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Abstract 

The first chapter investigates whether macroeconomic factors play a role in explaining how 

long stock bubbles survive. To do this, it employs duration models, controls for endogeneity, 

and accounts for heterogeneity in stock markets. It documents that contemporaneous inflation 

and portfolio inflows might lead to longer duration of bubbles while the lags of inflation, 

portfolio inflows, yield spreads, and the volatility in gold prices appear to shorten the duration 

of bubbles. The results also show that the duration of bubbly stock episodes in high-income 

countries and countries with highly developed financial systems are less influenced by 

macroeconomic factors. Conversely, middle-income countries and countries with relatively 

less developed financial markets have a weaker ability to cope with macroeconomic shocks. 

Finally, the study finds that the effect of countries’ real economic activity on the duration of 

stock bubbles is likely transmitted through the channel of growth in consumption expenditure.  

 

The second chapter introduces the assumption of distinct breaks for testing of contagion. The 

empirical relevance of this assumption for the analysis of contagion is highlighted. In the first 

part of the chapter, it examines the existence of contagion through significant increases and 

breaks in conditional correlation of returns. It uses a sequential procedure to decompose the 

covariance matrix, test for changes and breaks in conditional correlation of returns, and 

estimates break dates. It documents that the test procedure detects breaks in conditional 

correlation of returns, in particular, during the recent global financial crisis, strongly supporting 

the occurrence of contagion across markets. The second part of the chapter examines the 

existence of contagion through volatility spillovers, and the importance of distinct breaks in 

the mean, variance, and correlations for the modelling of spillovers. It compares spillover 

indices obtained with distinct breaks against those obtained without distinct breaks. The study 

finds that distinct breaks characterize the evolution of volatility spillovers over time remarkably 

well. The main insight is that allowing for distinct breaks leads to time-variation in spillovers 

of volatilities. 

 

The third chapter investigates whether the approach used in determining the start date of a 

financial crisis period matters for the magnitude of the estimates when measuring contagion 

through coskewness. The importance of choosing the right start date for modelling contagion 

is discussed. The estimation issues that could arise from inaccurately determining the correct 

start date are thoroughly discussed. The discussion shows that determining the start date 

endogenously leads to better result, which informed the choice of our empirical approach. The 

chapter then determines endogenously the start date of the recent global financial crisis for 

three different regions (developed Europe, Pacific and emerging Asia, and emerging Latin 

America) using two alternative test procedures – Quandt-Andrews and a variety of Bai and 

Perron test procedures. Based on the endogenously determined start date it tests for contagion 

through correlation and coskewness. It documents changes in correlations and coskewness 

during the global financial crisis, supporting the occurrence of contagion.  
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Chapter 1: Introduction  

 

1.1. Motivation  

 

Bubbles and contagion are two important phenomena of international finance and are both of 

crucial concern for stock markets in developed and emerging economies (DEEs). This is 

because they can affect the pricing dynamics of stock markets. There are several motivations 

for interest in stock markets behaviour. Generally, the aim of stock markets is to provide 

efficient allocation of capital, which increases overall efficiency of the economy. Besides the 

important role of improving capital allocation, stock markets also boost savings and 

investment, which contributes to economic development. The markets allow for asset 

diversification thereby reducing the risk borne by investors. However, even if the stock market 

provides substantial benefits during tranquil times, during a financial crisis these can wane. 

This is because a crisis profoundly affects price formation and the dynamics of stocks 

behaviour. As will be discussed in this thesis, the transmission of external shocks from a 

notable crisis event, the global financial crisis (GFC) which originated from the US had 

significant repercussions for the dynamics of stock markets in DEEs. Shocks triggered by this 

crisis spilled over across borders, with serious disturbing trends in stock markets of DEEs.  

 

Prior to the GFC, between 2000 and 2007, world real interest rates were generally lower than 

their level in the previous decade. This resulted in rapid growth of credit and rising stock prices. 

Moreover, stock price volatility was less than 15% between 2004 and 2007. During the GFC, 

however, stock markets were characterized by a sharp decline in prices. In addition, following 

a period of low volatility, unprecedented high levels of volatility with sharp increases of over 

40%, were experienced across the stock markets of DEEs. Coupled with this, the correlation 

patterns between market returns suddenly increased during this crisis.  

 

Typically, the above contrasting paths of stock returns have resulted in two well-established 

subjects of interest. On the one hand, prior to a crisis episode, the dynamics of stock returns 

can move above and beyond what is implied by their fundamentals, resulting in what is 

commonly referred to as bubbles. Financial liberalization, which results in expansion of credit 

for investment, is often accompanied by an increase in stock prices above its fundamental value 
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(Allen and Gale, 1999). Bubbles, which often are an important part of stock prices (Diba and 

Grossman, 1988a; Evans, 1991), can affect economic growth through various channels. First, 

bubbles can have crowding out effect because they absorb savings and do not allow capital to 

be channelled to the productive sectors for investment. This can have a dampening effect on 

long-run growth. Second, its collapse may result in severe recessions with huge economic costs 

and slow pace of recovery. Third, if the run-up in prices are financed by credit, amplification 

mechanism and spillover effects will set in (Brunnermeier and Oehmke, 2013). Moreover, if 

they burst, particularly those financed via leverage, an increase in default on repayments by 

borrowers is inevitable.  

 

On the other hand, during a crisis episode, stock returns can co-move extremely across markets 

and lead to a phenomenon often referred to as contagion. Contagion between stock markets 

following a crisis is a crucial issue for DEEs. This is important because contagion between 

stock markets is not only a significant rise in cross-market dependence, but — as will be 

discussed in greater detail this thesis, — it causes breaks or unexpected changes in the 

international transmission mechanisms between markets (Pericoli and Sbracia, 2003; Corsetti 

et al., 2005; Khan and Park, 2009; Jung and Maderitsch, 2014). As such, contagion could cause 

a sudden change in the behaviour of stock returns, and this could disrupt the smooth functioning 

of markets. Understanding contagion from the viewpoint of breaks is, therefore, of importance 

because not only does it helps to uncover whether there is a sudden change in the behaviour of 

stock returns and the time when the change occurs, but because it would indicate how severely 

pricing dynamics has been affected.  

 

Contagion is also associated with the transmission of shocks that spill over from one country 

to another during a crisis. These shocks when transmitted across stock markets, however, can 

have significant implications for international portfolio diversification benefits, which become 

significantly reduced due to extreme and correlated fall in stock returns and extreme volatility 

prompted by a global crisis event. In the last two decades, the nature and extent of DEEs’ 

financial integration has changed. Stock markets in DEEs have experienced higher integration 

into international financial markets and this has strengthened cross-regional dependence 

between them. With a reinforced cross-market dependence, markets in DEEs are affected from 

the transmission of shocks that arise from a crisis event in a serious way. The design of optimal 
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stock market policy requires knowledge of the changing dynamics of stocks prior to or during 

a financial crisis.  

 

This thesis addresses some of these issues above. First, it attempts to determine the 

macroeconomic factors that affect the duration of bubbles in stock markets of DEEs. Two types 

of dimensions through which bubbles can be examined include bubble dynamics or bubble 

durations. In determining the role of macroeconomic factors on bubbles, the most frequently 

used dimension is the dynamics of bubbles. In addition, the driving forces are mostly accounted 

for by domestic factors, rather than exogenous factors. This thesis examines driving forces 

behind bubbles using their durations and it considers the role of both domestic and exogenous 

factors. It also examines these driving forces for countries with different degrees of financial 

development and income levels.  

 

Second, it attempts to explore two aspects of contagion with the primary goal of drawing some 

policy implications for contagion in stock markets of DEEs: the type of break and the 

determination of the crisis start date for the analysis of contagion during the GFC. Empirical 

studies face several challenges in testing for the existence of contagion if the assumption made 

about breaks are not reasonable. With respect to the type of break, it can be either common or 

distinct. Most often, investigations of contagion are conducted by assuming that breaks in the 

covariance matrix are common, which implies that variances and correlations share the same 

break points. Contrary to the typical assumption made, this thesis relies on the assumption of 

distinct breaks and allows variances and correlations to have separate break points in order to 

investigate contagion. There is a possibility that variances and correlations have different break 

points. From this view, testing for breaks using the assumption of distinct breaks is important 

because it could reduce the bias of contagion tests and improve the measurement of contagion.  

 

On the determination of the crisis start date for the analysis of contagion, the date can be set 

either exogenously or endogenously. The date, which is used for demarcating non-crisis period 

from crisis period prior to modelling of contagion, must be accurately determined or else, 

sample selection and estimation biases could arise if the date is not correctly determined. This 

thesis examines whether the approach used to determine the start date of a crisis matters for the 

magnitude of estimates of contagion using higher-order comoment like coskewness. It does so 
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by assessing the magnitude of changes in coskewness of returns using both approaches. In 

order to succeed with tests for the existence of contagion and present convincing evidence, the 

type of break and how the crisis start date is determined is, thus, crucial. 

 

The remainder of the chapter is structured into three sections. Section 1.2 lays out the 

contributions of this thesis and relates it to the academic and empirical debate and existing 

literature. Section 1.3 outlines the main empirical methodology for the quantitative inquiry. 

Finally, Section 1.4 presents the thesis’ structure and a brief discussion of each chapter.  

 

1.2. Contributions of the Thesis 

 

This thesis aims to contribute to the existing literature on bubbles and contagion both 

empirically and methodologically.  

 

It makes three empirical contributions to the existing literature in the context of DEEs. First, 

empirically, this thesis argues that the duration of bubbles is dependent on macroeconomic 

factors, which are domestic and exogenous. It has previously been found that domestic factors, 

such as interest rates can influence the duration of bubbles (He et al., 2019). Theoretically, it 

has been shown that even exogenous factors, such as fundamental total factor productivity 

shock could influence bubbles (Dong et al., 2020). The focus has shifted from domestic to 

exogenous factors. However, to what extent are these factors important in duration of bubbles 

across stock markets? This thesis explores the extent to which domestic or exogenous 

macroeconomic factors influence the duration of bubbles in the stock markets of DEEs. 

Moreover, does heterogeneity among markets affect the duration of stock bubbles? This thesis 

addresses possible measurement issues that arise from estimation, such as heterogeneity. Given 

that, there are manifestations of the duration of stock bubbles affected by macroeconomic 

factors; do these empirical manifestations differ depending on a country’s degree of financial 

development and level of income? This thesis also explores the extent to which factors could 

influence duration of bubbles in the stock markets of countries at high and intermediate levels 

of financial development and countries with high and middle levels of income. 
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Second, this thesis also highlights an important occurrence of international finance: the 

significantly increased cross-market dependence of returns across stock markets during a crisis, 

that is, the occurrence of contagion. In the wake of the GFC, financial shocks from the US 

rapidly transmitted to DEEs stock markets with repercussions for the dynamics of stock returns 

(Samarakoon, 2011; Dimitriou et al., 2013; Dungey and Gajurel, 2014; Dungey et al., 2015). 

The global comovement of stock returns during this financial crisis has significantly increased 

in quantifiable terms (Bekaert et al., 2014). Beyond doubt, besides the rising extreme 

comovement, several structural changes and breaks that characterize the dynamics of stock 

markets has occurred. Accurate measurement of contagion has posed as a challenge. This thesis 

highlights specific measurement issues to address in order to overcome this challenge. 

Contagion, which is due to the transmitted shocks during financial crisis, could manifest itself 

in two ways; through significant increases and breaks in cross-market returns, and through 

spillovers of return volatilities (Pericoli and Sbracias, 2003). This thesis argued that the 

transmission of shocks has significantly increased the comovement of stock returns in DEEs 

and caused breaks in the process that generates the returns. However, did shocks transmitted 

from the recent GFC affect cross-market dependence, cause breaks in the conditional 

correlation of returns, and lead to contagion between markets in DEEs? These manifestations 

of breaks in returns can be examined under different assumptions. The focus in the literature 

has turned from assumption of common breaks in the covariance matrix of stock returns to 

distinct breaks in variances and correlations. Due to reliance on the assumption of common 

breaks, tests for breaks in variances and correlations are carried out simultaneously. This thesis, 

instead, relies on the assumption of distinct breaks and sequentially tests for contagion. It 

sequentially implements tests for contagion and treats all shocks in variances and correlations 

distinctly. It does so because several authors have argued that, during crisis, breaks in variances 

usually precede breaks in correlations. Still concerning the manifestation of contagion through 

spillovers of return volatilities, estimations of forecast error variance decompositions used for 

the computation of spillover indices, have still relied on the assumption of common breaks. 

