferrite showed a partial blocking of the spin

orientation at around 500 K with particle elongations of 20%.
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CORE-SHELL NANOPARTICLES

7.1 Introduction

In hyperthermia, the heat output of the nanoparticles roughly scales with the

saturation magnetisation of the magnetic material. While iron oxide nanoparticles

tend to be favoured for their biocompatibility and biodegradability, most materials

suffer from lower magnetocrystalline anisotropies leading to lower heat outputs.

Cobalt ferrite helps to alleviate this issue as it exhibits a very high saturation

magnetisation, with the cobalt ions lending a much higher anisotropy to the

system. While nanoparticle properties are typically defined by the size, shape,

surface and material content, one further way in which it is possible to gain

further control over the magnetic properties of a sample is to form core-shell

nanoparticles made up of different materials.

A core-shell nanoparticle is typically composed of two or more materials, one

forming the core at the centre of the nanoparticle, and further materials forming

shells on top of the core. The materials used to form core-shell nanoparticles can

be substantially different in type and use case. In many biomedical applications,

nanoparticles can be coated in organic or silicon based materials either to shield

the magnetic particle from the surrounding environment or to perform additional

functions by attaching hydrophilic/phobic molecules to the particle surface [100,

165].

In addition to shielding, core-shell particles can be used to combine the proper-

ties of similar materials, achieving an intermediate effect between the properties
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of either system. The core diameter then acts as an additional parameter in fine

tuning the relative strengths of the magnetic properties of each material [19].

This applies to the materials we have studied so far. As magnetite, maghemite

and cobalt ferrite share similar structures, all Fd-3m materials with a tetrahedral-

octahedral sublattice composition and similar lattice parameters, these materials

can be mixed to form core-shell nanoparticles with overall properties defined by

the relative amount of materials in each particle.

In addition, maghemite is of particular interest and the shell component of a

core-shell nanoparticle as this material forms naturally over time as a product

of oxidation in small magnetite nanoparticles typically used for their superpara-

magnetic behaviour in hyperthermia applications [166]. When around 10 nm in

diameter, magnetite nanoparticles tend to form thin layers of maghemite which

are typically referred to as magnetic dead layers, heavily reducing the effec-

tiveness of the nanoparticles by decreasing their saturation magnetisation and

anisotropy, as well as slightly modifying the effective size of the nanoparticles

[167, 168]. Due to the similarity in material composition for these particles, it is

also more difficult to identify the core-shell diameters in experiment.

Here we study two different core-shell systems: magnetite-maghemite and

magnetite-cobalt ferrite, to get a better understanding of the change in magnetic

properties of the particles, in particular the magnetisation scaling and the change

to the Curie temperature as a result of the mixing of the materials.

7.2 Structure

The generation of core-shell nanoparticles is done natively in VAMPIRE by specify-

ing the core-shell diameters of the contained materials. While core-shell particles

can be created in various different forms, we shall be simulating the most basic

system with an inner core at the centre of the particle composed of one mate-

rial, surrounded by a continuous shell of the second. Figure 7.1 shows a typical

spherical core-shell nanoparticle with a core diameter roughly half that of the

whole particle. As we are dealing with spherical systems, the diameter of the core

and shell is not related linearly to the amount of each material contained in the

system. A core with a diameter of half the particle makes up less than 15% of the

material content of the system. As such, particles shall be created based on the

percentage content of each of the materials.

To form epitaxial particles with a single crystal approximation, the lattice
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Figure 7.1: Core-shell nanoparticle. A spherical core-shell nanoparticle, with
a corner removed to show the inner structure. The red core size is defined by a
fraction of the overall system diameter, with the blue shell taking up the rest of
the system.

parameters of the core and shell are averaged so that the materials have fully

saturated bonds at the intersection. Core-shell systems created in experiment

will likely have similar behaviour to this when formed using layers. Due to the

similarity in structure between the iron oxides studied here, with lattice constants

varying by at most 0.05Å, a small relaxation in the lattice parameters can occur

to accommodate the formation of bonds between the surfaces of both materials.

