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Abstract 
 
Fragment-based ligand discovery (FBLD) has been transformed over the last 

20 years into a mainstream approach for the discovery of drugs.  FBLD relies 

on the initial identification of small molecule “fragments” (MW < 250 gmol-1) 

that bind weakly and efficiently to a target protein.  Binding fragments are then 

elaborated to yield more potent and selective ligands.  FBLD has thus far 

yielded four FDA-approved drugs and 

around 50 candidates that are currently in clinical trials.   

 

Despite the rise of FBLD, significant chemical challenges remain for the 

field.  Fragment elaboration is dominated by a limited reaction toolkit which is 

heavily focused on heteroatom functionalisation, enabling direct fragment 

“growth” along specific vectors. Here we develop and apply synthetic methods 

for the elaboration of cyclic amines on the carbon skeleton, which may help 

address the chemical challenges for the field and could be deployed within 

FBLD projects.  

 

A procedure is developed for the regioselective formation of endocyclic 

enecarbamates from N-Cbz amines employing electrochemical oxidation and 

elimination, enabling access to twenty endocyclic enecarbamates.9 These 

enecarbamates afford a platform for the elaboration of cyclic amines from the 

𝛽-position. To realise the full impact of this synthetic methodology, a library of 

hinge-binding fragments was designed, synthesised and screened for their 

activity against Aurora-A, yielding 30-active fragments. Fragment hits were 

elaborated using the described methodology and screened, yielding 9-active 

compounds. Finally, we investigate the selectivity of our fragment libraries 

against a panel of 100-kinases, to explore the applicability of synthetic 

elaboration for the development of selective kinase inhibitors from common 

fragments. 
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Our results demonstrate that the underpinning synthetic methods developed 

during the project enable efficient exploration of synthetic vectors on cyclic 

amines. We show these strategies can be applied to FBLD and furthermore, 

show that chemical elaboration of ATP-binding fragments can tune kinase-

selectivity. 
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 Chapter 1: Introduction 

 An Overview of the Drug Discovery Process 

Developing an efficacious drug molecule which both produces the desired 

effect in patients while being safe is a well-documented challenge.1, 2  

The drug discovery process begins with the identification of a target. 

Characteristics of a suitable target are that it is safe, meets both clinical and 

commercial demand and importantly is “druggable”.3 A druggable target is a 

protein, peptide or nucleic acid which can have its activity modulated by a 

drug, eliciting a biological response which can be measured both in vitro and 

in vivo. 4, 5 

 

The target is validated through chemical, biological and biophysical 

techniques.6 Target identification and validation increases confidence in the 

relationship between the target and the disease state, enabling understanding 

of mechanism-based side effects on target modulation.4 High-throughput 

screening (HTS) can then be utilised to screen large compound libraries in 

order to identify compounds which interact with a target, known as “hit” 

compounds. 7 In addition to this approach, hit compounds can also be 

identified through biophysical screening, literature searching or in silico 

modelling. 8 

Confirmed hit compounds which demonstrate specific and concentration-

dependent activity against the target are analysed, clustered and prioritised.9 

A highly ranked hit compound is then subjected to exploratory synthesis and 

further screening to generate a “lead” compound, in a process known as hit-

to-lead optimisation.8 The objective of hit-to lead optimisation is to identify 

“lead” compounds suitable for full scale lead optimisation.9 The aim of lead 

optimisation is to generate a clinical candidate with the desired mix of affinity, 

efficacy, ADME and physicochemical properties. Lead molecules are 
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screened in cell-based assays and animal models predictive of the disease-

state to characterise efficacy and toxicology. 4, 10  

Once a lead compound has passed through the pre-clinical stages of 

development, the drug candidate progresses into clinical trials. Phase I is 

concerned with examining safety and dosage regimes of the drug candidate 

within a small number of healthy volunteers. Phase II assesses drug efficacy 

and side effects within several hundreds of patients with the relevant 

disease/condition. Phase III provides the greatest amount of information on 

safety, efficacy and dosage compared to the current leading treatment for a 

disease in thousands of patients. Efficacy can also be tested at varying stages 

of a disease. Drug candidates that pass these trials can be approved and 

consequently be used clinically, with only one in nine drugs in clinical 

development making it to market. 11 Following approval, further trials can take 

place (phase IV) to assess long term effects of a drug.12, 13 Figure 1 displays 

an overview of the drug discovery process. 

 
Figure 1: The typical drug discovery approach starts with the identification of a target. After hit 

identification and hit to lead optimisation, the compound enters pre-clinical development and then 
enters three phases of clinical trials. The entire process requires 10-years on average. 

 

 Challenges Facing the Pharmaceutical Industry 

The post-genomic era has led to a significant increase in the number of 

potential targets with no known modulators.7 The pharmaceutical industry is 

under increasing pressure to produce new molecular entities (NME), made 

more challenging by poor late stage pipelines, patent expiration and 

increasingly rigorous safety requirements from regulatory authorities.2, 14 The 

price of drug discovery is expensive, (valued at $2.6 US billion per launched 

drug) and time-consuming (a typical time to market of 13 years).15 

Furthermore, a clinical success rate of 11%, which drops to 8% for central 
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nervous system (CNS) targets and 5% for oncology targets, highlights the 

importance of timely and efficient choices for pharmaceutical development.16,17 

Improving the efficiency of drug discovery will not only benefit pharmaceutical 

research and development, but ultimately the patient. 

  Rates of Attrition and their Underlying Causes 

In 1991, pharmacokinetic (PK) and bioavailability was the most significant 

cause of attrition, accounting for ~40% of all attrition. With the high cost of 

development, this represented a major economic loss for pharmaceutical 

corporations. By 2000, there had been a dramatic reduction in these factors, 

showing PK and bioavailability to now contribute to ~10% of all attrition.2 This 

was remedied by the introduction of early stage ADME (absorption, 

distribution, metabolism, excretion) testing. The failures of drug candidates 

due to poor PK profiles diminished significantly, but this was accompanied by 

a shift towards failures as a result of efficacy and safety. 6 This swung the 

temporal attrition profiles of drug candidates to the later stages of clinical trials, 

as PK complications would be realised in phase I, dramatically increasing the 

cost of failure.  

 The Approach to Drug Discovery: High Throughput Screening 

Over the past two decades, HTS has been the principal tool implemented by 

the pharmaceutical industry to identify new lead compounds. It was thought 

that the low accuracy of the results obtained would be overcome by the 

efficiency of the technique. However, a high incidence of false positives and 

false negatives has hindered its success.5, 18 There is also the suggestion that 

HTS has stifled the creativity of medicinal chemists, leading to a general 

pattern of synthetic reactions, bioisosteres or existing drugs being 

repositioned.19, 20 Molecules identified by HTS tend to be large, hydrophobic 

and sample a minute fraction of chemical space.2 Hence, there has been 

increased pressure to develop new lead discovery methods in order to 

discover more suitable chemical starting points. 
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 Characteristics of Drug-Like Molecules 

Medicinal Chemists have highlighted the importance of physiochemical 

properties on the success of drug candidates in drug discovery.2 

Pharmacodynamics considers the direct interaction between a ligand and the 

biological target, a recognition that is determined by how well the compound 

interacts in the target site.  Pharmacokinetics refers to the journey of the drug 

from its point of entry to the site of action and subsequent elimination from the 

body. This process can be defined by the following phases: absorption, 

distribution, metabolism, and excretion (ADME).21, 22 In drug discovery, the 

first chemical step is the physical creation of ligands with high affinity for a 

given target, fulfilling the pharmacodynamic condition. Drug-like properties 

ideally should be taken into consideration as early as possible, in order to fulfil 

the pharmacokinetic condition. 23–25 

Lipinski raised awareness of the importance of physiochemical properties on 

the success of orally bioavailable drug candidates through identifying 

properties associated with poor absorption or permeability of a compound. 25–

27 Pharmacokinetic properties can be predicted from the in vitro ADME profile, 

which can be guided by Lipinski’s rule of five. Some of the guidelines are 

summarised in Table 1. 

 

Entry Physiochemical property Ideal 
Value 

1 Molecular weight ≤500 
2 LogP ≤5 
3 Hydrogen bond acceptors ≤10 
4 Hydrogen bond donors ≤5 

Table 1: Lipinski’s Rule of 5 (RO5) provides an empirical guide for determining if a compound will be 
orally bioavailable. The Lipinski criteria are widely used to predict not only absorption of compounds 

but overall drug like-ness. 23 LogP is defined as the 1-octanol-water partition coefficient. 

The criteria are utilised as a guide and compliance does not necessarily make 

a compound drug-like.28 It is noted that for drugs targeting the CNS29 and 

protein-protein interactions,30 violation of the Lipinski RO5 is more prevalent. 
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LogP is an important parameter to control in drug discovery due to its 

composite nature.31,32 The LogP of a compound encompasses molecular 

shape, polarity, hydrogen bonding capacity and describes how lipophilic a 

molecule will be. Lipophilicity reflects molecular desolvation on moving from 

the aqueous phase to cell membranes and protein binding sites, which are 

mainly hydrophobic. 33 As lipophilicity increases (cLogP >3) binding affinity 

increases, but this leads to poor solubility, metabolic clearance and increased 

promiscuity. 31,34,35 

Statistical analysis by Leeson et al. displayed that mean molecular mass and 

thus lipophilicity of a drug candidate increased on progression through pre-

clinical and clinical development.17,33 This encouraged the suggestion that 

when the size of a compound approaches that of a phospholipid molecule, 

passive absorption is reduced.36 Drug candidates of larger molecular weight 

are also more likely to contain toxic pharmacophores or rapidly metabolised 

motifs. 

Lovering and co-workers determined a positive correlation between the 

number of sp3-hybridised carbons and aqueous solubility, which consequently 

led to increased success in clinical development.37 Wang et al. showed that a 

decrease in saturation led to increased structural planarity and improved 

crystal-stacking capability leading to a poorer value of solubility.38 Additionally, 

it is postulated that a larger number of aromatic moieties in a drug molecule 

(≥3), increase the likelihood of failure as a drug molecule. 39  
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 Fragment-based drug discovery: An Alternative Approach for 

Lead Discovery 

Fragment-based drug discovery involves the elaboration of weak binding 

molecules of low molecular mass, for the generation of lead compounds in 

drug discovery (Figure 2). Fragment screening was initially developed to 

generate hit compounds against targets for which HTS had been 

unsuccessful. 40 This approach varies from HTS in almost every aspect; library 

size, screening method, hit value and dependence on structural methods.  

 

Figure 2: Fragment based drug discovery approach. Fragments <250-300 Da are elaborated into high 
affinity lead compounds.41 Image created with Biorender.com. 

The origin of FBDD can be traced back to seminal publications by Page and 

Jencks who postulated that the expected binding affinity of  joined molecule 

would exceed that of two weakly binding chemical entities (fragments).42–44 

This idea was developed by Andrews et al. 45  who reported the contribution 

of individual functional groups to binding energies. Abeles provided 

experimental support for these hypotheses in 1985 by dividing a known 

inhibitor of HMG-CoA reductase into smaller structural components and 



 

 

- 20 - 

observing weak binding of each. 46 Another notable contribution was from 

Verlinde who designed and merged fragments complementary to specific sub-

regions of a protein binding pocket, to generate highly potent lead compounds 

against Trypanosoma brucei.47  Pioneering screening studies by Abbott48 

utilising SAR by NMR (structural activity relationships by nuclear magnetic 

resonance) and Astex 49,50 employing high-throughput X-ray crystallography, 

renewed interest in the field. The techniques enabled identification of discrete 

molecular components (fragments) that displayed binding at a given target. 

The fragment hits can then be developed into high affinity drug molecules 

through chemical elaboration, merging or linking with other fragments to build 

a more complex lead series.  

FBDD has been successfully utilised against varied drug target classes such 

as kinases,51 protein-protein interactions,52,53 transcription factors,54 protein 

chaperones55,56  and RNA.57 Subsequently, it has become clear that this 

approach is generic and can be applied successfully to proteins which have 

structural information readily available. In addition to dealing with a range of 

targets, FBDD has shown promise in improving the screening and chemical 

optimisation approach for conventional drug targets as well as enabling 

prioritisation of screening compounds for HTS, showing that the two 

approaches could be used in tandem. 58 

The first FDA approved drug developed by FBDD was Zelboraf in 2011,59 and 

a second, Venetoclax, in 2016. The development of Venetoclax illustrates the 

power of fragments to tackle a difficult target by accessing unusual chemical 

space. Venetoclax is noted to violate the Lipinski rule of five, highlighting that 

this ‘rule’ should be used only as a guide (Figure 3). 
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In FBDD, the ideal optimisation process begins with fragments of small size 

and efficient binding, ideally with each atom of the fragment participating in 

the desired binding interaction. The size, complexity and physical properties 

of a molecule can potentially be more precisely controlled when starting with 

a high affinity fragment (a molecular weight of 150-300 Da can give a binding 

affinity of the order of mM) than starting from a HTS hit which likely contains 

functionality unessential to binding (a molecular weight of 500 Da gives a 

maximum binding affinity of nM).60 As a result of the low affinity, to detect the 

binding of fragments, sensitive biophysical screening methods must be used 

rather than activity-based assays, a summary is shown in Table 2. Higher 

concentrations are required for fragment screening compared to those used 

in HTS bioactivity assays. 
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Figure 3: The structure of Venetoclax, an orally adminstered drug targeting Bcl-2, discovered 
by fragment-based drug discovery, with the original fragment starting point highlighted in 

green. MW 868 Da and LogP 10.4. 
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Technique Description Example  
Differential 
Screening 
Fluorimetry 
(DSF) 

Fragments are detected that increase the 
unfolding temperature of the target 
protein (∆Tm) by binding to and stabilising 
the proteins folded state in the presence 
of a fluorescent dye. 61,62 

p53 54 

Surface 
Plasmon 
Resonance 
(SPR) 

The target protein is covalently linked to 
a gold surface on a biosensor chip, and 
solutions of the single fragments are 
sequentially flowed through the chip. 
Binding affinity and kinetics can be 
obtained through a time- dependent 
fragment association-dissociation 
response. 63 

BACE-1, 64 
MMP-12, 65 
thrombin, 66 
chymase67 

Electrospray 
Ionisation Mass 
Spectroscopy 
(ESI-MS) 

The fragment/protein mixture is ionised 
by ESI, with fragment binding observed 
by an increase in the mass of the protein 
ion corresponding to that of the bound 
fragment. 68 Native mass spectroscopy is 
utilised as complementary fragment 
screening approach. 

PMT, 69 
CA-II 70 

X-Ray 
Crystallography 

Crystals of the target protein are soaked 
with high concentration solutions of 
fragments or cocktails of fragments. 
Protein crystals are exposed to an X-ray 
source and a diffraction pattern recorded. 
The diffraction pattern is used to 
generate an electron density map, 
subsequently used to solve the structure 
of the protein. Identification of fragments 
bound to the protein can be done by 
inspection of the electron density maps of 
the complex and the protein alone. 71 

CDK2, 71 
ATAD2 72 

Nuclear 
Magnetic 
Resonance 
(NMR) 

Different experimental formats have 
been employed. 73–75 The foundation of 
fragment screening by NMR is that 
binding equilibria modulate both 
frequency and width of NMR spectral 
lines in response to the rate of “chemical 
exchange” between the free and 
unbound state of the fragment and target 
protein. 

HSP90 76 

Table 2: Common biophysical techniques utilised in fragment-based drug discovery. 
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 Characteristics of Fragments: Building a fragment library 

Zartler and Shapiro stated that in FBDD “ontogeny recapitulates phylogeny” 

(i.e. the physical properties of the fragments remain largely the same in the 

final drug candidate).77 One of the first approaches to describe the chemical 

properties of fragments was the rule of three, shown in Table 3.78 

Entry Physiochemical property Ideal Value 

1 Molecular weight ≤300 
2 LogP ≤3 
3 Hydrogen bond acceptors ≤3 
4 Hydrogen bond donors ≤3 

Table 3: The rule of three, as proposed by Jhoti and colleagues. 78 

Hubbard et al. defined the rule of three as the upper limit of desirable fragment 

properties, but observed that it gave no information on the lower limit or 

distribution.79 The same publication highlighted the importance of polar 

surface area (PSA), due to its role in human intestinal permeability and states 

that fragments should be limited to a PSA of no more than 60 Å. Pfizer 

designed a fragment library which imposed more stringent rules on chemical 

properties; a molecular weight of no more than 250 Da and a cLogP ≤2, to 

promote high aqueous solubility and to allow for a broad target application. 

Pfizer placed restrictions on molecular complexity, in accordance with the 

Hann model. 60 According to this model, the probability of finding a fragment 

hit increases when small, less complex fragments with fewer interactions are 

screened with high sensitivity, an approach validated by Novartis. 80 Gibbs et 

al. 81 reported exclusion of more than 45 functional groups and substructures 

as part of a primary library filter. The RO3 has attracted some criticism; for 

example Koster et al. assembled a fragment library without emphasis on 

conforming to the RO3 and screened the fragments against endothiapepsin.82  

They discovered eleven hit fragments, with only four obeying the RO3, 

illustrating their use should be as a guide.  
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In 2016 Astex updated their list of desirable properties in line with some of the 

findings of other groups and their own research (Table 4).83 They highlighted 

the importance of a variety of three-dimensional shapes for fragment libraries, 

as additional sp3-hybridised carbon atoms act as growth points for fragment 

hits, but cautioned against its prioritisation, since fragments without 

stereocentres may adopt 3D or chiral conformations on binding with a target.84 

These updated guidelines place emphasis on a fragment’s physical properties 

and their potential for chemical evolution.85  

Entry Physiochemical 
property 

Ideal range 

1 Molecular weight 140-230 Da 

2 Lipophilicity 0 < cLogP < 2 
 

3 Heavy atom count 10 – 16 
 

4 Solubility 
Aqueous solubility (preferably 
³ 5 mM in 5% DMSO, or other 

screening co-solvents) 

5 Substructures 

Remove moieties associated 
with high reactivity, 

aggregation in solution or 
false positives. 

Table 4: The updated aspirational properties in fragment design, proposed by Murray and Rees. 83 

 
 A Matter of Chemical Space  

Fragment-based drug discovery (FBDD) and HTS are important approaches 

to find chemical starting points for drug discovery programs. HTS libraries 

often derive from earlier medicinal chemistry projects and combinatorial 

chemistry which are often already drug-like according to Lipinski’s RO5, 

leaving little room for lead optimisation. For drug-like compounds in the size 

of 30 heavy atoms (C, N, O and S), the chemical space is estimated to 

comprise of 1030-1060 molecules and so a library of 1000 molecules would 

cover a very small fraction of chemical space.86  However, screening small 

molecules of approximately 12 heavy atoms in size to screen, gives a total of 

160 million possible compounds. Therefore, 1000 compounds would 
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represent 0.001% of the whole subset of chemical space. To put this simply, 

an increase of 19 orders of magnitude of chemical space coverage is possible 

with a library of smaller molecules (12 heavy atoms) than of large molecules 

(36 heavy atoms). 

Hann et al. 60 stated that the probability of a compound being a hit molecule 

is determined by its complexity. A complex molecule is more likely to have a 

single defined binding mode than smaller, less decorated fragments. This idea 

was supported by computational modelling which suggested there is optimum 

complexity; molecules should be simple enough to bind to several different 

target proteins, while being complex enough to still bind in a single defined 

orientation. Flaws arise in the theory when it is applied to real molecules and 

size is used to measure complexity. This is because highly functionalised 

molecules with ornate 3-dimensional shapes are more complex than 

equivalently sized molecules which are planar and less decorated. A second 

consideration is that as molecular size increases, so often does lipophilicity 

and thus promiscuity; promiscuity could mask the expected correlation. 

 

Overall, useful starting points for lead identification can be identified from 

relatively small libraries of low molecular weight compounds (120-300 Da 

range). 

 

 Fragment Elaboration 

Fragment hits are structurally elaborated to increase their potency through an 

iterative process of rational design and synthesis, usually relying on structural 

information to guide optimisation. There are three main methods of increasing 

potency from fragment hits: fragment merging, linking and growth. Fragment 

merging uses attributes of two overlapping motifs to produce a single 

molecule, while linking utilises two non-overlapping fragment hits and 

attempts to link them. 40,41,87 
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The most common strategy implemented is fragment growth, which employs 

chemical synthesis to elaborate a fragment to explore further interactions. 

Prior to fragment growth, the potency of the initial fragment will be optimised 

through examining analogues or fragments with minor elaboration, to probe 

the protein ligand interaction and confirm that the optimum fragment has been 

found. The choice of fragment for growth will be influenced by potency, 

synthetic tractability and ligand efficiency. 41,56,83 Ligand efficiency (LE) was 

first described by scientists at Pfizer88 to describe the average free energy 

binding per heavy atom. Monitoring of ligand efficiency throughout fragment 

elaboration enables assessment of whether the additional molecular mass 

added in the growth process has been added efficiently. An LE value of 

approximately 0.3 kcal mol-1 should lead to a rule-of-five compliant 10 nM 

inhibitor.87 An advancement on LE is group efficiency (GE) which accounts for 

the contributions from each chemical group incorporated.89 At each stage of 

fragment growth, LE can be utilised to describe efficient binding to a target. 

 Fragment Elaboration: The Trouble with Fragments 

Drug discovery using fragments poses difficulties due to their small size, 

lipophilicity and need for synthetic vectors to allow growth of the fragment in 

three dimensions. Leading practitioners have cited two areas requiring 

research within fragment-based drug discovery; methodology for the 

elaboration of small low affinity fragments into high affinity lead molecules and 

inclusion of precisely controlled synthetic vectors to allow for fragment 

growth.83 FBDD programs are frequently challenged and subsequently 

delayed by the requirement to develop methodology to access growth vectors 

in 3D space.90 Other issues encountered in fragment growth are the lack of 

synthetic methodologies compatible with the presence of multiple 

heteroatoms and polar functional groups, and the synthesis of molecules with 

high aqueous solubility, which is required for fragment screening. 
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Robust methods for the elaboration of fragment libraries into diverse lead-like 

compounds libraries are beginning to emerge, but such studies remain under-

represented in the literature. As such there is still a substantial demand to 

increase the arsenal of methods to elaborate fragments. 

 Applications of Fragment Based Drug discovery 

This section details successful application of fragment-based drug discovery 

approaches, illustrating the steps taken in the development of lead 

compounds against varied targets. 

 ATAD2 

Researchers at GSK conducted a fragment screen using X-ray 
crystallography against ATAD2 (ATPase Family AAA Domain Containing 2), 

with a hit rate of 0.25% (Figure 4). Their initial aim was to inhibit ATAD2 with 

µM activity, while maintaining selectivity over BET bromodomains.91 X-ray 

crystallography led to the identification of 2 as the binding fragment. The 

binding mode was characterised, elucidating that 2 acted as a mimic of the 

native acetyl-lysine ligand for the bromodomain, forming hydrogen-bonding 

interactions with N1064 and Y1021 in the binding site. Modelling suggested 

introduction of an ether linkage could direct hydrophobic groups towards the 

lipophilic RVF shelf in ATAD2 and ultimately, through an iterative process of 

computational docking and synthesis led to 5, a 130 nM inhibitor of ATAD2, 

which displayed selectivity over BRD4 and maintained LE of 0.3 kcal mol-1.72 

The researchers demonstrated through growth of the original fragment that 

both nM potency and selectivity against a target previously thought to be 

undruggable was achievable.   
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 Aurora-A Kinase 

Kinases are a class of proteins with well-defined and druggable active sites 

and are, in general, structurally tractable.92 Aurora enzymes are 

serine/theorine kinases that are known to be important regulators of mitosis.93 

Aurora A is of considerable interest in cancer drug discovery due to its 

elevated expression in solid tumours and leukaemia. Howard et al. 71 reported 

the discovery of a selective Aurora A inhibitor based on a fragment previously 

discovered in a CDK2 program (Figure 5, structure 6). Examination of the 

binding mode of the pyrazole-benzimidazole fragment showed that it bound in 

the ATP-binding pocket and potentially allowed room for growth at the 4-

position of the pyrazole or the 6-position of the benzimidazole. Addition of a 

p-fluorobenzamide at the 4-position of the pyrazole and introduction of an N-

methylene morpholine motif in the 6-position of the benzimidazole gave 

Figure 4: X-ray structure of ATAD2 bound to 5 (Crimson, PDB: 5a82) superimposed on 3 (green, PDB 
5a5q). Right details the interactions within the binding site, with the RVF shelf circled in red. Left shows 

the electrostatic charge coloured protein surface, with 8 in the binding site. 72,91 
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excellent affinity for Aurora A, but poor PK properties. Keeping the solubilising 

N-methylene-morpholine motif in place, while optimising the p-

fluorobenzamide to a urea linked-cyclopropyl moiety gave compound 8 with 

an improved in vitro affinity, ADME properties, PK mouse profile and anti-

HCT116 carcinoma cell activity. It is noted that 8 (AT9238) hits more than 20 

other kinases with a similar potency, raising questions about selectivity and 

potential off-target effects. AT9238 (8) progressed into phase I clinical trials, 

demonstrating Aurora kinase inhibition tolerance and disease stabilisation in 

a variety of childhood tumours. The trial closed prematurely in phase II due to 

no evidence of clinical efficacy being observed. 94 

 

 

 

 

 
Figure 5: Fragment growth leading to development of 8, AT9283, an ATP binding site inhibitor of 

Aurora A (PDB:  2W1D, 2W1C, and 2W1G).71 
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 Catechol O-methyltransferase 

Catechol O-methyltransferase (COMT) catalyses the Mg2+ dependent methyl 

transfer from SAM (S-adenosyl-L-methionine) to a hydroxyl group of 

endogenous catechols and neurotransmitters such as dopamine, terminating 

their biological activity. COMT is a validated target against Parkinson’s 

disease and has applications in disease-states characterised by low 

dopamine levels.95 Roche identified a pyrazole class of inhibitors targeting the 

SAM pocket, as opposed to the catechol and hydroxypyridine inhibitors 

previously reported which chelate the Mg2+ site.96 They screened 6000 RO3 

compliant fragments using SPR, obtaining 600 fragment hits. Follow-up 

involved a SPR dose-response measurements, confirming 200 fragments, 

which were examined using ligand-detected NMR and (1H/15N HSQC) NMR. 

It was found that 3 of the 4 fragment inhibitors that surpassed these filters 

were pyrazoles, almost identical to the starting structures reported by 

Takeada.96 This could mean that COMT requires a very specific ligand or that 

fragment screening libraries may not be as diverse as once thought. 
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Roche utilised iterative structure-guided fragment growth to improve the 

potency of compound 9 (Figure 6). It was found that exchange of the 

substituted pyrazole for a thiazole led to a 3-fold improvement in potency, 

shown in compound 10. The crystal structure shows that the nitrogen atom of 

the thiazole ring is involved in hydrogen bonding to the backbone NH of 

Ser119. The pyrazole occupies the ribose-binding region and both nitrogen 

atoms form hydrogen bond interaction to E90 and I91. Sterically demanding 

functionality was found not to be tolerated at the 2- and 4-positions of the 

thiazole. Examining the 3’ position of the pyrazole displayed that direct 

attachment of a phenyl ring was not tolerated but addition of a small linking 

chain between the pyrazole and the phenyl led to an improvement in potency. 

Addition of a cyclopropyl group in the benzylic position led to a further gain in 

potency. It was found binding affinity tended to increase when the electron 

density of the phenyl ring was increased, and in particular a para-substituted 

alkoxy group gave the biggest increase in potency leading to compound 12. 
96 

 

 

 

 

 

 

 

 

 



 

 

- 32 - 

 FtsZ 
 
 

  

 

 
 

 

In eukaryotic cells, targeting the proteins involved in cytokinesis has been a 

successful approach for anticancer activity.97 Prokaryotic cells contain a 

tubulin homologue, FtsZ, which is the most abundant protein involved in 

prokaryotic cell division, and is highly conserved in both Gram-positive and 

Gram-negative bacteria.98 On binding GTP (guanosine 5 ́-triphosphate) it 

polymerises to form the Z-ring at the site of cell division and slows the 

recruitment and assembly of cell division machinery.99 Inhibition of FtsZ does 

not directly stop cell growth but leads to formation of long filaments that 

eventually cause lysis of the cell. The majority of inhibitors act by preventing 

FtsZ polymerisation, destabilising or stabilising polymers.99 Following the 

discovery of the function of FtsZ, 3-methoxybenzamide (3-MBA) was reported 
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Figure 7: A) FtsZ inhibitor 3-methoxybenzamide (13) was the starting point for optimisation into 
lead compound (14) B) which was shown to bind in a hydrophobic cleft (PDB code 4DXD). MIC is 

the minimal inhibitory concentration measured mg/mL and AE is the antibacterial efficiency, a 
variation on ligand efficiency C) Displays evolution towards 14 via 15 and 16.  
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as a starting point for a fragment-based drug discovery program (Figure 7). 

Czaplewski et al. optimised 3-MBA to a potent lead compound.100,101 

Optimisation efforts utilised minimum inhibitory concentration (IC) against 

Bacillus subtilis. SAR displayed that any substitutions in positions other than 

R3 greater than a single atom eliminated growth inhibition and filamentation in 

vivo. Introduction of a lipophilic nonyl group in position R3 increased potency 

by 8000 times (16). They evaluated progress using anti-bacterial efficiency, 

defined as a logarithmic function of MIC in mg/mL per non-hydrogen atom. 

Further optimisation gave 14 which displayed dose-dependent efficacy 

against B. subtilis and S. aureus but no other Gram-positive or Gram-negative 

bacteria. By use of a resistance mutation profile, an apo structure of FtsZ and 

subsequent crystallography, compound 14 is thought to bind to an allosteric 

site adjacent to a nucleotide binding site, analogous to the mode of action of 

Taxol on tubulin. This mode of action was confirmed to promote FtsZ 

polymerisation and stabilise FtsZ polymers.102 

 Summary 

FBDD is now an established technique for lead discovery and there are an 

increasing number of very encouraging applications in the literature. The 

approval of the first drug to be discovered by FBDD, Zelboraf, was an 

important milestone in this methodology. As more fragment leads are 

progressed into clinical trials it will be possible to assess the impact of FBDD 

upon attrition rates in the pharmaceutical industry. 
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 Thesis Aims and Objectives:  

The overall aim for this project is to identify and develop methodology to aid 

fragment growth and to apply this methodology in FBLD. The aim can be 

broken down into five main objectives: 

(1) To identify and evaluate literature methodology applicable to the 

elaboration of cyclic amine-containing fragments 

(2) To develop synthetic methodology which can be applied to elaboration of 

cyclic amine-containing fragments 

(3) To design, synthesise and biochemically screen a fragment library against 

Aurora-A 

(4) To elaborate fragments hits arising from objective (3) using methodology 

from objectives (1) and (2) where applicable 

(5) To investigate the selectivity of the fragments produced in (2) and 

elaborated fragments (4) against a panel of 100-kinases towards the 

development of selective kinase inhibitors 

 

Project Aim 1: To identify and evaluate existing methodology and 

develop methodology for the elaboration of cyclic amine fragments 

The project will involve the evaluation of literature synthetic methodology as 

well as the development of new synthetic methodology for use in the 

elaboration of cyclic amine containing fragments. This methodology could be 

used in elaboration of the fragments synthesised in Chapter 3 of the thesis. 

 
Objective 1: Evaluation and Development of Methodology For use in 

Fragment Elaboration in Fragment Based Ligand Discovery 

The first objective within aim 1 is to evaluate existing synthetic methodology 

reported in the literature that could be used to elaborate cyclic amine 

containing fragments. From our own analysis of fragment-to-lead publications 

in 2019, it was shown that 59% of campaigns utilised a fragment growth 

approach.103 Of all fragment-to-lead publications in 2019, 37% required a 
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bespoke synthetic strategy in order to access chemical analogues, conveying 

the huge synthetic effort that fragment growth can require. This part of the 

project will enable a diverse toolkit of reactions applicable to the elaboration 

of cyclic amines to be built, with the aim of reducing the requirement for de 

novo synthesis in fragment growth. 

 

Objective 2: Synthesis of Enecarbamates and Enamides: Precursors for 
Fragment Elaboration 

As previously described, leading-practitioners have called for methodology for 

the elaboration of small low affinity fragments into high affinity lead molecules 

to be developed.83 The second objective is to develop synthetic methodology 

applicable to the elaboration of cyclic amine containing fragments. Within the 

Nelson and Marsden groups, elaboration methods have been described for 

unsaturated amine derivatives (enecarbamates and enamides) at the 𝛽-

position to nitrogen, using a photoredox-mediated alkylation employing 

bromoacetic esters (Scheme 1, panel 1).104 This methodology has been 

extended to introduce acetamide derivatives, facilitated by use of activated 

bromoacetic esters which undergo subsequent amidation in a single pot. A 

second transformation reported within the groups is a procedure to diversity 

cyclic amine fragments at the 𝛽-position (Scheme 9, panel 2), by use of 

photoredox-mediated hydroamination amenable to the use of ammonia and 

both alkyl and (hetero)aryl amines.105 To demonstrate the value and utility of 

these synthetic methodologies, access to a variety of endocyclic 

enecarbamates  starting materials is required.  
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Scheme 1: Panel 1: A photoredox mediated alkylation of enecarbamates using bromoacetic esters. 
Panel 2: A photoredox mediated hydroamination of enecarbamates using primary and secondary 

amines. 
 

Specifically, the objective for this part of the project is to develop an efficient 

route towards the regioselective generation of endocyclic enecarbamates, 

which can then be used in the 𝛽-functionalisation chemistries previously 

developed within the group. 
 

Project Aim 2: Synthesis, biochemical screening and elaboration of a 

kinase-directed fragment library targeting Aurora-A 
Objective 1: Design and Synthesis of a Kinase-targeting fragment library 

The project will involve the design and synthesis of fragments, for the use in 

kinase fragment-based drug discovery. The fragments will be designed 

through literature searching to identify heteroaromatic warheads, to target 

kinases. These fragments will aim to obey the following guidelines as 

described by literature, summarised below83 using molecular properties 

predicted by the open access computational tool, LLAMA.106 

• Physiochemical properties: Molecular weight of 130-230 Da with no 

more than 19 heavy atoms, -1 < cLogP< 3 and high aqueous solubility, 

to enable biophysical screening at high concentrations. An upper limit 

for polar surface area is set at 60 Å. LLAMA will be utilised to predict 
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ALogP and polar surface area and well as removal of any toxic 

functionality.  

• Synthetic Tractability: Synthesis from readily available starting 

materials and able to readily produce 50-100 mg.  

Objective 2: Biochemical Screening 
Screening of the fragment library from Aim 2 Objective 2 against our chosen 

kinase target, Aurora-A. This will enable identification of potential hits that 

target Aurora-A which can then be elaborated by methodology discussed in 

Aim (1). 

Objective 3: Fragment Elaboration and Subsequent Screening 
Fragments hits identified from Aim (2), Objective (2) will be elaborated using 

methodology either identified in Aim (1), Objective 1 or developed from Aim 

(1), Objective 2 to generate elaborated fragments which can then be 

screened against Aurora-A. The outcome of this work will inform on how 

chemical elaboration affects the potency and ligand efficiency of fragment hits 

against Aurora-A.  

 

Project Aim 4: Profiling of Fragments against a panel of 100 Protein-
Kinases 

The human genome encodes 518 protein kinases, most of which have some 

genetic link with disease.107 The availability of selective kinase inhibitors has 

demonstrated potential to address the uneven exploration of kinase biology, 

with potential to unlock new therapeutics opportunities.  

 

Fragments and elaborated fragments synthesised from Aim (2), Objective 1 

and Aim (2), Objective 4, plus additional supplementary fragments, will be 

profiled against a representative panel of 100 kinases. This work is carried out 

in collaboration with Prof. Stefan Knapp’s Laboratory, at the SGC Frankfurt.  
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The outcome of this work will enable investigation of the selectivity of ATP-

binding sites in 100 protein kinases, and to elucidate whether fragments 

synthesised in this project show selectivity between different kinases and how 

chemical elaboration of hit fragments can affect their binding selectivity. 

 

 

 

 Chapter 2: Evaluation and Development of Methodology 

For use in Fragment Elaboration in Fragment Based 

Ligand Discovery 

 

 Part 1: Evaluation of Existing Methodology for the Elaboration 

of Cyclic Amine Fragments 

 Introduction 

Fragment-based ligand discovery (FBLD) has been transformed over the last 

20 years into a mainstream approach for the discovery of drugs in industrial 

and academic settings. FBLD relies on the initial identification of small 

fragments (typically with MW < 250 Da) that bind weakly, yet efficiently, to a 

target protein. Binding fragments can then be elaborated, usually in the light 

of structural information, to yield more potent and/or selective ligands.   

Despite the remarkable rise in the use of FBLD, significant chemical 

challenges remain for the field. Medicinal chemistry continues to be 

underpinned by a remarkably narrow toolkit of reliable reactions that enable 

direct fragment “growth” along specific vectors.108,109 Often the positions within 

fragments which are easiest to functionalise (typically heteroatoms) are also 

those that are required for productive interaction with the target protein. As a 

result, bespoke syntheses of elaborated fragments is often demanded when 

direct fragment growth would be desirable.  
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This section will explore potential methods for the fragment elaboration of 

cyclic amines. Emerging transformations in the literature applicable to the 

functionalisation of cyclic amines are trialled; these transformations may have 

applications in Chapter 3 of the project. 

 

 Results and Discussion 

 𝜶-Functionalisation of Cyclic Amines 

2.3.1.1 C-H Arylation of Cyclic Amines 
 
Shaw et al. reported a general and selective strategy for the functionalisation 

of C-H bonds under photoredox catalysis by use of a hydrogen atom transfer 

(HAT) co-catalyst, 3-acetoxyquinuclidine (22).110 The HAT catalyst undergoes 

oxidation by the excited photocatalyst, to give the corresponding tertiary 

amine radical. Hydrogen abstraction by the tertiary amine radical is selective 

for the most hydridic site on N-Boc pyrrolidine, to give the 𝛼-amino carbon-

centred radical. The combination of the HAT activation mode with 

metallaphotoredox catalysis enabled selective arylation of the 𝛼-position of 

pyrrolidine.111 This transformation would be useful in fragment growth, since 

it enables activation of an array of C-H bonds as handles for cross-coupling 

reactions. 

The HAT catalyst, 3-acetoxyquinuclidine (22) was prepared by acetylation of 

3-hydroxyquinuclidine (21) through heating in an excess of acetic anhydride 

for six hours. The product was successfully isolated following distillation in 

good yield. 

 

Scheme 2: Synthesis of the HAT catalyst. 
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Attention turned to using the catalyst in C-H arylation.110 Exploration of this 

reaction enabled scoping of medicinally relevant aryl groups, which could be 

used in fragment growth. The aryl bromide scope examined is listed in Table 

5. A lower yield was obtained with 2-bromo-1,4-dichlorobenzene (26, Table 5, 

entry 3) thought to be due to increased steric hindrance of the aryl bromide. 

Entry 5 utilised 4-bromo-1-methyl-1H-pyrazole (28), which was unsuccessful, 

with only starting material isolated. 

 

Entry Aryl Bromide Compound % Yield 
 

1 
 

24 
 

 
29 

 
63% 

 
2 

 
25 

 

 
30 

 
67% 

 
 

3 

 
 

26 

 

 
 

31 

 
 

34% 

 
4 

 
27 

 

 
32 

 
70% 

 
5 

 
28 

 

 
- 

 
No Product 

Table 5: Aryl bromide scope of photoredox C-H acylation. 

  
Due to the restricted access to the precursor 22 of the HAT catalyst, because 

of its inclusion in the Chemical Weapons Convention (CWC), we attempted to 

source an alternative HAT catalyst.112 A series of alternatives were trialled in 

the reaction using 24 and N-Boc pyrrolidine without success (Table 6). 
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Entry HAT Catalyst Outcome 

1 3-acetoxyquinuclidine  64% isolated 

2 Quinuclidol No product 

3 Quinuclidone  No product 

4 Quinuclidine  No product 
Table 6: Variation in HAT catalyst. 

Attention turned to the synthesis of difunctionalised cyclic amines, which 

introduces the element of regiocontrol into the reaction. MacMillan and 

coworkers reported that when unsymmetrical amine substrates were exposed 

to this HAT protocol, preferential coupling of methylene C-H bonds over 

methine C-H bonds was observed.110 In order to appreciate the utility of this 

transformation in fragment growth, we applied this methodology to pre-

functionalised N-Boc cyclic amines (Scheme 3). These experiments examined 

previously unreported 𝛼- and 𝛽- functionalised 5- and 6- membered cyclic 

amines, using the conditions reported by MacMillan.110 Regrettably, these 

reactions did not yield the difunctionalised product and protected pyrrolidines 

33-37 were recovered. The original study did not explore substrates bearing 

phenyl substituents or functionalised piperidines. Therefore, use of this 

reaction in the fragment growth of pre-functionalised cyclic amines would be 

deprioritised. 
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Scheme 3: Experiments to analyse the regioselectivity of the transformation. 110 

 

Given the difficulty in accessing the HAT catalyst and the lack of reactivity with 

pre-functionalised heterocycles, we examined an alternative method of α-C-H 

functionalisation. 

 

Seidel et al. developed a procedure for the α-C–H bond functionalisation of a 

broad range of unprotected cyclic N–H amines via nucleophilic addition to 

imines generated in situ.113 This procedure required anhydrous conditions and 

was unlikely to be functional group tolerant, but had advantages over using 

photoredox/nickel catalysed C-H acylation; it is more step-economic, with 

amine protection not required and therefore was an amenable approach for 

the growth of cyclic amine containing fragments (Scheme 4).  

 
Scheme 4: Seidel and co-workers method for a-arylation of cyclic amines.113 

 

Treatment of pyrrolidine (44) and piperidine (45) with n-BuLi resulted in in situ 

deprotonation to the lithium amide. The lithiated heterocycle engages with 

benzophenone, a sacrificial hydride acceptor, to provide the corresponding 

cyclic imine. Capture of the imine with commercially available phenyllithium 

furnished the functionalised amines in improved yield (46 and 47). compared 

to literature.113   

N
Boc

n
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n
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Once the synthesis of fragments 46 and 47 was complete, we examined the 

regioselectivity of the transformation. Seidel reported that when 

unsymmetrical substrates are utilised, replacement of the sterically more 

accessible C-H bond occurs.113 Repetition of literature substrate using 2-

phenylpyrrolidine, employing benzophenone as the hydride acceptor 

displayed the product [M+H]+ by LC-MS, but analysis by crude 1H NMR and 
13C NMR did not show product and isolation of 48 was unsuccessful.   

 
Scheme 5: Experiments to analyse the regioselectivity of the transformation 

 

To try to understand this failure, the formation of the intermediate imine was 

examined as a separate step by stopping the reaction prior to the addition of 

the phenyllithium and the crude mixture analysed by 13C NMR. 

Overwhelmingly, analysis displayed the presence of starting fragment 46 and 

benzophenone, without the occurrence of any other species. Variation of the 

sacrificial hydride acceptor was explored, but use of phenyl-tert-butyl ketone, 

trifluoroacetophenone and L-fenchone gave no product. 
 

In parallel, attempts were made to repeat the reaction using the non-literature 

substrate 3-phenylpiperidine, employing trifluroroacetophenone as the 

hydride acceptor. These attempts were unsuccessful and the reaction was 

deprioritised as a method to elaborate pre-functionalised fragments. 

 
Scheme 6: Applying Seidel’s method to 3-phenylpiperidine employing trifluoroacetophenone as the 

hydride acceptor. 
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The Minisci reaction is a powerful methodology for combining electron 

deficient heteroarenes with nucleophilic radicals. The formation of nucleophilic 

𝛼-amino radicals has been utilised for Minisci reactions in recent work. Dong 

and coworkers114 demonstrated conditions to couple protected saturated 

nitrogen heterocycles with benzothiazole. Application of tert-butyl peracetate 

(t-BPA) as a HAT reagent, was shown to be crucial for the reaction. Grainger 

et al.115 developed conditions for the high-throughput coupling of an array Boc-

protected amines with nitrogen containing heteroaromatics. Bosset et al.116 

reported the functionalisation of N-Boc azetidine with a range of heteroarenes 

using photoredox mediated Minisci conditions. We envisaged that by utilising 

the cross-dehydrogenative conditions reported by Dong et al.114 we would be 

able to 𝛼-functionalise fragments with varying heteroarene motifs. 

 

Previous work within the group completed by Dr. Andrew Gomm, focused on 

the adaptation and optimisation of Dong’s procedure to the construction of 

bio-active molecules in an array format on 96-well plates. 117 Using the results 

of this work as a guide, we sought preparative synthesis of 𝛼-functionalised 

cyclic amines. We commenced by repeating the reaction of N-Boc pyrrolidine 

as the substrate hydrogen donor and benzo[d]thiazole (51) as the heteroarene 

using the conditions reported within the group to give pyrrolidine 52, in a 

comparable yield. 

 
Scheme 7: Synthesis of fragments using the Minisci-type heteroarylation. 
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In order to examine the reactions applicability to fragment elaboration, we 

utilised 4-functionalised piperidines 53-55 containing an ester (53), tertiary 

amine (54) and a primary carboxamide (55). These reactions were 

unsuccessful, giving a complex mixture of unidentifiable products. Although 

the work within the group did not explore Cbz-protected amines, they are 

reported in work by Wang et al. so would be expected to be tolerated. Equally, 

work within the group displayed variations in ring size to be tolerated. From 

the results we obtained with pre-functionalised amines, this method was 

deprioritised as a method to elaborate fragments. 

2.3.1.2 C-H Alkylation through Cross-Coupling of Carboxylic Acids 
with Alkyl Halides 

 

MacMillan et al. reported a dual catalytic system which employs photoredox 

and nickel-catalysed substitution reactions of alkyl halides with cyclic amines 

through decarboxylative generation of α-aminoalkyl radicals.118 The synthesis 

of an array of alkyl halides was attempted using this procedure, entries 3 and 

4 are not previously reported substrates of this reaction (Table 7). 

 
Entry Substrate Reactant Product % Yield 

1 60 

 

64 56% 

2 61 

 

  65(b) 75% 

3 62 

 

- No product 

4 63 

 

- No product 

Table 7: Synthesis of α-C-H functionalised pyrrolidines through sp3-sp3 bond formation.(b) entry 2 was 
left as the protected amine. 
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N
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Entries 1 and 2 were repetitions of exact literature procedures and afforded 

modest yields, for entry 1 a lower yield was observed when compared to 

literature. Functionalisation of the aromatic ring was investigated by use of +M 

positive mesomeric effect) and –M (negative mesomeric effect) functional 

groups in the para-position of the aromatic ring (entries 6-7) and were 

unsuccessful. The protocol was repeated using a non-literature substrate, N-

Boc pipecolic acid 66 (Scheme 8), with benzyl chloride (60) as the alkyl halide 

giving a 12% yield.  

 
Scheme 8: Synthesis of 𝛼-C-H functionalised piperazines through sp3-sp3 bond formation 

 

 Functionalisation of Appended Substituents 

2.3.2.1 Direct Aldehyde C-H Arylation Employing Nickel, Hydrogen 
Atom Transfer and Photoredox Catalysis 

 

Aldehyde C−H functionalisation was achieved by Zhang and MacMillan under 

mild conditions via a synergistic merger of photoredox, nickel, and HAT 

catalysis.119 Known aldehyde (68) and previously unreported aryl bromides 

were subjected to the reported conditions to afford ketone fragments 71 and 
72 in moderate yields. Although 1-Bromo-4-fluorobenzene 70 (Table 8, entry 

1) was not previously reported as a substrate in this reaction, success is 

unsurprising as a range of para-substituted activated aromatic electrophiles 

are reported to be tolerated in this transformation.  

 

1) Ir[dF(CF3)ppy]2(dtbbpy)PF6 (0.15 eq.)
NiCl2.glyme (0.1 eq.),

4,4’-dtbbpy (0.15 eq.), K2CO3 (2.0 eq.), 
DMF, 24W Blue LED, rt,72 h
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Entry Substrate Aryl Bromide Product  % Yield 

1 69 
 

71 54% 

2 70 
 

72 84% 

Table 8: Scope of the aryl bromides utilised in C-H aldehyde functionalisation. 
 
2.3.2.2 Direct Alcohol Functionalisation Employing Photoredox 

Catalysis 

 

MacMillan and co-workers reported a strategy for arylation of aliphatic 

alcohols via transient Ni(III) complexes, through the use of visible-light-

mediated photoredox catalysis.120 This reaction has had applications in 

various challenging carbon-oxygen cross-coupling reactions.120 This protocol 

was applied to alcohol 73, which was previously unreported as a substrate in 

this reaction. Subsequent removal of the Boc protecting group gave the 

secondary amine fragment 74 in 24% yield. 

 

 
Scheme 24: Alcohol functionalisation in the synthesis of 74. 

 

This compound synthesis could also have been completed through use of a 

Mitsunobu121, although SN2 reactions are known to be difficult for cyclic 

substrates. An alternate method could be by Chan-Lam cross-coupling, but 

alkyl halide availability often exceeds that of boronic acids.122 This 
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transformation was de-prioritised as a method to elaborate fragments, due to 

the expensive nature of the catalyst and the ability to generate analogues of 

this type by other means. However, it could be used when other methods are 

unsuccessful or starting materials are unavailable. 

 

 Conclusion 

Six emerging chemical transformation have been tested against protected 

functionalised cyclic amines, generating a range of amine fragments 

functionalised in the 𝛼-position and at appended substituents (e.g. aldehydes 

and alcohols). These transformations have applications in Chapter 3, to 

enable the growth of a fragment hit, towards generating a lead compound. 
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 Part 2: Synthesis of Enecarbamates and Enamides as 

Precursors for Fragment Elaboration 

 Introduction 

Endocyclic enecarbamates are heterocyclic compounds which are useful 

building blocks in the preparation of functionalised nitrogen heterocycles. 

Within the Marsden and Nelson groups, two fragment diversification 

transformations have been described which require enecarbamate precursors 

(Scheme 9). 

 

Trindade et al. (Scheme 9, panel 1) described a method of elaboration of 

unsaturated amines at the 𝛽-position using a photoredox-mediated alkylation 

employing bromoacetic esters.104 This methodology was extended to 

introduce acetamide derivatives, facilitated by use of activated bromoacetic 

esters which undergo subsequent amidation in a single pot. Francis et al. 

(Scheme 9, panel 2) developed a procedure to diversify cyclic amine 

fragments at the 𝛽-position by use of photoredox-mediated hydroamination 

amenable with ammonia and both alkyl and (hetero)aryl amines.105  

 

 
Scheme 9: Panel 1: A photoredox mediated alkylation of enecarbamates using bromoacetic esters. 
Panel 2: A photoredox mediated hydroamination of enecarbamates using primary and secondary 

amines. 
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lactams, using catalytic ruthenium tetroxide produced in situ (Scheme 2).123 

The endocyclic enecarbamate is then constructed through reduction of N-acyl 

lactam to the corresponding 𝛼-hydroxycarbamates using DIBAL-H or 

SuperHydride.124 Subsequently, 𝛽-elimination promoted by sulfuric acid or 

trifluoroacetic anhydride in the presence of hindered nitrogen bases such as 

diisopropylethylamine (Scheme 10) provides a pathway into the 

enecarbamate.125,126 

 
Scheme 10: Oxidation of N-acyl amines to N-acyl lactams followed by reduction to the corresponding 

𝛼-hydroxycarbamates and 𝛽-elimination to yield enecarbamates. 
 
More recently, and subsequent to our own work, Nicewicz et al. have reported 

a photoredox-catalysed copper-mediated dehydrogenation of protected 

saturated cyclic amines to their enecarbamates.127 These enecarbamates 

then underwent an anti-Markovnikov hydrofunctionalisation, with heteroatom 

containing nucleophiles to generate 𝛽-functionalised cyclic amines bearing C-

C, C-N and C-O bonds in the 𝛽-position (Scheme 11, panel 1). Maulide and 

co-workers have demonstrated a one pot N-dehydrogenation of amides to 

yield enamides, employing LiHMDS and triflic anhydride as an electrophilic 

activator and oxidant in the reaction.128 The enamides generated could then 

be used successfully in cycloadditions, ring functionalisation and ring 

deconstruction reactions (Scheme 11, Panel 2). 
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Scheme 11: Reported methods for enecarbamates and enamide synthesis. Panel A displays a 

procedure reported by Nicewicz.127 Panel B illustrates a procedure by N. Maulide for the synthesis of 
enamides.128 

 
The literature synthesis of enecarbamates from their saturated derivatives is 

therefore limited, with only a few reported methodologies applicable to the 

construction of more complex endocyclic enecarbamates.124,127–130 The 

shortage of literature on their synthesis is assumed to be a limiting factor for 

more extensive use of these N-acyl enamines in organic synthesis and we 

sought a milder and general method for their synthesis. 

 

 Introduction to Synthetic Electrochemistry 

Electrochemical experiments are carried out in an electrochemical cell, a 

reactor that is comprised of an electroactive species, electrolyte, solvent and 

at least two electrodes (an anode and cathode).131 The anode is connected to 

the positive pole of the power source and is oxidative, whereas the cathode is 

connected to the negative pole and is reductive.  

 

Electrochemical cells can be constructed according to two approaches; 

undivided and divided cells. In an undivided cell, the anode and cathode are 

not separated, whereas the anode and cathode are separated in a divided 

cell. The undivided cell set up is preferred for preparative electrochemistry due 
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to ease of construction, allowing both reduction and oxidation to occur in the 

same vessel. Employment of this set-up, however, requires understanding of 

species produced at the auxiliary electrode i.e. the electrode other than where 

the reaction of interest is carried out.  

 

Electron transfer events occurring at the anode or cathode are respectively 

classified as oxidations or reductions. Electrochemical reactions occur on the 

surface of electrodes and therefore are heterogenous processes. The 

resulting species generated following the initial electron transfer event 

between the electrode and an organic substrate subsequently diffuses into 

solution and can subsequently undergo a secondary reaction of the initial 

radical species.132,133 The potential of the electrode (E), is the difference 

between the potential at the electrode of interest and the selected reference 

electrode, such as the saturated calomel electrode (SCE), and will determine 

whether an electron transfer process is thermodynamically feasible and is 

denoted by Equation 1 
																																																									∆𝐺 = 	−𝑛𝐹𝐸																																																		 

Equation 1: Free energy and cell potential. Where ∆G is the free energy change, F is Faraday’s 
constant, 96485 Coulombs mol-1, and n is the number of electrons involved in the overall reaction. 

Electrochemical experiments can be conducted in either current-controlled or 

controlled-potential mode. Controlled-potential experiments use a three-cell 

electrode setup, where the voltage is fixed and cyclic voltammetry (CV) of the 

compound is necessary to determine its oxidation potential prior to reaction. 

It is noted that although the potential can be controlled, the current will 

fluctuate as the resistance of the cell changes. Current-controlled experiments 

use a two-electrode setup where the current is held constant while the voltage 

gradually increases until the potential is reached for an electroactive species. 

Once depleted, the potential will continue to rise until a second electroactive 

species or solvent molecules is oxidised or reduced. It is therefore imperative 

to consider the redox potentials of the substrate, as well as other species in 

the system to ensure that the initial redox reaction does not involve 

participation of the solvent or other additives. Although the current-controlled 
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method is operationally simpler, it can lead to over oxidation of the compound 

if the optimal parameters are not chosen, as the voltage will fluctuate during 

the reaction. 

 

 Shono Oxidation 

In 1975 Shono and co-workers reported the first direct electrochemical 

oxidation of an 𝛼-methylene group of an amide (or carbamate) to generate a 

new carbon-oxygen bond using an anodic methoxylation step.134–136 The 

Shono oxidation is a well-documented and operationally straightforward 

synthetic transformation and can be completed in a single electrochemical 

system, using carbon-based electrodes.137 The reaction mechanism is 

thought to proceed through a single electron oxidation to form a nitrogen 

centred radical cation (Scheme 10).135 The radical cation then undergoes 

proton loss, leading to 𝛼-amino radicals. A subsequent one-electron oxidation 

generates the iminium ion (82c), which can then be trapped by nucleophilic 

solvent (methanol), to give the isolable 𝛼-methoxycarbamate (82d). This 

species can then be treated with Lewis or Bronsted acid, regenerating the N-

acyliminium ion to allow for further functionalisation. 

 
Scheme 12: The proposed mechanism for the Shono oxidation. 
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Although the original report examined the products of the anodic oxidation of 

acyclic N,N-dialkylcarbamates in methanol, the method was soon expanded 

to cover simple cyclic amines.138 The Shono oxidation enables direct 

functionalisation of the 𝛼-position adjacent to the nitrogen atom in 

heterocycles as well as indirect functionalisation of the 𝛽- and 𝛾-carbons 

through conversion to the corresponding enecarbamates. 

 

When an unsymmetrical secondary amide or carbamate is used in the Shono 

oxidation, the oxidation occurs preferentially at the less substituted position, 

as shown in Scheme 13. However, studies by Onomura139 and co-workers 

have revealed that the regiochemical outcome may be reversed using 

cyanoamines wherein the methoxylation at the more substituted position is 

favoured. Computational studies suggested that when using a cyano 

protecting group (Scheme 13) the more-substituted iminium ion is stabilised 

and so favours methoxylation at this position. Contrariwise, for carbamates 

the iminium intermediates were shown to be of similar stability, where steric 

effects are thought to predominate. However, these calculations examined 

only the stability of the intermediates and did not offer an explanation for the 

kinetic selectivity in their formation, or how the equilibrium may be established 

for thermodynamic considerations to dominate. 

 

 
Scheme 13: Variation in amine protecting group and its influence on regioselectivity in the Shono 

oxidation. 
As a result of the limited literature precedent on the synthesis of complex 

enecarbamates, we elected to examine whether the Shono oxidation could be 

used to deliver functionalised and substituted enecarbamates from their 

saturated derivatives in a selective manner. 
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 Results and Discussion 

 Method Development 

In our first experiments, using conditions reported by Shono134 employing 

graphite electrodes with a supporting electrolyte of tetraethylammonium 

tosylate, N-Boc piperidine 84 gave excellent conversion to the 𝛼-

methoxycarbamate 85, which was isolated in 93% yield (Scheme 14).140 The 

presence of the 𝛼-methoxycarbamate product was confirmed by 1H NMR, with 

the spectrum of the methoxylated product (85) being complicated by relatively 

slow rotation of the carbamate function.140 

Repetition of Shono’s conditions to eliminate methanol from 𝛼-

methoxycarbamate 85 utilising ammonium bromide were unsuccessful, with 

only decomposition of the starting material observed, a result echoed by 

Oliveira.5,18 It is well documented in the literature that trimethylsilyl triflate 

when combined with a non-nucleophilic base enables elimination of methanol 

from 85 via the N-alkoxycarbonyl iminium ion.125 Attempts to form the N-

alkoxycarbonyl iminium ion of 85 under these conditions were unsuccessful 

and led to decomposition, possibly due to deprotection of the Boc-amine.  

 

Scheme 14: Initial studies towards the synthesis of endocyclic enecarbamates using N-Boc piperidine 
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To circumvent issues associated with use of an acid-labile protecting group, it 

was decided to investigate N-Cbz piperidine as a substrate. N-Cbz piperidine 

gave excellent conversion in the Shono oxidation to give the corresponding 𝛼-

methoxycarbamate 88, which was isolated in 91% yield (Scheme 15). 

