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Abstract

Ginzburg-Landau (GL) theory provides a phenomenological description of superconductors.
We study one and two-dimensional topological solitons in unconventional superconductors
that can be described by anisotropic multicomponent GL theory. The conventional ansatz,
used for isotropic superconductors, fixes the direction of the (internal) magnetic field. How-
ever, anisotropy breaks rotational symmetry thus this ansatz is inconsistent with the three-
dimensional GL equations. We consider a consistent ansatz that allows the direction of the
magnetic field to freely change throughout the superconductor. This introduces novel mag-
netic phenomena such as magnetic field twisting which we study in p+ ip, s+ is and s+ id
superconductors.

For domain walls, anisotropy means that changing the orientation of this one-dimensional
topological soliton (within a three-dimensional sample) affects its physical properties. Spon-
taneous magnetic fields occur that can vanish and even change direction (or twist) away from
the domain wall for some orientations, providing a way to distinguish between types of super-
conductors. For s+ is and s+ id superconductors we find novel types of domain walls that are
not degenerate in energy. By linearising the GL equations we are able to predict and observe
the oscillatory decay of solutions of the full nonlinear theory. Additionally, we are able to
predict magnetic field twisting from the linearisation. This also occurs in the Meissner state
but now, due to anisotropy, depends on the direction of the applied magnetic field.

Using the consistent ansatz we study vortices in anisotropic superconductors. We consider
the orientation dependence of field configurations which we classify. Magnetic field twisting
also occurs for some orientations. Finally, we study vortex lattices in an external magnetic
field, allowing us to determine the upper and lower critical fields as well as finding the unit
cell shape that minimises energy for a given value of the external magnetic field.
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Chapter 1

Introduction

1.1 Historical Review of Superconductivity

In 1911, when the Dutch Physicist Heike Kamerlingh Onnes ([3],[4],[5]) cooled down a sample
of Mercury to 4K it exhibited no electrical resistance when an electric current was passed
through it. This discovery led to the phenomenon which was later called superconductiv-
ity and earned Onnes a Nobel prize in 1913. Superconductors have one further property,
in addition to zero electrical resistance. When cooled below what is known as their critical
temperature, TC , they exhibit the Meissner effect. In 1933 Walther Meissner and Robert
Ochsenfeld [6] discovered that a superconducting material will expel an applied magnetic
field (up to a certain field strength) which is known as the Meissner effect. Note that the
superconductor must have a temperature, T < TC , and an external magnetic field, H < HC ,
where TC and HC are the so called critical values of temperature and external magnetic field
above which it has neither zero electrical resistance nor does it expel a magnetic field in the
Meissner effect. A superconductor with T > TC or H > HC is referred to being in its normal
state.
Although superconductors are ubiquitous in modern technology, being used in very sensitive
magnometers and in maglev trains or NMR machines, the low temperature required for super-
conductivity makes their use in the everyday impractical. Thus discovering superconductors
that are functional at higher and higher temperatures is still a goal for today and could poten-
tially provide great technological improvements, for example in the national electricity grid.
A phenomenological approach for describing the Meissner effect was taken by the London
brothers in 1935 [7] which is known as the London theory and was able to predict that an
external magnetic field will penetrate the surface of a superconductor that is exhibiting the
Meissner effect before decaying to zero, this is known as the penetration depth. This was
later built upon in 1950 when Vitaly Ginzburg and Lev Landau [8] introduced the so called
Ginzburg-Landau equations which successfully predicted the macroscopic properties of super-
conductors and very importantly the description of type I and II superconductors, more on
this topic later.
Then in 1957 the first fully microscopic (non-phenomenological) theory to describe low tem-
perature (close to absolute zero) superconductivity for simple materials was published by
Bardeen, Cooper, Schrieffer ([9], [10]) and was called the BCS theory. In superconductors
a current flows without dissipation, which is known as the supercurrent, js, and gives the
superconductor its ability to expel magnetic flux and have zero electrical resistance. The
BCS theory described how, in simple low temperature superconductors, the supercurrent is
composed of pairs of electrons, that are the charge carries for the supercurrent, called Cooper
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pairs. A quasi-classical explanation goes as follows: as electrons move through a supercon-
ducting lattice they attract positive ions forming regions of positive charge. The ion, being
heavier than the electron, takes longer to return to its original position than that of an elec-
tron thus the region of positive charge remains after an electron has moved away. This region
of positive charge, over certain length scales, can overcome the electrical repulsion between
electrons and form coupled pairs of electrons known as Cooper pairs. The BCS theory can be
difficult to perform calculations with, so the need for a simpler, effective theory is apparent.
Today much of the work on superconductivity involves the study of so called unconventional
superconductors, which have high critical temperatures TC > 50K, such as FFLO [[11],[12]] or
multicomponent [[13],[14],[15],[16]] superconductors. Recently discovered iron based supercon-
ductors, [17], could possibly be explained by multicomponent superconductivity. Currently,
a microscopic theory on the mechanism for these superconductors is not available but their
macroscopic properties can be studied through Ginzburg-Landau theory as we discuss in this
thesis.
The Meissner effect can be used to experimentally distinguish superconductors from normal
conducting materials. Defining, B, as the internal magnetic field of the superconductor and
H the externally applied magnetic field, consider Figure 1.1. We start with both an electrical
conductor and a superconductor at a temperature, T > TC , where TC is the (critical) temper-
ature below which the superconductor becomes superconducting. As we cool both materials
to T < TC we see that the superconductor expels the magnetic field so that B = 0 in the
centre of the superconductor, whereas B = H at the centre of the conductor. We further note
that, as well as critical temperature, there is a critical external magnetic field strength, HC ,
above which the superconductor does not exhibit the Meissner effect nor have zero electrical
resistance. It is in the normal state. We note that HC is a function of temperature, see Figure
1.2a, and is defined for T = 0K. So temperature and external magnetic field are interrelated
quantities that both affect superconductivity. This type of superconductivity is referred to as
type I and is marked by a rapid transition from the homogenous superconducting state, which
is where the superconductor exhibits the Meissner effect and has zero electrical resistance,
to the normal state where the superconductor is no longer superconducting. If we introduce

the scalar magnetic flux per unit area, Φ =
∫
R2 B·d2x∫
R2 d2x

, then Figure 1.2a plots Φ versus H for

constant T . We see that when B = 0 then Φ = 0 and we are in the superconducting state.
For the normal state, B = H and Φ = H. It should be noted that at the boundaries of
the superconductor there is some penetration by the external magnetic field. The amount
of penetration is known as the penetration depth. However, deep in the centre of the su-
perconductor, which is also referred to as the bulk, these boundary effects can be ignored.

Additionally, a new type of superconductivity, type II, was identified in 1936 by Lev Schub-
nikow [19]. It still exhibits the Meissner effect, similarly to a type I superconductor, however
the behaviour is now governed by two critical external magnetic fields. The lower critical
field, HC1, is the value of the external field, at T = 0, above which the external field starts to
penetrate the superconductor at finite points known as vortices, see Figure 1.3. An external
field above the upper critical field, HC2, for T = 0 completely suppresses superconductivity
in a superconductor and as shown in Figure 1.2b is dependent on temperature as is HC1. The
interesting features of a type II superconductor arise when HC1 < H < HC2. Instead of a
jump from the superconducting to the normal state the superconductor is penetrated by H
at finite points. Again this is shown in Figure 1.3. The points where the external magnetic
field penetrates the superconductor are called vortices. In three dimensions, a vortex can be
considered a cylinder or tube of magnetic flux, Φ0 =

∫
R3 B · d3x, through which the external

magnetic field penetrates. The magnetic flux through a single vortex is quantised in units of
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Figure 1.1: Diagram of the field cooling experiment to distinguish between a conductor and a
superconductor. We see that a superconductor will expel an external magnetic field, H < HC ,
when the temperature, T < TC . The conductor, however, is unaffected by the change of
temperature.
TC and HC are the critical values of the temperature and external magnetic field above either
of which superconductivity does not occur.

2π. The centre of the vortex, also called the zero, is where the Meissner effect is broken and an
external magnetic field fully penetrates the superconductor. Each vortex is arranged in a reg-
ular lattice such that the total energy of the system is minimised. This arrangement is known
as an Abrikosov lattice. If we consider Figure 1.2b we see how the region HC1 < H < HC2

provides a smooth transition from the superconducting state to the normal state unlike that
in Figure 1.2a. The key point to note is that type I and II are distinguished by their responses
to an applied magnetic field, H, rather than the changing of the temperature, T .

1.2 London Theory

The phenomenological London theory was one of the first successful theories to describe the
Meissner effect. It follows a quasi-classical approach where we assume quantum particles,
electrons, obey Newton’s laws [20]. The London brothers assumed that a superconductor had
de-localised electrons that moved, without resistance, due to an applied electric field which
is known as the supercurrent. It was not known then that the charge carriers were pairs of
bound electrons, Cooper pairs. Using Newton’s 2nd law we have me

dv
dt = −eE where me

is the mass of an electron, v its velocity, e its charge and E the applied electric field which
causes the motion. Then, defining the rate of flow of the supercurrent to be djs

dt = −nsedvdt ,
where ns is the number density of the carriers of the supercurrent. The equation derives from
the classical idea that the change in current is equal to the density of charge carriers times
the volume flow rate. Combining these two equations we produce the first London equation,

djs
dt

=
e2ns
me

E . (1.1)
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Type I

(a) Diagram of the total magnetic flux per unit area, Φ =
∫
R2 B·d

2x∫
R2 d2x

, versus the external

magnetic field, H, for a type I superconductor at a constant temperature, T < TC . While
H < HC the material exhibits the Meissner effect so Φ = 0 and for H > HC the material
becomes conducting, so Φ = H.
The second plot is of HC versus T showing that when T = TC , HC = 0, and past this point
HC = 0 meaning the material is in the normal state.

Type II

(b) Diagram of the magnetic flux per unit area, Φ =
∫
R2 B·d

2x∫
R2 d2x

, versus the external magnetic

field, H, for a type II superconductor at a constant temperature, T < TC . While H < HC1

the material exhibits the Meissner effect so Φ = 0 and for H > HC2 the material becomes
conducting thus Φ = H. However, for HC1 < H < HC2 the superconductor forms an
Abrikosov lattice of vortices ([18]), as H increase the vortices become closer together so Φ
increases until we reach the normal state.
The second plot is of HC1 and HC2 versus T showing for all T < TC , HC2 > HC1 which
means vortex lattices can form.

Figure 1.2: Diagrams showing the external magnetic field, H and temperature dependence
for a type I and II superconductor.
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Figure 1.3: Diagram of the Meissner effect and the vortex state for a type II superconductor
where T < TC . The red arrows denote the lines of magnetic field and we see in the case of
vortices these field lines penetrate at finite points whilst the surrounding material still exhibits
the Meissner effect. Finally, we see the normal state where the superconductor is no longer
superconducting and is fully penetrated by an external magnetic field.

The second London equation comes from applying one of Maxwell’s equations of electro-
magnetism, ∇ × E = −dB

dt , which describes how a time varying magnetic field will generate
a spatially varying electric field (and vice versa). We apply this to Equation 1.1, giving
d
dt

(
∇× js + e2ns

me
B
)

= 0, where B is the magnetic field inside the superconductor. Integrat-

ing gives,

∇× js = −e
2ns
me

B + C1 (1.2)

∇× js = −e
2ns
me

B . (1.3)

We set C1 = 0, which is required in order to describe the Meissner effect, and so the justi-
fication is phenomenological. We take the curl of Equation 1.3 and used the following two
Maxwell’s equations of electromagnetism, ∇×B = µ0js and ∇·B = 0, to simplify. These two
equations describe how a magnetic field can induce a current and how magnetic monopoles
do not exist,

∇2B =
µ0e

2ns
me

B . (1.4)

Equation 1.4 describes the decay of the internal magnetic field. The coordinates (x, y, z) and
the corresponding orthonormal basis (x̂, ŷ, ẑ) are used.
Consider a superconductor that has a boundary with an insulator at x = 0 such that the
superconductor is in the positive half plane, x ≥ 0, and the insulator is in x < 0. An
(electrical) insulator does not conduct electricity. The simplest example would be air. The
region, x ≥ 0, is known as the Meissner state. This is expanded upon in Section 1.4. We can
apply an external magnetic field, H = H0ẑ, in the ẑ direction such that B = H0 at x = 0.
This allows us to consider the dependence of B on x for x ≥ 0, where x̂ is the direction
normal to the boundary between the superconductor and insulator. Thus we assume that
B 7→ (0, 0, Bz(x)) where we have assumed that B points only in the ẑ direction, the direction
of the external magnetic field. Equation 1.4 then reduces to,

∂2
xBz(x) =

µ0e
2ns

me
Bz(x) . (1.5)
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Bz = H0e
−x
λL

Figure 1.4: Diagram of the magnetic field penetration as predicted by the London model in
one dimension, where x = 0 is the boundary between an insulator and a superconductor. The
external magnetic field, H = H0ẑ, points in the z direction. For x ≥ 0 we are inside the
superconductor and we use the boundary condition B(x = 0) = H0ẑ. Note that for x < 0 we
have B = H. We can see that decreasing the value of the London penetration length scale,
λL, causes Bz to decay faster.

For the half plane, x ≥ 0, we have a solution of,

Bz = H0e
−x
λL , (1.6)

where we keep only terms that decay to zero as x → ∞ and require that Bz(x = 0) = H0.
We see that the magnetic field will penetrate the surface of the superconductor by an amount
related to,

1

λ2
L

=
µ0e

2ns
me

, (1.7)

where λL is known as the London penetration length scale or London penetration depth.
Figure 1.4 shows how Bz changes with λL.

1.3 Ginzburg-Landau Theory

Ginzburg-Landau theory seeks to model the temperature dependence of a superconductor as
well as to provide insight into the two types of superconductivity. Consider increasing the
temperature of a type I superconductor so that it changes from the superconducting state to
the normal state. This change is known as a phase transition and can be physically observed
by studying how the internal magnetic field, B, and the electrical resistance both become
non zero when in the normal state. This phase transition can be characterised by a complex,
spatially varying, order parameter, ψ, which is dependent on the number density of the
charge carriers of the supercurrent, ns. If the order parameter, |ψ| vanishes everywhere then
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the material is in the normal state which corresponds to an absence of charge carriers, ns = 0.
If, however, |ψ| is constant and non zero everywhere then the material is in the homogenous
superconducting state, with ns 6= 0, which characterises a type I superconductor. However, ψ
can vary spatially allowing it to model a type II superconductor where, considering the vortex
state, we would expect, ns = 0 and therefore |ψ|= 0, at the centre of a vortex and, ns 6= 0 and
|ψ|6= 0, away from the centre. This is because the magnetic field penetrates a superconductor
at the centre of the vortex which breaks the Meissner effect at that point.
The free energy of the superconductor near to the phase transition is given by,

F =

∫
R3

(
1

2
|∇ψ|2+α(T )|ψ|2+

β

2
|ψ|4

)
d3x , (1.8)

where |ψ|2= (ψ)∗ψ and |ψ|, |∇ψ| are assumed to be small near to this phase transition. The
expression comes from expanding around small ψ, (ψ)∗ and ∇ψ, (∇ψ)∗ noting that as we
require a real free energy only even powers are kept. This expansion is only mathematically
valid for small |ψ| but it turns out that with the correct parametrisation, the free energy is
a good approximation for many physical systems. Note that α(T ) and β are real parameters
of the model and the temperature dependence is introduced through the parameter α(T ).
Ginzburg-Landau theory truncates this expansion at second order for the gradient term,
|∇ψ|, and fourth order for the potential,

Fp(|ψ|) = α|ψ|2+
β

2
|ψ|4 . (1.9)

Due to the requirement that the free energy must be real the potential must also be hence it is
only a function of |ψ|. Additionally, |ψ|= u, minimises the potential which gives the vacuum
value,

ψvac = ueiχ . (1.10)

Note that ψvac minimises Fp for any choice of constant, χ ∈ [0, 2π]. There are two homogenous
states:

• ψ = u, u 6= 0, everywhere. This is called the homogenous superconducting state and it
is where the superconductor exhibits the Meissner effect and has zero electric resistance.

• ψ = 0 everywhere. This is called the normal state where the material is no longer
superconducting and is fully penetrated by an external magnetic field H such that
B = H.

Figure 1.5 plots the potential for α = −1 and α = 1, where we see that the sign of α affects
the global minimum (or vacuum) of the potential. If α > 0 then we are in the normal state

where u = 0 but for α < 0 we are in the homogenous superconducting state where u =
√
|α|
β .

The temperature dependence of α is introduced to the free energy by writing α = α0(T −TC)
where we note that for T > TC α > 0 and thus u = 0 so we are in the normal state and for
T < TC , α < 0 and we are in the homogenous superconducting state.

1.3.1 Inhomogeneous Solutions

For the Ginzburg-Landau theory we use the coordinate basis, (x̂, ŷ, ẑ), which we call the basal
plane or crystalline basis. Each direction denotes a symmetry axis of the superconductor. A
symmetry, for example, could be the reflection in the x, y plane represented by the transfor-
mation, z 7→ −z.
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Fp(|ψ|)

Figure 1.5: Plots of the stationary points of the potential, Fp(|ψ|) = α|ψ|2+1
2 |ψ|

4, in the
superconducting, α < 0, and normal state, α > 0. We set β = 1 and consider |ψ|∈ R as a
variable not a field.
For α = −1 we see that the global minimum of the potential has |ψ|6= 0 but for α = 1 the
global minimum is in fact |ψ|= 0.

To obtain inhomogeneous solutions of Equation 1.8, we must consider small variations of
ψ = ψR + iψI given by,

ϕ(x, y, z) = ψR + εηR + i(ψI + εηI) , (1.11)

where ε << 1, and ψR, ψI , ηR, ηI are scalar fields on R3 and both ηR and ηI vanish on the
boundaries of our domain, ∂C. This fixes ϕ = ψ on ∂C. We now consider the expansion of
f(ϕ,∇ϕ) in terms of ψR and ψI ,

f(ϕ,∇ϕ) = f(ψ,∇ψ) + ε

(
ηR

∂f

∂ψR
+

3∑
i=1

∇ηR
∂f

∂∇iψR

)
+ iε

(
ηI

∂f

∂ψI
+

3∑
i=1

∇ηI
∂f

∂∇iψ

)
+O(ε2) .

(1.12)

We then consider,

F [ϕ] =

∫
R3

f(ϕ,∇ϕ)d3x (1.13)

=

∫
R3

f(ψ,∇ψ) + ε δF +O(ε2) , (1.14)

where δF is called the first variation. To find extrema of, F , we require that δF = 0.
Performing integration by parts on δF yields,

δF =

∫
R3

ηR

(
∂f

∂ψR
−∇i

∂f

∂∇iψR

)
d3x+ ηR

∂f

∂∇iψR

∣∣∣∣
∂C

+ i

∫
R3

ηI

(
∂f

∂ψI
−∇i

∂f

∂∇iψI

)
d3x+ i ηI

∂f

∂∇iψI

∣∣∣∣
∂C

. (1.15)
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The terms evaluated on ∂C vanish as ηR, ηI also vanish on the boundary. Then via the
Fundamental Lemma of the Calculus of Variations the integrand of the first term must vanish
giving the Ginzburg Landau equation in term of ψ,

αψ + βψ|ψ|2−1

2
∇2ψ = 0 . (1.16)

We can see that the trivial, homogenous, solution, ψ = ueiχ satisfies Equation 1.16. However,
with an appropriate choice of boundary conditions, inhomogeneous solutions will also satisfy
Equation 1.16. Note that δF = 0 only ensures that ψ extremises Equation 1.8.

1.3.2 Gauged Ginzburg-Landau Theory

Our supercurrent consists of moving electrically charged particles, the motion of which pro-
duces a magnetic field. Therefore we need to introduce a coupling between ψ and the mag-
netic field B. The magnetic field can be written in terms of a vector potential, or gauge field,
A = Axx̂+Ayŷ +Az ẑ where B = ∇×A. The free energy is now given by,

F =

∫
R3

f d3x =

∫
R3

(
1

2
|Dψ|2+

B2

2
+

(
α|ψ|2+

β

2
|ψ|4

) )
d3x , (1.17)

where f is the free energy density. The covariant derivative, D = ∇ − iA, introduces this
coupling. We emphasise that the potential, Fp, retains the same form as in Equation 1.8 this
means that the condensate vacuum is still ψvac = ueiχ. Finite energy requires that |Dψ|= 0
for the vacuum, this can be achieved by choosing Avac = 0 and ∇ψvac = 0. Furthermore, the
introduction of the covariant derivative means that the so called gauge transformations,

ψ 7→ eiχψ (1.18)

A 7→ A+∇χ , (1.19)

leave the free energy unchanged, where χ is a real smooth spatially varying function. By this
we mean, F (eiχψ,A+∇χ) ≡ F (ψ,A).
To understand the gauge transformation for Equation 1.17 we must first distinguish between
the fields ψ and A which are gauge dependent, that is they change when we make a gauge
transformation, and gauge invariant quantities such as,

F , |ψ| , B , js , (1.20)

which are unaffected by a gauge transformation: we expect physical (or gauge invariant)
quantities, such as the magnetic field, to be real therefore they should not change with our
choice of χ. We give an example of a gauge transformation where the gauge, χ = − argψ,
and we assume ψ 6= 0 so that χ is well defined everywhere,

ψ 7→ |ψ| (1.21)

A 7→ A−∇ argψ , (1.22)

this transforms the condensate to be purely real. This is useful for numerics as it means there
is one less field to solve for as, Imψ = 0. This can help decrease run times.
There are two types of gauge transformations:

• A global gauge transformation has a constant χ such that ∇χ = 0 and is given by,

ψ 7→ eiχψ (1.23)

A 7→ A . (1.24)
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• A local gauge transformation has a spatially varying χ and is given by Equations 1.18
and 1.19.

The Ginzburg-Landau equations are derived by varying Equation 1.17 with respect to ψ̄ and
A and are given below,

αψ + βψ|ψ|2−1

2
D ·Dψ = 0 (1.25)

i

2
(ψ∗Dψ − ψ(Dψ)∗)−∇×B = 0 . (1.26)

We see that Equation 1.25 is simply Equation 1.16 where ∇ 7→ D.

By recognising Equation 1.26 as Ampere’s Law, (∇×B) = js, we can define our supercurrent
as,

js =
i

2
(ψ∗Dψ − ψ(Dψ)∗) , (1.27)

for our Ginzburg-Landau free energy.

1.3.3 Linearisation of the Ginzburg-Landau Equations

If we consider solutions of Equations 1.25 and 1.26 for the positive half plane, x ≥ 0, there are
two fundamental length scales that govern their decay at long range, x→∞. The coherence,
ξGL, and penetration, λGL, length scales describe the decay of the order parameter and
magnetic field respectively. At long range, that is far away from any boundaries or defects,
the order parameter is close to its vacuum value such that,

ψ̂ = |ψ|−u , (1.28)

is a small quantity. We are interested in the spatial dependence of both ψ and B at long range,
for x ≥ 0, hence we require that ψ 7→ ψ(x) and A 7→ A(x). Furthermore, without loss of gen-
erality, we can fix our magnetic field to point in the ẑ direction such that B = Bz ẑ = ∂xAy ẑ.
This is achieved by setting Az = 0. We will expand upon the choice of ansatz in Section 2.2.1,
where we will show that setting Az = 0 is a consistent choice for this isotropic superconductor.
The length scales can be derived by linearising Equations 1.25 and 1.26, for the above condi-
tions, giving,

ψ̂ − 1

4|α|
∂x∂xψ̂ = 0 (1.29)

|α|
β
Ax = 0 (1.30)

|α|
β
Az = 0 (1.31)

|α|
β
Ay − ∂xBz = 0 . (1.32)

Equation 1.29 gives us a matter equation for the spatial variations of the order parameter.
Equations 1.30 and 1.31 set the values of Ax and Az required for B = Bz ẑ. Whilst Equation
1.32 can be rewritten as,

|α|
β
Bz − ∂2

xBz = 0 , (1.33)
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by differentiating with respect to x. This is the London Equation, Equation 1.5 , written in
terms of the Ginzburg-Landau parameters. Therefore, the coherence and penetration length
scales in Ginzburg-Landau theory are,

ξ2
GL =

1

4|α|
(1.34)

λ2
GL =

β

|α|
, (1.35)

respectively and the behaviour of the fields at long range, is given by,

ψ̂ = ψ0e
− x
ξGL (1.36)

Bz = B0e
− x
λGL , (1.37)

where ψ0 and B0 are arbitrary constants to be determined by the boundary conditions. Note
that we can now define long range, with respect to the length scales, as x

ξGL
>> 1 , x

λGL
>> 1

for the condensate and magnetic field respectively.

1.3.4 Ginzburg Landau Parameter, κ

We define the Ginzburg-Landau parameter,

κ =
λGL
ξGL

=

√
β

4
, (1.38)

the value of which can be used to determine the type of superconductor from the Ginzburg-
Landau parameters, α and β. This ability to predict the two types of superconductivity is
one of the most significant achievements of Ginzburg-Landau theory.
To make sense of this parameter, first consider the normalised potential for T < TC ,

F̂p = Fp − Fp(u) =
α2

2β
− |α||ψ|2+

β

2
|ψ|4 , (1.39)

which can be rewritten as,

F̂p =
β

2

(
u2 − |ψ|2

)2
(1.40)

= 2κ2
(
u2 − |ψ|2

)2
. (1.41)

From [21] (p.197), we see that the critical coupling occurs when 4κ2 = 1
4 which gives the

critical value of κ = 1
4 . Note that we can rewrite the potential as,

F̂p =
λ

8

(
u2 − |ψ|2

)2
, (1.42)

where, λ = 16κ2 = 4β, and a value of λ = 1 is equivalent to κ = 1
4 so the critical coupling

now occurs at unity. We will now use λ going forwards.
It was recognised at the time that the critical value marked the boundary between the two
types of superconductivity.

• If 0 < λ < 1 then our superconductor is type I which means it only forms the homoge-
nous superconducting state or the normal state, see Figure 1.2a.

• If λ > 1 then our superconductor is type II can form a Abrikosov vortex lattice state,
see Section 1.6 for more details, in addition to the homogenous superconducting state
or the normal state. See Figure 1.2b.
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1.3.5 Magnetising a Superconductor

Magnetising refers to applying an external magnetic field, H, to a sample. Previously we
have considered the energy of our superconductor, Equation 1.17, in the absence of an applied
external magnetic field. We have seen from Section 1.1 that the properties of a superconductor
are sensitive to both temperature, T , as well as H. We saw in Section 1.3 that the temperature
dependence can be introduced through the sign of the potential parameter,

α = α0 (T − TC) . (1.43)

We now look to introduce H dependence. Applying an external magnetic field to a supercon-
ductor will change its energy and so we need a new formulation of the energy that includes
the energy due to H. This is known as the Gibbs free energy,

G =

∫
R3

(
1

2
|Dψ|2+

(B −H)2

2
+ Fp

)
d3x (1.44)

G = F −
∫
R3

B ·H d3x+

∫
R3

H2

2
d3x , (1.45)

note that when H = 0 then G = F . If we consider applying a constant, H = H0ẑ, external
magnetic field in the ẑ direction then the superconducting state (ψ = u, B = 0) has a

Gibbs free energy per unit volume, G
V =

H2
0

2 + Fp(u), where V =
∫
R3 d3x. The normal

state (ψ = 0, B = H) has G
V = 0 hence it is normalised with respect to the normal state.

Alternatively we can normalise with respect to the superconducting state,

Ĝ = (F − Fp(u))−
∫
R3

B ·H d3x , (1.46)

which can be more useful when we want to consider the transition from vortex state to normal
state in a type II superconductor.

As a further example of the uses of Ginzburg-Landau theory: we can use the Gibbs free
energy to calculate the thermodynamic critical field, HC , in terms of the Ginzburg-Landau
parameters. Consider Equation 1.45 with a type I superconductor in the homogenous super-
conducting state, |ψ|= u,B = 0. Apply an external field H = H0ẑ and when the Gibbs free
energy for the superconducting state, Gs, is equal to the Gibbs free energy of the normal
state, Gn = 0, then H0 = HC .

Gs = Gn (1.47)

H2
C

2
+ Fp(u) = 0 (1.48)

HC =

√
α2

β
(1.49)

=

√
λ

2
u2 . (1.50)

1.4 Meissner State

In Section 1.3 we found two length scales that describe the decay of the magnetic field and
condensate in the linearised theory. However, this was only valid at long range, x → ∞,
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Figure 1.6: Diagram of the Meissner State. For x < 0 we have an electrical insulator and
for x > 0 we have a superconductor that for x >> 0 it is in the homogenous superconducting
state and thus exhibits the Meissner effect. The Meissner state is the region x ≥ 0, we note
that H = H0ẑ in the insulator.

so using the full, nonlinear theory we can accurately determine the behaviour of the fields
near the boundary, x = 0. Consider Figure 1.6, in the region x ≥ 0 we have an infinite
superconductor and for x < 0 we have an insulator, x̂ is the direction of the inward pointing
normal of the superconductor. We apply a constant external magnetic field, H = H0ẑ, in the
ẑ direction. The superconductor is in the Meissner state which, as x → ∞, approaches the
homogenous superconducting state. We note that for H0 > HC the superconductor moves to
the normal state where the Meissner effect does not occur.

We consider the ansatz,

ψ 7→ ψ(x) (1.51)

(Ax, Ay, Az) 7→ (0, Ay(x), 0) , (1.52)

for the region x ≥ 0. This is equivalent to assuming translational invariance in the ŷ and
ẑ directions which means we dimensionally reduce the three-dimensional Ginzburg-Landau
free energy to one dimension. The ansatz sets B = Bz ẑ and for isotropic superconductors
the magnetic field will point only in the direction of H = H0ẑ hence this ansatz is valid. We
now consider the associated Gibbs free energy per unit area (normalised with respect to the
homogenous superconducting state),

Ĝ =

∫
R
ĝ dx =

∫
R

(
1

2

(
|ψ′|2+|Ayψ|2

)
+

((Ay)
′)2

2
+
λ

8
(u2 − |ψ|2)2

)
dx−H0

∫
R

(Ay)
′dx ,

(1.53)

where, ψ′ = dψ
dx and (Ay)

′ =
dAy
dx .

Expanding on Section 1.3.1, we write φa = (ψR, ψI , Ay) then we consider the variation of the
Gibbs free energy,

δĜ =

∫
R

(
∂ĝ

∂φa
− d

dx

∂ĝ

∂(φa)′

)
δφa +

∫
∂C

∂ĝ

∂(φa)′
δφadx , (1.54)

where δφa is the variation of φa, where for Equation 1.11 the variation would be ε(ηR + iηI),
and we denote ∂C as the boundary of our domain. The boundary term must vanish in order
for δĜ = 0 this can happen in two ways:



14

• Setting δφa|∂C = 0 fixes the value of φa on the boundary. This is called a fixed boundary
condition.

• Setting ∂ĝ
∂(φa)′

∣∣∣
∂C

= 0 allows φa to vary on the boundary. This is called a natural

boundary condition.

For the Meissner state we use natural boundary conditions at x = 0, this allows the values of
the fields to vary and they are as follows,

(ψR)′|x=0 = 0 (1.55)

(ψI)
′|x=0 = 0 (1.56)

(Ay)
′|x=0 = H0 , (1.57)

where we note that (Ay)
′ = Bz. The right hand boundary, x→∞, is far away from the x = 0

boundary so the superconductor is in the homogenous superconducting state thus the fields
can be fixed to their vacuum values,

lim
x→∞

ψ = ueiχ (1.58)

lim
x→∞

(Ay)
′ = 0 . (1.59)

For simplicity we choose χ = 0.
We seek field configurations, with the above boundary conditions, that are locally minimising
solutions to Equation 1.53. We start with an initial configuration for the fields, ψ,Ay, satisfy-
ing the above boundary conditions and flow towards a local minimum use a gradient descent
algorithm. Figure 1.7 shows such a solution. We see that Bz = H0 at x = 0 and then decays
to B = 0 as x → ∞ whilst |ψ|6= u on the boundary and then approaches u as x → ∞. This
shows us that the superconductor will exhibit the Meissner effect away from the boundary at
x = 0.

1.5 Topological Solitons

In this section we define topological solitons, which are studied throughout this thesis, and
then demonstrate some general behaviour using simple soliton solutions. Topological solitons
are solutions, with a spatially localised energy, to a set of partial differential equations. A
topological soliton is stable due to the topology of the system and cannot be removed via con-
tinuous deformations of the solution. For topological solitons in superconductors we consider
solutions to the Ginzburg-Landau equations.
As an example we consider the one-dimensional static Sine-Gordon model [22] with energy,

E =

∫ ∞
−∞

(
1

2

(
dφ

dx

)2

+ 2 sin

(
φ

2

)2
)
dx , (1.60)

where φ is a real scalar field on R. The vacua of the potential, Fp = 2 sin
(
φ
2

)2
, are given by,

φvac = 2πN , (1.61)

with, N ∈ Z. The value of N can be fixed by specifying the value of φ on the left and right
boundaries, such that

N =
φ(∞)− φ(−∞)

2π
, (1.62)
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Figure 1.7: Meissner state solution for λ = 0.75, u = 1 and H0 = 0.3, note that λ < 1 and

H0 < HC where HC =
√

3
4 , so this type I superconductor will exhibit the Meissner state for

our value of H0. We see that the superconductor approaches the homogenous superconducting
state as x→∞, Bz → 0 and ψ → u.

where φ(−∞) and φ(∞) are the field values on the left and right boundaries of our domain
respectively.
If we consider the variation of E with respect to φ, we arrive at the one-dimensional static
Sine-Gordon equation,

− d2φ

dx2
+ sin (φ) = 0 . (1.63)

The Sine-Gordon model can be solved analytically, with the boundary conditions,

φ(−∞) = 0 (1.64)

φ(∞) = 2πN . (1.65)

We first rewrite Equation 1.60 by completing the square, which we relabel as EN ,

EN =

∫ ∞
−∞

1

2

(
dφ

dx
− 2 sin

(
φ

2

))2

dx+ 2

∫ ∞
−∞

dφ

dx
sin

(
φ

2

)
dx (1.66)

EN =

∫ ∞
−∞

1

2

(
dφ

dx
− 2 sin

(
φ

2

))2

dx+ 2

∫ 2πN

0

∣∣∣∣sin(φ2
)∣∣∣∣ dφ (1.67)

EN =

∫ ∞
−∞

1

2

(
dφ

dx
− 2 sin

(
φ

2

))2

dx+ 8|N | , (1.68)

where the last line uses the fact that the integrand is periodic on 2π which gives us a lower
bound for the energy, EN ≥ 8|N |. The globally minimum solution, for the given boundary
conditions, has EN = 8|N |. This occurs when the integrand vanishes, giving us a first order
equation, (

dφ

dx
− 2 sin

(
φ

2

))
= 0 . (1.69)
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Figure 1.8: Static kink and anti-kink solutions of the Sine-Gordon model in one dimension,
we note that there are no |N |> 1 static solutions.
φ = 4 arctan (ex−x0) where x0 = 0.

This equation can be solved to produce an exact solution,

φ = 4 arctan
(
ex−x0

)
, (1.70)

known as a kink, were x0 is a free parameter that translates the kink solution. We note that
there are no static |N |> 1 solutions and we call the N = −1 solution an anti-kink. The
possible static solutions can then be plotted as seen in Figure 1.8.

