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Abstract

Inkjet printing is a promising alternative technique for the fabrication of

functional devices such as organic light emitting diode displays. However,

with ever increasing requirements for finer display resolutions, it becomes

increasingly challenging to precisely position inkjet printed droplets. Even

once the droplet is in the required location, there are challenges in achiev-

ing a uniform particle deposit of the functional material, once the solvent

evaporates.

In this thesis, a multiphase lattice Boltzmann method is used to investigate

the deposition processes of droplets deposited into idealised pixel geometries

(square cavities). Specific attention is given to droplets deposited with posi-

tioning errors, to see which factors have the greatest influence on the droplets

ability to self-align. Additionally, the model is coupled with an energy equa-

tion to investigate cavity properties on evaporation rate, internal flows, and

particle deposition.

A review of different multiphase models leads to the choice of the pseudopo-

iv



tential method, as recent developments allow for the simulation of moderate

density ratios, thermodynamic consistency, and the ability to couple with an

energy equation to simulate thermal flows with phase change. Implementa-

tion is then discussed, with attention given to parallelising the multiphase

algorithm to run on high-performance computers.

Different wetting models are evaluated, and a new model is suggested, which

allows for additional control of adhesive forces over the liquid-vapour inter-

face. Furthermore, the importance of boundary treatment in computing the

pseudopotential forces is highlighted.

The new wetting model is used to explore the limits of positioning error for

the deposition of droplets into square cavities. A regime map is suggested

which highlights the conditions required for print success, relating droplet

size, cavity size, and printer positioning errors.

Finally, investigations of evaporation in heated square cavities show the in-

fluence of receding contact angle on evaporation rate, internal flows, and

particle deposition.
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CHAPTER 1

Introduction

1.1 Motivation

The drive towards cheaper and more functional electronic devices has resulted

in the exploration of fabrication technologies such as inkjet printing as a

means of directly applying material in the required location. Inkjet printing

offers the ability to deposit material in a precise repeatable pattern, allowing

the printing of text and images with ease and without the need for a physical

template. These qualities of inkjet printing result in it being a low cost

and highly scalable alternative to traditional printing techniques. Examples

of inkjet printed electronics include thin-film transistors [1], sensors [2] and

organic light emitting diodes (OLEDs) [3, 4]. As the functional material can

be deposited onto a wide range of substrates, inkjet printing gives a viable

means for manufacturing wearable electronic devices [5].
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The current manufacturing procedure for the mass production of OLEDs in-

volves expensive evaporative based techniques, which heat up the required

material to the point of vaporisation, then through the use of fine masks,

allow it to condense in the required location [6, 7]. This process also places

constraints on the substrates due to the high temperature requirement. The

aforementioned qualities of inkjet printing make it a potential alternative

fabrication technique for OLEDs, and as such has received much research

interest [3, 4, 7, 8, 9, 10]. However, the main challenge with the use of inkjet

printing for the fabrication of OLEDs is depositing a uniform layer of func-

tional material in the desired location. Furthermore, as demand consistently

increases for higher resolution displays, the requirement to print with finer

tolerance also increases.

The remainder of this chapter gives an introduction of the basics of inkjet

printing and the associated physical phenomena i.e. wetting and evaporation

as well as describe computational modelling techniques available to simulate

the process. Finally, the thesis aim and objectives are presented along with

a description of the thesis layout.

1.2 Inkjet Printing

There are two primary inkjet printing technologies: continuous inkjet (CIJ)

and drop on demand (DOD), which as the names suggest produce either a

stream of continuous equidistant droplets or a single droplet when required

[11].

CIJ printers produce a continuous stream of droplets which are subsequently

deflected onto the substrate or collected in a reservoir to be reused. The

pressurised ink is passed through the print head, which through the phe-

2



nomenon of Rayleigh instability creates a stream of droplets. These droplets

are given a potential relative to ground, which allows them to be deflected

as they travel from the print head.

With DOD printers, the liquid is held in place within a nozzle by the inter-

facial surface tension. To eject a droplet from the nozzle a pressure pulse

is created forcing a single droplet to be ejected. There are two methods of

generating a pressure pulse: rapid heating of the ink causing local vaporisa-

tion, or mechanical compression using a piezoelectric transducer. Positioning

of the droplet is achieved by moving the print head to the desired location.

When the droplet is formed, there is a tail produced which stretches from

the droplet to the nozzle. This tail breaks up as the droplet falls to the

substrate and creates smaller satellite drops, which catch up with the main

droplet and coalesce before impact on the substrate. To allow this to occur,

the print head must be positioned a suitable distance away from the sub-

strate, typically 2 − 3mm. For the fabrication of functional devices, DOD

printers are preferable as they typically achieve finer resolutions. Typical

droplet properties of CIJ and DOD are summarised in table 1.1.

CIJ DOD

Droplet size (µm) 100 20-50

Generation frequency (kHz) 20-60 1-20

Droplet velocity (ms−1) >10 5-8

Table 1.1: Printer characteristics. Data obtained from [12] & [13].

There are a number of different physical steps which comprise the process of

inkjet printing such as the generation of droplets, the positioning of single or

multiple interacting droplets on a substrate, and finally the evaporation or
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solidification of the ink to give a solid deposit. Each of these steps encom-

passes complex phenomena spanning a wide range of industrial and academic

interests.

The characteristics of the applied pressure pulse in addition to the nozzle

diameter control the size and velocity of the ejected droplet. With these

droplet properties in addition to fluid properties such as density, viscosity,

and surface tension, dimensionless numbers can be constructed such as the

Reynolds (Re) and Weber (We) numbers. The Reynolds number describes

the ratio of inertial to viscous forces and is given as

Re =
u0D0

ν
, (1.1)

where u0 is the in-flight droplet velocity, D0 is the in-flight droplet diameter

and ν is the kinematic viscosity. The Weber number gives the ratio of inertial

forces to surface tension forces and is expressed as

We =
ρu2

0D0

σ
, (1.2)

where ρ is the density and σ is the liquid-vapour surface tension. Addition-

ally, the Ohnesorge (Oh) number defined as

Oh =

√
We

Re
, (1.3)

is used for categorising the droplets without the influence of velocity. Typi-

cally, the inverse of the Ohnesorge number (Z = 1/Oh) is used to determine

suitable properties for printing. Ranges suitable for printing are given as

10 > Z > 1 [14] and 14 > Z > 4 [15]. Additional requirements are that

the jet possess sufficient kinetic energy to be ejected from the nozzle, giving

Re = 2/Oh and that splashing is avoided upon impact with the solid surface
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giving OhRe5/4 = 50 [12]. These dimensionless numbers can be used to give

a map of properties suitable for inkjet printing, figure 1.1.

100 101 102 103

Re

10-2

10-1

100

101

O
h

Oh = 2/Re

Oh = 50/Re(5/4)

Oh = 0.1 (Z = 10)
Oh = 1.0 (Z = 1)

Printable fluid

Figure 1.1: Map of parameters suitable for inkjet printing. Constructed using

the relationships identified in [12].

Following the ejecting from the print nozzle, the droplet will fall until it

reaches the substrate. When the droplet impacts the substrate, the behaviour

can be driven by either inertial forces or capillary forces. The nature of the

droplet substrate interaction is complex and depends on both the liquid and

solid surface properties. Considerable research has been directed towards

understanding the interactions of droplets on surfaces, which is summarised

in §1.3.
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1.2.1 Ink Requirements

As highlighted above, there is a narrow range of conditions in which a success-

ful print can be achieved. Furthermore, the requirement to print functional

materials can significantly affect the rheological properties of the ink and

depending on the concentration, the fluid can become non-Newtonian, af-

fecting the printability. The inks used in inkjet printing are complex, and

comprise four main components: colourant, solvent, binder and additives

[16]. For inkjet fabrication of electrical devices, the colourant is replaced

by the required functional material such as silver particles [17] or poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) [18] etc., a re-

view of conductive inks is given in [19]. For the fabrication of OLEDs through

inkjet printing, the inks typically contain particle dispersions of the functional

material to be deposited, which due to the viscosity requirements to maintain

printability need to be of low concentration (< 5%) [16].

1.3 Wetting and Evaporation

The wetting of solid surfaces by droplets is encountered in numerous situa-

tions. A key wetting phenomenon encountered in nature is the interaction

between plant leaves and water droplets. The typically non-wetting nature

of the plant leaves (illustrated in figure 1.2) leads to droplets rebounding or

sliding, making the application of pesticides and herbicides inefficient [20]. In

an industrial setting, wetting examples include coatings, spray cooling and

inkjet printing.

In the bulk of a liquid, molecules experience cohesive forces with other liquid

molecules, resulting in a net force equal to zero. However, at the interface

between a liquid and a gas, molecules are interacting with both gas and
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Figure 1.2: Photograph of a rain droplet sitting on a leaf illustrating non-

wetting characteristics.

liquid molecules in an approximately equal manner, which due to the weaker

cohesive forces between the liquid and gas results in a force (surface tension)

pointing towards the bulk of the liquid. This is the driving mechanism for

shaping small droplets to a spherical shape and also generates excess pressure

inside the droplet. The difference between the pressure inside and outside

the droplet is referred to as Laplace pressure and is expressed as

∆p = pin − pout =
2σ

R
, (1.4)

where σ is the surface tension and R is the radius of the drop. When a

liquid drop is brought into contact with a solid surface, the shape it adopts

is one that minimises its free energy. When gravity can be neglected, this

shape is approximated as a spherical cap. The length scale at which gravity

becomes relevant is determined by the capillary length of the liquid λc, which
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is expressed as

λc =

√
σ

∆ρg
, (1.5)

where g is the acceleration due to gravity and ∆ρ is the difference between

the liquid and vapour phase densities, ρl and ρv respectively. Due to the

small size of the droplets in inkjet printing, gravitational forces are assumed

to be negligible and thus the equilibrium shape of a droplet wetting a surface

is well approximated with a spherical cap. Due to the presence of a solid,

there are additional adhesive forces experienced by the liquid and vapour

with the solid. The wetting or wettability of a surface is normally described

by the equilibrium contact angle, θ, which on a flat smooth surface given by

Young’s equation as

cos(θ) =
σsv − σsl

σlv

, (1.6)

where σsv, σsl and σlv are the surface tensions between the solid-vapour, solid-

liquid and liquid-vapour respectively. A surface is characterised as wetting

or hydrophilic if the contact angle θ < 90◦. Alternatively, the surface is

described as non-wetting or hydrophobic if the contact angle is greater than

θ > 90. Finally, superhydrophobic surfaces are characterised by a contact

angle θ > 150◦.

Although the Young equation gives a single equilibrium contact angle, there

are in practice a range of contact angles that can be seen for a droplet wetting

a surface, which is the result of chemical or topographical imperfections (sur-

face roughness). The range of angles exhibited will however be in-between

maximum and minimum values θA and θR, which describe the advancing

and receding contact angles respectively. The difference between these two

extreme contact angles is called the contact angle hysteresis, θH = θA − θR.
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For the case where a droplet is deposited onto a rough surface, there are two

possible configurations: the homogeneous case in which the droplet fully wets

the surface, and the heterogeneous case where vapour remains underneath the

droplet. Two popular models exist to give the equilibrium contact angles on

these rough surfaces. When the surface is completely wetted by the droplet,

the apparent contact angle (θApp) is described by the Wenzel model [21],

expressed as

cos(θApp) = Rcos(θ) , (1.7)

where θApp is the apparent contact angle, θ is the inherent contact angle of

a droplet on a smooth surface and R is the roughness ratio, comparing the

true surface area to the apparent surface area. Alternatively, the droplet

may rest upon the protruding features of the rough surface, trapping vapour

underneath the droplet, which is referred to as Cassie-Baxter type wetting

[22]. The expression for the apparent contact angle is expressed as

cos(θApp) = Rwf
′cos(θ) + f ′ − 1 , (1.8)

where Rw is the roughness ratio of the wetted surface area and f ′ is the

fraction of surface area wetted by the droplet. For the case of a droplet wet-

ting a smooth surface with chemical patterning, the Cassie-Baxter equation

becomes

cos(θApp) = f ′cos(θ(1)) + (1− f ′)cos(θ(2)) , (1.9)

where θ(1) and θ(2) are the inherent contact angles of chemical components 1

and 2 respectively. The models are useful, however, it is argued by [23] that

instead of using contact areas to determine the change in contact angle, the

contact line is the key quantity determining a change in contact angle.
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In addition to equilibrium configurations, the dynamic process of droplet

impact with a solid surface is of key importance for inkjet printing. As

highlighted by Rioboo et al. [24] and summarised in [13] there are six possible

outcomes for a droplet impacting a flat surface: deposition, prompt splash,

corona splash, receding breakup, partial rebound and complete rebound. The

spreading and evolution of the droplet radius on a wetting surface have been

investigated [25]. During the initial impact stage, inertial wetting is dominant

and large spreading speeds result which is independent of wettability.

1.3.1 Evaporation and Particle Deposits

During the evaporation of a droplet, liquid molecules which possess enough

energy break free from the cohesive force in the bulk into the surrounding

atmosphere. Macroscopically, this process is described by an evaporative flux

leaving the surface. As evaporation continues, the temperature lowers at the

droplet surface due to latent heat effects. However, if the evaporation occurs

at a slow enough rate, the process can be assumed to be isothermal [26].

There is a non-uniform evaporative flux for sessile droplet when the con-

tact angle θ 6= 90◦ [27, 28]. For droplets with contact angles θ < 90◦ the

evaporation flux is enhanced at the contact line, whereas for droplets with

θ > 90◦ the evaporative flux is reduced at the contact line. When the contact

line is pinned and there is enhanced evaporation flux due to θ < 90◦, there

is an outward replenishing flow inside the droplet. This causes solutes in

the droplet to collect at the droplet periphery, leaving a ring-like deposit on

the substrate once the solvent has fully evaporated [27]. This phenomenon

is commonly referred to as the coffee-ring effect. The Péclet number (Pe),

provides a means of determining whether the diffusion of a material in the

solute will dominate over convection, and is defined as
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Pe =
Lu

Dc

, (1.10)

where L is the length scale of the drop, u is the characteristic internal flow

velocity and Dc is the diffusivity. When the Pe number is less than 1, uniform

deposits can be expected, whereas for Pe > 1, non-uniform deposition results

[29, 30].

For an evaporating sessile droplet on a flat surface, there are three dis-

tinct modes which are observable: constant contact radius (CCR) where

the droplet-substrate area remains constant and the height and contact an-

gle reduce, constant contact angle (CCA) in which the droplet shrinks in a

self-similar way, reducing the height and droplet-substrate contact area and

finally, a combination of the two modes in which the contact angle and radius

shrink simultaneously [31, 32]. For heterogeneous surfaces, there is however

another mode of droplet evaporation referred to as the stick-slip evaporation

model [33]. Here, the droplet evaporates in a CCR mode until a critical angle

is reached after which the droplet radius rapidly decreases until it becomes

re-pinned.

For evaporating droplets in which there are non-uniform surface tensions,

either through the presence of thermal gradients or compositional gradients in

binary solvents, there will be a resulting recirculating flow, from regions of low

surface tension to high referred to as Marangoni flow [34]. For small droplets

where the effects of gravity can be neglected, the presence of Marangoni

flows can cause deviation from a spherical cap shape [35]. Hu and Larson

[36] showed how Marangoni flows could be used to suppress the coffee-ring

effect.
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1.4 Numerical Modelling of Fluids

Tools such as computational fluid dynamics (CFD) are used for solving fluid

dynamic problems in which no analytical solution exists or the solution is

difficult to obtain. As opposed to experimental investigations of fluid flows,

CFD offers a cost and time effective way to explore different parameters and

perform optimisation studies.

1.4.1 Continuum-based Solvers

The most common and commercially available CFD packages treat the fluid

as a continuum, thus are applicable to scales at which the molecular motion

is sufficiently well averaged. Flows can be characterised by their Knudsen

number, Kn =
lmfp

l0
, which compares the characteristic length scale of the flow

to the mean free path between particle collisions, l0 and lmfp respectively.

When Kn << 1 the continuum assumption is valid. The behaviour of the

fluid is therefore characterised by macroscopic properties such as density,

pressure, velocity and temperature.

These macroscopic quantities are defined for a small region of space but are

still large enough to statistically average out particle motion. The motion of

a fluid is described by conservation laws for mass and momentum. Typically,

these are used with simplifying assumptions such as that of incompressibility

and that the fluid behaves in a Newtonian way. The incompressible ver-

sion of the Navier-Stokes (NS) equation, which describes the conservation of

momentum is given as

∂u

∂t
+ (u · ∇)u = ν∇2u− 1

ρ
∇p , (1.11)

where u, ρ, p and ν are the velocity, density, pressure and kinematic viscosity
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respectively. For an incompressible fluid, it is also required that the velocity

be divergence free, formally

∇ · u = 0 . (1.12)

These equations will also be solved with a Poisson equation for the pressure.

For numerical simulation, these equations are discretised with commonly

used techniques such as the finite-difference [37], finite-element [38] or finite-

volume [39] methods.

For modelling the inkjet printing process with conventional CFD techniques,

additional equations are required to capture the free surface1(interface) of

the ink and gas. To track the interface there are different techniques such

as the volume of fluid (VOF) [40] or the level-set (LS) [41] methods among

others.

1.4.2 Particle-based Solvers

Unlike conventional CFD techniques which work at the macroscopic level,

with conserved quantities of mass and momentum, the modelling of the fluid

can also be approached from the micro- or meso-scale perspectives [42]. Con-

sidering the fact that all fluids are made up of particles, simple numerical

models can be constructed to track the motion of the particles based on

Newton’s second law,

F i = mai , (1.13)

where m is the mass of the fluid particle, ai is the acceleration of particle i

1A free surface describes a region in which two media are in contact, one of which

cannot support an applied pressure gradient or shear stress.
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and F i is the total force acting on the particle. Neglecting gravity, the force

can be written as

F i =
∑

i=1,j 6=i

−∇φ(|rij|) , (1.14)

where rij is the distance between two particles and φ is the inter-particle

potential, of which the Lennard-Jones 12-6 potential is widely adopted:

φ(rij) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, (1.15)

where ε controls the interaction strength and σ controls the range of inter-

action. The particle position at time t+ ∆t can then be obtained by

xi(t+ ∆t) = 2xi(t)− xi(t−∆t) +
F i(t)

m
∆t2 , (1.16)

among other methods [43]. To obtain the macroscopic quantities of interest,

averaging steps are required. As such, the temperature is calculated by first

considering the average kinetic energy per degree of freedom,

〈
1

2
mv2

α

〉
=

1

2
kbT . (1.17)

Therefore, the instantaneous temperature is given as

T (t) =

Nf∑
i=1

mv2
α,i(t)

kbNf

, (1.18)

where kb is the Boltzmann constant and Nf is the number of degrees of free-

dom. This simple model is able to capture complex phenomena with the

appropriate tuning of the force parameters. However, the main limitation is

that the required number of particles quickly makes the method impractical

for anything other than short length and time scales [44]. Alternatively, dis-

sipative particle dynamics (DPD) originally proposed by Hoogerbrugge and
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Koelman [45] can be considered a coarse-grained MD method, in which the

particles represent a cluster of molecules, and is thus suitable for simulating

larger length and time scales. The method combines features of MD and

LGCA such as Newtonian mechanics and an evolution consisting of collision

and streaming. While the method can be used for simulating a variety of

mesoscale flows, configuring simulations can be challenging due to the large

number of parameters affecting the hydrodynamic behaviour. Furthermore,

pair-wise interactions between particles are limited by a cut-off distance,

which requires a relatively large length to model fluids with large viscos-

ity, increasing the simulation time [44, 46]. Other particle based approaches

such as the lattice-gas cellular automata (LGCA) and the lattice Boltzmann

method (LBM), which instead of tracking individual particles use statistical

information of particle distributions are described in detail in chapter 2.

1.4.3 Numerical Modelling of Inkjet Printed Droplets

Due to the multiple length scales involved with wetting phenomenon, numer-

ical modelling can be challenging and as such there are numerous approaches

each with its own strengths and weaknesses [47]. Different CFD methodolo-

gies and challenges associated with droplet generation for different printing

techniques are reviewed by Hoath [13]. For continuum-based models of mul-

tiphase flows, challenges include but are not limited to: enforcing mass con-

servation, momentum and kinetic energy conservation and handling complex

topologies [48]. For interface-tracking (Lagrangian methods) in which the

mesh evolves with the free surface, difficulties can arise when dealing with

droplet coalescence and breakup [48]. With the VOF method, there can

be difficulties in reconstructing the interface, resulting in modelling errors.

Furthermore, the dynamic contact angle usually has to be prescribed as a
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simulation input.

Nevertheless, continuum-based solvers have been utilised for investigating

various scenarios relating to inkjet printing of functional devices, including

droplet impact onto rough surfaces [49], wetting of anisotropic surfaces [50]

and deposition into cavities [51, 52, 53].

At the micro-scale, molecular dynamic simulations have been used to explore

the physics of moving wetting lines [54, 55]. However, due to high computa-

tional requirements, these investigations are limited to small space and time

scales.

Operating at the meso-scale, the lattice Boltzmann method is well suited to

modelling multiphase flows as interactions among fluid particles can easily

be incorporated without the computational demands of molecular dynamics

simulations. As such, the lattice Boltzmann method has been used to ex-

plore droplet deposition on smooth surfaces [56, 57] as well as onto a variety

of topographically patterned surfaces, including cavities [58, 59], idealised

scratched surfaces [60], small protrusions [61], porous surfaces [62]. Further-

more, the LBM has been used to model deposition on smooth, chemically

patterned surfaces consisting of stripes [63, 64] and chemical gradients [65].

1.4.4 Modelling Approach

For the research conducted in this thesis, the lattice Boltzmann method is

used which is described in detail in the following chapters. The LBM is par-

ticularly well suited to multiphase flow, furthermore, the algorithm is highly

parallelizable, allowing for implementation on high-performance computers

and even graphical processing units. Some of the commonly quoted strengths

and weaknesses of the LBM method [66, 67, 44] are summarised below:

Strengths:
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� The LBM recovers the incompressible Navier-Stokes equation without

the need to solve the Poisson equation.

� The kinetic nature of the LBM allows for ease in incorporating inter-

actions among fluid particles and the environment to enable modelling

of complex multiphase and multicomponent flows.

� The method performs well at simulating mass conserving flows in com-

plex geometries, with the straightforward implementation of no-slip

boundary conditions.

� The lattice based nature as well the simple algorithm allows for efficient

implementation on parallel computers.

Weaknesses:

� The generation of spurious velocities2at curved interfaces with multi-

phase and multicomponent simulations.

� Time dependant algorithm which is not efficient for the simulation of

steady flows.

� A memory intensive algorithm, as a number discrete particle probabili-

ties need to be modelled at each lattice node in addition to macroscopic

quantities.

� Implementing boundaries with macroscopic quantities such as density,

pressure or velocity is not straightforward.

2An illustration of spurious velocities is shown in §3.3, figure 3.3.
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1.5 Aim and Objectives

1.5.1 Aim

The aim of this thesis is to use computational fluid dynamic simulations

to elucidate the behaviour of inkjet printed droplets on patterned substrate

pertaining to the fabrication of organic light emitting diode displays. First,

multiphase modelling aspects are explored and developed in order to produce

an accurate model, then with this model, two different stages of the printing

process are investigated, including the deposition onto the substrate and then

the subsequent evaporation of the carrier liquid.

1.5.2 Objectives

� Develop an appropriate multiphase simulation model to allow the mod-

elling of droplet deposition into cavities.

� Investigate the deposition process and self-alignment properties of droplets

falling into cavities with positional inaccuracies.

� Investigate the process of evaporation and particle flow of droplets in-

side a cavity.

1.6 Thesis Layout

The remainder of this thesis is organised as follows, chapter 2 describes the

history of the lattice Boltzmann method from its roots in cellular automata

and describes the derivation from a statistical mechanics perspective. The

Chapman-Enskog multi-scale expansion is performed to show that at the

macroscopic scale the Navier-Stokes equations are recovered. Additionally,
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recent advances are described which are able to improve the accuracy and

stability of the method. Chapter 3 explores the various multiphase and multi-

component extensions to the LBM, with a detailed description of the pseu-

dopotential method used for this research. Chapter 4 gives details about the

implementation of the LBM algorithm, taking advantage of the inherent par-

allelisation capabilities with distributed memory systems. The relationships

between LB models and physical dimensional units are given and conversion

factors are introduced. Boundary and initial conditions are described which

are used throughout this research and a validation case for no-slip bound-

aries is presented. Chapter 5 describes various methods of incorporating

fluid-solid interactions into the pseudopotential method and explores perfor-

mance in terms of wetting characteristics for static and dynamic scenarios.

A new wetting model is described which is able to reduce undesirable ef-

fects present in other models. Chapter 6 explores the dynamics of deposition

into idealised pixel geometries (square cavities). A discussion on the rele-

vant literature regarding deposition into pre-fabricated cavities is presented

first, then results are given for droplet self-alignment with different cavity

wetting properties, Weber numbers and cavity spacing. A printable regime

map is constructed, highlighting conditions for a successful print. In chapter

7, the pseudopotential model is coupled with an energy equation to inves-

tigate droplet evaporation in heated cavities. The model is used to explore

wettability effects on evaporation rate, internal flows and particle deposits.

Finally, in chapter 8 concluding remarks are given.
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CHAPTER 2

The Lattice Boltzmann Method

2.1 Background of the LBM

In this section, an overview of the developments leading to the lattice Boltz-

mann method is presented. The origins of the LBM are rooted in cellular

and lattice gas automata, which is summarised in the following sections. The

same equations which arose through this natural evolution are also obtained

through a statistical mechanics perspective, giving a sound foundation for

the LBM, this is briefly described in §2.2.

2.1.1 Cellular Automata

The lattice Boltzmann method evolved from cellular automata (CA) in a

process of systematic improvements and modifications. In order to best un-

derstand the nature of the LBM, it is helpful to first know about the CA
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(a) Rule 90 (r = 1). (b) Rule 18 (r = 1). (c) Rule 52 (r = 2).

Figure 2.1: Snapshots of the time evolution of simple 1D cellular automata,

where r is the range on influence in the update rule.

which came before it. The development of CA began in the 1950’s by John

von Neumann and Stanislas Ulam [68]. The basic characteristics of the CA

are as follows:

� An array of cells all of the same type.

� Each cell has a binary state.

� Each cell is updated simultaneously at discrete time intervals.

� Each cell is updated by a single deterministic rule depending on the

state of neighbouring cells.

Some examples of 1D CA following classification by Stephen Wolfram [69]

are given in figure 2.1. The top row of the images represents the system

at time t = 0 and subsequent rows are the time t + 1. A popular 2D CA

was introduced in the 1970s by John Horton Conway called Life which again

had simple totalistic update rules producing complex behaviour. This was

subsequently popularised by Martin Gardner in a series of papers [70, 71, 72,
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73]. From an initial random distribution of states (alive or dead), the state

at each location is updated depending on the state of the neighbouring cells

until a stable configuration is reached, an example of which is shown in figure

2.2. Here, the domain consists of 100 × 100 nodes, where at initialisation,

each node is equally likely to be alive or dead. Each cell has 8 neighbours,

if at the current time-step the cell is alive and has 2 or 3 neighbours which

are also alive, the cell will remain alive for the next iteration. Alternatively,

if the cell is dead and has precisely 3 neighbours which are alive the cell will

change to alive for the next iteration. All other configurations default to a

dead cell at the next iteration.

Figure 2.2: Snapshots of the time evolution of John Conway’s 2D cellular

automata, life. From T = 1200, populations have stabilised.

22



2.1.2 Lattice Gas Cellular Automata

A special type of CA, referred to as lattice-gas cellular automata (LGCA)

was proposed in 1973 by Hardy, Pomeau and de Pazzis [74] which is coined

the HPP model from the authors initials. The key idea was that different

micro dynamical systems can lead to the same behaviour on a macroscopic

scale. This special type of CA was developed such that mass and momentum

were conserved to allow the simulation of physical phenomena such as fluid

flow. With the LGCA, space is filled with equidistant lattice nodes connected

by a vector ei. A Boolean variable, ni, is associated with each vector to

represent the presence or absence of a particle. Each lattice node has four

vectors connecting it to its nearest neighbours, configured in a square lattice

structure. The evolution of the system is then described as

ni(x+ ei∆t, t+ ∆t)− ni(x, t) = ∆i(n(x, t)) , (2.1)

where ∆i is the collision operator. The left-hand side is responsible for

streaming and the right-hand side redistributes the particles with the con-

straints of mass and momentum conservation imposed by the collision oper-

ator. Later, in 1986 Frisch, Hasslacher and Pomeau [75] proposed a LGCA

model which was able to recover the Navier-Stokes equations in the macro-

scopic limit. Their approach is commonly referred to as the FHP model,

again named after the inventors’ initials. They were able to recover the

Navier-Stokes equations by identifying the required lattice isotropy (De-

scribed in Appendix C). The square lattice structure was replaced by a hexag-

onal configuration with 6 lattice vectors (7 if including rest particles). This

increased the complexity, as now there were multiple possible collision events

that would respect the conservation requirements. The outcome of collision

would therefore be chosen randomly, with an equal probability between dif-
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ferent states. The model was a substantial step forward, however, it suffered

from noise due to the Boolean nature of the particles, violation of Galilean

invariance, velocity dependent pressure, restriction to low Reynolds number

flows, and spurious invariants1.

Subsequent developments were able to remove these undesirable effects from

the model. To remove the noise and thus the need for statistical averaging

of the whole simulation, the Boolean values were replaced with real num-

ber distribution functions representing the average occupation at each site

by McNamara and Zanetti [76]. Simplified collision operators were then in-

troduced under the assumption that the distribution function is close to its

equilibrium value [77]. A key final modification was proposed by numerous

authors [78, 79, 80] in which the collision operator was re-expressed in a form

such that the distribution functions all relax towards equilibrium at a con-

stant rate, resembling the Bhatnagar-Gross-Krook (BGK) collision operator

[81].

2.2 Theoretical Basis of the Lattice Boltz-

mann Method

As mentioned in §1, fluids can be modelled at different scales. Describing a

fluid system using statistical mechanics involves a large number of degrees of

freedom, as knowledge of all the positions pi and momenta qi of the particle

constituting the fluid are required. The evolution of this system is described

by derivatives of the Hamiltonian H(q,p) as:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
, (2.2)

1Conservation of phenomena other than mass and momentum.
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where i = 1, 2, . . . , N , with N being the number of particles in the system,

typically exceeding 1023 and the dotted quantities representing a derivative

with respect to time. Due to the large number of particles, it is beneficial to

take a different approach to modelling the system, such as the kinetic theory.

With kinetic theory, the interest is shifted towards probabilities rather than

the knowledge of each individual particle. The probability density function

(PDF), fN(q,p, t) is introduced which gives the probability that the state of

the system is in the volume [p,p+dp]×[q, q+dq] in phase space. The benefit

of fN is that it gives all the statistical properties which would otherwise have

had to be obtained from directly performing statistical averages on molecular

dynamic simulations. The evolution of the fN is described by the Liouville

equation,

dfN
dt

=
∂fN
∂t

+
N∑
i=1

[
∂fN
∂qi
· q̇i +

∂fN
∂pi
· ṗi
]

= 0. (2.3)

However, the Liouville equation still contains too many degrees of freedom

to be of practical use computationally. A reduced PDF, Fs, is introduced

Fs(q1,p1, · · · , qs,ps) =

∫
fN(q1,p1, · · · , qN ,pN)dqs+1dps+1 · · · dqNdpN .