Indeed, in this thesis, for this estimation, breaks are distinct, but does the assumption of distinct 

breaks matter for the evaluation of volatility spillovers of stock returns in DEEs? This thesis 

assesses the importance of distinct breaks for spillovers. It carries out this assessment by 

comparing the evolution of spillovers obtained under this assumption against those that did not 

rely on it. 
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Third, it is argued that the approach used to determine the crisis start date could be crucial for 

the analysis of contagion. Most often contagion is measured using correlation in stock return 

changes, rather than coskewness, which is a higher-order comoment of stock return 

distributions. This thesis examines whether the approach used to determine the start date 

matters for the analysis of contagion through coskewness. It examines this because it is likely 

that inference drawn may be unreliable due to the choice of date. Few authors have previously 

argued that the date chosen could have a direct impact on estimates of contagion models and 

affect inferences (Dungey, 2005; Baur, 2012). This thesis uses endogenous approaches for the 

determination of the date. However, does it matter whether the crisis start date is exogenously 

or endogenously determined for the analysis of contagion through coskewness? It addresses 

this research question and explores the magnitude to which estimates of contagion across stock 

markets is being affected by the choice of the crisis start date and highlights empirical 

implications of the choice of crisis start dates for contagion estimation and inference. 

 

Methodologically, this thesis attempts to explore the determining roles on bubbles’ duration 

and the empirical existence of contagion within the scope of DEEs using refined empirical 

methods. It uses quantitative methods to address potential issues of econometrics and to 

uncover required effects of time variation, and the extent to which underlying variables change. 

On the empirical investigation related to duration of bubbles, it is explored using advanced 

random-effects duration model, which controls for heterogeneity, that is, the multivariate 

complementary log-log (clog-log) model. The use of such model, which is suited for analysing 

data on durations, is still quite scanty in empirical studies. In this thesis, the use of duration 

models is required to determine the time-varying effects and its sizes. On the empirical research 

related to contagion, it is explored using a powerful and sophisticated econometric test — the 

sequential procedure (SP). Such a test is still very infrequently used in empirical studies. The 

use of this test is essential in order to determine the existence of breaks in the process that 

generates returns due to reliance on the assumption of distinct breaks in this thesis.  

 

1.3.   Research Methodology  

 

In line with the contagion and stock bubble framework adopted in this thesis, research questions 

were evaluated using a range of econometric models and tests. With respect to duration of 
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bubbles, an advanced time-series test — generalized sup augmented Dickey-Fuller test is used 

to generate the duration of bubbles. Then, to estimate the effect of macroeconomic factors on 

the duration of bubbles a multivariate clog-log model is used. In the context of contagion, in 

particular for the investigation of changes and breaks in the process that generates returns, a 

multivariate vector autoregression (VAR) based on dynamic simultaneous system of equations 

is used to estimate changes while a SP is used to determine whether there are breaks. Still 

within the context of contagion, for the determination of the crisis start date, Quandt-Andrews 

(QA) and Bai and Perron (BP) test procedures for structural breaks are used, while a regime 

switching model is adopted to uncover contagion through coskewness. This model is used in 

conjunction with individual and joint econometric tests. These investigations are done using 

stock markets situated in DEEs as a case study. In particular, the analysis was based on markets 

in developed Europe (DE), Pacific and emerging Asia (PEA), and emerging Latin America 

(ELA).  

 

The sample period runs from 1995 to 2015 spanning over two decades. The data used come 

from secondary sources provided by the Morgan Stanley Capital International (MSCI), 

Thomson Reuters DataStream and Eikon, World Bank, International Monetary Fund (IMF) 

International Financial Statistics, World Bank’s Global Financial Development database, and 

the Organization for Economic Co-operation and Development (OECD) data. The richness of 

these databases makes them appropriate for examining bubbles and contagion across stock 

markets. 

 

The use of the different classes of empirical models and econometric tests in this thesis has 

lend itself to two methods: cross-section - time series and multivariate time series. The cross-

section - time series method measures whether the relationships between the duration of 

bubbles and its driving factors holds and to what degree it holds. The multivariate time series 

method evaluates whether the comovement between markets changes and determines the 

magnitude of such changes if they indeed changed. It also determines whether there are breaks 

in the process that generates returns and the dates of such breaks if they existed.  
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1.4.    Structure of the Thesis 

 

This introduction aside, the thesis is divided into five chapters.  

 

Chapter 2 is an econometric inquiry into the determining roles of macroeconomic factors on 

stock bubble duration. It econometrically examines the roles of growth in gross domestic 

product (GDP) per capita, inflation, real oil prices, real gold prices, volatility in GDP per capita, 

inflation volatility, volatility in oil prices, volatility in gold prices, the interest rate gap, yield 

spreads, and portfolio inflows on the duration of stock bubbles. It presents separate analyses 

on the role of these factors for stock bubble duration across groups of countries with different 

levels of income and financial development. While the existing literature has examined the 

factors using the dynamics of bubbles, this chapter argues that duration of bubbles is also an 

important characteristic of bubbles. The existing literature has also examined only domestic 

factors; this chapter argues that exogenous factors are also crucial. The chapter accounts for 

three important sources of bias that can affect estimates: firstly, it recognises heterogeneity 

among markets and the problem of unobserved random effects; secondly, the presence of 

endogeneity due to correlations of macroeconomic variables with the error terms; and thirdly, 

omitted variable bias that arises from the omission of other relevant explanatory variables in 

the estimation model. It discusses and applies two empirical methodologies. It discusses the 

generalized supremum Augmented Dickey-Fuller (GSADF) test, which it uses to test for the 

existence of bubbles and to date-stamp the periods of bubbles in stock markets of DEEs. It then 

discusses the multivariate clog-log model with random effects, which it uses to address the 

issue of heterogeneity among markets and to examine the roles of macroeconomic factors on 

stock bubble duration. The chapter goes on to show the main driving forces behind the duration 

of bubbles in stock markets of DEEs and for countries at high and intermediate levels of 

financial development, and at high and middle levels of income. It concludes with some 

potential implications derived from the results. 

 

Chapter 3 aims to explore the importance of distinct breaks in the analysis of contagion across 

stock markets in DEEs. To analyse the occurrence of the phenomenon, the chapter considers 

two dominant manifestations of contagion: significant increases in the correlations of stock 

returns across markets, which cause breaks in the international transmission of shocks, and 

spillovers of volatilities. While the existing literature has treated the shocks in variances and 
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correlations transmitted during crisis simultaneously, this chapter argues that treating shocks 

in variances and correlations sequentially is necessary for the accurate quantitative analysis of 

contagion. The chapter provides a detailed discussion of the econometric methodologies 

adopted for the accurate analysis of contagion between stock markets and describes the data. It 

adopts a multivariate VAR framework, which is the model used to econometrically estimate 

changes in return correlations between stock markets and other components — the conditional 

mean and conditional variances. It uses an algorithm for sequential testing, a novel testing 

procedure that is superior to the standard simultaneous procedure, to test for breaks in the 

conditional correlation of returns and breaks in the other components. It uses generalized 

forecast error variance decompositions (GFEVDs) to construct indices of volatility spillovers. 

The chapter presents the results from the analytical methods applied and offers empirical 

support for the occurrence of contagion across stock markets of DEEs. It draws some 

implications from the results of the empirical analysis for the existence of contagion among 

markets in DEEs.   

 

Chapter 4 continues to investigate the phenomenon of contagion covered in chapter 3 but looks 

at contagion through coskewness and examines a different key issue about its appropriate 

estimation, that is, the choice of a correct start date of a crisis period. While the existing 

literature has determined the date exogenously and endogenously for the analysis of contagion 

through coskewness, this chapter argues that choosing endogenously is much better. It further 

argues that the choice of the crisis start date could affect estimation accuracy. The chapter 

presents the empirical methodology, which is divided, into two parts. The first part of the 

chapter applies a linear regression model, which is consistently estimated using least squares 

estimators. It then employs two separate tests: QA and a variety of BP test procedures for 

structural breaks, which are tests that allow break points to occur at unknown break dates or 

tests that endogenously detect break points from data. It applies these tests to the return 

generating processes, estimate breaks, and dates them. The second part of this chapter 

individually and jointly tests for the existence of contagion between stock markets in DEEs. It 

relies on an extension of regime switching model and adopts an advanced Bayesian approach, 

which is based on the Markov Chain Monte Carlo (MCMC) Gibbs sampling technique, for the 

estimation the model’s parameters. Most importantly, the chapter provides an assessment of 

how the choice of the crisis start date affects the magnitude of changes in coskewness. It 

presents results that show decisive evidence for the existence of contagion through coskewness 
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across stock markets of DEEs and highlights the importance of endogenously determining the 

start date of a crisis particularly for higher-order comoment like coskewness. The chapter 

discusses some important empirical implications of this analysis at the end.   

 

Chapter 5 concludes with a discussion on the consequences of the determining factors of 

bubbles for policy in DEEs and a discussion of some of the implications the occurrence of 

contagion could have for portfolio diversification and identifies some areas for future research. 
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Chapter 2: Duration of Stock Bubbles and Macroeconomic Effects  

 

2.1. Introduction 

 

This chapter examines the role of macroeconomic factors in bubbles’ duration for stock 

markets in DEEs. Existing studies on bubble duration only account for a factor related to the 

domestic economy while the role of exogenous factors have been largely ignored. This chapter 

fills this gap in the existing literature. 

 

While there is an extensive and growing literature that examines the existence of bubbles in 

markets of DEEs, the literature that analyses the role of macroeconomic factors in determining 

duration of stock bubbles is still small (Lunde and Timmermann, 2004; He et al., 2019). The 

literature on the duration of stock bubbles focuses only on the role of monetary policy via 

changes in domestic interest rates. No study has considered whether the role of other domestic 

macroeconomic factors affect the duration of stock bubbles. There is evidence of a causal link 

between interest rates and duration of stock bubbles. Interest rates matter for bubbles duration 

because when it is raised it reduces the price of a stock that contains a bubble and dampens the 

bubble. It does so by crowding out resources that would otherwise be expended on a bubble 

(Barlevy et al., 2017), thereby decreasing the duration of the bubble (He et al., 2019). The 

chapter argues that one could anticipate a link between domestic factors that influence interest 

rates and duration of stock bubbles, because the former is an endogenous variable (Galí, 2014) 

that is determined by other factors. The most realistic choice of other domestic factors to use 

for our analysis are those that affect investor’s preferences over time and changes the expected 

returns on stocks, as well as those that influence interest rates. The role of other domestic 

factors such as growth in GDP per capita, inflation, volatility in GDP per capita, inflation 

volatility, yield spreads, and portfolio inflows are considered. Moreover, one could argue that 

the exclusion of other important explanatory variables which can be relevant for analysis of 

stock bubbles duration might result in an omitted variable bias. For this study not to suffer from 

such a bias, this chapter includes other determining domestic factors. This chapter adds to the 

literature by examining the role of other domestic macroeconomic factors for the duration of 

stock bubbles.  
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Theoretically, it has been shown that exogenous shocks could influence bubbles (Dong et al., 

2020). This chapter argues that exogenous macroeconomic factors will be important to gain 

additional insight into the crucial drivers of stock bubble duration in DEEs. Whether the 

dynamics of exogenous macroeconomic factors affect the duration of stock bubbles has not 

been considered by previous studies. The important role of exogenous factors such as real oil 

prices, real gold prices, volatility in oil prices, and volatility in gold prices on duration of stock 

bubbles has not been studied for stock markets in DEEs. This chapter contributes to the 

literature by investigating the role of exogenous macroeconomic factors for the duration of 

stock bubbles.  

