
Prediction in Poisson and other Errors in 

Variables Models 

by 

Fernando Jose Malheiro de Magalhäes 

N 

WoNOecsl: 

University of Sheffield 

A Thesis submitted to 

The University of Sheffield 

for the degree 

of 

Doctor of Philosophy 

July 1997 

Gti ýR. 

Probability and Statistics Section 

School of Mathematics and Statistics 



In memory 

of 

my parents 



ACKNOWLEDGEMENTS 

To Professor Ian R. Dunsmore, for his supervision, his support and words of encour- 
agement, and for his patience. 

To Mr David J. Robson, for his precious help in programming and computing prob- 
lems. 

To my parents, who throughout their lives educated me in a way that made possible to 
make this course and who taught me to have great enthusiasm in my work. Surely they 
would love to see this thesis. 

To my sister and brother in law, for all the support they gave me, and for all work they 
did for me solving all kinds of problems during my absence in Portugal. 

To all my family and friends in Portugal, who always kept in touch with me, support- 
ing me when I most needed it. 

To Institute Politecnico do Porto and Universidade Portucalense for their financial 
support during my studies in Sheffield. 

To Projecto Modest from PRAXIS XXI / JNICT / FEDER (Portugal). 

To Professor Antonia Amaral Turkman, who introduced me to Bayesian Statistics, and 
who to some extent is responsible for my decision to come to Sheffield, for her friend- 
ship and support. 

To Professor M. J. Maher (Napier University), who kindly provided the accident data 
set used to illustrate part of this work. 

To all staff and colleagues, for their help during my stay in Sheffield and for the good 
time we spent together. 

To my colleagues and friends Natercia Duräo and Cristina Oliveira, who solved all 
kind of professional problems during my absence from Portugal, and who always were 
there to encourage me. 

To Roland Burkhard, my flatmate, for the good time we spent together, for his pa- 
tience, support, help, great libertarian thoughts and especially for his friendship. 

To all friends I met during the three years I stayed in Sheffield. 



PREDICTION IN POISSON AND OTHER ERRORS IN 
VARIABLES MODELS 

by 

Fernando Jose Malheiro de Magalhäes 

SUMMARY 

We want to be able to use information about the traffic flows at road junctions and 

covariates describing those junctions to predict the number of accidents occurring there. 
We develop here a Bayesian predictive approach. 

Initially we considered three simpler but related problems to assess the efficiency 
of some approximation techniques, namely: 

(I) Given a treatment with an effect that can be described mathematically as of a 

multiplicativeform, we record Poisson countings before and after the treatmentis applied. 
Then, given a new individual with a known counting before the treatment is used, we want 
to predict the outcome on that individual after the treatment is applied. 

(II) After observing the value on an individual before any treatment is applied, we 
decide, based on that value, which of two treatments to apply, and then register the post- 
treatment outcome. Given a new individual, with an observed value before he receives any 
treatment, we aim to derive the predictive distribution for the outcome after one of the 

treatments is used. (This problem is also considered when several possible treatments are 

available). 



(III) We compare the effects of two treatments, through a two-period crossover de- 

sign. We assume that both the treatment effect and the period effect are of multiplicative 
forms. 

Estimative and approximation methods are developed for each of these problems. 
We use the Gibbs sampling approach, normal asymptotic approximations for the poste- 

rior distributions and the Laplace approximations. Examples are presented to compare the 

efficiency and performance of the different methods. We find that the Laplace method 

performs well, and has computational advantages over the other methods. 

Using the knowledge obtained solving these simpler problems we develop solu- 
tions for the traffic accidents problem and analyse a real data set. Stepwise procedures for 

the incorporation of the covariates through the use of Kullback-Leibler measure of diver- 

gence are developed. 

We also consider the three simpler problems assuming that the observations are 
exponentially and binomially distributed. 
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Chapter 1 

CHAPTER I 

INTRODUCTION 

1.1. Introduction 

The final goal of the project is to study a model which, in a Bayesian framework, 

can be used to predict the number of accidents occurring at a road junction in a given pe- 

riod of time, based on a measurement of the traffic flows at that junction as well as on 

other covariates describing important characteristics of the junction. Barnett & Wright 

(1990) and Dunsmore & Robson (1992) considered this problem in a classical frame- 

work. In order to achieve this goal initially we study other mathematically related but 

much simpler problems, with the purpose of analysing how well some estimative or ap- 

proximative methods work. 

The first of those problems, considered in Chapter 2, is what we have called the 

"multiplicative effect of a treatment problem". In this case, we use observations collected 
before and after a treatment, which we suppose to have a multiplicative effect, is given to 

an individual. Then, observing a new individual before the treatment is applied, we derive 

the predictive distribution for the outcome on that individual after he has received the 

treatment. In Chapter 2, we suppose that the collected data are Poisson counts. To model 

this problem, we consider random variables X; and YY , i=1,2, ..., n, representing the ob- 

servation on the i-th individual before and after the treatment is used, respectively, and 

suppose that 

- given 9;, X; - Po(exp(O )), 

- given 9; and a, Y- Po (exp(a + 9; )) . 
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Here a is an unknown parameter which models the multiplicative effect of the 

treatment, 6; (i=1,2, ..., n) are parameters which are needed to model the individuals' 

characteristics and Po(p) represents a Poisson model with mean p. 

As a variation of this problem, in Chapter 3 we consider a situation where two 

treatments, T, and T2 , are available, both with multiplicative, but usually different, effects. 
The choice of treatments is based on the observation before any treatment is applied. 
Based on the pairs of observations, before and after treatment, and on a measurement on a 

new individual who did not receive any treatment, we derive the predictive distributions 

for the outcome on that new individual, after he has been given either the first or the sec- 

ond treatment. For this "treatment effect under biased allocation problem" with Poisson 

counts, we consider the model 

- given B;, X; ~ Po(exp(Oi)), 

given a, ß, 9; and x;, 

Y,. - Po (exp(a + 93) , if treatment T, is used, 

Y,. - Po (exp(ß +O )) , if treatment T2 is used, 

- given a, T, is used if x; <a and T2 is used if x; z a. 

We also generalise this problem to the case when there are more than two possible 
treatments to use. 

The third problem studied is the so called "crossover design to compare two treat- 

ments". We suppose we want to compare the effects produced by two possible treat- 

ments T, and T2 . In order to do that, we give to each individual one treatment in the first 

period of time, and later, in the second period, we give to that individual, another treatment 

(either the same or different). We suppose that the effects of the treatments as well as the 

effects of the periods have multiplicative forms. Based on the observed values on both 

periods, we derive the predictive distributions which involve the outcome on a new indi- 

vidual who receives either one or other treatment. Supposing that the outcomes are Pois- 

son counts, we solve this problem in Chapter 4. With random variables W,, and Wit rep- 

resenting the outcomes for the i-th individual in the two periods, we use the following 

statistical model: 
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Treatment Period 1 Period 2 

Ti Po(exp(O, )) Po(exp(p + os)) 

T2 Po(exp(a + ei)) Po(exp(a +ß+ ei)) 

Here, the multiplicative treatment effect is modelled by the parameter a and the 

multiplicative period effect is modelled by the parameter P. The parameters 6,, 02,.. -, 6� 

are used to model the characteristics of each individual and, therefore, the existent de- 

pendence between Wi, and Wit . 

In Chapters 5 and 6 we consider the accident problem that was the final aim of the 

project. Let Xj (i=1,2, ..., n and j=1,2, ..., ,) 
be random variables representing the j-th 

traffic flow of the i-th junction and let Y,. be a random variable representing the number of 

accidents at junction i. We consider;, (1=1,2, ..., n and £ =1,2, ..., c) as being covari- 

ates describing the £ -th characteristic of the i-th junction. The model considered to pre- 
dict the number of accidents at a new road junction is 

X; ý- Po(exp(aj +k; ý)) , i=1,2,..., n 

I 
Y, - Po 

(ex(P 
JXj aý; + ý, ßr ý; r "ia1,2, ..., n 
, _, , 

where k6, are known constants which relate to the length of the observational period and 

the time of the day and year that the observations were made. Here, of are parameters 

which are used to model the characteristics of the traffic flows at the junctions; A and ß 

are vector parameters used to model, respectively, the effect of the traffic flows and of the 

covariates on the number of accidents. To allow the presentation to be as simple as possi- 
ble, we begin by considering a situation in which the prediction is based just on two traf- 

fic flows (Chapter 5) and then, in Chapter 6, we extend the problem for a general situation 

with/flows and c covariates in the model. 

Finally, in Chapters 7 and 8, we consider the three problems described in Chapters 

2,3 and 4 but supposing that the outcomes are respectively exponentially and binomially 

distributed. 
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1.1.1. Notation 

Vectors and matrices will be always written in bold type and their dimensions will 
only be mentioned if they are not obvious. A matrix with n rows and p columns with all 

elements equal to zero, the null matrix, will be denoted by O. 
P or just 0. The identity ma- 

trix will be denoted by I. or simply I. 

1.2. Some Statistical Methods 

The basis of all Bayesian methods is to combine the information provided by the 

data, through the likelihood function p(x 10), and our beliefs about the model parame- 

ters, expressed through the prior distribution p(6), in order to derive the posterior distri- 

bution p (B 1 x), using the Bayes' theorem. The posterior distribution is given by 

p(eI x)s 
p(e)p(xI 0) 

J'p(6) p(x 1 6)d 0 

or, up to a normalising constant, 

p(e1x)«p(e)p(xl6). 

Then, the posterior distribution is used to evaluate the predictive distribution of a 

random variable Y; such a predictive distribution is given by 

p(y 1 x) - J'p(y 1 9)p(6 1 x)d9. 

Note that the predictive distribution is then the posterior expectation of the probability 
distribution p(y 16) . Details about posterior and predictive distributions can be found, 

for example, in Aitchison & Dunsmore (1975) or Geisser (1993). 

In the models we have developed we often find that the posterior distribution is not 

analytically tractable. Therefore, the practical implementation of our Bayesian methods is 

quite difficult and requires a great amount of computation. We use some methods which 

summarise, at least approximately, the important characteristics of the posterior distribu- 

tion. Bayesian inference summaries often require the evaluation of posterior expected 



values of functions. Due to the difficult integrals that are usually involved in those ex- 
pectations, we are in almost all practical situations unable to solve them analytically and 
we are therefore forced to use numerical methods. But, if the problem has a high dimen- 

sionality, those numerical methods are usually not efficient enough. One possible way to 

overcome that problem is to provide approximations for the integrals. 

The next sections outline some of those methods. 

1.2.1. The Gibbs Sampling Algorithm 

The Gibbs Sampling Algorithm is a Markov Chain Monte Carlo method that can 
be used to simulate the posterior distribution p(9 I x). The summary presented here is 

based on the work by Bernardo & Smith (1994), O'Hagan (1994), Dellaportas & Smith 
(1993), Gelfand & Smith (1990) and Gelfand, Hills, Racine-Poon & Smith (1990). 

Let 0= (61,02, 
..., Ok) be a parameter vector and suppose that we want to summa- 

rise its posterior distribution p(9 I x). 

If p(6 I x) is too complex for analytical treatment, it is quite likely that it will be 

very difficult to generate a random sample from that posterior distribution directly. How- 

ever, if the full conditional distributions p(9; Io, x) for each individual component of 

0, given the data x and specified values of all other components of 0, are easily obtained 

from p (0 I x), it is sometimes easier to generate samples from them instead. Let us sup- 

pose that we are able to generate 6; from the full conditional distribution p(6; 16j,;, x) . 
In that case, the Gibbs sampling algorithm consists of considering an arbitrary set of 

starting values 0(0) m 
(O(0), 92), ..., 

O 0)) and of generating a series of random k-dimen- 

sional points 0"), e'2), 0(3),..., where 9(") is derived from 0 in the following way: 

- generate BrP+') from p(9,1 02P), 62P), ..., 9kP), x); 

- generate 62P'') from p(62 19; P+'), 03P)1 -1 
OkP), x 

- generate 
e2P; ') from p(e3 10, P+, )ý 9(2P+'), B, P)..., dkp), 

xl; (1.1) 
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- generate B(''') from p(6k 1dp '), 0(2P+1)'***' 6, ßp; '), x) . 

It has been shown that under mild conditions, if enough iterations are done, this 

process will converge (see, for example, O'Hagan (1994)). Thus, after t iterations we will 

obtain a sample (61`', 6ýý`', ..., o) from p(6 I x). Repeating the whole procedure M 

times, we will obtain M samples from p (0 1 x), namely 

q" I . ""r kill )/ r ,%ýr 2r. ". r M il) 1(j)r 11'j), e 

which can be used to estimate all summaries about p(6 I x) in which we are interested. 

For instance, we can estimate the mean vector of 0 by 

M 

Balzi u, M ; _, 

More generally, if g (0) is any function of 0, its expectation can be estimated by 

E[S(e)] a1L, 8(erji)" I 
M , _, 

In particular, noting that the predictive distribution of a random variable Y can be regarded 

as the posterior expected value of p(y 16) , we can estimate such a predictive distribution 

by 

P(Y i x) - 
Mlp(y I eii) (1.2) 

, -1 

The Gibbs sampling algorithm supposes that we are able to sample from the full 

conditional distributions. In some situations the random generation from p(O I O, , x) 

is not straightforward, and we will then have to use techniques such as those summarised 
later in section 1.23. 
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1.2.2. Asymptotic Results 

Supposing that n, the dimension of the available data set, is large enough, the poste- 

rior distribution p(8 I x) can be successfully approximated by a k-multivariate normal 

distribution, and therefore the summaries we are interested in will be readily obtained. 

We will consider two different asymptotic normal approximations for the posterior 

distribution p(O I x). The first of them is based only on the likelihood function 

(Bernardo & Smith, 1994) and the other is based on characteristics of the posterior dis- 

tribution itself (O'Hagan, 1994). 

1.2.2.1. Posterior Normality Based on the Likelihood Function 

Let us consider the continuous parameter vector 8E e c: I"{k and let p(6 I x) be 

its posterior distribution. By the definition of p(0 1 x), 

P(e i x) a P(e)P(x i 0); 

or, equivalently, we can write 

p(O I x) «exp{lnp(8)+ln p(x I B)}. 

Considering both p(6) and p(x 10) as functions of 0, and solving the systems of 

equations 

V Inp(9)a0 and V lnp(xI 0)a0, 

separately, we will obtain the prior mode mo and the maximum likelihood estimate 9. 

Then, let us expand In (p (9)) and In (p(x 16)) in Taylor series around mo and 8, respec- 

tively, 

Inp(9)-lnp(mo) -2(6-mo)T Ho(9-mo) +Rl 
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In p(x I 9)' In p(x l 9)- ý(6- 
B)T H(6) (6-6)+ R2 

where Rl and R2 are the remainder terms and the matrices Ho and H(6) are defined by 

H- _ 
a21n ýe) 

and H_ 
a21n p(x i e) Ho ae; ae; )lo=MO 

(b)- 
ae, ae; i e-e 

Considering an exact normal prior distribution, R1=0; however, there is no need of 

such a requirement in order to obtain a good approximation because under some regular- 
ity conditions (Bernardo & Smith, 1994, pp. 287-292), as n becomes large, the remainder 
terms R, and R2 become negligible, no matter the prior assumptions considered. Hence, 

we can write that, approximately, 

p(e1 x)«expj-2[(O_mo)TH0(O_ mo)+(9-8 
)TH(9)(6-e)l} 

= expj- 2(6-m, 
)T H, (0-m, )1 

with 

H, = HO + H(b) 

m, = HH'(Homo +H(6)B). 

This shows that for large n, the posterior distribution p(0 I x) can be approximated 
by a k-multivariate normal distribution with mean vectorm, and precision matrix H,. 

Intuitively, we expect that as n becomes larger, the prior precision Ho will become 

small when compared with the precision provided by the data, H(6), and that approxi- 

mately Hl =H 
(9) 

and m1 =0. Therefore, we can assume that 

p(8 I x) m Nk (9, H''(6)) (13) 
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where B is the vector of the maximum likelihood estimates of the parameters and HC8) 

is the Hessian matrix evaluated at 8. 

1.2.2.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

This asymptotic result, presented by O'Hagan (1994), is similar to the one 

described in the former section. Given the posterior distribution p(6 I x), we evaluate its 

mode m, solving the system of equations defined by 

oln p(6 1 x) =0 
(1.4ý 

and we expand In p(9 I x) in a Taylor series around the posterior mode in, ignoring 

terms involving third and higher order derivatives. Therefore, defining the modal disper- 

sion matrix V such that 

v_, s_ 
dI In p( 9I x) 

dBld9j I9=m' 

we easily conclude that 

(1.5) 

p(91 x)ei Nx(m, V) (1.6) 

1.2.3. The Rejection Sampling Algorithm 

If the conditional distributions are not standard ones from which samples can be 

easily generated, techniques such as rejection sampling algorithms (Gilks & Wild, 1992) 

have been developed. 
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1.2.3.1. Non-Adaptive Rejection Sampling 

Let us suppose that we need to generate n random points, independently, from a 
distribution p(x), known up to a constant of integration. To obtain those n random points, 

we define an envelope function pe(x), which is easy to generate from, such that 

p, (x) z p(x), for all x in the domain of p(x). Because the envelope function has also to 

be defined just up to a constant of integration, we can choose po(x) to be of a similar 

shape to p(x); then, to ensure that the envelope function really covers p(x), we can multi- 

ply it by a constant Ma1. 

We begin by generating a point xo from po(x) or, more specifically, from Mp`(x); 

then, we generate a valueyo from the uniform (0,1) distribution and finally, if 

. YoMP. (xo)s P(xo). 

we accept; as being a random point from p(x); otherwise, we reject the point xo. 

In order to increase the efficiency or acceptance rate, the value of M has to be ap- 

propriately selected. It has been shown that the proportion of accepted values is 11M. 

Therefore, it is obvious that we wish M to be as small as possible. As the envelope func- 

tion M po(x) was built in such a way that p(x) s Mpe(x) , this implies that the best choice 

of M is 

Ma sun.. 
p(x) (1.7) ---a .s n` (x) 

The efficiency of this algorithm depends very much on the art of choosing the en- 

velope function, which can sometimes be extremely difficult. 

1.2.3.2. Adaptive Rejection Sampling 

Adaptive rejection sampling is a successful attempt to improve the efficiency of the 

non-adaptive rejection algorithm. Full details of this algorithm as well as its proof are 

presented by Gilks & Wild (1992). Here we will just present a brief summary of this 

sampling method. 
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Adaptive rejection sampling can be applied if and only if some conditions are satis- 
fied: the domain D of the random variable X must be connected; p(x) must be a continu- 

ous function differentiable everywhere in D; and h(x)=In p(x) must be concave every- 

where in D, that is, h'(x) must decrease monotonically as x increases in D. An example 

of a concave h(x) in D is shown in Figure 1.1. 

Figure 1.1: An example of a concave function h(x). 

The basic idea of the adaptive rejection sampling algorithm is to build an efficient 

envelope function forp(x), based on an envelope function for h(x)=1n p(x). 

Let us consider a set of k abscissae Tk = {x; 
,i =1,2, ..., k} such that x, s x2 s ... 

s xk , and let us suppose that h(x) and h'(x) have been evaluated at the k points of Tk. If, 

at each of these points, we define the tangents to h(x), we can define a piecewise linear 
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upper hull, uk(x), as shown by Figure 1.2. Each of those tangents intersect with the next 

one, defining abscissae z,, j=1,2, ..., k-1, given by 

7. = 
h(x�., ) - h(xj) -x,., h'(x;,, )+ xf h'(xj) 

(1.8) 
, h'(xj) _ h, (x, +1) 

Figure 1.2: A piecewise linear upper hull for h(x). 

For x1 E[z, 
_,, z, ], j=1,2, ..., k, the piecewise linear functions uk(x) which form 

the upper hull are obviously defined by 

uk(x)-h(xi)+(x-xJ)h'(xj), (1.9) 
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where zo is the lower bound of D (or -oo if D is not bounded below) and zk is the upper 

bound of D (or +co if D is not bounded above). 

Noting that h(x)=1n p(x) and uk (x) is an upper hull for h(x), it is natural to define 

exp uk(x) 
sk (x) _f 

exp ruk(x)t dx 
D 

to form the envelope function for p(x). 

(i. io) 

With the aim of improving the algorithm, we can also define a piecewise linear 

lower hull, lk(x), formed by the chords between adjacent abscissae in Tk, as shown in 

Figure 13, and given by 

jk(x) a 
(xj+, -x)h(xj)+(x -xj)h(xj+, ) 

(1.11) 
xj+l - xj 

for j=1,2, ..., k-1. For x<x, or x> xk, we define lk(x) = -oo. Using this lower hull, 

and in a similar way as in (1.10), we define a squeezing function on Tk for p(x) as 

exp{lk(x )} . 

To sample n points independently from p(x) by adaptive rejection, we have to per- 

form the following algorithm: 

1. Initialise the abscissae in Tk, choosing arbitrarily k points. If the domain D is not 

bounded below, x, must be chosen such that h'(x, ) > 0; if D is not bounded 

above, xk is chosen such that h'(xk) < 0. 

2. Calculate the functions uk (x), sk (x) and Ik (x) from (1.9), (1.10) and (1.11), 

respectively. 

3. Generate a value xo from sk(x) and sample a value yo from the uniform (0,1) dis- 

tribution. 

4. If 



Chapter 1 14 

yo s exp{Ik(xo)-uk(xo)} 

then accept xo ; otherwise, evaluate h(xo) and h'(xo) and if 

yo s exp{h(xo) -uk(xo)I 

then accept xo ; otherwise, reject xo . 

5. If h(xo) and h'(xo) were evaluated at the former step, xo is included in Tk, defin- 

ing the set Tk.,; the elements of Tk., are re-ordered in ascending order and we de- 

fine the functions uk+, (x), sk+, (x) and lk+, (x) ; finally, we return to step 3 until n 

points have been accepted. 

h(x) + 

xzxz, x j-1 j-1 ji j+l x 

Figure 1.3: A piecewise linear upper hull and a piecewise linear lower hull for h(x). 



Chapter 1 15 

It is interesting to note that as this algorithm is performed, the number of abscissae 

considered increases and become closer. This will make the envelope and the squeezing 
functions to be each time closer to p(x), increasing the efficiency of the algorithm, that is, 

increasing the proportion of accepted values. 

1.2.4. The Laplace Approximation 

An alternative approach to approximating the predictive distributions will be 

through the use of the Laplace approximation (see, for example, Bernardo & Smith 

(1994)). A summary of this method is presented here. 

Given a parameter vector 0= (91,92, 
..., 

Ok) and a data set x, let g(O) be a real 

function of the parameter vector 0 and suppose that we are interested in its posterior ex- 

pectation 

E[g(9) 1 x] -fg(O)p(0 1 x)d9 

fg(O)p(O)p(x I 9)d8 
a 

fp(O)p(x I O)dO 

If we define two functions h(6) and h' (0) such that 

-nh(9) = lnp(6)+ lnp(x 10) 

and 

(1.12) 

(1.13) 

-nh'(6)=eng(e)+lnp(e)+lnp(x 10), (1.14) 

the expectation (1.12) can be written in the alternative form 

E[g(6) i x] _ 
exp{-nh'(6)}d6 

. (1.15) 
f exp {-n h(0)1 d9 

Let us now define 0,0, & and a' such that 
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-h(B) a sups{-h(9)}, 

-h'(6') = sups{-h'(9)}, (1.16) 

äal n02h(B) 
1-112, 

d' - 
Inv2h*re*l1-112 

ý 

where V2h and V' 'h* are, respectively, the Hessian matrices of h and h*. Expanding h(6) 

in a Taylor series around 9 and ignoring all terms with order superior to two, we obtain 

the following approximation for h(9): 

h(9) m h(9ý) (O_ 9)T oh(9 +I 
(O_ 6)T V 2h(6)(6- B). 

But, by the definition in (1.16) for 6, V h(9) s 0, and thus, 

h(9) m h(01 +i(0- 
B)T 

V"h(B)(9- e). 

The denominator of (1.15) can then be approximated by 

1- 
exp{-nh(8)}d9mexpnh(B)lfexp -2(6-6)rH''(9-6) d6 

with H-' m nV2h(6-) . The argument of the integral appearing in the right-hand side of 

this approximation has the form of a multivariate normal distribution Nk(B, H) and 

therefore, using the definition in (1.16) for ä, we have 

1- 
exp2(6-8)r H-'(9-6) d9a(2n)k' Zä, 

and so the denominator in (1.15) becomes 

2ýr 
f exp{-nh(6)}d8 - (2JL)k/a expi-nh(8) . 
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Following an analogous development, the numerator in (1.15) is 

fexp{-nh'(6)}d6= (2ic) k /2 v exp{-nh'(8')} 

and thus, the Laplace approximation for E[g(0) 1 x] is given by 

E[g(6) I x] expj-nh'(9')+nh(6)1. (1.17) 
ä ll 
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CHAPTER 2 

THE MULTIPLICATIVE EFFECT OF A 
TREATMENT: PREDICTION INA POISSON 

ERRORS IN VARIABLES MODEL 

Suppose we have independent random variables (X,, Y, ), (X2, Y2), ..., (X, Y,, ), where 
X; and Y, are Poisson counts observed on individual i before and after a treatment is used, 
respectively. We also suppose that the treatment has an effect upon the individuals which 
can be expressed in a multiplicative form. To describe such a situation, we consider the 
following statistical model 

- given 6;, X; - Po(exp(6r)), 

- given 0, and a, Y,. - Po(exp(a +Bj). 

Here a is an unknown parameter which models the multiplicative effect of the treatment 

and 0, (i = 1,2, ..., n) are parameters which are used to model the individuals' charac- 

teristics. We use this form of parameterisation, with log-link functions for the mean 

values, because the parameter values are then unrestricted real numbers, which is a re- 

quirement necessary for some of the estimative and approximative methods we will use. 

Our aim is to make predictions for a future Y"+1 based on an observed x"+ f and on a 

data set D" - 
{(x;, 

y3 ,i =1,2, ..., n}; that is, we want to derive the predictive distribu- 

tion of the random variable Y"+1. 

Dunsmore & Robson (1997) consider this model in a different parametric frame- 

work. Here we develop and compare various approximations. 
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2.1. A Classical Approach 

The maximum likelihood estimates of the parameters can be used, in a classical 
framework, to derive a simple estimative approximation for the predictive distribution of 

Y"+. Let us suppose that, given 6"+,, X�+, - Po(exp(6�+,. )), and to simplify the notation 

we define a parameter vector 0" - 
(91,02, 

..., 6"). The likelihood function will be 

n+I 

L(8"" 0.. 1, cz; D", x"+, ) = 
{P(xi 1 e; )}{P(Y; 1 e;, a)} 

i0 ,. 

«exp -e'ýl+e")-e^"' x 
11-1 

RR 

x exp Pik+yi)+a Y; +ý-ý 

and thus 

nn 

lnL(6", 6a; D", x"+ln(const) -e'(1+e^' +6; (x; +y; 
ý-ý ý-ý 

R 

+«ly, +eR+, 
xR+i 

, ý_, 

leading to the maximum likelihood estimates 

61,. 1 = In (X.., ) 
,ä -In 

y, 

xt I xt 
1-/ / 

9 6` = 
(x, +yj\ 

,1°1,2,..., n. (2.1) 

Thus, the predictive distribution for Y�+, can be approximated, in a classical frame- 

work, by 

(I6, ä) >, Po(exP (ä 
+9 

)). 
p+, 

Note that this classical approach will be impossible to implement if x�+, = 0. 
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2.2. A Bayesian Approach 

2.2.1. The Exact Predictive Distribution 

The basis of the Bayesian approach is to consider prior distributions for the pa- 
rameters, derive the posterior distribution using the information in the observed data set 
and obtain the predictive distribution for Y�+,, given by 

fp P(Y,,., I D", x.., )(Y.. a)P(BR�, ý aiD, xR. ) d9R., da . (2.2) 

We will consider a hierarchical prior structure. At the first stage, we take 

nr yý p(e". 
en+1+ 

a Ie+ý) s 

ro 
ý{p\ei 1 ll ý/}C\CY 1'/)+ 

whilst at the second stage we assume 

P(ý. n) = PW P(n)" 
An appropriate structure here would be of the form 

e'- Ga(k, eg) e° ~ Ga (g, e°) 

eý- Ga(u, v) e''- Ga(r, s) 

where Ga(a, b) represents a gamma distribution with density function proportional to 

V °"expt-bV 1, i>0, and where k, g, u, v, r and s are known constants. 

Considering the equivalent forms in Table A1.1, the joint prior distribution for 

ý8 ", B"+,, a, ý, ti) will be given by 

n+ 1 
Pýe"" 6�+>> a, ý, n) °li{P(ei 1 e)}P(a I i1)P(e)P(l1) 
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n+1 

« exp e". -e''+a - vJ -se'' x 
ý-1 

ot+/ 
x exp k(ý+9)+g(i7+a)+uý+rt7 , 

and the joint posterior distribution is then given by 

p(6", 6"+,, a, ý, il I D", x.,., ) «exp -ýe'(l+ea+eý) -e -''(I+e) -ve x 
ý-ý 

xexp -e"(e° +s) +6; (xt +y; +k) +en+, 
(xn 

+k) x 
+_, 

ý 
xexp a g+ýy; +ri(g+r)+((n+1)k+u)ý . (2.3) 

ý-ý 

From (2.2) all we need in order to derive the predictive distribution is the marginal 

posterior distribution of (9"+, a). Whilst we can derive the marginal posterior distribu- 

tion for (9"+i, a, ý), by integrating (23) in order to remove 0" and q, we are unable to 

integrate out ý. Defining 

nnn 

S x; S, -7, y; St=Ss+S, +nk-ý(x, +y; +k) 

we obtain the posterior distribution for (en,,, a, ý) as 

exp -ee^'' 
(1 + eý) - ve4 

x p(en+1ý a, ýý DRý Xn+1 a 
(e a+ 

s)8+, 

exp{eR+r( +k)+ a(g+ SY)+((n+ 1)k+u)ý} 
x s, (2.4) (1 

+ea +eý) 

R+/ 

To derive the predictive distribution, we have to adapt (2.2), and the predictive dis- 

tribution of Y�+, will be given by 
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P (Y,,,, I D", xn., ) °f P(Y»., 10.. � a)P(9�+I, a, eI D", x,,., )d9�., dadý 
913 

exp{_ea+e-. i _een., 
(l+e 

OC 
1x 

v__. (oa icl8*r vn+i 2R" 
a+ 

sg 
+r 

e 

22 

xexp{(a+001+1)y. 
+, +6 +k)+a(g+Sy)} n+l n+l 

ý Sr ý1+e" 
+e 

ý 

x exp {((n + 1) k+ u) ý}d6n+1 da dý 

(z, 
ý+1+y"+, +k) exp{-veI 

}exp{a(g+Sy+y�+1) 
1 « 

1' 
x 

y. + i! \e 
a+ 

s/a+r ý= 

x 
exp {((n + 1)k + u) ý}da dý 

ý) s+z.., +Ye. I+k 
(2.5) 

(1+e° 
+e 

The integrations with respect to a and ý cannot be carried out analytically. There- 
fore, in a practical situation, we will have to use a two-dimensional numerical integration 

technique to obtain the exact distribution (2.5). 

For the special case where we have second stage vague priors (u, v, r, s 0), the 

predictive distribution of Y�+, simplifies to the explicit form 

ý B(St ý x.., + Y�., + k) 
P(Yý., ýD, x�., ) °C B(Sy -1, y.., +1* 

(2.6) 

In the general situation the predictive distribution of Y�+, has to be computed nu- 
merically. In this case, the integral to solve has not a high dimensionality and therefore we 

are not expecting major numerical problems. However, to set the scene for later models 
we also derive estimates or approximations to the predictive distribution. 



Chapter 2 

2.2.2. Estimation Via Gibbs Sampling 

23 

The Gibbs sampling algorithm, presented in section 1.2.1, can be used to estimate 
the predictive distribution of Y�+,, given by (2.5) or (2.6). To implement this algorithm, 
we need to know the full conditional distributions from which we will draw random 
points. Those full conditional distributions are easily derived from the posterior distribu- 

tion for (6n+,, a, ý). In the general case, the posterior distribution for a, ý) is 

given by (2.4). Thus, the full conditional distributions will be 

p(en+l I a, ý, Dn, xn+, 
) 

« exp{-en+, (I +e)}exp{Bn+, 
(xn+, 

+k)}, 

n 
exp{a(g+ S, )} 

p(a 1en+,, ýº Dr xn+, 
) 

a" 
g+r(I+ a (e+s) e+e) 

exp{-e(e ^'' +v)}exp{((n+1)k+u)ý} 
p 

ýI en+lýa, D", xn+l a" 
(1+ 

e" +e) 
Sr 

In the particular case with second stage vague priors, these become, respectively, 

p(en+, 1 a, ý. D", xn+, ) « eXp{-e .., 
(I+e)}exp{e�+l(xn+, 

+k)}, 

-f- ia T-- nn 
v1M 

exp a Sy 
El tu I vn+I, S" L., , ''Ln+! l (1+e 

+e 
Iss + 

PYnLv9+9°"' YPXnltn 4. 11]lýý 
h .,,. r l ., j_.. r (, ... -f-- --. g) B.. ra, D, x»., ) «a 

+e g) -% 1+e ( 

(2.7) 

(2.8) 

In both cases, the random sampling of values for B�+, is straightforward noting that 

the full conditional distribution is a transformed gamma distribution (see Table Al.! ). 

Hence, those values will simply be the logarithm of values which are drawn from a 

gamma distribution. Typically the generation of values of a from (2.7) will require the 

use of rejection sampling (section 1.2.3). For the special case of second stage vague pri- 

ors we note that the full conditional distribution in (2.8) is a transformed beta distribution 

(see Table A 1.2). Therefore, in this special case, the generation of a can be done generat- 
ing ß from a beta distribution and using the transformation 
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a aIn 
1(1+ 

eg) 
1flß 

- 

The generation of ý eitherfrom (2.7) or (2.8) requires the use of rejection sampling. 

As pointed out in section 1.23, one of the difficulties for implementing the rejec- 
tion sampling algorithm is to be able to find a good envelope function in order to have a 

satisfactory rate of acceptable values. If we find difficulty, in defining an efficient enve- 
lope function for the distributions in (2.7) and (2.8), we can overcome the problem by 

drawing random values from the full conditional distributions derived from the joint pos- 

terior distribution for (6", O, , a, ý, n), given by (23). Those full conditional distribu- 

tions are 

p(9; I 6,,;, 9", 1, a, e, ri, D", x"+, ) « exp{-e'(1+e"+J)}exp{6; (x; +y; +k)}, 

i=1,2,..., n, 

P(BA+, 1 a, e, il, D", x�+i) « exP{-ee-., 
Cl 

+ e, 
)} 

exp{9�+ý (x�+, + k)}, 

ýn 
l 

p(a 1 61,..., en" en+1ý er i], ur xn+l) °` exp -ea 
e' 

+eý exp( ja(g+. Sl, )T, 

a-1 ` 

n +1 

p(ý I 91,..., 9n, 8n+,, a, n, D'', xn+1) « exp -eg v+e' exp{((n+1)k+u»}, 
t-1 

p(171 61, ..., eR, en. 
1, Cx, e, D", Xn. 1) « exPS-Cn(Ca'F S)rexP{il(S + r)} " 

The random sampling of values from any of these full conditional distributions is very 

simple, noting that all of them are transformed gamma distributions (see Table A1.1). 

Using this set of full conditional distributions, we avoid the use of the rejection 

sampling algorithm and all possible related problems. However, we will then have a cost 

to pay: the number of values to sample in each cycle of the Gibbs sampling algorithm 

increases from three to (n+3), which can make the algorithm much more time consum- 

ing. Hence, this option should be used just when suitable and efficient envelope functions 

for (2.7) and (2.8) cannot be found. 
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Taking one of those sets of full conditional distributions, we perform the Gibbs 

sampling routine with t iterations to obtain each one of the M samples. Although we gen- 

erate values for more parameters, we just have to register the values for 8. 
+1 and a, be- 

cause they are the only ones we need in order to estimate the predictive distribution. So, 

let us consider that 

(r) (U en+1(i) 

, a(}) ,ja1,2, ..., M 

are the M samples generated by Gibbs sampling. We can use (1.2) to estimate the pre- 
dictive distribution of Y..,. Such estimate will be 

p(y. +, 
1 DR ,1 

ei exp -µ, µjy-. l 
xý., ) = tLl yn !-+,! 

where µj- exp{a(j) + ýAtýI(J)} 
Ija1,2, ..., M. 

2.2.3. Estimation Via Asymptotic Results 

Suppose n is large enough that the posterior distribution can be successfully ap- 

proximated by a multivariate normal distribution, as presented in section 1.2.2. As the full 

conditional distributions derived from a multivariate normal distribution are univariate 

normals, the predictive distribution of Y�+, is very easy to estimate through the Gibbs 

sampling algorithm. The next two sections will present two possible normal approxima- 

tions for the posterior distribution, following the methods summarised in sections 1.2.2.1 

and 1.2.2.2. 

2.2.3.1. Posterior Normality Based on the Likelihood Function 

The asymptotic result presented in section 1.2.2.1 takes into consideration just the 

likelihood function. Therefore, no matter which prior structure we consider, by (13), we 

can write that the posterior distribution for a parameter vector (6", 6". 1, a) is approxi- 

mated by 
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P(8"º e"+� a1 D", x"., ) e' N". z(µ º -1(µ)) , 

where µT = 
(6", 6"+,, &) is a vector which components are the maximum likelihood es- 

timates of the parameters and H (µ) is the Hessian matrix evaluated at µ. 

The maximum likelihood estimates are shown in (2.1). We find that 

ý 
(VII Vl2 

H(µ) 
V V22)' T 

Ia 

where 

V�=dlag(a;, ia1,2,..., n), yä- 
D0 """ (b, 

b2 """ 

and 

0 
b' 
R 

V22 - diag (c 
, d), 

ý ee, 
(1+ 

ea 
), bi a ee, *6 Q= , 

1=1,2,..., n, 

c_ eý. f d- e« le;. 
+-l 

Note that to predict Y. 
+, we just need the marginal posterior distribution for 

ý6�+,, a), which is 

P(e^+r a1 D^, x^+, ) ý' N2 (e^ý, 
" «) . K') , 

where 

W =3 
(V22-V12V; ý VIIý-I IIdiag(l/c, l/A, 

with 
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Thus 9,,,, and a are a posteriori independent with distributions 

I D", xý= N(B. 
+r 

1/c) =N ln(x, 
«r), 

1 
Xn 

+I 

p(a I D", xR+, ) 
=N(ä, 1/f) =N In 

Sy 
, 

SSS 
" 

S, y 

27 

Since this approximation requires the maximum likelihood estimates of the pa- 

rameters, the implementation of this method is impossible if x�+, = 0. 

2.2.3.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

Following the method presented in section 1.2.2.2, the posterior distribution (2.4) 

for (9,,,,, a, ý) can be approximated by a multivariate normal distribution, 

p(0.. � a, e1 D", x.., ) °i N3(m, V), 

where m is the posterior mode, defined by (1.4), and V is the modal dispersion matrix, 
defined by (1.5). 

The posterior mode m is obtained from the numerical solution of the 

equations 

e ^''(I+e) -x�+, -k =0, 

g+S -(g+T) 
e°` S, e° 0, 

Ye°` +s I +e" +eg 

J(eB°"' + v) 
ee Sä 

ý -(n+1)k-um0, + 1 +e +e 

(2.9) 

whilst the inverse of the modal dispersion matrix is given by 
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I 
0b 

V''= 0cd, 
9df 

where 

(2.10) 

g+r seý äýe:., (l+eý), bae°. '+ý, 2+e 

°` 1+ eý S, 

2, 1 (eci+s) (1ýe+e) 

d a- 
ed+gS` f= 2t ef e 

6-" +v + 
eý(1+ek)S, 

') (I 
+ eai +e 

f)2 (1+ 
ea +e( 

The appropriate conditional distributions to be used in the Gibbs sampling routine are 

given by 

(e.., 1 a, e, D°, x,..., ) °N 6�+1 - le -j), 
ä, 

IE , 

(eý+, 
-eý+, 

)b+(a-«)d 
1 P(e 1e,. +� a, DR, x,. +, 

) 
mN ý- - 

.fýf 

For the special case when we are taking second stage vague priors (u, v, r, s --> 0) 

explicit modal values can be obtained from (2.9) as 

8. =1ni(Sx+x�+, 
)(x"" +k)1. ä=1ni(Ss+ ý., +(n+1)k)Sy 

nrý 

bdf 

1 S, 
r+xn+, +(n+1)kj' - ... I (Ss+x�+, )(Ss+nk) ]' 

j= In 
(n+1)k 

, `Ss + Xn+1 
(2.11) 

and the constants d, b, J, d and f become 
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1= 

(x,,,, + k)(n + 1)k 
S� +x.. � +(n+ 1)k' 

c= 
(S, 

ý+nk)Sy 
(Sx+nk)(n+1)kSy 

d (SX+x,,,, +(n+1)k)St' 

(n+1)k[(Ss+x�+, )(Ss+nk)+(SS +xn+, +(n+1)k)Syl(Sx+nk) 
+ (Ss+x�+, +(n+1)k)ZSt 

+ 
(x�+, +k)(n+ 1)k 

Sx+x�+, +(n+1)k 

2.2.4. Laplace Approximation 

(2.12) 

Given the posterior distribution (2.4) for a, ý), the predictive distribution of 
Y�+, is defined by 

p(Yn+l I Dn, xn+1) «11/, 
ýeRpfýa+e^", }exp{(a 

+9n+l)Yn+/}x l 

Yn+l"+Jt' 

xp(6"+,, a, e1 D", x"+, )dBn+, dad 

Following the Laplace method in section 1.2.4, we consider this as 

E[S(e.. � a, e) 1 D", x.., ] 

where 

g(ee+1, a, ý) 
a exp}-ea+B,,. '}exp{(a+en+1)ye+1}s 

and, as in (1.13) and (1.14), define functions h (6n+,, a, ý) and h* (O..,, a, ý) by 

-nh(6ef,, a, ý) -In p(ee, a, ý) +1n p(D", xe+1 1 0...,, a, ý) 

a -e ^"'(1+eý)-veý +6e+1(xe+1 +k)+a(g+Sy)+ 
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+((n+1)k+u)ý-(g+r)ln(e" +s)-S, In (]+e" 
+e4) 

and 

-nh'(9�+�a, ý)= In g(en. r a, e)+ 1nP(e�. r a, e)+inP(D�, x�., 1 

- _ea+e°., +(a +8,,., )Y�+r +k)+ 

+a(g+SY)+((n+1)k+u)e-(g+r)ln(ea+s)- 

-St1n(1+ea+ee). 