(2.4)

The evolution of Fs is given by the so called BBGKY hierarchy after Bo-

goliubov, Born, Green, Kirkwood and Yvon who derived the equations. In

full, this hierarchy is identical to the Liouville equation. However, a trun-

cated form of the BBGKY equation can be obtained under the assumption

of the Boltzmann gas limit [82], which at the first order gives the Boltzmann

equation as

∂f

∂t
+ ξ · ∂f

∂x
= Ω(f) , (2.5)
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where f is the velocity distribution function in physical space and Ω repre-

sents the rate of change of f due to binary molecular collisions. The velocity

distribution function f is defined as

f(x, ξ, t) = NmF1(q1,p1, t) , (2.6)

where ξ = p1/m is the particle velocity. Useful macroscopic quantities are

easily obtained from the velocity distribution function through its moments,

such as

ρ =

∫
fd3ξ , (2.7)

ρu =

∫
fξd3ξ , (2.8)

ρe =
1

2

∫
|v|2fd3ξ , (2.9)

ρE =
1

2

∫
|ξ|2fd3ξ , (2.10)

where e is the internal energy, E is the total energy and v = ξ − u is the

relative velocity.

H-Theorem

Derived by Boltzmann, the H-Theorem states that the particle collisions

drive the distribution towards equilibrium. The H-function is defined as

H =

∫
f lnfd3ξ , (2.11)

which is shown always to decrease, i.e.,

dH
dt
≤ 0 , (2.12)
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where the equality holds only if the distribution function reaches its time

invariant (equilibrium) state, which is the Maxwell-Boltzmann distribution

f eq =
ρ

(2πRT )3/2
exp

[
− (ξ − u)2

2RT

]
, (2.13)

where R = kb/m is the gas constant and kb is the Boltzmann constant.

The originally proposed collision operator takes the form of a complicated

integral, and as such simpler collision operators were suggested. The simplest

and one of the most popular of these operators is the BGK [81] model. The

BGK model works by relaxing velocity distribution functions towards the

Maxwell-Boltzmann equilibrium as

Ω(f) = −1

λ
(f − f eq) , (2.14)

where λ is the relaxation time. This then takes the place of the collision

operator in equation 2.5 to give

∂f

∂t
+ ξ · ∂f

∂x
= −1

λ
(f − f eq) . (2.15)

Finally, arriving at the Boltzmann equation with the BGK collision operator,

all that remains is discretisation in velocity, space and time. The details of

which are given by He and Luo [83, 84] and a summary of the discretised

equations is given in the following section.

2.2.1 The Discrete Lattice Boltzmann Method

The standard particle distribution function, f(x, ξ, t) spans seven-dimensional

space defined by the spatial coordinates x, y and z, velocity components ξx,

ξy and ξz and time t. However, working with a finite set of discrete veloc-

ities, ξ, the correct hydrodynamic moments can still be recovered but with
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the benefit of reduced computational cost. There are however requirements

for the discrete velocities in order to be able to correctly recover the Navier-

Stokes equations as discussed in section 2.1.2. The construction of a suitable

set of discrete velocities, ξ, is typically followed by a re-scaling by the fac-

tor 1/
√

3 to give the discrete lattice velocity ei of which the abscissae are

in integer form. Combining the discrete lattice velocities with appropriate

weights wi gives a velocity set. The most common two-and three-dimensional

velocity sets for recovering the NS equations, D2Q9 and D3Q192, which are

illustrated in figure 2.3. The velocities for the D3Q19 velocity set can be

expressed as

ei =


0, 0, 0 i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, . . . , 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, . . . , 18 .

(2.16)

where the weights are

wi =


1
3

i = 0,

1
18

i = 1, . . . , 6,

1
36

i = 7, . . . , 18 .

(2.17)

The continuous space x and time t are also discretised to lattice points sepa-

rated by distance ∆x and time steps in interval ∆t respectively. Neighbour-

ing lattice points are connected by one of the lattice vectors, ei∆t, ensuring

the discrete particle distribution function fi(x, t) arrives at a neighbouring

lattice node fi(x+ ei∆t) in one time-step.

2The common notation for describing velocity sets is DdQq, where d is the number of

spacial dimensions and q is the number of discrete velocity paths [80].
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Figure 2.3: Illustration of the D2Q9 and D3Q19 velocity sets.

The discrete lattice Boltzmann equation is expressed with an arbitrary col-

lision operator (Ωi(x, t)) as follows

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = Ωi(x, t) . (2.18)

As with the continuous Boltzmann equation, the simplest and most popular

collision operator is the BGK [81] model, which is expressed for the discrete

LB model as

Ωi(f) = −1

τ
(fi − f eqi )∆t , (2.19)

where τ is the relaxation time and f eqi is the discrete isothermal equilibrium

distribution function, which is expressed as

f eqi = wiρ

(
1 +

u · ei
c2
s

+
(u · ei)2

2c4
s

− (u · u)2

2c2
s

)
, (2.20)

where ρ is the density, u is the macroscopic velocity and cs = 1/
√

3 is the
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lattice speed of sound. Obtaining a discrete form of the equilibrium distri-

bution function can be achieved by first expressing equation 2.13 as a series

of Hermite polynomials, then using the rules of Gauss-Hermite quadrature,

discrete velocities can be obtained which then give discrete equilibrium val-

ues, f eqi
3. The macroscopic quantities of density and velocity are recovered

through weighted sums of the distribution functions at each node as

ρ(x, t) =
∑
i

fi(x, t) and u(x, t) =
1

ρ(x, t)

∑
i

fi(x, t)ei . (2.21)

Furthermore, the kinematic viscosity for the LB simulation is determined

from the relaxation time as

ν = c2
s

(
τ − 1

2

)
. (2.22)

One time-step of the LB equation 2.18 comprises two steps, first the particle

collision processes and secondly, the streaming (or propagation) step. During

collision, the discrete particle distribution function is relaxed towards the

local equilibrium value, which for the BGK collision operator is expressed as

f ∗i = fi −
1

τ
(fi − f eqi )∆t , (2.23)

where f ∗i is used to describe post collision populations. These values are then

streamed along lattice vectors to neighbouring lattice nodes, as illustrated in

figure 2.4.

3This procedure is described in detail in [44].
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(a) f∗i (x, t). (b) fi(x+ ei∆t, t+ ∆t).

Figure 2.4: Illustration of the streaming step for post-collision populations.
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2.2.2 Chapman-Enskog Expansion

To understand the behaviour of the discrete lattice Boltzmann equation at

macroscopic scales, a common expansion (Chapman-Enskog expansion [85])

is used, which reveals that at the macroscopic scale, the lattice Boltzmann

equation recovers the Navier-Stokes equations. To begin the expansion, the

distribution function is first expressed as a perturbation expansion around

the equilibrium distribution as

fi = f eqi + εf
(1)
i + ε2f

(2)
i + . . . , (2.24)

where ε is a small parameter, typically the Knudsen number. Here the ex-

pansion is performed on the fully discretised lattice Boltzmann equation with

BGK collision operator:

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = −∆t

τ

(
fi(x, t)− f eqi (x, t)

)
. (2.25)

The higher order terms f
(1)
i and f

(2)
i , are subject to the following solvability

conditions

∑
i

f
(n)
i = 0 and

∑
i

eif
(n)
i = 0 for n ≥ 1 . (2.26)

A Taylor series expansion up to second order on the first term on the left-

hand side of equation 2.25 gives

fi(x+ ei∆t, t+ ∆t) = fi(x, t) + (∂tfi∆t+ ∂αfieiα∆t)

+
∆t2

2
(∂2
t fi + 2∂t∂αfieiα + ∂2

αfie
2
iα) +O(∆t3) , (2.27)

which after manipulation is expressed in a simplified form as
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∆t(∂t + eiα∂α)fi = −∆t

τ
fneqi +

∆t2

2τ
(∂t + eiα∂α)fneqi +O(∆t3) , (2.28)

where fneqi = fi − f eqi . In addition to the expanded distribution function in

equation 2.24, the time and space derivatives are expanded as

∂t = ε∂
(1)
t + ε2∂

(2)
t and ∂α = ε∂(1)

α . (2.29)

Which are then substituted into the Taylor expanded LBM (equation 2.28)

to give

∆t(ε∂
(1)
t + ε2∂

(2)
t + eiαε∂

(1)
α )(f eqi + εf

(1)
i + ε2f

(2)
i ) =

−∆t

τ
(εf

(1)
i + ε2f

(2)
i ) +

∆t2

2τ
(ε∂

(1)
t + ε2∂

(2)
t

+eiαε∂α)(εf
(1)
i + ε2f

(2)
i ). (2.30)

Dividing both sides by ∆t, terms of O(ε) and O(ε2) are grouped together.

Terms of order O(ε) are:

∂
(1)
t f eqi + eiα∂αf

eq
i = −1

τ
f

(1)
i . (2.31)

Similarly, terms of order O(ε2) are:

∂
(2)
t f eqi + (∂

(1)
t + eiα∂α)f

(1)
i −

∆t

2τ
(∂

(1)
t + eiα∂α)f

(1)
i = −1

τ
f

(2)
i . (2.32)

The moments are then taken for the grouped terms of each order. For equa-

tion 2.31 (order O(ε)), the 0th, 1st and 2nd moments are taken. For equation

2.32 (order O(ε2)) the 0th and 1st order moments are taken.

The 0th moment of O(ε) is obtained by multiplying equation 2.31 by 1 and

summing over i:
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∂
(1)
t ρ+ ∂αρuα = 0 . (2.33)

The 1st moment of O(ε) is obtained by multiplying equation 2.31 by eiα and

summing over i:

∂
(1)
t ρuα + ∂βΠeq

αβ = 0 . (2.34)

The 2nd moment of O(ε) is obtained by multiplying equation 2.31 by eiαeiβ

and summing over i:

∂
(1)
t Πeq

αβ + ∂(1)
γ Πeq

αβγ = −1

τ
Π

(1)
αβ . (2.35)

The 0th moment of O(ε2) is obtained by multiplying equation 2.32 by 1 and

summing over i:

∂
(2)
t ρ = 0 (2.36)

The 1st moment of O(ε2) is obtained by multiplying equation 2.32 by eiα and

summing over i:

∂
(2)
t ρuα + ∂β

(
1− ∆t

2τ

)
Π

(1)
αβ = 0 (2.37)

The moments are then re-combined following the expanded distribution func-

tion (equation 2.24) and expanded derivatives (equation 2.29) to give

∂tρ+ ∂α(ρuα) = 0 , (2.38)

and

∂t(ρuα) + ∂βΠeq
αβ = ∂β

(
1− ∆t

2τ

)
Π

(1)
αβ . (2.39)
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The expansion thus far has recovered the continuity equation (equation 2.38).

However, it is still required to obtain the momentum equation from equation

2.39. The term Πeq
αβ = ρc2

sδαβ + ρuαuβ
4is known from the lattice isotropy

requirements and the form of the equilibrium distribution function, see ap-

pendix C.3. From equation 2.35, an expression for Π
(1)
αβ is known, therefore,

equation 2.39 becomes

∂t(ρuα) + ∂β(ρuαuβ) = −∂β(ρc2
sδαβ)− ∂β

(
1− ∆t

2τ

)
τ(∂

(1)
t Πeq

αβ + ∂(1)
γ Πeq

αβγ) .

(2.40)

The last term of the equation (∂
(1)
t Πeq

αβ +∂
(1)
γ Πeq

αβγ) is now expanded with the

known forms of the equilibrium moments (appendix C.3) as

∂
(1)
t

(
c2
sρδαβ + ρuαuβ

)
+ ∂(1)

γ

(
c2
sρ(uαδβγ + uβδαγ + uγδαβ)

)
. (2.41)

Using the product rule for three components as ∂t(abc) = a∂t(bc) + b∂t(ac)−

ab∂t(c), the first term in equation 2.41 is expanded as

∂
(1)
t

(
c2
sρδαβ + ρuαuβ

)
= c2

sδαβ∂
(1)
t ρ+ uα∂

(1)
t (ρuβ) + uβ∂

(1)
t (ρuα)− uαuβ∂(1)

t ρ .

(2.42)

Expressions for the scaled time derivatives (∂
(1)
t ) for ρ and ρuα are given in

equations 2.33 and 2.34 respectively, thus can be substituted into the right-

hand side of equation 2.42:

− c2
sδαβ(∂(1)

γ ρuγ)− uα∂(1)
γ (ρc2

sδβγ + ρuβuγ)

− uβ∂
(1)
γ (ρc2

sδαγ + ρuαuγ) + uαuβ(∂(1)
γ ρuγ) . (2.43)

4Here cs is the lattice speed of sound and δαβ is the usual Kronecker delta.
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Further expansion and applying summations over repeated indices yields

− c2
sδαβ(∂(1)

γ ρuγ)− c2
s(uα∂βρ+ uβ∂αρ)

− [uα∂γ(ρuβuγ) + uβ∂γ(ρuαuγ)− uαuβ∂γ(ρuγ)] . (2.44)

The term in the square brackets can be written compactly as (∂γ(ρuαuβuγ)).

Additionally, the second term on the right-hand side of equation 2.41, is

expanded to give:

c2
s(∂β(ρuα) + ∂α(ρuβ)) + c2

sδαβ∂γ(ρuγ) , (2.45)

which after expanding the first term with the product rule becomes

c2
s(ρ∂βuα + uα∂βρ+ ρ∂αuβ + uβ∂αρ) + c2

sδαβ∂γ(ρuγ) . (2.46)

Finally, combining expression 2.46 and 2.44, an expression for the tensor Π
(1)
αβ

can be given as

Π
(1)
αβ = −τc2

s(ρ∂βuα + ρ∂αuβ) + τ∂γ(ρuαuβuγ) . (2.47)

Substituting this expression back into equation 2.40 while neglecting the term

τ∂γ(ρuαuβuγ) gives

∂t(ρuα) +∂β(ρuαuβ) +∂β(ρc2
sδαβ) = ∂β

(
1− ∆t

2τ

)
τc2

sρ(∂βuα +∂αuβ) . (2.48)

Which is recognisable as the Navier-Stokes equation with dynamic viscosity

given by

µ = ρc2
s

(
τ − ∆t

2

)
. (2.49)
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Additionally, as the term ∂β(ρc2
sδαβ) simplifies to ∂α(ρc2

s) when summing over

repeated indices, the pressure is given as p = ρc2
s. The cubic velocity term,

τ∂γ(ρuαuβuγ), is negligible for small Mach number, incompressible flows.

2.3 Model Extensions

Although the standard single-relaxation-time LBM is commonly used, it does

however have some limiting features, such as viscosity dependent accuracy

and reduced stability at high Reynolds numbers. As such, there are many

different extensions, which improve the model’s applicability to a wider range

of fluid flows. A brief overview of some of the extensions available and the

strengths and weaknesses of each modification are given in the following

sections.

2.3.1 Multiple Relaxation Time Modelling

One way to improve the models stability and accuracy is to use multiple-

relaxation-time (MRT) collision operators. Here, unlike the traditional sin-

gle relaxation time (SRT) models, where each distribution function is relaxed

towards an equilibrium state at the same rate, the multiple relaxation time

(MRT) method performs collisions in moment space [86, 44], and each mo-

ment is relaxed at a different rate. The individual relaxation rates, ωi, are

given as ωi = 1/τi and the individual moments, mk, are obtained by multi-

plying the populations with a q × q transformation matrix M as

mk =
∑
i

Mkifi . (2.50)

Alternatively, the moments can be expressed in vector form where m =

(m0 . . .mq−1)T and f = (f0 . . . fq−1)T , giving m = Mf . The post-collision
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moments with a force term in moments space, S, can then be expressed as

m∗ = m−Λ(m−meq) +

(
I − Λ

2

)
S∆t , (2.51)

where meq is the equilibrium moment vector, meq = Mf eq, I is the identity

matrix, and Λ is a diagonal relaxation rate matrix

Λ =


ω0 0 . . . 0

0 ω1 . . . 0
...

...
. . .

...

0 0 . . . ωq−1

 (2.52)

It is convenient to perform the streaming step in the population space rather

than the moment space, thus the post-collision moments are transformed to

post-collision populations through multiplication with the inverted transfor-

mation matrix M−1 as f ∗ = M−1m∗ and are then streamed as normal.

In addition to improved stability and accuracy, the MRT allows for indepen-

dently setting the shear and bulk viscosities. This is particularly beneficial for

multiphase simulations, in which increasing the bulk viscosity can be used to

stabilise simulations [87]. The bulk viscosity for two- and three-dimensional

simulations are expressed as follows

ηB =

ρc
2
s

(
1
ωξ
− ∆t

2

)
− η

3
for D2Q9,

2
3
ρc2

s

(
1
ωe
− ∆t

2

)
for D3Q19 .

(2.53)

The transformation matrices can be constructed from Hermite polynomi-

als or via the Gram-Schmidt procedure, producing orthogonal basis vectors.

However, as mentioned in [88, 89], the transformation matrix does not need

to be an orthogonal one, with non-orthogonal matrices offering a potential

computation speed-up due to more zero elements. Here, the D3Q19 trans-
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formation matrix from [44], which was constructed via the Gram-Schmidt

procedure, is used, equation 2.54. The inverse of this matrix (M−1), which

is used to transform from moment space to population space is obtained with

the use of MATLAB.

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 0 0 1 −1 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 −4 4 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 −1 1 −1 1
0 0 0 0 0 −4 4 0 0 1 −1 1 −1 0 0 −1 1 −1 1
0 2 2 −1 −1 −1 −1 1 1 1 1 −2 −2 1 1 1 1 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 −2 −2 1 1 1 1 −2 −2
0 0 0 1 1 −1 −1 1 1 −1 −1 0 0 1 1 −1 −1 0 0
0 0 0 −2 −2 2 2 1 1 −1 −1 0 0 1 1 −1 −1 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 0 −1 1 0 0 1 −1 1 −1 0 0 1 −1
0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 −1 1 1 −1


(2.54)

The equilibrium moments meq and the forcing term S are determined ana-

lytically with M kf
eq and M kF respectively. Switching from SRT to MRT

does increase computation times, typically by 15-20% [86]. The resulting

moments in matrix 2.54 are

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, pxx, πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T .

(2.55)

where e is the energy, ε is the energy squared, jα are the momentum compo-

nents, qα are the heat flux components, pαβ are the shear stress components
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and παβ and mα correspond to fourth and third order polynomials respec-

tively. The corresponding relaxation matrix is given as

Λ = diag(0, ωe, ωε, 0, ωq, 0, ωq, 0, ωq, ων , ωπ, ων , ωπ, ων , ων , ων , ωm, ωm, ωm) ,

(2.56)

where conserved moments have a 0 relaxation rate. Finally, the equilibrium

moments are given as

meq =

(
ρ,−11ρ+ 19(u2

x + u2
y + u2

z), 3ρ−
11

2
(u2

x + u2
y + u2

z), jx,−
2

3
jx,(2.57)

jy,−
2

3
jy, jz,−

2

3
jz, 2u

2
x − (u2

y + u2
z),−

1

2
(2u2

x − (u2
y + u2

z)),

u2
y − u2

z,−
1

2
(u2

y − u2
z), uxuy, uyuz, uxuz, 0, 0, 0

)T
.

Cascaded and Cumulant LBM

Similar to the idea of the MRT, the cascaded LBM or central moment LBM

[90] uses central moments in the form of

ρM̃(p) =
∑
i

(ei − u)pfi . (2.58)

This change gives the model Galilean invariance and allows for stable simu-

lations down to the limit of zero viscosity [90]. Criticisms of the model are

that extensions to 3D are cumbersome and incorporating forcing terms are

challenging, although progress has been made recently to rectify these issues

[91]. For cumulant-based models, the distribution functions are transformed

to statistically independent quantities [88] and collisions are performed in

cumulant sapce.
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2.3.2 Entropic Lattice Boltzmann Model

The entropic lattice Boltzmann model (ELBM) is beneficial for overcoming

instabilities due to low viscosities. Ansumali and Karlin [92] proposed a

method of locally adjusting the relaxation rate to satisfy the H-theorem.

The discrete H-function is given as:

H(f) =
∑
i

filn

(
fi
wi

)
. (2.59)

The equilibrium distribution function is given as an extremum of H(f), with

the constraints of mass and momentum conservation:

f eqi = ρwi

D∏
α=1

(
2−

√
(1 + 3u2

α

)(2uα +
√

(1 + 3u2
α

1− uα

)eiα
, (2.60)

where D is the total number of spatial dimensions, α. The modification to

the relaxation process is achieved by ensuring the following:

H(f + γ(f eq − f)) = H(f) , (2.61)

which requires a root finding algorithm to determine the value of γ such

as the Newton-Raphson or the bisection method. The final modified LB

algorithm is thus given as

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = γ(f eqi (x, t)− fi(x, t))/2τ. (2.62)

If equation 2.61 is not used to determine γ, and instead γ is fixed at γ = 2 the

method is equivalent to the standard single-relaxation-time model [93, 94].
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2.4 Thermal Extension of the LBM

The equilibrium distribution function in equation 2.20 is derived under the

isothermal assumption. Additionally, the D2Q9 and D3Q19 velocity sets il-

lustrated in figure 2.3 do not possess enough velocity components to correctly

recover the third- and fourth-order velocity moments required for the energy

equation. Within the LBM framework, there are three main methods to

model thermal flows: the multi-speed (MS) method, the double-distribution

function (DDF) method and the hybrid method.

The MS approach requires a velocity set with more discrete velocities as

well as modification of the equilibrium distribution function, thus allowing

the method to correctly recover higher order moments [95, 96]. A major

benefit of this approach is that the coupling between the momentum and

energy equations is automatically captured, accounting for viscous heat and

compression work. However, MS models are usually criticised for having

poor numerical stability and a fixed Prandtl number when used with the

BGK collision operator.

The DDF method uses a distribution function f for the calculation of the

standard isothermal LBM and an additional distribution function, g, for

computing an advection-diffusion equation for temperature. The velocity

which is computed through the moments of f is used in computing the

equilibrium distributions geq, giving a one-way coupling and treating the

temperature as a passive scalar. There are different approaches to model

the temperature influence on the velocity [97]. Typically, the Boussinesq

approximation may be assumed for cases where buoyant forces are dominant.

The DDF approach offers better numerical stability compared to the MS

method, although there is not an automatic two-way coupling between the

temperature and velocity.
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Finally, the hybrid approach couples the standard isothermal LBM to an

additional numerical solver for the temperature, typically a finite-difference

method. This approach behaves similarly to the DDF method and has the

same limitations, in that the two-way coupling needs to be specified. This

is the approach used in this thesis, as explained in detail in §3.4. Further

details on each thermal expansion method can be found in chapter 5 of [66].

2.5 Chapter Summary

The lattice Boltzmann method, in its simplest single-relaxation-time form,

evolved through incremental improvements from cellular automata. Exam-

ples of 1D and 2D cellular automata are presented along with discussions on

the contributions which lead to the LBM. Furthermore, a more theoretical

derivation of the Boltzmann equation is presented from a statistical mechan-

ics perspective.

The discrete LBM is then shown, through a Chapman-Enskog expansion, to

recover the Navier-Stokes equations. Model extensions to improve stability

and accuracy, such as the multiple-relaxation-time (MRT) method are then

discussed, and implementation steps are given for the D3Q19 velocity set.

Furthermore, thermal modelling extensions are also summarised.
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CHAPTER 3

Multiphase Lattice Boltzmann Modelling

3.1 Introduction

This chapter comprises an overview of some of the most popular multiphase

and multicomponent models for the lattice Boltzmann method. The theory

and implementation procedure are presented along with key model devel-

opments. Strengths and weaknesses are discussed along with example case

studies available in the literature. Specific attention is given to the pseu-

dopotential model, including implementation with a 3D MRT algorithm and

extensions to incorporate thermal flows as this is used for investigations fur-

ther in the thesis.

44



3.2 Multiphase and Multicomponent Modelling

One of the main strengths of the LBM is its ability to model multiphase and

multicomponent flows. The method’s mesoscopic nature allows for ease in

the incorporation of inter-particle forces. The interface between components

or phases results from the included inter-particle forces, however, they are

often under-resolved in order to allow for sufficient computation times. From

each individual model’s inception, there have been numerous modifications

and improvements enabling a wider range of parameters to be explored and

reducing undesirable artefacts. From the numerous works investigating mul-

tiphase/ multicomponent phenomena with different models, it is clear that

no one model offers the best performance in all aspects. Many of the models

described in this section require the calculation of spatial gradients. These

are calculated with the following isotropic central difference schemes

∂αϕ(x, t) ≈ 1

c2
s∆t

∑
i

wiϕ(x+ ei∆t, t)eiα , (3.1)

∇2ϕ(x, t) ≈ 2

c2
s∆t

2

∑
i

wi[ϕ(x+ ei∆t, t)− ϕ(x, t)] , (3.2)

where the weights wi are the same as those used in the chosen velocity set.

3.2.1 Colour Modelling

One of the first multicomponent models was developed by Rothman and

Keller in 1998 [98]. Their model extended the single phase LGCA to allow

for two immiscible components with surface tension. The standard indis-

tinguishable particles of the LGCA are replaced by two (or more) distinct

particles, usually referred to as red and blue particles. The rules of the model

are similar to the standard LGCA, in that the collisions conserve the num-
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ber of red and blue particles. However, additional rules include encouraging

the grouping of like colours and the generation of surface tension force. This

model was subsequently incorporated into the LBM by Gunstensen et al. [99]

in 1991 and later, in 1993, Grunau et al. [100] modified the model to allow

for variation in density and viscosity ratios. Another key modification came

in 2005 when Latva-Kokko and Rothman [101] proposed a recolouring step

that significantly reduced the computational requirements while minimising

the spurious currents and removing the lattice pinning effect1. The model

works by introducing a PDF for each of the fluid components fki (x, t), where

k is the index for fluid components. The evolution equation is thus expressed

as

fki (x+ ei∆t, t+ ∆t) = fki (x, t) + Ωk
i (x, t) , (3.3)

where Ωk
i is the multistage collision operator expressed as

Ωk
i = (Ωk

i )
(3)[(Ωk

i )
(1) + (Ωk

i )
(2)] . (3.4)

Each of these collision operators serves a specific purpose:

� (Ωk
i )

(3) is the recolouring operator responsible for phase segregation.

� (Ωk
i )

(2) is the perturbation operator, producing interfacial tension.

� (Ωk
i )

(1) is the normal single-phase collision operator for each component.

Macroscopic quantities are recovered by taking the usual moments of fki (x, t):

1The lattice pinning effect is a problem that may prevent the interface from moving.
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ρk =
∑
i

fki , (3.5)

ρu =
∑
i,k

eif
k
i , (3.6)

where ρ = Σkρk. Therefore, the velocity u is referred to as the colour-blind

velocity. To determine where surface tension forces are to be applied, the

colour gradient F is defined as,

F =
∑
i

(
ρr(x+ ei∆t)− ρb(x+ ei∆t)

)
ei . (3.7)

The perturbation step, which generates the surface tension at the interface

between two phases is given as

(Ωk
i )

(2) =
Ak
2
|F |
[
wi

(ei · F )2

(|F |)2
−Bi

]
, (3.8)

where the variable Ak is responsible for controlling the strength of the surface

tension and Bi are constants specific to the chosen velocity set. For the D2Q9

velocity set, Bi are given as

B0 = − χ

3χ+ 6
c2, B1,...,4 =

χ

6χ+ 12
c2 and

B5,...,8 =
1

6χ+ 12
c2. (3.9)

Equivalently, for the D3Q19 velocity set, Bi are given as

B0 = − 2 + 2χ

3χ+ 12
c2, B1,...,6 =

χ

6χ+ 24
c2 and

B7,...,18 =
1

6χ+ 24
c2 , (3.10)
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where χ is a free parameter. The final step of the colour model is recolouring.

The original model of Rothman [98] involves the minimisation of the work,

W , which is given as

W (f r, f b) = −F · q(f r, f b) , (3.11)

where q is the local flux, given as,

q =
∑
i

ei(f
r
i − f bi ) . (3.12)

However, this method of recolouring could cause pinning, examples of which

include the advection of droplets in a stream becoming pinned to a lattice

node once below a critical diameter. This was rectified by Latva-Kokko and

Rothman [101] by allowing the red and blue components to mix by ensuring

symmetric colour distribution with respect to the colour gradient. The post-

recolouring particle distributions are expressed as:

(Ωr
i )

(3)(f ri ) =
ρr
ρ
f ′i + β

ρrρb
ρ2

f eqi (ρ,u = 0) cos(λi) , (3.13)

(Ωb
i)

(3)(f bi ) =
ρb
ρ
f ′i − β

ρrρb
ρ2

f eqi (ρ,u = 0) cos(λi) , (3.14)

where β should be between 0 and 1 and is used for controlling the thickness

of the interface, f ′i = Σkf
′k
i where f ′ki is the post-collision state after (Ωk

i )
(1)

and (Ωk
i )

(2) have been applied. Additionally, λi is the angle between the

colour gradient (equation 3.7) and the discrete lattice vector ei and the term

cos(λi) is conveniently expressed as

cos(λi) =
ei · F
|F |

. (3.15)

After the application of all three collision operators, the usual streaming step

is applied for each colour.
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Model Performance

The benefits of the colour model are that it is straightforward to extend the

model beyond just two components, additionally, it allows for independent

control over the interface thickness and surface tension. Recent advance-

ments have also enabled the model to simulate fluids with moderate density

and viscosity ratios. A potential drawback, depending on the modelling re-

quirements is that the model has no ties to thermodynamics, in that it is a

purely heuristic model. An additional drawback is the generation of spuri-

ous velocities at curved interfaces, though this is common among multiphase

models.

Case Studies

Liu et al. [102] used a 3D colour model which they validated with both

static and dynamic simulations. In their static test measuring the Laplace

surface tension, they successfully achieved density ratios of 1000 with numer-

ical results of surface tension matching well with predictions. For dynamic

simulations, the model was validated for density ratios of 5 and stable sim-

ulations were achieved with density ratios as high as 80. Cheng et al. [103]

used the colour model for generating non-circular contact lines on micro pillar

arrays. Their model produced results consistent with experimental findings.

Akai et al. [104] used the colour model to investigate the displacement of oil

in porous media by water. Wetting in the model has also been studied by

Akai et al. [105].
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3.2.2 Free-Energy Modelling

In 1995, Swift et al. [106] proposed a thermodynamically consistent model

based on the concept of free energy. The equilibrium distribution is modified

such that the pressure tensor is consistent with the tensor derived from the

free-energy functional of non-uniform fluids. A van der Waals fluid has the

following free energy functional [107]

Ψ(x) =

∫
[ψ(T, ρ) +

k

2
(∇ρ)2]dV , (3.16)

where ψ(T, ρ) is the bulk free energy density, and the parameter k is related

to the surface tension. The pressure tensor is given as

Pαβ = pδαβ + k
∂ρ

∂xα

∂ρ

∂xβ
, (3.17)

where,

p = p0 − kρ∇2ρ− k

2
|∇ρ|2 , (3.18)

and p0 is the pressure given by the van der Waals equation of state,

p0 =
ρT

1− ρb
− aρ2 . (3.19)

Once the pressure tensor Pαβ is obtained, it can be incorporated into the

LBM. One method, originally utilised by Swift et al. [106] was to absorb

the pressure tensor into the equilibrium distribution function. However, it is

also possible to incorporate the pressure tensor through an additional forcing

term [44]. Following the original method of modification to the equilibrium

distribution function, a generalised expression for the equilibrium distribu-

tion function is first given for the D2Q9 velocity, following the procedure

highlighted in [67] as
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f eqi=1,...,4 = A1 +B1uβeiβ + C1u
2 +D1uαuβeαeβ +Gαβ1eiαeiβ , (3.20)

f eqi=5,...,8 = A2 +B2uβeiβ + C2u
2 +D2uαuβeαeβ +Gαβ2eiαeiβ , (3.21)

f eqi=0 = A0 + C0u
2 . (3.22)

where the coefficients are calculated subject to the following constraints

∑
i

f eqi = ρ , (3.23)∑
i

f eqi eiα = ρuα , (3.24)∑
i

f eqi eiαeiβ = Pαβ + ρuαuβ . (3.25)

For a D2Q9 velocity set, the full list of coefficients are given in [67] and

details for construction on a D3Q19 velocity set are given in [108].