1.6 Vortices

A vortex in a superconductor is a solution to the Ginzburg-Landau equations where at the
centre, or zero of the vortex, ψ = 0 and the magnetic field fully penetrates the superconductor.
Both the condensate, ψ, and the vector potential, A, wind around the centre of the vortex.
Vortices are two-dimensional topological solitons hence we consider the below two-dimensional
Ginzburg-Landau free energy (per unit length),

F̂ =

∫
R2

(
1

2
|Dxψ|2+

1

2
|Dyψ|2+

(∂xAy − ∂yAx)2

2
+
λ

8
(u2 − |ψ|2)2

)
d2x , (1.71)

which comes from applying the ansatz,

ψ 7→ ψ(x, y) (1.72)

A 7→ (Ax(x, y), Ay(x, y), 0) , (1.73)

to Equation 1.17. The potential is normalised with respect to the superconducting state,
|ψ|= u, and it is of the same form as Equation 1.17 with α = u2λ

4 , β = λ
4 , [21]. Note that

Dx = ∂x − iAx , Dy = ∂y − iAy. For this model λ determines the type, with λ > 1 giving a
type II superconductor. Finally, our choice of ansatz fixes B to be perpendicular to the xy
plane, B = (0, 0, Bz).
Vortices are rotationally symmetric about their centre, so the problem simplifies if we consider
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the free energy in polar coordinates, x = r cos θ, y = r sin θ,

F̂ =

∫ ∞
0

∫ 2π

0

(
1

2
|Drψ|2+

1

2r2
|Dθψ|2+

(∂rAθ − ∂θAr)2

2r2
+
λ

8
(u2 − |ψ|2)2

)
rdrdθ , (1.74)

with Ar = Ax cos θ+Ay sin θ, Aθ = r (−Ax sin θ +Ay cos θ) and Dr = ∂r−iAr, Dθ = ∂θ−iAθ.
To proceed with our analysis, we first choose the gauge transformation that sets Ar = 0. For
polar coordinates a gauge transformation is given by,

ψ 7→ ψeiχ(r,θ) (1.75)

Ar 7→ Ar + ∂rχ(r, θ) (1.76)

Aθ 7→ Aθ +
1

r
∂θχ(r, θ) , (1.77)

where we have transformed Equations 1.18 and 1.19 which are written in the crystalline or
Cartesian coordinates. If we choose

χ(r, θ) = −
∫ r

0
Ar(r

′, θ) dr′ , (1.78)

then Ar → 0, note that χ is smooth if Ar is a smooth function. The free energy then reduces
to,

F̂ =

∫ ∞
0

∫ 2π

0

(
1

2
|∂rψ|2+

1

2r2
|Dθψ|2+

(∂rAθ)
2

2r2
+
λ

8
(u2 − |ψ|2)2

)
rdrdθ . (1.79)

We will now use ψ∞ and A∞θ to denote the value of ψ and Aθ on the boundary of our two-
dimensional domain. We seek to find the boundary conditions by considering the limit r →∞.
In order for the energy to be finite, on this boundary, we require |ψ|→ u and ∂rψ → 0. We
note that ψ∞ = ueiχ

∞(θ) is the set of field values that satisfies this such that,

ψ∞ : S∞1 → S1 (1.80)

where S∞1 is the unit circle at infinity and the map is characterised by an integer winding
number, N . This is because the first homotopy group of circles, π1(S1), is the integers.
We also require that ∂rAθ → 0 and Dθψ → 0. This implies that A∞θ becomes constant with
respect to r which we denote A∞θ (θ) and that A∞θ (θ) = ∂θχ

∞(θ).
We now define a vortex as a field solution that (at least) locally minimises Equation 1.79 with
the general boundary conditions,

ψ∞ = ueiχ
∞

(1.81)

A∞θ (θ) = ∂θχ
∞(θ) (1.82)

A∞r = 0 . (1.83)

The centre of the vortex is the point where ψ = 0, and this is the point around which the
fields wind where the winding number is determined by the map in Equation 1.80.
By applying a gradient descent algorithm to initial configurations of the fields with the below
fixed boundary conditions,

ψ∞ = ueiNθ (1.84)

A∞θ (θ) = N (1.85)

A∞r = 0 , (1.86)

we can generate vortex solutions to Equation 1.79. Figure 1.9a plots the dependence of |ψ|
and Bz = ∂rAθ on the radial coordinate, r. As expected we see both quantities approach
their vacuum values as r increases and |ψ| vanishes at the centre of the vortex, r = 0. Figure
1.9b shows the same data but as heat plots which are useful when depicting solutions that
are not rotationally symmetric. These heat plots are used extensively in Chapters 4 and 5.
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(a) Plots of the modulus of the order parameter, |ψ|, and the z component of the magnetic field,
Bz as functions of the radius, r.

(b) Heat plots for |ψ| and Bz . The marks the centre of the vortex with the winding number,
N .

Figure 1.9: Plots of an N = 1 vortex solution in an isotropic superconductor. As expected
we see both quantities approach their vacuum values as r increases and |ψ| vanishes at the
centre of the vortex, r = 0.
Parameters: λ = 2, u = 1, N = 1.
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1.6.1 Topological Charge

The winding number, N, of the map ψ∞ is given by,

N =
1

2π

∫ 2π

0
∂θχ

∞dθ =
1

2π
(χ∞(2π)− χ∞(0)) (1.87)

and is a topological invariant. We see that like the Sine-Gordon kinks, see Section 1.5, the
choice of boundary conditions determines the topological degree, N .
Making use of the fact that, for a finite energy solution, A∞θ (θ) = ∂θχ

∞(θ) we can write N in
terms of the magnetic field,

N =
1

2π

∫ 2π

0
A∞θ dθ (1.88)

=
1

2π

∫
R2

B d2x , (1.89)

where Stokes’ theorem has been used to write the integral in terms of the magnetic field. We
see that the total magnetic flux through the system, Φ =

∫
R2 B d2x, is quantised in units of

2π.
For |N |> 1, there can exist vortex solutions which have multiple points on the plane where
ψ = 0, that is multiple vortices. If we label each vortex as a, b, c, ... then each vortex will have
an associated winding number which we label na, nb, nc, ... . The topological degree,

N = na + nb + nc + ... , (1.90)

is the sum of the winding numbers of each individual vortex. In other words, N counts the
number of vortices, up to multiplicity, in the system. This is especially useful for uncon-
ventional superconductors that form vortex solutions with multiple zeros and is explored in
Chapters 4 and 5.

1.6.2 Vortex Lattices

Consider a large type II superconductor with an applied magnetic field, HC1 < H0 < HC2

which ensures that the vortex state can occur. The vortices form a repeating pattern known
as an Abrikosov lattice. The smallest element of that pattern is known as the unit cell. The
shape of the unit cell is such that it minimises its Gibbs free energy per unit area. Figure 1.10
gives the Abrikosov lattice for a given N , λ, u and external magnetic field, H = H0ẑ. We see
that the unit cell is hexagonal, that is the smallest internal angle, α = π

3 , and the sides are of
the same length. As expected the point where |ψ| vanishes in a given unit cell corresponds to
the maximum value of the magnetic field.

1.7 Multicomponent Ginzburg-Landau Theory

The first extension of Ginzburg-Landau theory is increasing the number of condensates. This
can be required when the phenomenological properties of a superconductor cannot be fully
described by a single condensate. A multicomponent superconductor would be among the
simplest of unconventional superconductors. Focussing on a two component superconductor,
the free energy is given by,

F =

∫
R3

f d3x =

∫
R3

(
2∑

α=1

|(Dψα)|2+
B2

2
+

2∑
α=1

(
αα|ψα|2+

βα
2
|ψα|4

) )
d3x , (1.91)
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Figure 1.10: Lattice plots for an N = 1 vortex in an isotropic superconductor which shows
the Abrikosov lattice with hexagonal unit cells, marked by the black lines. Each vortex is
rotationally symmetric in the immediate area of the vortex centre, as expected, and the peaks
of Bz correspond to ψ = 0, the centre of the vortex. Here the winding number for each unit
cell, N , is marked by .
Parameters: λ = 4, u = 1, N = 1, H0 = 1, where H = H0ẑ.

which closely matches the single component free energy in Equation 1.17. We need to intro-
duce two extra parameters for the potential,

Fp(ψ1, ψ2) =
2∑

α=1

(
αα|ψ|2+

βα
2
|ψ|4

)
, (1.92)

which has general vacuum solutions,

ψα = uαe
iχα (1.93)

A = 0 , (1.94)

with uα =
√
|αα|
βα

and χ1, χ2 ∈ [0, 2π]. We note that the vacuum value for each condensate

has an independent U(1) choice of values which is parametrised by χα.
Then by varying Equation 1.91 with respect to the real fields the multicomponent Ginzburg-
Landau equations are given by;

∂Fp
∂(ψα)∗

− 1

2
D ·Dψα = 0 (1.95)

i

2

2∑
α=1

(ψ∗αDψα − ψα(Dψα)∗)−∇×B = 0 , (1.96)

where we have an extra equation of motion for each new condensate. We also have an updated
definition for the supercurrent of a multicomponent superconductor,

js =
i

2

2∑
α=1

(ψ∗αDψα − ψα(Dψα)∗) . (1.97)



21

1.7.1 Multicomponent Length Scales

Following on from Section 1.3.3 we linearise Equations 1.95 and 1.96 in the small quantities,

ψ̂1 = |ψ1|−u1 (1.98)

ψ̂2 = |ψ2|−u2 , (1.99)

where, again, we consider the positive half plane, x > 0, which yields three length scales,

ξ2
mcGL1 =

1

4α1
(1.100)

ξ2
mcGL2 =

1

4α2
(1.101)

1

λ2
mcGL

=

(
|α1|
β1

+
|α2|
β2

)
, (1.102)

which give the behaviour of the fields at long range as,

ψ̂1 = ψ1,0e
− x
ξmcGL1 (1.103)

ψ̂2 = ψ2,0e
− x
ξmcGL2 (1.104)

Bz = B0e
− x
λmcGL . (1.105)

ψ1,0, ψ2,0 and B0 are constants to be determined by the boundary conditions.
Clearly, there are now two Ginzburg-Landau parameters,

κ1 =
λmcGL
ξmcGL1

(1.106)

κ2 =
λmcGL
ξmcGL2

, (1.107)

thus determining the type of superconductor is no longer as simple as reading off the value
of the single Ginzburg-Landau parameter, κ. We remind the reader that κ = 1

4 is the critical
value that determines the type of superconductor. If both κ1 and κ2 are above or below 1

4
then determining the type of superconductivity is trivial. However, if, for example, κ1 >

1
4

and κ2 <
1
4 then the type of superconductivity is not obvious. This is known as type 1.5

superconductivity and arises in unconventional superconductors, [23], [24].

1.7.2 Broken Time Reversal Symmetry

Here we explore how changing the potential in Equation 1.91 can give rise to novel vacuum
states and new solutions such as domain walls. We begin by defining time reversal symmetry
as the following transformation,

ψα 7→ ψ̄α (1.108)

Ai 7→ −Ai . (1.109)

A solution has time reversal symmetry if it is invariant under this transformation. If we
have two condensates ψ1 = ρ1e

iθ1 and ψ2 = ρ2e
iθ2 , we consider the following gauge invariant

quantities,

ρ1 (1.110)

ρ2 (1.111)

θ12 := θ1 − θ2 , (1.112)
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where, θ12 ∈ [−π, π], is the phase difference between the two condensates. As we only consider
even powers of |ψα| up to quartic order the way to add complexity to the vacuum solutions
is by adding terms that fix the phase difference of the vacuum, θ12, to a specific value or by
adding terms of the form ρ2

1ρ
2
2. Considering the phase difference we consider two possible

terms that could be added to the potential,

ηJ12

2
(ψ1ψ

∗
2 + ψ1ψ

∗
2) ≡ ηJ12ρ1ρ2 cos(θ12) (1.113)

η12

2

(
(ψ1)2(ψ∗2)2 + (ψ1)2(ψ∗2)2

)
≡ η12ρ

2
1ρ

2
2 cos(2θ12) . (1.114)

The linear term in both condensates, Equation 1.113, is known as a Josephson term. If
ηJ12 > 0, then it is minimised by θ12 = ±π which is known as phase anti-locking and if ηJ12 < 0
then θ12 = 0 minimises the Josephson term which is known as phase locking.
The quadratic term in both condensates, Equation 1.114, is known as a broken time reversal
symmetry term (BTRS) and if η12 > 0 has two vacua with θ12 = ±π

2 but if η12 < 0 then
phase locking, θ12 = 0, minimises the BTRS term.
Starting with,

V (ρ1, ρ2) =
2∑
j=1

(
αjρ

2
j +

βj
2
ρ4
j + γ12ρ

2
1ρ

2
2

)
, (1.115)

which already introduces a coupling between the condensates for γ12 6= 0. We then define two
potentials,

F Jp = V (ρ1, ρ2) + ηJ12ρ1ρ2 cos(θ12) (1.116)

FBp = V (ρ1, ρ2) + η12ρ
2
1ρ

2
2 cos(2θ12) , (1.117)

with ηJ12 > 0 and η12 > 0, and we require that each βα > ηJ12 − γ12 or βα > η12 − γ12 [25].
This is so that the vacuum values of ρα are positive. The vacuum for F Jp is,

(ρ1, ρ2, θ12) =
(
uJ1 , u

J
2 , 0
)
, (1.118)

where uJα =

√
αβdJ−ααββ

(βαββ−(dJ )2)
with α 6= β and dJ = (γ12 − ηJ12).

The vacua for FBp are,

(ρ1, ρ2, θ12) =
(
uB1 , u

B
2 ,±

π

2

)
, (1.119)

where uBα =

√
αβdB−ααββ

(βαββ−(dB)2)
with α 6= β and dB = (γ12 − η12). Critically, for these parameter

choices, we see that the BTRS potential, FBp , has two gauge inequivalent vacuum states but

the Josephson potential, F Jp , has only one vacuum state.

If we consider the fields, where we perform a gauge transformation so that ψ2 is purely real,
then we have,

(ψ1, ψ2)J =
(
u1e

iπ, u2

)
(1.120)

(ψ1, ψ2)B1 =
(
u1e
−iπ

2 , u2

)
(1.121)

(ψ1, ψ2)B2 =
(
u1e

+iπ
2 , u2

)
. (1.122)

We can now see that (ψ1, ψ2)J = ((ψ1, ψ2)J)∗ thus the vacuum for the Josephson term poten-
tial is invariant under conjugation or that it does not break time reversal symmetry.
However, (ψ1, ψ2)B1 6= ((ψ1, ψ2)B1)∗ which shows us how the vacua for the BTRS term breaks
time reversal symmetry.
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1.8 Anisotropic Multicomponent Ginzburg-Landau Theory

We now seek to introduce anisotropy to the Ginzburg-Landau theory which will allow us to
model more unconventional types of superconductivity as well as describe new phenomena.
Anisotropic superconductors can now be studied via the introduction of anisotropy matrices,
Qαβ, which are a useful way of encoding the anisotropy of the system. Now that we are dealing
with anisotropy the choice of basis matters. To highlight this we relabel our coordinates from
the crystalline (x, y, z) to (x1, x2, x3) which is for an arbitrary choice of orthonormal basis not
necessarily aligned with any of the crystalline axes. Each direction for the crystalline basis
denotes a symmetry axis of the superconductor. The two component free energy is given by,

F =

∫
R3

(
1

2
Qαβij (Diψα)∗(Djψβ) +

B2

2
+ Fp(ρ1, ρ2, θ12)

)
dx1dx2dx3 , (1.123)

with Di = ∂i − iAi, i, j ∈ {1, 2, 3}, α, β ∈ {1, 2} and there is an implied summation over all

repeated indices. We note that Qαβij ≡ Q
βα
ji is required for a real energy and the components

Qαβij are all real. The Euler-Lagrange equations are similar to before but are now given as,

∂Fp
∂(ψα)∗

− 1

2
Qαβij DiDjψβ = 0 (1.124)

Im(Qαβij (ψα)∗Djψβ)− ∂j(∂jAi − ∂iAj) = 0 . (1.125)

Note that the supercurrent is given by,

(js)i = Im(Qαβij (ψα)∗Djψβ) , (1.126)

as Equation 1.125 is the anisotropic version of Ampere’s law.

1.8.1 Superconductor Types

In this thesis we deal with three types of two component superconductors p+ ip , s+ id and
s+is. These are defined by the choices made for the Qαβij as well as in the p+ip the parameter
choices. The exact form of the anisotropy matrices are given in Table 1.1. We note that the
matrix, Q11Q22− (Q12)2, must be non negative so that the free energy is positive definite and
therefore bounded below.

s+ is s+ id p+ ip

Q11 =

 a1 0 0
0 a1 0
0 0 b1

 Q11 =

 a1 0 0
0 a1 0
0 0 b1

 Q11 =

 a1 0 0
0 a2 0
0 0 b1


Q22 =

 a2 0 0
0 a2 0
0 0 b2

 Q22 =

 a2 0 0
0 a2 0
0 0 b2

 Q22 =

 a2 0 0
0 a1 0
0 0 b1


Q12 =

 a3 0 0
0 a3 0
0 0 b3

 Q12 =

 a3 0 0
0 −a3 0
0 0 b3

 Q12 =

 0 a2 0
a2 0 0
0 0 0


Table 1.1: The form of the anisotropy matrices for s + is and s + id systems. Note that in
[26] b1 = 0 for the p+ ip case.

All three types of superconductors (s+ is, s+ id and p+ ip) are orthorhombic. We consider a
superconductor to be composed of repeating patterns of crystalline unit cells. Each crystalline
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unit cell, for an orthorhombic superconductor, has three orthogonal sides of lengths, a, b, c,
where c > a, b. From this we can construct an orthonormal basis where, ẑ is aligned with the
longest side of length, c. We then have a choice for x̂ to be aligned along the side of length
a or b. Then after making this choice we will have fixed ŷ. Thus we have an orthonormal
basis, (x̂, ŷ, ẑ), with coordinates (x, y, z), which we call the crystalline, Cartesian or basal
plane basis.

1.8.2 Symmetries in Ginzburg-Landau Theory

If we consider the matrix representation of a spatial symmetry as S ∈ O(3) then the free
energy, F , is symmetric with respect to S if and only if,

SkiQ
αβ
ij Slj ≡ Q

αβ
kl . (1.127)

We can also consider the matrix representation of a condensate symmetry, for a two component
model, as C ∈ O(2) then the free energy is symmetric with respect to C if the following two
conditions are satisfied,

1. CγαQαβij C
δβ ≡ Qγδij (1.128) .

2. Fp(C
γαψα) ≡ Fp(ψγ) . (1.129)

The models used are described via their symmetries in Table 1.2 and Table 1.3 shows the
action of each symmetry on the coordinates, (x, y, z), and condensates, (ψ1, ψ2).

Symmetry Spatial Symmetries of (x, y, z) Condensate Symmetries of (ψ1, ψ2)

C2(z) (−x,−y, z) (−ψ1,−ψ2)

C2(x) (x,−y,−z) (ψ1,−ψ2)

C2(y) (−x, y,−z) (−ψ1, ψ2)

C4(z) (−y, x, z) (−ψ2, ψ1)

SO(2)(z), θ (x cos θ − y sin θ, x sin θ + y cos θ, z) -

Z2 - ((ψ1)∗, (ψ2)∗)

U(1), χ - ((ψ1), (ψ2))eiχ

i (−x,−y,−z) (−ψ1,−ψ2)

σh = i · C2(z) (x, y,−z) (ψ1, ψ2)

σν = i · C2(y) (x,−y, z) (ψ1,−ψ2)

σd = i · C2(x) (−x, y, z) (−ψ1, ψ2)

S4(z) = σh · C4(z) (−y, x,−z) (−ψ2, ψ1)

Table 1.2: The action of the symmetries on the condensates, ψα and spatial coordinates,
(x, y, z).



25

Model Spatial Symmetries Condensate Symmetries

s+ is SO(2)(z)× C2(x)× C2(y) Z2

s+ id C2(z)× C2(x)× C2(y) Z2

p+ ip Eu × Z2

Table 1.3: The spatial and condensate symmetries for the s+ is , s+ id and p+ ip supercon-
ductors, each model also has a U(1) condensate symmetry and the s + is and s + id models
also have the simpler spatial symmetries, σh × σν × σd × i.
Eu = C4(z)×C2(x)×C2(y)×σh×σν×σd× i is an irreducible representation of the tetragonal
point group D4h. We note that the p+ ip model is a special case that is only symmetric when
the spatial and condensate symmetries are simultaneously applied.
For the spatial symmetries: σh, σν , σd are reflections in the crystalline xy plane, Cn(x) is the
n point reflection symmetry about the x axis and SO(2)(z) is the SO(2) symmetry about the
crystalline z axis.
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Chapter 2

Domain Walls in p + ip, s + is and
s + id Superconductors

In this chapter we study domain walls, one-dimensional topological solitons that interpolate
between two gauge inequivalent vacua and solve the Ginzburg-Landau equations. We start
by considering a two component Ginzburg-Landau theory with broken time reversal sym-
metry (BTRS), a simple model where domain wall solutions can exist [27]. As discussed in
Section 1.7.2, BTRS breaks the U(1) × Z2 symmetry of the vacuum, or homogenous super-
conducting state, allowing domain walls to form. The formation of domain walls can result
in a spontaneous internal magnetic field, B, arising (as shown in [28]) without the need for
an externally applied magnetic field, H. We will then consider domain walls in anisotropic
superconductors, exploring how their phenomenological properties depend on the orientation
of the domain wall within the three-dimensional superconductor. All types of domain walls
studied, for certain orientations, give rise to a spontaneous internal magnetic field, which can
be used to distinguish between domain wall types [1]. We study two main model classes;
p+ ip [29] and s+ is/s+ id all of which obey different symmetries and give rise to different
types of domain walls and spontaneous magnetic fields. Experiments have shown that the
s+ is model describes the superconducting state in Ba1-xKxFe2As2 [[30],[31],[32]] whilst the
p+ ip model has been suggested for the unconventional superconductor Sr2RuO4 [[33],[34]].
In the case of p+ ip, through numerically solving the nonlinear Ginzburg-Landau equations,
we observe damped oscillatory decay in both the magnetic field and condensates. This was
predicted via linearising the Ginzburg-Landau equations. For all three models we consider
magnetic field twisting which we observe in the p + ip and s + id models only. Magnetic
field twisting is where the direction in which the spontaneous magnetic field points changes
moving in the perpendicular direction away from the domain wall. We see that the orienta-
tions where the magnetic field twists can often be predicted by studying the solutions of the
linearised Ginzburg-Landau equations. We note that the effects of an external magnetic field
are not considered in this chapter so the magnetic field always refers to the spontaneous or
internal magnetic field. The s+ is and s+ id part of this thesis, along with the linearisation
calculations, is based on work in the joint papers [1] and [2].

2.1 Domain Walls in Isotropic Superconductors

Consider the two component Ginzburg-Landau free energy with BTRS, previously discussed
in Sections 1.3 where we first introduced Ginzburg-Landau theory and Section 1.7 which
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specifically looked at this model,

F =

∫
R3

(
2∑

α=1

|(Dψα)|2+
B2

2
+
(
Fp(ρ1, ρ2, θ12)− Fp(u1, u2,±

π

2
)
) )

d3x , (2.1)

for the potential given below. This is the simplest free energy that allows us to form domain
walls. The free energy, F , is zeroed with respect to the vacuum or superconducting state,
(ρ1, ρ2, θ12) = (u1, u2,±π

2 ), and ρα = |ψα|, θ12 = θ1 − θ2. The vacua are minimising solutions
of the potential, Fp, where the values of the condensates must be non zero for the system to
be superconducting.
The potential,

Fp =
2∑

α=1

(
ααρ

2
α +

βα
2
ρ4
α + γ12ρ

2
1ρ

2
2

)
+ η12ρ

2
1ρ

2
2 cos(2θ12) , (2.2)

contains the BTRS term, with coefficient η12, that splits the vacuum into two gauge inequiv-
alent vacua, as described in Section 1.7.2, and it is this term that allows us to form domain
walls. A domain wall is a solution of the Ginzburg-Landau equations (1.95 and 1.96) that
interpolates between two gauge inequivalent vacuum values, this interpolation happens in
one-dimension which we choose as the x̂ direction. Also, a domain wall is a one-dimensional
topological soliton that is translationally invariant in both the ŷ and ẑ directions, the direc-
tions perpendicular to x̂, where (x, y, z) are the standard crystalline or basal plane coordinates.
Note that the use of these coordinates, (x, y, z), signifies that the solution does not depend
on orientation. Further, we write the orthonormal basis as,

(x̂, ŷ, ẑ) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) , (2.3)

which becomes useful when we study superconductors that do depend on orientation. The
domain wall will lie in the yz plane, thus we choose to define the perpendicular direction to
this, x̂, as the orientation.
The condensate vacua are,

(ψ1, ψ2) = (u1, u2e
−iπ

2 ) (2.4)

(ψ1, ψ2) = (u1, u2e
iπ

2 ) , (2.5)

up to a choice of global gauge, ψα 7→ eiχψα, see Section 1.3.2 which discusses gauge transfor-
mations. Note that, ψα = ραe

iθα .
To produce domain wall solutions, we consider the following ansatz, known as the transla-
tionally invariant ansatz,

ψ → ψ(x)

A→ (Ax(x), Ay(x), 0) ,
(2.6)

which enforces the translational invariance in directions perpendicular to x̂ and without loss
of generality sets the magnetic field within the superconductor to,

B = (0, 0, Ay(x)′) ≡ (0, 0, Bz(x)) . (2.7)

Thus the ansatz, for an isotropic superconductor, is consistent with the three-dimensional
Ginzburg-Landau equations. This is due to the rotational invariance that the isotropic model
contains. This point will be expanded upon in Section 2.2.1.
This ansatz means that we consider the free energy per unit area of Equation 2.1 so that our
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energy is finite. Also, it is due to the lack of anisotropy that we can set Az(x) = 0 everywhere
and so fix the magnetic field to point only in the z direction. This point will be discussed in
more detail in Section 2.2.1.
In order for the condensates to interpolate between the two gauge inequivalent vacua the
following fixed boundary conditions are used,

lim
x→±∞

(ψ1, ψ2, Ax, Ay) = (u1,±iu2, 0, 0) . (2.8)

Having Ax, Ay vanishing is a gauge choice that requires ∂xψα as well as B to vanish on the
boundary, a requirement for a finite energy. This then gives us the topological requirement
that, ∫

R
Bz dx = 0 , (2.9)

that is B either vanishes everywhere or is an odd function.
The numerical solutions are produced using a gradient descent method (arrested Newton flow)
with boundaries fixed to those of Equation 2.8 which forces domain wall solutions. Figure 2.1
shows such a domain wall solution. We see the smooth interpolation between θ12 = π

2 and
θ12 = −π

2 which characterises a domain wall. Additionally, the ρα, diverge from their vacuum
values, uα, in the centre of the domain, x = 0, where the domain wall physically lies. Finally,
we see that the spontaneous magnetic field in the z direction, Bz, vanishes everywhere. The
form of the potential used for this simulation is given below,

Fp = −1

2
|ψ1|2−

1

2
|ψ2|2+2|ψ1|4+3|ψ2|4+

3

2
|ψ1|2|ψ2|2

+
1

8
|ψ1|2|ψ2|2cos 2θ12 . (2.10)

In Section 1.5 we discussed kink solutions of the one-dimensional Sine-Gordon model to give
a simple example of a topological soliton that is similar to a domain wall. We note that,
analogous to theN = −1 anti-kink solution, a domain wall that interpolates between θ12 = −π

2
and θ12 = π

2 is called an anti domain wall solution. However, the transformation x 7→
−x converts between these two solutions that are degenerate in energy. Finally, the fixing
of the condensate boundary conditions mean that the domain wall cannot be continuously
transformed into the lower energy homogenous superconducting state, ψα = uα, Bz = 0, thus
this excited state is stable.

2.2 Domain Walls in Anisotropic Superconductors

We build upon the previous section by now considering domain wall solutions in an anisotropic
superconductor, the free energy of which is given by,

F =

∫
R3

(
1

2
Qαβij (Diψα)∗(Djψβ) +

B2

2
+
(
Fp − Fp(u1, u2,±

π

2
)
) )

dx1dx2dx3 , (2.11)

with Di = ∂i − iAi, i, j ∈ {1, 2, 3}, α, β ∈ {1, 2} and there is an implied summation over
all repeated indices. B = (B1, B2, B3) gives the spontaneous magnetic field in the x̂1, x̂2, x̂3

directions respectively. We note that we desire a real energy hence, Qαβij ≡ Qβαji , and the

components of the anisotropy matrices, Qαβij ∈ R.
We use the excitation plane coordinates, (x1, x2, x3), to indicate that our solutions now depend
upon the orientation of a domain wall. The corresponding orthonormal basis, (x̂1, x̂2, x̂3), can
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Figure 2.1: A domain wall solution for an isotropic superconductor with the potential pa-
rameters given in the Appendix A.1. |ψα|, θ12 and Bz are the moduli of the condensates, their
phase difference and the spontaneous magnetic field in the ẑ direction respectively.

be written in terms of the basal plane basis (see Equation 2.3). Now the x̂1 direction defines
the orientation of the domain wall and for this model the choice of x̂1 will affect the solutions
of the Ginzburg-Landau equations (1.124 and 1.125). The method for changing orientation
is discussed in Section 2.2.2 but first we must discuss the choice of ansatz. Note that in the
case where Qαβij = δαβδij we are returned to the isotropic two component Ginzburg-Landau
model, Equation 2.1, and our model loses the dependence on orientation. We remind the
reader that a domain wall is a solution of the, now anisotropic, Ginzburg-Landau equations
with boundary conditions fixed to,

lim
x1→±∞

(ψ1, ψ2, A1, A2, A3) = (u1,±iu2, 0, 0, 0) . (2.12)

2.2.1 Translationally Invariant Ansatz

We now revisit the translationally invariant ansatz, Equation 2.6, and see how the introduc-
tion of anisotropy requires it to be modified. In order to study domain wall solutions in
Equation 2.11 we can consider applying the previous ansatz which we write in terms of our
new coordinates,

ψ → ψ(x1)

A→ (A1(x1), A2(x1), 0) .
(2.13)

However, for a given x̂1 direction this ansatz fixes the magnetic field to lie in the x̂3 direction.
For a domain wall solution in an isotropic superconductor this choice does not affect the
results. However, when anisotropy is introduced there is an S1 family of directions for x̂3 for
each x̂1 that may affect the free energy. Additionally, in order to allow for the possibility of
magnetic field twisting, the magnetic field must be allowed to change direction but Ansatz
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2.6 forces the magnetic field to lie in a single direction. Both of these issues are solved by
introducing a new ansatz where we retain the A3 component,

ψ → ψ(x1)

A→ (A1(x1), A2(x1), A3(x1)) ,
(2.14)

which means B(x1) = (0,−A3(x1)′, A2(x1)′). This means that the magnetic field can point
in both the x̂2 and x̂3 directions.
This ansatz needs to be consistent with the full three-dimensional Ginzburg-Landau equations.
Here, consistency means that the Ginzburg-Landau equations derived by applying Ansatz 2.14
to Equations 1.124 and 1.125 should yield the same equations as when we apply this ansatz
to the free energy first, Equation 2.11, and then vary to yield the reduced Ginzburg-Landau
equations. This is equivalent to saying that solutions of these reduced Ginzburg-Landau
equations are solutions of the full Ginzburg-Landau equations where no ansatz has been
applied.
Here we show that, in general, only by keeping A3 6= 0 are the reduced Ginzburg-Landau
equations consistent. That is, in the anisotropic case, Ansatz 2.13 is inconsistent.
Consider,

FA3 =

∫
R3

(
Re

(
1

2
Qαβ33 (D3ψα)∗(D3ψβ) +Qαβ23 (D2ψα)∗(D3ψβ) +Qαβ13 (D1ψα)∗(D3ψβ)

)
(2.15)

+
(∂2A3 − ∂3A2)2

2
+

(∂3A1 − ∂1A3)2

2
+ (terms not containing A3)

)
dx1dx2dx3 , (2.16)

if we vary FA3 with respect to the real fields then we obtain the corresponding Ginzburg-
Landau equations. We focus on the equation arrived at by varying with respect to A3,

Im
(
Qαβ33 (ψα)∗D3ψβ +Qαβ32 (ψα)∗D2ψβ +Qαβ31 (ψα)∗D1ψβ

)
−A′′3 = 0 . (2.17)

Note that the Qαβ32 and Qαβ31 terms contain no factors of A3 but were derived from terms in
the free energy that were linear in A3. If we apply Ansatz 2.13 to Equation 2.17 we see that
it does not vanish,

Im
(
−iQαβ32 (ψα)∗A2ψβ +Qαβ31 (ψα)∗D1ψβ

)
= 0 . (2.18)

If we consider applying Ansatz 2.13 to FA3 instead we see that the free energy is only dependent
on the six real fields,

(Re(ψ1), Im(ψ1),Re(ψ2), Im(ψ2), A1, A2) , (2.19)

thus there are six Ginzburg-Landau equations so in order for this ansatz to be consistent
Equation 2.18 must vanish. However, in general Qαβ32 6= 0 and Qαβ31 6= 0 so Equation 2.18 does
not vanish and Ansatz 2.13 is not consistent.
Thus Ansatz 2.13 is always valid for isotropic superconductors, where Qαβ32 = Qαβ31 = 0 always
but when anisotropy is used we must switch to Ansatz 2.14 which is consistent. We see that
the reduced Ginzburg-Landau equations are simply the same as Equations 1.124 and 1.125,
the full Ginzburg-Landau equations, except with,

D2ψα 7→ −iA2ψα (2.20)

D3ψα 7→ −iA3ψα , (2.21)

thus we can say that solutions of the reduced Ginzburg-Landau equations are solutions of the
full Ginzburg-Landau equations.
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2.2.2 Orientation Selection

Here we introduce the coordinate transformation of the free energy from Equation 2.11, we
note that this three-dimensional free energy is independent of coordinate choice. However, if
after making a coordinate transformation we apply Ansatz 2.14, this dimensionally reduces the
free energy, then the resulting free energy will depend upon the orientation of the domain wall.
For the excitation plane coordinates, (x1, x2, x3), there is an associated orthonormal basis,
(x̂1, x̂2, x̂3), which can be written in terms of the crystalline orthonormal basis, (x̂, ŷ, ẑ). For
a one-dimensional topological soliton, x̂1 ∈ S2 defines the orientation and can be used to
generate the other two basis vectors x̂2, x̂3 via the Gram-Schmidt process. An orientation in
three-dimensions is represented by the following SO(3) matrix,

M =


...

...
...

x̂1 x̂2 x̂1 × x̂2
...

...
...

 , (2.22)

where x̂1 is the normal to the plane that defines the orientation and x̂1 · x̂2 = 0. Figures 2.2a
and 2.2b show two orientations of a domain wall, represented by a plane in a three-dimensional
sample.
We now consider applying the coordinate transformation,

xi 7→Mijxj (2.23)

with i, j ∈ {1, 2, 3}, where the new (x1, x2, x3) are coordinates for an arbitrary orientation
given by M ∈ SO(3). The partial derivatives will transform as follows,

∂i 7→
∂xj
∂xi

∂j (2.24)

= (M−1)ji∂j (2.25)

= Mij∂j , (2.26)

where in the last line we used the property that M−1 = MT . The vector potential, Ai, is
assumed to transform in the same way as ∂i so that the covariant derivative transforms as
Di 7→MijDj . Substituting these transformations into the free energy, Equation 2.11, gives,

F =

∫
R3

(
1

2
MikQ

αβ
ij Mjl(Dkψα)∗(Dlψβ) +

B2

2
+ Fp(ρ1, ρ2, θ12)

)
dx1dx2dx3 . (2.27)

Note that this gives the same form of free energy function because detM = 1 and B is
unchanged by this coordinate transformation. Additionally, before applying Ansatz 2.14 our
energy is unchanged. However, the free energy will depend upon our choice of x̂1 once Ansatz
2.14 is applied.
By defining the transformation,

Q̃αβij 7→MikQ
αβ
ij Mjl , (2.28)

we can change coordinates by simply changing the values of the anisotropic matrices, Qαβ,
allow the form of the free energy to remain unchanged. This transformation can be rewritten
as,

Qαβ 7→MTQαβM . (2.29)

This method works very well for numerical simulations as a change of coordinates has been
made equivalent to a change of parameters.
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x̂1 = (0, 0, 1)

(a) Plane equation: z = const.

x̂1 = (−1,0,2)√
5

(b) Plane equation: −x+2z√
5

= const.

Figure 2.2: Diagram showing the orientation of two domain walls in a three-dimensional
sample, where the orientation is defined by the unit normal to the plane, x̂1. The plane in
green represents a domain wall dividing the sample into two domains x1 < 0 and x1 > 0.

2.2.3 Numerical Method

We produce domain wall solutions by numerically evolving Equations 1.124 and 1.125 (the
anisotropic Ginzburg-Landau equations) using arrested Newton flow, a gradient descent method.
We discretise our one-dimensional domain with a grid of, Nx = 900, evenly spaced points with
a lattice spacing of hx = 0.05. The fields ψα and Ai are discretised on this grid such that,

ψ(I)
α = ψα(x

(I)
1 ) (2.30)

A
(I)
i = Ai(x

(I)
1 ) , (2.31)

denote the values of the discretised ψα and Ai at the position, (I), on the one-dimensional
grid. The derivatives are approximated by central fourth order finite differences which are

given for, ψ
(I)
α ,

dψ
(I)
α

dx1
=
−ψ(I+2)

α + 8ψ
(I+1)
α − 8ψ

(I−1)
α + ψ

(I−2)
α

12hx
+O(h9) (2.32)

d2ψ
(I)
α

dx2
1

=
−ψ(I+2)

α + 16ψ
(I+1)
α − 30ψ

(I)
α + 16ψ

(I−1)
α − ψ(I−2)

α

12h2
x

+O(h4) , (2.33)

which allows us to form a discretised approximation to free energy density,

f
(I)
disc(Φ) =

1

2
Q̃αβij

(
D

(I)
k ψ(I)

α

)∗ (
D

(I)
l ψ

(I)
β

)
+

(
B(I)

)2
2

+ Fp

(
ρ

(I)
1 , ρ

(I)
2 , θ

(I)
12

)
, (2.34)

where Φ(I) = ((Re(ψ1)(I), Im(ψ1)(I),Re(ψ2)(I), Im(ψ2)(I), A
(I)
1 , A

(I)
2 , A

(I)
3 )) is a list of all the

real fields. Also, as discussed in Section 2.2.2, we modify the values of Q̃αβij to perform a
coordinate transformation of the free energy which when coupled with Ansatz 2.14 changes
the orientation of our domain wall.
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We can produce local minima of f
(I)
disc using arrested Newton flow. This is done by solving the

equation of motion,
d2Φ(I)

dt2
= −grad(Φ)f

(I)
disc(Φ), (2.35)

for each, (I), in our discretised domain with a smooth initial configuration or condition, Φ(t =
0), that has the correct domain wall boundary conditions as given in 2.12, and dΦ

dt (t = 0) = 0.
We note that the boundary points are those labelled by I = {1, 900}, that is the two end
points on either side of the one-dimensional domain. If we have chosen a large enough value of
Nx then I = 1 and I = 900 approximates the continuous boundaries x1 → ∓∞ respectively.
The value of the gradient of fdisc for each value of φ, grad(Φ)fdisc(Φ), is set to vanish on the
boundaries of the one-dimensional domain. This fixes the boundary conditions throughout
the evolution of Φ. We calculate the new value of Φ by splitting the second order differential
equation into two coupled first order differential equations,

dΦ(I)

dt
= Φ̌(I) (2.36)

dΦ̌(I)

dt
= −grad(Φ)f

(I)
disc(Φ) , (2.37)

where the variable Φ̌ is introduced so we can form these differential equations. These equations
are then solved, for each time step, t → t + δt, via the Runge-Kutta method. However, for
simplicity we demonstrate this using the Euler method,

Φ(t+ δt)(I) = Φ(t)(I) + δt · Φ̌(t)(I) (2.38)

Φ̌(t+ δt)(I) = Φ̌(t)(I) − δt · grad(Φ)f
(I)
disc(Φ, t) . (2.39)

For each time step, t→ t+ δt, if,
d2Φ

dt2
· dΦ

dt
< 0 , (2.40)

we then set dΦ
dt = 0. This condition indicates that our configuration is moving in a direction

that increases energy so we set the velocity of the configuration, dΦ
dt , to vanish. This method

is much faster than standard gradient flow.
At sufficiently large values of t and assuming our choice of Φ(t = 0), hx and δt was well
chosen then Φ should relax towards a local minimum. The algorithm terminates when every
component of grad(Φ)fdisc(Φ) is less than a certain, user set, tolerance,

max
(∣∣grad(Φ)fdisc(Φ)

∣∣) < tol . (2.41)

For domain walls a tolerance of, at least, tol = 10−5 was used.