Treatment of 𝛼-methoxycarbamate 88 with ammonium bromide again did not 

induce elimination and so the combination of trimethylsilyl triflate and 

triethylamine was employed. Satisfyingly, enecarbamate 89 was isolated in a 

65% yield, which was increased to 87% on implementation of a telescoped 

procedure (Scheme 15). An explanation for the improvement in yield is the 

potential instability of the 𝛼-methoxycarbamate to silica, leading to 

decomposition.125 Enecarbamate 89 could be purified using flash column 

chromatography to yield analytically pure compound. 

 

Scheme 15: Comparison of a two-step proceedure and a telescoped to access enecarbamates 

With a procedure to access enecarbamates in place, attention turned to 

optimisation of the anodic oxidation and the successive elimination reaction 

step.  

C C

N
Cbz

N
CbzMeOH, rt, 5.2 h

65 mA, 2.0 Fmol-1 
NEt4OTs (0.025 M)

OMe DCM, 0 ºC, 2 h

TMSOTf (1.2 eq.)
NEt3 (1.2 eq.)

88, 91%

N
Cbz
89, 65%

Panel 1: Two Step Procedure

Panel 2: Telescoped Procedure

N
Cbz

N
Cbz

1) 65 mA, 2.0 Fmol-1, 
NEt4OTs (0.025 M)

MeOH, rt, 5.2 h

2) TMSOTf (1.2 eq.)
NEt3 (1.2 eq.)
DCM, 0 ºC, 3 h

89, 80%

C C

87

87



 

 

- 57 - 

2.7.1.1 Optimisation of the Synthetic Route to Enecarbamates 

Initially, optimisation studies considered the optimal electric charge per mole. 

The Shono oxidation is a two-electron process and so should only necessitate 

the use of 2 Fmol-1, however often an excess of 4 Fmol-1 is employed.142 Table 

9 displays that employing 2.5 – 4 Fmol-1 produced the 𝛼-methoxycarbamate 

88 in excellent yield. Unsurprisingly 1 Fmol-1 produced 88 in poor yield (Table 

9, entry 1). A modest improvement in yield was observed using 4 Fmol-1, which 

could be attributed to concurrent oxidation of methanol or adventitious water 

introduced through use of a hydroscopic supporting electrolyte. It is important 

to note that on implementation of conditions using 5 and 6 Fmol-1, 

decomposition began to be observed in the crude 1H NMR. In the case of 

entry 6, a complex mixture of enecarbamate and unidentifiable products were 

obtained. Use of 2.5 Fmol-1 gave high yield with a shorter reaction time.  

 
Entry Fmol-1 Reaction Time (mins) Yield 

1 1 54 37% 
2 2.5 107 93% (91%) 
3 4 215 98% 
4 5 269 67%a 

5 6 323 9%a 

Table 9: The effect of varying Fmol-1 in the Shono oxidation of 87. The current was held at 65 mA. The 
NMR yield is determined with respect to an internal standard, 1,3,5-trimethoxybenzene. a 

decompositon was observed in the 1H NMR spectrum, indicative of over reaction. Entry 5, 15% 
enecarbamate observed. Bracketed yields are isolated yields. 

Next, we surveyed the anode material, with graphite giving the greatest yield 

overall, while glassy carbon gave the lowest yield. 
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Entry Electrodes Yield 

1 Graphite 93% (91%) 
2 Platinum 65% 
3 Stainless Steel 66% 
4 Glassy carbon 42% 

Table 10: The effect of anode material on the electrochemical oxidation of model substrate 87. Yields 
were determined from 1H NMR. The NMR yield is determined with respect to an internal standard, 

1,3,5-trimethoxybenzene. Bracketed yields are isolated yields. 

It was found that stainless steel and platinum electrodes performed similarly 

but led to a reduction in yield when compared with graphite. Interestingly, Ley 

and co-workers describe a Shono oxidation of 87 using an electrochemical 

flow cell, where the use of steel or platinum electrodes resulted in no 

conversion to product.143 They accredit this result to N-Cbz protected cyclic 

amines and methanol having very close redox potentials and so methanol may 

be participating in the redox process. This could account for the reduction in 

yield seen. 

 

The choice of supporting electrolyte was considered, with our original choice 

of tetraethylammonium tosylate affording the greatest yield by 1H NMR. All 

electrolytes were prepared according to literature procedures prior to use.144 

Use of NBu4OAc gave excellent yield, but separation of the electrolyte from 

the product proved difficult using column chromatography and therefore was 

not pursued (Table 11, entry 3). During this study we observed poor 

conversion using NaCl as the supporting electrolyte (Table 11, entry 5).  
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Entry Electrolyte Yield 

1 NEt4OTs 93% (91%) 
2 NEt4BF4 88% 
3 NBu4OAc 96%a 

4 NaBF4 n.d.b 
5 NaCl 15% 

Table 11: The effect of modifying the electrolyte on the Shono oxidation of 87. Electrolyte 
concentration at 0.25 M.144 Yields were determined from 1H NMR. The NMR yield is determined with 

respect to an internal standard, 1,3,5-trimethoxybenzene. Bracketed yields are isolated yields. aIssues 
with seperation from enecarbamate observed. b low solubility of the electrolyte in methanol at 0.025 M. 

With optimised reaction conditions for the anodic oxidation in hand, a brief 

survey of the elimination procedure was conducted (Table 12). Initially, 

formation of 89 utilised conditions reported by Bach for similar substrates.145 

It was found that increasing the excess of trimethylsilyl triflate from 2 – 2.2 

equivalents improved the yield modestly. The experiment was found to 

produce excellent yields when conducted at 0 °C. Substitution of triethylamine 

with N,N-diisopropylethylamine led to an improvement in yield from 79% to 

84%. On variation of the base to 2,6-lutidine, a reduction in yield was 

observed. An explanation for this could be the formation of a more acidic 

lutidinium triflate salt, leading to decomposition of the product. Once the 

reaction had concluded, the crude reaction mixture was diluted with hexane 

and filtered through celite. 
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Entry TMSOTf  

(eq.) 
Base Temperature / 

°C 
Yield 

1 2 NEt3 0  79 
2 1 NEt3 0  22 
3 4 NEt3 0  51 
4 2.2 NEt3 0  80 
5 2.2 NEt3 rt 65 

6 2 DIPEA 0  84 
7 2.2 DIPEA 0  87 
8 2.2 DIPEA rt 81 
9 2 2,6-Lutidine 0  40 

10 2.2 2,6-Lutidine 0  42 
Table 12: Optimisation of parameters of the trimethylsilane elimination on 12. Yields were determined 

from 1H NMR. The NMR yield is determined with respect to an internal standard, 1,3,5- 
trimethoxybenzene. 

 

2.7.1.2 Summary of Optimised Conditions 

Following optimisation, a set of conditions were defined for efficient synthesis 

of endocyclic enecarbamate 89 (Scheme 16). With these optimised conditions 

for the formation of a simple enecarbamate in hand, we investigated the 

substrate tolerance of the transformation. 

 
Scheme 16: Optimised conditions for the synthesis of endocyclic enecarbamates. 
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 Preparation of Endocyclic Enecarbamates 

2.7.2.1 Variation of protecting group 

With optimised conditions in hand, a series of N-protecting groups for 

piperidine were screened. This was a useful study as a future application of 

the protocol would be in direct fragment elaboration, where installation of a 

Cbz protecting group may not be amenable.  

 
Entry Substrate R Product Yield 

1 84 Boc 86 n.d. 
2 87 Cbz 89 87% 
3 90 Ac 93 75% 
4 91 Bz 94 72% 
5 92 Ms - No reaction 

Table 13: Variation of the protecting group of piperidine. Yields denote isolated yield, n.d. not 
determined. 

It was established previously that N-Boc moieties were not stable under the 

chosen elimination conditions (Table 13, entry 1). Acetyl and benzoyl groups 

were tolerated, proceeding with clean conversion to the enamides in excellent 

yields of 75% and 72% respectively (Table 13, entries 3 and 4). However, for 

mesyl protected piperidine (Table 13, entry 5) the anodic oxidation did not take 

place under our conditions, mirroring observations in the literature, suggesting 

that the oxidation of sulfonamides is more difficult than the oxidation of 

carbamates.146,147 
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2.7.2.2 Variation of Ring Size 

From our studies, the formation of the endocyclic enecarbamates using N-Cbz 

piperidine proceeded in excellent yield. The procedure was extended to 

encompass pyrrolidine and azepane as substrates, which are common motifs 

within fragments and drug candidates. 148 

 

Commercially available N-Cbz pyrrolidine and N-Cbz azepane underwent the 

Shono oxidation, under the optimised conditions, with complete consumption 

of the starting material observed by TLC and crude 1H NMR. The elimination 

protocol was then applied to yield enecarbamates 97 and 98 in good yield, 

without recourse to modifying our original procedure (Scheme 17).  

 
Scheme 17: Variation of ring size in the one pot procedure to access enecarbamates. 

2.7.2.3 Inclusion of 𝜷-heteroatoms 

As our one-pot procedure had proved robust across variations in ring size, our 

attention turned to the exploration of substrates containing 𝛽-heteroatoms. 

Firstly, we considered piperazines, a common ring system in FDA approved 

drugs.149, 148 Nyberg reported conversion of piperazine-1,4-dicarbaldehyde to 

the enecarbamate in a 46% yield by Shono oxidation and dehydration of the 

N,O-acetal with ammonium bromide.132,137 We envisaged use of dibenzyl 

piperazine-1,4-dicarboxylate (99) in our procedure would yield the desired 

enecarbamate (101). However, disappointingly, the reaction resulted in no 

isolated product. Analysis of the crude 1H NMR following oxidation indicated 

presence of the 𝛼-hydroxycarbamate alongside decomposition of the starting 
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material. Since the 𝛼-hydroxycarbamate was present in the crude 1H NMR, 

this suggested issues with the elimination step and so an alternative method 

was attempted. In this case, neat ammonium bromide was utilised at 140 °C 

but led to decomposition and no product was isolated.   

Subsequently, we considered differentially protected piperazine 100. We had 

found that N-Ms protected piperidine was redox inactive under our optimised 

reaction conditions. It was thought therefore that use of a mesylate protecting 

group in piperazine, could prevent multiple oxidation products forming, 

producing a cleaner crude 1H NMR. Nonetheless, no product was observed 

following the oxidation and decomposition of the starting material had 

occurred, which was confirmed by crude 1H NMR (Scheme 18). 

Finally, we conducted a repeat of the experimental procedure reported by 

Nyberg, using bis-amide 103 and ammonium bromide as the dehydrating 

agent to generate the corresponding enecarbamate.132 Unfortunately, this 

result was unable to be repeated and product 104 was not isolated (Scheme 

18). Following these results, piperazines were deprioritised as substrates in 

this protocol. 



 

 

- 64 - 

 

Scheme 18: Methods used towards the synthesis of N-protected piperazine enecarbamates.132 

From our experience with employing piperazines as substrates, we envisaged 

similar difficulties when employing morpholines as substrates. To our delight, 

105 underwent oxidation and subsequent telescoping of the 𝛼-methylamino 

acetal gave the corresponding enecarbamate in 64% yield, following 

purification by column chromatography (Scheme 19). We believe the 

oxidation occurred adjacent to nitrogen on amine 105 rather than the adjacent 

to oxygen of N-Cbz morpholine. This was deduced from the chemical shift 
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value from the 13C NMR of the crude reaction mixture, which was in 

accordance with reported literature values.140  

 

Scheme 19: Application of N-Cbz morpholine and N-Cbz oxazepane in the telescoped method to 
access the enecarbamates. 

With the morpholine enecarbamate in hand, we applied the proceedure to 

oxazepane 107. Analysis by crude 1H NMR displayed a single regioisomeric 

enecarbamates product, which was subsequently isolated using column 

chromatography. Analysis of 1H and 2D NMR confirmed the isolated product 

as the doubly-heteroatom substituted alkene regioisomer. 

2.7.2.4 Bicyclic Amine 

Our optimised procedure was applied to fused bicyclic N-Cbz amine 109. 

Synthesis of the 𝛼-methoxycarbamate was followed by TLC, with full 

conversion of starting material observed. Conversion to enecarbamate 110 

proceeded in a 69% yield over the two steps and was confirmed by 2D NMR 

and HRMS. 
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Scheme 20: Synthesis of fused bicyclic enecarbamate 110. 

2.7.2.5 Functionalised Piperidines 

Our attention turned to the exploration of appended substituents on 

symmetrical piperidine analogues. These experiments enabled appreciation 

of the functional group tolerance of the transformation, without introducing the 

challenge of regiocontrol.  

To our delight, a range of appended substituents were tolerated in this 
transformation, proceeding in good yield (Scheme 21). In particular, 

compound 112 smoothly underwent oxidation, showing clean conversion of 

starting material by TLC; following elimination and purification by column 

chromatography, enecarbamate 114 was obtained in excellent yield. Although 

a slight decrease in yield was observed with all analogues examined when 

compared to model substrate 87, the yields obtained still make this approach 

amenable for use in fragment elaboration strategies. 

 

Scheme 21: Application of 4-subtituted N-Cbz piperidine analogues in the telescoped method to 
access the enecarbamates. 
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 Preparation of Unsymmetrical Endocyclic Enecarbamates 

2.7.3.1 𝜶-Functionalised Cyclic Amines 

The oxidation of unsymmetrical substrates introduces the challenge of 

regiocontrol. For 2-substituted carbamate-protected amines methoxylation at 

the less substituted site has been observed, although the mechanism for the 

high regioselectivity is unclear.139,150 We sought to replicate the high 

regioselectivity seen in the literature for the anodic oxidation of 2-subsituted 

N-Cbz cyclic amines and pair this step with the elimination of methanol to 

synthesise the enecarbamates. 

Initially we considered 115, a protected proline derivative. Subjecting 115 to 

our optimised conditions gave the less-substituted enecarbamate in good 

yield (Scheme 22). In parallel, we made efforts towards the synthesis of 116, 

a quaternary centre-containing derivative.  Following the reaction by TLC, the 

anodic oxidation of 116 did not show complete consumption of the starting 

material. An increase in electric charge per mol from 2.5 Fmol-1 to 4 Fmol-1 

was investigated but resulted in decomposition of the 𝛼-methoxycarbamate 

product, as seen by 1H NMR. Comparison of 117 to the quaternary centre-

containing analogue 118 saw a reduction in yield from 85% to 21%. It was 

believed the sterically encumbered quaternary centre of 116 potentially 

hindered the anodic oxidation step occurring on the surface of the graphite 

electrode, resulting in the low yield obtained.  
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Scheme 22: Shono oxidation and elimination to access enecarbamates of 2-substituted substrates. 
 
Next, anodic oxidation of 119 proceeded cleanly by TLC and subsequently 

elimination of methanol gave the less-substituted enecarbamate in a good 

71% yield over the two steps (Scheme 22).  

 

2.7.3.2 Distally Substituted Piperidines 

The prospects for observing regiocontrol with more distal substituents seemed 

less encouraging. Nevertheless, since high levels of regioselectivity were 

observed in the formation of 𝛼-subtituted cyclic enecarbamates we envisaged 

some selectivity may be seen, and so our initial investigation explored 𝛽-

substituted piperidines. 

We considered five 𝛽-substituted piperidines, with varying functionality in the 

𝛽-position. To our delight, it was found that the reactions of 𝛽-substituted 

carbamates were also highly selective. Of the five substrates investigated, 

four were isolated as single enecarbamate regioisomers (Table 14). In the 

case of 126, where the smallest 𝛽-substituent (methyl) was considered, the 

less-substituted alkene regioisomer was predominant in an inseparable 2:1 
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(126A, 126B) mixture. These experiments exhibited the broad substrate 

scope of the Shono oxidation, showing tolerance to secondary carbamates 

(125), ethers and heteroarenes (129).  

 
Entry Substrate R Ratio 

of a:b 
Product 

a, b 
Yield 

1 121 Me 2:1 126A, 126B 40%a 

2 122 Ph N/A 127A 67% 
3 123 COOEt N/A 128A 72% 
 

4 
 

124 

 

 
N/A 

 
129A 

 
41% 

5 125 

 

N/A 130A 63% 

Table 14: Formation of enecarbamates of distally substituted piperidines. a enecarbamates had 
formed in a 2:1 ratio of the least substituted: most substituted enecarbamates, with the presence of 

both 𝛼-methoxycarbamates in a 3:1 ratio. 
 

For substrate 121, it was found that the elimination reaction did not run to 

completion, with residual 𝛼-methoxycarbamate remaining. For this, an 

additional 1.0 equivalent of trimethylsilyl triflate and 1.0 equivalent of 

diisopropylethylamine were added after 3 hours and the reaction followed by 

TLC. After an additional 6 hours, analysis of the TLC displayed presence of 

𝛼-methoxycarbamate and the reaction was ended. It was confirmed by crude 
1H NMR and 2D NMR that both enecarbamates had formed in a 2:1 ratio of 

the less-substituted:more-substituted alkene regioisomers, as well as the 

presence of both 𝛼-methoxycarbamates in a 3:1 ratio. On attempted 

purification using flash column chromatography, the mixture of 

enecarbamates and residual 𝛼-methoxycarbamate were found to be 
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inseparable. Efforts were made to assign the structures of the residual 𝛼-

methoxycarbamates, but this was not possible due to overlapping signals 

within the 1H NMR and 2D NMR. 

 

The origin of the high levels of regioselectivity seen was puzzling, and so was 

probed by Dr. Andrew Leach at the University of Manchester using DFT 

calculations (M06-2X/6-31+G** level of theory)151–153 focusing on the 𝛽-methyl 

(121) and 𝛽-phenyl (122) variants.154 Solvation energies were computed as 

single points on the optimized geometries and employed the same level of 

theory and the IEFPCM formalism.154 The gas phase and water solvation were 

used to delimit the extremes of solvent effects. Continuum solvation in 

methanol was used to check quantitative agreement with experiment. All 

calculations were performed in Gaussian09.155 Free energies were computed 

using the GoodVibes program.156 A range of conformations were studied for 

each species, where relevant, and the relative energies of each was used to 

compute a Boltzmann factor in order to assign its contribution to the overall 

population. 

 

The two systems chosen to probe the reaction mixture were 121 (Me) and 122 

(Ph), which gave contrasting experimental outcomes. 121 (Me) gave a mixture 

of 126A and 126B in a 2:1 ratio, whereas 122 (Ph) gave 127 in a >9:1 ratio. 

Within these experimental studies, cyclic amines are protected with benzyl 

carbamate, but for the purpose of these studies it was abbreviated to a methyl 

carbamate for computational simplicity. 

 

As previously described (Scheme 23), the mechanism of the reaction is 

postulated to proceed following loss of an electron from each substrate (131, 

132), generating an (alkoxycarbonyl)amino radical cation (131a, 132a). The 

radical cation can then undergo proton loss leading to isomeric 𝛼-amino 

radicals, where subsequent one electron oxidation generates iminium ions 
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(131d, 132d and 131e, 132e), which can then be trapped by methanol, giving 

the observed products. 

 
Scheme 23: The proposed mechanism of the Shono oxidation of 131/132. 

 
Initial investigations focused on the energies of the two radicals arising from 

deprotonation of the radical cation. This indicated that for 131a (Me), the two 

radicals, 131b and 131c are close in energy, which would represent an 

equilibrium mixture observed in the gas phase (47:53) and in water (48:52), 

indicating there is little preference regardless on the polarity of the medium. 

In contrast for 132a, the radical 132c is computed to be the preferred isomer 

(132b) and to be dominant in both the gas phase (17:83) and water (also 

17:83). This preference is opposite to the experimental outcome (Figure 8), 

and hence the stability of the 𝛼-amino radicals cannot be the determinant of 

the regiochemical outcome. 
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Figure 8: The lowest free energy conformations of each of the radicals. 

Following this, the iminium cations 131d/132d and 131e/132e were studied 

(Figure 9), with an effect of solvent computed. A preference for cation 131d 

was found, as 65:35 in the gas phase and 84:16 in water; however, a 

preference for 132e in the gas phase (66:34) becomes a preference for 131e 

(92:8) in aqueous conditions. Under aqueous conditions, the experimentally 

observed dominant isomer is preferred but there is little effect of changing R 

= Me to R = Ph predicted, and hence it is felt unlikely that iminium stability is 

the origin of the selectivity. It should be noted that the error intrinsic to the 

calculations mean that it cannot be precluded that this is in agreement with 

the experiment.  

 

An alternative mechanism, in which regioselective formation of the radicals 

takes place was considered, where the two isomers cannot be rapidly 

equilibrated. 
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Figure 9: The lowest energy conformations of each of the cations. 

The transition states for the proton transfer from the radical cation to the 

solvent (methanol) were obtained and structural variations were considered; 

including whether the departing proton was axial or equatorial (in addition to 

the methyl or phenyl substituent being axial or equatorial). In the transition 

state, it was assumed that the OH of methanol orients towards the carbamate 

(to form a hydrogen bond with either carbonyl or ester oxygen). The methyl of 

the methanol could either be placed over the piperidine ring or away from it. 

Up to five attempts were made to obtain each of the transition states, but some 

were not found. 

 

In the gas phase, a kinetic preference of 30:70 in favour of formation of 131c 

was computed. In solvent this changed modestly, becoming 15:85 in 

methanol.  By contrast, a 98:2 preference for 132b becomes 92:8 in methanol.  

The latter is in near perfect agreement with experimental observation, while 

the preference for 131c is within the intrinsic error in the calculations. This 

provides a plausible explanation for the observed preference. 

 

In order to understand the origin of selectivity, the transition states for the 

selective reaction (R=Ph) were examined visually (Figure 10). The lowest 

energy transition state TS1(132b) (leading to 132b) features the phenyl group 

in an equatorial position, during removal of an axial proton. The methanol 

forms a hydrogen bond with the carbonyl oxygen and the methyl group of 
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methanol is placed away from the piperidine ring. The same features are 

present in the lowest energy transition state leading to 132c, TS1(132c), with 

the exception of the orientation of the methyl of methanol which is placed over 

the piperidine ring. This suggests that the preference has a steric influence, 

given that orienting the methyl away from the piperidine would cause it to clash 

with the phenyl group; a transition state with such a configuration could not be 

obtained. This steric model provides a consistent rationale for the preference 

for reaction, regardless of the origin of the selectivity the calculation seems to 

suggest that kinetic deprotonation is the regioselectivity determining factor. 

 
Figure 10: The lowest energy conformations of the transition states for formation of 132b and 132c 

 
2.7.3.3 Applications to Fragments and Late-Stage Functionalisation 

With our optimised procedure developed, we next wished to demonstrate the 

application of enecarbamate/enamide formation to aid the growth of chemical 

fragments. Piperonoyl azepane 133 has been found by high-throughput X-ray 

crystallography to be a fragment hit for the m7GpppN-mRNA hydrolase 

DCP2B.157 It was identified that elaboration of this fragment in the 𝛽-position 

of the nitrogen was a potential vector for fragment growth, which could be 

completed by use of previously developed methodologies within the group. 

For the elaboration to be possible, synthesis of the enamide precursor of 133 

would need to be accomplished.  

 TS1$>2b!  TS1$>3b!TS1(132b) TS1(132c) 
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Figure 11: Fragment hit for m7GpppN-mRNA hydrolase DCP2B, 133.157 

We applied our optimised procedure to piperindoyl azepane 133; analysis of 

the reaction after the anodic oxidation step revealed formation of the 

corresponding ortho-ester 135. We believe this arises from the anodic 

oxidation of the 1,3-benzodioxole (Scheme 24). The first report of the direct 

anodic oxidation of 1,3-benzodioxoles was by Thomas et al., achieving 

installation of the methoxy motif on the heterocyclic skeleton.158 Thomas 

reported that the reaction required an atmosphere of saturated carbon dioxide, 

use of platinum electrodes as well as between 3.7- 6.0 Fmol-1 for full 

conversion. We observed complete conversion however, under a nitrogen 

atmosphere, utilising graphite electrodes and 2.5 Fmol-1. 

 

Scheme 24: Panel A denotes treatment of 133 using the optimised procedure was unsuccessful to 
yield the enecarbamate. Panel B displays the actual product of the anodic oxidation, confirmed by 1H 

NMR. 
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Our attention turned to modification of the electrochemical protocol in order to 

form the 𝛼-methoxyamide. Variation of Fmol-1 and current were both 

examined, but the conditions attempted did not yield the desired product 

(Table 15). 

 

Entry Fmol-1 Current / mA Yield of 135 Yield of 136 

1 2.5 100 71% 0% 

2 1 100 47% 0% 

3 5 100 n.d. n.d. 

4 2.5 65 68% 0% 

5 2.5 50 63% 0% 

6 2.5 25 56% 0% 
Table 15: Modification to conditions of the anodic oxidation of 41. Yields were determined from 1H 
NMR. The NMR yield is determined with respect to an internal standard, 1,3,5-trimethoxybenzene. 

Following this, we the attempted to take the ortho-ester product of the anodic 

oxidation and use a second anodic oxidation in an attempt to form the 𝛼-

methoxycarbamate of 135. The second anodic oxidation was unsuccessful, 

with only unreacted ortho-ester 135 observed in the crude 1H NMR. Since the 

𝛼-methoxycarbamate was not observed in any case, carbamate 134 was 

deprioritised for synthesis.  
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Scheme 25: Attempts at anodic oxidation of 135  to yield the 𝛼-methoxycarbamate. 
 

 Conclusion 

A general synthesis of endocyclic enecarbamates has been presented, 

employing an operationally simple electrochemical oxidation and elimination 

procedure. This strategy has shown tolerance for variable protecting groups, 

ring sizes and the inclusion of beta-heteroatoms, with the sequences 

proceeding in moderate to excellent yields. We have shown that regioselective 

electrochemical oxidation was observed for both 𝛼- and 𝛽-substituted cyclic 

amines, with the origin of the surprisingly high regioselectivity for 𝛽-substituted 

substrates explored using DFT. The enecarbamates prepared have the 

potential to be directly elaborated with medicinally relevant functionality for 

use in fragment-based drug discovery projects. 

 Future work 
With a telescoped proceedure in place that enables preferential formation of 

the less-substituted alkene regiosiomer, it would be desirable for use in 

fragment elaboration methodology to have a procedure which enables the 

synthesis of the regio-complementary enecarbamate. 

 

Efforts by Onomura revealed that the regiochemical outcome of the 

electrochemical oxidation can be reversed when using cyanoamines, so the 

methoxylation is favoured to occur at the most substituted position. The use 

of cyanoamines would not be amenable to further elaboration of the formed 
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N-cyanoenamine in this setting and so other experimental parameters could 

be considered.  

 

As the Shono oxidation takes place on the anode surface, modification of the 

electrode surface may vary the regiochemical outcome of the reaction. 

Experiments evaluating the use of glassy carbon in a regioselective reaction, 

such as with 122, could lead to varying regiochemical outcome due to the 

difference in surface area between graphite and glassy carbon.  
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 Chapter 3:Synthesis, Biological Evaluation and 

Elaboration of Fragments Targeting Aurora-A Kinase 

 Introduction 

 Post-Translational Modifications 

Post-translational modifications (PTMs) are covalent processing events which 

change the properties of a protein by proteolytic cleavage or through the 

addition of a modifying group to one or more amino acids.  PTM’s determine 

a protein’s activity state, localisation, turnover and interactions with other 

proteins. Proteomic analysis identified over 200 types of PTM, including 

acetylation, amidation and glycosylation.159 Phosphorylation, performed by 

the kinase superfamily of proteins, is the most common type of PTM.160 

Protein kinases catalyse phosphorylation in eukaryotes, which is the transfer 

of the 𝛾-phosphate of adenosine triphosphate (ATP) to a substrate, usually a 

partner protein. The importance of protein phosphorylation in eukaryotic 

signalling is reflected in the fact that protein kinase domains are found in 2% 

of eukaryotic genes.161 Protein kinases control many cellular processes, 

including metabolism, transcription, cell cycle progression, cytosketetal 

rearrangement and cell movement, apoptosis and cell differentiation. 162 

 Protein Kinases 

There are 518 protein kinases coded for in the human genome, with over a 

hundred of their structures determined, yielding valuable insights into their 

mechanisms of regulation.161,163–165 Protein kinase structure is composed of a 

smaller N-terminal domain and a larger C-terminal domain, separated by a 

hinge region. The N-terminal lobe is typically formed of a single 𝛽-sheet 

composed of five antiparallel 𝛽-strands and a helical subdomain comprised of  

𝛼-helices and contains the activation loop. The active site is formed by a cleft 

between the N-terminal domain and C-terminal domain, where ATP binds and 

ADP is released after transfer of the 𝛾-phosphate to the hydroxyl group of a 
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serine, threonine, or tyrosine.  The adenosine base forms H-bonds with the 

kinase hinge region, the ribose moiety binds to the ribose-binding pocket and 

the phosphate groups interact with the Gly-rich loop which is also called the 

phosphate-binding loop (P-loop). 

 

Protein kinases have been shown to exist in a range of conformations from 

fully inactive, to fully active. This is dependent on a number of highly 

conserved structural features; the activation loop, the Asp-Phe-Gly (DFG) and 

His-Arg-Asp (HRD) motifs, the glycine-rich loop, a lysine-glutamic acid salt 

bridge and a group of hydrophobic residues forming a regulatory spine (known 

as the R spine). In 1991 Taylor et al. reported the first crystal structure of a 

protein kinase in its active form. 166 

The HRD and DFG motifs are defining features of protein kinases, with the 

aspartic acids in these motifs as essential catalytic residues. The aspartate 

residues of the HRD motif acts as a base catalyst that deprotonates the 

substrate side chain serine/threonine, and so this region of the kinase can be 

referred to as the catalytic loop. Situated immediately before the activation 

segment, the DFG motif can exist in two orientations, ‘DFG-in’ and ‘DFG-out’, 

which denote the positioning of the aspartate residue essential for catalytic 

activity. The aspartate of the DFG motif coordinates a magnesium ion, which 

activates the 𝛾-phosphate of ATP, and this region of kinases is often called 

the magnesium (Mg2+)-binding loop. These residues must be positioned 

correctly and in the appropriate chemical environment for the kinase to 

catalyse phosphate transfer.  In an active kinase, the DFG motif adopts the 

DFG-in conformation, and contacts the HRD motif through a hydrophobic 

interaction. Displacement of these motifs into positions incompatible for 

catalysis is part of the regulatory mechanism of many kinases and can be 

induced by small molecule inhibitors of protein kinases. Imatinib, employed in 

the treatment of chronic myelogenous leukaemia and gastrointestinal stromal 

tumours, exemplifies an inducer of DFG-out conformation of cAbl.167 
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As the region that contains residues able to be phosphorylated, the activation 

segment is a crucial component in regulating kinase activity. The activation 

segment begins at the DFG motif and concludes at a sequence with the 

consensus alanine-proline-glutamic acid (APE motif). The activation segment 

includes several important features which are conserved in active kinase 

structures. The activation loop forms part of the activation segment, which 

contains the primary site of regulatory phosphorylation. The P + 1 loop forms 

a pocket that interacts with the P + 1 site of substrates and therefore must be 

in the correct conformation for efficient catalysis.  

The phosphorylated residue on the activation loop utilises a three-point 

attachment to help stabilise the activation segment in the correct conformation 

for substrate binding. This three-point attachment is dependent on three 

structural features: the residue preceding the glutamic acid on 𝛼C, a residue 

three positions towards the C-terminal of the DFG motif on 𝛽9 and the arginine 

residue of the HRD motif. 168 

The hydrophobic spine is a feature of active kinase structures and is made up 

of side chains of four hydrophobic residues. The first side chain originates 

from the 𝛽4 strand of the N-terminal lobe; the second comes from the adjacent 

𝛼C helix; the third is a phenylalanine residue from the DFG motif and finally 

the fourth member of the spine is the histidine residue from the HRD motif.169 

The relative positions of these four residues are strikingly similar in active 

kinase structures where they form a continuous hydrophobic chain or ‘spine’. 

In an inactive kinase, this side chain lacks linear organisation, allowing the 

kinase to adopt an inactive conformation. 169 

The lysine-glutamate salt bridge between the ammonium group of the lysine 

and the carboxylate group of the glutamate is a characteristic feature of the 

active protein kinases. The lysine is located on the 𝛽3-strand and the 

glutamate is located on the 𝛼C-helix and the bridge thus links these two 

important structural elements of the N-lobe together. The lysine also interacts 
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with the terminal phosphate groups of ATP, holding them in the correct 

position for catalysis. 164  

 

Figure 12: Conserved structural features of an active kinase conformation of a protein kinase. 
Structure shows Aurora-A in a complex with ADP (PDB 4DEE). 

Collectively, these structures are the hallmarks of an active kinase 

conformation (Figure 12), determined from the crystal structures of a hundred 

protein kinases and subsequent comparison of catalytic centres.168 
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 Mitotic Kinases 

The cell cycle, the mechanism by which a cell replicates its genetic material 

and forms two new daughter cells, is one of the fundamental and most 

important functions in life. The mitotic phase of the cell cycle segregates 

chromosomes to opposite poles, eventually resulting in two identical daughter 

cells.  

 

Figure 13: A schematic representation of the cell cycle. Created using Biorender.com 

Mitosis is divided into five distinct stages: prophase, prometaphase, 

metaphase, anaphase, and telophase (Figure 13). During prophase, 

duplicated chromosomes resulting from interphase condense and the nuclear 

envelope breaks down. Throughout prometaphase, kinetochores connect 

chromosomes to microtubules and in metaphase the chromosomes align at 

the equatorial plate between the spindle poles. Chromatids can then be 

separated and pulled to opposite poles during anaphase. Finally, the mitotic 

spindle disassembles, and the chromatids decondense and are surrounded 

by new nuclear envelopes in telophase. The cytokinesis process results in two 

daughter cells via division of the parent cell cytoplasm. 93 

The regulation of M-phase progression relies on protein-protein interactions 

as well as on post-translation mechanisms. Protein binding partners can 

stipulate subcellular localisation of a protein kinase through activating kinase 

activity. Two of the most common post-translation modifications are 

phosphorylation and ubiquitination, which can activate the protein kinase or 
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can direct the kinase to the proteasome for degradation (proteolysis).170 

Phosphorylation controls proteolytic machinery and its subsequent 

degradation, leading to down regulation of a particular kinase.170 On the 

contrary, phosphatases, as the functional opposite of protein kinases, de-

phosphorylate their substrates. Phosphatases have been shown to play an 

imperative role in mitotic regulation and exit from the mitosis phase.171 It is 

unsurprising to note that since protein kinases play crucial roles throughout 

mitosis, their dysregulation will impact the cells ability to undergo healthy cell 

division and proliferation.  

Mitotic kinases are an important class of drug target and through 

understanding their regulatory mechanisms can lead to effective new 

treatments for various hyperproliferative diseases. The targeting of protein 

kinases as potential anti-cancer therapeutics requires both characterisation 

and understanding of the cellular mechanism of a protein kinase. Appreciation 

of these factors govern whether targeting of a particular kinase will trigger 

apoptosis, necrosis or senescence of the cell.172, 173 

 The Aurora Kinases 

The Aurora kinases are a family of closely related serine-threonine protein 
kinases, containing three members (A, B and C) that are essential for the 

onset and progression of mitosis as well as genome stability. The first 

members of the Aurora family of serine/ threonine protein kinases were 

discovered in yeast and Drosophila by Glover et al. through screening for 

genes regulating spindle function.174 The first human homologues were 

identified in 1998 by Bischoff et al., with three homologues of Aurora kinase 

identified, each with distinct functions.175 Amongst the Aurora kinase 

subfamily, there is a high level of sequence homology observed (around 70%) 

in all members. All three kinase share the same basic structural homology; an 

N-terminal domain of 39-132 residues and a C-terminal domain (15-20 

residues) (Figure 14).175–177 



 

 

- 85 - 

 
Figure 14: The structure of the Aurora kinases. Annotated with the position of the A-box and D-box. 
The features represented here are most thoroughly characterised in Aurora-A, with the boxes shown 

for Aurora B and C as approximations. Created using Biorender.com. 

Within the activation loop of the Aurora kinase is a threonine residue, which 
when phosphorylated, enables full activation of the Aurora kinase.178 

Phosphorylation is regulated through interaction with co-factors, which are 

unique to each member of the sub-family.179 These co-factors regulate aurora 

kinase activity outside of the catalytic domain. The N-terminal regions of 

Aurora-A and -B contain the sequence referred to as the A-box, which when 

used in conjunction with the C-terminal D-box, is required for proteolysis of 

Aurora-A by E3 ubiquitin-ligase, known as the anaphase promoting complex 

(APC).180 Low levels of Aurora-A and -B in the early stages of the cell cycle 

are maintained by the APC and its partner protein cdh1.180 Following this, the 

A-box and D-box structures orientate about the hinge region, directing the 

selectivity and position of the substrate.181  

 

The ATP binding region is highly conserved between all three members of the 

Aurora kinase family, with only variation of three residues occurring at 

positions L215, T217 and R220 in Aurora-A.182 Despite the high sequence 

homology between all members of the Aurora kinase family, each member 
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has vastly different cellular spatio-temporal localisation and therefore function. 

This high degree of sequence conservation must be considered when 

designing and screening Aurora kinase substrates and inhibitors. 

3.1.4.1 Aurora-A Kinase Function 

Aurora-A has been shown to be a critical regulator of multiple events during 

mitosis. Aurora-A assists in the regulation of centrosome separation, 

chromosome segregation and mitotic spindle assembly through 

phosphorylation of its substrates and interaction with binding partners. The 

regulation of Aurora-A is tightly controlled with expression linked closely with 

progression of the cell cycle (Figure 15). Expression of Aurora-A peaks during 

G2 and prophase in the cell cycle, at the same time as localisation of Aurora-

A at centrosomes and spindle poles. 93 

 
 

Figure 15: The relative localisation of Aurora A and B during the cell cycle. The level of both Aurora-A 
and B is substantially reduced during G1. By prophase, Aurora A (red circles) is concentrated around 
the centrosomes and Aurora B is concentrated in the nucleus. In metaphase, Aurora A localises on 

microtubules near spindle poles, with Aurora-B located in the inner centromere. In anaphase, Aurora A 
is located at the polar microtubules, with some also present in the spindle midzone. In cytokinesis both 

kinases are located in the midbody.93Created using Biorender.com. 
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3.1.4.2 Aurora Kinases and The Development of Cancer 

As regulators of cell cycle progression and normal cellular proliferation, the 

Aurora kinases have been frequently linked to oncogenesis and the 

progression of cancer. The aurora-a gene is located at chromosome site 

20q13.2, with mutations in this region frequently observed in tumours, 

indicating a possible connection between overexpression of Aurora-A and the 

development of cancers.93 It has been found overexpressed or amplified in a 

variety of cancer types, including colorectal183, breast184, lung185, 

lymphoma186, and pancreatic.187 Disruption of the tightly controlled expression 

of the Aurora kinases through either the gain or loss of function, or over-

expression can lead to altered cellular function, which can be linked to 

increased cancer susceptibility.  

Overexpression of Aurora-A drives centrosome amplification, a hallmark of 

cancer, and subsequent tetraploidisation due to associated cytokinesis failure, 

leading to the multinucleation of cells.188 Liu et al. reported that when Aurora-

A is overexpressed, phosphorylation of p53 at Ser215 occurs promoted by 

Aurora-A and inhibits p53-DNA binding, disrupting the cell cycle check 

activities, creating opportunity for inhibitors of Aurora-A to rescue the function 

of tumour suppressor genes. 189 

Additionally, the over-expression of Aurora-A has been shown to transform 

rodent cells in vitro, leading to tumour development on the introduction into a 

nude mice.175 On the contrary, studies using transgenic mice over-expressing 

Aurora-A kinase displayed no formation of malignancy even following a 

latency period, suggesting that Aurora-A kinase alone cannot act as an 

oncogene but that it acts in concert with other oncogenic mutations190, for 

example, the RAS pathway.191  

Studies have shown that Aurora-B kinase is overexpressed in cancer cells, 192 

however, it is not clear whether Aurora-B overexpression is only associated 

with the high proliferative activity of cancer cells or if it plays a causative role 
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in tumorigenesis. The locus for Aurora B has been identified as 17p13.1 which 

has not been observed to be amplified in tumours.93 The over-expression of 

Aurora-B in tumours may not function as an oncogenic mechanism 

independently and so overexpression is a feature of the highly proliferative 

nature of tumour cells. Therefore, due to the lack of definitive evidence that 

Aurora-B strictly functions as an oncogene, Aurora-A kinase represents a 

rational target for anti-cancer therapeutics.  

3.1.4.3 Small Molecule Regulation of Aurora-A 

The multi-faceted roles of Aurora-A kinase in cancer have led to it as a focus 

of research into anti-cancer therapeutics. Targeting of the Aurora kinases also 

has the additional feature of having an inbuilt selectivity for proliferating cells 

due to their increased expression in mitosis. As such, down-regulation of 

kinase function through removal of the ability to bind ATP by competing for 

the active site with an inhibitor would effectively starve the enzyme of the 

source of phosphate.193 

Regardless of the target of the kinase, inhibitors are divided into classes by 

the binding mode displayed during inhibition. As discussed in section 3.1.2, 

the kinase active site has several conformations dependent on the activation 

state of the kinase, and inhibitors will selectively bind these different 

conformations, enabling their categorisation.   
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Inhibitor 
Class Mechanism of Action Examples 

Type I 
Competes for the substrate and 
binds in the ATP-binding pocket of 
the active conformation 

Bosutinib, 
Cabozantinib, 
Vandetanib 

Type II 

These inhibitors bind to the DFG-
Asp out protein kinase 
conformation, which corresponds 
to an inactive enzyme form 

Imatinib, 
Sorafenib 

Type III 
(allosteric 
inhibitor) 

Occupy a site next to the ATP-
binding pocket so that both ATP 
and the allosteric inhibitor can 
bind simultaneously to the protein. 

Trametinib 

Type IV 
(substrate 
directed 

inhibitors) 

Undergo a reversible interaction 
outside the ATP pocket and offer 
selectivity against targeted 
kinases 

ONO12380 

Type V 
(Covalent 
inhibitors) 

Bind covalently (irreversible) to 
their protein kinase target Afatinib, Ibrutinib 

Table 16:  Classification of molecular kinase inhibitors. 

Type I inhibitors mimic the purine ring of the adenine motif of ATP, targeting 

the ATP binding site of the kinase in its active conformation and do not require 

the DFG motif in the activation loop to adopt a ‘DFG-out’ conformation for 

binding, as required for type II inhibitors.194 Type I inhibitors tend to form 

between 1-3 hydrogen bonds with the hinge region of a kinase, which mimic 

those normally formed by the exocyclic amino group of adenine.195 The 

adenine region of a protein kinase is occupied by type I inhibitors, with 

potential to present into other regions of the ATP-binding site, such as the 

hydrophobic regions I and II, the ribose region and the phosphate-binding 

region (Figure 16). Occupation of additional regions using diverse functionality 

can form the basis of inhibitor selectivity between different kinases.  

A limitation of ATP-competitive inhibitors is the promiscuity observed because 

of the shared kinase domain homology between the kinase superfamily and 

also the development of drug resistance. Nonetheless, the discovery of 

selective ATP-competitive inhibitors is possible, shown by the seminal 

discovery of the tyrosine kinase bcr-abl, imatinib.167 
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Figure 16:  Schematic representation of the ATP-binding site of kinases. 

Currently there are no Aurora-A inhibitors with FDA approval, despite several 

having entered clinical trials for a variety of cancer-types.196 As sequence 

homology within the Aurora kinase family is high, small molecule inhibitors 

often modulate all three isoforms, known as pan-Aurora kinase inhibitors.197 

Pan-Aurora kinase inhibitors have entered the clinic, showing promising 

selectivity and activity against taxane-resistant cell lines.198 Despite the 

encouraging data realised from the studies of pan-Aurora kinase inhibitors, 

some have been withdrawn from clinical trials due to concerns with toxicity.199 

 

 

Figure 17: Pan-Aurora inhibitors Danuserib (138) and AMG-900 (139). 
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Danuserib (PHA-739358) is a potent pan-Aurora kinase inhibitor (Figure 

17).197, 200 It targets a number of other kinases including ABL, RET and TRK-

4.197,200 Danuserib progressed into the clinic and displayed an acceptable 

toxicity profile and promising activity in patients with advanced malignancies 

which were resistant to imatinib.201 Bush and co-workers reported AMG-900, 

a pan-Aurora kinase inhibitor, exhibiting a phenotype typical of Aurora-B 

inhibition (Figure 17).198 AMG-900 demonstrated potent anti-proliferative 

activity against a range of human tumour cell lines, including those resistant 

to Danuserib.202,203  

 

Figure 18: Dual inhibitors of Aurora-A and Aurora-B: Alisertib, AT9283 and PF-03814735.  

Dual inhibitors targeting Aurora-A and Aurora-B have been reported (Figure 

18).204 The most prominent dual Aurora-A inhibitor is Alisertib (MLN8237), an 

investigational Aurora-A inhibitor which has been subject to more than 30 

clinical trials.205, 206 Alisertib has shown inhibitory activity against both Aurora 

A (IC50 = 6.7 nM) and Aurora B (IC50 = 1534 nM) in vivo. It was shown in pre-

clinical models of HPV-driven cervical cancer that its dual inhibition provides 

selectivity and efficacy required of an in vivo drug in this setting.207 Astex 

describe a potent dual inhibitor, known as AT9283, of Aurora A and B (IC50 = 
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3 nM), which was also found to have activity against other kinases including 

JAK2, Flt-3 and Abl.71, 208 This broad application is understood to be due to 

the benzimidazole motif of AT9283 that binds to a region of the ATP-binding 

site which is structurally similar with Aurora-A, confirmed by X-ray 

crystallography. As with Aurora-A, the hinge region of JAK2 contains an extra 

glycine residue (Gly935), relative to the CDKs, which leads to the pocket 

having a particular affinity for flat heteroaromatic moieties such as a 

benzimidazole. This glycine residues is also common to Flt-3 and Abl, 

suggesting it is responsible for its strong target affinity.71 PF-03814735 was 

identified by scientists at Pfizer as an orally bioavailable inhibitor of Aurora-A 

and B achieving nanomolar affinities (Aurora A IC50 = 5 nM, Aurora-B IC50 = 

0.8 nM). 209 Compound 142 displayed potent inhibitory activity against a 

variety of human tumour cell lines and anti-proliferative activity against 

imatinib-resistant BCR-ABL+ cells, including those carrying the ABL(T315I) 

mutation.210 

 

Figure 19: Structure of Aurora-A inhibitors: MK-8745 (143), TC-A2317 (144), MK-5108 (145), 
MLN8054 (146) and Genentech Aurora-A inhibitor 1 (147). 
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As previously discussed, type I inhibitors display promiscuity because of the 

targeted ATP pocket being conserved through the Aurora kinase family and 

so use of type I inhibitors are often accompanied by adverse effects. This low 

selectivity for targeted kinases has been shown to result in cardiotoxicity and 

deterioration in cardiac function.211 It has been possible to achieve selectivity 

between the Aurora kinases and the wider kinome Type I inhibitors 

MLN8054206, MK-8745212 and MK-5108.213 all display enhanced selectivity for 

Aurora-A when compared to Aurora-B (Figure 19). Their displayed 

phenotypes were indicative of Aurora-A inhibition, through accumulation of 

cells stopped in the G2/M phase of the cell cycle, defective mitotic spindle 

formation and the inhibition of cell proliferation. Genentech Aurora-A inhibitor 

1 exhibited activity against Aurora-A, with an IC50 of 3.4 nM, however, off-

target effects were demonstrated through toxicity in multiple cell lines.214 Ando 

and co-workers reported TC-A2317 as a selective Aurora-A kinase inhibitor, 

constructed through transformation of a potent pan-Aurora kinase inhibitor.215 

They examined cross-reactivity with 68 typical kinases, and found activity 

against 60 of these kinases was much diminished (over 1000 nM).215 

 Fragments Targeting Aurora-A 

As only a small fraction of the kinome can be targeted by selective and potent 

inhibitors, there is a need to develop strategies for efficient discovery of novel 

small molecule inhibitors. Historically, ATP-competitive inhibitors are 

discovered by high-throughput screening (HTS) of compound collections. It is 

widely described that this process is becoming less effective as it has now 

identified a significant proportion of the applicable scaffolds which are capable 

of serving as ATP-competitive ligands.216 Previous work within the field has 

shown that the discovery of novel ATP site-targeting ligands is achievable 

using fragment-based assembly strategies. 71 

 

Type I inhibitors bind at the ATP-binding pocket, which is highly conserved 

across the human kinome. To achieve greater selectivity than ATP, type I 
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inhibitors will occupy the region occupied by the adenine of ATP but can 

extend into different proximal regions to exploit selectivity between kinase 

active sites.  

 Docking Programs  

Within this chapter two docking programs are utilised to predict how our active 

compounds bind to Aurora-A and to rationalise fragment growth points which 

could be pursued to increase the potency of the compounds.  

 

3.1.6.1 Glide217 

Glide is an add-on to the Schrödinger package Maestro. Glide approximates 

a complete systematic search of the positional, orientation and conformational 

space available to the ligand.217 The systematic search space is narrowed by 

an initial rough positioning and scoring phase, subsequently followed by 

torsionally flexible energy optimisation on an OPLS-AA, for hundreds of 

surviving poses. The best candidate poses are further refined by a Monte 

Carlo sampling of the pose conformation. Selection of the best pose uses a 

model energy function that combines empirical and force-field based terms. 

3.1.6.2 ROCS218 

ROCS (for Rapid Overlay of Chemical Structures) is a ligand-based docking 

software, which uses a large database of compounds to identify potential 

inhibitors using shape comparison. The principle which ROCS explores is that 

molecules similar in shape to active molecules are more likely to be active 

than randomly selected molecules. ROCS considers 3D similarity and 

chemical functionality such as charges, hydrogen bond acceptors and donors. 

The results are ranked based on a ROCS scoring function, which incorporates 

shape and compound surface similarity.   
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 Results and Discussion  

 Fragment Library Design Targeting Aurora-A 

A virtual fragment library was designed, and the properties of the virtual 

fragment library analysed. Each fragment was designed to be composed of 

two separate chemical parts; a heterocyclic warhead attached to a cyclic 

amine. The heterocyclic warhead is an isosteric replacement for the adenine 

moiety of ATP, while the cyclic amine is predicted to stretch into the 

hydrophobic region of the ATP-binding pocket and enables elaboration of the 

fragment should hits be identified (Chapter 2). 

Analysis of the literature identified three heterocyclic motifs, which would form 

the basis of three series of fragments to be screened against Aurora-A (Figure 

20). Scaffold 148 was selected to be a purine, with previous applications in 

anti-tumour,219 anti-viral and anti-microbial agents220 as well as its presence  

in ATP. An isoquinoline-5-sulfonyl scaffold (149) was chosen as the basis for 

a fragment series as it forms a fragment of a reported clinical ROK inhibitor, 

Fasudil.221 Allen and co-workers reported that this motif, when functionalised 

with a cyclic amine in the 5-position displayed activity against a wide variety 

of kinase families, while retaining selectivity.222 The final series was 

constructed using a 3-aminopyridine moiety (150), in order to incorporate 

variation in the size of the heterocyclic scaffold. The 3-amino pyridine scaffold 

contains fewer heavy atoms when compared to 148 and 149, allowing for 

greater variation in the cyclic amine to be attached while still adhering to the 

‘rule of three’ for fragments. 
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Figure 20: Aromatic warheads chosen to form the three series of fragments. 

The virtual fragment library was completed through attachment of each 

warhead to a variety of cyclic amines, as displayed in Figure 21. The cyclic 

amines were selected to encompass a broad range of structural and electronic 

features, as well as their suitability to fragment elaboration through the 

aforementioned methods (Chapter 2).  

 
Figure 21: The selected warheads and the selected cycle amines for fragment synthesis 

 Analysis of the Virtual Fragment Library 

Despite the small size, apparent simplicity and commercial availability of 

fragment molecules, there is a pressing need for the design and subsequent 
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synthesis of fragments which are in-line with guidelines reported by leading 

practitioners within the field.83 A summary of the physiochemical criteria for 

this project are defined in Table 17. 

Physiochemical property Value 
Number of heavy atoms ≤21 

AlogP 0≤X≤2 
PSA ≥60 Å2 

Table 17: A summary of the physiochemical properties chosen for this project. 

The virtual library was assessed with respect to these criteria using the open-
access computation tool, LLAMA.223 By doing this, we are able to confirm that 

the properties of the virtual library are fragment-like.83 We have considered 

properties outside of those listed in Table 17 for the virtual library, to enable 

prioritisation of fragments for synthesis. The full 60-member compound library 

was analysed and the average, smallest and largest values were determined. 

Data MW 
(HAC) 

AlogP Molecular PSA / 
Å2 

Fsp3 Rotatable 
Bonds 

Average 249.1 
(18) 

0.98 63.9 0.49 1.6 

Smallest 164.2 
(12) 

-0.58 50.3 0.23 1 

Largest 369.5 
(24) 

3.13 95.1 0.69 3 

Table 18:  Analysis of the different physicochemical properties of the full virtual 60-member library. 

Analysis of physiochemical properties (Table 18) displays that the average 

molecular weight (heavy atom count), AlogP and PSA fall within the desirable 

range specified for the fragments within this project. The smallest and largest 

values of molecular weight (MW) and AlogP fall outside of these criteria and 

so the spread of the compounds across each physiochemical parameter was 

investigated.  

3.2.2.1 Heavy Atom Count 

Heavy atom count gives an indication of molecular weight and therefore the 

spread of heavy atom count was analysed as a representation of the spread 
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of molecular weight for the virtual library. The average number of heavy atoms 

across the entire virtual library is 18, giving an average molecular weight of 

239 g mol-1. Once molecules with above 21 heavy atoms are removed from 

the library, this becomes 17 giving a molecular weight of 237 g mol-1. Table 

19 displays that a limited number of compounds exist in the extreme groups. 

Although some virtual fragments have a heavy atom count greater than 21, 

these compounds were removed from the library prior to synthesis. All of the 

removed compounds were part of the isoquinoline-5-sulfonyl series. 

Heavy Atom number range 10-12 13-15 16-18 19-21 21 + 
Percentage of total library 2 25 37 14 2 

Table 19: The percentage of compounds in the library in different heavy atom count groups. 

3.2.2.2 AlogP 

The atomic LogP (AlogP) considers that each atom has a contribution to the 

LogP and that the final value of LogP for a compound is purely additive. 

Previous work within the literature shows a correlation between higher 

lipophilicity and elevated attrition rates in clinical development, therefore 

fragment-based assembly programmes should begin with a low AlogP 

fragment hit.39 A high value of ALogP decreases aqueous solubility, a property 

important for biophysical screening of fragments, whereas fragments with a 

low ALogP have poorer permeability.23,26 Table 20 denotes that most 

compounds have an AlogP between 0 and 2, which is within the range for 

fragments as specified. 

ALogP -2 -1 0 1 2 3 
Percentage of total library 0 4 32 37 23 5.3 

Table 20: The percentage of compounds in the library in different AlogP groups. 

3.2.2.3 Polar Surface Area 

Polar surface area (PSA) defined as the surface area belonging to polar 

atoms, is a descriptor that has been shown to correlate positively with passive 

molecular transport through membranes and therefore can allow prediction of 

transport properties of drug candidates. Hubbard et al. stated that fragments 

should have a polar surface area of no more than 60 Å2, although this has 
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been disputed to be an optional guideline.79 The polar surface area of the 

compounds in the virtual library was assessed (Table 21). The results show 

the majority of the compounds have a polar surface area below 60 Å2.  

PSA / Å2 50-59 60-69 70-79 80-89 90-99 
Percentage of total library 52 21 12 9 7 

Table 21: The percentage of compounds in the library in different PSA groups. 

3.2.2.4 Fraction of sp3-Hybridised Carbons 

Compounds with greater saturation are found to be more likely to succeed at 

each stage of development, from early discovery to market.37 More highly 

complex molecules, as measured by saturation and the number of 

stereocentres, have the capacity to access greater chemical space and can 

aid improvement of physiochemical properties, such as aqueous solubility and 

lipophilicity.37,83 The fraction of sp3-hybridised carbons, as defined by Equation 

2 is an interpretable measure of the complexity of molecules which can be 

applied to fragments. The virtual library was assessed for the fraction of 

saturation within the compounds, with results in Table 6.  Most compounds 

within the virtual library have approximately 50% saturation, without 

compounds occupying the extreme groups.  

															𝐹𝑠𝑝! =	(
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓		𝑠𝑝! − ℎ𝑦𝑏𝑟𝑖𝑑𝑖𝑠𝑒𝑑	𝑐𝑎𝑟𝑏𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	𝑐𝑎𝑟𝑏𝑜𝑛	𝑐𝑜𝑢𝑛𝑡 <																						 

Equation 2: Equation for the calculation of degrees of unsaturation present in a compound 

Fsp3 0 – 0.2 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1.0 
Percentage of 

total library 0 26 70 9 0 
Table 22: Distribution of saturation within the fragment library. 

 
The 3D structures of the fragments can be visualised by use of a normalised 

principle moment of inertia (PMI) plot (Figure 22).223 The fragments are 

represented by graphical points and are plotted based on their rod, disk and 

sphere-like properties, with each fragment represented by green points. This 

plot clearly shows that the virtual fragment library compounds lie close to the 

rod-disc axis and are unsurprisingly flat and not 3-dimensional. However, it is 

noted that some of the fragments are beginning to extend more towards the 
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Figure 22: Principle moments of inertia plot describing the molecular shape of the virtual 
fragment library. 

sphere axis, showing some 3-dimensional character, despite the simple 

nature of the scaffolds. 

 

 

 

 

 

 

 

 

 

 

 

 Summary 

This analysis shows that for individual properties, a significant proportion of 

fragments fit within the desired criteria. However, when all the criteria are 

taken into consideration, only 33% of the virtual library satisfies the defined 

criteria. Introduction of these criteria enables focus of the synthesis in the 

direction of the most desirable fragments.  
  HAC AlogP PSA All Criteria 

1 Number of Compounds 52 39 30 20 
2 Percentage of total library 91 68 14 33 
Table 23: The number of compounds and percentage of the library that fit with the fragment property 

criteria. 

 Synthesis of the Fragment Library 

Preparation of a virtual library enables prioritisation of a fragments for 
synthesis. For our synthetic strategy, a prioritisation was placed on synthetic 

tractability. Each fragment should be synthesised in a minimum number of 

synthetic steps and able to provide suitable amounts (100-200 mg) for 
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fragment screening, analysis, and future development. The synthetic 

approach was grouped into each specific warhead and completed in parallel. 

3.2.4.1 Purine Fragment Series 

Synthesis of the purine fragment series followed a previously reported 

synthesis.222 Commercially available 6-chloropurine (151) was refluxed in 

ethanol, in the presence of triethylamine and treated with each of the selected 

amines, in a parallel synthesis. Following the specified time, a precipitate 

formed, which could be isolated by filtration without additional purification 

(Scheme 26). 

 
Scheme 26: General synthesis of fragments containing the purine scaffold using an SnAr reaction.224 

 
Figure 23: Purine Fragment Series. 
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The yields are obtained without optimisation of the procedure and since ample 

material was produced for biological screening, further optimisation was not 

required (Figure 23). 