Defining d, j) and jr as in (1.16) we see that 
(ö 

+,, 
ä, )=m, 

solution of 

(2.9) and 

1/2 
Q={äcf-b2c-dZä 

, 

from (2.10). 

Ina similar way, we define (0.,, a', ý') and a as in (1.16) and find that the op- 

timal (6,; 
+,, a*, ý*) is obtained using a numerical method to solve the equations 

e .., (1 + ea + e4) -xA+, -y.., -k- 0, 

"+e,.., + 
e" +s+ 

e" S 
0ý 

1+ e" + eý - 
g- Sy - Y., - 

e 
e(e '` +v) +eS. (n+1)k-u- 0. 

1+ea+e 

To derive the optimal a' we define 

(2.13) 

ý eä +, F' S+ 

a' aee''(1 +e"ý +eýý), m' m 
eý., +"' ý b" a ee:, +g' 

ý d" s_ , Zý ) (i+e"" 
+ e" 
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. a"+e" 
(g+r)se"" e" l+e")Sý 

.e 
ý(I+e°` )S: 

cae ^'' + Zz, f= eý' 
(eo 

^"' + v) + (e 
+s) 

(1+e"" 
+eý") 

1 (iýe&+e4" i ) 

so that 

ä m' b' 

n02h" 6�+.,, a", ý. )a m, c. d. 
b* d' f 

and thus 

ä={d c' f+ 2m'b'd' - b`2 c' - d'2 a*- m'2 f'f_112. 

Finally, by (1.17), the Laplace approximation for the predictive distribution of Y�+, 
is given by 

. 
1 D" , xn+, ) °` 

1ý0ä 
exp -nh' 

(0. *. 
� a', r) +nh 

(6. 
+,, 

ä, j)1. 
j 

Yý+, " 

Simplifications occur when we consider second stage vague priors because the 

systems of equations involved can then be solved explicitly. The values of 6ri+1, ä and 

follow as in (2.11) and the constants d, b, c, d and f are defined as in (2.12). Simi- 

larly we obtain 

e" -In `sx 
+xn+/J`xn+/ yn+l +kl 

n+l St+xn+l+yn+l+k J, 
a' -In 

Sy + y"', r -In 
(n + 1)k IS. 

+xn+, . 

IS. 

+ Xn+l , 

as being the solution of (2.13) and the constants a', ms, b', c', d' and f' become 

a' a x�ý, + yý,, + k. (Sy + yn. ,)( �ý+1 +yn+, + k) 
S, +x. +, +y�+, +k 

b. a 
(x,,,, + YR. r+ k)( n+ 1) k 

St + x�+, + YR+, +k 
d, a_(Sy+y. +, 

)(n+1)kS, 
29 (S, + x. +, + y. +, + k) 
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C" _ 

(`sY 
+yn+l 

)(xn+1 
+ yn+l + k) 

+ 

(JY 
+ yn+1)(Sx + R+1 + (n + I)k)St 

S, +x�+l+yn+l+k (St+xn+l+yn+l+k)2 

(n+1)k(x�+1+yrt+1 +k) (n+1)k(Sx +Sl, + n+/+yn+l)"St 

= 
St +xR+1+yR+1+k 

+ (St+x�+1+y�+l+k) 2 

2.2.5. Examples and Conclusions 
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In order to illustrate the performance of the methods used in this chapter and also 
to evaluate their efficiency, we will present two numerical applications, considering two 
data sets used by Dunsmore & Robson (1994a). 

Example 1: 

The data shown in Table 2.1 are simulated values of traffic counts xi and corre- 

sponding number of accidents y, (i =1,2,..., 20) at 20 road junctions. 

Xi y; x; yt x, y, Xi y, 
12 1 40 4 16 5 17 2 

24 2 19 2 23 4 10 2 
28 3 16 3 29 4 22 5 
27 2 16 1 27 6 22 2 
18 1 15 3 18 2 34 6 

Table 2.1. Traffic counts xx and number of accidents y; (i = 1,2,..., 20) for 20 road 
junction (simulated values) 

Predictions are given for y2, corresponding to x21=14. In the analyses we assume 

a vague second stage prior structure (u, v, r, s- 0). With this choice of the second 

stage parameters we are able to derive explicitly the exact predictive distribution, and, 
therefore, it is possible to compare it with the predictive probabilities obtained using esti- 

mative or approximative techniques. 
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We notice throughout the development that for such a case specification of g is not 
necessary; we just need to specify k. We do this by matching the first two marginal mo- 

ments of the Xt s (Dunsmore & Robson (1997), Gelfand & Smith (1990) and Gaver & 

O'Muircheartaigh (1987)). The theoretical moments are 

k 
E(Xi) a E(E(X; I 6; )) = E(e' )ae 

k(l 

z 
e°) 

V(Xi) _ V(E(Xr 19 
a))+ 

E(V(Xi 1 8i)) _ V(eB')+ E(eel) =E 
e 

and the empirical moments are x and sx , the sample mean and the sample variance, re- 

spectively. By equating the moments we obtain 

-2 

kasx-z (2.14) 

From (2.6), we see that the predictive distribution of Y21, considering vague second 

stage priors, reduces to the ratio between two beta functions. Because it is much easier to 

evaluate them when their arguments are integer, we rounded the value of k above, taking 
k=13. 

Figure 2.1 shows the exact predictive distribution of Y2! and the different estimates 

and approximations we derived in this chapter (see Table A3.1, Appendix 3). Normal ap- 

proximation 1 refers to the Bernardo & Smith (1994) approach and normal approxima- 

tion 2 refers to the O'Hagan's (1994) approach. The Gibbs sampling estimate was done 

generating values from (2.8) with M=500 and t=100. 

Clearly the Laplace and the Gibbs methods provide excellent approximations to the 

exact predictive distribution. Equally it is clear that the anticipated problems with the mul- 

tivariate normal approximations with a sample of only 20 manifested themselves, al- 

though O'Hagan's (1994) suggestion seems much superior to the more usual posterior 

normal approximation suggested by Bernardo & Smith (1994). This latter normal ap- 

proximation seems to tend to diverge from the exact distribution in the direction of the 

plug-in estimate. We can point out two possible reasons for that. Firstly, while the normal 

approximation suggested by Bernardo & Smith (1994) is based here on 22 parameters, 

the one suggested by O'Hagan (1994) is based here on only 3 parameters. Secondly, 

O'Hagan (1994) takes into consideration the prior structure chosen, in opposition to the 

x 
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approximation suggested by Bernardo & Smith (1994) which just takes into considera- 
tion the likelihood function and the maximum likelihood estimates. 

0.3 

6A 0.25-F 0 
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o Exact 
O Normal Approx. 1 
*Normal Approx. 2 
+ Laplace Approx. 
x Gibbs 

6 8 

Figure 2.1: The predictive distribution of Y21 (the exact one and its approximations 
and estimates), using the data in Table 2.1. 

Example 2: 

In Table 2.2 we have a subset of the data reported by Svensson (1981) on an ex- 

periment carried out in Sweden during the summers of 1961 and 1962 into the effect of 

speed limits on road traffic accidents. The multiplicative Poisson model discussed here 

was shown by Svensson (1981) to provide a good fit to the data. On 43 days in 1961 

when no speed limits were imposed, the number of traffic accidents were recorded. On 

the corresponding days in 1962 a general speed limit was imposed and the numbers of 

accidents were again recorded. The pairs of values (xi, yj are shown in Table 2.2. 
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xi ya xi Yi Xi Y; Xi Y, x, y; xi Yi Xi Y, Xi Y, 
29 17 40 23 28 16 17 20 15 13 21 13 24 9 15 10 
32 17 22 12 24 7 11 11 27 15 37 29 32 17 25 17 
20 15 40 25 21 9 18 16 35 25 21 25 25 16 34 22 
42 21 27 17 34 26 47 41 36 25 15 12 26 17 21 24 
39 26 39 16 21 15 15 12 17 22 20 24 24 16 30 25 
25 14 8 15 21 9 

Table 2.2: Number of traffic accidents: x; with no speed restrictions in 1961; y; with 
speed restrictions in 1962 (i a 1,2,..., 43). 

Corresponding to x04 = 20, we want to make predictions about Y44. We assume 

once again a vague second stage prior structure. As before, we use (2.14) to choose k, for 

this example, we took k=12. 

The exact predictive distribution of Y, 4 and the different estimates and approxima- 
tions are shown in Figure 2.2 (see Table A3.2, Appendix 3). 
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Figure 2.2: The predictive distribution of Y44 (the exact one and its approximations 
and estimates), using the data in Table 2.2. 
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The conclusions are similar to those in the first example, namely that the Gibbs and 
the Laplace methods provide very good approximations of the predictive probabilities. 
However, in this case, the normal approximations, in particular the one suggested by 

O'Hagan (1994), also provide good results. This may be due to the fact that the sample 

size is larger. The computational speed of the Laplace method, in comparison to Gibbs 

sampling, is a strong point in its favour. 

Therefore, we conclude that the Laplace approximation and the Gibbs sampling can 

provide alternative and reliable approaches when the evaluation of the exact predictive 

probabilities are to be avoided due to the high dimensionality of the integrals involved. 

The use of the usual posterior normal approximations can be suspect because of the high 

dimensionality of the parameters, although O'Hagan's (1994) approach improves mat- 
ters somewhat. 
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CHAPTER 3 

TREATMENTS EFFECTS IN A BIASED 

ALLOCATION MODEL: PREDICTION IN A 
POISSON ERRORS IN VARIABLES MODEL 

Robbins and Zhang (1991) considered a model in which (X,, Y, ), (X2, Y), ..., 
(X,,, Y) are independent random variables such that 

- given tp,, Xi - Po (V, ), 

- given y, tp, and x; , 
Y- Po(y tp, ) if treatment T, is used, 

Y, - Po (o tp. ) if treatment T2 is used, 

- given a, T, is used if x, <a and T2 is used if x, z a. 

Here, y and 0 are unknown parameters which are used to model the multiplicative effects 

of treatments T, and T2, respectively; i,, i=1,2, ..., n, are parameters modelling par- 

ticular characteristics of the individuals. We are thus considering again multiplicative 

treatments effects, but where the assignment of treatment depends on the covariate value 
X 

Robbins and Zhang (1991) considered this problem as one of estimation and took 

the difference y -ý or the ratio y /0 as a measure of the differential treatment effect. 

They treated ip,, V2, ..., 4'. as nuisance parameters, and derived the following consistent 

estimators for y and : 
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Y°n 
y, l(x, ̀  a) 

i-1 
y'I(x'Za) 

+0mR 
i-i 

, 2 x; l(xjZa+1) 
, -, 

ýxl(x; <a+1) 
, _, 

where I(. ) represents the indicator function. 

We consider the problem from the predictive aspect. Suppose that in the past we 
observed a group of n individuals, so that the available data are 

D" a 
{ýxýýYýý"i 

=1,2,..., n}. 

If we analyse a new individual, with measurement x�+1 before any treatment is applied, 

our aim is to make predictions about the outcomes after that individual receives one of the 

treatments. 

To avoid problems later with the non-negativity constraints on the parameters in the 

model of Robbins and Zhang (1991), we will again use the alternative parameterisation of 

a logarithmic link function. Thus, we will assume that JX and Y. (i=1,2, ..., n) are ran- 
dom variables such that 

- given Bj, Xi - Po (exp(6j )), 

- given a, ß, ej and xi, 

Y- Po (exp(a + ej )) , if treatment T, is used, (3.1) 

Y,. - Po(exp(p + 6)), if treatment T2 is used, 

- given a, T, is used if xi <a and T2 is used if x; Z a. 

In this new model, a and ß are unknown parameters used to model the multiplicative ef- 

fect of the treatments and 0,02,..., 6� are nuisance parameters. 

We will assume that for the (n+1)-th individual, 

X+l "' PO 

Yn+l. l "' Po(exp(a + 0. 
J), 

Y�+l. z "' Po(expf ß+ 6n+1», 

A 
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where Y�+,,, and Y�+', 2 are random variables representing the outcomes on the (n+l)-th 

individual if treatment T, or T2 is used, respectively. The dependence between the out- 

comes for the individual from the two treatments is modelled through the common pa- 

rameter 6�+1. Our aim is to make predictive statements about Y�+,,, and Y, 
+1.2 either indi- 

vidually or jointly. 

In order to simplify the presentation of results, we define a treatment indicator 

R= 
1, ifx; <a 

ý' 10, if xf aa' 

for i=1,2, ..., n and let 

R 

ni 
i-1 

S: 
I 

Syr 

n2n-nl+n2 
ý-I 

RR 

Sx2 ' I(1-ai)x; Tx xi °Sxt+Sx2 
ý-t i-t 

n 

a 
ýb; xj 
; _, 

nn 

Sy2(1-ai) Yi Ty- I Y; =Syr+Sy2 
ý-t ý-r 

n 

a ýb, ya 
ý_, 
h 

W® ý8; (x, +y, +k)=Sx1+Sy, +kn, 
ý-ý 

WZ -8; 
)(x, 

+y; +k) mSs2+Sy2+kn2 
ý_, 

3.1. A Classical Approach 

Considering the model (3.1), the data set D" and x�+1, we can obtain a simple esti- 

mate for the predictive distributions of Yx+11, Y,,,,, 2 and (Y 
+11, 

Y+1.2 ), using the maxi- 

mum likelihood estimates of the parameters involved. 

With 0" a 
(91,02, 

..., 9" ), the likelihood function is given by 
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L(e", e�. � a, ß. D", x�+, ) af 
lp(x, 

1 9+)[P(Yi 1e� a)r[P(Y, 1e, " ß)]'-a} x 

xp (xn. 
11 

ex 
+l / 

AR 

«exp _R+ 

te; 

- a` e°+e, - 
(1- S, )eß+e, x 

n+/ nn 

xexp Oixj+ (a+Oj)yjäj ++Oj)yj(l -bi) 

and its logarithm is 

RR 
n+1 n+1 n 

In L(6', 6n+Iý a, M, Dº xn+1) = In(COnst) -8 
j 

t9/xt - 
ai ea+Bý t 

i-1-1++ t"l i-L1 

RR 

+ý(a+6, )Y; a; -ý(I-a; )efl+e' +7(ß+9, )Ya(1-a; ) ; 
, _/ , -1 i-1 

The maximum likelihood estimate 
(b", 8"+,, ä, is given by 

=In 
Xi +Y, 

1+6; e°+(1-6; )eß F 

n 

i- 1,2,..., n, 

(3.2) 

ä -In 
Sy` 

,ßa In 
s'2 

Sx, 

(SX2) 
ý 

Plug-in estimates for the predictive distributions are then given by 

P(Yn.,., I oR+,, CO - Po( exp(ä + 

AAAA 

P(Yn. 1.2 1 en.,, ß) - Po(exp(ß + on+, ) , 

AAAA 

P(Yn+,.,, Yn+1.2 16, 
+,, a, " P(Yn+,., I en+,, 6)P(Yn+1.2 1 6n+,, ß). 

n+/ n 
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A simple plug-in estimate for the probability function of the random variable 
Z= Y+1.2 - Y�+,., , for example, would be given by 

P(z a z) - 

m exp{-ee°"'(e°` +eß)}exp{äi+ß(i+z)+6h +, (2i+z)} 

a_Z) ll(l+zýl 

Clearly problems arise with the plug-in method if xx,, = 0, or if any of Se,, Sy,, 

Ss2, Sy2 is zero. 

3.2. A Bayesian Approach 

In the Bayesian approach, the predictive distributions of Y. 
+,,,, 

(Y 
+1.1' 

Y�+,. 
z) are given, respectively, by 

Yn+1.2 
and 

P(YA.,., I D", x�+, ) °f P(Y. +,., 
10�. � a)p(9,,,,, aI D", x.., )d8,,,, da, (33) 

ýn= 

P(Yn.,. 2 1 D, x�,, ) 
af P(Y�,,. 2 1e., 1, ß)P(e., r ß1 D", x,,,, )d 6,,., dß (3.4) 

t1t' 

and 

P(Yn+,,, ºYn+,, 2 1 Dn, xn+, ) -f P(Yn+,,, 1en+r a)P(Yn+,, 2 1 en+� 

I'ý x 
gtl 

x p(9"+,, a, ßI D", x"., )dB"+, dadß. (3.5) 

Notice that 91,02, ..., 8� are nuisance parameters and we only require the posterior distri- 

bution of (0.. 
It a, ß). 

3.2.1. The Exact Predictive Distributions 

We consider a hierarchical prior structure; at the first stage we take 
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R+l 

P(e», 9�+� a, ß Iý, rl, 
lp (Oi 1 ý)}P(a 1 77) Pýß 

, _, 

and at the second stage we take 

P(ý. n. 0= P(OPMP(O, 

where 

42 

e'- Ga(k, e4) e°` - Ga(h, e'') eß - Ga(g, e; 

eý - Ga(l, m) e" - Ga(u, v) ez - Ga(r, s) 

with k, h, g, 1, m, u, v, r and s specified. 

Again, using the equivalent forms in Table Al.!, we obtain the posterior distribu- 

tion 

n+i nn 

`-ýS ea+e, P(e n, en+I, a, 71, CI Dn, xn+/ )a eRP e -J(1- a, )eß +e, 
i-i i-I t-I 

R+ / 
xexp -jet+e' -et+ß-met-ve''-set x 

1-1 

xexp 6jxl+ I(a+9; )ya, 
+ý(ß+6, 

)yt(1-a, ) x 

n+1 

xexp ký(ý+B; )+h(rl+a)+g(ý+ß)+lý+url+rý 
. 

ý_, 

The elimination of 01,02,..., 0 il and ý yields the posterior distribution of 

a, ß, ý) given by 

exp{-ee°+' (1+ eg) -m egý 
g+r x pCen+ir a, 

ß. ýI Dn, Xn+I a«+ 

v) 
k+u (eß + sý ýe 

exp{BR+i(�+1+k)+((n+1)k+1)ý+a(h+Sl)+ß(g+Sy2ý} 
X- (I+ 

e°` +e ý) W' (1 
+ eß + eg 

) W2 (3.6) 
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but we are unable to eliminate ý. It follows that the predictive distributions are given by 

n« 
1l(xn+, +Yn+1., +k) exp{-me9}exp{((n+ 1)k+1)ý} 

pCyn+1.1 I Dº xn+, 
)IJ 

(ea 
+ v)k+u(eß + S)8+r 

X 

a at 
yn+,., ' 

exp{a(h+S l+y. +i 
J+ß(g+Sy2)}dadßdý 

X- (1+ 
e°` +e 

$)Wi+x.. j+Y, 41+k( 
1+eß +e 

T2 

T(x_.. +v_ .. +k) expS-me9iexpj((n+l)k+1)6 

(3.7) 

P(y 
I Dn x, +, 

) ' n+ `" '+t, t ---/ 

f`L1. 
L%, 1-) 

X 
n+I, 2 ýa//R 1k+u/ R 18+r 

Y 

and 

ya., ýý 53 ke- + v) ke- + s) 

exp aýh +S 1) 
+ß(9 + Sy 2+ y»+ 1.2 

)} da dß de 
11 W (l 

e°` + e4)Wt (l + ep + e4) 
2+x.. t+Y'.. 1.2+k 

+ 
(3.8) 

n «r(xn+, 
+Yn+r., +Yn+,. 2+k) exp -meý 

1ýCYn+,. lý Yn+,. 2 
I Dý xn+l) 

fYn+,. 
2"1 pi3 

f(ea 

+ v)k+p(eß + s) 
`g+r 

x 
Yn+,., " 

exp{((n +1)k + 1)ý+ a(h+ S, + yn+l, 
)+ ß(g+Sy2 + yn+, 2)}dadßdý 

$ xn., +y..,, 1+yý.,. 2+k 
X 

(1+ 
ea+eý)w'(1+eß + eg)w: 

(1+eu+eß +e ý 

(3.9) 

The evaluation of these predictive distributions therefore requires the use of a nu- 

merical integration technique to solve the three-dimensional integrals involved. 

Although no simple analytical form is available for (3.7), (3.8) and (3.9), it is pos- 

sible to obtain the marginal (but dependent) predictive probabilities in the case of vague 

second stage priors (1, m, u, v, r, s -> 0) explicitly, namely: 

PýYh+,., ý D". 
B(x",, +Y. +,., +k, W, ) 

aYR+,., +1, Syf-1 
(3.10) 

and 
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P (Yn+,. 
2I 

Dý' x�+, )aB `xw+, + Y,, +,. 2 + k, W2 
/. 

B Y�+,. 2+1, S, 2-1 

No explicit form for the exact joint predictive distribution (3.9) results, however. 

3.2.2. Estimation Via Gibbs Sampling 

(3.11) 

We can use the Gibbs sampling algorithm (section 1.2.1) to estimate the predictive 
distributions without the need of evaluating the problematic integrals in (3.7), (3.8) and 
(3.9). From (3.6) it is easy to derive the full conditional distributions which are 

p(eR+r I a. ß" ý. D". xn+l) a exp{-e o-., (I+e$exp{9�+, (x. 
+i+k)}, 

n 
exp{a (h +S , 

)} 
p(a 1 6�+r ß" ý" D. xR+l) a (e" + v) 

h+W(1 
+e "+ eý 

(3.12) ) 

P(ß1 e.. raºeºD», xp. l) « 
exp ß (g + Syz) 

(eß + sy+r(1 + eß + 
J) W= 9 

ý Bwýf 

exp +m) exp{((n+1)k+1)ý} 
Pý 1eR+r a, ß, DR, x, +, )« 

( 1+e°`+e4) 
w, (1+eß+e e)ws 

Using the fact (see Table A1.1) that the full conditional distribution of 9.,, is a 

transformed gamma distribution and using rejection sampling to generate values of a, ß 

and ý from (3.12), we obtain a sample after t iterations of (9R; ß,, aM, Repeating 

the whole procedure M times we obtain samples 

tl 
6�(+, (n, a((n) , 6('j)), ý(u)U )º J' 1,2, ..., M. 

The predictive distributions (3.7), (3.8) and (3.9) can now be estimated by 

1 ti, exp _µý µý..,., 
p(YR.,., IDR, 'Y. 

+, 
) a-I M , -, Yn+l.,! 
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1 Al exp -v v''°. 1. I 
p(YR.,. 2 1 D"ºxn., ) a-ý 

ii 
M , -, y». 1,2! 

n1 
ti, 

I exp -µ, µj-.! exp -vý vj"+11: 
P(Y. +I. rYý+1.2 (D 1)=-ý M , -1 Y. +1.1! YR+1.2* 
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(3.13) 

where µj= exp{a, j, + 6(`+I(j) I and v1 = exp 
{ß(j) 

+6#�`;, (j)for j =1,2, ..., M. Notice 

that, although it is necessary to generate values of ý in this Gibbs routine, these values of 

this hyperparameter are not required further for our prediction problem. 

For the case of vague second stage priors, a and ß can be generated from trans- 

formed beta distributions (see Table A1.2). 

3.2.3. Estimation Via Asymptotic Results 

As the sample size increases, the number of parameters in our model increases as 

well. Problems may therefore arise over assumptions of asymptotic normality of the 

overall posterior distribution. Since 01,02, ..., 6� are nuisance parameters, however, and 

our concern in evaluating(33), (3.4) and (3.5) is only in (8�+,, a, ß), we have proceeded 

with the asymptotic approximation for p(9. +,, a, ßID, x. +, 
), when possible, or for 

p(0.. � a, ß, e1D, x�+1) . 

3.2.3.1. Posterior Normality Based on the Likelihood Function 

We consider first the asymptotic posterior normality of (6", 6"+1, a, ß) following 

Bernardo & Smith (1994) and summarised in section 1.2.2.1. With the maximum likeli- 

hood estimates (a", Bnf I, ä, ß) as given in (3.2), we find that 

vv (ý ß /ý 
T 

p(, 0�. 
� 

a, Fý 
I Dnr x. 

41) 
g `Y 

Cý 
ee+lr aº Fý) rT 

l2 

v12 V22 
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where 

V, ladiag(a,, i=1,2,..., n), V2= 

and 

` CI C2 ... CR 

b, 
ý bi e«+ä, , 

ci = 
(1- 8jeß+e, ý 

ý dme^'' ý 
f e' 

i-, 

ä; =eý +b; +"ct, 

g=eß, (l-bje'. 
{-l 

The marginal posterior distribution for (0.. 
19 a, ß) will then be 

where 

with 

Q p(en+1, a, F' 
I Dnr xn+1) w N3((en+1" a+ N) ýw 

w ,, 1(11 f), 
a(vi? -viVý vizý ° diag , h, 

AA 

ha bi and 
ý-ý 

ä, 
m-g-ý-- 

. 
t-1 at 

Thus 0,,. ,a and ß are independent a posteriori, with 

P(e.., 1 D", x�+, ) =N B�. r 
1= 

N ln(x,,., ), 1 

d xR., 
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A1 
(L) S +S 

p(a I D"x"., ) 
=NaN In , 

x, r, (3.14) 
SxI Sxl Syl 

oo """ o 9l AAAA 

b, b2 ... bR V22 = diag (d, f, g) 
AA 

Cl C2 ... CR 
AAA 

SS +S 
m'SS 

y2 
P(ß ID xn+1) aN ýý 

laN 
In 

S2 J x2 s2 y2 
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The Gibbs sampling algorithm is then trivial, with t=1, and the estimation of the predictive 
distributions we are interested in is straightforward. 

Again problems exist if x�*, = 0, if x; = y; =0 for one i =1,2, ..., n, or if any of 

Si,, S,,,, Sx2, Sy2 is zero. 

3.2.3.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

Alternatively we use the asymptotic approximation suggested by O'Hagan (1994) 

and summarised in section 1.2.2.2, and have that 

p(en+� a, N, e1 Dn' xnrl) s N4(pt+ v) 

where the posterior mode m=(8�+,, ä, ß, i) is obtained solving iteratively the system of 

four equations 

e °- (1+e4) 
-z, «i-k - ýý 

(h + u)e" 
_ 

W, e" h +Sy, 
e"+v 1+ea+eF 

a 

+S- 
(g+r)eß 

- 
WZý 

0 Y2 

eß+s 1+e'+e' 

a eý(eý'' +mý-(n+1)k-1+ 
W'eý 

+ 
W, e4 

1 +e+eý 1+ ea +eý 

whilst the precision matrix V-` takes the form 

V-1 a 

ä00b 
0c0 ct 
00fq 
bd1r 

(3.15) 
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where 

ämed., (l+ef ), 
,, + bse' (h+u)vea 

+ 
We"(1+ef) 

(ed+v) 2 (1+e&+e)2 

W ek+ý - 
ý(g+r)seß 

W2eß (1+eý) 
W eß+i t2'fZ+2ý d (i+e+e) (/+) (1ýe'+e) (i+e 

+ef 
) 

rl We(1+eWZe(1+es) 

tae (e+ m)+ 2+ 2 (1+e°` 
+e) 

(1+eß 
+e) 

The relevant full conditional distributions are then given by 

p(en+l 1 a, ß, ý" D", xe+l )°N e»+1 
9- i), 

ll 

10.., 1, Dn, Xn., ) aN, (3.16) 

P(ß 10.. � a, e, D x+1) =N 

_ 
ýen+i-enýý)b+ýa-ä)d+Cß-ß)g" 

1 
P(ý 1 en+�a, ß, Dý+xn+l)-N i- 

ti 

If we consider the special case with vague second stage priors (1, m, u, v, r, s-º0), 

this approximation can be simplified to some extent, since we can obtain the posterior 

mode m explicitly as 

9 ln +k)(Tx+x�+, ý (Tx+X. 
+, 

+(n+1)k)S,, 

ý, ý a Tx+x. +r+(n+1)k 

In (Tx+xp+, ) wi'S,,, , 

(3.17) 
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+, + (n + 1)k )Sy2 
In 

(n + 1) k 
= In 

(Tx +x 
(Ts + xx+1 

) 
WZ - Syý ' IT. + x�+, } 

The full conditional distributions defined by (3.16) then become 

9Ia, QQ, e, D", xN-w 
( 

n+I Y n+1) °n +I 

(ý 

- 
el, 

+ 
xn+, +k 

w- 

W 
(a16ý,,, ß, ý, DR, xý,, )aN ä+w (e 

-ý, ' 
syi Wi ' Syý 

P(ß 10.. � a, e, D", x"+, ) =N ß+w(e-i), 
w2 

Syz Wz - Syz 
9 

_ 
(eR+, -eý., )b+(«-«)d+(ß-ý 

P(e 16. 
+t, a, ß, D, x, +, 

)'N 

where 

r= 

d= 

(n+1)k 

Ts+x,,,, +(n+1)k 

S1(Wl_S1) 
_- 

W, 
` 

W2 
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c ii 

b+w 
(T +x�., )W, +(n+1)kSy, W, -Sy, 

+(Tx+x, +, 
)W2+(n+1)kSy2W2-Sy2 

Ts+xii1+(n+1)k W, Tx+x. 
+, +(n+1)k w2 

Notice that, in contrast with what happened with the approximation developed in 

section 3.23.1, the full conditional distributions are not independent of each other. There- 
fore, we now have to perform an iterative process to generate each value in the Gibbs rou- 
tine. 

Finally, the estimation of p(yy.,.,, y..,. 2 I D", x�+, ) and both marginal predictive 

distributions can be undertaken through (3.13) using (3.16) or (3.18) as the appropriate 

conditional distributions. 

ýw 

9- (xn+1 + k»w 
, 

Sy2 (W2 
- Sy2) 

4-- .,, H', 

r 
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3.2.4. Laplace Approximation 

In section 1.2.4 we summarised how the Laplace approximation can be used to ob- 
tain the predictive probabilities, given the posterior distribution. The basic idea of this 

method is to see the integrals involved in the predictive distributions as being posterior 

expectations of real functions. 

3.2.4.1. Marginal Predictive Distribution of Y�+1,1 

Let us begin by approximating the predictive probabilities of Y"«,., given by (33). 

The integral here can be regarded as E[g, (6"+,, a, ß, )I D", x"+, ] where 

gl \en+� a, ß, e/ 
° exp{-ea+e». 1 } exp{(a +0.., 1 

As in (1.13) and (1.14), we define functions h, (9�., a, ß, ) and h', (9. 
+, a, ß, ) such 

that 

-nh, 
(6,,,,, a, ß, e)m -ee-'1(1+eý)-mel+0�+, 

(x�., +k)+((n+ 1)k+l)e+ 

+a(h+Sy, 
)+ß(g+SY2)-(h+u)ln(e" +v)- 

-(g+r)In(eß +s) -W, 1n(1+e" +e4)-W21n(1+eß +ee) 

(3.19) 

and 

-n h; (B. 
+r a, ß, e) - -ea*e,,., +(a 

+k)+((n+1)k+1)e+a(h+S,, ) +ß(g+Syj - 

-(h+u)ln(ea +v) -(g+r)ln(eß +s) -W, ln(1 +ea +J)- 

-Wlln(1+eß +ee) 
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and we also define and jr satisfying the first and third expressions in 

(1.16). 

Noting that (3.19) is just the logarithm of the posterior distribution (3.6) and ana- 

lysing the definition for (ö,, 
+1, 

d, ß, i), we conclude that 
(9., 

+r 
ä, ß, i) - m, the poste- 

rior mode which is the solution of the system of equations (3.15); noting also that the 

Hessian matrix in the definition of ä is the inverse of the modal dispersion matrix de- 

fined in section 3.23.2, we conclude that 

{&1i_re42 
&72 Ejg2} 

iiz 
(3.20) 

Then, we define (9,; 
+, (, ), a;, ß;, ý, ) and d, 

' such that the second and fourth ex- 

pressions in (1.16) hold. The optimal a;, ß; , 
1) is obtained solving, through a 

numerical technique, a system formed by the equations 

e 
Bn+1 (a ! )1+e 

+e- x�+, - yrt+,., -k -0, 

«+6.. 1 + 
(h+u)e« Wie« 

e 
ea+v 

+ 1+e«+eý-h-Sy, -Yý+ý. ý °ý, 

(g + r)eß 
+ 

W2 eß 
gS0, - '2a eß+s 1+eß+e' 

W eg W ee 
_ eg(e'-''+mý+ '+z (n+1)k-1=0. 

1+ea+e4 1 +eß +e4 

(3.21) 

To derive the optimal ä, we consider the second order derivatives of h', (9�+,, a, ß, 

evaluatedat a;, ß;, ý, ) and define 

m aeaj+B. 
*. N4' L" 

ae 
w. t(tl+aei' a" = eew. t(1) +%%2" +b, 

ý !lll 

_lý 

01 W ea! 
(i+eE) 

W eaý +fi 
a; . e,;,,,,, h+ uveý. 

c, e+ (ea' 
+v) 

2 +(1+e'+e') 2 dj a (I+eai 
+e"' 

)Z ý 
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I'' 
(g+r)seßl' W2eß' (i+ 

e"* 
) 

+ (eß' 
+S) 

2 (i+ 
eß' + J' ) 2ý 

S 

ß'. +e4'. 
)2 (i+e `+ 

Wer, (1+e", ) W2e"(1+eA') 
tý aeý'(ee'""+m)+ + i. 2.2 (1+e "' +eý') 

(i+eß' 
+e4') 

The Hessian matrix can then be written as 

Zh, s 
n0 

(o»*. 
u, ra,, ß",, e, ") 

and thus, 

a; ml 0 b, 

m, * c, 0 dl 
a 

W eßi*V 2 

f1 4i 
., d, * q, * t,. 
00 

0 
] -{Q1C11 

' f'tI' 
- 

Ri Cl g'l2 - 
Qll f'd1 

I 
'2 

- 
f't1'm1'2+mI'2QI'2 + 

'd, """ *21- I/2 

+2m/bl f -clýbl . 

Finally, the approximation for the predictive distribution of Y,,,,,, is given by 

. 1 v, . p(Yº.. i. I I D", x. +i) 
&ýö exp{-nh,. 

(0. *., 
((0. 

*., 
(, ), ar., 

yý+t. r 

+nh, 
(6�+,, 

a, ß, i)l . 

3.2.4.2. Marginal Predictive Distribution of Y, 
s. },, z 
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The Laplace approximation for the predictive distribution (3.4) of Y�; 1.2 can be de- 

rived in a similar way. We define the function 

g2(0A+l, a, ß, ) aexp{-eß+e-., 
}exp}(p+o+l)ye+l. 

2} 

and also two functions h2(8�+l, a, ß, ) and h2 (8�+l, a, ß, ) such that 
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-n h2 (e"., 
" a, ß" ýý In P(8.., " a, ß, e) + 1n P(D", x"., 18". r a, ß" ýý 

_ -nh, 
(e". 

r a, ß" e) 

and 

-nhj(9n+r a, -eß+e�+, +(ß+9n+, )Yn+,. 
2 -e .., (I+ eý) -me'+ 

+en+, 
(xn+, 

+k)+((n+1)k+l)ý+ac(h+Sy, 
)+ß(g+Sy2) 

- 

-(h+u)ln(e°` +v) -(g+r)ln(eß +s) -W, 1n(1 +ea +eg)- 

-W21n(I+eß +eý). 

We also define (6�+, 
(2). a2, ß2, i2)1 Q2, (6,; 

+, (2), a2, ßZ, ý2) and ä2 satisfying (1.16). 
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Clearly (9R+, 
(2) 

ä2, ß2" i2) 
_ (o+1, ä, ß, ý=m, 

solution of (3.15) and v2 = ä, 

given by (3.20). 

The system formed by the equations 

een., 
r1+ed $1 +e J-x�+, -yA+,., -k =0, 

(h+u)ea W, e + 
a. 

-h-S s0 
ea+v 1+ea+e4 y, ' 

(g + rý eß W eß 
eß+e-,, + 

eß +s+ 1+ eß + e4 
9- Sy2 - YN+42 a 09 

g 
ee(e^"'+m) + 

W'e 
+ 

WZe 
(n+1)k-1s0, 

1+ea+e4 l+eß+J 

solved numerically, yields (6,; 
+, (2r a2, ß2,2ý. 

(3.22) 

The Hessian matrix in the definition of v2 will then take the form 
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2"""" 
n0 hz en+/(2), a2+ ß2, ýr2) 

where 

III" eßi+ew, x7l 
1a b2" ae + 

a2 0 m2 b2 
0 c2 0 d2 

M2 0 f, * q2 
.... 2 

d2 g2 t2 

= 

az 'ae'", ' +m2 '+b* 
2+ 

(h+u)vea= Wlea=(1+eý W eaý'ý' 1_1 C2 
(ea' 

+ v)2 
+ (i+eaý 

+ eý' 
)2 

d2 ý 
(i+ea= 

+ e'2* 
)2 

ýg + r) + seßl WZ ep2*(I + J, *) W ea'+ý, 
Zý 

"s2 "a 
eß: 

wýx31 ++ý fi (eß' 
+ s)2 

(i+e+e) _ (i+e1+e)2 

Wýeý3(1+e°`ý) W2eý'(1+eß') 
t2* a eý' 

(e°* "11 + m) ++ (1+e'' 
+eý2)Z 

(1 
+eß2 +eý1)2 

Therefore, 

äý fa* c' f t'-a'c 'z - ci .f 
d'z-c t' 'z+d"z"z+ 222222 2q2 22222 mz 2 m2 

+2 m2" c2"b2"q2" - c2" f2"bz "2}1/2 

, 

and the Laplace approximation for p (yR +,. zI 
D", x�+ I) will be given by 

1 aZ ..... exp{-n hj ýeý+, 
r2r a. 

*� 

ßr ýz)+ P(Y, º+,. z 1 Dn, xA+, ý °ý ! Y�+,, r 
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+ nh, 
(&+r 

a, ß, j)} " 
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3.2.4.3. Joint Predictive Distribution of (Y..,,,,, Y�+1, ) 

The derivation of the approximated joint predictive distribution (3.5) is analogous. 
We define the functions g, (6.,,, a, ß, ý), h,, (9,,,,, a, ß, ) and h, * (9,,,, a, ß, ) such 

that 

gc 
(ew+� 

a, /', 
e) 

s exp{-ea+B�+t - eß+e"+r }exp{(a + en+1 
/yn+1.1 ý lh' i en+l 

/yn+1.2}+ 

-n h� (en+, 
' a, ß, e) a In p (eR+� a, ß, ý) + In p (D" 

, x. +, 
19�+r a, ß, e) 

- -12h1 \en+� a, Rº el 

and 

-n 
he (en+! 

' 
a, -e"0-+, f 

(a 
f en+1)yn+l, 

l - eß+B,. t + 
(P. 

} en+1)yn+1,2 
- 

-ee^"t(1 +eý)-met +Bn+1(xn+t +k)+((n+1)k+1)ý+ 

+a(h+Syl)+ß(g+Sy2)-(h+u)ln(ea +v)- 

-(g+r)ln(eß+s)-w, ln(1+ea+eg)-W21n(1+eß+e 

and we also define (6�+1(c)' 
ac' ßc' 

ß) + Qc' (e. *+! 
(C)' aý, ßý, and aý such that (1.16) 

is satisfied. 