While this relaxation will not occur throughout each material, the particle sizes

are small enough that this will have little knock-on effect to the rest of the particle.

The core and shell cannot be treated as non-interacting parts of the system

and therefore we also require several new exchange parameters to define the in-

teractions between each material. In the case of magnetite and maghemite which

share the same number of exchange interactions individually, we find the average

of similar interaction types to form the unknown exchange values. For example,

to find the strength of the JAmagn Amagh interaction, we take a simple average of the

JAA interaction of magnetite and the JAA interaction of maghemite.
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JAmagn Amagh = 0.5
(
JAmagn Amagn + JAmagh Amagh

)
(7.1)

In the case of cobalt ferrite which includes a third sublattice due to the

presence of cobalt, we calculate similar averages for the interactions by using

the most appropriate exchange constants in each material. As we have two sets

of exchange constants for cobalt ferrite, we shall be exclusively using the values

modified from Srivastava et al. [29] which correctly separates out the cobalt and

iron components of the octahedral sublattice.

As we have already covered the finite-size scaling properties of each material

by changing the overall particle size, the core-shell particles will not vary in

overall diameter. The diameter is set to 10 nm, which is typical for most biomedical

applications which can take advantage of core-shell systems, or which can be

affected by the formation of the magnetic dead layer on magnetite systems [167].

At this size, the particles are still affected by the same finite-size effects seen

previously, which moderately lower the magnetisation and Curie temperature of

the particle by ≈5%. As we are mixing different materials, we shall not be able to

calculate the quantum mechanical rescaling parameter α by fitting experimental

data. As a rule of thumb, the value is above 1.5 for all three materials, and seems

to be close to 2.0 for magnetite and cobalt ferrite. If the β exponent were to stay

constant for the core-shell particles, it would be justified to approximate the value

of α and plot the rescaled magnetisation, however β is more likely to change, and

this would also be another approximation which can muddy our data. Hence, we

instead focus on the high temperature magnetic properties where the quantum

mechanical effects are minimal.

By modelling the core-shell particles we can study the changes in the sub-

lattice behaviour of the materials. The Curie temperature, magnetisation and

susceptibility scaling need not be the same as in pure systems. In addition, the

magnetic properties may remain separate to the individual materials in spite of

their interaction and diverge in the overall data. As small shell thicknesses are

more prominent in experiment, it is also important to find any possible limit in

the effects of the shell below a thickness threshold.

7.3 Magnetite-Maghemite

In the case of magnetite-maghemite core-shell particles, we are not seeking to

optimise the magnetic properties of the particle but instead understand how much
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the maghemite shell affects the whole system. The maghemite layer on the surface

is measured to be roughly 1 nm after formation of magnetite particles, depending

on the preparation method [166]. In addition, the lifetime of the nanoparticles

is also related to the slow increase in size of the maghemite shell [167]. Here

we present the magnetic properties of core-shell particles as a function of core

size, starting from a pure shell particle, in this case maghemite, and gradually

increasing the size of the core to a pure core particle (magnetite).

Figure 7.2: Magnetisation scaling of 10 nm magnetite-maghemite core-
shell particles. The plots show increasing magnetite content in the particle from
pure maghemite to pure magnetite.

Figure 7.2 shows the overall variation of magnetisation with particle size. We

can see a clear change in the Curie temperature of the system as the turning point

moves down with increasing magnetite content. The pure maghemite nanoparticle

(0%) has a TC of around 950 K which lowers towards 850K, the Curie temperature

of magnetite. In addition to the change in TC, the shape of the turning point

also shifts with increasing core size. This is tied to a change in the β exponent.

The pure magnetite and maghemite seem to have roughly the same gradient

around TC however the core-shell particles fall more steeply towards a value of

zero magnetisation. Hence the topological change from pure to core-shell particle

alone has affected the value of the exponent β.