3.2.4.2 Isoquinoline-5-sulfonyl Fragment Series 

As the isoquinoline-5-sulfonyl chloride (173) had intermittent commercial 

availability, a suitable synthesis of the starting material was required. It was 

found that refluxing isoquinoline-5-sulfonic acid (172) in thionyl chloride over 

1 hour yielded isoquinoline-5-sulfonyl chloride in a 95% yield (Scheme 27).  

 

 
Scheme 27: Synthesis of the isoquinoline-5-sulfonyl chloride and subsequent sulfonylation proceedure 

to synthesis fragments 174-184.225 

With isoquinoline-5-sulfonyl chloride in hand, a series of sulfonylation 

reactions were performed using previously selected amines. Conditions were 

analogous to those used with the purine series, suggesting amenability to 

parallel synthesis. Since the heavy atom count of the fragment library was 

restricted to 21 heavy atoms, the scope of cyclic amine used in the 5-position 

was limited to reflect this. All yields were obtained without optimisation and 

were able to produce enough material for biological screening.  
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Scheme 28: Synthesis of the isoquinoline-5-sulfonyl series. 

3.2.4.3 3-Aminopyridine Fragment series 

Access to the 3-aminopyridine fragment series was first attempted through an 

SNAr reaction between commercially available 3-aminopyridine and the 

selected amines, in the presence of a non-nucleophilic base. Literature reports 

for this reaction were limited, therefore a range of conditions for the SnAr were 

explored. Table 24 displays the conditions which were sampled. 

 
Entry Conditions Outcome 

1 NEt3 (3.0 eq.), EtOH, rt, 24 h No reaction 
2 NEt3 (3.0 eq.), EtOH, reflux, 24 h No reaction 
3 MW (20 W), neat, 150 °C, 2 h Product seen in the LC-

MS, unable to isolate 
4 NEt3 (3.0 eq.), MW (20 W), neat, 

150 °C, 6 h 
Product seen in the LC-

MS, unable to isolate 
Table 24: Conditions trialled to synthesis the 3-aminopyridine series using 2-chloro-3-amino pyridine 

and piperidine. 
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Regrettably, these conditions (Table 24) did not yield a successful outcome. 

Although product was observed by LC-MS in the case of entry 3 and 4, it was 

unable to be isolated, attributed to be due to instability of the product. 

Consequently, a range of pyridine and pyrimidine derivatives were evaluated 

to replace the 3-aminopyridine series. The reactions were monitored by LC-

MS and purified by flash column chromatography when the product was 

observed.  

 
Entry Compound Analogue Conditions Outcome 

1  

187 
 

NEt3 (3.0 eq.), reflux, 
EtOH, 12 h 

No 
reaction 

2 NEt3 (3.0 eq.), MW    
(20 W), 150 °C 

No 
reaction 

3  

188 
 

NEt3 (3.0 eq.), reflux, 
EtOH, 12 h 

No 
Reaction 

4 NEt3 (3.0 eq.), MW    
(20 W), 150 °C 

No 
Reaction 

5  

189 

 

NEt3 (3.0 eq.), reflux, 
EtOH, 12 h 

No 
Reaction 

6 NEt3 (3.0 eq.), MW    
(20 W), 150 °C 

No 
Reaction 

7  

190 
 

NEt3 (3.0 eq.), reflux, 
EtOH, 12 h 77% 

8 NEt3 (3.0 eq.), MW    
(20 W), 150 °C 56% 

Table 25: Screening of replacement pyridine and pyrimidine derivatives. 
 
From considering the results displayed in Table 25, use of 2-chloro-6-

methylpyrimidin-4-amine (190) successfully yielded the desired product 

applying conditions used in the parallel synthesis of the purine series and the 

isoquinoline-5-sulfonyl series. 

 

With a replacement heterocyclic warhead and experimental conditions for the 

fragment synthesis in hand, the parallel fragment synthesis was completed 
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(Scheme 29). As the replacement heterocycle (190) had intermittent 

commercially availability, only limited examples could be prepared.  

 
Scheme 29: Synthesis of the pyridine fragments 191-196. 

 

 
Figure 24: Pyrimidine fragment series. 

 Summary 

A complete list of the fragments synthesised within this section is in Appendix 

1. In summary, 37 fragments were synthesised for biological screening 

against Aurora-A. The original virtual library was condensed to 37 synthesised 

fragments, through analysis of each fragments molecular properties and 

commercial availability. It was concluded that at this stage, 37 fragments 

across three fragment series would be effective in probing the inhibition of 

Aurora-A phosphorylation. 

 Analysis of the fragment library 

Using LLAMA, we analysed the physiochemical properties of the synthesised 
library with respect to the set guidelines (Section 3.2.2, Table 17).  

3.2.6.1 Heavy Atom Count 

All of the fragments fit within the parameter set previously (Table 26). 
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Figure 25: A PMI plot of the synthesised library, showing the purine series (green, isoquinoline-5-
sulfonyl series (red) and the pyrimidine series (blue). The PMI plot was produced by use of LLAMA. 

Table 26: Distribution of heavy atoms throughout the synthesised library. 

3.2.6.2 ALogP 

The overall AlogP distribution was calculated by LLAMA223 where 68% of the 

synthesised library was within the parameters set by leading practitioners in 

the field 0 ≤ x ≤ 2 (Table 27).  

 

ALogP -2 -1 0 1 2 3 

Percentage of total library 0 3.50 28.6 28.6 28.6 5.7 
Table 27: Distribution of AlogP throughout the synthesised library. 

3.2.6.3 Three-Dimensionality of the Synthesised Library 

Although a requirement for three-dimensionality was not required in our set 

guidelines (Table 17), we examined the three-dimensionality of the fragments 

by a PMI plot (Figure 25), with the purine series in green, the isoquinoline-5-

sulfonyl series in red and the pyrimidine series in blue. It was found that the 

heterocyclic warhead which produced the most 3D fragments was the 

isoquinoline-5-sulfonyl motif (red), whereas the purine (green) and pyrimidine 

(blue) warheads produced fragments which have more rod/disc-like 

properties. 
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 Summary 

Overall, 37 fragments using three different aromatic warheads were 
synthesised from readily available starting materials. The properties of these 

fragments were assessed by LLAMA.223 The fragments synthesised in this 

section will be used in subsequent testing with Aurora-A. 

 Fragment Screening against Aurora-A 

A variety of characterisation methods exist for the evaluation for inhibitory 

potency of fragments against protein targets, for example differential 

screening fluorimetry (DSF), surface plasmon resonance (SPR) and 

isothermal titration calorimetry (ITC). 

 

In this study, the protein kinase enzymatic activity and IC50 were assessed for 

each compound using a caliper mobility-shift assay. This method is based on 

the principle of electrophoresis mobility-shift, where modified products are 

distinguished from un-modified substrates by their relative mobilities. While 

several different modifications can be used for this distinction, in the context 

of kinase activity, the transfer of a phosphate group from ATP to a substrate 

peptide triggers a change in the net charge of the peptide. Aurora-A kinase 

catalyses the transfer of the phosphate to an appropriate peptide substrate. 

The product and substrate are separated by a charge potential difference 

drawn across pressure-driven microfluidic channels, whereby the 

fluorescently-labelled peptide substrate and phosphorylated product are 

drawn through the channels, across a viewing window, excited via an LED 

and detected by camera.226, 227 The relative intensities of the substrate and 

product allow for the determination of the percentage substrate converted, and 

taking these measurements over a specific time allows for the kinetics of the 

reaction to be obtained based on the measured initial rate of the reaction. 
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Figure 26: Schematic representation of the caliper mobility shift assay. Top: Principle of analyte 

electrophoresis occurring in microfluidic channels due to the electrical charge drawn across them. 
Bottom: The real-time output from the assay. Fluorescence output is measured and % conversion 
calculated as % conversion = 100 x (product/product + substrate). Created using biorender.com. 

Advantages of mobility-shift assays include high quality of data and high 

sensitivity, low protein loading requirements, low interference from 

compounds, no requirement for radioactive substrates, and ease of 

maintenance. Figure 26 shows an example setup and output for the assay. 

This section describes the determination of bioactivity of the fragments 

synthesised in section 3.2.4 using the EZ-reader II mobility-shift assay.  

 Characterisation of the Aurora-A Pseudo-WT Complex  

As this pseudo-WT complex would be used to perform IC50 determinations of 

fragments, full characterisation of the complex was required to ensure optimal 

assay conditions were obtained.  

Due to the lack of stability and denaturing of the WT Aurora-A catalytic 

complex during previous screening within the research group228, it was a more 

stable complex was used, the pseudo-WT mutant. In pseudo-WT Aurora-A, 

two solvent exposed cysteine residues have been mutated to alanine, 

C292A:C393A. 
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 Graph 1: Enzyme titration of the pseudo-WT Aurora-A complex. A six-point, 2-fold serial dilution was 
performed to determine the ideal enzyme concentration. 31.25 nM which displayed a linear response 

(R2 = 0.9997). 

This section describes the determination of ideal enzyme concentration, ATP 

KM and DMSO tolerance. Once this characterisation was completed, 

determination of the IC50 of the prepared fragments could commence. 

3.2.9.1 Identification of a suitable Aurora-A concentration for 

screening 

Employing a literature KM value for ATP of 84 µM229 for the Aurora-A pseudo-

WT complex, an enzyme titration was performed to elucidate the ideal 

concentration of Aurora-A for use in IC50 determinations. The experiment 

utilised six point, 2-fold serial dilution with an upper concentration of 200 nM 

and a 1.5 µM final substrate concentration. Using thirty-five plate cycles over 

forty minutes, the data is shown in Graph 1. 

 

 

 

The value of enzyme concentration at 25 nM displayed the desired 

characteristic of linear response (R2 = 0.9997) with approximately 30% 

conversion of the peptide substrate. Employing this concentration will enable 

the determination for the initial rate of the enzyme without observing a plateau 

in the data. This result was in accordance with previous work completed within 

the Nelson group by Chris Arter.228 
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3.2.9.2 Determination of ATP KM 

As the members of the library of fragments synthesised in section 3.2.4 are 

expected to be ATP competitive, the IC50 will depend on the intrinsic affinity of 

the inhibitor (KD, the dissociation constant) as well as competition from ATP 

under specific assay conditions (the ATP concentration and the ATP KM). The 

dependence of IC50 on ATP KM is highlighted by the Cheng-Prusoff equation 

(Equation 3). 

																																																			IC!" =	K# 	41 +
[ATP]
K$

<																																																			 

Equation 3: Cheng-Prusoff equation. 
If ATP KM is too low, the enzyme activity is decreased and may display an 

overestimation of compound potency. Alternatively, if ATP KM is too high, 

weakly binding fragments may be overlooked.  

Utilising a final enzyme and substrate concentration of 25 nM and 1.5 μM 

respectively, a twelve point 3-fold serial dilution of ATP from 3 mM in buffer 

was performed, with the data shown in Graph 2. The KM of ATP for pseudo-

WT Aurora-A was experimentally determined as 71.5 μM, which is 

comparable to the literature value of 84 μM. 229  
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Graph 2: ATP KM determination of pseudo-WT Aurora-A complex, where KM is 71.5 μM and Vmax is 
1.25 mM min-1.Units of initial rate are % conversion/min. 

3.2.9.3 DMSO tolerance Assay 

DMSO is utilised in determination of IC50 as a solvent for the fragment stock 

solutions, therefore a DMSO tolerance screen was performed to prevent 

interference from DMSO during the assay. An eleven point, 2-fold serial 

dilution of DMSO was performed from 10% DMSO constitution, including a 

0% DMSO as the negative control, with the data produced plotted in Graph 3.    

Concentrations above 1.25% were found to increase enzyme activity, with 

10% final DMSO concentration resulting in a 2.5-fold increase in activity. This 

result is in accordance with work carried out within the Nelson group.228 
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Graph 3: DMSO tolerance assay using pseudo-WT Aurora-A. Units of initial rate are % 

conversion/min. 
 

Previous work within the Nelson group by Chris Arter reported that controls 

run at 20 nM enzyme concentration and 2.5% DMSO display a linear 

conversion R2 of 0.9978 until approximately 45 minutes and roughly 45% 

conversion. The conversion proceeded at a constant rate until above 40% and 

so deviation away from the initial rate or plateaus later in the experiment can 

be excluded, enabling determination of the initial rate. The observed increase 

in catalytic activity on addition of DMSO was accounted for by reduction of the 

final enzyme concentration to 20 nM.  

 Determination of Fragment bioactivity against pseudo-WT 
Aurora-A 

Employing the enzyme concentration, ATP KM and DMSO tolerance, the 

fragment bioactivity was determined. Unless otherwise discussed, the 

fragments were soluble at 2.5% final DMSO and the kinetic data was taken 

from 0-25% conversion of the fluorescent peptide substrate, capturing the 
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initial rate. Each IC50 screen was performed with both a positive and negative 

control consisting of no enzyme and no inhibitor, respectively, which formed 

the basis of the normalisation of the data. Each concentration was conducted 

in triplicate, with the data for a single compound obtained on the same day. A 

curve is then fitted to obtain the activity of each fragment. 

The half maximal inhibitory concentration (IC50) is defined as a measure of 

potency of a substance which inhibits a specific biological or biochemical 

function. IC50 can be transformed into pIC50 through Equation 3. The 

application of pIC50 indicates exponentially more potent inhibitors. 

																																																				𝑝𝐼𝐶!" =	−𝑙𝑜𝑔%"(𝐼𝐶!")																																																			 

Equation 4: Conversion of IC50 into pIC50 

Screening of the fragment library synthesised from Section 3.2.4, began with 

the determination of bioactivity of a single compound from each of the three 

series of fragments to determine the maximum concentrations to guide 

screening of the full fragment series. Fragments 158, 178 and 193 were 

screened initially.  

It was found that fragment 158 of the purine series gave an IC50 of 0.37 µM 

when screened using a 10 point 5-fold serial dilution starting at 190 mM 

against the Aurora-A pseudo-WT. Fragment 178 of the isoquinoline-5-sulfonyl 

series gave an IC50 of 4.8 µM when screened with 10 point 5-fold serial dilution 

with a top concentration of 3 mM. Finally fragment 193 of the pyrimidine series 

gave an IC50 of 45 µM when screened with a 10-point 5-fold serial dilution, 

with a top concentration of 24 mM. Following obtainment of these results, the 

full library was screened, with these concentrations utilised to guide the 

screening process. 
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Figure 27:  Determination of bioactivity of a compound from each fragment series, to determine 
the concentrations to guide screening of the full fragment series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On substitution of the warhead from the purine series (158) to the isoquinoline-

5-sulfonyl series (178) there is a 1.2-fold decrease in pIC50 (Figure 27). 

whereas comparing isoquinoline-5-sulfonyl 178, to pyrimidine 193, there is a 

1.2-fold decrease in pIC50. Finally, comparison of the purine series (158) and 

the pyrimidine series (193) saw a 1.5-fold reduction in pIC50 (Figure 27). The 
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decrease in potency with the pyrimidine (193) was unsurprising as it is not a 

previously reported motif in an Aurora-A kinase inhibitor. 181,230 

 

3.2.10.1 Determination of Bioactivity for the Purine Fragment 

Series 
 

Following the result with fragment 158, the bioactivity of the remainder of the 

purine fragment series was determined, enabling appreciation of the effect on 

potency on variation of the cyclic amine. All twenty fragments of the purine 

series were found to target Aurora-A, with the complete analysis located in 

Appendix 1 and 2. 

 

In general, a trend of increasing bioactivity was observed in those compounds 

with increasing value of AlogP. Those fragments with AlogP values of below 

0.60 displayed poorer bioactivity against Aurora-A, while those with AlogP 

values of above 1.40 proved to be the most potent fragments. Additionally, it 

should be noted that those fragments of lower AlogP (<1.38) all contained 

multiple heteroatoms as part of the variable cyclic amine, signifying those 

multiple heteroatoms may not be tolerated by Aurora-A. Conversely, 

fragments with a higher value of AlogP and therefore high lipophilicity, have 

an increased likelihood of in vitro receptor promiscuity and in vivo toxicity.88 

Fragments with high lipophilicity frequently lead to drug candidates with rapid 

metabolic turnover, low solubility, and poor absorption.231,232 Accordingly, it is 

important to consult other measurements such as ligand efficiency (LE) and 

lipophilic ligand efficiency (LLE), which is discussed in section 3.2.11.1 and 

3.2.11.2.  
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Graph 4: Variation in pIC50 with AlogP within the purine fragment series 

 
Ongoing from 4- or 5-membered ring cyclic amines (152 and 154) to a 6 

membered ring there is a 1.2-fold improvement in bioactivity. The 6-

membered ring (158) and 7-membered (168) ring analogues have similar 

levels of bioactivity. Addition of a methyl group in the 2-position of the 

piperidine ring of 162 gave a 1.2-fold reduction in pIC50, whereas addition of 

a dimethylamino (165) or an ethyl ester substituent (163) in the 4-position or 

3-position of the piperidine ring furnished a 1.5-fold decrease in pIC50. 
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3.2.10.2 Determination of Bioactivity for the Isoquinoline-5-sulfonyl 
Fragment Series 

Following the result with 178, the bioactivity of the remainder of the 

isoquinoline-5-sulfonyl fragment series was determined. All nine fragments of 

the isoquinoline-5-sulfonyl series were found to target Aurora-A with varying 

inhibitory potency. The complete analysis located in Appendix 1 and 2.  

In a similar way to the purine fragment series, an increase in ring size from a 

4-membered ring to a 6-membered ring led to a 1.1-fold increase in pIC50.  

Considering the purine fragment series, we observed a general trend between 

increasing pIC50 with increasing AlogP; however for the isoquinoline-5-

sulfonyl series additional fragments examples would be required to confirm 

this trend. 

 
 

 
 
 
 
 
 

 
Graph 5: Variation in pIC50 with AlogP within the isoquinoline-5-sulfonyl series. 
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3.2.10.3 Determination of Bioactivity for the Pyrimidine Fragment 
Series 

Although fragment 193 of the pyrimidine series was active against Aurora-A 

(IC50 of 45 mM), the remainder of the series were found to be inactive against 

Aurora-A at concentrations below 24 mM and so this series was deprioritised 

and was not pursued further. The results are shown in Appendix 1 and 

Appendix 2.  

 Analysis 

A library of 35 fragments prepared in-house were screened for bioactivity 
against Aurora-A. The results reveal two fragment series which displayed 

promise in the development of an inhibitor targeting Aurora A. We were able 

to further prioritise fragments which would be explored for further development 

and elaboration by considering the physiochemical property criteria previously 

described. Those fragments with an ALogP > 2 have high lipophilicities, 

potentially leading to in vitro receptor promiscuity and in vivo toxicity (Graph 

6). 
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Graph 6: A plot of pIC50 vs AlogP for the purine series (blue) isoquinoline-5-sulfonyl series (orange) 

annotated with the desirable range of AlogP for fragments. 

3.2.11.1 Ligand Efficiency 

An additional consideration in choosing fragments for elaboration is ligand 
efficiency (LE). Ligand efficiency assesses binding affinity in relation to the 

number of heavy atoms present in a molecule (Equation 5). Monitoring of 

ligand efficiency throughout fragment elaboration enables assessment of 

whether the additional molecular mass added in the growth process has been 

added efficiently. A value of approximately 0.3 at this stage, should lead to a 

rule-of-five compliant 10 nM inhibitor on elaboration.88,233 At each stage of 

fragment growth, LE can be utilised to evaluate success. 
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																																													LE = 1.4	 ×
(− log%" IC!")

HA 																																														 

Equation 5: Ligand Efficiency 
In general, it is best to start with a fragment that shows a high LE since in most 

cases LE decreases during optimisation.83 In our investigation, LE will be used 

as guideline in the fragment elaboration process. Graph 7 displays the 

variation in LE with AlogP, annotated with the desirable range for AlogP and 

the desirable LE a fragment would have at this stage.  

 

 
Graph 7: Variation in LE with AlogP, annotated with the desirable range for AlogP and LE. 

At this stage, there are twenty-one fragments which comply with both 

guidelines. Fragments which fall outside of the limits represented in Graph 7, 
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3.2.11.2 Lipophilic Ligand Efficiency 

Lipophilic ligand efficiency (LLE) was first proposed by Leeson and 

Springthorpe and is an index that combines in vitro potency (pIC50) and 

lipophilicity (AlogP) (Equation 6).31 A molecule with an LLE equal to zero 

based on LogP, where target affinity is equal to LogP, can be thought of as a 

fragment having the same affinity for its target as it does for 1-octanol, 

whereas a drug candidate with an LLE of 6 has a one-million-fold higher 

affinity for its target compared to 1-octanol. LLE attempts to maximize the 

minimally acceptable lipophilicity per unit of in vitro potency or more simply, to 

improve potency, while maintaining low lipophilicity. 

 
																																																	LLE = pIC!" − ALogP																																											 

Equation 6: Lipophilic ligand efficiency 
 
A negative value of LLE is unfavourable, indicating a fragment with a large 

value of AlogP. Considering the properties of an average oral drug, with a 

calculated ALogP (ALogP) of approximately 2.5–3.0 and potency in the range 

of approximately 1–10 nM, an ideal LLE value for an optimized drug candidate 

is approximately 5–7 units or greater.18 Fragments or lead-like molecules that 

are used as chemical starting points generally cannot possess drug-like LLE 

values as they do not possess high enough potency. Hit compounds with LLE 

≤2 are commonly found from HTS18 and these will have to be improved by ~3 

or more LLE units during optimisation to a candidate.31 Since LLE does not 

take into account the size of the ligand, it is potentially better suited to being 

using in the optimisation process of fragments selected for elaboration. Graph 

8 displays that twenty-five fragments have an LLE value of 3 or above, with 

none of the fragments possessing a negative value. 
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Graph 8: Variation in pIC50 with LLE within the purine series (blue) and isoquinoline-5-sulfonyl series 

(orange), annotated with the desirable LLE for fragments. 

 Summary 

A library of 35 fragments prepared in-house were screened for bioactivity 

against Aurora-A. The biochemical screen identified two series of fragments 

to be taken forward in for further analysis and potential for fragment growth. 

Elaboration of fragments within this library will be the subject of Section 3.2.14. 
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 Molecular Docking Studies  

Attempts to gain structural data via X-ray crystallography using our fragment 

library were unsuccessful. As a result, molecular docking studies were 

completed using Schrödinger’s Glide217 for 23 fragments employing a co-

crystalised structure of Aurora-B with Reversine (PDB: 2VGO, Figure 28).234 

Since the ATP binding region is highly conserved between all three members 

of the Aurora kinase family, use of the Aurora-B active site with Reversine 

active site was expected to provide insight into the binding modes of our 

fragments.182 

 

Reversine (197) is a substituted purine analogue, shown to bind Aurora-B at 

the active site, with an IC50 of 150 nmol L-1.234 The crystal structure of 

Reversine in complex with Aurora-B kinase was used to rationalise fragment 

potency and to indicate potential points of elaboration of the fragment library. 

 

Reversine occupies the ATP-binding pocket at the interface between small 

and large lobes of Aurora-B. The purine of Reversine 197 can form hydrogen 

bonds with backbone residues (Glu171 and Ala173) in the hinge region of the 

kinase and the cyclohexyl amine motif is thought to extend into the phosphate 

binding region.234,235 The cyclohexyl moiety is modelled to adopt a twist-boat 

conformation. It is noted that the for the co-crystalised structure of Reversine 

with Aurora-B that both the cyclohexyl and the morpholinoaniline motif of 

Reversine are not well resolved, suggesting these motifs may be partially 

disordered and make only weak interactions with the Aurora-B pocket. In 

particular, the cyclohexyl group of Reversine is solvent exposed, which can 

be taken into consideration when designing elaborated analogues.235 
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Figure 28: The structure and crystal structure of Reversine (purple) in a complex with Aurora-B (green 
ribbons). Key amino acids are depicted as green sticks and labelled, with A173 and E171 forming the 

hinge. PDB: 2VGO.234 

3.2.13.1 Comparison of Molecular Docking to Biological Results 

Using the co-crystalised structure of Reversine with Aurora-B as a guide, we 

docked fragments from Section 3.2.10 into the ATP binding pocket to identify 

potential points of elaboration of our fragment series. The aim of the 

elaboration stage was to improve the fragments potency against Aurora-A. 

The fragments from the purine and isoquinoline-5-sulfonyl fragment series 

were docked into the ATP-binding site, compounds 164 (Panel A), 167 (Panel 

B), 179 (Panel C) and 174 (Panel D) are displayed below (Figure 29). 

 

Visual inspection of the top ranked docking poses of the fragments predict a 

consistent fragment pose, in good agreement with the proposed binding mode 

of Reversine, 197. 

 

For the purine series of fragments, the 2-aminoadenosine core is likely to  

recreate the hydrogen bond network with the hinge region of the kinase. The 

two hydrogen bond interactions between the purine and the hinge loop 

residues (Glu171 and Ala173) are conserved. The variable cyclic amine from 

the C-6 position is expected to extend into the ribose binding region of the 

active site. 
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In the isoquinoline-5-sulfonyl fragment-Aurora-B complex, the isoquinoline is 

predicted to occupy the same space as the adenine of ATP. The sulfonamide 

is predicted to stretch into the ribose-binding region and into a solvent 

exposed environment. The isoquinoline nitrogen accepts a hydrogen bond 

from Ala173, whereas the C-1 is thought to donate a hydrogen bond to the 

amide of Glu171.236  

 

On examination of docking scores, we found that docking scores did not 

correlate with those compounds exhibiting the highest potency in the series 

(Figure 29). Although Glide is useful for prediction fragment poses, the scoring 

functions are not refined enough to enable prediction of the more active 

compounds within this series. 

 
Figure 29: Molecular Docking using Glide of fragments 164, 167, 179 and 174 with the Aurora-B active 
site, using a co-crystalised crystal structure with ATP-competitive inhibitor, reversine. PDB: 2VGO.234 
Panel A: Compound 164 docked into the active site, docking score: -8.23. Panel B: Purine compound 
167 docked into the active site, docking score: -4.30. Panel C: Isoquinoline-5-sulfonyl fragment 179 
docked into the active site, docking score -6.67. Panel D: Compound 174 docked into the active site, 

docking score, -5.16. 
 

A B 

C D 

N

N N
H

N
N

N

N N
H

N
N

N

O

N
SO O

N

O

N
SO O

N



 

 

- 126 - 

The results from this section can be used to provide insight into potential 

points of elaboration of the fragment library through understanding of the 

fragment poses. 

 Fragment Library Elaboration 

From the results of section 3.2.8 we identified four suitable scaffolds for 

elaboration in the development of an Aurora-A inhibitor (Figure 30). The goal 

of the fragment elaboration stage is to increase the binding affinity by several 

orders of magnitude with the overall aim of developing a potent chemical tool 

or lead compound.  

 

 
Figure 30: Fragments selected for elaboration, with vectors highlighted. 

An important consideration in the elaboration of fragments is the availability of 

synthetically accessible growth vectors in 3-dimensions. Published 

methodology from the Marsden and Nelson research groups at the University 

of Leeds has explored the growth of cyclic amine fragments.105,237 Our 

elaboration strategy will explore the growth and decoration of the cyclic amine 

to explore the influence on the compounds bioactive profile.  

 

Fragment 167 was our most potent compound and so, part 1 of our 

elaboration strategy explores 𝛼- and 𝛽- vectors on azabicycle of 167 (Figure 

30). By contrast, part 2 explores elaboration of simple cyclic amines of 154, 

158 and 178 using fragment growth strategies covered in Chapter 2. 

Discussion of the synthetic chemistry undertaken will be followed by analysis 

of the resulting fragment library and biochemical screening.  
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 Fragment Elaboration Part 1: Towards Functionalised 
Azabicycles 

It was found in section 3.2.10 that inclusion of azabicycle 198 gave the most 

potent fragment (167) against Aurora-A. This section focuses on exploring 

methods for the preparation and elaboration of 198 as well as analogue 199, 

towards generating a series of elaborated fragments which can be tested 

against Aurora-A. Our workflow for the studies conducted in this section is:  

 
Figure 31: Panel A: Fragment 167 identified through biochemical screening yielded the highest IC50 of 

the screen. Panel B: Azabicycles to be prepared following in this section. Panel C: Potential 
elaboration vectors to pursue on azabicycle 198. Panel D: Desired workflow for elaborated azabicycle 

fragment synthesis. 
 

 Synthesis of Protected Azabicycles 

3.2.16.1 Synthesis of tert-butyl 7-azabicyclo[2.2.1]heptane-7-
carboxylate 

 

 
Scheme 30: Synthesis of azabicycle 198 from commercially available trans-4-amino cyclohexanol.238 

 
We prepared azabicycle 198 from trans-4-aminocyclohexanol using a three-

step protection, mesylation and base-mediated intramolecular cyclisation 
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strategy, as shown in Scheme 30.238 Commercially available trans-4-amino 

cyclohexanol is treated with di-tert-butyl dicarbonate in the presence of 

sodium hydroxide in 1,4-dioxane. This afforded the desired carbamate in 75% 

yield, comparable to literature.238 The carbamate was then subjected to mesyl 

chloride in the presence of triethylamine in dichloromethane to give a 

mesylated intermediate. Mesylated intermediate of 201 was used directly in 

the cyclisation step without further purification, and the crude azabicycle 198 

was purified by flash column chromatography. The presence of the elimination 

by-product 202 is noteworthy, but we found 198 could be used despite its 

presence. We were able to improve the reaction yield from 31% to 66% by 

increasing the temperature of the reaction to 35 °C and increasing the reaction 

length to 48 hours. This yield is an improvement on the literature synthesis 

and did not give an increase in the yield of the alkene 202.  

 

With azabicycle 198 in hand, our attention turned to synthesising bicycle 199 

which could be used in the synthesis of fragments and profiled against Aurora-

A. 

3.2.16.2 Synthesis of tert-butyl 5-azabicyclo[2.1.1]hexane-5-

carboxylate 

For the synthesis of previously unknown azabicycle 199, our planned route 

was as follows: 

 
Scheme 31: Planned synthesis towards azabicycle 199. Steps A: nitroso Diels-Alder Step B: N-O 

reduction, Step C: Hydrogenation of alkene, Step D: potential tandem N-O and alkene reduction, Step 
E: Chlorination and Step F: Displacement to azabicycle 199.   
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The N-protected hydroxylamine 203 was oxidised with sodium periodate to 

the transient acylnitroso species, which in the presence of cyclopentadiene 

gave the corresponding hetero Diels-Alder cycloadduct 205. Conditions for 

the subsequent N-O bond reduction were trialled (Table 28) with molybdenum 

hexacarbonyl found to give moderate yields, in accordance with literature.239 

Entry 4 of Table 28 explores whether the N-O and alkene reduction steps to 

access alcohol 207 could be achieved in a single transformation, but this was 

unsuccessful after 5 days, giving an inseparable mixture of 205, 206 and 207 

in the ratio (3:2:1) by crude 1H NMR. 

 
Entry Conditions Outcome 

1 Zn, acetic acid, 48 h, reflux No product 
2 Mo(CO)6, 15:1 CH3CN:H2O, 3 h, reflux 46% 
3 Zn, Cp2TiCl2   43%  
4 H2, 10% Pd/C, 5 days, rt 3:2:1a 

Table 28: Conditions for the reduction of the N-O bond of 205.a an inseparable mixture of starting 
material:alkene:alkane.  

With intermediate 206 in hand, attention turned to the alkene reduction, which 

was completed by hydrogenation, giving alcohol 207 in high yield (Scheme 

32).  

 
Scheme 32: Hydrogenation of alcohol 206 to give 207. 

Following attainment of 207, the synthesis of azabicycle 199 was attempted 

with conditions detailed in Table 29. These conditions are analogous to 

literature, with the chlorination or Appel reaction inverting the stereochemistry 

of 207, followed by internal substitution. In all cases, these reactions were 

unsuccessful. We noted the decomposition of the starting material, with the 
tBu signal absent from the crude 1H NMR in all cases, and so it was suspected 

that the Boc group was cleaved by HCl generated in situ (Table 29, entry 1-
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3). Therefore, we opted for an alternative synthesis to access azabicycle 199 

(Scheme 33), which was a literature reported route towards 213. 

 
Entry Conditions Outcome 

1 SOCl2 (1.5 eq.), NEt3 (3 eq.), CHCl3, rt No product 
2 SOCl2 (1.5 eq.), NEt3 (5 eq.), CHCl3, 0 °C No product 
3 SOCl2 (1.5 eq.), NEt3 (10 eq.), CHCl3, 0 °C No product 
4 NCS (2.6 eq.), PPh3 (2.5 eq.), CHCl3, 0 °C No product 
5 NBS (1 eq.), PPh3 (1 eq.), CHCl3, 0 °C No product 
6 CBr4 (1.5 eq.), PPh3 (2 eq.), CHCl3, 0 °C No product 

Table 29: Conditions for the synthesis of azabicycle 199 
 
Following modification of the protecting group from the acid labile Boc to 

benzoyl, cycloadduct 210 was obtained from in situ oxidation of 

benzohydroxamic acid 209 with sodium periodate and then addition to 

cyclopentadiene. The N-O bond was reductively cleaved with molybdenum 

hexacarbonyl to give the corresponding cis-1,4-hydroxyamide in 21% yield, 

comparable to literature. In a telescoped process, the alkene of 211 was 

reduced, which was confirmed by TLC, and treated with thionyl chloride in the 

presence of triethylamine to access the trans-chloroamide in situ. Transfer by 

cannula of the trans-chloroamide into potassium tert-butoxide in 

tetrahydrofuran was expected to yield azabicycle 213. Analysis of the crude 
1H NMR displayed decomposition of the starting material 212, with the 

aromatic peaks of the benzoyl group no longer visible in the 1H NMR. As a 

result, this route was deprioritised to synthesise 213. 
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Scheme 33: Alternative synthesis to access azabicycle 213. 

The next method involved an aza-Michael addition between cyclopentenone 

214 and tert-butyl carbamate 215 in the presence of a Lewis acid to give 

carbamate 216 (Scheme 34). The route to 199 was redesigned to access the 

amino alcohol 212B, then to activate towards substitution. The synthesis was 

trialled using conditions reported in the literature (Table 30).240–242 The results 

display that use of a sub-stoichiometric amount of bismuth nitrate were the 

only conditions to yield the desired product. 

 
Entry Conditions Outcome 

1 Bi(NO3)3 (1 eq.), CH2Cl2, rt, 24 h No product 
2 TBAB, BF3.Et2O, rt 4 h No product 
3 PPh3, TMSCl, CH2Cl2, rt, 24 h No product 
4 Bi(NO3)3 (0.1 eq.), CH2Cl2, rt, 48 h 43% 

Table 30: Conditions trialled for the aza-michael reaction of 214 and 215. 
Treatment of ketone 216 with sodium borohydride gave an inseparable 

mixture of alcohols 212A and 212B (1:1). It was anticipated that only the trans-

compound would undergo the subsequent displacement reaction to form 

azabicycle 199 and therefore it could be separated by flash column 

chromatography from mesylated alcohol 217A. As with the synthesis of 

azabicycle 198, the alcohols were mesylated without purification and treated 

with potassium tert-butoxide in tetrahydrofuran and warmed to 35 °C over 48 

hours. The mesylation products were successfully confirmed by LC-MS. It was 
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found that these conditions for the subsequent reaction step did not yield the 

desired product and give a complex mixture of unidentifiable products, with 

the diagnostic bridgehead protons absent by crude 1H NMR. As a result, the 

synthesis of azabicycle 199 was deprioritised. 

 
Scheme 34: Synthesis towards azabicycle 199  using the aza-Michael reaction, followed by reduction 
of ketone 212A/B. Alcohols 212B and 212A were inseparable and were mesylated and underwent the 

conditions for displacement, without yielding product. 

 Elaboration of tert-butyl 7-azabicyclo[2.2.1]heptane-7-

carboxylate 

With a route to azabicycle 198 in hand, our attention turned to elaborating the 

amine. In Chapter 2, Section 2.1, we identified procedures for 𝛼-arylation of 

cyclic amines, but we recognised that use of the Seidel method would not be 

applicable with this substrate, because bridgehead imine formation is not 

possible.113 The conditions reported by MacMillan et al. for photoredox-

mediated HAT transfer/nickel-catalysed cross coupling110 to arylate the 

bridgehead carbon of 198 were applied. However, application of the 

conditions reported by MacMillan were unsuccessful with starting material 

recovered following purification with flash column chromatography. This result 

was unsurprising since this procedure has not previously been reported with 

sterically hindered substrates such as 198.  
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Scheme 35: Applying MacMillan's photoredox C-H arylation approach to azabicycle 198.110 

Our next method explored sulfinamide synthesis, with a view to functionalising 

the bridgehead carbon of azabicycle 198. Willis et al. reported a synthesis of 

sulfinamides using organometallic reagents and a nitrogen based nucleophile, 

using the commercially available sulfur dioxide surrogate, DABSO, as the 

electrophile.243 We subjected azabicycle 198 to conditions for sulfinamide 

synthesis, beginning with in situ deprotonation of 198 by s-BuLi, and then 

treatment with DABSO was anticipated to give the metal sulfinate. This crude 

mixture was treated with thionyl chloride and morpholine, which was expected 

to give the substituted sulfinamide 219. Regrettably, this reaction did not yield 

product 219 and purification by flash column chromatography recovered the 

starting material 198.  

 
Scheme 36: Attempts to synthesise sulfinamides 219 and 221 using a proceedure by Willis et al.243 

Uncertain as to why the formation of the sulfinamide was unsuccessful, efforts 

were made to prepare a less sterically demanding analogue which could also 

be analysed by LC-MS at the point of metal sulfinate generation. Previously 

unreported substrate, phenyllithium 220 underwent the reported conditions to 

give 221 in an unoptimised 23% yield, and the metal sulfinate formation was 

3 mol% [Ir(dF(CF3)ppy)2(dtbpy)]PF6
3-acetoxyquinuclidine
1 mol% NiBr2.3H2O, 

1 mol% 4,7-dOMe-phen

H2O, DMSO (0.25 M), 
34 W Blue LED, 24 h

Br
BocN

BocN
198 69

218

BocN

1. DABSO, Et2O
2. SOCl2, Et2O

3. Morpholine, NEt3, Et2O

BocN

SO N
O

Li

1. s-BuLi, Et2O
2. DABSO, Et2O

3. SOCl2, Et2O
4. Morpholine, NEt3, Et2O

S
NO

O

23%

198

219

221

220



 

 

- 134 - 

followed by LC-MS. To determine the point of failure of the reaction of 198, 

the metal sulfinate formation of 198 was followed by LC-MS and was not 

observed. Full repetition of the method to synthesise 219 was still 

unsuccessful, which we attributed due to the large sterics surrounding the 

azabicycle bridgehead carbon of 198. 

 

Although we had established methods for 𝛽-elaboration of cyclic amines 

arising from enecarbamates104,105 previously (Chapter 2), these methods 

would not be possible with azabicycle 198. In order to access 𝛽-functionalised 

analogues, we employed a method for photoredox mediated C-H 

abstraction/Ni-Catalysed arylation by MacMillan et al.244 When 5-bromo-3-

fluoropyridine and azabicycle 198 were reacted under the reported conditions, 

however, we were unable to effect arylation of 198 with halide 222. 

 
Scheme 37: Initial attempts towards arylation of azabicycle 198, with MacMillan and co-workers 

method.244 
 

 
Entry Substrate Aryl Halide Product Outcome 

 
1 

 
225 

 

 
- 

 
No product  

 
2 

 
226 

 

 
- 

 
No product  

 
3 

 
227 

 

 
- 

 
No product  

 
4 

 
228 

 

 
229 

 
40% 

Table 31: Screening of aryl halides with cyclohexane in attempts to 𝛽-functionalise azabicycle 198. 
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Unsure as to why this reaction was unsuccessful, we completed a screen of 

suitable aryl halides with cyclohexane as the partner. Halides 225-227 were 

not previously reported as substrates in the literature. We were able to attain 

a functionalised cyclohexane in moderate yield compared to literature using 

previously reported halide 228. We then utilised halide partner 228 in a 

reaction with azabicycle 198 using the reported conditions. This gave arylated 

carbamate 230 in reduced yield, compared to the literature.244 Although we 

were able to repeat an exact example from MacMillan, the reaction seems to 

be sensitive to variation in the halide partner.244 The reaction was exo-

selective, owing to selective radical capture by the nickel catalyst on the less 

hindered face of 230.244 

 
Scheme 38: Synthesis of protected amine 198, employing a procedure from MacMillan et al.244 

Given the lack of success in the direct C-H elaboration of 198, our attention 

turned to generating intermediates which would allow us to try additional 

elaboration strategies. Our initial focus was to access the bridgehead 

aldehyde and carboxylic acid. Based upon pioneering work of Beak245 on the 

𝛼-lithiation of N-Boc carbamates, Xiong et al. have demonstrated lithiation and 

electrophilic trapping of the bridgehead positions of 198.246 

 
Figure 32: Aldehyde 231 and carboxylic acid intermediates 232. 

The synthesis of 231 was initially attempted using a procedure by Xiong et 

al.246 Direct carboxylation of the deprotonated bridgehead carbon using 

carbon dioxide was unsuccessful in our hands, with only starting material 

isolated. Instead, we accomplished the synthesis of 231 employing a 

procedure by Harty et al.; a two-step formylation-oxidation sequence.238 The 

formyl substituent was introduced through quenching of the lithiated-
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azabicycle with DMF to give the aldehyde 231, in 45% yield. The formyl 

substituted product could be purified by flash column chromatography and 

stored under nitrogen for two-weeks, without oxidation to the carboxylic acid 

232. 

 

Formylated intermediate 231 was converted through Pinnick oxidation to give 

carboxylic acid 232 in high yield.238 Aldehyde 231 could also be reduced 

through portion-wise treatment with sodium borohydride over 5 hours, to give 

alcohol 233 in 87% yield. 

 
Scheme 39: Synthesis of aldehyde 231, carboxylic acid 232 and primary alcohol 233. 

Next, we focused on the conversion of aldehyde 231 into amines 236-237 by 

reductive amination. Reductive amination utilising aldehyde 231 had not been 

reported in the literature, and we found that treatment of 231 with sodium 

triacetoxyborohydride and dimethylamine led gave a mixture of unidentifiable 

products and the desired product was not isolated. Reasoning that slow 

formation of the requisite imine/iminium from hindered aldehyde 231 was the 

problem, an alternative synthesis was devised: applying conditions reported 

by Bhattacharyya involving dehydrative imine formation prior to reduction, we 

were able to access novel amines 236 and 237 in moderate yield.247 

 
Scheme 40: Reductive amination with aldehyde 231 to access amines 236 and 237. 

 

BocN BocN

1) s-BuLi, TMEDA, 
Et2O, 0 °C, 1 h

CHO

2) DMF, Et2O, rt, 1 h
NaClO2,NaH2PO4

tBuOH, 2-methyl-2-butene, 
rt, 2 h

BocN

COOH

BocN

CHO

MeOH, rt, 5 h
BocN

OH

NaBH4

233, 87%231

231, 45%198 232, 92%

BocN

CHO 1) Ti(OiPr)4 
MeOH, rt, 5 h

2) NaBH4 
MeOH, rt, 12 h

BocNNHRMe

NRMe

236 R = H, 38%
237 R = Me, 17%

234 R = H
235 R = Me

231



 

 

- 137 - 

As amide bonds play a crucial role in drug development, with 67% of drug 

candidates possessing at least one amide bond,248 we endeavoured to 

synthesise amides 238 and 239. Treatment of carboxylic acid 232 with HOBT 

and EDC hydrochloride in the presence of triethylamine yielded novel amide 

238 (Scheme 41). The synthesis of amide 239 was unsuccessful on multiple 

attempts, with no product visible in the LC-MS (Table 32), with the reason for 

failure unclear. This compound synthesis was deprioritised due to time 

constraints. 

 
Scheme 41: Synthesis of amide 238. 

 

 
Entry Conditions 

1 HOBT, EDC.HCl, NEt3, CH2Cl2, 60 h 
2 HATU, NEt3, CH2Cl2, 60 h 
3 SOCl2, NEt3, CH2Cl2, 12 h 

Table 32: Conditions trialled in the synthesis of amide 239. 
 
We then investigated introduction of carbon-based substituents at the 

bridgehead by subjecting carboxylic acid 232 to MacMillan’s procedure for 

decarboxylative substitution using alkyl halides (Chapter 2). Applying this 

methodology, we were able to access novel amine 240, bearing a benzyl-

substituted bridgehead carbon atom, in moderate yield. Prior to this work, 

azabicycle 232 was not a reported substrate of the reaction (Scheme 42).  
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Scheme 42: Synthesis of functionalised azabicycle 232. 

 

 Azabicyclic Fragment Assembly: Protecting Group Removal and 
Fragment Preparation 

Our aim for this section was to take protected bicyclic amines prepared in 

section 3.2.17 and synthesise azabicycle fragments through deprotection and 

attachment to the kinase-targeting warheads.  

 

Deprotection of azabicycle 238 was completed using neat trifluoroacetic acid 

over 2 hours, confirmed by both TLC and LC-MS. Following strong cation-

exchange chromatography to give the free amine, we utilised conditions 

identified in section 3.2.4 for SNAr (Table 33, entry 1) and sulfonylation (Table 

34, entry 1). Both reactions were unsuccessful under these conditions, and so 

a range of alternative conditions were then trialled using amine 241. For Table 

33, no product could be detected and only the starting amine 241 was 

observed by LC-MS following treatment with coupling conditions in all entries. 

For entries 1-4 of Table 33, compound 243 arising from competing substitution 

by solvent was observed by LC-MS. 
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Entry Conditions  

1 NEt3, EtOH 8 h, reflux 
2 NEt3, EtOH, 12 h, reflux 
3 NEt3, EtOH, 48 h, reflux 
4 NEt3, EtOH, 18 h reflux 
5 NEt3, THF, 18 h reflux 
6 NEt3, nBuOH, reflux 
7 NaOtBu, Pd2(dba)3, tBu3P, toluene  
8 NEt3, Pd(OAc)2, tBu3P, DMF, 100 oC, 
9 NEt3, DMAc, microwave, 100 oC 

Table 33: Conditions trialled for coupling of amine 241 and 6-chloropurine 151. 

 
Entry Conditions  

1 NEt3, EtOH, 18 h, rt 
2 NEt3, EtOH, 24 h, reflux 
3 NEt3, DMAc, microwave, 100 oC 

Table 34: Conditions trialled towards fragment 244. 
 
Following these disappointing results, we deprotected azabicycle 240 in the 

same way and attempted to attach the 151 warhead to 246, using conditions 

shown in Table 35. These results were unsuccessful, with only starting 

materials observed. In the case of entries 1-2, the solvent-substituted 243 was 

identified by LC-MS.  
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Entry Conditions  

1 NEt3, EtOH, 48 h, reflux 
2 NEt3, nBuOH, reflux 
3 NaOtBu, Pd2(dba)3, tBu3P, toluene 

Table 35: Synthesis towards fragment 247. 
 
Following our failed attempts at N-decoration, the synthesis of functionalised 

azabicycle fragments was deprioritised due to time constraints. It is believed 

the failure of these reactions could be attributed to the steric hindrance of the 

amine partner, although no issue was found in the SNAr reaction to prepare 

initial fragment 167.  

 

  Summary 

 
A route towards azabicycle 198 was achieved, with an improvement in yield 

compared to literature. We were able to apply previously reported and novel 

procedures towards the elaboration of azabicycle 198, yielding six novel 

amines. The aim of this section was to generate an elaborated fragment set 

based on 167. Therefore, amines 240 and 238 were deprotected and a range 

of coupling conditions were tried with heteroaromatics 151 and 173, with no 

success.  
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 Fragment Elaboration Part 2: Exploring 𝜶- and 𝜷- vectors of the 
cyclic amine 

The following section discusses elaboration of the 𝛼- and 𝛽- vectors on the 

cyclic amine, accessible by use of methodology discussed in Chapter 2. 

 
3.2.20.1 Fragment Library Design 

 

For this round of screening, a 23-member elaborated fragment library was 

generated using LLAMA, focusing on the growth of fragments 154, 158 and 

178 from the 𝛼- and 𝛽- vectors on the cyclic amine (Figure 30).223 Variation of 

the cyclic amine is shown in Figure 33. 

 

 
Figure 33: Amines chosen for the elaborated fragment library. 

The amines were selected to incorporate both 𝛼- and 𝛽-functionalisation. In 

the initial library compound 162 showed that sterically small 𝛼-substituents on 

the cyclic amine were tolerated, this round of screening would explore a 

sterically bulky 𝛼-phenyl substituent. The library would also explore 𝛽-

functionalised cyclic amines, bearing amines, amides, sulfonamides, and 

phenyl substituents, accessible using methodology discussed in Chapter 2. 

Lastly, we wanted to explore the attachment of the amine to the heterocyclic 

warhead. These amines 255-257 were included by analogy with the structure 

of Reversine 197, where the C-6 position of the purine has a 

cyclohexylamine.234 
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 Computational Analysis of Elaborated Fragments 

Prior to synthesis, we conducted molecular docking studies and shape 

analysis of the elaborated library using the co-crystalised structure of Aurora-

B with Reversine. 

 

 
Figure 34: Elaborated Fragments docked into the Aurora-B. Panel A: 283, docking score -9.03, Panel 
B: 286 docking score -8.30, Panel C: 277, docking score -7.27 and Panel D: 270, docking score -7.35 

PDB: 2VGO. 
 
The elaborated compounds were docked into the active site of Aurora-B in the 

same way as section 3.2.13 (Figure 34). The predicted binding modes for the 

docking results were visually inspected and the purine compounds (Figure 34, 

panel A and B) are thought to maintain the H-bonding pattern between the 

hinge residues (Glu171 and Ala173). For the isoquinoline-5-sulfonyl 

elaborated compounds, the isoquinoline N accepts a hydrogen bond from 

Ala173 and the isoquinoline C-1 donates a hydrogen bond to Glu171. The 

docking scores obtained for the elaborated library were favourable, 

suggesting 𝛼- and 𝛽- functionalisation of the cyclic amine may aid in the 

optimisation of our fragment series.   
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3.2.21.1 ROCS Ligand Based Screen 

The ROCS analysis was completed by Dr. Martin McPhillie. In the absence of 

a strong docking collaboration (Section 3.2.13) between compound inhibitory 

potency and docking score, a ligand-based similarity screen was completed, 

using OpenEye’s Shape-similarity software ROCS.218 The elaborated 

fragment library and the structure of Reversine bound in the active site of 

Aurora-B were examined (Figure 35).  

 

 
Figure 35: ROCS analysis of elaborated fragments with Reversine. Panel A: 283, ROCS Score: 1.076 

Panel B: 276, ROCS score: 1.060, Panel C: 258, ROCS score: 1.290 and Panel D: Isoquinoline-5-
sulfonyl 279, ROCS score 0.680. PDB: 2VGO.234 

 
Visual inspection of the ROCS analysis for the elaborated compounds 

displays that the proposed elaborated fragments can mimic the binding 

conformation of Reversine (Figure 35). As expected, analysis of the scores 

showed that the purine series had higher scores than the isoquinoline-5-

sulfonyl series.  

 

The ROCS analysis and Glide docking suggested elaboration along both the 

𝛼- and 𝛽-vector could support our aim of improving the potency of our 

compounds. However, it should be noted that following the work conducted in 

section 3.2.13, docking scores did not directly relate to compound potency. 
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Nonetheless, we decided to synthesise the 23-membered library and use the 

biochemical screening results to further guide our aim of improving activity of 

our fragments against Aurora-A. 

 Elaborated Fragment Library Synthesis: Cyclic Amine-
Functionalisation 

The following section details the preparation of an elaborated fragment library. 

3.2.22.1 𝜶-Functionalisation 

From the initial screen against Aurora-A we identified that sterically small 𝛼-

substituents were tolerated (Figure 36). Next, we wanted to explore a larger 

𝛼-substituent. In response to this hypothesis we prepared fragments 258-261. 

 
Figure 36: Elaborated fragments, functionalised in the 𝛼-position.  

Fragments 258-261 were synthesised through SNAr or sulfonylation of 

previously prepared (46, 47) phenyl-substituted amines with the 

heteroaromatic precursors. For fragment 258, commercially available 6-

chloropurine was refluxed in ethanol, in the presence of triethylamine and 2-

phenyl pyrrolidine. After 8 hours, a precipitate formed which was isolated by 

filtration in good yield. Unfortunately, 259 was unable to be isolated clean from 

the 6-chloropurine starting material and since we could access pyrrolidine 

258, compound 259 was deprioritised. 
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Scheme 43: Synthesis of 𝛼-functionalised purine fragment for screening against Aurora-A. 

Following the synthesis of the purine fragment, sulfonylation reactions were 

performed using amines 46-47 to give previously unknown elaborated 

fragments 260-261, in moderate yield (Scheme 44).  

 
Scheme 44: Synthesis of α-functionalised sulfonyl-5-isoquinoline fragment 260, 261 for screening 

against Aurora-A 
A limited number of 𝛼-functionalised analogues were prepared at this point, 

however, should these analogues display promising activity against Aurora-A, 

additional 𝛼-functionalised compounds could be synthesised. 110,113,114 

3.2.22.2 𝜷-Functionalisation 

Trindade et al. in the group described a proceedure for the 𝛽-sp3 alkylative 

functionalisation of cyclic amines.237 Substitution of an enecarbamate 

intermediate with a functionalised alkyl halide under photoredox catalysis 

yields a 𝛽-functionalised cyclic amine. Repetition of this procedure using 

enecarbamate 89 yielded substituted piperidine 263, with the reaction 

monitored by TLC and the presence of the product confirmed by LC-MS and 

crude 1H NMR (Scheme 45).  
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Scheme 45: Synthesis of elaborated fragment 255  by substitution of enecarbamate 89 with ethyl 2-

bromoacetate.237 17% yield from enecarbamates 89. 
 
Without purification, crude 254 underwent hydrogenation to furnish the free 

amine. The crude free amine 254 was then refluxed with triethylamine and 6-

chloropurine 151 in ethanol to yield the previously unreported fragment 255 in 

17% yield. 

 
Scheme 46: Preparation of elaborated fragment 266, 73% yield from 265. 

 
The isoquinoline-5-sulfonyl dehomologue was prepared from commercially-

available 2-(piperidin-3-yl)acetic acid 265, which underwent esterification 

using ethanol to give amine 254 (Scheme 46). This amine was subsequently 

used in a sulfonylation reaction with compound 173 to yield novel elaborated 

fragment 266, in good yield. 

Although inclusion of the C-3 ester yielded novel fragments to be tested with 

Aurora-A, the dehomologous fragment (163) had not shown promising activity 

against Aurora-A (Figure 37).  Additionally, aliphatic esters have been flagged 
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as an undesirable functional group to be present in clinical candidates.106 The 

electrophilic ester has the potential to be unintentionally reactive towards 

proteins and is susceptible to decomposition by solvolysis or hydrolysis. This 

can consequently lead to false positives that can plague screening efforts. It 

was therefore deemed that two elaborated fragments exploring this motif were 

enough to appreciate the effect on the activity of Aurora-A. 

 

Figure 37: Fragment 163 from the initial screen and the elaborated fragments containing esters 

Francis et al. in the group reported a method for the synthesis of 3-amino 

substituted saturated nitrogen heterocycles using a photoredox-mediated 

hydroamination of an enecarbamate intermediate.105 Treatment of the 5-

membered cyclic enecarbamates (267) with an excess of methanolic 

ammonia under the reported conditions returned the desired primary amine 

268 (Scheme 47, Panel 1). Without purification, the primary amine underwent 

a sulfonylation reaction with compound 173 to yield the protected amine 269. 

This intermediate underwent deprotection to give the final free amine fragment 

271 in moderate yield. 

In parallel, intermediate 269 was methylated and deprotected to give fragment 

270. Finally, employing the conditions for sulfonylation with commercial amine 

257 gave novel elaborated fragment 272 to be screened against Aurora-A 

(Scheme 47, Panel 2).  
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Scheme 47: Panel 1: Preparation of elaborated fragments 270 and 271 through hydroamination. 
a[Ir(dF(Me)ppy)2(dtbbbpy)]PF6, yield for 271 is 37% from enecarbamates 267. Panel 2: Preparation of 

fragment 272 through Sulfonylation. 
 

Although we could prepare amines 273-274 through hydroamination, we 

utilised the commercial Boc-protected amines 273-274 for the following 

synthesis. As before, these amines underwent substitution reactions with 151 

and 173, with analysis by LC-MS confirming completion of the reaction. The 

Boc-protected fragments were treated with trifluoroacetic acid in 

dichloromethane to give primary amine containing fragments 275-276. 
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Scheme 48: Preparation of primary amine containing fragments 275-278, through SNAr reaction. 
 

However, purification of the final elaborated fragments 276 and 278 by flash 

column chromatography was unable to separate 6-chloropurine and 

isoquinoline-5-sulfonyl chloride starting material from the final products. 

Starting material and product were separable by LC-MS and so automatic 

reverse phase column chromatography was attempted, to no avail. Finally, 

purification by mass directed auto-purification (MDAP), retrieved products for 

276 and 278 in moderate yield (Scheme 48).  

 

Derivatisation of amine of fragments 275-278 was originally designed to 

circumvent issues associated with purification of the fragments, but also 

enable incorporation of functionality, which may be capable of forming useful 

interactions with the Aurora-A binding site. In the same way as before, we 

prepared the fragments by SNAr and sulfonylation (Scheme 49). However, on 

synthesis of 281, 284 and 285, purification issues arose, with the fragments 

unable to be purified by MDAP and so 281, 284 and 285 were deprioritised 

for synthesis (Scheme 49, Panel 1 and Panel 2).  
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Scheme 49: Derivatisation of fragments 275-278. 

 

Finally, we sought preparation of elaborated fragments bearing aromatic 

functionality in the 𝛽-position. The previously unknown target purine and 

isoquinoline-5-sulfonyl compounds were prepared from commercial 49 and 

either 6-chloropurine or intermediate 173, with the fragments obtained in good 

yield (Scheme 50).  
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Scheme 50: Synthesis of functionalised aromatic fragments. 

 Summary 

Overall, nineteen elaborated fragments were synthesised for screening 
against Aurora-A. The elaborated library explores growth of the cyclic amine 

motif of the fragment with 𝛼- and 𝛽- substituents. Purification issues arose 

which meant that some analogues could not be accessed. The biochemical 

screen of these compounds against Aurora-A will provide insight into future 

directions for the project, towards increasing the binding affinity of our initial 

fragments.  
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 Analysis of the Elaborated Fragment Library 

The elaborated fragment library was analysed using LLAMA.223 From this, we 

were able to compare the properties of the elaborated library to those of our 

initial fragment library. The full 19-member compound library was analysed 

and the average, smallest and largest values were determined. 
 

Data MW 
(HAC) 

AlogP Molecular PSA / 
Å2 

Fsp3 Rotatable 
Bonds 

Average 300.3 
(21) 

0.98 74.9 0.37 2.8 

Smallest 204.2 
(15) 

-0.16 50.3 0.21 1 

Largest 369.5 
(25) 

3.02 103.9 0.57 6 

Table 36: Analysis of the different physicochemical properties of the 19-member elaborated library. 
Notably, the average AlogP remained constant from the initial library to the 

elaborated library (Table 36). This value offers potential for the addition of 

more lipophilic groups during further development of the compounds. The 

average PSA of the compounds has increased on elaboration.  