Once again, as hß(0�+, a, ß, ý)=h, (B�+1, a, ß, ý), we conclude that (9: 
+a:, 

r)=m, obtained solving numerically the system (3.15), and d, 
*=&, 

defined by 

(3.20). Hence, to derive the Laplace approximation for the joint predictive distribution, we 

just have to work out the quantities based on the function h: (0�+,, a, namely 
(0,;,, 

ýý)' a, ßý, ý) and cý. Solving numerically the system formed by the equations 

e 
^''(1+ea+eß+e)-x�+r-yn+,., -ye+,. 2-k -0, 

e 
(h + u)e" W. e" (3.23) ^"' -- yl'Y"`'''+ e"+v 

+1+e"+eg a 0, 
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s+e-., 
ýg + r) eß W2 eß 

e -g-Sr2-Y�+ý. 2+ eß+s 
+I+eß+eý ýý' 

ee(e"' +m) + 
W, e 

+ 
Wee 

(n+1)k -1 a 0, 
1+ea+J 1+eß+J 

we obtain 
(o 

1(c), a,, ß;, ý, ) . Defining the constants 

me ae ý pc ae ee+ m* + p, * + bý , 

c. 

aö +ew. l(c) (h + u) v ea' W ea" I+ e) WW, 1 ea; +ý; 
CC °e+ 

(e+v) 2+ 
"+ea 

2+ 
d= 

(i+e'+e) °+ e' 

Pe+s. *. 
x"ý 

(g+r)seß° W2eß°(1+er-) W2ese+ee " 
++ fae+ (ep: 

+ s)2 
+ (i+ 

eß° + er- )2 qC ý (1+e11 
+ e. )2 

a, . W, eý°(1+ea°) W2el°(1+e°°) 
tc a eyQ 

(eew. 
x", 

, F7i1) ++, 
l (1+ea° 

+eC 
)2 (1+eß° 

+e4° 
)2 

the Hessian matrix in the definition of v*l can be written as 

nV 2h' (0. *. a' 8' ' C l(C)ý Cý /-Cý 

ýC) 
s 

a, * 

M, * 

P. 10 
b, * 

m' ' b' 
., Pý , 

C, * 0 d, * 
0 4, *, 

d, ' q'ý t' ý 

I 

which leads to 

U= QCa, * CgZ- Qf Cý'2-f'l"IT1"2+m,, * 2g. 2_2m'd,, * P q, * 
c{ccCCcccCccccCc 

+2mýcfbý f'-cýtýPý2+2Pýcýbýqý+dýpý2-cý f bý21_ýý2 9 

and the Laplace approximation for the joint predictive distribution will be given by 
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ý1ý p(Yn +i. lº YA+I. a 1 D�º x. +) ººe yý+ ºa " 
. (8�. 

+l(cra. 
. 
ºec. 

)+ xp{-nhýýºßý 
y" (2aL 

+nh, 
(e. 

+,, a, ß, j)}" 

3.2.4.4. Vague Second Stage Priors Case 

The implementation of the approximations can be simplified to a great extent when 

we consider vague second stage priors (1, m, u, v, r, s -. 0), since some of the systems 

of equations involved in the solution of the problem yield analytical solutions. 

The system (3.15), which originates has (3.17) as solution. 

which is the solution of the system (3.21), will in this case be 

" 
{(x 

n+, 
+yn+1. 

I 
+k)(Tx + e+, 

)(Wr 
-Sý, +xn+, +k) 

ýin (T 
: +xn+1+(n+1)k) W1+xn+r+Yn+,. r+k ' 

aý 
(Sr, +Ya+,., ýlTx+x, 

ý+, +(n+1)ký 
a In (Tx +x, +, 

) W, -Sy, +x, +, +k ý 

(n+ 1)k ý°ý 
IT. 

+x. +, 
1 

ý 
1Sy2 (T + x. +, + (n + 1) k) 

rr 1 
lTx + xe+t / W2 

- 
Sy3 

The system of equations (3.22), used to derive (8,; 
+1(2). a2, ß2,2 ), will have as solution 

en+! 
(2) s In 1ý 

e+/ +yn+1.2 + ký ýTs + e+1 
/ 

(W2 

- Sy2 + xM+1 + k) 

l 
ýT+x +n+1kýW+x + +kýl' s2ý1111T+x 

x n+1 
ýý2 

n+l 
yn+1,2 

x n+l 

ä2 ýý 
Sy, (Tx+x�., +(n+1)k) ß2 aý 

J(sy2+YR., 2)(T +xn., +(n+1)k) 
(Tx+x. 

,)W, 'Sy, 
(Tx+x. 

�)(W, 'Sy2+x.., +k 

ý, 
1(n+ 1)k 

2 -In , Tx+xe. l 

The system (3.23), which solution is (6ý,, 
(Cý, a, ", ß:, ý, *), has to be obtained through a 

numerical technique, even when we are considering vague second stage priors. 
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3.2.4.5. Predictive Distribution of Z=Yn+I, ý-Yn+1,1 
The predictive distribution of the random variable Z= Y+1.2 - Y�+1., can be written 

as 

(z I D", x)_ ý1 Eý //6 a, ß, ý) I D", x] (3.24) P ". i z)! 
Sl ". >> A., j-ý a-Z 

where 

8 (e.. 
r a, ß, e) = exp 

{_e0*i(ea 
+ eß 

)}exp{a i+ ß(i+ z)+ e.., (2 i+ z)1. 

We will approximate the posterior expected value in (3.24) through the Laplace approxi- 

mation. For that, we define a function h, (O,, a, ß, ý) as in (3.19), and we also define 

(j.. 
I, 

ä, ß, 
0 

as being the solution of the system of equations (3.15) and v as in 

(3.20). For the vague second stage priors case, the solution of (3.15) can be written ex- 
plicitly as in (3.17). 

Then, we consider a function h' (6�+1, a, ß, c, ) such that 

h'(B�+,, a, -ee°"'(1+e° +eß+eg) +a(h+Sy, +i) +ß(g+Sy2+i+z)+ 

+6�+, (x�+, +k +2i+z)-meg +((n+1)k+1)ý - 

-(h+u)ln(e" +v) -(g+r)ln(eß +s) -W, In(1 +e° +eý) - 

-W21n(1+eß +el) 

and we derive (9,;, a', solving numerically the equations 

e "'(1+e"+eß+e)-xý;, -k-z-2i _0, 

e +a 
(h+u)e" W, e 

e., + 
ea+v 

+1+e"+eý-h-Syl-i-0, (3.25) 
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Bw- 
l+ß 

+ 
(g+rýea W2eß 

e 
eß +s 

+1+eß+eý -g-Sy2-1-zý0, 

ee(e '' +mý+ 

Then, if we define 

" 8ýýý+ä 
m =e 

Jf 

-(n+1)k-1= 0. 
1+ý°`+e' +1 

+ý +el 

P. ° ee'''ß. , 
b" a ee , +p +b*, 

c' e^"'`°`. +(h+u)ve°` + 
W, ea* I+0' ) 

(e"" 

+ v)2 
(iýe" 

+ eý. 
)2 

'sa. +p- +(g+r)seß* + 
W2 eß* 1+ e4*) 

A. 
22 (eß 

+s) 
(I+eß. 

+eý. 
) 

W, ev 
(1+e"*) WZeý' 1+eß 

ta e" 
(e 

°'' +m 
)+ 

2+ s (1+e& 
+ er 

y (1+e 
+ eyý 

) 

we can write c, defined by (1.16), as 

_W 
ea. +r 

d" , ý (i+ea" 
+ eýý) 

59 

I 

Zeß. 
`ý. w 

4s (l+eß. 
+er 

)2 

9 

"""""" *2 "" "2 " "2 "2 "2 """q" 
Q= ac ft- acq -a fd -ftm +m g -2md p+ 

+2m'db'f'-c t'p'2+2p'c'b'q'+d'2p'2-c f. 'b'2}-112, 

and the Laplace approximation for (3.24) will be 

p( zI D", xR., )« m1Q. 
exp{-n h'(8. '.,, ac', + 

+Z)! ö 

" + nh, 
(en+1, 

a, ß, ý)} 

No explicit solution for (3.25) can be obtained assuming vague second stage priors. 
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3.3. Example and Conclusions 

The methods used to solve the "treatment effects in a biased allocation model" 
problem will now be illustrated by an application with a simulated data set. 

Let us consider the data shown in Table 3.1. , These n=20 values were simulated 
from models with e' a 0.3 and ea =1.4, with a=6, and for a random selection of O 

values. 

xi b, y; x, a, ya x, b, y, x, b, y, 
7 0 3 2 1 2 11 0 22 17 0 16 
8 0 9 13 0 12 6 0 13 3 1 0 
9 0 9 4 1 2 9 0 10 2 1 2 

13 0 16 6 0 2 6 0 10 2 1 1 
5 1 1 7 0 4 10 0 16 8 0 11 

Table 3.1: Simulated data set 

Predictions are given for y2, t, and y21,2 corresponding to x21 = 4. In order to be 

able to compare the exact predictive probabilities with the ones obtained with the estima- 
tive and approximative methods, we assume a vague second stage prior structure 
(1, m, u, v, r, s-->0). 

Matching the first two marginal moments of the Xi s, as in section 2.25, we take 

P- x_2 
- s2 - -xý 

In fact, we rounded this value, taking k=6. 

Figure 3.1 shows the joint predictive distribution of (Y211, Y212) derived using the 

Gibbs sampling algorithm (section 3.2.2) with M=500 and t=100. When we considered 

the asymptotic normal approximation suggested by Bernardo & Smith (1994), developed 

in section 3.2.3.1, we obtained the joint predictive distribution shown in Figure 3.2. This 

result was obtained performing the Gibbs sampling routine using the full conditional 
distributions (3.14) with M=500 and t=1. Performing the Gibbs sampling algorithm with 



Chapter3 

Figure 3.1: The joint predictive distri- 

61 

Figure 3.2: The joint predictive distri- 

bution (Gibbs Sampling Algorithm) bution (Bernardo & Smith suggestion) 

Figure 33: The joint predictive distri- Figure 3.4: The joint predictive distri- 

bution (O'Hagan's suggestion) bution (Laplace approximation) 
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the full conditional distributions (3.18), with M=500 and t=100 for the O'Hagan's 
(1994) approach developed in section 3.2.3.2, we obtained the joint predictive distribution 

presented in Figure 33. Figure 3.4 shows the joint predictive distribution obtained when 
we used the Laplace approximation, developed in section 3.2.4. 

Observation of these four figures allows us to notice how remarkably similar the 

results are when using the different methods to obtain the joint predictive probabilities. 

A clearer picture emerges if we consider the marginal predictive functions for Y211 

and Y212 separately. Figures 3.5 and 3.6 show the different approximations and estimates 

together with the exact forms from (3.10) and (3.11). We also included in these figures 

the plug-in estimates for the predictive distributions, derived in section 3.1. Normal ap- 

proximation 1 refers to the Bernardo & Smith (1994) approach and normal approxima- 
tion 2 refers to O'Hagan's (1994) approach (see Tables A33 and A3.4, Appendix 3). 

Observation of these figures allows us to confirm the conclusions drawn in section 
2.25, namely, that the Laplace and the Gibbs methods are excellent when used to ap- 

proximate the exact predictive distributions. The posterior normal approximations are not 

so reliable although O'Hagan's (1994) suggestion seems to be much superior. 

0.35 

0.3 1 
0.25 
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.a a ä0.15 

9 
13 A 

9 

o Exact 
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O Normal Approx. 2 
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0.1 

A 

I 
0.05 

ýI, 
p 

i., a'$ 0 
0246 

y 

ýß 13 = 

8 10 

Figure 3.5: The predictive distribution of YIi, (the exact one and its approximations 
and estimates) 
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Figure 3.6: The predictive distribution of Y212 (the exact one and its approximations 
and estimates) 
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Figure 3.7: The predictive distribution of Z=y 2Z2 - Y21., (the plug-in estimate and the 
Laplace approximation) 
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Finally, Figure 3.7 shows the plug-in estimate and the Laplace approximation for 

the predictive distribution of Z=Y 12 - Y2 L,, derived, respectively, in sections 3.1 and 
3.2.4.5 (see Table A3.5, Appendix 3). This figure shows the unsatisfactory result of a 

plug-in approach. 

3.4. Generalisation for the case of kZ2 treatments 

In this section we will generalise the problem to the case where there are kz2 

possible treatments, T,, TI, ..., Tk, available to give to an individual. We assume that 

and Y, i=1,2, ..., n, are random variables representing, respectively, the observation on 

the i-th individual before any treatment is used and after one of the treatments is applied. 
We also assume that 

- given o;, X; - Po(exp(o; )), 

- given o; , al , a2,..., ak and xi, Y- Po (exp(a 
j+o. 

)) if treatment Tj is used. 

The parameters a,, a2,..., ak are used to model the multiplicative effects of the treat- 

ments and 6, is used to model the particular characteristics of the i-th individual. 

As in the former sections, the design of this problem supposes that the choice of 

the treatment to be used is based on the observed value x, . Let 0 denote the set of all 

possible values for x, and let us define C,, C2,..., Ck as subsets of 0 such that 

k 
UCi a Sl 
i-1 

and C, fIC, - QS, i, j, i, j=1,2,..., k. 

Now, the choice of the treatment to use is based on the rule: if x, ECj we give treatment 

Tj to individual i. 

Given a new individual, with observed value x�+,, we want to predict its outcome 

after one of the treatments is used. For that, we define the random variables Y..,,,, j=1,2, 
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..., k, representing the outcome on the (n+1)-th individual after Tj is applied, and we as- 

sume that 

Xn., - Po(exp(eA., )), 

YR.,. j -Po(exp 
(a 

j+e,., 
))" 

.1a1,2, ..., k. 

For j=1,2, ..., k, the predictive distribution of Yq,,, j will be given by 

P(Y"+,. j 1 D, x"., ) °f P(Y"+,. i 1e"+1, aj)P(e"+� aj I D, x"., ) d6"., da;, 
$t 2 

where D" is the data set formed by the observations recorded on the n individuals, that is 

D" a{(xi, y) , i=1,2,..., n}. 

Let us define a treatment indicator function 

1, if treatment T is given to individual i 
ajý 

10, 

otherwise 

k 

Note that 8; f =1, for i =1,2, ..., n. 

Robbins and Zhang's (1991) model can be extended to the case where we have 

ka2 possible treatments. Such a model will be 

-given tp1, X; -Po(, 
), 

- given tp ,yI, Y29'**' Yk and x, Y,. - Po (y 
jtp t) if treatment Tj is used, 

- Tj is used if x, ECj, 

and the consistent estimates foryj, j =1,2, ..., k, are 

A 

2 
yi I(x; EC, ) 

i- 1 

Yf - 
x; I ((Xi 

-1) ECj) 
" 

; _, 
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3.4.1. A Classical Approach 
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Let On -(01,02,..., oj and aka (a,, a2, ..., ak). Generalising the results in 

section 3.1, we find that the maximum likelihood estimates are given by 

IN 

9, = In xr+Yr 
k 

1+e 
J-1 

,i=1,2,..., n, 

Sy, 
a1 ý In 

S, 
ja1,2, ..., k, 

v 

where 

R 

SV x; 8; ý 
ý- I 

ý en+I 
=In 

(xn+ll 
/, 

Sylmý-1ýY; b, j, j=1,2,..., k. 

These maximum likelihood estimates can now be used to obtain a simple plug-in 

estimate for the predictive distribution of Yn+1 j, which will be given by 

I D", xn+l) m Po(exP(ä, +j6, a1,2, ..., k. P Yn+ý, j n+, 
ý 

3.4.2. A Bayesian Approach 

We again consider a hierarchical prior structure. At the first stage we take 

k {P(aj I ý1j)} 
n*l 

P(6", e"+r ak I ý, , nkl U{P(6, I ý)}P 1 

where nk il. ), and at the second stage we take 

P(ý. n 
k) 

= P(ý){P(17j)} 
j 
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with 

e' - Ga(h, e), i=1,2,..., n+1 e«' - Ga(g,, e''), j=1,2,..., k 

eý- Ga(u, v) e'"i - Ga(ri"sj), l=1,2,..., k. 

By analyses similar to section 3.2.1 we find, after eliminating 0,, 02, ..., 6n, 1110 r12, 

..., 1lk, that the marginal posterior distribution for the parameter vector (0.,.,, ak, ) is 

given by 

expl -eg+en+t -v e4 -e 
ý+, 

P(en+l, a,, Ü2, ..., Qk, ýI Dn, xn+l « 
fJ{(i+e01 X 

+e4)W' 

x 

where 

k 

exp ((n+1)h+u)ý+BR+, (x. 
+, +h)+Iaj(Syj+gj) 

-- ý-' 

qj- 

Rn 

Wj =lb; ý(xi+y; +h)=SV+Syj+yb; ýh, 
ý-i ý-i 

for j=1,2, ..., k. The marginal predictive distributions of Y. 
+1.1 

(j - 1,2, ..., k) are then 

given by 

ýP(Y"+,.; 19"+ý"aj)P(e"+, "arar..., ak, e I D, x"+1) d8"+ý I D", x"+, ) - 
.1 

da, da2 ... dak 4 

«1 
exp{-e ""+eaI +e)-ve'}exp{((n+1)h+u)ý} 

x Y. +I, j 9t "_ 
ý- ýC1 

+ e°`' + eý)W '} 
pl J 

k 
a 81 *ýi ý 

`e 
'+ sý 

) 
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exp 8R+1 (h +x�1 + y. +1.; 
)+ 

ai 
(g1 + Syi + yß+1. i 

) 

XkX 
Jý (e a° +S 

ýgý a rp 

11 P 
P 

x exp aP 
\gP + SyP/ d6n+, da1 da2 ... dak dý. 

P-1 
P"1 

68 

Notice that these involve (k+2)-dimensional integrations which are very likely to lead to 

numerical problems, so that estimative and approximative methods must be used. 

If we consider second stage vague priors 
(u, 

v-0 and rj, sj -> 0, j =1,2, ..., 

k), the predictive distributions of Yp+1 j can be obtained explicitly, and are given by 

B(h +xn+, + yR+, j 'W) 
" P(yn+t. jI D, xA+, 

)a 
B y. +,. j +1, sy; -1 

3.4.2.1. Estimation Via Gibbs Sampling 

For the Gibbs sampling algorithm approach (section 1.2.1) the full conditional dis- 

tributions in (3.12) generalise to 

p 
(en+1 'a1, a2, ..., 

a k, 
ý, Dn, xn+1) a eRp S -e 

e.. i 
(1 

+ 
J)1 

exp{en+1 \h + xn+l /} , 

exp -e4 
(ee^"' + v) exp{((n + 1) h+ u) e} 

P(e1en+lýal, a2,..., ak, Dn, xn+1 kw 

,- 

(1+ ea' +ee) j 
J' 

p(a j 10. +19 at+, ji 
ý, D', xe+l °C 

exp{ aj (g 
j+ Syj) } 

ea la8; 
*rl - 1,2, ..., k. (1+e'+e) (e, 

+sj) 

If we consider vague second stage priors, the full conditional distributions above 

become 
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P(en,, I a,, a2, ..., ak, e" Dn, x�, 
) 

a exp{-e o-. '(1+eý)}exp{en+, (h+xn+, )}, 

exp{ -e'°"' 
} 

exp{(n + 1)h ý} 
n 

Pe I en+� al, a2,..., ak, 
D, 

xn+, 
) 

akr, 

. tv. 1 

p(aj 10.. 1, aj. j, ý. D", x"+, ) a 

3.4.2.2. Estimation Via Asymptotic Results 

69 

Following Bernardo & Smith (1994) and section 3.2.3.1, we obtain that 9�+,, a,, 

a2, ..., ak are independent a posteriori with 

a,, a2, ..., ak, D"" x, +, 
) 

=N9. +r e=N ln(x,., ý, 1, 

e ",, x�+, 

ý{(1 +eaj +eýýýýjl 

exp a, Syj 
j 1,2, ..., k. (1ýeal +eg 

) 

(I 

p(aj Ien. rar. j, Dn"xn+l °N aj, 
n 

ý 

i-1 

ý 

äj +6. 8; ý e 

I 

1_ e 
ai 

`k 

1+ý8; 
p e"' 

-ý\ \ 

9 

P-! /ij ) 

j=1,2,..., k. 

Problems arise if x�,, =0 or if at least one of the summations S., Syj (j=1,2, ..., 
k) is null or if x; = y, -0 for at least one i=1,2, ..., n. 

In a similar fashion for the O'Hagan's (1994) approximation, the full conditional 
distributions in (3.16) generalise to 

P(en+l I a,, a2, ..., ak, 
ý+ Dn, xn+l 

}aý 
en+1 

ä 

(ý 

ý 
ýý 

a 
,, 
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p(aj I 

P(e 1eRt� a� a2, ..., ak, D", x�+, ) °N 

en., 
º a,.;, ,n 

D. xR+r = 
d 

N äý - c 
f(ý-j), 1 

j, 
j=1,2,..., k, 

11 

70 

k 

_ 

(0.., 
-Ö�., 

) 9+ :E (aj 
- äj)ij 

1 ý- 
f, f, 

\/ 

where result from the solution of the system formed by the equa- 

tions 

eow41 (1 
+eýý-h-xe+r =0, 

k 
eý ee^'' +v+2 

Wi 
-(n+1)h-u -0, (3.26) 

,., 1 + e°`' + e4 

W, eaý (gj + rf) e 
Syý+gý-1+e"' 

+e4 e°`'+s. 
ý 

ý 

and 

d-e "' 
(1 

+ e), b- e"e°"' 
, 

Wjed'(l+eI 
. 

(gi +ri)s/e6 j 
CI e . _I. (i+/' 12 

+ eý) 
(ea' 

+s 
)2 

BkW 
(1 

+ e"') 
_ 

j 
-eg e^''+v+I 

J-1 
(1 

+ea' +ei) 1 

0 jý1,2,..., k, 

W. e"ý ̀y 
°- 

ý21,2,..., k, (I+ 
e' + eý) 

dl 

(3.27) 

When we consider second stage vague priors, the resulting simplifications are 

mainly due to the possibility of obtaining explicitly the solution for the system of equa- 
tions (3.26), namely 
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(n+1)h 1(T ++h) 
_ In In 

"'' -T +x�+, +(n+1)h 
ý I 

71 

S. (T+xn+, +(n+1)h) äi -In ja1,2,..., k, (3.28) (Tx +xn+1) W -Sri 

With 

n 

Tx =ýx, . 
; _ý 

3.4.2.3. Laplace Approximation 

The results obtained in section 3.2.4 can be generalised easily. The Laplace ap- 

proximation for the predictive distribution of Yi+1, j is 

J( 

P(Yn+1. ý 
I Dnr xn+/) a1 exp{-nh"(Bn+",, a, *, ", 

QZ", ... r 
ak"r r) + 

1 (245-*) 
L Yn+l. j" 

+nh(6�+19 C'1, (2, 
- *1 

äk, 

. /)J 9 

with the functions h(O 1, a,, a2, ..., ak, ý) and h' (8�i,, a,, a2,..., ak, ý) being defined 

such that 

-nh(9�+,, a,, a2,..., ak, ý) =-egre"'' -veg -e °'' +((n+1)h+u)ý+ 

+9. +, 
(h+x�+, ) 

+2 aP(SP+gP) -2{WPln(l +ea' +ey)}- 
P' P' 

f(gp+TP)III{ea. 
fSP 

Pý1 
` 11 

and 

-n h'(e�+,, a,, a2, ..., ak, O_ 
-e«, +e,,., +(a, + 9,, 

+1)Y�+,.; - eý+e-., -v eý -e-, + 
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+«n+1)h+u)ý+6�+l(h+xi. l) +2ap(Syp +gP)- 
p-1 

-ý{WPIn(1+ea' +e')}-IJ(g P+rP)In(e+sP)}. 

The vector 
(ö,, 

ý1 
ä,, d2, 

..., 
äk, i) is the solution of (3.26), obtained through a numeri- 

cal method and 

Q= 
b2 k d2 k 

-//2 

ä+ý ýP a{ýP} P'ý Pp ' 

with j, 9, cp and dp being defined as in (3.27). Solving numerically the system formed 

by the equations 

e ^''(1 +ea' +2)-h- x.., -Y. +,. j - 0, 

a; +e.. 1 
Wj eaý 

(gj + rj) ea' 

j 
-gj-Syj-Y"+1. j=0, +1+eai 

+ee 
+ 

eaj+s 

ea, W. (gp + rP)e °`p 
+ _. -Q_-S. 

_ =0. na 1.2..... k: Do i. 
I+ e" +eg eaP 

-FSp 
"p yp "...,. - 

k yy 
e ee^'' +v+ ý -(n+1)h-u a0, 

P_, l+e'+e 

we obtain 
(8fl+,, a1, a2, ..., a, *k, `) and d is defined by 

Q= 

where 

'k c' ' 
d'2 k dP2 z 

ä-t2 být" qý l Pý 
f- 

q CP q. q 
P"/ P.. I 

(3.29) 

i/2 

t" ea; X., , 
b" eý"+eý., a" eeý:, + t* ýýýaý + b' 
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ý 
WP ea' 1+ ef) (go + rP )sP 

ea% 
CP a (i+e+er)Z + (e+sp)2 

q'ýt'+c'j, 

p=1,2,..., k, 

Wp e"o+ý' " dp = 2, p-1,2,..., k, (i+ea' 
+eý 

ý 

k WP(I+e"') 
f'= el" e- +v+ 

:E2. 

P-1 
(1+e°`' 

+er 
) 

When considering second stage vague priors, the most significant simplifications 

are due to the fact that we are able to solve explicitly the systems of equations (3.26) and 

(3.29), which originate 
(&,,, äl, ä2, and (9. *,,, a*,, a, *,..., a, *, '), respec- 

tively. In such a case, 
(öý,, 611 d2, 

..., 
äk, i) is given by (3.28) and the components of 

the vector (o, *+,, a;, a;, ..., ak, ') become 

e. 
n+I 

aj =In 

J(T. +x. +, 
)(x�+, +yR+l. j+h)(W -Syj+xn+, +h) 

ý. 

l (W j -r x�;, + y�+,. j+ h)(Tx + x�+, + (n + l)h) ýý 

0- 

1�I 
(Tx+x�+, +(n+1)h)(S,; +Y. +r.; 

)l 

(1' 
x+ jý., )(Wi - Syj+ x.. 1 + h) J, 

ý ý 
(Tx+xn+, +(n+1)h)Syp 

: +xn+1) W -S ° ýT 
v yr 

g� a In 
(n+1)h IT. 

+. Xn+1 
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CHAPTER 4 

A CROSSOVER DESIGN TO COMPARE Two 

TREATMENTS EFFECTS: PREDICTION INA 
POISSON ERRORS IN VARIABLES MODEL 

Let us suppose that we have two treatments, T, and T2, both with multiplicative ef- 
fects, and that we aim to compare their effects upon an individual, within a crossover 

situation. We assume that a two-period design with treatment orderings of the form T, TI, 

T, T2, T2 T, and T2 T2 is used. We also suppose that for individual i (i=1,2, ..., n), the re- 

sponses in the two periods, represented by the random variables W,., and W2, are Poisson 

counts given from the appropriate distributions as follows: 

Treatment Period 1 Period 2 

T, Po(exp(B; )) Po(exp(ß + 8; )) 

T2 Po(exp(a + oj) Po(exp(a +ß+ o)) 

Note that, in this model, we have to consider two types of effects: one caused by the 

treatment and another caused by the period of time. 

The multiplicative treatment effect is modelled by the parameter a and the period 

effect, which we also suppose to be of a multiplicative form, is modelled by the parameter 

P. We also have to consider the existent dependence between W,., and W2 (i=1,2, ..., n), 

due to the particular characteristics of individual i. Such dependence is modelled by the 

parameters 01,02,..., 6,,, which can be seen as nuisance parameters. 
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Our aim is to derive the predictive distributions for the counts Z, and Z2 for a fu- 

ture individual from treatment T, and T2, respectively. 

In order to simplify the development, we define dummy covariates b;, and ö2 (i=1, 

2, ..., n) to identify the treatment given to individual i in the first and second periods, re- 
spectively, through 

a., m 

0, if treatment T, is used in period 1 
11, if treatment T is used in period 1 

(4.1) 

ai2 
10, if treatment T, is used in period 2 

1, if treatment TZ is used in period 2 

Using these dummy covariates, the model we are considering can be written in the alter- 
native form 

Period 1: %- Po (exp(O, + b;, a )) 

Period 2: W2 - Po(exp(o +ß +o; 2 a)) 

The data available, D", is formed by the responses from the individuals in the two 

periods and by the information about which treatment each individual received in each 

period, that is, 

D° 20 
j(WilP 

wt2- ailf 8iz), i-1,2,..., n}. 

Based on this data D", we will derive the predictive distributions for the counts on a fu- 

ture individual when subjected to the two treatments. We are interested in the joint pre- 

dictive distribution of (Z,, Z2), and in both marginal predictive distributions. Note that, 

conditional on B"+, , Z, and Z2 are independent random variables such that 

Z, ~ PoEexp(eýý1», 

ZZ - Po(exp (a + 0.., 1». 

Dunsmore & Robson (1997) consider this model (in an alternative parameterisa- 
tion). Here we develop in addition an asymptotic normal approximation for the posterior 
distribution and the Laplace approximation. 
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4.1. A Classical Approach 

The likelihood function is given by 

fl 

] 1L 

e,, eZ, ..., eR, «, ß; Ua 1-i 

e -ee, +a, l«} exp{(e, + 8;, a ý w,, 
} 

Wi1! }. 
R 

x 
exp{-ee, +ß+a, s"}exp{(e, +ß+S. 2a) w. 2} 

g-1 w. 2! 

a exp ee, +8., a e ; +ß+e, 2a x 
I ý_, , _, 

n nn1 
l 

x exp 
(ei 

+ ai, a)N'i, +7 
(ei 

+ß+ bi2a) Wi2 " 
ý", , 

ý_, / 

Thus, to obtain the maximum likelihood estimates B, , 02 , ..., 
6,,, ä and P, we have 

to solve, using a numerical technique, a system formed by (n+2) equations 

e 
at +J. P +e 

i +ß+6, =a - Wi, - Wi2 a 0,1 = 1, Z. 
.., ii ý 

RRRR 

ee. +8dla +6 , , e" +a+3i2a 
- 

Sil wi1 -ý 
Si2 wi2 : 0+ 

i-1 S-I 1-I i-1 

nn 
Y. e, +p+a,, a - w. 0. 

az - 
ý-i ý-i 

To get a plug-in estimate of the predictive distributions we would need to know the 

maximum likelihood estimates of 8ý+, and a. However, the system of equations above 

will not allow us to obtain 6"+1, since the available data, D", does not provide any infor- 

mation about the future individual. Therefore, this kind of approach cannot be used at all 

to estimate in a classical framework the predictive distributions we seek. 
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4.2. A Bayesian Approach 

77 

Within a Bayesian framework, the predictive distributions for (Z,, Z2), Z, and Z2 

will be given, respectively, by 

(z,, z2 I D") mf P(z, 1 en. 1)P(z2 
10.. � a) P(9,,,,. aI D") de�., da, 

m_ 

p(z, I D") =f p(z, I e.., )p(en., I Drt)deR+, , 
91 

p(z2 I D") af P(z2 I e.. � a)P(e.., " aI D")d6. 
+, 

da. 
913 

We will again consider a hierarchical prior structure for the parameters. At the first 

stage we take 

P(eý" 9�+ýº a, ßýe, 11, 
A{p(Oi 

1 ý)}P(« 1 n)P(ß 1 ý), 

and at the second stage we take 

P(ý, *0a P(OPMP(O. 

with 

e`- Ga(k, eg) e°` - Ga(h, e'') eß - Ga(g, et) 

eý- Ga(l, m) e°- Ga(u, v) eý - Ga(r, s) 

where k, h, g, 1, m, u, v, r and s are assumed to be known. 

4.2.1. The Exact Predictive Distributions 

Using the hierarchical prior structure defined above with the equivalent forms in 

Table Al.!, the joint prior distribution for the parameter vector (9", 9n+, a, 11, 

will be given by 
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ýq Y 
n+ 1 

P(en. 
en+/, a, R, ý, ý. b) aa eXp _Ye$+e, -en+a -e 

z+ß - me4-Ve"-se' x 
ý-/ 

n+, 

xexp ky6; +h(n+a)+g(ý+ß)+urj+rý+ 
ý_, 

+((n+1)k+1) . (4.3) 

The joint posterior distribution, which results from (4.2) and (4.3), is given by 

I n+, 

Pýe", en. r a, ß" ý, 11, ýI D")« exp 2J 0, 
-en- -et- mJ-ve -sez x 

, _, 

nn n+ 1 

xexp -ee, +a�« - e, +ß+a, - exp kl9; x 

xexp{h(rl +a)+g(C +ß)+ui7+rC +((n+1)k+1)ý}x 

R 

xexp (9, +ö�a) w� ++ß+a, 2«)w, 2 . 
ý-ý ý-ý 

However, notice that Z, and Z2 only depend on 6�+, and a. Therefore, those are 

the parameters whose posterior distribution is required to derive the predictive distribu- 

tions. Unfortunately, it is not possible to eliminate all the remaining parameters; the best 

we can do is to eliminate 9,, 02, ..., 9,,, 71 and ý to obtain the marginal posterior distribu- 

tion of (9�+,, a, ß, ý), which is 

P(e. +r a. ß, e1 Dj oc 
exp{-e(ee-'' +m)}exp{((n+ 1)k+ l) ý +ke,, +, } ýx 

UI(O + ea, ý + eß+ai2a) 
k+"',, 

+w; 2 

(e° fV) -(eP +S),.. 
xý. "" . kauf 

, 

. oar ., j. (4.4) i 

exp a 
RR 

h+ ý, aiiwi/ +ý(ii2wi2 
!! ýý +ß 

R1 

g+Lwi2 
; _, , _ , ; _, 

Future results can be written in a much simpler form if we define 
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AR 

nll e 
Y. (1 

-ail)(' - 
Si2) 

i-1 

n12 1- ail)ai2 

i-1 

nn 

n2, n22 - 
245; 

lbr2 
1-1 i-i 

RR 

S, a 
ýb%rK'%i 
%ý/ 

S; i)(1-Sr2)(k+wi, + N', 2) 
, _, 

S2 8; 2 w; z 
; _, 

n 

T, i- 
(1-6ll)ai2(k+wu+w; 

2) 
t_1 

n 
[ný T2tia, 

2)ik+wil 
+wJ T22450 612(k+wrl+wl2) 

I-j 1-I 

Notice that njj is the number of individuals who receive treatment T,. in period 1 and 

treatment Tj in period 2. Using this new notation, the posterior distribution (4.4) can be 

written as 

exp{-eý(e °'' +m)}exp{((n+1)k+1)ý +kBi+1} 
n+1, ''a h+r ß g+r ßý T"a+ß ý Tjj pý6 aßýI D") °C re +vý (e +s)(1+e +e )ý1 +e +e ýx 

R 

+ýwi2 exp a(h+S, +S2)+ß 9 
/ 
le" +eß +e4) 

T"(ea+e°'ß T'= 
+ eý 

) 

The predictive distributions of interest are then given by 

(4.5) 

n 
(k+ z, +zI) exp{-mee}exp{ý(n+ 1)k +l)e} (z, z PizI D) °C 

1' 

z, 1 z2! 
f 

(ea + vlk+"reß + s)8+r(1 + eß + eý)T�(1 + ea'ß + ee)T, ý x 

exp a(h+S, +S2+z2)+ß g+wi2 dadßdý 
X 

re 

`a + eß + e'J1T11r`e 
a+e a+ß 

+ eý J 
1Tz2 (1+ 

ea +eý) 
k+zt+zz " 
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p(z, I D") oc 
1-(IC4- 7_) exnf-meglexn1((n+1)k+llýl - \V- " -11 .I). JN. j 

!a h+u ß 8+º ß 'Týt af 'T12 Z, 
f 

ýe + vý ýe +s} ý1 +e +e ý ý1+ e +e ) 

exp a(h+S, +S2)+ß g+wi2 
}da 

dßdý 
X 

(e a 
+e 

ß+ 
eý) 

Ti'(ea 

+e 
a+ß 

+ e$)T2=(1 + eý) 
k+zi 

`a I'(k+ z2) exp{-me4}exp{((n + 1)k + 1)ý} x P(Z2 I D�J r k+u g+r Týý ß Tý= 
Z21 ý3(ea+v) (eß+s)(1+eß+eýý (1+ea+ 

+eýý 

R 

exp 
Ja 

(h + S1 + S2 + z2) +ß g+2 wi2 dadßdý 
ý-r X 

(e a+ eß +J) 
T21 (e a+e a+ß + 

2) Tii(e a+ ee)k+zz 

These predictive distributions cannot be obtained explicitly. A numerical technique 

to solve three-dimensional integrals is required in order to evaluate the predictive prob- 

abilities. No real simplification follows for the case of vague second stage priors (1, m, u, 

v, r, s-0). 

4.2.2. Estimation Via Gibbs Sampling 

From the posterior distribution (4.5), the full conditional distributions are derived, 

namely 

p (en+, I a, ß" ýº Dj « exp{-J+e-' 
} 

exp{k 8n+, 1, 

n« exp{a (h + S, + S2 )} 
p(a n+l 

ßý Da 
k+u a+ß ý Ti"" ßý Týý a a+ß ý T22 ýe +vý ý1 +e +e ý ýe +e +e ý ýe +e +e ) ý 

p(ß1 e�ra, e, D")« 

n 

exp ß 
(9+ 

wi2 

ý g+r ß$ Týr a+ß ý TýJ aß T21 X 
(e +s) (1 +e +e)(1+ e +e )(e+e +e) 

n 

I x 
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1 
ýe" 

+ e"+ß +e 

, 
D) ýa 

exp 
{-e'(e wi1 + m)}exp{((n + 1)k + 1)e} 

x T21 li(ý ý en+ a, ß, 
ß+e ý) T, 1(1 

+ ea+ ß+ e' 
e)Ti: (e" 

+ eß + eý 
ý ýl+ 

e 

1 
( 

StýT2= 
' 

e"+e°`+ß +e 

For the vague second stage priors case, the simplifications are again minimal. 

Generation of values of 6�+, again follows from a transformed gamma distribution 

(see Table Al. 1); to generate values of a, ß and ý, we will have to use rejection sampling 
(section 1.23). 

4.2.3. Estimation Via Asymptotic Results 

The approximation presented by Bernardo & Smith (1994) cannot be used here 

since it is not possible to derive a maximum likelihood estimate for 6�+1 . 

The second asymptotic approximation, presented by O'Hagan (1994), is based on 

characteristics of the posterior distribution itself, namely its mode and its modal disper- 

sion matrix. Given the posterior distribution (4.5) for (8.; 
1, a, and assuming that n 

is large enough, we can approximate it by 

(e". 
r a, ß, e1 Dj a N, (m, Vý, 

with m being the posterior mode and V, defined by (1.5), being the modal dispersion ma- 

trix. 

From (4.5) the posterior mode m=(6n+1, ä, ß, i) is obtained from the equations 

eg+e.., -k -- 0, 
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h+S, +SZ- 
(h+u)ea T, Zea+ß T, e° TZ(e°`+e«+ß) 

a 
ot 

e" +v 1 +eaß +eg e" +eß +e4 e°` +ea+a +e4 

ý 
(g+r)eß Tileß Trzea+ß T212 

g+, 
, 
w'1- 

e +s __ +s 1+eß+el 1+ea+ß+e' ea+eß+e' 
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T Ze 
a+ß 

a09 
ea +ea+ß +e4 ' 

(n+1)k+l-eý(e^''+m)_ 
T"eg T12ef TZ, eý 

1+eß+eý 1+e"*fl+eý e"+eß+e' 

TZZey 

ý 0. 
ea + ea+ß + ee 

The modal precision matrix V"' takes the form 

V-t a 

where 

äae 

bs 
(h +u)ve$ 

+ 
Tizea"ß(I + el 

(ea 
+v)2 

(1+e'+ß 
+e' 

)2 

ä00ä 

0bcd 

0cfq 
ädqt 

T21ea (eß 
+ eý) 

+ 
72(e "+ e"'ß)eý 

+ 22 (e, 4 +eß +ef 
) (e" 

+ea+ß +ef 
) 

T, i2ed+ß 
(1 

+ e') TZ r ed+ß T22e2+ß+4 
+ C (1 

+ ed+ß + ej)2 
(e" 

+ eß + e')2 
(e+ed+ß 

+ ej)2 
ý 

T e`ý+ß+ý T d+j T22Ce° + e"'ýJeS 
,z zie d-- j- j ja (1+e&+ß 

+eý) 
(e°` 

+eß +e' 
) (ed 

+ed+ß +el 
) 
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- 
(g+r)seß 

+T,, 
eß(1+ef) T12ed+ß(1+eý) 

(iýe1+e)2+ 2 -I' (eß+ 
s) 

(i+e+e)2 

+Tz, 
eß(e" +ei)+ T2ed+ß(ea +eil 

(e'i+Iýe)2 (e+e+e)2 

T eß+$ T, Zea+ß+g TZ, eß+f 
-� ý (i+e+d)2 (i+e+e)2 (eýe+e) 

T�ey(I+eß) T12ei (1+e°'ß) 

i=e(e°"'+m)+ + 2+ (i+/+e)2 (i+ed'ß 
+ e' 

) 

T22ea*ß*4 
-( 

e" + ea. ß 
+ eý) 

29 

+T21e$"+eß)+ 
Tae$"+ea'ß) 

" (e+/+e)2 (e+eýe)2 

Hence, the approximated posterior distribution for (6A,,, a, ß, ý) will be 

P(e.. � a, ß, ý1 D") rig N4(m, V), (4.7) 

and the estimation of the predictive distributions of (Z,, Z2), Z, and Z2 is done through 

the Gibbs sampling routine (section 1.2.1), generating random values from the following 

full conditional distributions, 

P(eý+1 I ac, ß, , U") - Nl e. 
+, -(ý-s0, 

ä1 
, 

-i -- InI. r- ro1 af_ 

(-n)e+(_)d 

1 

pka i an+1+P, 5+ " 1°lv( u- 

p(ß 10. 
+1º a, e. D') =N ß- 

b 'fl' 

(a-ä)c+(ý-i)q 
1 
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(-(L- -I L1 .,. R T1n 1_ Al ý F k5 I un+lq l'49 Pt L. J- IT ( 5- 

r 1' 
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which are easily derived from (4.7). Again, no significant simplification occurs with sec- 
ond stage vague priors. 