 

The estimates of the effects for the macroeconomic factors can be weakened due to the presence 

of endogeneity or spurious effects. In general, endogeneity can arise because of the correlations 

of the macroeconomic variables with the model error terms. This chapter argues that it is likely 

that a factor is determined by other macroeconomic factors in the model and vice-versa. This 

reverse causation between variables might bring about correlated errors or endogeneity, which 

clearly violates the assumption of independence and strict exogeneity. It, thus, controls for 

likely endogeneity by allowing macroeconomic variables to be endogenous. Specifically, it 

includes the lagged levels of macroeconomic variables in the model in order to mitigate 

endogeneity to some extent and to obtain consistent parameter estimates.  

 

So far, the analysis conducted using the duration of stock bubbles has only focused on a country 

and not on DEEs. This chapter adds to this emerging literature by giving attention to the 

duration of bubbles in its analysis of macroeconomic factors in bubbles for stock markets in 

DEE. This chapter focuses on a set of stock markets across DEE; however, it does not assume 

that all markets across DEE are homogenous. It instead assumes that heterogeneity exists 

among markets. Typically, heterogeneity can arise as a result of investors’ differential 

expectations (Boswijk, et al, 2007; Hommes, 2017), different local environments, or as a result 

of managers’ different quality (Gormley and Matsa, 2014). These differences, which are not 

directly observable, could affect the duration of bubbles. In this context, the bias arising from 

heterogeneity might be caused by the correlation of unobserved country and market 

characteristics with the duration of bubbles. This chapter argues that it is crucial to account for 

this bias in order to obtain accurate parameter estimates. The degree to which it can affect the 

duration of stock bubbles has not been previously studied. 
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To examine the effects of macroeconomic factors on stock bubbles duration; the chapter 

employs the multivariate clog-log model, which is a duration model that allows us to account 

for the heterogeneity bias as earlier discussed. So far, no such model has been used for analysis 

on stock bubbles duration. It is advantageous to use this model because it is the most 

appropriate for analysing time-varying effects related to durations. This model estimates the 

effects via maximum likelihood estimation method. An attractive feature of this method is that 

it is an asymptotically efficient and consistent estimator.  

 

The remainder of this chapter proceeds as follows. Section 2 presents the underlying theories 

on asset bubbles. Section 3 reviews the empirical literature. Section 4 briefly presents the data 

and empirical methodologies. Section 5 presents the simulation results for the existence of 

stock bubbles and its duration, reports the baseline results and the robustness checks. Section 

6 concludes with some potential implications derived from the results. 

 

2.2. Theories of Asset Bubbles: Beyond Equivalence of Asset Price with 

Fundamental Value 

 

This section presents a critical review of the standard theory of asset prices and alternative 

considerations with the intention of providing the theoretical basis for the investigation in this 

chapter. Several economic theorists have attempted to understand or explain the economic 

phenomenon of asset bubbles. The economic theory on asset bubbles has evolved along 

different lines with the considerable changing global financial environment resulting in several 

competing theories on its existence. The view on asset bubble, however, as the non-equivalence 

of prices with its fundamental value defined as present value of future cash flow, has remained 

unchanged.  

 

Historical episodes where asset prices rose rapidly and then collapsed have brought asset 

bubbles to the forefront of academic discussion. The view of bubbles as an important 

component of asset prices and explanations to rationalise its existence in markets led to a 

proliferation of theories of asset price bubbles. Three alternative theoretical considerations to 

asset price bubbles are the overlapping generations (OLG) model, “sunspot” model and 



22 
 

behavioural explanations. Theories have even begun to recognize the important role of 

monetary policy and exogenous shocks as contributory factors in asset bubbles. 

 

This section is divided into three sub-sections. Sub-section 2.2.1 discusses traditional 

neoclassical approach to asset price determination, which envision the asset price as always 

being equivalent to its fundamental value. The discussion focuses on assumptions made 

concerning economic agents’ expectations, particularly rationally formed expectations, and the 

rationality of behaviour in asset markets. Based on a critique of this view of the asset price, 

sub-section 2.2.2 presents discussion on the existence of bubbles. Sub-section 2.2.3 presents 

asset price theories that recognise the important role of monetary policy and exogenous factors 

to explain the existence of bubbles. 

 

2.2.1. The Asset Price Equivalence to Fundamental Value 

 

There has been a long-standing theoretical debate on the existence or not of bubbles in asset 

prices. One view is that asset prices reflect economic fundamentals; that is, these prices equals 

the present discounted value of its dividends. This traditional approach usually finds it 

necessary to assume that all agent are rational; agents believe the price of an asset only depends 

on information about current and future returns about the asset. The price of an asset is thus 

determined by the expectation agents make about future prices and dividends, so that the price 

the asset is traded for reflects market fundamentals. This claims that asset markets work 

efficiently at allocating resources because no rational agent who has private information and 

information revealed publicly, can raise his expected utility by changing his portfolio 

(Blanchard and Watson, 1982). This view claims that bubbles cannot emerge when agents are 

infinitely lived and have homogenous expectations.  

 

The standard present value model to asset pricing rests on a no arbitrage condition; the 

equivalence of an assets’ price with a constant stream of dividend payoff, is given as:  

 

𝑟𝑡+1 =
𝑝𝑡+1 − 𝑝𝑡 + 𝑑𝑡+1

𝑝𝑡
=
𝑝𝑡+1 + 𝑑𝑡+1

𝑝𝑡
− 1                    (2.1) 
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where 𝑟𝑡+1 is the required rate of return from one period, 𝑡 to another, 𝑡 + 1 while 𝑝𝑡 denotes 

the asset price at time 𝑡, and 𝑑𝑡+1 denotes the bounded dividend payoffs in period 𝑡 + 1. The 

subscript 𝑡 + 1 denotes that the return only becomes known in period 𝑡 + 1. Rearranging Eq. 

(2.1) and expressing it using conditional expectation operator, gives: 

 

𝑝𝑡 = 𝛦𝑡 [
𝑑𝑡+1 + 𝑝𝑡+1

1+𝑟𝑡
]                       (2.2) 

 

where 𝐸𝑡[·] is the expectations operator and it is conditional on information available at time 

𝑡. More precisely, Eq. (2.2) states that the price of an asset at time 𝑡 comprises of the future 

price, 𝑝𝑡+1, the one-period dividend payoff, 𝑑𝑡+1 and the discount factor, 1 + 𝑟𝑡.  

 

Solving Eq. (2.2) in a forward manner, one obtains its recursive solution given as  

 

𝑝𝑡 = 𝛦𝑡 [∑(
1

1 + 𝑟𝑡+𝑖
)
𝑖

𝑑𝑡+1

𝑘

𝑖=1

]  +  𝛦𝑡 [(
1

1 + 𝑟𝑡+𝑘
)
𝑘

𝑝𝑡+𝑘]            (2.3) 

 

Eq. (2.3) shows that the value of an asset is determined by two terms. The first term on the 

right-hand side is the expected discounted streams of future dividend payoffs whereas the 

second term is the expected discounted future movement in asset prices. There exists a unique 

solution to Eq. (2.3) which is derived based on the underlying idea that in the future there will 

be convergence of the expected discounted value of the asset to zero. Thus, in the limit 𝑘 → ∞, 

the expected discounted dividend payoff is ultimately zero and is given by 

 

lim
𝑘→∞

𝛦𝑡 [∑(
1

1 + 𝑟𝑡+𝑘
)
𝑘

𝑝𝑡+𝑘

𝑘

𝑖=1

]  = 0           (2.4) 

 

Following through from the convergence assumption, the intrinsic value of an asset can be 

defined in terms of the expected discounted sum of payoffs and is specified by: 
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𝑝𝑡
𝑓
= 𝛦𝑡 [∑(

1

1 + 𝑟𝑡+𝑖
)
𝑖

𝑑𝑡+𝑖

∞

𝑖=1

]                  (2.5) 

 

and suppose that 

 

lim
𝑘→∞

𝑝𝑡+𝑘
𝑟𝑘

= 0   ∀ 𝑡,    (2.6). 

 

Eq. (2.6) represents the transversality condition, which is necessary for optimality. In this limit 

case, when the behaviour of agents is optimized, all arbitrage opportunities are exploited. With 

this condition, the present value model must have a unique solution where equilibrium is 

established between an asset’s price and fundamentals, that is, 𝑝𝑡 = 𝑝𝑡
𝑓

. The condition 

therefore guarantees that the present value of an asset is zero and there is no bubble component.  

More than one solution can be obtained if the assumption of convergence in Eq. (2.4) does not 

hold. One of such solution is given as:  

 

𝑝𝑡 = 𝑝𝑡
𝑓
+ 𝑝𝑡

𝑏                                                (2.7) 

 

Specifically, 𝑝𝑡
𝑏 is defined as 

 

𝑝𝑡
𝑏  = 𝛦𝑡 [

𝑝𝑡+1
𝑏  

1 + 𝑟𝑡
].                        

 

From Eq. (2.7) it is readily seen that asset prices, 𝑝𝑡 has two components; the observed market 

fundamentals component which is that part of asset price that is determined by the expected 

discounted sum of payoffs, 𝑝𝑡
𝑓
 and the unobserved bubble component, 𝑝𝑡

𝑏 which are primarily 

associated with price dynamics that are abnormal. The first insight given by Eq. (2.7) is that 

the fundamental value of an asset appertains to the discounted sum of future dividend payoffs 

while current bubbles are subject to the expected discounted value of future bubbles. A bubble 

occurs when 𝑝𝑡
𝑏 > 0 and the plim of 𝑝𝑡

𝑏 is given by; 
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𝑝𝑡
𝑏 = lim

𝑘→∞

𝑝𝑡+𝑘
𝑏

𝑟𝑘
. 

 

In asset price theory, the notion of bubbles exists when the price of an asset is higher than 

would be warranted by its fundamental value (Blanchard, 1979; Bernanke and Gertler, 2000; 

Scherbina and Schlusche, 2014). The movements in the price of the asset is unexplained by 

information available at the time, often resulting in a rapid price increase and this is soon 

followed by a burst or at best a dramatic fall (Blanchard and Watson, 1982). The occurrence 

of this notion is thus attributed to the fact that an investor agrees to pay a price that exceeds the 

present value of future payoffs for an asset (Frömmel and Kruse, 2012).  

 

In a key seminal contribution, Tirole (1982) makes an important argument that rules out 

bubbles; an argument that relies on backward induction. Assume, for instance, that at time T 

an asset is identified to have a final payoff 𝑃𝑇. Then at time 𝑇 − 1 the asset must be worth the 

discounted present value of 𝑃𝑇, otherwise it would create an arbitrage opportunity. Since no 

rational agent would buy an asset at a price above the discounted present value; because they 

would incur a loss, bubbles cannot exist at 𝑇 − 1 or at any point in time. Moreover, there is a 

clear sense in which a bubble cannot occur because the rate of growth in bubbles must exceed 

that of the economy (Tirole, 1985). In a similar vein, Blanchard and Fischer (1989) have argued 

that the growth of bubbles is supposed to be equal to that of fundamentals e.g., interest rates, 

but that after a while the price of bubbles will become overwhelmingly larger than the 

economy’s growth, which invalidates the existence of bubbles. 

 

Since Tirole’s contribution, the work by Santos and Woodford (1997) has concerned itself with 

conditions for the nonexistence of asset bubbles. Their work relied on an intertemporal general 

equilibrium model that involves economies that allow bubbles as an equilibrium phenomenon. 

They demonstrated that pricing bubbles in asset markets could never occur in an intertemporal 

equilibrium especially if the aggregate endowment of the economy has a finite value. 

Theoretically, bubbles are ruled out if the underlying asset pays an infinite stream of dividends 

(Hellwig and Lorenzoni, 2009). Therefore, even though investors expect asset prices to 

continue to rise and they may be willing to pay more for the assets with the expectation of 
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earning capital gains, the present value of dividend payoffs will remain constant. Thus, 

investor’s rational expectations that asset prices will continue to rise is self-fulling belief.  