2.2.3.1 Orientation Parametrisation

For numerical purposes we want to test a range of orientations so we can see the dependence
of our solutions on orientation. To do this we need to parametrise points for our orientation.
All of the models that we deal with have a reflection symmetry, z 7→ −z, such that x̂1 ∈ S2

can be reduced to the upper hemisphere. If we parametrise it as,

x̂1 = (cosφ sin θ, sinφ cos θ, cos θ) , (2.42)

with φ ∈ [0, 2π] and θ ∈ [0, π2 ]. We can generate a given M ∈ SO(3) matrix for a given x̂1.
We note that, with our translationally invariant ansatz which dimensionally reduces the free
energy to be one-dimensional, only the value of x̂1 affects the free energy. We then use,

x̂2 = (π,−2e, 3π) , (2.43)
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as our initial value for x̂2, chosen to ensure it will never be parallel to x̂1, then apply the
Gram-Schmidt process to generate an orthonormal basis that makes up the columns of M .
It is important to note that because of this method the value of x̂3 will be different for each
value of x̂1.

2.3 Linearisation of the Anisotropic Ginzburg-Landau Equa-
tions

We now look to linearise the full anisotropic multicomponent model, Equation 2.11, which
describes the behaviour of the fields when they are close to their vacuum values. To reit-
erate, a vacuum is the value of the fields when the superconductor is in the homogenous
superconducting state. The linearisation describes the behaviour of the fields as exponen-
tial decay, the rate of decay is governed by a so called length scale. For a domain wall this
is only valid as, |x1|→ ∞, which is known as the linear region of the model. In terms of
the Ginzburg-Landau theory, anisotropy introduces couplings between matter, |ψα|, θ12, and

magnetic fields, Bi, through the values of Q̃αβij . Additional couplings between the different
condensates, ψα, can be introduced by terms in the potential, Fp. In Section 1.3.3 we lin-
earised the simpler isotropic model which contains no such couplings. In this case there was
a length scale associated with each condensate, the correlation length, and one associated
with the magnetic field, the penetration length. However, for the anisotropic case and due to
the aforementioned couplings the length scales derived are no longer associated with a single
field. Our approach is based upon previous methods: in [35] a multicomponent anisotropic
Ginzburg-Landau theory with no BTRS and in the limit where the density, |ψα|, is assumed
to be constant is linearised. This introduces the idea that anisotropy can couple the Leggett
mode, which governs the behaviour of the phase difference, θ12, in the linear region of the
model, and the magnetic modes. This coupling or hybridisation caused there to be multiple
magnetic modes with different penetration length scales. This is expanded upon in [36] which
generalised the idea of the Ginzburg-Landau parameter (κ) also introduced in Section 1.3.3,
to the multicomponent anisotropic case that has multiple lengths scales that are also direc-
tionally dependent. Finally, in [37] the p + ip model was fully linearised for only the basal
plane, x̂1 = (cos θ, sin θ, 0), θ ∈ [0, 2π], and predictions from the linearisation were applied to
full nonlinear solutions for the Meissner state. In this section we include an improved method
that linearises a one-dimensional defect for any arbitrary orientation. We can compare pre-
dictions from the linearisation to simulations of the full nonlinear model to test its validity.
Starting by introducing a new gauge invariant vector field,

pi := Ai − ∂iθΣ , (2.44)

where θΣ = 1
2 (θ1 + θ2), which will allow us to write our free energy in terms of gauge invariant

quantities only. As discussed in Section 1.3.2, gauge invariant quantities are unchanged by
the transformation,

ψα 7→ ψαe
iχ (2.45)

Ai 7→ Ai + ∂iχ , (2.46)

for the smooth function χ. We note that θα and therefore pi is not well defined if ψα = 0
thus only in the linear region, where we know ψα 6= 0, can we write the energy in terms of pi
without issues. The components of the linear magnetic field are written as, (Blin)i = εijk∂jpk.
We also define,

θ∆ :=
1

2
θ12 =

1

2
(θ1 − θ2) . (2.47)
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We can now write our condensates in terms of these new variables,

ψα = ραe
i(θΣ+dαθ∆) , (2.48)

where dα = (−1)α+1.
We assume that away from the defect, for example a domain wall, the fields decay to their
vacuum values, (ρα, θ∆, pi) ≈ (uα, θ0, 0). In the BTRS case θ0 = ±π

4 , note the extra factor of
1
2 which comes from the definition of θ∆. We now define the quantities,

εα = ρα − uα (2.49)

ϑ = θ∆ − θ0 , (2.50)

and note that when the system is close to a vacuum value, εα, ϑ, pi are small. When they are
small we can assume that linear terms will dominate the field equations which can be derived
by varying a quadratic order version of the free energy. We derive this below.
Focussing first on the gradient energy density term, we write the gauge covariant derivative
in terms of εα, ϑ, pi and then linearise,

(Diψα)∗ = (∂i + i(pi + ∂iθΣ))(εα + uα)e−i(θΣ+dα(ϑ+θ0)) (2.51)

≈ (∂iεα + iuα (pi − dα∂iϑ))e−i(θΣ+dαθ0) , (2.52)

where, to linear order, we can neglect e−idαϑ.
We can now write the associated energy density term as,

Egradquad =
1

2
Qαβ
ij (∂iεα + iuα (pi − dα∂iϑ))(∂jεβ − iuβ (pj − dβ∂jϑ)) , (2.53)

where, for convenience, we have defined Qαβ
ij = Rαβij + iIαβij = ei(dβ−dα)θ0Qαβij , with both

Rαβij , I
αβ
ij ∈ R. We note that when α 6= β and θ0 6= 0, then Qαβ

ij can be complex even if the

original Qαβij is real. Also, Qαβ
ij = (Qβα

ji )∗. This is the same symmetry that the original Qαβij
respect, thus Rαβij = Rβαji and Iαβij = −Iβαji .
The magnetic energy density is already quadratic in derivatives of pi,

EMag
quad =

1

4
(∂ipj − ∂jpi)(∂ipj − ∂jpi) , (2.54)

the extra factor of 1
2 is included to avoid double counting terms. Finally, starting from the

3× 3 Hessian matrix of partial derivatives of the potential evaluated at the specified vacuum
value,

Hab =
d2Fp

dXadXb

∣∣∣∣
(u1,u2,θ0)

, (2.55)

where (X1, X2, X3) = (ρ1, ρ2, θ∆) and a, b ∈ {1, 2, 3}. The potential energy density term is
then given by,

EPotquad =
1

2

d2Fp
dXadXb

∣∣∣∣
(u1,u2,θ0)

XaXb (2.56)

=
1

2

(
Hαβεαεβ + 2Hα3εαϑ+H33ϑ

2
)
. (2.57)

Thus the full quadratic energy density is given by,

Equad =
1

2
Qαβ
ij (∂iεα + iuα (pi − dα∂iϑ))(∂jεβ − iuβ (pj − dβ∂jϑ))

+
1

4
(∂ipj − ∂jpi)(∂ipj − ∂jpi)

+
1

2
Hαβεαεβ +Hα3εαϑ+

1

2
H33ϑ

2 .

(2.58)
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This leads to the linear Ginzburg-Landau equations,

εα : −Rαβij ∂i∂jεβ − Iαβij uβ(∂ipj − dβ∂i∂jϑ) +Hαβεβ +Hα3ϑ = 0 (2.59)

ϑ : Rαβij dαuαuβ(∂ipj − dβ∂i∂jϑ)− Iαβij dαuα∂i∂jεβ +Hα3εα +H33ϑ = 0 (2.60)

pi : Rαβij uαuβ(pj − dβ∂jϑ)− Iαβij uα∂jεβ + (∂j∂ipj − ∂2
j pi) = 0 . (2.61)

These equations are coupled which means, for example, Equation 2.59 contains a pj term thus
solving it requires you to simultaneously solve Equations 2.60 and 2.61. The source of this
coupling is having Iαβij 6= 0 as if all of the Iαβij vanish then Equation 2.59 will not depend on pj ,
for example. We note that, as we are linearising a general anisotropic system, the direction in
which we linearise will affect the above equations through the values of Qαβ

ij . Building upon
the orientation selection method, detailed in Section 2.2.2, we only allow the fields to vary
in the x̂1 direction through the choice of ansatz (2.14). Equations 2.59, 2.60 and 2.61 are
now reduced to a coupled system of ordinary differential equations which will depend upon
orientation via the transformation of the anisotropy matrices, Qαβ 7→MTQαβM . Remember
that (x1, x2, x3) give the coordinates whilst (x̂1, x̂2, x̂3) is the associated orthonormal basis.
We can write them in a combined form using,

~w(x1) = (ε1(x1), ε2(x1), ϑ(x1), p1(x1), p2(x1), p3(x1))T , (2.62)

where the pi are the components of p in the new basis. The combined form for the coupled
linear Ginzburg-Landau equations is,(

Ad
2 ~w

dx2
1

+ B d~w
dx1

+ C ~w
)

= 0 , (2.63)

where

A =

(
a 0
0 a′

)
(2.64)

a :=

 −R11
11 −R12

11 I1β11uβdβ
−R12

11 −R22
11 I2β11uβdβ

I1β11uβdβ I2β11uβdβ −Rαβ11 uαuβdαdβ

 (2.65)

a′ := diag(0,−1,−1) (2.66)

B =

(
0 b1
−bT1 0

)
(2.67)

b1 :=

 −I1β11uβ −I1β12uβ −I1β13uβ
−I2β11uβ −I2β12uβ −I2β13uβ

Rαβ11 uαuβdα Rαβ12 uαuβdα Rαβ13 uαuβdα

 (2.68)

C =

(
H 0
0 〈R〉

)
(2.69)

〈R〉ij := uαRαβij uβ . (2.70)

Note that A and C are symmetric and B is skew symmetric but all three are real 6×6 matrices.
Additionally, all three of these matrices depend implicitly on the choice of orientation, x̂1,
through the transformation, Equation 2.29. Equation 2.63 describes how the fields decay
away from a defect, such as a domain wall, along the x̂1 direction, with the assumption of
translational invariance in the directions perpendicular to x̂1. In order to calculate the length
scales for this model we seek exponentially decaying solutions of Equation 2.63 of the form,

~w(x1) = ~ve−µx1 , (2.71)
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where µ ∈ C and we require Re(µ) > 0 so that we only consider the physically relevant
solutions where the fields decay to their vacuum values as x1 → ∞. The constant vector, ~v,
is what we call the normal mode and λ = 1

µ gives the length scale for that mode. Note that
unlike linearising the isotropic case, see Section 1.3.3, the length scales are not purely real.
Additionally, the components of the normal mode, ~v, describes in which fields, see Equation
2.62, the oscillations (and or decay) of ~w(x1) occur about the ground state, ~0.
For ~w(x1) to be a solution of Equation 2.63 then,(

µ2A− µB + C
)
~v = 0 , (2.72)

must be true. By defining ~z = −µ~v, left multiplying by C−1 and then rearranging we obtain
the following equation, (

C−1A~z + C−1B~v
)

=
1

µ
~v . (2.73)

This equation can be rewritten as follows,

Ω

(
~v
~z

)
=

1

µ

(
~v
~z

)
, (2.74)

where (~v, ~z)T satisfies this linear equation and Ω is the 12× 12 matrix,

Ω :=

(
C−1B C−1A
−I6 0

)
. (2.75)

Hence, λ = 1/µ are the eigenvalue of Ω which are found as the solutions of the real, degree
12 polynomial equation,

det (A− Bλ+ Cλ2) = 0 . (2.76)

However, using the symmetric properties of the real matrices A,B, C, the following must also
be true,

det (AT − BTλ+ CTλ2) ≡ det (A+ Bλ+ Cλ2) = 0 , (2.77)

thus for a solution λ, −λ is also a solution. Additionally, the polynomial is real hence (λ̄,−λ̄)
are also solutions of Equation 2.76. Furthermore, det (Ω) ≡ det (−C−1A) = 0 is the condition
required for λ to vanish. From Equation 2.66 and the structure of A we can see that ~v =
(0, 0, 0, 1, 0, 0)T is an eigenvector of A with eigenvalue 0. Therefore, λ = 0 has the eigenvector
(~v, ~z)T = (0, 0, ...., 0, 1, 0, 0)T . We note that, (again) due to the symmetric properties of
A,B, C, the λ = 0 eigenvalue has algebraic multiplicity of at least 2. These should be discarded
as they are not a solution of Equation 2.63.
Of the 10 remaining eigenvalues 5 will have the positive real parts that we are interested in
for decaying solutions. We choose to order them by decreasing real part, λ1, λ2, ..., λ5 with
corresponding modes ~v1, ..~v5. We call ~v1 the dominant mode, as for large x1 this mode will
dominate the solution to Equation 2.63. However, for some defects the modes, ~v2, ..., ~v5, may
still be relevant phenomenologically. We note that,

~w(x1) =
5∑
i=1

ci~vie
−µix1 , (2.78)

where the constants ci are determined from the boundary conditions and nonlinear solutions.
If ci = 0 then the mode ~vi is not excited and therefore does not contribute to the behaviour
of the nonlinear solutions in the linear region of the model.
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Coupled Modes

Here we present a way of classifying how mixed the modes are between magnetic and matter
modes. If we consider each,

~vi = (v1
i , v

2
i , v

3
i , v

4
i , v

5
i , v

6
i )
T , (2.79)

with i ∈ {1, 2, ..., 5} then each of the six components corresponds to a different field, as shown
in Equation 2.62. Thus for example the exponential decay of ϑ(x1), in the linear region of
the model, is,

ϑ(x1) =

5∑
i=1

civ
3
i e
−µix1 , (2.80)

where normally the leading length scale i = 1 contributes most significantly to the behaviour
of ϑ(x1). Thus v5

i , v
6
i are the magnetic and then v1

i , v
2
i , v

3
i are the matter modes. We note

that v4
i (which corresponds to the p1 field) is redundant in that it does not contribute to the

magnetic field nor the condensates. If we then consider ~vi as a vector in R5, with the v4
i

dimension removed, we can define the mixing angle for each mode,

cos θim =
√
|v1
i |2+|v2

i |2+|v3
i |2 (2.81)

sin θim =
√
|v5
i |2+|v6

i |2 . (2.82)

Note that we choose to normalise the vi as,

|v1
i |2+|v2

i |2+|v3
i |2+|v5

i |2+|v6
i |2= 1 , (2.83)

such that the equality
(
cos θim

)2
+
(
sin θim

)2
= 1 holds for all values of θim. If θim = 0 then we

classify our mode as purely matter. If θim = π
2 then it is purely magnetic and for 0 < θim < π

2
then it is mixed which occurs for some modes and orientations in anisotropic superconductors.
Additionally, if θim is closer to 0 than π

2 we could describe that mode as a mixed matter mode
and if it is closer to π

2 then it would be a mixed magnetic mode.

Finally, if we set Qαβij = δαβδij and η12 = γ12 = 0 in the potential, Fp, then the linearised
Equations 2.59, 2.60 and 2.61 will decouple and we get purely matter and magnetic modes.
We note that this is identical to recovering the concept of a coherence and penetration length
scales, as discussed in Section 1.3.3. Note that the matrix C is not invertible in this case so
the length scales can be found via a different method [38]. However, if our superconductor

is anisotropic, Qαβij 6= δαβδij , then at least some of the modes will be coupled. So the modes
~v1, ..., ~v5 are no longer associated with a specific field and are in fact linear combinations of
each field. This is used and expanded upon in Chapter 3.

Magnetic Field Twisting

It is vital to note that the normal ansatz used for a linearisation would be to keep only a
single component of pi, which is equivalent to fixing the direction of the magnetic field. In
terms of our modes it means assuming v4

i = v6
i = 0. However, as discussed in Section 2.2.1,

this ansatz is inconsistent with the full equations of motion for an anisotropic superconductor.
Now when we use Ansatz 2.14 we retain all three components of pi allowing for the mixing
of magnetic field modes. Our choice of ansatz, which keeps p3 6= 0, means we have a linear
magnetic field, Blin = (0,−p′3, p′2), that depends only on p2 and p3. Note that p2 and p3 may
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become undefined away from the linear region where ψα can vanish and thus θα is undefined.
For the linear theory the linear magnetic field direction can be approximated as,

Blin ∝ Re(0,−v6
1, v

5
1) , (2.84)

where it is the dominant mode, ~v1, that determines the direction of the magnetic field.
If the direction of the spontaneous or internal magnetic field, B, in the nonlinear region differs
from the direction in the linear region, Blin, then we can expect the magnetic field to change
direction or twist as x1 →∞. This, of course, will depend upon whether the dominant mode
is excited or not.
This is most pronounced for the Meissner state, which will be explored in Chapter 3, where
we can choose the direction of the external magnetic field, H, to be different from Blin and
thus force magnetic field twisting into the system. However, we do still see magnetic field
twisting in domain walls.

Oscillating Tails

The linearisation predicts that if the dominant mode is complex then it is possible to see the
fields, εα, ϑ, pi, oscillate in the linear region, x1 → ∞, of a defect. The existence of complex
length scales, λi ∈ C, is down to the coupling of the matter and magnetic fields in Equations
2.59, 2.60 and 2.61. If we consider the isotropic case, Qαβij = δαβδij , then the length scales
become real again. Whether the fields oscillate depends upon the dominant mode being
complex or not, this can be written as,

~w1 = ~ve−Re (µ1)x1 cos (Im (µ1)x1) (2.85)

= (ε1(x1), ε2(x1), ϑ(x1), p1(x1), p2(x1), p3(x1))T e−Re (µ1)x1 cos (Im (µ1)x1) , (2.86)

we see that if, Re (µ1), is small relative to Im (µ1) then we can expect oscillations of the fields
in the linear regions of a domain wall, for example. Whether we see oscillating tails or not is
governed by the ratio,

Rµ1 =
Im (µ1)

Re (µ1)
. (2.87)

If Im(µ1) = 0 then Rµ1 = 0 and there we have no oscillations. However, as Rµ1 → 1
we approach the case where the fields decay slowly enough, relative to the period of the
oscillations, such that we see their oscillations in the nonlinear solutions
Section 2.4.3 explores oscillations in p+ ip superconductors where, for some orientations, the
ratio in Equation 2.87 is large enough that we see oscillations in the nonlinear simulations.
For the s+is and s+id domain walls, although we have complex length scales, the oscillations
are too heavily damped to be seen in the nonlinear solutions.

2.4 Domain Walls in p+ ip Superconductors

The p+ ip model allows us to explore the effects of anisotropy on a domain wall. The model
is interesting as it has two non-degenerate in energy domain wall solutions depending on the
choice of boundary conditions. We build on the work of [26] and [39] by considering orien-
tations away from the basal plane, x̂1 = (cosχ, sinχ, 0), χ ∈ [0, 2π]. We produce numerical
solutions using the arrested Newton flow method outlined in Section 2.2.3 with the ansatz
given in Equation 2.14 where we allow A3 6= 0. This model also allows us to confirm that
the oscillations in the fields, predicted by the linearisation and detailed in Section 2.3, occur
when we solve the full non-linear Ginzburg-Landau equations. Thus extending the results of
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[37] to domain walls.
A p + ip superconductor is identifiable by the symmetries that the associated free energy
obeys. A symmetry is a transformation of the coordinates/condensates that leaves the free
energy unchanged. These symmetries are set via the choice of anisotropy matrices, Qαβ,
and the choice of potential parameters, all of which can be microscopically (that is not phe-
nomenologically) derived [40]. We present such a microscopically derived three-dimensional
free energy functional for a p+ ip superconductor [[41],[26]],

F b =

∫
R3

(
K1

(∣∣∣D1ψ
b
1

∣∣∣2 +
∣∣∣D2ψ

b
2

∣∣∣2)+K2

(∣∣∣D1ψ
b
2

∣∣∣2 +
∣∣∣D2ψ

b
1

∣∣∣2)
+ {K3(D1ψ

b
1)∗(D2ψ

b
2) +K4(D1ψ

b
2)∗(D2ψ

b
1) + c.c.}

+ K5

(∣∣∣D3ψ
b
1

∣∣∣2 +
∣∣∣D3ψ

b
2

∣∣∣2)+
(Bb)2

8π
+
(
Fp − Fp(u1, u2,±

π

2
)
) )

dxb1dx
b
2dx

b
3

(2.88)

Fp = ap((ρ
b
1)2 + (ρb2)2) + b1((ρb1)2 + (ρb2)2)2 + b3(ρb1)2(ρb2)2 + b2(ρb1)2(ρb2)2 cos(2θ12) , (2.89)

where Di = ∂i − ieAi and the uα are the vacuum values of |ψα|= ρα. This free energy is not
of the form of Equation 2.11 so we use the superscript b, �b, to highlight that the coordinates
and fields differ from those in Equation 2.11.
The potential, Fp, requires ap < 0, b2 > 0, b2 > b3 and 4b1 > b2 − b3 for the broken time
reversal symmetry (BTRS) vacuum state of (u1 6= 0, u2 6= 0, θ12 = ±π

2 ) to be energetically
stable. The anisotropy matrices, Qαβ, are,

Q11 =

K1 0 0
0 K2 0
0 0 K5

 (2.90)

Q22 =

K2 0 0
0 K1 0
0 0 K5

 (2.91)

Q12 ≡ (Q21)T =

 0 K3 0
K4 0 0
0 0 0

 . (2.92)

Before analysing the symmetries of this model we re-parametrise and rescale Equation 2.88
so it has fewer parameters and is in the form of Equation 2.27. The reparametrisation is as
follows,

K1 = K
3 + ν

4
,K2 = K3 = K4 = K

1− ν
4

(2.93)

K5 =
K

4
k5 (2.94)

b1 = b
3 + ν

8
, b2 = b

1− ν
4

, b3 = −b1 + 3ν

4
, (2.95)

with ν ∈ [−1, 1]. This simplifies the parameter space to the material dependent parameters
b, K and ν which sets the anisotropy of the model. We note that unlike, [26], we keep K5 6= 0
so the anisotropy matrices are 3× 3 which allows us to investigate orientations away from the
basal plane.
We now rescale the condensates and spatial coordinated, adapted from [37], to convert the
free energy, F b, into the more convenient form of Equation 2.11. We start with the following
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rescalings;

ψα =
ψbα
λ
, λ :=

√
−ap
b

(2.96)

Ai =
Abi
λA

, λA := λ
√

4πK (2.97)

xi =
xbi
λx
, λx :=

1

eλA
, (2.98)

and finally we rescale the free energy, F,

F =
F b

λF
, λF :=

Kλ2

2

1

λA
. (2.99)

The extra factor of 1
λA

in the free energy rescaling is due to our model being three-dimensional.
Finally,

V0 =
b

2πe2K2
, (2.100)

to give the three-dimensional, orientation dependent, p+ ip model,

F =

∫
R3

(
1

2
Q̃αβij (Diψα)∗(Djψβ) +

B2

2
+ V0

(
Fp − Fp(u1, u2,±

π

2
)
) )

dx1dx2dx3

(2.101)

Q11 =

3 + ν 0 0
0 1− ν 0
0 0 k5

 (2.102)

Q22 =

1− ν 0 0
0 3 + ν 0
0 0 k5

 (2.103)

Q12 ≡ (Q21)T =

 0 1− ν 0
1− ν 0 0

0 0 0

 (2.104)

Fp = −(ρ2
1 + ρ2

2) +
1

8
(3 + ν)(ρ2

1 + ρ2
2)2 − 1

4
(1 + 3ν)ρ2

1ρ
2
2 +

1

4
(1− ν)ρ2

1ρ
2
2 cos(2θ12) ,

(2.105)

with Di = ∂i− iAi. We note that Q̃αβ = MTQαβM . Performing a coordinate transformation
such that the x̂1 direction is changed and then applying Ansatz 2.14 to fix the dependence of
the fields on only that direction is how the orientation of a domain wall solution is changed.
This was previously discussed in Section 2.2.1.
We are now left with three parameters, ν, k5 and V0 = b

2πe2K2 , along with the orientation,
x̂1, the changing of which allows us to explore the possible domain wall solution in our the
p + ip model. We note that the introduction of the transformation Qαβ 7→ MTQαβM , for
M ∈ SO(3), has no effect on the three-dimensional energy as this is just equivalent to a
coordinate transformation. However, if we apply our dimensional reduction Ansatz 2.14,
then this coordinate transformation will change the orientation of our domain wall, within
this anisotropic superconductor, which will affect the now one-dimensional free energy. Thus
solving the dimensionally reduced Ginzburg-Landau equations for different, M , yields different
field solutions.
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The potential, Fp, of Equation 2.101 is invariant under the transformations,

(ψ1, ψ2) 7→ (ψ2, ψ1) (2.106)

(ψ1, ψ2) 7→ (−ψ2, ψ1) , (2.107)

but the free energy, F , is not. This is because the free energy is only invariant under the
transformation of both the condensates, ψα, and the spatial coordinates, (x1, x2, x3) which
we call mixed symmetries. The main mixed symmetries of the p + ip model are, C4(z) ×
C2(x) × C2(y). Table 1.2 gives the actions of these symmetries on both the condensates
and coordinates. The spatial symmetries are written in terms of the crystalline coordinates,
(x, y, z), which are defined relative to the symmetry axes of the superconductor. For example,
we see that the transformations for the C4(z) mixed symmetry,

(x, y, z) 7→ (−y, x, z) (2.108)

(ψ1, ψ2) 7→ (−ψ2, ψ1) , (2.109)

leave the free energy unchanged. This was previously discussed in 1.8.1 where a mixed sym-
metry must satisfy the following:

1. SkiQ
αβ
ij Slj ≡ Q

αβ
kl .

2. CγαQαβij C
δβ ≡ Qγδij and Fp(C

αγψγ) ≡ Fp(ψα) .

S ∈ O(3) and C ∈ O(2) are the matrix representations of the spatial and condensate sym-
metries respectively. The spatial symmetries require that the orientation transformation,
Equation 2.29, has no affect on the anisotropy matrices.
Furthermore, the C4(z) condensate symmetry of potential, Fp, means that Fp(ψ1, ψ2) ≡
Fp(−ψ2, ψ1) thus u1 = u2 and therefore the two gauge inequivalent vacua are given by,

(ψ1, ψ2) = (1, e−i
π
2 )eiω1 (2.110)

(ψ1, ψ2) = (1, ei
π
2 )eiω2 , (2.111)

up to a choice of global gauge, ω1, ω2 ∈ [0, 2π], and u1 = 1 due to our rescaling. We remind
the reader that the general gauge transformation is given by,

ψα 7→ eiωψα (2.112)

Ai 7→ Ai + ∂iω . (2.113)

For a domain wall solution each boundary has a different choice of global gauge. This is
depicted in Figure 2.3. We see that each boundary has a choice of values on the unit circle set
by ω1 and ω2. However, our system still allows us to make a gauge choice and thus remove
ω1 and ω2. We can trivially fix one boundary via the following, global, gauge transformation,
ψα 7→ e−iω2 which leaves the vector potential unchanged. Additionally, we can fix both
boundaries, using a local gauge transformation, at the cost of modifying the values of Ai. The
necessary gauge would be an ω that has ω(−∞) = −ω1, ω(∞) = −ω2 and ∂1ω(x1 = ±∞) = 0.
This would fix ω1 = ω2 = 0 as well as leaving Ai unchanged on the boundary.

2.4.1 Domain Wall Types

The p+ ip model allows two special types of domain walls to occur which are identifiable by
which condensate vanishes at x1 = 0. If we consider, Figure 2.3, and apply the global gauge
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x1 = −∞→∞

Figure 2.3: Diagram of the boundary values of (ψ1, ψ2) for a domain wall, x1 = ±∞, on
the right and left hand side respectively. We see that the gauge choice (ω1, ω2 ∈ [0, 2π]), for a
given vacuum solution can be expressed as a point on a circle, where the value of (ψ1, ψ2) is
given by the blue dot.

transformation, ω = −ω1, which changes the boundary conditions to,

lim
x1→−∞

(ψ1, ψ2) = ei(ω1−ω2)(1,−i) (2.114)

lim
x1→−∞

(ψ1, ψ2) = (1, i) . (2.115)

If we choose (ω1 − ω2) = 0 and (ω1 − ω2) = π the left boundary becomes (1,−i) and (−1, i)
respectively.
Numerically, we start with an initial condition and then evolve it using arrested Newton flow.
This method only finds the local minimum closest in phase space to the initial condition used.
If we use a simple initial condition (such as a Sine-Gordon kink with the correct boundary
conditions, see Section 1.5) we can, through the choice of boundary conditions, make the
desired domain wall type the local minimum. For a p+ ip domain wall these two choices, of
gauge equivalent boundaries, are,

ψ2 DW : lim
x1→±∞

(ψ1, ψ2) = (1,±i) (2.116)

ψ1 DW : lim
x1→±∞

(ψ1, ψ2) = (±1, i) , (2.117)

which we will see are non degenerate in energy. These two boundary conditions are depicted
in Figure 2.4. If we consider the ψ2 DW boundary condition we see that it forces Im(ψ2) = 0
at least once as ψ2 interpolates from −i → i. In this case having Re(ψ2) vanish at the same
point that Im(ψ2) vanishes is likely to be the local minimum found by the arrested Newton
flow method. Therefore, the numerical method with these boundary conditions returns a
ψ2 DW . However, we note that this boundary condition does not force a ψ2 DW domain
wall to occur. It may be possible, with a very complicated initial condition, to yield at ψ1 DW
solution. This does not happen for any of our results as we use a simple initial condition for
all solutions.
We remind the reader that numerically we fix the values of the fields on the boundaries, stop-
ping them from evolving. This stops the value of (ω1−ω2) from changing and therefore biases
the type of domain wall solution that is the local minimum through our choice of (ω1 − ω2).
We label these two domain walls as a ψ2 and ψ1 domain wall to denote which condensate
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x1 = −∞→∞

Figure 2.4: Diagram of the boundary values of (ψ1, ψ2) for the ψ2 and ψ1 domain wall types
in a p + ip superconductor, with x1 = ±∞ on the right and left hand side respectively. We
see that the gauge choice for a given vacuum solution can be expressed as a point on a circle,
where the value of (ψ1, ψ2) is given by the blue dot.

vanishes at the centre of the domain, x1 = 0. Note that the ψ2 DW boundary condition is
the version more commonly used for a general domain wall, although it is gauge equivalent
to the ψ1 DW boundary condition, which is why we put it first.
Figures 2.5a and 2.5b show plots of these two types of domain walls for two different orien-
tations. We remind the reader that, B = (B1, B2, B3) gives the spontaneous magnetic field
in the x̂1, x̂2, x̂3 directions respectively. That is the magnetic field that arises inside the su-
perconductor due to the domain wall and the anisotropy of the superconductor. We see that
the ψ2 DW has its |ψ2| condensate vanish at x1 = 0, whereas it is |ψ1| that vanishes for the
ψ1 DW . This is important as the point ψα = 0 cannot be removed via a gauge transformation
thus a ψ2 DW solution is fixed due to the fact that ψ2 vanishes at one point. The two chosen
orientations, x̂1 = (1, 0, 0) and x̂1 = (0,−1, 0), are both in the basal plane and a (spatial)
C4(z) rotation away from each other. The free energies (per unit area) for the ψ2 and ψ1

domain wall are Fψ2 and Fψ1 respectively. We note that Fψ1 , for x̂1 = (1, 0, 0), is equal to
the value of Fψ2 , for x̂1 = (0,−1, 0). Due to our choice of Ansatz 2.14, B1 = 0 for every
orientation so we do not display it. We note that B2 vanishes everywhere for these two basal
plane orientations where we have fixed x̂3 = (0, 0, 1), the crystalline z axis.

Finally, we reiterate that it is the choice of boundary condition for the, x → −∞, or left
hand boundary that biases the arrested Newton flow algorithm to produce one domain wall
type over the other. Consider the orientation, x̂1 = (1, 0, 0), where the ψ2 domain wall has
lower energy than the ψ1 domain wall. If we run a numerical simulation, for that orientation,
where we fix the boundary conditions to limx1→±∞(ψ1, ψ2) = (±1, i), we are in fact making
the, higher energy, ψ1 domain wall the local minimum. If we allow the choice of ω1 − ω2, on
the boundary to vary then either domain wall would occur. Numerically we always fix the
boundary conditions. However, if we fix the boundaries to the following,

mixed DW : lim
x1→−∞

(ψ1, ψ2) = ei
π
4 (1,−i) =

1√
2

(1 + i, 1− i)

mixed DW : lim
x1→∞

(ψ1, ψ2) = (1, i) ,
(2.118)
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x̂1 = (1, 0, 0)

(a) The free energies of the two domain walls are, Fψ2
= 0.35 and Fψ1

= 0.43 respectively.

x̂1 = (0,−1, 0)

(b) The free energies of the two domain walls are, Fψ2
= 0.43 and Fψ1

= 0.35 respectively.

Figure 2.5: Plots of the two domain wall types, for a p+ ip superconductor, corresponding to
the vanishing of the ψ2 or ψ1 condensate at the centre of the domain, x1 = 0. We have plotted
the key gauge invariant quantities |ψα|, θ12, B2, B3, where the components of the magnetic
field, B2 and B3, are in the x̂2 and x̂3 directions respectively. The dashed lines represent
the ψ1 domain walls and the undashed the ψ2 domain walls. We note that for these two
orientations, x̂3 = (0, 0, 1), which is equivalent to the crystalline z axis, ẑ. We see that B2,
the x̂2 component of the magnetic field, vanishes for both orientations.
The parameters used are; (ν, V0, k5) = (−0.95, 6, 2.3500)
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we do not favour either type of domain wall so the arrested Newton flow algorithm returns
either a ψ1 domain wall or a ψ2 domain wall to occur depending on which one has a lower
energy. We call this a mixed boundary condition, and they are an efficient way of finding
the minimum energy domain wall for a given orientation. Previously we would have had to
simulate both domain wall types and then compare their energies to find the globally minimum
domain wall type.
This can alternatively be understood by considering the phase, θα where ψα = |ψα|eiθα , for
each domain wall boundary condition. We see that,

ψ2 DW : lim
x1→±∞

(θ1, θ2) = (0,±π
2

) (2.119)

ψ1 DW : lim
x1→−∞

(θ1, θ2) = (−π, π
2

) (2.120)

ψ1 DW : lim
x1→+∞

(θ1, θ2) = (0,
π

2
) , (2.121)

there is a π phase change from the left to the right boundary in the θα for the associated
ψα DW but more importantly there is no change in phase in the other condensate. The mixed
boundary condition that arises from choosing, ω1−ω2 = π

4 , gives the following phase change,

mixed DW : lim
x1→−∞

(θ1, θ2) = (
π

4
,−π

4
) (2.122)

mixed DW : lim
x1→+∞

(θ1, θ2) = (0,
π

2
) . (2.123)

We see it is now non zero in both condensates which we find allows solutions of the Ginzburg-
Landau equations, 1.124 and 1.125, to relax to whichever domain wall type has the lower
energy.