The magnetic properties of the nanoparticles are now a result of four sublat-
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Figure 7.3: Sublattice magnetisation temperature dependence of
magnetite-maghemite core-shell nanoparticles.

tices interacting and competing with each other. While the sublattices interact

close to the intersection of the core and shell, they also retain the behaviour unique

to each material. From Figure 7.3, the magnetite and maghemite sublattices have

notably different magnetisation scaling. The magnetite sublattices are not heavily

affected by the amount of maghemite in the system as the slope of each plot is

almost constant. The main effect is the increase in the Curie temperature as the

amount of maghemite increases. This also happens inversely in the maghemite

sublattices however there is also a strong change in the slope of the plots. The

shell of the particle has missing exchange bonds which are contributing to the

change in magnetisation with size. This is a surface effect which appears more

drastically in the core-shell sublattices than in pure particles. When the shell

makes up less than 10% of the overall system, the maghemite sublattices have an

almost linear magnetisation scaling.

Curiously, the sublattices also exhibit a finite size effect we have already seen

in pure nanoparticles and PBC systems. In the core sublattices, the magnetisation

does not level off at the same point for different core sizes. The core shows similar

statistical effects to a pure nanoparticle where a smaller number of spins cause a

non-zero magnetisation value after the Curie point due to the random distribution

of spins orientations. With an increase in core size, this value lowers as the
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increased number of spins can be more evenly distributed. This behaviour is

muted in the shell sublattices which do level off at the same magnetisation value

irrespective of the thickness of the shell and therefore the amount of maghemite

in the system. This is likely a topological effect. Where the core behaves akin to a

pure nanoparticle, the shell is instead more closely related to an infinite plane of

spins, effectively periodic in θ and φ in spherical coordinates, but not in r.

Figure 7.4: β scaling of magnetite-maghemite nanoparticles. When compar-
ing the scaling for all sublattices of the system, we see a steep increase in the
value of β as the size of the shell decreases.

We can fit the magnetisation scaling of the nanoparticles to the Curie-Bloch

equation to find how the value of β changes as the relative sizes of the core and

shell are swapped. Figure 7.4 shows the fit values of β for all components of the

particle. Maghemite typically exhibits lower values of β for nanoparticles of any

shape. Physically this corresponds to a slower reduction in the magnetisation of

the system as the temperature increases. Very high values of β lead to a rapid

decrease in the particle magnetisation and a more gradual phase transition. When

the magnetite core is small or not present, the core-shell particle maintains a

value of β around 0.6, but this value increases to 0.65 as the amount of magnetite

in the system increases. Comparing this result with Figure 4.6, this agrees well

with the value of β fit for spherical nanoparticle of magnetite around the same

size.

The sublattices present different behaviours for each material. In the case
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of maghemite in the shell, the β scaling is expected as it follows similar trends

to spherical maghemite particles. When the shell thickness is low, β is high, but

the value lowers smoothly as the shell thickness increases and tends towards a

constant value as maghemite dominates the system. This is analogous to pure

maghemite nanoparticles which have high β when the particle is very small,

below 6 nm, but tend asymptotically towards a constant value which is reflected

in the PBC plots of maghemite in Figure 5.13. The magnetite sublattices do not

replicate this behaviour and scale differently to spherical nanoparticles. β is at the

same value when there is very little magnetite in the system (around 10%) and

when the system is fully magnetite. Instead β lowers to a minimum when there

is a 50/50 mix of maghemite and magnetite in the system. The overall β scaling

retains the features of both sets of sublattices, with a moderate increase for low

shell thicknesses and a dip when the system is made up of equal proportions of

each material.

Figure 7.5: Total susceptibility scaling of the magnetite-maghemite
nanoparticles. The magnitude of the susceptibility increases when there is
a mix of both materials in the system and reaches a minimum for pure maghemite
and magnetite.

The susceptibility of pure nanoparticles is affected by finite size effects where

the magnitude increases with particle size. In these core-shell nanoparticle the

overall size remains constant however from Figure 7.5, the magnitude of the

susceptibility changes with the increase in core diameter. This is a measure of the
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spin fluctuations occurring in the system, with equal amounts of core and shell

leading to higher fluctuations. Typically, larger systems allow for more fluctuation

due to spins being able to form larger regions of similar orientation, however in

these particles the intersection between the materials does not seem to hinder

this behaviour. The iron vacancies in maghemite may play a part in this allowing

the system to experience stronger surface spin fluctuations.