4.2.4. Laplace Approximation 

Given the posterior distribution (4.5) for (B�+ a, the predictive distributions 

of(Z,, Z2), Z, and Z2 are 

2. I 
f eRP l_e 

'»,, 
_ e«lexp{en+lZl +(a +Bn+1) Z1}x p(z� z2 1 Dj 

Zý. ý. z 

x p(9�+,, a, ß, e1 Dj d6. 
+, 

dadßdý, 

p(z, I D") «Z1! fexp{-ee"., }exp{6"+, 
z, }p(e"+,, a, ßýýI D") d6"+, dadßdý, 

p(z2 I D") « ZZý Pexp{-e" exp{(a +6"+I)zz}x 

x p(9ý;,, u, ß, e1 D) d8,,,, dudßde. 

The Laplace approximation (section 1.2.4) can be used to obtain approximations of 
these distributions. 

Let us consider the function h(6�+,, a, ß, ý) defined by (1.13), that is, such that 

-n h(O ,, a, ß, s) =1n p(0,,.,, a, ß, )+ In p (D' 10. 
+,, a, ß, 

« In p (6n+,, a, ß" I D) 
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and let us also define (9�+1º ä, ß, ) 
and ä as in (1.16). Analysing the definitions for 

and Q, we conclude that 
)=m, 

the posterior mode, solution 

of the system of equations (4.6), and that the matrix nV2h(9�+,, ä, ß, ) is equal to the 

modal precision matrix V-' defined in the former section. Thus, 

ä= {aJr_acr-ät c2+2äcdq"-äfd2-bfä2+ä2c2} 112. 

4.2.4.1. Joint Predictive Distribution of (Z,, Z2) 

We have that 

-nh*(6 a, ß, ý)--ee^"' -e°+e°'' +Bn+1zI+(a +6n+1)z2-eý(ee"'' +m)+ c n+ý 

+((n+1)k+1)ý+k9n+1 +a(h+Sl +S2)+ß g+ wi2 - 
R 

, _, 

-(h+u)In(e" +v)-(g+r)ln(e' +s)-T�ln(1+eß +eg)- 

-T121n(1+e"+ß +e4)-T2, ln(e" +eß +e4)- 

-T221n 
(e" 

+ e"+" + e4), 

according to definition (1.14). To derive (8,; 
+, (C,, a, *, defined in (1.16), we have 

to solve, using a numerical technique, the system formed by the equations 

e9^"1(I+ea+eý)-z, -z2-k=0, 

e 

e«+ T21e« (h+ u)e°` T, Z h+S, +S2+z2-e«+eý., _« 
+v 

- 1+ e«+ß + eg e« + ed + eg 

T2 (e" +e a+ß ) 

e° + ea'ß + el 
a 0, 
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(g+r)eß Tireß 
_ 

Tiaea. ß T, Ztý 
_ g+ýwi2- 

eý+s 1+eß+e4 1+ea'a+eý e"+eß+el 

TZe a+ß 

e" +e"+ß +eý 

(n+1)k+1-ee(e^''+m) - 
T"ee T, Zee TZ, e4 

l+ eß +e' 1 +ea`ß +e' ea+eß+e' 

TZZe 
. a+9 

e- +e r+e 

If we define the constants 

L" e 
0ýi(e1 +aO 

`. 
" ý 

n+. Xd + 4° 
a" a eewý! (c1 Lý 

CafCaýCC 

(h+u)ve"° T12e""`ß°(1+e') T2, e"°(eß° +e'-*) 
d, " e"; +e,;. uCi + (e"°+v)2 +(1+e"°+ß°+eC)2+(e"°+eß`+eý°)2+ 

72(e "° + e"Q+ßa 
)er. 

+ (e"° 
+ e"'+ß" + el-* 

2 

" 
Tize"°+ß` (1 

+eý° 
) 

TZr+ß 7'2deae+ß; +9; 
ca (1+e"°+ß' +eg°)2 

(e"" 
+eß° +eý')2 

+(e"° 
+e"°+ß° +eý )2 

": +ýo T2 ": +fo T21(e"' + e"° +ß: 
I eý° 

. 
T, Ze ,el 

s- -, qc (1+ea°+QQ + el" 
)2 (e"" 

+ eß° + e4` 
)2 (e"^ 

+ e"' +ß^ + eý: 
)2 

9 

f 

tý a 
(g+r) seß' T�eß°(I+eý^) 

+T2e"°+ß'(1+e'°)+ 
ý (eß' 

+s)2 
+ (1+eß' 

+ey')2 
(1+e"'+ß° 

+el') 

T2, eß° 
(eac' 

+ eý° 
) T22e"° +ß° (e"' 

+ e'') 
2 + (e"' 

+ eß^ + eý' 
)2 (e"0 

+ e"' +ß° + et'° 
) 
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7. P. +r. 7. «: +ß: +ýý ßQ +gý 
" rr e rze Tile 

.1 (1 
+eß` +eý^)2 

(i+ea°+ß^ 
+eý°)2 

Fe": 
+ep-'+e'-' 

CC. +ßý +; e Tae 
(e"° 

+ e"°+ß° +e-' 
)2 

T, leý° 
(1+eß°) T12eý°(1+e"^'ß°) 

p., a eý° 
(e0i+ 

m) + (I+ 
eß° + eý° 

2+ ) (1 + e"° ̀ ß° + e47 
)2 

+T2, 
elý 

(e"° 
+eß°) 

+ 
T22e° (e"° 

+e"°; ß° 

(e 
+eß° +eý`)2 

(ea, ' 
+e"°`ß^ +er 

)2 

we can write 

. nOzh. e. 
+ - l(c), 

äc, ßC., ýC. 
ý 

which leads to 

a, * b, * 0 
b, ' d, ' 

. 
f' 
. 0 X1 tý 

c,. 4ý oý 

.+ Oc 

P*1 

Ö={Q d't'p'-ä d'Ö 2-ci p' f2+2a, * f 
g'C ÖC -c Ci 

t'gC'2-t'pC 'b'Z+ CCCCCCCCCCCCCCC 

ý 

"2 2"t*""*""00 02 2 $21 -I12 
+ b, oc -2 bc f cc oc +2 bc 4, cc t, - dc t, cc + fý cc J9 

and the Laplace approximation for the joint predictive distribution will be given by 

"1 
Uý """"" 

p(z,, z2 I Dn ýý_ exp -nhý 
(en+aý" 

ßýý ýý) + nhCBn., ý aý g ý)}, 
ZIlZ2! O 
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following, (1.15). 
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4.2.4.2. Marginal Predictive Distribution of Zl 

To evaluate the predictive distribution of Z1 , we take 

-nh; 
(8�+� a, ße) = -ee"'' +en+1Z1 -e(e "'' +m)+((n+l)k+l)e+ k9n+1 + 

88 

n 

+a(h+S, + S2)+ß g+jwi2 -(h+u)In(ea +v)- 

-(g+r)ln(eß +s) -Tllin(1+eß +eý)-T121n(1+e`ß +e')- 

-T211n(ea +eß +eý)-T21n(ea +ea`ß +eý), 

so that (9i+1(, 
), al, ß;, ý; ) is obtained from 

e4)-z, -k =D, 

(h + u) ea T, 
Zea+ß 

T 
2, ea 

T 
Z(ea + ea+p 1 

h+ý+ n1+S2 
ea+v 1+ e 

a+ß 
+el ea +e" +e' ea+ 

e+" 
+ e4 

a O, 

R (g+r)eß Titeß Tine«+ß T21ea 
g+ x'u- 

eß+s 1+eß+eg 1+ea+6+eý ea+eo +eý i_, 

Tue a+ß 

ý a' 
ea + ea +O 

+ ee 

(n+1)k+l-eg(e^''+m) - 
T�eý T12eg 

_ 
T2, e4 

- I+eß+eg 1+ea+p+eg ea+eß+eg 

T22 e 
e" +e a+P + eg 

The matrix n02h; 
(9�;, 

(J), a;, ß; ,; takes the form 

2h, """" 
nV (e. "+uný ar ß, º ý, ° 

a; 00b; 

0 c, * d, * fl. 

0 d; g, ' t; 

,. ,* tl. Pl. 

0. 
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where 
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ýe"; 

+e"'+Pj +eý' 
ý 

'r *+f, * T�V +e"i*0" 
, 
eýi 

_' 

"_+, 

Z' 1_ -2, ' g1_ --ý I (I+e; rýý +eýý J2 
ýe", 

+e"* ý +Bl'12 
ý8aý 

+8', +ßý +eýýý2 

0 
(g+r) seß! 

4ý = (ea' 
+ s) 

2 

Ij 

+ 
T�eß' `1 

+ eý' 
)+ ? '12 e"' ̀ P' (l + e" 

)+ 

(I+eß' +eý')2 (1+ 
ee*'+Pl +eý')2 

+ 
Tz, eß' 

(e"' 
+ e' 

)+ T22e"' ̀ß' (e"' 
+ eý' 

) 

+eß' +eý') e"' +e"'+ß' +eý')2 I. 

89 

9 
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and, therefore, 
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-a,. p*, d"2 + 2a, ' d', fl* t, " - a, " 4* f�. 2 - l ý, 
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*0 "2 11/2 

-c, q, b, +d, 
a2 b, "2 

f. 

Finally, the predictive distribution of Z, can be approximated by 

(z, ID)z exp -nh, 
ýeA+, 

ý, r a, ýßlýýýý+nh(BR+, ý aý 1ýýý)}" 
n1 (ill') p 

, 

4.2.4.3. Marginal Predictive Distribution of Z2 

In a similar way, for Z2, we take 

-nh2'(6rt+,, a, ß, ý)a -e«+e,, +(a+8�, )z2-ee(e °"' +m)+((n+1)k+1)e+ 
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+kOn+, +a(h+S, +S2)+ß g+; wi2 -(h+u)ln(e"+v)- 

-(g+r)ln(eß +s) -T�ln(I+eß +eý)-T111n(1+e"+ß +e4)- 

-T, ln(ecc +eß +eý)-T21n(e" +e"+ß +eý). 

Following the definition in (1.16), (6�+, 
(2)1 az, ßz, 2) will be the solution of the system 

formed by the equations 

e .. 1(ea +eý) -z2 -k = 0, 

(h+u)ea T1ea+ß T21ea 
h S, + S2 + z2 - ea+B,., _ -- 

«+ß 
e- a ß+ý 

ea +v I+e +e e +e e 

T12(e"+e(x'ß) 

ea+e`P +e4 
@ý' 

n (g+r)efl Trýefl Trze«+ß 
_ 

TZIefl 
g+ W'Z 

ea +s 1++eý 1+ e°`+ß + e' e °` + e'+ el , _[ 

TZe a +p 

ea +ea*p +e 
9 
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(n+1)k+l-eý(e'' +m)- 
T" 12eý Tzreý 

1+eß 
e, 
+e' 

T 
1+ea+ß+e ea+e+el 

Now, let us define 

eew. 
l(31+0'2 C" B ý2e9 QZ°b2 + CZf 

-L-C0 

ea + e"+ +j 

T22e 

1ý 
ai T eaii 

(1 + egi 1T eai 
(eß; 

+ egi / d" eai+6". 1(2) + (e'6 

h+u ve 
+1 2. 

+ Vý2 

+ ý1 
+ eaý+ßi + eýi 

ý2 (ea2 
+ eßý + eýi 

12+ 

T 2(ea2 + ea2; 
ß2 )e$2 

(eCt2 
+ ea-; 

ß2 
+ e4; 

)2 

, Zeai+ßi 
(1+eýi) 

T eai+ßi+g; 
r" _ 

21 + zz 
2 

ai+ßi $i 2i2 (1+e 
+e 

) (ec4 
+e + e) 

(e' 
+e +e 

) f 

T 

, 2e" 
i+ßiTleai+ý; T22I e"= +e"ii 

1eý2 
\1ý 

_- 2 (i+ec41s 
+ J? )2 (e'4 

+ eß2 +e ý2 )2 (e 
+ ea'+ß: eý' 

12 

(g+r)seß2 T�eß2(1+eý2)+Tize°`2; ý(l+eýý)+Ti, eßý(ea'+eý' 
2 (eß2 

+ s)Z 
+(1+eß2 

+ e92 
) (1+e"2`ß2 

+ eý' 
) (e°`' 

+ eß2 + eý' 
)Z 

T e°`'`ß' 
(e'4 

+ eý' 
) 

22 
. 2" ýea' 

+ e°`'+ý' + eý' 
ý 

T eß2* T eaz+ß2+$i T eß2+ 2 1i tz z, 
_ 2°- )2 (1 

+eß2 +es)2 
(iýea'+ß1 

+eß')2 
(ea= 

+eß2 +eeý* 
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TZe 
2º (e 

a2, 
+ eai+ß, 

* 
+ eý' 

) 
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r 

P2 e°2 
(e w+1(1) 

a 

i (e°`' 
+ e°`'`ý' + e42 

) 

ml 
T'eýz(1+eßz) 

+ 
T12eýz(1+e"z'ß'1 T21eýz(e"z +eß2 

M) 21 
e"z'ßz 

1J1 + (ec4 
+ e2 + el2 11+ eß+eý 

( 
\1 ++ e/ / 

"j T22eg=1e"s +e+ßl 
/ 

so that we can write 

2h2 " 6" "" 
n0 ý+u2). ar ßr ý)= 

which leads to 

a2 b2 0 
b' d' 222 

0f 12 

.. C2 g2 o2 

co 

q2 
02 

Pi 

9 

Q 2-t' "6'2+ slý d't' 'ä d' o '2-ä 'f2+2ä f'ö t' Z22 2P2- 22Z 2P2 22 2R2 2-a2 2R2 2P2 2 

"2 2"""""0"0"" "2 2*2 1/2 

+ b2 02 -2 b2 f2 c2 02 +2 b2 g2 c2 t2 - d2 t2 c2 + fi c2 
}, 

and the Laplace approximation for the predictive distribution of Z2 will be given by 

a J_ 
p(z2 I D") ? exp n1 

(0..,, 
(2r a2, Pr ý2 nh(6"+r ä, ý, 

). 

Z2! 

92 

If we consider second stage vague priors, we do not get relevant simplifications in 

the evaluation of the above Laplace approximations. 
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CHAPTER 5 

A MODEL TO PREDICT THE NUMBER OF 
ACCIDENTS BASED ON Two TRAFFIC FLOWS 

93 

We now consider models which can be used to predict the number of accidents oc- 

curring at a road junction in a given period of time, based on a measurement of the traffic 
flows at the junction as well as on covariates describing important features of the junc- 

tion. Barnett & Wright (1990) and Dunsmore & Robson (1992) considered this problem 

within a classical framework. Here, we develop a Bayesian predictive approach. 

In this chapter we consider a very simplified model in which the predictions are 
based only on measurements of just two traffic flows. In Chapter 6 we consider incorpo- 

ration of the covariates and the extension to multi-flow situations. 

With respect to the i-th road junction, let Y be a random variable representing the 

number of accidents which occur at that junction in a given period of time, and let X,, and 

Xi2 be two random variables representing the countings which are used to quantify, re- 

spectively, the two traffic flows at the junction. Typically these counts are taken over short 

periods of time, and so act as assessments for the real traffic flows. We suppose that Xi,, 

X12 and Y (i - 1,2, ..., n+ 1) are independent random variables such that 

Xi, - Po(exp (a,, + k,, )), 

Xt2 - Po(exp(ai2 +k, 2)), 

Y- Po(exp(A, au +A2al2)). 

Here, a,, and ate (i - 1,2, ..., n+ 1) are unknown parameters which model the charac- 

teristics of the traffic flows, A, and A2 are unknown parameters modelling, respectively, 

the effect of the first and the second flow upon the number of accidents and k� and k, 2 
(i m 1,2, ..., n+ 1) are known constants which relate to the length of the observational 
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period and the time of the day and year that observations were made. Further discussions 

of the model and background are given in Barnett & Wright (1990,1992). 

After observing n road junctions we obtain the data set 

D" °{(x,,, x; 2, y;, k; l, k; 2), nj. 

Based on D" and on observed values x"+,.,, x"+,, 2, k",,., and k"+,. 2, for a new junction, 

our aim is to derive the predictive distribution for Y"+,, the number of accidents at the 

(n+1)-th junction, during the period of time considered. 

5.1. A Classical Approach 

In order to simplify future notation, let us define a parameter vector 9,, d m 
(a11, a21, 

""". a.,, a12, a22,.... ant, a,, +,,,, a, +,. 2, A,, A2). We also define a vector dN+, whose com- 

ponents are the observations for the new junction, that is, d,, 
+1=(x�+1.1, x1+1.2, k,. 

+1.1, 

kn+1.2, " 

The likelihood function is 

I n+i 2 

L(eee; D", d"+, ) cc exp -ý exp{aj + k; ý} - exp, ý, q, + 712a, 2} x 

In+1 2 
(( 

R 

xexp lýlai +kýi) x, ý +(ý. lai1 
+a'2a'i2)y1 

" 
i_1ý-1 ý-1 

The maximum likelihood estimates for a..,., and a�; 1.2 can be obtained explicitly, 
being 

ä..,., ° In (x..,., ) 
- k..,., , 

(5.1) 
äw. 

r. 2 m ln(xn. 
/. 2 

)- kn. 
1.2' 
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whilst the maximum likelihood estimates for the remaining parameters, ä,,, äi2 (i =1,2, 

..., n), Jl, and A2, are obtained solving numerically the system formed by the 2(n + 1) 

equations 

exp 
{a, 

ý + k, ý 
}+ 

, Xj. exp {1 L, a;, + 11.2ai2 }-x, 
ý -1Ljy, =0, i =1,2, ..., n ; j-1,2, 

(5.2) 

a,, (y, - exp {2,, a� + ?. 
2ai2}) -0, j -1,2. 

, _ý 

Using these maximum likelihood estimates, a simple approximation for the predic- 

tive distribution of Y.., would be, in a classical framework, given by 

Yý+ý ~ Po(exP{a', ae+,. 1 + 
ýan+,. 

z}) " 

From (5.1) we note that problems arise if x�+1., .0 or x�+1,2 m o- 

5.2. A Bayesian Approach 

In order to derive the predictive distribution of Y�+, in a Bayesian framework, we 

consider a hierarchical prior structure as follows. At the first stage we take 

2 

P(ercd 1 ý19 ý2f 'lit 172) 
, 

and at the second stage we take 

P(ýr ý211711172) aI 
lp (ýJ) p(ni)}, 

with 

exp(a; j+k, i) - Ga(bj, e4') , i=1,2,..., n+1 ; j-1,2, 

exp(, Xj) ~Ga(dj, e°' 
), j. 1,2, 
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exp (ýi )- G4ui' vi) 'j1,2, 

exp(ni) - G4ri' Si) 'j =1.2. 

The joint prior distribution for the parameter vector 0= (a,,, a2,, """, as,, a, 2, a22, """, ant, 

an+1.1f an+1,2f Ai" A2+ ý1+ ý2+ 7119 172! is 

p(9 I D", d. 
+, 

) « exp -ý 
)exp{aJ 

+ k; ý} - exp{;., a;, + JLza; 2} x 

222 

x exp -1 vj eý' -ý e''' 
(sj 

+ ez' 
) 

exp 
(xýj 

+ bj ) (aj + k; j) x 

22 

xexp ý'ý(n+l)bi+ui)ýi+1 ýi(di+ri) +ýý'j di+a; iy; 
ý-ý i-> >-] J-] 

(53) 

5.2.1. The Exact Predictive Distribution 

The exact predictive distribution of Y�,, is given by 

p(Yn+1 I Dn, do+1) sI 
,l 

exp{-exp jX a. +11 
"2a. 

+1,2}} X 
Yn+1i " %4 

xexp{(Apn+1,, +A2an+1,2)Yn+1}p(an+1,1, an+1,2, A1, A2 I Dn, do+, ) X 

X dan +1, dan+ 12 dA, dA2 

Although we just need the posterior distribution of (an+11, an+1,2, A,, A2), it is not 

possible to do all the necessary integrations of (53) to remove the remaining parameters. 

After eliminating the hyperparameters ý,, ý2,71, and 712, we obtain the posterior distribu- 

tion 

! 'I J-I \ i-l 
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n+l 2n 

exp -ý ý exp{aj + k, i} - exp{/., a;, + ý. 2ai2I 
ý- 

Pe, ed I Dnº dn+r °C 
2 n+l 

(n+r)bj+u, 

ri vj+exp{a+k; j} 
j-r i_/ 

x 

n+1 22 

exp (a,! +k; ý) 
(z, 

ý +bjý+ýAj dj +a; ýy; 
9 fJ{(sj 

+ ez' 
)a,, 

-1 

(5.4) 

and the exact predictive distribution of Yi+1 will then be given by 

P(Y",, I D", d"., ) 

n+l 2 +l 

exp -ý ý exp{a, f + k, ý} - exp{1 L1a1 + 7lZai2} 
j 

I. 
yn+,! J.. 2 n+1 

(e+1)b1+uj 

vj +exp{a; j +k; j} 
,. 1 i-1 

n+l 22 n+l 

exp ý`''l(a' +ky)(x; ý +bj)+Y Aj dj +ýa;; yi 
x2l dBred" 

ý (sf 
+e ; L')df + ri 

r 

A numerical method is then required to evaluate these predictive probabilities. Due 

to the high dimensionality of the integral here involved, the numerical techniques are not 

reliable and we might expect problems. If we consider a vague second stage prior struc- 

ture (u,, u2, v,, v2, r,, r2, s,, s2 --> 0), the solution of the problem does not simplify 

significantly. 

5.2.2. Estimation Via Gibbs Sampling 

Since the exact predictive distribution of Y. 
+,, 

derived in the previous section, in- 

volves a (2n+4)-dimensional integral, we consider estimates or approximations as in pre- 

vious chapters. To implement the Gibbs sampling algorithm, we have to know the full 

conditional distributions, which are derived from (5.4), as being 
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n 
exp{-exp{aI +k, ý}- exp{Arý1+ A2a2}} ýa, 

ý 
I"rcd 

ýD, 
dn+r) a 

n+l nilb, ýa, 
X 

[vj + exp{ai +k; J} 
. -r 

xexP{ai1(b1 +x, 1 +A1Y; )} �1 =1,2, ..., n ; j=1,2, 

PCQ"+,.; I Bý ä'"), D", d"+, 
) exp -exp 

{art+,, 

j +k rt+,. J} exp art+ 
.j 

(bJ + x. +, j 

+uý n+, rt+, )b, 

vJ + exp{aj + k; j} 
ý _, 
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f 

j =1,2, (5.5) 

P 
(A, 

(sj 
+eX' 

)dj +r1 I 

1=1,2, 

where , 
do) 

,d represents the vector °, ed with the component 6; removed. 

The assumption of vague second stage priors does not lead to simpler distributions. 

Following the algorithm described in (1.1) with the above distributions, after t itera- 

tions we obtain a sample 

(a11+ 

R21 + 
... + Rý; + 

Q12+ CI22+ ... + a(2+ Q(+)1,1+ a(+1,2+ ý7(tý+ a'2t, 
/ 

and repeating the procedure M times we will have M samples 

fn1f! 
n 

11 

Dnd ) IA-0 Jý\ =ý 
red º, n+1 J« I^ ý \d, +r1 

(aJ), 

a2t) ..., a(1 a12 , a21 ..., 
a(t) 

, a(t, ll , at, l' Alt, ý. 2tý nl) U) (J) (i) ý(1) (1) ý(1) (J) (1) 

for j=1,2, ..., M. Note that although we have to generate, in each cycle, values for all the 

parameters, we are just interested in some of them, namely 

(a( )1.1(! 
)' aý ý1 

ý(i)' ý1(/)' IX2(1)1 ja1,2, ... M. 
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Now, defining µj - exp 
jA 

)a(; 
),,, 

(j) + a. j)a(+), 
z(i)}, for j=1,2, ..., M, the predictive 2( n, 

probabilities of Y�+, are estimated, according to (1.2), by 

1M eRp _ µý µ; -., I D", d. 
+, 

) 
'-I " M , -1 Yn+l! 

Although we obtained very good results in Chapters 2 and 3 using the Gibbs sam- 
pling approach, it was then pointed out that the implementation of such a method could be 
difficult if the sampling from the full conditional distributions could not be done directly. 
In the present situation, sampling from the distributions in (5.5) must be done using a 
sampling technique such as the rejection sampling algorithm (section 1.2.3). Because of 
the forms of the full conditional distributions in (5.5), the adaptive rejection sampling al- 

gorithm should be considered. Furthermore, we noticed that when the number of pa- 

rameters increases, we have to increase hugely the number of iterations in each cycle of 
the Gibbs routine in order to make it accurate. Since in the present problem we need to 

generate values for 2n+4 parameters, this may be a drawback for the use of the Gibbs 

sampling method. 

5.2.3. Estimation Via Asymptotic Results 

If n is large enough, the posterior distributions (53) or (5.4) can be approximated 
by a multivariate normal distribution (section 1.2.2) and then the Gibbs routine can be 

easily used to estimate the predictive distribution of Y. 

5.2.3.1. Posterior Normality Based on the Likelihood Function 

Following the asymptotic result suggested by Bernardo & Smith (1994) and sum- 

marised in section 1.2.2.1, we conclude that the Gibbs routine can be applied to estimate 

the predictive probabilities of Y,,.,, using the conditional distributions 

I D", 
.jH, 

j=1,2, 
! 
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(ý. I .,., D, d�+ =Ni, ' =1,2 ; iý', pl i1_ , 1) TTJJ 
,, 

where 

Hi = eXP + kA+1. j 
}= 

zp+,. > p j=], 2, 

Tl 
'S, 

CrAi2+DitA, 2BCitDf2t 

A-1 d`12-Bi 

ý Dizýia +dCzýr - 2B, DüzCrz 
T2 = `s2-i-! 

"i, 
A2 

-B; 

ýC 
(D ABC ) +D. (ýC BD. ) 

QsR_ rr rrz z 'r, z , Zr t r2' r, r2 
2 

1-1 `t1 
Ar2 

- 
Br 

with 

and 

ýj = exp 
{ä, 

f + k+1 I+ 
j 
exp Vä; 

,+A, 
äi2} 

,1=1,2, ..., n; ja1,2, 

B, -A, 
ý'1 

eRP{Aýu +ý. zä, 2ý "ia1,2, ..., n, 

www 

G3 m(1 + 1ljäi exp Aýau + ýl.. iau - y; 

w 

Dyk a a. ä; k exp Jý, ä,, + 7ý2äi2 �i=1,2,..., n ; j, k =1,2 ;j ok , 
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Si - 
Iaý1^a, 

1 , 
jexP{+Azý2} 

,j=1,2, 
R-ý, auauexP{A, ai, +A2a; 2}, 

, -, 

ä, 
ý 

(i -1,2, ..., n+ 1 and j -1,2), A, and A2 being the maximum likelihood 

estimates given by (5.1) and (5.2). 

Note that in contrast with the solution obtained in Chapters 2,3 and 4, where the 

parameters were independent, now 2, and A2 depend on each other. 
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5.23.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

In section 1.2.2.2 we summarised another asymptotic normal approximation for the 
posterior distribution which is based on the posterior mode and on the modal dispersion 

matrix (O'Hagan (1994)). The solution of the present problem turns out to be easier and 
simpler to implement if we approximate the posterior distribution of 0 instead of eed by 

a multivariate normal distribution. According to (1.6), the posterior distribution (5.3) is 

asymptotically approximated by 

p(8 1 D", d.. ý) ei Nz.. 
B(m, v), 

where m= 
(a11, 

x211 anl, a12, a22, an29 an+1,1P an+1,2+'10 A2' ill 
i2' fill 712) is 

the posterior mode and V, defined by (1.5) is the modal dispersion matrix. 

Solving numerically the system formed by the (2n+8) equations 

C1exp{aj 
+k, ý}+Rjexp{A, a, l +A2a; 2}-bj -x;; -Afyj - 0, 

ia1,2,..., n ; ja1,2, 

(1 
+ eýl 

)exp{a+1j 
+ k�+rj} - bj - x, +l. j = 0, je1,2, 

n 

a,, y; -I aa ýexp{A, a;, +A2a; 2}+dj -e"'*z' =0, ja1,2, 
, _ý ý, 

et vj+; expfaij +k; j} -(n+1)bj-uj =0, ja1,2, 

e°'(sj +e'x')-dj -rj = 0, j= 1,2, 

we obtain m. Then, defining the constants 

Aj 
aI1 +e"J expläiý +k; ý}+PjexpjA, 4, +ý?. a2}, i =1,2, ..., n; j-1,2, 

(5.6) 

Bs il %L2 exP{; 7Qi1 + ý2a; 
2}, i-1,2, ..., 
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(i+jj)exp{1ý, 
+Jl2ai2I- y,, ia1,2,..., n; j=1,2, 

Dgk°ý; QjkeX+jarl+%, zaL, 
II 

ia1,2,..., n ; j=1,2 ; k-1,2, 

E; ýsexPjij+ä; ý+k; ýj, i=1,2,..., n+1 ; j=1,2, 

F -(I+ e' 
)exP {äp+,.; 

+ k,,. I. j} , j- 1,2. 

ý Gj i2 exP{A, au + 712ai2 + e'' 
fxl 

"j=1,2. 
ý_, 

ý aýýaý exP{id;, + ý241,2} 
i-1 

n+, 

Mý = e" 
(Vi 

+ exp{äj+ k; ý} , j-1,2, 
, _, 

e''''ý' Lj° 
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(5.7) 

. 1=1,2, 

R; ° e'''(s, +e" 
), 

j-1,2, 

we can write the inverse of the modal dispersion matrix in a partitioned form as 

(fl, vis 

V_] = 

V�adiQö(A; 1, ta1,2,..., n)s 

D. s viI 
0n2 V24 

v33 ý22 

022 V44 

v1S f72S f7 v 
35 

022 

02n 02n 022 v46 

where 

Výs°I - 
4T 

( C11 C21 
I 

D112 D212 

vie V22 

021 °2M 

yr Vr 14 '24 

Cn, 
A12 

V22 = diag(Ä. 2,1 =1, Z..., n), 

i'15 

V25 

v35 

022 

v55 

022 

One 
Ong 

022 

V6 

022 

V66 

11 

V12 = diagCB,., i -1,2,..., n), 

vr Ei ý 
isý 0 

VT Dl2] 

I4 ý 
CII 

E2, 
0 

D221 

C22 

E., 
0 9 

(5.8) 
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Tý V- 
23 Ei2 

0 
E22 Ent 

V35 = diaS(En+1.1+ 
Enii. 

1)I 

V33 
S diag(F, f2), 

G, H 
H GZ 

V46 = diagCL,, Lý), j'ss = diag(M,, M2), 

V66 = diag(R,, RZ). 

Note that the matrix V-' in (5.8) is quite sparse and therefore it is simple to derive 

the approximate marginal posterior distribution for (a 
n+411 an+1.2, All AV ýr 

2), which 
is 

p(an+1,1º an+1,2' 2'11 a'21 ý1I ý2 1 V, do+l )w N6\mP' vP/ 

with mP - 
(ä�+1,,, 

a�,,, 2,11,, A2, ý,, ýZ) and Vp defined such that 

vP ! 

/ 

m 

oOO E+11 0 
F2 000E. 1.2 

0 S, S2 S3 S4 
0 S2 Ss S6 S, 

P 

0 

0 

0 
E 

n+I, I 

0 

where 

S3 

0 Sj S6 S8 S9 

n+1.2 `S4 S, S9 S10 

ýi2Cý +, A. I Diº -2BiCi1Dizt 
=G , Al A-2 

- BZ 

R 15; 
12Cfi2Cil -BD121, +Ci2(`11D2I-Bieil) 

S2=H-ý d dd 
i-1 `1I `12 

BZ 

E,, (B, D2 ,- At2 Ci, 
) 

ffi2 ., L 

ý-1 AaA, 2- i 

9 

" 
Ei2CBi Cil 

- 
Ail Di2l) 

S4 = :ý 
Ä'2 

i- / Ail -, 
ä2 

(5.9) 

9 
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__ ýý jý? _ýüý n 
RZ it'i 

'il "i2 i "i2-i/2 

Al dd`i2 ýi 
' 

ý 
Ei1lBi C12 

- `i2 
Dil2) 

S6 add' 

i-I "iý"i2-82 
dd Ad 

ý'l 'l 
d'2 

i 

`4 E, 2_ SM-_1 
A2 Eý2, Sý 

'-I "i/eA 

E2 ýý 
-Bi 

-ddd2, 8I 
1ýl 

d"i2 
`ý 

9_ 

N 1l1 

From (5.9) we derive the full conditional distributions to be used in the Gibbs sam- 

pling algorithm in order to estimate the predictive distribution of Y. They are 

/i- 11 It T- 1ý- N -7 
11 il = 

(ý, 

-l 

plan+l, 1 1 an+1,2' A7y A2,51+ 52+ [.! + un+1) ° IY I un+l, l 

p(an+1.2 I an+1.1l All 2621 ý1º ý2, Dn, dn+1 -N an+1.2 

pC%L1 ý Cln+1.11 an+1.21 a21 ý1+ ý2+ uI do+1) s 

i 

P(A2 
1 an+l, l" an+1,2, , yjr 

ýIr ý2s 
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(s. io) 

S, o=MZ- 
IFI ýdd 

"I'S1`12- 

Fi ý Fi 

(ý2 
- 

f2 ) 
fm+ L2 

1 I� 

1I 
Fi ý Fz 19 

(A1- 
; 

'2)'S2 + 
(ý1 

- 
ýl)S3 

Si 

- ý" d. 
+, 

(Al 

-ý 

)g2 
+ 

(ýl 

-ý))S6 
ý 

S5 

P(ý, I 

6 

an+l, l' an+1.2' a'1' )2' ý2' U' do+l )a 

I J8 J8 

(ý2 

- 
f2)§4 

(ý2 
- 

ý2)S7 

1 

, 

1 

s 

- 
(a�, 

ý. ý - a�, j., 
) E,,. ý. j + 

(71, 
- 71, ) S3 + 

(i1.2 
- 712) S6 + 

(ý2 
-f2) S9 1 

n, Nj, -F0 

ný 
Ei2(Bi ý12 

J7 =L 

s8 
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( 
an+l. 2 - an+ U) 

En+1.2 + 

`s10 

+f A2-ý'2)S7 +I ýý 
-f II , 

Sy 
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1 
Sio 9 

No relevant simplifications are achieved if we consider vague second stage priors. 

5.2.4. Laplace Approximation 

The predictive distribution of Y,,,, can be regarded as a function of the posterior 

expectation of 

g(an+1.1, as+1.2, AJ, A2) 
s exp{-exp{Alan+1.1 +A2ae+1.2}}exp{('7an+1.1 +A2an+1.2)yn+l} 

with respect to the posterior distribution (5.3). 

Following the summary presented in section 1.2.4, let us define two functions h(O) 

and h' (9) satisfying (1.13) and (1.14), that is, such that 

-n h(O) - -ýý(1 +e9')exp{qj +kV}- exp{A, tý, +A2ai2}-±e'(sj +e 
6-r J-, ý-> >-J 

-ývjee' 
., 

(x; 
f+b, 

) (a� 
+k; ý) +2 +)1e, + 

J-1 i-> >-> >-1 

+ý(dj +rj)rIj + Aj dj + a;; y; 

and 

-nh*(8) a -1 
(i+ 

e'')exp{a, i +k; ý}-I exp{71, ai1+1l2aji }-I e'''(si +exJ 
1/ J-j J-1 
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, r- 2 n+l 22 

-yv. e9' +y 
(x; 

ý +bj) 
(a; 

ý +k; ý) +y ((n+l)bf 
+uj) ýj + 

J-1 +-1 J-1 J-1 

22 

+2 ,, (d; +r, )rlj 
+: SA; dj +ýa,; y; . J-1 J-1 i-1 

From (1.16), we conclude that 9=m, the solution of the system of equations (5.6) 

and that 

r 
jT1? 

JR2F1fl{4J42_2} 

with 

-1/2 

T= Sl 
`)S `)8 `)I0 - 

§1 
`)S 

S9 
- 

§1 SI0 §62+29,96 S7 S9 
- 

S! S8 97 
- 

S8 
JIO 

92 
+ 

92 
Jy 

fZS2S3S6S, 
o-2S2S4S6S9_2S2SjS7S9+2S2S4S7 

S8-S5 Sj0 Sj+ 

+ZS3S4 SSSy+Sj S, -2S3S4S6S7 -SSS8S4 +S4 6 

and all constants involved defined as in (5.7) and (5.10), except S8 and S, o which are 

now defined as 

2 E2 

S8 a 
M' 

_ý_ 
ýa E; , .. 1.1 and SIv M2 _ 

'ý º 
Fsz 

_ 
f2+ 

,. 2 
dd e_ ee dd 

ý-1 `ýl 
Ai2 

- 
B, 2 F 

ý-ý `ýl `12 - B,? F 

Still from the definitions in (1.16), we define 0 as the numerical solution of the 

system formed by the equations 

(1+ 
e' 

)exp{a, 
+k; ý}+Alexp{7., a;, +A2ai2}-bf -x, ý -ayy; - 0, 

i=1,2,..., n+1 ; ja1,2, 

n+1 n+I 

aj y, - aj exp{Aýa; i+;, 2a, 21+ dj - e"' +z' 
i-! ý-ý 

=0, ßa1,2, 

e41 vj +1exp{a +k; ý} -(n+ 1)bj -uj = 0, j=1,2, 
i_, 
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e°'(sj+exl)-dj-rj=0, j=1,2, 

d= 

With 

` i* 

ný1 

T' R1' R2' e'l AL ' 
ý-1 

91 B' 21 
, 

-1/2 
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=ý1+eý')exp{ai*j +k, ý}-Aj2exp{JL; a;, +Aiai2}, i=1,2,..., n+1 ; j=1,2, 

B; -A; A2exp{A; a, '+A2dý}, i=1,2,..., n+1, R, ' =ef(si +ezl), j-1,2, 

T* =S; SssBýo-S; Ssý2-S; S; oS62+2S; S6S; S9-S; SBS; Z-S8ýoS2Z+ 

+ý2592+2SIS3S6S, o -2S2S, 
S6S9 

-2S2S3S; S9+2S2S; S, SB - 

-SSýoS3z+2S'jS4SsS9+S32 S; 2-2SjS4S6S; -SSS8S42+SqZJ62, 

where 

.. 
Lý2 

- 
ýýiC, *i 

+ 

2+fiýD21-2Bi C, D2t S, =G, - ý, y d. d. 
2- 

Bi. 2 i1 `ýil `ýi n 

SZ 

sj 

. 
H, -ý: 

ýiz(ý;. 
zýi-gDýýýý+Ca 

ý. ] 
ýi1 -B,. 'Cil 

d. QQ. 
2Bi .z i-J 

d'I 
`ý 

ý; (B. ' Di21 ' ý;. 2 Ci-i 
ý. d. - Bi. 2 

ý-ý 
ýý `ý2 

R+'Eaz. B;. C,., D'i21) 
4' 2 d . 

il `5 
Bi. 

ý-1 "d. 2- 

.2 n+1 $2 *2 0 

. G. _ 
L2 

_ý 
DIi+A; IC"2 -2B; Ci2D12 

SS 2 R` G .. B* 2 
2 1-1 

Ail Ai2 -ý 

f 

A+, E* gý +C2 - `i 
d"2 D*12 ý R+, Eýt2 (Bi* ýD. '12 - A'*] Cý 

"() S" i2 

S6 ýý d" dd" 
_2 

dd" dd" 2 
ý. 1 

d1`ýi2 ý 
i-1 `ý1`12-Bj* 
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n+1 " *2 n+1 " n+1 " "2 

Sf M. _ 
AizEi] S9 . t1 üi Ei*, Eil 

S. " " 
eef4E+ 2+I M2 O°L ddf B. 2 8- 1 dd" dd"_ n++2 dd" dd. Bi* 

i-1 `ýil ý'ti2 +-1 "il "i2 1 "i! "i2 i 

C;; =(1+ý.; ciý) exP{ý,, 4, +As4z}-Y,, i°1,2,..., n+1 

D', jk=1l; aýexp{ý.; ci, +A; az}, i=1,2,..., n+1 ; j, k=1,2 ; jo k, 

Ej, *= exp{Fj+ aýf + k; ý 
}, i=1,2, ..., n+ 1; j=1,2, 

e+ 1 
.2... .l. Gf cc exp{A, a;, +,. 2ai2J+e , j=1,2, Lj =e ', j=1,2, 

, _, 

H' 4, a2eRP{A, * a, '+A2ä2}. 
; _, 

Mi=Jv! + exp{a! +k; f1), j =1,2. 
ý _, 

Finally, by (1.17), the predictive distribution of Yn+, will be approximately given by 

ý. ý I D", d,,., ) «1ý 
a" 

' 
expnh. (B. )+nh(6)1. a I- 

Y,.., " 
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CHAPTER 6 

A GENERAL MODEL TO PREDICT THE NUMBER 

OF ACCIDENTS AT A ROAD JUNCTION 

In this chapter we will generalise the model studied in the previous chapter. The 

predictions about the number of accidents occurring at a road junction in a given period 

of time will be based on the measurement off traffic flows and on c covariates describing 

characteristics of the junction. 