 

3.2.24.1 Three-Dimensionality of the Elaborated Library 

The three-dimensionality of the fragments was described by a PMI plot (Figure 

38), with the purine series in green and the isoquinoline-5-sulfonyl series in 

red (Figure 38). From this plot, it can be concluded that the elaborated 

compounds explore a more distinctive three-dimensional area of the plot and 

are beginning to access underrepresented areas of chemical space. 
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Figure 38: A PMI plot of the elaborated library, showing the purine series (green) and the isoquinoline-

5-sulfonyl series (red). The PMI plot was produced by use of LLAMA.  
 

 Determination of Elaborated Fragment bioactivity against 
pseudo-WT Aurora-A 

The elaborated set of compounds were screened in the same manner as 
Section 3.2.8. Due to issues with the instrument used to screen the 

compounds, the inhibitory potency of only nine of the fragments could be 

obtained. The results of the screen are described below. 

 

3.2.25.1 Determination of Bioactivity for the Purine Fragment 

Series 

The potency of the elaborated purine compounds was determined, enabling 

appreciation of the effect on potency on functionalisation of the cyclic amine. 

At this stage, five fragments from the purine series were screened against 

Aurora-A, with the complete results located in Appendix 3 and 4 and 

summarised in Table 37.  
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Amine Substrate IC50 / 
μM 

ALogP LE LLE 

 

 
154 

 
3 

 
0.92 

 
0.55 

 
4.60 

 

 
158 

 
0.370 

 
1.43 

 
0.60 

 
5.00 

 

 
275 

 
53 

 
-0.11 

 
0.40 

 
4.39 

 

 
283 

 
77 

 
-0.14 

 
0.32 

 
4.25 

 

 
285 

 
182 

 
-0.15 

 
0.26 

 
3.90 

 

 
287 

 
35 

 
2.93 

 
0.30 

 
1.52 

 

 
254 

 
43 

 
1.46 

 
0.29 

 
2.90 

Table 37: Determination of bioactivity for five elaborated purine compounds. 
 

Comparing the elaborated purine compounds to their parent fragment from 

Section 3.2.10 for compounds 287 and 285, the original fragment (158) was 

over 400-fold and 93-fold more potent respectively.  Overall, elaboration of 

compounds 154 and 158 along the 𝛼- and 𝛽- vectors of the cyclic amine for 

these compounds led to a reduction in the potency and therefore the ligand 

efficiency of the compounds.  

 

In general, for our initial purine library (Section 3.2.10.1), we observed a trend 

increasing bioactivity in those compounds with increasing values of AlogP. 

This trend is not observed with the elaborated purine compounds, suggesting 
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that this trend with the initial fragments is not solely due to non-specific 

hydrophobic properties, although additional compounds would be required to 

confirm this. 

 

The lipophilic ligand efficiency was calculated to differentiate the high-quality 

compounds of this series, which could undergo further optimisation. In 

general, HTS hits have an LLE value of 2 and compounds with higher values 

of LLE (≤ 2) tend to possess improved ADMET characteristics.18 From Table 

37 we can identify that compound 287 has a poor value of LLE at 1.5, 

suggesting that selection of this compound for further optimisation would be 

undesirable. Literature states that an ideal value for LLE for an optimised drug 

candidate is between 5-7. From this, we can deduce that compounds 275 and 

283 would potentially be desirable candidates for further development.  
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3.2.25.2 Determination of Bioactivity for the Elaborated 
Isoquinoline-5-sulfonyl Fragment Series 

The potency of the elaborated isoquinoline-5-sulfonyl compounds was 

determined, enabling understanding of the effect of cyclic amine 

functionalisation. At this stage, four fragments were screened against Aurora-

A. 

Amine Compound 
No 

IC50 / 
μM ALogP LE LLE 

 

 
178 

 
4.8 

 
1.38 

 
0.39 

 
3.93 

 

 
279 

 
189 

 
0.47 

 
0.24 

 
3.25 

 

 
280 

 
203 

 
0.02 

 
0.22 

 
3.67 

 

 
282 

 
118 

 
0.06 

 
0.22 

 
3.87 

 

 
288 

 
58 

 
3.02 

 
0.24 

 
1.21 

Table 38: Determination of bioactivity for five elaborated isoquinoline-5-sulfonyl compounds 
 

All four compounds were found to have activity against Aurora-A. The parent 

fragment (178) was found to be 12-fold and 24-fold more potent 288 and 282 
respectively. Unfortunately, the parent pyrrolidine-based fragment of 279 and 

280 were not able to be screened due to solubility issues (176), so a direct 

comparison was unable to be made at this point. From these results, 

elaboration of compound 178 along the 𝛼- and 𝛽- vectors of the cyclic amine 

for these compounds led to a reduction in the potency and therefore the ligand 

efficiency of the compounds.  
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In general, for our initial isoquinoline-5-sulfonyl library, we observed a trend of 

increasing bioactivity in those compounds with increasing values of AlogP. For 

this library, additional compounds would be required to confirm this. However, 

our most potent compound from this elaborated series 288, possessed a high 

value of AlogP at 3 units, and fragment 280 was our least potent and had the 

lowest value of AlogP of this library. 

 

The lipophilic ligand efficiency was calculated to prioritise the compounds, 

which could undergo further optimisation. Table 38 displays that compound 

288 has a poor value of LLE at 1.2, indicating that this compound would be a 

poor candidate for further optimisation. Likewise, this data displays that 

compound 280 and 282 would potentially be suitable contenders for further 

development.  

 

 Summary 

A library of 9 elaborated fragments prepared in-house were screened for 

bioactivity against Aurora-A. The biochemical screen identified that 

functionalisation along the 𝛼- or 𝛽-carbon atom of the cyclic amine reduced 

activity in all cases versus the parent fragment, indicating that these may be 

unfavourable vectors to pursue in the elaboration of these compounds. 

However, more definitive conclusions would require screening of the 

remaining 10-compounds of the library.  
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 Conclusion 

A virtual library was developed consisting of sixty fragments across three 
fragment series, designed to target kinases. Each fragment consisted of a 

cyclic amine attached to a kinase-targeting warhead, designed through 

literature searching. Through analysis of predicted molecular properties, this 

virtual library was condensed to give 35-fragments. The 35-fragments were 

assembled in the minimum number of synthetic steps from readily available 

starting materials to give a 35-member fragment library.  

 

The 35-member fragment library was screened against Aurora-A, yielding 30-

hit fragments, with 13% of the fragments displaying sub-micromolar activity. It 

was decided through analysis of biological potency that the purine and 

isoquinoline-5-sulfonyl series would be taken forward to be elaborated. Our 

elaboration strategy focused on the most potent compounds arising from the 

biological screen.  

 
Figure 39: Summary of the two-fragment series taken forward to the elaboration stage. 

From this, we moved on to the synthesis and elaboration of azabicycle 198, 

which gave our most potent compound when attached to purine (167). In order 

to access azabicycle 198, we employed a route proposed by Harty et al.238 

and obtained an improved yield. We explored a variety of literature methods 

for the elaboration of azabicycle 198, enabling access to six novel amines. 

Following synthesis of these amines, we sought the formation of elaborated 

bicyclic fragments. We found we were able to deprotect the amines, but were 

unable to successfully effect coupling of the bicyclic amine and the 

heteroaromatic component in either an SNAr, Buchwald coupling or 

sulfonylation. These unsuccessful reactions were postulated to be due to 
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steric hindrance or reduced reactivity of the amine because of the newly 

installed bridgehead substituents.  

 

Next, we explored 𝛼- and 𝛽-functionalisation of the cyclic amines of the most 

active monocyclic fragments e.g. 167, for which we had either identified or 

developed methodology to complete this task in Chapter 2. Our elaboration 

strategy was supported by docking structures, which suggested that 𝛼- and 𝛽 

functionalisation of the cyclic amine gave compounds of similar shape to a 

known Aurora-B inhibitor, Reversine. Biochemical screening of a 9-membered 

elaborated library exploiting that 𝛼- and 𝛽- vectors of the cyclic amine 

displayed no improvement in potency. Although we did not obtain an 

improvement in potency, this case study exemplifies that the underpinning 

chemistry developed both with Chapter 2 and previously by the Nelson and 

Marsden groups has enabled exploration of vectors on the cyclic amine, which 

will have wider use in FBDD. 

 

 Future Work 
Future work for this project will focus on completing the biochemical screening 

and the preparation of elaborated fragments. Initially the remainder of the 𝛼- 

and 𝛽-functionalised library would be screened, enabling more definitive 

conclusions to be reached on whether these vectors are productive to pursue 

in the development of a potent Aurora-A inhibitor. 

 

Next, we could explore additional methods to synthesise the desired 

elaborated azabicyclic fragments, given that fragment 167 was the most 

potent compound in the initial biochemical screen. A series of conditions were 

trialled to form the final fragments, but these methods were unsuccessful. In 

this process we trialled conditions for SNAr, Buchwald-Hartwig and in the case 

of the isoquinoline-5-sulfonyl compounds, conditions for sulfonylation. For the 

purine series our next approach could be to protect the 6-chloropurine with -
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Boc or -Cbz and use a procedure by Lakshman249 for palladium-catalysed 

amination reaction of 6-chloropurine.  

 

Additional elaboration strategies for azabicycle 198 could be pursued. For 

example, we synthesised primary alcohol 233 in Section 3.2.17. This alcohol 

could undergo deoxyfluorination using Selectfluor and visible light photoredox 

catalysis.250 This would be a useful functionalisation strategy since there is 

growing demand within medicinal chemistry for the incorporation of fluorine 

into organic molecules. A benefit of incorporating fluorine would be increased 

metabolic stability of the molecule through the replacement of an oxidisable 

C-H bond to a C-F bond. The addition of fluorine in this way also decreases 

lipophilicity, improves bioavailability and has been shown to increase binding 

affinity.  

 

We could explore using decatungstate photocatalysis to directly convert the 

𝛽-C-H bond of azabicycle 198 into the corresponding alkylsulfinic acids251  

since sulfones and sulfonamides are widely found in pharmaceuticals.252 

These methods would extend our current toolkit of approaches to elaborate 

the azabicycle 198.  

 

Equally, the elaboration strategy towards improving the potency of our 

fragments could explore different vectors on the purine and isoquinoline-5-

sulfonyl compounds. For example, from examining the binding mode of the 

Aurora inhibitor Reversine 197, the C-2 aniline donates a hydrogen bond to 

Ala173. Growth along this vector may improve the potency our fragments but 

may also offer opportunity to improve the physiochemical properties. The 

ROCS analysis from Section 3.2.14 demonstrates that in the development of 

Reversine this C-2 vector was pursued. 
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Figure 40: Potential growth vector to explore in elaboration of active fragments. 
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 Chapter 4: Investigating the Selectivity of ATP-binding 

Site-Targeting Fragments with a Diverse Range of 

Kinases 

 

 Introduction 

The human genome encodes 518 protein kinases, of which hundreds have 

been shown to have genetic links with human disease. Of the 20,0000 kinase-

related publications in 2009, 65% focused on the same 50 protein kinases.107 

The discovery of selective inhibitors of ATP-binding proteins has the potential 

to initiate the design of novel chemical probes, with the ability to target a broad 

range of kinases.253 

Protein kinases can be grouped into families based on the similarity of their 

catalytic domain amino acid sequence.254 Catalytic domains are composed of 

an N- and C-terminal domain, where ATP binds to the backbone of the linker 

region between the domains, also known as the hinge region.164 Protein 

kinases can have a catalytically active or inactive state. In an inactive state 

conformation, the structures of the catalytic domain are more diverse. As the 

kinase is activated, frequently by phosphorylation on the activation loop, it 

adopts a shape which can bind ATP, with the binding site open and the 

component residues correctly orientated for phosphate transfer. In an active 

kinase state conformation, part of the ATP binding site is formed from a 

conserved sequence of amino acids; aspartate (D), phenylalanine (F) and 

glycine (G) known as the DFG motif. A further conserved aspartate residue in 

the catalytic domain may aid in the phosphate transfer by deprotonating the 

substrate hydroxyl group, enabling it to more readily attack and remove the 

terminal phosphate from ATP.164 The active conformation of the catalytic 

domain is well characterised. A pharmacophore model of the catalytic domain 

has been built to describe the ATP binding site, which has been successfully 

used for rational drug development.255 A significant proportion of kinase 
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inhibitors interact with the hinge motif within the ATP pocket, which is highly 

conserved across the kinome.253 Due to this highly conserved binding mode, 

it is difficult to engender selectivity across kinases. 

Fragment-based drug discovery has a track record of success against protein 

kinases, usually from the perspective of structure-based optimisation against 

a single biological target. The selectivity of the fragments and the extent to 

which it determines the selectivity of the compounds optimised from the 

fragment has received less attention.253 Low -molecular weight fragments can 

display selectivity when they exploit very subtle differences between the highly 

conserved ATP-binding sites of protein kinases. This concept has previously 

been explored using FDA approved drugs, natural products and lead-like 

compounds.256–258 A previous study concerning fragment selectivity reported 

that maintaining selectivity at low-molecular weights is possible, however, the 

structural and biochemical data for this study was not publicly disclosed.72 

Traditionally, kinase inhibitors are discovered in a target-centric approach 

where inhibitors are identified by high-throughput screening using a target 

kinase. The resulting compounds can then be tested for selectivity against a 

representative panel of kinases. This approach is time and resource 

consuming. A more efficient approach would be to screen libraries of 

compounds in a target-blind manner against a comprehensive panel of 

recombinant protein kinases, to reveal the selectivity of each compound. Such 

an approach allows us to focus on molecules which show the desired 

selectivity patterns and can subsequently be structurally optimised.253 

Additionally, this approach may lead to identification of unexpected kinase 

inhibitors or uncover multi-targeting inhibitors, where inhibitory activity is 

focused towards a precise range of kinases rather than a single primary target. 

Such multi-targeting inhibitors are unlikely to be identified using target-centric 

screening. 
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This chapter investigates the selectivity of fragments and elaborated 

fragments prepared in Chapter 3 against a panel of kinases. From this, we 

explore whether selectivity for a particular kinase can be maintained from the 

fragment through to corresponding elaborated compounds. The study can 

also reveal previously unreported inhibitor compounds.  
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 Results and Discussion  

Fragments were tested for protein kinase binding against a panel of 100 
enzymes, containing representative members of each major kinome family 

using a thermal shift assay. This assay was performed by Dr. Bennedict-

Tilmen Berger of Professor Stefan Knapp’s laboratory at the SGC Frankfurt. 

 

The compounds examined within this chapter include both the fragment 

(Chapter 3, Section 3.2.8) and elaborated fragment (Section 3.2.14) libraries 

previously discussed, alongside supplementary fragments (Figure 41). 

Supplementary fragments were included to aid in the understanding of 

potential selectivity patterns, with their synthesis discussed in Chapter 6. 

Thirteen compounds were found not to be soluble under the conditions of this 

assay and therefore were not screened. Compounds were grouped according 

to whether they were a parent fragment or an elaborated fragment. Parent 

compounds have already been screened against Aurora-A in Chapter 3, 

Section 3.2.8. Elaborated compounds are fragments accessed from 

functionalisation of the cyclic amine (discussed in Chapter 2 and 3). A full list 

of all the compounds submitted for assay is located in Figure 42, categorised 

according to parent or elaborated fragment. 

 

The compounds were tested at 200 mM and a mean TM value was obtained 

for each kinase. From that, significant binding (and therefore a hit compound) 

was identified by setting a threshold TM value of >2 standard deviations above 

the mean. The results are displayed in a heat map located in Appendix 5; an 

illustrative sample of the heat map is shown in Figure 42. To determine the 

variability and reproducibility of the assay, the non-selective protein kinase 

inhibitor staurosporine and DMSO were included as an internal positive and 

negative control in each kinase screen.  
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Figure 41: Structure all the fragments profiled within this chapter. 169, 296, 161, 163, 286, 302, 261, 

303, 289, 304, and 279 were not screened due to poor solubility. 
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Legend:  

Figure 42: Sample of the kinase heat map for 48 compounds screened against 100-protein kinases. 
The full analysis located in appendix 5. Those values of TM which were 2 S.D. above the mean are 

highlighted, with darker colours indicating more potent compounds. Values are rounded to the nearest 
significant figure. 

 

The use of TM, determined at a fixed single concentration, rather than full IC50 

or KD values for each compound against each kinase does impose limitations 

on the data interpretation. This method does not allow selectivity or activity to 

be accurately quantified and so we have not attempted to infer relative 

potency levels between compounds above the 2 × S.D. threshold, even 

though this may be seen in a full IC50 determination. Nevertheless, this method 

provides an efficient snapshot of binding and selectivity across 100-kinases. 

From this, we can identify potentially useful binding across a library of 

compounds and to distinguish their selectivity patterns. This method will aid in 

the triaging of compounds that show promising binding or selectivity for full 

IC50 determination.  

 

 Analysis of the results 

From our analysis, we identified 216 hits across 87 protein kinases exceeding 
the 2xSD threshold. This screen profiled 26 purine and 22 isoquinoline-5-

sulfonyl compounds. The purine series delivered 2-fold more hits compared 

to the isoquinoline-5-sulfonyl series (Graph 9). This could be expected since 

the kinase substrate is ATP and the fragments were designed to be ATP-

competitive inhibitors, both containing the purine motif.  
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Graph 9: Distribution of hits between the purine and isoquinoline-5-sulfonyl series. 

 

4.2.1.1 Promiscuous Fragments 

We analysed the ten compounds with the highest hit rates (Graph 10). Purines 
292 and 156 were most promiscuous, inhibiting 56 and 45 protein kinases 

respectively. In total, compounds 292 and 156 account for 47% of all hits 

found during this screen. The top ten compounds consist of five purine and 

five isoquinoline-5-sulfonyl compounds and in total, they account for 81% of 

hits across the screen. Overall, compounds produced from the purine series 

appear to be the more promiscuous. Eight out of the top ten highest hits were 

parent compounds, with two of the top ten categorised as elaborated 

compounds.  

151

65

0

20

40

60

80

100

120

140

160

Purine Isoquinoline

Nu
m

be
r o

f H
its

Fragment Series



 

 

- 169 - 

 
Graph 10: Compounds with the highest hit rates across 100-kinases. 

 

 
Figure 43: Structures of the most promiscuous compounds. 

Since the assay is conducted at high compound concentration, compound 

solubility at 200 mM could be a factor in obtaining a high hit rate for certain 

compounds. Many of the high-hitting compounds contain additional basic 

nitrogen atoms (for example, compounds 156 and 300), which could aid with 

solubilising the compounds at this high concentration. 
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4.2.1.2 Selected Kinase Targets 

The screen revealed that at least one hit was found for 87% of the kinases 

(Graph 11). The most promiscuous kinase was ABL1A, with 5 fragments hits. 

For 69% of the kinases, 2 or more hit fragments were identified. To appreciate 

any patterns in selectivity, individual compound structures were analysed for 

selected kinase targets. 

 

 
Graph 11: Variation in the number of hits found against the 100- kinases. 

4.2.1.2.1 ABL1A 

We identified five hits against the tyrosine kinase ABL1 (Figure 44). All of the 
identified hits contained a purine motif, and a lipophilic amine. Three out of the 

five hits are also found within the ten most promiscuous compounds of the 

screen, suggesting poor selectivity (158, 292, 157).  

 
Figure 44: Fragment hits against ABL1A  
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4.2.1.2.2 PHKG2A 

Screening against PHKG2 returned four isoquinoline-5-sulfonyl hits of related 

structure (Figure 45). Interestingly, all hits contain sulfonamides bearing a 𝛽-

primary or secondary amine. The parent pyrrolidine-based fragment 176 was 

not a hit, but it is not understood whether solubility was an issue for the parent 

compound. However, it was previously postulated in the literature that 

protonated amines, in the presence of hinge binding elements, may provide a 

binding interaction to the kinase ribose pocket.222,259 Because all four 

compounds are structurally related, this gives confidence that this series of 

compounds represents genuine hits, with the potential for further development 

by fragment growth.  

 
Figure 45: Fragments hits against PHKG2A. Parent compounds located in boxes. 

4.2.1.2.3 AURKBA  

In Chapter 3, we screened the parent fragments against Aurora-A and 

elucidated their activity, with some fragments displaying sub-micromolar 

activity. The Aurora kinases have a highly conserved active site, which has 

made selective inhibitor development difficult (Section 3.1.4.3). Unexpectedly, 

this screen reported fragment 157 as the only hit against Aurora-B, excitingly 

suggesting that the parent fragments display selectivity between Aurora-A and 

Aurora-B. To confirm this, however, full dose-dependent analysis would need 

to be completed. 
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Figure 46: Structure of the Aurora-B hit. 

4.2.1.3 Evaluation of Parent vs. Elaborated Fragments 

In the assay, we screened 35 parent fragments and 12 elaborated fragments. 
For the parent fragments we identified 184 hits, while 33 hits were found for 

the elaborated fragments. For the parent fragments alone, we were able to 

obtain hits against 81 different protein kinases; the elaborated fragments 

returned hits against 22 kinases, of which six were not targeted by the parent 

fragments. We next examined selected individual parent-elaborated groups.  

4.2.1.3.1 Comparison of purine-bearing fragments based on six-

membered cyclic amines 

The parent piperidinyl purine 158 was found to give hits against BMXA, ABL1A 

and CDK2A (Graph 12, Figure 47). On addition of a methyl group in the 𝛼-

position (162), inhibition was lost for CDK2A. Analogues elaborated in the 𝛽-

position (276, 287) were not active against any kinase. Exploration of 

piperazine-type fragments 160 and 164 targeted three different kinases to 158 

and 162.  
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Graph 12: Comparison of the parent fragments (red), to the elaborated fragments (Blue). 

 

 
Figure 47: Representative examples with parent fragments. 

4.2.1.3.2 Comparison of isoquinoline-bearing fragments based on six-
membered cyclic amines 

The parent fragment 178 gave a single hit against BRAFA (Graph 13, Figure 
48). Incorporation of an 𝛼-methyl group gave 2 hits, not including BRAFA, 

indicating a variation in selectivity profile on growth from the 𝛼-position of 

piperidine. Binding against any of the 100-kinases was removed on 

incorporation of a more sterically bulky phenyl group (261). Fragment 302 

elaborated along the 𝛽-carbon atom did not yield any hits.  
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Graph 13: Comparison of the parent fragments (red), to the elaborated fragments. 

 

 
Figure 48: Selected examples with the parent fragments. 

 

4.2.1.3.3 Pyrrolidine-containing fragments based on the 
sulfonylisoquinoline warhead 

Parent fragment 176 did not yield any active hits. Inclusion of an amine at the 

𝛽-carbon atom gave 14 hits, with all kinase binding destroyed on derivatisation 

of the amine to a sulfonamide, potentially indicating the importance of the free 

amine for binding. On reversing the attachment of the 3-aminopyrrolidine to 

the heteroaromatic giving 271, a single shared hit against PHKG2A was 

obtained. This result suggests an improved selectivity profile, but to confirm 

this hypothesis, full dose-dependent activity would need to be completed. 

1

2

1

0 0 0
0

1

2

3

178 290 182 288 302 261

Nu
m

be
r o

f H
its

Compound

Parent Elaborated

178
1 hit

290
2 hits

261
0 hits

N

SO O
N

N

SO O
N

N

SO O
N Ph

302
0 hits

N

SO O
N

H
N

O

BRAFA CAMK2DA,
MAPK13A



 

 

- 175 - 

Methylation of the sulfonamide of 271to give 270 increased the hit rate to 10%, 

which included PHKG2A, but compound selectivity was reduced.  

 

 
Figure 49: Selected examples with 176 as the parent fragment. 

4.2.1.3.4 Acyclic Amines 

Parent dimethylamino purine 294 gave 14 hits. Replacement of one of the 

methyl groups with an ethyl substituent (292) gave 56 hits, with 294 sharing 

94% of its hits with 292.  The higher hit rate could be attributed to an increase 

in solubility of the compound since both fragments have a similar lipophilicity 

(AlogP of 1) but the ethyl compound may not pack as tightly in the solid form. 

Although the high hit rate of 292 is interesting, the fragment is not a selective 

compound and would not be suitable for further development towards a 

selective inhibitor. 
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Figure 50: Structure of 294 and 292 and their hit rates. 

4.2.1.3.5 Bicyclic Amines 

Changing from the fused cyclopentane in 155 to the fused N-methylpyrrolidine 
in 156, the number of kinase hits increase from 2% to 45% (Figure 51). The 

higher hit rate of 156 could be attributed to either an increase in compound 

solubility aiding screening, or the presence of a protonated amine substituent, 

which may provide an additional binding interaction within the kinase 

pocket.259  

 
Figure 51: Parent fragment 155 and related bicycle fragments 156 and 157. 

 

4.2.1.4 Evaluation of Other Selected Amine Components 

Fragment 167 was our most potent hit in the biochemical screen against 

Aurora-A (Chapter 3). In this screen, 167 displayed binding against a single 

kinase, TTKA. Although Aurora-A was not considered in this screen, Aurora-

B was part of the kinase panel. This suggests that 167 may display selectivity 

Parent

N

N N
H

N
N

294
14 hits

N

N N
H

N
N

292
56 hits

Parent

155

N

N N
H

N
N

2 hits
156

N

N N
H

N
N

Me
N

45 hits
157

N

N N
H

N
N

15 hits
PAK4A, 
BMPR2A

including 
PAK4A, 
BMPR2A

including 
PAK4A, 
BMPR2A

H H H H H H



 

 

- 177 - 

between members of the Aurora kinase family. To confirm this, full dose-

dependent activity would need to be completed. Fragment 291 was not a hit 

against any kinases, indicating the purine motif is important for kinase binding. 

 
Figure 52: Structure and binding of 167 and 291 

 
On changing the heteroaromatic warhead from purine to isoquinoline-5-

sulfonyl for a common amine (3-aminopyrrolidine) in 275 to 277, an increased 

hit rate is observed. We noted previously that the purine scaffold was more 

promiscuous than the isoquinoline-5-sulfonyl series. An increased hit rate with 

277 could be due to improved solubility relative to the purine analogue, 275. 

Both fragments share a target hit with MAPKAPK2A, suggesting that the 

structure of the hinge binding motif is less important for this particular kinase.   

 
Figure 53: Structure and binding of 275 and 277. 

 

Fragment 292 was our most promiscuous compound, producing hits against 

56 kinases. Changing the warhead to the isoquinoline-5-sulfonyl motif (293) 
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sulfonyl compound displays a more selective profile, which is consistent with 

our earlier observations on the promiscuity of the purine series. 

 
Figure 54: Structure and binding of 292 and 293. 

 

 Conclusion 

Each compound was screened at 200 mM and a TM value was obtained for 
each kinase. Active compounds were identified from a TM value 2 S.D. above 

the mean. TM  was determined at a fixed concentration, which limited detailed 

interpretation of the data. Instead, the screen provided a snapshot of the 

activity of 47 compounds across 100 kinases, yielding hits for 87% of kinases, 

with the kinase binding of each compound was shown in a heat map 

(Appendix 5). From this we recognised that the purine series produced the 

greater number of hits than the isoquinoline-5-sulfonyl series. The purine 

series contained the two most promiscuous fragments, accounting for 47% of 

all hits found in the screen.  

 

We found that the 35-parent fragments were responsible for hits against 81 

different protein kinases, with the 12-elaborated compounds responsible for 

accessing an additional 6 kinases. On analysis of parent fragment-elaborated 

fragment pairs, we saw in some cases selectivity can be tuned (271, 277, 

270), but some fragments became less selective on exploration of related 

compounds (e.g. 292, 293). However, confirmation of these trends would only 

come with full dose-dependent analysis.  
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The aim of this work was to appreciate selectivity patterns within the 

compound libraries. However, screening our fragments in a target blind 

manner has meant we were able to identify inhibitors for new protein targets 

we had not previously considered e.g. PHKG2. We were able to identify four 

previously unreported compounds which target PHKG2, which were 

structurally related.  

 

A critical consideration for the analysis of our data is when addressing highly 

promiscuous targets or those targets which are difficult to identify hits. If all 

fragments elicit a similar but significant change in the absolute TM value, then 

2 S.D above the mean would therefore mean these active compounds would 

be ignored. With this in mind, future data analysis could consider the absolute 

change in TM alongside the mean and 2 S.D criteria.  

 

Ultimately this work forms the first step in identifying compounds which could 

be further elaborated, towards generating selective kinase inhibitors which 

could have applications in inhibitor or chemical probe design. This fragment 

screening process has enabled the triaging of compounds for future work. 

 Future Work 

Future work would concern the determination of solubility e.g. kinetic solubility 

of all of the fragments screened to ensure accurate profiling and to ensure all 

hits have been identified. 

 

For the active compounds, confirmation of their activity and their binding mode 

would be required. An additional but narrowed panel screen could be 

completed to confirm the activity and selectivity found within this screen. The 

most active or selective compounds resulting from this panel screen could 

then be progressed towards IC50 determination. Structural studies can then 

uncover the mode of inhibition. The focus of the structural studies will be 

determined by the availability of the protein crystal, the ligand efficiency of the 



 

 

- 180 - 

elaborated fragment compound and the extent of previously reported 

structures, prioritising the study of underexplored kinases. 

 

 
 

Figure 55: Workflow for the future work on this project 
For example, compound 271 identified through this screen seems a rational 

starting point for developing a selective inhibitor of PHKG2. A next step could 

look at profiling 271 and the structurally related analogues against a panel of 

kinases to validate hits using a different assay format. If 271 was still a 

selective hit, it could move into full IC50 determination, subsequently followed 

by the design and synthesis of analogues of 271 towards generating a 

selective chemical tool for PHKG2 kinase. 
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 Chapter 5: Thesis Conclusion 
 
In the course of these studies, we have extended the toolkit for fragment-

oriented synthesis and showcased this approach in the investigation of 

fragments targeting kinases. We have developed a procedure for the 

synthesis of endocyclic enecarbamates via electrochemical oxidation of 

protected cyclic amines (Chapter 2). Methodology used to access 

enecarbamates is well-defined, however at the outset, the synthesis of 

functionalised endocyclic enecarbamates including their regioselective 

formation, was still relatively under-explored. The method developed proved 

robust across a broad range of substrates, for example varying protecting 

groups, ring size and the inclusion of 𝛽-heteroatoms. We observed 

regioselective oxidation for both 𝛼- and 𝛽-substituted cyclic amines, with the 

origin of the surprisingly high regioselectivity for 𝛽-substituted substrates 

explored using DFT. The resulting enecarbamates can then feed into the 

fragment growth strategies reported within the Nelson and Marsden groups, 

to incorporate medicinally relevant functionality at the  𝛽-carbon atom.104,105  

 
Scheme 51: General workflow toward elaborated amines via enecarbamate intermediates. 

 

To realise the importance of the developed methodology from within this 

project and the subsequent elaboration strategies reported within the Nelson 

and Marsden groups, we opted to design, synthesise and screen a library of 

fragments towards developing inhibitors of Aurora-A kinase (Chapter 3).  
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The fragments were designed through analysis of the literature to identify key 

warheads, to which was attached cyclic amine functionality, capable of 

elaboration by the above strategies, should hits have been identified. 

Following synthesis and screening using a functional assay (EZ-reader II 

mobility-shift assay), we identified 30 hits against Aurora-A kinase, a hit rate 

of 86%. We initially focused on the elaboration of the most potent fragment, 

by elaborating the azabicycle of 167. Since literature reported methods to 

functionalise azabicycle 198 were limited, work sought to identify suitable 

methods to install medicinally relevant functionality along the  𝛼- and 𝛽-vectors 

of 198. We obtained six novel amines, but after thorough efforts, were unable 

to attach the warhead needed to prepare fragments from these amines.  

 
Figure 56: Sample Fragment hits and sample elaborated analogues. Analogues were elaborated using 

methodology from Chapter 2.  Where R = Purine. 
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Our attention turned to the elaboration of simple amines, e.g.  158, 178. Using 

the methods for 𝛼- and 𝛽-elaboration of cyclic amines (Chapter 2), we created 

a 19-membered elaborated fragment library for screening. Screening of 9-

compounds of that elaborated library were screened and had activity against 

Aurora-A, but with a reduction in potency observed versus the parent 

fragments. Although elaboration along these vectors did not yield an 

improvement in potency, this study exemplifies that the underpinning synthetic 

chemistry discussed in Chapter 2 has enabled efficient exploration of the 

chemical space around the cyclic amine. These synthetic strategies should 

have wider use in FBLD. 

 

Lastly, we profiled the fragment libraries from Chapter 3 against a panel of 

100-kinases (Chapter 4). From this, we elucidated that these fragments may 

show some selectivity between members of the highly conserved Aurora 

kinase family, offering scope for selective inhibitor development. This study 

also identified potential new kinase targets to which to apply our synthetic 

methodology (Chapter 2) with in the future. We noted that in some cases, 

chemical elaboration of the fragments tuned the overall kinase selectivity of 

the compound. Overall, this investigation has provided a foundation for more 

comprehensive selectivity studies on our fragments and their elaborated 

analogues towards not only developing Aurora-A inhibitor, but also selective 

inhibitors of additional kinases.  
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 Experimental 

 General Information  
 
Dichloromethane, toluene, methanol, THF and acetonitrile were dried under 

nitrogen using a PureSolv MD5 solvent purification System. All reactions were 

performed in oven-dried glassware under nitrogen atmosphere. All other 

reagents were purchased from commercial sources like Aldrich, Alpha-Aesar 

or Fluorochem and used without further purification, unless specified. An IKA 

RV 10 rotary evaporator was used to remove the solvents under reduced 

pressure. Electrochemical experiments were performed on an IKA Electrasyn 

2.0. The Electrasyn vial was sealed with an ElectraSyn Teflon cap fitted with 

a graphite anode and graphite cathode, and reactions were stirred with Teflon-

coated magnetic stirrer bars. The photoredox catalysts were purchased from 

Aldrich. Photochemical reactions were carried out using a Kessil lamp (32W, 

model H150) without external cooling, unless specified. 

 

Preparative thin layer chromatography (TLC) plates were prepared with silica 

gel 60 GF254 Merck. Reaction mixtures were analysed by TLC using 

ALUGRAM® SIL G/UV254, and visualisation of TLC spots was achieved 

using ultraviolet (UV) and potassium permanganate solution. Nuclear 

magnetic resonance (NMR) spectra were recorded in a Bruker AV3 operating 

at 7.05 T (300 MHz 1H, equipped with a 5 mm BBO probe), a Bruker AV3HD 

operating at 9.4 T (400 MHz 1H, equipped with a 5 mm BBO probe), Bruker 

AV4-NEO operating at 11.7 T (500 MHz 1H, equipped with a 5 mm DCH 

cryoprobe). Data was collected using CDCl3, CD3OD and (CD3)2SO as 

solvents and (CH3)4Si (1H) as internal standard. Data was collected at 300 K 

unless otherwise stated. Chemical shifts (δ) are given in parts per million 

(ppm) and they are referenced to the residual solvent peak. All coupling 

constants are expressed in Hz, splitting patterns are reported in an 

abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet), br (broad). Assignments were made using COSY, 
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DEPT, HMQC and NOESY experiments. Electrospray ionization (ESI) mass 

spectra were recorded in a mass spectrometer (Micromass Quattro Micro API, 

Waters, Ireland) with a Triple Quadrupole (TQ) and with an electrospray ion 

source operating in positive mode. A Bruker Daltonics micrOTOF 

spectrometer with electrospray (ES) ionisation source was used for high-

resolution mass spectrometry (HRMS). Infrared spectra were recorded on a 

Bruker alpha FT-IR spectrometer  using a “platinum ATR” accessory and were 

reported in wavenumbers (cm-1). Melting points (m.p.) were determined using 

Stuart melting point apparatus SMP3. 
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 General Procedures 
 

 General Procedure 1: α-C–H Bond Functionalization of 
Substituted Cyclic Amines via Intermolecular Hydride Transfer113 

 

To a solution of the amine (1 mmol, 1.0 eq.) in anhydrous ether (2 mL) cooled 

to –78 °C was slowly added n-BuLi in hexanes (1 mmol, 1.0 eq.) under the 

protection of nitrogen, and the resulting solution was allowed to stir at the 

same temperature for 10 min. To this was then slowly added via cannula, a 

solution of the corresponding hydride acceptor (1.2 mmol, 1.2 eq.) in 

anhydrous Et2O (1 mL). The resulting mixture was allowed to continue stirring 

at –78 °C for the indicated time followed by the slow addition of phenyllithium 

(1.5 mmol, 1.5 eq.). The reaction mixture was then allowed to warm to rt and 

stirring was continued for another 2 h before quenching via the addition of 

MeOH (1 mL) at 0 °C. The reaction mixture was diluted with ether (20 mL) and 

washed with H2O (50 mL). The aqueous layer was extracted with ether (3 x 

20 mL) and the combined organic layers were washed with brine (30 mL) and 

dried over anhydrous MgSO4. The solvent was removed in vacuo. and the 

residue purified by flash column chromatography.  

 

 

 General Procedure 2: Metallaphotoredox-Catalysed Cross 
Coupling of Carboxylic Acids with Alkyl Halides Reaction120 

An oven dried 8 mL vial equipped with a Teflon septum and magnetic stir bar 

was charged with Ir[dF(CF3)ppy]2(dtbbpy)PF6 (10.0 μmol, 0.02 eq.), 

NiCl2•glyme (0.05 mmol, 0.1 eq.), 4,4 ́-di-methoxy-2,2 ́-bipyridyl (0.05 mmol, 

0.1 eq.), Boc-Pro-OH (0.75 mmol, 1.5 eq.), K2CO3 (1.00 mmol, 2.0 eq.) and 5 

mL of MeCN. The reaction mixture was degassed by bubbling nitrogen stream 

for 30 min at 0 °C. Water (10.0 mmol, 20 eq.) and the alkyl halide (0.50 mmol, 

1.0 eq.) were then added. The reaction mixture was then stirred and irradiated 
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with two 34 W blue LEDs (vials approximately 6 cm away from the light source) 

with a fan placed above for cooling. After 48 h, the reaction mixture was diluted 

with EtOAc, filtered, and concentrated in vacuo. Purification of the crude 

product by flash chromatography on silica gel using the indicated solvent 

system afforded the desired product.  

 General Procedure 3: for enamide synthesis via electrochemical 
oxidation/elimination  

 
An Electrasyn vial (10 mL) with a stir bar was charged with Cbz-protected 

amine (4.57 mmol), in anhydrous methanol (10 mL) containing 

tetraethylammonium tosylate (83 mg, 0.28 mmol) and the mixture was 

electrolysed (graphite electrodes) under a constant current of 200 mA 

(terminal voltage 1-2 V) at 25 °C. After the passage of 2.5 Fmol-1 of electricity, 

the mixture was concentrated in vacuo. The residue was taken up in 

anhydrous dichloromethane (0.5 M) and transferred to 100 mL RBF and 

placed under an inert atmosphere. Me3SiOTf (1.8 mL, 10.0 mmol) was added 

dropwise over 10 minutes to the ice-cooled solution of electrolysed amine and 
iPr2NEt (10.0 mmol) in DCM (0.5 M) over 10 minutes. After 3 hours the 

reaction mixture was diluted with 40 mL of hexane. The reaction was filtered 

through a pad of celite and concentrated in vacuo to give a crude residue. 
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 General Procedure 4: Synthesis of purine fragments 

A solution of Et3N (0.9 mL, 6.50 mmol), amine (3.90 mmol) and 6-chloropurine 

(500 mg, 3.25 mmol) in EtOH (20 mL) was heated at 80 °C (EtOH) for 1-10 h. 

The reaction mixture was cooled to give a crude product in a solution in EtOH.  

6.2.4.1 General Procedure 5: Synthesis of sulfonyl isoquinoline 
fragments 

A solution of Et3N (1.22 mL, 6.63 mmol), cyclic amine (3.32 mmol) and 

isoquinoline-5-sulfonyl chloride (500 mg, 2.21 mmol) in EtOH (20 mL) was 

stirred at room temperature for 18 h. The solvent was then removed in vacuo 

to give a solid. 

6.2.4.2 General Procedure 6: Synthesis of pyrimidine fragments 

A solution of Et3N (0.9 𝜇L, 5.25 mmol), cyclic amine (2.25 mmol) and 2-chloro-

6-methylpyrimidin-4-amine (250 mg, 1.75 mmol) in THF (20 mL) and water (5 

mL) was stirred at room temperature for 48 h. The solvent was then removed 

in vacuo to give a crude solid.  
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 Characterisation of Compounds 
Quinuclidin-3-yl acetate (22)110 

 
A 250 mL round-bottomed flask equipped with a magnetic stirring bar was 

charged with quinuclidin-3-ol (1.50 g, 11.8 mmol) and acetic anhydride (7.5 

mL) and the solution was heated to reflux for 4 h. The reaction mixture was 

cooled to room temperature and concentrated in vacuo. Sat. aq. NaHCO3

 

(7.5 

mL) and CHCl3 (5 mL) were added, and the solution was stirred vigorously for 

20 minutes. The layers were separated, and the aqueous portion was further 

extracted with 10% IPA/CHCl3 (5 × 10 mL). The organic extracts were 

combined, dried over Na2SO4

 

and concentrated in vacuo. The residue was 

diluted with CHCl3 (5 mL) and stirred vigorously again with sat. aq. NaHCO3

 

for 2 minutes. The layers were separated, and the aqueous portion was further 

extracted with 10% IPA/CHCl3 (5 × 100 mL). The organic extracts were 

combined, dried over Na2SO4

 

and concentrated in vacuo. The residue was 

purified by distillation under high vacuum (65-70 °C, 100 mTorr) to provide the 

title compound as a colourless oil (1.35 g, 8.02 mmol, 68% yield). IR υmax 

(neat) / cm-1 3870, 3621, 3328, 3200, 3003, 2944, 2628, 2098, 1726 1445 and 

1376; δH (400 MHz, CDCl3) 4.62 (1H, dtd, J 8.4, 3.5, 1.3, 3-H), 3.08 (1H, ddd, 

J 14.7, 8.4, 2.3, 4-HA), 2.83 – 2.42 (5H, m, 4-HB, 5-H, 9-H), 1.91 (3H, s, 1-H), 

1.83 (1H, q, J 3.3, 7-H), 1.68 (1H, dddd, J 13.0, 10.2, 5.5, 2.8, 6-HA), 1.63 – 

1.48 (1H, m, 8-HA), 1.40 (1H, dddd, J 13.3, 10.4, 5.9, 2.9, 8-HB), 1.23 (1H, 

dddd, J 14.4, 7.2, 3.4, 1.6, 6-HB). δC (101 MHz, CDCl3) 170.6 (C=O C2), 71.2 

(C-3), 55.4 (C-4), 47.3 (C-5 or C-9), 46.8 (C-5 or C-9), 25.1 (C-7), 24.8 (C-1), 

21.0 (C-6 or C-8), 19.4 (C-6 or C-8); HRMS C9H16NO2+ [M+H]+ calc., 170.1186 

found, 170.1178. Data in accordance with literature.110  
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N-(tert-Butyl)pyrrolidine-1-carboxamide (23)110 

 
A 50 mL round-bottom flask was charged with di-tert-butyl dicarbonate (2.1 

mL, 18 mmol, 1.5 eq.), NEt3 (2.5 mL, 18 mmol, 1.5 eq.), and pyrrolidine (0.99 

mL, 12 mmol, 1.0 eq.). Dichloromethane (24 mL) was added, and the resulting 

colourless solution was stirred for 5 h. The reaction mixture was diluted with 

H2O (30 mL) and the aqueous layer was extracted with three portions of 

dichloromethane (20 mL). The combined organic layers were washed with 

brine (30 mL), dried over MgSO4 filtered, and concentrated in vacuo. The 

residue was purified by flash chromatography eluting with 50:50 

EtOAc−hexanes to afford the pyrrolidine 23 as a colourless oil (1.9 g, 92%). 

IR υmax (film) / cm-1 3321, 2973, 2875, 1691 and 1609; δH (400 MHz, CDCl3) 

3.07 – 2.97 (4H, m, 2-H), 1.56 –1.50 (4H, m, 3-H), 1.14 (9H, s, tBu); δC (101 

MHz, CDCl3) 154.2 (Boc C=O), 78.3 (Boc C-O), 45.6 (C-2), 28.1 (C-3), 25.4 

(Boc tBu); HRMS [M+Na]+ C9H17NO2Na+ calc., 194.1153, found 194.1159. 

Data in accordance with literature.110 
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tert-Butyl 2-(4-methoxyphenyl)pyrrolidine-1-carboxylate (29) 

 
An 8 mL vial equipped with a magnetic stirring bar was charged with 4-

bromoanisole (94 mg, 0.50 mmol, 1.0 eq.) and Ir[dF(CF3)ppy]2(dtbbpy)PF6 

(5.6 mg, 5.0 μmol, 1.0 mol%). Anhydrous DMSO (1.0 mL) and 3-

acetoxyquinuclidine 22 (85 μL, 0.55 mmol, 1.1 eq.) were added. 4,7-

Dimethoxy-1,10-phenanthroline (1.2 mg, 5.0 μmol, 1.0 mol%) and nickel(II) 

bromide trihydrate (1.4 mg, 5.0 μmol, 1.0 mol%) were added as a 0.50 M stock 

solution in anhydrous DMSO (1 mL, sonicated for 10 minutes before addition). 

N-Boc pyrrolidine 23 (175 μL, 1.0 mmol, 2.0 eq.) and water (360 μL, 20 mmol, 

40 eq.) were added before the mixture was degassed via two cycles of freeze-

pump- backfill-thaw. The reaction was sealed and placed ~6 cm away from a 

34 W blue LED and stirred for 24 h with cooling by fan. The reaction mixture 

was removed from the light, diluted with aq. NaHCO3

 

and EtOAc, and the 

aqueous layer was extracted with three portions of EtOAc. The combined 

organic layers were dried over MgSO4, filtered, and concentrated. The residue 

was purified by flash chromatography 5% EtOAc−hexanes) to afford a 

colourless oil. The residue was dissolved in dichloromethane (15 mL) and TFA 

(5 mL) and stirred at rt for 3 h. The solvent was removed in vacuo. to afford 

pyrrolidine 29 as a colourless oil (63 mg, 63% yield). IR υmax (neat) / cm-1 

13164, 3003, 2944, 2628, 2570, 2499, 2253 and 1375; δH (400 MHz, CDCl3) 

7.32 – 7.15 (1H, m, 5’-H), 7.02 – 6.88 (2H, m, 2’-H, 6’-H), 6.78 (1H, ddd, J 8.2, 

2.6, 1.0, 4’-H2), 4.10 (1H, t, J 7.7, 2-H), 3.81 (3H, s, OCH3), 3.20 (1H, ddd, J 

10.1, 7.7, 5.2, 5-H2), 3.01 (1H, ddd, J 10.1, 8.2, 6.7, 5-H3), 2.25 – 2.12 (1H, 

m, 3-HA), 2.12 – 1.77 (2H, m, 3-HB, 4-H2), 1.67 (1H, ddt, J 12.2, 9.3, 7.8, 4-

H3). δC (101 MHz, CDCl3) 159.7 (C-3’), 146.7 (C-1’), 129.3 (C-5’), 118.8 (C-

6’), 112.2 (C-2’), 112.1 (C-4’), 62.6 (C-2), 55.2 (C-3’ CH3), 47.0 (C-5), 34.4 (C-

3), 25.6 (C-4). HRMS [M+Na]+ C11H15NONa+ 194.1153, predicted 194.1159. 
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4-(pyrrolidin-2-yl)pyridine (30)110 

 
An 8 mL vial equipped with a magnetic stirring bar was charged with 4-

bromopyridine.HCl (97 mg, 0.50 mmol, 1.0 eq.) and Ir[dF(CF3)ppy2 

(dtbbpy)PF6

 

(5.6 mg, 5.0 μmol, 1.0 mol%). Anhydrous DMSO (3.0 mL) and 3-

acetoxyquinuclidine (162 μL, 1.05 mmol, 2.1 eq.) were added. 4,7-Dimethoxy-

1,10-phenanthroline (1.2 mg, 5.0 μmol, 1.0 mol%) and nickel(II) bromide 

trihydrate (1.4 mg, 5.0 μmol, 1.0 mol%) were added as a 0.50 M stock solution 

in anhydrous DMSO (1 mL, sonicated for 10 minutes before addition). N-Boc 

pyrrolidine (175 μL, 1.0 mmol, 2.0 eq.) and water (901 μL, 50 mmol, 100 eq.) 

were added before the mixture was degassed via two cycles of freeze-pump-

backfill-thaw. The reaction was sealed and placed ~6 cm away from a 34 W 

blue LED and stirred for 8 h with cooling by fan. The reaction mixture was 

removed from the light, diluted with aq. NaHCO3

 

and EtOAc (10 mL) and the 

aqueous layer was extracted with three portions of EtOAc. The combined 

organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

The residue was purified by flash chromatography (20:80 EtOAc−hexane) to 

afford the title compound as a pale-yellow oil. The residue was dissolved in 

dichloromethane (15 mL) and TFA (5 mL) and stirred at rt for 3 hours. The 

solvent was removed in vacuo. The residue was dissolved in dichloromethane 

(2 mL) and loaded onto a 1 g SCX cartridge, and the cartridge flushed with 

MeOH (3 × 20 mL). The product was eluted using ammonia (1 M solution in 

MeOH, 3× 20 mL) which was concentrated in vacuo to afford pyrrolidine 30 

as a brown oil (50.0 mg, 0.34 mmol, 67%). IR υmax (neat) / cm-1 2998, 2944, 

2056 and 1375; δH (400 MHz, CDCl3) 8.25 (2H, dd, J 3.9, 1.7, 3’-H), 7.08 – 

6.99 (2H, m, 2’-H), 3.88 (1H, td, J 7.7, 3.3, 2-H), 2.89 (1H, m, 5-H), 2.84 – 2.72 

(1H, m, 5-H), 1.96 (1H, ddd, J 12.2, 8.0, 3.7 Hz, 3-H), 1.70 – 1.49 (2H, m, 3-

H, 4-H), 1.45 – 1.27 (1H, m, 4-H); δC (101 MHz, CDCl3) 154.3 (C-1’), 149.6 

(C-3’), 121.5 (C-2’), 60.9 (C-2), 46.8 (C-5), 34.1 (C-3), 25.3 (C-4). HRMS 
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[M+H]+ C9H13N2+ calc., 149.1084, found 149.1079. Data in accordance with 

literature. 110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



 

 

- 195 - 

2-(2,5-Dichlorophenyl)pyrrolidine (31) 

 
An 8 mL vial equipped with a magnetic stirring bar was charged with 12-

bromo-1,4-dichlorobenzene (111.5 mg, 0.50 mmol, 1.0 eq.) and 

Ir[dF(CF3)ppy2 (dtbbpy)PF6

 

(5.6 mg, 5.0 μmol, 1.0 mol%). Anhydrous DMSO 

(3.0 mL) and 3-acetoxyquinuclidine (162 μL, 1.05 mmol, 2.1 eq.) were added. 

4,7-Dimethoxy-1,10-phenanthroline (1.2 mg, 5.0 μmol, 1.0 mol%) and 

nickel(II) bromide trihydrate (1.4 mg, 5.0 μmol, 1.0 mol%) were added as a 

0.50 M stock solution in anhydrous DMSO (1 mL, sonicated for 10 minutes 

before addition). N-Boc pyrrolidine 23 (175 μL, 1.0 mmol, 2.0 eq.) and water 

(901 μL, 50 mmol, 100 eq.) were added before the mixture was degassed via 

two cycles of freeze-pump- backfill-thaw. The reaction was sealed and placed 

~6 cm away from a 34 W blue LED and stirred for 8 h with cooling by fan. The 

reaction mixture was removed from the light, diluted with aq. NaHCO3

 

and 

EtOAc, and the aqueous layer was extracted with three portions of EtOAc. 

The combined organic layers were dried over MgSO4, filtered, and 

concentrated. The residue was purified by flash chromatography (60:40 

EtOAc−hexane) to afford a pale-yellow oil. The residue was dissolved in 

dichloromethane (15 mL) and TFA (5 mL) and stirred at rt for 3 h. The solvent 

was removed in vacuo and residue was dissolved in dichloromethane (2 mL) 

and loaded onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 

× 20 mL). The product was eluted using ammonia (1 M solution in MeOH, 3× 

20 mL) which was concentrated in vacuo as a brown oil (37.0 mg, 34%). IR 

υmax (neat) / cm-1 3164, 3003, 2495, 2627, 2559, 2408, 2367, 2253 and 1375. 

δH (400 MHz, CDCl3) 7.91 (1H, d, J 2.4, 6’-H), 7.36 (1H, d, J 8.6, 3’-H), 7.28 

(1H, dd, J 8.6, 2.3, 4’-H), 4.94 (1H, dd, J 9.1, 6.9, 2-H), 3.64 (1H, dt, J 11.6, 

7.5 Hz, 5-H), 3.47 (1H, ddd, J 11.7, 8.4, 5.6, 5-H), 2.58 – 2.41 (1H, m, 4-H), 

2.32 – 1.99 (3H, m, 3-H, 4-H); δC (101 MHz, CDCl3) 134.2 (C-1’), 133.6 (C-2’ 
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or C-5’), 131.8 (C-2’ or C-5’), 131.2 (C-3’), 130.4 (C-6’), 128.2 (C-4’), 59.5 (C-

2), 45.5 (C-5), 31.6 (C-4), 23.4 (C-3); HRMS (ESI): C10H1235Cl2N [M+H]+ 

216.0306, predicted 216.0302. 
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2-(4-Fluorophenyl)pyrrolidine (32) 

 
An 8 mL vial equipped with a magnetic stirring bar was charged with 1-bromo-

4-fluorobenzene (86.5 mg, 0.50 mmol, 1.0 eq.) and Ir[dF(CF3)ppy2 

(dtbbpy)PF6

 

(5.6 mg, 5.0 μmol, 1.0 mol%). Anhydrous DMSO (3.0 mL) and 3-

acetoxyquinuclidine (162 μL, 1.05 mmol, 2.1 eq.) were added. 4,7-Dimethoxy-

1,10-phenanthroline (1.2 mg, 5.0 μmol, 1.0 mol%) and nickel(II) bromide 

trihydrate (1.4 mg, 5.0 μmol, 1.0 mol%) were added as a 0.50 M stock solution 

in anhydrous DMSO (1 mL, sonicated for 10 minutes before addition). N-Boc 

pyrrolidine (175 μL, 1.0 mmol, 2.0 eq.) and water (901 μL, 50 mmol, 100 eq.) 

were added before the mixture was degassed via two cycles of freeze-pump-

backfill-thaw. The reaction was sealed and placed ~6 cm away from a 34 W 

blue LED and stirred for 8 h with cooling by fan. The reaction mixture was 

removed from the light, diluted with aq. NaHCO3

 

and EtOAc (10 mL), and the 

aqueous layer was extracted with three portions of EtOAc. The combined 

organic layers were dried over MgSO4, filtered, and concentrated. The residue 

was purified by flash chromatography (60:40 EtOAc−hexane) to afford a pale-

yellow oil. The residue was dissolved in dichloromethane (2 mL) and loaded 

onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 × 20 mL). 

The product was eluted using ammonia (1 M solution in MeOH, 3× 20 mL) 

which was concentrated in vacuo to afford pyrrolidine 32 as a brown oil (57.6 

mg, 0.35 mmol, 70%). IR υmax (film) / cm-1 3003, 2944, 2874, 2253, 1441 and 

1375; δH (400 MHz, CDCl3) 7.18 (2H, dd, J 5.5, 2.6, 3’-H), 6.96 – 6.77 (2H, m, 

2’-H), 3.92 – 3.85 (1H, m, 2-H), 3.11 – 2.94 (1H, m, 5-H2), 2.89 – 2.76 (1H, m, 

5-H3), 2.05 – 1.92 (1H, m, 3-HA), 1.83 – 1.59 (2H, m, 3-HB, 4-H2), 1.46–1.39 

(1H, m, 4-H3); δC (101 MHz, CDCl3, decoupled) 155.4 (C-4’), 145.8 (C-1’), 

127.9 (C-2’), 124.6 (C-3’), 56.9 (C-2), 51.0 (C-5), 45.4 (C-4), 45.4 (C-3). 

HRMS [M+H]+ C10H13FN+ 166.1038, found 166.1038. Spectral data of 1H and 
13C in accordance with literature. 260 
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2-Phenylpyrrolidine (46)113 

 
 Following general procedure 1 using pyrrolidine (82 mL, 1.0 mmol, 1.0 eq.) 

and phenyllithium (0.20 mL, 1.5 mmol, 1.5 eq.) with benzophenone (219 mg, 

1.2 mmol, 1.2 eq.) as the hydride acceptor. The hydride transfer time was 10 

min. Purification by flash column chromatography eluting with 90:9:1 

EtOAc−Hexanes−NEt3, to afford pyrrolidine 46 as a yellow oil (96.3 mg, 0.65 

mmol, 65%). IR υmax (film) / cm-1 3000, 2944, 2097, 1603 and 1508;  δH (400 

MHz, CDCl3) 7.43 – 7.06 (5H, m, 1’-H, 2’-H, 3’-H, 4’-H), 4.03 – 3.97 (1H, m, 

2-H), 3.14 – 3.05 (1H, m, 5-H), 2.97 – 2.82 (1H, m, 5-H), 2.25 (1H, s, NH), 

2.18 – 2.01 (1H, m, 3-HA), 1.93 – 1.70 (2H, m, 3-HA, 4-H2), 1.66 – 1.50 (1H, 

m, 4-H3); δC (101 MHz, CDCl3) 144.9 (C-1’), 128.3 (C-2’, C-3’), 126.6 (C-2’, 

C-3’), 126.5 (C-4’), 62.5 (C-2), 46.9 (C-5), 34.3 (C-3), 22.7 (C-4); HRMS 

C10H14N+ [M+H]+ calc., 148.1125, found 148.1120. Spectral data in 

accordance with literature. 113 
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2-Phenylpiperidine (47)113 

 
Following the general procedure 1, 2-phenylpiperidine was obtained from 

piperidine (99 mL, 1.00 mmol, 1.0 eq.) and phenyllithium (0.2 mL, 1.5 mmol, 

1.5 eq.) using benzophenone (0.20 mL, 1.2 mmol, 1.2 eq.) as the hydride 

acceptor. The hydride transfer time was 1.5 h. Purification by flash column 

chromatography eluting with 90:9:1 EtOAc−hexanes−NEt3, to afford 

piperidine 47 as a colourless oil (122 mg, 0.72 mmol, 75%). δH (400 MHz, 

CDCl3) : 7.48 – 7.19 (5H, m, 2’-H, 3’-H, 4’-H), 3.72 – 3.40 (1H, m, 2-H), 3.22 

– 3.16 (1H, m, 6-H), 2.82 – 2.77 (1H, m, 6-H), 1.92 – 1.89 (1H, m, 3-H), 1.83 

– 1.79 (1H, m, 3-H), 1.73 – 1.44 (4H, m, 4-H, 5-H). δC (101 MHz, CDCl3) 145.6 

(C-1’), 128.4 (C-2’), 127.0 (C-3’), 126.6 (C-4’), 62.4 (C-2), 47.8 (C-6), 35.1 (C-

3), 26.0 (C-4), 25.5 (C-5). IR υmax (neat) / cm-1 3253, 3061, 3026, 3001, 2929, 

2837, 2929, 2837, 2790, 2717. HRMS: C11H16N [M+H+] 162.1286, predicted 

168.1238. Spectral data in accordance with literature.  
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tert-Butyl 2-(benzo[d]thiazol-2-yl)azepane-1-carboxylate (52) 

 
To a 10 mL glass vial was added Ir[dF(CF3)ppy)]2(dtbbpy)PF6 (2.24 mg, 0.002 

mmol, 1 mol%), t-BPA (105.6 mg, 0.4 mmol, 2.0 eq., 50 wt.% solution in 

aromatic free mineral spirit), N-Boc pyrrolidine (68.5 mg, 0.4 mmol, 2.0 eq.), 

2.0 mL acetone, benzo[d]thiazole (27.0 mg, 0.2 mmol, 1 eq.) and TFA (30 𝜇L, 

0.4 mmol, 2.0 eq.). The reaction was degassed by bubbling with nitrogen for 

5 minutes with an outlet needle and sealed with a PTFE cap. The mixture was 

stirred and irradiated with a 36 W blue LED (approximately 2cm away from 

the light source) at room temperature for 24 h. The reaction was concentrated 

in vacuum to remove the acetone. The mixture was diluted with 2.5 mL of 

aqueous 1M NaOH solution and extracted with dichloromethane (3 × 10 mL). 