Figure 7.6: Curie temperature of magnetite-maghemite particles and its
components. TC moves between the bulk values for pure maghemite and mag-
netite as the core size increases.

By looking at the peaks in the particle susceptibility, we can also plot the

Curie temperature point of the system. As the peaks remain narrow, they should

be a good indication of the critical point, as in the pure nanoparticles. We can also

use this with the magnetisation curves to fit for β using the Curie-Bloch equation.

Figure 7.6 shows the predicted Curie temperature points for all components of the

system. The Curie temperature of the overall particle is more closely linked to the

magnetite sublattices in the core than the behaviour of the shell. In general, the

point moves from the TC of maghemite when the core is very small and increases

to the TC of magnetite when the core dominates the system, however this does

not occur in a linear fashion. In the case of magnetite-maghemite particles the

Curie temperature levels off when the core is more than 70% of the system. This

suggests that an important property of the system would remain unaffected after

154



7. CORE-SHELL NANOPARTICLES

the formation of a thin maghemite shell. The overall magnetisation would still be

reduced however due to the lower saturation magnetisation of maghemite.

7.4 Magnetite-Cobalt Ferrite

Magnetite-cobalt ferrite nanoparticles are constructed to negate the formation of

an oxidised maghemite layer as well as to amplify the overall system anisotropy,

and hence heating ability during Néel relaxation. Cobalt ferrite differs in several

ways to maghemite, with a fully ordered octahedral sublattice, made up of both

iron and cobalt. We separate these into 5 sublattices which all have distinct

scaling properties. In addition, the anisotropy of the system is now mixed with

the magnetite core experiencing a weaker anisotropy along the 〈111〉 axis, while

the cobalt ferrite shell has a much stronger anisotropy along 〈100〉. The Curie

temperatures of both systems are very close, with a difference of 50 K in bulk

phases.

Figure 7.7: Magnetisation scaling of 10 nm magnetite-cobalt ferrite core-
shell nanoparticles. As the core size increases, the Curie point moves from a
lower value of 795 K for cobalt ferrite, to the Curie temperature of magnetite at
856 K.

Figure 7.7 shows the magnetisation scaling of magnetite-cobalt ferrite parti-

cles. As the Curie temperatures of the individual materials are close, around 50 K

difference, the magnetisation curves of pure magnetite and cobalt-ferrite are close
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together. To emphasise the change in the shape of the plots, the curves have been

adjusted to start at a magnetisation of 0.3 at 0 K, similar to the magnetisation

curves of bulk magnetite. The raw data is spread out at 0K due to the difference

in structure and magnetic moments between the two materials, making it difficult

to compare the plots. This resembles Figure 4.9, where the magnetisation plots

are spread due to the change in surface composition of the faceted magnetite

nanoparticles. We see that the core-shell particles, which lie in between the pure

cobalt-ferrite and pure magnetite plots, approach the critical point more directly,

making the transition broader. This is linked with an increase in the β scaling for

these systems, which is the opposite behaviour to what was seen in the magnetite-

maghemite particles where all mixed systems had an overall lower value of β and

approached the Curie point more steeply.

The sublattice magnetisation scaling follows similar trends, with the mag-

netite sublattices showing very small deviations from pure magnetite for all core

sizes, while the cobalt ferrite sublattices are more strongly affected by the increas-

ing core. In these sublattices the magnetisation lowers by as much as 10% at room

temperature and up to 20% at higher temperatures when the amount of cobalt

ferrite in the system is decreased and it only forms a thin shell at the surface.