 

As discussed above, the existence of asset bubbles are ruled out in asset markets. With all the 

interesting and numerous arguments on its non-existence, it seems unlikely that explanations 

on its absence will not be refuted by any other theory, but this long-run standing theory has 

been rejected and criticized on several grounds. One of such criticism is its failure to allow 

other solutions for equilibrium. An economy characterised by a unique steady-state 

equilibrium, which is globally stable, is consistent with the traditional paradigm. It thus rejects 

the possible occurrence of other equilibria in asset price models and does not consider that 

multiple equilibria can arise in asset price models. Second, beside this criticism, a well-known 

critique is the assumption that information is symmetric. Third, it almost exclusively assumes 

that markets are efficient; that is, there are no opportunities for arbitrage. This assumption of 

strong efficiency in asset markets has been questioned. Blanchard and Watson (1982) have 

shown that arbitrage does not by itself preclude bubbles. Fourth, the use of simplified 

assumptions and their failure to agree that expectations are heterogeneous. Fifth, reliance on 

the assumption of the behaviour and expectations of agents as being rational is not only 

unrealistic but is at odds with the behaviour of agents. Sixth, it relies on an infinitely lived 

agent paradigm, that is, every agent that holds or buys an asset willingly does so even if they 

were to be forced to keep their holdings of the asset forever. With this paradigm, bubbles are 

generally ruled out; this is because the owner’s personal use value cannot be less than the 

current price of the asset. With all these criticisms it is inevitable that very different views to 

the traditional approach will be postulated. 

 

2.2.2. The Asset Price Non-equivalence to Fundamental Value 

 

The asset price model has gone beyond the traditional view that the price of an asset is 

tantamount to its fundamental value. Considering this, several theoretical models with well-

substantiated explanations for the existence of bubbles have been postulated. In the first class 

of models, the introduction of OLG into asset price framework provides an environment in 

which bubbles can emerge (Samuelson, 1958; Tirole 1985; Grossman and Yanagawa, 1993; 

Farhi and Tirole, 2011; Martin and Ventura, 2012). The framework assumes households are 

heterogeneous and markets are incomplete, which can allow bubbles to occur. Still in this 
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framework, the economy is characterized by two steady states: bubbly and bubble less. Bubbles 

can exist, but a necessary condition for its existence is that the economy be “dynamically 

inefficient”; that is, there will be an over-accumulation of capital in the bubble less equilibrium 

because interest rate is sufficiently low.  

 

There are specific instances in which agents are inclined towards paying more for an asset than 

they otherwise would if the agents were to be forced to hold the asset endlessly. In an OLG 

model, every agent will be inclined to pay a price for the asset equal to the discounted sum of 

the returns (that is, the returns the agent receives while alive) in addition to the sale price of the 

asset (in present value terms) in the period in which the agent intends to sell it. With the 

introduction of OLG into the asset market theory, it means the current price of the asset will 

go above the owner’s personal use value (Allen et al., 1993).  

 

The second class of theoretical model developed to support the existence of asset bubbles was 

models with “sunspot” equilibria (Cass and Shell, 1983; Shell and Wright; 1993). In these 

models, bubbles are the result of fluctuations in the prices of assets that are driven by shocks 

that are extraneous (sunspots) to fundamentals. The notion of bubbles is not understood 

exclusively by the model of sunspot equilibria but is closely related to the model of multiple 

equilibria, where exogenous variables that act to coordinate expectations elicit shifts between 

high and low steady states: that is, a multiplicity of equilibria occurs but these equilibria are 

indeterminate. The indeterminacy arises because several other equilibria are close to the initial 

equilibrium. In this view, the expectations, which are self-fulfilling, result in a continuum of 

possible equilibria none of which are globally stable steady-state equilibria, but locally stable.  

 

In the final class of models, the behaviour of agents provides a plausible channel that generates 

the bubble phenomenon. Bubbles can emerge because of; agents’ herding and non-rational 

behaviour (Shiller, 2015), heterogeneous beliefs among agents (Harrison and Kreps, 1978; 

Scheinkman and Xiong, 2003; Hong et al., 2006; Miller and Stiglitz, 2010; Xiong, 2013), 

investors’ sentiment (Temin and Voth, 2004; Martin and Ventura, 2012), and asymmetric 

information and short sales restrictions (Allen et al., 1993; Scheinkman and Xiong, 2003; 

Conlon, 2004; Haruvy and Noussair, 2006). A prominent theory, the notion of ‘riding the 

bubble’, that also supports the existence of bubbles in asset markets was proposed by Abreu 
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and Brunnermeier (2003). The expectation of earning excess return motivates arbitrageurs to 

invest in highly overvalued assets and this optimistic belief gives rise to bubbles that continue 

to survive for longer periods. In which case, bubbles can still exist regardless of there being so 

many rational investors with highly capitalized portfolios in the market. 

 

2.2.3. The Role of Monetary Policy and Exogenous Shocks in Asset Bubbles 

 

Along with the theoretical proposition of bubbles in asset markets, came the importance of 

knowing its contributing factors. As such, the theory on the pricing of assets has been extended 

to introduce monetary policy, which is conducted through interest rate, as an important 

determinant of bubbles. In a recent theory proposed by Galí (2014) he acknowledged the 

determining role of the central bank in supplying liquidity to financial markets for trading and 

demonstrated that there exists a relationship between bubbles and the interest rate. An increase 

in the current or anticipated interest rate is assumed to lower the fundamental value of the asset 

but raises the expected return on bubbles or the expected growth of the bubble component. In 

this view, changes in interest rate can affect bubbles via two important channels, both of which 

are important for this chapter. Firstly, through the “risk-taking” behaviour of investors, where 

the risk preferences of the investors have an influence on bubbles. For this channel to operate 

it must rest on the assumption of risk neutrality, which simply implies that an investor is 

indifferent to risk. Under this assumed risk, the expected return on bubbles is equal to the 

interest rate and there are no expected excess returns. In this vein, a monetary policy rule that 

implies a positive response of the interest rate to a bubble leads to an amplification in the 

movement of the latter. Secondly, through the eventual comovement between the innovations 

component of bubbles with the innovations in interest rate. Indeed, here, the innovations in 

bubbles are taken to be indeterminate. Galí (2014) has shown that both persistent and transitory 

increases in the interest rate have a positive effect on subsequent growth rate of bubble 

dynamics.  

 

Dong et al., (2020) extend the theoretical analysis of the impact of monetary shocks on asset 

bubbles and stresses particularly the role of exogenous shocks on asset bubbles, i.e., the 

unexpected events that happen outside a country but could affect the performance of markets 

in that country. As a result, the focus of bubbles in assets markets shifted to the role of 

exogenous shocks. A link is proposed between interest rates, exogenous shocks and asset 
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bubbles in a new Keynesian framework with infinitely-lived agents. In this view, the response 

of monetary policy on asset bubbles does not only depends on the type of interest rate rule 

which is important in specifying the interest rate to be set by the central bank but also on the 

type of exogenous shocks that hits the economy. They show how interest rate rule affects the 

dynamics of asset bubble in response to exogenous shocks. They also show how a higher 

interest rate response to asset bubbles could reduce bubble volatility but raise inflation 

volatility. 

 

In sum, this discussion shows theoretical consideration for the determining roles of changes in 

interest rate and exogenous shocks on bubbles in asset markets.    

 

2.3. Empirical Literature 

 

This section reviews existing studies of stock market related to two strands of literature: the 

identification and the determinants of bubbles. It then contrasts the existing literature to the 

research conducted in this chapter. 

 

2.3.1. Identification of Stock Market Bubbles in the Empirical Literature 

 

The empirical investigation of asset bubbles in the context of stocks can be traced to the 

pioneering studies by West (1987), Diba and Grossman (1988a), and Diba and Grossman 

(1988b). The existing literature has used two different ways to identify bubbles. First, the 

existence or not of bubbles may be determined by testing the validity of the standard present 

value model; in fact, it tests whether stock prices deviated from their fundamental values (See, 

e.g., Shiller, 1980; LeRoy and Porter, 1981; West, 1987, among others). Second, bubbles can 

be identified by empirically testing (i) whether the price-dividend ratio follows a non-stationary 

process (bubble dynamics exist) or mean-reverting process (no bubbles) (see, e.g., Campbell 

and Shiller, 1988; Cochrane, 1992; Craine, 1993; Cuñado et al., 2005; Koustas and Serletis, 

2005; Cuñado et al., 2007; McMillan, 2007, among others) and (ii) whether the dynamic 

behaviour of the underlying asset returns has explosive processes (see, e.g., Diba and 

Grossman, 1988a; Shi and Song, 2014; Escobari et al., 2017, among others). Due to the 
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difficulty of estimation a fundamental value, the second approach is more commonly used in 

recent empirical research to detect bubbles.  

 

However, these studies have done so using different empirical methods. Some studies relied 

on the fractional integration method to examine whether stock prices and dividends are 

fractionally cointegrated, i.e., a long run relationship exists between stock prices and dividends 

but deviations from equilibrium exhibit hyperbolic decay rate or extreme persistence (Caporale 

and Gil-Alana, 2004; Cuñado et al., 2005; Koustas and Serletis, 2005; Frömmel and Kruse, 

2012). Evidence of fractional cointegration between stock prices and dividends indicate the 

absence of bubbles. This approach to detecting stock bubbles has been criticised by McMillan 

(2007) who argues that the approach is incapable of capturing the non-linear linkages between 

rapidly rising prices and fundamentals in the stock market.  

 

In addition, numerous studies applied log-periodic power law models, which can capture faster-

than-exponential growth in the stock prices to detect bubbles. In other words, certain log-

periodic accelerating oscillatory trends appear to emerge prior to the sudden significant decline 

in the stock prices (Johansen et al., 2000; Sornette and Johansen, 2001). In a pioneering 

contribution by Sornette et al. (1996), the authors present evidence of the power law in the US 

stock index. They find log-periodic accelerating trend in the stock index prior to the abrupt 

global stock market crash of 1987. Meanwhile, they caution that the sample for estimation 

needs to contain data up to the ‘critical point’ or else the findings may differ. In more recent 

work, Johansen and Sornette (2010) find persistent declines in stock prices of the US and Japan. 

They present evidence of log-periodic bubbles connected to market crashes of exogenous 

origins. In addition, Jiang et al. (2010) find log-periodic oscillatory trends in the Chinese 

market. Similarly, Zhang et al. (2016) using extensive dataset detected stock bubbles that 

captured actual crashes in the US. 

 

Many studies which rely on regime switching models consider Markov chain processes and 

how they affect price-setting behaviour. These studies assume that policy changes, which affect 

fundamentals, can cause prices to exhibit excessive volatility and this may incite the formation 

of bubbles. In an earlier study by Driffill and Sola (1998) the authors present weak evidence of 

bubbles in stock prices for the US. They find that bubbles are caused by the non-linearities in 

the data on fundamentals. Van Norden and Schaller (1999) demonstrated that stock bubbles 



31 
 

switch between two distinct regimes. Psaradakis et al. (2004) find that a time-varying discount 

factor explains why stock price diverges from their fundamental value. Brooks and Katsaris 

(2005), who use a three-regime Markov model, document that in the third regime where stock 

bubbles are growing there is a higher probability of switching next to an explosive regime. 

Moreover, they show that stock bubbles may collapse when the volume of trading increases 

abnormally. Gürkaynak (2008) point out that the behaviour of stock prices can be influenced 

by switching fundamentals. However, despite the usefulness of switching models in detecting 

bubbles, they have been criticized because the number of unobserved regimes to be included 

in the model is user-specified making it susceptible to estimation errors.  

 

Some studies test for the presence of stock bubbles by applying nonparametric Bayesian 

methods and capture market uncertainties by allowing for non-finite regimes, which grows as 

the sample size increases. Based on this method, a stock bubble occurs when the degree of 

uncertainty about fundamentals in a certain regime is high. For example, Li and Xue (2009) 

who consider two switching regimes conclude that uncertainties about the future economic 

performance of the US had a significant impact on the stock market. In a more recent study, 

using the Bayesian method Shi and Song (2014) detected a notable stock bubble episode in the 

US. Although, the Bayesian method generates robust results, Geweke (2007) argues that its 

theoretical construct is still at the nascent stage. Moreover, when the prior probability is 

wrongly specified, the approximate Bayes factors may be adversely affected. Similarly, Li and 

Yu (2012) argue that Bayesian analysis are computationally challenging and complex to apply. 

 

The final group of studies concentrates on checking for possible (non)stationary of stock prices 

using methods based on the autoregressive process. Previous studies in this strand have relied 

on left-tailed test to detect the existence or not of bubbles. The test examines whether the 

stochastic process of stock prices is stationary or not. Evans (1991) cautions against the use of 

this test because it cannot differentiate between stationary and strictly stationary processes. 