The combined organic extracts were washed with brine (20 mL) dried over 

MgSO4 and concentrated in vacuo. Purification of the crude product by flash 

column chromatography eluting with 20:80 EtOAc−hexane to afford 

pyrrolidine 52 (35.9 mg, 59%) as a yellow oil, Rf 0.48 (EtOAc); νmax/cm-1 1743; 

δH (400 MHz, CDCl3) 7.91 (1H, dd, J 10.5, 8.0, 4’-H), 7.87 – 7.69 (1H, m, 7’-

H), 7.49 – 7.26 (2H, m, 5’-H, 6’-H), 5.36 – 5.06 (1H, m, 2-H), 4.15 – 4.11 (2H, 

m, 5-H), 3.72 – 3.45 (2H, m, 3-H), 2.53 – 2.10 (2H, m, 4-H), 1.33 (9H, br, tBu 

rotamers); δC (101 MHz, CDCl3) 180.4 (C-1’), 154.8 (Boc C=O), 154.3 (C-3’), 

135.2 (C-8’), 126.1 (C-5’ or C-6’), 125.0 (C-5’ or C-6’), 124.9 (C-4’ or C-8’), 

122.8 (C-4’ or C-8’), 80.5 (Boc C-O), 60.0 (C-2), 47.1 (C-5), 34.2 (C-3), 33.0 

(C-4), 30.8, 28.2 (Boc tBu), 24.1, 23.4. 17 signals observed, owing to 

rotamers; HRMS: C16H21N2O2S+ [M+H+] 305.1329, predicted 305.1321. Data 

is in accordance with literature.114 
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2-Benzylpyrrolidine (64)118 

 
Following general procedure 2, Ir[dF(CF3)ppy]2(dtbbpy)PF6 (11.2 mg, 10.0 

μmol 0.02 eq.), NiCl2•glyme (11.0 mg, 0.05 mmol, 0.1 eq.), 4,4’-di-methoxy-

2,2’-bipyridyl (10.8 mg, 0.05 mmol, 0.1 eq.), benzyl chloride (58 μL, 0.5 mmol, 

1.0 eq.), Boc-Pro-OH (161 mg, 0.75 mmol, 1.5 eq.), K2CO3

 

(138 mg, 1.00 

mmol, 2.0 eq.), water (180 μL, 10 mmol, 20 eq.), and 5 mL of MeCN were 

used. Purification by flash column chromatography eluting with 10:90 

EtOAc−Hexane afforded a colourless oil. The oil was dissolved in 

dichloromethane (3 mL) and TFA (1 mL) and stirred for 3 h and concentrated 

in vacuo. The residue was dissolved in dichloromethane (2 mL) and loaded 

onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 × 20 mL). 

The product was eluted using ammonia (1 M solution in MeOH, 3× 20 mL) 

which was concentrated in vacuo, eluting with saturated NH3/MeOH (10 mL) 

to afford pyrrolidine 64 as a colourless oil (41.2 mg, 56%). IR υmax (neat) / cm-

1 2978, 2930, 2722, 2612, 2539, 2298, 2229, 2189, 2163, 2043 and 2003; δH 

(400 MHz, CDCl3) 7.38 – 6.94 (5H, m, 2’-H, 3’-H, 4’-H), 3.18 (1H, br , 2-H), 

2.98 (1H, d, J 10.5, 7.6, 5.1, 5-H2), 2.86 – 2.59 (3H, m, 5-H3, benzyl CH2), 2.42 

(1H, s, NH), 1.84 – 1.49 (4H, m, 3-H, 4-H). δC (125 MHz, CDCl3) 140.0 (C-1’), 

129.0 (C-2’), 128.7 (C-3’), 126.1 (C-4’), 77.2 (C-2), 60.6 (Benzyl CH2), 46.1 

(C-5), 31.2 (C-3), 24.8 (C-4). HRMS [M+Na]+ C11H15NNa calc., 184.1107, 

found, 184.1104. 
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tert-Butyl 2-(cyclohexylmethyl)pyrrolidine-1-carboxylate (65)118 

 
According to the general procedure 2, Ir[dF(CF3ppy]2(dtbbpy)PF6 (11.2 mg, 

10.0 μmol 0.02 eq.), NiCl2•glyme (11.0 mg, 0.05 mmol, 0.1 eq.), 4,4’-di-

methoxy-2,2’-bipyridyl (10.8 mg, 0.05 mmol, 0.1 eq.), 

(bromomethyl)cyclohexane (69 μL, 0.5 mmol, 1.0 eq.), Boc-Pro-OH (161 mg, 

0.75 mmol, 1.5 eq.), K2CO3

 

(138 mg, 1.00 mmol, 2.0 eq.), water (180 μL, 10 

mmol, 20 eq.), and 5 mL of MeCN were used. Purification by flash column 

chromatography eluting with 10:90 EtOAc−hexanes to give pyrrolidine 65 as 

a colourless oil (100 mg, 75%). IR υmax (neat) / cm-1 2980, 2254, 1731, 1683 

and 1478; δH (400 MHz, CDCl3) 3.77 (1H, m, 2-H rotamers), 3.23 (2H, s, 4-

H2), 1.90 – 1.67 (4H, m), 1.67 – 1.45 (5H, m), 1.39 (9H, s, Boc tBu), 1.28 – 

1.01 (6H, m), 0.98 – 0.73 (2H, m, 4’-H); δC (125 MHz, CDCl3) 154.6 (Boc 

C=O), 78.9 (Boc C-O), 55.1 (C-2), 46.2 (C-4), 42.5, 35.3, 34.5, 32.8, 30.9, 

28.6, 26.7, 26.6, 23.7. HRMS [M+Na]+ C16H29NO2Na+ calc., 290.2101, found 

290.2098. Spectral data in accordance with literature. 118 
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2-Benzylpiperidine (67) 

 
According to the general procedure 2, Ir[dF(CF3)ppy]2(dtbbpy)PF6 (13.5 mg, 

12.0 μmol 0.02 eq.), NiCl2•glyme (13.2 mg, 0.06 mmol, 0.1 eq.), 4,4 ́-di-

methoxy-2,2 ́-bipyridyl (13 mg, 0.06 mmol, 0.1 eq.), benzyl chloride (68.7 μL, 

0.6 mmol, 1.0 eq.), N-Boc-2-piperidinecarboxylic acid (110 mg, 0.6 mmol, 1.0 

eq.), K2CO3

 

(166 mg, 1.2 mmol, 2.0 eq.), water (216 μL, 12 mmol, 20 eq.), 

and 6 mL of MeCN were used. Purification by flash column chromatography 

eluting with 10:90 Et2O−Hexane to give the Boc-protected piperidine as a 

colourless oil. The residue was dissolved in DCM (15 mL) and TFA (5 mL), 

stirred at rt for 2 h and concentrated in vacuo to give piperidine 67 as a 

colourless oil (12.6 mg, 12%). IR υmax (neat) / cm-1 3357, 3048, 2877, 2293, 

2253, 1500 and 1376; δH (400 MHz, CDCl3) 7.41 – 7.11 (5H, m, 2’-H, 3’-H, 4’-

H), 3.56 (2H, m, Benzyl CH2), 3.17 (1H, tt, J 11.5, 3.3, 2-H), 3.06 – 2.79 (2H, 

m, 6-H), 2.24 – 1.93 (1H, br s, NH), 1.93 – 1.59 (4H, m, 5-H, 3-H), 1.45 – 1.21 

(2H, m, 4-H); δC (125 MHz, CDCl3) 135.7 (C-1’), 129.5 (C-2’), 128.7 (C-4’), 

127.1 (C-3’), 77.3 (Benzyl CH2), 58.6 (C-2), 44.8 (C-6), 39.6 (C-3), 27.5 (C-5), 

22.3 (C-4). HRMS (ESI): C12H18N+ [M+H]+ 176.1453, predicted 176.1439. 

Data in accordance with literature. 261 
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4-Phenyl(piperidin-4-yl)methanone (71) 

 
To an 8 mL vial equipped with a stir bar was added 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 (6.4 mg, 5.7 μmol, 0.01 eq.), bromobenzene (77.5 

mg, 0.57 mmol, 1.0 eq.), N-Boc-4- piperidinecarboxaldehyde (243 mg, 1.14 

mmol, 2.0 eq.), quinuclidine (6.3 mg, 5.7 μmol, 0.10 eq.), and anhydrous 

K2CO3 (118 mg, 0.86 mmol, 1.5 eq.). The vial was sealed and placed under 

nitrogen before 1,4-dioxane (1 mL) was added. To a separate vial was added 

NiBr2.glyme (17.6 mg, 5.7 μmmol, 0.10 eq.) and 4,4’-di-tert-butyl-2,2’-

bipyridine (15.3 mg, 5.7 μmol, 0.10 eq.). The pre-catalyst vial was sealed, 

purged with nitrogen, dissolved in 1,4-dioxane (2 mL) and then sonicated until 

it became homogeneous. Subsequently, the precatalyst solution was syringed 

into the reaction vessel and the solution was degassed by sparging with 

nitrogen for 15 minutes before sealing with parafilm. The reaction was stirred 

and irradiated using 34 W blue LED lamps for 24 h. The reaction was 

quenched by exposure to air, concentrated in vacuo. and dissolved in 

dichloromethane (10 mL) and TFA (10 mL) and stirred at rt for 1 h. The product 

was purified by flash column chromatography, eluting with 40:60 

EtOAc−Hexane, to yield piperidine 71 as a white solid (202 mg, 84%). Mp 89 

°C (EtOH); IR υmax (film) / cm-1 3394, 2641, 2483, 2257, 1987 and 1290.  1H 

NMR (400 MHz, CDCl3) δ 7.34 – 7.23 (2H, m, 2’-H), 7.00 – 6.90 (3H, m, 3’-H, 

4’-H), 4.39 (1H, tt, J 8.3, 3.8, 4-H), 3.17 (2H, dt, J 12.7, 4.4, 2H, 2-H2), 2.74 

(2H, ddd, J 12.6, 9.4, 3.2, 2-H3), 2.03 (2H, dddd, J 11.8, 5.9, 3.8, 1.9, 3-H2), 

1.68 (2H, dtd, J 12.9, 8.9, 3.8, 3-H3). 13C NMR (101 MHz, CDCl3) δ 157.4 (C-

1’), 129.5 (C-2’), 120.8 (C-4’), 116.2 (C-3’), 77.2 (C-4), 44.0 (C-2), 32.5 (C-3). 

HRMS [M+H]+ C12H16NO+ calc., 190.1237, found 190.1237. Spectral data in 

accordance with literature. 262 
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4-Fluorophenyl(piperidin-4-yl)methanone (72) 

 
To an 8 mL vial equipped with a stir bar was added 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 (6.4 mg, 5.7 μmol, 0.01 eq.), 1-bromo-4-

fluorobenzene (100 mg, 0.57 mmol, 1.0 eq.), N-Boc-4- 

piperidinecarboxaldehyde (242.8 mg, 1.14 mmol, 2.0 eq.), quinuclidine (6.3 

mg, 5.7 μmol, 0.10 eq.), and K2CO3 (118 mg, 0.86 mmol, 1.5 eq.). The vial 

was sealed and placed under nitrogen before 1,4-dioxane (1 mL) was added. 

To a separate vial was added NiBr2.glyme (17.6 mg, 5.7 μmol, 0.10 eq.) and 

4,4’-di-tert-butyl-2,2’-bipyridine (15.3 mg, 5.7 μmmol, 0.10 eq.). The pre-

catalyst vial was sealed, purged with nitrogen, dissolved in 1,4-dioxane (2 mL) 

and then sonicated until it became homogeneous. Subsequently, the 

precatalyst solution was syringed into the reaction vessel and the solution was 

degassed by sparging with nitrogen for 15 minutes before sealing with 

parafilm. The reaction was stirred and irradiated using 34 W blue LED lamps 

for 20 hours. The reaction was quenched by exposure to air, concentrated in 

vacuo. and dissolved in DCM (1 mL) and TFA (3 mL) and stirred at rt for 1 h.  

The product was purified by flash column chromatography eluting with 10:90 

hexane−EtOAc, to yield the piperidine 72 as a white solid (88.8 mg, 53.9%). 

Mp 238 °C (EtOH); IR υmax (film) / cm-1 2927, 2788, 2712, 2570 and 1284; δH 

(400 MHz, DMSO-d6): 8.16 – 8.06 (2H, m, H-8), 7.38 (2H, dd, J 10.0, 7.7, 8-

H), 3.79 (1H, tt, J 11.0, 3.6, 4-H), 3.28 (2H, dt, J 12.9, 3.6, 2-H2), 3.03 (2H, td, 

J 12.6, 3.2, 2-H3), 1.92 (2H, dd, J 14.5, 3.6, 3-H2), 1.80 (2H, qd, J 14.5, 13.2, 

4.0, 3-H3). δC (101 MHz, DMSO-d6) 200.4 (Ketone C=O), 166.9 (C-1’), 164.4 

(C-4’), 132.3 (C-2’ and C-3’), 70.2 (C-4), 42.7 (C-2), 25.4 (C-3). HRMS 

C12H15FNO+ [M+H]+  calc., 208.1143, found 208.1150. Spectral data in 

accordance with literature.263 
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4-Phenoxypiperidine (74) 
 

 
To an 8 mL vial containing a solution of the bromobenzene (157 mg, 1.00 

mmol, 1.0 eq.), quinuclidine (11.1 mg, 0.100 mmol, 0.1 eq.), 

Ir[dF(Ir[dF(CF3)ppy]2(dtbbpy)PF6 (11.2 mg, 0.01 mmol, 0.01 eq.) and K2CO3 

(138 mg, 1.00 mmol, 1.0 eq) in MeCN (2.0 mL) was added a solution of 

NiCl2.DME (11.0 mg, 0.05 mmol, 0.05 eq.) and 4,4’-di-methoxy-2,2’-bipyridyl 

(13.4 mg, 0.05 mmol, 0.05 eq.) in MeCN (4 mL). The vial was placed under 

an atmosphere of nitrogen, then the was tert-butyl 4-hydroxypiperidine-1-

carboxylate (300 mg, 1.0 mmol, 1.0 eq.) was added. The reaction mixture was 

then cooled to -78 °C and degassed by vacuum evacuation (5 min), backfilled 

with nitrogen, and then warmed to rt. This process was repeated three times, 

then the vial was sealed with parafilm, placed 1 cm away from a 34 W blue 

LED, and irradiated with 2 X 34W blue LEDs under fan cooling. After 24 h, the 

reaction mixture was diluted with EtOAc (10 mL) then poured into a separatory 

funnel containing H2O (10 mL). The aqueous phase was separated and 

extracted with EtOAc (3 × 10 mL). The organics were concentrated in vacuo 

and dissolved in dichloromethane (1 mL) and TFA (3 mL) and stirred at rt for 

1 h. Purification of the crude material by flash column chromatography, eluting 

with 10:90 Hexane−EtOAc, afforded piperidine 74 (67.5 mg, 24%). Mp 64.2 

°C (EtOH); IR υmax (neat) / cm-1 3313, 3061, 3038, 2943, 2856, 2822, 2735, 

2201 and 1597. δH (400 MHz, CDCl3) 7.42 – 7.14 (2H, m, 2’-H), 6.95 (3H, m, 

3’-H, 4’-H), 4.39 (1H, tt, J 8.3, 3.8, 4-H), 3.17 (2H, dt, J 12.8, 4.5, 2-H2), 2.74 

(2H, ddd, J 12.6, 9.3, 3.2, 2-H3), 2.08 – 1.96 (2H, m, 3-H2), 1.68 (2H, dtd, J 

12.9, 8.9, 3.8, 3-H3). δC (125 MHz, CDCl3) 157.4 (C-1’), 129.5 (C-3’), 120.8 

(C-4’), 116.2 (C-2’), 77.2 (C-4), 44.0 (C-3), 32.5 (C-2). HRMS [M+H]+ 

C11H16NO+ calc., 178.1233, found 178.1237. Spectral data in accordance with 

literature.264 
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Benzyl 3,4-dihydropyridine-1(2H)-carboxylate (89) 

 
Following general procedure 3 employing benzyl piperidine-1-carboxylate (1.0 

g, 4.57 mmol) to give a crude residue. Purification of the crude by flash column 

chromatography (5:95 EtOAc−hexane) gave enecarbamate 89 as a viscous 

colourless oil (891mg, 90%, 6:4 mixture of rotamers). Rf 0.30 (10:90 

Hexane−EtOAc); νmax/cm-1 (film) 1710, 1655; δH (500 MHz, CDCl3) 7.51 – 

7.29 (5H, m, 2’-H, 3’-H, 4’-H), 6.95 – 6.92 (0.4H, br s, 6-H), 6.85 – 8.82 (0.6H, 

br s, 6-H), 5.21 (2H, s, Cbz CH2), 5.01 – 4.95 (0.4H, m, 5-H), 4.90 – 4.84 

(0.6H, m, 5-H), 3.69 – 3.59 (2H, m, 2-H), 2.09 – 1.99 (2H, m, 4-H), 1.97 – 1.78 

(2H, m, 3-H); δC (125 MHz, CDCl3) 153.6 (Cbz C=O rotamers), 153.2 (Cbz 

C=O rotamers), 136.4 (C-1’), 128.6 (C-2’), 128.2 (C-2’), 128.04 (C-3’), 127.98 

(C-4’), 125.4 (C-6 rotamers), 124.9 (C-6 rotamers), 106.7 (C-5 rotamers), 

106.4 (C-5 rotamers), 67.5 (Cbz CH2 rotamers), 67.4 (Cbz CH2 rotamers), 

42.4 (C-2 rotamers), 42.2 (C-2 rotamers), 21.7 (C-4 rotamers), 21.5 (C-4 

rotamers), 21.2 (C-3 rotamers). (18 signals observed); HRMS [M+H]+ 

C13H16NO2+ calc. 218.1186 found, 218.1196. Spectral data in accordance with 

literature values.265  
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1-(3,4-Dihydropyridin-1(2H)-yl)ethanone (90) 

 
Following general procedure 3, employing benzyl 1-(piperidin-1-yl)ethanone 

(580 mg, 4.57 mmol) to give a crude residue. Purification of the crude by flash 

column chromatography eluting with 5:95 EtOAc−hexane to give 

enecarbamate 90 as a viscous brown oil (428 mg, 75%, mixture of rotamers). 

νmax/cm-1 (film) 1680; δH (400 MHz, CDCl3) 6.58 (1H, dt, J 8.4, 2.0, 6-H), 4.98 

(1H, dt, J 8.1, 3.9, 5-H), 3.75 – 3.68 (2H, m, 2-H), 2.17 (3H, s, 1’-H), 2.10 (2H, 

tdd, J 6.2, 3.9, 2.0, 4-H), 1.89 – 1.77 (2H, m, 3-H). δC (101 MHz, CDCl3) 173.2 

(Acetyl C=O), 168.1, 167.9, 125.7 (C-6), 123.8, 108.6 (C-5 rotamers), 108.3 

(C-5 rotamers), 44.3 (C-2), 40.1 (C-4), 21.68 (Acetyl CH3), 21.66 (Acetyl CH3), 

21.4 (C-3) (12 signals observed). HRMS [M+H]+ C7H12NO+ calc. 126.0913 

found 126.0909. Spectral data is in accordance with literature. 266 
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(3,4-Dihydropyridin-1(2H)-yl)(phenyl)methanone (91) 

 
Following general procedure 3, employing phenyl(piperidin-1-yl)methanone 

(864 mg, 4.57 mmol) to give a crude residue. Purification of the crude by flash 

column chromatography eluting with 5:95 EtOAc−hexane to give 

enecarbamate 91 as a viscous colourless oil (675 mg, 79%, mixture of 

rotamers). νmax/cm-1 (film) 1691; δH (400 MHz, CDCl3) 7.47 – 7.29 (5H, m, 2’-

H, 3’-H, 4’-H), 6.38 (1H, d, J 8.2, 6-H), 4.80 – 4.76 (1H, m, 5-H), 3.79 – 3.76 

(2H, m, 2-H), 2.08 – 2.04 (2H, m, 4-H), 1.90 – 1.85 (2H, m, 3-H); δC (101 MHz, 

CDCl3) 169.3 (Amide C=O), 135.2 (C-1’’), 130.2 (C-2’’), 128.4 (C-3’’), 127.5 

(C-4’’), 124.8 (C-6), 107.6 (C-5), 41.1 (C-2), 30.9 (C-4), 21.9 (C-3); HRMS 

[M+H]+ C12H14NO+ calc. 188.1070 found 188.1071. Spectral data in 

accordance with literature. 267 
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Benzyl 2,3-dihydro-1H-pyrrole-1-carboxylate (97) 

 
Following general procedure 3, employing benzyl pyrrolidine-1-carboxylate 

(937 mg, 4.57 mmol) to give a crude residue. Purification of the crude by flash 

column chromatography (5:95 EtOAc−hexane) gave enecarbamate 97 as a 

viscous colourless oil (705 mg, 76% as a 6:4 mixture of rotamers). Rf 0.30 

(10:90 hexane−EtOAc); νmax/cm-1 (film) 1702, 1635; δH (400 MHz, CDCl3) 7.34 

– 7.21 (m, 5H, 2’-H, 3’-H, 4’-H), 6.56 (0.4H, br, 5-H), 6.47 (0.6H. br, 5-H), 5.10 

(2H, s, Cbz CH2), 5.02 (0.4H, br, 4-H), 4.99 (0.6H, br, 4-H), 3.66 – 3.59 (2H, 

m, 2-H), 2.55 – 2.45 (2H, m, 3-H). δC (101 MHz, CDCl3) 153.6 (Cbz C=O 

rotamers), 153.2 (Cbz C=O rotamers), 136.6 (C-1’), 129.7 (C-2’), 129.1 (C-3’), 

128.5 (C-4’), 128.1, 128.0 (C-5 rotamers), 127.9 (C-5 rotamers), 108.8 (C-4 

rotamers), 108.7 (C-4 rotamers), 67.1 (Cbz CH2 rotamers), 66.9 (Cbz CH2 

rotamers), 45.3 (C-2 rotamers), 45.1 (C-2 rotamers), 29.7 (C-3 rotamers), 28.7 

(C-3 rotamers) (17 signals observed); HRMS [M+H]+ C12H14NO2+ calc. 

204.1030 found, 204.1023. Spectral data in accordance with literature 

values.268  
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Benzyl 2,3,4,5-tetrahydro-1H-azepine-1-carboxylate (98) 

 
Following general procedure 3, employing benzyl azepane-1-carboxylate 

(1.06 g, 4.57 mmol) to give a crude residue. Purification of the crude by flash 

column chromatography (5:95 EtOAc−hexane) gave enecarbamate 98 as a 

viscous colourless oil (760 mg, 72%, 1:1 mixture of rotamers). Rf 0.31 (10:90 

Hexane−EtOAc); νmax/cm-1 (film) 1713, 1624; δH (400 MHz, CDCl3) 7.25 – 

7.08 (5H, m, 2’-H, 3’-H, 4’-H), 6.35 (1H, m, 7-H), 4.96 (2H, s, Cbz CH2), 4.92 

– 4.78 (1H, m, 6-H), 3.50 (2H, m, 2-H), 2.02 – 1.93 (2H, m, 5-H), 1.66 – 1.46 

(4H, m, 3-H). δC (101 MHz, CDCl3) 154.4 (Cbz C=O), 136.6 (C-1’), 130.7 (C-

2’ rotamers), 129.9 (C-2’ rotamers), 128.5 (C-3’ rotamers), 128.1 (C-3’ 

rotamers), 127.9 (C-4’), 115.9 (C-7), 77.3 (C-6), 67.4 (Cbz CH2), 47.7 (C-2), 

28.1 (C-5), 26.3 (C-3 rotamers), 26.0 (C-3 rotamers), 25.1 (C-4) (15 signals 

observed owing to rotamers). HRMS [M+Na]+ C14H17NNaO2+ calc., 254.1151 

found, 254.1151.  
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Benzyl 2H-1,4-oxazine-4(3H)-carboxylate (106) 

 
Following general procedure 3, employing benzyl morpholine-4-carboxylate 

(1.00 g, 4.57 mmol) to give a crude residue. Purification of the crude by flash 

column chromatography (5:95 EtOAc−hexane) gave enecarbamate 106 as a 

viscous colourless oil (640 mg, 64%, 6:4 mixture of rotamers). Rf 0.32 (10:90 

hexane−EtOAc); νmax/cm-1 (film) 1702, 1605; δH (400 MHz, CDCl3) 7.38-7.26 

(5H, m, 2’-H, 3’-H, 4’-H), 6.34 (0.4H, br s, 6-H), 6.21 (0.6H, m, 6-H), 6.03 

(0.4H, m, 5-H), 5.89 (0.6H, m, 5-H), 5.19-5.18 (2H, m, Cbz CH2), 4.09-4.03 

(2H, m, 2-H), 3.75-3.73 (2H, m, 3-H); δC (101 MHz, CDCl3) 152.2 (Cbz C=O 

rotamers), 151.9 (Cbz C=O rotamers), 136.26 (C-1’ rotamers), 136.22 (C-1’ 

rotamers), 130.3 (C-6 rotamers), 129.2 (C-6 rotamers), 128.7 (C-2’ rotamers), 

128.4 (C-2’ rotamers), 128.3 (C-3’), 128.2 (C-4’), 106.2 (C-5 rotamers), 105.7 

(C-5 rotamers), 67.8 (Cbz CH2), 67.7 (Cbz CH2), 64.8 (C-2 rotamers), 64.3 (C-

2 rotamers), 42.3 (C-3 rotamers), 41.6 (C-3 rotamers) (19 signals observed); 

HRMS [M+Na]+ C12H13NNaO3 calc. 242.0787 found 242.0784.  
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Benzyl 6,7-dihydro-1,4-oxazepine-4(5H)-carboxylate (108) 

 
Following general procedure 3, employing benzyl 1,4-oxazepane-4-

carboxylate (1.07 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−hexane) gave 

enecarbamate 108 as a viscous colourless oil (618 mg, 58%, mixture of 

rotamers). Rf 0.25 (10:90 hexane−EtOAc); νmax/cm-1 (film) 1717, 1626; δH (400 

MHz, CDCl3) 7.33 – 7.19 (5H, m, 2’-H, 3’-H, 4’-H), 5.88 – 5.74 (1H, m, 2-H), 

5.68 – 5.59 (1H, m, 3-H), 5.07 (2H, s, Cbz CH2), 4.06 – 3.93 (2H, m, 7-H), 

3.82 – 3.72 (2H, m, 5-H), 1.93 – 1.82 (2H, m, 6-H); δC (101 MHz, CDCl3) 153.9 

(Cbz C=O), 136.3 (C-1’), 134.8 (C-2), 128.6 (C-2’), 128.0 (C-3’), 120.0 (C-4’), 

110.3 (C-3), 70.8 (C-7), 68.9 (Cbz CH2 rotamers), 67.8 (Cbz CH2 rotamers), 

46.6 (C-5), 28.5 (C-6) 12 signals observed, owing to rotamers. HRMS [M+Na]+ 

C13H15NNaO3+ calc. 256.0944 found 256.0944.  
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Benzyl 4,5,6,6a-tetrahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (110) 

 
Following general procedure 3, employing benzyl 

hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (1.20 g, 4.57 mmol) to give 

a crude residue. Purification of the crude by flash column chromatography 

(5:95 EtOAc−hexane) gave enecarbamate 110 as a viscous colourless oil 

(776 mg, 69%, 6:4 mixture of rotamers). Rf 0.41 (10:90 hexane−EtOAc); 

νmax/cm-1 (film) 1741, 1604; δH (400 MHz, CDCl3) 7.25 – 6.96 (5H, m, 2’-H, 3’-

H, 4’-H), 6.05 (0.4H, br, 3-H), 5.97 (0.6H, m, 3-H), 4.93 (2H, s, 1-H), 3.86 – 

3.69 (1H, m, 6a-H), 3.24 – 2.88 (2H, m, 1-H), 2.15 – 1.87 (2H, m, 4-H), 1.87 

– 1.50 (2H, m, 6-H), 1.12 – 0.90 (2H, m, 5-H); δC (101 MHz, CDCl3) 152.5 

(Cbz C=O rotamers), 151.9 (Cbz C=O rotamers), 136.9 (C-1’ rotamers), 136.8 

(C-1’ rotamers), 133.2 (C-3a), 132.7 (C-1’), 128.5 (C-2’ rotamers), 128.4 (C-

2’ rotamers) 128.0 (C-3’), 127.9 (C-4’), 119.2 (C-3 rotamers), 118.6 (C-3 

rotamers), 66.8 (Cbz CH2 rotamers), 66.7 (Cbz CH2 rotamers), 52.2 (C-6a 

rotamers), 52.1 (C-6a rotamers), 49.2 (C-1 rotamers), 48.1 (C-1 rotamers), 

31.32 (C-4 rotamers), 31.29 (C-4 rotamers), 27.6 (C-6), 21.70 (C-5 rotamers), 

21.67 (C-5 rotamers) (23 signals observed, owing to rotamers). HRMS [M+H]+ 

C15H18NO2+ calc., 244.1332 found 244.1332.  
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Benzyl 4-methyl-3,4-dihydropyridine-1(2H)-carboxylate (113) 

 
Following general procedure 3, employing benzyl 4-methylpiperidine-1-

carboxylate (1.06 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−hexane) gave 

enecarbamate 113 as a viscous colourless oil (718 mg, 68%, 6:4 mixture of 

rotamers). Rf 0.35 (10:90 hexane−EtOAc); νmax/cm-1 (film) 1724, 1621; δH (400 

MHz, CDCl3) 7.29 – 7.04 (5H, m, 2’-H, 3’-H, 4’-H), 6.77 (0.4H, br, 6-H), 6.68 

(0.6H, br, 6-H), 5.04 (2H, s, 1-H), 4.80 – 4.75 (0.4H, m, 5-H), 4.69 – 4.62 

(0.6H, m, 5-H), 3.77 – 3.66 (1H, m, 2-H), 3.42 – 3.34 (1H, m, 2-H), 2.26 – 2.16 

(1H, m, 4-H), 1.89 – 1.51 (1H, m, 3-H2), 1.36 – 1.20 (1H, m, 3-H3), 0.94 (3H, 

m, J 7.0, CH3). δC (101 MHz, CDCl3) 153.5 (Cbz C=O rotamers), 153.1 (Cbz 

C=O rotamers), 136.4 (C-1’), 128.5 (C-2’), 128.2 (C-3’), 128.1 (C-4’), 124.2 

(C-6 rotamers), 123.7 (C-6 rotamers), 113.2 (C-5 rotamers), 112.8 (C-5 

rotamers), 77.3, 67.5 (Cbz CH2), 67.4 (Cbz CH2), 41.0 (C-2 rotamers), 40.8 

(C-2 rotamers), 29.9 (C-4), 26.8 (C-3 rotamers), 26.2 (C-3 rotamers), 21.3 (C-

4 CH3) (19 signals observed). HRMS [M+H]+ C14H18NO2+ calc., 232.1332 

found 232.1332.  
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Benzyl 4-phenyl-3,4-dihydropyridine-1(2H)-carboxylate (114)  

 
Following general procedure 3, employing benzyl 4-phenylpiperidine-1-

carboxylate (1.35 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−hexane) gave 

enecarbamate 114 (1.11 g, 83%, 6:4 mixture of rotamers. Rf 0.40 (10:90 

hexane−EtOAc); νmax/cm-1 (film) 1743, 1660, 1620; δH (400 MHz, CDCl3) 7.43-

7.23 (10H, m, 2’-H, 3’-H, 4’-H and 4-Ph), 7.14 (0.4H, d, J 8.3, 6-H), 7.04 (0.6H, 

d, J 8.3, 6-H), 5.24 (2H, s, Cbz CH2), 5.08 (0.6H, dd, J 8.2, 2.8 Hz, 5-H), 4.96 

(0.4H, dd, J 8.2, 2.8, 5-H), 3.75 – 3.51 (3H, m, 2-H, 4-H), 2.18 – 2.16 (1H, m, 

3-H), 1.85 – 1.84 (1H, m, 3-H);  δC (101 MHz, CDCl3) 153.7 (Cbz C=O 

rotamers), 153.2 (Cbz C=O rotamers), 145.1 (C-1’ rotamers), 136.4 (C-4 

phenyl, C-1), 128.7 (C-2’ rotamers), 128.6 (C-4 phenyl), 128.4 (C-3’ rotamers), 

128.3 (C-3’ rotamers), 127.8 (C-4’ rotamers), 126.6 (C-6 rotamers), 126.3 (C-

6 rotamers), 125.8 (C-4 phenyl), 109.4 (C-5 rotamers), 109.1 (C-4 phenyl, C-

4), 67.8 (Cbz CH2), 40.5 (C-2), 38.3 (C-4 rotamers), 38.0 (C-4 rotamers), 31.2 

(C-3) (19 signals observed, owing to rotamers); HRMS [M+H]+ C19H20NO2+ 

calc. 294.1486 found 294.1487.  
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1-Benzyl 2-methyl 2-methyl-2,3-dihydro-1H-pyrrole-1,2-dicarboxylate 
(118)  

 
Following general procedure 3, employing 1-benzyl 2-methyl 2-

methylpyrrolidine-1,2-dicarboxylate (1.27 g, 4.57 mmol) to give a crude 

residue. Purification of the crude by flash column chromatography (10:90 

EtOAc−Hexane) gave enecarbamate 118 as a viscous yellow oil (264 mg, 

21%, 55:45 mixture of rotamers). Rf 0.40 (30:70 hexane−EtOAc); νmax/cm-1 

(film) 1740, 1707, 1612; δH (400 MHz, CDCl3) 7.36-7.30 (5H, m, 2’-H, 3’-H, 4’-

H), 6.65 (0.45H, dt, J 4.3, 2.1, 5-H), 6.56 (0.55H, dt, J 4.3, 2.1, 5-H), 5.26-5.03 

(2H, m Cbz CH2), 4.97 (0.45H, dt, J 4.7, 2.5, 4-H), 4.89 (0.55H, dt, J 4.7, 2.5, 

4-H), 3.74 (1.6H, s, Ester CH3), 3.47 (1.4H, s, Ester CH3), 3.03-2.95 (1H, m, 

3-H), 2.62-2.55 (1H, m, 3-H), 1.68 (1.6H, s, C-2 CH3), 1.59 (1.4H, s, C-2 CH3); 

δC (101 MHz, CDCl3) 173.7 (ester C=O), 173.6 (ester C=O), 152.3 (Cbz C=O), 

151.7 (Cbz C=O), 136.4 (C-1’ rotamers), 136.0 (C-1’ rotamers), 129.9 (C-5 

rotamers), 129.2 (C-5 rotamers), 128.7 (C-2’ rotamers), 128.6 (C-2’ rotamers), 

128.41 (C-4’ rotamers), 128.43, (C-4’ rotamers) 128.3 (C-3’ rotamers), 128.3 

(C-3’ rotamers), 104.8 (C-4 rotamers), 104.7 (C-4 rotamers), 67.5 (Cbz CH2 

rotamers), 67.3 (Cbz CH2 rotamers), 65.9 (C-1 rotamers), 65.5 (C-1 rotamers), 

52.8 (Ester C-O rotamers), 52.5 (Ester C-O), 45.7 (C-3 rotamers), 44.2 (C-3 

rotamers), 23.4 (C-2 CH3), 22.5 (C-2 CH3) (28 signals observed); HRMS 

[M+H]+ C15H18NO4+ calc. 276.1230 found 276.1226.  
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1-Benzyl 2-methyl 2,3-dihydro-1H-pyrrole-1,2-dicarboxylate (117) 

 
Following general procedure 3, employing 1-benzyl 2-methyl pyrrolidine-1,2-

dicarboxylate (1.20 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−hexane) gave 

enecarbamate 117 as a viscous colourless oil (800 mg, 67%, mixture of 

rotamers). Rf 0.30 (10:90 hexane−EtOAc); νmax/cm-1 (film) 1755, 1708, 1621; 

δH (400 MHz, CDCl3) 7.44–7.29 (5H, m, 2’-H, 3’-H, 4’-H), 6.70 (0.45H, m, 5-

H), 6.60 (0.55H, m, 5-H), 5.27–5.05 (2H, m, Cbz CH2), 4.98 – 4.95 (0.45H, m, 

4-H), 4.73 – 4.69 (0.55H, m, 4-H), 3.77 (1.65H, s, Ester CH3), 3.60 (1.35H, s, 

Ester CH3), 3.19 – 2.97 (2H, m, 2-H, 3-HA), 2.78 – 2.58 (1H, m, 3-HB). δC (101 

MHz, CDCl3) 172.1 (ester C=O rotamers), 171.9 (ester C=O rotamers), 152.2 

(Cbz C=O rotamers), 152.2 (Cbz C=O rotamers), 136.2 (C-1’ rotamers), 136.1 

(C-1’ rotamers), 130.0 (C-5), 129.3 (C-5), 128.54 (C-2’ rotamers), 128.50 (C-

2’ rotamers), 128.22 (C-4’ rotamers), 128.18 (C-4’ rotamers), 128.1 (C-3’ 

rotamers), 128.0 (C-3’ rotamers), 106.4 (C-4 rotamers), 106.2 (C-4 rotamers), 

67.5 (Cbz CH2), 67.3 (Cbz CH2), 58.1 (Ester C-O), 58.8 (Ester C-O), 52.5 (C-

2 rotamers), 52.3 (C-2 rotamers), 35.5 (C-3 rotamers), 34.3 (C-3 rotamers). 

HRMS [M+H]+ C14H16NO4+ calc. 262.1079, found 262.1079.  
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Benzyl 2-methyl-3,4-dihydropyridine-1(2H)-carboxylate (120) 

 
Following general procedure 3, employing benzyl 2-methylpiperidine-1-

carboxylate (1.06 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−Hexane) gave 

enecarbamate 120 as a viscous colourless oil (749 mg, 71%, 6:4 mixture of 

rotamers). Rf 0.40 (10:90 hexane−EtOAc); νmax/cm-1 (film) 1701, 1605;  δH 

(400 MHz, CDCl3) 7.34–7.19 (5H, m, 2’-H, 3’-H, 4’-H), 6.75 – 6.68 (0.4H, m, 

6-H), 6.68 – 6.60 (0.6H, m, 6-H), 5.17 – 5.01 (2H, m, Cbz CH2), 4.89 – 4.80 

(0.4H, m, 5-H), 4.77 – 4.70 (0.6H, m, 5-H), 4.43 – 4.24 (1H, m, 2-H), 2.12 –

2.09 – 1.95 (1H, m, 4-HA), 1.95 – 1.78 (1H, m, 4-HB), 1.78 – 1.45 (2H, m, 3-

H), 1.03 (3H, d, J 7.0, CH3). δC (101 MHz, CDCl3) 153.4 (Cbz C=O), 152.7 

(Cbz C=O), 136.9 (C-1’ rotamers), 128.5 (C-2’ rotamers), 128.1 (C-4’), 127.99 

(C-3’ rotamers), 127.95 (C-3’ rotamers), 123.8 (C-6 rotamers), 123.4 (C-6 

rotamers), 105.8 (C-5 rotamers), 105.4 (C-5 rotamers), 67.2 (Cbz CH2), 46.5 

(C-2), 46.3 (C-4), 26.4 (C-3) 17.3 (CH3) (16 signals observed, owing to 

rotamers). HRMS [M+H]+ C14H18NO2+ calc. 232.1332 found 232.1332.  
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Benzyl 3-methyl-3,4-dihydropyridine-1(2H)-carboxylate (126) 

 
Following general procedure 3, employing benzyl 3-methylpiperidine-1-

carboxylate (1.06 g, 4.57 mmol) to give a crude residue. Additional Me3SiOTf 

(1.0 eq.) was added dropwise over 10 minutes to the ice-cooled solution of 

crude and iPr2NEt (1.0 eq.) in DCM (0.5 M) over 10 minutes. Purification of 

the crude by flash column chromatography (5:95 EtOAc−hexane) gave an 

inseparable mixture of regioisomers 126A and 126B and aminoacetals 

(1:0.5:1) equating to a 40% yield of 126 (major regiosiomer showed a 0.7:1 

ratio of rotamers, minor showed a 1:1 mixture of rotamers, methylamino acetal 

showed a mixture of 3:1 regiosiomers). νmax/cm-1 (film) 1755, 1708, 1621, 

1229; δH (500 MHz, CDCl3) 7.27 – 7.12 (12.5H, m), 6.81 (0.4H, d, J = 8.3 Hz, 

6-H), 6.71 (0.60H, d, J 8.3, H-6), 6.62 (0.25H, br s), 6.61 (0.25H, br s), 5.03 

(5.8H, m, CH2), 4.79 (0.4H, m, 5-H), 4.68 (0.6H, m, 5-H), 3.85–3.67 (2H, m, 

H-2), 3.53–3.39 (1H, m), 3.11 (1.5H, s), 3.02 (1.5H, s), 2.78 (1.7H, m, 4-H), 

1.95 (1.3H, m, 3-H), 1.82-1.20 (10.5H, m, 3-H), 0.84 (6H, m, CH3); δC (101 

MHz, CDCl3) 155.7, 155.3, 153.7 (amide C=O rotamers), 153.3 (amide C-O 

rotamers), 153.1, 153.0, 136.7, 136.63, 136.55, 136.4, 128.5, 128.1, 128.00, 

127.97, 127.7, 125.0 (C-6 rotamers), 124.5 (C-6 rotamers), 120.1, 115.5, 

115.1, 106.0 (C-5), 105.8 (C-5), 85.8, 85.7, 67.4 (ether C-O), 67.2, 67.1, 66.9, 

55.0. 54.6, 48.5 (C-2 rotamers or C-4), 48.3 (C-2 rotamers or C-4), 41.6, 38.2, 

38.0, 35.7, 35.5, 29.8 (C-3), 29.6 (C-3), 26.9, 25.6, 25.5, 25.1, 21.7, 20.9, 18.7 

(CH3), 17.7, 17.6 (48 signals observed). HRMS [M+H]+ C14H18NO2+ calc., 

232.1332 found 232.1332.  
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Benzyl 3-phenyl-3,4-dihydropyridine-1(2H)-carboxylate (127) 

 
Following general procedure 3, employing benzyl 3-phenylpiperidine-1-

carboxylate (1.35 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−hexane) gave 

enecarbamate 127 as a viscous colourless oil (897 mg, 67%, 1:1 mixture of 

rotamers). Rf 0.42 (10:90 hexane−EtOAc); νmax/cm-1 (film) 1712, 1603;  δH 

(400 MHz, CDCl3) 7.38–7.09 (10H, m, 2’-H, 3’-H, 4’-H and 3-Ph), 6.94 – 6.90 

(0.5H, m, 6-H), 6.85 – 6.80 (0.5H, m, 6-H), 5.21 – 5.04 (2H, m, Cbz CH2), 4.95 

– 4.90 (0.5H, m, 5-H), 4.20 – 4.16 (0.5H, m, 5-H), 4.06 – 4.00 (1H, m, 3-H), 

3.23 – 3.18 (1H, m, 2-HA), 2.95 – 2.90 (1H, m, 2-HB), 2.25 – 2.20 (2H, m, 4-

H). δC (101 MHz, CDCl3) 153.5 (Cbz C=O), 153.1 (Cbz C=O), 143.0 (C-1’ 

rotamers), 142.8 (C-1’ rotamers), 136.3 (C-4 Phenyl, C-1) , 136.2 (C-4 Phenyl, 

C-1), 128.72 (aromatic), 128.68 (aromatic), 128.57 (aromatic), 128.5 

(aromatic), 128.25 (aromatic), 128.21 (aromatic), 128.14 (aromatic), 128.08 

(aromatic), 127.3 (aromatic), 127.2 (aromatic), 126.9 (aromatic), 126.1 

(aromatic), 125.3 (C-6 rotamers), 124.9 (C-6 rotamers), 106.6 (C-5 rotamers), 

106.3 (C-5 rotamers), 67.7 (C-1 rotamers), 67.6 (C-1 rotamers), 47.9 (C-2 

rotamers), 47.7 (C-2 rotamers), 38.6 (C-3 rotamers), 38.5 (C-3 rotamers), 31.6 

(C-4) (29 signals observed, owing to rotamers). HRMS [M+H]+ C19H20NO2+ 

294.1489 found 294.1487.  
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1-Benzyl 3-ethyl 3,4-dihydropyridine-1,3(2H)-dicarboxylate (128) 

 

Following general procedure 3, employing 1-benzyl 3-ethyl piperidine-1,3-

dicarboxylate (1.33 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography (5:95 EtOAc−Hexane) gave 

enecarbamate 128 as a viscous colourless oil (964 mg, 73%, 1:1 mixture of 

rotamers). Rf 0.31 (10:90 hexane−EtOAc);νmax/cm-1 (film) 1748, 1702, 1621; 

δH (400 MHz, CDCl3) 7.56–6.95 (5H, m, 2’-H, 3’-H, 4’-H), 6.87 – 6.84 (0.5H, 

m, 6-H), 6.78 – 6.74 (0.5H, m, 6-H), 5.03 (2H, s, Cbz CH2), 4.91 – 4.88 (0.5H, 

m, 5-H), 4.79 – 4.75 (0.5H, m, 5-H), 4.00 (2H, q, J 7.1, ester CH2CH3), 3.58 – 

3.53 (2H, m, 2-H), 3.01 – 2.91 (1H, m, 3-H), 1.95 – 1.90 (1H, m, 4-HA), 1.81 

(1H, m, 4-HB), 1.10 (3H, t, J 7.1, ester CH2CH3); δC (101 MHz, CDCl3) 173.2 

(Ester C=O), 153.4 (Cbz C=O), 152.9 (Cbz C=O), 136.1 (C-1’), 129.6 (C-2’), 

128.6 (C-4’ rotamers), 128.3 (C-4’ rotamers), 128.1 (C-3’), 126.6 (C-6 

rotamers), 126.2 (C-6 rotamers), 103.3 (C-5 rotamers), 103.0 (C-5 rotamers), 

67.7 (Cbz CH2), 60.9 (Ester C-O), 40.3 (C-2 rotamers), 40.2 (C-2 rotamers), 

37.5 (C-3 rotamers), 37.2 (C-3 rotamers), 23.9 (C-4 rotamers), 23.8 (C-4 

rotamers), 14.2 (CH3) (21 signals observed). HRMS [M+Na]+ C16H19NNaO4+ 

calc., 312.1206 found, 312.1203.  
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Benzyl 3-((3,5-dimethylisoxazol-4-yl)methoxy)-3,4-dihydropyridine-
1(2H)-carboxylate (129) 

 
Following general procedure 3, employing benzyl 3-((3,5-dimethylisoxazol-4-

yl)methoxy)piperidine-1-carboxylate (1.57 g, 4.57 mmol) to give a crude 

residue. Purification of the crude by flash column chromatography (10:90 

EtOAc−Hexane) gave enecarbamate 129 as a viscous colourless oil (641 mg, 

641%, 7:3 mixture of rotamers). Rf 0.37 (10:90 hexane−EtOAc);  νmax/cm-1 

(film) 1719, 1634; δH (400 MHz, CDCl3) 7.37 – 7.36 (5H, m, 2’-H, 3’-H, 4’-H), 

6.89 (0.3H, d, J  8.3, 6-H), 6.80 (0.7H, d, J 8.3, 6-H), 5.22 – 5.17 (2H, m, Cbz 

CH2), 4.81 – 4.79 (1H, m, 5-H), 4.40 – 4.27 (2H, m, 1’’-H), 3.79 – 3.56 (3H, m, 

2-H, 3-H), 2.38 – 2.08 (8H, m, 4-H, 3’’-H CH3, 5’’-H CH3). δC (101 MHz, CDCl3) 

167.1 (C-3’’), 159.8 (C-5’’), 153.4 (Cbz C=O), 136.1 (C-1’), 128.6 (Cbz 

aromatics), 128.3 (Cbz aromatics), 128.2 (Cbz aromatics), 128.1 (Cbz 

aromatics), 125.5 (C-6 rotamers), 125.0 (C-6 rotamers), 111.0 (C-4’’), 103.4 

(C-5 rotamers), 103.2 (C-5 rotamers), 69.9 (C-3 rotamers), 69.8 (C-3 

rotamers), 67.8 (Cbz CH2), 67.7 (Cbz CH2), 59.4 (C-1’’), 45.0 (C-2 rotamers), 

44.0 (C-2 rotamers), 28.5 (C-4 rotamers), 27.9 (C-4 rotamers), 10.9 (C-5’’ 

CH3), 10.0 (C-3’’ CH3) (24 signals observed). HRMS [M+H]+ C19H23N2O4+ calc. 

343.1652 found 343.1659.  
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Benzyl 3-(((3-fluorophenyl)carbamoyl)oxy)-3,4-dihydropyridine-1(2H)-
carboxylate (130) 

 

Following general procedure 3, employing benzyl 3-(((3-

fluorophenyl)carbamoyl)oxy)piperidine-1-carboxylate (1.70 g, 4.57 mmol) to 

give a crude residue. Purification of the crude by flash column 

chromatography (5:95 EtOAc−hexane) gave enecarbamate 130 as a viscous 

colourless oil (1.07 g, 63%, mixture of rotamers). Rf 0.27 (10:90 

Hexane−EtOAc); νmax/cm-1 (film) 1760, 1702, 1600; δH (400 MHz, CDCl3) 

7.39-7.22 (6H, m, 2’-H, 3’-H, 4’-H and 5’’-H), 7.00-6.98 (1H, m, 6’’-H), 6.92 

(1H, dd, J 8.4, 6-H), 6.77-6.74 (1H, m, 4’’-H), 6.68 (1H, bs, 2’’-H), 5.30-5.18 

(3H, m, Cbz CH2, 3-H), 4.93-4.81 (1H, m, 5-H), 4.03 (1H, dd, J 13.1, 4.6, 2-

H), 3.58 (1H, d, J 13.2, 2-H), 2.48-2.44 (1H, m, 4-HA), 2.27-2.23 (1H, m, 4-

HB); δC (101 MHz, CDCl3) 164.3 (d, JC-F  244.1, C-3’’), 153.7 (C-3 carbamate 

C=O), 153.4 (Cbz C=O), 152.3 (Cbz C=O), 139.3 (d, JC-F 11, C-2’’ rotamers), 

139.2 (C-1’’ rotamers), 136.0 (C-1’), 130.2 (d, J 8.8, C-5’’), 128.6 (Cbz 

aromatic), 128.3 (Cbz aromatic), 128.2 (Cbz aromatic), 128.1 (Cbz aromatic), 

125.5 (C-6 rotamers), 125.0 (C-6 rotamers), 113.8 (C-5 rotamers), 110.3 (d, J 

20.1, C-4’’), 106.1 (d, J 20.1, C-2’’), 102.9 (C-5 rotamers), 102.5 (C-5 

rotamers), 67.9 (Cbz CH2), 67.7 (Cbz CH2), 66.3 (C-3), 45.2 (C-2 rotamers), 

45.0 (C-2 rotamers), 27.4 (C-4 rotamers), 27.2 (C-4 rotamers) (26 signals 

observed); HRMS [M+Na]+ C20H19FN2NaO4+ calc. 393.1221 found 393.1215.  
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Azepan-1-yl(2-methoxybenzo[d][1,3]dioxol-5-yl)methanone (135) 

 
Following general procedure 3, employing azepan-1-yl(benzo[d][1,3]dioxol-5-

yl)methanone (1.13 g, 4.57 mmol) to give a crude residue. Purification of the 

crude by flash column chromatography eluting with 5:95 EtOAc−hexane to 

give enecarbamate 135 as a viscous colourless oil (899 mg, 71%, mixture of 

rotamers).νmax/cm-1 (film) 1754, 1676; δH (400 MHz, CDCl3) 6.87 (1H, s, 4’-H), 

6.87 (1H, s, 6’-H), 6.85 (1H, s, 2’-H), 6.81 (1H, s, 7’-H), 3.62 – 3.51 (4H, m, H-

2), 3.34 (3H, s, ether CH3), 1.75-1.54 (8H, m, 3’-H, 4’-H); δC (101 MHz, CDCl3) 

170.8 (Amide C=O), 146.7 (C-3’), 145.9 (C-1’), 131.2 (C-5’), 120.7 (C-6’), 

119.5 (C-2’), 107.9 (C-4’ or C-7’), 107.2 (C-4’ or C-7’), 50.1 (Ether C-O, CH3), 

46.5 (C-2), 28.0 (C-3 or C-4), 27.3 (C-3 or C-4); HRMS [M+H]+ C15H20NO4+ 

calc. 278.1398 found 278.1390. 
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6-(azetidin-1-yl)-9H-purine (152) 

 

Following general procedure 4, employing azetidine hydrochloride (362 mg, 

3.90 mmol) and heated at reflux for 1 h. The solid was isolated through 

filtration using a sintered funnel. The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 152 as a brown 

solid (540 mg, 95%). mp 198°C (EtOH); νmax/cm-1 (film) 3052, 2993, 2577 and 

1367; δH (500 MHz, DMSO-d6) 8.17 (1H, s, 2-H), 8.07 (1H, s, 8-H), 4.34 (4H, 

m, 2’-H), 2.42 (2H, tt, J 8.5, 7.0, 3’-H); δC (125 MHz DMSO-d6) 155.0 (C-6), 

152.6 (C-2), 150.9 (C-4), 139.7 (C-8), 119.4 (C-5), 51.8 (C-2’), 17.6 (C-3’); 

HRMS [M+H]+ C8H10N5+ calc. 176.0941, found 176.0940. 
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6-(9H-purin-6-yl)-2-oxa-6-azaspiro[3.3]heptane (153) 

 
Following general procedure 4, employing 2-oxa-6-azaspiro[3.3]heptane 

hydrochloride (526 mg, 3.90 mmol) and heated at reflux for 2 h. The solid was 

isolated by filtration using a sintered funnel. The crude solid was washed with 

MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 153 as a 

colourless solid (691 mg, 98%). mp 231 °C (EtOH); νmax/cm-1 (film) 3066, 

3017, 2948, 2591 and 1573; δH (500 MHz, DMSO-d6) 12.96 (1H, s, 9-H), 8.19 

(1H, s, 2-H), 8.11 (1H, s, 8-H), 4.75 (4H, s, 1’-H), 4.60 (4H, s, 5’-H); δC (125 

MHz DMSO-d6) 154.8 (C-6), 152.6 (C-2), 151.0 (C-4), 139.9 (C-8), 119.6 (C-

5), 80.3 (C-1’), 61.0 (C-3’), 39.9 (C-2’); HRMS [M+H]+ C10H12N5O+ calc 

218.1036,  found 218.1031. 
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6-(pyrrolidin-1-yl)-9H-purine (154) 

 
Following general procedure 4, employing pyrrolidine (737 mg, 3.90 mmol) 

and heated at reflux for 3 h. The solid was isolated through filtration using a 

sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) and 

dichloromethane (2 × 25 mL) to give purine 154 as a colourless solid (559 

mg, 91%). mp 204 °C (EtOH); νmax/cm-1 (film) 3178, 3005, 2863 and 1628; δH 

(500 MHz, DMSO-d6) 8.21 (1H, s, 2-H), 8.12 (1H, s, 8-H), 5.21 (2H, br s, 2’-

H2), 2.72 (2H, m, 2’-H3), 1.94 (2H, m, 3’-H2), 1.56 (2H, m, 3’-H3); δC (125 MHz 

DMSO-d6) 153.0 (C-6), 152.9 (C-2), 151.5 (C-4), 139.2 (C-8), 119.3 (C-5), 

60.4 (C-2’), 28.3 (C-3’); HRMS [M+H]+  C9H12N5+  calc., 190.1098 found 

190.1094. 
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6-((3aR,6aS)-hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-9H-purine (155) 

 
Following general procedure 4, employing (3aR,6aS)-octahydrocyclo-

penta[c]pyrrole (432 mg, 3.90 mmol) and heated at reflux for 2.5 h. The solid 

was isolated through filtration using a sintered funnel. The crude solid was 

washed with MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give 

purine 155 as a colourless solid (707 mg, 95%). mp 212 °C (EtOH); νmax/cm-1 

(film) 3057, 2947, 2859, 2673 and 1581; δH (500 MHz, DMSO-d6) 12.96 – 

12.82 (1H, m, 9-H), 8.16 (1H, s, 2-H), 8.04 (1H, s, 8-H), 4.16 – 3.94 (2H, m, 

2’-H2), 3.68 – 3.46 (2H, m, 2’-H3), 2.31 (2H, m, 3a’-H), 1.72 – 1.27 (6H, m, 3’-

H, 4’-H); δC (125 MHz DMSO-d6) 153.5 (C-6), 152.6 (C-2), 151.1 (C-4), 138.6 

(C-8), 119.6 (C-5), 52.9 (C-2’), 37.6 (C-3a’), 26.0 (C-3’), 22.9 (C-4’); HRMS 

[M+H]+  C12H16N5+  calc., 230.1411 found 230.1409. 
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6-((3aR,6aS)-5-methylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-9H-purine 
(156) 

 
Following general procedure 4, employing 2-methyloctahydropyrrolo[3,4-

c]pyrrole (491 mg, 3.90 mmol) and heated at reflux for 2.5 h. The solid was 

isolated through filtration using a sintered funnel. The crude solid was washed 

with MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 156 

as a as a colourless solid (729 mg, 92%). mp 254 °C (EtOH); νmax/cm-1 (film) 

3105, 3005, 2863 and 1579; δH (500 MHz, MeOD) 8.09 (1H, s, 2-H), 7.92 (1H, 

s, 8-H), 4.62-  3.97 (4H, m, 2’-H), 3.07 – 2.90 (2H, m, 3’-H2), 2.85 – 2.68 (2H, 

m, 3’-H3), 2.47 – 2.33 (2H, m, 3a’-H), 2.24 (3H, s, 5’-H); δC (500 MHz, MeOD) 

153.8 (C-6), 152.5 (C-2), 151.2 (C-4), 138.9 (C-8), 119.6 (C-5), 50.9 (C-1’), 

49.5 (C-3’), 16.7 (C-2’) 10.1 (C-5’); HRMS [M+H]+ C12H17N6+ calc. 245.1509, 

found 245.1503. 
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6-((3aR,7aS)-hexahydro-1H-isoindol-2(3H)-yl)-9H-purine (157) 

 
Following general procedure 4, employing 2 octahydro-1H-isoindole (487 mg, 

3.90 mmol) and heated at reflux for 4 h. The solid was isolated through 

filtration using a sintered funnel.  The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 157 as a as a 

colourless solid (789 mg, 88%). mp 213 °C (EtOH); νmax/cm-1 (film) 3165, 

3015, 2822 and 1674; δH (500 MHz, DMSO-d6) 12.98 – 12.76 (1H, m, 9-H), 

8.16 (1H, s, 2-H), 8.04 (1H, s, 8-H), 4.10 – 3.93 (2H, m, 2’-H), 3.66 – 3.47 (2H, 

m, 2’-H), 2.31 (2H, m, 3a’-H), 1.70 – 1.29 (8H, m, 3’-H, 4’-H); δC (125 MHz 

DMSO-d6) 153.5 (C-6), 152.6 (C-2), 151.1 (C-4), 138.6 (C-8), 119.6 (C-5), 

52.9 (C-1’), 37.6 (C-2’), 35.6 (C-3’),  22.9 (C-4’); HRMS [M+H]+ C13H18N5+ calc 

244.1567,  found 244.1577. 
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6-(piperidin-1-yl)-9H-purine (158) 

 
Following general procedure 4, employing piperidine (659 mg, 3.90 mmol) and 

heated at reflux for 1 h. The solid was isolated through filtration using a 

sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) and 

dichloromethane (2 × 25 mL) to give purine 158 as an off-white solid (297 mg, 

45%). mp 232 °C (EtOH); νmax/cm-1 (film) 2973, 2920 and 1570; δH (500 MHz, 

DMSO-d6) 8.18 (1H, s, 2-H), 8.08 (1H, s, 8-H), 4.20 (4H, m, 2’-H), 1.68 (2H, 

m, 4’-H), 1.58 (4H, m, 3’-H); δC (125 MHz DMSO-d6) 153.6 (C-6), 152.3 (C-

2), 151.8 (C-4), 138.2 (C-8), 119.1 (C-5), 46.0 (C-2’), 26.2 (C-4’), 24.8 (C-3’); 

HRMS [M+H]+ C10H14N5 calc. 204.1244  found 204.1244. Data in accordance 

with literature.220  
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4-(9H-purin-6-yl)morpholine (159) 

 
Following general procedure 4, employing morpholine (339 mg, 3.90 mmol) 

and heated at reflux for 1 h. The solid was isolated through filtration using a 

sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) and 

dichloromethane (2 × 25 mL) to give purine 159 as a as a colourless solid 

(712 mg, 92%). mp 212 °C (EtOH); νmax/cm-1 (film) 3076, 2974, 2961, 2689 

and 1628; δH (500 MHz, DMSO-d6) δ 13.07 (1H, s, 9-H), 8.23 (1H, s, 2-H), 

8.14 (1H, s, 8-H), 4.21 (4H, m, 2’-H), 3.72 (4H, m, 3’-H); δC (125 MHz DMSO-

d6) 153.7 (C-6), 152.2 (C-2), 151.9 (C-4), 138.8 (C-8), 119.3 (C-5), 66.7 (C-

2’), 45.6 (C-3’); HRMS [M+H]+ C9H12N5O+ calc., 206.1047, found 206.1043. 