Model Performance

The Free-Energy model adheres to local momentum conservation, and as

such, the spurious velocities are greatly reduced. Furthermore, the Free-

Energy model allows for independent control of the surface tension and EOS.

However, the simulation stability is affected by the choice of surface tension

and the liquid-vapour interface size varies with surface tension. This can be

seen in figure 3.1, where simulation results of the coexistence densities are

compared to the values obtained from the Maxwell equal-area construction

(explained in §3.3.1) for different values of the surface tension parameter, k.

One of the major criticisms of the original model is its lack of Galilean in-

variance. Shortly after the original model was proposed, Holdych et al. [109]

reduced the lack of Galilean invariance to O(u2). Zheng et al. [110] pro-

posed a Galilean invariant model capable of large density ratios. However,
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this was later demonstrated by Fakhari and Rahimian to be valid for only

density-matched cases [111]. Inamuro et al. [112] also proposed a model

which allows for the simulation of high density and viscosity ratios, however,

the main criticism of their model is the large computational demand. A

review of the existing models can be found in [113].
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LBM, k = 0.01
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Figure 3.1: Coexistence curves of reduced densities from Maxwell equal-area

construction (MWC) and Free-Energy LB model with van der Waals EOS

and two different surface tension parameters.

Case studies

Wetting can easily be incorporated by accounting for the additional free en-

ergy at the surface in the bulk free-energy functional [114]. Subsequently,

the Free-Energy LBM has been used to investigate droplet motion on chemi-

cally and topologically patterned surfaces [115, 116, 117, 118]. In addition to
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modelling multiple phases, the Free-Energy method can be used for multiple

components [119].

3.2.3 He-Chen-Zhang Modelling

The He-Chen-Zhang (HCZ) model proposed in 1999 [120], is an incompress-

ible extension of the He-Chen-Doolen multiphase model [121]. The derivation

of this model starts with the non-ideal Boltzmann equation,

Df

Dt
≡ ∂f

∂t
+ ξ · ∇f + F · ∇ξf = −f − f

eq

λ
, (3.26)

where f and f eq are the standard distribution function and equilibrium dis-

tribution function respectively, ξ is the molecular velocity, F is the molecular

interaction force per unit mass and λ is the relaxation time. The term ∇ξf

is unknown and thus approximated with,

∇ξf ≈ ∇ξf eq = −ξ − u
RT

f eq . (3.27)

For solving the non-ideal Boltzmann equation numerically while enhancing

numerical stability, the HCZ model introduced a new variable,

g = fRT + ψ(ρ)Γ(0) , (3.28)

where ψ(ρ) = p− ρRT is the hydrodynamic pressure and Γ(u) is a function

of the macroscopic velocity, expressed as

Γ(u) =
1

(2πRT )D/2
exp

[
− (ξ − u)2

2RT

]
. (3.29)

The evolution of the new variable is

Dg

Dt
= −g − g

eq

λ
+ (ξ − u) · [Γ(u)F − (Γ(u)− Γ(0))∇ψ(ρ)] , (3.30)
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where

geq = ρRTΓ(u) + ψ(ρ)Γ(0) . (3.31)

The authors of the HCZ model remark that equation 3.30 is computationally

superior to equation 3.26 in calculation of the velocity field as the term∇ψ(ρ)

is now multiplied by a small quantity. With equation 3.30 the pressure and

velocity are recovered as

p =

∫
gdξ , (3.32)

ρRTu =

∫
ξgdξ .

For keeping track of the different densities and maintaining a sharp interface,

an index function is utilised. For this, equation 3.26 is used and thus after

discretisation (procedure described in [120]) the lattice Boltzmann equations

for the evolution of pressure/velocity and the index function are

ḡi(x+ei∆t, t+ ∆t)− ḡi(x, t) = − 1

τg
(ḡi(x, t)− ḡeqi (x, t)) +Si(x, t)∆t (3.33)

and

f̄i(x+ei∆t, t+∆t)− f̄i(x, t) = − 1

τf
(f̄i(x, t)− f̄ eqi (x, t))+Qi(x, t)∆t (3.34)

respectively. The variables Si and Qi represent source terms and τg and τf

are the relaxation times relating to kinematic viscosity and interface mobility

respectively. As in [67] the relaxation times are made to be equivalent τg =

τf . The barred symbols are the result of modifications to keep the scheme
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implicit, which results in an explicit dependence on pressure, p, which is

computed through

p =
∑
i

ḡi −
∆t

2
u · ∇ψ(ρ) , (3.35)

where ψ(ρ) = p− ρRT . As the pressure difference and discrete time step are

small values, ψ(ρ) is calculated with the values of p and ρ from the previous

time-step [122].

The index function used for maintaining a sharp interface between the two

phases is given as

φ =
∑
i

f̄i. (3.36)

The macroscopic velocity is recovered as,

ρc2
su =

∑
i

eiḡi +
∆tc2

s

2
F , (3.37)

where F is the force associated with surface tension and is expressed as,

F = kρ∇(∇2ρ) or F = kφ∇(∇2φ) , (3.38)

where the φ-based expression was given later by Zhang et al. [123]. The

equilibrium distribution functions are given as

ḡeqi = wi

[
p+ c2

sρ

(
ei · u
c2
s

+
(ei · u)2

2c4
s

− u2

2c2
s

)]
, (3.39)

and

f̄ eqi = wiφ

[
1 +

ei · u
c2
s

+
(ei · u)2

2c4
s

− u2

2c2
s

]
. (3.40)

The additional terms in 3.33 and 3.34 are given as
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Si =

(
1− 1

2τg

)
(eiα − uα) ·

[
Γi(u)Fα −∇ψ(ρ)(Γi(u)− Γi(0))

]
, (3.41)

and

Qi =

(
1− 1

2τ

)
(eiα − uα) · ∇ψ(φ)

2c2
s

Γi(u) , (3.42)

where Γi(u) = f̄ eqi /φ. The function, ψ(φ) is related to the thermodynamic

pressure and thus is recovered from the equation of state. As with the original

HCZ model, the Carnahan-Starling equation of state is used:

ψ(φ) = RT 2φ
1 + (bφ/4) + (bφ/4)2 − (bφ/4)2

(1− (bφ/4))3
− aφ2 −RTφ (3.43)

=
φ2RT (4− 2φ)

(1− φ)3
− aφ2 .

In the original model [120], the variables were chosen as a = b = 4 and R = 1.

The critical temperature is given as Tc = 0.3773a/bR, thus at temperatures

below this, two distinct phases coexist. Through the Maxwell equal-area

construction (explained in §3.3.1), the coexistence values of φl and φv for a

chosen temperature are determined. Once initialised, the values of φ are used

to determine physical properties such as density and kinematic viscosity as

ρ(φ) = ρv +
φ(x)− φv
φl − φv

(ρl − ρv) , (3.44)

ν(φ) = νv +
φ(x)− φv
φl − φv

(νl − νv) .

The values of ρl and ρv are the densities of the liquid and vapour phase

respectively, and can be chosen somewhat freely, however, the choice has

been shown to affect the numerical stability [67]. The simulated equilibrium

values of φ, however, deviate significantly from these computed values as

illustrated in figure 3.2.
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Figure 3.2: Coexistence curves of reduced index function from Maxwell equal-

area construction (MWC) and HCZ LB model with Carnahan-Starling EOS.

The critical values for obtaining reduced variables are ac = 3.53 and φc =

0.13.

Model Performance

Multiple extensions of the HCZ model exist for expanding the achievable

density ratio [124, 125, 126, 67]. Lee and Lin [127] proposed a method ca-

pable of modelling high density and viscosity ratios, however their model is

quite complex, including two distribution functions, numerous 1st and 2nd

order gradients, and requires three steps comprising pre-streaming collision,

streaming and post-streaming collision in order to complete one time-step.
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Case studies

A simple wetting model utilising the bounce back boundary condition and

a wall density value was presented by Yiotis et al. [124]. Subsequently, the

method was used to study droplet spreading [62].

3.3 Shan-Chen Pseudopotential Method

In 1993/1994 Shan and Chen proposed two extensions for the LBM for sim-

ulating multicomponent [128] and multiphase [129] flows. These extensions

are commonly referred to as pseudopotential models or Shan-Chen models.

The model works by introducing microscopic interactions between fluid ele-

ments which lead to automatic phase segregation. The coexistence of mul-

tiple phases of a substance is due to attractive forces in the liquid phase.

Similarly, different substances in a multicomponent mixture will have differ-

ent molecular interactions. The force acts on pairs of molecules located at

x and x̃ 6= x. It is also assumed that a larger density (ρ(x)) of molecules

will lead to larger interaction forces. The total interaction force is therefore

given as the integral of all possible interactions as

F (x) = −
∫

(x̃− x)G(x, x̃)ψ(x)ψ(x̃)d3x̃ , (3.45)

where G(x, x̃) gives the strength of the interaction over a distance and the

density has been replaced by the pseudopotential ψ(ρ)2.

The pseudopotential can be given in different forms. The originally proposed

and regularly used form is expressed as

ψ(ρ) = ρ0

[
1− exp

(
ρ

ρ0

)]
, (3.46)

2Using a pseudopotential instead of the density allows for improved numerical stability.
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where ρ0 is a freely chosen reference density. There are different methods

for obtaining a discrete form of the interaction force, by limiting interactions

to nearest and next-nearest lattice sites, the discrete form of the interaction

force is given as follows

Fm(x) = −ψ(x)G
∑
i

w(|ei|2)ψ(x+ ei∆t)ei. (3.47)

The sum does not necessarily run over all links of the velocity set, thus the

weights w(|ei|2) are not necessarily the same as the weights used to generate

velocity sets. The attraction force can also be expressed as a finite difference

approximation to the gradient of the pseudopotential (equation 3.1). As

shown in [130], the Taylor expansion of ψ(x+ ei) around x is given as

Fm = −Gc2

[
ψ∇ψ +

c2

2
ψ∇(∇2ψ) + · · ·

]
. (3.48)

This gives the non-ideal equation of state as p = ρc2
s + Gc2ψ2/2. In the

original multicomponent model proposed by Shan and Chen, they proposed

a simple forcing scheme for incorporating the interactions,

ueq = u+
τFm

ρ
, (3.49)

where ueq is the velocity used in calculating the equilibrium distribution

function, f eqi (ρ,ueq). The actual fluid velocity to be outputted from the

simulation is expressed as

u = u+
Fm

2ρ
. (3.50)

An illustration of the resulting spurious velocities of a droplet suspended in

a fully periodic domain is displayed in figure 3.3.
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Figure 3.3: Illustration of spurious velocities surrounding a suspended droplet

in a fully periodic domain.

Shan-Chen Multicomponent Modelling

The original model proposed by Shan-Chen was for modelling multiple com-

ponents and multiple phases [128], their following model was a simplification

for a single component with multiple phases. A distribution function is in-

troduced, fki , for each of the components, k. The evolution equation of each

component is simply

fki (x+ ei∆t, t+ ∆t)− fki (x, t) = Ωk
i (x, t) , (3.51)

where Ωk
i (x, t) is the usual BGK collision operator. To incorporate interac-

tions between different components, the force is expressed as

F k(x) = −ψk(x)
∑
k̃

Gk̃k

∑
i

wiψ
(k̃)(x+ ei∆t)ei . (3.52)

where Gk̃k is a k×k matrix for the interaction strength between components.
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For a purely multicomponent mixture, the diagonals of the matrix are 0. The

pseudopotential in multicomponent simulations is typically ψ = ρ. As with

the multiphase model, there are different approaches to incorporate the force

[44]. Examples of the use of multicomponent models include: wetting in

porous media [131], droplet displacement in ducts [132] and high density

ratio multicomponent multiphase flows [133, 134].

3.3.1 Thermodynamic Consistency

In the pseudopotential model, the coexistence densities are determined by the

mechanical stability condition [135]. However, from thermodynamic theory,

the coexistence densities can also be computed from the Maxwell equal-area

rule [136], which is expressed as

∫ vg

vl

pdv = p0(vv − vl) , (3.53)

where vl = 1/ρl and vv = 1/ρv are the molar volumes of the liquid and vapour

phases respectively and p0 is a constant pressure. If the mechanical stability

condition is to match the thermodynamic description, ensuring that the two

descriptions give the same coexistence densities, it is required that the form

of the pseudopotential be ψ ∝ exp(−1/ρ), constraining the EOS. However, it

is desirable to incorporate different EOS from thermodynamic theory, which

have a well-defined temperature dependence, for this, the pseudopotential is

defined as

ψ(ρ) =

√
2(pEOS − c2

sρ)

c2G
, (3.54)

where pEOS is the pressure defined by the chosen EOS, the choice of which can

allow the model to achieve density ratios in excess of 1000 [137]. When using
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an EOS with defined temperature, the role of G is no longer a temperature-

like parameter, but instead is used to ensure the term inside the square

root remains positive. This is usually achieved by setting G = −1, however

pressure waves during initialisation may make the term inside the square root

negative, causing instability. Modifications to ensure the root term remains

positive are given in [87] along with other algorithms to improve stability.

For investigations in this thesis, the Peng-Robinson EOS is chosen, as it is

shown to produce low spurious velocities and allow for the generation of large

density ratios [137]. The Peng-Robinson EOS is expressed as,

pEOS =
ρRT

1− bρ
− aα(T )ρ2

1 + 2bρ− b2ρ2
, (3.55)

where T is the temperature, R is the gas constant, a and b are the attraction

and repulsion parameters respectively and α(T ) is given as:

α(T ) = [1 + (0.37464 + 1.54226ω − 0.26992ω2)(1−
√
T/Tc)]

2 , (3.56)

where ω is the acentric factor, which for water is equal to 0.344 and Tc is

the critical temperature. When the temperature is below the critical value,

the pressure-volume relation no longer changes monotonically and there exist

three distinct volumes for a given pressure, illustrated in figure 3.4. At the

critical temperature, both the first and second derivatives of the pressure

with respect to volume/ density are equal to 0. Solving these derivatives

gives the critical density of ρc ≈ 0.25308/b, thus at temperatures below this,

two distinct values of density will be generated.

The critical values are related to the attraction and repulsion parameters as

a = 0.45724R2T 2
c /pc and b = 0.0778RTc/pc, where pc is the critical pressure.

Typically in LB simulations a and b are defined, fixing the critical tempera-

ture and density. From these critical values, it is common to define reduced
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Figure 3.4: Pressure-volume plot for Peng-Robinson EOS. Dotted lines rep-

resent T > Tc, dashed line represents T = Tc and solid lines represent T < Tc.

(dimensionless) variables such as the reduced density ρr = ρ/ρc and reduced

temperature Tr = T/Tc for ease of comparison to physical systems.

For a fixed reduced density and temperature, the attraction parameter, a,

can be used to control the thickness of the diffuse interface. Increasing the

thickness of the interface by changing the attraction parameter a lowers the

spurious velocities. However, as shown by Li and Luo [138], this reduces

the speed of sound in the vapour phase,
√

(∂p/∂ρ)v. This is problematic

for simulating droplets, where due to additional Laplace pressures there is

pronounced vapour density variation with droplet size. Thus, to minimise

vapour phase density dependence on droplet size the vapour phase speed of

sound needs to be the same order of magnitude as the lattice speed of sound,

cs [138]. A piecewise linear equation of state may be used [139] to control
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the speed of sound in each phase directly, however, this is only suitable for

isothermal simulations. Therefore, the attraction parameter, a, needs to be

optimised for minimal spurious velocities and density change.

As the pseudopotential is defined by equation 3.54, the model is termed to

be thermodynamically inconsistent, in that the coexistence densities given by

the mechanical stability condition are not the same as the ones obtained from

Maxwell’s equal-area rule. Therefore, a forcing scheme developed by Li et al.

[140, 141] is used, which allows for modification of the mechanical stability

through a free parameter ε to better approximate thermodynamic consis-

tency. For the D3Q19 velocity set and the MRT moment transformation

matrix expressed in §2.3.1, the forcing term is expressed as

S = (0, 38(uxFx + uyFy + uzFz) +
114εF 2

m

ψ2(1/s2 − 0.5)
, (3.57)

−11(uxFx + uyFy + uzFz), Fx,−
2

3
Fx, Fy,−

2

3
Fy,

Fz,−
2

3
Fz, 2(2uxFx − uyFy − uzFz),

−2uxFx + uyFy + uzFz, 2(uyFy − uzFz),

−uyFy + uzFz, uyFx + uxFy, uzFy + uyFz,

uzFx + uxFz, 0, 0, 0)T ,

where Fm
2 = (F 2

m,x + F 2
m,y + F 2

m,z) is the intermolecular interaction force

and Fα is used to represent the total force, including gravity and fluid-solid

interactions.

As the parameter a in the EOS affects the mechanical stability and thus the

coexistence densities, but not the values obtained from the Maxwell equal-

area construction, ε needs to be varied for each value to approximate ther-

modynamic consistency. To illustrate this, a study is performed with a flat

liquid-vapour interface in a computational domain comprising 3 × 101 × 3

64



lattice nodes in the x, y and z directions respectively. The bottom half of

the domain (0 ≤ y ≤ 50) consists of liquid whereas the top half consists of

vapour. Each of the free relaxation times in the MRT model is fixed at 1

and the repulsion parameter is set to b = 2/21. As can be seen in figure 3.5,

the value of ε changes for each value of the attraction parameter, a in order

to approximate thermodynamic consistency.

10-2 10-1 100 101

r

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
r

Figure 3.5: Reduced coexistence densities from the Maxwell equal-area con-

struction and pseudopotential LB model with Peng-Robinson EOS. Attrac-

tion parameters a = 3
49

, 2
49

and 1
49

correspond to force corrections ε = 0.098,

ε = 0.105 and ε = 0.115 respectively.

Through tuning ε, the coexistence densities are shown to agree well with

the Maxwell equal-area construction when simulating fluids separated by

a flat interface. However, for curved interfaces such as droplets, there is
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ρl ρv ρR

T = 0.86Tc 6.499 0.3797 17.12

T = 0.80Tc 7.204 0.1971 36.55

Table 3.1: Coexistence liquid and vapour densities from Maxwell’s equal-area

rule for the Peng-Robinson EOS.

additional Laplace pressure to consider, which would require tuning ε for

different droplet sizes. For investigations in the following chapters of this

thesis, the free parameter is set to ε = 0.085 as this value was found to give

suitable results for the droplet sizes considered in this research. In table 3.1,

coexistence densities from the Maxwell equal-area construction are given for

the temperatures used in the remainder of the thesis.

Young-Laplace Validation

The surface tension is not readily adjustable and its value is determined by

the equation of state. To obtain the numerical value of the surface tension,

it is common to perform the Young-Laplace study, where the pressure dif-

ference, ∆p, is measured in the liquid and vapour for droplets of different

sizes. Here, a domain comprising 150× 150× 150 lattice nodes is configured,

with droplet sizes varying from R0 = 16 to R0 = 35. The relaxation time

for the bulk viscosity is τβ = 1.1, with all other free relaxation rates fixed to

unity. The results are plotted over the inverse of the radius, giving a linear

trend, the slope of which gives the surface tension3. The results for droplets

at different saturation temperatures are plotted in figure 3.6.

For both temperatures, the linear trend is well captured. For T = 0.86Tc, the

computed surface tension is σ = 0.0795. At the lower temperature T = 0.8Tc
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Figure 3.6: Young-Laplace validation of pseudopotential model to determine

the surface tension. All quantities are in lattice units. Solid line is a linear

fitting for T = 0.8Tc and dashed line is a linear fitting for T = 0.86Tc.

Blue and black symbols illustrate relaxation times of τν = 1 and τν = 0.6

respectively.

the computed surface tension is σ = 0.1322. The results obtained showed

little deviation for relaxation times of τν = 1 and τν = 0.6.

3.3.2 Strengths and Weaknesses

One of the key strengths of the method is that it is easy to implement.

However, the method received criticism for not being able to introduce a

temperature that is consistent with thermodynamics and having a surface

3In 3D, the slope is 2σ.
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tension that is coupled to the equation of state [142]. Additionally, if the

force is incorporated via equation 3.49, the density ratio and the surface

tension change with kinematic viscosity. Numerous different forcing schemes

have been suggested such as Luo [143], Guo et al. [144] , He et al. [145], Li et

al. [140] and Kupershtokh [146]. Huang et al. [147] investigated the effects

of different forcing schemes in terms of dependence on kinematic viscosity,

thermodynamic consistency and spurious currents. Later, Lycett-Brown and

Luo [148] performed a third-order analysis of the LBM with a general forcing

term to identify errors affecting the mechanical stability condition. They

also suggested a new forcing term based on this higher order analysis which

allows for independent control of the density ratio, surface tension and in-

terface thickness. Alternative methods for achieving independence between

the equation of state and surface tension have been proposed by Sbragaglia

et al. [149] through the introduction of a multi-range potential. Kharmiani

et al. [150] modified the original forcing term with two new additional terms

identified from Taylor expanding the interaction force, allowing for mechan-

ical stability and surface tension to be modified independently. Li and Luo

[151] extended the 2D MRT model of [141] to allow for adjustable surface

tension without the need to consider multiple ranges in the expression for

the inter-particle force. This was subsequently extended to 3D by Xu et al.

[152] for the D3Q15 velocity set and [153] for the D3Q19 velocity set. Shan

[154] reported on how higher order isotropic discrete gradient operators can

reduce the spurious currents. For use with the MRT model, the method of

Li et al. [141] allows for thermodynamic consistency to be better approxi-

mated through the introduction of a free parameter to control the mechanical

stability.
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3.4 Thermal Multiphase Modelling

Within the pseudopotential framework, there have been numerous studies

investigating the effects of temperature on multiphase flows with liquid-

vapour phase change. Most of these models have used either the DDF or

hybrid approach described in §2.4. The first of these models is attributed

to Zhang and Chen who used the hybrid approach to simulate the boiling

process [155]. Typically, for the hybrid approach a second- or fourth-order

Runge-Kutta finite difference scheme is used to solve a temperature/energy

equation. Examples of which include modelling of boiling and heat transfer

[156], two- and three-dimension sessile droplet evaporation on patterned hy-

drophilic and hydrophobic strips [157, 158], two-dimensional droplet evapora-

tion on a rough surface [159] and two-dimensional self-propelled Leidenfrost

droplets on ratchet surfaces [160].

For the DDF method, care must be taken to ensure additional error terms

highlighted through Chapman-Enskog expansion do not significantly affect

the solution. Li et al. [161] highlighted the error terms and presented correc-

tions both in the single- and multiple-relaxation time framework. Addition-

ally, for single-relaxation time models Ahad et al. [162] investigated differ-

ent force incorporation methods in terms of thermodynamic consistency and

stability. Examples of DDF thermal multiphase modelling include thin film

evaporation [163], thermal inkjet droplet ejection [164], suspended droplet

evaporation with Marangoni effects [165] and droplet evaporation on heated

micro-pillared surface [166]. For a review of thermal models for multiphase

flow see the review by Li et al. [135] and references therein.

The temperature equation for multiphase simulations with phase change is

derived from the local balance law for entropy [167, 168]. Effects of com-

pression and viscous heating are neglected to give the governing equation
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as

∂T

∂t
= −u · ∇T +

1

ρCv
∇ · (λ∇T )− T

ρCv

(
∂pEOS
∂T

)
∇ · u , (3.58)

where Cv is the specific heat at a constant volume and λ is the thermal

conductivity. The right-hand side term captures effects due to phase change,

where the derivative of pressure, given by the equation 3.55, with respect to

temperature is

∂pEOS
∂T

=
ρ

1− ρb
+

C1aρ
2(C2 − C1

√
T
Tc

)

(1 + 2ρb− ρ2b2)Tc
√

T
Tc

(3.59)

where C1 = 0.873373787 and C2 = 1.8733737874.

An additional LB solver can be used to solve equation 3.58 [168], however,

this still requires finite-difference schemes to compute each of the gradient

terms. Furthermore, the pseudopotential forcing term has unwanted effects

on the temperature equation, which need to be corrected [169]. Therefore,

in this research, the temperature equation is solved with a 4th order Runge-

Kutta method as

T t+∆t = T t +
∆t

6
(h1 + 2h2 + 2h3 + h4) , (3.60)

where h1 = K(T t), h2 = K(T t + ∆t
2
h1), h3 = K(T t + ∆t

2
h2) and h4 =

K(T t + ∆th3). K(T t) represents the right-hand side of equation 3.58.

3.5 Chapter Summary

There are numerous multiphase and multicomponent extensions to the origi-

nal lattice Boltzmann method. In this chapter, popular models are described,

4Constants based on ω = 0.344 in Peng-Robinson equation of state.
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and comments are made on their respective strengths and weaknesses.

For the investigations in this thesis, the pseudopotential method is adopted,

as with appropriate extensions, it is capable of modelling fluids with moderate

density ratios, achieving good thermodynamic consistency and incorporating

realistic equations of state. Using the 3D MRT method described in chap-

ter §2.3.1, the model is validated by comparing coexistence densities from

simulations to values obtained analytically from the Maxwell equal-area con-

struct. Furthermore, the Young-Laplace validation is performed to obtain

information on the surface tensions.

Finally, extensions to the pseudopotential model for thermal flows are pre-

sented. A brief overview of past work leads to the choice of a hybrid modelling

approach, where the chosen energy equation is described which is capable of

capturing temperature effects due to phase change.
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CHAPTER 4

Numerical Implementation

4.1 Introduction

This chapter describes the processes of numerical implementation of the lat-

tice Boltzmann algorithm. The process of transforming the discrete physical

units into dimensionless form is first presented, in order to allow the conver-

sion between computational results and the corresponding physical system.

Secondly, the initial and boundary conditions are described along with algo-

rithmic considerations for ease of implementation. Thirdly, a brief overview

of the implementation and parallelisation techniques are described along with

performance benchmarks of different multiphase models. Finally, benchmark

studies are compared to analytical solutions to ensure the correct implemen-

tation of the algorithms.
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4.2 Non-Dimensionalisation

When performing computational simulations, numbers are used without any

physical scale, and it is the job of post-processing to assign the correct di-

mensions to variables. Simulation results thus far have been presented in

dimensionless lattice units or in reduced form, meaning that the results are

given as a ratio (T/Tc or ρ/ρc), which are comparable for both simulation

and experiment. Therefore, to map physical properties to simulation or vice

versa, the conversion between dimensional and dimensionless quantities needs

to be understood. To illustrate this process, the discrete lattice Boltzmann

equation is rewritten for clarity as

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = −∆t

τ
(fi(x, t)− f eqi (x, t)) . (4.1)

The moments of this equation give hydrodynamic quantities such as density

and velocity at discrete lattice nodes and time intervals in physical units.

The spacing between lattice nodes have units of [∆x] = m, the time-step

interval has units of [∆t] = s and the relaxation time has units of [τ ] =

s. The equivalent dimensionless lattice variables are marked with a ( ˜ ),

giving ∆x̃, ∆t̃ and τ̃ . It is common with LB simulations that the lattice

spacing and time step are scaled such that ∆x̃ = ∆t̃ = 1. To ensure that

simulations are configured correctly, relevant dimensionless numbers such as

the Reynolds, Mach, Weber, etc. need to be matched. Flows with the same

dimensionless numbers and geometric similarity are considered identical. For

the Re number, this is given as

Re =
lu

ν
= R̃e =

l̃ũ

ν̃
. (4.2)

The Mach number, Ma, is useful for characterising compressibility effects
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and is defined as

Ma =
|u|
cs

= M̃a =
|ũ|
c̃s
, (4.3)

where c̃s is the lattice speed of sound c̃s ≈ 0.577. As the LBM is used as a

solver for the incompressible Navier-Stokes equations, the only requirement

for the lattice Mach number is that it is sufficiently small, M̃a < 0.3 [44].

Allowing for differences in M̃a allows for much quicker computation speeds,

as the time-step can be much larger, thus there is no attempt to match the

Mach number in simulations.

4.2.1 Conversion Factors

To map simulation units to physical units and vice versa, three basic indepen-

dent conversion factors are required. The conversion factors are dimensional

values with the constraint that none of the three basic conversion factors can

be comprised of the other two. For example, the conversion factor for length,

Cl, is given by

Cl =
∆x

∆x̃
, (4.4)

where as a consequence of ∆x̃ = ∆t̃ = 1, ∆x = Cl and ∆t = Ct. If a

droplet with a diameter of D0 = 50µm is modelled with 25 lattice nodes

then ∆x = Cl = 2 × 10−6m. Therefore, any length measured in the simula-

tion is converted to a physical dimensional value by multiplication with the

conversion factor. The choice of density as a second independent conversion

factor is also straightforward. Although the models used in this thesis cap-

ture both the liquid and vapour phases each with their own density value, the

liquid phase value is taken for conversion as Cρ = ρl/ρ̃l. Finally, a conversion
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factor is required which contains the time dimension, this could be directly

Ct (units of s), Cu (units of ms−1) or Cν (units of m2s−1). The choice will

determine how all other conversion factors are determined, examples of which

are given in table 4.1.

For clarity and compactness of notation throughout the rest of the thesis, ∆x

and ∆t will be used to refer to the dimensionless lattice counterparts unless

mentioned otherwise. Furthermore, all variables, unless otherwise stated will

be assumed to be given in dimensionless lattice units.

Physical

Property

Physical

Units

Converstion

Factor

L m Cl

ρ kg
m3 Cρ

u m
s

Cu

t s Cl
Cu

g m
s2

C2
u

Cl

ν m2

s
CuCl

η Pa · s CρCuCl

σ N
m

CρC
2
uCl

p Pa CρC
2
u

Table 4.1: Physical quantities and conversion factors for LBM simulations.

Rows highlighted in grey are the three basic conversion factors which are

used to derive other conversion factors.
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4.3 Boundary and Initial Conditions

The LBM is often praised for its ability to handle complex geometries [44].

Specifically, the no-slip boundary condition is easily implemented at nodes

identified to be solid as will be described in the following sections. However,

unlike conventional CFD methods, where macroscopic values can be pre-

scribed at boundaries, the LBM has to define values for each of the unknown

populations, which then recover the desired macro-scale phenomena.

When characterising LBM boundaries, the order of accuracy describes how

the error scales with resolution (∆x) and the level of exactness describes the

method’s ability to correctly resolve a flow of certain order. The bulk LBM is

spatially second order accurate and second order exact [122], however, unless

boundaries are correctly modelled, the overall accuracy and exactness of the

method is reduced.

Typically, at a boundary there are more unknown populations, fi, than there

are macroscopic constraints, consequently, there are many unique solutions

to defining these missing values [170, 171, 172, 173, 174, 175, 176, 177, 178,

179]. Reviews of different boundary conditions for single-phase flows can be

found in [180, 181, 182]. For multiphase flows, open boundary conditions are

reviewed in [183].

4.3.1 Periodic Boundary

Possibly the simplest boundary condition used in LB simulations is the peri-

odic boundary, in which populations that are leaving one side of the domain

then return at the opposite side. This boundary condition essentially joins

opposites sides of the domain together (illustrated in figure 4.1), and is ex-

pressed as
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fi(x+ ei∆t, t+ ∆t) = f ∗i (x+L, t) , (4.5)

where L is the length in the direction of periodicity. Implementation is

straightforward and is encompassed in the streaming step. It is also possible

to extend the periodic boundary conditions to include pressure variations at

opposite ends of the domain [184].
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Figure 4.1: Illustration of the periodic boundary condition applied to each

side of a 2D simulation, giving a toroidal geometry.