2.4.2 Solutions in the Basal Plane

In this section we explore the dependence of the free energy and spontaneous magnetic field
on the orientation of the domain wall within the basal plane. The basal plane refers to the
crystalline x̂, ŷ plane. The coordinates for the basal plane orientations can be parametrised
by, θB, and written as follows,

(x1, x2, x3) = (x cos θB − y sin θB, x sin θB + y cos θB, z)
T , (2.124)

where θB is the angle that x̂1 makes with the crystalline x̂ axis. We point out that it is the x̂1

direction, the perpendicular direction to the domain wall, that lies in the basal plane not the
domain wall itself. With a starting values, θS , and an interval, δθB, we can find numerical
solutions to the Ginzburg-Landau equations of motion, for both domain wall types, that will
vary with θB. This is useful in demonstrating the anisotropy within the basal plane as well as
any symmetries of the free energy. Starting at θS = 0 the ψ2 domain wall is of lower energy.
The method is as follows:

• We run two simulations each with one of the ψ2 and ψ1 DW boundary conditions, given
in 2.117, which fixes the domain wall type. This allows us to generate both ψ1 and ψ2

domain walls for all orientations.

• We produce a solution for θB = θS using the arrested Newton flow method, see Section
2.2.3.

• Then using this solution as the initial condition for the next simulation, which still fixes
the domain wall type and decrease run times, we run solutions for θB ∈ [θS , θS + π]
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where we change the value of θB recursively by adding the interval, δθB, for each new
simulation until we reach θB = θS + π.

• This method is called using subsequent initial conditions.

• If we want the minimising domain wall solution for every θB we can compare the energies
of these two simulations and select the domain wall type with the lower energy.

• Alternatively, we could use mixed boundary conditions 2.118 and then instead use the
same general initial conditions for every value of θB. This means we do not bias results
to a single domain wall type hence the result would be whatever domain wall type had
the lower energy for the current value of θB.

• This method is called using same initial conditions. This method takes more time
than using subsequent initial conditions but for one-dimensional solutions the difference
is not that significant.

The spontaneous or internal magnetic field is an odd function, when non zero, due to the
topological requirement that,

∫
RBi(x1) dx1 = 0. This can be seen in Figures 2.5a and 2.5b.

The maximum spontaneous magnetic field is then given by,

Bmax = max(|B|) , (2.125)

which occurs at two points which we call ±xmax, where B(±xmax) = ±Bmax. Now consider
Figures 2.6a and 2.6b which plot how the free energy and maximum magnetic field vary with
θB. We see how the ψ2 domain wall has a lower energy in the regions, θB ∈

[
0, π4

]
and

for θB ∈
[

3π
4 , π

]
, the free energy, for both domain wall types, is also periodic on π. Most

interestingly we have non-zero magnetic field even for θB = 0 and match the results of [26].
This is not a trivial result as the spontaneous magnetic field is zero in the isotropic case and
even for other anisotropic models it is zero when θB = 0.

Free Energy

θB

(a) The free energy (per unit area).

Maximum Magnetic Field

θB

(b) The Maximum Magnetic Field, Bmax =
max|B(x1)|.

Figure 2.6: A plot of the free energy per unit area of the domain wall and the associated
maximum magnetic field as a function θB = arctan x1(2)

x1(1) which parametrises rotation of the
domain wall in the basal plane. The energies and maximum magnetic field for the ψ2 and ψ1

domain wall types are shown.
The parameters used are; (ν, V0, k5) = (−0.95, 6, 2.35) and interpolation was used to create
smooth plots with the simulated points marked by and .
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Is A3 = 0 a consistent ansatz for the basal plane?

Previous work ([26], [37]) has studied the basal plane using a two-dimensional free energy
which is equivalent to applying the ansatz that, A3 = 0 to our three-dimensional free energy.
We now include a discussion on why this is valid but only in the basal plane. We can show
that for any orientation in the basal plane, A3 = 0, is a solution to the equations of motion. In
Section 2.2.1, we established that an ansatz needed to be consistent with the three-dimensional
Ginzburg-Landau equations to be valid for our domain walls when dealing with anisotropic
superconductors.
Consider the general three-dimensional anisotropy matrices for the p+ ip model,

Q11 =

a1 0 0
0 a2 0
0 0 b

 , Q22 =

a2 0 0
0 a1 0
0 0 b

 , Q12 =

 0 a2 0
a2 0 0
0 0 0

 , (2.126)

where a1 = 3 + ν and a2 = 1 − ν. These are the anisotropy matrices for the orientation,
x̂1 = (1, 0, 0), which corresponds to the crystalline x̂ axis. If we rotate the coordinate system
and therefore the domain wall orientation by transforming each anisotropy matrix, Q̃αβ 7→
MTQαβM where,

M =

cos θB − sin θB 0
sin θB cos θB 0

0 0 1

 . (2.127)

This transforms the orientation of our domain wall to x̂1 = (cos θB, sin θB, 0) which is still in
the basal plane. The form of the transformed anisotropy matrices are given as,

Q̃11 =

ã1 ã3 0
ã3 ã2 0
0 0 b

 , Q̃22 =

 ã1 −ã3 0
−ã3 ã2 0

0 0 b

 , Q̃12 = a2

− sin 2θB cos 2θB 0
cos 2θB sin 2θB 0

0 0 0

 ,

(2.128)

where ã1 = a1 cos2 θB+a2 sin2 θB, ã2 = a2 cos2 θB+a1 sin2 θB, ã3 = 1
2 (a1 sin 2θB − a2 sin 2θB).

If we focus on Q̃12 and remember from Section 2.2.1 that for the A3 = 0 ansatz to be consis-
tent with the three-dimensional Ginzburg-Landau equations, 1.124 and 1.125, we require all
Q12

3i , i ∈ {1, 2} to vanish. We can see that, for the basal plane, this is trivially the case. This
means, for basal plane orientations of the p + ip model, we can assume A3 = 0 everywhere.
This has further implications, the magnetic field will point only in the x̂3 = (0, 0, 1) ≡ ẑ direc-
tion. This is because (B1, B2, B3) = (0,−∂1A3, ∂1A2) and thus, for this ansatz, B1 = B2 = 0,
and so the only non zero component of the magnetic field points in the x̂3 direction. This
means that for any orientation in the basal plane, the sensible choice is, x̂3 = ẑ = (0, 0, 1).
This analysis is also useful in confirming that the choice of ansatz used in [37] was valid as
the authors only considered the basal plane.

Finally, we consider the parameter k5 which is the coefficient of the following terms in the
free energy density,

k5
1

2

(
|D3ψ1|2+|D3ψ2|2

)
. (2.129)

We have shown that A3 = 0 is a solution of the equations of motion for the basal plane but
our choice of ansatz, A3 = 0 implies that D3ψα = 0. This means that solutions in the basal
plane will not be dependent on the value of k5 as those terms, in the equations of motion, will
vanish. However, we do still need to choose it so that the energy is positive definite.
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2.4.3 Oscillatory Decay of Field Solutions

We are now in a position to test one of the predictions of the linearisation, namely, oscillation
in the fields as |x1|→ ∞, which we refer to as the linear regions of the fields. The behaviour
of the fields in the linear region is governed by the following decay equation,

(ε1, ε1, ϑ, p1, p2, p3) =
5∑
i=1

ci~vie
−µix1 , (2.130)

with ~vi = (v1
i , v

2
i , v

3
i , v

4
i , v

5
i , v

6
i )
T and the ci are arbitrary constants that determine if a mode

is excited. The length scales, λi = µ−1
i , are, in general, complex and ordered by the size of

their real parts, Re(λi). Thus the leading length scale, λ1 = µ−1
1 , has the smallest value of

µi > 0 and therefore contributes most significantly to the behaviour of the fields, where each
field has a different component of the normal mode, ~vi, but they all decay with the same λi.
If the ratio,

Rµ1 =
|Im (µ1)|
|Re (µ1)|

>> 0 , (2.131)

we should be able to see oscillations in the tails of the gauge invariant quantities, ρ1, ρ2, B2, B3

but as we focus on the basal plane for this section we do not show B2 which vanishes there.
Figure 2.7 shows the dependence of Rµ1 on the model parameters ν, ω, V0. ν, V0 are parameters
of the free energy, Equation 2.11, and ω selects the orientation, x̂1 = (cosω, sinω, 0). We see
that for increasing values of V0 the regions of the parameter space where we expect oscillating
tails increases, note that Rµ1 is also periodic on ω = π

2 .

The period of an oscillation, predicted by the linearisation, is,

lp =
π

Im (µ1)
, (2.132)

which we can compare to the period we find from the full non-linear numerical simulations.
We use the globally minimum domain wall type, though these particular results do not differ
between for the domain wall types.
The first set of results is for ω = 0, φ = 0 where Rµ1 ≈ 1. Figure 2.8a plots numerical
solutions of the nonlinear Ginzburg-Landau equations, ε1, ε2 and B, for x1 > 0. The locations
of zeros and extrema for the nonlinear case are marked and the distance between these points
is compared to the distance that the linearisation predicts. We can see that there is a close
agreement between the two. The associated length scales and normal modes are given by,

µ1 = 0, ~v1 = (0, 0, 0, 0, 0, 1)T ,

µ2 = 0.8199 + 0.6507i, ~v2 =



0.5685− i0.0073
−0.5681 + i0.0099

0
0

−0.3543− i0.4779
0

 ,

µ3 = (µ2)∗, ~v3 = (~v2)∗ ,

µ4 = 3.4216, ~v4 = (0, 0,−0.9964, 0.0852, 0, 0)T ,

µ5 = 3.4648, ~v5 = (0.6947, 0.7190, 0, 0,−0.0206, 0)T .

(2.133)

Discounting the non physical µ1 = 0 eigenvalue we see that the next, leading, eigenvalue is
complex and Rµ2 which we relabel as Rµ1 ≈ 0.8 thus we predict oscillating tails. However, we
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|Im (µ1)|
|Re (µ1)|

Figure 2.7: Plot to show the likelihood of oscillations in the fields at longer range for the
parameters (ν, ω), where x̂1 = (cosω, sinω, 0). When 1 > Rµ1 >> 0 then oscillating tails
are likely as the leading length scale, λ1 = µ−1

1 , is complex and the imaginary part of, λ1

dominates over the real part. Note that this figure shows only basal plane orientations for a
p + ip superconductor. We use a value of k5 = 2.35 such that our energy is positive definite
but as long as that is the case then the value of k5 does not affect these results in the basal
plane because A3 = 0 in the basal plane.
This matches [37] which used a two-dimensional ansatz and a different method of linearisation.
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can see that v3
2 = v4

2 = v6
2 = 0 which means we do not predict oscillations in the ϑ(x1), p1, p2

fields respectively. This leaves ~v5
2 as the only non zero magnetic component. This means that

the only direction of the linear magnetic field, Blin = (0,−p′3, p′2), coupled to this mode is,
p2, which corresponds to the x̂3 linear magnetic field direction. If we consider every other
mode we note that the v6

i component, which corresponds to the value of p3 for that mode, is
only non zero for ~v1 where all the other components vanish. In this case, µ1 = 0, thus p3 is
constant in the linear region and this constant is zero due to the boundary conditions. This
means that Blin vanishes for this mode. In summary, we find that the linearisation predicts
that the linear magnetic field for each mode is either zero or pointing only in the x̂3 direction.
This matches what we find in the nonlinear simulations, where in the basal plane only B3,
the magnetic field in the x̂3 direction, is non zero.
Due to the form of the quadratic order free energy, Equad, having p3 6= 0 is only energeti-
cally favoured when there are couplings between p3 and the condensates, introduced by the
anisotropy matrices. In terms of the linearisation that would mean any of v1

i , v
2
i , v

3
i would

need to be non zero. This is why we see the v6
i component as equal to zero for every mode

bar ~v1.
The next image is for ω = π

3 where Rµ1 ≈ 1. Figure 2.8b shows good agreement between the
linear theory prediction and the non-linear solutions. The length scales are similar to those
in Equation 2.133.

The next set of results is for (ν, θ, V0) = (0, 0, 0.5) which is a region of the parameter space
where we expect no oscillations, Rµ1 = 0. In Figure 2.9 we can see that no oscillations occur
as the only zeros found are on the edges, x1 = 0 or x1 →∞, due to the boundary conditions.

The length scales are,

µ1 = 0, ~v1 = (0, 0, 0, 0, 0, 1)T ,

µ2 = 0.7083, ~v2 = (0.9840,−0.1373, 0, 0, 0.1135, 0)T ,

µ3 = 0.7559, ~v3 = (0, 0,−0.8669, 0.4932, 0, 0)T ,

µ4 = 1.8921± 0.3417, ~v4 =



0.0063∓ 0.0515i
0.8132± 0.1216i

0
0

0.019± 0.5667i
0

 ,

µ5 = (µ4)∗, ~v5 = (~v4)∗ ,

(2.134)

where we see the leading length scale, µ2 is real, (as we ignore the µ = 0 solution) hence we
find no oscillations. We note however that there are still complex length scales but they are
not in the dominant mode so we do not see spatially oscillating tails in the nonlinear solutions.

Finally, we include Figure 2.10, which depicts the fields for the non basal plane orientation,
x̂1 = (0, 0, 1). As we are no longer in the basal plane we include the value of B2, which
in general is non zero. However, for this orientation the magnetic field vanishes in both
components. All length scales are real with the leading length scale, λ1 = 1.9791 thus we
expect (and find) no oscillations in the fields for the nonlinear solutions. In fact every length
scale is real for this orientation, this can be seen from the mixing angle for each mode,

(θ1
mθ

2
m, θ

3
m, θ

4
m, θ

5
m, ) = (0,

π

2
,
π

2
, 0, 0) , (2.135)
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x̂1 = (1, 0, 0)

(a) Plots of the gauge invariant quantities with the zeros marked. The predicted value for the linear
period, is lp = 4.8283 with (ν, θ, V0, k5) = (−0.95, 0, 6, 0).

x̂1 =
(

1
2
,
√

3
2
, 0
)

(b) Plots of the gauge invariant quantities with the zeros marked. The predicted value for the linear
period,is lp = 4.0935 with (ν, θ, V0, k5) = (−0.95, π3 , 6, 0).

Figure 2.8: p+ ip domain wall field solutions for, x1 > 0, showing oscillations in the fields,
predicted by the linearisation. The extrema are marked by and the zeros, or y-intercepts, by

where x̂1 = (cosω, sinω, 0). Note that the zeros at the end of the solution are due to the
fixing of the boundary conditions to the vacua values and thus ε1, ε2, B trivially vanish. Note
that as x̂1 is in the basal plane the choice of k5 does not affect the solutions this is because
A3 = 0 in the basal plane.
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x̂1 = (1, 0, 0)

Figure 2.9: Plots of the gauge invariant quantities with the zeros marked. The predicted value
for the linear period, lp = 0 with (ν, θ, V0, k5) = (0, 0, 0.5, 0). We do not observe oscillations
in this part of the parameter space, as expected. As x̂1 is in the basal plane the choice of k5

does not affect the solutions. This is because A3 = 0 in the basal plane.
Domain wall field solutions for, x1 > 0, with the extrema marked by and the zeros, or
y-intercepts, . The zeros at the end of the solution are due to the fixing of the boundary
conditions to the vacua values and thus ε1, ε2, B trivially vanish.

where we remind the reader that θim is a measure of how coupled the condensate and magnetic
modes are with θim = 0 and θim = π

2 meaning the mode is purely condensate or magnetic. As
there are no modes that have a coupling between condensate and magnetic modes we return
to the more standard real length scales.

2.4.4 Visualising the Orientation Dependence of Physical Quantities

In Section 2.4.2 we study the dependence of the free energy and maximum magnetic field on the
orientation of a domain wall within the basal plane. We now extend this to orientations out of
the basal plane, where x̂1 · ẑ 6= 0. For this we introduce a specific, non zero, value of k5, so that
the free energy is positive definite. Additionally, we use the parameters (ν, V0) = (−0.95, 6)
which for the linearisation, as seen in Figure 2.7, is a point in the parameter space where
oscillations, in the basal plane at least, should occur very strongly. In this section we are
interested in demonstrating that the linearisation as well as the energy and maximum magnetic
field from the nonlinear solutions are orientation dependent. Specifically, we choose k5 = 2.35
so it is larger than the Q11

11 = 2.05 and Q11
22 = 1.95 components of the anisotropy matrices but

still of comparable size. Even with our rescaling, the parameter space is quite large hence the
need to pick values which we assume should show general behaviour of the p+ ip model.

Predicting Oscillatory Decay

Figure 2.11 extends Figure 2.7, which shows how the ratio Rµ1 = |Im (µ1)|
|Re (µ1)| varies in the basal

plane, to all of the possible orientations of the model.
An orientation is defined by our choice of x̂1 which, if we pick a general x̂2 that is perpendicular
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x̂1 = (0, 0, 1)

Figure 2.10: Plots of the gauge invariant quantities with the zeros marked. The predicted
value for the linear period is lp = 0 with (ν, V0, k5) = (−0.95, 6, 2.35). We do not observe
oscillations in this part of the parameter space, as expected. This solution is not in the basal
plane so we have included the value of B2. However, both B2 = B3 = 0 everywhere for this
orientation. Domain wall field solutions for, x1 > 0, with the extrema marked by and the
zeros, or y-intercepts, .

to x̂1, gives us the following SO(3) orientation matrix,

M =


...

...
...

x̂1 x̂2 x̂1 × x̂2
...

...
...

 . (2.136)

The scheme for generating M is outlined in Section 2.2.3.1.
For domain wall solutions we have made the ansatz choice that the fields only depend upon
the x1 coordinate, Ansatz 2.14, so the choice of x̂2 does not affect the values of the scalar
fields, |ψ1|, |ψ2|, θ12, |B|. Thus we only need to specify x̂1 to define an orientation of a domain
wall. The unit vector, x̂1, that defines the orientation, can be thought of as a point on the unit
sphere, that is x̂1 ∈ S2. However, the p + ip model obeys the reflection symmetry z 7→ −z
which means we need only consider the upper hemisphere, z > 0. If we consider, Figure
2.11, every point on the surface of the hemisphere represents an orientation, x̂1, defined by
the unit vector from the origin to that point on the surface of the hemisphere. We can then
colour each point to represent the value of, Rµ1 , at that point. Any point on the equator of
the hemisphere represents the basal plane, whilst the north pole corresponds to x̂1 = (0, 0, 1)
which is the crystalline z axis. The orientation can be written in terms of spherical polar
coordinates, x̂1 = (cosω cosφ, sinω cosφ, cosφ), ω ∈ [0, 2π) , φ ∈ [0, π2 ] which helps with
interpreting these types of plots.
Returning to Figure 2.11, we see that oscillations occur in the basal plane, the equator in
Figure 2.11, and then moving from the equator to the north pole we see Rµ1 decreases in
value until it vanishes signifying that the dominant length scales, λ1, are now purely real.

We remind the reader that the free energy of the p+ ip model is invariant under the combined
spatial and condensate symmetry. For example the action of the two relevant symmetries is
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p+ ip

Figure 2.11: Orientation dependence of Rµ1 = |Im (µ1)|
|Re (µ1)| , for a p+ip superconductor, with x̂1 =

(cosω cosφ, sinω cosφ, sinφ). Each unit vector from the origin to a point on the hemisphere
defines a domain wall orientation (in terms of the crystalline basis), with the colour of that
point giving the value of Rµ1 for that orientation. Note that the orientation is given by x̂1 ∈ S2.
However, as the p+ ip free energy is invariant under the symmetry, z 7→ −z, we record only
the upper hemisphere.
(ν, V0, k5) = (−0.95, 6, 2.35)
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shown below,

C2(z) : (ψ1, ψ2, x, y, z) 7→ (−ψ1,−ψ2,−x,−y, z) (2.137)

C4(z) : (ψ1, ψ2, x, y, z) 7→ (−ψ2,−ψ1,−y, x, z) , (2.138)

with the full list of the action of the symmetries given in Table 1.2. Figure 2.11 demonstrates
the spatial C4(z) symmetry, and therefore spatial C2(z), that the model contains but it does
not show the C4(z) condensate symmetry.

Free Energy and Maximum Magnetic Field

We now consider the full orientation dependence of the energy and maximum magnetic field,
adding to the results from [26]. For consistency we use the same parameters as we did in
Figure 2.11, (ν, V0, k5) = (−0.95, 6, 2.35). We present numerical solutions to the full nonlinear
Ginzburg-Landau equations. Figure 2.12a shows the free energy for both domain wall types.
We observe that the energies are spatially C4(z) symmetric as expected but it is difficult to
tell the difference between the two domain walls. This difference is made clearer by Figure
2.12b which shows the orientation dependence of the difference between the two energies and
two maximum magnetic fields. Near to the equator, or basal plane orientation, this difference
is most pronounced and the two domain walls are clearly C4(z) spatial rotations of each other.
This is because the difference in free energy changes sign, but not magnitude, every π

4 rotation
about the z axis. Moving away from the basal plane, along the surface of the hemisphere,
towards the north pole, we see the difference become less and less pronounced until it vanishes.

The maximum magnetic field is given by,

Bmax = max|B(x1)|≡ |B(±xmax1 )| , (2.139)

where ±xmax1 denotes the two coordinates where the magnetic field is extremal, B(±xmax1 ) =
±Bmax. Bmax allows us to quickly determine if an orientation has non zero spontaneous
magnetic field as well as presenting the spatial symmetries of the magnetic field. Furthermore,
for Bmax 6= 0 it also has a direction given by,

B̂max =
(B2(xmax1 )x̂2 +B3(xmax1 )x̂3)√

B2(xmax1 )2 +B3(xmax1 )2
. (2.140)

We can plot the direction of B̂max as well as the value of Bmax at each point on the surface
of the hemisphere to show the orientation dependence of these two quantities. This is shown
in Figure 2.13 where we note that as B is an odd function so the directions B̂max and −B̂max
are equivalent and are shown by the double headed arrows at each point. For the two types
of domain walls we actually see that the maximum magnetic field is only C2(z) spatially
symmetric. However, when the two energies are combined to produce the globally minimum
energy, we see that the maximum magnetic field becomes C4(z) spatially symmetric again.
Furthermore, the included arrows, which show B̂max, do not change between the two domain
walls. Interestingly, the only point where the maximum magnetic field vanishes, for our
chosen parameters, is at the north pole (x̂1 = (0, 0, 1)), but in the basal plane it is non zero
at every point. This differs from the model in Section 2.5, where, in addition to the z axis,
the spontaneous magnetic field vanishes at the x and y axes.
If we consider B̂max ∈ S2 then we can assign a winding number, N , to the field cycling around
the points where B̂max = 0. If N = 1 is a clockwise winding and N = −1 anticlockwise then
N = −1 at the north pole. We describe, B̂max, as having a vorticity about the points
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Free Energy

(a)

Free Energy and Maximum Magnetic Field Difference

(b)

Figure 2.12: Figure 2.12a plots the free energy of domain walls in a p + ip superconductor
and how this varies with orientation: ψ2 domain wall (left) and ψ1 domain wall (right). The
free energy appears to be indistinguishable between the two domain wall types.
Figure 2.12b plots the orientation dependence of the difference between the ψ2 and ψ1 domain
wall for the free energy (left) and the maximum magnetic field (right). We see that the two
free energies are different. The maximum magnetic field is given by Bmax = max |B|. Here
we see that the plots of the two domain wall types are simply C4(z) rotations of each other,
which can be seen by the change of sign in the energy difference every π

4 rotation about the z
axis. We have changed the colormap to one that highlights small differences more effectively.
Each unit vector from the origin to a point on the hemisphere defines a domain wall orientation
(in terms of the crystalline basis), with the colour, for example, giving the value of the free
energy for that orientation.
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where Bmax = 0. This is likely to be a result that does not depend on parameter choice
and could therefore be another observable experimental signature used to identify a p + ip
superconductor. Furthermore, the linearisation predicts, that in the basal plane, Blin ‖ ẑ.
However, this result appears to extend to the the nonlinear region, we see this by looking at
the arrows on the equator of Figure 2.13, which are perpendicular to the equator.

2.4.5 Magnetic Field Twisting

Due to our choice of ansatz, for some orientations, we are able to see the magnetic field
direction twisting away from the direction of the maximum magnetic field, B̂max, as |x1|→ ∞.
For domain walls we compare the direction of the magnetic field at each point, B̂(x1), with
the direction of B̂max giving the local twisting angle,

θt(x1) = arctan

(
|B̂max × B̂(x1)|
|B̂max · B̂(x1)|

)
, (2.141)

where θt(x1) ∈ [0, π2 ] and θt(x1) = 0 implies that the magnetic field is either parallel or anti-

parallel to B̂max and θt(x1) = π
2 is the maximum amount the magnetic field can twist. This

occurs when it is orthogonal to B̂max.
We note that the magnetic field, B̂(x1), is an odd function this means there are two x1 =
±xmax1 which give ±B̂max = B̂(±xmax1 ). We have defined θt(x1) so that it is an even function
so that magnetic fields parallel and anti-parallel to B̂max are treated equivalently. Otherwise,
for any non zero magnetic field, we would have a non zero maximum value of θt(x1) simply
due to the odd nature of the maximum magnetic field. We want the twisting angle to only
be non zero in cases where B̂(x1) changes from pointing in either the ±B̂max directions.
Numerically, we calculate θt(x1) using the variable, cutoff, to remove non zero values of θt(x1)
close to the boundaries that arise because the magnetic field strength is smaller than the
accuracy of the numerics. We check each point in the domain with the condition,

if
(
|B̂max(x1)|< cutoff

)
θt(x1) = 0

end ,

(2.142)

which allows us to remove the erroneous values of θt(x1).

Consider Figure 2.14 which plots the maximum value of the twisting angle,

θmaxt := max(θt(x1)) . (2.143)

We see that θmaxt is approximately the same for the ψ2 and ψ1 DW types as well as being
spatially C4(z) symmetric. The peaks in the values of, θmaxt , are approximately π

2 . We see
that along the great circles that connect the ±x and ±y axes with the z axis there is zero
twisting as well as along the equator. We know that, in the basal plane, the magnetic field
points only in the x̂3 direction, in both the nonlinear and linear regions, and thus we would
expect no twisting of the magnetic field to occur there.
Consider Figure 2.15, which plots the twisting angle, for the orientations that give the two
largest values of θmaxt . This illustrates how, for p+ip, this quantity is not particularly precise;
we see oscillations in the twisting angle that peak at similar, but not identical, values. The
peaks in the twisting angle occur away from the centre of the domain and are oscillatory with
an approximately constant period. In general, these oscillations do not appear to be explained
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Maximum Magnetic Field

Figure 2.13: Orientation dependence of the maximum magnetic field, Bmax = max |B|, for
a p+ ip superconductor for each domain wall type. We have mapped each orientation, x̂1, to
a point on the hemisphere. The hemisphere has then been coloured by the value of Bmax of the
corresponding domain wall solution. In addition, we have plotted the direction of the magnetic
field, where |B|= Bmax, as an arrow tangent to the hemisphere. The corresponding direction
for B = −Bmax is also plotted at each point which occurs because B is an odd function. The
arrows have all been scaled to have the same length to illustrate the winding of the field around
the zeros of the maximum magnetic field.
We see that the two domain wall types differ by the value of Bmax but not in the direction
that Bmax points.
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Maximum Twisting Angle, θmaxt

Figure 2.14: Orientation dependence of the maximum twisting angle of the magnetic field
of domain wall in a p + ip superconductor: clockwise phase difference winding (left) and
anticlockwise phase difference winding (right). Each unit vector from the origin to a point on
the hemisphere defines a domain wall orientation (in terms of the crystalline basis), with the
colour giving the value of θmaxt for that orientation. Here we see that θmaxt is approximately
the same for both ψ1 and ψ2 domain wall types.
Note we use a value of cutoff = tol

100 to remove boundary effects.
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Twisting Angle, θt

Figure 2.15: Field plots for the twisting angle, θt ∈ [0, π2 ], for two orientations, x̂1 =
(0.7602,−0.5523, 0.342) and x̂1 = (0.2904,−0.8937, 0.342), that give the largest values of the
maximum twisting angle, θmaxt . We observe oscillations in the twisting angle in the linear
region of the model.

by the linearisation as when we compare Figure 2.11, which show the orientations where the
linearisation predicts oscillations to occur, to Figure 2.14. We see that, for example, θmaxt

vanishes at x̂1 = (1, 0, 0) but Rµ1 vanishes at x̂1 = 1√
2
(1, 1, 0).

However, for the two orientations in Figure 2.15 we note that the leading length scales, as
predicted by the linearisation, are λ1 = 0.6888 − 0.2367i and λ1 = 0.7820 − 0.4310i with
lp = 7.1 and lp = 5.8 respectively, which we see are complex. The values of the period for the
peaks of θt, lp = π

Im(µ1) , calculated directly from the nonlinear solutions are, 6.78 and 5.79
respectively, which fairly closely match the values of lp predicted by the linearisation. Thus
it would appear that the oscillation in the twisting angle, only for some orientations, can be
explained by the linearisation.

Finally, it is important to note that having non zero, θt(x1), confirms that employing Ansatz
2.14, which has A3 6= 0 and so does not fix the direction of the magnetic field, is required.
We see that the basal plane has θt(x1) = 0 which is explained by the fact that setting A3 = 0
is consistent with the equations of motion for these orientations.

2.5 Domain Walls in s+ is and s+ id Superconductors

We now move to studying domain walls in s+ is and s+ id superconductors. These models
have only spatial symmetries and unlike the p+ip model do not appear to show the ψ1 and ψ2

domain wall types. However, we do find two new types of domain walls in this model based
on the direction around the unit circle the phase difference, θ12, interpolates from θ12 = π

2
to θ12 = −π

2 . Additionally, we find magnetic field twisting in the s + id model, something
predicted by the linearisation. Magnetic field twisting is where the direction that the magnetic
field points in changes as we move away from the domain wall, |x1|→ ∞. We also study the
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orientation dependence of the maximum magnetic field and the free energy. This is based on
joint work in [1] and [2] .
We now explore the s+ is and s+ id models. The structure of the anisotropy matrices comes
from the requirement that they must be spatially symmetric, that is Qαβ = STQαβS where
S ∈ O(3) is the matrix representation of a spatial symmetry. An s + is superconductor has
the SO(2)(z) × C2(x) × C2(y) spatial symmetries whereas an s + id superconductor has the
C2(z)× C2(x)× C2(y) spatial symmetries. The actions of these symmetries are,

C2(x) :(x, y, z) 7→ (x,−y,−z) (2.144)

C2(y) :(x, y, z) 7→ (−x, y,−z) (2.145)

C2(z) :(x, y, z) 7→ (−x,−y, z) (2.146)

SO(2)(z) :(x, y, z) 7→ (x cos θ − y sin θ, x sin θ + y cos θ, z) , θ ∈ [0, 2π] , (2.147)

and this is described in more detail in Section 1.8.1. With these requirements in mind along
with the fact that domain walls require broken time reversal symmetry, the following general
anisotropy matrices and potential coefficients are used [25]:

Q11 =

a1 0 0
0 a1 0
0 0 b1

 , Q22 =

a2 0 0
0 a2 0
0 0 b2

 , Q12 ≡ (Q21)T =

a3 0 0
0 s · a3 0
0 0 b3

 (2.148)

Fp = α1ρ
2
1 + α2ρ

2
2 +

β1

2
ρ4

1 +
β2

2
ρ4

2 + γ12ρ
2
1ρ

2
2 + η12ρ

2
1ρ

2
2 cos(2θ12) , (2.149)

where s = 1 for the s+ is superconductor and s = −1 for the s+ id. We can see immediately
that, unlike the p+ ip potential, this potential no longer has the C4(z) condensate symmetry
as, Fp(ψ1, ψ2) 6= Fp(−ψ2, ψ1). This is because α1 6= α2 and β1 6= β2 in general. This means
that, u1 6= u2, where the uα are the vacuum values for ρα ≡ |ψα|. Additionally, these two
models have different spatial symmetries about the crystalline z axis where the factor of
s = −1 in the s+ id case breaks the SO(2)(z) (spatial) symmetry leaving the simpler C2(z)
symmetry.
As we can see this model has twelve free parameters so investigating the full parameter space,
as we did with the p + ip case, is not realistic. So moving forwards, we choose a particular
set of parameters for the whole section,

s+is s+id

Q11 =

 4 0 0
0 4 0
0 0 0.3

 Q11 =

 4 0 0
0 4 0
0 0 0.3


Q22 =

 0.5 0 0
0 0.5 0
0 0 2

 Q22 =

 0.5 0 0
0 0.5 0
0 0 2


Q12 =

 1 0 0
0 1 0
0 0 0.2

 Q12 =

 1 0 0
0 −1 0
0 0 0.2


Table 2.1: Form of the anisotropy matrices for s+ is and s+ id systems.

with the following potential

Fp = −1

2
|ψ1|2−

1

2
|ψ2|2+2|ψ1|4+3|ψ2|4+

3

2
|ψ1|2|ψ2|2

+
1

8
|ψ1|2|ψ2|2cos 2θ12 . (2.150)
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This set of parameters was chosen, as always, so that the free energy was positively defined.
Additionally, it is where the linearisation predicted complex leading length scales for certain

orientations. We note that the maximum value of this ratio is still only max
(
|Im (µ1)|
|Re (µ1)|

)
≈ 0.4,

which means although we get complex leading length scales we do not see oscillations in
the fields. We expect the features discovered using this set of parameters to remain robust
throughout the parameter space.

2.5.1 Domain Wall Types

We detailed in Section 2.4 how the p + ip model exhibited two types of domain walls which
were non degenerate in energy, exist for all orientations and each type could be produced
numerically if the boundary conditions were fixed to one of the following,

ψ2 DW : lim
x1→±∞

(ψ1, ψ2) = (1,±i) (2.151)

ψ1 DW : lim
x1→±∞

(ψ1, ψ2) = (±1, i) , (2.152)

We also saw, in Section 2.4.2, that the free energy for a ψ2 domain wall was equivalent
to that of a ψ1 domain wall that had a C4(z) spatial symmetry applied to it. These two
domain wall types were identified by which condensate, ψα, vanishes at the centre of the
domain, x1 = 0. This occurs because the p + ip model has the main condensate and spatial
symmetries C4(z)× C2(x)× C2(y). However, the s+ is and s+ id models have only spatial
symmetries and we find that the ψ1 and ψ2 domain walls do not occur in the s+ is and s+ id
models. Simulating s+ is and s+ id solutions with either of the above boundary conditions
does not produce a ψ2 nor a ψ1 domain wall. So we use the following boundary conditions
throughout,

lim
x1→±∞

(ψ1, ψ2) = (1,±i) (2.153)

lim
x1→±∞

(A1, A2, A3) = (0, 0, 0) , (2.154)

having Ai vanish on the boundary is a gauge choice that will require ∂1ψα = 0 on the boundary
as well. These boundary conditions force a domain wall whose phase difference, θ12, smoothly
interpolates between [π2 ,−

π
2 ].

We use the same numerical method as in Section 2.2.3 which allows magnetic field twisting
and respects the original equations of motion. To reiterate this key point: the ansatz is,

ψα = ψα(x1)

A = A1(x1)x̂1 +A2(x1)x̂2 +A3(x1)x̂3 ,
(2.155)

where we have A3(x1) 6= 0 so that our magnetic field, B = (0, B2, B3) = (0,−A′3, A′2), can
point in both the x2 and x3 direction.
Through careful study of the domain wall solutions, we found two non degenerate domain wall
solutions identifiable by the direction the phase difference interpolates. The phase difference,
θ12 ∈ S1 interpolates between the two antipodal points, {π2 ,−

π
2 }. This is shown in Figure

2.16 which depicts the interpolation of the phase difference as a point on the unit circle.

We have plotted examples of both domain wall solutions with orientations, x̂1 =
(0.1736, 0, 0.9848), in 2.17a and, x̂1 = (0.309,−0.9511, 0), in 2.17b. Both the clockwise and
anticlockwise domain wall solutions exhibit spontaneous magnetic fields for both orientations,
however the strengths differ for each solution. This demonstrates that the two domain wall
solutions could be experimentally observed through differences in their magnetic fields, though
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x1 = −∞→∞

Figure 2.16: Diagram of the interpolation of the phase difference, θ12, from the left hand
boundary, limx1→−∞ θ12 = π

2 , to the right hand boundary limx1→∞ θ12 = −π
2 . The direction of

travel defines two domain wall types which, for the s+is and s+id models, are not degenerate
in energy. The value of θ12 is expressed as a point on the unit circle.

the differences are small. We also see that the only consistent feature of these two domain
wall types is the phase difference. We note that the phase different changes smoothly between
±π

2 around the centre of the domain. However, in the p + ip case, if we consider the phase
difference in Figures 2.5a and 2.5b, we see that the transition from the two boundary values
happens very rapidly, in fact both plots look more like step functions than arctangent func-
tions or kinks. It is this discontinuity which means anticlockwise and clockwise domain walls,
if they occur, will be degenerate in energy in p + ip superconductors. We note that we saw
no evidence of clockwise and anticlockwise domain walls in our p+ ip numerical solutions.

Identifying the globally minimum domain wall

For an isotropic BTRS superconductor the direction of the interpolation, clockwise or anti-
clockwise, does not matter. However, for our anisotropic model the direction of interpolation
defines two, non degenerate in energy, domain walls.
This can be seen by considering a simple approximation to an anisotropic domain wall, where
we allow θ12 to vary with respect to x1 but fix the other quantities to their vacuum values,
(ρα, pi) = (uα, 0). The free energy (per unit area) for such an approximation is given by,

Freduced =

∫ ∞
−∞

{1

8
(Q11

11u
2
1 +Q22

11u
2
2)(θ′12(x1))2

− 1

4
Q12

11u1u2 cos θ12(x1)(θ′12(x1))2

+
η

8
u2

1u
2
2 cos 2θ12

}
dx1.