Data in accordance with reported spectra.220  
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4-(9H-purin-6-yl)piperazin-2-one (160) 

 
Following general procedure 4, employing piperazin-2-one (390 mg, 3.90 

mmol) and heated at reflux for 5 h. The solid was isolated through filtration 

using a sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 160 as a yellow solid (644 

mg, 91%). mp 196 °C (EtOH); νmax/cm-1 (film) 3156, 3000, 2823 1753 and 

1628; δH (500 MHz, DMSO-d6) 13.00 (1H, s, 9-H), 8.21 (1H, s, 2-H), 8.11 (1H, 

s, 8-H), 4.47 (2H, s, 3’-H), 3.77 (2H, t, J 5.1 , 5’-H), 3.63 (2H, t, J 5.6 , 6’-H), 

3.33 (1H, s, NH); δC (125 MHz DMSO-d6) 167.2 (C-2’), 153.0 (C-6), 151.9 (C-

2), 151.8 (C-4), 139.2 (C-8), 119.3 (C-5), 56.5 (C-3’), 48.8 (C-5’), 40.6 (C-6’); 

HRMS [M+H]+ C9H11N6O+ calc 219.0999, found 219.0997. 
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6-(4-methylpiperazin-1-yl)-9H-purine (161) 

 
Following general procedure 4, employing 1-methyl piperazine (390 mg, 3.90 

mmol) and heated at reflux for 5 h. The solid was isolated through filtration 

using a sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 161 as a colourless solid (630 

mg, 89%). mp 241 °C (EtOH); νmax/cm-1 (film) 3531, 3065, 2941, 2780, 2673 

and 1699; δH (500 MHz, DMSO-d6) 12.97 (s, 1H, 9-H), 8.18 (1H, s, 2-H), 8.09 

(1H, s,  8-H), 3.03 (2H, t, J 12.9, 2’-H2), 1.70 (4H, m, 2’-H3 3’-H2), 1.16 – 1.04 

(2H, m, 3’-H3), 0.92 (3H, s, CH3); δC (125 MHz DMSO-d6) 153.6 (C-6), 152.3 

(C-2), 151.8 (C-4), 138.2 (C-8), 119.2 (C-5), 45.3 (C-2’), 34.4 (C-3’), 31.1, 

(CH3). HRMS [M+H]+ C10H15N6+ calc., 219.1353, found 219.1363. 
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6-(2-methylpiperidin-1-yl)-9H-purine (162) 

 
Following general procedure 4, employing 2-methyl piperidine (386 mg, 3.90 

mmol) and heated at reflux for 5 h. The solid was isolated through filtration 

using a sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine §62 as a colourless needles 

(846 mg, 74%). mp 264 °C (EtOH); νmax/cm-1 (film) 3417, 3081, 2945, 2804 

and 1519; δH (400 MHz, DMSO-d6) 12.97 (1H, s, 9-H), 8.18 (1H, s, 2-H), 8.09 

(1H, s, 8-H), 3.15 – 2.99 (1H, m, 2’-H), 2.78 (2H, s, 6’-H), 1.85 – 1.38 (4H, m, 

5’-H, 4’-H), 1.21 (2H, m, 3’-H), 0.91 (3H, d, J 6.6, CH3); δC (125 MHz DMSO-

d6) 153.6 (C-6), 152.3 (C-2), 151.8 (C-4), 138.2 (C-8), 119.1 (C-5), 52.2 (C-

2’), 45.5 (C-6’), 33.3 (C-5’), 31.3 (C-3’), 25.5 (C-4’), 19.4 (CH3); HRMS [M+H]+ 

C11H16N5+ calc. 218.1411, found 218.1406. 
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Ethyl 1-(9H-purin-6-yl)piperidine-3-carboxylate (163) 

 
Following general procedure 4, employing ethyl piperidine-3-carboxylate (612 

mg, 3.90 mmol) and heated at reflux for 5 h. The solid was isolated through 

filtration using a sintered funnel. The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 163 as a colourless 

solid (867 mg, 97%). mp 215 °C (EtOH); νmax/cm-1 (film) 3288, 3069, 3019, 

2994, 2204, 2042, 1765 and 1641;  δH (500 MHz, DMSO-d6) 8.21 (1H, s, H-

1), 8.12 (1H, s, 8-H), 5.21 (2H, app s, 2’-H), 4.08 (2H, q, J 7, OCH2), 3.32 (2H, 

m, 6’-H), 2.71 (1H, app. tt, J 11.0, 4.0 , 3’-H), 1.94 (2H, app. dt, J 13.3, 3.7 , 

5’-H), 1.56 (2H, app. dtd, J 13.2, 11.3, 4.1 , 4’-H), 1.19 (3H, br, OCH2CH3); δC 

(125 MHz DMSO-d6) 174.5 (ester C=O), 153.6 (C-6) 152.3 (C-2), 151.9 (C-4), 

138.5 (C-8), 119.3 (C-5), 60.4 (ester OCH2), 44.4 (C-2’), 40.8 (C-6’), 40.2 (C-

3’), 39.8 (C-4’) 28.3 (C-5’), 14.6 (ester OCH2CH3); HRMS [M+H]+ C13H18N5O2+ 

calc. 276.1465, found 276.1478. 
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1-(4-(9H-purin-6-yl)piperazin-1-yl)ethenone (164) 

 
Following general procedure 4, employing 1-(piperazin-1-yl)ethanone (499 

mg, 3.90 mmol) and heated at reflux for 2 h. The solid was isolated through 

filtration using a sintered funnel. The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 164 as a colourless 

solid (295 mg, 37%). mp 219 °C (EtOH); νmax/cm-1 (film) 3123, 3001, 2821, 

1762 and 1628; δH (500 MHz, DMSO-d6) 8.26 (1H, s, 2-H), 8.18 (1H, s, 8-H), 

4.35 (4H, m, 3’-H), 3.25 (4H, m, 2’-H), 2.89 (3H, s, acetyl CH3); δC (125 MHz 

DMSO-d6) 210.03 (amide C=O) 153.4 (C-6), 152.2 (C-2), 152.1 (C-4) 139.1 

(C-8), 119.4 (C-5), 46.1 (C-3’), 45.8 (C-2’), 34.3 (acetyl CH3); HRMS [M+H]+ 

C11H15N6O calc. 247.1302 found 247.1302. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

N

N N
H

N1

2
4

56 7

8
9

3'

2'N

O



 

 

- 239 - 

N,N-dimethyl-1-(9H-purin-6-yl)piperidin-4-amine (165) 

 
Following general procedure 4, employing N,N-dimethylpiperidin-4-amine 

(499 mg, 3.90 mmol) and heated at reflux for 7 h. The solid was isolated 

through filtration using a sintered funnel. The crude solid was washed with 

MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 165 as a 

yellow solid (607 mg, 76%). mp 213 °C (EtOH); νmax/cm-1 (film) 3129, 3016, 

2758 and 1599; δH (500 MHz, DMSO-d6) 12.99 (1H, s, 9-H), 8.19 (1H, s, 2-H), 

8.10 (1H, s, 8-H), 5.37 (4H, br s, 2’-H), 3.07 (4H, br s, 3’-H), 2.41 (1H, tt, J 

11.0, 3.7 , 4’-H), 2.17 (6H, s, N-CH3); δC (125 MHz DMSO-d6) 153.5 (C-6), 

152.3 (C-2), 151.9 (C-4), 138.4 (C-8), 119.2 (C-5), 62.0 (C-2’), 44.3 (C-4’), 

41.8 (N-CH3), 28.6 (C-3’); HRMS [M+H]+ C12H19N6+ calc. 247.1667, found 

247.1680. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

N

N N
H

N1

2

3
4

56 7

8
9

3'
2'

4'
N



 

 

- 240 - 

6-(4-(methylsulfonyl)piperazin-1-yl)-9H-purine (166) 

 
Following general procedure 4, employing 1-(methylsulfonyl)piperazine (640 

mg, 3.90 mmol) and heated at reflux for 7 h. The solid was isolated through 

filtration using a sintered funnel. The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 166 as a brown 

solid (257 mg, 28%). mp 243 °C (EtOH); νmax/cm-1 (film) 3020, 2951, 2691 and 

1574; δH (500 MHz, DMSO-d6) 8.26 (1H, s, 2-H), 8.18 (1H, s, 8-H), 4.35 (4H, 

m, 2’-H), 3.25 (4H, m, 3’-H), 2.89 (3H, s, mesyl CH3); δC (125 MHz DMSO-d6) 

153.4 (C-6), 152.1 (C-2), 151.1 (C-4) 139.1 (C-8), 119.4 (C-5), 45.8 (C-2’), 

44.1 (C-3’), 34.3 (mesyl CH3); HRMS [M+H]+ C10H15N6O2S+ calc. 283.0982, 

found 283.0982.  
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6-(7-azabicyclo[2.2.1]heptan-7-yl)-9H-purine (167) 

 
Following general procedure 4, employing 7-azabicyclo[2.2.1]heptane (378 

mg, 3.90 mmol) and heated at reflux for 6 h. The solid was isolated through 

filtration using a sintered funnel. The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 167 as a colourless 

solid (384 mg, 55%). mp 223 °C (EtOH); νmax/cm-1 (film) 3188, 3010, 2861 and 

1654; δH (500 MHz, DMSO-d6) 8.25 (1H, s, 2-H), 8.17 (1H, s, 8-H), 3.33 (2H, 

s, 2’-H), 1.79 – 1.61 (4H, m, 3’-H2), 1.52 (4H, m, 3’-H3); δC (125 MHz DMSO-

d6) 154.0 (C-6), 152.6 (C-2), 151.7 (C-4), 139.9 (C-8), 120.3 (C-5), 56.5 (C-

2’), 29.9 (C-3’); HRMS [M+H]+ C11H14N5+ calc. 216.1254 found 216.1255. 
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6-(azepan-1-yl)-9H-purine (168) 

 
Following general procedure 4, employing azepane (386 mg, 3.90 mmol) and 

heated at reflux for 2 h. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 168 as a colourless solid (592 

mg, 84%). mp 207 °C (EtOH); νmax/cm-1 (film) 3066, 2918, 2847, 2763, 2553 

and 1571; δH (500 MHz, DMSO-d6) 12.92 (1H, s, 9-H), 8.17 (1H, s, 2-H), 8.07 

(1H, s, 8-H), 4.34 (2H, br s, 2’-H2), 3.84 (2H, br s, 2’-H3), 1.83 – 1.73 (4H, m, 

3’-H2, 4’-H3), 1.50 (4H, m, 3’-H3, 4’-H3); δC (125 MHz DMSO-d6) 154.0 (C-6), 

152.4 (C-2), 151.6 (C-4), 138.4 (C-8), 119.0 (C-5), 49.5 (C-2’), 29.2 (C-3’), 

27.2 (C-4’); HRMS [M+H]+ C11H16N5+ calc. 218.1411 found, 218.1400. 
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4-(9H-purin-6-yl)-1,4-oxazepane (169) 

 
Following general procedure 4, employing 1,4-oxazepane (393 mg, 3.90 

mmol) and heated at reflux for 4 h. The solid was isolated through filtration 

using a sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 169 as a colourless solid (640 

mg, 90%).  mp 285 °C (EtOH); νmax/cm-1 (film) 3076, 3002, 2950, 2700 and 

1696; δH (500 MHz, DMSO-d6) 13.00 (1H, s, 9-H), 8.21 (1H, s, 2-H), 8.11 (1H, 

s, 8-H), 4.47 (2H, s, 2’-H), 3.98 (2H, s, 7’-H), 3.77 (2H, t, J 5.1, 3’-H), 3.63 (2H, 

t, J 5.6, 5’-H), 1.97 – 1.89 (2H, m, 6’-H); δC (125 MHz DMSO-d6) 153.9 (C-6), 

152.4 (C-2), 151.7 (C-4), 138.8 (C-8), 119.1 (C-5), 70.7 (C-2’), 69.3 (C-7’), 

49.7 (C-3’) 47.9 (C-5’), 29.0 (C-6’); HRMS [M]+ C10H13N5O+ calc., 219.1125, 

found 219.1126. 
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1-(4-(9H-purin-6-yl)-1,4-diazepan-1-yl)ethenone (170) 

 
Following general procedure 4, employing 1-(1,4-diazepan-1-yl)ethanone  

(553 mg, 3.90 mmol) and heated at reflux for 4 h. The solid was isolated 

through filtration using a sintered funnel. The crude solid was washed with 

MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 170 as a 

colourless solid (710 mg, 84%). mp 229 °C (EtOH); νmax/cm-1 (film) 3187, 

3012, 2812, 1782 and 1628; δH (500 MHz, DMSO-d6) 8.21 (1H, s, 2-H), 8.13 

(1H, s, 8-H), 4.73 – 3.75 (4H, m, 2’-H, 7’-H), 3.68 (2H, m, 3’-H), 3.43 (2H, m, 

5’-H), 2.05 – 1.71 (5H, m, 6’-H, acetyl CH3); δC (125 MHz DMSO-d6) 210.1 

(acetyl C=O), 153.6 (C-6), 152.4 (C-2), 151.7 (C-4), 139.0 (C-8), 119.1 (C-5), 

50.0 (C-2’), 49.5 (C-7’), 47.2 (C-3’), 44.7 (C-5’), 36.4 (C-6’), 21.5 (acetyl CH3); 

HRMS [M+H]+ C12H17N6O+  calc. 261.1458, found 261.1460. 
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6-(4-(methylsulfonyl)-1,4-diazepan-1-yl)-9H-purine (171) 

 
Following general procedure 4, employing 1-(methylsulfonyl)-1,4-diazepane 

(694 mg, 3.90 mmol) and heated at reflux for 4 h. The solid was isolated 

through filtration using a sintered funnel. The crude solid was washed with 

MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 171 as a 

colourless solid (577 mg, 60%). mp 232 °C (EtOH); νmax/cm-1 (film) 3006, 

2949, 2567 and 1575;  δH (500 MHz, DMSO-d6) 8.23 (1H, s, 2-H), 8.14 (1H, 

s, 8-H), 4.70 – 3.78 (4H, m, 7-H’, 5’-H), 3.50 (2H, t, J 5.5 , 2’-H), 3.41 – 3.17 

(2H, t, J 5.5 , 3’-H), 2.82 (3H, s, mesyl CH3), 1.92 (2H, app. s, 6’-H); δC (125 

MHz DMSO-d6) 153.6 (C-6), 152.4 (C-2), 151.8 (C-4), 139.1 (C-8), 119.1 (C-

5), 50.5 (C-2’), 46.9 (C-7’), 46.0 (C-3’), 44.5 (C-5’), 37.3 (mesyl CH3), 29.6 (C-

6’); HRMS [M+H]+ C11H17N6O2S+ calc.  297.1139, found 297.1148.  
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Isoquinoline-5-sulfonyl chloride (173) 

 

A flask was charged with isoquinoline-5-sulfonic acid (3.20 g, 15.30 mmol) 

dissolved in SOCl2 (20 mL), After addition of DMF (0.5 mL) the mixture was 

heated to reflux for 1 h. Excess SOCl2 was removed under pressure, the 

resulting solid was re-suspended in DCM, filtered over a glass-filter and 

washed with CH2Cl2 to yield the product (3.83 g, 95%. νmax/cm-1 (film) 1201; 

δH (500 MHz, DMSO-d6 10.15 (br, 1H, 1-H), 9.22 – 9.11 (m, 1H, 4-H), 8.86 

(dd, J = 7.1, 1.5 Hz, 1H, 3-H), 8.59 – 8.44 (m, 2H, 6-H, 8-H), 7.98 (ddd, J = 

10.7, 8.3, 7.2 Hz, 1H, 7-H). δC (125 MHz, DMSO-d6) 147.8 (C-1), 144.2 (C-3), 

134.6 (C-6, C-8), 134.3 (C-6, C-8), 132.9 (C-5), 132.3 (C-4a), 130.8 (C-7), 

128.0 (C-7), 125.2 (C-4). Spectral data in accordance with literature. 225 
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5-(azetidin-1-ylsulfonyl)isoquinoline (174) 

 
Following general procedure 5, employing azetidine hydrochloride (299 mg, 

3.21 mmol) and stirred at room temperature for 18 h. The solid was dissolved 

in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 174 was isolated as a 

yellow solid (438 mg, 80%). Rf 0.40 (EtOAc). mp 233 °C (EtOH); νmax/cm-1 

(film) 2946, 2920, 2402, 2074, 1657 and 1351; δH (500 MHz, DMSO-d6) 9.31 

(1H, app. d, J 1.0, 1-H), 8.54 (1H, d, J 6.2, 4-H), 8.47 (1H, dt, J 6.2, 1.0, 3-H), 

8.39 – 8.33 (2H, m, 6-H, 8-H), 7.77 (1H, d, 7.4, 7-H), 3.81 – 3.76 (4H, d, J 7.7, 

2’-H), 2.04 (2H, d, J 7.7, 3’-H). δC (125 MHz, DMSO-d6) 152.9 (C-1), 143.5 (C-

3), 134.7 (C-6, C-8), 134.3 (C-6, C-8), 132.4 (C-5), 131.3 (C-8a), 129.3 (C-

4a), 126.4 (C-7), 118.3 (C-4), 50.2 (C-2’), 14.6 (C-3’). HRMS [M+H]+ 

C12H13N2O2S+ 249.0698 found, 249.0708. 
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6-(isoquinolin-5-ylsulfonyl)-2-oxa-6-azaspiro[3.3]heptane (175)  

 

Following general procedure 5, employing 2-oxa-6-azaspiro[3.3]heptane 

hydrochloride (433 mg, 3.21 mmol) and stirred at room temperature for 18 h. 

The solid was dissolved in CH2Cl2 (5 mL), dry loaded onto silica and purified 

by flash column chromatography eluting with EtOAc, to give fragment 175 was 

isolated as a white solid (717 mg, 77%). Rf 0.41 (EtOAc). mp 221 °C (EtOH); 

νmax/cm-1 (film) 2951, 2923, 2485, 1701 and 1328; δH (500 MHz, DMSO-d6) 
9.21 (1H, app. d, J 1.0, 1-H), 8.45 (1H, d, J 6.2, 4-H), 8.34 (1H, dt, J 6.2, 1.0, 

3-H), 8.27 (2H, m, 6-H, 8-H), 7.67 (1H, m, 6-H), 4.46 (4H, s, 2’-H), 3.88 (4H, 

s, 4’-H); δC (125 MHz, DMSO-d6) 152.9 (C-1), 143.7 (C-3), 134.7 (C-6, C-8), 

134.5 (C-6, C-8), 127.1 (C-5), 126.3 (C-8a), 125.4 (C-4a) 124.3 (C-7), 118.2 

(C-4), 80.0 (C-2’), 58.7 (C-4’), 37.3 (C-3’); HRMS [M+H]+ C14H16N2O3S+ calc. 

292.0887 found, 292.0886.  
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5-(pyrrolidin-1-ylsulfonyl)isoquinoline (176) 

 
Following general procedure 5, employing pyrrolidine (228 mg, 3.21 mmol) 

and stirred at room temperature for 18 h. The solid was dissolved in CH2Cl2 

(5 mL), dry loaded onto silica and purified by flash column chromatography 

eluting with EtOAc, to give fragment 176 as a white solid (382 mg, 66%). Rf 

0.28 (EtOAc). mp 230 °C (EtOH); νmax/cm-1 (film) 3433, 3225 2985, 2923, 

2866, 2727, 2678, 1813 and 1372; δH (500 MHz, MeOD) 9.28 (1H, app. d, J 

1.0, 1-H), 8.56 (1H, dt, J 6.2, 1.0, 3-H), 8.51 (1H, d, J 6.2, 4-H), 8.36 – 8.28 

(2H, m, 6-H, 8-H), 7.74 (1H, dd, J 8.2, 7.4, 7-H), 3.23 (4H, td, J 4.4, 2.5, 2’-H), 

1.77 – 1.66 (4H, m, 3’-H); δC (125 MHz, DMSO-d6)  152.9 (C-1), 143.5 (C-3), 

133.70 (C-6, C-8), 133.69 (C-6, C-8), 133.3 (C-5), 132.1 (C-4a), 129.4 (C-8a), 

126.4 (C-7), 118.2 (C-4), 47.4 (C-2’), 25.1 (C-3’); HRMS [M+H]+ C13H15N2O2S+ 

calc., 263.0859 found, 263.0859. 
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5-(((3aR,6aS)-hexahydrocyclopenta[c]pyrrol-2(1H)-yl)sulfonyl)-
isoquinoline (177)  

 

Following general procedure 5, employing (3aR,6aS)-

octahydrocyclopenta[c]pyrrole hydrochloride (417 mg, 3.21 mmol) and stirred 

at room temperature for 18 h. The solid was dissolved in CH2Cl2 (5 mL), dry 

loaded onto silica and purified by flash column chromatography eluting with 

EtOAc, to give fragment 177 was isolated as a brown solid (437 mg, 71%). Rf 

0.50 (EtOAc). mp 199 °C (EtOH); νmax/cm-1 (film) 3497, 3441, 2956, 2618, 

2087, 1652 and 1356; δH (500 MHz, MeOD) 9.40 (1H, s, 1-H), 8.73 – 8.65 

(1H, m, 3-H), 8.63 (1H, m, 4-H), 8.45 (2H, m, 6-H, 8-H), 7.87 (1H, m, 7-H), 

3.25 (2H, dq, J 10.8, 6.5, 2’-H2), 3.03 (2H, dd, J 9.8, 3.1, 2’-H3), 2.59 (2H, m, 

4’-H2), 1.84 – 1.69 (2H, m, 4’-H3), 1.61 – 1.50 (1H, m, 5’-H2), 1.44 (1H, m, 5’-

H3), 1.31 (2H, m, 3’-H). δC (125 MHz, DMSO-d6) 152.9 (C-1), 143.5 (C-3), 

134.5 (C-6, C-8), 134.0 (C-7, C-8), 131.2 (C-5), 130.5 (C-8a), 129.1 (C-4a), 

126.3 (C-7), 118.3 (C-4), 54.0 (C-2’), 42.7 (C-3’), 32.4 (C-4’), 25.6 (C-5’). 

HRMS [M+H]+ C16H19N2O2S+ 303.1173 found 303.1182.  
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5-(piperidin-1-ylsulfonyl)isoquinoline (178) 

 
 

Following general procedure 5, employing piperidine (272 mg, 3.21 mmol) and 

stirred at room temperature for 18 h. 178 was isolated as white needles (201 

mg, 33%). Rf 0.30 (EtOAc). mp 228 °C (EtOH); νmax/cm-1 (film) 3356, 3073, 

2952, 1685 and 1342; δH (500 MHz, DMSO-d6) 9.55 (1H, br, 1-H), 8.71 (1H, 

app. d, J 7.2, 3-H), 8.51 (1H, d, J 7.2, 4-H), 8.40 – 8.36 (2H, m, 6-H, 8-H), 7.91 

– 7.88 (1H, m, 7-H), 3.09 (4H, t, J 5.4, 2’-H), 1.49 (4H, m, 3’-H), 1.38 (2H, m, 

4’-H); δC (125 MHz, DMSO-d6) 156.9 (C-1), 147.4 (C-3), 138.3 (C-6, C-8), 

137.7 (C-6, C-8), 136.7 (C-5), 135.9 (C-8a), 133.3 (C-4a), 130.3 (C-7) 122.0 

(C-4), 46.5 (C-2’), 25.4 (C-3’), 23.3 (C-4’); HRMS [M+H]+ C14H17N2O2S+ 

277.1016, found 277.1012. 
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4-(isoquinolin-5-ylsulfonyl)morpholine (179)  

 

Following general procedure 5, employing piperidine (279 mg, 3.21 mmol) and 

stirred at room temperature for 18 h. The solid was dissolved in CH2Cl2 (5 

mL), dry loaded onto silica and purified by flash column chromatography 

eluting with EtOAc, to give fragment 179 was isolated as a brown oil (381 mg, 

62%). Rf 0.25 (EtOAc). mp 219 °C (EtOH); νmax/cm-1 (film) 3099, 2854, 1696 

and 1340; δH (500 MHz, DMSO-d6) 9.52 (1H,  dd, J 1.2, 0.9, 1-H), 8.71 (1H, 

d, J 6.2, 4-H), 8.54 (1H, dt, J 8.2, 1.0, 3-H), 8.45 (1H, dd, J 6.2, 1.0, 6-H), 8.38 

(1H, app. dd, J 7.4, 1.2, 8-H), 7.91 (1H, m, 7-H), 3.66 – 3.55 (4H, m, 2’-H), 

3.12 – 2.98 (4H, m, 3’-H). δC (125 MHz, DMSO-d6) 153.6 (C-1), 144.4 (C-3), 

134.8 (C-6, C-8), 134.8 (C-6, C-8), 132.3 (C-8a), 131.7 (C-5), 129.2 (C-4a), 

127.3 (C-7), 117.6 (C-4), 66.0 (C-2’), 45.9 (C-3’). HRMS [M+H]+ C13H15N2O3S+ 

calc., 279.0808 found 279.0813.  
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4-(isoquinolin-5-ylsulfonyl)piperazin-2-one (180)  

 

Following general procedure 5, employing piperazin-2-one (321 mg, 3.21 

mmol) and stirred at room temperature for 18 h. The solid was dissolved in 

CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 180 was isolated as a 

yellow solid (495 mg, 77%). Rf 0.22 (EtOAc). mp 182 °C (EtOH); νmax/cm-1 

(film) 3301, 2912, 2893, 2421, 2056, 1682 and 1336; δH (500 MHz, MeOD) 

9.31 (1H, app. d, J 0.9, 1-H), 8.55 (1H, d, J 6.2, 4-H), 8.47 (1H, dt, J 6.2, 0.9, 

3-H), 8.44 – 8.34 (2H, m, 6-H, 8-H), 7.78 (1H, dd, J 8.2, 7.4, 7-H), 4.75 (2H, 

m, 3’-H), 3.71 (2H, m, 6’-H), 3.44 – 3.38 (2H, m, 5’-H). δC (125 MHz, MeOD) 

166.8 (amide C=O), 153.1 (C-1), 143.9 (C-3), 134.5 (C-6, C-8), 133.6 (C-6, C-

8) 133.1 (C-5), 131.8 (C-8a), 129.4 (C-4a), 126.4 (C-7), 118.0 (C-4), 41.7 (C-

3’), 40.6 (C-6’), 40.2 (C-5’). HRMS [M+H]+ C13H14N3O3S+ calc., 292.0761 

found, 292.0762.  
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5-((1R,5S)-3-azabicyclo[3.1.0]hexan-3-ylsulfonyl)isoquinoline (181)  

 

Following general procedure 5, employing (1R,5S)-3-azabicyclo[3.1.0]hexane 

hydrochloride (382 mg, 3.21 mmol) and stirred at room temperature for 18 h. 

181 was isolated as a white solid (284 mg, 47%). Rf 0.41 (EtOAc). mp 192 °C 

(EtOH); νmax/cm-1 (film) 3263, 2941, 2856, 2412, 2073, 1676 and 1375; δH 

(500 MHz, DMSO-d6) 9.48 (1H, br, 1-H), 8.69 (1H, d, J 6.1, 4-H), 8.48 (1H, dt, 

J 8.3, 1.1, 3-H), 8.42 – 8.32 (2H, m, 6-H, 8-H), 7.86 (1H, d, J 8.2, 7.4, 7-H), 

3.44 (2H, d, J 8.5, 7.4, 1’-H), 3.18 (2H, dt, J 9.6, 1.7, 2’-H), 1.47 (2H, dddd, J 

7.6, 3.9, 2.3, 1.2, 3’-H), 0.51 (2H, m, J 7.7, 4.8, 4’-H); δC (125 MHz, DMSO-

d6) 154.0 (C-1), 145.4 (C-3), 134.6 (C-6, C-8), 134.1 (C-6, C-8), 132.5 (C-5), 

131.5 (C-8a), 129.2 (C-4a), 127.1 (C-7), 117.6 (C-4), 49.8 (C-2’), 15.6 (C-3’), 

7.5 (C-4’); HRMS [M+H]+ C14H15N2O2S+ calc., 275.0860 found 275.0866.  
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1-(4-(isoquinolin-5-ylsulfonyl)piperazin-1-yl)ethenone (182) 

 

Following general procedure 5, employing 1-(piperazin-1-yl)ethanone (410 

mg, 3.21 mmol) and stirred at room temperature for 18 h. The solid was 

dissolved in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 182 was isolated as a 

white solid (535 mg, 76%). Rf 0.30 (10% MeOH in EtOAc). mp 189 °C (EtOH); 

νmax/cm-1 (film) 3190, 2952, 2880, 2492, 1780 1620 and 1351; δH (500 MHz, 

MeOD) 9.29 (1H, dd, J 1.1, 0.9, 1-H), 8.56 – 8.47 (2H, m, 3-H, 4-H), 8.37 – 

8.33  (2H, m, 6-H, 7-H), 7.76 (1H, app. dd, J 8.2, 1.1, 8-H), 3.50 (2H, dt, J 5.2, 

2’-H2), 3.46 (2H, dt, J 5.2, 2’-H3) 3.15 – 3.09 (2H, m, 3’-H2), 3.09 – 3.03 (2H, 

m, 3’-H3), 1.91 (3H, s, CH3). δC (125 MHz, MeOD) 170.4 (acetyl C=O), 153.1 

(C-1), 143.8 (C-3), 134.8 (C-6, C-8), 134.4 (C-6, C-8), 131.9 (C-5), 131.8 (C-

4a), 129.3 (C-8a), 126.4 (C-7), 118.0 (C-4), 45.4 (C-2’, C-3’), 45.2 (C-2’, C-3’), 

19.6 (acetyl CH3). HRMS [M+H]+ C15H18N3O3S+ calc. 320.1074 found, 

320.1069. 
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5-(azepan-1-ylsulfonyl)isoquinoline (183) 

 
Following general procedure 5, employing azepane (449 mg, 3.21 mmol) and 

stirred at room temperature for 18 h. The solid was dissolved in CH2Cl2 (5 

mL), dry loaded onto silica and purified by flash column chromatography 

eluting with EtOAc, to give fragment 183 as a brown solid (69.1 mg, 70%). Rf 

0.43 (EtOAc). mp 231 °C (EtOH); νmax/cm-1 (film) 2922, 2855 and 1351; δH 

(500 MHz, MeOD) 9.27 (1H, d, J 1.0, 1-H), 8.51 (1H, dd, J 6.2, 1.5, 4-H), 8.44 

(1H, d, J 6.2, 3-H, 8.26 (2H, m, 6-H, 8-H), 7.71 (1H, app. d, J 7.4, 7-H), 3.32 

(4H, td, J 6.0, 1.7, 2’-H), 1.68 – 1.58 (4H, m, 3’-H), 1.58 – 1.48 (4H, m, 4’-H). 

δC (125 MHz, MeOD) 152.9 (C-1), 143.4 (C-3), 134.9 (C-5), 133.3 (C-6, C-8), 

132.7 (C-6, C-8), 131.7 (C-4a), 129.4 (C-8a), 126.4 (C-7), 118.2 (C-4), 29.1-

29.0 (C-2’, C-3’), 26.5 (C-4’). HRMS [M+H]+ C15H19N2O2S+ 291.1172 found, 

291.1186. 
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4-(isoquinolin-5-ylsulfonyl)-1,4-oxazepane (184)  

 

Following general procedure 5, employing 1,4-oxazepane (324 mg, 3.21 

mmol) and stirred at room temperature for 18 h. The solid was dissolved in 

CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 184 was isolated as a 

white solid (509 mg, 79%). Rf 0.48 (10:90 MeOH−EtOAc). mp 190 °C (EtOH); 

νmax/cm-1 (film) 2823, 2620, 2419, 2021, 1660 and 1335; δH (500 MHz, MeOD) 

9.27 (1H, app. d, J 1.0, 1-H), 8.51 (1H, d, J 6.2, 4-H), 8.41 (1H, dt, J 6.2, 1.0, 

3-H), 8.28 – 8.25 (2H, m, 6-H, 8-H), 7.71 (1H, dd, J 8.3, 7.4, 7-H), 3.69 – 3.61 

(4H, m, 2’-H, 7’-H), 3.46 – 3.40 (4H, m, 3’-H, 5’-H), 1.85 – 1.76 (2H, m, 6’-H). 

δC (125 MHz, MeOD) 153.0 (C-1), 143.6 (C-3), 133.6 (C-6, C-8), 133.1 (C-6, 

C-8), 131.6 (C-8a), 129.4 (C-5), 126.4 (C-4a), 118.0 (C-7), 117.8 (C-4), 70.7 

(C-2’), 69.2 (C-7’), 50.5 (C3’), 46.4 (C5’), 30.6 (C6’). HRMS [M+H]+ 

C14H17N2O3S+ calc. 293.0965 found, 293.0973.  
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6-methyl-2-(pyrrolidin-1-yl)pyrimidin-4-amine (191) 

 
191 was isolated through procedure 6 employing pyrrolidine (160 mg, 2.25 

mmol). The solid was washed with acetone (2 × 25 mL) and dichloromethane 

(2 × 25 mL) to give the product fragment 191 as a brown solid (246 mg, 79%). 

mp 131 °C (EtOH); νmax/cm-1 (film) 3423, 3355, 2963, 2870, 2422 and 1671; 

δH (500 MHz, CDCl3) 5.68 (1H, s, 5-H), 3.64 – 3.41 (4H, m, 2’-H), 2.15 (3H, d, 

J 2.0, pyrimidine CH3), 2.02 – 1.88 (4H, m, 3’-H); δC (125 MHz, CDCl3)  169.1 

(C-4), 168.6 (C-6), 164.4 (C-2), 96.8 (C-5), 52.1 (C-2’), 29.1 (C-3’), 25.9 

(pyrimidine CH3); HRMS [M+H]+ C9H15N4+ calc., 179.1302 found 179.1311. 
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2-((3aR,6aS)-hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-6-
methylpyrimidin-4-amine (192) 

 
192 was isolated through procedure 6 employing (3aR,6aS)-

octahydrocyclopenta[c]pyrrole (330 mg, 2.25 mmol). The solid was washed 

with acetone (2 × 25 mL) and dichloromethane (2 × 25 mL) to give the product 

fragment 192 as a white solid (317 mg, 83%). mp 141 °C (EtOH); νmax/cm-1 

(film) 3483, 3390, 2344, 2450, 2392 and 1636; δH (500 MHz, DMSO-d6) 6.14 

(1H, s, 5-H), 3.57 (2H, dd, J 11.5, 6.9, 2’-H2), 3.20 (2H, dd, J 11.1, 3.8, 2’-H3), 

2.63 (4H, m, 4’-H), 2.02 (3H, d, J 1.4, CH3), 1.77 (1H, m, 5’-H2), 1.72 – 1.61 

(1H, m, 5’-H3), 1.42 (2H, m, 3’-H); δC (125 MHz, DMSO-d6) 164.6 (C-4), 164.6 

(C-6), 161.2 (C-2), 93.3 (C-5), 53.1 (C-2’), 42.6 (C-3’), 32.6 (C-4’), 25.7 (C-5’), 

24.2 (pyrimidine CH3); HRMS [M+H]+ C12H19N4+ calc., 219.1615, found 

219.1604. 
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6-methyl-2-(piperidin-1-yl)pyrimidin-4-amine (193) 
 

 
193 was isolated through procedure 6 employing piperidine (191 mg, 2.25 

mmol). The solid was isolated through filtration using a sintered funnel. The 

solid was washed with acetone (2 × 25 mL) and dichloromethane (2 × 25 mL) 

to give the product fragment 193 as a brown oil (259 mg, 77%). mp 131 °C 

(EtOH); νmax/cm-1 (film) 3450, 3365, 2991, 2900, 2389 and 1690 δH (500 MHz, 

CDCl3) 5.56 (1H, s, 5-H), 3.64 – 3.49 (4H, m, 2’-H), 2.02 (3H, s, CH3), 1.64 – 

1.51 (2H, m, 4’-H), 1.51 – 1.35 (4H, m, 3’-H). δC (125 MHz, CDCl3) 166.6 (C-

4), 163.8 (C-6), 162.0 (C-2), 92.9 (C-5), 44.8 (C-2’), 25.5 (C-3’), 24.6 (C-4’), 

23.2 (pyrimidine CH3). HRMS [M+H]+ C10H17N4+ calc., 193.1458, found 

193.1456. 
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6-methyl-2-(2-methylpiperidin-1-yl)pyrimidin-4-amine (194) 

 
194 was isolated through procedure 6 employing 2-methyl piperidine (223 mg, 

2.25 mmol). The solid was isolated through filtration using a sintered funnel. 

The solid was washed with acetone (2 × 25 mL) and dichloromethane (2 × 25 

mL) to give the product fragment 194 as a brown oil (292 mg, 81%). mp 120 

°C (EtOH); νmax/cm-1 (film) 3398, 3332, 2909, 2821, 2761 and 1680; δH (500 

MHz, CDCl3) 5.50 (1H, s, 5-H), 4.62 – 4.40 (2H, m, 6’-H), 2.64 (1H, m, 2’-H) 

2.32 (2H, m, 5’-H), 2.11 (3H, s, CH3), 1.72– 1.52 (2H, m, 3’-H), 1.52 – 1.47 

(2H, m, 4’-H), 1.47 –1.01 (3H, br, CH3); δC (125 MHz, CDCl3) 166.6 (C-4), 

163.8 (C-6), 162.0 (C-2), 92.8 (C-5), 51.3 (C-6’), 44.1 (C-2’), 33.6 (C-5’), 31.0 

(C-3’), 25.4 (C-4’), 24.2 (pyrimidine CH3), 19.4 (CH3); HRMS [M+H]+ C11H19N4+ 

207.1615 found, 207.1620. 

2-(7-azabicyclo[2.2.1]heptan-7-yl)-6-methylpyrimidin-4-amine (195) 

 
195 was isolated through procedure 6 employing 7-azabicyclo[2.2.1]heptane 

(218 mg, 2.25 mmol). The solid was isolated through filtration using a sintered 

funnel. The solid was washed with acetone (2 × 25 mL) and dichloromethane 

(2 × 25 mL) to give the product fragment 195 as a white solid (357 mg, 64%). 

mp 131 °C (EtOH); 3378, 3345, 2803, 2730, 2515 and 1676; δH (500 MHz, 

CDCl3) 5.68 (1H, s, 5-H), 4.46 (2H, m, 2’-H), 2.04 (3H, d, J 0.6, CH3), 1.71 – 

1.57 (4H, m, 3’-H2), 1.36 (4H, m, 3’-H3); δC (125 MHz, CDCl3) 165.3 (C-4), 

165.1 (C-6), 162.8 (C-2), 94.8 (C-5), 56.4 (C-2’), 48.1 (C-3’), 21.9 (CH3); 

HRMS [M+H]+ C11H17N4+ calc. 205.1459 found, 205.1452. 
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2-(azepan-1-yl)-6-methylpyrimidin-4-amine (196) 

 
196 was isolated through procedure 6 employing azepane (223 mg, 2.25 

mmol). The solid was isolated through filtration using a sintered funnel. The 

solid was washed with acetone (2 × 25 mL) and dichloromethane (2 × 25 mL) 

to give the product fragment 196 as a brown solid (278 mg, 77%). mp 140 °C 

(EtOH); 3540, 3471, 2987, 2801, 2358 and 1640; δH (500 MHz, MeOD) 5.55 

(1H, s, H5), 3.60 – 3.54 (4H,m, H2’), 2.03 (3H, d, J 0.6, CH3), 1.69 – 1.60 (4H, 

m, H2’), 1.44 (4H, dt, J  7.5, 2.7, H3’). δC (125 MHz, CDCl3) 165.1 (C-4), 164.8 

(C-6), 161.7 (C-2), 92.5 (C-5), 48.1 (C-2’), 46.6 (C-3’), 27.9 (C-4’), 26.9 

(pyrimidine CH3). HRMS [M+H]+ C11H19N4+ calc., 207.1615 found, 207.1617. 
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tert-Butyl((1R,4R)-4-hydroxycyclohexyl)carbamate) (201) 238 

 

 A solution of trans-4-aminocyclohexanol (5.00 g, 33 mmol) in 1,4-dioxane 

(100 mL) was cooled to 0 °C. After 15 min, sodium hydroxide (1.60 g, 40 

mmol) dissolved in water (40 mL) was added and allowed to cool for an 

additional 15 min. A solution of di-tert-butyl dicarbonate (7.9 g, 36 mmol) 

dissolved in 1,4-dioxane (65 mL) was then added to the solution of amino 

alcohol and allowed to stir at rt for 18 h. The reaction was quenched by the 

addition of 1 M HCl (100 mL) followed by EtOAc (150 mL). The layers were 

separated, and the aqueous layer was extracted further with EtOAc (2 × 150 

mL). The combined organic layers were washed sequentially with water (100 

mL), brine (100 mL), and dried (MgSO4) before being concentrated in vacuo 

to give a white solid (5.30 g, 75%). Note: The product can be carried forward 

to the mesylation step without further purification. Rf 0.23 (50:50 

EtOAc−hexane; KMnO4); νmax/cm-1 (film): 2932, 2921, 1700, and 1210;  1H-

NMR (500 MHz, CDCl3) 4.43 − 4.23 (1H, br s, NH), 3.52 (1H, tt, J 10.6, 4.4, 

1-H), 3.43 − 3.27 (1H, br m, 4-H), 1.94 – 1.90 (4H, m, H-2, H-3), 1.73 (1H, s, 

OH), 1.37 (9H, s, tBu), 1.36 − 1.24 (2H, m, 2-H), 1.16 − 1.02 (2H, m, 3-H); 13C-

NMR (100 MHz, CDCl3) 155.4 (Carbonyl), 79.4 (C-O), 69.9 (C4), 49.0 (C-1), 

34.1 (C-3), 31.3(C-2), 28.5 (tBu). HRMS [M+H]+ C11H22N1O3+ calc., 215.1527 

found, 215.1521. The spectral data for this compound is in accordance with 

literature. 238 
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tert-Butyl 7-azabicyclo[2.2.1]heptane-7-carboxylate (198)238  

 

 

To a solution of tert-butyl((1R,4R)-4-hydroxycyclohexyl)carbamate (3.01 g, 

13.9 mmol) in DCM (120 mL) was added triethylamine (2.9 mL, 20.9 mmol, 

1.5 eq.). The resulting solution was then cooled to 0 °C followed by the 

dropwise addition of methanesulfonyl chloride (1.6 mL, 20.9 mmol, 1.5 eq.) 

followed by stirring for 50 min at 0 °C. The reaction was quenched by the slow 

addition of sat aq. NaHCO3 solution (120 mL) with vigorous stirring. The 

reaction was then further diluted with DCM (40 mL) and sat aq. NaHCO3 (40 

mL) and then separated. The organic layer was then washed with water (60 

mL) and dried (MgSO4) before being concentrated in vacuo to give a white 

solid. The resulting product was then dissolved in dry THF (120 mL) followed 

by the addition of potassium tert-butoxide (770 mg, 7.00 mmol, 1.5 eq.). After 

2 h, an additional portion of potassium tert-butoxide was added (2.32 g, 20.7 

mmol, 1.5 eq.) and heated to 30 °C for 48 h. The reaction was cooled to 0 °C, 

quenched by the addition of 1 M HCl (50 mL), and separated. The organic 

layer was then washed with brine (30 mL), dried (MgSO4), and concentrated 

in vacuo. Flash chromatography (10:90 EtOAc−hexane) yielded the desired 

product as a clear, colourless oil (1.80 g, 66%). Note: 95% purity by 1H NMR; 

major impurity in reaction is the eliminated by-product Boc-3-amino 

cyclohexene. Rf 0.49 (10:90 EtOAc−hexane, KMnO4); νmax/cm-1 (film): 2965, 

2943, 1700, 1386, 1700, 1386, 1373, 1331, 1192, 1157 and 1100; 1H-NMR 

(500 MHz, CDCl3) 4.10 (2H, br, 1-H), 1.76 (4H, m, 2-H), 1.47 (9H, s, tBu), 1.45 

(4H, m, 2-H); 13C-NMR (100 MHz) 155.7 (carbonyl), 79.1 (C-O), 56.3 (C-1), 

29.54 (C-2, C-3), 29.49 (C-2, C-3), 27.3 (tBu). HRMS [M+Na]+ C11H19NO2Na+ 

calc., 220.1319, found 220.1324. The spectral data for this compound is in 

accordance with literature. 
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tert-Butyl-2-oxa-3-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (205)269 

 

tert-Butyl hydroxycarbamate (811 mg, 6.1 mmol) was dissolved in MeOH-H2O 

(3:1, 40 mL) and cooled to 0-5 °C. Freshly distilled cyclopentadiene (1.4 mL, 

17.4 mmol) and then NaIO4 (1.26 g, 5.9 mmol) were added, and the reaction 

was allowed to warm to room temperature and stirred 2 h. The reaction was 

cooled to 0-5 °C, more cyclopentadiene (1.0 mL, 12.5 mmol) and NaIO4 (0.76 

g, 3.5 mmol) were added, and the mixture was stirred for 30 min. The mixture 

was concentrated in vacuo to a slurry, H2O was added (2 ×	20 mL), and the 

solution was extracted with EtOAc (3 ×	20 mL). The combined organic layers 

were washed with saturated sodium thiosulfate (20 mL), H2O (20 mL), and 

brine (10 mL), dried over MgSO4, vacuum-filtered through Celite, and 

concentrated in vacuo to give a tan oil (697 mg, 58%). This material was used 

in the next reaction without further purification. Rf 0.35 (10% EtOAc−hexane; 

KMnO4); νmax/cm-1 (film) 1740; 1H-NMR (500 MHz, CDCl3) 6.33 (2H, m, 5-H, 

6-H), 5.13 (1H, app. q, J 2.1, 4-H), 4.90 (1H, app. t, J 1.9, 1-H), 1.89 (1H, app. 

dt, J 8.7, 2.0, 7-H), 1.66 (1H, app. dt, J 8.6, 1.0, 7-H), 1.36 (9H, s, tBu). 13C-

NMR (100 MHz) 158.4 (carbonyl), 134.0 (C-5, C-6), 132.8 (C-5, C-6), 83.4 (C-

4), 81.8 (C-O), 64.9 (C-1), 48.0 (C-7), 28.0 (tBu). HRMS [M+Na]+ 

C10H15NO3Na+ calc., 220.0955 found, 220.0947. Spectral data of the crude 

material was consistent with that reported in the literature.270 
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(1RS,4RS)-4-Aminocyclopent-2-enol (206) 

 

A 15:1 CH3CN:H2O solution of cycloadduct 205 (1.34 g, 6.73 mmol) was 

charged with Mo(CO)6 (1.95 g, 7.40 mmol, 1.1 eq.) and refluxed under N2 for 

3 h and the solution turned black. The heat was then removed, and the 

solution allowed to cool to rt. The mixture was concentrated in vacuo, the 

crude mixture filtered through a celite pad and concentrated to give 206 as a 

brown solid (603 mg, 45%) which was used without further purification. Rf 0.51 

(40:60 EtOAc–hexane; KMnO4). νmax/cm-1 (film): 3324, 3056, 2979, 2871, 

1700, 1675 and 1514; 1H-NMR (500 MHz, CDCl3) 6.39 – 6.36 (2H, m 2-H, 3-

H), 5.21 – 5.13 (1H, m, 1-H), 4.94 (1H, m, 4-H), 1.95 (1H, ddd, J 14.4, 8.7, 

2.1, 5-Hax), 1.70 (1H, ddd, J 14.4, 8.7, 1.5, 5-Heq), 1.53 – 1.37 (9H, br, tBu 

rotameric). 13C-NMR (100 MHz) 158.5 (carbonyl), 134.1 (C-2), 132.9 (C-3), 

83.5 (C-O), 82.0 (C-1), 65.0 (C-4), 48.1 (C-5), 28.1 (tBu). HRMS [M+Na]+ 

C10H17NNaO3+ calc., 222.1111 found, 222.1114. Spectral data in accordance 

with literature. 271 
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tert-Butyl-((1RS,4RS)-4-hydroxycyclopent-2-en-1-yl)carbamate (207) 

 

Pd/C (10% w/w, 100 mg) was added to a solution of the amine (1.10 g, 5.53 

mmol) in MeOH (50 mL), the flask was evacuated and put under a hydrogen 

atmosphere, the mixture was stirred at room temp for 18 h. The crude mixture 

was filtered through celite and concentrated in vacuo. to give a crude product 

as a tan oil, which was used without further purification (1.11 g, 95%). 

Rf 0.40 (40:60 EtOAc–hexane; KMnO4). νmax/cm-1 (film): 3029, 2846, 2852 

and 1702; 1H-NMR (500 MHz, CDCl3) 5.22 (1H, s, NH), 4.36 (1H, app. dh, J 

5.0, 2.5, 3-H), 4.04 (1H, app. d, J 9.0 Hz, 1-H), 2.68 (1H, s OH), 2.12 – 1.87 

(2H, m, 2-H, 5-H), 1.82 – 1.70 (3H, m, 4-H, 5-H), 1.62 (1H, app. dt, J 14.3, 

2.6, 2-H), 1.44 (9H, s, tBu); 13C-NMR (100 MHz) 155.5 (carbonyl), 79.1 (C-O), 

73.0 (C-1), 50.9 (C-4), 42.3 (C-5), 34.3 (C-2), 31.6 (C-3), 28.5 (tBu); HRMS 

[M+Na]+ C10H19NNaO3+ calc., 224.1268 found, 224.1270. Spectral data in 

accordance with literature. 272 
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2-Oxa-3-azabicyclo[2.2.1]hept-5-en-3-yl(phenyl)methanone (210) 

 

tert-Butyl hydroxycarbamate (5.00 g, 40.0 mmol) was dissolved in MeOH-H2O 

(3:1, 40 mL) and cooled to 0-5 °C. Freshly distilled cyclopentadiene (4.0 mL, 

60.6 mmol) and then NaIO4 (4.25 g, 10 mmol) were added, and the reaction 

was allowed to warm to room temperature and stirred 2 h. The reaction was 

cooled to 0-5 °C, more cyclopentadiene (4.0 mL, 60.6 mmol) and NaIO4 (4.25 

g, 10 mmol) were added, and the mixture was stirred for 30 min. The mixture 

was concentrated in vacuo to a slurry, H2O was added (2 ×	20 mL), and the 

solution was extracted with EtOAc (3 ×	20 mL). The combined organic layers 

were washed with saturated sodium thiosulfate (20 mL), H2O (20 mL), and 

brine (10 mL), dried over MgSO4, vacuum-filtered through Celite, and 

concentrated in vacuo to give a colourless oil (3.70 g ,46%). Rf 0.37 (50:50 

EtOAc–hexane; KMnO4). νmax/cm-1 (film): 1639; 1H-NMR (500 MHz, CDCl3) 

7.68 (2H, d, J 7.4, 2’-H), 7.36 (3H, m, 3’-H, 4’-H), 6.28 (2H, m, 1-H, 6-H), 5.22 

(2H, m, 4-H, 5-H), 2.03 (1H, d, J 9.0, 7-H), 1.74 (1H, d, J 8.5, 7-H). 13C-NMR 

(100 MHz) 170.6 (carbonyl), 134.2 (C-1’), 132.6 (C-4’), 131.2 (C-2’), 129.8 (C-

3’), 126.9 (C-6), 126.4 (C-5), 82.92 (C-1, C-4), 89.90 (C-1, C-4) 46.4 (C-7) 19 

peaks in spectrum, owing to rotamers. HRMS [M+Na]+ C12H11NNaO2+ calc. 

224.0692 found, 224.0693. Spectral data of the crude material was consistent 

with that reported in the literature.273 
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N-((1RS,4RS)-4-Hydroxycyclopent-2-en-1-yl)benzamide (211) 

 
A 15:1 CH3CN:H2O solution of cycloadduct 210 (1.18 g, 5.85 mmol) was 

charged with Mo(CO)6 (1.58 g, 6.44 mmol, 1.1 eq.) and refluxed under N2 for 

3 h and the solution turned black. The heat was then removed, and the 

solution allowed to cool to rt. The mixture was concentrated in vacuo, the 

crude mixture filtered through a celite pad and concentrated to give 211 as a 

brown solid (300 mg, 21%) which was used without further purification. Rf 0.35 

(50:50 EtOAc–hexane; KMnO4). νmax/cm-1 (film): 3295, 2360, 1642, 1561, 

1587 and 1469; 1H-NMR (500 MHz, CDCl3) 7.72 – 7.61 (2H, m, 2’-H), 7.43 – 

7.35 (1H, m, 4’-H), 7.33 (2H, dd, J 8.2, 6.7, 3’-H), 6.52 (1H, d, J 8.3, NH), 5.99 

(1H, app. dt, J 5.4, 1.8, 2-H), 5.86 (1H, dd, J 5.4, 2.0, 3-H), 4.87 (1H, tdd, J 

8.4, 3.9, 1.9, 4-H), 4.71 (2H, m, 1-H, OH), 2.74 (1H, app. dt, J 15.0, 7.7, 5-

Heq), 1.61 (1H, app. dt, J 14.5, 3.4, 5-Hax). 13C-NMR (100 MHz) 167.1 

(carbonyl), 136.7 (C-2’), 134.4 (C-1’), 133.9 (C-3’), 131.6 (C-4’), 128.6 (C-2), 

127.0 (C-3), 75.4 (C-1), 54.3 (C-4), 41.2 (C-5). HRMS [M+Na]+ C12H13NNaO2+ 

calc., 226.0849 found, 226.0852. Spectral data of the crude material was 

consistent with that reported in the literature.274 
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tert-Butyl (3-oxocyclopentyl)carbamate (216) 
 

 

To a stirred suspension of cyclopent-2-en-1-one 36 (2.50 g, 3.05 mmol) in 

CH2Cl2 (60 mL), was added tert-butyl carbamate (3.60 g, 3.05 mmol) and 

stirred for 30 min. Bismuth nitrate (14.7 g, 3.05 mmol) was added portionwise 

and allowed to stir at rt for 18 h. After completion of reaction, the reaction 

mixture was diluted with CH2Cl2 and filtered through a celite pad. The filtrate 

was quenched with saturated NaHCO3 solution and the organic layer was 

separated. The aqueous layer was extracted with CH2Cl2 and the combined 

organic extracts were dried over MgSO4 and concentrated in vacuo. to obtain 

a crude residue. Flash chromatography (20:80 EtOAc–hexane) yielded the 

desired product as a white solid (261 mg, 43%). Rf 0.31 (20% EtOAc–hexane; 

KMnO4). νmax/cm-1 (film): 1730; 1H-NMR (500 MHz, CDCl3) 4.87 (1H, s, NH), 

4.23 (1H, s, 1-H), 2.61 (1H, m, 2-H), 2.45 – 2.27 (2H, m, 5-H, 4-H), 2.27 – 2.18 

(1H, m, 5-H), 2.18 – 2.09 (1H, m, 2-H), 1.86 (1H, br, 4-H), 1.45 (9H, s, tBu). 
13C-NMR (100 MHz) 216.4 (carbonyl), 156.4 (boc carbonyl), 79.6 (C-O), 48.9 

(C2), 45.3 (C-5), 37.1 (C-3), 30.0 (C-4), 28.3 (tBu). Spectral data of the crude 

material was consistent with that reported in the literature.275 
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4-(Phenylsulfinyl)morpholine (221) 

 

Predried DABSO (60 mg, 0.25 mmol, 0.5 eq.) was added to an oven-dried 10 

mL reaction vial. The vial was then sealed with a rubber septum, evacuated, 

and filled with N2 (×3). Anhydrous THF (2 mL) was added. Phenylmagnesium 

bromide (90 𝜇L of an 2 M solution in Et2O, 0.50 mmol, 1.0 eq.) was added 

dropwise to the resulting suspension at rt, and the reaction mixture was stirred 

for 30 min. SOCl2 (40 μL, 0.55 mmol, 1.1 eq.) was then added dropwise, and 

the mixture was stirred at rt for 30 min. After this, triethylamine (110 μL, 0.75 

mmol, 1.5 eq.) was added followed by the morpholine (65 𝜇L, 0.75 mmol, 1.5 

eq.). The mixture was stirred at rt for 30 min, quenched with brine (10 mL), 

and extracted with EtOAc (3 × 10 mL). A few drops of water were added to 

dissolve any solid formed during the workup. The combined organic phases 

were dried with MgSO4, filtered, and concentrated. Flash chromatography 

(50:50 EtOAc–hexane) yielded the desired product as a white solid (26.0 mg, 

23%). Rf 0.50 (50:50 EtOAc–Hexane; KMnO4). νmax/cm-1 (film): 1600, 1432, 

1587 1245 and 1040; 1H-NMR (500 MHz, CDCl3) 7.66 – 7.55 (2H, m, 2’-H), 

7.51 – 7.39 (3H, m, 3’-H, 4’-H), 3.70 – 3.55 (4H, m, 3-H), 3.16 – 3.04 (2H, m, 

2-H), 2.90 (2H, m, 2-H). 13C-NMR (100 MHz) 142.3 (C-1’), 131.1 (C-3, C-4), 

129.0 (C-3, C-4), 126.2 (C-2’), 66.9 (C-1), 45.9 (C-2). 
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Preparation of NiBr2•dtbbpy244 

An adapted procedure originally reported by MacMillan. 4 To a 500 mL round-

bottom flask equipped with a Teflon stir bar were added nickel(II) bromide 

ethylene glycol dimethyl ether adduct (NiBr2•DME, 1.54 g, 5.0 mmol, 1.0 

equiv.) and 4,4′-di-tert-butyl-2,2′-dipyridyl (1.35 g, 5.03 mmol, 1.00 equiv.). 