Let X, , X'12 9 ..., X;, and Y, (i =1,2, ..., n+ 1) be random variables representing, 

respectively, the measurements of the f traffic flows and the number of accidents which 

occurred at the i-th junction. We assume that, for i=1,2, ..., n+1, 

Xt, ~ Po(exP (a,, + ki, », 

Xi2 ~ Po(exP(a; z +k; 2», 

Y.,: f- Po(exp(a,, +k, l)), 

Y, -Po 
(exp(X, 

a;, + , XZai2 + ... + ?,, a,, + Pz,, + ß=z, 2 + ... + Pz, )), 

or equivalently, 

X; ý ý Po(exp(a`i + kýi))" ja1,2, ..., f, 

I 

Y,. ~ Po exp ý Aja; ý + 
1-ý r-ý 

Here, aj (i =1,2, ..., n+1 and j =1,2 ..., f) are unknown parameters modelling the 

j-th traffic flow at the i-th junction, Aj (j = 1,2, ..., f) are also unknown parameters 
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used to model the effect of the j-th traffic flow upon the number of accidents, ;c 
(i =1,2, ..., n+1 and Q=1,2, ..., c) are covariates whose values, assumed to be 

known, describe the £ -th characteristic of the i-th junction and p, (Q =1,2, ..., c) are 

parameters used to model the influence of the £ -th characteristic upon the number of ac- 

cidents. As in Chapter S, kj (i a 1,2, ..., n+ 1 and j=1,2, ..., f) are supposed to be 

known constants which relate to the length of the observational period and the time of day 

and year that the observations were made. 

The available data set is 

Dn m 
{(x;,, 

x�, ..., xif , y!., k;,, k; 2, ..., kf, z;,, ;.. , ..., z. ý im 1,2, ..., n}, 

formed by the observations made on n road junctions. Given a new junction with ob- 

served measurements 

do+1 e 
(xn+l, 

lP xn+1,21 """, xn+l, fº 
kn+1,1g kn+1,2y 

'"'Pkn+l ft zn+1,1º zn+1,29 
""'v 

Zn+l, 
c)+ 

our aim is to derive the predictive distribution of Y. 
+,, the number of accidents that will 

occur at that new junction. 

6.1. A Classical Approach 

Let us define a parameter vector 
e 

ed = 
(al,, a2,, a.,, a, 2, a22, ..., an2, . a11,, 

a2f, ..., anJ, an+,. r a, +,, 2, ..., an+, 1, All /'21 
..., /1. f, 

ßr ß2, ..., ßj. The likelihood 

function is 

n+l JJt 

L(Bree: Dn, dn. 
]) °` exp exp{a, j + k, j - exp a'ja, 

j + ßýZt x 
+-r ý-ý +-r J-, r-ý 

11 

A-1 I J-1 1-1 

1n+l I( nfnc 

j 
xexp c; j +kýi) x=i+ariYr+ý, ßrz; rYi + 

I-i 
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and we then easily conclude that the maximum likelihood estimates for a.. 
.j 

(j=1,2, ..., 
ß are given by 

(6.1) 

whilst the remaining maximum likelihood estimates are obtained solving numerically the 

system formed by the ((n + 1) f+ c) equations 

exp{a; ý +k; ý}+A, exP 
I 

ýApap+2 

ß. z,. xi; -ÄjYi = 0, 
p"l m. l 

i =1,2,..., n ; j=1,2,..., f, 

nnf 
`c a,; Y, -ý ay eXP I ý'PQ+P + ßzýn a 0" j-1, (6.2) 
ýn-t +-ý +-ý v-] 

nnIcQe 

zirYi zir exP 
a'paip + 0,1 @ 1,2, 

..., c. 
i-/ I-j IP-1 M-1 

A simple plug-in estimative approximation for the predictive distribution of Y,,,, 

would then be 

Yn+1 ý. PO eRP 
2Ä 

jan+/. j + F'lzn+l. l 
j-! 1-1 

6.2. A Bayesian Approach 

Once again we consider a hierarchical prior structure. At the first stage we take 

p( eied 1 

7%9 

ý21 

..., 

ýf+ 711 172+ 
..., 

%, 
" 719 721 ..., 

cc) 
_ 

_ 
ý. > >> i: 

i { (aýi 1 j"JI{ 01 
p( ý'i I ni)} 

c {P(ßr I ýiý}, ý 

and at the second stage we take 
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p(ýi, 
ý2ý 

... º ýi' 'Ii, 1b, ..., '%Jr blº 
ý20 

... 0 
ýý) 

aý lp(ýJ)p\n1 iýi 

ý 

with 

exp(a; f + k; ý) - Ga(bj, er' 
), i =1,2,..., n+ 1; j =1, z ..., 

exp(7l j) - Ga(dj, e"'), js1, Z..., f, exp(ßr) - Ga(g,, er` 
)+ Qs1,2,..., c, 

exp(ýi) - Ga(ui, vi), exp(i1i) "' Galri, sil , 

exP (ýr ) 
"' Ga(t,, w,, )" i=1,2,..., c. 

j=1,2..., f, 

The joint posterior distribution for the parameter vector 0= (B,, 
dl ý1' ý2' """9 

nr nr ..., nJ, b,, b2, ..., b, 
) is 

ýj. 

p(9I D", dn+l) «exP 1+eý')exp{CL+; +k; i}-exp 1, 
Apaip+PMzi,. 

x +-IJ-I i-1 P-1 m-I 

11 

xexp -ý vj ee' +e0 
! -1 J-1 f-1 

xexp I (aj +kv) (bj +x; i) +I ((n+1)bj +uj) ýj x 
>-1 i-t 

Iý-> "I 
R 

xexp 
f 

i7; 
(d; +r; ) +C }ýýt(g, +tr) + If ý1L1 d; +a;; y, x 

J-1 ý-ý 

c 

x exP ßt St + ZtY; 
t-ý ý-t 

(6.3) 

Eliminating the hyperparameters ý,, ý2, ..., 
ýf, 

it, 712, """, 
'If, C,, C21 """, we 

obtain the marginal posterior distribution for 81Cd, which is given by 
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p(esed 1 D", do+l) a 
f n+l 

(n+l)bý+uý 

ý vf + exp{ajý +kj} 
i# 

R+J ffnC 

exp (a; +k;; )(b; +x;; ) +11; 
(dj+a,; 

y; +flr 8r+ 
+- J-J 

f 
J'r +' `- 

. (6.4) x 
+r (S; 

+exJ) 
dJ + ri ý 

J-IJI{(w, +e , )gt LT 

1( 

6.2.1. The Exact Predictive Distribution 

In a Bayesian framework, the probability function of Y�;, combined with the poste- 

rior distribution (6.4), provides the predictive distribution of Y�+, 

P(y". r I D", d"., ) 

n+I 1nc jp 
exp exp{ai + kiý }-ý 

exp %lpaip + 
m-Iý 

ßmz; 
ý 

._.,, X 

« YN+i! 
ýlwi3)J. e 

i-j 

x 

fli(si 
)ý x- ff ,x 

n+1 

exp 
j 

-ý ý exp{aj + k; ý 
} 

IC 
01+1 

v, + exp{a, + k; ý 
} 

+-1 

) x 

exp 
n+l 

-exp 
ý`-ý 

fc 
ß, 

nz;,,, 

} 
ýXpaip+7 
P-1 m-1 

}exP n+l f { 
(a; 

j+k; j)(bj+x; j) 
ý- J- 

j n+l c n+l 

exP ; Aj dj+ QýjY; + ß, 81 +ZuYi 
'" " aA 

c 

ul( wi+e fil )gt ; <<} 
"red 

To evaluate these predictive probabilities, a numerical integration technique is re- 

quired. However, the high dimensionality of the integral is very likely to cause numerical 

problems. 
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6.2.2. Estimation Via Gibbs Sampling 

The implementation of the Gibbs sampling algorithm (section 1.2.1) requires the 
full conditional distributions which can easily be derived from (6.4). In order to simplify 

future notation, let us define, as in Chapter 5, a vector d äl as being the parameter vector 
bred with the component 0, removed. The full conditional distributions from which we 
have to generate random values are 

I 

exp -exp{aij +kij}- exp I1LpQip +I P, 
�zi, n 

n P-1 m-I 
pij I D, do+l a 

n+/ n+J b,, +uJ 
X 

(vj+ 
exp{aij +kij} 

a-1 

p(a 
)« exp -exp 

fý+ 
l. j + kn+l. j 

} 
expan+ 

.j 
(bj + xn+1. j ýýl 

ý 
n+l. j 

I ered., ýý Dný dJ n+l n+1 n+1 b1+r1 

vj + exp{aj +ktj} 
, _! 

xexP{a;; 
(b, +x; f +AjY; )}. is1,2, ..., n; j =1,2, ..., f, 

9 

; =1, z..., f, 

pC1lý I 
d; Ld), DR, d�ýýl a 

exp 
n 

-}ý exp 
ý' 

jc 
X Apa; 

p + 
m'ýIßmz;,,, 

exp 
{ 
A1 

(d1 
+ a;; y; 

º_ 

(s, 
+ ez' 

9 dj+ri 

J°1,2, ..., f, 

p 
(p1 

1 e( d` 
)+ 

u+ d 
n+l 

) 
exp 

R 
- exp 

fc 
JL 

pc; p +ý ßmz; m 

1PI 
exp ßr g, + z; tYr 

(w, 
+e ßr/ge+rr 

I s1,2,..., c. 

Note that the generation of random values from these distributions requires a sam- 

pling technique such as the rejection sampling algorithm (section 1.23). The use of the 

adaptive rejection sampling algorithm (section 1.23.2) should be preferred. 
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6.2.3. Estimation Via Asymptotic Results 

Supposing n is large enough, the posterior distribution can be approximated by a 

multivariate normal distribution (section 1.2.2), which makes the implementation of the 
Gibbs routine to be quite easy and efficient when used to estimate the predictive distribu- 

tion of Y,,.,. 

6.2.3.1. Posterior Normality Based on the Likelihood Function 

The asymptotic result presented by Bernardo & Smith (1994) and summarised in 

section 1.2.2.1 is based on the maximum likelihood estimates given by (6.1) and (6.2) 

and it is independent of the prior structure we consider. Following that result and using 

the maximum likelihood estimates, we define the constants 

d` 
`i% - exp{a, f +k, ý}+jj exPI 1,; PäiP+ NmZim +161, 

Z,... 
r %1 

P-! m-1 

Byx a 
AAýAC 

RA %Lj Ilk exp 
ýfý 

NMZ; m ý 
APQiP 

p-I m-I 

AACA 

Co=(1+Aýä1)exp yýPäP+Iz;,. -Yi+ 
P. 1 m-1 

D; 
jx 

If AACA 

ý 1lj ä, exp I 1LPa; 
P +. 

I p-l m-I 

i=1,2,..., n ; j, k=1,2,..., f ; jo k, 

ia1,2,..., n ; j, k=1,2,..., f ; j. * k, 

fAC 

j z; ý exp 71pa; 
p + Pmz,,. 

"ie1,2, ..., n; ja1, Z ..., f; k=1,2,..., A 

p-1 m-1 

Fj as exp{ä,,.,. ý +k.. j. j}, ; _I, z..., f, (6.5) 

f 
Gj = ä, 

i eRp a. 
Pä; P +, 

ý-I P-1 m-I 
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Hft ° ä;, ä; t eXP 
APAP+Ilj. 

Zt. j, ka1,2,.. 
� f j. tk, +-! P-1 m-1 

n 
[e1 ýj L, k =ýa; z; keXP 

ýa'pQip+Lý"mzvn 

+ 
+-1 P-1 in-i 

j=1, Z ..., f; k =1,2,..., c, 

MiZu2exP `'Apqp+ýýmz;, 

ý 
$ý1,2,..., c, 

+-I P-1 m-I 

S-j I P-j 

11 fACA 

`Yk =ý zu Zý exP 
ýý'p A, +2 

_ßm=ý 
, Q, ka1,2, ..., c 

M-1 

and, considering an indicator function 

1, ifi=j 
0, ifi; d j 

we also define 

ý Io k, 

116 

TIP -GP-ý'R(CýS, P+Dk, P(I-BiP))(C7iSiP+DkiP(l-BiP))WkJ, p °1,2,..., 
i-I/-1k-1 

Sjp9 
s Hpq Ckiaip + 1Ip(1-a; p))(Cbaiv + Dkiy(1- 8i9))w 

t, i + ý . _ý ý 

ý 

;. ' 

ýi 

p, q=1,2,..., f; ppe g, 

T2P 

R I 

° LPe -ý7, 
(CkaiP 

+ Dk; 
P(1- 

atP))Ekl9 Wk!, 
p f; g-1,2, 

, -I ý-1 1 

a 

IIR 
EkrPEklPWkýl, MP- 

,, /y 
r-I ]-1 ] 

ffn 

p=1,2,..., c, 

SZP9°Rp9-ýjýEkiPEk19Wý! 
' R4=1,2,..., c 

i-J J-J 1 
; P#4ý 

..., c, 

where the constants involved are defined in (6.5), except WV (k=1,2, ..., n; i=1,2, ..., f, " 
j=1,2, ..., J) which are obtained numerically inverting the matrix 
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Al B12 B13 ... BJj 

B12 A2 B23 ... B21 
B13 B23 A3 ... B3j 

I g, f gZf $3f ... Af J 

whose blocks are defined by 

Aj = diag(A, f, i =1,2, ..., n), j =1,2, ..., f, 

B; j= diag(Bkij, k =1,2 , ..., n), i, j =1,2, ..., fij. 

117 

(6.6) 

We can take advantage of the special form of the matrix in (6.6) to obtain its inverse. 

Such an inverse will be a symmetric matrix with diagonal blocks, that is, the inverse of 
(6.6) will be of the form 

rw] 
l 

Wl2 wl3 
ýýý Wl 

I 
W2w22w23""" w2f 

W3 w23 w33 ... w3 
f 

ýwf w2, W3f ... 
WI) 

with 

W. ý =diag(W�j, k=1,2,..., n), i, j=1,2,..., f. 

A numerical algorithm is required to invert (6.6) and hence derive W4 (k=1,2, ..., n 

1=1,2, ..., 
f; j=1,2, ...,. fl. 

Finally, the predictive distribution of Y.., can be estimated through the Gibbs rou- 

tine (section 1.2.1) using the full conditional distributions 

Plan+I. J 
I an+I. k(krJ), 

a'1, A2, 
..., 

Af, 
Nl, N2, """, Fýc, 

Dn, dn+1 
-N an+1. J, FJ 

j=1,2,..., f, 

R (Aj 
I an+1.1, an+1.21 "", 

an+l. 
fp 

ý'k(krj)+ ß,. /ý 
M2v """, 

ýj 
M, 

Dn, do+l a 
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-N 

Qj; 

A, - 
1. -J 

'T 
lJ 

ýi 

QQ TM 
P il 

I an+1.1, an. 1.2+ .. ', an+1. f+ All %L2' 
"""' 

ý, 
fI 

//ýý 
Nk(krl)'D, 

de.! 
) 

a 

-N 

( 
Iýi7 (Ni 

-, 
Bi) S211 + 

ýýý 
-Ai)Qi[ 

/5v - 
lot 1 

T21 f Tit 

\/ 

9 j=1,2, ..., f, 

, I=1,2,..., c. 

6.23.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

We now consider the posterior normal approximation suggested by O'Hagan 

(1994) and summarised in section 1.2.2.2. Following that result, the posterior distribution 

(63) will be approximately 

p(9 1 D", d"+, ) m N(m, V), 

where m is the posterior mode and V is the modal dispersion matrix, defined by (1.4) and 
(1.5). 

The posterior mode m-9 is obtained solving numerically the system formed by 

the ((n+4)f+2c) equations 

J 
(1+ee')exp{a, 

J+k, ý}+A, exp 2 APa; p+2 ßmzi,. -bj -x. -Ajy; « 0, 
n-j m- i 

i=1,2,..., n ; j=1,2,..., f, 

(1 
+ e' 

)exp{a+, 
j + kA+, j} - bj - x, +,. j =0, j =1,2, ..., f, 
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nIIcIn 

e,, '.. l' +I aj exp Xpaia +L i'mzi+yQyyi -d j°Os ,la1 , 
2r 

... ýfý 
1-1 p-1 m-1 i-! 

Ic 
Zr*ßt 

e+ zir exP YzirYi 
- 8r - 0,1 61,2,..., c, 

ý-ý p-t m-j t-j 

n+1 

e9i vj +exp{aj +k; ý} -(n+1)bj -u, =D, j=1,2,..., f, 

e'''(sj+eA')-dj-rj=0, j=1,2,..., f, 

-tr =0,1=1,2,..., c. 

Then, based on the solution m of this system, let us define 

Aý =1+ eý1 J exp{ä, f + ku} + JLý exp Y Apa, 
p + 

C/ 

p-1 m-1 

i=1,2,..., n ; j=1,2,..., f, 

r 
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(6.7) 

If c 
B, 

ýxa1if 
ýk exp ya ; ýpQ; 

P +Yd ßmz;. is12 n" ja. " ,,,..., ; ,k1,2,. ., f, j., k, 
LP -! 

P -i 

C, ý - 
(1 

+ ýj 4j 
l exP I apaP +I ßmzi,. -Yi +i =1,2, ..., n; j -1, Z ..., f, P-1 m-1 

i"f ,_ le ;; i Dyk - Aj 

Eijk 

E. 

m-I 

M-1 

ß, 
� z; ý 1ljzt exp 

II 
ýp aip +I 

I P-1 

- expjij +ä; j +k; jj, 

M-1 

i- 1,2,..., n ; j. d k, 

,l =1,2,..., n; j- 1,2,..., f ; ka1,2,..., c, 

i-1,2,..., n+1 ; j-1,2,..., f, 

Gj .. 
(1+ 

e"I exP 
{a�+, 

j + kn+,. j} ,j =1, z ..., f, 
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If 
Hj :=e;,; +x1 +ä exp 

Y 

pQip 
+I 

/'mZ; m ý ,ýa 
Jr 2r ... r 

fs 
J-1 p-1 m-1 

J 

1'ix exp a'paip+l, ýmý j, k - 1,2,..., 
i-i lP-ý M-1 

ýIJc 

L12 L13 

1Y2 I. 23 

M1k=ýä; 
ýz; kexpýpa; p+y , 

ß. z,. ý, J=1,2,..., f ; k=1,2,..., c, 
ý-1 p-1 m-1 

P 6e'''+z', Uj °e" 
(s1+ez'), 

jc 
=ef`+ßý+ý ex ýä. +12 zi! P 

p, p Nmzim º, """, c, 

i-! p-1 m-1 

`Yk izýZilZikeRPý1 
ýpaip+I 

NmZimýa 

1-1 1 P-j 

Sý ý z`+ß` 

M-1 . @, k=1,2,..., c ;t ve k, 

Wt - eel 
Cwt 

+ 
i'), I -1,2, ..., c, 

n+1 

fj. e vj+exp{ä; ý+k; j} , j- 1, Z ..., f. 
ý_, 

If we now define the matrices 

Äj s diag(A,, i-1,2, ..., n), ja1,2, ..., f, 

Býja diag(BMj, k=1,2 , ..., n), i, j=1,2, ..., f; ive j, 

6= diag(U,, ja4Z..., f), 

G= diag(Gj, j =1,2,..., f), 

W= diag(Wt, I =1,2,..., c) , 

L. 

IHI 

L12 

L13 

ýL11 

43 H3 

t: I¢k, 

LZf Ljf 

Lit 

Lit 

Ljt , 

Hj) 
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(6.8) 
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mm 

i__ 

T= diag(Tl, j =1,2, ..., f), 

P=diag(P, j =1, Z ..., f), 

E; _ 

F, s 

(A] Mit M, 3 "' 
M21 M22 M23 

M31 M32 M33 ... 

Mil 
Mzo 

Msc R= 9 

Q, R12 R, 
3 

Rig 02 R23 """ 

h 
230 3 

\MfI 
Mf2 MJ3 ... ti'lfc 

Eli 
l 

Eli2 
Eii3 

E211 Eil 
42 42 

E213 E3i3 

\ Eiie Ez.:, Ex, 
ý ... 

RI, Ri, R3c 
... 

D= diag(F,., I;, j=1,2, ..., f), 

Sa diag(S,, .C-1,2,..., c), 

Exil 

EAi2 
Eni3 

E. «l 

9 i=1,2,..., f, 

I Filsrý Falatl F31b; l ... FAr I 

9 1-1,2,..., f, 

Ric 

R2c 
j? -3c 

01) 

(C, 
+bu+Dij, 

(l-b;, ) CiºBu+Daj(l-5;, ) ... 

FJ A2 FiAu F3A2 
... Fn2b, 2 

FiA3 FiJAs F3A3 ... FA-4b; 
3 

Ffbýf Ffb+f F3fb, 
f ... F. ibf 

I 

c, 
iai2 + D, 

s 
Ci 

C, iBif + D, C^"alU + 15n, (1- a! 
%) 

121 

9 

i=1,2,..., f, 

Cniai2 + 
Dni2(1 

-ai2) 
I1-"". 

c,; a, f + D,; f(1-sif) c2i8if + D1if (1- aif) ... 

the inverse of the modal dispersion matrix can be written as 
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v. 4= 

Al $12 
... 

B12 A2 ... 

Bi1 / 

Of. 
Cl 
El 

F, 
Ojn 

Ocn 

B2t 
OJn 

C2 

E2 
F2 
Ojn 

Ocrt 

Therefore, we have that 

Bj 
f Of 

B, j 0, ý 

C; ET FT 0, f 0,, 
C2 E2 FT 0,0., 

Äl 0,, f 
e 

f' 
if' Ff 0,, r 0�. 

0frt G Off Of, D Of Of, 
Cf Od LM Of P Oft 

Ef 0f lll rR 04,0e S 
Ff i) Od oft f Off oft 
Ofn Od P oft Od ü Oh 
O, 

n 
0, 
gr 

O"f S Oe 0� * 

pý6 1 D", d"+, ) iag N("+ 4)f +zc 
(m" v) " 

Let us now consider a matrix 

(Ä, 

Bia 

H= B13 

B12 

A2 
B23 

... 
Blfl B13 

$23 ... 
B2f 

A3 
... B3f 

l BIJ B2j 
'63f ... 

Äf I 
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(6.9) 

whose inverse H-I , which must be evaluated numerically, is a symmetric matrix with di- 

agonal blocks, that is, 

(n, 

1 
Hiz Hl3 

... Rif) 

n-'= 
1l2 122 123 

H13 Hi3 H33 

H2f 

'fi3f 1' 
\Hlf 

H2f H3f 
... 

HdJ 

where each block is defined by 

H; ý= diag(H,, J, k =1,2,..., n), i, j =1,2, ..., f 
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After some algebra work we can obtain the approximate marginal posterior distri- 

bution of 
Bp 

° 
(an+1.1+ 

an+1.2+ .. "+ an+1, j+ X1+ A2, '.. + 7L j+ Ml+ M2+ """+ Nc+ 
ý1+ ý2+ 

"""+ 
ýJ/ 

+ 

which is 

p(6p 1 D", d�+, ) 0 Nsf+c('np, VP) 

where m. = 0., whose components are obtained from (6.7) and 

V= (VII V V-' VT 1 
p- l2 22 12/ , 

With 

[¼ 

and 

V22 a 

aG0, 

o', b 

0. f 
iM Off 

f 
Mr R 01, 0g 

D Od Ok T) 

Ü 

04f 

0sf 

0fff 

04f 

Oft 
w 

o. 
o. 
OL 

Of. ofw 
OCR ýýR 

A, A2 

Bl2 A_2 
BI3 B23 

f 

o, R 0c. 
Bl3 

B23 

A3 

vI2 = 

Of Oft Of. Of" 
P Oft C, CZ 

04' S E, Ez 
Of Oft Al FI 

Ofn 

Oc. 

Blt 

B=fI 
* B3f 

`p4 p, 
k 

Alf g2f g`3f ... Äf ) 

0f" 
C3 

E3 
F3 

(6.10) 

Ofn 

Cf 
if 
ff 

Then, from (6.10) we easily derive the full conditional distributions required to per- 
form the Gibbs routine. Defining the constants 

2_l 

Jý 
(l 

NpJ) s 
HP - 

PP 

-ýý }Mý 
(Ck'(5iP 

+ Dý1P(I 
- 

aiP/)(CkIaJP + 
-K! P\I -ýiJP/)Hý! ' 

UP ý-r ý-ý 1ý; 

p=1,2,..., f, 
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!Ir 
ll NP4 c LP9 

- 
;; X (CkibiP 

+ 15kiP(1 
- 

Sip)) 
(Ckjaj4 

+ Dkj4(1- aj9/) Hkj' 

p, ga1,2,..., f 

n 
n_ 

P9 @ MPg 
_ 

YY-ý-i ýI C! 
°biP 

+ "kiP(l - 
aiP))kJ9 Hkij 

9 
ý-i ý-i 

124 

; P;, -l 4+ 

Paf" r2r... fJ f 
qalr2f... 

rCf 

N(j) @-!! 
R RP(3) Ckfatp+Dk, 

p(1-aip), 
Fk9aiaHk 

ij 
t-1 J-1 1 

p, g=1,2,..., 

ý S2 
_ýý ..., C, p -Q p -W 

ýj E, 
tip 

Ekjp Hhý 
ýp=1,2, 

p ý-lJ-lk-1 

tý4q) 
IIn 

ý Rpg 
-ýEki p 

Eklg Hkii 

i-1 1-1 1 

RP(5) ý 

; peg, 

JIn 
ý ýEkiPFk9al9Hki/'' 

P-1,2,..., c ; q=1,2,..., f, 
, -1 j"] 1 

II 

Pkp 
(SiPaJPHkil P1,2,..., 

ý-I J-1 J 

N(6) a P4 

ifn 
-ý. 

Jý F'xp 45ip F9 45j9 Nýj 
, p, g=1,2,..., f; po g, 

ý-1 j-1 1 

the full conditional distributions are 

f, 

(ý; 
- ýIl Fn+ý. 1 1 

P(a�+ý. 1 I ePa..,., ), D", d. 
+, 

) 
-N ä�+I. 1- G, j, It 2, ..., f, 

1 G1 

IcI 
_% _ r, , 

/ -P; )N;? '+)ý;; ) ; (A l 7li I dpý'ý, D", d"+, 
) 

°N ýi - \ N(' ) 
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I( 

=` 
bj 

1lj -1 '- 
Rf, ) 

1 
Ni(1) 

9 

NiU) 

125 

, j=1,2,..., f, 

-ý)N(2)+ý(-- . 
)NS) 

P(pr IOp a`). D", d.,, ) 
aN ßr - '-' "' Nc4) 

X(A 

ý. ý 1 
NI'(4) ' Nl4) 

p(ýý Idp'), D", d"+, 
) 

=N 
Ij +ý1ý'' 

ý-1 
N(6) 

j 
ý 

f 
X (ýi 

- 
ý. )'r 

ioJ 

1Vý6ý 
1 

IV1(6) 

t -1,2,..., c, 

v 
N(j) 

9 j-1,2,..., 
f, 

I 

where 
dP `i represents the vector OP with the component 6. * removed. 

6.2.4. Laplace Approximation 

Let us define a function h(O) satisfying (1.13), that is, such that 

m. J 1 J-J 
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-ý eR'(sj +ez') -e" 
(wl 

+eß°)+ly(, -jj +k, ý) 
(bj 

+x; ý)+ 
J-1 ý-I J-1 

. 4.1((n+ 1)b1 +uj)ý1 +ý 1jj(dj +rj)+ 
c 

+tl)+ 
J-1 1-1 

XM9, 

fnc 

+ 11j dj + aý; Yi +ý ßt Sc + 

126 

Then, we define i and ä as in (1.16). Analysing the definition of B, it is obvious 

that Bam, the posterior mode, solution of the system of equations (6.7). To evaluate a, 

let us consider the constants defined in (6.8). It is clear that the matrix nV 2h(9) is the 

matrix V_' in (6.9). In order to evaluate its determinant we define now the matrices A, 

(j =1,2, ..., 
f) and B, ý 

(i, j =1,2, ..., f; i* j) as being 

Äi 
= diag(A, j, 

A2j, 
..., A,,,, G; ), j°1, Z ..., f, 

Bij =(IILIg(131ij" 
ä., 

j, ..., 
B. 

ij, 0), 1, J= 1,2, ..., 
f; 1 at j, 

and we also define a matrix 

Ha 

and then we will have 

(A, 
Br2 A2 
B13 B23 

B13 

B23 

Ä, 

B, f 
Bel 
Bai 

I B, 
f 

B2j B3, 
... 

Äf I 

9 

1 

A. 
Ai 

(6.11) 

where 
9 is a (2f + c) x (2f + c) matrix which can be written in the partitioned form 
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( Ni r 
IT 
,2 

N 

N12 N13 

Nzs Na3 
T N23 N33 

and where the components of such blocks are defined by 

z 
N1 iR P) = Hp - UP 

n 
tCýi aiv + Dk; 

p 
(1 

- bia)) (ekfbip 
+ Dýr (1 

- 8ýaý) Hk> > 
p 

127 

p =1,2, ..., f, 

g, iR4) a 4 

(öoia+Dkjv(1-ain))(Ckiaig+Dkig\1-8; 

sý)Hýiý ,i -1 

p, q=1,2,..., f; ppe g, 

NI 1R q) = MP9 `n/ 

(coJP 
+ DLip(' 

- aiv )) Ekig HAii 
tý11ý1 k-1 

p=1,2,..., f ; q=1,2,..., c, 

911P, q) ° -7 
CCkiaJr 

+ Dkip(1- a! a))Fka 
a+e Hkij ý P" q 

a-1 j-1 

ý1 

Niz(Pº Pý 
_ . 

S2 ffs 

01 2 ... , 
E. p Eb. p H! aj.., 

P Qp_ WklrrrCt 

p i-I J-I I 

Itn 

Nis(p, q)QRpg'Lip ExiyHkij 
, pRg61,2,..., c 

t-1 J-7 -1 

Nz3(p, q)n EkiaFk48; 
9Hk; ý p- 1,2,..., c ga1,2,..., 

; _,, _, -i 

II n+1; 
ý, ý 

N33(p+ p) . Tp _I Ckp 8jp 8, 
p 
H, ýý , p=1,2, ..., f, 

ý-1 1-1 1 

r N; 
3 

!i n+l 
9.1_, (p, 

q) a -11 FkP bjP Fkq b+9 Hýý , p, q =1,2, ..., f; p w- q. 
1-1 1-1 1 
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The constants if,,, (k =1,2, ..., n+1; i, j =1,2, ..., f) are obtained inverting the 

matrix H defined in (6.11). Due to the special form of H, its inverse will be of the form 

H-' a 

where each block is defined as 

HI, 

H, 2 

H13 

A2 113 

A2 H23 

123 H33 

H, 
f 

H2f 
H3f, 

(, 'If gZf g3f 
... 

gd I 

S; 
ý = diag(Hkij, k n+ 

The determinants of H and 9 must be evaluated through a numerical algorithm. 

Now we define a function h* (9) as in (1.14), that is, such that 

n+l j n+1 jcj 

-nh'(6) a -ý 
ý(1+eg)exp{a; 

j +k; j}-ýexp 
ý1LPa; 

p+ý -ývjeýý - 
p. 1 m"l 1"1 

-ý eý 
(s1 

+eA') -I erI 
(w, 

+eß`)+I I (jý1 +ky)(b1 +x; 1)+ 
J-J 1 i-1 J-I 

+ý((n+1)bj+uj)ýj+ýrlj(dj+rt)+ýc ýtýg1+týý+ 
i-i j-> >-1 

J n+I c n+J 

+ý Jýj dI +aý; y, +gr+ýý; ryt " 
J-J 

Then we define 6' as in (1.16). 6' will be obtained solving numerically the system 
formed by the ((n + 4) f+ 2c) equations 

fc 
(1+e1)exp{au+kj}+AjexpApap+ßmzuJ_bj_xq_AjyjruO, 

p-1 m-I 

i=1,2,..., n+1 ; j=1,2,..., f, 
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v,; + z, n+1 Jc n+1 

e+I aj exP 2 Apaip +Iý, nzim - 
Yai; Yi - d; ° 0,1 a 1,2, ..., f, t-1 p-1 m-1 i-1 

n+l If c n++l 

ec`+ß` +I zu exp I Apaip + zitJ'i - gl = 0, .C =1,2, m ..., c, 
8-1 p-1 m-1 t-1 

n+l 

e vj+ýexp{a; j+k+1} -(n+1)bj-uj=0, 

e", 
(sj 

+eA')-dj -rj = 0, j =1,2, ..., f, 

ec` 
(wt 

+ eß°) gt -tta0, £ =1,2, ..., c. 

Using the solution 0' of this system of equations, we define the constants 

If c 
. _( 

g; 1 .2.. * 1+ e exp 
fa,, 

+ k; ý 
}+ A., exp I 1lpa; 

p +ý ßmz; 
ý , p-I m-I 
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i=1,2,..., n+1 ; 

ii 

r 

Jc 
AýAkexp APaP+Yd 

PmZ;,,, , i=1,2,..., n+1 ; j, k=1,2,..., f; jP, k, 
lp-! rn-1 

f 

C/i=ý1+Aýaý) exp I ý. 
pa, p+ýý;,, zý� 

Ip-I M-1 

Djýk a 7ýy a; exp Ji. 
PaP + z;. 2,..., n+ 1; j, k =1,2,..., f; jok, 

P-1 m-1 

tý 

Eo*k a% jz; k exp ý, 11 
pa P+ 

ý, Ymztm , 
p-I ýn-I 

i=1,2,..., n+1 ; j=1,2,..., f ; k=1,2,..., c, 

.ý ý. F. ý exp 
{ý 

+ a; ý + k; ý , i=1,2, ..., n+ 1; jal, .., 
f, 

' ý. 
n+l If ýR 

p ýI j= eý'+x' +Ia,, 
eXp ý )LPa, + 

t-j p-1 m-1 
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n+l fc 

L'ý a; a: exp Apa; 
p + P. * Z. I j" ka1,2, ..., f; j. e k, 

t-1 p-1 m-i 

w+1 11 
`c M Qyaijz; ýexP 

pap+1, f; k=1,2,..., c, 
i-I p-I m-I 

ºli t ýf 
!s; 

(Si 

e, U' ery+e. 
l ; 

n+l If 
/ý" ýý +Ql [Z"" (ý 

Nm" Zim " 5ýl =e+ L' ýr 6Xp pQip 
+I 

i-! p-1 m-1 
l'=1,2,..., c, 

jjJj'' 
n ýl Ie 

(/ý{ 
`Yk °` 

ýzjj; 
t exp 

a 
ap a; p 

+ý 
NmZbn k- 1r 2,1p-l 

M-1 

St* = ez° ̀ý° 
, W, * = et; 

(w, 
+ eß°,, 

c ; Qpik, 

"] 

Tj =eg' vj+ expja;, *+ktj} jai, 

and we also define the matrices 

j= 1,2, ..., f, 

B; 1= diag(BL,, k-1, Z..., n+ 1), i, j1,2, ..., f; io j, 

U' = diag(U j, j =1,2,..., f), W= diag(W, *, 1 =1,2,..., cý , 

.. ý L12 l. 
'13 ... 

L1/ 

.. ýi2 H2 j, 13 ... j, 2 j 
ý" s 

L' 
= 

L13 
"13 H. *, ... L3I 

9 

""" MI'l M1'2 M1' 3 

Al' Al' 
21 22 23 

M 
""" 

M' M' Al' M" """ ° 31 32 33 

AT,, 

Mi 
Mi 

..... i .I 

I 
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lL', 
f L2 f 3f ... H f*) ý M"fl Ml2 Alf j ... M; J 
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K- 

I Qi RI*2 Rl*3 
"' Rl*,, 

Riz Q2 
'23 """ ý2c 

Q. 
3* 3c 

l Riý R"ic Rec """ Qe 
) 

P' = diag(Pj*, j=42, ..., f 
), S' = diag(s<, fa1,2, ..., cý, 

Eý 

E; jl 
E2jl G3jl 

E' E E' I j2 2j2 3j2 

E' E' E; j3 2j3 3j3 a 

I 

En. j1 En+1. j1 

E' E' nj2 n+l. j2 

E' E' nj3 n+1. j3 

E. . 
lý E2ý Ejý ... Eý.,, Eß..,. 

x 

ý 45>> Fi45ýý F3,45 ji ... 
Fi245j2 F2 45 ;2F. 

i245 
j2 ... 

F; 345i3 
F23 45j 

3 F334513 ... F' jý 

C. r `a 

T' - diag (T', j=I, Z ..., f), 

, j=1,2,..., f, 

FRi ajt �+I, 1jl 

*26j2 F. +LZaj2 
Fn3aj3 F+I. 

345j3 

Fjt bý ý, a;, 3, a;, ... f a; ý ý�. f a; rJ 
c; j8j, + D; j, 

(1 
- 8j, 

) 

c2*jaj, + DZ j, 
(1- aj, ) 

cnjcSj, + D,; j, 
(1- bj, ) 

.. Cý. 
1jbj, +D..,. jl(1- aj, 

c; JöJ2 
+ n, 'J2(1- aj2 ) 

, j=1,2,..., f, 
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c;, 8y + D;,, (1- 8y ) 

CZ, aff + D;, f 
(1- aff) 

Crybff +D. ý (1-8, 
f) 

. ýi,. fajr+D.. ljv 1-6,, ) 

ý; aj2+D2; 
2(1 -ajS) ... 

CNai 2+Dv2(1-aj2) ... 

Cn,,., a; 2 + Dý, 
a2(1-6; 2 ) ... 

j=1,2,..., f. 

9 

Using the matrices defined above as blocks, we build up a matrix whose determi- 

nant is equal to ( 
n02h'(o) 

I. In fact, such a matrix results from nV2h'(0*) permuting 

some rows and columns. Then, after some algebra work we obtain 

aia f 
ö= {IHiINIT1. Jc'} 

1 (6.12) 

The matrix H' above is defined by 
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H` a 

B12 

B, 3 

B11 

A2 
B. * 

23 

B13 ... gjý 
B29 """ B2f 

A3 ... 
B3f 

lB" B" B" ... if af sf Afý 

9 

and its determinant must be evaluated numerically. Due to the special form of H% its in- 

verse will be a symmetric matrix formed by diagonal blocks, that is, 

'-' H = 

where 

H� 
Hi2 

H; 3 

Hlt 

H' H' """ H' H; 13 lj 
H' H' """ H' z2 23 2j 

"""H H2'3 3 H'3 3 

H2j H3j ... Hff 

f 

H; j =diag(HLj, k =1,2,..., n+1), i, j=1,2,..., n. 

The evaluation of H*-' requires a numerical technique. 

The matrix N' in (6.12) is a (2f + c) x (2f + c) symmetric matrix of the form 

N� 

N. - N, a. 
r 

N, 
s. 
r 

and the elements of such a matrix are given by 

Ni 2 N, 3 

. N22 N23 

N2"T Na. 
3 3 

2! I"+1(( / 
11-S; P))HLi , NIIýR Pý = Hp - U, -ý 

ýý1C"ýaP+DkJPIl 
-SiP))(Cý; B; 

P+ 
ýýP( 

P i-1 /-1 1 

p a1ý2ý... ýJ ý 

X 
Hk' N, 1(Pº 4) =L7pq-lýn+1ýC'k! 8! P +Dk'7. P(1-S!. P))(C'i8ig +Dk 

i-1 
ý'. q q 

ý1-8t. ý) 
ij 

p, q - 1,2,..., f ; pxq, 
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ff n+I 
NrzýR q) ffi ýQ I ýiCýiaia + Dkip(l -afP))ELe H1ei ý 

133 

p=1,2,..., f; q=1,2,..., c, 

I`In+l(c; 
o (( N, s(R q) = -ý, L, iP+ DkiPll - SjP))Fk'q 8; 

q 
ýý 

, p, q =1, 
_ý J-> > 

ll 
5 02 f ýn+l 

N; 2( 
PI p/ a (M/ 

LpP -`L1 ' 
W� 

Ex, 
ý 

E, t; 
p 

ýý, 
,p a1,2, ..., c, 

p +-1 J-1 -1 

If n+I 

NO 2(p, q) ° Rpg -Ek1P 
Ekig HLj +R q° 1,2, ..., c; p ad g, 

-i 1-1 1 

II R+1 
ý (P q)aý 

*ý 
ae 

sý ý 
EkiP L'k9 S; 

g 
H, ý ,p1,2,..., c; g1,2,..., f, 

JI n+l 
N33(p, p) - Tp -ý, FkP a! 