(2.156)

The transformation, θ12 → π−θ12, converts between the two types of domain wall and we see
that if Q12

11 = 0 then Freduced is invariant under this transformation. When Q12
11 6= 0 the second

term is either positive or negative definite depending on the sign of Q12
11 and cos θ12(x1). It

is a fact that cos θ12(x1) is positive definite for clockwise interpolation and negative definite
for anticlockwise interpolation. Hence if Q12

11 > 0 then the clockwise domain wall has a lower
Freduced as the overall sign of that term will be negative. For Q12

11 < 0 it is the anticlockwise
domain wall that has a lower Freduced. This suggests that the sign of Q12

11 can be used to
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x̂1 = (0.1736, 0, 0.9848)

(a)

x̂1 = (0.3090,−0.9511, 0)

(b)

Figure 2.17: Plots of two s+ id domain wall solutions, for two different orientations, corre-
sponding to the phase difference θ12 winding either clockwise (blue) or anticlockwise (orange-
dashed). We have plotted the key gauge invariant quantities |ψi|, θ12 and magnetic field
strength |B|.
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predict the domain wall with the lower energy. This is a very crude approximation but it
works for our chosen parameters when the difference in energy between the two domain wall
types is not too small, consider Figure 2.18. In the s + is case Q12

11 is always greater than
zero, and correspondingly the free energy of the clockwise domain wall is always lower. In the
s+ id case changes in the sign of Q12

11 approximately correspond to the domain wall type that
has the lower free energy changing. To reiterate Q12

11 < 0 means the anticlockwise domain
wall has the lower free energy and vice versa for the clockwise domain wall.

2.5.2 Orientation Dependence of Physical Quantities

The following solutions were produced by using initial conditions which favoured the domain
wall type that we wanted to simulate. We then, as in the p + ip case (Section 2.4), looped
through the set of orientations using the solution from the previous run as the initial condition
for the next orientation (subsequent initial conditions) which fixes the domain wall type for
all orientations.

Free Energy

We plot the total free energy for all possible orientations of the normal x̂1 for the s+ is model
in 2.19a and the s + id model in 2.19b. These plots display the free energy for all possible
orientations for the normal in the crystalline basis, by mapping each orientation to a point
on a unit 2-sphere. Due to the symmetry of the free energy, F , under the reflection z 7→ −z,
it is sufficient to retain only the upper hemisphere of the resulting plot. So the unit vector
from the origin to a point on the upper hemisphere gives an orientation and each point is then
coloured by the total (normalised) free energy of the numerical solution. The free energy plots
allow us to visualise the spatial symmetries, about the crystalline z axis, of the two models:
SO(2)(z) for s+ is and C2(z) for s+ id as well as identify which orientations have the lowest
free energy. We can see those orientations are x̂1 = (1, 0, 0), up to SO(2)(z) symmetry, for
the s+ is case and it is x̂1 = (±1, 0, 0) or x̂1 = (0,±1, 0) for the s+ id case.

Maximum Magnetic field

We can also visualise the orientation dependence of the maximum magnetic field, Bmax =
|B(xmax1 )|, for the s + is and s + id models given in Figures 2.20a and 2.20b. We include
arrows to show the direction of the maximum magnetic field, B̂max defined in Equation 2.140,
with the length of the arrow being proportional to the value of Bmax. For domain walls the
topological requirement that,

∫
RB(x1)dx1 = 0, implies that B(x1) either vanishes or is an

odd function about the centre of the domain wall which we set to be x1 = 0. As seen in,
Figure 2.21, there are two points, ±xmax1 , where we have B(±xmax1 ) = ±Bmax. This is why
the arrows in, Figure 2.20a and 2.20b, point in opposite directions, as discussed previously in
Section 2.4.4.

We see that, both models, for x̂1 orientated parallel to the crystalline axes, (x, y, z), have
Bmax = 0.

Finally, if we consider the great circles connecting crystalline axes:
(cos θ, sin θ, 0), (cos θ, 0, sin θ) and (0, cos θ, sin θ), where θ ∈ [0, 2π] and (cos θ, sin θ, 0)
denotes the basal plane. We see that, when Bmax 6= 0, the arrows, that give the direction
of Bmax, that lie on great circles are orthogonal to those great circles. Due to the SO(2)(z)
symmetry of the s + is model all of the arrows are orthogonal to the single great circle,
(cos θ, 0, sin θ). The linearisation also predicts that along these great circles there is a single
direction for the spontaneous magnetic field that is orthogonal to that great circle. We see
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Q̃12
11 Free Energy Difference

Figure 2.18: Plots of the value of Q12
11 and the difference in the free energy (per unit area)

between the clockwise and anticlockwise domain wall solutions for both s+is and s+id, for all
orientations. Each unit vector from the origin to a point on the hemisphere defines a domain
wall orientation (in terms of the crystalline basis), with the colour giving the value of Q̃12

11

where (Q̃12 = MTQ12M) (left panel) and the energy of an anticlockwise domain wall minus
that of a clockwise domain wall (right panel). Note that the orientation is given by x̂1 ∈ S2,
however as the s+ is and s+ id free energies are invariant under the symmetry, z 7→ −z, we
record only the upper hemisphere.
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Normalised free energy per unit area

(a) s+is (b) s+id

Figure 2.19: Plots of the free energy per unit area of each domain wall solution for all possible
orientations. Each unit vector from the origin to a point on the hemisphere defines a domain
wall orientation (in terms of the crystalline basis), with the colour giving the value of the free
energy of the corresponding domain wall solution. There are two non-degenerate domain wall
solutions depending on the winding of the phase difference (clockwise and anticlockwise).
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Maximum Magnetic Field

(a) s+ is (b) s+ id

Figure 2.20: Plot of the maximum magnetic field, Bmax = max|B|, of each domain wall
solution for all possible orientations. Each unit vector from the origin to a point on the
hemisphere defines a domain wall orientation (in terms of the crystalline basis), with the
colour giving the value of the maximum magnetic field strength of the corresponding domain
wall solution. In addition, we have plotted the direction of the maximum magnetic field as
an arrow tangent to the hemisphere. There are two non-degenerate domain wall solutions
depending on the winding of the phase difference (clockwise and anticlockwise).
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that for these orientations the direction of the maximum magnetic field in the nonlinear
region matches the direction in the linear region. This is a nice result as predicting the
direction of the maximum magnetic field, something that occurs in the nonlinear region,
should be beyond the linearisation.
If we then visualise B̂max ∈ S2, for the s + id case, we see that Bmax = 0 at x̂1 = ±x and
x̂1 = ±x̂. These four points lie on two great circles each and this causes the winding of B̂max
around the x and y axes. We can define a winding number, N, where N = 1 is clockwise
winding and N = −1 is anticlockwise winding. For the clockwise domain wall the winding
around x and y is −1 and +1 respectively. For the anticlockwise domain wall case it is the
reverse, the winding around the x and y axes is 1 and −1 respectively. The winding around
the z axis is the same for both domain walls and is N = 1. We remind the reader that we
found that N = −1, about the z axis, in the p+ ip case, and there is no winding in the s+ is
case. This could potentially provide experimentalists with a way of distinguishing between
superconductor types.

2.5.3 Magnetic Field Twisting

As we did in Section 2.4.5 we compare the spontaneous magnetic field direction with that
of Bmax, defining the local twisting angle, θt(x1), in Equation 2.141. We reiterate the fact
that there are two values of, x1 = ±xmax1 , that give the same value of |Bmax| with magnetic
field ±|Bmax|. Our definition of θt(x1) means that the twisting angle is the same regardless
of which value we use. Close to the boundaries the value of the magnetic field is lower than
the accuracy of our numerics so we use the condition in Equation 2.142 to set θt(x1) = 0 for
such points. We plot the spontaneous field and twisting angle for two different orientations
for an anticlockwise s+ id domain wall in 2.21, noting that there is no apparent difference in
twisting between the two domain wall types.

Twisting is caused by the direction of the magnetic field, Bmax, changing between the non-
linear and linear regions of the domain wall. The direction for the linearised magnetic field is
given by,

Blin ∝ (0,−v6
1, v

5
1). (2.157)

The s+is model exhibits no twisting, as predicted by the linearisation. This is because, where
Bmax 6= 0, both B̂max and B̂lin are orthogonal to the great circle (cos θ, 0, sin θ) so there is no
change in direction moving from the nonlinear to linear region.
For the s+ id model we see significant magnetic field twisting, as seen in Figure 2.21. Along
the great circles we do still have θt(x1) = 0 as the direction of B̂max matches B̂lin. However,
away from the great circles they do not match giving non zero twisting. We consider,

θmaxt := max(θt(x1)) , (2.158)

which we plot in Figure 2.22.

We see that θt(x1) = 0 along the great circles which matches the linearisation. Away from
these we have non zero twisting which allow differentiation between the s + is and s + id
models. We note that compared to the p+ ip case, see Figure 2.15, the twisting angle in this
model does not oscillate and approaches a constant value away from the centre of the domain
wall.
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Figure 2.21: Plots of the maximum value of the twisting angle, θt(x1), for a clockwise s+ id
domain wall. We choose an orientation, x̂1 = (0.7967,−0.5789, 0.1736), where θt is close to
the maximum value for all orientations and another, x̂1 = (−0.309, 0.9511, 0), in the basal
plane where θt = 0. We only include anticlockwise domain walls as there is not an appreciable
difference in magnetic response between clockwise and anticlockwise domain walls. Note that
we have chosen to set x̂3 = (0, 0, 1) for the orientation in the basal plane.

2.5.4 Oscillatory Decay of Field Solutions

Unlike Section 2.4.3 we do not see any evidence of oscillating tails in the non-linear solutions.
This is because the real part of the dominant length scale too heavily damps the oscillations
for them to be seen in the linear region. This can be seen in Figure 2.23, where we see
Rµ1 = Im (µ1)

Re (µ1) < 0.4 for all orientations. This means finding these oscillating tails numerically,
for this parameter set, is not possible.

2.6 Summary

We have shown that domain walls provide a good way of analysing the symmetries and
solutions of the three different models, p + ip, s + is and s + id. We have also seen that
these domain walls produce a spontaneous magnetic field which can be explained due to the
anisotropy which couples the condensates and magnetic fields. In the p + ip case we have
extended the results of [26] from orientations in the basal plane to the full, SO(3), set of
orientations. Furthermore, we have shown that the linearisation correctly predicts oscillatory
decay of fields in the linear region of domain walls. In the s + is and s + id case we have
found and analysed a new type of domain wall as well as showing that the linearisation is
remarkably accurate in predicting the behaviour of the spontaneous magnetic field, including
the existence (or non existence) of magnetic field twisting in s+id and s+is superconductors.
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Maximum Twisting Angle, θmaxt

Figure 2.22: Plots of the maximum twisting angle of the magnetic field of domain wall in
an s + id superconductor: clockwise phase difference winding (left) and anticlockwise phase
difference winding (right). Each unit vector from the origin to a point on the hemisphere
defines a domain wall orientation (in terms of the crystalline basis), with the colour giving
the value of θmax for that orientation. Here we see that θmax is essentially the same for both
clockwise and anticlockwise domain walls. We use a value of cutoff = 5e− 06 which matches
the numerical tolerance used.
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Im (λ1)
Re (λ1)

Figure 2.23: Orientation dependence of Rµ1 = |Im (µ1)|
|Re (µ1)| for x̂1 =

(cosω cosφ, sinω cosφ, sinφ). Each unit vector from the origin to a point on the hemi-
sphere defines a domain wall orientation (in terms of the crystalline basis), with the colour
giving the value of Rµ1 for that orientation. The s + is plot has SO(2)(z) symmetry. The
s + id is very similar to the s + is case (it only differs by 0.08 at most). However, it
does exhibit the expected C2(z) symmetry. The important thing is that both models have
Im (λ1)
Re (λ1) < 0.4 which means the oscillating tails are likely too heavily damped to be seen in the
nonlinear solutions.
(ν, V0, k5) = (−0.95, 6, 2.35)
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Chapter 3

Meissner State in s + is and s + id
Superconductors

In this chapter we study how an external magnetic field, H, interacts with the boundary of
a superconductor and an electrical insulator. This is a three-dimensional effect that can be
modelled by a one-dimensional Ginzburg-Landau theory by considering how the fields vary
in a given direction, x̂1, perpendicular to the aforementioned boundary. This is known as
the Meissner state and was first introduced in Chapter 1 where we studied it in an isotropic
superconductor. In the isotropic case we apply a constant external magnetic field, H0, perpen-
dicular to the normal to the boundary, x̂1. We note that the choice of external magnetic field
direction, x̂3, for an isotropic model, does not change the solutions to the Ginzburg-Landau
equations, neither does the choice of x̂1. However, when we consider the anisotropic s + is
and s+ id models we find that both the choice of x̂1 and the choice of x̂3 affects the solutions
to the Ginzburg-Landau equations. Varying x̂3 can introduce magnetic field twisting, which
is where the direction of the internal magnetic field, B, differs from that of the externally
applied magnetic field, H. The twisting can be by as much as π

2 , where B and H are or-
thogonal, and provides a good opportunity to verify the linear model derived in Section 2.3
by comparing its predictions of magnetic field twisting to those found from solutions to the
nonlinear Ginzburg-Landau equations. This chapter is based on work from the joint paper
[2].

3.1 Gibbs Free Energy

We build upon Section 1.4 which introduced the Meissner state in a single component isotropic
superconductor. For the Meissner state we consider how an applied external magnetic field,
H, affects the internal fields of a superconductor, (B,ψ1, ψ2). However, doing so means we
need to modify the Ginzburg-Landau free energy to include energy contributions from the
applied external magnetic field, this is called the Gibbs free energy. The three-dimensional
anisotropic multicomponent Gibbs free energy is given below,

G =

∫
R3

g dx1dx2dx3 = F −Hi

∫
R3

Bi dx1dx2dx3 , (3.1)

with the same form of free energy,

F =

∫
R3

(
1

2
Q̃αβij (Diψα)∗(Djψβ) +

B2

2
+
(
FP − FP

(
u1, u2,±

π

2

) ) )
dx1dx2dx3 , (3.2)
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where the Q̃αβ = MTQαβM are the anisotropy matrices, Qαβ, that have been transformed
by a choice of M ∈ SO(3) which is equivalent to a coordinate transformation. There is an
implied summation over repeated indices. Additionally, the external magnetic field is written
as H = Hix̂i, where we assume its components, Hi , are constant.
For an s + is and s + id superconductor the anisotropy matrices and general form of the
potential are given by,

Q11 =

a1 0 0
0 a1 0
0 0 b1

 , Q22 =

a2 0 0
0 a2 0
0 0 b2

 , Q12 ≡ (Q21)T =

a3 0 0
0 s · a3 0
0 0 b3

 (3.3)

Fp = α1ρ
2
1 + α2ρ

2
2 +

β1

2
ρ4

1 +
β2

2
ρ4

2 + γ12ρ
2
1ρ

2
2 + η12ρ

2
1ρ

2
2 cos(2θ12) , (3.4)

where s = 1 gives a s+ is and s = −1 gives an s+ id superconductor. These two models have
SO(2)(z)×C2(x)×C2(y) and C2(z)×C2(x)×C2(y) spatial symmetries which was discussed
in more detail in Section 2.5. The action of the symmetries is given in Table 1.2. We remind
the reader that the η12 term introduces broken time reversal symmetry to the model which
means we have two gauge inequivalent vacuum solutions given by (ψ1, ψ2) = (u1,−iu2)eiω1

and (u1, iu2)eiω2 .
If we consider varying Hi

∫
R3 Bi dx1dx2dx3 with respect to Ai we find that it vanishes as we

have assumed Hi is constant. As only this term in the Gibbs free energy contains Hi, this
means that the Ginzburg-Landau equations for the bulk of the superconductor, Equations
1.124 and 1.125, are not affected by the value of Hi. Thus the choice of Hi only affect the
values of the fields on the boundary which then decay to their vacuum values in bulk of the
superconductor.
We use the orthonormal basis (x̂1, x̂3× x̂1, x̂3), which gives us the orientation matrix, M , used
to transform the anisotropy matrices. We can now study the Meissner state in the x̂1 direction
which we define as the inward pointing normal to the boundary between the superconductor
and insulator. We then apply a constant external magnetic field, H0, in the x̂3 direction,
such that H = H0x̂3. This introduces a translations invariance, of the fields, in the directions
perpendicular to the normal, x̂2 and x̂3, which allows us to dimensionally reduce Equation
3.1 using the ansatz,

ψα 7→ ψα(x1)

A 7→ (A1(x1), A2(x1), A3(x1)) .
(3.5)

This is the same one-dimensional ansatz that we used for domain walls, described in Section
2.5. We retain A3 for the one-dimensional Ginzburg-Landau equations to be consistent with
the fully three-dimensional versions, as discussed in Section 2.2.1. Thus x1 = 0 is the boundary
between an insulator, x1 < 0, and a superconductor x1 > 0. Furthermore, the value of H0

will affect the values of the fields on the boundary, x1 = 0, but due to the anisotropy the
choice we make for the x̂3, the direction for the externally applied magnetic field, also affects
the Gibbs free energy through the transformation Q̃αβ 7→MTQαβM .
As our ansatz allows the magnetic field within the superconductor, B, to point in both the
x̂2 and x̂3 directions. For some orientations, x̂1, the internal magnetic field may not point in
the x̂3 direction. This is called magnetic field twisting and is best measured by,

cos (θt) =
B3√

B2
2 +B2

3

, (3.6)

where θt measures the amount the internal magnetic field deviates from the direction of the
external magnetic field, x̂3.
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3.1.1 Numerical Method

We, as in Chapter 2, use arrested Newton flow to produce local minimum solutions to Equation
3.1. To recap we discretise our one-dimensional domain into Nx = 1000 equally spaced points
with a spacing of hx = 0.05. We also discretise the fields at each point and calculate their
spatial derivatives using fourth order finite differences. We then apply these discretised fields
and derivatives to the Ginzburg-Landau equations. We can consider these equations to be
gradients, with respect to the fields, of the discretised Gibbs free energy and then use these
gradients to evolve the fields towards a local minimum of the Gibbs free energy.
This method is described in more detail in Section 2.2.3, where the key difference is that,
for the Meissner state, only the right hand boundary, x̂1 → ∞, has the fields fixed to their
vacuum values,

lim
x→∞

(ψ1, ψ2, A1, A2, A3) = (u1, iu2, 0, 0, 0) . (3.7)

We have chosen a gauge that requires, ∂1ψα = 0, for the free energy to be finite as well as
choosing the value of ω2 = 0. Numerically we impose this boundary condition at x1 = L,
where L is large, to approximately simulate an infinite superconductor. However, similarly
to the isotropic Meissner state in Section 1.4, we use natural boundary conditions at x1 = 0.
For our dimensionally reduced system this is the requirement that,

∂g

∂ (∂1Φ)

∣∣∣∣
x1=0

= 0 , (3.8)

where Φ = (Re(ψ1), Im(ψ1),Re(ψ2), Im(ψ2), A1, A2, A3). Thus the natural boundary condi-
tions can be expressed as,

Q̃1β
1jDjψβ

∣∣∣
x1=0

= 0 (3.9)

Q̃2β
1jDjψβ

∣∣∣
x1=0

= 0 (3.10)

∂1A1 = 0 (3.11)

B|x1=0 = H , (3.12)

where numerically, for each step of the Newton flow algorithm, we must solve the above set of
simultaneous equations to calculate the value of the fields on the boundary, x1 = 0. However,
the values of Ai are easily determined from Equations 3.11 and 3.12. Then, as Equations 3.9
and 3.10 are linear in ψβ, we can determine all of the values of the fields on the left boundary.

The parameters used are, H0 = 0.1, and the anisotropy matrices are,

s+is s+id

Q11 =

 4 0 0
0 4 0
0 0 0.3

 Q11 =

 4 0 0
0 4 0
0 0 0.3


Q22 =

 0.5 0 0
0 0.5 0
0 0 2

 Q22 =

 0.5 0 0
0 0.5 0
0 0 2


Q12 =

 1 0 0
0 1 0
0 0 0.2

 Q12 =

 1 0 0
0 −1 0
0 0 0.2


Table 3.1: Form of the anisotropy matrices for s+ is and s+ id systems.
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with the potential given by

Fp = −1

2
|ψ1|2−

1

2
|ψ2|2+2|ψ1|4+3|ψ2|4+

3

2
|ψ1|2|ψ2|2

+
1

8
|ψ1|2|ψ2|2cos 2θ12 .

(3.13)

We note that these are the same parameter sets as we used for the s+ is and s+ id domain
walls results, Section 2.5.

3.2 Magnetic Field Twisting

Here we show how changing the direction of the external magnetic field, x̂3, for a given x̂1

orientation, can cause the component of the magnetic field in the x̂2 direction, B2, to be non
zero. This would mean that the internal magnetic field is pointing in a different direction to
that of the externally applied magnetic field. In other words the model can exhibit magnetic
field twisting.
We now return to the linearisation, see Section 2.3, as a way of predicting/interpreting which
x̂3 causes magnetic field twisting. We remind the reader that the linearisation finds five
modes, ~vi, along with the length scales, λi. These describe the long range behaviour of the
fields, x1 → ∞, when the fields are close to their vacuum values, as x1 → ∞, and thus the
linearisation is valid. The modes and length scales are ordered by decreasing real part of λi.
We call λ1 the leading or dominant length scale and assume that the corresponding mode,
~v1, will dominate the linear solution. In general, the linearisation does not predict if a mode
is excited, which means it contributes towards the long range behaviour of the full nonlinear
solutions. Thus the non leading modes may also contribute to the behaviour of the linear
solutions. However, we can predict all of the possible directions for the linear magnetic field,
there will be one associated with each magnetic or mixed mode. Then if our chosen direction
for the external magnetic field, x̂3, does not align with any of these direction then we can
expect magnetic field twisting.
Consider Figure 3.1a that shows the Meissner state for the s + is model for the orientation,
x̂1 = (1, 0, 0). This is an example of the type of plots we will be using to analyse the
relationship between magnetic field twisting and the linearisation. It shows the components
of the magnetic field where, B = (0, B2, B3). Additionally, we include ρα where we have
written the condensate in polar coordinates, ψα = ραe

iθα . The phase difference is defined as
θ12 := θ1 − θ2 and the magnetic twisting angle, θt, from Equation 3.6 .
If we focus only on the fields for the χ = π

2 solution which gives x̂3 = (0, 0, 1). The plots start
with B3 = H0 for x1 = 0 and show it decaying to zero as we move into the superconductor.
This shows how an external magnetic field will penetrate the superconductor close to the
surface. Correspondingly the values of ρ1, ρ2 and θ12 approach their vacuum values as B3

decays to zero. We note that B2 = 0 on the boundary as the applied magnetic field, H = H0x̂3,
is zero in that direction.

x̂1 = (1, 0, 0)

Consider the simplest orientation, x̂1 = (1, 0, 0). We then define x̂3(χ) = (0, cosχ, sinχ),
where H = H0x̂3(χ), which fixes the orthonormal basis, for a given value of χ, as we generate
the final basis vector via, x̂2 = x̂3(χ) × x̂1. In this case the length scales for the s + is and
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s+ id states are exactly the same and they are all real,

µ1 = 0.3124, ~v1 = (−0.0356, 0.0077, 0.9665,−0.2541, 0, 0)T ,

µ2 = 0.3874, ~v2 = (0, 0, 0, 0, 0, 1)T ,

µ3 = 0.6694, ~v3 = (0, 0, 0, 0, 1, 0)T ,

µ4 = 0.9332, ~v4 = (−0.1553, 0.0585,−0.7053, 0.6892, 0, 0)T ,

µ5 = 2.4065, ~v5 = (−0.0376,−0.8038,−0.4742,−0.3572, 0, 0)T .

(3.14)

This is because the two models differ only by the value of Q12
22 and for x̂1 = (1, 0, 0) this term

vanishes because none of the fields depend on the value of x2 due to the dimensionally reduced
ansatz that is employed. This can be seen from the structure of the linearised Ginzburg-
Landau equations, 2.59, 2.60 and 2.61
If we consider the value of the mixing angles, defined in Equations 2.81 and 2.82,

(θ1
m, θ

2
m, θ

3
m, θ

4
m, θ

5
m) =

(
0,
π

2
,
π

2
, 0, 0, 0

)
, (3.15)

this states that modes ~v2 and ~v3 are purely magnetic, θim = π
2 , and the rest are purely

condensate, θim = 0. This means that linear magnetic field, Blin, points in purely the (0, 0, 1)
or (0, 1, 0) direction. We remind reader that the simplest choice of x̂3 = (0, 0, 1) was used for
the linearisation. Thus if χ = 0 or χ = π

2 then the external magnetic field, H, will point in
either the (0, 1, 0) and (0, 0, 1) directions respectively. This results in only the linear modes
parallel to the direction of H being excited and thus we see no magnetic field twisting.
However, when χ = π

4 we expect to see magnetic field twisting as neither Blin, for the modes
~v2 or ~v3, is parallel to x̂3(χ = π

4 ). Thus both modes should be excited by the external
magnetic field. Observing Figures 3.1a and 3.1b we see that for only χ = π

4 do we have non
zero B2 which means the internal magnetic field twists away from the applied magnetic field.
Thus predictions made with the linearisation match simulations run using the full nonlinear
Ginzburg-Landau equations. If we look at both plots for B2 we see that it vanishes on the
left boundary but then peaks and then decays to zero again at long range. If we consider the
plots for B3 we see that changing χ changes how close to the boundary, x1 = 0, it decays to
zero. The fact that changing the direction of applied magnetic field changes how the internal
magnetic field decays inside the superconductor is a novel result.
The quantity θt can only be calculated when |B|6= 0. Considering Figure 3.1a, θt appears
discontinuous around x1 = 10 but that is merely due to the magnetic field vanishing and
so a value for θt can no longer be calculated for x1 > 10. For Figure 3.1b, θt can no longer
be calculated for x1 > 20. This is expected as the magnetic field strength decays to zero as it
moves deeper into the superconductor, this is the Meissner effect.
The standard picture for an isotropic superconductor is one where the direction, x̂3(χ), can
be fixed without any change to the physics. This is clearly not the case for even the simplest
possible choice of orientation for an anisotropic superconductor.

x̂1 = 1√
2
(1, 1, 0)

We now move to an orientation, still in the basal plane but away from any crystalline axes, x
or y. This allows us to differentiate between the s+ is and s+ id models. If x̂1 = 1√

2
(1, 1, 0)

then x̂3(χ) = 1√
2
(− cosχ, cosχ,

√
2 sinχ), with H = H0x̂3(χ), will define a unique basis for a

given value of χ. Note that, for the linearisation only, as we are still in the basal plane we
can set x̂3 = (0, 0, 1) without loss of generality.
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s+ is, x̂1 = (1, 0, 0)

(a) The Meissner state for an s + is superconductor orientated in the, x̂1 = (1, 0, 0), direction. We
see the only non zero value of B2, and therefore θt, occurs when χ = π

4 .

s+ id, x̂1 = (1, 0, 0)

(b) The Meissner state for an s + id superconductor orientated in the, x̂1 = (1, 0, 0), direction. Like
the s + is case we see that non zero B2, and therefore θt, only occur for χ = π

4 . We note that in the
s+ id case the decay to the homogenous superconducting state happens further into the superconductor.

Figure 3.1: Field solutions for the Meissner state for s + is and s + id with x̂1 = (1, 0, 0)
and external magnetic field H = H0(0, cosχ, sinχ). The fields approach their vacuum values,
(ρ1, ρ2, θ12, B2, B3) = (u1, u2,−π

2 , 0, 0), as x1 increases, the external field is given by, H =
H0(0, cosχ, sinχ), where H0 = 0.1.
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For the s+ is model, due to its spatial SO(2)(z) symmetry, the length scales are the same as
for Equation 3.14. However, the length scales for the s+ id model are,

µ1 = 0.3347, ~v1 = (0, 0,−0.9603, 0.2788, 0, 0)T ,

µ2 = 0.3874, ~v2 = (0, 0, 0, 0, 0, 1)T ,

µ3 = 0.6505± i0.0837, ~v3 =



−0.1992± i0.3962
−0.0733∓ i0.1650

0
0

−0.8779∓ i0.0061
0

 ,

µ4 = (µ3)∗, ~v4 = (~v3)∗,

µ5 = 1.6308, ~v5 = (0.0569, 0.9734, 0, 0, 0.2219, 0)T ,

(3.16)

which we note that some are now complex. If we consider the mode mixing also we see that,

(θ1
m, θ

2
m, θ

3
m, θ

4
m, θ

5
m) = (0,

π

2
, 1.0715, 1.0715, 0.22380) , (3.17)

and that the leading magnetic mode, ~v2, corresponds to the magnetic field being in the (0, 0, 1)
direction. Thus if H is applied in the (0, 0, 1) direction, x̂3(χ = π

2 ), we expect no magnetic
field twisting as the applied magnetic field matches the direction of the linear magnetic field.
However, for χ = 0, χ = π

4 , the external magnetic field does not align with the (0, 0, 1)
direction and so we expect, and do see in Figure 3.2b, magnetic field twisting. However, for
the s + is case the results are identical to those given in Figure 3.1a except for the B2 plot
which differs by a factor of −1 which can be accounted for by the different choice of x̂2 and
x̂3(χ).
The most interesting feature is that for, χ = 0, we see that the s + is case exhibits no
magnetic field twisting where as the s+ id case does. This would provide an experimentally
verifiable signature to distinguish between these two types of superconductors. This is similar
to the suggestions in [1]. However, the Meissner state is a more fundamental state of a
superconductor and potentially much easier to create in a laboratory than a domain wall. We
note that, as with Figures 3.1a and 3.1b, the value of θt for Figures 3.2a and 3.2b appears
discontinuous at x1 > 10 and x1 > 20 respectively. However, this is merely due to the value
of θt not being calculated as the magnetic field has vanished past these points.

x1 = 1
2
(1, 1,

√
2)

As we showed, in Section 2.3, the presence of the BTRS term in the potential means that
θ0 = ±π

4 which means that, Iαβij 6= 0, and thus there is coupling of different modes. Therefore
for some orientations the internal magnetic field will not solely point in the x̂3(χ = 0) or
x̂3(χ = π

2 ) direction and in these cases we expect twisting for all values of χ. We analyse one
such orientation here.
If we consider x1 = 1

2(1, 1,
√

2) and then set,

x̂3(χ) =

(
cosχ(1/2, 1/2,−1/

√
2) + sinχ(− 1√

2
,

1√
2
, 0)

)
, (3.18)
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s+ is, x̂1 = 1√
2
(1, 1, 0)

(a) The Meissner state for an s+ is superconductor orientated in the, x̂1 = 1√
2
(1, 1, 0), direction. Due

to the SO(2)(z) symmetry of the s+ is model these solutions are the same as those for x̂1 = (1, 0, 0),
Figure 3.1a, up to a sign change for B2 which is due to x̂2 = x̂3 × x̂1 being different. We see that we
still only see magnetic field twisting for χ = π

4 .

s+ id, x̂1 = 1√
2
(1, 1, 0)

(b) The Meissner state for an s+ id superconductor orientated in the, x̂1 = 1√
2
(1, 1, 0), direction. We

see that for χ = 0 and χ = π
4 we have magnetic field twisting as predicted by the linearisation.

Figure 3.2: Field solutions for the Meissner state for s+ is and s+ id superconductors with
x̂1 = 1√

2
(1, 1, 0) and external magnetic field H = H0

1√
2
(− cosχ, cosχ,

√
2 sinχ). The fields

approach their vacuum values, (ρ1, ρ2, θ12, B2, B3) = (u1, u2,−π
2 , 0, 0), as x1 increases, the

external field is given by, H = H0
1√
2
(− cosχ, cosχ,

√
2 sinχ), where H0 = 0.1.
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where, H = H0x̂3(χ), we define a unique basis for a given value of χ. For the s + is model,
the length scales are given by,

µ1 = 0.3129± i0.1224, ~v1 =



0.0059± i0.0160
0.0019∓ i0.0010
−0.9071∓ i0.2610
0.0616∓ i0.0509
0.0440± i0.0971
−0.1245∓ i0.2748

 ,

µ2 = (µ1)∗, ~v2 = (~v1)∗,

µ3 = 0.6694, ~v3 = (0, 0, 0, 0,−0.9428,−0.3333)T ,

µ4 = 0.8523, ~v4 = (−0.5696, 0.3828,−0.3078, 0.6460,−0.0435, 0.1229)T ,

µ5 = 1.2136, ~v5 = (0.2941, 0.7487, 0.5889, 0.0168, 0.0255,−0.0722)T .
(3.19)

The mixing angles,

(θ1
m, θ

2
m, θ

3
m, θ

4
m, θ

5
m) = (0.3268, 0.3268,

π

2
, 0.1716, 0.0767) , (3.20)

show us that we have one purely magnetic mode, ~v3, but this mode does not solely point
in the x̂3(χ = 0) or x̂3(χ = π

2 ) direction. Additionally, the dominant mode is mixed, has a
complex length scale, and also has a Blin that does not solely point in either the x̂3(χ = 0)
or x̂3(χ = π

2 ) direction. This means we can expect magnetic field twisting for all values of χ.
The s+ id tell a similar store, with lengths scales given by,

µ1 = 0.3106± i0.1247, ~v1 =



−0.0009± i0.0020
−0.0012∓ i0.00540

0.9444± i0.0512
−0.0502± i0.0582
−0.0637∓ i0.0830
0.1782± i0.2384

 ,

µ2 = (µ1)∗, ~v2 = (~v1)∗,

µ3 = 0.7307± i0.0805, ~v3 =



0.2653± i0.3259
−0.2835∓ i0.2461
0.0686± i0.0.0598
−0.0393∓ i0.0561
−0.7800± i0.0489
−0.2386± i0.0423

 ,

µ4 = (µ3)∗, ~v4 = (~v3)∗,

µ5 = 1.1224, ~v5 = (−0.4100,−0.8862,−0.1039, 0.0130,−0.1884,−0.0149)T .

(3.21)

In this case all of mixing angles correspond to mixed modes,

(θ1
m, θ

2
m, θ

3
m, θ

4
m, θ

5
m) = (0.3220, 0.3220, 0.9617, 0.9617, 0.1901) , (3.22)

so that Blin will not lie in one direction only. This also means, we cannot predict what
direction the linear magnetic field will point in as that will depend upon which modes are
excited. However, we do know that any excited mode will not point in the x̂3(χ = 0) or
x̂3(χ = π

2 ) directions, so we can expect magnetic field twisting for all of our chosen values of
χ.
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If we consider Figures 3.3a and 3.3b we see that we have non zero magnetic twisting angles,
θt, for all three values of χ. We have wildly different internal magnetic fields, that still decay
to zero and thus the superconductor will exhibit the Meissner effect, that occur simply by
changing the direction of the applied magnetic field whilst still keeping it perpendicular to
the boundary normal, x̂1. This orientation shows how different the anisotropic case can be
from the isotropic case.

3.3 Summary

We have shown that both the direction of the external magnetic field and the type of su-
perconductivity, through the values of the anisotropy matrices, affect the degree or existence
of magnetic field twisting. This twisting can be explained by the competition between the
direction of the external magnetic field, and the direction the linearised theory predicts for the
magnetic field deep inside the superconductor. This demonstrates another testable prediction
of the linearisation which we have confirmed along with the prediction of oscillating tails in
p+ip superconductors, see Section 2.4.3. The fact that the magnetic response of the s+is and
s+ id superconductors differs when the direction of an applied magnetic field changes would
provide an experimental method of distinguishing between these types of superconductors.
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s+ is, x̂1 = 1
2
(1, 1,

√
2)

(a) The Meissner state for an s + is superconductor orientated in the, x̂1 = 1
2 (1, 1,

√
2) , direction.

We see that, for this non basal plane, every orientation of the external magnetic field yields twisting
in the magnetic field.

s+ id, x̂1 = 1
2
(1, 1,

√
2)

(b) The Meissner state for an s + id superconductor orientated in the, x̂1 = 1
2 (1, 1,

√
2) , direction.

Like the s+ is case we see magnetic field twisting for all directions of the external magnetic field.