4.3.2 No-Slip Boundary

The no-slip boundary condition ensures the fluid velocity at a boundary is

equal to the boundary velocity, u(xb, t) = ub(xb, t). For the case of a sta-

tionary boundary (ub = 0), there are simple bounce-back methods which

have their roots in LGA. The bounce-back method comes in two variants:

full-way and half-way. The names refer to the interpretation of the path

travelled by a population f ∗i (xb, t) travelling to a solid node. In the full-way

variant, the population is assumed to travel to a solid node, whereas in the
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half-way variant, the population is assumed to travel halfway towards the

solid node before it is reflected back. Depending on the method, implemen-

tation can be achieved by modifying either the streaming or collision steps.

Despite what the names may suggest, the actual location of the boundary is

approximately mid-way between the boundary and solid node. Ziegler et al.

[185] showed that if the boundary is assumed to be located between the solid

and boundary node then the bounce-back scheme is second order accurate.

For the half-way bounce-back method, solid nodes are not strictly required,

however, including them means boundary nodes do not need to be identi-

fied for modification to the streaming step. When including solid nodes, the

post-collision populations can be allowed to stream into them, where an addi-

tional routine is performed to reverse and stream the populations back within

the same time step. This method makes incorporating arbitrary geometries

straightforward and is illustrated in figure 4.2 for a straight boundary. For

the remainder of this thesis, the half-way variant is used and is henceforth

referred to as just the bounce-back condition.

Solid

Fluid

Solid

Fluid

Solid

Fluid

Solid

Fluid

(a) (b) (c) (d)

Figure 4.2: Illustration of half-way bounce-back boundary condition. (a)

post-collision populations (t = t), (b) populations streamed to solid node, (c)

population velocities reversed and (d) reversed velocity populations streamed

back to boundary (t = t+ ∆t).

Formally, the bounce-back boundary condition can be expressed as
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fī(xb, t+ ∆t) = f ∗i (xb, t) , (4.6)

where fī is the population in the opposite direction to fi and f ∗i is the post-

collision value of the population.

4.3.3 Open Boundary

The non-equilibrium bounce-back boundary of Zou-He (ZH) [174] can be used

to specify the pressure or velocity at simulation boundaries. This boundary

condition specifies the unknown boundary populations, which are then in-

volved in the collision process. Unlike the bounce-back conditions, it is as-

sumed to place the boundary exactly on the lattice nodes. The original ZH

model was derived in 2D and a generalised extension for the 3D simulations

was given by Hecht and Harting [186]. An example is given for setting the

pressure/ density at the top of a 3D multiphase simulation (D3Q19 velocity

set in figure 2.3). The macroscopic quantities are first expanded in terms of

the known (fi) and unknown (f̄i) populations:

ρ = f0 + f1 + f2 + f3 + f̄4 + f5 + f6 + f7 + f̄8 + f9 (4.7)

+ f10 + f11 + f̄12 + f̄13 + f14 + f15 + f16 + f17 + f̄18 ,

ρux = f1 + f7 + f9 + f̄13 + f15 (4.8)

− (f2 + f̄8 + f10 + f14 + f16) +
Fx
2
,

ρūy = f3 + f7 + f11 + f14 + f17 (4.9)

− (f̄4 + f̄8 + f̄12 + f̄13 + f̄18) +
Fy
2
,

ρuz = f5 + f9 + f11 + f16 + f̄18 (4.10)

− (f6 + f10 + f̄12 + f15 + f17) +
Fz
2
.
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For simplicity, it is assumed Fy = 0. Equations 4.7 and 4.9 can be combined

and rearranged to find an expression for either the density, ρ, or the veloc-

ity uy. For a specified pressure/ density pressure boundary condition, the

velocity, ūy, is solved for as

ūy = 1− 1

ρ0

(f0+f1+f2+f5+f6+f9+f10+f15+f16+2(f3+f7+f14+f11+f17)) ,

(4.11)

which is expressed using only known populations. Finally, the unknown

populations (f̄4, f̄8, f̄12, f̄13 and f̄18) are expressed as

f̄4 = f3 −
1

3
ρūy , (4.12)

f̄8 = f7 +
ρ

6
(−ūy + ux) +Nx , (4.13)

f̄12 = f11 +
ρ

6
(−ūy − uz) +Nz , (4.14)

f̄13 = f14 +
ρ

6
(−ūy + ux)−Nx , (4.15)

f̄18 = f17 +
ρ

6
(−ūy + uz)−Nz , (4.16)

where Nx and Nz are correction terms given as

Nx =
1

2
[(f1 + f9 + f15)− (f2 + f10 + f16)]− 1

3
ρux +

Fx
4
, (4.17)

Nz =
1

2
[(f5 + f9 + f16)− (f6 + f10 + f15)]− 1

3
ρuz +

Fz
4
. (4.18)

4.3.4 Symmetry Boundary

In order to increase computational efficiency, symmetry boundary conditions

can be used where appropriate. For multiphase simulations which involve

a stationary droplet, such as Young-Laplace validation for determining the
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surface tension, three planes of symmetry can be identified in 3D, and two

planes in 2D. Therefore, with appropriate symmetry boundary conditions,

run times can be reduced significantly. To implement symmetry boundary

conditions in a multiphase simulation, the pseudopotential must be copied

from the boundary nodes into ghost nodes (ψ(xs)) before computation of the

inter-particle force (Fm). For a plane of symmetry on the left-hand side of

the domain, the pseudopotential is simply copied into the ghost node as

ψ(xs, t) = ψ(x+ 1) . (4.19)

In the bulk, the post-collision populations pointing towards the symmetry

boundary are also then copied into the ghost nodes. The directions of the

populations are then reversed in the direction normal to the boundary, which

again for the D3Q19 velocity set in figure 2.3 is expressed as

f1(xs, t) = f1(x+ 1, t) , (4.20)

f7(xs, t) = f14(x+ 1, t) ,

f9(xs, t) = f16(x+ 1, t) ,

f13(xs, t) = f8(x+ 1, t) ,

f15(xs, t) = f10(x+ 1, t) .

Finally, the normal streaming step is performed everywhere, including the

ghost nodes. This is also equivalent to a free-slip boundary, illustrated in

figure 4.3.

To ensure that the multiphase symmetry boundary is working as intended,

a stationary free droplet is examined and the resulting density and velocity

profiles are compared to the corresponding free droplet modelled in full. As

ghost nodes are used for implementing the symmetry boundary, and they are

81



Solid

Fluid

Solid

Fluid

Solid

Fluid

(a) (b) (c)

Figure 4.3: Illustration of free-slip boundary condition. (a) post-collision

populations at t = t, (b) populations copied to ghost nodes with velocities

normal to the boundary reversed and (c) populations streamed back to the

domain t = t+ ∆t.

required to be at opposite sides of the domain, the number of nodes required

in the full study is given as

NF
α = 2NS

α − 4. (4.21)

where NF
α is the number of nodes in a fully periodic domain and NS

α is

the total number of nodes (including ghost nodes) with symmetry boundary

conditions applied to opposite sides of the domain. The density and veloc-

ity profiles after 2000∆t are displayed in figure 4.4 for both simulations, the

results of which are exactly the same. The total time elapsed for the simula-

tion with symmetry boundary conditions was t = 49.9s whereas for the full

periodic domain the time takes was t = 217.9s.1

4.3.5 Initial Conditions

When initialising LB simulations, not only do macroscopic quantities such

as velocity and density need to be specified at t = 0, ρ0 and u0 respectively,

1Simulations run on desktop PC with Intel® Core� i7-4770K Processor.
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Figure 4.4: Validation of the symmetry boundary condition for pseudopo-

tential model. Symbols illustrate symmetry boundary results and solid lines

show results from comparable full domain.

but also the discrete velocity distribution function fi(x, t = 0) needs to

be specified. The simplest strategy, and the one utilised throughout this

thesis is to set populations at t = 0 to the computed equilibrium values

fi(x, t0) = f eqi (ρ0,u0). Although convenient in terms of implementation, this

simple scheme has noticeable drawbacks for multiphase simulations such as

the generation of pressure waves at the start of simulations, however, these

tend to dissipate after a few time-steps. For multiphase simulations in which

a droplet is to be simulated, the density field is initialised as

ρ(x, t0) =
(ρl + ρv)

2
− (ρl − ρv)

2
tanh

(
|x− x0| −R0

w

)
, (4.22)
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where x0 is the specified centre location of the droplet, R0 is the radius and

w is the interface thickness. Similarly, if the droplet has a specified initial

velocity, uD, the velocity field is initialised as

u(x, t0) =


ρ(x,t0)
ρluD

if ρ(x, t0) ≥ ρa,

0 otherwise,

(4.23)

where ρa is a chosen density that is larger than the vapour density. In all

multiphase simulations in this thesis, the value of ρa = 0.1(ρl − ρv) + ρv is

used.
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4.4 Computing Performance: Parallelisation

The lattice Boltzmann codes used in this thesis are written in the C program-

ming language. As a compiled language, it is typically faster than languages

that need to be interpreted [44]. Furthermore, once the codes are written,

compiler optimisation is used for performance gains during execution. There

are different levels of optimisation, starting from the lowest level of optimi-

sation -O0, to the highest level of optimisation, -Ofast. For the codes used

in this thesis, either -O3 or -Ofast optimisation is used.

As often described in the literature, the LBM is very amenable to paral-

lelisation. Tremendous speed-up of the LBM algorithm can be obtained by

running on graphical processing units [187]. However, it is not the goal of

this thesis to produce the quickest simulations. Rather, relatively simple

and easy to implement techniques are used to increase the computational

speed a sufficient amount for the required number of simulations to be per-

formed. Therefore, in this research two different parallelisation techniques

are used: shared memory parallelism using OpenMP and distributed memory

parallelism using the message passing interface (MPI).

The standard single-phase LBM algorithm performs most of its operations

locally, such as computing macroscopic variables, calculating equilibrium dis-

tributions and performing collision. The non-local operations are simple in-

formation transfers to neighbouring lattice nodes to complete the streaming

step. When modelling multiphase flow with the pseudopotential model, ad-

ditional information from the nearest neighbouring nodes is required and as

such, the algorithm loses efficiency. OpenMP parallelisation is easily imple-

mented into the existing pseudopotential codes. There are two main func-

tions within the code for implementing the pseudopotential model, the first

of which is the computation of density/ pseudopotential at each lattice node,
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and the second is responsible for computing forces, collisions and streaming.

OpenMP directives of parallel for are added to these functions, which

split the code into threads, and are then executed in parallel. The perfor-

mance of a lattice Boltzmann algorithms are typically measured in terms

of how many lattice sites are updated per second, typically this is a large

number, so the performance is given in terms of million lattice updates per

second (MLUPS). The performance of the pseudopotential algorithm with

an increasing number of threads is illustrated in figure 4.5. Where good

speed-up is obtained, with a maximum speed of 52MLUPS.
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Figure 4.5: Scaling performance of 3D pseudopotential model with shared

memory parallelisation. Domain comprised of 1203 lattice nodes.

For distributed memory parallelism with MPI, the domain is divided into

sections and a dedicated processor will compute the properties at a specific

portion of the domain. In this thesis, a simple 1-Dimensional domain decom-

position is applied, which is illustrated in figure 4.6.
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Figure 4.6: Illustration of simple one-dimensional domain decomposition for

MPI parallelisation.

As the memory is distributed over a network, information will need to be

sent to different processors in order to ensure the whole system is updated

as expected. An illustrative example is provided in figure 4.7. Here, values

of the pseudopotential at the right-hand side of the domain in rank n will

need to need to be known by nodes at the left-hand side of rank n + 1 in

order to compute the inter-particle force. These values will therefore be sent

to ghost nodes, which are used for computational convenience to temporarily

store values until they are no longer needed.

Figure 4.7: Illustration of message passing with distributed memory systems.

Grey shaded regions represent ghost layers which are shared between proces-

sors.
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The strong scaling2performance of each of the multiphase models described

in section 3.2 is investigated for the case of a stationary droplet in a fully

periodic domain. A two-dimensional domain of Nx = Ny = 2048 lattice

nodes, with relaxation times equal to 1 and a droplet radius of R = 500

placed in the centre of the domain was configured. Each of the models

was compiled with -03 optimisation, and run with an increasing number of

processes on the ARCHER UK supercomputer. For an increasing number

of processes, the number of time-steps was increased to give an approximate

total run time of 20s, allowing for accurate measurement of the performance.

The results are plotted in figure 4.8. Linear scaling is displayed for each of

the models, and the pseudopotential (Shan-Chen), and Free Energy models

are shown to exhibit the best performance.

As the subsequent investigations in this thesis use the pseudopotential mul-

tiphase model, the performance of the algorithm is investigated in three di-

mensions, figure 4.9, where again a linear scaling is displayed and a maximum

speed of 205MLUPS is obtained.

2Performance can be categorised by strong scaling or weak scaling, which shows speedup

with the number of cores or the ability to simulate a larger domain for the same time with

more cores respectively.
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Figure 4.8: Strong scaling performance for multiphase lattice Boltzmann

models in 2D parallelised with MPI. Models include Free-Energy (FE),

He-Chen-Zhang (HCZ), colour model (CM), Shan-Chen (SC) and multi-

component Shan-Chen (MCSC).
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Figure 4.9: Scaling performance for 3D pseudopotential multiphase model

parallelised with MPI.

90



4.5 Hydrodynamic Boundary Validation

4.5.1 Multiphase Convergence

To determine the convergence level of a simulation in which a steady state

exists, the L2 error norm is used. For this, macroscopic quantities (ϕ) at

time t = t are compared to quantities at a previous time-step t = t −N∆t.

The L2 error norm is thus defined as:

L2 :=

√∑
x

(
ϕ(x, t)− ϕ(x, t−N∆t)

)2∑
x ϕ

2(x, t−N∆t)
. (4.24)

For multiphase simulations, quantities such as density or velocity could be

used for evaluating the level of convergence. Illustrated in figure 4.10 are the

density and the velocity magnitude errors for the simulation of a stationary

droplet in a fully periodic domain. Here it can be seen that in the early stages

of the simulations, the velocity is changing consistently and not converging.

This is due to the creation of spurious velocities in multiphase simulations,

which are not accounted for in the initialisation. However, once the spurious

velocities are generated, both the density and velocity error converge at the

same rate. Included in the figure is a dashed black line that shows the point

at which L2 = 10−7, which could represent a threshold for determining if

the simulation is sufficiently well converged. However, as can be seen, the

error values do not decay at a smooth rate, and the error can pass below the

threshold triggering the simulation to be stopped prematurely. To overcome

this, a simple counter is utilised which is used to check that the convergence

criteria are met in a number of consecutive steps.
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Figure 4.10: Convergence residuals for density and velocity magnitude in

multiphase simulation of a stationary droplet in a fully periodic domain.

4.5.2 Flow in a Square Duct: Gravity Driven

To validate the implemented boundary conditions, the 3D-MRT model with

a single-phase fluid is used to simulate force driven Poiseuille flow through

a square duct. The simulation results at different lattice resolutions are

compared to the analytical solution [188] for the fluid flow

ux(y, z) =
16a2Fx
ρνπ3

i=∞∑
i=1,3,5,..

(−1)(i−1)/2

[
1− cosh(iπz/2a)

cosh(iπ/2)

]
cos(iπy/2a)

i3
, (4.25)

where a is half the duct width and Fx is the body force. Although the

solution to the velocity field required an infinite sum, a sufficiently accurate

velocity profile is obtained by including terms up to and including i = 51.

An illustration of the resulting velocity profile is given in figure 4.11.

To validate the 2nd order accuracy of the boundary condition, as well as
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Figure 4.11: Illustration of flow velocity (ux(y, z)) for gravity driven Poiseuille

flow in a square duct.

ensure correct implementation of the LB algorithm, simulation results at

different lattice resolutions are compared to the analytical solution for flow

in a square duct (equation 4.25). As the flow is invariant in the x-direction,

only 3 lattice nodes are used. The Reynolds number was fixed at Re = 10

and the lattice viscosity was fixed at ν = 0.05 (τν = 0.65), with all other

relaxation rates set to unity. For each lattice resolution, the gravitational

acceleration force Fx is set to ensure the target Reynolds number (Re = 10)

is reached.

The simulations are run until a convergence threshold of 10−7 is obtained,

after which, the lattice velocity ux is compared to the analytical solution.

However, the velocity is only available at discrete lattice nodes ux(xi, yj, zk),

where xi(i = 0, . . . , Nx − 1) etc., thus to compare with the continuous ana-

lytical solution, the discrete lattice values are mapped to the physical space

as z = k − (Nz − 2)/2 − 0.5. The error between simulation and analytical

93



solution is also calculated with the L2 error norm, in equation 4.24 where

ϕ(x) and ϕ(x, t − N∆t) replaced with ux(x)LBM and ux(x)ANA, the lattice

Boltzmann results and the analytical solution respectively. The computed

error for increasing lattice resolution is displayed in figure 4.12, were the error

can be seen to reduce at a second order rate.
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Figure 4.12: Grid convergence for 3D gravity driven Poiseuille flow with

single-phase LBM. For each lattice resolution the Reynolds number is fixed

at Re = 10 and kinematic viscosity fixed at ν = 0.05 (τν = 0.65).

4.5.3 Flow in a Square Duct: Pressure Driven

To validate the 3D Zou-He boundary implementation described in §4.3.3,

pressure driven Poiseuille flow through a square duct is simulated. The

no-slip boundaries are still handled with the bounce-back method, whereas

instead of constant gravitational acceleration, the Zou-He boundary sets con-
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stant pressures at the inlet and outlet of the simulation domain. For each

simulation, the outlet pressure is pout = c2
s, or equivalently, the outlet density

ρout = 1. The same domain sizes and Reynolds numbers are used as in the

gravity driven study, therefore, the equivalent inlet pressure for each simula-

tion is calculated as pin = 1
c2s

(Fx(Nx−1)+pout). Due to the pressure gradient

at the inlet and outlet, the length of the channel was set to be Nx = 2Ny,

which substantially increases the computation time. The simulations are

again run until a convergence threshold of 10−7 is obtained.

0 0.25 0.5 0.75 1

3.34 10-1

3.35 10-1

3.36 10-1

3.37 10-1

3.38 10-1

3.39 10-1

pr
es

su
re

 (
l.u

)

LBM
Analytical

Figure 4.13: Validation of pressure distribution in 3D pressure driven

Poiseuille flow with Zou-He boundary conditions.

For coarser lattice resolutions, the inlet pressure/density is required to be

larger for the required Re number, this introduces additional compressibility

errors into the simulation. As the lattice resolution increases, the difference

between the inlet and outlet pressure/density reduces and the compressibility

effects are minimised. An illustration of the pressure profile along the centre

of the channel is displayed in figure 4.13, where the expected linear profile
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is observed. The velocity error is again computed with the L2 norm and

displayed in figure 4.14, where again the error can be seen to reduce at a

second order rate.
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Figure 4.14: Grid convergence for 3D pressure driven Poiseuille flow with

single-phase LBM. For each lattice resolution the Reynolds number is fixed

at Re = 10 and kinematic viscosity fixed at ν = 0.05 (τν = 0.65).

4.6 Chapter Summary

In this chapter, aspects regarding the implementation of the lattice Boltz-

mann method are presented, starting with the process of conversion between

dimensional physical units and dimensionless simulation units. Boundary

conditions and initialisation procedures are described, including symmetry

boundaries for multiphase simulations.
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For efficient computation, the LBM is coded in the C programming lan-

guage. Furthermore, to improve simulation speed, the model is parallelised,

and different techniques including OpenMP and MPI are discussed. Perfor-

mance results are evaluated in terms of million lattice updates per second

(MLUPS). Results for OpenMP parallelisation of a 3D multiphase simulation

showed maximum speeds of 52MLUPS. For MPI parallelisation, each of the

multiphase models described in chapter 3 are compared in 2D. Speeds are

found to increase linearly with the number of processes, with a maximum of

1126MLUPS for the pseudopotential method. In 3D, a maximum speed of

205MLUPS was achieved.

Finally, the 3D MRT model with no-slip, periodic and pressure boundary

conditions was validated against analytical solutions to flow in a square duct,

and the second-order accuracy of the model is confirmed.
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CHAPTER 5

Wetting Model Evaluation and Development

5.1 Introduction

As described in §3.2, there are numerous multiphase/ multicomponent mod-

els within the lattice Boltzmann framework. When solid surfaces are present

in the simulation, each of these models can be modified to incorporate fluid-

solid interaction (wetting). With Free-Energy based models, the Free-Energy

functional is modified to account for the contribution of adhesive forces. Al-

ternatively, for methods such as the HCZ model, wetting can be achieved by

assigning walls an effective density, which is tuned for the desired contact

angle. The same procedure is followed for colour-based models, where both

colour-densities are assigned at solid walls. Soon after the development of

the pseudopotential models [128, 129], modifications to allow for fluid-solid

interactions (commonly referred to as wetting models) were presented and
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promising results were achieved for both multiphase and multicomponent

flows. Here, the adhesion force is computed alongside the cohesion force and

incorporated into the LB algorithm through an appropriate forcing scheme.

In this chapter, two key components of wetting models are evaluated, specif-

ically, the form of the adhesion force model and the boundary treatment for

the calculation of the inter-molecular force (cohesion force). Furthermore, a

new wetting model is suggested which allows for control of adhesive forces

over the liquid-vapour interface.

5.2 Multiphase Wetting Modelling

The ability to directly incorporate adhesive forces in the pseudopotential

model makes it an attractive method to study wetting phenomena [189, 56,

190, 191, 192, 193, 64, 194]. Previous works investigating the performance

of different wetting models have explored cases in which solid surfaces are

chemically and topographically homogenous, e.g. [195], where the authors ex-

amined wetting model performance with different no-slip boundary schemes,

such as the half-way bounce-back and Zou-He. Furthermore, upon suggesting

a new wetting model, Li et al. [196] evaluated wetting model performance

on smooth and structured solid surfaces, in which the Zou-He boundary was

used. In these studies, key issues were identified when incorporating wetting

models, such as the change of equilibrium densities close to boundaries and

the generation of spurious velocities at the triple point. Typically, wetting

models introduce an additional force to be incorporated into the LBM. The

cohesive and adhesive force, Fm and F adh respectively are incorporated into

the LBM through a source term, Si, which gives a general LB equation for a

multiphase fluid as
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fi(x+ ei∆t, t+ ∆t)− fi(x, t) = Ωi(x, t) + Si(x, t) . (5.1)

For the MRT method used throughout this thesis, the source term acts in

moment space rather than population space. The source term for the D3Q19

velocity set is given in full in §3.3.1.

5.2.1 Existing Wetting Models

The different adhesion force models explored in this chapter can be expressed

in the generalised form as

F adh = −GadhΦf (x)
∑
i

ω(|ei|2)Φs(x+ ei∆t)s(x+ ei∆t)ei , (5.2)

where Gadh is the fluid-solid adhesion strength parameter used for adjusting

the wettability of the solid surface, s(x+ei∆t) determines if a neighbouring

node is solid (s = 1) or fluid (s = 0), ω(|ei|2) is a weighting coefficient, which

is not required to be the same as those used in the chosen velocity set, finally,

Φf and Φs are the fluid and solid potentials respectively.

The first wetting model proposed was by Martys and Chen [131], where

Φf (x) = ρ(x) and Φs = 1. Raiskinmaki et al. [191] then followed with

Φf (x) = ψ(x) and Φs = 1. Li et al. [196] suggested Φf (x) = ψ2(x) and

Φs = 1. Zhu et al. [192] used Φf (x) = ρ(x) and Φs = ψ(x). It is common

to categorise models based on the pre-sum fluid potential Φf , which may be

ρ, ψ or ψ2. Henceforth, wetting models are referred to as ρ-based, ψ-based

or ψ2-based.

A model proposed by Benzi et al. [189] assigns a fixed density value, ρw, at

lattice nodes defined as solid (xw). This gives the pseudopotential at solid

walls as ψ(ρ(xw)) = ψ(ρw), which enters the multiphase algorithm through
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the calculation of the inter-molecular cohesion force rather than introducing

an additional adhesion force. It is worth noting that if the standard pseu-

dopotential model is used, where the sum of cohesive and adhesive force are

used to update the momentum, then the wetting model can be equivalently

expressed as an additional adhesive force term by setting Φf (x) = ψ(x),

Φs = ψ(ρw) and Gadh = G. However, the computation of the cohesion forces

may need to be modified to ensure that ρw is not included twice. This is

achieved by explicitly setting ψ(xw) = 0. Due to the MRT model with im-

proved forcing used in this thesis, the total forces (F = Fm + F adh), are

treated differently from the adhesive forces individually, thus the two ap-

proaches are no longer equivalent.

Another approach frequently used within the multiphase LBM framework

is the geometric scheme proposed by Ding and Spelt [197]. Similar to the

model of Benzi et al. [189], this approach is incorporated into the multiphase

algorithm through the calculation of the inter-molecular cohesion force and

not an additional adhesion force term. This model is expressed as

tan

(
π

2
− θ
)

=
−∇ρ · n

|∇ρ− (n ·∇ρ)n|
, (5.3)

where n is the unit normal to the solid surface. Once discretised, the com-

putation of the gradient terms is used to set the density and pseudopotential

in the solid nodes.

5.2.2 New Wetting Model

Regardless of the pre-sum factor for the adhesion force, there will be a smooth

transition of the adhesion force from the liquid phase to the vapour phase

over the width of the diffuse interface, which is typically large for LBM

simulations. The effects of the artificially large interface compared to the
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droplet diameter are described in [198], in which the authors show the re-

sulting contact angles for Cassie-Baxter-type wetting of a micro-pillar array

at increasing resolution. When the liquid-vapour interface width was com-

parable to the pillar size, a wetting transition state was observed resulting in

incorrect contact angle determination. Whereas at higher resolution, no wet-

ting transition occurred and the results converged towards the same contact

angle measurement. Linked to this consideration is the work by Gao and

McCarthy [23] in which the authors illustrate the importance of the contact

line rather than the contact area in various wetting phenomena. Therefore,

taking interface effects into consideration, a new wetting model is suggested

which allows for modification of the wetting force over the droplet liquid-

vapour interface, enabling surface-bulk and surface-interface adhesion to be

controlled with greater precision. The new model is expressed as

F adh =

[
−Gadhψ

2(x)
∑
i

ω(|ei|2)s(x+ei∆t)ei

]
(1+ |∇ϕ(x)−(n ·∇ϕ)n|χ) ,

(5.4)

where the terms in the square brackets give the standard wetting model of Li

et al. [196] and the terms in the round brackets are used for modifying the

adhesion force of the liquid-vapour interface. The variable ϕ(x) can be either

the density or pseudopotential and χ is used for tuning the liquid-vapour

interface adhesion force. It is evident that the calculation of the adhesive

force in the bulk, where |∇ϕ(x)− (n ·∇ϕ)n| = 0 i.e. away from the droplet

interface, the standard wetting model of Li et al. [196] is recovered. The

new model is henceforth referred to as the interface force modification (IFM)

model. An illustration of the adhesion force profile is shown in figure 5.1 for

the standard ψ2-based model and the IFM model.

The additional gradient terms in equation 5.4 are computed numerically
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Figure 5.1: Profiles of adhesive force computed for different wetting models

for a single droplet wetting a smooth surface. A quarter of the droplet is

shown due to the symmetry boundary conditions.

with a standard centred 2nd order finite-difference scheme. However, spe-

cial consideration is taken to ensure the gradient calculation only includes

fluid nodes. To achieve this, if a solid node is included in the calculation

of the gradient in the x, y or z direction, the corresponding gradient(s) are

set equal to zero, recovering the standard ψ2-based wetting model. A conse-

quence of this procedure is that the new model currently only modifies the

adhesion force for solid walls aligned with a coordinate axis. However, ease

of implementation is maintained.

5.2.3 Boundary Treatment

A key issue still to be explored in terms of adhesion force based wetting

models is the fact that once solid boundaries are introduced, the calculation

of the inter-molecular force (equation 3.47) at boundary nodes will be under-

defined. This issue is illustrated in figure 5.2, in which the pseudopotential
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values in the solid boundaries (ψ(xw)) need to specified. It is worth clarifying

that this issue is also present for Zou-He (wet node) type boundaries, as the

inter-molecular force is computed on these nodes also.

Figure 5.2: Illustration of the computation of cohesive forces at boundary

nodes in which neighbouring pseudopotentials in solid nodes (ψ(xw)) need

to be defined.

One approach suggested by Sukop and Thorne [199] was to replace the un-

known neighbouring pseudopotential terms with known ones in the direction

normal to the boundary. This makes ∂Nψ(xw) = 0 and subsequently the

cohesive force normal to the boundary zero. This results in an equilibrium

contact angle of θ ≈ 90◦ in the absence of additional forces. A drawback of

this method is that boundary normals will need to be identified, and appro-

priate corrections applied accordingly. Variants of this boundary treatment

are frequently used [200, 192, 193, 196, 201], however, it is often not explic-

itly stated, though it can be identified by the fact that the contact angle

equilibrates to θ ≈ 90◦ when the adhesion force is equal to zero.

It is often stated in the literature that a positive Gadh is required for sim-

ulating non-wetting fluids and a negative value required for wetting fluids,

and for a neutrally wetting surface a value of Gadh = 0 should be adopted

[201, 196, 193, 192, 195]. However, this is only true for the previously de-
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scribed boundary treatment. This confusion is made evident in [195], in

which the authors make the aforementioned claim while subsequently show-

ing that the adhesion strength parameter remains positive for both wetting

and non-wetting fluids (see figure 17 in [195]).

It is therefore necessary to investigate the influence of the inter-molecular

force calculation at boundary nodes on the wetting characteristics. To achieve

this, three different treatments are considered. The first condition is to set

pseudopotential values in solid walls equal to zero (ψ(xw) = 0), this ensures

that solid nodes are not included in the calculation of the intermolecular force.

A second possible condition is to fix the wall pseudopotential to the value ob-

tained from the equilibrium coexistence vapour density value ψ(xw) = ψ(ρv).

However, it is important to note that unlike the wetting model of Benzi et al.

[189], these values are not used to achieve a desired contact angle. Finally,

the model of Sukop and Thorne [199] is used in which the unknown pseu-

dopotential values at the solid walls at the top and bottom of the domain

are computed as ψ(xw) = ψ(ρy±2).

5.3 Evaluation of Wetting Models

In the following sections wetting models are evaluated in terms of modelling

aspects, such as the modification to the coexistence densities and the gener-

ation of spurious velocities. Furthermore, the static and dynamic results of

droplets wetting are compared to theoretical predictions. For practical use

as a simulation tool for wetting phenomena, it is desirable to set the equi-

librium contact angle rather than the adhesion strength parameter, Gadh.

Unfortunately, the relationship between Gadh and θ is not known, thus for

each wetting model and boundary treatment it is first required to perform

105



a preliminary investigation to obtain an approximate relationship between

the two variables. Once an approximate relationship between Gadh and θ is

known for each model and boundary condition, the model performance can

be evaluated under comparable scenarios.

5.3.1 Equilibrium Contact Angles on Homogeneous Sur-

face

As previously mentioned, a preliminary study is required in order to deter-

mine the relationship between Gadh and the resulting equilibrium contact

angle. This is achieved by simulating a static droplet on a smooth flat sur-

face and measuring the resulting contact angles as Gadh is varied. In the

absence of gravity, the droplet assumes the shape of a spherical cap, thus the

contact angle can be determined as

θ = 2tan−1

(
2H

D

)
, (5.5)

where H and D are the droplets height and contact diameter respectively.