P 
c51P llýý ,pa1,2, ..., f, 

t-1 ý-1 1 

!! R+ l 
ý.. ýý.... ý3(p, q)° -}ý `kpajp`k9 a; 

q 
H'ýý , p, q-I, 2,..., f; p*q. 

i -I J-1 , 

A numerical method is required to evaluate ( N* 1. 

Finally, the Laplace approximation for the predictive distribution of YA+, is given by 

I D", d"+, ) 0' 
exPj-nh'(6')+ n h(6)1. 

y"+,. Q 

6.2.5. Example and Conclusions 

A practical problem will now be considered. Values were recorded at n- 78 road 

junctions, and the data collected is presented in a table as follows: 
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1 Xi, 'zi2 Yi Zi! Zi2 Zi3 Zi4 

1 69 104 5 0.0040000 11.4 2.96 0 
2 76 93 6 0.0028571 6.1 2.30 -1 
3 77 84 0 0.0071429 7.6 2.46 -2 
4 113 101 4 0.005 0000 17.6 1.26 0 

78 73 55 0 0.0153846 9.0 2.89 2 
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The complete data set is shown in Table A2.1 (Appendix 2). For the i-th junction , two 
traffic flows and four covariates were considered: 

x1 l- the first traffic flow, which was measured over a period of 15 minutes; 

xi2 - the second traffic flow, measured over a period of 15 minutes; 

y, - the number of accidents which occurred at the junction over a period of 60 

months; 

; I- the entry path curvature (1/metres) of the junction; 

; 2- the entry width (metres) of the junction; 

j- the percentage of motorcycles at the junction (over the total flow x;, + x,, ); 

; 4- the approach gradient which is measured in categories between -3 and +3 (0 rep- 

resents that the road is on level, negative values show that the road is downhill and 

positive values are used to indicate that it is uphill, and their absolute values char- 

acterise how steep the slope is). 

Given a new road junction with an entry path curvature z79 ,=0.0012 metres"', an 

entry width z7R2 =10.4 metres, a percentage of motorcycles z7R3 = 2.82%, an approach 

gradient z794 = +1 and with traffic countings x79. = 73 and X79,2- 116, we aim to be 

able to make predictive statements about the number of accidents over a period of 60 

months at that junction, that is, we want to derive the predictive distribution of Y79, using 

the model developed in this chapter. 

We assume k, ý = 0, i =1,2,..., 79 and j=1,2, that is, we assume that the meas- 

urements of the traffic flows were made in the same conditions at all junctions. 
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6.2.5.1. First Stage Parameters 
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The choice of the first stage parameters b,, b2, d,, d2, g,, g2, g3 and g4 is under- 
taken as follows. Firstly, as in section 2.25, we estimate bj by matching the first two 

marginal moments of the X; s, to obtain 

2 
1I 

72- ý jC 
S; - x! 

where 

78 78 

xj =1 yx, 
ý and Sj=1I ýx; 

ý -'xl 
)2 (J - 1,2). 

78, 
_, 

77, 
_, 

Secondly, to choose di (j = 1,2) and g, (. Q = 1,2,3,4), we note that since 

e'x' - Ga(dj, e"') and eß' - Ga(g, eý' 
) 

we have coefficients of variation given by 

c. v. 
(ez') 

II d "2 and c. v. 
(eßt) 

ag "2. (6.13) 

We have assumed that X,, - Po(exp(a, 1)), so that simple estimates of a,, are given by 

a, ý - In (xv) 
. Since 

I 

E(Y) - exp ý a'latý + 
ý-, r-, 

a multiple linear regression with the model 

In (y, ) _ 
±Aj1n(x)+pgz, 

t (6.14) 
J4 ýr 

AA 

provides the regression coefficients Af (j =1,2) and ß, (Q a 1,2,3,4) as well as their 

variances V(A j) and V(ß1). (In fact, we consider the model 
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/I In (y, + 0.5) m1a. j ln(x+i) +2 ßt;. 
r 

J-1 t-1 
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instead of (6.14) in order to avoid problems with the junctions where no accidents were 

recorded). Considering a Taylor series for e- J, we can write 

e'x' w e'' +(, Xf -A. i 
)eJ 

so that 

E(ez' ) im e'' +(E(Aj) - lLj) eý' 

and 

V(e'L') a V(eý')+V(Aj ez')+V(Aj eý') - eZi'V(Ai ). 

Estimating E(. kj) by Aj and V(7ý j) by V(ß, 1 
), 

we obtain 

c. v. 
(eA') VVpj 

so that by matching it with c. v 
(ez') in (6.13), we obtain 

dj =1 (j=1,2). 
V VJ) 

In a similar way, we take gr =V1, 
(I -1,2,3,4). 

Tr 

6.2.5.2. Starting Values in Systems of Equations 

When implementing both the estimative and approximate solutions of the problem 

we noticed that the systems of equations involved are very unstable. Therefore, good ini- 
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tial starting values for aj, Af, ß,, ýj, ri, and 2,..., 79; j =1,2; £ =1,2, 

3,4) must be given in order to achieve a solution. Since X,, - Po(exp(awe suggest 

taking 

aj) °ln(xij) 'i =1,2,..., 79 ;j-1,2; 

and X O) (j =1,2) and ß, (°) (1=1,2,3,4) as the coefficients obtained from the multiple 
linear regression on the model 

J 

ln(y, +0.5)1Ljtzý0' +ýßtý; r" 
, -, 

Because 

E(ez' )a dj 

e'u 9 E(eßl) - 
Sr 
ez' 

and E(e°'') = 
b' 

, e' 

we also suggest taking 

79 

ý; °' =1n(79b f) - in ý exp{ay ý} 
, 

, _, 
17roý ý = ln(dj ) _X, ol 

,ja1,2, 

ýlo) =1n(8r)- go)" 1=1,2,3,4. 

Finally, we suggest the use of a multi-stage algorithm to solve the systems of equations 
involved in the problem. 

6.2.5.3. Results 

Figure 6.1. shows the plub in estimate (MLE) for the predictive distribution of Y, y, 
its Laplace approximation and also the results obtained approximating the posterior dis- 

tribution through multivariate normal distributions. Normal approximation 1 refers to the 

suggestion presented by Bernardo & Smith (1994) and normal approximation 2 refers to 

O'Hagan's (1994) suggestion. The Gibbs sampling approach developed in section 6.2.2 

was not considered because it is expected to be somewhat inefficient due to the large 
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number of values we would have to generate. This implies that the necessary number of 
iterations in each cycle should be extremely large. 

According to the criteria discussed earlier in section 6.2.5.1, we took the following 

values for the parameters of the distributions in the prior structure: 

Prior 1 

First stage: 

8, - 0.007 

92-442.178 

g3-78.103 

g4-130.064 

and considered the vague prior case at the second stage. 

Observation of Figure 6.1 reveals how similar the results are when the Laplace ap- 

proximation and the normal approximation for the posterior distribution suggested by 

O'Hagan (1994) are used. 

0.25 

b=4.039 
b2-4.563 

0.2ý- 

d, = 31.131 
d2 a 27.983 

ýý 

d[ 

R 

. 
0 1. 
a 

äO. 15} 
VI 
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0.05 
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± 
ý 

p MLE 
+ Normal Approx. 1 
X Normal Approx. 2 
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ý 
ý 

A 
A 
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y 

Figure 6.1: The predictive distribution of Y79 
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We also notice that the results obtained using the normal approximation for the 
posterior distribution presented by Bernardo & Smith (1994) tend to diverge in the 
direction of the results obtained in the classical framework. These conclusions mirror the 
ones drawn from the examples presented in sections 2.2.5 and 3.3. When we studied 
those examples we also noticed that the Laplace approximation was an excellent 
approximation of the exact predictive distribution and that it was quite an efficient 
approach in the sense of the computational speed. Since now we are not able to evaluate 
the exact predictive distribution, we can only assume that the Laplace approximation 

yields very good results. This assumption is based on the conclusions drawn in earlier 
chapters. From now on, only the Laplace approximation will be considered. 

6.2.5.4. Variations in Prior Assumptions 

It would be interesting to see how the choice of the parameters of the prior distri- 
butions affect the resulting predictive distribution. We considered a range of different 

priors and present here a few examples. 

Vague Second Stage Priors 

For the case of vague second stage priors we found that the models were stable for 

changes in the first stage prior parameters of up to 15 to 25%. For example, referring to 

the original prior in section 6.2.53 as Prior 1, the predictive distributions from the 

Laplace method for the following two priors are shown in Figure 6.2, and are indistin- 

guishable. 

Prior 2 

First stage: 

b, =5.87 
b2 -3.98 

d, - 27.6 
d2-31.01 

81 a 0.004 

g2-440.67 

g3-80.96 

g4-129.75 
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Prior 3 

First stage: 

0.25 

b, = 3.57 
b2 = 5.42 

0.2+ 

d, - 33.94 
d2 = 24.13 

A 

A 

g, - 0.05 

g2-445.97 
gs a 74.38 

g4 =131.99 

19 
0 Prior 1 
X Prior 2 
A Prior 3 

r, 0.15 
v 

0 ý C6 0.1 

0.05 1 

9 

K 

19 

K 

0 
02468 10 

Y 
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Figure 6.2: Comparison of the predictive distribution when small or moderate changes 
in the parameters of the prior structure are considered. 

For a more drastic change, Priors 4 and 5 illustrate that some care is necessary in the 

specification of the first stage parameters, since as shown in Figure 6.3, variations in the 

predictive distribution become apparent. 
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Prior 4 

First stage: 

b, = 8.07 
b2 -2.14 

Prior 5 

First stage: 

d, = 40.92 
d2 -12.75 

b, = 0.0000001 
b2 OR 0.0000001 

0.25 

0.2 

., 0.15 
ZN v 
a 
L 
ý 0.1 

0.05 
ý 

0 

25 

g, - 0.1 

g2 = 92.51 

93-94.72 
g4 = 60.91 

d, = 0.0000001 
d2 = 0.0000001 

0 
ý 

9 

A 
0 

g, = 0.0000001 

g2 = 0.0000001 

g3 a 0.0000001 

g: = 0.0000001 

0 Prior 1 
X Prior 4 
p Prior 5 

0 

6 

02468 10 
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Figure 63: Comparison of the predictive distribution when larger changes in the pa- 
rameters of the prior structure are considered. 
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, General Prior 

Moving away from a vague second stage prior assumption, Prior 6 illustrates the 
drastic changes which can result with differing prior assumptions, as shown in Figure 

6.4. 

Prior 6 

First stage: 

b, = 4.039 
b2-4.563 

Second stage: 

d, = 31.131 
d2= 27.983 

g, = 0.007 

g2-442.178 
gj = 78.103 

g4-130.064 

u, =1.42 v, =2.03 r, =0.04 s1=1.57 t1=4.72 w, =2.51 
u2=0.75 v2=1.12 r2=3.56 s2=2.01 t2=0.07 w2=4.31 

t3=0.14 w3=0.03 
t4=1.37 w4=3.04 

0.35 

0.3 X 

0.25 

0.2 
vO 

ä 0.15 

0.1 

0.05 

x 
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x 
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x 
0 

0 Prior 1 
X Prior 6 

01 
0 

i--' 
' ^C 

Xßýý 
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Xo 

Figure 6.4: Comparison of the predictive distribution when a vague and a non-vague 

second stage prior structure are considered. 
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6.2.5.5. Effect of the Covariates 

143 

We now investigate the relative importance of the covariates for predicting the 

number of accidents. Figure 6.5 compares the predictive distribution obtained from using 

all four covariates, via the Laplace method (and referred to as model M4), and the one 

which just takes into consideration the two traffic flows ignoring the covariates, referred 
to as model MO. It is clear that the predictive distributions obtained using MO and M4 are 

quite different. This suggests that the covariates, or at least some of them, make important 

contributions for the prediction of the number of accidents. 
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Figure 6.5: Comparison between models MO and M4. 

Stepwise Procedure 

We consider a stepwise approach to building up the most suitable model, that is, the 

one which contains the smallest number of covariates but which still provides an adequate 

approximation to the full predictive distribution. Taking model M4 as being the initial 

model, we will remove one covariate at a time, in each case assessing the alteration of the 

predictive distribution. The covariateto be removed from the model is the one which least 

alters the predictive probabilities. To assess such alterations, we use the Kullback-Leibler 

measure of divergence (Kullback & Leibler (1951) and Aitchison (1975)), which is de- 

fined by 
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D(P, (yý p2(y)) ° ý, P, (y)In 
yc-n,, Pz (y) 
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where p, (y) and p2(y) are the distributions we want to compare and Dy is the domain of 

y. The reference distribution, that is, the one obtained with the best model, is p, (y). Here 

we take this to be the one from M4. The Kuliback-Leiblermeasure of divergence between 

the two predictive distributions in MO and M4 is D=0.1222. 

Now, if we remove from model M4 one covariate at a time, the Kullback-Leibler 

measure of divergence assumes the values 

Removing z, Removing z2 Removing z3 Removing z4 
D 0.1213 0.1685 0.0101 0.0110 
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y 

Figure 6.6: Comparison between models M3 and M4 

10 

Therefore we choose z3 to be removed from the model since this appears to have 

the smallest effect, that is, its omission changes the predictive distribution least. Let us 

name the resulting model (which includes z,, z2 and z4) by model M3. Figure 6.6 

shows the predictive probabilities obtained through models M3 and M4. 

lo M3 
XM4 
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It is clear that the two predictive distributions are very similar and therefore we con- 

clude that we can discard z3 from the model since the predictive probabilities are not too 

much affected. 

We next consider discarding a further covariate. Thus we remove z,, z2 and z4, 

one at a time, from model M3 and evaluate D, taking the predictive distribution from M4 

as reference. The results are 

Removing z, Removing z2 Removing z, 
D 0.1264 0.1981 0.0122 

Therefore, we remove z, from the model, thus defining model M2 with covariates z, and 

z2. The predictive distributions obtained with model M2 and M4 are plotted in Figure 

6.7., 
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Figure 6.7: Comparison between models M2 and M4. 

Thus, removing z4 from the model does not decrease the accuracy of the approxi- 

mate predictive distribution to any great extent. 
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A third covariate, z, or z2, is then removed from the model and the Kullback-Lei- 

bler measure is evaluated as follows: 

Removing z, 
D 0.1275 

Therefore, z, would be the next candidate for removal, but we note the large D values. 

Figure 6.8 shows the predictive distribution obtained using either M1 (with covariate z2 

alone) and M4. 
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Figure 6.8: Comparison between models M1 and M4. 

Observation of this figure shows that both predictive distributions are very different 

and therefore we cannot remove z, , since this covariate seems to give an important con- 

tribution for predicting the number of accidents. 

Therefore, we conclude that the entry path curvature ( z, ) and the entry width of the 

junction (z2) are important features that should be taken into consideration when we pre- 

dict the number of accidents which will occur at the junction. On the other hand, the addi- 

tion of the approach gradient (z4) and the percentage of motorcycles (z3) do not seem to 

alter the predictive distribution to any great extent, and so are felt to be less important. 
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All possible models procedure 
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Since we have only four covariates available, the number of possible models here is 

just 16. Consequently, it is realistic to evaluate the importance of the covariates by ana- 
lysing the resulting predictive distributions from each one of the possible models instead 

of following the stepwise approach considered earlier. Table 6.1 shows the possible 

models and the Kullback-Leibler divergence measure D, taking the full predictive model 
(M4) as reference. 

Covariates 
in the model 

Model D 

one . 
Z, M1.1 0.1551 
z2 M1.2 0.1276 

z3 M1.3 0.1514 
z4 MIA 0.0665 

ZIP z2 M2.12 0.0122 

ZIP z3 M2.13 0.1176 

z, , 'z4 M2.14 0.1981 

z2, z3 M2.23 0.1020 

z2, z4 M2.24 0.1264 

z3, z4 M234 0.0857 

ZIP z2, z3 M3.123 0.0110 

z,, z2, z4 M3.124 0.0101 

ZIP z3, za M3.134 0.1685 

z2, z3, z4 M3.234 0.1213 

Table 6.1: Kullback-Leibler divergence measure D between the predictive distributions 

obtained with various models and the one obtained using model M4. 

Note that the best models (M3.124, M3.123 and M2.12) coincide with the ones 

chosen via the stepwise approach. The next one to be considered would be model M1.4, a 

model which just takes into consideration the covariate z4. Figure 6.9 compares the pre- 

dictive distributions obtained using models M1.4 and M4, and the difference between 

them is noticeable. Therefore, we would conclude that the model using the covariates z, 
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and z2 is the one that should be considered. Note that this conclusion confirms the one 
drawn following a stepwise approach. 
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Figure 6.9: Comparison between models M4 and M 1.4. 

Calibration of D is very difficult, since it depends on both the data set and on the 

measurements of the traffic flows and covariates. Bhattacharjee and Dunsmore (1991, 

1995) consider similar problems of calibration within the logistic and normal frame- 

works. 
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PREDICTION IN SOME EXPONENTIAL ERRORS IN 
VARIABLES MODELS 

The work developed in the Chapters 2,3 and 4 motivated us to consider other ele- 

ments of the exponential family as underlying distributions in the models. In this chapter 

we will assume that all observations come from exponential distributions. Because the 

methodology to be applied is the same, now we will present the results omitting the de- 

tails of their derivation. 

I. The Multiplicative Effect of a Treatment 

Suppose we have independently distributed random variables (X,, Yl), (XZ, Y), ..., 
(XR, Y. ), where Xt and Y represent the observed measurement on the i-th individual be- 

fore and after the treatment is applied, respectively. To model this situation, we assume 

that 

- given O j, X; - Ex(exp(O, )), 

given a and O j, Y,. - Ex(exp(a + o, )), 

where F. (µ) represents the exponential distribution with mean 1/µ. While 6,, 02,..., 6� 

are nuisance parameters used to model the particular characteristics of each individual, a 

is a parameter which models the multiplicative effect of the treatment upon the individu- 

als. 

Given a new individual with observed measurement xi+1, we want to predict its out- 

come Y, 
f1. 

We assume that, for the (n+1)-th individual, 
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Xý+t ̂ ' Fx(exp(eR+i)), 

�, ^' Ez(exp(a +9�., 1». 

The predictions for Yi+1 will be based on the data set 

Dn a{(z� Yi) ,1° 1+ 2, ..., n} 

and on an observed x�*,. 

7.1.1. A Classical Approach 

The likelihood function is 

150 

ýrt1 rt 
L(ens ert+lý QC, Drt , xn+l) a eXP - CB' 

(Xj 
i- 8ay, 

) 
-e 

en+ixn+l 
i- na i- 22 ei i- Be+l 

i-l +ýl 

AAAA 

so that the maximum likelihood estimates 6, , 
02,..., 0., 9�+, are 

6�+1 
=1n ,A0, = In 

2 
n, 

z�+, 

{xjýeay} 

; 

and ä is obtained iterativelyfrom 

n «M Yr 
« e, 

x, +eyr 
a 

A simple plug-in estimate for the predictive distribution of Y"., would then be 

A 

P(Y"+, I D", x,,. 1) - Ex exp(a +d.., 
), 

Problems arise if x"., = 0. 
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7.1.2. A Bayesian Approach 

I 51 

Given the posterior distribution p(6�+,, aI D", x�+, ) for (6�+,, a), the predictive 

distribution of Y�,, is given by 

ID x�., ) 
°f P(Y»., a) P(eR+, " a1 D", x.., )dBn., da. (7.1) 

9t2 

7.1.2.1. The Exact Predictive Distribution 

To derive the exact predictive distribution of Y..,, given by (7.1), we will consider a 

hierarchical prior structure taking at the first stage, 

p(ert+ en+>> aIý, ti) a 
{P(ei I ý)}p(a I n)+ 

ýý1 

and at the second stage, 

P(ý. n) = PW PW " 

We will assume that 

e' 
-Ga(k, eý) ea-Ga(g, e") 

eý-Ga(u, v) a°-Ga(r, s) 

with k, g, u, v, r and s assumed to be known. The posterior distribution is given by 

n 

P(enºen+1, a, 
ý, tj I Dn, x, + 1) °cexP -ýe l 

(Xi+eayi+e$)_eo-+I(xn+1+eg) 

iýl 
l 

x exp 
{-e ''+a - vee - sen} exp{((n + 1) k+ u)ý} x 

n 

x exp (2+k)6; +en+1(k+1)+(n+g)a+(g+r)n . 
ý_, 
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After eliminating 0,, 02,..., 6� and 7J, we obtain the marginal posterior distribution 

of (o, 
,, a, ) which is 

exp{-ee^', 
(xrt+, 

+eý)-veý} 
Tý P 

en+r a, 
eIUr xn+, aa+ 

s)8+r 
x (e 

exp{((n+1)k+u)+9�+, (k+1)+(n+g)a} 
x k+21 (x; + eay; + eý) } 

ý. 11 

9 

but we are unable to eliminate ý. The exact predictive distribution of Y.., will then be 

given by 

exp{-vO}exp{((n+1)k+u)ý +(n+g+1)a}dadý 
R p(yn+l xn+1 OC 

n+1 k+2 
g t2 (ea + s)g+r ý {(x! 

+ eayl + eý 
1"1 J 

whose evaluation requires a two-dimensional integration technique, which should be rea- 
sonably efficient. 

No relevant simplifications occur when we consider vague second stage priors (U, 

v, r, s- 0). 

7.1.2.2. Estimates and Approximations 

We have developed the Gibbs sampling, normal approximations for the posterior 
distribution and Laplace methods as in previous chapters, but do not include the details 

here. 
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7.2. Treatments Effects in a Biased Allocation Model 

Suppose we have kz2 possible treatments, T,, T2, ..., T., all with effects that we 

assume to be of a multiplicative form. Let (Xj, Y j), i=1,2, ..., n, be independent random 

variables such that 

- given 8,, - Ex(exp(O, )), 

- given 0,, a,, a2,..., ak and x,, Y,. -Ex 
( 
exp(aj + e, )) if treatment Tj is used, 

- given x,, we assign treatment Tj if and only if x, ECj, 

where C,, C2, ..., Ck are defined as in section 3.4. 

Given a new individual with observed measurement xi+1, we want to predict its out- 

come assuming that he will receive treatment Tj (1=1,2, ..., k). Such an outcome is repre- 

sented by the random variable Yi+1, f. We assume that 

X. 
+, ~ Er(exP(9�J), 

Y»+,. 1"' ExCexP(aj+6rt+, »,. 
1 2,..., k. 

We define a treatment indicator function 

I], if treatment T is given to individual i 
0, otherwise 

R 

and n3 is the number of individuals who received treatment Tf, that is, n, - 
-1 

7.2.1. A Classical Approach 

The likelihood function is 

In+I 
nk 

L(6n. en+I+ akr Dn, 
. xn+I 

)° 
eXP -2 

e, xi -2 
2 

eaI ' ytaij x 
iýI ii-I I-I 
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xexp +I I (aj 
+6; )8; 

j , 

which leads to the maximum likelihood estimates 61,62 , ..., 
B� 

9 
Ö. 

I, given by 

I\ 

en+I'III[ 

x1 

ý9 
ei =Iri 

n+lJ 

2 
k 

X1+ylealaH 

! -1 

and &j (j=1,2, ..., 
k) as being the solutions of the equations 

ý yj eal a! 
j n, 

2 ý-ý x, +ea'y; Bli. 
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i=1,2,..., n, (7.2) 

j=1,2,..., k, (73) 

obtained through a numerical method. These maximum likelihood estimates can then, in a 
classical framework, be used to get plug in estimates for the predictive distributions: 

Y.., j ^' Ex(exp(äj + 6,,,, ý) 
,j =1,2, ..., k. 

If xA+I =0 the implementation of this method is clearly impossible. 

7.2.2. A Bayesian Approach 

To derive the predictive distribution of Y..,. j, j -1, Z ..., k, in a Bayesian frame- 

work, we will consider a hierarchical prior structure for the parameters. Let us define the 

hyperparameter vector rj s 
(i,,, 112, ..., ilk). At the first stage we take 

+! k 

P(e". ee+,. ak 7k) {p(e; i e)}{p(aý 1 i7j)}, 
- 

ni- 

and at the second stage we take 
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P(ý. rl )= P(ý)tj{Pfl}. 
, -ý 
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One possible appropriate choice for the prior distributions is 

e' _Ga(h, eý), i=1,2,..., n+1 e«' - Ga(gj, e'''), j=1,2,..., k 

e4-Ga(u, v) a°' -Ga(rj, sj), j=1,2,..., k 

where h, gj (1=1,2, ..., k), u, v, rj (1=1,2, 
..., k) and sj (1=1,2, ..., k) are assumed to be 

known. The joint posterior distribution is given by 

p(O', 
en+1 

, aký ý, ýk I D'º xn+1) oc exp - eel lxt + e4) -2 e''ý 
(e°`1 +S j) X 

i-1 
` 

J-1 

ýk 

xexp -ve' -ea'+e, y`aý, 
i"I /. I 

xexp h(ý+6, ) +gi(Ili+aJ) +ug x 
i-/ ý-1 

k n+l nk 

x exp rjr7j +Ie; +(aj +B; )a;, . (7.4) 
1-1 8-1 i-11-1 

J 

7.2.2.1. The Exact Predictive Distributions 

The exact predictive distribution of Y..,., is given by 

P(Y"+,. j I D", x.,., ) 
°f P(Y".,. j 10.. � a/)P(e"., " a, I D", x�, )d8"+, da,. 

at2 

From (7.4) we obtain the marginal posterior distribution for (a,. +,, a' ,) 
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k exp -eý(ee"' +v+x�+, ) 

P(en+1, a) 
D", x. + 1) ak k+2 

x 

x; +y; ýealb; 
ý+eý 

, -1 ý-1 

k 

exp ((n+ 1)h+u)ý+Bn+, (1+h)+ aj (gj +nj) 
x '"I 

k 
aiý (e ý +sj) 

Jr 

The predictive distribution of Y�. i. j will be given by 

n 
exp -e .. 1(xR+1 +yA+1, je`' +e)-ve 

P(y»+1. j I D, x�+, ) a(f h+z x 
k 

ý xi +yi 1 ea°S; p+e 
+-1 p-1 

exp ((n+1)h+u)ý+6n+1(2+h)+aj(1+gj +nj) 
XkX 

(ear 
+s 

`gr+ro 

P 
P` 
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(7.5) 

k 
x exp I aP(gP+nP) d9�+ ldakdý, (7.6) 

P-f 
P"I 

which requires the evaluation of a (k+2)-dimensional integral, that must be solved nu- 

merically or approximations must be derived. 

Vague second stage priors (u, v--> 0 and rj, s1 0, j=1,2, ..., k) provide little 

relevant simplification. 

7.2.2.2. Estimation Via Gibbs Sampling 

In order to overcome the numerical problems that would appear evaluating the high- 

dimensional integral in (7.6), we can instead estimate the predictive distributions of Y.,,. j 
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through the Gibbs sampling algorithm (section 1.2.1). The implementation of the Gibbs 

routine requires the full conditional distributions which are 

P(8�+, 1 ak, e, D�, x, +, 
) a exP{-e .., (x�+, 

+e)}exp{e�+, (1+ h)}, 

n 
p(CYj 1en. l' 

ap. j, 
ý, Dº xn+l a- 

( 

eaJ + sj 

exp aj(gi +n1)} 

)gj +F `i-I 
k 

x; +y; l e°`'B, P+eý P-1 

k+2 

j=1,2, ..., k, 

p(ý' en+lý akr Dxý x�+ l) a 
n 

ýk1 
X+ +yi 

n 
eai(5ip + eý 

ý- P-1 

)h+2} 

From Table Al.!, we see that the full conditional distribution of B�+, is a trans- 

formed gamma distribution which makes the random generation of values of 0.., to be 

quite simple. The rejection sampling algorithm (section 1.23) is required to generate val- 

ues of a1 (j=1,2, ..., k) and 

These distributions do not get much simpler when we consider the vague second 

stage priors case. 

7.2.2.3. Estimation Via Asymptotic Results 

Assuming that n is large enough, the posterior distribution can be approximated by 

a multivariate normal distribution, as shown in section 1.2.2. 

7.2.23.1. Posterior Normality Based on the Likelihood 
Function 

exp l-eý(e 
^"' + v)} exp{((n + 1) h+ u) ý} 

I- 

From the method in section 1.2.2.1 we find that 9pi, and aj (j=1,2, ..., k) are in- 

dependent a posteriori with distributions 
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A 

P( ee+l 1 D, 
, x+, ) 

=N en+ l, 
1), 

p(aflDn, xn. Na;, 1f, 
j=1,2,..., k, 

fj 
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where 6�+, is given in (7.2), äj (j=1,2, ..., k) are the solutions of the equations (73) and 

the constants f (j=1,2, ..., k) are defined by 

a" ee'xi Yj b,; 
f =e ýj =1,2,..., k. 

ý-ý xr +Y; e ýb;; 

Problems arise when x,,,., =0 or x; = yj =0 for any i =1,2, ..., n. 

7.2.23.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

Given the posterior distribution (7.5) for (o 
+1, ak, ý) we can use the result sug- 

gested by O'Hagan (1994) and approximate it by 

P(e.. r ak, e1 D", x.., ) a Nk, z41 V), (7.7) 

according to (1.6). The first parameter of this normal distribution, ma 
(9,,,,,, äk, is 

the posterior mode and it is obtained iteratively from the system formed by the (k+2) 

equations 

e °", 
(ee 

+x�+i) -h-1 -0, 

+v) -(n+1)h -u+ 
ý-ý 

(h + 2)eg 
k 

Xi +yrI e°", b, 
P+ eý 

P'j 

_ ý, (7.8) 
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^ (h+2)e°J y; S; j 
(gý+ri)e°`j- 

gj+nj-2 - aj a0, 
+_j x; +y; eabj+e ýe j=1,2,..., k. 

+sj 

The second parameter of the normal distribution above is the modal dispersion matrix, 
defined as in (1.5). 

If we define the constants 

9-e . .,; ý 
, 

äab+e^ 

R 
(x+I)oy 

, ,; =(h+2 )ea 
2+ 

ý-ý 
(x, 

+ye'S,; +eý 

ý dj » -(h+2)ea'+g 
^ yi ar 

a ý-1 
(x; 

+ y; e' (5; j + e' 

f e(ej"' +v)+(h+2)eý 
ý_, 

(gj +rj)ea'sj 
/ 1z 
le°t' +sjl 

} 
j=1,2,..., k, (7.9) 

1a1,2,..., k, 

Xi -F Y, 
2 

Cx° b1P 

P-1 

k 

x; +y; I e8°ö, P+e 
P. 1 

the approximated distribution (7.7) leads to the full conditional distributions 

p(B", ý ý ak, e, D""x"+, ) °N 8"+, -ý(e-ý, 
ý 

d1 
p(aj 16ý+,, apaj+ýºD""x, 

«, 
) 

=N äj- 
Cj Cj 

ak, 

i 

ý- 

k Cen+ 

ý- 
en+1) b+ S( ai - ai ) di 

,_1 

f 
I 

The vague second stage priors case again do not lead to relevant simplifications. 
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7.2.2.4. Laplace Approximation 
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To approximate (7.6) via the Laplace approximation (section 1.2.4), we define two 

functions, h(6,,,,, ak, ý) and h'(6�+,, ak, ý) such that 

-nh(6�+,, a, e) =-eg+e°''-ve4-x�+, ee"'' +((n+1)h+u)e+6p+, (1+h)+ 

aj(gj +nj) - (h+2) In x; +y; ea'8; ý+eý - 

-2 
{(gj 

+ rj) In (e" 
+s, 

J-1 

and 

-nh"(en+� ak. e) - -e 
o'+i+aiye+l. 

j + e�+1 +a j -J+B-, -VJ-x. +l e- + 

+((n+1)h+u)e+6ý+, (1 +h)+ 2aP(gP+nP) 
- 

P'1 

knk 

-ý{(gp+rp)ln(e°`° +sp)}-ý 
{(h 

+ 2)1n x, +y, ýe°`'B, 
P+eý p -1 i -1 p-1 

Defining (6�+,, ak', ') and a such that (1.16) holds, we conclude 

that 
C9,, 

+äk, =m, the posterior mode, the solution of the system of equations (7.8); Q 

is given by 

-112 
kU=R 

C12 
fý 

aý k 

m. l in P-1 

where the constants are defined in (7.9); is the solution of the system 

formed by the equations 

a em*' (X. 
+, +e'Y,,.,. j+J -h-2=0, 
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a 

e.. ý+a, 
gj+rj)e' a 

y, bij 

gj+nj+1-y, ý+,. je - aý -(h+2)e' 1 a, ý ý0, e+ sj , _, x; +ye8, j +e 

ýgP +rp)e°`" 
+n p gp P e+sp 
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+ 
S`P 

at J h+2)e " 

`_ý x, +y, eata, P+e-' 
a0, p=1,2,..., k, poj, 

+v) -(n+1)h-u+ 
, _ý 

ý (h+ 2)e4 
k° 

O+ 

xi +y; e"'b; P+0 P'1 

which must be obtained numerically; ä is given by 

with 

k2k "2 

g'{cd= 

(a*-ý1 

- 
(b*_L 

a=ppq 
m_ 

Cm qq 
p, Ij mrl 

"8 i/+y 
" Bwýi+a/ 

a be, Y. +ý. j eý 

, ý} 

R (xj+e')yjoq, (gP +rP)sP e°`ý 
C'a(h+2ýe«; ý+ 2ý pý1,2,..., k, 

P 
i-l 1X+ + y, e«v biP + eý" 

1 

(e"* 
+ SP 

/ 

dP . a. P a -eýý+a'(h+2) 
" yý bi 

a" '"' 
(x, 

+y, e'B, P+er 

f' ae*(e 
°1'+v)+(h+2)eý* 

a-ý I 

lý 
-i/2 

aý a ee''x�+, +t +bý, 

pa1,2,..., k, 

k 

x++yJ e'b+P 
P-1 

ký 

X1+ y1le'15, 
P+er 

p-1 

ý q'at'+cj. 

Finally, based on these quantities, the Laplace approximation for the predictive distribu- 

tion of Y�.,, j is given by (1.17) as being 
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1 D", exp 
{_nh'ý6i+1, 

+ nhC9�. 1, a'ý, ý) " ý} 
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No major simplifications will occur in this Laplace approximation if we assume 
vague second stage priors. 

7.3. A Crossover Design to Compare Two Treatments Effects 

The crossover design for the exponential model corresponding to Chapter 4 can be 
modelled by 

Period 1: W., - Ex(exp(O, +o1 a)) 

Period 2: W. 2 - Ex(exp(6; +p+ 8i2 a)) 

with treatment indicators 8;, and 642 as defined in (4.1). Based on 

l( 
Will Ds 

\will wi2l ail, (Si2), t-1,2,... 
r nj, 

our aim is to derive the predictive distributions for the outcomes in a new individual who 

receives T, or T2. These outcomes are represented by the random variables Z, and Z2. 

Conditional on B�+l 
+ 

Z, and Z2 are independent random variables such that 

Z, Ex(exp(9�, 1», 

ZZ ý Ez(exp(a + 9,, J). 

7.3.1. A Classical Approach 

The likelihood function is 

"" 
L(B", a, ß' " D" - exP e, +a�P wue, +ß+a�a f-ý ýý -1, x't2 x 

1"1 
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n 

x exp(e; +a;; «)+ý(e; +ß+ai2«) 
ý-t ý-t 

which leads to the normal equations 

e8i+3, 
aw, 

+e0, 
+9+b; 2a wi2-2=0, i=1,2,..., n, 

RnRn 
ail 

- 
ýSi/e , +aslýwil + 

Y. 
45i2 -y 

ai2eBd+ß+b, Yawi2 a O' 

1-1 8-1 i-1 1-1 

R 

I eliß? b 

e 'fXw; 2-na0. 
S_, 
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Using a numerical method to solve the system formed by the above (n+2) equations, we 

obtain the maximum likelihood estimates 0,, 02, 
..., 

8� 
,ä and ß. 

Notice that this system does not provide an estimate for B�+,, because D" has no 

information about the (n+1)-th individual. Therefore, it is impossible to derive a plug-in 

estimate for the predictive distributions we are interested in, since such an approach 

would require ä and 9.,, 
. 

7.3.2. A Bayesian Approach 

Solving the problem in a Bayesian framework, we will derive the predictive distri- 

butions using a hierarchical prior structure. At the first stage we take 

Y1 
n+l{p\ 

(ý ý 
b/ p(enr en+Ir ar ß ýýr ýr ý)' ý(ei I e)}p( 

aI rj/lp\(1'i 
i-1 

and at the second stage 

0= PWP(tI)P(0 

with 

e e, ~ (', a(k, eg) e« ~ Ga(h, e') eß ~ Ga(g, et) 
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- Ga(l, m) e° ~ Ga(u, v) J- Ga(r, s) 

We assume k, h, g, 1, m, u, v, r and s to be specified. 

7.3.2.1. The Exact Predictive Distributions 

The joint posterior distribution is given by 

164 

I R+/ 

p(eRº eR+r a, I DR) «exp -: 
Ee4+e, 

-e''+a -ez+ß -mJ-vi -se; x 
I ;. 1 

xexp -ýewii -e'`ß+°i2ax'i2 x 
I +-i +-ý 

R4, 

xexp kj9; +h(rj+a)+g(ý+ß)+urj+rý x 
ý., 

xexp ((n+1)k+1)ý+j(6; +b; ja) x 
_I 

R 

xexp 
ý. ýý(6, 

+ß+8�a) 

As Z, and Z2 only depend on 6"+, and a, we would like to eliminate the remaining pa- 

rameters. The best we can do is to eliminate 0", r) and ý and we obtain the marginal pos- 

terior distribution 

exp{-eý(ee"'' +m)}exp{((n+1)k+1)e+ken+1} 
ýQq p(en. lý a, Ný 

ýý D») a 
rea 

+ v`krr(eß + S)8+, 
X 

rt rt 

exp a h+b; l+ýbi2 +ß(g+n) 

k+2 x rJ{(ewii 
"' "' (7.10) 

+e0+4i2awi2+eý) 



Chapter 7 

Then, the predictive distributions of (Z,, Z2) , Z, and Z. will be, respectively, 

p(z,, z2 I D" 

p(Z, I D" 

x 

p(z2 I D") «f 
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exp{-me4}exp ((n+1)k+1)ý +a 1+h+8i 
r 

ýJi (e k+u g+r "rda 
+d 

k+2 
x 

ýe +v) ýeß+sý ýjýeý' wi, +eß ýýwiz+eý) J 

exp {ß (g + n)} da dß dý 
(ee z+ 

+ z, + eaz2 
) k+ 

I- 

exp{-me4}exp 
[, 

(n+1)k+l)ý+a 
(ii 

+ ö, +ýbi2 
X 

(e +u/ S+rIT(ea, '"w,, +d a 
k+2 

+V) Ieß+ Sl +es ý=wie+eý) 

exp {ß (g + n)} da dß dý 
k+1 (e4 

+ z1) 

exp{-meý}exp. ((n+l)k+l)ý+a 1+h+ý8;, + 
, _, , _, 

(7.11) 

(7.12) 

x i k+u +r ý 1Ik+2 
, n, (ea 

+ v) 
(eQ 

+ s)a ý ýea, lawi1 + eß+a,, ax,, 
2+e 

g) 
ý_ 

` 

exp {ß (g + n)} da dß dý 
X k. t " (ee 

+ e°z2 
) 

(7.13) 

The evaluation of these exact predictive distributions will then require some numerical 

integration technique to solve the above three-dimensional integrals, or the use of some 

approximate methods. The assumption of vague second stage priors does not lead to im- 

portant simplifications. 

7.3.2.2. Estimation Via Gibbs Sampling 

From (7.10), the full conditional distributions required for the implementation of 

the Gibbs routine are easily derived as being 
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p(e"+i 1 a, ß, e, D) «exp{-ea--, +e }exp{k9"+, }, 

p(« i eý+,, ß. ý. D") 

P(ß 10.. � a, e, Dýý 

RR 

exp ah+Y 8tt +bi2 
a Rd 

+d ýth +eß wi2+e)k+2 
ý(e°+v)+a 

JJ ,_ 

cc 
exp ß(g+ n) 

ý1 
}(e' 

+ 518 
ý 

l(ed, 

I"w,, +eß+a, 2awi2 +e 
k+2 

P(e 19. 
«� a, ß, D» « 

exp{-eý(eB°"' + m)}exp{((n + 1)k + l)e} 

k+2 ' j(ea-la 
»'t, + eß. 

a, sah, 
`2 + eý) 

1 

and they do not get significantly simpler when we consider vague second stage priors. 
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The generation of values of 9�+, is direct noting by Table Al. 1 that its full condi- 

tional distribution is a transformed gamma distribution. The generation of values of a, ß 

and ý requires the use of a sampling technique such as the rejection sampling algorithm 

(section 1.23). 

7.3.2.3. Estimation Via Asymptotic Results 

The first asymptotic normal approximation for the posterior distribution presented 

in section 1.2.2 (Bernardo & Smith, 1994) is based on the maximum likelihood estimates 

for the parameters. Since we cannot derive an estimate for 6�+ , as shown in section 73.1, 

such an approach is not suitable to solve our problem. 

The second asymptotic result in section 1.2.2, suggested by O'Hagan (1994), is 

based in the posterior mode and on the modal dispersion matrix, both obtained from 

(7.10). 