The susceptibility scaling of these nanoparticles (Figure 7.8) shows inverse

behaviour to that in the magnetite-maghemite particles. Here the magnitude of

the susceptibility is lowest when there is an equal proportion of both materials in

the system. Individually, the sublattices have the highest magnitude when their

material content in the particle is highest, which explains the minimum in the

overall plot. Due to the very low values of susceptibility, particularly in the cobalt

ferrite sublattices, it is very difficult to find a value for the Curie temperature

point, as the peak is not easy to isolate. Despite this we can observe general

trends in the scaling of the Curie temperature. From the overall susceptibility,

the Curie temperature moves from around 800K, TC of cobalt-ferrite, to 850K,

TC of magnetite. The Curie temperature is very close to 850 K when there is

more than 70% magnetite in the particle. This follows the same behaviour as the

magnetite-maghemite particles where there was also very little change in TC at

large core sizes. When the core size is small (0-30% particle content), the Curie

temperature changes significantly. It is therefore likely that when using other

magnetic materials, Curie temperature scaling in core-shell nanoparticles follows

the same path regardless of the specific materials. The magnetite sublattices are

not heavily affected by the amount of cobalt ferrite in the system as they do not

peak below 825 K. Conversely the cobalt ferrite is heavily affected by the core as
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Figure 7.8: Susceptibility scaling of all components of the magnetite-
cobalt ferrite core-shell particles. The magnitude of the susceptibility is high-
est when the particle is dominated by either of the materials. The cobalt ferrite
shell is heavily affected by the core size of the particle, with large changes in the
susceptibility and spin correlation.

the peak in susceptibility moves all the way between the two materials Tcs.

The β scaling for magnetite-cobalt ferrite nanoparticles is shown in Figure 7.9.

The curves can be grouped according to the material they correspond to. For the

sublattices we see similar behaviour as in magnetite-maghemite, where the core β

scaling is relatively linear, with β being about 0.45 at very high and low amounts

of magnetite in the system. The shell β exponents are roughly linear, showing a

steady reduction in β as the shell thickness increases. As this behaviour is the

same for both sets of core-shell particles studied, it is likely that this holds for

other combinations of materials. The β exponent remains constant for the core

component of the system while the shells behave much like pure nanoparticles

where β steadily decreases towards a constant value. Hence β may not be strongly

affected by the topological properties of the shell.
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Figure 7.9: β scaling of all components of the magnetite-cobalt ferrite
core-shell particles. The scaling is similar for sublattices of each material
however the overall β scaling is somewhat independent.

7.5 Conclusion

In this chapter we have simulated core-shell nanoparticles by using the models

developed for iron oxides as well as the material parameters gathered in previous

chapters. The nanoparticles show the transition of magnetic properties from those

of the core to the shell as the ratio of each component is changed.

We show how layers of maghemite formed on the surface of magnetite nanopar-

ticles affect the temperature scaling properties of the particles by changing the

Curie point of the system as well as changing the magnetisation strength depend-

ing on the thickness of the shell. The susceptibility scaling was found to be at a

maximum when the system was a mix of equal parts magnetite to maghemite.

Magnetite-cobalt ferrite nanoparticles are promising for hyperthermia appli-

cations due to the oxidation resistant properties and high anisotropy of the cobalt

ferrite surface. In our simulations we find that the susceptibility scaling shows

competition between the materials when they are in equal proportion, suggesting

that thin layers of cobalt ferrite are preferable.

From our simulations we also find clear evidence of topological effects on the
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temperature scaling of the magnetic properties of the nanoparticles. The strength

of the magnetic properties of the core were roughly equal at 70% material content

to 100% leaving room for optimisation in the structure of core-shell systems.
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CONCLUSIONS

The magnetic properties of iron oxides are affected by topology and scale and

require a better understanding to be used optimally in biomedical and industrial

applications. While these materials share similar traits, small changes in compo-

sition as well as shape and size can be useful in designing nanoparticles fit for

individual uses. In this chapter we summarise the key points of this work which

has explored three such materials: magnetite, maghemite and cobalt ferrite.