Another empirical issue with the test is its weak statistical power which is well-documented in 

the existing literature (see, e.g., Diebold and Rudebusch, 1991; Ng and Perron, 1995; Schwert, 

2002). A new empirical technique provided by Phillips and Yu (2011) and Phillips et al. (2011) 

is the right-tailed test which helps to overcome the near observational equivalence problem of 

the left-tailed test because it correctly differentiates between the two stationary processes. Its 

asymptotic efficiency property enables it to locate multiple bubbles consistently. Moreover, the 
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technique can date the start and collapse of bubbles. The investigation of bubbles is only 

plausible for asset prices that are commonly characterized by persistent run-ups and subsequent 

collapse, i.e., periodically collapsing. An attractive feature of this test is that it can capture these 

types of bubbles. This chapter relies on this empirical strategy to test if stock bubbles exist and 

to date the bubbles and obtain its duration. 

 

2.3.2. Determinants of Stock Market Bubbles in the Empirical Literature  

 

Most of the existing studies on stock markets have concentrated mostly on identifying the 

existence or not of bubbles rather than the determinants of bubbles. This has changed recently, 

and growing strand of literature investigated the determining factors that influence bubble 

dynamics (see, e.g., Narayan et al., 2013; Wang and Chen, 2019) and bubble durations across 

markets.  

 

The first strand of literature examined only the effect of monetary policy shocks on stock 

bubbles. Empirical studies in this strand have used interest rates to capture the effect of 

monetary policy. Galí and Gambetti (2015) investigated the impact of monetary policy shocks 

on bubbles in the US market. They estimated a VAR model with time-varying coefficients and 

obtained the associated impulse responses using data from 1960Q1 to 2011Q4. The authors 

find evidence linking prolonged episodes of stock price run-ups in response to a tightening of 

monetary policy. On the other hand, Caraiani and Călin (2018) revisited the results in Galí and 

Gambetti (2015) and re-estimated their model but included the shadow rate, which is 

constructed from a model conditioned with a large information set. Using the shadow rate, they 

confirmed the finding of the earlier study, but found a much lower positive impact of shocks 

from monetary policy on bubbles. In general, this strand of literature has concluded that shocks 

from monetary policy through the interest rate is an important determining factor of bubbles in 

stock markets.  

 

A second strand of literature goes beyond examining the important role of a single factor, the 

interest rates. This strand of literature examined the role of other determining factors that could 

be crucial for the analysis of bubbles. For example, Narayan et al. (2013) used a cross-sectional 

model to examine the determinants of bubbles in the US market. The authors find trading 
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volume had a positive effect on bubbles while price volatility had the reverse effect. In a more 

recent work by Wang and Chen (2019), the authors explored the factors, which contributed, to 

bubbles in 22 stock markets. They utilized a panel Logit model and dataset on trading volume, 

price volatility, interest rate, growth rate of monetary aggregates, growth rate of personal 

consumption, growth rate of foreign exchange reserve and credit as a ratio to GDP growth rate 

covering the period 2000Q1 to 2018Q3. The authors empirically confirmed that monetary 

policy played a significant role in stock bubbles. Apart from this, they also find that the trading 

volume, the volatility of prices and the growth of credit (both current and lagged) are positive 

drivers of bubbles. This strand of literature has generally concluded that the trading volume, 

price volatility and growth of credit are important driving forces behind stock bubbles. 

 

Another strand of literature investigating the underlying macroeconomic factors concentrated 

on the duration of bubbles (Lunde and Timmermann, 2004; He et al., 2019). Lunde and 

Timmermann (2004) were the first to empirically investigate whether duration of stocks for 

bull and bear markets depend on an underlying macroeconomic factor, the interest rates. They 

relied on duration models and estimated via state-space technique using sample data covering 

the period 1885 to 1997 for the US. They find that changes in real interest rates have a weak 

effect on the probability that a bull or bear market survives for a certain duration. In this strand, 

the paper most closely related to ours is a recent study by He et al. (2019). The author modelled 

the effect of risk-free interest rate and its changes on stock bubbles’ duration for China during 

the period 1992 to 2013. Using duration models based on logistic regression, they find that an 

increase in the interest rate leads to a decrease in the duration of bubbles. Their finding suggests 

that monetary policy plays a role in suppressing bubbles’ duration, which is inconsistent with 

the finding of Lunde and Timmermann (2004). Thus far, this growing strand of literature have 

explicitly focused on the stock market in only one country. Moreover, all the evidences in this 

strand, which have been based on the interest rate effect alone, have yielded mixed results. 

Given that much of the literature is on the determining role of interest rates on the duration of 

bubbles, this chapter argues that the propagation of monetary policy shocks via interest rates 

alone cannot fully explain the duration of bubbles. Alternative factors that could possibly 

influence the duration of bubbles in the context of DEEs might have to be considered. It is not 

yet clear to what extent alternative macroeconomic factors will influence the duration of 

bubbles across stock markets. Accordingly, these alternative factors motivated by the existing 
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studies, which have examined the influence of macroeconomic variables on stock pricing are 

elaborated upon below. 

 

Stock market studies indicate that measures of real economic activity often has an impact on 

the pricing behaviour of stocks because it affects the cash flows of firms (see, e.g., Chen et al., 

1986; Fama, 1990; Chen, 1991; Ritter, 2005, among others). In a recent study by Österholm 

(2016), the author presents evidence of the existence of a long‐run relationship between stock 

prices and real economic activity. Empirical evidence in support for the components of 

economic activity such as consumption also exists. For instance, some studies find a link 

between stock returns and consumption (Lettau and Ludvigson, 2001; Parker and Julliard, 

2005; Da, 2009; Bansal et al., 2014; Lioui et al., 2014). The coherent explanation for this 

relationship is based on the theory on consumption asset pricing. During the phase of a business 

cycle trough, consumption normally falls and so does the price of risky assets but expected 

returns rises. It rises because risk-averse investors will have to be compensated with higher risk 

premium for holding risky assets (Campbell and Cochrane, 1999). Thus, based on this theory, 

consumption is relevant for explaining the changes in stock returns.  

 

Several empirical studies examine the role of inflation in stock pricing and present evidence 

that inflation accounts for stock returns (Fama, 1981; Flannery and Protopapadakis, 2002). An 

increase in inflation has a positive impact on the discount rate, which subsequently reduces the 

real cash flows of firms and changes the expected return on stocks. In addition, there is evidence 

that stock returns react to exogenous shocks such as commodity price shocks. Global real 

commodity prices have been shown to be linked to stock price activity (Kilian and Park, 2009; 

Sadorsky, 1999). Several studies provide evidence of stock returns interaction with oil prices 

(Jones and Kaul, 1996; Miller and Ratti, 2009). Sadorsky (1999) present evidence that shows 

that this linkage became stronger post-1986 and that real oil prices now primarily explain a 

higher percentage of changes in stock returns than interest rates. Regarding oil price volatility, 

Park and Ratti (2008) find that stock returns respond positively to increases in real oil prices 

while it reacts negatively to increases in its volatility. In a recent contribution by Diaz et al. 

(2016), they find a negative effect of oil price volatility on stock returns. Overall, most of the 

findings suggest that real oil prices and its volatility may lead to changes in expected returns. 

It has also been documented in the existing literature that stocks returns are correlated with 

gold prices (Smith, 2001). 
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In the existing literature, empirical evidence in support of macroeconomic volatility as a source 

of economic shock for determining stock returns have been documented (Beeler and Campbell, 

2009; Bansal et al., 2014). This literature suggests that macroeconomic volatility is a priced 

source of risk in stock markets. A different strand of literature finds that stock returns and its 

predictability are influenced by yield spreads (Asprem, 1989; Rapach et al., 2005; Humpe and 

Macmillian, 2009). For instance, Fernandez-Perez et al. (2014) find that the slopes of yield 

curves can provide a better forecast of the probability of bear markets. Finally, several studies 

suggest that portfolio flow shocks are a source of excess returns in stock markets (Bohn and 

Tesar, 1996; Froot et al., 2001; Hau and Rey, 2004; Fratzscher, 2012). 

 

This chapter extends this strand of literature in four ways. Firstly, the existing studies used a 

univariate model, which controls for just one underlying macroeconomic variable. This chapter 

instead considers an alternative specification, specifically a multivariate model that controls 

for other factors that might affect bubbles’ duration. Monetary policy shocks via interest rates 

cannot be the only factor that can potentially affect duration of bubbles in stock markets. This 

chapter thus incorporates more underlying factors which are absent from the existing works to 

have a deeper understanding of bubbles’ duration.  

 

The omission of other possible explanatory variables in the duration model, which can be 

relevant for the analysis of bubbles’ duration, can result in an omitted variable bias. The earlier 

studies suffer from a serious shortcoming arising from this bias. It is unclear whether a 

statistically insignificant time varying interest rate result of the existing paper remains tenable 

when alternative models consisting of more variables are considered. To avoid this bias, this 

chapter instead incorporates other time varying macroeconomic factors, which can affect 

investor’s preferences over time, influence the dynamics of stock returns and even predict the 

future behaviour of stocks.  

 

The second way this chapter extends the existing literature is to provide a cross-country 

analysis. The prior empirical analyses were based on country-level sample for the US and 

China stock markets. Unlike the prior works, our sample covers a broad set of stock markets 

in different regions. Studying more stock markets allows us to generalize about the empirical 

results. The set of countries in our sample differ by levels of income and financial development. 
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It thus seems beneficial to investigate whether macroeconomic variables have different impact 

on the duration of bubbles across group of countries with different levels of income and 

financial development. Using data grouped in these categories will allow us: (i) to estimate the 

effects on the duration of bubbles within each subgroup especially when the effects obtained 

using the entire sample fails to provide significant estimates, and (ii) to improve the precision 

of estimates because there will be less variability in the distribution of the data. 

 

The third way this chapter extends the existing literature is by assuming that markets are 

heterogeneous. Since our study covers a set of stock markets, it cannot be assumed that markets 

are homogeneous. If homogeneity across markets is assumed, then it means that all markets 

have similar characteristics, and such an assumption could be misleading. Moreover, when 

duration models with heterogeneous groups is specified, but controls for heterogeneity is 

omitted it might result in the misspecification of the functional form and this can cast doubt on 

the validity of the model. Based on these, this chapter recognises that there will be some 

inherent differences in the characteristic of markets, which could affect bubbles’ duration. 

Thus, a novel contribution of this chapter is that it controls for these important sources of 

differences across markets by allowing for heterogeneity effect arising from random 

unobserved factors. These factors, which are peculiar to each market, may be partly responsible 

for lower (higher) duration of bubbles. In this chapter, bias due to heterogeneity is caused by 

the correlation of unobserved market characteristics with the duration of bubbles. By specifying 

duration models that accounts for the presence of this bias this chapter can address this concern. 

This chapter thus correct for this bias because ignoring the unobserved effects may lead to 

underestimation of the coefficient of the macroeconomic variables and lead to misleading 

inference about the macroeconomic effects. By controlling for heterogeneity, this chapter can 

elude the problem of biased coefficient estimates. 

 

The fourth way this chapter extends the literature is by controlling for endogeneity or spurious 

effects. The macroeconomic effects can be weakened because of the presence of endogeneity 

caused by the correlations of the macroeconomic variables with the model error terms. In this 

case, endogeneity causes the assumption of independent errors to be violated. In many 

empirical studies where macroeconomic variables are considered, they are treated as 

endogenous because of the potential for reverse causality. The model in this chapter assumes 

there is an endogenous association among the macroeconomic variables. Thus, it controls for 
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the possible problem of endogeneity by including the lagged levels of macroeconomic 

variables. This enables us to eliminate the spurious effects and to determine the lagged effect 

of the variables on the duration of bubbles. This chapter does not include first order lags 

because including more lags can result in considerable loss in initial time periods. This chapter, 

therefore, separates between two channels through which the macroeconomic factors can exert 

influence on stock bubbles’ duration: (i) the contemporaneous effects, and (ii) lagged effects. 

 

2.4. Data and Empirical Methodology 

 

The empirical implementation of the causal effects of macroeconomic variables on the duration 

of stock bubbles is not direct but involves two steps. The first step involves testing for the 

existence of stock bubbles, dating the bubbles, and obtaining its durations using the generalized 

supremum Augmented Dickey Fuller test. In the second step, clog-log models are estimated 

via maximum likelihood method to obtain the macroeconomic effects.   