For the following investigations, the half-way bounce back boundary is used,

which places the physical boundary 0.5∆x lattice spacing away from the

boundary node. As the height and diameter can not be measured directly

on this physical boundary, the nearest nodes are used, which for a solid floor

is at the location y0 = 1. The measurements taken from this height give D′

and H ′ which are then related to the actual diameter and height as

D =
√

4H(D −H) , (5.6)

where
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R =
2D′2 + 4H ′2

8H ′
and H ′ = H − y0 . (5.7)

Due to the diffuse interface in multiphase simulations, which span several

lattice nodes (illustrated in figure 5.3), there is ambiguity with precisely

locating the interface. Therefore, two different definitions of the interface

density ρint are defined as ρint = (ρl + ρv)/2 and ρint = 2ρv. The location of

these two densities is then linearly interpolated to give a precise location of

the interface.

(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

w

(b)

Figure 5.3: Illustration of the ambiguity in defining a precise interface lo-

cation for diffuse interface models. (a) shows the density field for a droplet

partially wetting a surface and (b) shows the density profile with different

interface thicknesses.
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5.3.2 Simulation Configuration

The effects of lattice resolution on results were first investigated. Using an

arbitrary wetting model and wetting parameters, measurements of contact

angles were taken for different lattice resolutions. The Peng-Robinson EOS

is used, in which the temperature is T = 0.8Tc, the attraction parameter is

a = 3/49 and the repulsion parameter is b = 2/21 giving coexistence densities

of ρl ≈ 7.2 and ρv ≈ 0.2. All relaxation times in the MRT model are set

equal to 1 and ε = 0.085. Domain sizes of 70× 37× 70, 110× 57× 110 and

150× 77× 150 in the x, y and z directions respectively were tested. For each

lattice size, the droplet was set to one third the length in the x direction.

Simulations ran until the convergence threshold of E = 10−6 for the density

field was obtained. Comparing results of the recorded contact angle, the

lattice resolution of 110 × 57 × 110 was determined to be sufficiently well

resolved as the measured contact angles deviated by less than 3% from the

finer resolution.

Therefore, using this configuration, approximate relationships for Gadh and

the equilibrium contact angle can be obtained for each model by running a

number of simulations determining a suitable polynomial relationship as

θ =
∑
i

kiG
i
adh , (5.8)

where ki are coefficients for each Gi
adh. A total of 10 simulations are per-

formed for each wetting model and boundary treatment. The symmetry

boundary conditions described in §4.3.4 is used to increase computational

speed. The following sections give the results for each of the wetting models.
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ρ-based Wetting Model

The first wetting model extension of the pseudopotential method [131] was

given for the multicomponent model. With this model, the pseudopotential

was set equal to the density, thus the proposed wetting model was also based

on the density and is expressed as

F adh = −Gadhρ(x)
∑
i

wis(x+ ei∆t)ei . (5.9)

The density based model was capable of producing a wide range of contact

angles for each of the different boundary treatments. For boundary treat-

ments ψ(xw) = ψ(ρv) and ψ(xw) = ψ(ρy±2) the relationships between θ and

Gadh are well approximated with a linear fit, as can be seen in figure 5.4a

and 5.4b respectively. As for the boundary treatment of ψ(xw) = 0, the θ

and Gadh relationship is best fitted with a quadratic equation, figure 5.4a.

The constants for the polynomial expressions are summarised in table 5.1.

wall treatment k2 k1 k0

ψ(xw) = 0 878.8 1743.8 878

ψ(xw) = ψ(ρv) 0.0 315.9 244.1

ψ(xw) = ψ(ρy±2) 0.0 152.7 89.5

Table 5.1: Polynomial coefficients for relating adhesion strength Gadh to

equilibrium contact angle θ with the ρ-based wetting model.

ψ-based Wetting Model

Depending on the method of incorporating forces into the model, the wetting

models of Raiskinmaki et al. [191] and Benzi et al. [189] may be equivalent.
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However, as the cohesive force (Fm) and total force (F ) are incorporated

individually in equation 3.57 (section 3.2), the models do in fact behave

differently. Therefore, for the ψ-based model, the adhesive force is expressed

as

F adh = −Gadhψ(x)
∑
i

wis(x+ ei∆t)ei . (5.10)

With this model, the range of achievable contact angles is found to be

limited by simulation stability. For boundary treatments ψ(xw) = 0 and

ψ(xw) = ψ(ρv) the lowest contact angles obtainable were θ ≈ 102◦ and

θ ≈ 92◦ respectively. The cause of the simulation instability at lower con-

tact angles is assumed to be from the increased vapour density at boundary

nodes. To overcome the simulation stability issue for boundary treatments

ψ(xw) = 0 and ψ(xw) = ψ(ρv), the value of Gadh is changed from an initially

stable value to the target value incrementally over a chosen number of time-

steps at the beginning of the simulation. This allowed the two methods to

generate a large range of contact angles. The boundary treatment ψ(ρy±2)

was capable of modelling low contact angles, however, it was found to be

limited to a maximum contact angle of θ ≈ 118◦. Here, the limitation was

the generation of unphysical velocities, which increased in magnitude until

the simulation became unstable. The cause of this additional unphysical

velocity is beyond the scope of this thesis and it was not seen with other

wetting models.

The aforementioned increased vapour density over solid surfaces causes the

primary droplet to shrink as a result of ensuring that mass is conserved in the

system. It is worth noting that difficulties in automatically measuring the

contact angles arose from the presence of the increased vapour density above

the solid surface, thus care must be taken to measure the droplet diameter at
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the solid boundary. This was achieved by measuring the height and diameter

from y0 = 2 in equation 5.7.

For both ψ(xw) = ψ(ρv) and ψ(xw) = 0 a quadratic fit best describes the

relationship between the adhesion strength Gadh and the equilibrium contact

angle θ, whereas the ψ(xw) = ψ(ρy±2) treatment again results in a linear fit

as illustrated in figures 5.4c and 5.4d. The constants for polynomial fittings

are displayed in table 5.2.

wall treatment k2 k1 k0

ψ(xw) = 0 25.9 171.33 275.66

ψ(xw) = ψ(ρv) 17 127 196.6

ψ(xw) = ψ(ρy±2) 0.0 74.11 91.15

Table 5.2: Polynomial coefficients for relating adhesion strength Gadh to

equilibrium contact angle θ with the ψ-based wetting model.
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(b) ρ-based - ψ(xw) - variable.
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Figure 5.4: Equilibrium contact angles (θ) against adhesion strength parameter, Gadh, for ρ- and ψ-based wetting

models.
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ψ2-based Wetting Model

To ensure that the adhesion force was the same order of magnitude as the

cohesion force, Li et al. [196] suggested the adhesion force be expressed as

F adh = −Gadhψ
2(x)

∑
i

wis(x+ ei∆t)ei . (5.11)

The model was capable of simulating a wide range of contact angles with

each boundary condition. For the boundary treatments of ψ(xw) = 0 and

ψ(xw) = ψ(ρv), the relationship between θ and Gadh is well fitted by a

cubic and quadratic equation respectively, illustrated in figure 5.5a. The

ψ(xw) = ψ(ρy±2) treatment again results in a linear fit as illustrated in

figure 5.5b. The constants for polynomial fittings are displayed in table 5.3.

wall treatment k3 k2 k1 k0

ψ(xw) = 0 2045.5 7215 8636.3 3553

ψ(xw) = ψ(ρv) 0.0 77.4 337.7 288.3

ψ(xw) = ψ(ρy±2) 0.0 0.0 97.3 90.68

Table 5.3: Polynomial coefficients for relating adhesion strength Gadh to

equilibrium contact angle θ with the ψ2-based wetting model.

IFM Wetting Model

For investigations with the IFM wetting model, ϕ = ρ′, therefore, the adhe-

sion forces is expressed as

F adh =

[
−Gadhψ

2(x)
∑
i

wis(x+ ei∆t)ei

]
(1 + |∇ρ′(x)− (n · ∇ρ′)n|χ),

(5.12)
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where χ = 0.3 and ρ′ is defined to ensure that the numerical calculation of

the gradient only captures liquid-vapour variations and is not influenced by

the presence of solid nodes as

ρ′(x+ eiα∆t) =

ρ(x− eiα∆t) if s(x+ eiα∆t) = 1,

ρ(x+ eiα∆t) if s(x+ eiα∆t) 6= 1 .

(5.13)

The gradient terms are then computed with a simple second order central

difference scheme. For the boundary treatments of ψ(xw) = 0 and ψ(xw) =

ψ(ρv), the relationship between θ and Gadh is well fitted by a cubic and

quadratic equation respectively, illustrated in figure 5.5c. The ψ(xw) =

ψ(ρy±2) treatment again results in a linear fit as illustrated in figure 5.5d.

The constants for polynomial fittings are displayed in table 5.4.

wall treatment k3 k2 k1 k0

ψ(xw) = 0 10252 29423 28266 9133

ψ(xw) = ψ(ρv) 0.0 264.3 621.9 364.7

ψ(xw) = ψ(ρy±2) 0.0 0.0 124.5 90.7

Table 5.4: Polynomial coefficients for relating adhesion strength Gadh to

equilibrium contact angle θ with the IFM wetting model.
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(b) ψ2-based - ψ(xw) - variable.
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(c) IFM model - ψ(xw) - fixed.
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(d) IFM model - ψ(xw) - variable.

Figure 5.5: Equilibrium contact angles (θ) against adhesion strength parameter, Gadh, for ψ2-based and IFM wetting

models.
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Geometric Wetting Model

Unlike the previous models in which an additional adhesion force is intro-

duced into the model, the geometric model works by setting the values of

the pseudopotential at the solid nodes, thus the aforementioned boundary

problem no longer persists. An appealing feature of this model is the ability

to specify the angle directly, without the need for a preliminary study. How-

ever, special gradient discretisations are required for boundaries located in

different orientations. This makes the method challenging to implement for

complex geometries and is more computationally demanding. For specifying

the contact angle on a solid wall at the bottom of the simulation domain

(y = 0), the discrete geometric wetting model is expressed as

ρx,0,z = ρx,2,z + tan

(
π

2
− θ
)
ζ , (5.14)

where

ζ =
√

(ρx+1,1,z − ρx−1,1,z)2 + (ρx,1,z+1 − ρx,1,z−1)2 . (5.15)

An additional strength of this approach is the ability to define the contact

angle hysteresis [202]. First equation 5.3 is rearranged to solve for the contact

angle at the current time-step, then this contact angle θ is compared to

specified advancing (θA) and receding (θR) angles. If θ ≤ θR, then θ in

equation 5.14 is replaced by θR. Alternatively, if θ ≥ θA, then θ is replaced

with θA. Finally, if the measured contact angle is between the advancing and

receding angles, no changes are made. The measured contact angle compared

to the specified angle is displayed in figure 5.6.

With the current implementation, the stability of the geometric scheme is

found to depend on the size of the diffuse interface when simulating low
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Figure 5.6: Equilibrium contact angles for geometric wetting model with

different interface thicknesses and incorporated stability condition. The value

marked with an asterisk is the model with improved stability (equation 5.16).

contact angles. The lowest achievable contact angle for the current model

parameters was 45◦. Increasing the interface thickness by setting a = 3
98

while

ensuring the same reduced temperature to maintain the same density ratio,

a contact angle of 35◦ was achievable. It is assumed that stability issues arise

from errors in computing density gradients, which then result in erroneous

values of the density/pseudopotential in the solid nodes. Therefore, a simple

way to improve stability is to employ the following correction to the predicted

density values in the solid nodes

ρ(xb) =

ρ
eq
l if ρ(xb) > ρeql ,

ρeqv if ρ(xb) < ρeqv .

(5.16)

With this modification, contact angles of θ = 30◦ were easily achieved for the

model with the standard interface size. Furthermore, the same linear trend
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is observed between the prescribed and measured contact angles as in figure

5.6.

Equilibrium Spreading Radius

For a given equilibrium contact angle, the maximum spreading factor deter-

mined by van Dam and Le Clerc [203] for a spherical cap approximation with

conserved volume is expressed as

Req

R0

=

(
8

tan
(
θ
2

)(
3 + tan2

(
θ
2

)))1/3

. (5.17)

Using this prediction, the final spreading radius, Req for each model/ bound-

ary treatment is compared to the predicted value for a range of contact angles

in figure 5.7. For the ψ-based wetting model, the recorded spreading radius

was significantly lower than the predicted value for both the ψ(xw) = 0 and

ψ(xw) = ψ(ρv) boundary treatments, figures 5.7a and 5.7b respectively. This

is again due to a density increase in the vapour phase at boundary nodes,

causing the main droplet size to decrease. The remaining wetting models/

boundary treatments all produced results agreeing well with the predicted

value.
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(b) ψ(xw) = ψ(ρv).
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(c) ψ(xw) = ψ(ρy±2).
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(d) Geometric Wetting model.

Figure 5.7: Evaluation of equilibrium spreading factor for each wetting model and boundary treatment. Analytical

solution obtained with equation 5.17.
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5.3.3 Spurious Velocities

As previously described, spurious velocities are generated at the liquid-vapour

interface even for a suspended droplet in a fully periodic domain. When there

are additional forces added to the model to account for fluid-solid interac-

tions, there are additional sources of momentum, causing the generation of

more spurious velocities. These are unphysical and undesirable from a mod-

elling perspective, especially if the magnitude of these velocities are compara-

ble to characteristic velocities of the simulation. To compare the performance

of different models and different solid node treatments, the maximum spu-

rious velocity is recorded for a given equilibrium contact angle |umax| and

normalised against the maximum spurious velocity of a droplet in a fully

periodic domain, |uf |.

For the current model and temperature settings, the maximum spurious ve-

locity magnitude of |uf | = 0.017149 was observed. The results of each wet-

ting model and boundary treatment are shown in figure 5.8. The ψ-based

and geometric wetting model have very little influence on the spurious ve-

locities, figures 5.8b and 5.8e respectively. Furthermore, each of the models

in which the boundary is modelled as ψ(xw) = ψ(ρy±2) shows the lowest

spurious velocity at θ ≈ 90◦ and increases in magnitude either side of this

contact angle, resembling a V shape, figures 5.8c, 5.8c and 5.8d.

The ρ-based, ψ2-based and new model display very similar trends, in that

the spurious velocities are largest at low contact angles of θ ≈ 40◦ for the

boundary treatment ψ(xw) = 0. For contact angles larger than θ ≈ 40◦,

the spurious velocities reduce at a similar rate for both ψ(xw) = 0 and

ψ(xw) = ψ(ρv) boundary treatments.

For each of the models tested, the spurious velocities are illustrated for the

configuration in which the largest value was observed in figure 5.9. As the
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ψ-based and the geometric model resulted in very low additional spurious

velocities, the vectors are scaled by 200 for visibility, figures 5.9b and 5.9e

respectively. The remaining wetting models produced significantly larger

spurious velocities, thus the vectors are scaled by 70, figures 5.9c, 5.9c and

5.9. It is clear from these images that the largest spurious velocity occurs at

the triple point.
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Figure 5.8: Evaluation of maximum spurious velocities for different contact angles for each wetting model and

boundary treatment. The velocity |umax| is the maximum spurious velocity for a sessile droplet in equilibrium and

|uf | is the maximum spurious velocity for a droplet in a fully periodic domain.
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(a) ρ-based - |umax| = 0.0772. (b) ψ-based - |umax| = 0.0198. (c) ψ2-based - |umax| = 0.1184.

(d) IFM model - |umax| = 0.1327. (e) Geometric - |umax| = 0.0187.

Figure 5.9: Illustration of velocity field for wetting model and boundary treatment configuration which resulted in

the largest spurious velocity.
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5.3.4 Maximum and Minimum Densities

The additional interaction force for fluid nodes at a solid boundary causes

modification to the mechanical stability condition, which results in a change

in density at these nodes. As alluded to previously, some wetting models can

increase the vapour density to a value that approaches the coexistence liquid

density when simulating low contact angles. Two different scenarios are

investigated in terms of density change: liquid density change at the bottom

surface of the wetting droplet and vapour density change at the solid wall

situated at the top of the simulation domain. These locations are referred

to as liquid- and vapour-phase regions respectively for the remainder of this

chapter. The density was recorded at these two locations for a range of

contact angles and normalised by the coexistence liquid and vapour densities

respectively.

The values of density change for the ρ- and ψ-based model are displayed in

figure 5.10. For the ρ-based model, the change in the liquid-phase is shown

in figure 5.10a, where it can be seen that at low contact angles the density

becomes larger than the coexistence value for each boundary treatment. In-

creasing the contact angle results in reduced density, as a diffuse interface

between the solid and liquid grows. The same behaviour is seen in the vapour

phase, highlighted in figure 5.10b.

For the ψ-based wetting model, the boundary treatments of ψ(xw) = 0 and

ψ(xw) = ψ(ρv) result in very similar density change values in both the liquid

and vapour-phase regions, figures 5.10c and 5.10d respectively. For these

boundary treatments, the density also never exceeds the coexistence liquid

value at low contact angles. However, the density change in the vapour phase

is significant, here at contact angles approaching θ = 30◦, the density exceeds

16ρv, making it close to the coexistence liquid value. This significant density
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change results in mass loss from the droplet, responsible for the erroneous

results in predicted spreading radius illustrated in figure 5.7.
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(b) ρ-based - Vapour phase.
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Figure 5.10: Deviation from coexistence density both in the liquid phase (boundary node beneath the droplet) and

vapour phase (boundary node at the top of the simulation domain) for ρ- and ψ-based wetting models.
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The density change results for the ψ2-based and IFM model are displayed in

figure 5.11. For both wetting models, the boundary treatment of ψ(xw) =

ψ(ρy±2) is found to produce density values exceeding the coexistence liquid

density for contact angles approximately lower than θ = 80◦, figures 5.11a

and 5.11c. In the vapour-phase, the boundary treatment of ψ(xw) = ψ(ρv)

remains above the coexistence vapour density for the range of contact angles

tested. For the IFM wetting model, the change in the vapour density is the

lowest of all models tested.

When using the geometric scheme, there are no additional force components,

thus the mechanical stability is unaffected and densities remain unchanged.
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(a) ψ2-based - Liquid phase.
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(b) ψ2-based - Vapour phase.
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(d) IFM model - Vapour phase.

Figure 5.11: Deviation from coexistence density both in the liquid phase (boundary node beneath the droplet) and

vapour phase (boundary node at the top of the simulation domain) for ψ2-based and IFM wetting model.
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5.3.5 Spreading on a Homogeneous Surface

Although the solid wall enforces a non-slip zero velocity boundary condition,

the three-phase contact line is still able to move over the surface. This

is due to the diffuse interface, which allows movement in an evaporation-

condensation manner, as described in references [114, 204]. Each model’s

ability to capture the dynamics of spreading on a smooth surface is explored.

Tanner’s spreading law [25] gives a relationship between the evolution of a

droplet’s spreading radius and the time as r ∼ tn. For a partially wetting

surface, the exponent n is found to be close to 0.5 in the early stages of

droplet spreading for equilibrium contact angles approaching θ = 0◦ [205].

Using the same simulation parameters as described in the previous section

as well as the determined relationships between Gadh and θ, the evolution

of a droplet’s radius with equilibrium contact angle θ = 40◦ is recorded for

each wetting model and wall/ boundary treatment, figure 5.12. The droplet

radius is set to R0 = 20 and is initially located above the solid surface, with

a centre height of y0 = 22 and as it spreads, the location of the interface is

interpolated from the first layer of fluid nodes.

Due to simulation instability, the ψ-based wetting model could only be used

with the ψ(xw) = ψ(ρy±2) boundary for contact angles of θ = 40◦, figure

5.12b. The remaining boundary conditions required incremental change of

the adhesion strength parameter during the early stages of the simulation,

thus the wetting dynamics are affected.

Following molecular dynamic simulations [206], an exponential fitting of

R/R0 = 1.3t0.48 is included in each of the spreading plots to illustrate the sim-

ilar performance between each model. However, it is noted that the boundary

treatment of ψ(xw) = 0 noticeably deviates from this prediction compared

to the remaining boundary treatments, as can be seen in figures 5.12a, 5.12c
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and 5.12d. The geometric model also agrees well with this fitting, figure

5.12e.
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Figure 5.12: Evolution of droplet radius on a smooth surface with an equilibrium contact angle of θ = 40◦. Equilib-

rium spreading factor determined by equation 5.17 and spreading power law exponent given by [206].
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5.4 Wetting Chemically Heterogeneous Sur-

faces

Within the pseudopotential framework, there have been numerous studies

looking at wetting of surfaces with localised changes in wettability with

either the geometric wetting condition, where the prescribed contact an-

gle varies with position θ(x) [157, 158] or with the ψ(ρw) wetting model

[189, 56, 207, 64]. This model allows for easily defining different wettabili-

ties as density/pseudopotential values just need to be defined in solid nodes

and the adhesive wetting forces are accounted for automatically. However,

as shown in the previous section, these models can cause simulations to be-

come unstable when simulating low contact angles. Previous investigations

with the ψ(ρw) model have had low density ratios or time varying ρw values

to maintain simulation stability. For adhesion based wetting models, the

wetting is controlled by the parameter Gadh, which is usually a fixed value

ensuring that the modelled chemical properties of the surface are homoge-

nous. To enable the modelling of surfaces with different local wettability, the

adhesion force needs to be redefined. Firstly, the constant adhesion strength

parameter is changed to a function of space, Gadh → Gadh(x) and secondly

the term s used for identifying solid nodes is changed to

s(x+ ei∆t) =

Gadh(x+ ei∆t) if (x+ ei∆t) is solid ,

0 otherwise .

(5.18)

The adhesion force can then be expressed generally as

F adh = −Φf (x)
∑
i

ω(|ei|2)Φs(x+ ei∆t)s(x+ ei∆t)ei . (5.19)

With these changes it is possible to use adhesion force based wetting modes
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for locally varying wettabilities.

5.4.1 Spreading on Chemically Heterogeneous Surface

To explore each wetting model’s performance on a chemically heterogeneous

surface, a surface comprising hydrophilic and hydrophobic stripes is config-

ured, as illustrated in figure 5.13.

Figure 5.13: Illustration of a droplet deposited onto a chemically patterned

surface. Different shaded regions represent regions with different intrinsic

contact angles.

The equilibrium contact angle for a droplet on a smooth, chemically hetero-

geneous surface in which there are two distinct contact angles, θ(1) and θ(2)
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can be described by the Cassie-Baxter equation as

cos(θApp) = f ′cos(θ(1)) + (1− f ′)cos(θ(2)) , (5.20)

where f ′ is the fraction of the surface occupied by wetting component 1. As

the surface under consideration is comprised of stripes of equal width, the

wetted fraction f ′ = 0.5. After defining contact angles θ(1) and θ(2), the

Cassie-Baxter equilibrium contact angle is then inserted into equation 5.17

to obtain the equilibrium spreading radius on a chemically patterned surface.

The modelling of droplet spreading is explored for two surfaces: case (a) in

which θ(1) = 30◦ and θ(2) = 50◦ and case (b) with θ(1) = 40◦ and θ(2) = 140◦,

giving Cassie-Baxter angles of θApp = 41◦ and θApp = 90◦ respectively. The

stripy surface can cause anisotropy of the droplets equilibrium morphology,

therefore diameters D(1) and D(2) (equally R(1) and R(2)) are used to define

the droplets size both parallel and perpendicular to the stripes respectively.

The predicted equilibrium spreading radius, R(2) is 1.85R0 and 1.26R0 for

case (a) and (b) respectively. The evolution of the normalised droplets radius

R(2)/R0 for both surfaces is displayed in figure 5.14. For these investigations,

the initial droplet radius was set to R0 = 20, and the free relaxation times

in the MRT set to 1.6. The width of each stripe was set to 4 lattice units for

both regions. For each surface type, the ρ-based, ψ2-based and IFM models

are compared. Due to stability issues highlighted for the ψ-based model, it

was omitted from the investigations.

For case (a), the ρ-based model slightly over-predicts the spreading radius for

ψ(xw) = 0 and ψ(xw) = ρv and comparatively good agreement is observed

for the ψ(xw) = ψ(ρy±2). For the ψ2-based model, the boundary treatment

ψ(xw) = 0 results in the droplet radius deviating from the expected value as

the simulation progresses, whereas the remaining boundary treatment perfor-
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mance is comparatively better. For the IFM wetting model, each boundary

treatment performs relatively well. For case (b), the ρ-based model performs

best, with each boundary treatment giving results close to the analytical

prediction. For the ψ2-based and new model, significant deviations can be

observed depending on the chosen boundary treatment. This is likely a result

of the density deviation for each model/ boundary, which due to the large

difference in contact angles can cause the droplet to pin or spread.
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Figure 5.14: Evolution of droplet radius spreading on a chemically patterned surface. Figures (a), (b) and (c) have

contact angles of θ(1) = 30◦ and θ(2) = 50◦, giving an apparent contact angle of θApp = 41◦. Figures (d), (e) and

(f) have contact angles of θ(1) = 40◦ and θ(2) = 140◦, giving an apparent contact angle of θApp = 90◦. Equilibrium

spreading factor given by equation 5.17.
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5.5 Experimental Validation

To test the validity of the model at simulating real physical flows, simulation

results are compared to experimentally obtained data for a single droplet

impacting a solid surface. For inkjet printable droplets, Lim et al. [208]

obtained data for the time evolution of the droplets height and radius. Their

experiment consisted of a droplet of diameter D0 = 48.1µm and a velocity

of u0 = 1.9ms−1, giving dimensionless numbers of Re = 107, We = 2.4 and

Oh = 0.015. The advancing and receding contact angles θA and θR were

measured to be 91◦ and 32◦ respectively.

To distinguish between lattice and physical units, all lattice values are marked

with a ( ˜ ). As with the previous investigations, the Peng-Robinson equation

of state is used with a temperature of T = 0.8Tc, giving coexistence densities

of ρ̃l = 7.2 and ρ̃v = 0.2. The surface tension obtained from Young-Laplace

validation is σ̃ = 0.133. Finally, a droplet diameter of D̃0 = 50 was chosen.

To ensure similarity between simulation and experiment, the dimensionless

numbers are matched Re = R̃e and We = W̃e. The free-fall velocity of the

droplet was set first by

ũ0 =

√
Weσ̃

ρ̃lD̃0

, (5.21)

which is computed to be ũ0 = 0.0298. Following which, the relaxation rates

related to kinematic viscosity are set from the computed velocity and the

target Re number as

τ̃ν =
ũ0D̃0

c̃2
sRe

+ 0.5 , (5.22)

which is computed to be τ̃ν = 0.542. Although the lattice viscosity is now

fixed, the requirement to have three unique conversion factors has not yet
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been fulfilled, as the conversion factor for kinematic viscosity is the prod-

uct of the previously determined conversion factor for length and velocity

(Cν = ClCu). Therefore, the final independent conversion factor is chosen

to be the liquid density, Cρ. These three unique conversion factors are then

used to assign dimensions to the simulation results. The unique conver-

sion factors are given explicitly as follows: Cl = D0/D̃0 = 0.962 × 10−6m,

Cu = u0/ũ0 = 60.46ms−1 and Cρ = ρl/ρ̃l = 138.89kgm−3. The conversion

factor for time is also required to compare with experiments and is computed

as Ct = Cl/Cu = 0.0159× 10−6s. Lastly, to improve simulation stability, the

remaining relaxation times were set to τ̃ = 1.6 and the initialisation of the

liquid droplet used a higher liquid density of ρ̃l = 7.5. The results of the sim-

ulation and experimental measurements are displayed in figure 5.15. Good

agreement is observed for the height oscillation and radius pinning between

experiment and LB model, even with the lower lattice resolution of D̃0 = 34.
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Figure 5.15: Experimental validation of multiphase model for simulating

dynamical spreading and droplet height oscillation. Symbols are extracted

data points from [208] and lines are LBM results.
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- ρ-based ψ-based ψ2-based Geometric IFM model

Equilibrium contact

angles on homoge-

neous surface

3 Wide range of

contact angles.

7 θmax = 120 for

ψ(xw) = ψ(ρy±2). 7

Reduced stability for θ

3 Wide range of

contact angles.

3 Wide range of

contact angles.

3 Wide range of

contact angles.

Creation of addi-

tional spurious ve-

locities (|umax|)

7 Large |umax| at low

contact angles when

ψ(xw) = 0.

3 Low |umax| for each

boundary treatment.

7 Large |umax| at low

contact angles when

ψ(xw) = 0.

3 Little influence on

|umax|.

7 Large |umax| at low

contact angles when

ψ(xw) = 0.

Coexistence density

Changes

7 Vapour density

increase at low contact

angles.

7 Vapour density

increase at low contact

angles.

7 Liquid density

increase at low contact

angles.

-NA 3 Lowest change in

vapour density.

Spreading on homo-

geneous surface

3 Good agreement

with predicted

spreading rate and

maximum spreading

radius.

7 For θ = 40◦,

ψ(xw) = ψ(ρy±2) only

stable boundary

condition.

3 Good agreement

with predicted

spreading rate and

maximum spreading

radius.

3 Good agreement

with predicted

spreading rate and

maximum spreading

radius.

3 Good agreement

with predicted

spreading rate and

maximum spreading

radius.

Spreading on het-

erogeneous surface

7 Exaggerated

spreading for low CB

angle.

-NA 3 Good agreement

with analytical

solution for maximum

spreading radius.

-NA 3 Good agreement

with analytical

solution for maximum

spreading radius.

Table 5.5: Comparison of wetting model performance for static and dynamic scenarios.
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5.6 Chapter Summary

This chapter explored two key components of wettability modelling within

the pseudopotential multiphase model framework: the wetting model, and

the boundary treatment for the calculation of the cohesion force. Further-

more, a new wetting model was suggested, referred to as the interface force

modification (IFM) model which modifies the adhesion force over the diffuse

liquid-vapour interface.

Preliminary studies are first performed, relating wetting model parameters

to equilibrium contact angles. These are done for each wetting model and

boundary treatment configuration.

Following this, models are compared for various wetting scenarios, including

both static and dynamic and a table is constructed which summaries key

modelling strengths and weaknesses (table 5.5). The new wetting model

performed well in the benchmark tests and resulted in the smallest deviation

from coexistence densities compared to other adhesion force based wetting

models.

5.6.1 Further Considerations

Following completion of the wetting model investigations in this chapter, a

new, recently proposed method [209] was discovered, which offers a dynamic

solution to the cohesion force boundary issue highlighted in §5.2.3. For com-

pleteness, a brief evaluation of this condition is presented here, however, the

performance with different adhesion models is left for future investigations.

To avoid confusion with the previously proposed model, this model is re-

ferred to as the local average density (LAD) model henceforth. As the name

suggests, the unknown density at the solid nodes is defined as
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ρave(xw) =

∑
iwiρ(x+ ei∆t)(1− s(x+ ei∆t))∑

iwi(1− s(x+ ei∆t))
. (5.23)

With this boundary treatment the contact angle can then be varied with

either an additional adhesive force [209, 210] or by modifying the density as

ρ(xw) =

ϕρave, ϕ ≥ 1, for decreasing θ ,

ρave −∆ρ, ∆ρ ≥ 0, for increasing θ ,

(5.24)

where ϕ and ∆ρ are constants. The motivation for the two different sets of

parameters for modelling hydrophilic and hydrophobic conditions is apparent

when looking at the density change over a range of contact angles, figure

5.16. For the modelling of low contact angle angles (θ < 90◦), the variation

of the vapour density (figure 5.16a) shows the least deviation for ρ(xw) =

ϕρave. Alternatively, for contact angles larger than θ > 90◦, the variation

in the liquid phase density (figure 6.12b) shows the least deviation with the

ρ(xw) = ρave −∆ρ condition.