The vessel was sealed and purged with nitrogen for 10 min. 250 mL dry MeCN 

was added and the reaction mixture was stirred at 65 °C for 1 h. The solvent 

was removed, and the residue was dried under vacuum for 12 h at rt. The 

solid was suspended in pentane, sonicated, and isolated using a sintered 

glass funnel, washed with pentane, and dried under high vacuum. The 

complex was isolated as a green solid (1.90 g, 4.59 mmol, 87% yield). No 

further characterisation was completed. This complex is used in the synthesis 

of 229 and 230. 

 

 

 

 

 

 

 

 

 

 



 

 

- 273 - 

5-Cyclohexyl-2-(trifluoromethyl)pyridine (229) 244 

 

To an oven-dried 8-mL vial equipped with a stir bar were added anhydrous 

K3PO4 (117 mg, 0.55 mmol, 1.1 eq.) and the vial was sealed with a cap 

equipped with a Teflon-lined septum and sparged with nitrogen. 5-Bromo-2-

(trifluoromethyl)pyridine (113 mg, 0.5 mmol, 1.0 eq.) NiBr2•dtbbpy (12.0 mg, 

0.025 mmol, 5.0 mol%), and tetrabutylammonium decatungstate (17 mg, 

0.005 mmol, 1.0 mol%) were added as a stock solution in dry MeCN (5 mL). 

Subsequently, the reaction vessel was placed in an ice bath and 

deoxygenated by sparging with nitrogen for 10 minutes. Cyclohexane (270 

μL, 2.5 mmol, 5.0 eq.) was added before sealing the reaction vessel with 

parafilm. The reaction mixture was then stirred and irradiated with two 34 W 

blue LEDs (vials approximately 6 cm away from the light source) with a fan 

placed above for cooling for 18 h. The reaction mixture was removed from 

light and quenched by stirring open to air for 15 min. The reaction mixture was 

diluted with ethyl acetate and passed through a pad of celite. The celite plug 

was washed with additional ethyl acetate. Solvent was removed in vacuo. from 

the filtrate, and the residue was purified by flash chromatography (1:99–10:90, 

EtOAc–Hexane) to yield the product 229 as a clear colourless oil (115 mg, 

41%). Rf 0.30 (10:90 EtOAc–hexane). 1H-NMR (500 MHz, CDCl3) 8.51 (1H, 

d, J 2.1, 2’-H), 7.61 (1H, dd, J 8.1, 2.2, 5’-H), 7.53 (1H, d, J 8.1, 6’-H), 2.56 

(1H, app. tt, J 11.3, 3.1, 1-H), 1.82 (4H, app. tt, J 9.1, 3.3, 2-H), 1.45 – 1.27 

(4H, m, 3-H), 1.29 – 1.10 (2H, m, 4-H). 13C-NMR (100 MHz) 149.3 (C-2’), 146.2 

(C-4’), 135.2 (C-6’), 122.2 (C-1’) 120.20 (C-5’, CF3), 120.17 (C-5’, CF3), 41.9 

(C-1), 33.9 (C-2), 26.5 (C-3), 25.8 (C-4). Spectral data in accordance with 

literature. 244 
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tert-Butyl-2-(6-(trifluoromethyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane-
7-carboxylate (230) 
 

 

To an oven-dried 40-mL vial equipped with a stir bar were added amine 198 

(493 mg, 2.50 mmol, 5.0 eq.) and Na3PO4 (85 mg, 0.55 mmol, 1.1 eq.). The 

vial was sealed with a cap equipped with a Teflon-lined septum and purged 

with nitrogen. 5-bromo-2-(trifluoromethyl)pyridine (113 mg, 0.5 mmol, 1 eq.), 

NiBr2•dtbbpy (12 mg, 0.025 mmol, 5.0 mol%), and tetrabutylammonium 

decatungstate (17 mg, 0.005 mmol, 1.0 mol%) were added as a stock solution 

in dry MeCN (12.5 mL, 0.04 M). Subsequently, the reaction vessel was placed 

in an ice bath and deoxygenated by sparging with nitrogen for 10 minutes. 

The reaction mixture was then stirred and irradiated with two 34 W blue LEDs 

(vials approximately 6 cm away from the light source) with a fan placed above 

for cooling. After 18 h, a second portion of TBADT (17 mg, 0.005 mmol, 1.0 

mol%) in 0.2 mL degassed MeCN was added, and the reaction was subjected 

once again to irradiation for 18 h. After another 18 h, a third portion of TBADT 

(17 mg, 0.005 mmol, 1.0 mol%) in 0.2 mL degassed MeCN was added, and 

the reaction was subjected once again to irradiation for 18 h. At this point, the 

reaction mixture was removed from light and quenched by stirring open to air 

for 15 minutes. The reaction mixture was diluted with ethyl acetate and passed 

through a pad of celite. The celite plug was washed thoroughly with additional 

ethyl acetate. Filtrate was concentrated in vacuo. Residue was purified by 

mass-directed preparative purification (20-minute run time; 5-95% water 

containing 0.1 M formic acid/MeCN; target m/z 342, 286; product eluted at 

15.3 minutes) to give the product as a clear colourless oil, (34.2 mg, 20%). 

νmax/cm-1 (film): 3346, 2912, 1576, 1325 and 1241; 1H-NMR (500 MHz, CDCl3) 

8.58 – 8.46 (1H, m, 2’-H), 7.77 (1H, d, J 8.1, 5’-H), 7.54 (1H, d, J 8.2, 6’-H), 

4.33 (1H, br, 4-H), 4.25 – 4.09 (1H, m, 1-H), 2.89 (1H, app. dd, J 9.1, 4.8, 2-
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Hendo), 2.02 – 1.91 (2H, m, 3-H), 1.78 – 1.75 (2H, m, 6-H), 1.73 – 1.46 (2H, m, 

5-H), 1.39 (9H, br, tBu rotamers); 13C-NMR (100 MHz, decoupled) 155.2 

(carbonyl), 149.3 (C-2’), 146.1 (C-4’), 144.4 (C-1’), 135.6 (C-5’ or CF3), 135.5 

(C-5’ or CF3) 120.4 (C-6’), 80.1 (C-O), 62.0 (C-1), 56.0 (C-4), 45.0 (C-2), 40.2 

(C-3), 29.7 (C-5, C-6), 29.4 (C-5, C-6), 28.3 (tBu) (17 peaks in spectrum owing 

to rotamers). HRMS [M+Na]+ C17H21F3N2NaO2+ calc., 365.1458 found, 

365.1459. The spectroscopic properties of this compound are consistent with 

data reported in the literature. 244 
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tert-Butyl-1-Formyl-7-azabicyclo[2.2.1]heptane-7-carboxylate (231)238 

 

The starting material (tert- butyl 7-azabicyclo[2.2.1]heptane-7-carboxylate, 

1.26 g, 6.4 mmol) was rigorously dried under high vacuum for 1 h prior to 

reaction, dissolved in Et2O (5 mL), and then transferred into a suspension of 

freshly Et2O (20 mL) via a cannula. The solution was transferred to a dry flask 

(100 mL) via a cannula followed by N,N,N′,N′-tetramethylethylenediamine 

(1.40 mL, 9.6 mmol, 1.5 eq.). The solution was then cooled to 0 °C. After 15 

min, sec-butyllithium (9.1 mL, 12.7 mmol, 2 eq., (1.4 M solution in 

cyclohexane) was added dropwise over 5 min. The reaction was maintained 

at 0 °C for 1 h during which time the solution turned pale yellow. After this 

time, dry DMF (2 mL, 25.5 mmol, 4 eq.) was added dropwise and the solution 

turned cloudy. This solution was warmed to rt and left to stir for 18 h. The 

reaction was quenched by the addition of sat aq. NH4Cl (2 mL), partitioned 

between EtOAc (50 mL) and 1 M HCl (50 mL), and separated. The aqueous 

layer was extracted with additional EtOAc (2 × 30 mL). The combined organic 

layers were dried (MgSO4) and concentrated in vacuo. Purification by flash 

chromatography (10:90 EtOAc−hexane) yielded a clear, colourless liquid that 

solidified upon standing to a white powder (646 mg, 45%). Rf 0.28 (10:90 

EtOAc−hexane; KMnO4); νmax/cm-1 (film) 2981, 1720 and 1434; 1H-NMR (500 

MHz, CDCl3) 9.94 (1H, s, CHO), 4.37 – 4.21 (1H, m, 4-H), 2.07 – 1.86 (4H, m, 

2-H, 3-H), 1.68 – 1.49 (4H, m, 2-H, 3-H), 1.43 (9H, s, tBu). 13C-NMR (100 

MHz) 197.3 (Carbonyl), 156.1 (Boc), 81.3 (C-1), 73.5 (C-O), 58.9 (C-4), 30.3 

(C-2, C-3), 29.1 (C-2, C-3), 28.1 (tBu). HRMS [M+Na]+ C12H19NNaO3+ calc., 

248.1268 found 248.1257. The spectral data is in accordance with literature. 
238  
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7-(tert-Butoxycarbonyl)-7-azabicyclo[2.2.1]heptane-1-carboxylic acid 
(232) 

 

The Boc-protected formyl-bicyclic compound (231) (1.00 g, 4.40 mmol) was 

dissolved in tert-butanol (30 mL) and 2-methyl-2-butene (3 mL). In a separate 

solution, sodium chlorite (NaClO2, 1.99 g, 22.0 mmol, 5 eq.) and sodium 

hydrogen phosphate-monohydrate (NaH2PO4-H2O, 6.07 g, 44.0 mmol, 10 eq.) 

were dissolved in distilled water (1 mL) to produce a yellow solution. The 

yellow aqueous solution was added to the solution of starting material and left 

to stir at rt for 1.5 h. The reaction was quenched by the addition of brine (10 

mL) and EtOAc (10 mL). The mixture was separated, and the aqueous layer 

was washed further with EtOAc (2 × 10 mL). The organic extracts were then 

combined, dried (MgSO4), and concentrated in vacuo. to produce acid 232 as 

a white solid (975 mg, 92%). Used without further purification; νmax/cm-1 (film): 

2961, 2921, 1740 and 1420; 1H-NMR (500 MHz, CDCl3) 4.15 (1H, app. t, J 

4.7, 4-H), 1.97 (2H, app. tt, J 12.6, 2.9, 2-H), 1.79 – 1.57 (4H, m, 2-H, 3-H), 

1.37 – 1.13 (11H, m, 9-H, 3-H). 13C-NMR (100 MHz) 175.4 (acid carbonyl), 

157.0 (carbonyl), 81.8 (C-O), 69.3 (C-1), 59.8 (C-4), 34.0 (C-2), 29.0 (C-3), 

28.0 (tBu). HRMS [M+Na]+ C12H19NNaO4+ calc., 264.1217 found 264.1206. 

Spectral data is in accordance with literature.238 
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tert-Butyl-1-(hydroxymethyl)-7-azabicyclo[2.2.1]heptane-7-carboxylate 
(233) 

 

Aldehyde 231 (300 mg, 1.3 mmol) was dissolved in MeOH (20 mL) and stirred 

at 0 °C for 15 min. Sodium borohydride (72.2 mg, 2.0 mmol) was added 

portion-wise over 5 min. The reaction was allowed to warm to rt and stirred for 

5 h. The reaction was quenched with water (10 mL) followed by EtOAc (20 

mL). The layers were separated, and the aqueous layer was extracted further 

with EtOAc (2 × 15 mL). The combined organic layers were washed 

sequentially with water (10 mL), brine (10 mL), and dried (MgSO4) before 

being concentrated in vacuo. to give alcohol 233 as a white solid (257 mg, 

87%). Rf 0.20 (50:50 EtOAc–Hexane; KMnO4); νmax/cm-1 (film): 3240, and 

2911; 1H-NMR (500 MHz, CDCl3) 4.17 (1H, app. t, J 4.8, 4-H), 3.83 (2H, s, 

CH2), 1.83 – 1.71 (2H, m, 2-H), 1.75 – 1.63 (2H, m, 2-H), 1.47 – 1.25 (13H, 

m, 3-H, tBu). 13C-NMR (100 MHz) 155.2 (carbonyl), 80.2 (C-O), 69.1 (C-1), 

62.0 (C-4), 58.4 (CH2), 31.8 (C-2), 29.3 (C-3), 28.4 (tBu). HRMS [M+Na]+ 

C12H21NNaO3+ calc., 250.1424 found, 250.1418.  
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tert-Butyl-1-((methylamino)methyl)-7-azabicyclo[2.2.1]heptane-7-
carboxylate (236) 

 

 

Aldehyde 231 (100 mg, 0.44 mmol) was dissolved in MeOH (8 mL) and then 

methylamine (1 M in methanol, 41 𝜇L, 1.32 mmol) and titanium isopropoxide 

(0.16 mL, 0.57 mmol) were added and the reaction stirred at rt for 6 h. The 

reaction was cooled to 0 °C and sodium borohydride (16.3 mg, 0.44 mmol) 

was added. The reaction was allowed to warm to room temperature and stir 

for 18 h. MeOH (50 mL) was added, the reaction filtered through celite and 

concentrated in vacuo. to yield a colourless oil. Flash chromatography (100%) 

yielded azabicycle 236 as a colourless oil (19.0 mg, 17%). Rf 0.10 (50:50 

EtOAc–KMnO4); νmax/cm-1 (film): 3248, and 2965; 1H-NMR (500 MHz, CDCl3) 

4.20 (1H, app. t, J 4.9, 4-H), 3.35 (2H, s, CH2), 2.73 (3H, s, NCH3), 1.90 (2H, 

ddd, J 11.7, 9.9, 4.1, 2-Hexo), 1.80 – 1.71 (2H, m, 3-Hexo), 1.64 (2H, ddd, J 

11.5, 9.1, 4.3, 2-Hendo), 1.44 (2H, ddd, J 11.5, 9.1, 4.0, 3-Hendo), 1.38 (9H, s, 
tBu); 13C-NMR (100 MHz) 156.7 (carbonyl), 81.7 (C-O), 65.1 (C-1), 58.9 (C-

4), 51.0 (CH2), 34.2 (NCH3), 33.8 (C-2), 29.0 (C-3), 28.3 (tBu). HRMS [M+H]+ 

C13H25N2O2+ calc., 241.1921 found, 241.1911. 
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tert-Butyl-1-((dimethylamino)methyl)-7-azabicyclo[2.2.1]heptane-7-
carboxylate (237) 

 

Aldehyde 231 (100 mg, 0.44 mmol) was dissolved in MeOH (8 mL) and then 

dimethylamine (2 M in ethanol, 60 𝜇L, 1.32 mmol) and titanium isopropoxide 

(0.16 mL, 0.57 mmol) were added and the reaction stirred at rt for 6 h. The 

reaction was cooled to 0 °C and sodium borohydride (16.3 mg, 0.44 mmol) 

was added. The reaction was allowed to warm to room temperature and stir 

for 18 h. MeOH (50 mL) was added, the reaction filtered through celite and 

concentrated in vacuo. to yield a colourless oil. Flash chromatography (50:50 

EtOAc–hexane) yielded azabicycle 237  as a colourless oil (19.0 mg, 17%). 

Rf 0.25 (50:50 EtOAc–hexane; KMnO4); νmax/cm-1 (film): 3226, and 2968; 1H-

NMR (500 MHz, CDCl3) 4.18 (1H, dd, J 5.3, 4.0, 4-H), 3.41 (2H, s, CH2), 2.28 

(6H, s, (CH3)2), 1.77 – 1.65 (4H, m, 2-Hexo, 3-Hexo), 1.60 – 1.54 (4H, m, 2-Hendo, 

3-Hendo), 1.37 (9H, br, tBu). 13C-NMR (100 MHz) 156.1 (carbonyl), 79.4 (C-O), 

68.3 (C-1), 67.0 (C-4), 62.4 (CH2), 47.3 (N(CH3)2, 34.4 (C-2), 28.9 (C-3), 28.4 

(tBu). HRMS [M+H]+ C14H27N2O2+ Calc., 255.2078 found, 255.2082. 
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tert-Butyl-1-(dimethylcarbamoyl)-7-azabicyclo[2.2.1]heptane-7-
carboxylate (238) 

 

Carboxylic acid 232 (100 mg, 0.41 mmol) was dissolved in CH2Cl2 (15 mL) 

and HOBT (108 mg, 0.80 mmol), EDC.HCl (229 mg, 1.20 mmol), NEt3 (172 

𝜇L, 1.2 mmol) and dimethylamine (2 M in ethanol, 51.6 𝜇L, 1.20 mmol) were 

added and stirred at rt for 18 h. The reaction was quenched by the addition of 

1 M HCl (10 mL) followed by EtOAc (15 mL). The layers were separated, and 

the aqueous layer was extracted further with EtOAc (2 × 15 mL). The 

combined organic layers were washed sequentially with water (10 mL), brine 

(10 mL), and dried (MgSO4) before being concentrated in vacuo to give bicycle 

238 as an orange oil. Flash chromatography (EtOAc) yielded the desired 

product as a tan oil (73.6 mg, 67%). Rf 0.20 (30:70 EtOAc–hexane; KMnO4); 

νmax/cm-1 (film): 3361, 2981 and 1700; 1H-NMR (500 MHz, CDCl3) 4.33 (1H, 

app. t, J 4.6, 4-H), 3.19 (3H, s, CH3), 2.95 (3H, s, CH3), 2.12 (2H, br, 2-H), 

1.78 – 1.73 (4H, m, 2-H, 3-H), 1.43 – 1.40 (11H, m, 3-H, tBu). 13C-NMR (100 

MHz) 170.4 (amide), 156.6 (carbonyl), 80.3 (C-O), 70.0 (C-1), 59.4 (C-4), 36.8 

(CH3), 36.3 (CH3), 34.4 (C-2, C-3), 34.0 (C-2, C-3), 28.0 (tBu). HRMS [M+Na]+ 

C14H24N2NaO3+ calc., 291.1690 found 290.1687. 
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tert-Butyl 1-benzyl-7-azabicyclo[2.2.1]heptane-7-carboxylate (240) 

 

Synthesis of 240 utilises a modified procedure from MacMillan.2 An oven dried 

8 mL vial equipped with a Teflon septum and magnetic stir bar was charged 

with Ir[dF(CF3)ppy]2(dtbbpy)PF6 (11.2 mg, 10.0 μmol, 0.02 eq.), NiCl2•glyme 

(11.0 mg, 0.05 mmol, 0.1 eq.), 4,4 ́-di-methoxy-2,2 ́-bipyridyl (10.8 mg, 0.05 

mmol, 0.1 eq.), carboxylic acid 232 (181 mg, 0.75 mmol, 1.5 eq.), K2CO3 (138 

mg, 1.00 mmol, 2.0 eq.), and 5 mL of MeCN. The reaction mixture was 

degassed by bubbling nitrogen stream for 15 min at 0 °C. Water (170 𝜇L,10.0 

mmol, 20 eq.) and benzyl chloride (58 𝜇L, 0.50 mmol, 1.0 eq.) were then 

added. The reaction mixture was then stirred and irradiated with two 34 W 

blue LEDs (vials approximately 6 cm away from the light source) with a fan 

placed above for cooling. After 24 h, the reaction mixture was diluted with 

EtOAc, filtered, and concentrated in vacuo. Flash chromatography (10:90 

EtOAc–Hexane) yielded azabicycle 240 as a yellow oil (77.5 mg, 36%). Rf 

0.20 (10:90 EtOAc–Hexane; KMnO4). νmax/cm-1 (film): 3248, 2965, 1567, 1445 

and 1230; 1H-NMR (500 MHz, CDCl3) 7.41 – 7.21 (5H, m, Ph), 5.17 (2H, s, 

CH2), 4.24 (1H, t, J 4.8, 4-H), 2.20 – 2.06 (2H, m, 2-Hexo), 1.85 (2H, app. dddt, 

J 12.5, 7.4, 4.7, 2.9, 3-Hexo), 1.68 (2H, ddd, J 11.5, 9.2, 4.4, 2-Hendo), 1.42 (2H, 

ddd, J 11.5, 9.2, 4.2, 3-Hendo), 1.34 (9H, s, tBu). 13C-NMR (100 MHz) 171.3, 

156.5 (carbonyl), 136.0 (ipso), 128.5 (Ph), 128.0 (Ph), 80.7 (Ph), 68.8 (C-1), 

66.6 (C-4), 59.8 (CH2), 33.3 (C-2), 29.4 (C-3), 28.1 (tBu). HRMS [M+2H-tBu]2+ 

C14H18NO22+ calc., 232.1333 found, 232.1332. 
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6-(2-phenylpyrrolidin-1-yl)-9H-purine (258) 

 
Following general procedure 4, employing 2-phenylpyrrolidine (46, 573 mg, 

3.90 mmol) and heated at reflux for 6 h. The solid was isolated through 

filtration using a sintered funnel. The crude solid was washed with MeOH (2 

× 25 mL) and dichloromethane (2 × 25 mL) to give purine 258 as a colourless 

solid (585 mg, 68%). mp 199 °C (EtOH); νmax/cm-1 (film) 3064, 2932 and 1602; 

δH (500 MHz, DMSO-d6) 13.00 (1H, s, 9-H), 8.20 (1H, s, 8-H), 8.09 (1H, s, 2-

H), 7.41 – 7.29 (4H, m, phenyl 2-H, phenyl 3-H), 7.29 – 7.20 (1H, m, phenyl 

4-H), 3.12 (2H, m, 2’-H, 4’-H), 2.75 (1H, app. tt, J 11.4, 3.8 , 5’-H), 2.02 – 1.94 

(1H, m, 3’-H2), 1.91 – 1.78 (2H, m, 3’-H3, 4’-H2), 1.60 (1H, m, 4’-H2); δC (125 

MHz DMSO-d6) 153.6 (C-6), 152.4 (C-2), 151.9 (C-4), 144.2 (phenyl C-1), 

138.4 (C-8), 128.9 (phenyl), 127.6 (phenyl), 127.0 (phenyl), 119.3 (C-5), 42.8 

(C-1’), 32.1 (C-2’), 31.2 (C-4’), 25.8 (C-3’); HRMS [M+H]+ C15H16N5+ calc.  

266.1406, found, 266.1000. 
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5-((2-phenylpyrrolidin-1-yl)sulfonyl)isoquinoline (260) 

 

Following general procedure 5, employing 2-phenylpyrrolidine (46, 228 mg, 

3.21 mmol) and stirred at room temperature for 18 h. The solid was dissolved 

in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 260 as a grey solid (136 

mg, 42%). Rf 0.28 (EtOAc).  mp 216 °C (EtOH); νmax/cm-1 (film) 2226 and 

1351; δH (500 MHz, CDCl3) 9.24 (1H, d, J 1.0, 1-H), 8.50 – 8.47 (2H, m, 3-H, 

4-H), 8.23 – 8.16 (2H, m, 6-H, 8-H), 7.58 (1H, dd, J 8.2, 7.8, 7-H), 7.04 – 6.85 

(5H, m, Ph), 4.90 – 4.82 (2H, m, 2-H, 5’-HA), 3.86 – 3.75 (1H, m, 5’-HB), 3.65 

(1H, dt, J 13.3, 4.9, 3.3, 3’-HA), 2.31 – 2.18 (1H, m, 3’-HB), 2.01 –1.93 (1H, m, 

4’-H2), 1.89 – 1.70 (1H, m, 4’-H3); δC (125 MHz, CDCl3) 156.6 (C-1), 147.2 (C-

3), 145.8 (phenyl C-1), 138.1 (C-6, C-8), 138.0 (C-6, C-8) 137.6 (phenyl C-2), 

135.8 (phenyl C-3), 135.4 (C-5), 133.0 (C-4a), 131.5 (C-8a), 130.7 (phenyl C-

4), 130.1 (C-7), 122.1 (C-4), 67.5 (C-2’), 53.1 (C-5’), 40.3 (C-3’), 28.1 (C-4’); 

HRMS [M+H]+ C19H19N2O2S+ calc., 339.1172 found, 339.1182. 
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5-((2-phenylpiperidin-1-yl)sulfonyl)isoquinoline (261) 
 

 
Following general procedure 5, employing 2-phenyl piperidine (47, 517 mg, 

3.21 mmol) and stirred at room temperature for 18 h. The solid was dissolved 

in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 261 as a white solid (163 

mg, 21%). Rf 0.38 (EtOAc). mp 205 °C (EtOH); νmax/cm-1 (film) 3066, 2956, 

2866, 2761 and 1332; δH (500 MHz, DMSO-d6) 9.52 (1H, dd, J 1.1, 0.9, 1-H), 

8.74 (1H, d, J 6.1, 4-H), 8.48 (2H, m, 3-H, 6-H), 8.41 (1H, app. dt, J 6.1, 1.0, 

8-H), 7.84 (1H, dd, J 8.1, 7.4, 7-H), 7.30 (4H, m, phenyl 2-H, phenyl 3-H), 7.25 

– 7.20 (4H, m, phenyl 4-H), 5.32 – 5.28 (1H, m, 2’-H), 3.82 – 3.72 (1H, m, 6’-

HA), 3.04 (1H, m, 6’-HB), 2.24 – 2.22 (1H, m, 3’-HA), 1.50 – 1.46 (1H, m, 3’-

HB), 1.40 – 1.31 (2H, m, 4’-HA, 5’-HA), 1.15 – 1.20 (1H, m, 5-HB), 0.92 – 0.90 

(1H, m, 4’-HA). δC (125 MHz, DMSO-d6) 154.2 (C-1), 145.5 (C-3), 139.1 

(phenyl C-1), 135.0 (C-6, C-8), 136.0 (C5), 134.4 (C-6, C-8), 130.7 (C-4a), 

129.3 (C-8a), 129.0 (phenyl C-2), 127.3 (phenyl C-4), 127.2 (phenyl C-3) 

127.1 (C-7), 117.5 (C-4), 55.5 (C-2’), 41.9 (C-6’), 28.3 (C-3’), 24.6 (C-5’), 18.9 

(C-4’). HRMS [M+H]+ C20H21N2O2S+ calc., 353.1329 found, 353.1335. 
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Ethyl 2-(1-(9H-purin-6-yl)piperidin-3-yl)acetate (264) 

 
Into an oven-dried 4 × 7mL Supelco vial fitted with a Teflon septum was 

weighed lutidine (29 mg, 0.27 mmol), ethyl bromoacetate (240 mg, 1.56 

mmol), and the tert-butyl 3,4-dihydropyridine-1(2H)-carboxylate (100 mg, 0.52 

mmol). The vial was then purged with nitrogen for 5 minutes, before the 

addition of a dry MeOH solution of Ir(ppy)3 (2 mg in 2 mL, prepared in an oven-

dried vial under nitrogen flow). The vial was sealed and stirred for 3 hours 

under blue LED irradiation (32W blue LED Kessil H150). After this period the 

solvent was removed under reduced pressure and replaced with dry 

dichloromethane under nitrogen. Et3SiH (0.8 mL) was added followed by 

BF3.Et2O (0.68 mL). Once the intermediate N,O-aminal have been completely 

reduced, as judged by LC-MS, the reaction mixtures were combined and 

concentrated  in vacuo, dissolved in dichloromethane (5 mL) and TFA (2.5 

mL) and stirred at rt for 1 hour. Following this, the residue was concentrated 

in vacuo and purified by flash column chromatography to give a brown ethyl 

2-(piperidin-3-yl)acetate as a brown oil (66.7 mg). Following general 

procedure 4, employing ethyl 2-(piperidin-3-yl)acetate (66.7 mg, 0.390 mmol) 

and heated at reflux for 7 h. The solid was isolated through filtration using a 

sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) and 

dichloromethane (2 × 25 mL) to give purine 264 (38.5 mg, 41%) as a light 

yellow solid. mp 218 °C (EtOH); νmax/cm-1 (film) 3523, 3334, 3132, 1759 and 

1687; δH (500 MHz, DMSO-d6) 12.99 (1H, s, H-9), 8.18 (1H, s, 2-H), 8.10 (1H, 

s, 8-H), 4.08 (2H, app. qd, J 7.1, 0.9, OCH2CH3), 3.09 (1H, app. s, 3’-H), 2.32 

(1H, dd, J 15.2, 7.0, 2’-HA), 2.24 (1H, dd, J 15.2, 7.2, 2’-HB), 1.95 (2H, m, 5’-

H), 1.85 (1H, dt, J 13.0, 4.0, 1H, 6’-HA), 1.73 (1H, dp, J 11.5, 3.6 Hz, 4’-HA), 

1.55 – 1.44 (1H, m, 4’-HB), 1.42 – 1.29 (1H, m, 6’-HB), 1.19 (3H, t, J 7.1, 

OCH2CH3); δC (125 MHz DMSO-d6) 187.6 (Ester C=O), 153.6 (C-6), 143.8 
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(C-2), 138.3 (C-4), 120.2 (C-5), 118.9 (C-8), 60.3 (OCH2CH3), 39.3 (C-3’), 38.3 

(C-2’), 33.4 (C-5’), 30.7 (C-6’), 25.0 (C-3’ or C-4’) 24.9 (C-3’ or C-4’), 14.6 

(OCH2CH3); HRMS [M+H]+ C14H20N5O2+ calc. 290.1622, found 290.1628.  

 

 

ethyl 1-(isoquinolin-5-ylsulfonyl)piperidine-3-carboxylate (266) 

 
Following general procedure 5, employing ethyl piperidine-3-carboxylate (503 

mg, 3.21 mmol) and stirred at room temperature for 18 h. The solid was 

dissolved in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 266 was isolated as a 

white solid (475 mg, 73%). Rf 0.24 (EtOAc). mp 214 °C (EtOH); νmax/cm-1 (film) 

3287, 2789, 2598, 2109, 1720 and 1351; δH (500 MHz, Acetone-d6) 9.35 (1H, 

dd, J 1.1,1.0, 1-H), 8.60 (1H, d, J 6.2, 4-H), 8.42 (1H, dt, J 6.1, 1.0, 3-H), 8.36 

(1H, app. dd, J 8.2, 1.1, 6-H), 8.33 (1H, dd, J 7.4, 1.2, 8-H), 7.78 (1H, dd, J 

8.2, 7.4, 7-H), 4.07 – 3.82 (2H, br, CH2CH3), 3.68 (1H, ddt, J 12.1, 4.0, 1.3, 2’-

HA), 3.53 – 3.40 (1H, m, 6’-HA), 2.85 (1H, dd, J 12.2, 9.4, 2’-HB), 2.73 (1H, 

ddd, J 12.3, 9.9, 3.2, 6’-HB), 2.47 – 2.43 (1H, m, 3’-H), 1.86 – 1.71 (2H, m, 4’-

H), 1.52 – 1.38 (2H, m, 5’-H), 1.07 (3H, t, J 7.2, CH2CH3); δC (125 MHz, 

Acetone-d6) 205.3 (ester C=O), 153.5 (C-1), 145.0 (C-3), 134.1 (C-6, C-8), 

134.0 (C-6, C-8), 132.5 (C-5), 131.7 (C-4a), 129.3 (C-8a), 126.2 (C-7), 117.5 

(C-4), 60.2 (CH2CH3), 47.1 (C-2’), 45.7 (C-6’), 40.7 (C-3’), 25.9 (C-5’), 23.8 

(C-4’), 13.5 (CH2CH3); HRMS [M+H]+ C17H21N2O4S+ calc., 349.1228 found, 

349.1235. 
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N-methyl-N-(pyrrolidin-3-yl)isoquinoline-5-sulfonamide (270) 

 
Following general procedure 5, employing tert-butyl 3-aminopyrrolidine-1-

carboxylate (642 mg, 3.21 mmol) and stirred at room temperature for 18 h. 

The reaction mixture was concentrated in vacuo to give a crude solid.  The 

solid was dissolved in tetrahydrofuran (20 mL) to which was added 

formaldehyde (165 𝜇L, 4.42 mmol) and sodium triacetoxyborohydride (932 

mg, 4.42 mmol) and stirred at room temperature for 18 h. The reaction was 

quenched by the addition of 1 M HCl (1 mL) followed by EtOAc (10 mL). The 

layers were separated, and the aqueous layer was extracted further with 

EtOAc (2 × 10 mL). The combined organic layers were washed sequentially 

with water (10 mL), brine (10 mL), and dried (MgSO4) before being 

concentrated in vacuo to give a brown solid. The solid was dissolved in 

dichloromethane (50 mL) and TFA (25 mL) and stirred at room temperature 

for 4.5 h. Subsequently the reaction was concentrated in vacuo to give a crude 

residue. The residue was dissolved in dichloromethane (2 mL) and loaded 

onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 × 20 mL). 

The product was eluted using ammonia (1 M solution in MeOH, 3× 20 mL) 

which was concentrated in vacuo to give a crude residue. The crude was 

purified by flash column chromatography (EtOAc) and subsequently 

concentrated in vacuo to yield 270 as a white solid (135 mg, 21%). Rf 0.29 

(EtOAc). mp 225 °C (EtOH); νmax/cm-1 (film) 3323, 3087, 2975, 2043, 1620 

and 1381; δH (500 MHz, DMSO-d6) 9.50 (1H, dd, J 1.1, 0.9, 1-H), 8.71 (1H, d, 

J 6.1, 4-H), 8.49 (1H, app. dd, J 8.2, 1.0, 8-H), 8.42 – 8.33 (2H, m, 3-H, 6-H), 

7.87 (1H, dd, J 8.2, 7.4, 7-H), 4.50 (1H, tt, J 8.6, 6.2, 3’-H), 2.82 – 2.70 (5H, 

m, 2’-H, CH3), 2.64 (2H, dt, J 10.8, 7.4, 5’-H), 1.70 – 1.59 (1H, m, 4’-HA), 1.53 

– 1.39 (1H, m, 4’-HB); δC (125 MHz, DMSO-d6) 153.1 (C-1), 143.7 (C-3), 134.3 
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(C-6, C-8), 133.9 (C-6, C-8), 133.7 (C-5), 131.5 (C-4a), 129.3 (C-8a), 126.4 

(C-7), 117.8 (C-4), 56.8 (C-3’), 47.4 (C-2’), 45.3 (C-5’), 28.7 (C-4’), 27.7 (CH3); 

HRMS [M+H]+ C14H18N3O2S+ calc., 292.1125 found, 292.1117. 
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N-(pyrrolidin-3-yl)isoquinoline-5-sulfonamide (271) 

 
To an 4 ×	8mL reaction vial equipped with a septum and stirrer bar was added 

tert-butyl 2,3-dihydro-1H-pyrrole-1-carboxylate (169 mg, 1 mmol), 2,4,6-

triisopropylthiophenol (4 ×	0.125 mmol; 50 mol%) and 

[Ir(dF(Me)ppy)2(dtbbbpy)]PF6 (20 mg) The vial was purged with nitrogen for 5 

minutes followed by the addition of anhydrous toluene (16 mL) and ammonia 

(7 M in methanol, 4 mL). The reaction was irradiated with a 32 W blue LED 

for 16 hours. The reactions were combined and the solvent was removed in 

vacuo. The residue dissolved in dichloromethane (5 ml) and TFA (2.5 mL) and 

stirred for 1 h. The solvent was removed in vacuo and telecoped into the next 

reaction. Following general procedure 5, employing tert-butyl 3-

aminopyrrolidine-1-carboxylate (59.7 mg, 0.321 mmol) and stirred at room 

temperature for 18 h. The reaction mixture was concentrated in vacuo to give 

a crude solid.  The solid was dissolved in dichloromethane (15 mL) and TFA 

(7 mL) and stirred at room temperature for 3 h. Subsequently the reaction was 

concentrated in vacuo to give a crude residue. The residue was dissolved in 

dichloromethane (2 mL) and loaded onto a 1 g SCX cartridge, and the 

cartridge flushed with MeOH (3 × 20 mL). The product was eluted using 

ammonia (1 M solution in MeOH, 3× 20 mL) which was concentrated in vacuo 

to give 271 as a yellow solid (61.2 mg, 37%). mp 222 °C (EtOH); νmax/cm-1 

(film) 3229, 2977, 2889 and 1300; δH (500 MHz, DMSO-d6) 9.54 (1H, app. d, 

J 1.0, 1-H), 8.76 (1H, dd, J 6.0, 1.0 3-H), 8.59 – 8.41 (3H, m, 4-H, 6-H, 8-H), 

8.03 – 7.76 (1H, m, 7-H), 3.03 (1H, tt, J 9.1, 4.0, 3’-H),  2.69 (2H, m, 2’-H), 

2.32 (1H, td, J 10.2, 5.3, 5’-HA), 2.29 – 2.22 (1H, m, 5’-HB), 1.57 – 1.41 (1H, 

m, 4’-HA), 1.30 – 1.15 (1H, m, 4’-HB); δC (125 MHz, DMSO-d6) 153.9 (C-1), 

145.0 (C-3), 136.2 (C-5), 133.9 (C-6, C-8), 132.8 (C-6, C-8), 130.8 (C-4a), 
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129.1 (C-8a), 126.9 (C-7), 117.7 (C-4), 51.9 (C-3’), 50.5 (C-2’), 45.3 (C-5’), 

44.3 (C-6’); HRMS [M+H]+ C13H16N3O2S+ calc., 278.0969 found, 278.0958. 
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N-(1-acetylpyrrolidin-3-yl)isoquinoline-5-sulfonamide (272) 

 
Following general procedure 5, employing 1-(3-aminopyrrolidin-1-yl)ethanone 

(410 mg, 3.21 mmol) and stirred at room temperature for 18 h. The solid was 

dissolved in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 272 was isolated as an 

off-white solid (415 mg, 59%). Rf 0.46 (10:90 MeOH−EtOAc). mp 197 °C 

(EtOH); νmax/cm-1 (film) 3229, 2977, 2889 and 1300;  δH (500 MHz, DMSO-d6) 

9.50 (1H, app. t, J 0.8, 1-H), 8.72 (1H, dd, J 6.1, 1.7, 3-H), 8.57 – 8.41 (2H, m, 

4-H, 6-H), 8.40 (1H, app. dd, J 7.4, 1.2, 8-H), 7.86 (1H, ddd, J 8.2, 7.4, 3.0, 7-

H), 3.75 (0.5H, app. p, J 5.9, 3’-H), 3.68 (0.5H, app. p, J 5.6, 3’-H), 3.46 – 3.40 

0.5H, m, 2’-HA), 3.40 – 3.35 (0.5H, m, 5’-HA), 3.32 – 3.23 (1H, m, 5’-HA) 3.18 

(1H, dd, J 12.0, 6.5, 5’-HB), 3.14 – 3.07 (1H, m, 2’-H), 2.96 (0.5H, dd, J 12.0, 

5.2, 2’-H), 1.86 (0.5H, ddt, J 12.4, 7.7, 6.1, 4’-H), 1.81 (1.5H, s, CH3 rotamers), 

1.78 – 1.62 (2.5 H, m, CH3 rotamers, 4’-H). δC (125 MHz, DMSO-d6) 168.6 

(acetyl C=O rotamers), 168.3 (acetyl C=O rotamers), 153.97 (C-1 rotamers), 

153.95 (C-1 rotamers), 145.13 (C-3 rotamers), 145.09 (C-3 rotamers), 135.38  

(C-5 rotamers), 135.37 (C-5 rotamers), 134.2 (C-6, C-8 rotamers), 134.1 (C-

6, C-8 rotamers), 133.21 (C-6, C-8 rotamers), 133.19 (C-6, C-8 rotamers), 

130.74 (C-4a rotamers), 130.73 (C-4a rotamers), 129.13 (C-8a rotamers), 

129.12 (C-8a rotamers), 127.01 (C-7 rotamers), 127.0 (C-7 rotamers 117.49 

(C-4 rotamers), 117.49 (C-4 rotamers), 53.0 (C-3’ rotamers), 52.4 (C-3’ 

rotamers), 51.7 (C-2’ rotamers), 50.6 (C-2’ rotamers), 44.9 (C-5’ rotamers), 

43.4 (C-5’ rotamers), 32.1 (C-4’ rotamers), 30.6 (C-4’ rotamers), 22.6 (CH3 

rotamers), 22.2 (CH3 rotamers). HRMS [M+H]+ C15H18N3O3S+ calc., 320.1074 

found 320.1079. 

3'

SO O

N
1

2

3
45

6

7
8

NH

2'

4'

5'
N

O



 

 

- 293 - 

1-(9H-purin-6-yl)pyrrolidin-3-amine (275) 

 
Following general procedure 4, employing tert-butyl pyrrolidin-3-ylcarbamate 

(725 mg, 3.90 mmol) and heated at reflux for 6 h. Following this, the solid was 

isolated through filtration using a sintered funnel. The solid was dissolved in 

dichloromethane (50 mL) and TFA (25 mL) and stirred at room temperature 

for 1 h. Subsequently the reaction was concentrated in vacuo to give a crude 

residue. The residue was dissolved in dichloromethane (2 mL) and loaded 

onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 × 20 mL). 

The product was eluted using ammonia (1 M solution in MeOH, 3× 20 mL) 

which was concentrated in vacuo to give crude 275 as a brown solid. The 

crude residue was purified by mass-directed preparative purification (20-

minute run time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 

205; product eluted at 17.1 minutes) to give the product as a clear colourless 

oil (391 mg, 59%). νmax/cm-1 (film) 3210, 3023, 2791 and 1610; δH (500 MHz, 

MeOD) 8.33 (1H, s, 2-H), 8.19 (1H, s, 8-H), 4.38 – 3.99 (5H, m, 1’-H, 4’-H and 

H-3’), 2.49 (1H, app. dq, J 14.7, 7.9, 2’-H2), 2.29 – 2.16 (1H, m, 2’-H3); δC (125 

MHz MeOD) 150.2 (C-6), 148.3 (C-2), 146.4 (C-4), 141.8 (C-8), 120.1 (C-5), 

52.2 (C-4’), 49.7 (C-3’), 46.4 (C-1’), 28.7 (C-2’); HRMS [M+H]+ C9H13N6+ calc.  

205.1202, found 205.1198.  
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1-(9H-purin-6-yl)piperidin-3-amine (276) 

 

Following general procedure 4, employing tert-butyl pyrrolidin-3-ylcarbamate 

(780 mg, 3.90 mmol) and heated at reflux for 2 h. Following this, the solid was 

isolated through filtration using a sintered funnel. The solid was dissolved in 

dichloromethane (50 mL) and TFA (25 mL) and stirred at room temperature 

for 1 h. Subsequently the reaction was concentrated in vacuo to give a crude 

residue. The residue was dissolved in dichloromethane (2 mL) and loaded 

onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 × 20 mL). 

The product was eluted using ammonia (1 M solution in MeOH, 3× 20 mL) 

which was concentrated in vacuo to give crude 276 as a yellow oil. The crude 

residue was purified by mass-directed preparative purification (20-minute run 

time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 219, 220; 

product eluted at 17.8 minutes) to give the product as a clear colourless oil 

(276 mg, 39%). νmax/cm-1 (film) 3153, 3000, 2843 and 1586;  δH (500 MHz, 

MeOD) δ 8.21 (1H, s, 2-H), 8.02 (1H, s, 8-H), 4.90 (1H, m, 2’-H), 4.63 (1H, td, 

J 13.6, 4.6 , 6’-H), 3.87 – 3.70 (2H, m, 2’-H), 3.34 (1H, tt, J 8.4, 3.9 , 3’-H), 

2.20 – 2.07 (1H, m, 4’-H), 1.88 – 1.60 (3H, m, 5’-H, 4’-H); δC (125 MHz MeOD) 

153.6 (C-6), 150.3 (C-2), 149.9 (C-4), 138.8 (C-8), 118.7 (C-5), 47.8 (C-2’), 

47.0 (C-3’), 45.4 (C-6’), 28.1 (C-4’), 22.2 (C-5’); HRMS [M+H]+ C10H15N6+ calc., 

219.1358 found, 219.1354. 
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1-(isoquinolin-5-ylsulfonyl)pyrrolidin-3-amine (277) 
 

 
Compound 303 (274 mg, 0.73 mmol) was dissolved in CH2Cl2 (5 mL) and TFA 

(5 mL) was added and the reaction was stirred at room temperature for 2 h. 

The crude residue was dissolved in CH2Cl2 (2 mL) and loaded onto a 1 g SCX 

cartridge, and the cartridge flushed with MeOH (3 × 20 mL). The product was 

eluted using ammonia (1 M solution in MeOH, 3× 20 mL) which was 

concentrated in vacuo to give crude 277 as an orange oil. The crude residue 

was purified by mass-directed preparative purification (20-minute run time; 5-

95% water containing 0.1 M formic acid/MeCN; target m/z 278, 279; product 

eluted at 14.6 minutes) to give the product as a clear colourless oil (182 mg, 

90%).  νmax/cm-1 (film) 3270, 2893, 2812, 2376, 2040, 1672 and 1350; δH (500 

MHz, DMSO-d6) 9.49 (1H, dd, J 1.6, 0.9, 1-H), 8.70 (1H, dd, J 6.0, 1.6, 3-H), 

8.53 – 8.37 (3H, m, 4-H, 6-H, 8-H), 7.86 (1H, td, J  7.7, 1.6, 7-H), 3.47 – 3.22 

(4H, m, 2’-H, 5’-H), 2.95 (1H, dd, J 9.1, 4.0, 3’-H), 1.97 – 1.85 (1H, m, 4’-HA), 

1.61 – 1.51  (1H, m 4’-HB). δC (125 MHz, DMSO-d6) 153.9 (C-1), 145.3 (C-3), 

134.2 (C-6), 133.3 (C-8), 133.1 (C-5), 131.7 (C-4a), 129.3 (C-8a), 127.1 (C-

7), 117.7 (C-4), 55.5 (C-2’), 51.3 (C-5’), 46.6 (C-3’), 34.0 (C-4’). HRMS [M+H]+ 

C13H16N3O2S+ calc., 278.0969 found, 278.0959. 
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1-(isoquinolin-5-ylsulfonyl)piperidin-3-amine (278) 

 
Following general procedure 5, employing tert-butyl piperidin-3-ylcarbamate 

(642 mg, 3.21 mmol) and stirred at room temperature for 18 h. The reaction 

mixture was concentrated in vacuo to give a crude solid. The solid was 

dissolved in dichloromethane (50 mL) and TFA (25 mL) and stirred at room 

temperature for 1 h. Subsequently the reaction was concentrated in vacuo to 

give a crude residue. The residue was dissolved in dichloromethane (2 mL) 

and loaded onto a 1 g SCX cartridge, and the cartridge flushed with MeOH (3 

× 20 mL). The product was eluted using ammonia (1 M solution in MeOH, 3× 

20 mL) which was concentrated in vacuo to give crude 278 as a colourless oil. 

The crude residue was purified by mass-directed preparative purification (20-

minute run time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 

290, 291; product eluted at 14.4 minutes) to give the product as a clear 

colourless oil (204 mg, 32%). νmax/cm-1 (film) 3231, 2851, 2751, 1664 and 

1349; δH (500 MHz, DMSO-d6) 9.38 (1H, app. d, J 0.9, 1-H), 8.68 – 8.55 (2H, 

m, 3-H, 4-H), 8.49 – 8.37 (2H, m, 6-H, 8-H), 7.84 (1H, dd, J 8.3, 7.4, 7-H), 3.77 

– 3.67 (1H, m, 2’-HA), 3.59 (1H, m, 6’-HA), 2.75 (1H, tt, J 9.7, 4.0, 3’-H), 2.71 

– 2.61 (1H, m, 6’-HB), 2.39 (1H, dd, J 11.6, 9.3, 2’-HB), 1.90 – 1.70 (2H, m, 5’-

HA, 4’-HA), 1.60 – 1.47 (1H, m, 4’-HB), 1.21 – 1.05 (1H, m, 5’-HB). δC (125 MHz 

DMSO-d6) 162.9 (C-1), 153.7 (C-3), 144.5 (C-6, C-8), 144.3 (C-6, C-8), 140.9 

(C-8a), 140.8 (C-5), 138.4 (C-4a), 136.2 (C-4), 127.0 (C-7), 57.1 (C-2’), 55.9 

(C-6’), 54.9 (C-3’), 36.5 (C-5’), 31.6 (C-4’). HRMS [M+H]+ C14H18N3O2S+ calc. 

292.1125 found, 292.1135. 
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N-(1-(isoquinolin-5-ylsulfonyl)pyrrolidin-3-yl)acetamide (279) 

 
Following general procedure 5, employing N-(pyrrolidin-3-yl)acetamide (410 

mg, 3.21 mmol) and stirred at room temperature for 18 h. The solid dissolved 

in DMSO (1 mL) was purified by mass-directed preparative purification (20-

minute run time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 

319, 320; product eluted at 18.1 minutes) to give the product as a colourless 

soild (233 mg, 33%). Rf 0.18 (EtOAc). mp 210 °C (EtOH); νmax/cm-1 (film) 

3093, 3022, 2933, 2852, 2018, 1678 and 1367; δH (500 MHz, MeOD) 9.29 

(1H, br, 1-H), 8.58 – 8.49 (2H, m, 3-H, 4-H), 8.39 – 8.28 (2H, m, 6-H, 8-H), 

7.75 (1H, dd, J 7.8, 7.3, 7-H), 4.08 (1H, m, 3’-HA), 3.47 – 3.34 (2H, m, 2’-HA, 

5’-HA), 3.34 – 3.26 (1H, m, 2’-HB), 3.19 – 3.14 (1H, m, 5’-HB), 2.05 – 1.96 (1H, 

m, 4’-H), 1.73 – 1.62 (4H, m, 3’-H, CH3); δC (125 MHz, MeOD) 171.9 (carbonyl 

C=O), 152.9 (C-1), 143.6 (C-3), 134.03 (C-6, C-8) 133.95 (C-6, C-8), 132.8 

(C-5), 132.1 (C-4a), 129.4 (C-8a), 126.4 (C-7), 118.1 (C-4), 52.5 (C-5’), 49.4 

(C-3’), 45.6 (C-2’), 30.3 (C-4’), 20.9 (CH3); HRMS [M+H]+ C15H18N3O3S+ calc., 

320.1074 found, 320.1075. 

 

 

 

 

 

 

 

 

 

3'

SO O

N
1

2

3
45

6

7
8

N
2'

4'

5'

NH
O



 

 

- 298 - 

N-(1-(isoquinolin-5-ylsulfonyl)pyrrolidin-3-yl)methanesulfonamide (280) 

 
Following general procedure 5, employing N-(pyrrolidin-3-

yl)methanesulfonamide (526 mg, 3.21 mmol) and stirred at room temperature 

for 18 h. The solid was dissolved in CH2Cl2 (5 mL), dry loaded onto silica and 

the crude residue was purified by mass-directed preparative purification (20-

minute run time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 

355, 356; product eluted at 15.0 minutes) to give the product as a clear 

colourless oil as a beige solid (306 mg, 39%). Rf 0.43 (10:90 MeOH−EtOAc). 

mp 210 °C (EtOH); νmax/cm-1 (film) 3055, 2878 and 1371; δH (500 MHz, 

DMSO-d6) 9.43 (1H, dd, J 1.1, 0.9, 1-H), 8.64 (1H, d, J 6.1, 3-H), 8.42 – 8.32 

(2H, m, 4-H, 6-H), 8.23 (1H, app. dd, J 7.4, 1.2, 8-H), 7.73 (1H, dd, J 8.1, 7.4, 

7-H), 4.88 (1H, dd, J 8.2, 4.7, 3’-H), 3.68 – 3.54 (2H, m, 5’-H), 3.42 (3H, s, 

mesyl CH3), 2.20 – 2.08 (1H, m, 2’-HA), 1.94 – 1.79 (1H, m, 4’-HA), 1.77 – 1.65 

(2H, m, 2’-HB, 4’-HB); δC (125 MHz, DMSO-d6) 153.8 (C-1), 145.2 (C-3), 134.4 

(C-6, C-8), 134.0 (C-6, C-8), 133.5 (C-5), 131.5 (C-4a), 129.1 (C-8a), 127.3 

(C-7), 117.6 (C-4), 63.4 (C-3’), 49.50 (C-5’, mesyl CH3), 49.49 (C-5’, mesyl 

CH3), 36.5 (C-2’), 24.4 (C-4’); HRMS [M+H]+ C14H18N3O4S2+ calc., 356.0742 

found, 356.0742. 
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N-(1-(isoquinolin-5-ylsulfonyl)piperidin-3-yl)methanesulfonamide (282)  

 
Following general procedure 5, employing N-(piperidin-3-

yl)methanesulfonamide (48.2 mg, 3.21 mmol) and stirred at room temperature 

for 18 h. The solid was dissolved in CH2Cl2 (5 mL), dry loaded onto silica and 

purified by mass-directed preparative purification (20-minute run time; 5-95% 

water containing 0.1 M formic acid/MeCN; target m/z 369, 370; product eluted 

at 15.3 minutes) to give the product as a clear colourless oil (408 mg, 50%). 

νmax/cm-1 (film) 3009, 2349, 1370 and 1351; δH (500 MHz, DMSO-d6) 9.51 

(1H, br, 1-H), 8.72 (1H, d, J 6.1, 4-H), 8.52 (1H, br, 3-H), 8.40 (2H, m, 6-H, 8-

H), 7.89 (1H, app. t, J 7.8, 7-H), 3.71 (1H, dd, J 11.5, 4.3, 2’-HA), 3.50 (1H, dt, 

J 12.5, 4.3, 6’-HA), 3.39 – 3.23 (2H, m, 3’-H, 6’-HB), 3.16 – 3.07 (1H, m, 2’-HB), 

2.93 (3H, s, CH3), 1.76 (2H, m, 5’-HA), 1.27 – 1.14 (2H, m, 5’-HB). δC (125 

MHz, DMSO-d6) 154.1 (C-1), 145.5 (C-3), 134.8 (C-6, C-8), 134.5 (C-6, C-8), 

132.1 (C-8a), 131.4 (C-5), 129.2 (C-4a), 127.1 (C-4), 117.5 (C-7), 51.4 (C-2’), 

49.5 (C-6’), 45.6 (C-3’), 41.1 (CH3), 30.2 (C-4’), 23.6 (C-5’). HRMS [M+H]+ 

C15H20N3O4S2+ calc. 370.0900 found, 370.0906. 
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N-(1-(9H-purin-6-yl)pyrrolidin-3-yl)acetamide (284)  

  
Following general procedure 4, employing N-(pyrrolidin-3-yl)acetamide (499 

mg, 3.90 mmol) and heated at reflux for 4 h. The solvent was removed in 

vacuo to give a crude oil and purified by flash column chromatography, eluting 

with 90:10 EtOAc−Hexane to give crude 284 as a colourless oil. The crude 

residue was purified by mass-directed preparative purification (20-minute run 

time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 246, 247; 

product eluted at 17.2 minutes) to give the product as a clear colourless oil 

(568 mg, 71%). νmax/cm-1 (film) 3588, 3360, 3032, 1709 and 1664; δH (500 

MHz, DMSO-d6) 12.94 (1H, br s, 9-H) 8.18 (1H, s, 8-H), 8.08 (1H, s, 2-HA), 

4.06 (3H, app. s, 1’-H, 2’-HB), 3.86 (2H, m, 4’-H), 3.45 (3H, s, acetyl CH3), 1.17 

(2H, t, J 7.0, 3’-H); δC (125 MHz DMSO-d6) 171.6 (acetyl C=O), 152.1 (C-6), 

143.6 (C-2), 138.4 (C-4), 120.1 (C-5), 119.1 (C-8), 57.4 (C-3’), 31.7 (C-5’), 

45.1 (C-2’), 29.1 (C-4’), 22.6 (acetyl CH3); HRMS [M+H]+ C11H15N6O+ calc.  