  

2.4.1. The Generalized Supremum Augmented Dickey-Fuller Test 

 

The basic equation for the Augmented Dickey-Fuller (ADF) regression required for testing the 

stationarity of data in an AR(1) process is given as: 

 

𝑥𝑡 = 𝛾𝑇
−𝜏 + 𝜕𝑥𝑡−1 + 𝑢𝑡      𝑢𝑡~𝑖. 𝑖. 𝑑. (0, Ω)  ∀𝑡         where  𝜕 = 1         (2.8) 

 

where 𝑥𝑡 is the asset return, 𝛾 is the intercept coefficient, 𝑇 is a fraction of the population size 

and 𝜏 represents the coefficient that localizes and influences the extent of drift and the intercept 

as 𝑇 tends to infinity, 𝜕 is the slope coefficient, 𝑢𝑡 is a martingale difference sequence since 

the expectations of 𝑢𝑡with its historical series are zero. The stochastic autoregressive process 

is typically assumed to have a root of 1.   

 

By reformulating Eq. (2.8) into a reduced form version, a new equation, Eq. (2.9), with linear 

stochastic 𝑘𝑡ℎ order autoregressive process is obtained as: 
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𝑥𝑡 = 𝜑 + ∑ 𝜔𝑖
𝑘
𝑖=1 ∆𝑥𝑡−1  + 𝜀𝑡  (2.9) 

 

where 𝑥0is fixed, 𝜑 is the intercept, 𝑘 is the maximum lag length, 𝜔𝑖 = 1…𝑘 are the lagged 

differences of coefficient 𝑥𝑡, the change operator is denoted as ∆ and the uncorrelated error 

term is 𝜀𝑡 with 𝐸(𝜀𝑡) = 0 and 𝐸(𝜀𝑡) = 𝜎
2. 

 

Detecting of bubbles in an underlying asset involves testing of hypothesis. Thus, to test for 

bubbles using the conventional ADF test, the null hypothesis of unit root process is tested 

against an alternative of stationarity and this is given by: 

 

H0: |ψ| = 1 against H𝐴: |𝜓|˂ 1 

 

However, to test for multiple bubbles that collapse periodically the recursive GSADF test 

which is a rolling window right-tailed test developed by Phillips et al. (2014) and which has 

high power against the conventional ADF test is used. Thus, it is apposite to test the null of 

unit root against the alternative that multiple bubbles collapse periodically, and this is given 

by:    

 

H0: |ψ| = 1 against H𝐴: |𝜓| > 1 

 

The null of unit root states that the observations on an underlying variable follow a random 

walk whereas the alternative premise states that the probability distribution of the error is heavy 

tailed towards the right.  

 

The GSADF test statistic is expressed as: 

 

GSADF(𝑟0) = sup
𝑟1∈[0,𝑟2−𝑟0],𝑟2∈[𝑟0,1]

 𝐴𝐷𝐹𝑟1
𝑟2          (2.10) 

 

where 𝑟0 is a fraction of the full sample or minimum window size. 𝑟1 and 𝑟2 denote the first 

and last data points of the sample, respectively. 
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Before the test is conducted, recursive estimation of Eq. (2.9) is first carried out using the 

sequential PWY1 estimator. The recursive estimation is performed by allowing, 𝑟1 and 𝑟2 to 

change but only if the data points are inside the defined limits 𝑟1 ∈ [0, 𝑟2 − 𝑟0] and 𝑟2 ∈ [𝑟0, 1], 

respectively.  

 

The right-tailed critical values of the non-standard distributions for the finite samples do not 

rely on the theory of asymptotic distribution but the distributions are evaluated by a feasible 

alternative, which involves simulation via MCMC technique. When the GSADF(𝑟0) statistic 

exceeds the simulated critical value, the null hypothesis of unit root is rejected in favour of the 

alternative that multiple bubbles collapse periodically. Hence, rejection of the null hypothesis 

indicates the existence or presence of multiple bubbles in an underlying asset. 

 

The recursive GSADF test is useful in detecting bubbles because the window of the sample is 

not fixed throughout the estimation, therefore it allows for more flexibility in estimating the 

stability of the coefficients. Moreover, the test allows for switching of regimes from a unit root 

to periodically collapsing bubbles and vice versa. Further, the test has a non-linear structure, 

which enables it to detect multiple episodes of periodically collapsing bubbles. The sequential 

PWY estimator applied in estimating the episodes of bubbles and dating their start and end 

periods is asymptotically efficient and consistent.   

 

2.4.2. Duration Models  

  

This sub-section presents the clog-log duration models for investigating the influence of 

macroeconomic variables on the duration of bubbles. To estimate these effects, this chapter 

considers two types of models: (i) baseline model without controls for country-specific 

characteristics, and (ii) model with random effects.  

 

 

 

 
1 See Phillips et al. (2015) for an in-depth discussion about the estimator. 
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2.4.2.1. Baseline Model  

 

The hazard function is a principal part of duration analysis. It is the instantaneous hazard rate 

of an event, where the hazard rate is the conditional probability that an event happens in a time 

interval given that the event has not yet happened by time 𝑡. In this chapter, the hazard rate is 

the conditional probability of a stock bubble completing its survival after time 𝑡. An advantage 

of using the hazard function is that it can be used to predict the conditional probability of an 

event which involves maximizing the conditional log-likelihood function instead of the 

unconditional density function which can result in loss of efficiency. Thus, it is plausible to use 

this function because it can accurately predict the hazard rates of the factors that could 

potentially influence the probability of stock bubble. 

 

In studies based on duration analysis, the response variable is a point event (failure) which 

occurs after a duration (survival or failure time). In this chapter, the point event is an episode 

of periodically collapsing stock bubble while the survival or failure time is the duration of the 

bubbly episode. Accordingly, the survival function, 𝑆(𝑡) which is the probability of a stock 

remaining in a bubbly state prior to 𝑡 is defined as: 

 

S(𝑡) = Pr(𝑇 > 𝑡) = ∫ 𝑓(𝑡)dt
∞

0

                                              (2.11) 

 

where 𝑡 denotes the time period, 𝑇 is the survival time, 𝑓(𝑡) is the probability density function 

of 𝑇.  

 

The hazard function is expressed as: 

 

ℎ(𝑡) = lim
∆𝑡→0

Pr(𝑏𝑢𝑠𝑡 𝑎𝑡 𝑡 + ∆𝑡|𝑏𝑜𝑜𝑚 𝑎𝑡 𝑡)

∆𝑡
                          (2.12) 

 

or 

ℎ(𝑡) = lim
∆𝑡→0

Pr(𝑡 < 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡)

∆𝑡
                                 (2.13) 

 

Applying the conditional probability rules, we have 
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= lim
∆𝑡→0

Pr{𝑡 < 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡} Pr{𝑇 > 𝑡}⁄

∆𝑡
 

 

                                           = lim
∆𝑡→0

[𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)] ∆𝑡⁄

𝑆(𝑡)
 

=
𝜕 𝐹(𝑡) 𝜕𝑡⁄

𝑆(𝑡)
 

=
𝑓(𝑡)

𝑆(𝑡)
 

The derivative of the standard cumulative distribution function, 1 − 𝑆(𝑡). Since 

 

𝜕𝑙𝑜𝑔𝑆(𝑡)

𝜕𝑡
=
𝜕𝑆(𝑡) 𝜕𝑡⁄

𝑆(𝑡)
= −

𝑓(𝑡)

𝑆(𝑡)
 

 

Similarly, ℎ(𝑡) can be expressed as the derivate of the survival function (in logarithm) given 

by  

ℎ(𝑡) = −
𝜕𝑙𝑜𝑔𝑆(𝑡)

𝑆(𝑡)
  

 

Since stock bubbles is not an event that occurs continuously in time but it can only occur at a 

discrete-time, for instance, the length of time in a bubbly state; a change can only occur at the 

end of the bubble. Based on this, we treat the length of time in bubbles as discrete-time variable 

because we count the number of periodically collapsing bubbles. 

 

In discrete-time, Eq. (2.13) is given by; 

 

S(𝑡|𝓍𝑖1, … , 𝓍𝑖𝑛) = S0(𝑡)
exp (𝛽0+𝛽1𝓍𝑖1+ …+𝛽𝑛𝓍𝑖𝑛),          (2.14) 

 

where S(𝑡|𝓍𝑖1, … , 𝓍𝑖𝑛) states the probability for each country𝑖with the time-varying covariates 

𝓍𝑖1, … , 𝓍𝑖𝑛 to survive until time 𝑡, and S0(𝑡) is the survival function at the starting point when 

the corresponding set of covariates all equal zero. Since we have now established the link 
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between the survival and hazard functions, we next consider one of the popular discrete-time 

duration models, the clog-log model given as 

 

ℎ(𝑡|𝓍𝑖1, … , 𝓍𝑖𝑛) = 1 − [1 − ℎ0(𝑡)]
exp(𝛽0+𝛽1𝓍𝑖1+ …+𝛽𝑛𝓍𝑖𝑛).         ℎ0(𝑡) > 0       (2.15) 

 

The transformation for the model’s probabilities is estimated with maximum likelihood 

estimators. The motivation for the use of this estimator is because it is an asymptotically 

efficient and consistent estimator, and it has the ability to look for the best estimate for the 

parameters.  

 

To model the effect that macroeconomic factors have on bubbles’ duration, this chapter adopts 

the clog-log model, which is an extension of the multivariate generalized linear model. This 

model has several attractive features: First, it allows time-varying covariates to be combined 

with flexible duration specifications (Jenkins, 1995). Second, the estimated coefficients of 

factors are simpler to interpret (McCullagh, 1980). Third, maximum likelihood techniques, 

which have the asymptotic property of consistency and efficiency, are used for estimation of 

its parameters and for inference. Fourth, it allows for asymmetric power transformations in the 

probabilities or the fitting of asymmetrically transformed probabilities to data. It thus provides 

the best fit for the parameters because it allows the error distributions to be asymmetric. Fifth, 

it is flexible enough to accommodate heterogeneity across markets from the different countries.  

 

The probability that bubbles will survive is fitted in a clog-log model. Accordingly, this chapter 

specifies a hazard function as follows: 

 

ℎ(𝑡) = Pr(𝑇 = 𝑡 |𝑇 ≥ 𝑡;  Φ(𝛽0 + 𝑥𝑖𝑡
′ 𝛽))               (2.16) 

 

where ℎ(𝑡) denotes the probability of a stock market bubble surviving at time 𝑡 given that the 

stock bubble had not yet occurred at 𝑡. If the probability of bubbles’ duration fails, then ℎ(𝑡) 

is the probability that it fails after period 𝑡, or the probability that it survives at least until period 

𝑡 . 𝑇  is the duration of bubbles, which represents the expiration time. Φ(∙) is the standard 

cumulative distribution function. 𝛽0 is the intercept. 𝑥𝑖𝑡 is a vector of time-varying observed 
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country-level covariates for country 𝑖  with 𝑖 = 1,… ,𝑁  at year 𝑡  with 𝑡 = 1,… , 𝑇 . 𝛽  is the 

linear vector of parameters corresponding to the time-varying covariates in 𝑥. 

 

The hazard function of the multivariate regression model of interest is then given by 

 

ℎ(𝑡) = 1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(ℎ0(𝑡) + 𝛾
′𝐷𝐹 + 𝛿′𝐸𝐹 + 𝜑′(𝐿)𝐷𝐹∗ + 𝜏′(𝐿)𝐸𝐹∗)]           (2.17) 

 

where ℎ0(𝑡) is the underlying baseline hazard rate at time 𝑡 when the corresponding set of 

covariates all equal zero. 𝐷𝐹 and 𝐸𝐹 represents the vectors of domestic and exogenous factors, 

respectively. 𝐷𝐹∗and 𝐸𝐹∗are the vector of the lagged macroeconomic variables. 𝐿 is the lag 

operator. 𝛾, 𝛿, 𝜑 and 𝜏 are the vectors of unknown slope coefficients. 

 

This chapter takes into consideration each country’s period at risk to bubbles and the period of 

non-occurrence of bubbles during the given time interval. This allows us to model the 

probability of bubbles’ duration using binary responses associated within each time interval. 