The maximum spurious velocities produced by the LAD are displayed in

figure 5.17. The results are comparable to the ψ-based model, remaining

relatively low throughout the range of contact angles tested.

The dynamic performance of the model agrees well with other models and

the predicted spreading rate as shown in figure 5.18.

The preliminary investigations of the LAD model are promising, showing

good performance in static and dynamic tests. However, further investiga-

tions are necessary to see how the model performance once combined with

an adhesion force model.
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Figure 5.16: Deviation from coexistence density both in the liquid phase

(boundary node beneath the droplet) and vapour phase (boundary node at

the top of the simulation domain) for the LAD model.
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Figure 5.17: Evaluation of maximum spurious velocities for different contact

angles for LAD model.
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Figure 5.18: Evolution of droplet radius on smooth surface with an equilib-

rium contact angle of θ = 40◦ for the LAD model. Equilibrium spreading

factor determined by equation 5.17 and spreading power law exponent given

by [206].
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CHAPTER 6

Droplet Deposition on Structured Surfaces

The research presented in this chapter was published in: F. F. Jackson,

K. J. Kubiak, M. C. T. Wilson, M. Molinari, and V. Stetsyuk, “Droplet

misalignment limit for inkjet printing into cavities on textured surfaces,”

Langmuir, 2019. DOI: 10.1021/acs.langmuir.9b00649

6.1 Introduction

This chapter explores the process of droplet deposition onto a chemically

and topographically textured surface, specifically that of an idealised pixel

geometry pertaining to organic light emitting diode displays (square cavity).

Particular attention is given to the process of droplet self-alignment, mitigat-

ing droplet positioning errors. The multiphase model from §3.3 is used with

the new (IFM) wetting model §5.2.2 to explore the dynamics of droplet de-

position over a large parameter space and identify key attributes enhancing

droplet self-alignment.
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6.2 Deposition within a Square Micro-cavity

The idea of using chemical and topographically textured surfaces to control

deposition is already utilised for the fabrication of devices via inkjet deposi-

tion. However, with demand for ever decreasing sizes of electrical components

and the desire for display resolutions to increase, the requirement to precisely

control droplets is requiring finer tolerances. This is problematic due to the

nature of DOD inkjet printing (explained in §1.2), which requires the print

head to be positioned a suitable distance away from the substrate for the

formation of a droplet. Thus positional inaccuracies of the print head and

angular deflection of the droplet once ejected from the nozzle (illustrated in

figure 6.1) can lead to significant positioning errors.

In [4], the authors give the formula for the total positioning error, P as P =√
E2
PH + E2

θ + E2
u, where EPH , Eθ and Eu are the positional inaccuracy of

the print head, angular deflection of the droplet exiting the nozzle and droplet

in flight velocity error respectively. However, this does not give the maximum

possible error as
√
E2
PH + E2

θ + E2
u 6=

√
E2
PH +

√
E2
θ +

√
E2
u. Nevertheless,

their results still showed significant droplet placement errors with respect to

the cavity under investigation. Furthermore, in [4], the cavities are circular,

thus due to the symmetrical nature of the deposition, only the magnitude of

each error was important. However, both EPH and Eθ are multi-dimensional,

thus the positioning error is multi-dimensional, P =
√
Pβ + Pβ̄, where β

and β̄ represent orthogonal spatial dimensions. This will therefore influence

deposition for non-circular cavities.

Prior research, both experimental and numerical focusing the droplet de-

position into cavities include [211, 212, 52, 213, 58]. Furthermore, there

are examples where the effects of droplet misalignment have been explored

[51, 53, 59, 214]. However, these studies do not consider the limits of posi-
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Figure 6.1: Illustration of droplet angular deflection (θD) and print-head

positioning error (EPH) during droplet deposition. The droplet positional

error, P , gives the distance away from the centre of the cavity and L gives

the size of the cavity.

tional inaccuracy or the effects of dual-axis positional inaccuracy for the case

of a square cavity.

The model used to explore the effects of positional inaccuracy is illustrated in

figure 6.2. To reduce the size of the computational domain, the full flight path

of the droplet from the print-head to the substrate, HPH , is not modelled,

rather the droplet is positioned above the cavity, with a pre-determined po-

sitioning error, P . Furthermore, as the droplet in-flight velocity is |u| ≈ uy,

the droplet is initialised with a single component of velocity in the y-axis

only. The cavity dimensions, L and H give length and height respectively,

the size of which is set in integer increments of ∆x. The contact angle of the
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substrate and cavity walls are controlled by θs and θw respectively.

Figure 6.2: Idealised cavity geometry. Wetting of the substrate and cavity

walls controlled by θs and θw respectively. Print-head misalignment, P gives

droplets initial placement error, αβ and αβ̄ are the fraction of the droplet

diameter overhanging the cavity walls in different directions.

To give a quantitative description of the wetting in the cavity, the wetted

fraction (WF) is introduced, which describes the fraction of the cavity surface

which is wetted by the droplet and is formally expressed as

WF =
1

LxLz

LxLz∑
x,z

H(ρx,2,z − ρc) , (6.1)

where Lx and Lz are the lattice nodes which are within the cavity in the x

and z direction respectively, H is the Heaviside function, and ρc is a critical

value of density, the value of which is determined in the following model

validation section. The previously validated MRT multiphase model §3.3 is

used with the new wetting model §5.2.2 which is subsequently parallelised

with MPI (§4.4) to explore a large parameter space with quick computation.

148



6.2.1 Model Validation

In order to accurately measure the wetted fraction within the cavity, nodes

above the substrate need to be accurately classified as either wetted or non-

wetted. To achieve this, an appropriate value of the critical density, ρc in

equation 6.1 needs to be determined. The correct value will depend primar-

ily on the models coexistence densities and also the chosen wetting model,

as this affects the density values close to solid surfaces. To determine the

critical value, a preliminary set of investigations is performed in which a

droplet wets a cavity and the WF is recorded for different values of ρc. Both

hydrophilic (θs = θw = 30◦), and hydrophobic (θs = θw = 130◦) cavities are

investigated, to ensure the WF is accurately captured for a range of wetting

conditions. The Reynolds and Weber numbers are set arbitrarily, with the

only requirement being a sufficient droplet size for stability.

The resulting WF for different values of ρc are given in figure 6.3. For wetting

of the hydrophilic cavity, figure 6.3a, it is evident that ρc < 5.07ρv results

in significant deviation in the recorded WF, with the rate with which the

cavity fills been over-predicted. For ρc ≥ 5.07ρv, there is little deviation

in the recorded WF. For wetting of the hydrophobic cavity, figure 6.3b, the

WF results appear to be much more density to ρc. However, for 3.04ρv ≤

ρc ≤ 5.07ρv, the WF results are in good agreement. Therefore, the critical

density is chosen to be ρc = 5.07ρv, as this gives good predictions for both

hydrophilic and hydrophobic wetting conditions.

It is worth noting that the new wetting model (§5.2.2) used for these inves-

tigations resulted in the least density change (for adhesion based models),

which aids in the accurate determination of the WF.
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(a) Hydrophilic cavity, θs = θw = 30◦.
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(b) Hydrophobic cavity, θs = θw = 130◦.

Figure 6.3: Determination of suitable critical density value, ρc, for correctly

computing the wetted fraction (equation 6.1) for both hydrophobic and hy-

drophilic cavities. Chosen ρc value highlighted in bold font.

Lattice Independence Study

The effects of lattice resolution are investigated for the case of a single droplet

impacting a neutrally wetting cavity (θs = θw = 90◦). The smallest resolution
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consisted of a droplet diameter of D0 = 15.11 falling into a square cavity with

L = 20 and H = 5. For each resolution the velocity was first set to ensure

that We = 20, then the kinematic viscosity was set to ensure that Re = 20.

Instead of the lattice time-step, ∆t, the evolution of the WF is plotted against

the dimensionless time, t∗ = ∆tu0/D0, to allow for comparable results at

different resolutions. It is important to note that the time taken to reach the

substrate was slightly different for each of the domain sizes, this is likely due

to the droplet experiencing viscous drag when falling towards the substrate,

which increases with lattice resolution. For comparison across different lattice

resolutions, the impact time (t∗impact) i.e. the time at which the droplet

impacts the substrate, is subtracted from the dimensionless time t∗ = t∗ −

t∗impact, thus each WF plot starts from t∗ = 0. From the initial resolution,

the droplet diameter, cavity size and total domain size were scaled by 2, 4

and 8 and the evolution of the WF was recorded for each, figure 6.4. For all

but the smallest resolution, which consisted of a droplet of D0 = 15.1 there

is a clear linear trend in the early stages of wetting of WF ≈ 1.8t∗, which is

highlighted by the dashed red line. From t∗ ≈ 0.5 onwards, the effects of the

increased resolution result in a slightly longer time taken to fill the cavity

(WF = 1), although the trend for all but the smallest resolutions remain

comparable. From these results, the minimum resolution for the droplet

should be D0 ≈ 30.2 for a cavity length L = 40, as this allows for the best

compromise in terms of computational resources as well as a sufficiently well

resolved simulation.
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Figure 6.4: Determination of suitable lattice resolution through evaluation

of the wetted fraction. Chosen lattice resolution highlighted in bold font.
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6.2.2 Ideal Deposition into a Cavity

Before investigating the influence of positional inaccuracies on deposition, a

base comparison is required. Therefore, the case of a droplet falling directly

towards the centre of the cavity is explored. As the current multiphase

model has a density ratio of ρR ≈ 36, which is significantly smaller than that

of physical printing systems, the influence of the dynamic viscosity ratio (µR)

on the dynamic deposition process is explored. A droplet with a diameter of

D0 = 34 with Re and We numbers of 30 and 13 respectively, is configured

to fall directly into the centre of a cavity with dimensions 45× 45× 10 and

equilibrium contact angles of θs = θw = 50◦. To expand the range of dynamic

viscosity ratio of the liquid and vapour phases, the relaxation times which

control the kinematic viscosity are varied locally as

τν(x) = τν,v + (τν,l − τν,v)
ρ(x)− ρl
ρl − ρv

, (6.2)

where τν,v and τν,l are the relaxation times for the vapour and liquid kinematic

viscosity respectively. The evolution of the WF is displayed in figure 6.5,

where it is observed that as µR increases above 60, no significant change

in the evolution of the WF is exhibited, therefore this value is used for the

following investigations. Illustrated in figure 6.6 are snapshots of droplets

spreading with a dynamic viscosity ratio of µR = 3.75 and µR = 240, figures

6.6a and 6.6b respectively. Here it is evident from the snapshot at t∗ = 1.22

that the inertial spreading of the droplet has been significantly damped by

the increased viscosity of the surrounding vapour. These findings are in

agreement with [58], in which the authors investigated the influence of density

ratio on deposition with a kinematic viscosity ratio, µR = 1.

As discussed in §1.2, there are ideal printing parameters in terms or Re and

We which result in a fluid which is both printable and stable upon impact
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Figure 6.5: Evaluation of the effect of kinematic viscosity ratios µR on the

evolution of the WF. Darker lines correspond to larger kinematic viscosity

ratio. Chosen viscosity ratio highlighted in bold.

with the substrate. The influence of Re and We within the printable regime

(see figure 1.1 for illustration) is explored in terms of time taken to achieve a

fully wetted cavity (t∗WF=1), figure 6.7. Here, either the Re or We is fixed while

the other is varied (Oh(Re,We = 80) or Oh(We,Re = 30)), then the two are

combined to give the dimensionless parameter Z, which is the inverse of the

Ohnesorge number. Included in the figure is a shaded region, illustrating the

lower bound of Z highlighted in [15], as this is where a large difference in

t∗WF=1 is observed for Oh(Re,We = 80).
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(a) µR = 3.75.

(b) µR = 240

Figure 6.6: Snapshots of ideal droplet deposition into a cavity with different

dynamic viscosity ratios.
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Figure 6.7: Dimensionless wetted time for ideal droplet deposition as a func-

tion of the inverse Ohnesorge number. The grey region illustrates Ohnesorge

numbers below the critical value (Z = 4) identified in [15].
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6.3 Deposition with Single-axis Positional In-

accuracy

The topographical and chemical properties of the cavity aid in positioning

the droplet to the desired location. Here, the effects of single-axis positional

inaccuracies are explored in terms of the droplets ability to self-align i.e.

move to the desired location and achieve WF = 1. As mentioned in the

introduction to this chapter, there are numerous factors that contribute to

positioning errors of the droplet. To generalise results for different droplet

and cavity sizes, the overlap parameter αβ is introduced (where β is the x or

z direction), which describes the fraction of the droplet positioned outside of

the cavity and is defined as

αβ =
1

2

(
1−

(
L

D
− 2Pβ

D

))
. (6.3)

For the case where a droplet is overhanging a single wall, the overlap pa-

rameter can conveniently be used to describe the fraction of the volume of

the droplet initially positioned outside of the cavity, referred to as volume

fraction VF and is expressed as

VF = 3α2
β − 2α3

β . (6.4)

6.3.1 Droplet Morphologies

The influence of the wettability of the substrate and cavity wall is first

explored for the case of single-axis positional error, in which αβ = 0.5

(Pβ = L/2) and αβ̄ = 0. The cavity dimensions and droplet properties

are identical to the previous study with ideal deposition. Rather than moni-

toring convergence levels for each configuration, a maximum run time (t∗max)
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is specified. The motivation for this is the varying time scales associated with

different spreading regimes, which differ significantly depending on the wet-

ting properties. To allow for comparable results for cases in which droplets

are deposited ideally, the maximum run time is chosen to be t∗max = 8.51,

as previous investigations ([58]) have shown that most dynamic behaviour

has stabilised at times t∗ < 8. Due to the use of a cut-off time, the droplet

morphology at time t∗max = 8.51 is referred to as the final-state morphology

rather than the equilibrium morphology. The contact angles θs and θw are

varied independently, for angles between 30◦ ≤ θ ≤ 150◦ for a total of 400 in-

dividual simulations. Snapshots of a small subset of the total 400 simulations

are displayed in figure 6.8. As can be seen, the final-state morphologies vary

significantly depending on the wetting properties, with only a few cases ex-

hibiting ideal wetting properties, in which the droplet is fully confined within

and fully wets the cavity.

Through measuring the WF inside the cavity, and determining if external

wetting (EW) i.e. wetting on the surface of the surround cavity walls has

occurred, four possible configurations are identifiable: ideal wetting where

WF = 1 and EW = 0, internal + external wetting where WF = 1 and

EW 6= 0, external wetting where WF 6= 1 and EW 6= 0 and finally partial

wetting, where WF 6= 1 and EW = 0. The resulting wetting types for each

of the 400 simulations are displayed in figure 6.9. From this figure, it is clear

that cavity wall contact angles lower than θw ≈ 75◦ result in the droplet

spreading and remaining outside of the cavity. Furthermore, it is found that

if the substrate contact angle is above θs ≈ 105◦ then only a partially wetted

cavity is achieved, as the droplet either preferentially wets the cavity wall or

remains confined within the cavity but fails to spread fully across the surface.

Out of the 400 configurations, 133 (33.25%) resulted in ideal wetting.
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Figure 6.8: Distinct droplet morphologies for single-axis misalignment with

overlap value of αβ = 0.5 and αβ̄ = 0.0. Cavity wall contact angle (θw)

increases from top to bottom and substrate contact angle (θs) increases from

left to right.
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Figure 6.9: Identification of distinct droplet morphologies at t∗max for droplet

deposition with single-axis misalignment (αβ = 0.5 and αβ̄ = 0.0).
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6.3.2 Cavity Wetting Times

For the 133 configurations which resulted in an ideal deposition within the

cavity (figure 6.9), the time taken to achieve a fully wetted cavity (t∗WF=1) is

explored. The results are displayed in figure 6.10. For the cavity wall contact

angle of θw = 75◦, there is an approximately linear relationship between the

substrate contact angle, θs and the time taken to achieve a fully wetted

cavity. Furthermore, the quickest wetting times are observed for low values

of substrate contact angle. The shortest wetting time of t∗WF=1 = 2.578 is

observed when θs = 30◦ and θw = 86.84◦. However, the results for θw =

74.21◦ to θw = 86.84◦ differ by less than 3%. It can be seen that wetting

time is mainly governed by the substrate contact angle.
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Figure 6.10: Wetting time for cavities in which ideal wetting is achieved for

droplet deposition with single-axis misalignment (αβ = 0.5 and αβ̄ = 0.0).
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6.3.3 Evolution of Wetted Fraction

The dynamic evolution of the WF is recorded at regular intervals throughout

the simulation. In figure 6.11, the evolution of the WF is plotted for different

wetting configurations. The solid-colour lines correspond to cases in which

the substrate contact angle θs = 60◦ whereas the dashed lines represent

substrate contact angles of θs = 120◦. The different colours correspond to

different contact angles of the cavity walls (θw). Highlighted in the figure

are three shaded regions, which identify different spreading modes. The grey

region shows the time at which the droplet is in free-fall, following this,

the pink region illustrates the spreading regime dominated by the droplets

inertia. In the green region, spanning from t∗ ≈ 0.9 to t∗ ≈ 2.9, the spreading

rate depends on the substrate contact angle θs. Finally, the spreading is

driven by the contact angle of the cavity wall θw. From the results shown

in figure 6.11, the case of θs = 60◦ and θw = 120◦ results in the shortest

wetting time. When the substrate contact angle was increased to θs = 120◦

the droplet fails to fully wet the cavity and there is a clear recoil in the

spreading at t∗ ≈ 6.0. Snapshots of the evolution of these two conditions are

shown in figure 6.12. Here it can be seen how the part of the droplet which

is wetting the cavity wall after impact is drawn back towards the rest of the

droplet in the cavity, causing the WF to increase again at t∗ ≈ 2.43.
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Figure 6.11: Evolution of wetted fraction for droplet deposition with single-

axis misalignment (αβ = 0.5 and αβ̄ = 0.0). The grey shaded region il-

lustrates the droplet free-fall regime, the pink shaded region illustrates the

inertial spreading regime, the green shaded region is where the spreading is

determined by the substrate contact angle (θs) and finally, the remaining

white space illustrates the region in which the spreading is determined by

the cavity wall contact angle (θw).
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(a) θs = 60◦ and θw = 120◦

(b) θs = 120◦ and θw = 120◦

Figure 6.12: Illustrations of droplets spreading in cavities with different sub-

strate and wall contact angles with single-axis misalignment (αβ = 0.5 and

αβ̄ = 0.0).
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6.4 Deposition with Dual-axis Positional In-

accuracy

As mentioned in the introduction, the positional inaccuracies are multidi-

mensional and to the best of the author’s knowledge, investigations of droplet

deposition into cavities with positioning errors in two dimensions have not

yet been explored. Here, the position relative to the cavity is still easily

described by the overlap parameters αβ and αβ̄, however, the VF becomes

more complicated to compute, as two spherical caps intersect as illustrated

in figure 6.13.

Below critical values of dual-axis overlap, the volume fraction can be com-

puted as the sum of the individual volume fractions computed for each value

of overlap (equation 6.4). However, if for a known value of overlap αβ̄, the

other is above the critical value, αcβ additional consideration is required to

account for the overlapping cap regions. The critical value for αcβ is expressed

as

αcβ =
1

2
−

√(
1

2

)2

−
(

1

2
− αβ̄

)2

, (6.5)

where β and β̄ are orthogonal coordinate axes. Alternatively, if αβ = αβ̄

then the critical value of overlap simplifies to αcβ = (2 −
√

2)/4. If the

misalignment is below these critical values, the cap volume equations can be

computed simply as

V c
β =

1

3
π(αβ2R0)2(3R0 − αβ2R0) , (6.6)

V c
β̄ =

1

3
π(αβ̄2R0)2(3R0 − αβ̄2R0) .

When the two spherical caps overlap, the additional wedge volume (Vw) needs
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Figure 6.13: Illustration of the volume of droplet initially placed outside of

the cavity for dual-axis positioning error (αβ and αβ̄ > 0). R0 is the droplet

radius, V β
c , V β̄

c and Vw are the spherical cap volumes and wedge volume

respectively. xmax and xmin are the limits used in determining the volume,

Vw.

to be removed from the above calculation, the wedge volume is computed

with the following integral

Vw =

∫ xmax

xmin

R(x)2cos−1

(
1− h(x)

R(x)

)
− (L)

√
2h(x)R(x)− h(x)2 dx , (6.7)

where, xmin and xmax are the limits illustrated in figure 6.13, R(x) =
√
R2

0 − x2,

h(x) = R(x)− L and L = r0 − αβ2R0. Therefore, the total VF is calculated

as follows
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VF =
3(V c

β + V c
β̄
− Vw)

4πR3
0

. (6.8)

The relationship between the VF and the values of overlap for dual-axis

misalignment is illustrated in figure 6.14, where dashed lines are used to

illustrate overlap values which results in VF = 0.5 for comparison with earlier

results.
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Figure 6.14: Volume fraction for different configurations of dual-axis mis-

alignment.

By making the assumption that the dual-axis value of overlap (when αβ =

αβ̄) is equal to the single-axis value of overlap divided by
√

2, a reasonable

approximation of the dual-axis VF can be made as

V F ≈ 6α2
β̄ − 4

√
2α3

β̄ . (6.9)

This assumption is compared to the exact solution obtained by equation 6.8

in figure 6.15, and good agreement is seen up until the value of αβ = 1/
√

2 as
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this is where the assumption gives a VF of 1, the maximum possible value.

Furthermore, a bad approximation is included in which the VF is calculated

from individual cap volumes without considering the overlapping wedge.
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Figure 6.15: Approximations for the volume fraction with dual-axis overlap.

The solid black line is the analytical solution (equation 6.8), the blue line is

the good approximation (equation 6.9) and the red line is the bad approx-

imation. The blue dotted line is at the point αβ = 1/
√

2, where the good

approximation equals 1.
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6.4.1 Droplet Morphologies

In order to compare results between dual-axis and single-axis positional inac-

curacy, the initial VF is matched in both cases. Therefore, in order to achieve

a VF = 0.5 when αβ = αβ̄, the dual-axis overlap needs to be 0.355216. Ap-

plying this value of overlap, simulations are run as before, varying the contact

angles of the substrate and cavity walls independently. Snapshots of a small

subset of the 400 total simulations are displayed in figure 6.16. The final

state configuration of each of the 400 simulations is displayed in figure 6.17.

Out of the 400 configurations, 122 resulted in ideal wetting of the cavity

(30.5%, which is 2.75% less than the single overlap results).

6.4.2 Cavity Wetting Time

Taking the 122 configurations in which ideal wetting occurs, the wetting

time is investigated, figure 6.18. Interestingly, the shortest wetting time of

t∗WF=1 = 3.50 for the dual-axis positioning error case is observed for θs =

30◦ and θw = 150◦, whereas for the single-axis misalignment the quickest

wetted time was achieved with wall contact angle of θw = 86.84◦. It is also

evident that increasing the wall contact angle reduces the wetting time for

all substrate contact angles, which differs from the results for the single value

of overlap.
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Figure 6.16: Distinct droplet morphologies for dual-axis misalignment with

overlap values of αβ = αβ̄ = 0.355216 (VF = 0.5). Cavity wall contact angle

(θw) increases from top to bottom and substrate contact angle (θs) increases

from left to right.
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Figure 6.17: Identification of distinct droplet morphologies at t = tmax for

droplet deposition with dual-axis misalignment αβ = αβ̄ = 0.355216 (VF =

0.5).
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Figure 6.18: Wetting time for cavities in which ideal wetting is achieved

for droplet deposition with dual-axis misalignment αβ = αβ̄ = 0.355216

(VF = 0.5).
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6.4.3 Evolution of Wetted Fraction

The time dependence of the wetted fraction for dual-axis positioning error

is illustrated in figure 6.19. As with the single-axis positioning error results

(figure 6.11), there are different spreading regimes that can be identified. The

majority of the wetting configurations gave similar evolution of the wetted

fraction compared to the single-axis positioning error case. There is, however,

notably different dynamics for the cavity with θs = 120◦ and θw = 90◦.

Where, for the single-axis case (figure 6.11), the wetted fraction increases

after the substrate spreading regime. Alternatively, for the dual-axis case, the

wetted fraction remains approximately constant after the substrate spreading

regime. This is attributed to the droplet spreading over a concave corner for

the case of a dual-axis positioning error, which due to the contact angle of

cavity wall, θw = 90◦, draws the droplet backwards (towards the corner).

This is supported by the results of the case where the wall contact angle is

increased to θw = 120◦, as after the substrate spreading regime the wetted

fraction increases, as the droplet is now pushed away from the corner.

Snapshots of the droplet evolution in a cavity with different substrate contact

angles and dual-axis positioning error are displayed in figure 6.20. For the

case where the substrate contact angle is θs = 60◦, figure 6.20a, the droplet

can be seen to impact the top corner of the cavity wall, spread, then be

drawn into the cavity, giving a fully wetted cavity (WF = 1). For the case

where the substrate contact angle is increased to θs = 120◦, figure 6.20b,

the droplet impacts the top corner of the cavity wall, spreads and is slowly

drawn into the cavity. However, complete wetting is not achieved, and the

final-state morphology resembles an irregular heptagon.
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Figure 6.19: Evolution of wetted fraction for droplet deposition with dual-

axis misalignment αβ = αβ̄ = 0.355216 (VF = 0.5). The grey shaded region

illustrates the droplet free-fall regime, the pink shaded region illustrates the

inertial spreading regime, the green shaded region is where the spreading is

determined by the substrate contact angle (θs) and finally, the remaining

white space illustrates the region in which the spreading is determined by

the cavity wall contact angle (θw).
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(a) θs = 60◦ and θw = 120◦

(b) θs = 120◦ and θw = 120◦

Figure 6.20: Illustrations of droplets spreading in cavities with different sub-

strate and wall contact angles with dual-axis misalignment (αβ = αβ̄ =

0.355216).
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6.4.4 Additional Dual-Axis Positional Inaccuracy Con-

figuration

An additional case of dual-axis misalignment is explored where αβ 6= αβ̄.

Again, ensuring the VF remains comparable to the prior investigations, the

overlap values are set as αβ = 0.49015, αβ̄ = 0.1 giving VF = 0.5. The

identification of droplet morphology types are comparable to figures 6.9 and

6.17 and out of the 400 configurations tested, 123 resulted in ideal wetting of

the cavity (30.75%) which is between the values of the single axis positioning

error case (αβ = 0.5 and αβ̄ = 0) and dual-axis case (αβ = αβ̄ = 0.355216).

Furthermore, the results for wetting time and dynamic evolution of the wet-

ted fraction remain comparable to the single and dual-axis cases (figures 6.10,

6.11, 6.18, 6.19), thus have been omitted.
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6.5 Maximum Permissible Positioning Error

The investigations of the previous sections highlighted suitable wetting char-

acteristics of the cavity. For the substrate contact angle, it is evident and

intuitive that low contact angels θs ≤ 30◦ are preferable. Through investi-

gating the time taken to fully wet the cavity for single- and dual-axis mis-

alignment, the ideal cavity wall contact angle range was found to be between

75◦ ≤ θw ≤ 150.

There is however an important consideration when determining the maximum

possible positional error, the fact that for display pixels there are multiple

cavities in close proximity to each other, as illustrated in figure 6.21. Here

W is the spacing between each cavity.

Figure 6.21: Illustration of cavity spacing for display configuration.

Considering the cavity geometry alone, the maximum positional error before

the droplet is positioned closer to a neighbouring cavity is simply

P =
1

2
(L+W ) . (6.10)

It is straightforward to see if this positional limit is attainable for a printer

with know print head positioning error, EPH and angular deflection Eθ =

HPH · tan(θD) by ensuring
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Eθ + EPH <
1

2
(L+W ) , (6.11)

However, meeting this condition alone does not ensure the droplet will wet

the cavity ideally i.e. the full droplet confined within the cavity and a wetted

fraction of one.

As highlighted earlier in the chapter, the wetting properties have a strong

influence on the ability of the droplet to self-align. Furthermore, the droplet

size relative to the cavity will significantly affect printability. Therefore, to

determine the maximum permissible positioning error, the parameter αMAX

is introduced, which described the maximum permissible overlap while still

achieving a successful print. This value depends on the wetting and topogra-

phy of the cavity, as will be described in §6.5.3. The benefit of using αMAX is

that the maximum permissible positioning error, PMAX can be given in terms

of droplet and cavity size as

PMAX =
D

2
(2αMAX − 1) +

L

2
. (6.12)

This makes the determination of minimum cavity size possible for known

positioning errors, as if P < PMAX a successful deposit will be achieved.

6.5.1 Influence of Dual-axis Misalignment on Deposi-

tion

The effects of cavity height, H, and spacing, W , are explored for both single-

and dual-axis overlap. The wetting properties of the cavity are set based on

the results from the previous investigations to θs = 30◦ and θw = 112.5◦. The

width and height are changed independently for values between 2 ≤ W,H ≤

20 for a total of 100 simulations. For each configuration, the outcome either
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results in print success, with ideal wetting or print failure for any other

wetting type. Curves are fitted to the boundaries of the parameter space for

print success and failure and are plotted in figure 6.22. For equal volume

fractions, the dual-axis overlap configuration was able to achieve a successful

print across a larger range in the parameter space.
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Figure 6.22: Investigation of print success for varying cavity height H/D,

width W/D for single- and dual-axis misalignment. Dashed line shows results

for single-axis misalignment, αβ = 0.5, αβ̄ = 0 (VF = 0.5) and solid line

shows results for dual-axis misalignment, αβ = αβ̄ = 0.3552 (VF = 0.5)

For a single-axis value of overlap, the resulting droplet morphologies for cav-

ities in which the height or width is equal to 2 (H/D or W/D = 1/17) is

displayed in figure 6.23. The effects of the wall thickness are shown in figure

6.23a, where the droplet spreads over the wall, wetting the two neighbouring

cavities and connects the two by a liquid bridge. The width of the bridge

connecting the two neighbouring cavities decreases with increasing width.
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The effects of increasing cavity height are shown in figure 6.23b. Here, the

connecting liquid bridge is only observed for the first few cases, up to a height

of H/D = 3/17, after which the droplet is split between the neighbouring

cavities.

The resulting droplet morphologies for dual-axis overlap, in which the height

or width is equal to 2 (H/D or W/D = 1/17) is displayed in figure 6.24. The

effects of increasing the wall thickness are shown in figure 6.24a. For widths

of W/D = 3/17 and lower, the droplet spreads over the cavity walls and wets

three neighbouring cavities, and each of the cavities is connected by a liquid

bridge. Above this width, the droplet wets just two of the neighbouring

cavities. Increasing the width further, to W/D = 9/17, a successful print is

obtained. The effects of increasing the cavity height are illustrated in figure

6.24b. As with the width study, it is found that heights of H/D = 3/17

and lower, that the droplet spreads over the cavity walls and wets three

neighbouring cavities. For heights above this, the droplet spreads into two

of the neighbouring cavities.
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(a) 0.059 ≤ W
D ≤ 0.588, H

D = 0.059

(b) 0.059 ≤ H
D ≤ 0.588, W

D = 0.059

Figure 6.23: Final state morphologies for droplet impact cavity with a single-

axis overlap. Variations in (a) different wall thicknesses, and (b) different

cavity heights.