247.1307, found 247.1302.  
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N-(1-(9H-purin-6-yl)piperidin-3-yl)methanesulfonamide (286) 

 

Following general procedure 4, employing N-(piperidin-3-

yl)methanesulfonamide (694 mg, 3.90 mmol) and heated at reflux for 6 h. The 

crude solid was purified by mass-directed preparative purification (20-minute 

run time; 5-95% water containing 0.1 M formic acid/MeCN; target m/z 296, 

297; product eluted at 17.3 minutes) to give the product as a clear colourless 

oil (539 mg, 56%). νmax/cm-1 (film) 3284, 3069, 2944 and 1579;  δH (500 MHz, 

DMSO-d6) 8.01 (1H, s, 2-H), 7.80 (1H, s, 8-H), 5.10 (1H, d, J 11.3 , 2’-H), 4.78 

(1H, d, J 12.0 , 6’-H), 3.31 – 3.07 (3H, m, 2’-H, 3’-H, 6’-H), 2.88 (3H, s, mesyl 

CH3), 1.93 (1H, t, J 4.9 , 4’-H or 5’-H), 1.75 – 1.59 (1H, m 4’-H or 5’-H), 1.53 – 

1.37 (2H, m, 4’-H, 5’-H); δC (125 MHz DMSO-d6) 153.8 (C-6), 151.7 (C-2), 

138.3 (C-4), 137.7 (C-8), 119.1 (C-5), 50.8 (C-2’), 49.7 (C-3’), 45.1 (C-6’), 40.4 

(mesyl CH3), 32.0 (C-4’ or C-5’), 23.7 (C-4’ or C-5’); HRMS [M+H]+ 

C11H17N6O2S+ calc., 297.1134 found, 297.1141. 
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6-(3-phenylpiperidin-1-yl)-9H-purine (287) 

 
Following general procedure 4, employing 3-phenyl piperidine (237 mg, 3.90 

mmol) and heated at reflux for 8 h. The solid was isolated through filtration 

using a sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 287 as a grey solid (907 mg, 

85%). mp 247 °C (EtOH); νmax/cm-1 (film) 3123, 3012, 2882 and 1532; δH (500 

MHz, DMSO-d6) 8.21 (1H, s, 2-H), 8.10 (1H, s, 8-H), 7.38 – 7.32 (4H, m, 

phenyl), 7.27 – 7.22 (1H, m, phenyl 4-H), 2.76 (1H, tt, J 11.4, 3.8, 3’-H), 2.53 

– 2.52 (2H, m, 2’-H), 2.02 – 1.95 (2H, m, 6’-H), 1.88 – 1.81 (2H, m, 4’-H), 1.60 

(2H, app. qt, J 13.6, 4.0, 5’-H); δC (125 MHz, DMSO-d6) 153.6 (C-6), 151.9 

(C-2), 144.2 (phenyl C-1), 138.7 (C-4), 138.4 (C-8), 128.9 (phenyl C-2), 127.0 

(phenyl C-3), 125.1 (phenyl C-4), 119.3 (C-5), 51.9 (C-2’), 45.6 (C-6’), 42.8 

(C-3’), 31.2 (C-4’), 25.8 (C-5’); HRMS [M+H]+ C16H18N5+ calc., 280.1562, 

found 280.1571. 
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5-((3-phenylpiperidin-1-yl)sulfonyl)isoquinoline (288) 

 
Following general procedure 5, employing 3-phenylpiperidine (516 mg, 3.21 

mmol) and stirred at room temperature for 18 h. The solid was dissolved in 

CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 288 was isolated as a 

colourless solid (475 mg, 61%). Rf 0.30 (EtOAc). mp 218 °C (EtOH); νmax/cm-

1 (film) 3028, 2671, 2063, 2043 and 1386;  δH (500 MHz, DMSO-d6) 9.51 (1H, 

app. d, J 1.0, 1-H), 8.70 (1H, d, J 6.1, 4-H), 8.50 (1H, dt, J 8.3, 1.1, 6-H), 8.45 

(1H, dt, J 6.2, 1.0, 3-H), 8.38 (1H, ddd, J 7.4, 1.2, 1.0, 8-H), 7.87 (1H, dd, J 

8.2, 7.4, 7-H), 7.33 – 7.25 (2H, m, phenyl), 7.21 (m, 3H, phenyl), 3.83 (1H, m, 

2’-HA), 3.79 – 3.72 (1H, m, 2’-HB), 2.75 – 2.57 (3H, m, 3’-H, 6’-H), 1.84 – 1.70 

(2H, m, 4’-H), 1.62 – 1.46 (2H, m, 5’-H); δC (125 MHz, DMSO-d6) 154.1 (C-1), 

145.4 (C-3), 143.2 (C-5), 134.7 (C-6, C-8), 134.4 (C-6, C-8), 132.5 (C-4a), 

131.4 (C-8a), 129.3 (phenyl C-1), 129.0 (phenyl C-2), 127.6 (phenyl C-3), 

127.2 (phenyl C-4, C-7), 127.1 (phenyl C-4, C-7), 117.6 (C-4), 51.7 (C-2’), 

45.9 (C-6’), 42.3 (C-3’), 30.5 (C-4’), 25.3 (C-5’); HRMS [M+H]+ C20H21N2O2S+ 

calc., 353.1329 found, 353.1335. 
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5-((hexahydro-1H-isoindol-2(3H)-yl)sulfonyl)isoquinoline (289) 

 
Following general procedure 5, employing octahydro-1H-isoindole 

hydrochloride (516 mg, 3.21 mmol) and stirred at room temperature for 18 h. 

The solid was dissolved in CH2Cl2 (5 mL), dry loaded onto silica and purified 

by flash column chromatography eluting with EtOAc, to give fragment 289 as 

a brown solid (335 mg, 48%. Rf 0.36 (EtOAc). mp 220 °C (EtOH); νmax/cm-1 

(film) 3282, 2952, 2801, 2389, 2103 and 1374; δH (500 MHz, MeOD) 9.25 (1H, 

dd, J 1.1, 0.9, 1-H), 8.54 (1H, dt, J 6.2, 1.0, 1H, 3-H), 8.50 (1H, d, J 6.2, 4-H), 

8.31 (1H, dd, J 7.4, 1.2, 6-H), 8.27 (1H, app. dt, J 8.2, 1.1, 8-H), 7.71 (1H, dd, 

J 8.2, 7.4, 7-H), 3.22 (2H, dd, J 9.6, 6.8, 2’-H), 3.10 (2H, dd, J 9.5, 5.5, 2’-H), 

1.29 – 0.95 (10H, m, 2a’-H, 3’-H, 4’-H); δC (125 MHz, DMSO-d6) 152.9 (C-1), 

143.5 (C-3), 133.6 (C-6, C-8), 133.6 (C-6, C-8), 133.6 (C-5), 132.0 (C-4a), 

129.3 (C-8a), 126.4 (C-7), 118.2 (C-4), 51.0 (C-2’), 37.5 (C-2a’), 25.0 (C-3’, 

C-4’), 22.2 (C-3’, C-4’); HRMS [M+H]+ C17H21N2O2S1+ calc., 317.1329 found, 

317.1327. 
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5-((2-methylpiperidin-1-yl)sulfonyl)isoquinoline (290) 

 
Following general procedure 5, employing 2-methylpiperidine (318 mg, 3.21 

mmol) and stirred at room temperature for 18 h. The solid was dissolved in 

CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 290 as a brown solid 

(346 mg, 54%). Rf 0.41 (EtOAc). mp 198 °C (EtOH); νmax/cm-1 (film) 2128, 

1513 and 1358; δH (500 MHz, MeOD) 9.26 (1H, d, J 1.0, 1-H), 8.51 (1H, d, J 

6.2, 4-H), 8.36 (1H, dd, J 7.4, 1.3, 6-H), 8.30 (1H, dt, J 6.2, 1.0, 3-H), 8.26 (1H, 

app. dt, J 8.3, 1.1, 8-H), 7.69 (1H, dd, J 8.2, 7.4, 7-H), 4.22 – 4.08 (1H, m, 2’-

H), 3.57 – 3.47 (1H, m, 6’-H2), 3.00 (1H, td, J 13.3, 2.7, 6’-H3), 1.55 – 1.30 

(5H, m, 3’-H, 4’-H, 5’-H), 1.13 – 1.02 (1H, m, 4’-H), 1.01 (3H, br, CH3). δC (125 

MHz, MeOD) 153.0 (C-1), 143.5 (C-3), 135.0 (C-5), 134.1 (C-6 or C-8), 133.6 

(C-6 or C-8), 131.4 (C-4a), 129.3 (C-8a), 126.3 (C-7), 118.0 (C-4) 48.4 (C-2’), 

39.7 (C-6’), 30.0 (C-3’), 25.2 (C-5’), 17.7 (C-4’), 14.8 (CH3). HRMS [M+Na]+ 

C15H18N2NaO2S+ 313.0992 found, 313.0990. 
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5-(7-azabicyclo[2.2.1]heptan-7-ylsulfonyl)isoquinoline (291) 

 
Following general procedure 5, employing 7-azabicyclo[2.2.1]heptane 

hydrochloride (427 mg, 3.21 mmol) and stirred at room temperature for 18 h. 

The solid was dissolved in CH2Cl2 (5 mL), dry loaded onto silica and purified 

by flash column chromatography eluting with EtOAc, to give fragment 291 was 

isolated as a white solid (91 mg, 18%). Rf 0.40 (EtOAc). mp 217 °C (EtOH); 

νmax/cm-1 (film) 2995, 2951, 2871 and 1368;  δH (500 MHz, DMSO-d6) 9.49 

(1H, app. d, J 0.9, 1-H), 8.71 (1H, d, J 6.1, 4-H), 8.51 – 8.44 (2H, m, 3-H, 6-H 

or 8-H), 8.41 (1H, m, 6-H or 8-H), 7.90 – 7.83 (1H, m, 7-H), 4.22 (2H, td, J 2.9, 

1.4, 2’-H), 1.65 (4H, m, 3’-H2), 1.43 (4H, m, 3’-H3); δC (125 MHz, DMSO-d6) 

154.0 (C-1), 145.3 (C-3), 135.0 (C-5), 134.6 (C-6, C-8), 133.6 (C6, C8), 131.2 

(C4a), 129.1 (C8a), 127.0 (C7), 117.6 (C4), 59.7 (C2’), 30.3 (C3’). HRMS 

[M+H]+ C15H17N2O2S+ 289.1016 found, 289.1025. 
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N-ethyl-N-methyl-9H-purin-6-amine (292) 

 
Following general procedure 4, employing N-methylethanamine (230.1 mg, 

3.90 mmol) and heated at reflux for 3.5 h. The crude solid was washed with 

MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 292 as a 

yellow solid (126 mg, 22%). mp 287 °C (EtOH); νmax/cm-1 (film) 3066, 2965, 

2788, 1984 and 1574; δH (500 MHz, DMSO-d6) 12.94 (1H, br s, NH) 8.18 (1H, 

s, 8-H), 8.08 (1H, s, 2-H), 4.06 (2H, br, NCH2CH3), 3.45 (3H, br s, NCH3) 1.17 

(3H, t, J 7.0, NCH2CH3); δC (125 MHz DMSO-d6) 154.1 (C-6), 152.4 (C-2), 

151.5 (C-4), 138.4 (C-8), 119.2 (C-5), 44.9 (NCH3), 35.7 (NCH2CH3), 13.2 

(NCH2CH3); HRMS [M+H]+ C7H10N5+ calc.  178.1093, found 178.1084.  
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N-ethyl-N-methylisoquinoline-5-sulfonamide (293) 

 
Following general procedure 5, employing N-methylethanamine (195.8 mg, 

3.32 mmol) and stirred at room temperature for 18 h. The solid was dissolved 

in CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 293 as a white solid (309 

mg, 56%). Rf 0.31 (EtOAc). mp 167 °C (EtOH); νmax/cm-1 (film) 3067, 2982, 

2935, 1612 and 1351;  δH (500 MHz, MeOD) 9.33 (1H, d, J 1.0, 1-H), 8.59 

(1H, d, J 6.2, 4-H), 8.55- 8.51 (1H, m, 3-H), 8.39 – 8.27 (2H, m, 6-H, 8-H), 

7.77 (1H, dd, J  8.2, 7.4, 7-H), 3.25 (2H, q, J  7.1, CH2CH3), 2.82 (3H, s, CH3), 

1.08 (3H, t, J 7.1, CH2CH3). δC (125 MHz, MeOD) 152.9 (C-1), 143.4 (C-3), 

133.6 (C-5) 133.5 (C-6, C-8) 133.4 (C-6, C-8), 131.7 (C-4a), 129.2 (C-8a), 

126.4 (C-7), 118.1 (C-4), 44.3 (CH3), 32.7 (CH2CH3), 12.2 (CH2CH3). HRMS 

[M+H]+ C12H15N2O2S+ calc., 251.0859, found 251.0854. 
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N,N-dimethyl-9H-purin-6-amine (294) 

 
Following general procedure 4, employing dimethylamine (2 M in ethanol, 2 

mL) and heated at reflux for 3.5 h. The solid was isolated through filtration 

using a sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 294 as a yellow solid (392 

mg, 74%). mp 260 °C (EtOH) (lit276 262°C); νmax/cm-1 (film) 3054, 2946, 2671 

and 1587; δH (500 MHz, DMSO-d6) 12.96 (1H, br s, 9-H) 8.18 (1H, s, NH), 

8.09 (1H, s, 8-H), 3.40 (6H, br s, amine CH3). δC (125 MHz DMSO-d6) 154.7 

(C-6), 152.3 (C-2), 151.5 (C-4), 138.2 (C-8), 119.4 (C-5), 38.3 (amine CH3); 

HRMS [M+H]+ C7H10N5+ calc. 164.0936, found 164.0930. Spectral data in 

accordance with literature.277 
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N,N-dimethylisoquinoline-5-sulfonamide (295) 

 
Following general procedure 5, employing dimethylamine (2M in ethanol, 2 

mL) and stirred at room temperature for 18 h. The solid was dissolved in 

CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 295 as a yellow solid 

(396 mg, 76%). Rf 0.30 (EtOAc). mp 161 °C (EtOH); νmax/cm-1 (film) 3019, 

2688, 2609, 1613 and 1353; δH (500 MHz, MeOD) 9.24 (1H, d, J 0.8, 1-H), 

8.52 – 8.44 (2H, m, 3-H, 4-H), 8.26 (2H, d, J 7.7, 6-H, 8-H), 7.71 (1H, t, J 7.8, 

7-H), 2.67 (6H, s, 2’-H). δC (125 MHz, MeOD) 152.9 (C-1), 143.5 (C-3), 134.3 

(C-6, C-8), 133.9 (C-6, C-8), 132.1(C-8a), 131.9 (C-5), 129.3 (C-4a), 126.3 

(C-7), 118.2 (C-4), 36.4 (C-2’). HRMS [M+H]+ C11H13N2O2S+ calc., 237.0703, 

found 237.0703. 
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N-methyl-9H-purin-6-amine (296) 

 
Following general procedure 4, employing methylamine (2 M in methanol, 2 

mL) and heated at reflux for 3.5 h. The solid was isolated through filtration 

using a sintered funnel.  The crude solid was washed with MeOH (2 × 25 mL) 

and dichloromethane (2 × 25 mL) to give purine 296 as a beige solid (484.3 

mg, 54%). mp 320 °C (EtOH); νmax/cm-1 (film) 3312, 3025, 2898 and 1521; δH 

(500 MHz, DMSO-d6) 12.90 (1H, br s, 9-H) 8.21 (1H, s, NH), 8.08 (1H, s, 8-

H), 7.60 (1H, s, 2-H), 3.46 (br s, 2H, NH2), 2.96 (3H, s, amine CH3); δC (125 

MHz DMSO-d6) 155.4 (C-6), 152.9 (C-2), 149.7 (C-4), 139.0 (C-8), 119.4 (C-

5), 27.4 (amine CH3); HRMS [M+H]+ C6H8N5+ calc.  150.0780, found 150.0769. 
1H and 13C is consistent with the literature 277  
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N-methylisoquinoline-5-sulfonamide (297) 

 
Following general procedure 5, employing methylamine (1M in methanol, 2 

mL) and stirred at room temperature for 18 h. The solid was dissolved in 

CH2Cl2 (5 mL), dry loaded onto silica and purified by flash column 

chromatography eluting with EtOAc, to give fragment 297 as a colourless solid 

(396 mg, 76%). Rf 0.30 (EtOAc). mp 153 °C (EtOH); νmax/cm-1 (film) 3068, 

2811, 2232, 1618 and 1350; δH (500 MHz, MeOD) 9.27 (1H, t, J 1.2, 1-H), 

8.54 – 8.38 (2H, m, 3-H, 4-H), 8.38 – 8.25 (2H, m, 6-H, 7-H), 7.71 (1H, ddd, J 

8.5, 7.3, 1.3, 8-H), 4.76 (1H, s, NH), 2.50 – 2.39 (3H, m, 2’-H). δC (125 MHz, 

MeOD) 152.9 (C-1), 143.4 (C-3), 134.0 (C-5), 133.6 (C-6, C-8), 133.4 (C-6, C-

8), 131.4 (C-8a), 129.3 (C-4a), 126.2 (C-7), 117.9 (C-4), 27.6 (C-2’). HRMS 

[M+H]+ C10H11N2O2S+ calc., 223.0547, found 223.0548. 
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9H-purin-6-amine (298) 

 
Following general procedure 4, employing ammonia (1 M in methanol, 2.5 mL) 

and heated at reflux for 8 h. The solid was isolated through filtration using a 

sintered funnel. The crude solid was washed with MeOH (2 × 25 mL) and 

dichloromethane (2 × 25 mL) to give purine 298 as a colourless solid (171 

mg, 39%). mp 360 °C (EtOH) (Lit 278 360 °C) ; νmax/cm-1 (film) 3344, 3058, 

2965, 2886 and 1574; δH (500 MHz, DMSO-d6) 12.85 (1H, br s, 9-H), 8.13 

(1H, s, 2-H), 7.16 (1H, s, 8-H), 3.45 (br s, 2H, NH2);  δC (125 MHz DMSO-d6) 

154.7 (C-6), 152.3 (C-2), 151.5 (C-4), 138.2 (C-8), 119.4 (C-5); HRMS [M+H]+ 

C5H6N5+ calc. 136.0613, found 136.0608. Spectral data in accordance with 

literature.279 

 

Isoquinoline-5-sulfonamide (299) 

 
Following general procedure 5, employing ammonia (1M in methanol, 2.5 mL) 

and stirred at room temperature for 18 h. The solid was dissolved in CH2Cl2 

(5 mL), dry loaded onto silica and purified by flash column chromatography 

eluting with EtOAc, to give fragment 299 as an off-white solid (69.1 mg, 10%). 

Rf 0.37 (10:90 MeOH−EtOAc). mp 155 °C (EtOH); νmax/cm-1 (film) 3291, 2973, 

2880, 2462, 2043, 1620 and 1351; δH (500 MHz, MeOD) 9.27 (1H, dd, J 1.1 

0.9, 1-H), 8.51 (1H, d, J 6.2, 4-H), 8.47 (1H, dt, J 6.2, 0.9, 3-H), 8.38 (1H, dd, 

J 7.4, 1.2, 6-H), 8.25 (1H, app. dt, J 8.3, 1.1, 8-H), 7.69 (1H, dd, J 8.2, 7.4, 7-

H). δC (125 MHz, MeOD) 152.6 (C-1), 143.0 (C-3), 138.4 (C-5), 132.8 (C-8), 

131.4 (C-6), 131.2 (C-4a), 129.2 (C-8a), 126.4 (C-7), 118.3 (C-4). HRMS 

[M+H]+ C9H9N2O2S+ calc., 209.03890, found 209.0389. 
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5-((1,4-diazepan-1-yl)sulfonyl)isoquinoline (300) 

 
Following general procedure 5, employing tert-butyl 1,4-diazepane-1-

carboxylate (642 mg, 3.21 mmol) and stirred at room temperature for 18 h. 

The reaction mixture was concentrated in vacuo to give a crude solid.  The 

solid was dissolved in dichloromethane (50 mL) and TFA (25 mL) and stirred 

at room temperature for 3 h. Subsequently the reaction was concentrated in 

vacuo to give a crude residue. The residue was dissolved in dichloromethane 

(2 mL) and loaded onto a 1 g SCX cartridge, and the cartridge flushed with 

MeOH (3 × 20 mL). The product was eluted using ammonia (1 M solution in 

MeOH, 3× 20 mL) which was concentrated in vacuo to give 300 as a white 

solid (334 mg, 52%). mp 232 °C (EtOH); νmax/cm-1 (film) 3292, 3008, 2929, 

2816 and 1378; δH (500 MHz, MeOD) 9.35 (1H, app. d, J 1.0, 1-H), 8.61 (1H, 

d, J 6.2, 4-H), 8.50 (1H, dt, J 6.2, 1.0, 3-H), 8.35 (2H, m, 6-H, 8-H), 7.79 (1H, 

dd, J 8.2, 7.4, 7-H), 3.56 – 3.44 (4H, m, 2’-H, 7’-H), 3.02 – 2.85 (4H, m, 3’-H, 

5’-H), 1.85 (2H, tt, J 7.1, 4.9, 6’-H); δC (125 MHz, MeOD) 153.0 (C-1), 143.6 

(C-3), 134.5 (C-5), 133.5 (C-6, C-8), 132.9 (C-6, C-8), 131.5 (C-4a), 129.4 (C-

8a), 126.4 (C-7), 118.0 (C-4), 50.0 (C-7’), 49.3 (C-2’), 47.0 (C-3’), 46.7 (C-5’), 

30.3 (C-6’). HRMS [M+H]+ C14H18N3O2S+ calc., 292.1125 found, 292.1136. 
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tert-butyl 4-(9H-purin-6-yl)-1,4-diazepane-1-carboxylate (301) 

 

Following general procedure 4, employing tert-butyl 1,4-diazepane-1-

carboxylate (780 mg, 3.90 mmol) and heated at reflux for 8 h. The solid was 

isolated through filtration using a sintered funnel. The crude solid was washed 

with MeOH (2 × 25 mL) and dichloromethane (2 × 25 mL) to give purine 301 

as a colourless solid (1.03 g, 85%). mp 284 °C (EtOH); νmax/cm-1 (film) 3084, 

2989, 2698 and 1692; δH (500 MHz, MeOD) 8.09 (1H, s, 2-H), 7.88 (1H, s, 8-

H), 4.13 (4H, m, 2’-H, 7’-H), 3.02 – 2.92 (2H, m, 3’-H), 2.78 – 2.73 (2H, m, 5’-

H), 1.96 – 1.86 (2H, m, 6’-H), 1.54 (9H, s, tBu); δC (125 MHz MeOD) 154.0 (C-

6), 151.7 (C-2), 150.8 (Boc C=O), 138.9 (C-4) 138.1 (C-8), 118.6 (C-5), 70.8 

(Boc C-O) 50.3 (C-7’), 48.7 (C-2’), 46.8 (C-3’, C-5’), 30.3 (C-6’), 29.1 (Boc 
tBu); HRMS [M+H]+ C15H23N6O2+ calc., 319.1882, found 319.1898. 
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tert-butyl (1-(isoquinolin-5-ylsulfonyl)pyrrolidin-3-yl)carbamate (303) 

 
Following general procedure 5, employing N-(pyrrolidin-3-

yl)methanesulfonamide (597 mg, 3.21 mmol) and stirred at room temperature 

for 18 h. The solid was dissolved in CH2Cl2 (5 mL), dry loaded onto silica and 

purified by flash column chromatography eluting with EtOAc, to give the title 

fragment as a colourless solid (274 mg, 33%). Rf 0.32 (EtOAc). mp 209 °C 

(EtOH); νmax/cm-1 (film) 3229, 2977, 1601 and 1321; δH (500 MHz, DMSO-d6) 

9.37 (1H, dd, J 1.2, 0.9, 1-H), 8.58 (1H, d, J 6.1, 3-H), 8.45 – 8.32 (2H, m, 4-

H, 6-H), 8.23 (1H, app. dd, J 7.4, 1.2, 8-H), 7.75 (1H, dd, J 8.1, 7.4, 7-H), 3.85 

(1H, m, 3’-H) 3.31 – 3.28 (2H, m, 2’-HA, 5’-HA), 3.24 – 3.15 (1H, m, 5’-HB), 

2.95 (1H, dd, J 9.8, 4.9, 2’-HB), 1.86 (1H, ddt, J 13.0, 7.9, 6.6, 4’-HA), 1.59 (1H, 

dq, J 12.8, 6.5, 4’-HB), 1.19 (s, 9H, tBu). δC (125 MHz, DMSO-d6) 155.5 (Boc 

C=O), 153.9 (C-1), 145.4 (C-3), 134.5 (C-6, C-8), 133.7 (C-6, C-8), 132.6 (C-

5), 131.7 (C-4a), 129.3 (C-8a), 127.0 (C-7), 117.7 (C-4), 78.5 (Boc C-O), 53.2 

(C-2’), 50.4 (C-3’), 46.4 (C-5’), 30.8 (C-4’), 28.6 (Boc tBu); HRMS [M+H]+ 

C18H24N3O4S1+ calc., 378.1493 found, 378.1498. 
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 Biochemical Experimental 

Aurora-A kinase assays were designed by Chris Arter.228,280 

 Determination of Fragment IC50 

Each method used a Labchip EZ Reader II system (PerkinElmer) at room 

temperature using separation buffer (760367, PerkinElmer) containing 

Coating Reagent 8 (500 nM, 760278, PerkinElmer). The assays were 

performed in 384-well low-volume (30 μl) plates (Corning). The kinase 

substrate was a fluorescein-labelled peptide [5-FAM-LRRASLG-CONH2] 

dissolved in 20 mM Tris (pH 7.0), 200 mM NaCl, 5 mM MgCl2, and 10% w/v 

glycerol. Measurements of substrate phosphorylation were made every two 

minutes for 30 cycles unless otherwise stated. Assays were carried out in 

duplicate using a 12-sipper chip (760404 PerkinElmer) with 2.5% final DMSO 

concentration. Fragments were evaluated by performing a 10-point, 5-fold 

serial dilution of fragment in DMSO (188 mM, 100% DMSO), followed by 

dilution with buffer (20 mM Tris (pH 7.0), 200 mM NaCl, 5 mM MgCl2, and 

10% w/v glycerol) to result in 4 × fragment solutions, each concentration was 

repeated in triplicate. A solution containing both 4 × substrate and 4 × ATP (6 

μM and 320 μM respectively) and a 2 × enzyme solution (20 nM) were 

prepared in the same buffer. Each of the fragment solutions (20 μl) was diluted 

two-fold with the solution containing both the substrate and ATP (20 μl); and 

14 μl of the resulting solutions were added to the appropriate wells on a 384-

well plate, followed by 14 μl of the 2 × enzyme solution, resulting in 10 final 

fragment concentrations (10 mM – 508 nM) and final substrate, ATP and 

enzyme concentrations of 1.5 μM, 80 μM, and 10 nM, respectively, in 10% 

final DMSO. The percentage conversion of substrate at each fragment 

concentration was generated by the EZ Reader software and plotted against 

time in GraphPad Prism 7 and includes error bars. The initial rate at each 

fragment concentration was plotted against the corresponding concentration 

to yield a dose-response curve, using a sigmoidal fit. 



 

 

- 318 - 

 DMSO tolerance Studies228 

The pseudo-WT Aurora-A DMSO tolerance values were determined by 

performing an 10-point, 2-fold serial dilution of 40% DMSO in Aurora-A buffer 

to result in 4 × stock solutions of DMSO. A 4 × substrate and ATP solution (6 

μM and 320 μM, respectively) and a 2 × enzyme solution (100 and 62.5 nM 

for WT and pseudo-WT Aurora A, respectively) were prepared. Each of the 4 

× DMSO stock solutions were diluted two-fold in the 4 × substrate and ATP 

solution and 14 μl of the produced solutions were added to the appropriate 

wells on the 384-well plate, followed by the 2 × enzyme solution, resulting in 

12 final DMSO concentrations (10 – 0.02 % v/v) and final substrate, ATP and 

enzyme concentrations of 1.5 μM, 80 μM, 50 nM, and 31.25 nM, respectively. 

The percentage conversion of substrate at each DMSO concentration was 

generated by the EZ Reader software and plotted against time in GraphPad 

Prism 7. The initial rate at each DMSO concentration was plotted against the 

corresponding concentration. An ideal DMSO % for WT Aurora-A and pseudo-

WT Aurora-A was determined as 2.5%.  

 Determination of ATP KM228 

The pseudo-WT Aurora-A KM ATP values were determined by performing a 

12-point, 3- fold serial dilution of 12 mM ATP in Aurora-A buffer to result in 4 

× stock solutions of ATP. A 4 × substrate solution (6 μM) and a 2 × enzyme 

solution (100 and 62.5 nM for WT and pseudo-WT Aurora A, respectively) 

were prepared. Each of the 4 × ATP stock solutions were diluted two-fold in 

the 4 × substrate solution and 14 μl of the produced solutions were added to 

the appropriate wells on the 384-well plate, followed by the 2 × enzyme 

solution, resulting in 12 final ATP concentrations (3 mM – 17 nM) and final 

substrate and enzyme concentrations of 1.5 μM, 50, and 31.25 nM 

concentrations, respectively. The percentage conversion of substrate at each 

ATP concentration was generated by the EZ Reader software and plotted 

against time in GraphPad Prism 7. The initial rate at each ATP concentration 
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was plotted against the corresponding ATP concentration to generate a 

Michaelis-Menten plot.  

 Thermal Shift Assay 
This work was completed by Dr. Tilman-Berger of Prof. Stefan Knapp 

laboratory at the SGC Frankfurt.  

 

The protein at 2 μM in 10 mM HEPES, pH 7.5 and 250 mM NaCl was mixed 

with the fragments/ compounds at 200 mM concentration. The assays, data 

evaluation, and melting temperature (Tm) calculation were performed using a 

Real-Time PCR Mx3005p machine (Stratagene) with the protocols described 

previously. 258 

 

 General Computational Procedures 

 

General computational procedures All computational dockings were 

conducted on a LINUX computer using the CentOS 6.6 operating system. 

Parallel docking was conducted on the Milin6 cluster housed at the University 

of Leeds.  

 

PBD pre-processing All PDBs were sourced from the RCSB PDB databank. 

Each PDB complex was first opened in Maestro Version 9.9.013 where they 

were visually inspected. If more than one protein molecule was present in the 

asymmetric unit, one was removed to generate a monomer and all water 

molecules were removed from the structure. 
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Appendix 1: Synthesised Fragments and Their Potency 

Against Aurora-A from Chapter 3 
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Appendix 2: IC50 Curves of the Fragments Screened in 

Chapter 3 
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Appendix 2: IC50 Curves of the Fragments Screened  
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>  3 mM 

196 
>  3 mM 

195 
>  3 mM 
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Appendix 3: Elaborated Fragments Screened in Chapter 3 
 

 Fragment IC50 pIC50  Fragment IC50 pIC50 
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 53 µM 

 
 

4.28 
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203 µM 

 
3.69 
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77 µM 

 
 

4.11 
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118 µM 

 
 

3.93 
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182 µM 

 
 
3.74 

 
 
288 

 

 
 

58 µM 

 
 

4.23 
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4.46 
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4.37 
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Appendix 4: IC50 Curves of the Elaborated Fragments 

Screened in Chapter 3 
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264 
43 μM ± 2.6 μM 

287 
35 μM ± 0.08 μM 

285 
182 μM ± 1.6 μM 

275 
53 μM  ± 0.04 μM 

283 
77 μM ± 0.05 μM 
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189 μM ± 0.09 μM 
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203 μM ± 0.04 μM 
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118 μM ± 0.07 μM 
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Appendix 5: Fragment Profiling Against 100-Kinases 

 
 

Compound

1
5

5

1
5

9

1
6

2

1
6

7

1
5

8

1
5

4

1
5

6

1
6

6

1
6

0

1
7

1

1
5

2

2
9

2

2
9

4

1
6

8

1
6

4

2
7

5

2
5

8

2
8

7

3
0

1

2
8

3

2
7

6

1
5

3

1
5

7

2
9

8

1
6

5

AURKBA 0 1 0 1 0 2 0 -1 -1 1 2 1 1 0 -1 -1 -1 -1 -1 0 -1 2 -1 -2
BMXA 1 -1 2 1 2 0 1 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 4 0 0
BRAFA 0 -1 1 0 0 0 1 0 -1 0 0 1 1 0 0 -1 -1 -1 -1 0 0 -1 2 0 -1
AAK1A 1 0 2 1 2 1 2 1 -1 0 1 2 1 2 0 -1 0 0 -2 0 0 0 2 -1 -1
ABL1A 1 -1 2 1 3 0 1 0 -1 0 0 2 1 2 0 -1 -1 -1 -1 0 0 -1 3 0 0

CAMKK2B 0 -1 1 1 1 0 1 -1 -1 -1 0 1 1 0 0 -1 -1 0 -1 -1 1 -1 2 -1 -1
CASKA 0 0 0 0 0 -1 0 1 1 0 0 -1 -2 -2 1 -1 0 0 0 1 1 -1 0 -2 -2

CSNK1DA -1 -1 1 1 0 -1 1 1 0 0 1 3 2 1 0 0 -1 -1 -1 1 0 0 2 2 0
CSNK2A1A 1 -1 1 0 0 0 2 1 0 -1 1 2 2 0 1 -1 -1 -1 -1 0 0 0 3 1 0
CSNK2A2A 1 -1 0 0 0 0 2 1 0 -1 1 2 2 0 1 -1 -1 -1 -1 0 0 0 3 0 -1

DAPK3A -1 -1 -1 0 -1 0 1 0 -1 -1 1 1 0 -1 0 0 -1 -1 0 0 0 -1 0 -1 0
DYRK1AA -1 -2 0 -1 -1 -2 0 -1 -1 -1 1 3 2 0 1 -1 0 -1 -1 -1 0 0 1 0 -1

FESA 1 -1 1 1 0 -1 2 0 -1 -1 1 3 1 1 0 -1 -1 -1 0 0 0 0 2 0 0
GSG2A -1 -1 0 0 0 0 1 0 -1 -1 1 1 1 0 0 0 -1 -1 -1 0 1 -1 1 0 -1
TTKA 1 -1 1 2 1 -1 2 1 -1 -1 0 2 0 1 0 -1 0 0 -1 0 0 -1 3 -1 -1

EPHA2A 1 -1 0 0 0 -1 2 -1 -1 -1 1 3 1 1 0 -1 -2 -1 -1 0 0 0 2 0 0
MAPK1A 1 1 0 0 0 0 2 1 0 0 1 3 1 -1 1 1 -1 0 2 2 0 1 1 0 -1
MERTKA -1 -1 -1 -1 -1 -1 0 1 0 0 1 2 1 -1 0 0 -1 -1 0 0 2 0 0 0 0
MST3A -1 -1 0 0 0 0 3 0 -1 -1 1 2 2 0 2 1 -1 -1 1 0 -1 1 2 0 0
MST4A 1 0 0 0 0 0 2 0 0 0 0 2 1 0 2 1 0 0 1 0 -3 1 2 1 0
PAK4A 2 0 1 0 1 0 3 -1 0 0 1 2 1 -1 1 1 0 -1 0 1 -1 1 3 0 0

PHKG2A 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 1 0 -1 0 0 -1 -1 0 0 0 -1 0 0 -1
PIM1A 0 -1 0 0 0 0 2 -1 -1 -1 -1 1 0 -1 0 0 0 0 0 -1 -1 -1 1 -1 -1

RPS6KA1A 1 -1 0 -1 1 -1 2 0 -1 -1 0 2 1 -2 0 0 -1 -1 -1 0 0 0 2 0 -1
STK10A -2 -1 0 1 0 0 2 -1 -1 -1 1 3 1 0 0 1 -1 -1 0 0 0 0 2 -1 0
AKT3A -1 0 -1 -1 -1 -1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0

BMP2KA 2 0 1 1 1 1 2 -1 -1 -1 1 2 1 1 1 0 -1 -1 -1 -1 -1 0 1 -1 -1
CDC42BPAA -1 0 0 0 0 0 -3 1 1 1 0 -3 -1 -1 0 -1 1 1 0 1 1 1 0 1 1

CLK3A 0 -1 0 -1 0 -1 0 -1 0 -1 0 2 0 0 3 -1 -1 -1 -1 -1 0 -1 0 0 -1
DYRK2A 0 -1 0 -1 -1 0 2 -1 1 -1 2 2 2 0 0 -1 -1 -1 -1 0 0 -1 0 1 -1

CAMK1DA 0 1 1 -1 -1 -1 1 -1 -1 -1 0 2 1 1 0 3 0 1 1 -1 -1 0 0 0 0
CAMK1GA 0 -1 -1 0 0 0 3 -1 -1 -1 1 2 1 0 0 1 -1 -1 1 0 -1 1 2 0 -1
CAMK2BA 0 -1 -1 -4 0 -1 1 -1 -1 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
CAMK2DA 0 0 0 -1 -1 -2 1 1 -1 -1 1 2 1 0 0 0 0 -1 -1 1 -1 0 1 0 0
CAMK4A 1 -1 0 0 0 -1 3 0 -1 -1 1 5 2 0 0 0 -1 -1 0 0 0 0 2 0 -1
BMPR2A 2 -1 0 0 0 1 3 0 0 -1 1 2 1 0 2 1 0 -1 -1 0 -1 1 2 0 -1
CDK2A 1 -1 0 0 0 -1 3 0 -1 -1 0 3 1 0 0 0 -1 -1 0 0 0 0 2 0 -1

CDKL1A 0 0 -1 0 3 0 0 1 1 1 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0
CHEK2A 0 0 0 0 0 0 3 -1 0 -1 0 4 3 0 0 1 -1 -1 0 0 -1 0 0 1 -1
CLK1A 0 -1 0 -1 0 0 2 -1 -1 -1 0 2 1 0 1 -1 -1 -1 -1 0 -1 0 1 0 -1

DAPK1A -1 -1 -1 -1 -1 0 2 0 0 -1 0 1 1 -1 0 0 -1 -1 0 0 0 0 0 0 0
DMPK1A 1 -1 0 1 1 0 2 -1 -1 0 0 3 2 1 0 1 -1 -1 1 0 -1 1 2 0 0
EPHA5A 0 -1 -1 -1 -1 -1 2 0 0 0 0 3 1 0 0 0 -1 -1 0 1 0 0 1 1 0
EPHA7A 0 -1 -1 -1 1 1 4 0 0 0 1 2 0 -1 0 1 -1 -1 0 0 0 0 1 0 0
EPHB3A 0 -3 -1 -1 0 -1 2 0 -1 0 -1 2 1 -3 0 -1 -1 0 0 0 0 0 1 0 0

Purine Compounds
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28
3

27
6

15
3

15
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29
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5

FGFR1B 0 -1 0 1 1 0 4 -1 0 -1 0 3 2 0 1 0 -1 -1 0 0 -1 0 1 0 0
FGFR2A 0 -1 0 1 0 0 4 -1 0 -1 1 3 2 0 1 0 -1 -1 0 1 -1 1 2 0 0
FGFR3A 0 -1 0 1 1 0 4 -1 0 -1 1 3 2 1 1 0 -1 -1 0 0 -1 0 2 0 0
GAKA -1 -1 0 -1 0 0 4 0 0 -1 0 4 2 0 0 -1 0 -1 0 0 0 0 1 0 -1

GPRK5A 0 -1 0 0 0 0 3 -1 -3 0 0 2 1 0 0 0 -1 -1 0 -1 -1 0 0 0 0
GSK3BB 0 -1 0 0 0 -1 2 -1 0 -1 0 2 1 0 3 0 -1 -1 0 0 -1 1 1 -1 -1

MAP2K1A 0 -1 -1 0 -1 0 4 0 0 0 0 3 2 0 1 1 -1 -1 0 0 0 1 1 0 0
MAP2K4A 1 -1 0 0 0 0 3 0 0 -1 1 4 2 1 1 1 -1 -1 -1 0 -1 -1 2 1 -1
MAP2K6A 0 0 0 0 0 0 3 0 0 0 0 4 2 0 1 0 0 -1 0 0 -1 1 1 1 0
MAP3K5A 0 0 1 0 1 1 3 -1 0 -1 1 3 3 1 0 0 -1 -1 -1 0 -1 0 1 0 -1
MAPK10A -1 -1 -1 0 0 -1 2 0 -1 0 1 1 1 0 0 -1 -1 -1 -2 0 -1 0 0 0 -1
MAPK8B 1 -1 0 1 0 0 3 -1 -1 -1 0 2 2 0 1 0 -1 -1 -1 -1 -1 -1 1 0 -1

MAPK13A -1 -1 -1 0 0 0 1 -1 -1 -1 -1 0 0 -1 0 -1 -1 0 0 -1 -1 0 -1 -1 -1
MAPK14A 0 0 -1 -1 -1 -2 1 1 1 1 2 1 0 0 0 0 0 0 -2 1 1 0 0 1 0
MARK3A 0 -1 0 1 1 0 2 -1 -1 0 0 2 2 1 0 1 -1 -1 0 0 -1 0 0 -1 0
MARK4A -1 -1 0 0 1 0 2 -1 -1 -1 0 3 2 0 1 1 -1 -1 0 0 -1 0 0 0 -1
MELKA 0 -1 -1 0 0 0 1 -1 -1 -1 0 2 1 0 0 0 -1 -1 0 0 0 0 0 0 0
PIM3A -1 -1 -1 -1 -1 -1 0 0 0 -1 1 1 1 0 0 0 0 -1 -1 1 0 1 0 0 0
NEK1A 0 0 0 -1 0 0 2 0 0 0 1 3 3 0 1 1 0 0 -1 0 -1 0 1 2 0
NEK2A -1 0 -1 -1 -1 0 2 1 0 1 1 2 3 -1 0 0 -1 -1 -1 0 -1 0 0 2 0
NEK7A 2 0 -1 -2 -2 -1 1 0 -1 0 1 1 -1 1 0 1 0 -1 1 0 0 1 1 -1 1
OSR1A 0 -1 0 0 0 0 3 -1 0 -1 2 4 2 0 0 0 -1 -1 0 0 0 2 0 1 0
PAK1A -1 -1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 -1 1 1 1 0 0 0
PCTK1A -1 -1 -1 -1 -1 -1 0 0 0 0 0 1 0 0 0 0 -1 -1 0 0 0 0 0 -1 -1

PKMYT1A -1 -1 -1 -1 0 0 1 1 0 0 0 0 0 -2 0 0 0 0 -1 1 0 0 0 1 0
PLK4A 0 -1 0 1 0 0 3 -1 -1 -1 1 3 1 1 0 0 -1 -1 -1 0 -1 0 1 -1 -1

RPS6kA5A 0 -1 -1 -1 -1 1 2 0 0 -1 2 2 2 -1 0 2 -1 -1 0 1 -1 1 0 2 0
SLKA 1 -1 0 0 0 0 3 -1 -1 -1 0 2 1 1 0 1 -1 -1 1 0 0 1 1 0 0
SRCA 0 0 0 0 0 0 3 0 0 0 0 2 2 1 0 0 0 0 -1 0 0 0 2 3 0

SRPK1A -1 -1 -1 -1 0 -1 1 1 1 0 0 4 1 0 0 -1 0 -1 -2 1 0 -2 0 0 0
STK17AA -1 -1 -1 -1 -1 0 1 -1 -1 0 0 2 2 -1 0 0 0 -1 -1 0 -1 -1 -1 0 -1
STK17BA 0 -1 -1 -1 -1 -1 3 0 0 0 0 3 1 0 0 -1 -1 -1 -2 -1 0 0 0 0 -1
EPHB1A -1 -2 -1 -1 0 -1 2 0 0 -1 -1 2 0 -1 0 -1 -1 -1 0 0 0 1 0 -1 0
HIPK2 0 0 0 0 0 -1 1 1 0 0 1 3 1 1 1 1 0 -1 -1 0 1 1 1 1 1

MAP2K7A 2 1 -1 0 -1 0 -1 0 0 1 0 2 1 1 0 0 0 -1 -1 1 -1 0 -1 1 0
STK3A 1 -1 1 1 1 0 3 -1 -1 -1 1 3 2 1 0 1 -1 -1 0 0 -1 1 2 0 -1

STK38LA 1 -1 0 0 1 -1 1 -1 -1 -1 0 4 1 0 0 0 -1 -1 -1 0 0 0 2 0 -1
STK39A 0 -1 0 0 0 0 3 -1 0 -1 1 4 2 0 1 1 -1 -1 0 0 -1 1 1 1 0
STK4A 1 0 1 1 1 0 3 0 0 -1 1 3 2 1 1 1 -1 -1 -1 0 -1 1 2 0 -1
STK6A 0 -1 0 0 0 0 2 -1 -1 -1 0 2 1 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1
TAF1A -2 0 -1 -1 -1 -1 -1 1 2 2 0 0 -1 -1 0 0 -1 0 0 0 1 3 1 1 1
TOPKA 0 0 0 0 0 1 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 0
ULK1A 0 -1 -1 0 0 0 2 -1 -1 -1 1 3 2 0 0 1 -1 -1 0 0 -1 0 0 0 -1
ULK3A 1 -1 0 0 0 0 3 -1 -1 -1 1 3 2 0 1 1 -1 -1 -1 0 -1 1 2 1 -1
VRK1A 0 0 0 0 0 0 2 -1 -1 -1 1 4 2 1 1 1 0 0 -1 0 -1 0 1 -1 1
BRD4 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 -4

Purine Compounds
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BRPF1B -1 -2 -1 -1 -1 -1 1 0 0 0 1 1 1 0 1 1 0 -1 -1 1 0 1 0 0 0
DCAMKL1A -1 -1 -1 -1 -1 -1 1 -1 -1 -1 0 1 1 -1 0 1 -1 -1 0 0 0 0 0 -1 0

EPHA4A 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
FLT1A 1 -1 0 0 0 0 3 -1 0 -1 1 3 2 0 1 0 -1 -1 0 0 -1 0 1 0 0

MAPK15A -1 -1 -1 -1 0 -1 0 -1 0 -1 -1 0 0 -1 1 0 -1 -1 0 -1 0 0 -1 -1 -1
MAPKAPK2 0 -1 -1 0 0 0 2 0 0 0 1 1 2 0 0 3 0 0 0 0 0 0 0 1 0

PDK4A -1 1 -5 0 0 1 -3 1 0 0 0 -2 -1 1 -2 1 1 1 0 1 0 0 0 1 1
TIF1A 0 0 -1 -1 -1 -1 -1 1 -1 1 1 1 1 1 1 0 -1 -1 0 1 -1 1 1 0 0
TLK1A 0 0 0 0 -1 -1 2 0 0 0 0 3 1 0 1 2 -1 -1 0 0 -1 0 0 0 0

WNK1A -1 0 -1 0 -1 0 1 2 2 0 1 1 0 0 -1 -1 -1 0 1 0 1 2 1 0 0
BRPF1A 1 0 1 1 1 3 1 -1 -1 0 0 0 0 0 0 1 1 1 0 -1 -2 0 0 0 0
NQO2A 0 -1 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 -1 0 0 0 0

FECH 0 0 0 0 -1 -1 0 0 -1 0 0 -3 -1 0 0 0 0 -1 -1 0 1 -1 0 -1 -1

Purine Compounds
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0
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AURKBA -1 1 -1 0 0 -1 0 0 0 0 0 0 2 0 0 -2 0 2 1 1 -1 -1
BMXA -2 -1 -1 -1 0 -1 0 0 0 -1 0 -1 0 -1 -1 -1 -1 -1 0 -1 -1 0
BRAFA 2 0 1 1 0 2 -1 1 0 3 0 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1
AAK1A 0 -1 0 0 0 0 -1 0 -1 0 0 0 0 0 -1 0 -1 0 0 -1 -2 0
ABL1A -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -1 -1 0 0 -1 -1 -1

CAMKK2B -1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 -1 0 2 1 1 -1 -1
CASKA -2 1 0 0 0 1 0 0 0 2 1 1 0 2 0 0 0 1 0 0 0 1

CSNK1DA -1 0 -1 -1 0 -1 0 -1 0 0 0 -1 1 -1 -1 -2 -1 0 0 0 -1 0
CSNK2A1A -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1
CSNK2A2A -2 1 0 0 0 0 0 1 0 -1 0 0 -1 -1 0 -1 0 0 0 0 -1 -1

DAPK3A 0 0 0 0 0 0 0 1 1 1 1 1 3 0 0 -1 1 3 2 0 -1 -1
DYRK1AA -1 0 0 1 1 0 1 0 1 -1 0 -1 1 0 0 -1 0 2 0 1 -1 1

FESA -1 -1 -1 -1 0 0 0 0 0 -1 0 -1 1 -1 0 -1 0 1 1 0 -1 0
GSG2A -1 1 -1 -1 0 -1 1 0 0 -1 1 1 3 0 0 -1 1 2 2 2 -1 -1
TTKA -1 -1 0 1 0 0 0 0 0 0 0 0 0 2 1 0 -1 0 -1 0 -1 0

EPHA2A -1 -1 0 0 1 0 1 0 1 0 2 0 1 0 0 -1 0 1 1 0 -1 -1
MAPK1A -2 -1 -1 -1 -1 -1 0 -1 -1 0 0 0 1 0 -1 -1 -1 2 0 -1 -1 0
MERTKA -3 -1 -1 -1 1 0 0 1 1 0 2 1 3 -1 -1 -1 0 2 1 0 -1 0
MST3A -2 -1 -1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 -1 -1 0 1 1 1 0 -1
MST4A -3 0 -1 -1 0 0 0 0 0 -1 0 0 0 -1 -1 0 0 1 1 1 0 0
PAK4A -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 -1 -1 -1 0 1 0 0 -1 0

PHKG2A -1 -1 0 0 1 0 1 0 0 0 1 0 3 0 0 -1 3 3 2 1 -1 -1
PIM1A -1 0 0 0 0 0 1 1 1 -1 0 -1 3 0 0 0 1 3 3 1 0 -1

RPS6KA1A -1 -1 1 2 1 0 1 0 0 0 1 0 1 0 0 -1 0 1 0 0 -1 -1
STK10A -1 -1 0 0 0 0 0 0 0 0 1 -1 2 -1 0 -1 0 1 1 -1 -2 0
AKT3A -2 -1 -1 -1 0 0 0 0 0 0 2 0 2 -1 0 -1 0 2 2 0 0 0

BMP2KA 0 -1 1 1 1 1 0 0 -2 1 0 0 1 -2 0 -1 -1 1 0 0 -1 0
CDC42BPAA -1 1 0 -1 0 0 0 0 1 0 1 1 -1 1 0 1 1 -1 -1 0 1 0

CLK3A 0 -1 1 3 3 1 0 0 0 0 1 0 1 -1 0 -1 0 1 0 0 -1 -1
DYRK2A 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 0 -1 0 0 0 3 -1 -1

CAMK1DA -2 -1 -1 -1 0 0 0 0 0 -2 0 -1 1 -2 0 0 0 2 2 0 0 0
CAMK1GA -2 -1 -1 -1 0 -1 0 0 1 -1 0 -1 1 -1 0 -1 0 1 1 0 -1 0
CAMK2BA 0 -1 2 1 1 1 0 0 0 1 0 0 2 2 0 -1 1 2 1 -1 -1 -1
CAMK2DA -1 -1 2 1 0 0 -2 -1 -1 2 0 0 0 3 0 0 1 0 0 -1 -1 0
CAMK4A -1 -1 0 1 0 -1 0 -1 -1 0 1 -1 0 -1 0 -1 -1 1 0 0 -1 0
BMPR2A 0 -1 0 1 0 0 0 -1 -1 0 0 -1 -1 1 0 -1 -1 -1 -1 0 -1 0
CDK2A -2 -1 0 0 1 0 2 0 0 -1 1 -1 0 -1 0 -1 0 0 2 0 -1 0

CDKL1A -3 0 -2 -2 0 -1 0 0 0 1 0 0 -1 -1 0 0 0 1 1 0 0 0
CHEK2A -1 -1 -1 -1 0 -1 0 -1 -1 -1 0 -1 2 0 0 -1 0 1 0 1 -1 0
CLK1A 0 -1 1 1 1 1 1 0 -1 1 1 0 1 0 0 -1 0 2 1 2 -1 1

DAPK1A 1 -1 0 1 0 1 0 -1 0 1 0 -1 3 -3 0 -1 0 3 1 1 -2 0
DMPK1A -1 -1 -1 -1 0 -1 0 -1 -1 -1 0 -1 1 -1 0 -1 -1 1 0 0 -1 1
EPHA5A -1 -1 -1 -2 0 -1 1 -1 0 0 2 0 2 -2 0 -1 1 2 1 1 0 1
EPHA7A -1 -1 -1 -1 0 0 0 0 0 -1 1 -1 1 -2 0 -1 0 2 2 0 -1 0
EPHB3A -1 0 0 0 1 0 1 0 0 0 2 0 2 0 0 0 1 1 1 0 -1 0

Isoquinoline-5-sulfonyl Compounds
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2

FGFR1B -1 -1 -1 0 0 0 0 -1 -1 0 1 -1 0 -1 0 -1 1 1 1 0 -1 0
FGFR2A -1 -1 0 0 0 0 0 -1 -1 0 1 -1 0 -1 0 -1 0 0 0 0 -1 0
FGFR3A -1 -1 0 0 0 0 0 -1 -1 0 0 -1 0 -1 0 -1 0 0 0 0 -1 0
GAKA -1 -1 0 0 0 0 1 0 0 0 0 0 -1 0 0 -1 -1 0 -1 0 0 0

GPRK5A -1 0 0 1 1 0 1 0 -1 -1 1 -1 1 0 0 0 1 2 2 1 -2 -2
GSK3BB -1 -1 0 1 1 0 0 -1 -1 0 1 -1 1 2 0 -1 0 1 1 0 -1 0

MAP2K1A -1 -1 -2 0 -1 -1 0 0 0 0 1 0 1 -1 0 0 -1 0 0 1 -1 0
MAP2K4A -1 -1 0 0 0 0 0 -1 -1 -1 0 -1 0 0 0 -1 -1 0 -1 0 -1 0
MAP2K6A -1 0 -1 -1 0 -1 0 -1 -1 -1 0 -1 1 -1 0 -1 -1 0 0 0 -1 0
MAP3K5A -1 -1 0 0 0 0 0 -1 -1 0 0 -1 1 -1 0 -1 -1 0 0 0 -1 0
MAPK10A -1 -1 1 2 1 1 1 0 -1 1 1 -1 1 3 0 -1 -1 1 0 1 -1 -1
MAPK8B -1 -1 1 1 1 0 1 -1 -1 0 1 -1 0 2 0 -1 -1 0 -1 0 0 0

MAPK13A 0 -1 2 2 2 1 1 0 0 1 0 -1 2 2 0 -1 0 2 2 0 0 -1
MAPK14A -1 0 -1 -2 0 -1 1 0 -1 -1 1 0 1 -3 0 -1 1 1 1 0 -1 1
MARK3A -1 -1 1 1 1 1 1 0 -1 0 0 -2 1 0 0 -1 1 1 1 1 -1 -1
MARK4A -1 -1 0 1 1 0 1 0 0 0 0 -1 1 0 0 -1 1 1 1 1 -1 -1
MELKA -1 -1 1 1 1 1 1 -1 0 1 1 -1 2 1 0 -1 1 2 2 1 -1 -1
PIM3A 0 0 0 0 0 -5 0 0 -1 1 1 0 3 -1 0 -1 0 1 2 0 -1 1
NEK1A -1 0 -1 -1 -1 -1 0 -1 -1 -1 -1 0 1 -1 0 -1 0 1 0 0 -1 0
NEK2A -1 -1 0 0 -1 -1 -1 -1 -1 1 -1 1 2 1 0 -1 -1 -1 -1 0 -1 0
NEK7A 1 -1 -2 0 0 -1 -1 -1 1 -1 0 1 -1 0 0 1 0 0 1 0 2 0
OSR1A -1 -1 -1 -1 0 -1 0 -1 0 -1 0 0 0 -1 0 -1 -1 0 0 1 -1 0
PAK1A -1 0 -2 -2 -1 -1 0 0 0 0 1 0 2 -3 0 0 1 1 1 0 0 2
PCTK1A -1 -1 0 0 1 0 1 -1 -1 0 1 0 1 0 0 -1 1 2 5 0 -1 0

PKMYT1A -1 1 -1 -2 -1 -1 3 1 1 -1 1 0 -1 -3 0 1 0 0 1 1 1 2
PLK4A -1 -1 1 1 1 1 0 -1 -1 1 1 -1 0 1 0 -1 -1 1 0 0 -1 0

RPS6kA5A -1 -1 0 0 0 0 0 -1 -1 1 0 -1 1 -1 0 -1 0 1 1 1 -1 0
SLKA 0 -1 0 0 0 -1 1 0 0 -1 0 -1 2 -1 0 -1 0 1 1 0 -1 0
SRCA 0 0 -1 -1 0 -1 0 0 -1 -2 0 -1 0 -1 0 0 -1 0 0 0 -1 -2

SRPK1A 0 1 0 -1 2 0 1 0 -1 -1 2 -1 0 0 0 -1 0 1 0 0 0 0
STK17AA 0 -1 1 1 0 1 0 -1 -1 1 0 -1 3 -1 0 0 0 3 2 1 -1 0
STK17BA -1 -1 1 2 1 1 0 -1 -1 1 1 -1 1 1 0 -1 -1 0 0 1 -1 1
EPHB1A 0 0 0 2 0 1 1 -1 0 0 2 -2 2 0 0 -1 0 2 2 0 -1 0
HIPK2 1 1 -1 -2 0 -1 0 -1 -2 -2 0 0 0 -1 0 1 0 -1 0 0 -2 -1

MAP2K7A 0 -2 -1 1 1 0 -1 -2 -1 1 -1 1 1 -3 0 0 2 1 1 1 -1 1
STK3A -1 -1 0 0 0 0 0 -1 -1 -1 0 -1 1 -1 0 -1 -1 0 0 0 -1 0

STK38LA -1 -1 -1 0 1 -1 2 -1 -1 -1 1 -1 0 -1 0 -1 0 1 2 1 -1 0
STK39A -1 -1 -1 -1 0 -1 0 -1 -1 -1 0 -1 1 -1 0 -1 0 0 0 1 -1 0
STK4A -1 -1 0 0 0 0 0 -1 -1 -1 0 -1 1 -1 0 -1 -1 0 0 0 -1 0
STK6A -1 -1 2 2 2 1 1 0 0 2 1 -1 0 1 0 -1 0 1 0 0 -1 -1
TAF1A 1 0 0 0 0 0 -1 0 -1 -1 1 0 1 1 0 0 0 1 0 0 -1 0
TOPKA 0 0 0 -1 1 0 0 0 0 0 0 0 0 -6 0 0 0 0 0 1 0 0
ULK1A -1 -1 0 1 0 0 0 -1 -1 0 0 -1 2 -1 0 -1 1 2 2 1 -1 -1
ULK3A -1 -1 0 0 0 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 1 -1 0
VRK1A 0 0 -1 -1 0 -1 0 0 -1 -1 0 0 0 0 0 1 0 1 0 0 -1 -1
BRD4 -1 0 -1 -1 0 0 1 1 0 0 0 0 -1 -4 0 1 0 0 1 1 1 1

Isoquinoline-5-sulfonyl Compounds
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BRPF1B -1 0 -2 -2 0 -1 0 0 0 0 1 0 1 -3 0 0 1 1 1 1 0 1
DCAMKL1A 0 -1 0 1 1 1 1 0 0 1 1 0 3 0 0 -1 1 3 2 1 -1 -1

EPHA4A 0 -4 0 -5 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0
FLT1A -1 -1 0 0 0 0 0 -1 -1 0 0 -1 1 -1 0 -1 0 1 1 0 -1 0

MAPK15A -1 -1 0 1 1 1 1 0 0 0 1 -1 2 1 0 -1 1 3 2 1 0 -1
MAPKAPK2 -1 0 -1 -1 0 -1 0 0 0 -1 0 0 2 -3 0 -1 0 3 1 1 0 0

PDK4A 0 0 -1 -1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0
TIF1A 0 -1 -2 -2 -1 -1 0 0 0 1 -1 2 2 -1 0 -1 1 0 0 0 0 2
TLK1A -1 -1 -1 -1 -1 -1 1 -1 -1 0 0 -1 2 -1 0 -1 -1 3 2 0 -1 0

WNK1A 1 -1 0 -2 -1 -1 -1 -1 -1 -1 1 -1 2 3 0 0 0 1 -1 -1 -1 0
BRPF1A 0 0 -2 -2 0 -1 2 1 0 -1 -1 -1 0 -3 0 0 1 1 1 1 0 0
NQO2A -1 2 -1 -1 -1 -1 2 -1 -1 -1 2 1 2 -1 0 0 0 1 2 1 3 0

FECH -1 -1 1 2 0 0 0 0 1 2 0 -1 2 1 0 1 0 3 1 1 1 2

Isoquinoline-5-sulfonyl Compounds