In Chapter 3 the foundation for this work is made. A 3D Heisenberg Hamilto-

nian was formulated for spinel iron oxides such as magnetite, which is made up

of the interactions of the tetrahedral and octahedral sublattice interactions of a

ferrimagnetic material. Due to the body of research into the magnetic properties

of magnetite, we can form a precise atomistic model for the material by using sev-

eral parameters including the oxygen positional parameter, cubic anisotropy and

exchange constants. By analysing the data produced by our simulations, we have

devised different methods to extract the critical exponents of the system which are

difficult to fit solely from the magnetisation, but much more clearly shown in the

susceptibility. To remedy the discrepancy between our classical spin model and

the real quantum mechanical effects of spin, we have also used a correcting factor

to rescale our simulations and reintroduce these quantum mechanical effects

into our final data. We find that the temperature dependent magnetisation of

our simulations agrees very well with experiment. In our simulations we find

that the sublattices of magnetite show a noticeable deviation in their fitted mag-

netic properties such as β and TC from that of the overall material. While TC

remains close, β and hence the magnetisation scaling, is markedly different for
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all components of the system. With increasing temperature, these components

lose their magnetisation at different rates. We distinguish the modes over which

the sublattices interact, with the interaction between closely aligned spins within

their own sublattices, as well as the competition between antiparallel spins in

different sublattices, which shows up in the comparison between the sublattice

susceptibilities compared to those of the overall system.

Chapter 4 shows how the magnetic properties change when a material is in

bulk and nanoparticle form. While we cannot correctly model the strains and

full effects of the surface of nanoparticles, we show that finite size effects in

nanoparticles around 8 nm can lower the system magnetisation by as much

as 15% at room temperature, which is crucial for biomedical applications such

as hyperthermia which require a consistent amount of energy output from the

particles. Ideally, samples of magnetite intended for medicinal use should be

about 10 nm in diameter, as this significantly reduces the finite size effects. As

there is often a spread of radii produced in experimental samples, this suggests

that the average diameter should be closer to 15 nm, to minimise the number

of smaller particles. The Curie temperature of nanoparticles tends toward the

value of bulk as the system size is increased, starting at a much lower value,

reduced by more than 100K, when the particle is less than 4 nm. The strength

of these effects is also tied to the surface to volume ratio of the particle which is

determined by shape. Faceted nanoparticles are hence more susceptible to these

effects for the same number of atoms than spherical particles. As the type of

faceting, the particle shape and surface termination, is strongly dependant on the

experimental methods used to form the particle, this is also crucial in tuning the

properties of the system. At room temperature, elongated particles can also cause

deviation in the expected superparamagnetic behaviour of the system due to an

increased overall anisotropy of the system. The elongation of the particle causes a

shape anisotropy which, while not as strong as surface anisotropy, can cause the

system to become partially blocked for particles with a elongation of 20%.

We then apply the model and methods used to analyse magnetite on the less

well understood maghemite in Chapter 5. With a closely related structure, the

details of the exact structure of maghemite are dependent on several factors and

their study is made more difficult due to the unstable nature of the material

and the ease of contamination with other iron oxides. Due to these gaps in

understanding, some of the parameters for this material are disputed. The nature

of the iron vacancies is found to be regular when it is in nanoparticle form,

leading to a pure Fd-3m spinel structure. To model the exchange between the
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iron ions in maghemite, we must use exchange constants derived from magnetite

as these have not been derived from first principles for maghemite, partially

due to the uncertainty in the exact structure of the system. We show that it

is very likely that many experimental measurements taken for maghemite are

heavily affected by finite size effects which reduces the magnetisation scaling of

the system, with some samples showing markedly different behaviour possibly

due to sample contamination. The critical exponent β shows much similarity with

that of magnetite, which is expected due to the similarity in structure of these

materials, however in comparison to the ideal value proposed for β in a general

3D Heisenberg model, there is significant deviation. Ferromagnets modelled using

the Heisenberg Hamiltonian are expected to have a β scaling of around 0.34

however our materials show much higher values, at 0.55 and 0.47 for magnetite

and maghemite respectively suggesting that these materials may belong to a

different universality class or that commonly assumed ideal value does not hold

for all materials.