Figure 3.3: Field solutions for the Meissner state for s+ is and s+ id with x̂1 = 1
2(1, 1,

√
2)

and external magnetic field H = H0

(
cosχ(1/2, 1/2,−1/

√
2) + sinχ(− 1√

2
, 1√

2
, 0)
)

. The fields

approach their vacuum values, (ρ1, ρ2, θ12, B2, B3) = (u1, u2,−π
2 , 0, 0), as x1 increases, the

external field is given by, H = H0

(
cosχ(1/2, 1/2,−1/

√
2) + sinχ(− 1√

2
, 1√

2
, 0)
)

, where H0 =

0.1.
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Chapter 4

Vortices in s + id and s + is
Superconductors

In this chapter we explore vortex solutions in multicomponent Ginzburg-Landau theory, [42],
which can have sufficient degrees of freedom to allow skyrmion solutions, [43]. Considering
these two-dimensional topological solitons in anisotropic s + id superconductors we find two
subclasses namely: CP 1 skyrmions and multicomponent vortices. We extend the work of
[44] to three-dimensions considering how changing the orientation of our two-dimensional
solutions affects the type of vortex solutions we see. Our solutions lie on a plane in a three-
dimensional sample and so we can change the orientation of this plane in these anisotropic
models. Our solutions are found numerically with fixed boundary conditions that simulate an
infinite superconductor allowing us to consider only bulk solutions and thus ignore boundary
effects. The effects of changing the orientation on the type of solution as well as the energy
and maximum magnetic field are explored. Additionally, we explore how the magnetic field
can twist away from the perpendicular direction, x̂3, due to the vortex excitations. When
the orientation is not aligned with one of the crystalline axes we see magnetic field twisting.
Finally, we show when we consider the s+ is model we do not find CP 1 skyrmion solutions,
regardless of parameter choice, but do still see twisting in the magnetic field.

4.1 Vortices in Multicomponent Ginzburg-Landau Theory

We have seen in Section 1.6 that by the choice of boundary conditions we can generate
two-dimensional topological soliton solutions (vortices), in the isotropic single component
Ginzburg-Landau model. We now consider what happens in a two component Ginzburg-
Landau model,

F =

∫ ∞
0

∫ 2π

0

(
1

2

2∑
α=1

(
|∂rψα|2+

1

2r2
|Dθψα|2

)
+

(∂raθ)
2

2r2
+

2∑
α=1

(
λα
8

(u2
α − |ψα|2)2

))
rdrdθ

(4.1)

F =

∫ ∞
0

∫ 2π

0
f rdrdθ , (4.2)

written in terms of polar coordinates, r =
√
x2

1 + x2
2, tan θ = x2

x1
, with ar = 0 through our

choice of gauge. The change to polar coordinates does not affect the solutions but allows us to
analyse the boundary more easily. For a finite free energy we require the free energy density,
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f , to vanish on the boundary, r → ∞. Considering the potential term, we see that for it to
vanish we set,

ψ∞α = uαe
iχ∞α , (4.3)

where ψ∞α , denotes the value of the field on the boundary. However, the requirement that
Dθψ

∞
α = 0, implies each,

χ∞α = aθ . (4.4)

Therefore a finite energy solution must have, χ∞1 (θ) = χ∞2 (θ) + const, [45]. This implies that
the maps,

ψ∞1 : S∞1 → S1 (4.5)

ψ∞2 : S∞1 → S1 , (4.6)

have the same integer winding number, which we call N , for a finite energy solution.
Moving our attention to the magnetic field we see that, the magnetic flux is still quantised in
units of 2π, as in the single component case.

Φ =
1

2π

∫
R2

B dx1dx2 (4.7)

=
1

2π

∫ 2π

0
aθ dθ (4.8)

=
1

2π

∫ 2π

0
χ∞α dθ = N , (4.9)

where we note that Φ = 1
2π

∫ 2π
0 χ∞1 dθ ≡ 1

2π

∫ 2π
0 χ∞2 dθ. Furthermore, we remind the reader

that aθ is only equal to χ∞α if Dθψ
∞
α vanishes which is only required to happen on the

boundary. Thus the magnetic flux for the system must be the integer, N , set by the winding
of the fields on the boundary.

4.2 Vortices in s+ id Superconductors

Vortex solutions in anisotropic s+ id superconductors are explored. We use a parametrisation
of the s+ id model in which, by varying a single parameter, αs, we can see interesting multi-
component vortex solutions that differ from those found in the isotropic multicomponent case
such as CP 1 skyrmions, described in Section 4.2.4. We explore how the energetic competition
between these solutions changes with the orientation as well as analysing how the magnetic
field can twist for certain orientations. In the case of vortices magnetic field twisting is de-
fined as when the magnetic field is no longer parallel to the perpendicular direction, x̂3, which
defines the vortex plane.
We consider an alternative parametrisation of the s+ id model to that in Section 2.5 which is
based on the model in [44] (microscopically derived in [46]) which can be equivalently written
as,

F2D =
∫
R2

(

2∑
i=1

[
2(|Diψ1|2) + (|Diψ2|2)

]
+ [(D1ψ1)

∗D1ψ2 − (D2ψ1)
∗D2ψ1 + c.c.] + κ2|B|2+Fp) dx1dx2

(4.10)

Fp = −2αs|ψ1|2−|ψ2|2+
4

3
|ψ1|4+

1

2
|ψ2|4+

8

3
|ψ1|2|ψ2|2+

4

3
|ψ1|2|ψ2|2cos (2θ12) . (4.11)

We note that the model is formulated for two dimensions only and depends only on the two
parameters κ ∈ [2, 4] and 2

3 < αs < 1. Through our own numerical investigation, which
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Figure 4.1: A plot of αs versus u2
i with the data points we have used in later simulations

marked, for αs ∈ [2
3 , 1], the region where both u1 and u2 are non zero.

corroborates [44], we find that, qualitatively, the solutions do not change with the value of κ,
in the basal plane, so we choose to set κ = 4. This now gives us a one-parameter family of
solutions to investigate.
If we consider the potential, Fp, we see it depends only on the parameter αs, and the vacua
depend on αs and are given by,

u2
1 =

9αs − 6

4
u2

2 = 3(1− αS)

θ12 = ±π
2
, (4.12)

where we find two gauge inequivalent vacua due to the BTRS term 4
3 |ψ1|2|ψ2|2cos (2θ12). We

note that the vacuum for, αs <
2
3 , has u2

1 = 0 and for, αs > 1, it has u2
2 = 0. These two

transitions are from the s+id state to the single component isotropic Ginzburg-Landau model
discussed in Section 1.3.
If we consider Figure 4.1, which shows the region, αs ∈ [2

3 , 1], where both condensates are non
zero we see for αs ∈

[
2
3 ,

6
7

)
u2

1 > u2
2, whereas at αs = 6

7 they equal each other. Then for the
region αs ∈

(
2
3 ,

6
7

]
the inequality reverses. We find that it is the relative amplitudes of u1

and u2 that determines the type of vortex solution that has the lowest energy. We now extend
Equation 4.10 to three-dimensions so that we can consider the orientation dependence of the
model as well as whether magnetic field twisting occurs. If we consider our three-dimensional
version of Equation 4.10,

F̃ =

∫
R3

(
Pαβij (D̃iψα)∗D̃jψβ + κ2B̃2 + (Fp − Fp(u1, u2,±

π

2
))
)
dx̃1dx̃2dx̃3 , (4.13)

with i, j ∈ {1, 2, 3} and α, β ∈ {1, 2}. We have normalised the potential relative to the
homogenous superconducting state so that the energy is finite. The 3× 3 anisotropy matrices
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are given as,

P̂ 11 = diag([2, 2, 2µ]) (4.14)

P̂ 22 = diag([1, 1, µ]) (4.15)

P̂ 12 = diag([1,−1, µ]) . (4.16)

We already know the form of the anisotropic matrices, in three-dimensions, for the s + id
model (see Section 1.8.1). This form gives the model the required C2(z) × C2(y) × C2(x)
spatial symmetry that defines the s+ id model. We have chosen the parameter, µ, such that
the matrix P 11P 22−(P 12)2 is non-negative. This condition ensures that the energy is positive
definite, [25].
We note that Equation 4.13 can be spatially rescaled,

x̃1 7→ λxx1

Ãi 7→
Ai
λx

Pαβ 7→ 1

2
λ2
xQ

αβ

F̃ 7→ F

λ3
x

λx := (2κ2)
1
4 ,

(4.17)

giving,

F =

∫
R3

(
1

2
Qαβij (Diψα)∗(Djψβ) +

B2

2
+ Fp(ρ1, ρ2, θ12)

)
dx1dx2dx3 , (4.18)

the standard form for the free energy that we use throughout this thesis.
As we study vortex solutions, which are translationally invariant in the x̂3 direction, we apply
the following ansatz,

ψα 7→ ψα(x1, x2) (4.19)

A 7→ A1(x1, x2)dx1 +A2(x1, x2)dx2 +A3(x1, x2)dx3 , (4.20)

which will allow two-dimensional solution of Equation 1.123 that are translationally invariant
in the x3 direction. Additionally, we retain A3 6= 0 to allow the magnetic field,

B = (B1, B2, B3) = (∂2A3,−∂1A3, ∂1A2 − ∂2A1) , (4.21)

to point in any direction which will allow us to explore magnetic field twisting. This closely
mirrors the ansatz choice for domain walls, Section 2.2.1, except we now deal with two-
dimensional solutions and the magnetic field can also point in the B1 direction. Additionally,
we define the orientation of the vortex solution by x̂3 not x̂1 as in the domain wall case. This
gives us the free energy per unit length,

F =

∫
R2

(
1

2
Qαβij (Diψα)∗(Djψβ) +

B2

2
+ Fp(ρ1, ρ2, θ12)

)
dx1dx2 , (4.22)

now written in the above form with the anisotropy matrices given by Qαβ = 2
λ2
x
Pαβ.
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4.2.1 Numerical Method

Here we outline the general numerical method used to generate vortex solutions in the s+ id
model. We will assume κ = 4 and µ = 0.7 throughout and refer to the free energy per unit
length as simply the energy for the rest of this chapter. The value of µ = 0.7 was chosen to
be both non zero and less than one and numerical simulations showed that, like κ, changing
µ did not change the qualitative behaviour of the solutions.
Similarly, to Section 2.2.3, we discretise our two-dimensional domain as a square grid, Nx×Nx,
of evenly spaced points, with spacing hx > 0. Typically we use Nx = 401 and hx = 0.1 which
we found as the best compromise between numerical accuracy and speed. We label each point
with indices, (I, J), such that the field values at that point are labelled,

ψ(I,J)
α = ψα(x

(I)
1 , x

(J)
2 ) (4.23)

A
(I,J)
i = Ai(x

(I)
1 , x

(J)
2 ) . (4.24)

The now two-dimensional Ginzburg-Landau equations, Equations 1.124 and 1.125, are solved
using arrested Newton flow, where again the derivatives are approximated by fourth order
central differences.
As we have discretised on a square grid we use boundary conditions in terms of Cartesian
(not polar) coordinates where the continuous boundary conditions for vortex solutions in an
s+ id superconductor (with winding number, N) are,

ψ1 = u1
(x1 + ix2)N

|x1 + ix2|N
(4.25)

ψ2 = s · iu2
(x1 + ix2)N

|x1 + ix2|N
(4.26)

A1 = N
x1

x2
1 + x2

2

(4.27)

A2 = N
−x2

x2
1 + x2

2

(4.28)

A3 = 0 . (4.29)

The phase difference, θ12 = θ1−θ2, on the boundary is −sπ2 where we choose s = 1 so that we
have an s+ id superconductor. Note that s = −1 gives an s− id superconductor which gives
the same solutions up to a spatial rotation and conjugation of the solutions in the x̂1 × x̂2

plane. Then using arrested Newton flow we generate locally minimising solutions to Equation
4.22. We run all simulations in this chapter for a grid of 401 × 401 points with a spacing of
hx = 0.1 and a numerical tolerance of 0.0075. It should be noted that some of our simulations
are limited by available computing power thus we use a larger value of numerical tolerance,
see Equation 2.41, and a smaller number of different orientations than are sampled in Chapter
2.
Similarly to Section 2.2.2 we can change the orientation of our solution by transforming the
Qαβ matrices. We note that, as our excitations now occur in both the x1 and x2 directions,
we now define our orientation by the value of x̂3 rather than x̂1 as we do for one-dimensional
solutions. Apart from this the transformation of the anisotropy matrices is still,

Q̃αβ = MTQαβM , (4.30)
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where now,

M =


...

...
...

x̂1 x̂3 × x̂1 x̂3
...

...
...

 . (4.31)

We can generate a M ∈ SO(3) matrix for a given value of x̂3 using the Gram-Schmidt method
described in Section 2.2.3.1 except we generate M using x̂3 not x̂1.

4.2.2 Vortices

Consider, Figure 4.2a which gives an N = 2 two component vortex solution. We see that
each condensate vanishes at precisely two points which we call a zero. Each zero has a local
winding number of nv = 1. If we draw a closed contour, δC, that contains only an single
zero then that region would be considered local and we can calculate its winding number as
follows,

nv =
1

2π

∫
δC
∂θ arg (ψα(r, θ)) dθ . (4.32)

If we label the total winding number of the zeros and anti zeros of ψ1 and ψ2 as n1v, n1av, n2v, n2av

respectively. Then we can choose to name our solutions as a (n1v + n1av, n2v + n2av) vortex.
We see that Figure 4.2a would be called a (2 + 0, 2 + 0) vortex which we shorten to a (2, 2)
vortex. This naming system may seem excessive for this solution but for some values of αs we
find, for example, both n1v and n1av are non zero. That is solutions occur that contain both
zeros and anti zeros in a condensate. The zeros in Figure 4.2a separate into individual nv = 1
zeros. This differs from the single component case, for certain parameter choices, where a
single N = 2 vortex forms at the centre of the domain. We note that the zeros in the ψ1

condensate occur at the same spatial points as the zeros in the ψ2 condensate, thus we call
these coincident zeros.
To reiterate,

• A zero of ψα is a point in the domain where ψα = 0 and the winding number around
that point is positive.

• An anti zero of ψα is a point in the domain where ψα = 0 and the winding number
around that point is negative.

4.2.3 Discretised Zeros of ψα

In the continuous case, a zero of a condensate is trivially the point where it vanishes. However,
for numerical results we deal with discretised solutions and more thought must be put in to
identify such zeros. This is because, in general, we do not find points where the condensates
exactly vanish as zeros occur in between lattice sites. Thus the nv points, marked as on
Figure 4.2a, are only approximations to the locations of the zeros.
First, we define zeros and coincident zeros on a lattice.

Definition 4.2.1 Discretised Zero. A condensate ψ
(I,J)
α , discretised on a square lattice in-

dexed by (I, J), is said to have a zero at the point (x
(I)
1 , x

(J)
2 ) if there is a change of sign in both

the real and imaginary part of the condensate that occurs either in the range [ψ
(I,J)
α , ψ

(I+1,J)
α ]

or [ψ
(I,J)
α , ψ

(I,J+1)
α ].
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(a) A (2, 2) vortex solution showing only the condensates, both ψ1 and ψ2 contain two nv = 1 zeros
and thus have the same overall winding number N = 2 and denotes the winding number of the zero
it is identifying.
We use the same parameter values as Figure 4.8b.

(b) A (2, 2) CP 1 skyrmion solution showing only the condensates, which has no coincident zeros,
Ψ = (ψ1, ψ2) 6= {0}. Note that denotes the winding number of the zero it is identifying. We use the
same parameter values as Figure 4.8a.

Figure 4.2: A comparison of the condensates only for a (2, 2) vortex and a (2, 2) CP 1

skyrmion solution, where
∑
nv = N for each condensate.
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This definition is fairly forgiving as it allows changes of sign of the condensate to occur on
different sites but on the same square of the lattice. This square has vertices indexed by,
(I, J), (I + 1, J), (I + 1, J + 1), (I, J + 1).

Definition 4.2.2 Discretised Coincident Zero. When there is a discretised zero at both ψ
(I,J)
1

and ψ
(I,J)
2 there is said to be a discretised coincident zero at the point on the lattice (x

(I)
1 , x

(J)
2 ).

Algorithm 1 details how to calculate the winding number around a point in the lattice. Algo-
rithm 2 details how to find all the discretised zeros of a lattice solution and uses Algorithm 1
to find the winding number for each point as well as listing all of the zeros that are coincident.
These algorithms are used to generate the points marked by in Figure 4.2a.

4.2.4 CP 1 Skyrmions

We now move onto a special class of vortices, namely CP 1 skyrmions, [47]. They are solutions
to the Ginzburg-Landau equations that contains precisely zero coincident zeros. We note that
in the isotropic Ginzburg-Landau case a CP 1 skyrmion is not energetically favourable over a
vortex solution where the zeros coincide. However, with the introduction of the anisotropic
s+ id model, they can be energetically favourable.
If we define

Ψ = (ψ1, ψ2) = (|ψ1|eiθ1 , |ψ2|eiθ2) , (4.33)

then a CP 1 skyrmion has Ψ 6= {0}. This is equivalent to stating that,

Ψ : R2 7→ C2 \ {0} . (4.34)

One can define a projection map,

π : C2 \ {0} 7→ CP 1 . (4.35)

We now define another map,

n = π ◦Ψ (4.36)

n : R2 7→ CP 1 . (4.37)

We remind the reader of the vortex boundary conditions, which are necessary for a finite
free energy, which mean that as r → ∞, Ψ → Ψ0 where Ψ0 is a constant (up to gauge)
determined by the boundary conditions. This means that π◦Ψ tends to a constant as r →∞.
In other words n tends to a constant, which we call n0, in CP 1 as r →∞. Thus our function
n maps the plane to CP 1 in such a way that all points on the circle at infinity get mapped to
a single point in CP 1. By adding a point to R2, which represents the circle at infinity, and
mapping this to n0 we construct a map,

n : S2 7→ CP 1 . (4.38)

This is known as one-point compactification. Additionally, as CP 1 is the Riemann sphere,
S2, we now have a map between spheres which is called a skyrmion. We can see that this map
only exists when Ψ 6= 0 everywhere in the domain. Thus if any zeros in ψ1 and ψ2 coincide
then we do not have a CP 1 skyrmion.
Figure 4.2b shows a numerical simulation of an, N = 2 CP 1, skyrmion solution, which we
call a (2, 2) CP 1 skyrmion using our newly defined notation. We see that it is possible to
translate the zeros in ψ1 such that they become coincident with the zeros in ψ2, converting a
(2, 2) CP 1 skyrmion to a (2, 2) vortex.
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4.2.5 Classifying Solutions for N = 2

Here we study N = 2 locally minimising solutions of Equation 4.22, produced numerically
using the method detailed in Section 4.2.1. We also consider orientations away from the basal
plane to gain a full picture of the possible types of fields solutions for a given value of αs.
We start with N = 2 which is the lowest winding number where we find CP 1 skyrmions, that
minimise the free energy. This happens for values of αs where u1 ≈ u2. However, for such αs
that produces CP 1 skyrmion solution it is generally possible to find an orientation where the
more standard (2, 2) vortex solution is energetically favoured. Interestingly, we find a third
type of solution namely a vortex solution which contains anti zeros in one condensate that
are coincident with the zeros in the other condensate. These occur when either u1 >> u2 or
vice versa. An example being the (6− 4, 2) vortex in Figure 4.3a which has six zeros and four
anti zeros in the ψ1 condensate and two zeros and no anti zeros in the ψ2 condensate.
If we consider Figure 4.1 which shows the relationship between αs and |ψα|2 we can add that
for αs ≤ 2

3 the vacuum is (u1, u2) = (0, 1), and for αs ≥ 1 we have (u1, u2) = (3αs
4 , 0). Thus

we no longer have a two component model in those regions and θ12 is not defined if either
condensate vanishes.
We are interested in multicomponent solutions hence our focus on the region αs ∈ (2

3 , 1). We
also see that for αs ∈ (2

3 , 6
7) |ψ1|2< |ψ2|2 however this inequality reverses for the region

αs ∈ (6
7 , 1). From, [44], and studying our own numerical solutions it appears that the ratio of

u1 and u2 determines which type of solution has the lowest energy. We sample three values of
αs each of which has a different ratio and so favours a different type of solution in the basal
plane.
Qualitatively speaking, the possibleN = 2 solutions to Equation 4.22 for αs = (0.67, 0.71, 0.785)
are similar in type, but not identical, as for αs = (0.9138, 0.9675, 0.9975), when only consid-
ering the basal plane. These values of αs are all plotted on Figure 4.1. As we want to classify
the possible types of solutions for N = 2 we focus upon αs = (0.67, 0.71) as well as the middle
value αs = 0.86 which has |ψ1|2≈ |ψ2|2. We also note that solutions for higher N appear to
be made up of combinations of N = 1 and N = 2 solutions.
We generate an orthonormal basis, (x̂1, x̂2, x̂3), by picking a x̂3 and then using the Gram-
Schmidt method to generate all three unit vectors as described in Section 2.2.3.1 but instead
we pick x̂3 to generate the basis instead of x̂1. However, this method does not generate
the simplest choice of orthonormal basis. For example, for x̂3 = (0, 0, 1), that basis would
be ((1, 0, 0), (0, 1, 0), (0, 0, 1))T and for x̂3 = (0, 1, 0) it would be ((1, 0, 0), (0, 0, 1), (0, 1, 0))T .
This can be rectified by rotating solutions about the origin so that the choice of x̂1 and x̂2

generated by the Gram-Schmidt process becomes the desired, simpler choice. This coordinate
rotation produces the same solution as if we had re-simulated using the simpler basis as we
model an infinite superconductor.
In the following figures we plot the location and winding numbers of the discretised zeros for
each condensate, which we label nv. Noting that as we deal with numerical data finding the
exact location is not always possible for the numerical tolerance we used. The reader should
consider overlapping and as part of the same zero whose location is found imprecisely
due to the discretised nature of the solution.

Fields Solutions for αs = 0.67

Here we give numerical solutions to Equation 4.22 for αs = 0.67, where u1 << u2. This
parameter exhibits two types of field solutions which we explore below.
Figure 4.3a shows a (6 − 4, 2) vortex solution for the basal plane orientation, x̂3 = (0, 0, 1).
We see that two of the anti zeros in ψ1 are coincident with the two zeros in the ψ2 component.



94

The remaining zeros and anti zeros in ψ1 are there to ensure that the overall winding number
of ψ1 is equal to N = 2. Additionally, for |ψ1|, we see that we get clusters of overlapping
discretised zeros marked by, . This is due to numerical error, limitations of the zero finding
algorithm and the small value of u1 ≈ 0.087. The plot of |ψ2| differs from the isotropic or s
wave case, as discussed in Section 1.6, where the zeros do not separate into individual nv = 1
zeros in the type I case and in the type II case the zeros are repulsive [24] so we do not see
any sort of bound state.

(a) A (6− 4, 2) vortex, with x̂3 = (0, 0, 1) and αs = 0.67.

(b) A (2, 2) vortex, with x̂3 = (0, 1, 0) and αs = 0.67.

Figure 4.3: Plots of the gauge invariant quantities of the fields, N = 2, αs = 0.67, for two
different orientations which show the two types of solutions possible for this parameter range.
The points, and , on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros
in the ψ1, ψ2 condensates and the coincident zeros respectively. Note that overlapping points,
with the same value of nv, should be considered to represent the same zero and only appear
due to numerical error.
For each condensate

∑
nv = N and the B1 and B2 components of the magnetic field vanish

everywhere.

The cos θ12 plots shows us that the coincident zeros and anti zeros are interconnected by
domain walls. The rapid change in the value of cos θ12 corresponds to a domain wall. A domain
wall is defined as a minimising solution of the Ginzburg-Landau equations that interpolates
from the two boundary values of the phase difference, limx→±∞ θ12 = ∓π

2 . However, for
our vortex solutions the boundary, r →∞, fixes the phase difference to −π

2 . If we move in a
straight line from one boundary to another a domain wall must occur with a corresponding anti
domain wall so that the value of the phase difference on the boundary is correct. Interestingly
we see both clockwise and anticlockwise domain walls form. These were first identified in
Section 2.5.1 where cos θ12 becoming positive indicates a clockwise domain wall or equivalently
an anticlockwise anti domain wall. A negative value indicates an anticlockwise domain wall
or a clockwise anti domain wall. We note that the transformation θ12 → −θ12 maps a domain
wall to an anti domain wall at the cost of reversing the direction that the phase difference
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interpolates. However, as cos θ12 is an even function this change of sign of θ12 leaves cos θ12

unchanged.
If we consider moving along the line x2 = 0 then we find a anticlockwise domain wall (and
corresponding anti domain wall). Whereas, if we move along the line x1 = 0 then we find a
clockwise domain wall (and corresponding anti domain wall). We demonstrate this in Figures
4.4a and 4.4b which give data for the lines x1 = 0 and x2 = 0 respectively.
In Section 2.5.1 we provided a simple argument as to why these two domain walls occur. We
reduced the complexity of the free energy with the assumption that only the phase difference,
θ12, is allowed to vary and the other fields are fixed to their vacuum values. The key part of
the reduced free energy, Equation 2.156, is the,

−1

4
Q̃12

11u1u2 cos θ12(x1)(θ′12(x1))2 , (4.39)

term. This leads to the prediction that it is the sign of the Q̃12
11 component of the anisotropy

matrices that determines which domain wall type has the lower energy. If Q̃12
11 > 0 then the

clockwise domain wall has the lower energy and if Q̃12
11 < 0 then it is the anticlockwise domain

wall with the lower energy. In terms of anti domain walls if Q̃12
11 > 0 then the anticlockwise

anti domain wall has the lower energy and if Q̃12
11 < 0 then it is the clockwise anti domain

wall with the lower energy. We remind the reader that Q̃αβ = MTQαβM , therefore Q̃12
11 = 1

for the line x2 = 0 and Q̃12
11 = −1 for the line x1 = 0. In the first case M = (x̂, ŷ, ẑ) and

the second case M = (−ŷ, x̂, ẑ) with x̂ = (1, 0, 0)T , ŷ = (0, 1, 0)T and ẑ = (0, 0, 1)T . This
model predicts, for example, that along the x2 = 0 line a anticlockwise anti domain wall and
a clockwise domain wall are energetically favoured and that is what we see in Figure 4.4a.

Considering a different orientation, Figure 4.3b shows the more ordinary (2, 2) vortex which
is only a lower energy solution, for αs = 0.67, for x̂3 = (0, 1, 0). We see that, from cos θ12,
domain walls, connecting zeros, do not occur. Comparing the two orientations we see that
both solutions have peaks in the B3 component of the magnetic field corresponding to the
locations of the coincident zeros.
If we consider αs = 0.9975 which according to Figure 4.1 the u2

1 value for αs = 0.67 is equal to
u2

2 for αs = 0.9975. This change of parameter has the effect of swapping the condensates but
we expect the type of solution to remain approximately the same. Figure 4.5 gives a (2, 6−4)
vortex solution for αs = 0.9975 and orientation x̂1 = (0, 0, 1), comparing this to Figure 4.3a
we see they are similar with the condensates swapped but the coincident zeros align along the
x2 = −x1 diagonal not the x2 = x1 diagonal as in the αs = 0.67 case.

We now provide an argument as to why, for αs = 0.67, we see coincident zeros and anti zeros.
For αs = 0.67 the vacuum value of |ψ1|, u1, is much smaller than the vacuum value of |ψ2|,
u2. Thus when considering the free energy, shown in Equation 4.22, the leading term that
involves ψ1 is the term that is linear in ψ1 which will dominate over the quadratic term. The
only such term is,

FQ12 =

∫
R2

Re
(
Q12
ij (Diψα)∗Djψβ

)
dx1dx2 . (4.40)

We note that this will also be the leading term that involves ψ2 in the αs = 0.9975 case where
instead we have u2 << u1. We consider the case where both ψ1 and ψ2 vanish at the origin,
x1 = x2 = 0 but have different winding numbers n and m respectively. We can then consider
the approximate forms of the condensates close to the origin,

ψ1 ∼ C1re
i(nθ+δ) (4.41)

ψ2 ∼ C2re
imθ (4.42)

Ai ∼ 0 , (4.43)



96

(a) The phase difference, θ12, along the line x1 = 0 with x̂3 =
(0, 0, 1) and αs = 0.67. Showing a clockwise anti domain wall and
an anticlockwise domain wall on the left and right hand sides of
x2 = 0 respectively.

(b) The phase difference, θ12, along the line x2 = 0 with x̂3 =
(0, 0, 1) and αs = 0.67. Showing an anticlockwise anti domain wall
and a clockwise domain wall on the left and right hand sides of
x1 = 0 respectively.

Figure 4.4: Plots of the phase difference along the lines x1 = 0 and x2 = 0 we see that the
phase difference interpolates anticlockwise and clockwise respectively. θ12 ∈ [−π, π] and the
full dependence of θ12 on x1 and x2 is shown in Figure 4.3a.

where reiθ = x1 + ix2 and δ ∈ [0, 2π] is an additional phase factor. The constants C1 and C2

either have C1 << C2 or C2 << C1 depending on the value of αs. We note that, for the phase
of the condensates, at the boundary we would expect n = m = N and δ = −π

2 as specified
by the broken time reversal symmetry term, 4

3 |ψ1|2|ψ2|2cos (2θ12), in the potential. However
away from the boundary there are no such requirement. Additionally, we are assuming that
close to the origin both condensates only differ by their angular not their radial dependence.
Finally we assume that, close to the zeros, contributions to the energy from terms involving
the vector potential, Ai, are higher order and thus can be ignored.
We can use the above approximate form of the fields to see what values of n,m, δ minimise
the energy for the basal plane where Q12 = diag(1,−1, µ), we ignore the constant factor of
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Figure 4.5: A (2, 6−4) vortex, with x̂3 = (0, 0, 1) and αs = 0.9975. We note the similarities
of this solution with that of Figure 4.3a.
The points, and , on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros
in the ψ1, ψ2 condensates and the coincident zeros respectively. Note that overlapping points,
with the same nv, should be considered to represent the same zero and only appear due to
numerical error. We note that (u1, u2) ≈ (0.86, 0.087) and the correspond values for αs = 0.67
are (u1, u2) ≈ (0.087, 0.99) so we do not expect these solutions to be identical to those in Figure
4.3a.
For each condensate

∑
nv = N and the B1 and B2 components of the magnetic field vanish

everywhere.

2

(2κ2)
1
2

. Substituting them into FQ12 gives,

FQ12 = C1C2

∫
r<a

[(
(∂1r)

2 − (∂2r)
2 +mnr2((∂1θ)

2 − (∂2θ)
2)
)

cos((m− n)θ + δ)

+ (n−m) (∂1r∂1θ − ∂2r∂2θ) sin((m− n)θ + δ)] dx1dx2 , (4.44)

where we only integrate in the region close to the origin where r < a with 0 < a < 1. We
rewrite Equation 4.44 in terms of x1 and x2,

FQ12 = C1C2

∫
r<a

1

x2
1 + x2

2

[(
x2

1 − x2
2 +mn(x2

2 − x2
1)
)

cos((m− n)θ + δ)

+ 2(n−m)x1x2 sin((m− n)θ + δ)] dx1dx2 . (4.45)

If we consider n = m = 1 then we see that FQ12 no longer depends on δ. We then evaluate
Equation 4.45 numerically for a given n,m whilst varying δ and we find that FQ12 is the
lowest when either n = −1,m = 1 or n = 1,m = −1 both with δ = π. Thus the approximate
form of the fields that minimise FQ12 are,

ψ1 ∼ −C1re
±iθ (4.46)

ψ2 ∼ C2re
∓iθ (4.47)

Ai ∼ 0 . (4.48)

So to summaries when either u1 << u2 or u2 << u1 we can assume that FQ12 is the dominant
term in either ψ1 or ψ2. We then show that this term is minimised only when nm = −1 and
δ = π. Thus we provide a rough argument as to why α = 0.67 or αs = 0.9975 favour (6−4, 2)
or (2, 6− 4) vortex solutions.

Fields Solutions for αs = 0.71

Here we give the numerical solutions for αs = 0.71 where u1 < u2. For this parameter value
we no longer find (6 − 4, 2) vortex solutions (or any other variation) but instead find CP 1
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(a) A (2, 2) CP 1 skyrmion, with x̂3 = (0, 0, 1) and αs = 0.71.

(b) A (2, 2) vortex, with x̂3 = (0, 1, 0) and αs = 0.71.

Figure 4.6: Plots of the gauge invariant quantities of the fields, N = 2, αs = 0.71, for two
different orientations which show the two types of solutions possible for this parameter range.
The points, , on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros in the
ψ1, ψ2 condensates and the coincident zeros (if they exist) respectively. Note that overlapping
points, with the same value of nv, should be considered to represent the same zero and only
appear due to numerical error.
For each condensate

∑
nv = N and the B1 and B2 components of the magnetic field vanish

everywhere. Finally, as the inhomogeneous parts of the solutions are well localised to the
centre we only show the central part of the simulated domain.

skyrmion solutions.
Figure 4.6a shows a (2, 2) CP 1 skyrmion for the basal plane orientation, x̂3 = (0, 0, 1). Figure
4.6b shows the more ordinary (2, 2) vortex which, again, is only a lower energy solution for
some non basal plane orientations. Note the observable difference in the B3 plots between the
two figures where the (2, 2) CP 1 skyrmion solution has connected B3 peaks that correspond
to the position of the zeros of ψ2. Furthermore, like Figure 4.3a, we again find domain walls
forming as signified by the non zero values of cos θ12, these only occur for Figure 4.6a.

If we consider αs = 0.9675 where the u2
1 value for αs = 0.71 is equal to u2

2 for αs = 0.9675.
As shown in Figure 4.1. This change of parameter has the effect of swapping the condensates
but additional zeros and anti zeros are added to the solution such that we produce a (2, 4−2)
CP 1 skyrmion. Figure 4.7 shows this for the orientation, x̂1 = (0, 0, 1). Comparing this to
Figure 4.6a we see they are similar solutions with the condensates swapped and the zeros
aligned along the x2 = −x1 diagonal not the x2 = x1 diagonal as in the αs = 0.71 case. The
main difference is the appearance of the additional zeros and anti zeros. Furthermore, we
have tested these results for a numerical tolerance, Equation 2.41, ten times smaller than we
used for all other solutions and found that we still do not have coincident zeros despite the
two anti zeros for |ψ2| being spatially close to the two zeros in |ψ1|. In fact the positions of
the zeros do not change with the numerical tolerance at all. Thus, although a (2, 4− 2) CP 1



99

Figure 4.7: A (2, 4 − 2) CP 1 skyrmion, with x̂3 = (0, 0, 1) and αs = 0.9675. We note the
similarities of this solution with that of Figure 4.6a. The points, , on |ψ1|, |ψ2| and cos θ12

show the location and multiplicity of the zeros in the ψ1, ψ2 condensates and the coincident
zeros (if they exist) respectively. Note that overlapping points should be considered to represent
the same zero and only appear due to numerical error. We note that (u1, u2) ≈ (0.82, 0.31)
and the correspond values for αs = 0.71 are (u1, u2) ≈ (0.31, 0.93) so we do not expect these
solutions to be identical to those in Figure 4.6a.
For each condensate

∑
nv = N and the B1 and B2 components of the magnetic field vanish

everywhere. Finally, as the inhomogeneous parts of the solutions are well localised to the
centre we only show the central part of the simulated domain.

skyrmion is novel, it does appear to be a real solution not one that is the result of numerical
inaccuracy.

Fields Solutions for αs = 0.86

Finally we study αs = 0.86 where we have u1 ≈ u2 and although, for N = 2, we find the
same two field solutions as for αs = 0.71 the N = 2 CP 1 skyrmion solutions are sufficiently
different to warrant attention.
Figure 4.8a shows a (2, 2) CP 1 skyrmion and Figure 4.8b a (2, 2) vortex. If we compare
Figure 4.8a with Figure 4.6a we note the difference in magnetic field, B3, structure. This
difference in structure could be down to the relative sizes of u1 and u2 as in the αs = 0.86
case they are almost equivalent and so we see similar contributions to B3 at the zeros of each
condensate. Additionally, comparing cos θ12 we see the domain walls are much more compact
in the Figure 4.8a case. We note that we do not find CP 1 skyrmions when N = 1. Figure
4.8b is remarkably similar to the result for Figure 4.6b where we again see that the coincident
zeros are not connected by domain walls and the magnetic field appears to be relatively well
separated.

4.2.6 N > 2 Field Solutions

Due to computational limitations investigating results for N > 2, for all orientations, was
not possible. Thus, we restricted ourselves to a few different orientations (primarily the basal
plane) and explored solutions for the values of αs studied above. We summarise the results
as follows:

• αs = 0.67

– Increasing N does not produce any new types of solutions, we still find the equiv-
alent of the (n1v − n1av, N) vortex and the (N,N) vortex depending on the orien-
tation, n1v and n1av are the total winding number of the zeros and anti zeros of
the ψ1 condensate.
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(a) A (2, 2) CP 1 skyrmion, with x̂3 = (0, 0, 1) and αs = 0.86.

(b) A (2, 2) vortex, with x̂3 = (0, 1, 0) and αs = 0.86.

Figure 4.8: Plots of the gauge invariant quantities of the fields, N = 2, αs = 0.86, for two
different orientations which show the two types of solutions possible for this parameter range.
The points, , on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros in the
ψ1, ψ2 condensates and the coincident zeros (if they exist) respectively. Note that overlapping
points, with the same value of nv, should be considered to represent the same zero and only
appear due to numerical error.
For each condensate

∑
nv = N and the B1 and B2 components of the magnetic field vanish

everywhere. Finally, as the inhomogeneous parts of the solutions are well localised to the
centre we only show the central part of the simulated domain.
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Figure 4.9: A (4− 1, 3) vortex, with x̂3 = (0, 0, 1) and αs = 0.71. The points, and , on
|ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros in the ψ1, ψ2 condensates
and the coincident zeros respectively.
For each condensate

∑
nv = N and the B1 and B2 components of the magnetic field vanish

everywhere. Finally, as the inhomogeneous parts of the solutions are well localised to the
centre we only show the central part of the simulated domain.