182



(a) 0.059 ≤ W
D ≤ 0.588, H

D = 0.059

(b) 0.059 ≤ H
D ≤ 0.588, W

D = 0.059

Figure 6.24: Final state morphologies for droplet impact cavity with a dual-

axis overlap. Variations in (a) different wall thicknesses, and (b) different

cavity heights.
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6.5.2 Influence of Droplet Properties on Deposition

To investigate how droplet properties affect the droplet ability to self-align for

different cavity heights and widths, the Weber number, We, is varied within

the printable parameter range described in §1.2. The maximum permissible

We, ensuring Z ≥ 4, with a Reynolds number of Re = 30 is We = 56.25. The

minimum value, ensuring Z ≤ 14, is We = 4.59. The droplet is deposited

with single-axis misalignment, with an overlap value αβ = 0.5. The height

and width are varied individually over 100 simulations for each of the We

numbers. The results are displayed in figure 6.25. The curves displayed are

fitted from the discrete parameter space explored with the simulations. As

the We number is reduced, the parameter space in which a successful print

is achieved increases.

Snapshots of the evolution of the droplet for the different We numbers tested

are shown in figure 6.26. Here the cavity height and width are H/D =

W/D = 7/17. For the We number of We = 56.25, figure 6.26a, the droplet

impacts the cavity wall with enough inertia to split into two, wetting the

neighbouring cavity as well as the primary. For the smaller We number of

We = 4.59, figure 6.26b, the droplet impacts the cavity wall but does not

split, resulting in a successful print.
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Figure 6.25: Investigation of print success for varying cavity height H/D,

width W/D and We number. Dashed line illustrates results for Re = 30

and We = 56.25 (Z = 4) and solid line illustrates results for Re = 30 and

We = 4.59 (Z = 14).
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(a) Weber Number We = 56.25.

(b) Weber Number We = 4.59.

Figure 6.26: Snapshots of the droplet evolution with high and low We num-

bers. Cavity height (H/D) and width (W/D) are 0.41.
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6.5.3 Determination of Maximum Permissible Overlap

As identical cavities are situated next to each other, separated by distance

W , if the droplet position error is larger than P = 0.5(L + W ) the droplet

will no longer be directed towards the intended cavity. This positioning error

is therefore the maximum permissible value when considering the geometry.

However, as shown in the previous sections, the ability for the droplet to

self-align to achieve a successful print is affected by the wetting properties of

the cavity, droplet properties such as We number, type of overlap i.e. single-

or dual-axis and the cavity height. These properties determine the maximum

permissible overlap αMAX.

The ideal cavity wetting properties, We number, and type of overlap have

been determined from the previous investigations. For simplicity, the max-

imum overlap is investigated in terms of single-axis positional error. To

determine the maximum overlap, simulations are run with incremental in-

creases of overlap until print failure. To achieve an accurate value of αMAX,

simulations are first performed with a large increment size to obtain a rough

approximation of the boundaries between print success and failure. Then the

simulations are run again between these boundaries, with finer incremental

sizes to obtain a reasonable prediction of the maximum overlap, resulting in

a total of 224 simulations. Four different cavity heights are investigated and

the results are shown in figure 6.27. The grey shaded region corresponds to

the limit in overlap (αLIMIT) before the droplet is no longer positioned closest

to the intended cavity, αLIMIT = 0.5W/D+0.5. As can be seen for the lowest

height tested, H/D = 0.059 at W/D = 0.059 (point (a) in figure 6.27), the

maximum achievable overlap is αMAX = 0, this is due to the large droplet

volume compared to the cavity, which results in overfilling, illustrated in fig-

ure 6.28a. Increasing the cavity height typically allowed for a larger value
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of overlap to be reached, however, for H/D = 0.59 and W/D = 0.59 (point

(b) in figure 6.27), the droplet impacted the wall, became pinned on the wall

corners and failed to wet the cavity, thus the maximum attainable overlap

was reduced, illustrated in figure 6.28b.

With the normalised cavity height as H/D = 0.41 and the width W/D =

0.588, the maximum achievable overlap was found to be αMAX = 0.762, which

gives a volume fraction of VF = 0.857. The corresponding dual-axis overlap

case is αβ = αβ̄ = 0.5798, which was found to give print success also.
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Figure 6.27: Determination of maximum achievable overlap for different cav-

ity wall widths and heights. Error bars indicate incremental step size in

overlap parameter.
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(a) W/D = 0.059, H/D =

0.059

(b) W/D = 0.59, H/D =

0.59

Figure 6.28: Illustration of final state morphologies for points (a) and (b)

highlighted in figure 6.27.
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6.5.4 Printable Parameter Map

Using the computed maximum overlap value, αMAX, a printing parameter

map is constructed, in terms of positioning error, P/L and droplet size D/L,

which can be used to determine if a print will be successful for given posi-

tioning errors and cavity sizes, figure 6.29. First, an approximation for the

minimum droplet size required to fill the cavity with a given substrate con-

tact angle, θs can be made by first considering the spreading ratio, which is

rewritten for clarity as

r(θs) =

(
8

tan
(
θs
2

)(
3 + tan2

(
θs
2

)))1/3

. (6.13)

Then by setting the cavity substrate area equal to the area wetted by a

droplet and rearranging, an approximate expression for the minimum drop

size can be given as

2√
πr(θs)

=
D

L
. (6.14)

Which for a substrate contact angle of θs = 30◦, gives the minimum ratio of

D/L = 0.5287. Additionally, equating the cavity volume and droplet volume

and rearranging, an expression is given for the maximum droplet size for a

cavity as

2

L

(
3L2H

4π

)1/3

=
D

L
. (6.15)

Which for L = 45 and H = 14 gives the maximum ratio of D/L = 0.8407.

Finally, to validate the printing parameter map, 200 simulations were per-

formed with varying drop size and positioning errors, figure 6.30. Within the

limits of a single drop filling a cavity, the simulations results which resulted

in print success are well predicted by the map. Above D/L = 0.8407, the
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Figure 6.29: Printable parameter map based on determined maximum over-

lap value, αMAX.

red dashed line, the maximum allowable overlap begins to reduce, as external

wetting sets in.
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Figure 6.30: Validation of printable parameter map. Green region shows

where multiple droplets are required, pink region shows where overfilling

occurs and grey region shows where overlap exceeds αLIMIT.
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6.6 Chapter Summary

In this chapter, the previously validated multiphase model is used with the

newly developed wetting model to explore droplet deposition into cavities

with positional inaccuracies. A parametric investigation of droplet self-

alignment for different substrate and cavity wall contact angles is conducted

for both single- and dual-axis positional inaccuracies. Using the MPI paral-

lelised version of the code (described in §4), simulation run-time was reduced

by over 98%, with simulations taking on average 41.49 seconds to complete,

running on 121 processes on HPC cluster ARC4 (University of Leeds). The

quick computation speeds allowed for well resolved (400 simulations each)

parameter studies.

Using the ideal wetting conditions found from the parametric investigation,

it was found that dual-axis positioning error results in a greater print success

rate compared to single-axis positioning error. Furthermore, it is found that

reducing the Weber number also aids in attaining successful prints, as it lim-

its the spreading over the cavity walls. The limits of achievable positioning

error for cavities placed in close proximity are investigated and used to de-

termine the maximum achievable droplet overlap. This overlap value is used

to construct a printing map that illustrates parameters that lead to success-

ful deposition into a cavity. Simulation results of different droplet sizes and

positioning inaccuracy agree well with the constructed printing map.
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CHAPTER 7

Evaporation on Textured Surfaces

7.1 Introduction

In the previous chapter, the parameters affecting droplet self-alignment under

positioning errors were explored and optimised to increase the likelihood of

print success. In this chapter, the evaporation dynamics of a droplet in a

heated cavity is explored. The previously validated pseudopotential model is

coupled with a finite-difference solver for an energy equation, which is then

validated and used to explore the influence of the cavity wall and substrate

contact angle on evaporation rate, internal flows and particle deposition.

194



7.2 Background

To enable inkjet deposition to become a commercially viable method of fab-

ricating organic light emitting diodes (OLEDs), a uniform deposit of the

functional material needs to be deposited in a precise and repeatable man-

ner. To control the positioning of the inkjet printed droplet(s), chemically

and topographically patterned surfaces are used, which are in the form of a

substrate with a low contact angle and surrounding walls of a higher contact

angle (a cavity). However, in comparison to flat surfaces, in which there has

been much research on the evaporation and deposit morphologies (see §1),

the understanding of evaporation in cavities is limited.

The evaporation dynamics of single and binary solvents has been explored

experimentally in [215]. Evaporation was found to be enhanced in the corners

of square cavities, which in turn resulted in more deposition in these areas.

Other investigations have focused on the final deposit morphology alone,

and not the dynamics [7]. Ely et al. [216] investigated some of the factors

influencing the final deposit morphology, including the contact angle of the

cavity wall, surface roughness and particle concentration. Sáenz et al. [217]

have studied the deposits of geometrically controlled droplets [217], where

preferential deposition is seen in sharp corners due to enhanced evaporation

rate.

Numerical investigations on droplets evaporating in cavities are limited, how-

ever, Son [218] investigated the influence of cavity sidewalls on the deposition

and evaporation of droplets using a level-set method. In their study of evap-

oration, however, the droplet did not make contact with the cavity walls,

although they noted that the evaporation rate was reduced compared to the

case of a free sessile droplet.

Recently, multiphase (pseudopotential) lattice Boltzmann models have been
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coupled with energy equations to explore evaporation dynamics. The evap-

oration of free droplets with forced convection in two- and three-dimensions

have successfully modelled Marangoni effects [219, 165]. Furthermore, evap-

oration on chemically patterned flat surfaces have been explored both in two-

and three-dimensions [157, 158]. With these models, the lattice Boltzmann

model is coupled to a finite-difference scheme, solving an energy equation

that is coupled through the equation of state. These models have captured

stick-slip mode of evaporation as well as spherical cap deviation and inter-

nal flows due to temperature induced Marangoni stresses. Evaporation on

non-flat surfaces have also been explored in two dimensions for textured and

rough surfaces [159, 160, 166]. Where the models have successfully captured

changes in evaporation rate due to changes in the surface topography.

This chapter aims at further developing the understanding of the dynamics of

evaporation from within a heated cavity, to elucidate the mechanism affecting

deposit morphology.

7.3 Thermal Model Validation

The pseudopotential model from the previous chapters is extended to model

thermal flows by adding a finite-difference based solver for an additional

energy equation, which is rewritten for clarity as

∂T

∂t
= −u · ∇T +

1

ρCv

(
λ∇2T +∇λ · ∇T

)
− T

ρCv

(
∂pEOS
∂T

)
∇ · u , (7.1)

where Cv is the specific heat and λ is the thermal conductivity. As described

in §3.4, a fourth order Runge-Kutta method is adopted to solve the equation

numerically. The last term on the right-hand side is a source term due to

phase change. However, due to the spurious velocities of the pseudopotential
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method, the divergence at the liquid-vapour interface is non-zero, therefore,

a free droplet will heat up gradually as the simulation evolves. These effects

are mitigated by ensuring spurious velocities are small, thus an increased

temperature is used. For the following simulations, the temperature is in-

creased to T = 0.86Tc, corresponding to a density ratio ρR ≈ 17, as this is

typically used without issue [157, 158, 160, 161].

The source term on the right-hand side responsible for phase change is derived

from a local balance law of entropy in [220], here the authors also show how

to derive the specific latent heat for the Peng-Robinson equation of state by

first computing the enthalpy as

h =

[
aT · η(ω) ·

√
α(T ) · 1√

T · Tc
+ aα(T )

]
· 1

2
√

2b
× ln

∣∣∣∣2b2ρ− 2b− 2
√

2b

2b2ρ− 2b+ 2
√

2b

∣∣∣∣ ,
(7.2)

where η(ω) = (0.37464 + 1.5422ω − 0.26992ω2) and α(T ) = [1 + (0.37464 +

1.54226ω − 0.26992ω2)(1 −
√
T/Tc)]

2. The enthalpy for the liquid, hl and

vapour, hv are obtained by inserting ρl and ρv into equation 7.2 respectively,

then the latent heat, hfg, is obtained as

hfg = hv − hl . (7.3)

Equation 7.1 is derived under the assumption of negligible viscous dissipation.

The validity of this assumption can be checked by evaluating the Brinkman

number (Br), which describes the ratio of viscous heat generation to external

heating, and is defined as

Br =
µu2

λ(Twall − Tsat)
, (7.4)

which for the resulting velocities in the following investigations result in a

small number, Br << 1.
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7.3.1 Dirichlet Boundary Conditions

A simple validation case for the multiphase thermal model is the well-known

D2 law for droplet vaporisation [221, 160]. Here, the diameter squared

of the droplet is shown to decrease at a constant rate as it evaporates

(D2(t)/D2
0 = 1 − kt), where D0 is the initial droplet diameter and k is the

evaporation rate. A droplet of diameter, D0 = 50, is initialised at the centre

of a fully periodic domain, comprising of 1513 lattice nodes. The droplet tem-

perature is set to Tsat = 0.86Tc and the boundaries of the domain are fixed to

a higher temperature of Tvap = Tsat + ∆T , where ∆T is the superheat, set to

0.14Tc. The kinematic viscosity set to ν = 0.1 (τν = 0.8). The requirements

of the D2 law are no buoyancy, negligible viscous heat dissipation and con-

stant thermophysical properties. As such, the specific heat is set to Cv = 5

and the thermal conductivity is set to either λ = 1/3 or λ = 2/3. Having

a constant thermal diffusivity simplifies equation 7.1, as the term ∇λ · ∇T

vanishes. For the first 5000 time-steps, the temperature solver is switched

off to allow the droplet to relax to an equilibrium state, after which the tem-

perature solver is included and the droplet begins to evaporate due to the

temperature difference. The results for the two different thermal conductiv-

ities are displayed in figure 7.1. As can be seen, both cases show a constant

rate of reduction for the droplet diameter squared, with k = 6.98× 10−6 and

k = 1.38× 10−5 for λ = 1/3 and λ = 2/3 respectively.

Solid Boundaries

For the implementation of the no-slip boundary, the standard bounce-back

method is used, as this allows for straightforward implementation and accu-

rate boundaries for walls aligned with lattice nodes. To control the wetting,

the geometric boundary condition, described in §5.3, is used as this model
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Figure 7.1: Validation of D2 law for droplet vaporisation with hybrid pseu-

dopotential model. Thermal conductivities of λ = 1
3

and λ = 2
3

for circle and

square symbols respectively.

allows for directly specifying contact angles irrespective of the temperature,

generates low spurious velocities and has the ability to control contact angle

hysteresis.

To validate the thermal multiphase model in the presence of solid bound-

aries, heat conduction between two fixed temperature walls is simulated. A

quasi-one-dimension domain, comprising 3 × 100 × 3 lattice nodes in the x,

y and z direction respectively is configured, with periodic boundaries at all

faces apart from the top and bottom, which are solid. The temperature at

the bottom layer of solid nodes is heated to T = Tsat + ∆T and the solid

nodes at the top of the domain are fixed to T = Tsat. Here, the thermal
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conductivity is non-constant and is computed as λ = Cvρχ, where χ is the

thermal diffusivity. Liquid fills the bottom portion of the domain, and has

thermal conductivity, λl, whereas vapour fills the rest of the domain and

has thermal conductivity, λv (illustrated in figure 7.2a). In order to com-

pare the simulation results of the temperature distribution to an analytical

solution, the temperature used in computing pseudopotential is fixed at the

saturation temperature (ψ(Tsat)), resulting in uniform density in the liquid

and vapour phases. Different ratios of liquid and vapour are explored, with

results showing good agreement with analytical solutions, figure 7.2b.

For the scenarios where the pseudopotential varies with temperature and

solid nodes are assigned a fixed temperature value, special consideration is

required for the geometric boundary condition. The pseudopotential is a

function of density and temperature (ψ(ρ, T )), for which the density is as-

signed through the geometric condition. However, assigning the fixed wall

temperature to the value of the pseudopotential results in the incorrect tem-

perature profile. Using the temperature of the nearest neighbouring fluid

node results in the correct temperature profile
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Figure 7.2: Validation of temperature distribution in a multiphase system

in which different fluid-vapour levels are explored. (a) shows the model

schematic and (b) shows the simulation results compared with the analyti-

cal solution. Black lines show analytical solution and blue lines show LBM

results (both in lattice units).
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7.3.2 Outflow Boundary Condition

In addition to accurately modelling temperature boundary conditions, the

pressure boundary condition also needs to be correctly implemented to sim-

ulate evaporation [222]. To enforce pressure boundary conditions in the fol-

lowing simulations, the Zou-He boundary condition, as described in §4.3

is used. When assigning a pressure boundary to a 3D simulation, the y-

component of velocity will be determined by the Zou-He method, and the x-

and z-components of velocity are set to 0. However, this was found to gen-

erate flow into the domain (before the temperature solver is switched on),

even if the boundary pressure/density is set to enforce ∂yρ = 0. To avoid

this, the total mass is computed at the beginning of the simulation, M0, then

at subsequent time-steps, the mass is computed everywhere apart from on

Zou-He boundary nodes (M̄t). The difference is then divided by the number

of Zou-He boundary nodes to give the density value ensuring conserved mass.

The evolution of the system mass is shown in figure 7.3, where it can be seen

that the modified boundary conserves the system mass.
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Figure 7.3: Open boundary condition effects on system mass. The black line

is the original Zou-He boundary and the blue line is the mass conserving

version.
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7.4 Sessile Droplet Evaporation

As with previous investigations in this thesis, the Peng-Robinson equation

of state is used. However, in order to reduce the spurious velocities at the

liquid-vapour interface, the size of the diffuse interface is increased. This

is achieve by reducing the parameter a in the equation of state (equation

3.55). The relationship between the attraction parameter and the interface

thickness is illustrated in figure 7.4. Similarly to the findings in [141], the

interface size is found to be approximately proportional to 1/
√
a. For a

saturation temperature of Tsat = 0.86Tc, reducing the attraction parameter

from a = 3/49 to a = 2/49 resulted in an increase in interface thickness by

approximately 2.2∆x, giving the total interface thickness of approximately

12∆x. This reduced the maximum spurious velocity from |uf | = 4.865×10−3

to |uf | = 2.748× 10−3.
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Figure 7.4: Relationship between attraction parameter in Peng-Robinson

EOS and liquid-vapour interface thickness.

To further explore the thermal models capabilities, evaporation in the con-
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stant contact angle (CCA) and constant contact radius (CCR) modes are

investigated. A domain comprising of 1013 lattice nodes is constructed.

The bottom surface is a no-slip solid wall, with a constant temperature of

Twall = Tsat + ∆T , where ∆T is the superheat which is set to ∆T = 0.02Tc.

The specific heat is set to Cv = 2 and the thermal diffusivity is set to

χ = 0.125. The top nodes are set to enforce a zero pressure gradient with

the Zou-He boundary and held at fixed temperature, Twall = Tsat. A droplet

of diameter D0 = 50 is initialised just above the solid surface. The kine-

matic viscosity is varied in the liquid and vapour phases, with the liquid

kinematic viscosity of ν = 0.063 (τν = 0.689) and a vapour kinematic vis-

cosity of ν = 0.253 (τν = 1.26). To model the CCA and CCR evaporation

regimes, an advancing contact angle is chosen arbitrarily as θA = 90◦, then

the receding angle is set as either θR = 90◦ or θR = 0◦ for CCA and CCR

modes respectively. After 10, 000∆t, the droplet has equilibrated and the

temperature solver is switched on.

The transient evolution of the droplet volume, radius and contact angle for

evaporating droplets is displayed in figure 7.5, where results are plotted

against dimensionless time (∆tνD−2
0 ). The transient results for CCA and

CCR, figures 7.5a and 7.5b respectively, show good qualitative agreement

with experiments [223, 224, 225].

The two modes of evaporation are also illustrated in figure 7.6, where density

contours show the droplet at different times. The plots show half the droplet,

with the height and radius normalised by the radius of the initial droplet, R0.

For the CCA mode in figure 7.6a, the droplet is clearly observed to shrink in a

self-similar fashion. Alternatively, for the CCR mode, figure 7.6b, the radius

is observed to remain fixed in position, and the height and angle decrease as

evaporation proceeds.
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Figure 7.5: Transient evolution of normalised volume, normalised radius and

contact angle for droplet evaporating in CCA and CCR modes.
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Figure 7.6: Density contours at different stages of the evaporation processes

for droplets evaporating in either the CCA or CCR mode on a flat heated

surface.
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7.4.1 Evaporative Cooling

The last term in equation 7.1 is a source term, which is responsible for

capturing the evaporative cooling effects. The effects of evaporative cooling

are clearly observed during the simulation of evaporation, figure 7.7. For

both the CCA and CCR modes, figures 7.7a and 7.7b respectively, the coldest

regions are seen at the liquid-vapour interface. This generates a temperature

gradient inside the droplet, with reducing temperature towards the apex of

the drop.

7.4.2 Internal Flow of Evaporating Droplets

As the temperature is non-uniform within the droplet due to the heated

surface and evaporative cooling at the liquid-vapour interface, the surface

tension is non-uniform, with lower values at the base of the droplet and

higher values in cooler regions. The effect of non-uniform surface tension

is an internal recirculating flow, referred to as Marangoni convection. This

flow is captured in the simulation, as illustrated by figure 7.8, where velocity

vectors show the internal flow both before the temperature solver is switched

on, figure 7.8a and shortly after the temperature solver is switched on, figure

7.8b. Once the temperature solver is switched on, two counter-rotating flow

patterns can be observed, which at the droplet interface flow from the bottom

(low surface tension) towards the droplets peak (high surface tension). In

the centre of the droplet, the flow is directed down towards the substrate.

The average velocity inside the droplet is recorded for both CCA and CCR

evaporation modes, figure 7.9. Once the droplet reached equilibrium, but

before the temperature solver was switched on, the average velocity inside

the droplet was found to be approximately |u|avg ≈ 1.79 × 10−4. Once the
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(a) CCA mode.

(b) CCR mode.

Figure 7.7: Temperature distribution (in lattice units) of evaporating sessile

droplets in which effects of evaporative cooling are observed.

temperature solver was switched on and the Marangoni flows developed, the

two modes of evaporation showed different average velocities. The CCA

mode recorded larger velocities than the CCR mode, of |u|avg ≈ 3.99× 10−4

and |u|avg ≈ 3.38× 10−4 respectively. This may be due to the larger droplet

height in CCA mode, which due to heat conduction within the droplet creates
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a larger temperature gradient and thus stronger Marangoni flows.

(a) Temperature off. (b) Temperature on.

Figure 7.8: Velocity streamlines highlighting Marangoni flows in sessile

droplet evaporation. Vectors scales by 8000 for visibility.
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Figure 7.9: Average velocity magnitude for evaporating droplets in CCA and

CCR mode.

211



7.5 Evaporation in Cavities

The simulation configuration is illustrated in figure 7.10. As with the previ-

ous investigations into evaporation on smooth surfaces, the geometric wetting

boundary condition is used. However, the implementation of this wetting

condition is not straightforward for complex geometries, and numerous dis-

crete forms are needed depending on the location of the boundary node.

Details on the identification of boundary node types and unique discrete ex-

pressions are given in the appendix B.2. This technique has proven successful

for isothermal simulations of deposition into cavities [58, 59].

The cavity dimensions are based on the finding in the previous chapter,

however, due to the increased interface thickness, the cavity dimensions of

length and height are set to L = 69 and H = 21. Using the minimum and

maximum droplet size to cavity ratios determined in the previous chapter

(§6.5), the minimum and maximum droplet sizes are found to be D0 = 36.5

and D0 = 58.0 receptively. The total simulation is comprised of 99×101×99

lattice nodes in the x, y and z axes respectively, which due to the periodic

boundary conditions resembles closely packed cavities in a display. It is

assumed that effects of reduced surface temperature have negligible effect

on the resulting dynamics, thus a constant temperature at all solid surfaces,

T (xb) = Tsat + ∆T , is applied while the saturation temperature is held at

the outflow boundary of Tsat = 0.86Tc.
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Figure 7.10: Illustration of simulation configuration for evaporating droplet

in a heated cavity.
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7.5.1 Influence of Cavity Wettability on Evaporation

Rate

The evaporation from within a cavity is now investigated. The simulation is

configured as in figure 7.10, where the cavity is initially empty, and a droplet

of diameter D0 = 63.8 is placed in the centre of the domain. The droplet is

initialised with a small y-component of velocity, uy = −0.03, to allow it to

fall into the cavity and fill it. The kinematic viscosity of the liquid was was

to ν = 0.063 (τν = 0.689), and the kinematic viscosity of the vapour was set

to ν = 0.252 (τν = 1.255). The wall superheat is set to ∆T = 0.02Tc, the

specific heat is set to Cv = 2 and the thermal diffusivity is set to χ = 0.125.

The temperature solver is added after 10, 000∆t, once the droplet has settled

in the cavity. For the first investigation, a cavity of neutral wetting and zero

hysteresis (θR = θA = 90◦) is investigated, figure 7.11. Different evaporation

regimes are identifiable, which are illustrated in figure 7.12. Initially, due

to the large volume of the droplet relative to the cavity, it evaporated with

a fixed contact line. Once the droplet volume equals the cavity volume,

it begins to evaporate with constant surface area, which slows down the

evaporation rate. Finally, as the liquid surface lowers within the cavity, it

detaches from walls and forms a droplet in the centre of the cavity. This

stage shows the lowest evaporation rate, which is due to a combination of

reduced temperature, as it detaches from the fixed temperature cavity walls

and begins to evaporate in the CCA mode, which is slower than the CCR

mode.

Next, the influence of contact line pinning is investigated. The same sim-

ulation parameters as before are used, with the exception of the receding

contact angles of the substrate and cavity wall, which are both fixed to 1◦.

The resulting evaporation rate is shown in figure 7.13, and snapshots of the
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Figure 7.11: Time dependence of non-dimensional droplet volume evapo-

rating in a square cavity with no hysteresis. Substrate contact angles of

θAs = θRs = 90◦ and cavity wall contact angles of θAw = θRw = 90◦.

evaporation process are illustrated in figure 7.14. As the contact line remains

pinned to the edge of the cavity wall, the surface of the droplet changes from

convex, to flat, to concave as the simulation progresses. Eventually, the

droplet contacts the substrate in the centre of the cavity, and a hole is made.

At this point, the evaporation rate drastically slows down. However, this is

assumed to be an unphysical artefact of the model, as the geometric bound-

ary condition is trying to enforce a pinned contact and the liquid level is

reducing due to evaporation.

The ideal wetting conditions highlighted in §6 are used to assign the advanc-

ing contact angles of the substrate and cavity wall, and the effects of receding
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Figure 7.12: Snapshots of droplet evaporation in a square cavity with θ = 90◦

and no hysteresis (corresponding to figure 7.11). The superheat of the cavity

is ∆T = 0.02Tc.

contact angles of the cavity wall are explored, figure 7.15. The substrate is

modelled with zero hysteresis, thus θAs = θRs = 30◦ and the cavity walls have

receding angles of 90◦, 70◦ and 30◦. Initially, all droplets evaporate at the

same rate, as the droplet overfills the cavity. Once the droplet volume re-

duces below the cavity volume, the evaporation results begin to differ, with

the lowest receding angle evaporating fastest. As with the neutrally wetting,

zero hysteresis case, the cavity with θRw = 90◦ results in liquid evaporation

until it detaches from the cavity walls to make a droplet in the centre of the

cavity. The receding angles of θRw = 70◦ and θRw = 30◦ result in the liquid
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Figure 7.13: Time dependence of non-dimensional droplet volume evaporat-

ing in a square cavity with pinned contact lines. Substrate contact angles of

θAs = 90◦, θRs = 1◦ and cavity wall contact angles of θAw = 90◦ and θRw = 1◦.

forming a hole, as the liquid in the centre of the cavity reaches the substrate

first. Illustrations of the droplets morphology at time ∆tνD−2
0 = 2.49 are

shown in figure 7.16.
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Figure 7.14: Snapshots of droplet evaporation in a square cavity with pinned

contact lines (corresponding to figure 7.13). The superheat of the cavity is

∆T = 0.02Tc.
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Figure 7.15: Time dependence of non-dimensional droplet volume evaporat-

ing in a square cavity with different receding contact angles.

(a) θRw = 90◦ (b) θRw = 70◦ (c) θRw = 30◦

Figure 7.16: Snapshots of droplet morphologies during evaporating in a

square cavity with different receding contact angles. Examples correspond

to figure 7.15.
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7.5.2 Internal Flow of Droplets Evaporating in Cavity

As previously shown, the model is capable of capturing thermal Marangoni

flows in sessile droplets. Now, the effects on the velocity field are investigated

for a heated square cavity. The model parameters remain unchanged from the

previous study, with the exception of the droplet diameter, as a liquid layer

inside the cavity is initialised instead. The height of the liquid layer is set 17,

as to be lower than the cavity height. Both streamlines and velocity vectors

of a plane cutting the centre of the cavity are illustrated in figure 7.17. Before

the temperature solver is switched on, there are non-zero spurious velocities

at the liquid-vapour interface, figure 7.17a. The velocity profile shortly after

the temperature solver is switched on is illustrated in figure 7.17b. The

heated cavity walls cause a temperature gradient along the surface of the

droplet, and as a result, a surface tensions driven (Marangoni) flow develops,

flowing towards the centre of the cavity.

To give a quantitative description of the resulting flows, the average velocity

magnitude inside the liquid is recorded. First, the average velocity results

for a neutrally wetting cavity, with no hysteresis are displayed in figure 7.18.

The approximate averaged velocity before the temperature solver is switched

on is found to be |u|avg ≈ 3.6×10−5. Once the temperature solver is switched

on, at 10, 000∆t, the averaged velocity increases up to |u|avg ≈ 2.25× 10−4,

over six times larger than the equilibrium velocity. The maximum velocity

inside the liquid, averaged over space and time, with the temperature solver

on was found to be |u|max ≈ 1.35× 10−3.

The influence of the receding contact angle on the velocity is then investi-

gated. For the case where both the substrate and cavity wall have a receding

contact angle of θR = 30◦, the resulting averaged velocity is shown in figure

7.19. The time-averaged value is found to be approximately the same as the
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(a) Temperature solver off.

(b) Temperature solver on.

Figure 7.17: Illustration of thermal Marangoni flows inside a heated square

cavity. Left-hand side shows streamlines and right-hand side shows velocity

vectors. In both figures vectors are scaled by 8000 for visibility. The super-

heat of the cavity is ∆T = 0.02Tc.

cavity with no hysteresis, although the averaged maximum value is reduced

to |u|max ≈ 9.0× 10−4. However, as the simulation progresses, the centre of

the concave droplet surface contacts the substrates and quickly generates a

hole (illustrated in figure 7.16c), which is why there is a large spike in velocity

at time ∆t ≈ 5.6× 104.
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Figure 7.18: Time dependence of spatial averaged velocity magnitude of a

droplet evaporating in a heated square cavity with no hysteresis.

Finally, the case where the contact line remains pinned is investigated. Both

the cavity wall and substrate are assigned receding contact angles of θR = 1◦.

The resulting averaged velocity is displayed in figure 7.20, where a slight

increase is noted compared to the previous cases. At the time ∆t ≈ 5.6×104,

the averaged velocity increases slightly, which is due to contact of the concave

droplet contacting the centre of the substrate. However, as the contact line is

pinned, the sharp velocity spike which was seen in figure 7.19 is not observed.