Solving numerically the system formed by the equations 

R if 

eg«e»., -k=0, 
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(h+u)ea 1(k+ 2)(45i, ea'lawi, +45; 2eß+8'2awi2) h+ý(Si1+ý45i2 a -ý 
8 +a =0, 

(%. 14) 

ý_f ; _, e +v ; _, e �awir +eß 'ýW, 2+ e' 

(ä'+r)eß 
-ý, 

(k+2)eß+a, -awiz 
gýn- 

eß +s jj.. l eb; ja yy+l +e ß+aizawiz + eg 

1 1- 

0, 

ýe^'' 
+m)+ý, 

(k+2)ee 
a+eß. a'2ax'+ej-(n+1)k-l=O, 

we obtain the posterior mode m Then, defining the constants 

ä- eý+e- . 

b 
(h +u) vek 

a 
(ea-i-v)2 

� 
(k+2 ýÖ, 

jea"°`wu((1- 
(5,2)eß+6,25 w, 2 +eý)/ 

I 
+2 

wi2 + el) 
I (eouiwj, 

+ ea11d 

� 
(k+ 2)(6; 2 eý+a,, awi2((1- 811) ea,, dwu + eý /) 

+ 112 
IJ 

,., 
(e8"dw, 

ý + eß+a, ýaw'2 + eýl 

K 
(k+2)e0 +61 A WU((612 -b;, 

)ea., dx,,, +Sueg) 
t2 (+ 

eß+612aW, 2+ e' 

ý(k+2)(buea�aw; 
l+b, Zeß+a, 2Cwt2ýe' 

- " (ea, law,, + eß+a12gwr2 + e' 
)z 

9 

_ 
(g+r)seß (k+ 2)ewi2(e6"d w;, +e 

2+ l2 s / (e¢ 
+ s) ý-1 

(e8ý, &N'u + e¢+a, s eýwi2 + ef1 

+ 

R' 
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ý (k + 2) (e°t, 6w, 
,+e 

+a'=a 
1=' e(e ^"' + m)+1 2ý (e"w, 

+eý+a�aW, 2+ ei 

the full conditional distributions will become 

Pýe�., ý aº ßº ýº D"ý ° NCeý+ý -(ý-ý)º 
1) 

, a 

c+ 1ý 
ý)d 1 

p(al9"+rß, ý, D") -N 6- iß 
ß) 

b ,b, 

/ý /ý- 

(a-ä)c+(ý-ý)q 
1 

P(ß1e�+ra+e+D°)-N Nf +f + 

P(ý 1e, 
++ 

(O+j_O, 
+i)äý(a_ä)ciý(p_)c7 

ý+ a+ ß+ D" ý°N- 
i 

I' 
9 
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The predictive distributions we are interested in can then be estimated using the above full 

conditional distributions in the Gibbs routine. If we consider the special vague second 

stage priors case, the implementation of this approximation does not become much sim- 

pler. 

7.3.2.4. Laplace Approximation 

Let us define the function h(8,,,,, a, ß, ý) as in (1.13), that is, such that 

-nh(9�,,, a, #, ý) --e(ee^"' +m)+((n+1)k+l)ý+kB,,, l+ 
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-ý 
{(k+ 2)1n(e°'' w,, t e", " w,, +e4)}, 

g-l 
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and let us also define 
(B�+1, ä, ß, i) and jr as in (1.16). We then conclude that 

(6. 
+,, 

ä, ß, i)=m, solution of the system of equations (7.14) and that 

äa {a5)r_ati2 
-ärc 

2+2äc'd4-äfd2-bfä2+ä2c2 1i2. 

7.3.2.4.1. Joint Predictive Distribution of (Zl, ZZ) 

To approximate (7.11) we define, according to (1.14), a function h, (6n+1, a, ß, ý) 

such that 

. -nh, *(B�+,, a, ß, ý) -a+ 20. 
+, -eo *' (z, +eaz2) - eý(eo-' + m) +((n+1)k+1) ý 

nn 

+k8�+, +a h+ a, j+, b, 2 +ß(g+n)- 

-(h+u)ln(e° +v)-(g+r)ln(eß +s)- 

-t{(k+ 2)ln(ea. 'aw, l +eß+a, 2«w, 2+eý)}. 

Then, we define (9�+, 
(c), a, ßc*, ýc) and a, such that the definitions in (1.16) hold. 

Solving numerically the system formed by the equations 

e ^'`(z, +e°`z2+J) -k-2-0, 

fhs.,, loa : 
ý(k+2)ýb. 

ýea`'°`N'iº+8; ýý"a`=ýH, ýi 1ý1ý-- 
-, `-t/- --ü - -ý(- ! f/L 

B_. . +a --\.. 
, ... I. X. i.. ý -- -- -- -- 

e---- 
Z2 + 

_a .. 
T 

ea +v ý_, e6iý yyu + eß+b, 
fx wý + eg 

ý II 

-ýa, 1 -ýa, 2-h-1= o, 
I-i i-I 
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g+n-(g 
r)eß (k+2)eß+a, 2a wiz 

e-ke °-" +mý* -ei -8--, - ---1 . 
[% 1 (k+ 2)es r lK t Z) e l 

-(n+1)k-1=0, s', ý 0+a, ýý g 
, _, e Wil +e wi2 +e 

we obtain 
(o; 

+ , (c), a, *, ß;, ý, ), and v, * will be given by 

where 

f- /_f0 

eý +s ý_, eaý, awu + ea. e,, ýwi2 + eý 
_, "icr. 10°wL. O' "s uJ . 

"2 "2 """"""""" "2 "2 21-112 
+ bý o, -2b, f c, o, +2 bc ck c, *, t, - d, tccc+ fý CC , 

Lý 
ý e8 ý1(e1+aOz 

C 
we 

wý! 
(elýý° Qý eewý! (°)t +U ý' C 

21 C"CaIC C+ 
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(k + 2) (öj1e8u1'%11((1-b; 
Z) eßý+aýýex, i2+eý°11 

+ ." +(h+uýve"° +2 
ýs 

ewýl(e)+"O 1l 
e z2 (e"° 

+ v)2 ý-r 
( 
ea�": wu + eß°x'u + JO ) 

n 
(k+ 2)(15,2 eß°f a, 2"°N', 2((1-S, r)e°ýý"° w, r + J° 

.2 +ý-' (e'w1i+eP°. a�"Qw, 
2+eý') 

, 

" _\ý ._.., .. ._ý 
fý ýJ, s2° (e'5"-"w,, 

+eß°+a, tý°wr2+eý: ) 

(k 
+2) 

(ar1 
eaua°wr1+Si2eß°+a,: a°wri)eý; 

"2 4ý s -ý_, (eou1wi 
+ eß°+a'ýa`"'rz + eý° 

) 

b"z+ ä a{äý dc t, 'pc'-c, i d, 'öý 
ý2-ä p'ý ý 

f2+2ci fg'öý -a, 't, ý 
'g 

, ý'2-t"p c ý, ýý 

(k+ 2)eß: +a0«: w12((a12 -ai, 
)ea, ta. wi, +812e4: 

.2 ýý ea1, a`wi, + eß: +a, ý. x, i2 + e4. * ) 



Chapter 7 

" (k + 2) eß° +aý: ae +ý: N'f2 

; _, 
ýea"a`Wrl 

+eß'+a, 2a; yyi2 +ec'l 1 
(k + 2) (e°"a^ 

H'i, + ep: +a, zae x'i21 eg° 
Pc = eý° 

(e°' 
(°) + m) +. l 

2 
; _, 

ý 
ealiao wi l+ eß°+a; sa° wi2 + e$° 

ý 

Finally, the joint predictive distribution (7.11) is approximately given by 

p(z,, z2 I D"ý a a° 
exp -nhýý6,;., ýýýý aý, ßý, ýý+nh(6"+rº a, ß, ý 

öl 
ý' 

7.3.2.4.2. Marginal Predictive Distribution of Zl 
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The Laplace approximation for (7.12) is similarly derived. We consider a function 

hi(0.. i, a, ß, ý) such that 

-n h; (9,,,,, a, -e 
e-"'z, 

- eý(e °'' + m)+ ((n + 1)k + 1)ý+ 

nn 

+k8�+, +a h+ö;, +at2 +ß(g+n) - 
ý-i ý_ý 

-(h + u) In (e°` + v) - (g + r) in (eß +s)- 

-ý 
{(k+ 2)ln(eaI"w,, +eß+a, " wi2+e)} 

and, from (1.16), we derive (9,; 
+(, ), a,, solving numerically the system formed by 

the equations 

e °''(z, +e) -k-1-0, 

" ýÖ12 (h+u)e° (k+2)(buea''aK'ýý+aueß+a,, 'w�+ 
+ 

i-i 
- e° +V ;. ý ea-PK, tt + eß. a, gwu +e0ý 
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g+n- 
(g+ r)eß 

- 
2" (k+ 2) e'". a, P wrz 

eß +s ; _, 

12"w� 

+ eß"8,, awi2 + eel 
_ 

e'(e ^"' +m+ý 
(k+ 2)ee ) {e6Pi 

+ eß2"w + e4 - (n + 1) k -1= 0. 
i2 

Then, defining the constants 

af "a ee".,,,, 
(z, 

+ eý' 
ý b" a eeý:, r�+ý, 

(/ 

.r.. . )) ýjl+Ll)Veai " lkf2ý 
ailea�°i, yyil 

(1-ai21eß, f3, fý, Wi2+eý', 
. C1 ./. \2 +, 

i---, 
(ea' + v) =l 

l 
(ea�a; yy, l+eß, +a, =a, xi2+e"; ), 

aa a 
,2 `wi2((1 wfl 

. [ý t 
ý-i t?, 

l 
(e8ii 

+ eß'°+6. =a' w,. 2 + et 
12 
/ 

{(k 
+2)eo''ai'a'w. 

(('i2 bi )eall«; iti, i2 il 
+ai2 

d' 
w 0' . ai2a; 2 

wi2 +eý' `"' 
(il+e) 

f, ' 

I /t_ 
. I\tit a�a: 

_. _ .r8: +a., a: 
1 F' 

+ el' 

, 

eý' 
) 

_ý 

[ jy K+ . 41`u+, e ... wjr+ oj2e. . ... yyi2 f e'. 
s 

, -I 
414 

(g+r) sefl, * 
(k+2)eo; +a, 2a ; yyi2(ea;, '; x,,, +e'1 

+2/ 4, (epl+ 
s)2 ; _, 

(e"-, ""w,, + eQ, +6,2a, x', 2 + J' ` 

(k 
+2) eýý+d,: a! *ýi w. 

" [ý ý2 t =- , edua; W., +eß'+dý7Ri W, 
2 

+eý; 
l2 

ýJ 

, 
(k+2)(ea, laiWtr+eß; +a1: a; 

wt2)e9i 

P, a eý' 
(e01u1 

+m +Z (e5a4w1i+eß52w12+ 

eý' 
) 

(e"w1, + eß; «a 'a; wi2 + el, * lI 

9 

I+ 
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we derive a, ' in definition (1.16) as being 
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""""*"" "2 *p, " "2 """"" "2 "" *2 2 "21-r/2 Qr m aIcIqIP/-a, c, t, -ad, +2a, df, t, -arg, 
fr 

-ý, 4, br +d; b, j 

and the predictive distribution of Z, will be approximated by 

(2cylo 
p(z, I D") & exp 

J-n 
a,, ßrº ý1ý +nh 

7.3.2.4.3. Marginal Predictive Distribution of Z2 

The approximation of (7.13) requires a function h2 (8�+,, a, ß, ý) defined such that 

-n hj'(6,,, � a, ße)- a+ 8. 
+, - ea' e°", z2 _ eý(e "., + m)+ «n + 1)k + l)e+ 

RN 

+k6R+, +a h+a11+ý8; 2 +ß(g+n)- 
ý-t ý_ý 

-(h+u)In(ea +v)-(g+r)In(eß +s)- 

-ý{(k+ 2) 1n(ea'Rw, l +eß+a, P w; 2+eý)}. 

Following definition (1.16), we solve numerically the system formed by the equations 

e"", (e°z2+e)-k-1-0, 

(h+u)e° 
+i 

(k+2)(ö,, e°''"w; l +a; 2eß'a, =ax', 2 
ý+ 

e°+v eg"aw; l+eß'g"- wi2+eg 

RS 

LL 
ýýSil -Rv2- /ý -l a 0, 

ý-1 t-1 

v 
g+n- Op J. C -IL 

j (k+2ýeý+d'f wiz NI 
eý +s ýý eduawi! + e'+ai2«w`Z + eg 

11 a 
Os 
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eý(e ̂ '' + m) + 
of (k+ 2)eý 

a�ý ß+a a -(n+1)k-l = 0, 
, _1 e K'� +e i2 ý'º2 + eý 

obtaining 
(9�'+1(2)la2, ß2, ý2), and we define a2 as 

with 

"2 02 """""""" "2 "Z "2 1/2 

+b2 02 -2b2 f c2o2+2b" 2g2c2t2-d2t2ci 
+f2 c= 

}, 

*, 
U" eeý. rnr 

(ez2 
+b" e2 ffi 2' 2' C" e 2a 
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K s) +Ot + 
(h + u) ve 

+ 
(k+ (Sueaýýsw;, ((1-auleß: *a, ý2w; 

ý " °' " 
d. _ 

eý. j 

C12' ailai ßi+asSai 2)2 2e Z2 (e 
+v)Z 1-1 

(e 
w;, +e "wi2+e 

ý 
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2)(ý; 

Z eß'. 
a,, aiK, 

i2ý(1 -aý, 
)ea, P: yy; l . }. elj Z 

f2 
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dt' 'Q do'2-d ' f"2+2d f'Ö 
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42 2P2 2 222 2P2 -222 2P2 222 42 222 
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ý-i +e) 
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(k+ 2)eo"+d, sa2wi2((ai2 -ali)ea-fiiyyil +ai2e$2) 
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fý2wi2 

+ eý2 
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6,2a2w12)eý2 

(ea"a; 
wa", +e8;; 

a'2a; 
w. 

2fe; 
)2 
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+s11 ea, ýi Wu , +8ß2`a`=a2W. +8ýi)1 
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ýý 
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1 ̀ k+ 
2)(ea, N': Wil +eß=#a'IýýWi2)e$i 

. ý; / 0-1121 
_ 

X-1 
p2- e"e..... _. +mJ+L v 

l( + eß'+a,, °`'wiz + e) l ýý 

Hence, the approximation for the predictive distribution of Z2 is 

. U 
p(z2 i D") ýä exp -nh2ýeý+, «r a2, Pr ýiý +nh 6"+r a, ßý 
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01. 
These Laplace approximations do not get easier to implement when vague second 

stage-priors are considered. 
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CHAPTER 8 

PREDICTION IN SOME BINOMIAL ERRORS IN 
VARIABLES MODELS 

176 

In this chapter we consider binomial models for the situations discussed in Chap- 

ters 2,3 and 4. Once again we will omit the details, presenting only the final results. Such 
details will only be discussed when they are significantly different from the ones in the 
other chapters. 

8.1. The Multiplicative Effect of a Treatment 

Suppose we have independent random variables (X1, YI), (X2, Y2)1 -9 
(X,,, Y) 

where X, and Y,. (i=1,2, ..., n) represent, respectively, the observed number of successes 

on the i-th individual, before and after a treatment with multiplicative effect is applied. We 

assume that 

- given r and 9; , X; - Bi r, 
e' 

1+ e <' 

- given s, 6; and a, Y- Bi s, 
e a+Bt 

+e. 1+ e' ý 

Here, 01,02, ..., 0� are parameters used to model the characteristics of the individuals and 

a is a parameter which models the effect of the treatment upon the individuals. The 

parameterisation chosen was taken such that the parameters involved would be unre- 

stricted and also in a way that we can be sure that the probability parameter would lie in 

0,1[. Note that the log odds are linear; namely, they are 0; for X; and a+0; for Y,. . 
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{ After observing n individuals, we get a data set 

D"°{(x,, yj, i-1, Z.... n}. 

Our aim is to make predictions about Y",,, the outcome on a new individual after 

the treatment is used, based on D" and on an observed x"+,, the number of successes on 

the (n+1)-th individual before the treatment is applied. We assume 

X. 
., ~ Bi r, 

8 
8.. 1 I 

1+e^'') ' 

«+9ii1 
Bi e 

s, 

1+e a+O. +, 

8.1.1. A Classical Approach 

The likelihood function is 

1e+I ý 

exp e, x, +I (a+e; )y, 
4 

a; 
Dn 1-1 L( Oº en+ 

l' a' º xrt+, a ý-/ 
fl{(i+eo-)"(1+e«+e1)sl(I+e 

-+, )" 

and we easily conclude that the maximum likelihood estimate for 6�+, is 

6n+1 a ln , 

r- xaý, 

whilst the maximum likelihood estimates 6,, 92, ..., 6� and ä are obtained solving nu- 

merically the system formed by the (n+ 1) equations 

reel se a+ 0, 

x; + y; - l+ ed' I+ ea+e, 
a0 , 

1=1,2,..., n, 

sea+e, 
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Then, a simple estimative approximation for the predictive distribution of Y,, 
i, would be 

Y»+1 "' B6 Sý 

Problems arise if x�+, =0 or if xi+1 = r. 

8.1.2. A Bayesian Approach 

No simple conjugate priors present themselves, and so, as before, we consider a hi- 

erarchical prior structure: at the first stage we take 

i 
P(e". 0.. � a 1e, 1j) _ 

{P(ei 1 ý)}P(a 117) 
ti. 

and at the second stage we take 

P(ý, n) = PW PW 

With 

e' - Ga(a, e4) e" - Ga(b, e'') 

eý~ Ga(c, d) e''- Ga(g, h) 

where a, b, c, d, g and h are assumed to be known. 

8.1.2.1. The Exact Predictive Distribution 

ä+B.. I 

The joint posterior distribution is given by 
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Jr n+1 

exp -ý eg+e' -d eg -h e'' 
p(6", 9�+r a, e" YI 1 D"" zR+, ý a 

ýý1+e«+eýsl fl{(1+e0) 
J 

x 

Eliminating il and ý and defining 

the marginal posterior distribution for (0. 
, 6",,, a) is 

P(e", 6. 
+, " a1 Dr`, z. +, 

) a R 

exp a (b + SY) 
n+1 

-(d+ + I)a+c 

e' 

U 
exp 6; (a+xj +yj)+B�+, (a+x�,, ) 

1 

{(1 + e' )r(1 + ea+el )t 
l(1 

+ e"'' 
)"(ea 

+ h) 6+a 
x 

R 
exp «n+1)a+c)ý+9, (a+x, + y, ) + 6A+, (a+x�+1) 

ý-/ 
(1+ e "'')r 

x 

xexp (b+g)r7+a b+ýy, 
ý-r 

ýxi 

tý / 
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(8.1) 

and the predictive distribution of Y�+, will be 

PýYR., 1 D�, x�+, ) oc 
s 

Lv, 
+1 

exp ý9, (a + x, + y, ) + a(b+ Sy + yn+ d6"d9"+, da 

Jý ný s b+ n+1 (n+1)a+c 

tý P'D 1+e')(1+e°`+e. )I (e +h) a 
(d+e6i) 

. _I 

(8.2) 
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Note that the evaluation of this exact predictive distribution requires the use of a numeri- 
cal technique to solve the (n+2)-dimensional integral involved. Due to its high dimen- 

sionality, we should expect numerical problems. 

With second stage vague priors (c, d, g, h--O) the predictive distribution (8.2) does 

not simplify much. 

8.1.2.2. Estimation Via Gibbs Sampling 

180 

One of the possible ways of avoiding the integral in (8.2) is to estimate such a pre- 
dictive distribution through the Gibbs routine (section 1.2.1). To do that we need to know 

the full conditional distributions. From (8.1), they are 

P(ei 
1 ej. 

i, 
en+1+ a, D". 'Yn+1) aI 

exp 10, (a + x, + yj 
e+l )(fl+i)a+C 

(1+ee')r(1 +e°i+e' 
)1d 

+e' 
, _, 

9 

ia1,2,..., n, 

(e.. 
r 10, a, D", X.. ý) « 

pýa l 6". 6A+r ýý x�+, ý « 

expt6n+, (a +xn+J} 

n+! )(n+i)a+C 
r 

1 +e ""'ý d +ýe' 
,., 

exp a(b+Sy) 

ý{ý1 + ea+e, 
ý=l fh+ eaýb+8 

ý_ 
Jl 

Even when we consider vague second stage priors, these full conditional distribu- 

tions will not become significantly simpler. 

., This approach should be seen as possibly problematic because there will be a large 

number of values to generate in each cycle of the Gibbs routine, which can make the algo- 

rithm very time consuming. 
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8.1.2.3. Estimation Via Asymptotic Results 

181 

The normal approximations for the posterior distribution summarised in section 
1.2.2 will now be considered in order to estimate the predictive distribution of Y.,.,. 

8.1.2.3.1. Posterior Normality Based on the Likelihood 
Function 

The estimation of the predictive distribution of Y�+, only requires the posterior dis- 

tribution for (6�+1, a). Following the asymptotic result presented by Bernardo & Smith 

(1994) and summarised in section 1.2.2.1, we find that, if n is large enough, 8�+1 and a 

are independent a posteriori, with 

ý P(en+, I D", xý+, ) aN 6A+, P 
1m, 

p(a I D", xn+, ) =N(a, 
1) 

, t 

where 

re o.. ̀ ýr-xn+ý)xn+1 
ýr' mm (1+e'+')2 

" rse6"d- IM 

1r(1+)2+5(1+ eB' l 
This method cannot be implemented if x�+, =0 or if x�, 1 = r. 

8,1.23.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

The normal approximation for the posterior distribution suggested by O'Hagan 

(1994) and summarised in section 1.2.2.2, is based on the posterior mode and on the 

modal dispersion matrix. Considering (8.1), the posterior mode mm 
(9", 6�+I, ä) is ob- 
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. 0. 

tained, according to (1.4), solving through a numerical method the system formed by the 
equations 

re: 
_ 

seä±e' ((n+1)a+c)ee- 
a+z; +y; I+e , 1+ea+e, - n+' 

ý-ý 

re °'' 
a+ x�+, -1 + ee^", 

+ m; + 

(b+g)ea " sea«e, b+S. 
y- ea+h -ý1+ea+9, 

Then, defining the constants 

m; 

=0 , i-1,2,..., n, 

182 

(83) 

se 
ci+B; (b g)h4 n 

1=1,2,..., n, (1+e")2 (e&ýh)2 
-+ý =4 

m 

I 

f- 
reel 

1+e' 12 

k, jakj, = 

d+ eel 
º-/ 

ý 

f., 
n+I 2 

d+ýe' 
ý. ý 

((n+ 1)a+c)ee, +e, 
n+I (d+e 

t_I 

2 

, i-1,2,..., n, (8.4) 

,:, 
-, 

ýI, f-1,2,..., n+1, 

R 

((n+1)a+c)e"' d+e 

qZ (iýe')2 (d+e' n+' 

, _, 

and following (1.5) and (1.6), we derive the approximate posterior distribution for (6", 

eý* 1, a) and obtain the approximate full conditional distributions to be used in the Gibbs 

sampling algorithm as being 

((n+ 1)a + c)ee°'' 

X+ l 
((n+1)a+c)e' d+ee' 

jog 
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p(9; 1 e,., " e. +r a. D"" x�., ) 
aN 

P(e. +, 
1 B", a, D", x. +, 

) 
°N 

i 

ei - ff 
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p 

i=1,2,..., n, 

I 

9,1+, -, 

e+l (ej-9j)k, 
j 

j- ,. r 1 

E(e; - ef n 
J, ý- k. 

+r.; 1 

44 
V/ 

(9j 
-8i)m, 1 

p(a 1 9�, e�+, ý Dr', x�+, ) °Nä -'' j Pi 

9 

These do not simplify significantly when we consider vague second stage priors. 

8.1.2.4. Laplace Approximation 

From (1.13) we define 

26; (a+xt+y, )+9"+, (a+x"+1)+a(b+Sy)-Irln(l+ee')- 
ý- ý ý- ý 

-: 
ýsln(1+ease-)-(b+g)ln(e" +h)-((n+1)a+c)ln d+ eel 

ý- ý ý_ ý 

According to definition (1.16), (8 o, , 
ä) - m, the solution of the system of equations 

(83), and 

a 
{s 

where A is a (n x n) symmetric matrix whose elements are 
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k «ý. 
r 

mz 
1,2,.., n, 

4t 

k,... 1 kj,.. r A, j-ky- -t , i; dj, 
R 
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and all constants are as defined in (8.4). The evaluation of the determinant of i must be 

done numerically. 

Then, as in (1.14), we define a function h' (9", 8"+l, a) such that 

-nh*(eR, 
eR+l' a) -((X +eR+I)yR+/ -S1II(I+ea+9-. t1 +ei((l+Xi + yi)+ / 

i-1 

n +1 R 

+9n+, (a+Xn+1)+a(b+Sý, )-rin(l+ee') 
-sin(l+e°`+e'ý- 

i-1 ý-1 

e* , 

-(b+g)ln(e°`+h)-((n+1)a+c)ln d+e' 
ý_, 

and, following the definitions in (1.16), (e "', 6:,,, a') will be the solution of the system 

formed by the equations 

re' sea+e ((n+1)a+c)ee' 
a+x, +y; -1+e' 1+ea+e' - n+' d+ eo' 

i-I 

(b+gýea II+' 

Se°"8' 
b+Sy+y�+, - e+h -ý1+ea+Bý 

ý_, 

We also have that ä will be given by 

Ü. 
r_"I 

-1/2' 

where A0 is a symmetric matrix with order (n+2) whose elements are 

4"ai ý f' ,ia1,2, ..., n+ 1, '' 
+2n+2 
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k,; n+1, 
A. * 

. 
R+Z°ml n+1, 

with 

S sea"+e; 
la (i+e'°)2 , i=1,2,..., n+1, . 

(b + g) h e" n+, 

t= 2+ým; (e"' 
+ h) ý-ý 

n+l 

((n+l)a+c)e' d+ýe' 
e; 

. re " '0` fa 
(i+e°)2 +mi + 

"+, B2 d+ý' e 
, _f 

((n+1)a+c)e6'+e' 
", z (d+e' 

, i= 1,2,..., n+1, 

, i; dj i, j=1,2,.., n+1. 

185 

The determinant of A', involved in the definition of cf, must be evaluated using a nu- 
merical method. 

Finally, by (1.17), the Laplace approximation for the predictive distribution of Y.,, 

will be 

r 
1 D", X.. 1) °Z ý' 'exp j-nh'(6, e". rý a+ nh(6", 8". rý a)}" 

Y". r 

Q` 

No important simplifications will occur taking vague second stage priors. 

8.2. Treatments Effects in a Biased Allocation Model 

In this section we will consider the ̀ treatments effects in a biased allocation model' 

problem assuming that the underlying distributions are binomial. The available treatments 

are T,, T2,..., Tk. 
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Suppose that X, and Y, (i a 1,2, 
..., n) are random variables representing the 

countings on the i-th individual before and after a treatment is applied. We assume that 

eo, 
-given rand9,, X; - Bi r, 1+e, 

B, +a, 
e 

- given s, 6;, a,, a2,..., ak and x;, Y- Bi s, 1+e +a, 
if treatment T is used, 

- given x;, treatment T is used if and only if x, ECj, 

where C,, C2, ..., Ck are defined as in section 3.4. 

In the model above 01,02, 
..., 6� are parameters used to model the individuals' par- 

ticular characteristics and a,, a2, ..., ak are parameters which model the treatments ef- 
fects upon the individuals. 

Let Yn+1, j 
(j = 1,2, ..., k) be random variables representing the outcome on the 

(n+1)-th individual after Tj is applied. We assume that 

X� 
ý, ~ Bi r, 1+eý., 9 

Yn+ý. ý ~ Bi S' 1+eý., +a, , .1-1,2, . .., k. 

Our aim is to derive the predictive distribution of Y�+,, j. Let us define two parameter vec- 

tors 0" - 
(0k, 02, ..., B� and akQ (a,, a2, ..., ak) , an indicator function 

ES, j 
a 

1, if treatment Tj is applied to individual i 

10, otherwise 

and nj is the number of individuals who received treatment Tf, that is, 
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The predictions will be based on a data set 

n D° (xi, Y, )"1 °1, Z,..., nj 

and on an observed x+,. 

8.2.1. A Classical Approach 

Given the likelihood function 

n+l it k 

exp ýe; x, +(e, +«, )yta;; 
L(en, en+1r QC 

k; Dn, xn+la n+! 
ý- J- 

rýn ý{(l+e') 
ký 

(1+e'+aJ)s au 

ý-/ ` 
ý- J 
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the maximum likelihood estimates 6" and äk are obtained numerically solving the sys- 
tem formed by the (n+k) equations 

re' k a; 
ýeBl+a ' 

xi+yi 
1+e' -Sý 1+eý+aJ 

'0 s1=I, ý... r%Lý 
! 'ý 

" 

y'8ýi-s l+eý"«, °0 º. 1=1,2,..., k, 
i-! ý-ý 

whilst 

(8.5) 

0n+1 ° In n+1 (8.6) 

Then, a simple estimate for the predictive distribution of the random variable Y�;,,, would 

be 

Bi 
(S. 

1+e ý. ý*ý, 
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Note that this approach is not possible if x�,, =0 or if x,,,, = r. 

8.2.2. A Bayesian Approach 

Let us consider a hierarchical prior structure in which, at the first stage we take 

p(e". e�+,, ak ie, lk) 

=I j{P(ea i e)}{p(af 1 i7, )} 
:., , 

and at the second stage we take 

P(ýr Ilk) a n(ý) ý{C ý 

"%ý}f 
Iýý 

where 1k= (lilt r12, ..., ilk). We will assume that 

e'- Ga(a, eý) ,i-1,2, ..., n+ 1 eal - Ga(bj, e"') , j-1,2, ..., k 

- Ga (c, d) e''' -Ga(g1, hi) ,. 1 -1,2,..., k 

The joint posterior distribution is given by 

P(enº en. 
lº a 

kº k ý+ 71 

IR+I 
Rk 

exp ý6; xt +ý(8; +a1)yý8; ý 
ý- ý- I D, xR+I aI 

B' rl 
R A- Bt+aI J8(I 

X 
ý1 ) +e 

ý- `1 ý- 
+e 

n+/ kk 

xexp -ýeg+e; -ýe'''+°`' " -ýhje'- de 9 x 
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n+/ kk 

xexp 
ý. ýýa(ý+6; 

)+ibj(ljj+aj)+,. 
ýýgjqj+cý , 

e+I ek 

(8.7) 



Chapter 8 

8.2.2.1. The Exact Predictive Distribution 

The exact predictive distribution of Y,,, r. j is given by 

I D", x"+, ) °f aj)P(e"+r aj I D", x"+, )d6",, daj . : H2 
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Hence, the problem would become much easier if we could derive from (8.7) the marginal 

posterior distribution of 
(6�+,, 

aj); however, the best we can do is to eliminate ý and ýk 

to obtain 

n+! k 

exp 0, (x, + a)+ý baf 
nkn 

Pýe + 
0,, 

+,, aID, xn+1 « I- ý-1 

k 
a, 

I 

n+1 )(fl+1)a+cfl+,, 
I(eaJ 

d+e'+e'ýr +hi) 
°` + 

ek 

exp ý 

F' ek 

1 (iýe ')'aýý 

,_,. 

and the exact predictive distribution of Y.,.,. j will be 

Rsr 
exp (6 

+, +a1) Y, +ý. / 
p(Y�+r. 1 I D"x�+r) "` Y�+,. J eý., +aý 'x ý , ýý. ý. r (1 +e) 

(8.8) 

x P(en, 6�. r ak1 D", zR., )d9"d9,,., da k, (8.9) 

which involves the evaluation of a (n+k+1)-dimensional integral requiring the use of a 

numerical integration technique. Because of the high dimensionality we might expect 

numerical problems. Such problems would not disappear if we would consider vague 

second stage priors in the hierarchical prior structure. 

n k 
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8.2.2.2. Estimation Via Gibbs Sampling 
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The Gibbs routine (section 1.2.1) can be used to estimate the predictive probabili- 
ties of Y. +,, / overcoming the numerical problems that may arise in (8.9). The full condi- 

tional distributions to be used are 

p(6,1 8j.,, 6. 
+� 

a 
k, 

DM, exp}9, (xj +yj +a)} xn+l) « 
n+l (n+Ila+c 

ýý sb 1 
d +ýe' ý1 +e'ý ý ý1 + +e'°') 

ý JJJ 
i=1,2, ..., n, 

nkn 
eXP{ee+1`xn+1 + a)} 

a, Dº xn+, ) « 
(n+1, a+c 

d+neý ýl+ee°", 
ý_, 

(! R 11 

p(aj 1 9", 9�. r a,. j, D", x.. l) oc 
« bi+8; ý9 

+« . au ýer+hý) ý( ýl+e' rl 
,_ 

9 j-1,2,..., k, 

which do not simplify greatly assuming vague second stage priors. The random genera- 

tion of all necessary values for the Gibbs routine requires a sampling technique such as 

the rejection sampling algorithm (section 1.23). 

Again problems are likely because of the high dimensionality. 

8.2.2.3. Estimation Via Asymptotic Results 

In this section we will use the asymptotic results summarised in section 1.2.2 in or- 
der to approximate the posterior distribution by a multivariate normal distribution. Then, 

we easily obtain the approximate full conditional distributions to be used when estimating 

the predictive probabilities through the Gibbs routine (section 1.2.1). 
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8.2.23.1. Posterior Normality Based on the Likelihood 
Function 
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Following Bernardo & Smith (1994), we find that 8,,,, a,, a2, ..., ak are inde- 

pendent a posteriori with 

P(e. +, 
1 D, N 6�f,, r 

xp,, (r -x,,,, 3 1' 

R 
p(aj I D, x,., ý 

°N aj, -, j=1,2, ..., k, 
vý 

where ej (i -1,2, ..., n), 6�+, and ä1 (j 1,2, ..., k) are the maximum likelihood es- 

timates, given by (8.5) and (8.6), and 

with 

_ýmý vj=uj f , j-1,2, 
1-1 j 

s8j e 
B, +äi 

ýrc s ----- - ,ý (1+e '+aj 
1l 

J/ 
a 

re6' 
(1+ee') 

k 

+m ,j 
! -I 

R 

uj=ýmýj 
, -, 

Problems arise when x�., =0 or x�+, m r. 

8.2.2.3.2. Posterior Normality Based on Characteristics of the 
Posterior Distribution 

O'Hagan (1994) suggested another asymptotic approximation for the posterior 

distribution (8.8) based on the posterior mode and on the modal dispersion matrix 
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(section 1.2.2.2). The posterior mode mä k) is the solution of the system 

formed by the (n+k+1) equations 

((n+ 1)a+ c)ee, re" 
x, +y, +a- R+, -0 

d+ eed 
1+e' 

ý., 

k1 Bý+a/ 

J 

biýe 

, i=1,2,..., n, 

X,,., +a - 
((n+1)a+c) ee°"' re^"' 

d+1 41 eel + 
f-! 

y, \bi + gf ý e«' btý e 0. ««, 
ar ý0 , a1,2,..., k, 

ý; f e'+bj , _, 
1+eý' J 

(s. io) 

which must be obtained using a numerical technique. Then, defining the constants 

(i-i. 
e`{°ý 

, ia1, Z..., n ; jm1,2,..., k, 

/, s 

-A_,. 
sb, ý e -", 

w+l 
((n+l)a+c)e' d+ e' 

poi 

n+1 (d+e0P) 
re' k 

+ 2+yr; ý (1+ee') 
; -, 

((n+1)a+c) e, «e, 
ga 

2 (d+e" 

P'1 

, iptl , i, l=1, Z..., n+1, 

((n+1)a+c)ee-''I d+eo' 

n+ (d+'e)2 

ý., 

usý 
re .., 

+ 

-SsI--ij , 4-1 I I+ j-1 

(1+e^'') 21 

R (bj +gj)hje5l 
yja 2 +ýT, ý 

ý 
), 

-, 
( 
e"'+h 

(8.11) 
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the predictive distribution of Y�+1 i is estimated through the Gibbs routine using the fol- 

lowing full conditional distributions 

P e,. 1 e,.,, eR. � ak. Dp, x�., )=NI B; - 

k( e+l 
_ 

`aP 
- aP) tP+ 

1( 
\em 

-em)qim 
P' 

mri 

.f 

1 
, - f; 

9 

i 
i=1,2,..., n, 

p(en+, 1 e", ak. D", xn+, ) °N 1R 1 

_ 
x, (0, 

-eP) 
gR+,, 

p 1 
eR+, -ü9ü9 

tI 

p(aj 
16°, en+� a�"j, D»" x. +1)' 

N 

(o_o)r1 

.j 
1 

di - Vf , yj 

/ 

8.2.2.4. Laplace Approximation 

, j=1,2,..., k. 

The Laplace approximation for the predictive distribution of Y..,,, is 

S'r 

j1 D", x"+1) °` 
(Y. 

. I. 
Q 

expj-nh'(8"', 6"ý, ý aks) +nh(6", "+1, ak)}. 
fl 

The functions h(9 ", 6" 
+1, a k) and h' (6", 6"+ 1, a k) are defined as in (1.13) and (1.14) 

by 

n+/ knk 

-n h(B ̂ , Bn,,, a 
k) 

ý 6; (xl + a) + b; «j + (61 + aj)y, a1; - 
l 1-1 1-1 º-1 J-1 i-1 j-T 

n+1 

-((n+1)a e'ý - +c)1n d+a-1ýeý 
)-"+'Irln(l+e 

ý-I 
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and 

-ý 
{(bf 

+ g, 
) In( e°`' +h1)}_ 

j {sö, 
11n(1 +e0 `a' )} 

,-ý, -1 

en+l" ak) °Cen., l +aJ)ynrl. J -S1II(1 +e 
w. +aý)+ 

20, (x, b; «; +2Y , 
(e; +«; )ya;; - i_, , _, , _, j_, 

n+1 n+1 

-((n+1)a+c)ln d+e' -ý{rln(l+eB')}- 
I-1 t-1 

{(bi 
+g, )In(ea' 

+h, 
)}- {s8, 

ý In(1 +e : «al ý}. 
, -ý 1-1, -1 
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Solving the system of equations (8.10), through a numerical method, we obtain 
(0 ", 

ö 
+1, 

ä k) and 
(0 

, 0..,,, a ks) is derived solving numerically the system formed by the 

equations 

((n+I)a+c) ee' reel 
k aipeel +a' 

d+eev 1+ee, -sý 
e 

[, P-1 

P-1 

((n+ 1)a+c) eBR"' 
=1 a 
n+ l 

d+I ee' 
P'1 

re "'' se .. 1+a, 

1+ee-' 1+ee"''`°' 
wo, 

" 
(b1 

+ g1 
) 

eaj " Üiý e 
i+a, 

se'. t+aj 

Y; by +Y"+Ii- 
eaj +hj -s; 

jl+e0 
i, -I+e ''+aj .. 

0, 

n a.. n aA (b. + g. e 8;,. e6l' 
b^' 

, 
+y; aý�- 

ea " +h�, -s 
., 

eaa a0 mýj , m=1,2,..., k. 
, 1+e' ' 

Following (1.16), v is defined by 
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k -1/2 

Qa üý`vPýIAI 

, 
P'7 

where A is a symmetric matrix whose elements are 

qrn+, k tP 

ü 
P_IvP 

J. 
tiPtlP 

ü P., vP 

P' 

, ioj, i, j=1,2,..., n, 
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with ü, vp (p a 1, Z..., k), f,. (i =1, Z..., n), g; ý 
(i = 1,2, ..., n+1; jý1,2,..., n+ 1) 

and 1. (i a 1,2, ..., n; j=1,2, ... k) being the constants defined in (8.11). Still from 

(1.16), ä is given by 

r} ä= ýýü 
w* -z2P 

{v }ý'oI [ 
Dý 

l poi 

where A* is a symmetric matrix whose elements are 

ý 

A; 

With 

qi ý 
IV - 2t yz'q, 'R+ý + tllü 

ü w'-Z0Z 

1-112 

I 
k r'2 ýp 

p'1vP 
poi 

"""""" Z* """"k"" n/ýln+Jw+ti. t u -z tiq +g ,tt. t qi, 
n+lý J! j J l, n+l i, n+ lj ýp lp 

u'w - z' Z+Iv 
p. j 

p 

4u 
(n+1)a+c) ee; +e; 

ý+ t2 
d+eo. ' 

P-1 

rl id [ 

, ip+l, i, 1=1,2,..., n+1, 

S eýtaý, 
,S Vi, rr 

2 n; m 
un ý (i+e'«' 
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w' 

((n+1)a+c)e ^"' d+I e' 

U* 
re e'-' se 0.., +«; 

f 

d +e *2 (1+eo-., 12 (I+e r.. 2 
,/J 

ý, (b. + g, �) 
h�, ea 

v, n° i. X2 m'°1, m- 1,2,..., k, 
ný 

V-- + h,,, Ji -I 

IR* Se 
0.., 

+a,. ýb1 +gJ hJ e; 
a2 ++ , (ea' 

+h1 
) 

'-1 
f (i+e')2 

se61.., +«; 
z- (i+e°'")2 
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The implementation of this approximation may be somehow difficult because of the high- 

dimensional determinants which must be evaluated numerically. The assumption of vague 

second stage priors does not simplify much. 