• αs = 0.71

– We find for N = 3 a new bound state that appears to be a combination of a
(2 − 1, 1) vortex and a (2, 2) CP 1 skyrmion where the numbers of zeros and anti
zeros changes so that the total winding number in each condensate is N = 3.
Figure 4.9 shows this (4− 1, 3) vortex.

• αs = 0.86

– We find that, in the basal plane, a N=3 vortex solution is energetically favoured
over an N=3 CP 1 skyrmion. However, for N = 4 the N = 4 CP 1 skyrmion is
now favoured leading us to guess that only for even N are CP 1 skyrmion solutions
energetically favoured.

4.2.7 Orientation Dependence of Physical Quantities

We now move to considering the complete orientation dependence of relevant physical quan-
tities of the model such as the maximum magnetic field and the twisting angle. Each ori-
entation is defined by a x̂3 ∈ S2 which is then reduced to x̂3 ∈ {S2|z > 0}, namely the
upper hemisphere using the spatial (reflection) symmetry, z 7→ −z, of the model. By symme-
try we mean that the free energy is unchanged by this coordinate transformation. We then
project x̂3 onto the unit disc. This allows us to show the complete orientation dependence
for multiple values of αs at the same time and so the reader can visualise how changing αs
and x̂3 simultaneously affects these physical quantities. Additionally, we include the values,
αs = (0.785, 0.9138, 0.9675, 0.9975), from Figure 4.1, along with αs = (0.67, 0.71, 0.86) to at-
tempt to sample the full range of αs ∈ (2

3 , 1).
For convenience we define the following three types of solution,

• Type A ≡ An (n1v − n1av, N) or (N,n2v − n2av) vortex. That is a vortex solution with
anti zeros in one condensate. For example Figures 4.3a and 4.5.

• Type B ≡ An (N,N) vortex. For example, Figure 4.3b.

• Type C ≡ An N = 2 CP 1 skyrmion. For example, Figures 4.6a, 4.7 and 4.8a.
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We give results for N = 2 as this is the lowest value of N that we see CP 1 skyrmion solutions
and this contributes to more interesting results. Furthermore, we assume that the field solu-
tions given in Section 4.2.5 are exhaustive.
We now seek to find orientation dependence of the type of solution that is globally minimum
for N = 2 for each αs. We start by running simulations, for N = 2, with initial conditions
that favour Type C solutions, if they occur, for the chosen value of αs. When we simulate
multiple orientations, we use these same initial conditions for each which allows us to obtain
consistent results that obey the expected spatial symmetries, at the cost of longer computa-
tion times. Additionally, we run simulations for N = 1 which only ever produces Type A or
Type B solutions and allows us to determine which is of lower energy for that orientation.
Thus by comparing N = 1 and N = 2 solutions we can determine which type gives the lowest
energy for N = 2.
To proceed we introduce,

F̂N =
FN − F0

N
, (4.49)

where F̂N is the normalised energy for a winding number of N run using the same initial
conditions. The F̂1 solutions tell us if Type A or Type B is energetically favourable and then
the F̂2 solution tells us if Type C occurs and is of lower energy than F̂1. Comparing F̂1 and F̂2

means we compare the energy of two unbound or infinitely separated N = 1 vortex solutions
with the N = 2 solution which can be Type A, B or C. This is shown in Table 4.1.

αS Type F̂2 Type F̂1
F̂2−F̂1

F̂1

0.67 Type A 1.9279 Type A 1.9374 -0.4913 %
0.71 Type C 2.0258 Type A 2.0715 -2.2083 %
0.785 Type C 2.2588 Type B 2.2950 -1.5782 %
0.86 Type C 2.4264 Type B 2.4857 -2.3863 %

0.9138 Type C 2.5184 Type B 2.5980 -3.0640 %
0.9675 Type C 2.6069 Type A 2.6577 -1.9097 %
0.9975 Type A 2.6681 Type A 2.6794 -0.4212 %

Table 4.1: Values of the free energy for an s+id superconductor with orientation x̂3 = (0, 0, 1),
where F̂N = FN−F0

N .
Type A ≡ An (n1v − n1av, n2v) or (n1v, n2v − n2av) vortex ,
Type B ≡ An (N,N) vortex and
Type C ≡ An N = 2 CP 1 skyrmion.
We note that even moving from Type B to Type C, in the αs = 0.86 case, the change in
energy is still very small ≈ 3%.

We see is that for this orientation, x̂3 = (0, 0, 1), F̂2 < F̂1 for all values of αs. Thus the type
of solution that is globally minimum is trivially be given by the N = 2 solutions. Note that in
some cases the percentage difference between F̂2 and F̂1 is very small, 0.5% <, and there is no
change in the type of superconductor. In this case we can consider the F̂2 solution equivalent
to two infinitely separated F̂1 solutions. This is also confirmed by visually inspecting the field
solutions.
However, for certain αs and x̂3 we can have F̂2 > F̂1 and in this case we would consider the
N = 2 globally minimum solution to be two infinitely separated N = 1 vortex solutions. The
corresponding globally minimum free energy will be twice F̂1, the maximum magnetic field the
same and the number of coincident zeros will be equal to N = 2. This is shown in Table 4.2,
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which shows the case where Type C solutions in the N = 2 case occur but are energetically
unfavourable over the infinitely separated N = 1 Type A or B case.

αS Type F̂2 Type F̂1
F̂2−F̂1

F̂1

0.67 Type B 1.9431 Type B 1.9399 0.1607 %
0.71 Type B 2.034 Type B 2.0227 0.5598 %
0.785 Type C 2.3264 Type B 2.1942 6.0241 %
0.86 Type C 2.4974 Type B 2.3744 5.1805 %

0.9138 Type C 2.5633 Type B 2.5049 2.3314 %
0.9675 Type B 2.6306 Type B 2.6288 0.0686 %
0.9975 Type A 2.6852 Type A 2.6875 -0.086 %

Table 4.2: Values of the free energy for an s + id superconductor with orientation x̂3 =
(0.7071,−0.7071, 0), where F̂N = FN−F0

N .
Type A ≡ An (n1v − n1av, n2v) or (n1v, n2v − n2av) vortex ,
Type B ≡ An (N,N) vortex and
Type C ≡ An N = 2 CP 1 skyrmion.
We note that the largest percentage differences come from energetically unfavourable Type
C solutions for F̂2 for the αs = {0.785, 0.86, 0.9138}. We can see all of the other positive
potential differences are very small < 0.5% so should probably be considered negligible.

Thus if F̂2 < F̂1 we trivially have found the type of solution that globally minimises for N = 2.
However, if F̂1 > F̂2 then we must consider the type of solution found for the N = 1 case to
be the globally minimum solution in the N = 2 case also.

Globally Minimum Free Energy

Figure 4.10 shows the orientation dependence of the presumed globally minimum free energy
per unit length. We note that the peak of the energy increases with αs which is due to our
choice of normalisation,

Fp(u1, u2,±
π

2
) = 18α2

s + 3αs −
3

2
. (4.50)

In terms of orientation dependence the minimum value of the energy, independent of αs,
occurs at x̂3 = ±x̂ = (±1, 0, 0) and the energies have the expected C2 symmetries about the
crystalline x and y axes. The action of these spatial symmetries are,

C2(x) : (x, y, z) 7→ (x,−y,−z) (4.51)

C2(y) : (x, y, z) 7→ (−x, y,−z) , (4.52)

where, as we are projecting x̂3 onto the unit disc, these two symmetries are equivalent to
reflections in the x and y axes respectively.

Coincident Zeros

The orientation dependence of the number of coincident zeros is shown here, where this is
calculated using the algorithms described in Appendix B. We note that if this number is zero
then we have a CP 1 skyrmion solution otherwise it is either a Type A or B vortex solution.
Figure 4.11 gives the orientation dependence of the number of coincident zeros. This plot
shows for what orientations and values of αs that CP 1 skyrmion solutions are energetically
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Globally Minimum Free Energy, N = 2

Figure 4.10: The orientation dependence of the free energy, for N = 2.
Each point gives the (x, y) position of the unit 3-vector, x̂3 ∈ S2, which defines the orientation.
Due to the free energy being invariant under the transformation, ẑ 7→ −ẑ, we need only
consider the northern hemisphere. Projecting the northern hemisphere onto the disc is done
for visual clarity, and the colour at each point on the disc gives the value of the globally
minimum free energy for that orientation.
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favoured over vortices but does not allow us to distinguish between the vortex solutions. We
see initially that no skyrmions occur for αs = 0.67 but for αs = {0.785, 0.86, 0.9138, 0.9675}
the region where skyrmions are viably changes shape but x̂3 = (±1, 0, 0) and (0, 0, 1) (the
x and z crystalline axes) always produce skyrmion solutions and in fact x̂3 = (±1, 0, 0)
corresponds to the orientation with the lowest values of the free energy for a given αs. Then
for αs = 0.9975 we return to no CP 1 skyrmion solutions for any orientation.

Number of coincident zeros for the Globally Minimum Free Energy, N = 2

Figure 4.11: An N=2 plot of the number of coincident zeros calculated on a discrete lattice.
Each point gives the (x, y) position of the unit 3-vector, x̂3 ∈ S2, which defines the orientation.
Due to the free energy being invariant under the transformation, ẑ 7→ −ẑ, we need only
consider the northern hemisphere. Projecting the northern hemisphere onto the disc is done
for visual clarity, and the colour at each point on the disc gives the number of coincident zeros
for that orientation.

This only allows us to distinguish between two elements of the previously defined trichotomy,
(Type A, Type B, Type C). This trichotomy is better visualised as a scatter plot rather than
a heat plot as shown in Figure 4.12. We see how the globally minimising solution moves
from a Type A to a Type B solution with orientation when αs = {0.67, 0.9975}. The region
where this transition occurs is for orientations near to x̂3 = (0,±1, 0). We also see that Type
A only occurs for αs = {0.67, 0.9975}. For the remaining values of αs we see how Type C
solutions are energetically favoured near the basal plane but the Type B solutions return close
to x̂3 = (0,±1, 0).

The reader may notice that, in Figure 4.12 for αs = 0.9975, points (x, y) = (xa = −0.4330, ya =
0.7500) and (x, y) = (xb = −0.4330, yb = −0.7500) are labelled Type B and Type A with free
energy per unit length of Fa = 5.5468 and Fb = 5.5488 respectively. This appears to break
the expected x axis reflection symmetry that the other six plots exhibit. However, what this
shows is that, as these two points occur close to the boundary between a Type A and Type
B solution, the two solutions are (up to numerical error) degenerate in energy. By boundary
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Field Solution Type of the Globally Minimum Free Energy, N = 2

Figure 4.12: The orientation dependence of the type of solution, for an N = 2 vortex in an
s+ id superconductor.
Type A ≡ An (n1v − n1av, N) or (N,n2v − n2av) vortex. That is a vortex solution with anti
zeros in one condensate,
Type B ≡ An (N,N) vortex and
Type C ≡ An N = 2 CP 1 skyrmion.
Each point gives the (x, y) position of the unit 3-vector, x̂3 ∈ S2, which defines the orientation.
Due to the free energy being invariant under the transformation, ẑ 7→ −ẑ, we need only
consider the northern hemisphere. Projecting the northern hemisphere onto the disc is done
for visual clarity, and the colour at each point on the disc gives the field solution type for that
orientation.

we mean the orientations at which the globally minimum energy type switches from A to B
or vice versa.

Maximum Magnetic Field

Here we consider the value of the maximum magnetic field which on a lattice is simply given
by the maximum element of,

|B(I,J)|= |B(x
(I)
1 , x

(J)
2 )| . (4.53)

Figure 4.13 shows this. The feature of interest is the noticeably lower values of the maximum
magnetic field which approximately correspond to where the CP 1 skyrmion solutions are
energetically favoured. The higher values correspond to where the N = 2 vortex solutions are
favoured. This can be understood if we consider B3 in Figures 4.8a and 4.8b where we see
peaks in the magnetic field corresponding to the location of zeros. In the case of Figure 4.8b
the zeros are coincident which apparently causes the peak to be larger.
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Maximum Magnetic Field for the Globally Minimum Free Energy, N = 2

Figure 4.13: The orientation dependence of the maximum magnetic field, for N = 2.
Each point gives the (x, y) position of the unit 3-vector, x̂3 ∈ S2, which defines the orientation.
Due to the free energy being invariant under the transformation, ẑ 7→ −ẑ, we need only
consider the northern hemisphere. Projecting the northern hemisphere onto the disc is done
for visual clarity, and the colour at each point on the disc gives the value of the maximum
magnetic field for that orientation.

4.2.8 Magnetic Field Twisting

Here we discuss how changing the orientation of our model can give rise to non zero B1 and
B2 which can cause the magnetic field direction, B̂, to point away from the plane normal x̂3

which we call magnetic field twisting. This is quantified by the local twisting angle given by,

θB = arctan

(
|B̂ × x̂3|
B̂ · x̂3

)
, (4.54)

where B̂ ∈ S2 gives the direction of the magnetic field for each point in space.
Unlike magnetic field twisting in s + id domain walls, see Section 2.5.3, the direction of the
magnetic field varies considerably and does not converge to a single value as r → ∞ as it
does in the domain wall case when |x1|→ ∞. In the domain wall case we introduce a variable
cutoff which if |B|< cutoff we set the twisting angle equal to zero. However, the value of θB
varies massive depending on the value of cutoff, unlike in the domain wall case. Thus simply
selecting the maximum value of θB does not give a sensible result. However, consider,

Bmax = B(xmax1 , xmax2 ) , (4.55)

which is one of the N points in the domain where the magnetic field, B, reaches its maximum
value. Then what we call the vortex twisting angle is given by,

θmaxB = arctan

(
|B̂max × x̂3|
B̂max · x̂3

)
, (4.56)
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where B̂max ∈ S2 is the unit vector giving the direction of the magnetic field at the point
(xmax1 , xmax2 ). Here we have decided to take the local twisting angle at this point and use this
to measure the overall twisting of the magnetic field.
For our numerical solutions the twisting angle is only calculated at lattice sites so it is possible
that our θmaxB 6= 0 occur due to the true value of |B̂(I,J)| being in between lattice sites.
However, we investigated the effect that lowering the numerical tolerance had on the value of
θB for a variety of orientations.
The numerical tolerance is the value that all elements of the gradient of the discretised energy
must be lower than for the arrested Newton flow algorithm to terminate, defined in Equation
2.41. We compare two sets of results for tol1 = 0.0075 and tol2 = 0.000625 where tol1

tol2 = 12.
If we define the ratio,

θtolB :=
θtol2B

θtol1B

, (4.57)

where θtol1B and θtol2B are the set of values, for different orientations, of θmaxB for tol1 and tol2
respectively. Any orientations where both θtol1B and θtol2B vanish we discount. Then Table 4.3
gives various statistical measures of θtolB . We note that if this was a numerical artefact we
would expect θtolB → 0 as we decrease the value of the numerical tolerance. However, from
the mean and standard deviation we see that most values are close to θtolB = 1. Thus it would
appear that θmaxB 6= 0 does not occur due to numerical error.

max θtolB min θtolB Mean θtolB Standard Deviation θtolB Geometric Mean θtolB
1.5908 0.7398 0.9593 0.2030 1.0569

Table 4.3: Statistical measures of θtolB showing how changing the tolerance affects the value

of θB, the vortex twisting angle. θtolB =
θtol2B

θtol1B

, is the ratio of the value of the twisting angle for

two values numerical tolerance, tol1 = 0.0075 and tol2 = 0.000625.

Additionally, we investigated halving the space between lattice sites, which is equivalent
to quadrupling the computation time, for the orientation where θmaxB is maximum, x̂3 =
(0.866, 0, 0.5), and found no discernable change in the value of θmaxB . Thus we can present,
with some confidence, Figure 4.14 which shows how θmaxB changes with the orientation and we
see that this angle is not significantly affected by the choice of αs and the orientations where
it is maximal are repeated. We see no twisting for any orientation parallel to a crystalline
axes, (±1, 0, 0), (0,±1, 0), (0, 0,±).

We can look in more detail at the local twisting angle, θB. Figure 4.15a presents field solutions
for x̂3 = (0.0000, 0.5000, 0.8660) where we have a small but non zero θmaxB = 0.0065π as well
as larger a non zero θB elsewhere. This occurs because we have non zero B1 and B2 that are
only a power of ten lower in magnitude than the B3 component. This gives a small, but non
zero, value for the magnetic field twisting.

4.3 Vortices in s+ is Superconductors

We also investigate two-dimensional vortex solutions in the s+ is case. We found only (N,N)
vortex solutions but we did still find a non zero vortex twisting angle, θmaxB which may be of
interest.
We find minimising solutions of the s + is version of Equation 4.22 with the only difference
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Vortex Twisting Angle, θmaxB , N = 2

Figure 4.14: The orientation dependence of the vortex twisting angle, θmaxB , for N = 2.
Each point gives the (x, y) position of the unit 3-vector, x̂3 ∈ S2, which defines the orientation.
Due to the free energy being invariant under the transformation, ẑ 7→ −ẑ, we need only
consider the northern hemisphere. Projecting the northern hemisphere onto the disc is done
for visual clarity and the colour at each point on the disc gives the vortex twisting angle for
that orientation.
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(a) A (2, 2) CP 1 for αS = 0.9675 for x̂3 = (0.0000, 0.5000, 0.8660)

(b) Visualising magnetic field twisting for an N=2 vortex, with αS = 0.9675 for x̂3 =
(0.0000, 0.5000, 0.8660). Note that we have zoomed into the region where B3 appears to be non zero in
the heat plot.

Figure 4.15: Plots of the gauge invariant quantities of the fields, N = 2, αs = 0.9675,
showing non zero B1 and B2 and how that arises in a non zero twisting angle. The points,

, on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros in the ψ1, ψ2

condensates and the coincident zeros (if they exist) respectively.
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from the s+ id case being that Q12
22 → 1 so we have

Q̂11 =
2

λ2
x

diag([2, 2, 2µ]) (4.58)

Q̂22 =
2

λ2
x

diag([1, 1, µ]) (4.59)

Q̂12 =
2

λ2
x

diag([1, 1, µ]) , (4.60)

λx = (2κ2)
1
4 . As we said above only the (N,N) vortex solutions appear to be local minimisers

of the s + is energy functional regardless of the value of αs. Figures 4.16a and 4.16b show
two (2, 2) vortex solutions for x̂3 = (0, 0, 1) and x̂3 = (0.866, 0, 0.5). We see that they closely
match the equivalent s + id solutions, Figure 4.3b for example. The latter orientation is
included because it has non zero values of B1 and B2 which lead to a non zero value of the
vortex twisting angle.

4.3.1 Orientation Dependence of Physical Quantities

Here we show the full N = 2 orientation dependence of the relevant physical quantities in
Figure 4.17. We note the expected SO(2) symmetry, as well as the non zero vortex twisting
angle, θmaxB .

4.4 Summary

We have shown that by considering vortex solutions in anisotropic multicomponent Ginzburg-
Landau theory a variety of novel field solutions occur. Through varying the relative sizes of the
vacuum values of |ψ1| and |ψ2| we can change the type of field configuration that minimises the
Ginzburg-Landau equations. These types are solutions where: the zeros in both condensates
are coincident (an (N,N) vortex), none of the zeros are coincident (a CP 1 skyrmion) and a
state where zeros in one condensate are coincident with anti zeros in the other (for example a
(6−4, 2) vortex). Through the use of our ansatz, that does not fix the direction of the magnetic
field, we investigate how changing the orientation of these two-dimensional topological solitons
affects the type of solution that minimises the free energy. Finally, we observe magnetic field
twisting, where the direction of the magnetic field does not lie perpendicular to the vortex
plane, for some orientations.
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(a) A (2, 2) vortex for x̂3 = (0, 0, 1) and αs = 0.67.

(b) A (2, 2) vortex for x̂3 = (0.866, 0, 0.5) and αs = 0.67.

(c) A (2, 2) vortex with the local twisting angle, θB, shown, with x̂3 = (0.866, 0, 0.5) and αs = 0.67

Figure 4.16: s+ is plots of the gauge invariant quantities of the fields for N = 2, αs = 0.67
vortex solutions, for two different orientations which show the two types of solutions possible
for this parameter range. The points, , on |ψ1|, |ψ2| and cos θ12 show the location and
multiplicity of the zeros in the ψ1, ψ2 condensates and the coincident zeros (if they exist)
respectively.
For each condensate

∑
nv = N .



113

Free Energy, Maximum Magnetic Field and θmaxB respectively

Figure 4.17: The orientation dependence of the gauge invariant quantities, for N = 2 and
αs = 0.67.
Each point gives the (x, y) position of the unit 3-vector, x̂3 ∈ S2, which defines the orientation.
Due to the free energy being invariant under the transformation, ẑ 7→ −ẑ, we need only
consider the northern hemisphere. Projecting the northern hemisphere onto the disc is done
for visual clarity, and the colour at each point on the disc gives value of the quantity being
considered.
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Chapter 5

Vortex Lattices in s + id
Superconductors

Here we investigate the s + id model from Chapter 4 (Equation 4.22) on a flat 2-Torus, T 2
Λ,

which we can interpret as a solution that is spatially periodic on the x1, x2 plane and so forms
a vortex lattice. A vortex lattice is composed of repeating parallelograms called unit cells.
We apply a constant external magnetic field, H = H0x̂3, in the perpendicular direction to
T 2

Λ. Thus the energy now depends upon H hence we must consider the Gibbs free energy.
Focussing on the basal plane, x̂3 = ẑ, we investigate how the shape of unit cell that minimises
the Gibbs free energy per unit area, G/A, changes with H0. Unlike [44] we minimise over the
area of the unit cell as well as allowing non rectangular units cells to occur.
We introduce a method that, for a given winding number, N , and H0, produces the locally
minimum G/A by minimising the field and unit cell configurations and the unit cell area.
This allows us to find the value of N that produces unit cell configurations that minimise
G/A for all values of N . For parameter values that energetically favoured CP 1 skyrmion
solutions in Chapter 4, where we simulated vortex solutions in an infinite superconductor, we
see that N = 2 minimises the energy as this is the lowest winding number for which CP 1

skyrmion lattices can occur. We see throughout that the shape of unit cell is not rectangular
nor are they hexagonal as they are in the type II isotropic or Abrikosov vortex lattice case [18].
Finally we can calculate the lower, HC1, and upper, HC2, critical fields as well as consider
how the vortex lattice solutions change in the range, HC1 < H0 < HC2.

5.1 Free Energy on a 2-Torus

Here we consider the free energy on a flat 2-Torus which allows us to investigate vortex lattices.
We define the flat 2-Torus, T 2

Λ, as the parallelogram given in Figure 5.1, with opposite sides
identified, with lengths |v1|, |v2| and smallest internal angle α ∈ [0, π2 ]. The lattice is composed
of these parallelograms and (for a given v1, v2 ∈ R2) is described by,

Λ = {n1v1 + n2v2| n1, n2 ∈ Z} . (5.1)

We note that a square lattice has |v1|= |v2|, α = π
2 and the hexagonal lattice has |v1|= |v2|, α =

π
3 .
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Figure 5.1: The fundamental parallelogram, or unit cell, of our flat 2-Torus, T 2
Λ. It has

internal angle α and side lengths |v1|, |v2| where we identify opposite sides to define the flat
2-Torus, where x1 and x2 denote the coordinates in the plane of T 2

Λ with normal x̂1 × x̂2.

We can write the free energy (per unit length) for a single unit cell as,

FT 2
Λ

=

∫
T 2

Λ

(
1

2
Qαβij (Diψα)∗(Djψβ) +

B2

2
+
(
Fp(ρ1, ρ2, θ12)− Fp(u1, u2,±

π

2
)
))

dx1dx2

(5.2)

Fp(|ψ1|, |ψ2|, θ12) = −2αs|ψ1|2−|ψ2|2+
4

3
|ψ1|4+

1

2
|ψ2|4+

8

3
|ψ1|2|ψ2|2+

4

3
|ψ1|2|ψ2|2cos (2θ12) ,

(5.3)

with i, j ∈ {1, 2}. We use the orthonormal basis, (x̂1, x̂2, x̂3), with the corresponding magnetic
field components labelled as (B1, B2, B3). We note it has a similar form and parameter values
as Equation 4.22,

Q11 =
2

(2κ2)
1
2

diag([2, 2])

Q22 =
2

(2κ2)
1
2

diag([1, 1])

Q12 =
2

(2κ2)
1
2

diag([1,−1]) , κ = 4 ,

(5.4)

except that the anisotropy matrices, Qαβ, are 2× 2. This is because, in this chapter, we only
consider the basal plane where,

(x̂1, x̂2, x̂3) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) . (5.5)

This choice of basis is a special case where the free energy on R2, Equation 4.22, and FT 2
Λ

can both be reduced in complexity. As similarly discussed in Section 2.2.1, when we study
two-dimensional topological solitons in anisotropic superconductors we, in general, need to
employ the following ansatz,

ψα 7→ ψα(x1, x2) (5.6)

A 7→ A1(x1, x2)x̂1 +A2(x1, x2)x̂2 +A3(x1, x2)x̂3 , (5.7)

to the three-dimensional Ginzburg-Landau free energy. Despite having dimensionally reduced
the system from three to two dimensions, for an anisotropic superconductor, we normally
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retain A3 6= 0. This is because solutions of the dimensionally reduced Ginzburg-Landau equa-
tions must be consistent, that is solve, the full three-dimensional Ginzburg-Landau equations.
However, in the basal plane, we can assume that A3 = 0 and solutions will still be con-
sistent with the full Ginzburg-Landau equations. This means that the covariant derivative,
D3 = ∂3 − iA3, vanishes. Thus, in the basal plane, both Equation 4.22 and 5.2 are purely
two-dimensional. In practice this means that the anisotropy matrices, Qαβ, are 2×2 and that
the magnetic field will only point in the x̂3 direction such that,

B = (0, 0, B3) . (5.8)

We emphasize that our domain is T 2
Λ not R2 as it was in Chapter 4. This point is key as

previously we were studying N vortex solutions in an infinite superconductor but now we
study vortex lattices which are composed of repeating unit cells. As our domain is now T 2

Λ

we use the following (quasi) periodic boundary conditions,

ψα(x+ v1) = ψα(x)e
i2πN

x·v2
|v2|2 (5.9)

ψα(x+ v2) = ψα(x) (5.10)

Ai(x+ v1) = Ai(x) +
2πN

|v2|2
vi2 (5.11)

Ai(x+ v2) = Ai(x) , (5.12)

where x = (x1, x2)T and vi = (v1
i , v

2
i )
T . The phase factor, e

i2πN
x·v2
|v2|2 , that the condensates

gain by moving across the boundary parallel to v2 ensures that the fields have the correct
winding number, N . This, along with the term added to each Ai, means that the magnetic
field is quantised such that, ∫

T 2
Λ

B3 dx1dx2 = 2πN . (5.13)

This can be derived via Stoke’s theorem similarly to Section 4.1 which does this for the
magnetic field of an isotropic two component vortex in R2. These boundary conditions leave
the following gauge invariant quantities unchanged,

|ψα(x+ vi)| = |ψα(x)| (5.14)

θ12(x+ vi) = θ12(x) (5.15)

B(x+ vi) = B(x) . (5.16)

5.1.1 Free Energy on a unit 2-Torus

For numerical purposes it is very useful to make a coordinate change such that our domain
becomes the unit 2-Torus, T 2

� = [0, 1]2. We define the map,

L : T 2
� 7→ T 2

Λ (5.17)

x�i 7→ xi , (5.18)

where L ∈ SL(2,R) and has columns v1, v2. We note that |detL|= A, which gives the area
of the parallelogram or unit cell depicted in Figure 5.1. Additionally, the x�i (with i ∈ {1, 2})
are the coordinates of T 2

�. In order to write the free energy on T 2
� we define the following

transformation matrices,

M :=
√
AL−1 (5.19)

M−1 :=
1√
A
L , (5.20)
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so that M∈ SL(2,R). Thus we define the following transformations in terms of M,

xi 7→
√
A(M−1)ijx

�
j (5.21)

∂i 7→
1√
A
Mji∂

�
j , (5.22)

with ∂�i = ∂
∂x�i

.

In Chapter 4 we were able to transform the coordinates simply by applying the transforma-
tion, Qαβ →MTQαβM , to the anisotropy matrices thus the form of the free energy remained
the same after a coordinate transformation. This worked because our coordinates were or-
thonormal hence M ∈ SO(3). However, for T 2

Λ our choice of vectors (v1, v2), are in general
not orthonormal. This means that the above coordinate transformations adds extra factors
of
√
A to the free energy. This means that the form of the free energy for FT 2

�
differs from

that of FT 2
Λ

and is given below,

FT2
�
=

∫
[0,1]2

(
1

2
Q̃αβkl (D

�
k ψ

�
α )
∗(D�

l ψ
�
β ) +

(∂�
1 A

�
2 − ∂�

2 A
�
1 )

2

2A +A
(
Fp(ψ

�
α )− Fp(u1, u2,±

π

2
)
))

dx�1 dx
�
2 ,

(5.23)

with k, l ∈ {1, 2}. The newly introduced coefficients and fields are,

Q̃αβkl =M−1
ki Q

αβ
ij M

−1
lj (5.24)

ψ�
α = ψα(x�i ) (5.25)

A�
i = Ai(x

�
i ) (5.26)

D�
i = ∂�i − iA�

i . (5.27)

Additionally, the unit vectors (x̂�1 , x̂
�
2 , x̂

�
3 ) form an orthonormal basis. The free energy remains

the same regardless of the choice of coordinates hence, FT 2
�
≡ FT 2

Λ
.

If we define, x� := (x�1 , x
�
2 ), then the periodic boundary conditions on T 2

�, [38], are now given
by,

ψα(x� + (1, 0)) = ψα(x�)ei2πNx
�
2 (5.28)

ψα(x� + (0, 1)) = ψα(x�) (5.29)

Ai(x
� + (1, 0)) = Ai(x

�) + 2πNδi2 (5.30)

Ai(x
� + (0, 1)) = Ai(x

�) . (5.31)

Finally, in the special case of the basal plane, the gauge invariant quantity (∂�1 A
�
2 − ∂�2 A�

1 )
is quantised, ∫

[0,1]2
(∂�1 A

�
2 − ∂�2 A�

1 ) dx�1 dx
�
2 = 2πN . (5.32)

5.1.2 Magnetising the Superconductor

In this chapter we consider the effects of applying a uniform external magnetic field H = H0x̂3.
This means that there will be extra energy contributions from, H, that we must take into
account. Thus we consider the Gibbs free energy of the system which takes into account
these extra contributions. This was first introduced in Section 1.3.5 for the simple isotropic
Ginzburg-Landau case.
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We can construct the anisotropic Gibbs free energy using Equation 5.23 leading to the Gibbs
free energy normalised with respect to the normal state,

GT 2
�

=

∫
[0,1]2

(
1

2
Q̃αβij (D�

i ψ
�
α )∗(D�

j ψ
�
β ) +

(
(∂�1 A

�
2 − ∂�2 A�

1 )−AH0

)2
2A

+AFp(ψ�
α )

)
dx�1 dx

�
2 .

(5.33)

The normal state occurs when the the external magnetic field fully penetrates the supercon-
ductor, (∂�1 A

�
2 − ∂�2 A�

1 ) = AH0 and both condensates vanish. In this state the material is no
longer superconducting.
As we now consider a lattice, the quantity we are interested in minimising is the Gibbs free
energy of the entire periodic lattice,

Gsys = Asys
GT 2

�

A
, (5.34)

where Asys is the total area of our system. As Asys is a constant this can be achieved by

minimising
G
T2
�
A , the Gibbs free energy per unit area. We note that, as H = H0x̂3 is constant

throughout the domain, the Gibbs free energy normalised with respect to the homogenous
superconducting state is given by,

ĜT 2
�

A
=
GT 2

�

A
− Fp(u1, u2,±

π

2
)− H2

0

2
. (5.35)

From this we can see that, for a given H0, minimising
Ĝ
T2
�
A is equivalent to minimising

G
T2
�
A

as they differ by only constants.
We can also calculate approximate values of HC1. This is the lower critical field above which,
for a constant temperature, a vortex state is energetically favourable over the homogenous
superconducting state. The value of H0 for which the Gibbs free energy normalised with
respect to the homogenous superconducting state, 1

AĜT 2
�

, vanishes will be close to the value

of HC1. We note that,

ĜT 2
�

= FT 2
�
−H0

∫
[0,1]2

(∂�1 A
�
2 − ∂�2 A�

1 ) dx�1 dx
�
2 , (5.36)

where that H = H0x̂
�
3 .

We now consider ĜT 2
�

for H0 = HC1 + δ where 0 < δ << 1. In this case ĜT 2
�
≈ 0. However,

as H0 > HC1 we are in the vortex state where,
∫

[0,1]2(∂�1 A
�
2 − ∂�2 A�

1 ) dx�1 dx
�
2 = 2πN . Thus

by rearranging Equation 5.36 the lower critical field is approximately given by,

HC1 ≈
FT 2

�

2πN
. (5.37)

Though we do not yet know the value of FT 2
�

for any H0. However, in Chapter 4 we calculated

the free energy on R2 for a number of different vortex states. In order to accurately estimate
HC1 we seek the vortex state with the smallest free energy.
If we consider an isotropic superconductor then the lowest energy vortex state is one with a
single vortex in the entire superconductor. The free energy of this would be denoted as F̂1

with,

F̂N =
FN − F0

N
, (5.38)
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where FN denotes the globally minimum free energy vortex solution on R2 for winding number
of N . However, when we consider anisotropy then F̂N may decrease with N . Thus,

HC1 ≈ inf
N

F̂N
2π

, (5.39)

will allow us to more accurately estimate HC1. However, we cannot check an infinite number
of solutions so this must be truncated. It is sufficient for our purposes to truncate at N = 2 as
we are only looking for a rough estimate as a starting point for our numerics. This is because
the method we used returns singular results when H0 < HC1.
In summary, to estimate HC1 we find the value of N ∈ {1, 2} that gives the lowest F̂N to
provide an approximate value for HC1. If we consider Table 4.1 which gives the values of the
free energy for the N = 1 and N = 2 solutions ran in Chapter 4. We note that, in the basal
plane, solutions for N > 2 were found to be combinations of the N = 1 and N = 2 solutions
so only using these two values of the energy should provide a good approximation for HC1.
We also include the type of solution as well as the percentage differences of the two energies.
As we now consider lattice solutions, Type A,B,C now refers to the number of zeros and anti
zeros in a single unit cell.

• Type A ≡ An (n1v−n1av, N) or (N,n2v−n2av) vortex. That is a vortex lattice solution
with anti zeros in one condensate. For example Figure 5.6a.

• Type B ≡ An (N,N) vortex lattice. For example Figure 5.10.

• Type C ≡ An N = 2 CP 1 skyrmion lattice. For example Figure 5.9a.

We note that even in the N = 2, αs = 0.86 case where the Type C solutions are of lower
energy the difference is at most ≈ −3%. We note that for αs = 0.67 the percentage difference
between F̂1 and F̂2 is over four times smaller than for αs = 0.86, we consider this difference
to be below the threshold, ≈ 0.5%, of numerical error. This can also be seen by the fact that
the Type of solution does not change. This intuition is used when we compare the Gibbs free
energy for different lattice solutions in Section 5.3.1.

Using Equation 5.39 and the data from Table 4.1 we give the estimated values of HC1 in
Table 5.1. We note that the data from Table 4.1 was calculated on R2 with fixed boundary
conditions but should serve as an approximate lower bound for HC1.

αS HC1

0.67 0.31
0.71 0.32
0.86 0.39

Table 5.1: Here we give the estimated values for HC1 using the formula in Equation 5.39
(truncated at N = 2) and the data from Table 4.1.

Finally, the value of HC2 is best calculated directly from the numerical simulations. Increasing

H0 from HC1 we eventually reach HC2 which is the first point where
Ĝ
T2
�
A first becomes greater

than,

Ĝnormal state

A
= −Fp(u1, u2,±

π

2
)− H2

0

2
. (5.40)



120

This is the point where the normal state becomes the minimum energy state. We reiterate
that the normal state occurs when (∂�1 A

�
2 − ∂�2 A�

1 ) = AH0 and ψ�
α = 0.