The regression that this chapter wants to fit using a model for binary response data, or the more 

popular logit binary link cumulative distribution function is given by  

 

Pr(𝑦𝑖𝑡 = 1) = Φ(𝛽0 + 𝛾
′𝐷𝐹 + 𝛿′𝐸𝐹 + 𝜑′(𝐿)𝐷𝐹∗ + 𝜏′(𝐿)𝐸𝐹∗)          (2.18) 

 

where 𝑦𝑖𝑡 is binary response variable, which represents the probability of bubbles surviving or 

that the market in country 𝑖 exits the bubbly state at duration, 𝑡. The left-hand side of Eq. 

(2.18) takes on a value of 1 when the market exhibit bubbles in period 𝑡 or a value of 0 if it 

does not. The binary response variable is represented by: 

 

𝑦𝑖𝑡 = {
1,   stock market exhibit bubbles ,
0,   otherwise.                                      

                                            (2.19) 

 

The associated conditional log-likelihood function of the hazard function where it assumes that 

the errors are normally distributed with zero mean and orthogonal to observable country data 

is then given by  
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log 𝐿𝑖 =∑𝑐𝑖log

𝑁

𝑖=1

(
ℎ𝑖𝑡

1 − ℎ𝑖𝑡
) +∑∑log

𝑇

𝑡=1

(1 − ℎ𝑖𝑡)

𝑁

𝑖=1

                         (2.20) 

 

where 𝑐𝑖 denotes the completed stock bubble episode.  

 

The log-likelihood function for the model can be re-written in form of a binary response 

variable as: 

 

log 𝐿𝑖 = 𝑦𝑖𝑡logℎ𝑖𝑡 + (1 − 𝑦𝑖𝑡)log(1 − ℎ𝑖𝑡)                                               (2.21)  

 

2.4.2.2. Model with Random Effects 

 

The baseline model assumes that the duration of bubbles in the hazard function is influenced 

only by country-specific factors that are directly observable, i.e., the macroeconomic factors. 

However, some unobserved country-specific factors that can explain duration of bubbles across 

markets, as earlier explained, have not been captured by the model. Omitting these unobserved 

effects could cause downward bias in the coefficient estimates, resulting in the underestimation 

of the covariate effects. It is important to control for heterogeneity bias in the model for the 

reasons previously discussed. To overcome this empirical issue, the chapter extends the 

baseline specification by incorporating the random effects. The linear hazard function, which 

captures these unobserved country differences as random disturbances, is given by 

 

ℎ(𝑡|𝓍𝑖1, … , 𝓍𝑖𝑛, 𝜂𝑖) = Pr(𝑇 = 𝑡 |𝑇 ≥ 𝑡;  Φ(𝛽0 + 𝑥𝑖𝑡
′ 𝛽, 𝜂𝑖)),                

= 𝐹(1 − 𝑒𝑥𝑝 − (𝑒𝑥𝑝[ℎ0(𝑡) + 𝛾
′𝐷𝐹 + 𝛿′𝐸𝐹 + 𝜑′(𝐿)𝐷𝐹∗ + 𝜏′(𝐿)𝐸𝐹∗ + 𝜂𝑖])).      (2.22) 

 

where all the terms remain as earlier described in Eq. (2.17) and (2.18). 𝜂𝑖 is vector of random 

effects, which accounts for the unobserved country-specific effects. It is a sub-component of 

the normally distributed random disturbance, and it is independent of the 𝑥𝑖𝑡′𝑠.  
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To estimate the hazard function in Eq. (2.22), one can rely on proportional hazards or random 

effects distributional assumptions. If the function is estimated by imposing the proportional 

hazards assumption on its conditional distribution, then there should be equal correlation 

between the vectors of covariates, 𝑥𝑖𝑡′𝑠 (Allison, 2010). Hence, the hazard rates will rise or fall 

by a proportionate amount for each country 𝑖 at time 𝑡. If one chooses to adopt this assumption, 

then the entire time units will have similar intervals. Although this assumption has been 

commonly applied in duration analysis, this chapter does not rely on it because there are a few 

concerns: First, many empirical applications that impose this assumption employ the partial 

log-likelihood estimator that is not an efficient estimator for robust inference. Second, the usage 

of a similar interval for all observations has been criticised because it can lead to biased 

estimates and even lead to misleading inference.  

 

To obtain consistent estimates and prevent spurious inference, it is more reasonable and 

appealing to base our estimation of the hazard function on the random effects assumption, i.e., 

that the observed explanatory variables are uncorrelated with unobserved 

heterogeneity,(𝑥𝑖, 𝜂𝑖). In other words, the errors of the random variable 𝜂𝑖  are distributed 

independently of the explanatory variables, 𝑥𝑖. The chapter thus relies on this assumption and 

estimate the function by including the Gaussian distributions of random variables to correct the 

bias arising from heterogeneity. The maximization of the marginal distribution of random 

errors is estimated using the maximum likelihood estimator via the likelihood function, which 

is a more consistent estimator of 𝜂𝑖  than the partial log-likelihood one. To obtain the 

approximate marginal distribution of the random errors, the chapter employs a Gaussian 

quadrature type of approximation. More explicitly, it uses the mean-variance adaptive Gauss-

Hermite quadrature approximation technique to integrate out the value of random effects. It 

employs this technique because it ensures asymptotic convergence to the true parameter value, 

it can reliably fit the random effects model, and it provides accurate approximations.   

 

2.4.3. Data 

 

To, empirically, investigate the determinants of bubbles’ duration; the chapter next describes 

the data set. The investigation will be executed in two stages. In the first stage, which involves 

the simulation of multiple episodes of bubbles and the dating of these episodes, it employs data 
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that consists mainly of the weekly closing prices of country’s stock prices. The entire sample 

for this data covers the period, 03 January 1995 until 03 November 2016. It thus contains 1,140 

observations, which is presumably large enough to enable us to detect multiple episodes of 

bubbles in the data.  

 

Prior to testing whether the martingale component of stock prices has an explosive path, the 

chapters first model it as a stochastic process. To proceed, it transforms all the prices using the 

standard natural logarithm in order to derive their logged return series, formulated as: 𝑟𝑖𝑡 ≡

𝑙𝑛(𝑝𝑖𝑡/𝑝𝑖𝑡−1), 𝑡 = 1, 2, … , 𝑇  with 𝑟𝑖𝑡  denoting the return on stocks for country 𝑖  at time 𝑡 , 

whereas 𝑝𝑖𝑡 and 𝑝𝑖𝑡−1 denote the prices at periods 𝑡 and 𝑡 − 1, respectively. Next, it obtains the 

episodes of bubbles and date them using recursive GSADF test via Monte Carlo simulation. 

Finally, it constructs the duration of bubbles (𝐷𝑏𝑠) from the date-stamped periods.   

 

In the second stage, where the chapter will empirically examine the effect of macroeconomic 

factors on duration of bubbles using clog-log models, it uses a series of underlying domestic 

and exogenous variables for a panel of 21 countries2. The main country-level explanatory 

variables the chapter uses to examine the key sources of bubbles’ duration are: countries’ real 

economic activity measured in terms of the growth in GDP per capita (𝐺𝑑𝑝𝑐), inflation (𝐼𝑛𝑓𝑙), 

real oil prices (𝑅𝑜𝑝), real gold prices (𝑅𝑔𝑝), volatility in GDP per capita (𝐺𝑑𝑝𝑐𝑣𝑜𝑙), inflation 

volatility (𝐼𝑛𝑓𝑙𝑣𝑜𝑙) , volatility in oil prices (𝑅𝑜𝑝𝑣𝑜𝑙), volatility in gold prices (𝑅𝑔𝑝𝑣𝑜𝑙), 

portfolio inflows (𝑃𝑜𝑟𝑡𝑓) , interest rate gap 3  (𝑀𝑝𝑜𝑙)  which captures the contribution of 

monetary policy and yield spreads4 (𝑌𝑖𝑒𝑠𝑝𝑑) which captures the expectations about countries’ 

future economic growth performances.  

 

Next, to check the robustness of our baseline results, the chapter includes alternative variables. 

Real GDP per capita is removed and is replaced with growth in consumption (𝑅𝑐𝑜𝑛𝑠) and 

growth in investment (𝑅𝑔𝑖), which are both components of economic activity. Also, for the 

robustness analysis, it removed inflation and replaced it with the GDP deflator (𝐼𝑛𝑓𝑑𝑓), which 

 
2 A more detailed description of the list of countries grouped by income and financial development levels is 

presented in Appendix 1. 
3 This is computed by taking the difference of the short-term real interest rates from the Wicksell’s natural rate of 

interest, which is obtained and extracted using the Hodrick-Prescott filter. 
4 Yield spreads which measures the slope of the real term structure is calculated as the difference between the 10-

year sovereign bond yields and the treasury bills rates. 
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is an alternative measure of inflation. It excludes inflation volatility derived from inflation and 

replaced it with inflation volatility derived from GDP deflator5 (𝐼𝑛𝑓𝑑𝑓𝑣𝑜𝑙). All the data are 

arranged in a panel because they are cross-sectional time-series. 

 

The data for the explanatory variables described above spans the period 1995 to 2015. It covers 

a sample of countries drawn from DEE namely: Australia, Belgium, Brazil, China, Colombia, 

Germany, Hong Kong, Indonesia, Ireland, Italy, Japan, Korea, Malaysia, Mexico, Netherlands, 

New Zealand, Portugal, Singapore, Spain, Thailand and the U.S6. The data are obtained from 

different sources. Data on stock prices come from the MSCI database on Bloomberg. The data 

on the macroeconomic factors originate primarily from a variety of sources namely: 

DataStream and Eikon, the International Monetary Fund, the Global Financial Development 

database, and the World Bank. 

 

Prior to the empirical estimations, the chapter conducted some preliminary data checks. Two 

separate checks are conducted because as stated earlier our investigation will be in two stages. 

The first check is carried out using only data on stock returns, while the second one is 

implemented using data on the macroeconomic factors and the duration of bubbles. Table 2.1 

reports the summary statistics. Panel A presents the summary statistics for the log of average 

stock returns. Some interesting insights emerge. The lowest and highest returns are in China 

and Mexico, respectively. The standard deviation of the log of average stock returns is highest 

for Colombia, which implies that it has a higher variability while Japan has the lowest 

variability. There is, of course, considerable heterogeneity across countries as revealed by the 

different standard deviation results. In addition, the skewness are less than zero for most returns 

(excluding Brazil, Indonesia and Italy). This indicates that stock returns have flatter left-tails 

unlike the normal distribution. The kurtosis are all non-zero indicating peaked and fat-tailed 

distributions. The normality test is rejected as shown by the Jarque-Bera statistics. The negative 

skew, excess kurtosis and Jarque-Bera statistics all indicate that the distributions of stock 

returns are non-normal. 

 

 
5 A more detailed description of the variables, its description and sources are presented in Appendix 2. 
6 Unfortunately, the sample size is restricted to these countries because we were unable to find evidence of bubbles 

in some countries and because of the constraint in obtaining consistent macroeconomic data.  
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Panel B presents the summary statistics for the duration of bubbles and the macroeconomic 

factors. It can be seen that the average duration of bubbles for all countries in the sample is 

13.37 weeks. Panel C presents the contemporaneous correlations. It shows quite many negative 

associations between macroeconomic factors and duration of bubbles with just a few positive 

associations. It also shows that the macroeconomic factors that has highest and lowest 

correlations with 𝐷𝑏𝑠 are 𝐼𝑛𝑓𝑙𝑣𝑜𝑙 and 𝑅𝑔𝑝, respectively. 

 

Table 2.1: Summary Statistics 

Panel A: Stock Returns Data       

  
 Mean  Median  Max.  Min. 

 Std. 

Dev. 