In Chapter 6 we study another related material, cobalt ferrite, which shares

the same structure to magnetite but is often used for its much higher material

anisotropy caused by the cobalt ions in the system. Cobalt ferrite can be difficult to

study due to the variation in magnetic properties dependant on the exact amount

of cobalt in the system. In fact, the structure of cobalt ferrite is dependant also

on its location within each sublattice. The room temperature properties of cobalt

ferrite are well understood with many studies covering the change in anisotropy

strength with temperature. For our modelling however, some components are

less well understood. The strength of interaction between the sublattices of the

material which now contains an additional component due to the inclusion of

cobalt is still being refined. We therefore model two similar systems, one using a

simple 2-lattice model, which approximates the octahedral lattice by combining

the effects of the iron and cobalt contributions, as well as a 3-lattice model which

uses relatively untested exchange constants found in the literature. We find

that the 2-lattice model cannot correctly replicate the magnetic behaviour of the

octahedral sublattices which have significantly different scaling. In comparing

the magnetisation scaling of our simulations with those of experiment we also

find that the experimental data likely does not come from bulk like cobalt ferrite

as it more closely matches the magnetisation scaling of nanoparticles under finite

size effects.

The materials studied so far have been used together in different applications,

sometimes without intent. Magnetite nanoparticles can suffer from the formation
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of a maghemite surface which creates a magnetic dead layer and changes the

overall magnetic properties, lowering the overall magnetisation. In Chapter 7

we study core-shell nanoparticles, combinations of magnetite-maghemite and

magnetite-cobalt ferrite to understand how the relative sizes of the core and shell

as well as contained materials affects the overall properties of the system. We find

the topological effects create differences in the magnetisation of the core and shell,

with the magnetisation strength of the cores reaching a maximum at around 70%

core size. Depending on the combination of materials, the susceptibility is at a

maximum for a mixing of the materials, in the case of magnetite-maghemite, but

at a minimum at the same point in maghemite-cobalt ferrite, showing a change

in the spin behaviour of each particle.

In conclusion, this is the first comprehensive atomistic investigation into

several iron oxides, simulated with details which are not possible using micro-

magnetic or current ab-initio approaches. The model gives results which match

experimental measurements, and from this more complex structures such as finite

size systems and different core-shell combinations can be studied.

8.1 Further Work

The materials covered in this work have been studied extensively for many years,

however gaps in the current knowledge of their structure and properties at the

nanoscale remain. We have created models using the most up to date information

for each material, in many cases choosing the parameters which best suited our

use cases, however in the case of maghemite and cobalt ferrite, many of the

atomistic parameters have not yet been fully refined. Much of the experimental

data shows symptoms of finite size scaling effects and sample impurities, which

leads to uncertainty in the reference bulk parameters such as the predicted Curie

temperature and exchange parameters.

The exchange parameters in particular are the most important component of

our simulations, forming the majority of the energy contributions to the system.

While we find that the suggested exchange values for magnetite are promising,

work is required to find a more suitable set of parameters for maghemite and

cobalt ferrite, depending on their exact compositions. Density functional theory, or

DFT, is a promising avenue for calculating these parameters however due to the

ab initio nature of the simulations, many more details must be fleshed out to form

a competent model. In addition, DFT does not necessarily lend itself immediately

to magnetic materials and additional approximations and computation is needed
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to model ferrimagnetic materials which do not have a simple spin structure.

The properties of nanoparticles are strongly tied to the effects of the particle

surface, both in spherical and faceted particles, however we have been unable to

model changes in the surface structure or to choose specific surface configurations

for our study. This is another vast area of study, particularly in the case of

magnetite, which presents several possible surface configurations depending on

the orientation of the surface. An important continuation of this work would be to

study various low energy configurations to better understand their effects. This is

also strongly tied to the magnetocrystalline anisotropy which should also have a

significant contribution from the surface. The superparamagnetic properties of

low temperature iron oxides are strongly bound by the surface anisotropy which

we have been unable to model here.

With the constant improvements to computer hardware, the possible system

sizes which can be studied continues to increase. While today systems of 100 nm

are feasible using the highest end super computers available, many magnetic

phenomena such as spin vortices are only observed at or above this scale [2]

and will become easier to study in the coming years. The detail and accuracy of

atomistic models will be crucial to understanding the complex spin behaviours

occurring in these systems.
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