5.2 Numerical Method

If we consider previous work, [44], we see that although they used periodic boundary con-
ditions, they used a large unit cell area which they did not minimise. Additionally, they
considered only rectangular unit cells which would be equivalent to fixing α = π

2 for our
general unit cell. The following method improves on this and is based upon, [38].
The method simultaneously minimises the field configuration, (ψ�

α , A
�
i ), the shape of the unit

cell, M, and its area, A. The field minimisation is performed using the same method as
Section 4.2.1 except we use periodic boundary conditions. The domain is discretised as an
Nx × Nx equally spaced grid with spacing, hx > 0. The first and second partial derivatives
are approximated by fourth order finite difference operators. We then use arrested Newton
flow to move the fields from an initial configuration into a locally minimising configuration.
The field minimisation part of the algorithm continues until every component of the gradient
of the discretised energy is smaller than the user supplied numerical tolerance, tol. We note
that we are minimising Equation 5.36 which differs from the free energy in a term that is only
linear in the magnetic field. Thus the Ginzburg-Landau equations are unchanged from those
in Equations 1.124 and 1.125. We use Nx = 101, hx = 0.01 and tol = 0.01.
For every step of field minimisation we perform a step that minimises the lattice configuration
and one that minimises the area. Noting that we hold the field configuration constant as well
as the area and the lattice configuration for the lattice configuration and area minimisation
steps of the algorithm respectively.
If we consider the Gibbs free energy we see that only the gradient term is dependent on M,
which gives the configuration of the unit cell. We define,

Fgrad =
1

2
XTPCX (5.41)

PCik,jl :=

∫
[0,1]2

Qαβkl (D�
i ψ

�
α )∗(D�

j ψ
�
β ) dx�1 dx

�
2 , (5.42)

where X = (M11,M12,M21,M22)T and the pair of indices (i, k), (j, l) can take any of the

values {(1, 1), (1, 2), (2, 1), (2, 2)}. As Qαβij = Qβαji we see that PC is hermitian. Thus we

decompose it into a symmetric and skew-symmetric matrix, PC = P + iP i, thus the real
valued Fgrad reduces down to,

Fgrad =
1

2
XTPX , (5.43)

the problem can now be expressed as the minimisation of XTPX subject to the constraint
that detM = 1. This can be written as,

1

2
XTJX = 1 , (5.44)

where,

J =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 . (5.45)
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We search for critical solutions to Fgrad, this requires PX = λJX so that Fgrad = λ. This is
simply the requirement that X is an eigenvector of JP ,

JPX = λX , (5.46)

where we have used the fact that J2 = I4. Now we can minimise Fgrad with respect to M
by constructing JP and finding its four eigenvectors, Y , but removing any complex solutions
and any with Y TJY ≤ 0. The desired solution is X = Y/

√
Y TJY such that Fgrad = λ. The

new lattice configuration is read off as,

M =

(
X11 X12

X21 X22

)
. (5.47)

Finally, we seek to minimise the unit cell area whilst holding the field and lattice configurations
constant. This is done by differentiating the Gibbs free energy per unit area with respect to
A. To this purpose we define,

E1 =

∫
[0,1]2

1

2
Q̃αβij (D�

i ψ
�
α )∗(D�

j ψ
�
β ) dx�1 dx

�
2 (5.48)

E2 =

∫
[0,1]2

(∂�1 A
�
2 − ∂�2 A�

1 )2 dx�1 dx
�
2 (5.49)

E3 = H0

∫
[0,1]2

(∂�1 A
�
2 − ∂�2 A�

1 ) dx�1 dx
�
2 , (5.50)

and then solve the following equation,

∂

∂A
ĜT 2

�2

A

∣∣∣∣∣
A=Amin

= 0 (5.51)

−1

A2
min

(E1 − E3) +
−1

A3
min

E2 = 0 . (5.52)

We find the minimum area, for a given field and unit cell configuration as,

Amin =
E2

E3 − E1
. (5.53)

We then set A = Amin and the restart the minimisation process.
We note that the area minimisation is only valid in the range HC1 < H0 < HC2, where
H = H0x̂3. For H0 < HC1 the area tends towards infinity as the homogenous superconducting
state is the minimising solution in this region of H0. For H0 > HC2 the area tends towards
zero but the numerical algorithm, appears to, return non singular answers.
Thus we estimate the range for HC1 < H0 < HC2 and then run the algorithm in this range.
We take the estimates of HC1 given in Table 4.1 as the lower bound, a and choose the upper
bound b = 6 based on typical values in other models, [38]. We note that the estimated value
of HC1 for αs = 0.86 was too low, hence we used a = 0.45 for those simulations. We later
reran all simulation from H0 = [6, 8] to allow us to calculate the value of HC2.
We choose a lower and upper bound, [a, b], and number of points that we want to trial. We
start at the midpoint, a+b

2 , then run the ranges [a+b
2 , b], [a, a+b

2 ] independently such that
the solutions for H0 closer to HC2 and HC1, which could become singular and therefore the
algorithm will not converge, get run last. Further, we choose an initial lattice configuration
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that is neither of the standard configurations,

square unit cell :
|v1|
|v2|

= 1, α =
π

2
(5.54)

hexagonal unit cell :
|v1|
|v2|

= 1, α =
π

3
. (5.55)

This should mean that the algorithm is not biased to either of these two special configurations.
To summarise the algorithm proceeds as follows,

• For a given H0 ∈ [a, b], where [a, b] is chosen in relation to estimated values of the critical
fields.

• Choose an initial field and lattice configuration.

• Perform one step of arrested Newton flow, whilst holding the lattice configuration and
A constant.

• Calculate the new value of M using Equation 5.47. The field configuration is fixed to
the newly evolved values and A is kept constant.

• Calculate the new value of A using Equation 5.53. The field and lattice configurations
are kept constant.

5.3 Numerical Results

Here we analyse how the energy and lattice configuration varies with the applied magnetic
field, H = H0x̂3. Importantly, we see that for all values of αs and H0 sampled we do not get
the standard hexagonal (Abrikosov) lattice configuration of α = π

3 but values of α ∈ (π3 ,
π
2 ).

Furthermore, we see that for, αs = 0.86, CP 1 skyrmion solutions with a winding number,
N = 2, give the lowest Gibbs free energy per unit area. However, αs = 0.67 and αs = 0.71,
do not give CP 1 skyrmion solutions and have N = 1 as the winding number than minimises
the energy. For notational simplicity we define,

G/A :=
ĜT 2

�

A
, (5.56)

as the Gibbs free energy (normalised with respect to the homogenous superconducting state)
per unit area.

5.3.1 Magnetisation

In this section we consider how changing the applied magnetic field, or magnetising our s+ id
superconductor, affects the Gibbs free energy and lattice configuration. We also calculate
values for HC1 and HC2 where the lower critical field is close to our original estimates given
in Table 4.1.
Consider Figure 5.2, for the chosen ranges of H0 values, which differ slightly as the critical field
values depend on αs and the chosen ranges are inside of [HC1, HC2]. We used the estimated
values for HC1 from Table 5.1 as lower bound of H0 for our simulations with the exception
of αs = 0.86 where the estimation proved less than the true value of HC1. In this case we
picked H0 = 0.45 as the starting point. We see that G/A is less than zero meaning all values
of H0 > HC1. We note that GN/A is the value of G/A for the winding number N .

If we consider the nested plot for each value of αs, we see that in all but the αs = 0.86 case
the difference in the values of G/A is very small. This difference is shown in more detail in
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H0

Figure 5.2: Plots of the Gibbs free energy normalised with respect to the homogenous su-
perconducting state per unit area, G/A, versus the applied magnetic field strength H0, for

different αs and winding numbers N . G/A =
Ĝ
T2
�
A and is normalised with respect to the ho-

mogenous superconducting state thus as G/A < 0 that means H0 is always greater than HC1.
We compare G/A for different values of N to see if their energies differ and therefore the
value of N that gives the lower value of G/A.

Figure 5.3: only in the αs = 0.86 case does G2/A differ substantially from G1/A. Note that
the values of GN/A are the most different for low H0 and as H0 → 6 the difference between
GN/A, for different αs, is negligible. If we consider the values in Table 4.1 we suggest that
only when the percentage difference is greater than 0.5% do we consider the energies to be
different. The percentage difference is given by,

pcdN =
(GN/A−G1/A)

G1/A
% . (5.57)

Additionally, in Section 5.3.2 we see that the difference in energy does not correspond to a
marked difference in the solutions. For example comparing Figures 5.7a and 5.8 which show
the fields for N = 1 and N = 2. From this we can conclude that N = 1 is the winding number
that gives the minimal value of G/A except in the case of αs = 0.86 where it is N = 2. This
is due to the existence of CP 1 skyrmions for H0 close to HC1 as we will show in Section
5.3.2. We note that we include N = 3 for αs = 0.86 to show that this energy is not lower.
Furthermore, as H0 → 6 we see that pcdN → 0 showing that the N = 1 and N = 2 solutions
become energetically the same.

We can also look at how the value of α and the values of |v1| and |v2| change in relation to
H0. This demonstrates any changes in the configuration of the unit cell that occur. This
is depicted in Figures 5.4a5.4b. In the case of α, for all bar N = 2, αs = 0.86, it holds at
approximately the same value in between [π2 ,

π
3 ]. In the case of αs = 0.86 there is a change in
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pcdN

H0

Figure 5.3: Percentage difference between the values G/A =
Ĝ
T2
�
A for all the simulated values

of N . The percentage difference is given by, pcdN = (GN/A−G1/A)
G1/A

%. We see that apart from,

the N = 2 case for αs = 0.86, the percentage difference in energies is less than 0.5% and so
is considered negligible. We note that GN/A is the value of the Gibbs free energy (normalised
with respect to the homogenous superconducting) state per unit area for a winding number of
N .

both α and |v1|, |v2| that mark the transition from a (2, 2) CP 1 skyrmion solution to a (4−2, 2)
vortex solution. We note that the configuration changes from being nearly rectangular, α = π

2 ,
to being nearly hexagonal, α = π

3 , as all of the other parameters are. This transition can be
seen in Figures 5.9a, 5.9b and 5.9c which is discussed in more detail in Section 5.3.2. We note
that |v1|, |v2| have been normalised by a factor of 1√

A .

Finally, if we consider Figure 5.5, which only shows the plots for the winding numbers that
give the minimum G/A. If we consider the nested plots which show the difference between
G/A and Gnorm/A we note that value of H0 for the x-intercept gives the value of HC2 which
we can read off. This is because at the point where the vortex state transitions to the normal
state the energies of these two states will be equivalent.

We use this data to extrapolate and find the values of the critical fields. In the case of
HC1 we are so close to the boundary that further simulation runs are likely to run into the
issue where the area of the unit cell A → ∞ as the system seeks to become the homogenous
superconducting state everywhere. Hence the need to extrapolate. In the case of HC2 we find
that the numerical algorithm works on both sides of HC2 hence we can find this value to more
accuracy using linear interpolation. These values are given in Table 5.2.
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α

H0

(a) α,the internal angle of the unit cell, against H0.

|vI|

H0

(b) |v1|, |v2|,the length of opposite sides of the unit cell, against H0. Note that, |v1|, |v2|,
have been scaled by a factor of 1√

A .

Figure 5.4: Plots of the lattice parameters, α, |v1|, |v2|, versus the external magnetic field,
H0. We see that, excepting the value of H0 closest to HC1, α takes the same constant value
regardless of H0 except in the N = 2, αs = 0.86 case. We focus on the region H0 = (HC1, 6],
note that the unit cell does not change shape in the region H0 = [6, 8].
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H0

Figure 5.5: Plots of G/A versus the applied magnetic field strength H0 for the winding

number, N , that gives the lowest value of G/A for a given value of αs. G/A =
Ĝ
T2
�
A and we

have added in the range H0 ∈ [6, 8], to the results from Figure 5.2. This allows us to find
HC2 where we note that there is no change in type of solution in range H0 ∈ [6, 8], for any
αs. Note that we plot the difference ∆G = G/A − Gnorm/A in the zoomed in window where
∆G = 0 denotes the point when H0 = HC2.

5.3.2 Lattice Solutions

Here we present the visualisation of the lattice solutions for the values of the winding num-
bers that we have determined do minimise G/A. Note that as the range for H0 is large, the
values of the fields vary hugely as well. This means we use different colour scales throughout
which allows us to demonstrate some of the finer details present for the field solution for each
value of H0. Furthermore, we see that for the parameter range αs = 0.71 we do not see CP 1

skyrmion solutions even for H0 close to HC1, this differs from [44] (and our work in Chapter
4) who find skyrmion solutions in this parameter range of the model. We focus on the three
values of αs = (0.67, 0.71, 0.86), as we did in Chapter 4. Additionally, we use the same naming
convention as in Chapter 4, namely for each unit cell we label the total winding number of
the zeros and anti zeros of ψ1 and ψ2 as n1v, n1av, n2v, n2av respectively. Then we choose to

αs HC1 HC2

0.67 0.30 7.66
0.71 0.31 7.68
0.86 0.43 7.83

Table 5.2: The extrapolated values for HC1 and HC2, we note the concordance with the
values in Table 5.1. We used linear interpolation of the last two data points to H0 = 0.2 to
extrapolate a value of HC1. We read off HC2 from Figure 5.5.
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name our solutions as a (n1v + n1av, n2v + n2av) vortex or skyrmion.

αs = 0.67

Figures 5.6a, 5.6b and 5.6c show the lattice solutions for N = 1 for αs = 0.67. We see that as
expected the area of the unit cell decrease with H0 and the values of the condensates move
towards their vacuum values, whilst the magnetic field approaches H0. We do not include plots
of the N = 2 solutions (which have G2/A ≈ G1/A) the unit cell of which is approximately
the same as two N = 1 unit cells. Although, the unit cell has slightly different values of α, as
shown in Figure 5.4a, but this is likely down to numerical error.

αs = 0.71

Here we show lattice solutions for the N = 1 case, given in Figures 5.7a, 5.7b and 5.7c.

The N = 1 case is very similar to the αs = 0.71 case except with a different unit cell
configuration.
We note that the N = 2 solution is also a (2N −N,N) vortex except with a different unit cell
shape as shown in Figure 5.4a. Interestingly this means that when we allow both the area
and the configuration of the unit cell to be minimised (2, 2) CP 1 skyrmion solutions do not
appear as they do in [44]. This is shown in Figure 5.8, where even for H0 close to HC1, we
do not find (2, 2) CP 1 skyrmion solutions that are of lower energy than the (4− 2, 2) vortex
solution.

αs = 0.86

Finally, and most interestingly we consider the N = 2 case which is the minimum winding
number for αs = 0.86. This is because CP 1 skyrmion solutions are present. Figures 5.9a, 5.9b
and 5.9a show that for low, H0 < 3.5, CP 1 skyrmions appear with the distinctive pattern of
the magnetic field that we recognised from Chapter 4. However, as H0 increases both |ψα|
decrease in value and, in keeping with the other two parameters, the value of |ψ1| decreases
faster than |ψ2| this leads to the more standard (4− 2, 2) vortex appearing for H0 > 3.5. At
this point the solution for αs = 0.86 is barely distinguishable from solutions for the other two
values of αs. We also see a notable change in the phase difference as well as the unit cell
shape, which we noted in Figure 5.4a.

We see for N = 1, Figure 5.10, we get a (1, 1) vortex solution, this matches the results
from Chapter 4. More interestingly this solution is only energetically favourable for low H0

but as we increase H0, and we see |ψ1| decreases relative to |ψ2| , the common solution of a
(2N−N,N) vortex solution becomes the minimising solution of the Gibbs free energy per unit
area. This becomes a trend where regardless of αs and N for large H0 we see a (2N −N,N)
vortex solution emerge. This occurs because one of the condensates approaches zero much
faster than the other meaning their relatives sizes allow the formation of this solution as H0

approaches HC2.
Note that the point that H0 becomes large can be see in Figure 5.4a where there is a change
in the value of α for H0 ≈ 3.5 for N = 2, αs = 0.86.
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Lattice solutions for αs = 0.67, N = 1 for varying values of H0.

(a) A (2− 1, 1) vortex with αs = 0.67, H0 = 0.626 lattice solution.

(b) A (2− 1, 1) vortex with αs = 0.67, H0 = 3.16 lattice solution.

(c) A (2− 1, 1) vortex with αs = 0.67, H0 = 5.68 lattice solution.

Figure 5.6: Plots of the gauge invariant quantities of the fields, with N = 1, αs = 0.67, for
three different values of H0. Figure 5.6a is close to HC1 = 0.30 and Figure 5.6c is closer to
HC2 = 7.66. We see that the type of solution, a (2−1, 1) vortex, does not change with H0 but
the values of |ψα| tend towards zero and the magnetic field approaches H0 everywhere. The
points, and , on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros in the
ψ1, ψ2 condensates and the coincident zeros respectively.
For each condensate

∑
nv = N and B1 and B2 vanish everywhere.

5.4 Summary

We have shown that when we consider vortex lattice solutions (in the basal plane) for
anisotropic multicomponent Ginzburg-Landau theory we still see the novel types of field solu-
tions as we did in Chapter 4. Considering the shape of the unit cell for these lattice solutions,
we see that the hexagonal unit cell is no longer the configuration that minimises the Gibbs
free energy as it is in an isotropic superconductor. Furthermore, the winding number, N ,
that produces the unit cell and field configuration that gives the lowest Gibbs free energy is
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Lattice solutions for αs = 0.71, N = 1 for varying values of H0.

(a) A (2− 1, 1) vortex with αs = 0.71, H0 = 0.645 lattice solution.

(b) A (2− 1, 1) vortex with αs = 0.71, H0 = 3.17 lattice solution.

(c) A (2− 1, 1) vortex with αs = 0.71, H0 = 5.69 lattice solution.

Figure 5.7: Plots of the gauge invariant quantities of the fields, N = 1, αs = 0.71, for
three different values of H0. Figure 5.7a is close to HC1 = 0.31 and Figure 5.7c is closer to
HC2 = 7.68. We see that the type of solution, a (2−1, 1) vortex, does not change with H0 but
the values of |ψα| tend towards zero and the magnetic field approaches H0 everywhere. The
points, and , on |ψ1|, |ψ2| and cos θ12 show the location and multiplicity of the zeros in the
ψ1, ψ2 condensates and the coincident zeros respectively.
For each condensate

∑
nv = N and B1 and B2 vanish everywhere.

usually N = 1. The exception is for parameters where CP 1 skyrmions form for N = 2 and in
this case the Gibbs free energy is lowest for N = 2. These skyrmions are only solutions of the
Gibbs free energy for an external magnetic field strength, H0, close to the lower critical field.
As H0 increases we no longer see CP 1 skyrmions as the minimising field configurations. How-
ever, field configurations become very similar, regardless of the value of αs, as H0 approaches
HC2. Finally, we calculate the values of the lower and upper critical fields for the basal plane
orientation.
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Lattice solution for αs = 0.71, N = 2 for H0 = 0.645.

Figure 5.8: Plots of the gauge invariant quantities of the fields, N = 2 αs = 0.71, for
H0 = 0.645. We see that it is not a CP 1 skyrmion but a (4 − 2, 2) vortex solution as we
would expect from the results of Chapter 4. We have doubled the range, x1, x2 ∈ [−5, 5], so
this lattice solution can be properly seen. The points, and , on |ψ1|, |ψ2| and cos θ12 show
the location and multiplicity of the zeros in the ψ1, ψ2 condensates and the coincident zeros
respectively.
For each condensate

∑
nv = N and B1 and B2 vanish everywhere.
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Lattice solution for αs = 0.86, N = 2 for varying values of H0.

(a) A (2, 2) CP 1 skyrmion with αs = 0.86, H0 = 0.758 lattice solution.

(b) A (2, 2) CP 1 skyrmion with αs = 0.86, H0 = 3.23 lattice solution.

(c) A (4− 2, 2) vortex with αs = 0.86, H0 = 5.69 lattice solution.

Figure 5.9: Plots of the gauge invariant quantities of the fields, N = 2, αs = 0.86, for
three different values of H0. Figure 5.7a is close to HC1 = 0.43 and Figure 5.7c is closer to
HC2 = 7.83. We see that the type of solution changes with H0, moving from a (2, 2) CP 1

skyrmion to a (4 − 2, 2) vortex. Additionally, the values of |ψα| tend towards zero and the
magnetic field approaches H0 everywhere. The points, and , on |ψ1|, |ψ2| and cos θ12 show
the location and multiplicity of the zeros in the ψ1, ψ2 condensates and the coincident zeros
respectively.
For each condensate

∑
nv = N and B1 and B2 vanish everywhere.
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Lattice solution for αs = 0.86, N = 1 for H0 = 0.758.

Figure 5.10: Plots of the gauge invariant quantities of the fields, for a (1, 1) vortex with
N = 1, αs = 0.86, for H0 = 0.758. We see that unlike the N = 2 we have only a vortex lattice
state not a CP 1 skyrmion. The points, and , on |ψ1|, |ψ2| and cos θ12 show the location
and multiplicity of the zeros in the ψ1, ψ2 condensates and the coincident zeros respectively.
For each condensate

∑
nv = N and B1 and B2 vanish everywhere.
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Chapter 6

Conclusions and Key Results

In this thesis, we consider one and two-dimensional topological soliton solutions in three-
dimensional multicomponent anisotropic superconductors. For conventional isotropic super-
conductors an ansatz where the magnetic field direction is fixed is used. However, when
anisotropy is considered this ansatz is no longer valid as solutions of the resulting Ginzburg-
Landau equations are not, in general, solutions of the full three-dimensional Ginzburg-Landau
equations. Thus we would describe the ansatz as inconsistent. We use an ansatz that does
not fix the direction of the magnetic field and is therefore consistent with the full Ginzburg-
Landau equations. Furthermore, changing the orientation of the one and two dimensional
solitons within the anisotropic three-dimensional superconductor can change the physical
properties of the superconductor such as the magnetic field. Finally, this ansatz introduces
the possibility of magnetic field twisting. This is where the direction of the magnetic field
changes moving away from the centre of the soliton.

Key Result: By using an ansatz that does not fix the direction of the magnetic field we can
study magnetic field twisting in anisotropic superconductors as well as how solutions of the
Ginzburg-Landau equations depend on orientation.

In Chapter 2 we explored domain wall solutions in anisotropic superconductors. We linearised
the Ginzburg-Landau equations and found solutions of the form, ci~vie

−µix1 . The key differ-
ence in the anisotropic case is that the length scales, λi = 1

µi
, are complex in general. Thus

for some orientations and anisotropies we expect oscillatory decaying field solutions. Addi-
tionally, domain walls in anisotropic superconductors can produce a spontaneous magnetic
field for some orientations. This could potentially provide experimentalists with a way to
distinguish between superconductor types. We study p+ ip, s+ is and s+ id superconductors
and their magnetic properties using our revised ansatz.

Key Result: Oscillatory decay can occur in the fields of domain wall solutions in the p+ ip
model but not in the s+ is and s+ id, as predicted by solutions to the linearised Ginzburg-
Landau equations.

Key Result: We demonstrate the dependence of the spontaneous magnetic field on the full
set of orientations, x̂1 ∈ S2, for the p+ ip, s+ is and s+ id models. There exist orientations
where only one model has a non zero spontaneous magnetic field, from this it is theoretically
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possible for experimentalists to determine what type of superconductor a given material is.

Key Result: Magnetic field twisting occurs in p + ip superconductors. The magnetic field
is not constant but oscillates between a maximum value and no magnetic field twisting.

In the, more general, s+ is and s+ id models we found a new type of domain wall that is non
degenerate in energy and is determined from the direction the phase difference interpolates
between antipodal points, clockwise or anticlockwise, [2]. We found magnetic field twisting
occurs only in the s+ id model.

Key Result: s+ is and s+ id superconductors exhibit two types of non degenerate in energy
domain walls solutions distinguished by the phase difference between the two condensates.

Key Result: Magnetic field twisting occurs in s+ id but not s+ is superconductors. Unlike
the p+ ip case it does not oscillate.

In Chapter 3 we explored the Meissner state in s + is and s + id superconductors. In the
isotropic case it is only the strength of the external magnetic field, H, that will affect the
field configurations that solve the Ginzburg-Landau equations. However, in s+ is and s+ id
superconductors the direction of the externally applied magnetic field will affect the field
configurations. This can lead to the magnetic field twisting away from the direction of the
applied magnetic field. Furthermore, by considering the linearisation it is possible to predict
in what direction H must point in order to cause magnetic field twisting.

Key Result: Magnetic field twisting occurs in the Meissner state for s + is and s + id
superconductors, depending on the direction of the externally applied magnetic field.

In Chapter 4 we studied two-dimensional topological solitons, namely vortices. We extended
previous results, [44], to all possible orientations, x̂3 ∈ S2. We also observed a small, but non
negligible, twisting of the magnetic field for both s+ id and s+ is vortex solutions that occurs
away from the basal plane and regardless of parameter choice. Finally, we have classified the
solutions of this model up to a winding number of N = 2. Though we note that for N > 2
the solutions studied appeared to be combinations of N = 1 and N = 2 solutions.

Key Result: Vortex solutions in s+ id and s+ is superconductors are studied and classified.

Key Result: Magnetic field twisting occurs, away from the basal plane orientation, for
vortices in both s+ is and s+ id superconductors contrasting the results in domain walls.
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In Chapter 5 we studied vortex lattice solutions in the s + id case for the basal plane only.
By applying a constant external magnetic field we saw how varying the field strength affected
vortex lattice unit cell and field configurations. We improved upon previous methods by con-
sidering non rectangular unit cells and allowing the area of the unit cell to be minimised,
using the procedure from [38]. We found the values of the lower and upper critical fields.

Key Result: The upper and lower critical field values for lattice solutions in the basal plane
of an s+ id superconductor were determined.

Key Result: The shape of unit cell and how it changes with the strength of the applied
magnetic field are calculated.

6.1 Future Work

In summary much of the work we have done is the qualitative classification of properties of
unconventional superconductors. This is theoretically useful and, especially when comparing
maximum magnetic fields, could provide a useful way for experimentalists to identify the type
of unconventional superconductivity that a given sample exhibits. Below we explore natural
extensions to the thesis.

• Microscopically deriving three-dimensional versions of s + is, s + id, p + ip in order to
obtain bounds on the values of the Qαβ3j components in order to more closely match
experimental results, similarly to [28] where the relative sizes of the 3 band anisotropy

coefficients are calculated. We note that the Qαβ3j parameter values used throughout this
thesis, k5 in Chapter 2 and µ in Chapter 4, were chosen so that the model displayed the
correct symmetries and that the energy was positive definite.

• Chapter 3 can be extended to consider the p + ip case adding to the work of [37] but
using Ansatz 2.14 to allow us to explore orientations that are not in the basal plane.
This should allow us to see magnetic field twisting, which does not occur in the basal
plane, as well as oscillatory decay most likely in a similar manner to that in Section
2.4.5.

• A larger extension to Chapter 4 would be to consider how the choice of αs and the
values of Qαβij affect the intervortex forces and at what point they are repulsive or
attractive. We can already see that, by changing the parameter αs, a vortex solution
can become energetically favourable over a CP 1 skyrmion solution. Moving from a field
configuration where we have coincident zeros to one where no zeros coincide is likely
to depend on intervortex forces between condensates. A way to understand this is to
consider the binding energy of solutions for varying winding numbers, N , then exploring
how changing parameters and orientation affects the binding energy would be a good
starting point.

• We note that the concept of an intervortex force is not obviously defined even in the
isotropic multicomponent case. In the single component case you would fix the position
of two zeros in the condensate and then solve the corresponding constrained minimi-
sation problem in order to calculate the intervortex forces. However, when we have
multiple condensates the zeros do not have to coincide. In this case we can consider
the force between zeros in the same and in different condensates.
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• Previously the intervortex forces have been calculated, in the single component isotropic
case, by approximating the asymptotic behaviour of a vortex by linearising the Ginzburg-
Landau equations in the radial direction. Then by calculating the interaction potential
between two well separated vortices the intervortex forces can be calculated [48]. As
anisotropy breaks the rotational invariance of the problem a linearisation that includes
the radial and angular dependence of the fields would be needed. This is a very difficult
theoretical problem. One such way of proceeding might be to write the fields as a radial
and spherical harmonic part and then to try to linearise the Ginzburg-Landau equations
about the vacuum values of the fields.

• For Chapter 5 an obvious extension is to consider the s+id case not in the basal plane in
the same manner as Chapter 4. We could then consider the twisting of the magnetic field
away from the direction of applied external magnetic field. Additionally, the dependence
of HC1 and HC2 on orientation could be found. Furthermore, studying the s+is case can
be done, though when considering the results of Chapter 4 it is unlikely that anything
other than (N,N) vortex solutions will appear. However, looking at unit cell shape and
critical magnetic field might be of interest.

• Furthermore, using the method of Chapters 4 and 5 for the p + ip case for non basal
plane orientations can be done. Similarly to above, classifying the types of solutions,
determining the critical field, studying magnetic field twisting as well as unit cell shape
could also be of interest.

• Finally, for all of the types of superconductors studied we can look at the so called
isoperimetric problem. We consider embedding a plane in R3 with the plane’s boundaries
fixed to one vacuum. We start with a circular domain wall (or bubble) at the centre of the
plane which separates the vacuum on the boundary from the other (gauge inequivalent)
vacuum at the centre of the plane. We note that the solution of the Ginzburg-Landau
equations would simply be the homogenous superconducting state. That is this bubble
would collapse. However, if we use the area preserving gradient flow method, as detailed
in [49]. This allows us to minimise the free energy whilst keeping the area of the bubble
constant. We can then explore the shape of the domain wall bubble that minimises
the free energy for all three models, s + is, s + id, p + ip, and how this changes with
orientation. In general we do not know what shape the bubble will take. Additionally,
the magnetic response would differ with orientation and superconductor type. This
could be extended to a three-dimensional bubble embedded in R3.
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Appendix A

Parameters Used

A.1 Parameters used for an Isotropic Superconductor

For the following potential,

Fp = −1

2
|ψ1|2−

1

2
|ψ2|2+2|ψ1|4+3|ψ2|4+

3

2
|ψ1|2|ψ2|2

+
1

8
|ψ1|2|ψ2|2cos 2θ12 . (A.1)

Note that the isotropy means that Qαβij = δαβδij .

A.2 Parameters used for s+ is and s+ id Superconductors

The following parameter set is used in Chapters 2 and 3.

s+is s+id

Q11 =

 4 0 0
0 4 0
0 0 0.3

 Q11 =

 4 0 0
0 4 0
0 0 0.3


Q22 =

 0.5 0 0
0 0.5 0
0 0 2

 Q22 =

 0.5 0 0
0 0.5 0
0 0 2


Q12 =

 1 0 0
0 1 0
0 0 0.2

 Q12 =

 1 0 0
0 −1 0
0 0 0.2


Table A.1: Form of the anisotropy matrices for s+ is and s+ id systems.

For the following potential,

Fp = −1

2
|ψ1|2−

1

2
|ψ2|2+2|ψ1|4+3|ψ2|4+

3

2
|ψ1|2|ψ2|2

+
1

8
|ψ1|2|ψ2|2cos 2θ12 . (A.2)
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Appendix B

Numerical Algorithms

B.1 Discrete Winding Number

This algorithm is used to find the winding number around a point on a discretised lattice,

where we input both of the discretised condensates, ψ
(I,J)
α , the lattice position around which

we calculate the winding number, (IZ , JZ), and L is a parameter determining the size of the
square contour surrounding point IZ , JZ , depicted in Figure B.1.

Algorithm 1: Discrete Winding Number of a Zero

Input: (ψ
(I,J)
1 , ψ

(I,J)
2 , IZ , JZ ,L)

Output: N - the winding number around ψ
(IZ ,JZ)
α

1 Define {K = (K1,K2)| 0 < (IZ −K1)2 + (JZ −K2)2 < (L+ 1)2}. This gives us the
square contour, of length 2L, surrounding the point (IZ , JZ). Figure B.1 shows this for
L = 1.

// K is ordered so we traverse the square contour anticlockwise from the point

K = (IZ + L, JZ) and finish at K = (IZ + L, JZ − L).
2 k = 1 // Note that our indexing of K starts at 1 not 0

3 Lk = length(K1) ≡ length(K2) // Note that K1 and K2 will have the same number of

elements.

4 while k < Lk do

5 V =
(
R(ψ

K(k)
α ), I(ψK(k)

α )
)
/|ψK(k)

α |

6 W =
(
R(ψ

K(k+1)
α ), I(ψK(k+1)

α )
)
/|ψK(k+1)

α | // Note that V,W ∈ S1 and they are the

normalised values of ψα at the points (K1(k),K2(k)) and (K1(k + 1),K2(k + 1))

respectively.

7 θ(k) = arctan
(
|V×W |
V ·W

)
// This gives the relative angle between point K(k) and

K(k + 1)

8 k = k + 1

9 N = 1
2π

∑Lk−1
k θ(k)

B.2 Finding Discretised Zeros

This algorithm is used to find the positions of all zeros, for a two component order parameter
on a lattice. It then determines their winding numbers via Algorithm 1 and records which
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Figure B.1: A diagram of the square contour which Algorithm 1 uses to find the discrete
winding number about a point on a square lattice. Lattice sites are the black points and the
point (IZ , JZ) is circled in red with the winding square for, L = 1, drawn in blue.
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zeros are coincident. The inputs are both discretised condensates, ψ
(I,J)
α , and L a parameter

determining the size of the square contour surrounding the point IZ , JZ , depicted in Figure
B.1. Finally, || means or and && means and.

Algorithm 2: Discretised Zeros Finding Algorithm

1 Begin

Input: ψ
(I,J)
1 , ψ

(I,J)
2 , L

Output: Z1, Z2, Z0 store the locations and winding numbers of the zeros of ψ1, ψ2

and the coincident zeros respectively.
2 Define Cond(xa, xb) := sign(xa)sign(yb) // Cond : R2 → {−1, 0, 1}, this function

will tell us when there is a change of sign moving from xa to xb and thus a zero

lies in [xa, xb].

3 Define ψ
(I,J)
1 = R

(I,J)
1 + iI

(I,J)
1 and ψ

(I,J)
2 = R

(I,J)
2 + iI

(I,J)
2 // According to

Definition 4.2.1 a change of sign in both real and imaginary components defines a

zero.

4 Define (IM , JM ) = length(R
(I,J)
1 ) // Note that the lengths of the four field

R1, I1, R2, I2 are all the same and will be equal to (Nx, Nx), where Nx is the number

of lattice sites in one dimension.

5 Define z1 = False, z2 = False // These two variables will allow us to identify

coincident zeros.

// || means or and && means and.

6 for I = {1 + L, ..., IM − L} do
7 for J = {1 + L, ..., JM − L} do

// Note that we remove L ∈ Z points from either end, this is to avoid

complications with changes of sign occurring on the boundaries and therefore

giving misleading answers.

8 Define HR1 = Cond(R
(I,J)
1 , R

(I+1,J)
1 ), HI1 = Cond(I

(I,J)
1 , I

(I+1,J)
1 ),

HR2 = Cond(R
(I,J)
2 , R

(I+1,J)
2 ) and HI2 = Cond(I

(I,J)
2 , I

(I+1,J)
2 )

// These quantities allows us to see if a change of sign occurs in any of

our four fields between lattice points (I, J) and (I + 1, J), that is

horizontally.

9 Define V R1 = Cond(R
(I,J)
1 , R

(I,J+1)
1 ), V I1 = Cond(I

(I,J)
1 , I

(I,J+1)
1 ),

V R2 = Cond(R
(I,J)
2 , R

(I,J+1)
2 ) and V I2 = Cond(I

(I,J)
2 , I

(I,J+1)
2 )

// These quantities allows us to see if a change of sign occurs in any of

our four fields between lattice points (I, J) and (I, J +1), that is vertically.

10 Define C1 = (HR1 ≡ −1||V R1 ≡ −1)&&(HI1 ≡ −1||V I1 ≡ −1) and
C1,0 = (HR1 ≡ 0||V R1 ≡ 0)&&(HI1 ≡ 0||V I1 ≡ 0)

// Where C1 gives the condition for a zero in the ψ1 condensate at lattice

site (I, J). C1,0 is there to catch the rare case when ψ
(I,J)
1 ≡ 0 which is very

unlikely for discrete solutions.

11 if (C1 ≡ True)||(C1,0 ≡ True) then
12 Store (I, J) in Z1 as the location of a zero for ψ1

13 Calculate and store the winding number using Algorithm 1 with inputs

(ψ
(I,J)
1 , IZ , JZ ,L)

14 Set z1 = True
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Algorithm 2: Continued

18

19 for I = {1 + L, ..., IM − L} do
20 for J = {1 + L, ..., JM − L} do
21 Define C2 = (HR2 ≡ −1||V R2 ≡ −1)&&(HI2 ≡ −1||V I2 ≡ −1) and

C2,0 = (HR2 ≡ 0||V R2 ≡ 0)&&(HI2 ≡ 0||V I2 ≡ 0)
// Where C2 gives the condition for a zero in the ψ2 condensate at lattice

site (I, J). C2,0 is there to catch the rare case when ψ
(I,J)
1 ≡ 0 which is very

unlikely for discrete solutions.

22 if (C2 ≡ True)||(C2,0 ≡ True) then
23 Store (I, J) in Z2 as the location of a zero for ψ1

24 Calculate and store the winding number using Algorithm 1 with inputs

(ψ
(I,J)
2 , IZ , JZ ,L) Set z2 = True

25 if (z1 ≡ True)&&(z2 ≡ True) then
26 Store (I, J) in Z0 as the location of a coincident zero of ψ1 and ψ2

27 Store the winding numbers for ψ
(I,J)
1 and ψ

(I,J)
2 .

// Note that as long as L ≥ 2, that is the square contour encompasses the

points (I, J), (I + 1, J), (I + 1, J + 1), (I, J + 1), we can be confident that the

winding numbers calculated are accurate

28 Re-set z1 = False, z2 = False
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