8.3. A Crossover Design to Compare Two Treatments 

The crossover design for the binomial model corresponding to Chapter 4 can be 

modelled by 

Period 1: 

Period 2: 

W., - Bi r(l - b,, ) + s8,, "1 +e 'ýa'a 

ee, ºß+a,, a 

W2 - Bi r(1-8; 2)+ s8r2 01+0+612a 

where Si, and Sit are the treatment indicators defined in (4.1). 

Our final goal is to derive the predictive probabilities for the outcomes on a new in- 

dividual when treatment T, or T2 is applied. Those outcomes are represented by the ran- 
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dom variables Z, and Z2. We assume that, conditional on 6�+, , Z, and Z2 are 
independent random variables such that 

e ̂ "' ZIýBi r, l+e"'' ' 

eR +Bwýi 

Z2 -'61 S' 7+ 
ea. e w-I 

The predictions will be made based on a data set D" formed by the information 

about the outcomes for each individual in both periods as well as by information about 
the used treatment, that is 

DA 
{(will 

wi2l Silf aJ" 1° 1,2,..., nl. 

8.3.1. A Classical Approach 

The likelihood function is 

IR R 

exp ý (9; + b;, a )wil +ý (6; +ß+S; 2a 
)w� 

DR) LýeR" eR+r a. ß: 
u.. 

nl(I+e 
B'+ a''°` ). (, -a,, )+se� (1 +e 

'+ß+b, g rtl'3,2)+sb. 2 

ll 

and the maximum likelihood estimates 9ä and ß will be obtained solving numerically 

the system formed by the (n+2) equations 

ý+d, la (r(l 
-8i1)+s8il eB 

wil + w+2 
1+e , +d�a 

(r(l 
- 

S12) + s8i2 
)ee, +p+a, g 

1+e '+P +a, 2a =0 , 
1a1,2,..., n, 

n��ae,. a,, « ý` e 
,. 

ß. a,, « 

Iauwt+ 

ý-ý 

ýai2h'ýz-s, 
l+ee''a"« -s; 1+eý. ß. a, sa 

ý 

ý_ý ý-, 

e^ "' 

B; +ß+bi2a 

ýý 
ýrýl-b; 

Zý+s8i2 e ý-0. ý 
N'i2 -1+e1 +ß+b, =a 

ý-ý '-1 
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Since D" contains no information about the (n+1)-th individual, we are unable of ob- 
taining the maximum likelihood estimate for 6�+1 

, so that plub in estimates of the predic- 

tive distributions are not obtainable. 

8.3.2. A Bayesian Approach 

Let us consider a hierarchical prior structure, taking at the first stage 

nr1 

p(en. 0.. � a, ß1e, j7, ý) - ý{p(e; 1 e)}p(« 171)P(ß 1 ý) 

and taking at the second stage 

P(ý. n. 0a P(OP(OP(c). 

We assume that 

e Ga(k, eý) e°` - Ga (h, e°) eß - Ga(g, ec) 

eýýGa(l, m) e''- Ga(q, t) eý-Ga(u, v) 

with k, h, g, 1, m, q, t, u and v specified. 

The joint posterior distribution is given by 

, I+, 

p(9", B"+,, a, I D") «exp -eý 
ýee' +m) -e''(e°` +t) -e; 

(eß +v) x 
i-1 

xexp ((n+1)k+1)ý+kBn+1+(k+2)ý6l +(g+h)rl+(g+u)ý x 
, _, 

RRR 

exp a h+8;, w;, +Si2wi2 +ß g+wi2 

I+e ei+a�«1"V(1 +e , +a+a,, «1 ý" -,:, _ýýýý 
a1l1 
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After eliminating the hyperparameters ý, 11 and C, we obtain the marginal posterior distri- 
bution 

,. 
f A^ 11 iv RI Tl°l.,. - Fkv' Un+I' "' pI cr I '^ n^ 

\1 
+e 

ý+d, ýa1ý1'dýýý+sd, ýrl 
+e i+ß+6, =a1ý{I'dýsý+tdý= 

x 

iýl 
JtJ 

11 RR1rA ýl 

x 
n+/ (n+l)k+l 

[%e8+m) 
+ 

(ea 
+t)9+k(eß +V)s+u 

+- / 

8.3.2.1. The Exact Predictive Distributions 

. (8.12) 

Given the posterior distribution (8.12) for (8", 6"+, a, ß), the exact predictive 

distributions of (Z,, Z2), Z, and Z2 will be given, respectively, by 

P(z, ' z2 I D) « 
rsr expt6�+, (z, +z2) +az2} 

J 11) Z2 gt-+J 
(1+ e e- ')"(I+ e«+9m., 

y 

p 
(z, I D") °C 

zf 
exp eeý., Z" 

ý 

(r)ýý"3 

ýI+e ý p(6" , 6". 1, a, ßI D")d6"dB"; ldadß, (8.14) 

PrZs 1 D") «s 
exp (a Q 9^., 

, 
z. ý Pý9"'6". r a, ßI D")d6"dB". jdadß(8.15) l z2 +e) 

which evaluation requires the use of a numerical integration technique to solve the (n+3)- 

dimensional integrals involved. 

x p(6" , 9"+,, u, ßI D")d9"d9",, dudß, (8.13) 

a 
exp (k+ 2)y 6; +kB,,, ý 

, _, 

A 

Assuming vague second stage priors, we will not get significant simplifications. 
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8.3.2.2. Estimation Via Gibbs Sampling 
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Because of the high dimensionality of the integrals in (8.13), (8.14) and (8.15) we 
would like to avoid their evaluation. The Gibbs sampling algorithm (section 1.2.1) is one 
of the possible ways of doing that. From (8.12) we derive the full conditional distribu- 
tions to be used. They are 

RR � exp{(k+2)9i} ýJ(ei' ejri, en+1+ a, ß, 
D) °` (1 

+e 
: +a', a1r 1-5u +sB, 1 r1 

+e 
ß+d. lalr 

1-ai2 +sa12 
x 

\/\/ 

1 
X 

n+1 
( n+l )k+l ý1'1, 

ý"""ºn, 

yw e' +m 
P'! 

P � �l a 
exp k9. 

+, eý+t ý eý a, ß, D/ 
ý+t (n+t)k+t (e81 

+m 
ý-, 

9 

ý 

ý n+lº 
ß, 

ýý 

exp a" hýj_+ 
R 

a.. 1+ 

8. 

a ..; 

lwtl +Bx 

p(al6"9 D") «. 
^`^. .. I1_a _UM - 

1.1 l 1(1 +e"'°') '-,., --,. (1 +en, +p. a�a) '--1.. J 

1 

t) 
9+k ýe + 

p(ß 1 e", 6R+r a, 1)j 

If 11 11 

a- 
ý 

.9 
{4Pöi2a 

) r(1-ai: )+aa, = (eß 
+ V) 

8+88 
9 

and they do not simplify much when we consider the vague second stage priors case. 

Note that the random generation of values of 0.,., is very easy since its full condi- 

tional distribution is a transformed beta distribution (see Table A 1.2). The rejection sam- 

pling algorithm (section 1.23) will be required to generate the values for all the other pa- 

r=eters. 

R 
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8.3.2.3. Estimation Via Asymptotic Results 
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The asymptotic result we surnmarised in section 1.2.2.1, presented by Berriardo & 
Smith (1994), cannot be applied to the present problem because it is based on the maxi- 

mum likelihood estimates and, as we saw in section 63.1, we are unable of obtaining b.., 

which is a crucial estimate for the estimation of the predictive distributions we are seek- 
ing. 

O'Hagan's (1994) suggestion can be applied because it uses only characteristics 

of the posterior distribution (8.12), namely its mode maä, ß) and its modal 

dispersion matrix. 

The posterior mode m- 
(6", 6, a, is the solution of the system formed by 

the equations 

((n+1)k+l)ee' 
+ 

(r(1-8;, ) +s8;, ) e'+8''°` 

a'ý + + ; 
eev +m +ed'' 74 

P-/ 

h+buwri+aawa - 
ý-ý ý-ý 

e"+t ;; I 1+e, `a,, « I 

R sb, Zee, 
+p+a, ý 

1+ee, +p+a�ý 
ý-1 

"_ (g + u)eß " (r(I 
-8j2) + sb12)ee. "ß+a11 

ý 8+ wie 
e- 

j' 
` 1+ee'+ß+6'-- °, 

I-Ig -I 

((n+1)k+l)ee°'' 

ýee` +m 
, _, 

nr. 

+5; 2) +sa; 2, 
)e'+ß+3,1a 

1+e "+0+6,2a 

-k -0- -. ) "- -) 

1A... 
.° 

(Ll+j1)8a kI 
y_ 

S(i'le'; 
aýla 

ºýR.., - 

-k-2=0, ia1,2,..., n, 

wo, 

(8.16) 

which must be obtained using a numerical technique. Then, defining the constants 
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= t. 

ý(n+1)k+l)ee' e' +m 
Pý 
p. i 

rt+1 .2 (ee 
° +m 

P'1 

+ 
(r(1- 45i, )+ sS;, )e , +a,, « 

(1+e,. 6,, «) 2 

(r(l-b, 
2) +sbje di+ß+n, 

-a 
+ (iý 

e1')2 

B, +Bý ((n+ 1)k+ l)e 
D+ý = 

n+1 _2 (e0 
' +m 

P-1 

, i-1,2,..., n, 
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1+e , +ß+a, 2dl 

I 

ý(n+1)k+l)e ^'' e' +m 
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n+] _2 (e0 

' +m 
P'1 

(q+ hýte ["ý " 
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(ea + t) i-1 ý-ý 

the full conditional distributions are 

p(e; i e;,,, eR+� a, ß, D") ° NI e, - 
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h 
O'ýC12+ 

iýl 

+ 
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(8.17) 

i=1,2,..., n 

(g+uýveß " 
Pz °z 

+ vl ý_I 
(eA 

1 
ý(e; 

- e; ) b;; +(« -«)ý, +(ß -ß 
jai 

a; Qj 

1=1,2,..., n, 
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P D") 
(o_e, 

f 

i 

D") =N 

P(l', 1 B", e". ra, D") °N 

a- 

Un+I, i 1 

I 
I 

p 

M 

1 
, - P, P1 

i 

n,. \ I 

I 
N- ''` = 

P2 ý P2 
\I 

The solution would not become simpler assuming vague second stage priors. 
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8.3.2.4. Laplace Approximation 

We begin by defining a function h(O n, 0,,.,, a, as in (1.13), that is, such that 

-n h(O", 0.. a, (k + 2)ý Oj + W.,. j +ah+ bilwil + 16i2M2) + 

+P 9+ Wi2 ((n +I) k+ I) In( e+ 11 
)- 

M) - 

-(q+h)ln(e"+t) -(g+u)ln(eß +v)- 

rt 

ln(l +e''a, '"ý}- 

ý(9; -6; )d; +(a-ä)ö 

{(r(1_ 
a12) + s8i2) 1n(1 + e"+ß+"fx -ý' 

ý}. 
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Based on this function we define (6n, j..,, d, ý) by (1.16). Such a vectoris the solution 

of the system of equations (8.16). Still using definition (1.16), we obtain 

1/2 {. 
fP, IAl} 

" 

where A is a symmetric matrix of order (n+ 1) whose elements are 

d 
bi 2 Ct 

, 1=1,2,..., n, 

hh 
"1 

"1rRi]-jrl1+% yly/ 

AI m Diý __ 
f 

02 

C, j 
. 

_ 
ioj, i, ja1,2,..., n, 

P, 

"n. l. indi -c-0 "i - 1,2,..., 
P, 

and all constants involved in the definition of these elements are given in (8.17). A nu- 

rnerical algorithm is required to evaluate the determinant of 0 

8.3.2.4.1. Joint Predictive Distribution of (Zl, Z2) 

We consider a function h, * (6", O,, ,, a, P) such that 

+ -nhýýB", 6".,, aº{ýý° e"., (z, +z2)+az2-rin(l+eo-., )-sln(l+ea«e°. ') 

ll R 

+(k+2)1 6; + ken;, +« h+ a,, w,, +I ai2wi2 
l 

+ß g+wi2 -((n+1)k+1)ln 
ýe' +m - 

+-1 ý-1 

i-I i-I 
+ 

-(q + h)ln(ea + t) -(g+ u)ln(eß +v)- 
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+sb;, ýlnýl +e'+e""ll- 

-ý 
{(r(i_ a, z)+sbiz) ln(1 +e el «ß«a, ý }l 

9-1 

and, solving numerically the system formed by the equations 

ý 
B; fA, ýa ((n+1)k+1) eg r(1-b; j +sb; j)e + + ; 

ee +m 
+ 

+e:. b; a Iv 
P'I 

(r(l-a;, )+sb;, )e'+0+6,2a 
+' 1+e ++ß+6, =a -k-2-0, i- 1,2,..., n, 

((n+1)k+1) ee°'' Te o", se4+e.,, 
+ I+ e",, 

+ l+ e+e,,, 
- zI -Zz -k= 0, 
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ee' +m II 
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r_1 1+e , ''-bi ja ý_ý 
l+e''+a+b'7 a ý' 

(g + u)eß 
-ý 

(r(1 
-bi2)+ s(5i2)ee1 +ß+dýP 

g+ wi2- 
eß+v 1+eei+ß`a'g 

i-ý ý-ý 

we derive (9(cý 
, 9A+, (c), aý, ß: ) Then, we define the constants 

a'(e) " 

n+ l 

((n+1)k+l)e0`°' ýe+ m 
P-1 
pai 

n+l 
e °'`' +m 

P'I 

(IoJ *a 

r(l - a11) +s811)e9 
d+R 

+ý (1 
+e 

"', 4�a: `2 + 
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(n+1)k+1) e . 'rd+e; ", 
n+ I2 

2 e+m 
p-1 

0-*l 
eº +aý 1 ýe 

, sb;, e 
Cit(c) = (1 

+e ; (e)+a, 14e ) 

+l- 
8i2ý+s8; 2) e , <<ý+ße+a, ýae 

(1+ 
e(7'(') 

fßQ+a, ia; ) 2 

G" 

2+ 
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i=1,2,..., n, 

dKýl a 

Ct2(c) ° 

. (r(1 
-ai2J+sSi2)e 

0"e,; ýa37ae 

+a,, ýa" (1+e e'', ' + ß; ý 

I 

f' 

. e° C 

Poo 

(n+ 1)k+l) ee'"°' e ̀`°' +m 
a-ý 
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ýe"° +m 
a_, i-1 
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9 
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eae +t` 

and as will be given by 
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ýC >o Ci2(C) 
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... 
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e+e. "X e) sea 

1+ 
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(g+u)veß° " 

PVC) =z+ d*(c) 9 

(e + v) ý_ý 

I/2 
""" d" Qc ' fc p2(c)I`1'c)I} . 

where Aý, ) is a symmetric matrix whose determinant must be evaluated numerically. The 

elements of such a matrix are 

,i-1,2,..., n, 

, i,, j, i, j=1,2,..., n+1, 

+ Sai2eB'(. ) +P: +3.2a : 

"2 "2 
. b, 

a ýý, ü a ý+rý) --. ºý,,..., n, fc P2(c) 
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.. " 
" 

bi, 
rt+1(c)bj. rt+1(c) 

di(c)ý(c) 

/ý 
"Tc)H- 

bN(c) 
" , 1*f, 1, J=I, 2,..., n, 

Jc p2(c) 

.2 .2 '*. e, Oc 
4c)n+r. 

n+t a Pi(C) . f P2(c) 

.. ý. 
. 

bi.. 
n+1(c)ec ui. (c)"o 1,2, ... ý 

ýc)n+l. 
i Ci(c) -ýZ t1. 

fc P2(c) 

Hence, the joint predictive distribution (S. 13) is approximately given by 
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. 
p(z'' Z2 I D") azz 

Cr, 
exp -nh, *(ýýý 

º 6ý+1ýýr a, *, P,, *) + nh(6", 6p+>> ä, ß) . 
, 

('5) (aI2 

8.3.2.4.2. Marginal Predictive Distribution of Zl 

The predictive distribution of Z, is approximated by 

p(z, I D") « 
r' r 

exp f -nlilCil)' 
enýl(! 

Y a1, ß; ) 

+ nhI en. en+1' ar ßý 
r 

Z, Q` 

where the function h', (e", 6�+,, a, ß) is defined such that 

a, ý) = 9�+, z, -r 1n(1 +e °"' )+ (k + 2)16; + k9n+, + 
i-1 

RR 

+a h+B;, Wi1+8i2wi2 +ß g+wi2 - 
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J/ JJ 

i=! I\ I-i 
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-ý{(r(l-8, z)+s8i2)ln(l+e'+ßia, 
ý)} 

, 
i-( 
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(0(1')P, 0. *., (, ), a;, P; ) is the numerical solution of the system formed by the equations 
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The evaluation of the determinant of Aý, requires a numerical al g0rithm. 

8.3.2.4.3. Marginal Predictive Distribution of Z2 
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In order to derive an approximation for the predictive distribution (8.15), we define 

a function h; 2 
(0", 0.,.,, a, P) such that 

a, ß) - 
(a+O.,., )z., 
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and its determinant must be obtained numerically. Finally, the Laplace approximation for 
(8.15) will be 

p(z2 1 Dj cz 
( s) 

expf-nh2*(q*, 0.., 
(2), a2, ß2 

Z2 2) 

4 

a 

In the above approximations we need to evaluate numerically detenninants of large 

matrices which can cause some problems. When we consider the special vao-ue second 

stage priors case, the solution for the problem does not simplify significantly. C' 
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CHAPTER 9 

CONCLUSIONS AND POSSIBLE FUTURE WORK 

We have developed, in a Bayesian framework, methods to derive the predictive dis- 

tributions for three problems, which can be summarised as follows: 

The "Multiplicative Effect of a Treatmenf ' problem: 

given Oj, Xi - Po(exp(Oi)), 

given 01 and a, Yj - Po(exp(a + Oj)); 

The "Treatment Effect Under Biased Allocation" problem 

given Oj, Xi - Po(exp(Oi)), 

given a, P, 0, and x,, 

Yj - Po(exp(a + 0)), if treatmentT, is used, 

Yj - Po (exp(p + 0)), if treatment T. is used, 

given a, T, is used if x, <a and T2is used if x, z! a; 

The "Crossover Desio-,, n to Compare Two Treatments" problem: 

Treatment Period I Period 2 

T, Po(exp(O, )) Po(exp(p + Oj) 

T2 Po(exp(a + Oj) Po(exp(a ++ Oj)) 
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We also generalised the second problem to a situation where more than two treat- 

ments are available. 

Since the evaluation of the exact predictive distributions requires the use of numeri- 
cal intearation techniques which are sometimes not feasible, because of the form of the 
function to integrate or because of the dimension of the integral, we derived estimates and 
approximations for the predictive distributions. These were through the Gibbs sampling 
approach, normal approximations for the posterior distributions and the Laplace ap- 
proximation. Analyse of the results obtained in the examples presented allowed us to 

conclude that the Gibbs sampling approach and the Laplace approximation were excellent 
approximations. Furthermore, because of the high dimensionality of the parameters the 

normal approximations for the posterior distributions were somewhat poor, especially the 

one based on the likelihood function (Bernardo & Smith(1994)), which tends to diverge 

towards the plug-in estimate. The normal approximation suggested by O'Hagan (1994) 0 00 0 
improves matter somewhat. One point in favour of the Uplace approximation when com- 

pared with the Gibbs sampling approach is the superior computational speed. 

We also considered the three problems above with the assumption that the under- 
lying distributions were exponential and binomial. The solutions obtained seem to be 

more difficult to implement due to the numerical mathematical techniques then required, 

and is expected to be undertaken in the future. It would also be interesting, in the future, 

to see if it is possible to generalise the solution of the three problems for the case when 
the underlyin a distribution is any element of the exponential family of distributions. 

0 

We also studied a model that could be used to predict the number of accidents, y,, 

at a road junction based on the traffic flows, xij, at the junction and on a set of covariates, 

describing features of thejunction. Such a model is 
0 

Po exp(aj + kij)) Z ..., n 

Yi ~ Po exp 1 Aj a� + 

Barnett & Wri ght (1990) and Dunsmore & Robson (1992) had considered this problem 0 
in a classical framework; here we developed a Bayesian predictive approach. The exact 

predictive distribution involves high dimension integrals, which make numerical intecyra- 
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tion difficult. Therefore we developed estimates and approximations for the predictive 
distribution, as in the problems considered earlier. 

In an analysis of a data set, in which we concentrated on the Laplace methods, we 
found that the model above was not too sensitive to small or moderate changes in the pa- 
rameters, of the prior structure. A method for choice of hyperparameters was suggested. 
We found that the systems of equations involved in the solution of this problem were ex- 
tremely unstable and that good starting values must be given in order to achieve conver- 
gence of the numerical technique. Methods for the choice of covariates through the use of CP 
Kullback-Leibler divergence measure were also considered. 
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APPENDIX 1 

DISTRIBUTIONS OF ]FUNCTIONS OF RANDOM 

VARIABLES 

Throu ahout the developments of the methods we have considered various functi ons 0 
of random variables. We record here some distributional results. 

TableAl. l. Xis Ga(g, h). 

Random Variable Probability Density Function Range 

x hl'xg-'e-" X>o 
P(X) = r(g) 

Y=ln(X) hl' exp f -h ey I exp Igy I y E-= 91 
P(Y) = F(g) 

T=ln(X)-k hgexpl-he'+, tlexpl(t+k)gl t E-= 91 
P(t) . F(g) 

Z .. 
In(X) 

k khg expl-he'lexpfgk . -I z EN 

I (k > 0) 1 P(Z) - F(g) I I 
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TableAl. 2. XisBe(g, h). 

Random Variable Probability Density Function Range 

x xs- I (I - X) h-I O<x<l 
P(X) - B(g, h) 

y 'o 
I-X 

- y h-I Y> 0 
Y P(Y) = B(h, g) (y + 

Z-vy 
VS z h-I Z>o (v > 0) P(Z) = B(h, g) (z + v), "h 

T- In(Z) vg expithl t GEN 

II 
P(t) - B(h, g)(expftl+vy+h 
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APPENDIX 2 

TRAFFIc ACCIDENTs DATA SET 

218 

This appendix contains the data set used in the example presented in section 6.2.5. 

Values were recorded at 78 road junctions, as shown in table A2.1. For the i-th junction it 

was considered two traffic flows, x,, and x, 2, the number of accidents, y,, and four 

covariates, ;,, ;. 2, ; tD _, 
and ;. 4'measurina, 

;- the entry path curvature (1/ metres) 

4.2- the entry width (metres) 

;. 3 -the percentage of motorcycles (%) 0 

; 4- the approach gradient (in categories between -3 and + 3: -g=downhill). 

Table A2.1: 

i xi I Xi2 Yi 41 Zi2 Zi3 
I 

ýZi4 

1 69 104 5 0.0040000 11.4 2.96 0 

2 76 93 6 0.0028571 6.1 2.30 -1 
3 77 84 0 0.0071429 7.6 2.46 -2 
4 113 101 4 0.0050000 17.6 1.26 0 

5 92 95 1 0.0028571 12.1 1.18 -1 
6 128 109 12 0.0000000 17.0 1.32 0 

7 59 76 7 0.0076923 12.0 2.18 -2 
8 62 81 2 0.0000000 11.8 2.86 0 

9 200 96 10 0.0111111 15.3 2.20 0 

110 1 92 1 77 1 11 0.0000000 1 8.1 1 1.25 1 41 
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Table A2.1 (cont. ): 

I xi I xi2 A ;I Z12 Z13 'ýi 4 
11 74 60 2 0.0028571 7.7 1.65 1 
12 55 59 5 0.0000000 11.7 2.34 -2 
13 45 47 0 0.0090909 6.0 1.96 -1 
14 165 99 2 0.0055556 13.5 1.56 0 
15 75 96 1 0.0100000 9.2 2.52 -1 
16 81 33 1 0.0000000 6.2 2.75 -2 
17 94 90 5 -0.0055556 12.4 3.66 2 
18 93 58 4 0.0000000 9.1 1.62 -1 
19 100 28 2 0.0000000 6.9 2.59 0 
20 67 103 0 0.0028571 8.5 2.24 0 
21 88 51 0 0.0028571 7.2 1.84 1 
22 89 85 2 -0.0050000 12.4 3.81 2 
23 70 85 2 0.0000000 6.1 1.91 -1 
24 75 114 10 0.0040000 11.4 3.04 0 
25 159 220 3 0.0105263 8.2 2.62 0 
26 195 70 7 0.0066667 14.0 1.66 3 
27 55 82 2 0.0031250 11.5 1.95 0 
28 82 91 4 0.0050000 10.6 1.46 1 
29 48 88 5 0.0083333 12.0 1.53 0 
30 146 68 1 0.0028571 13.5 2.13 0 
31 42 63 0 0.0028571 9.2 2.40 1 
32 195 50 9 0.0000000 10.2 2.00 -1 
33 23 2 0 0.0040000 6.5 0.99 -1 
34 85 33 3 0.0142857 6.5 2.89 0 
35 20 17 1 0.0055556 6.6 2.39 0 
36 102 100 0 0.0181818 5.8 2.82 0 
37 100 113 0 0.0166667 6.3 2.97 -1 
38 77 125 0 0.0166667 6.6 2.28 0 
39 100 80 0 0.0285714 6.8 1.64 0 

1401 52 1 43 1 11 0.0037037 1 6.5 1 3.571 01 
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Table A2.1 (cont. ); 

x il Xi 2 Yi Zil ;, 3 Zi4 

41 42 42 0 0.0188679 8.4 2.32 0 
42 97 58 0 0.0204082 7.4 1.88 0 
43 68 78 0 0.0250000 5.5 3.12 0 
44 107 49 0 0.0133333 7.1 2.36 -1 
45 28 79 0 0.0117647 7.3 4.82 0 
46 73 162 3 0.0166667 7.0 1.96 1 
47 52 69 5 0.0047619 12.5 2.90 1 
48 88 39 0 0.0181818 7.3 1.81 0 
49 88 61 0 0.0285714 7.4 1.08 1 
50 15 44 0 0.0125000 6.9 0.72 1 
51 50 62 0 0.0250000 6.7 2.43 0 
52 207 127 3 0.0250000 7.1 2.92 0 
53 127 65 1 0.0285714 7.7 4.12 0 

54 72 57 0 0.0095238 7.4 1.01 -1 
55 21 47 0 0.0153846 78 1.06 1 
56 87 75 0 0.0111111 7.1 1.99 0 
57 149 205 2 0.0285714 7.0 2.51 0 
58 139 180 0 0.0476190 7.1 4.08 1 
59 106 91 0 0.0192308 7.7 0.90 -3 
60 170 106 0 0.0102041 11.4 1.48 2 
61 125 54 0 0.0166667 7.5 5.73 1 
62 103 58 2 0.0119048 7.0 2.34 1 
63. 115 82 0 0.0153846 8.7 1.64 1 
64 55 53 0 0.0090909 7.5 1.36 -3 
65 130 43 1 0.0050000 7.5 2.73 0 
66 104 87 2 0.0100000 7.9 2.60 0 
67 164 79 0 0.0083333 7.3 2.53 0 
68 177 85 0 0.0043478 9.6 2.57 0 
69 67 37 0 0.0090909 7.5 1.18 0 

170, 2111 63 1 11 0.0285714 1 8.0 1 1.991 -1 
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Table A2.1 (cont. ): 

xil xi2 Yi ;I Zi., "43 
1 Zi4 

71 267 108 4 0.0142857 11.6 2.28 2 
72 97 81 0 0.0200000 7.7 2.09 -2 
73 104 37 0 0.0125000 8.7 1.15 -3 
74 70 72 0 0.0166667 8.3 0.84 1 

75 95 36 0 0.0105263 7.3 1.79 -1 
76 84 78 0 0.0158730 7.9 0.79 0 

77 81 49 0 0.0285714 7.5 1.84 -2 
78 1 73 1 55 1 01 0.0153846 1 

. 
9.0 1 2.89 1 2 
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APPENDix 3 

SOME NUMERICAL RESULTS 

222 

This appendix contains the numerical results obtained when the examples presented 
in Chapters 2 and 3 were solved. 

Table A3.1: Predictive probabilities for example 1 in section 2.2.5. 

y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 
0 0.110520 0.143711 0.155460 0.103723 0.110489 0.107442 
1 0.229543 0.278792 0.268081 0.221941 0.229507 0.225594 
2 0.250998 0.270422 0.249087 0.248978 0.250990 0.249855 
3 0.192367 0.174869 0.166453 0.195354 0.192384 0.193986 
4 0.116084 0.084809 0.090090 0.120665 0.116107 0.118523 
5 0.058753 0.032905 0.042154 0.062612 0.058770 0.060701 
6 0.025946 0.010639 0.017768 0.028439 0.025956 0.027115 
7 0.010271 0.002948 0.006942 0.011634 0.010276 0.010856 
8 0.003716 0.000715 0.002568 0.004376 0.003718 0.003973 
9 0.001247 0.000154 0.000915 0.001537 0.001248 0.001348 
10 0.000393 0.000030 0.000318 0.000510 0.000393 0.000429 
11 0.000117 0.000005 0.000109 0.000162 0.000117 0.000129 
12 0.000033 0.000001 0.000037 0.000049 0.000033 0.000037 
13 0.000009 0.000000 0.000012 0.000014 0.000009 0.000010 
14 0.000002 0.000000 0.000004 0.000004 0.000002 0.000003 

15 0.000001 0.000000 0.000001 0.000001 0.000001 0.000001 
16 1 0.000000 1 P. 000000 1 0.000000 1 0.000000 1 0.000000 1 0.000000 
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Table A3.2: Predictive probabilities for example 2 in section 2.2.5. 
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y Exact MLE N. Approx. 1 N. Approx. 2 Laplace Gibbs 
0 0.000004 0.000001 0.000019 0.000003 0.000004 0.000003 
1 0.000045 0.000013 0.000160 0.000031 0.000045 0.000034 
2 0.000236 0.000092 0.000713 0.000174 0.000236 0.000186 
3 0.000852 0.000425 0.002224 0.000660 0.000851 0.000701 
4 0.002373 0.001474 0.005448 0.001922 0.002371 0.002026 
5 0.005443 0.004084 0.011116 0.004579 0.005441 0.004791 
6 0.010704 0.009433 0.019614 0.009296 0.010700 0.009668 
7 0.018548 0.018673 0.030707 0.016545 0.018541 0.017123 
8 0.028885 0.032344 0.043475 0.026356 0.028877 0.027178 
9 0.041048 0.049799 0.056484 0.038173 0.041038 0.039267 
10 0.053858 0.069007 0.068133 0.050894 0.053847 0.052278 
11 0.065865 0.086931 0.077026 0.063086 0.065854 0.064757 
12 0.075659 0.100385 0.082257 0.073304 0.075651 0.075218 
13 0.082162 0.107003 0.083529 0.080398 0.082156 0.082452 
14 0.084806 0.105911 0.081115 0.083723 0.084804 0.085756 
15 0.083587 0.097842 0.075705 0.083201 0.083588 0.085015 
16 0.078983 0.084738 0.068203 0.079255 0.078987 0.080651 
17 0.071799 0.069072 0.059541 0.072650 0.071805 0.073472 
18 0.062980 0.053175 0.050541 0.064309 0.062987 0.064477 
19 0.053450 0.038782 0.041839 0.055137 0.053458 0.054662 
20 0.043994 0.026870 0.033866 0.045914 0.044002 0.044884 
21 0.035192 0.017731 0.026862 0.037223 0.035200 0.035782 
22 0.027412 0.011168 0.020919 0.029442 0.027419 0.027757 
23 0.020827 0.006729 0.016022 0.022763 0.020832 0.020993 

, 24 0.015458 0.003885 0.012087 0.017233 0.015462 0.015507 
25 0.011224 0.002153 0.008993 0.012794 0.011227 0.011206 
26 0.007983 0.001148 0.006610 0.009329 0.007986 0.007933 
27 0.005568 0.000589 0.004806 0.006690 0.005570 0.005507 
28 0.003813 0.000292 0.003463 0.004726 0.003814 0.003752 
29 1 0.002566 1 0.000139 1 0.002477 1 0.003294 1 0.002567 1 0.002511 
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Table A3.2 (cont. ): 
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y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 
30 0.001698 0.000064 0.001763 0.002268 0.001699 0.001651 
31 0.001106 0.000029 0.001250 0.001545 0.001107 0.001067 
32 0.000710 0.000012 0.000885 0.001043 0.000711 0.000678 
33 0.000450 0.000005 0.000627 0.000699 0.000450 0.000423 
34 0.000281 0.000002 0.000445 0.000465 0.000281 0.000260 
35 0.000173 0.000001 0.000316 0.000307 0.000173 0.000157 
36 0.000105 0.000000 0.000225 0.000202 0.000105 0.000093 
37 0.000063 0.000000 0.000160 0.000132 0.000063 0.000054 
38 0.000038 0.000000 0.000114 0.000086 0.000038 0.000031 
39 0.000022 0.000000 0.000081 0.000055 0.000022 0.000018 
40 0.000013 0.000000 0.000057 0.000035 0.000013 0.000010 
41 0.000007 0.000000 0.000040 0.000022 0.000007 0.000005 
42 0.000004 0.000000 0.000028 0.000014 0.000004 0.000003 
43 0.000002 0.000000 0.000019 0.000009 0.000002 0.000001 
44 0.000001 0.000000 0.000013 0.000005 0.000001 0.000001 
45 0.000001 0.000000 0.000009 0.000003 0.000001 0.000000 
46 0.000000 0.000000 0.000006 0.000002 0.000000 0.000000 
47 0.000000 0.000000 0.000004 0.000001 0.000000 0.000000 
48 0.000000 0.000000 0.000002 0.000001 0.000000 0.000000 
49 0.000000 0.000000 0.000002 0.000000 0.000000 0.000000 

50 1 0.000000 1 0.000000 1 0.000001 1 0.000000 1 0.000000 1 0.000000, 

Table A33: Predictive distribution of Y2, , for the example in section 3 3. 

y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 

0 0.276792 0.169000 0.216651 0.239476 0.276118 0.278363 

1 0.307547 0.300000 0.261883 0.295715 0.307381 0.308546 

2 0.208542 1 0.267000 1 0.202399 1 0.216794 1 0.2087511 0.208825 
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Table A33 (cont. ): 
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y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 
3 0.112725 0.158000 0.130760 0.125318 0.112982 0.112346 
4 0.053732 0.070000 0.077990 0.064210 0.053913 0.053038 
5 0.023755 0.025000 0.045194 0.031074 0.023857 0.023076 
6 0.010027 0.007000 0.026235 0.014704 0.010077 0.009526 
7 0.004113 0.002000 0.015495 0.006899 0.004137 0.003808 
8 0.001660 0.000000 0.009328 0.003210 0.001670 0.001498 
9 0.000664 0.000000 0.005679 0.001470 0.000668 0.000587 

10 0.000265 0.000000 0.003457 0.000656 0.000267 0.000232 
11 0.000106 0.000000 0.002085 0.000283 0.000106 0.000093 
12 0.000042 0.000000 0.001237 0.000117 0.000043 0.000037 
13 0.000017 0.000000 0.000719 0.000046 0.000017 0.000015 
14 0.000007 0.000000 0.000409 0.000017 0.000007 0.000006 
15 0.000003 0.000000 0.000227 0.000006 0.000003 0.000002 
16 0.000001 0.000000 0.000123 0.000002 0.000001 0.000001 
17 0.000000 0.000000 0.000065 0.000001 0.000000 0.000000 
18 0.000000 0.000000 0.000033 0.000000 0.000000 0.000000 
19 0.000000 0.000000 0.000016 0.000000 0.000000 0.000000 
20 0.06ý000 0.000000 0.000008 0.000000 0.000000 0.000000 

21 0.000000 0.000000 0.000004 0.000000 0.000000 0.000000 
22 0.000000 0.000000 0.000002 0.000000 0.000000 0.000000 
23 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000 
24 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
25 1 0.000000 1 0.000000 1 0.000000 1 0.000000 1 0.000000 1 0.000000 

Table A3.4: ]Predictive distribution of Y2 j2 for the example in section 3.3. 

y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 

0 0.003796 0.007000 0.024935 0.002771 0.003783 0.004060 
1 0.015988 0.033000 0.067571 0.011997 0.015945 0.016636 

121 0-0371681 0-0830001 0.104912 1 0.029512 1 0.037093 1 0.03 
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Table A3.4 (cont. ): 
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y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 
3 0.063061 0.140000 0.124550 0.053242 0.06296T O. 063670 
4 0.087235 0.175000 0.126666 0.077811 0.087145 0.087461 
5 0.104325 0.175000 0.116685 0.097373 0.104259 0.104216 
6 0.111776 0.147000 0.100290 0.108204 0.111745 0.111525 
7 0.109867 0.105000 0.081818 0.109570 0.109870 0.109661 
8 0.100734 0.066000 0.064120 0,103059 0.100765 0.100662 
9 0.087218 0.037000 0.048768 0.091354 0.087266 0.087251 
10 0.071977 0.018000 0.036341 0.077157 0.072032 0.072026 
11 0.057028 0.008000 0.026767 0.062599 0.057083 0.057005 
12 0.043631 0.004000 0.019633 0.049072 0.043681 0.043491 
13 0.032384 0.00100 0.014423 0.037319 O. Q32427 0.032132 
14 0.023409 0.000000 0.010652 0.027605 0.023444 0.023084 
15 0.016532 0.000000 0.007926 0.019897 0.016559 0.016187 
16 0.011438 0.000000 0.005946 0.013992 0.011458 0.011119 
17 0.007770 0.000000 0.004497 0.009611 0.007785 0.007508 
18 0.005193 0.000000 0.003423 0.006455 0.005203 0.005000 
19 0.003420 0.000000 0.002616 0.004245 0.003427 0.003294 
20 0.002223 0.000000 0.001999 0.002737 0.002228 0.002152 
21 0.001428 0.000000 0.001520 0.001732 0.001431 0.001398 
22 0.000907 0.000000 0.001145 0.001077 0.000910 0.000904 
23 0.000571 0.000000 0.000850 0.000659 0.000572 0.000582 
24 0.000356 0.000000 0.000620 0.000397 0.000357 0.000373 
25 0.000220 0.000000 0.000443 0.000236 0.000221 0.000238 
26 0.000135 0.000000 0.000309 0.000138 0.000136 0.000151 
27 0.000083 0.000000 0.000210 0.000079 0.000083 0.000096 
28 0.000050 0.000000 0.000139 0.000045 0.000050 0.000060 
29 0.000030 0.000000 0.000090 0.000025 0.000030 0.000037 
30 0.000018 0.000000 0.000056 0.000014 0.000018 0.000022 
31 0.000011 0.000000 0.000034 0.000007 0.000011 0.000014 

32 1 0.000006 1 0.000000 1 0.000020 1 0.000004 1 0.000006 1 0.000008 
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Table A3. (cont. ): 
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y Exact MLE N. Approx. I N. Approx. 2 Laplace Gibbs 
33 0.000004 0.000000 0.000012 0.000002 0.000004 0.000005 
34 0.000002 0.000000 0.000007 0.000001 0.000002 0.000003 
35 0.000001 0.000000 0.000004 0.000000 0.000001 0.000001 
36 0.000001 0.000000 0.000002 0.000000 0.000001 0.000001 
37 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000 
38 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000 
39 0.000000 0.000000 0.000003 0.000000 0.000000 0.000000 
40 1 0.000000 1 0.000000 1 0.000000 1 0.000000 1 0.000000 1 0.000000 

Table A3.5: Predictive distribution ofZ'w Y2.2. 
- 

Y2U for the example in section 33. 

z MLE Laplace z MLE Laplace 

-10 0.000000 0.000001 4 0.139059 0.115970 

-9 0.000002 0.000002 5 0.105818 0.116895 

-8 0.000009 0.000006 6 0.070627 0.108278 

-7 0.000046 0.000018 7 0.041849 0.093573 

-6 0.000205 0.000057 8 0.022247 0.076329 

-5 0.000813 0.000180 9 0.010708 0.059309 

-4 0.002828 0.000565 10 0.004703 0.044219 

-3 0.008515 0.001715 11 0.001898 0.031817 

-2 0.021858 0.004936 12 0.000708 0.022201 

-1 0.047138 0.012980 13 0.000246 0.015083 

0 0.084396 0.029486 14 0.000080 0.010009 

1 0.124826 0.054113 15 0.000024 0.006506 

2 0.153273 0.081292 16 0.000007 0.004153 

131 0.158115 1 0.103647 1 17 1 0.000002 1 0.002608 1 
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Table A3.5 (cont. ): 

z MLE Laplace z MLE Laplace 
18 0.000000 0.001614 26 0.000000 0.000024 
19 0.000000 0.000986 27 0.000000 0.000014 
20 0.000000 0.000596 28 0.000000 0.000008 
21 0.000000 0.000356 29 0.000000 0.000004 
22 0.000000 0.000211 30 0.000000 0.000002 
23 0.000000 0.000124 31 0.000000 0.000001 
24 0.000000 0.000072 32 0.000000 0.000001 
25 1 0.000000 1 0.000042 1 33 1 0.000000 1 0.000000 
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