The maximum velocity is found to be |u|max ≈ 9.0 × 10−4, the same as the

case for the 30◦ receding contact angle.
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Figure 7.19: Time dependence of spatial averaged velocity magnitude of

a droplet evaporating in a heated square cavity with 30◦ receding contact

angle on cavity wall. The grey shaded region illustrates the time at which

the droplet forms a hole on the substrate surface.
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Figure 7.20: Time dependence of spatial averaged velocity magnitude of a

droplet evaporating in a heated square cavity with pinned contact line.
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7.6 Deposits

In order to investigate the particle deposits characteristics of drops evapo-

rating in cavities, an additional solver is required. Here, instead of using

a particle based solver to individually track each particle, a macroscopic

approach is used to reduce computation cost and model complexity. An

additional lattice Boltzmann equation is introduced to solve an advection-

diffusion equation for particle concentration, φc. The additional LBM solver

is applied to a D3Q7 velocity set and is expressed as

gi(x+ ei∆t, t+ ∆t)− gi(x, t) = − 1

τg
(gi(x, t)− geqi (x, t))∆t , (7.5)

where, gi is the distribution function for the concentration of particles, τg

is the relaxation time which controls the particle diffusivity and geqi is the

equilibrium distribution function, which is expressed as

geqi (x, t) = wg,iφc

[
1 +

uc · ei
c2
s

]
, (7.6)

where wg,i are the velocity set weights, which are equal to wg,0 = 1/4 and

wg,1,...,6 = 1/8. The particle concentration is equal to the sum of gi, and

modified velocity, uc is computed as follows

uc = u+ k
Fm

2ρ
, (7.7)

where k is a free parameter chosen to control the particle repulsion from the

liquid-vapour interface, keeping the particle concentration inside the droplet.

The particle diffusivity, Dc, is controlled with the relaxation time, τg, as

Dc = c2
s(τg − 0.5) . (7.8)

225



The final consideration is the boundary conditions, for which the bounce-back

boundary condition is applied to solid surfaces, to give a no-flux condition.

During initialisation, a larger particle concentration is added to the liquid

phase (φc, h = 0.3), and a lower concentration is added elsewhere (φc,l =

0.016).

The Péclet number (Pe), described the ratio between the convection and

diffusion of particles and is expressed as

Pe =
Lu

Dc

. (7.9)

For droplets evaporating on a smooth surface, the Pe number can be used to

determine if a uniform particle deposit will result. When the Pe < 1, uniform

deposits can be expected, whereas for Pe > 1, non-uniform deposition results

[29, 30].

7.6.1 Deposition on a Smooth Surface

Due to the movement of the liquid-vapour interface and the resulting mod-

ification to internal flows, droplets evaporating in CCA mode do not leave

ring-like deposits on the substrate. Furthermore, for Péclet numbers greater

than one, particles are uniformly distributed inside the droplet, due to pref-

erential diffusive time scales. To validate the particle concentration model,

the evaporation of a droplet is investigated for both high and low Péclet

numbers.

A lattice domain of 1013 is configured, with a solid boundary at the bot-

tom, modified Zou-He pressure boundary at the top and remaining bound-

ary conditions set as periodic. A droplet of D0 = 52 is initialised above

the solid surface, and the wetting condition of θ = 90◦ is applied, without

hysteresis. The thermal settings remain unchanged from the previous in-

226



vestigations. To modify the Pe number, the particle diffusivity was set as

either Dc = 0.01 (τg = 0.53) or Dc = 0.16̇ (τg = 1.0). Measurements of the

maximum velocity inside the droplet, once the temperature solver was added

were found to be |u|max ≈ 1.7 × 10−3, giving Pe numbers of Pe ≈ 8.81 and

Pe ≈ 0.53 respectively. Similarly, using the thermal diffusivity of χ = 0.125,

the thermal Péclet number (PeT ) is found to be PeT ≈ 0.71. The free pa-

rameter to control the particle-interface repulsion is set to k = 2, as this was

found suitable for keeping the bulk of the particle inside the droplet through

the whole evaporation stage. The results for CCA evaporation are illustrated

in figure 7.21, where planes intersecting the centre of the droplet show the

particle concentration at the time ∆t = 80, 000. For the higher Pe number,

figure 7.21a, the particle concentration is largest towards the sides of the

droplet. Alternatively, for the lower Pe number, figure 7.21b , the particle

concentration is shown to be much more uniformly distributed, as expected.

Isothermal evaporation is modelled by modifying the Zou-He boundary con-

dition to assign an outflow velocity at the top of the simulation domain. To

give evaporation times comparable to the thermal model, an outflow velocity

of uy = 0.002 was chosen. The resulting concentration for isothermal CCA

evaporation is illustrated in figure 7.21c. Here, the concentration can be seen

to be slightly more pronounced towards the apex of the droplet, but much

less so than the thermally driven case in which Marangoni flows are present

(figure 7.21a).

For the case of CCR evaporation, particles can be expected to travel toward

the contact line due to increased evaporation rate and internal replenishing

flow. The results for this mode of evaporation are illustrated in figure 7.22.

The results are taken at the same time as the CCA mode, ∆t = 80, 000.

As can be seen for the Pe > 1 case, figure 7.22a, the overall particle con-
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(a) Pe ≈ 8.81

(b) Pe ≈ 0.53

(c) Pe ≈ 6.7 (Isothermal)

Figure 7.21: Illustration of particle concentration in evaporating droplets in

CCA mode for different Péclet numbers.

centration is much more pronounced around the entire surface of the drop

compared to the CCA case, this is because more of the droplet has evapo-

rated, reducing the droplet to particle ratio. Furthermore, there is a high

particle concentration at the edge of the droplet, meaning the Marangoni

flows were insufficient to remove the coffee-ring effect completely. As before,

the lower Pe number results in a much more uniform particle concentration,

figure 7.22b.
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The isothermal evaporation case is illustrated in figure 7.22c. Here, due to

internal capillary flow towards the contact line, the particle concentration

is pronounced in this region only, as there are no Marangoni flows to direct

the particles back towards the apex of the droplet. This demonstrates the

models ability to capture the well-documented coffee-ring effect [27].

(a) Pe ≈ 6.73

(b) Pe ≈ 0.40

(c) Pe ≈ 6.5 (Isothermal)

Figure 7.22: Illustration of particle concentration in evaporating droplets in

CCR mode for different Péclet numbers.
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7.6.2 Deposition in a Square Cavity

For the following investigations, the effects of receding contact angle and

internal flows on deposition are explored. At low Pe numbers, the particle

motion is primarily driven by diffusion and uniform deposits are achieved.

However, to investigate the effects of internal flows, Péclet numbers greater

than one are considered, where the characteristic length is taken to be the

cavity width of L = 69 and the particle diffusivity is equal to Dc = 0.01.

To instigate the influence of internal flows, the evaporation is either thermally

driven, with the simulation configured identically to §7.5.1, or driven by a

density gradient, where the Zou-He boundary condition is used to assign an

outward flow at the boundary. For both cases, the parameters for the particle

solver remain unchanged from the previous study.

To compare thermal and isothermal results, times are non-dimensionalised by

the time at which the droplet has fully evaporated. For a neutrally wetting

cavity (θ = 90◦), with no hysteresis, the evolution of the particle concentra-

tion on the cavity substrate is illustrated in figure 7.23. It is important to

note that the scale changes in each figure, due to the naturally increasing

particle concentration as the droplet evaporates, which would make visuali-

sation challenging if a fixed scale were used. As the simulations evolve, the

particle concentration becomes more concentrated around the edges of the

cavity, particularly in the cavity corners.
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Figure 7.23: Snapshots illustrating the evolution of particle concentration on the substrate surface for a droplet

evaporating in a heated cavity with Pe ≈ 9.315. Cavity contact angles of θ = 90◦ and with no hysteresis.
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Snapshots of the particle density concentration from the side, at a plane inter-

secting the centre of the cavity are illustrated in figure 7.24 for both thermal

and isothermal evaporation. For the case of thermally driven evaporation,

figure 7.24a, the particle concentration can be seen to increase toward to apex

of the droplet, due to the presence of Marangoni flows. For the isothermal

case, figure 7.24b, a uniform particle deposit is maintained throughout evap-

oration. This is to be expected as the evaporative flux will be uniform over

the flat liquid-vapour interface, thus resulting internal flows are also uniform.

(a) Pe ≈ 9.315 (b) Pe ≈ 6.5 (Isothermal)

Figure 7.24: Snapshots of particle concentration for thermal and isothermal

evaporation in a cavity. Cavity contact angles of θ = 90◦ and with no hys-

teresis.

The particle concentration snapshots for the case where the cavity wall has a

receding contact angle of θR = 30◦ are displayed in figure 7.25. At the early
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stages of evaporation, up to the time of approximately t ≈ 0.178, the particle

concentration increases at the edges and corners of the cavity. After this

point, the concentration increases toward the centre of the cavity. Eventually,

the droplet contacts the substrate in the centre, while the contact line on the

cavity walls remains in place, causing a hole to be created. This drives the

particle concentration towards the edges of the cavity as the contact line on

the substrate recedes.
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Figure 7.25: Snapshots illustrating the evolution of particle concentration on the substrate surface for a droplet

evaporating in a heated cavity with Pe ≈ 6.21. Cavity contact angles of θA = 90◦ and receding contact angle of

θR = 30◦.
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Snapshots on the particle concentration from the side are illustrated in figure

7.26. For the thermally driven evaporation, figure 7.26a, the particle con-

centration increases towards the apex of the droplet, where it remains as the

shape becomes more concave.

For the isothermal case, figure 7.26b, the concentration is greatest towards

the centre of the cavity. It is worth noting, however, that in the case of

colloidal fluids the creation of the hole in the centre of the cavity is quite

unlikely, due to the increased viscosity and gelling effect. Therefore, the

contact angle of the cavity walls will control the uniformity of the deposit.

(a) Pe ≈ 6.21 (b) Pe ≈ 8.97 (Isothermal)

Figure 7.26: Snapshots of particle concentration for thermal and isothermal

evaporation in a cavity. Cavity contact angles of θA = 90◦ and receding

contact angle of θR = 30◦.
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7.7 Chapter Summary

In this chapter, the multiphase pseudopotential model is coupled with an en-

ergy equation to investigate thermally driven evaporation. First, the model

is validated against analytical expressions of heat conduction as well as qual-

itatively with experiments of sessile droplet evaporation on a heated surface.

The validated model is then used to study evaporation in a heated square

cavity. The cavity wetting properties were shown to affect the evaporation

rate similarly to the case of droplet evaporation on a flat surface. Depending

on the receding contact angle, the droplet will either form a bump or a hole

on the substrate during the late stages of evaporation. Therefore, depending

on the desired result, the contact angle of the cavity walls can be used to

control the deposit morphology and obtain a uniform deposit.

Marangoni flows are observed in the droplet inside the heated cavity are in-

vestigated qualitatively and quantitatively, with measurements of the average

and maximum velocity over time.

Finally, an additional LBM solver is added to model particle concentration

within the droplet. The model is validated with simulations of droplet evap-

oration in constant contact angle and constant contact radius modes on flat

surfaces, where the coffee-ring stain can be observed for high Péclet numbers

and pinned contact lines. The deposits within a square cavity are investi-

gated both for thermal and isothermal evaporation, where the spatial vari-

ation of the particle concentration over time can be observed depending on

the receding contact angle of the cavity wall and internal flows. Furthermore,

the presence of Marangoni flows within the droplet resulted in the particle

concentration increasing at the liquid-vapour interface.
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CHAPTER 8

Conclusions

8.1 Conclusions

Inkjet printing is seen as a promising fabrication technique for many func-

tional devices, including but not limited to, organic light emitting diodes

(OLEDs). To print OLEDs, chemical and topographical features are used to

aid in positioning the droplet once deposited from the print head. However,

as OLEDs are used for displays, which required smaller pixels as resolutions

increase, ensuring the printed droplet lands in the desired location becomes

increasingly challenging. Furthermore, even once the droplet is in the cavity,

there are challenges in achieving a uniform particle deposit once the carrier

solvent has evaporated.

The research conducted in this thesis aimed to develop the understanding

of the dynamics of inkjet deposited droplets onto idealised pixel geometries
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(square cavity) and also the evaporation of the droplet from within the cav-

ity. To achieve this, a multiphase lattice Boltzmann method is developed

which is capable of modelling thermal flows and running in parallel on high

performance computers.

In chapter 2, the background of the lattice Boltzmann is given both in terms

of its origins in cellular automata and its physical foundations. A discussion

on model extensions leads to the adoption of the multiple-relaxation-time

(MRT) collision operator, which improves simulation stability and accuracy.

In chapter 3, popular extensions for modelling multiphase and multicompo-

nent flows are presented. From reviewing the strengths and weaknesses of

different models, the pseudopotential approach is adopted, due to its inher-

ently simple algorithm and ability to incorporate realistic equations of state.

Following recent developments in the literature, the model is subsequently

modified to achieve better thermodynamic consistency with the MRT al-

gorithm. This is subsequently validated by comparing simulation results of

coexistence densities to analytical solutions obtained from the maxwell equal-

area construct rule. Finally, extensions to allow for thermal multiphase flows

are presented and an energy equation is chosen which captures phase change

effects.

In chapter 4, numerical implementation is discussed, including conversion be-

tween simulation and physical units, boundary conditions for velocity, pres-

sure, and symmetry (with multiple phases) and finally initialisation proce-

dures are presented. Computing aspects are described, where the processes

of parallelising the multiphase algorithm for MPI is given and model perfor-

mance in terms of million lattice updates per second (MLUPS) is found to

increase from 1MLUPS to 205MLUPS for a 3D simulation running on 1 and

256 processes respectively. This, therefore, allows for very fast computational
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speeds compared to other more conventional multiphase solvers.

In chapter 5, different wetting models for the pseudopotential model are

summarised and a new wetting model is suggested, which allows for control of

the adhesion strength over the liquid-vapour interface, which is typically large

in LBM simulations. Furthermore, a key issue relating to the calculation of

the cohesion force and boundary nodes is identified. Three different boundary

treatments are proposed and subsequently evaluated with each of the wetting

models (including the new wetting model).

The results from static and dynamic tests revealed that there is no one clear

choice when it comes to choosing a wetting model, and different models are

found to exhibit different strengths and weaknesses. The same is also true

for the boundary treatments. For example, one of the boundary treatments

was found to be beneficial, as it had a minimum effect on the coexistence

densities at boundary nodes, however, this same treatment was also found to

produce the largest additional spurious velocities. Therefore, after evaluation

of each of the different wetting models and boundary treatments, a table is

presented which summarises the strength and weaknesses for different sce-

narios. Nevertheless, the new wetting model performed comparatively well

in each of the benchmark studies. However, it still suffers from some common

drawbacks seen with other models, such as additional spurious velocities at

the triple point.

In chapter 6, the validated multiphase lattice Boltzmann model is used with

the new wetting model proposed in chapter 5, to investigate the process of

droplet deposition into idealised pixel geometries (square cavities). Particular

attention is given to cases in which droplets are deposited with positioning

errors, which arise from print head positioning errors and angular deflections

upon ejection from the nozzle.
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The MPI parallelised version of the code is used for large scale parametric

studies to determine preferential parameters for print success in which the

droplet are deposited with both single- and dual-axis positional errors. To

quantitatively describe the print quality, the nodes above the substrate are

monitored to determine the fraction of the cavity wetted by the droplet.

First, the influence of the substrate and cavity wall contact angles are in-

vestigated. Here, a minimum contact angle is found for the cavity wall of

75◦, and a maximum value for the substrate of 105◦. Further evaluating the

wetting conditions which resulted in fully wetting the cavity, it is found that

the substrate contact angle has a strong influence on the time taken to fully

fill the cavity.

Using the wetting conditions which resulted in the shortest cavity filling time,

the influence of the cavity height and spacing, i.e., distance to neighbouring

cavity are explored, where it was found that for comparable configurations,

dual-axis positioning error is better than single-axis in terms of droplet self-

alignment within the cavity. Furthermore, investigating the influence of the

Weber number, within the printable fluid regime showed that lower values

are preferable to avoid droplets contaminating neighbouring cavities.

The upper limits of positioning errors are then explored. With increasing the

cavity height, a successful print could be achieved with positioning errors

close to the limit determined by the cavity length and spacing. Finally,

using the determined upper limit for positioning error defined in terms of

droplet size and cavity length, a parameter map is produced, which gives

the conditions required for a successful print. Expressions are also derived

for giving the minimum single droplet size required to fully wet the cavity

substrate, and the maximum size to avoid overfilling.

In chapter 7, the pseudopotential model is coupled with an energy equa-
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tion to investigate droplet evaporation in heated cavities. The model is first

validated quantitatively with comparisons to analytical solutions of heat con-

duction and qualitatively against experiments for sessile droplet evaporation.

The validated model is then used to investigate droplet evaporation in a

square cavity, where the receding contact angle of the cavity wall was found to

influence the evaporation rate and resulting droplet morphologies. Receding

contact angles lower than 90◦ would cause the droplet to make a hole once

the centre of the concave droplet reached the substrate. Alternatively, when

the receding contact angle of the wall and substrate was set to 90◦, different

evaporation modes were identified, such as pinning to the top of the cavity

walls, reduction inside the cavity with constant surface area, and finally, the

droplet dewetting the cavity walls and forming a droplet in the centre of the

substrate.

The internal flows were investigated, and Marangoni flows were found to

develop due to temperature gradients along the surface of the droplet. Fi-

nally, an additional LBM solver is added to investigate particle deposition,

where instead of tracking individual particles, a macroscopic approach is

used, showing the particle concentration. The model is validated for sessile

droplet evaporation on a smooth surface, with thermally driven evaporation

and isothermal, diffusion driven evaporation, where the coffee-ring effect was

observed. The validated model is then used to explore the deposits of droplets

evaporating in square cavities, where again the influence of the cavity wall

contact angle is found to affect the evolution of the particle concentration.

With heated cavities, the particle concentration was also found to increase

at the liquid-vapour interface.

Based on the results obtained in this thesis, recommendations on cavity wet-

ting properties can be made. High wettability substrates of 30◦ are recom-
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mended, as this aids in the self-positioning of the droplet within the cavity.

For the surrounding cavity walls, contact angles of 112.5◦ were found to

mitigate single- and dual-axis positioning errors. Furthermore, during evap-

oration, receding angles greater than 90◦ are recommended for improving

the final particle deposit morphology, as this avoids the likelihood of forming

holes. For heated cavities, the resulting Marangoni flows are shown to en-

hance particle concentration towards the liquid-vapour interface, this would

likely improve the final deposit due to the increased viscosity hindering fur-

ther particle transport.

8.2 Future Work

Although the research conducted in this thesis has highlighted key aspects

of wettability modelling, droplet deposition and self-alignment and evapo-

ration dynamics. The investigations have opened up new areas for further

investigation.

Starting with the base lattice Boltzmann algorithm, implementing a multiple-

relaxation-time model based on a non-orthogonal transformation matrix can

minimise computational overhead compared to the standard orthogonal ma-

trix while still retaining stability and accuracy improvements. Furthermore,

as highlighted in section 3.3, there are numerous extensions to allow for inde-

pendent tuning of the surface tension and density ratio which would increase

modelling capabilities.

Although satisfactory simulation speeds were achieved through parallelisa-

tion of the LBM algorithm with OpenMP and MPI, there are limits to

the achievable speed with the simple one-dimensional domain decomposition

used. Therefore, implementing more advanced domain decompositions could
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result in a further increase of simulation speeds. Alternatively, implemen-

tation on graphical processing units could result in a significant simulation

speed increase.

Through investigating wettability modelling in chapter 5, it was found that

the adhesion force based wetting models naturally capture some contact angle

hysteresis effects. Further dynamic studies of wetting models and boundary

conditions are required to quantitatively describe the levels of hysteresis.

The newly proposed IFM wetting model has alternate configurations to be

explored. Furthermore, extensions are required in order to enable investiga-

tions on boundaries not aligned with a coordinate axis. Wetting with the

boundary treatment based on a locally average density needs to be explored

with different adhesion force based wetting models.

The investigations of droplet deposition and self-alignment used the case of

an idealised square cavity with a single droplet of commensurate size. There

are however different shape cavities to explore, some of which would require

the deposition of multiple droplets. This, therefore, increases the param-

eter space, and thus a more efficient multi-objective optimisation strategy

could be used to explore the limits of droplet self-alignment for these scenar-

ios. The deposition is explored for a Newtonian fluid, however, depending

on the concentration of functional materials in the ink, the fluid can be-

come non-Newtonian. Therefore, the droplet self-alignment properties of

non-Newtonian fluids can be explored.

Finally, for investigations of evaporation and particle concentration dynam-

ics, model extensions could be implemented to account for changes in vis-

cosity due to increased local particle concentration. Alternatively, the mul-

tiphase model could be coupled with a particle model to capture the actual

deposition process.
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APPENDIX A

Publications and Presentations

Publications

� F. F. Jackson, K. J. Kubiak, M. C. T. Wilson, M. Molinari, and V.

Stetsyuk, “Droplet misalignment limit for inkjet printing into cavities

on textured surfaces,” Langmuir, 2019.

Presentations

� Modelling of Inkjet Deposition into Cavities with Print-head Misalign-

ment - UK Consortium on Mesoscale Engineering Sciences (UKCOMES)

14th December 2020.

� Simulation of Droplet Deposition and Evaporation in Square Cavities -

UK Fluids Network (UKFN) - Droplets and Surface Interactions, 16th

May 2019, University of Edinburgh.
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APPENDIX B

Geometric Wetting Boundary

B.1 Identification of Node Types

In order to implement the geometric boundary condition, density gradients

tangential to the solid surface need to be evaluated numerically, as they are

used to set the density value at solid nodes to control the wetting. For

flat surfaces, this is straightforward, however, for the cavity geometry used

in this thesis, implementation is cumbersome, due to the many different

discretisations required. The first step required the identification of different

surface types i.e. bottom wall node, corner node, edge node, etc. Figure B.1

illustrates the different node types in a cavity, for which individual conditions

need to be applied to control the wetting. A total of 66 unique sites are

identified.
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Figure B.1: Identification of unique node types within a square cavity for

discretisation of the geometric boundary condition to control wetting.

B.2 Discretisation

Example discretisations are presented for various node types. The geometric

boundary condition is expressed as

tan

(
π

2
− θ
)

=
−∇ρ · n

|∇ρ− (n · ∇ρ)n|
. (B.1)

A mixture of second-order central-difference, forward- and backward-difference

schemes are used to evaluate the gradient terms depending on the type of

node which is identified. An example for a bottom wall surface is presented,

here, the normal direction is the y-axis, n = [0, 1, 0]T . First, the gradient of

density is evaluated as

∇ρ =
∂ρ

∂x
êx +

∂ρ

∂y
êy +

∂ρ

∂z
êz , (B.2)

which is then used with the normal unit vector to compute the dot product

as
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−∇ρ · n = −∂ρ
∂y

, (B.3)

and additionally,

|∇ρ− (n · ∇ρ)n| =
∣∣∣∣∂ρ∂xêx +

∂ρ

∂z
êz

∣∣∣∣. (B.4)

These expressions are then replaced with second-order central-difference schemes,

for example

∂ρ

∂y

∣∣∣∣
x,1,z

≈ ρx,2,z − ρx,0,z
2∆x

, (B.5)

where ρx,1,z is the density at the node directly above the bottom surface and

ρx,0,z is the density in the solid node. Similarly, the second-order central-

difference is applied to |∇ρ− (n · ∇ρ)n| = ζ to give

1

2∆x

∣∣∣∣∂ρ∂xêx +
∂ρ

∂z
êz

∣∣∣∣ ≈√(ρx+1,1,z − ρx−1,1,z)2 + (ρx,1,z+1 − ρx,1,z−1)2 . (B.6)

Inserting these discrete expressions back into equation B.1, one can obtain

the final form for describing the density at the solid node as

ρx,0,z = ρx,2,z + tan

(
π

2
− θ
)√

(ρx+1,1,z − ρx−1,1,z)2 + (ρx,1,z+1 − ρx,1,z−1)2 .

(B.7)

Note how 2∆x has cancelled out when combining the all the discrete expres-

sions.

B.2.1 Corner Treatment

When dealing with corners, there is no formal mathematical definition of a

normal vector. A simple approach to assigning densities to corner nodes is
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illustrated in figure B.2. Here the solid red nodes are corner nodes, which

need to be assigned a density value and the red outlined nodes are where the

density value is taken from.

(a) Concave corner (b) Convex corner

Figure B.2: Illustration of solid ghost nodes in convex and concave corners.

For wall nodes neighbouring corners, different numerical schemes are used to

compute the gradient terms. An example is illustrated in figure B.3, where

the wall node above the corner is shown in solid red. Gradient terms need to

be evaluated at the fluid node next to the boundary (blue outline, red fill).

The gradient in the y-axis is evaluated with a forward difference scheme (blue

nodes with a white fill), and gradients in the z-axis (going into the page) are

evaluated with a central difference scheme. Finally, the density at the node

can be determined as

ρx,y,z = ρx+2,y,z + tan

(
π

2
− θ
)
ζ , (B.8)

with
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ζ =
√

(−3ρx+1,y,z + 4ρx+1,y+1,z − ρx+1,y+2,z)2 (B.9)

+
√

(ρx+1,y,z+1 + ρx+1,y,z−1)2 .

Figure B.3: Neighbouring node to a concave corner to be determined from

geometric wetting condition.
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APPENDIX C

Lattice Isotropy

For the D2Q9 and D3Q19 velocity sets used to recover the Navier-Stokes

equations, the lattice isotropy is as follows

∑
i

wi = 1 ,∑
i

wieiα = 0 ,∑
i

wieiαeiβ = c2
sδαβ ,∑

i

wieiαeiβeiγ = 0 ,∑
i

wieiαeiβeiγeiµ = c4
s(δαβδγµ + δαγδβµ + δαµδβγ) ,∑

i

wieiαeiβeiγeiµeiv = 0 .

(C.1)
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C.1 Moments of the Equilibrium Distribu-

tion Function

With the equilibrium distribution function given as

f eqi = wiρ

(
1 +

eiαuα
c2
s

+
uαuβ(eiαeiβ − c2

sδαβ)

2c4
s

)
, (C.2)

the macroscopic moments of the equilibrium distribution function are ob-

tained with use of equation C.1 to give

Πeq =
∑
i

f eqi = ρ ,

Πeq
α =

∑
i

f eqi eiα = ρuα ,

Πeq
αβ =

∑
i

f eqi eiαeiβ = ρc2
sδαβ + ρuαuβ ,

Πeq
αβγ =

∑
i

f eqi eiαeiβeiγ = ρc2
s(uαδβγ + uβδαγ + uγδαβ) . (C.3)

251



252



Bibliography

[1] P. F. Moonen, I. Yakimets, and J. Huskens, “Fabrication of transistors

on flexible substrates: from mass-printing to high-resolution alternative

lithography strategies,” Advanced Materials, vol. 24, no. 41, pp. 5526–

5541, 2012. 1

[2] R. G. Scalisi, M. Paleari, A. Favetto, M. Stoppa, P. Ariano, P. Pan-

dolfi, and A. Chiolerio, “Inkjet printed flexible electrodes for surface

electromyography,” Organic Electronics, vol. 18, pp. 89–94, 2015. 1

[3] P. Calvert, “Inkjet printing for materials and devices,” Chemistry of

Materials, vol. 13, no. 10, pp. 3299–3305, 2001. 1, 2

[4] T. Shimoda, K. Morii, S. Seki, and H. Kiguchi, “Inkjet printing of

light-emitting polymer displays,” Materials Research Society Bulletin,

vol. 28, no. 11, pp. 821–827, 2003. 1, 2, 146

253



[5] M. Gao, L. Li, and Y. Song, “Inkjet printing wearable electronic de-

vices,” Journal of Materials Chemistry C, vol. 5, no. 12, pp. 2971–2993,

2017. 1

[6] A. Islam, M. Rabbani, M. H. Bappy, M. A. R. Miah, and N. Sakib, “A

review on fabrication process of organic light emitting diodes,” in Infor-

matics, Electronics & Vision (ICIEV), 2013 International Conference

on, pp. 1–5, IEEE. 2

[7] H. Gorter, M. J. J. Coenen, M. W. L. Slaats, M. Ren, W. Lu, C. J.

Kuijpers, and W. A. Groen, “Toward inkjet printing of small molecule

organic light emitting diodes,” Thin Solid Films, vol. 532, pp. 11–15,

2013. 2, 195

[8] M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet

printing—process and its applications,” Advanced materials, vol. 22,

no. 6, pp. 673–685, 2010. 2

[9] M. Robin, W. Kuai, M. Amela-Cortes, S. Cordier, Y. Molard,

T. Mohammed-Brahim, E. Jacques, and M. Harnois, Epoxy Based Ink

as Versatile Material for Inkjet-Printed Devices, vol. 7. 2015. 2

[10] J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet

printing of functional materials for optical and photonic applications,”

Materials, vol. 9, no. 11, p. 910, 2016. 2

[11] I. M. Hutchings and G. Martin, Inkjet technology for digital fabrication.

Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd.,

2013. 2

254



[12] B. Derby, “Inkjet printing of functional and structural materials: fluid

property requirements, feature stability, and resolution,” Annual Re-

view of Materials Research, vol. 40, pp. 395–414, 2010. 3, 5

[13] S. D. Hoath, Fundamentals of Inkjet Printing: The Science of Inkjet

and Droplets. DE: Wiley-VCH, 2016. 3, 10, 15

[14] N. Reis and B. Derby, “Ink jet deposition of ceramic suspensions: Mod-

eling and experiments of droplet formation,” MRS Online Proceedings

Library, vol. 624, no. 1, pp. 65–70, 2000. 4

[15] D. Jang, D. Kim, and J. Moon, “Influence of fluid physical properties

on ink-jet printability,” Langmuir, vol. 25, no. 5, pp. 2629–2635, 2009.

4, 154, 156

[16] D. Deganello, Printing techniques for the fabrication of OLEDs,

pp. 360–385. Woodhead Publishing, 2013. 6

[17] Y. Wang, H. Guo, J.-j. Chen, E. Sowade, Y. Wang, K. Liang, K. Mar-

cus, R. R. Baumann, and Z.-s. Feng, “Paper-based inkjet-printed flex-

ible electronic circuits,” ACS Applied Materials & Interfaces, vol. 8,

no. 39, pp. 26112–26118, 2016. 6

[18] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran,

W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer

transistor circuits,” Science, vol. 290, no. 5499, pp. 2123–2126, 2000. 6

[19] C. Gerard and P. Y. D. Marc, “Inkjet printing of conductive materials:

a review,” Circuit World, vol. 38, no. 4, pp. 193–213, 2012. 6

255



[20] V. V. Bergeron, D. Bonn, J. Y. Martin, and L. Vovelle, “Controlling

droplet deposition with polymer additives,” Nature, vol. 405, no. 6788,

pp. 772–5, 2000. 6

[21] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” In-

dustrial & Engineering Chemistry, vol. 28, no. 8, pp. 988–994, 1936.

9

[22] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans-

actions of the Faraday Society, vol. 40, no. 0, pp. 546–551, 1944. 9

[23] L. Gao and T. J. McCarthy, “Wetting 101°,” Langmuir, vol. 25, no. 24,

pp. 14105–14115, 2009. 9, 102

[24] R. Rioboo, M. Marengo, and C. Tropea, “Time evolution of liquid drop

impact onto solid, dry surfaces,” Experiments in Fluids, vol. 33, no. 1,

pp. 112–124, 2002. 10

[25] L. H. Tanner, “The spreading of silicone oil drops on horizontal sur-

faces,” Journal of Physics D: Applied Physics, vol. 12, no. 9, p. 1473,

1979. 10, 129

[26] D. Brutin, Droplet wetting and evaporation: from pure to complex flu-

ids. Academic Press, 2015. 10

[27] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and

T. A. Witten, “Capillary flow as the cause of ring stains from dried

liquid drops,” Nature, vol. 389, no. 6653, pp. 827–829, 1997. 10, 229
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