 

Skewness 

 

Kurtosis 

Jarque-

Bera 

Australia 6.3697 6.4450 7.1250 5.6539 0.4449 -0.0331 1.3411  130.91*** 

Belgium 4.2269 4.2776 4.7935 3.3565 0.3213 -0.3348 2.1183  58.22*** 

Brazil  7.1714 7.1004 8.4478 5.6550 0.6977 0.0226 1.7066  79.55*** 

China 1.7083 1.9437 2.6103 0.5229 0.5071 -0.7073 2.2841  119.38*** 

Colombia 5.6175 5.9450 7.2395 3.7199 1.1168 -0.1419 1.5227  107.49*** 

Germany 4.5358 4.5969 5.1053 3.7346 0.3129 -0.6083 2.6238  77.01*** 

Hong Kong 6.9252 6.9124 7.5331 6.1298 0.3279 -0.1000 1.9872  50.62*** 

Indonesia 7.4208 7.3508 8.8021 5.6607 0.9360 0.0490 1.4277 117.46*** 

Ireland 4.0079 4.1020 4.8377 2.9291 0.5293 -0.3814 1.8474  90.73*** 

Italy 4.2637 4.2071 4.8671 3.6514 0.3395 0.0913 1.7309  78.09*** 

Japan 1.9354 1.9451 2.3013 1.3605 0.1988 -0.3884 2.5776  37.14*** 

Korea 5.6717 5.7577 6.4443 4.1403 0.5996 -0.4518 2.0487 81.77*** 

Malaysia 4.7166 4.8575 5.3571 3.1844 0.4472 -0.5089 2.4414  64.03*** 

Mexico 7.9717 8.0752 8.9469 6.4097 0.7147 -0.2122 1.5213  112.41*** 

Netherlands 4.4238 4.4511 4.8963 3.6556 0.2884 -0.5330 2.7000  58.25*** 

New Zealand 4.2232 4.2978 4.7454 3.5069 0.2795 -0.6256 2.4154  90.60*** 

Portugal 4.1861 4.2191 4.8315 3.5222 0.3463 -0.0416 1.9622  51.48*** 

Singapore 6.7553 6.7458 7.3220 5.6775 0.3728 -0.3583 2.1022  62.68*** 

Spain 4.5476 4.6261 5.1895 3.3200 0.3880 -1.3803 4.7839 513.12*** 

Thailand 2.0899 2.1394 3.1819 0.5684 0.6564 -0.3400 1.9894 70.48*** 

US 7.0392 7.0623 7.6405 6.0707 0.3307 -0.4716 3.2798 45.98*** 

All series are in natural logarithm. ***denotes 1% significance level. Min. and Max. denote minimum and maximum. 
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Panel B: Duration of Bubbles and Macroeconomic Factors 

Variable Mean Std. Dev. Min. Max. 

Dbs 13.251 16.454 0.000 53.000 

Gdpc 4.506 3.928 -13.422 33.527 

Infl 3.558 5.621 -4.480 66.010 

Portf 35.833 59.913 0.330 294.680 

Yiespd 1.227 2.725 -14.766 12.002 

Mpol 0.000 2.256 -21.973 13.893 

Rop 69.665 380.635 0.0009 3206.052 

Rgp 927.422 5003.331 0.0148 40592.321 

Gdpcvol 6.920 1.015 3.087 10.827 

Inflvol 0.727 0.494 0.016   3.492 

Ropvol 0.366     1.191 0.0001    7.100 

Rgpvol 1.0534 1.587 0.001 9.903 

Infdf 3.756     7.003   -6.007    89.497 

Infdfvol 0.802 0.573 0.035 3.816 

Rcons 3.432 4.105 -12.658 30.733 

Rgi 3.622 13.259 -49.210 138.439 
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Panel C: Contemporaneous Pairwise Correlations Matrix 

 
Sbs Gdpc Infl Portf Yiespd Mpol Rop Rgp Gdpcvol Inflvol Ropvol Rgpvol Infdf Infdfvol Rcons Rgi 

Dbs 1 

               
Gdpc 0.0403 1 

              
Infl -0.0026 -0.1415 1 

             
Portf 0.0705 0.1318 -0.1273 1 

            
Yiespd -0.0097 -0.0956 -0.1367 0.0471 1 

           
Mpol 0.0464 0.0004 -0.4971 0.0050 -0.0871 1 

          
Rop -0.0350 -0.0174 -0.0655 -0.0537 -0.0148 0.0009 1 

         
Rgp -0.0460 -0.0279 -0.0700 -0.0541 -0.0083 -0.0006 0.9697 1 

        
Gdpcvol -0.0067 0.0235 -0.3385 0.3539 0.0361 0.0014 0.0762 0.0978 1 

       
Inflvol 0.1076 -0.1135 0.6037 -0.0209 -0.1002 -0.1469 -0.1045 -0.1135 -0.3143 1 

      
Ropvol -0.0058 -0.0483 -0.0943 -0.0681 -0.0041 0.0090 0.8783 0.8837 0.0984 -0.1403 1 

     
Rgpvol -0.0203 -0.0681 -0.0817 -0.0795 -0.0170 0.0043 0.8100 0.8225 0.1718 -0.1238 0.9600 1 

    
Infdf 0.0391 -0.0554 0.9246 -0.1236 -0.1534 -0.4731 -0.0652 -0.0654 -0.3154 0.5470 -0.0909 -0.0781 1 

   
Infdfvol 0.0472 0.0264 0.4992 0.0814 -0.0167 -0.1180 -0.1239 -0.1232 -0.1814 0.6818 -0.1532 -0.1490 0.5530 1 

  
Rcons -0.0128 0.6222 0.1995 -0.0282 -0.1736 -0.1669 -0.118 -0.1140 -0.1234 0.1342 -0.1470 -0.1526 0.3556 0.3165 1 

 
Rgi 0.0015 0.6081 -0.1111 0.0521 -0.0627 0.0717 -0.033 -0.0365 0.0044 -0.1098 -0.0563 -0.0666 0.0539 0.0432 0.5400 1 
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Another preliminary check that the chapter conducted are unit root tests for stationarity. It is 

crucially important that it carries out this check in order to examine whether stock returns 

exhibit nonstationary behaviour. Evidence that returns follow a nonstationary path or random 

walk process might indicate that it has explosive characteristics and that it is unpredictable. 

These characteristics could also indicate the presence of bubbles. The unit root tests were 

conducted by relying on several standard approaches; the Augmented Dickey-Fuller, Phillips-

Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS). Table 2.2 presents the unit root 

test results for logged stock returns.  

 

Table 2.2: Unit Root Tests at Levels for Logged Stock Returns 

 
ADF    

 
PP      

 
KPSS     

Series 𝜓𝛾 p-value 𝜓𝑡 p-value   𝜓𝛾 p-value 𝜓𝑡 p-value   𝜓𝛾 𝜓𝑡 

Australia -1.5590  0.5033 -2.2042  0.4862  -1.5297  0.5183 -2.1698  0.5055  3.6278 0.3536 

Belgium -1.8935  0.3356 -1.8420  0.6836 
 

-2.0242  0.2765 -1.9830  0.6095 
 

0.3115 0.2667 

Brazil  -1.4222  0.5726 -1.6685  0.7647 
 

-1.4712  0.5481 -1.7712  0.7182 
 

2.7749 0.4272 

China -1.5407  0.5127 -1.9572  0.6234 
 

-1.6939  0.4341 -2.0843  0.5535 
 

1.2116 0.6325 

Colombia -0.6865  0.8480 -1.5098  0.8261 
 

-0.6833  0.8488 -1.4888  0.8332 
 

3.4453 0.4642 

Germany -2.3463  0.1577 -2.4029  0.3777 
 

-2.3579  0.1542 -2.4305  0.3633 
 

1.4089 0.2073 

Hong Kong -1.6792  0.4416 -2.6721  0.2485 
 

-1.8510  0.3559 -3.0021  0.1320 
 

3.0893 0.3354 

Indonesia -1.2707  0.6450 -2.1137  0.5371 
 

-1.2535  0.6529 -2.1649  0.5083 
 

2.1871 0.5488 

Ireland -1.0428  0.7396 -1.7840  0.7121 
 

-1.1371  0.7029 -1.8276  0.6908 
 

1.8912 0.4056 

Italy -1.6577  0.4526 -2.0550  0.5698 
 

-1.6877  0.4373 -2.0754  0.5585 
 

0.9096 0.5960 

Japan -2.3771  0.1485 -2.3136  0.4256 
 

-2.4644  0.1246 -2.4051  0.3766 
 

0.2543 0.2327 

Korea -0.9347 0.7774 -2.5785 0.2904  -1.0851 0.7236 -2.9651 0.1426  3.8309 0.2649 

Malaysia -1.3814  0.5927 -2.0227  0.5877  -1.6982  0.4319 -2.3558  0.4028  1.9900 0.4625 

Mexico -1.4177  0.5749 -2.2666  0.4515 
 

-1.4181  0.5747 -2.3234  0.4203 
 

3.9663 0.3826 

Netherlands -2.4467  0.1292 -2.3592  0.4010 
 

-2.4339  0.1326 -2.3434  0.4095 
 

0.5487 0.2810 

New 

Zealand 
-1.6673  0.4477 -1.9161  0.6454 

 

-1.7306  0.4155 -1.9798  0.6112 

 

0.8269 0.2610 

Portugal -1.2857  0.6382 -2.0521  0.5715 
 

-1.4407  0.5634 -2.1250  0.5307 
 

1.0057 0.5342 

Singapore -1.4539  0.5568 -2.2460  0.4629 
 

-1.6582  0.4524 -2.5102  0.3231 
 

2.5488 0.3719 

Spain -3.0155  0.0338 -2.4575  0.3495 
 

-3.0171  0.0336 -2.4503  0.3531 
 

1.6617 0.5505 

Thailand -1.5907  0.4870 -2.3921  0.3834 
 

-1.6694  0.4467 -2.5097  0.3233 
 

1.4428 0.5783 

US -2.4099  0.1392 -2.6421  0.2615   -2.4106  0.1390 -2.5898  0.2851   2.4046 0.3109 

Notes: All series are in natural logarithm. 𝜓𝛾 constant whereas 𝜓𝑡denotes constant and trend. The ADF and PP tests 𝐻0: 𝜌 = 0 

against 𝐻1: 𝜌 ≠ 0. The null for the KPSS test is stationarity.    
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The tests were carried out at levels and using the maximum lag available. All the tests employed 

failed to find evidence of stationarity. This implies that there is relatively high persistence in 

stock returns. More precisely, it implies that stock returns diverge from its mean values and 

follows a random walk. 

 

2.5. Estimation Results 

 

With the econometric methodologies set aside in the previous section, this section will present 

the results from the recursive GSADF test and the clog-log model for markets in DEE.  

 

2.5.1. Recursive GSADF Test for Stock Market Bubbles  

 

Prior to performing the recursive GSADF test7 for each country, the chapter will first determine 

the parameters for simulation. Phillips et al. (2015) has suggested that the formula, 𝑟0 = 0.01 +

1.8 √T⁄  (where T refers to the total number of observations) be used for the calculation of the 

minimum window size. It adopted this formula and obtained the minimum window size to be 

used for our recursive regression. The lag order, 𝑘 to be used for the recursive regression is set 

to a maximum of 1, (𝑘 = 1)8. Once it has determined the parameters for the simulation, the 

95% exact finite critical values sequence for the test will be obtained using a Monte Carlo 

algorithm. Iteration of the algorithm is done up to 1000 times in order to generate the critical 

values. Following this iteration, the test statistics will then be computed. Apart from this 

computation, the 90%, 95% and 99% distributional quantiles, which are the right-tailed critical 

values, are computed. These quantiles are used for deciding whether stock returns exhibit 

explosive behaviour.   

 

The number of trading days in stock markets usually ranges between 252 to 260 days in a year. 

It is expected that markets are informationally efficient and that current information about 

 
7 The Phillips method is a stop-start method, where when the bubble bursts one must restart the process. So, it is 

backward looking and can only detect bubbles ex-post and cannot model the entire process ex-ante or the 

persistence of the process. This weakness can be overcome using the random coefficient model proposed by 

Banerjee et al. (2020).  
8 The reason for adopting this setting is that Phillips et al. (2014) have demonstrated that the selection of 𝑘 using 

an alternative approach, the top-down approach of Campbell and Perron (1991) results in extreme size distortions 

and this can reduce the statistical power of the test. 
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fundamentals are rapidly reflected in prices. Hence, if there were any deviation of prices from 

their fundamental value up to a minimum duration9, 𝑑𝑚 of 6 periods this would be considered 

a bubble. 

 

Table 2.3: Recursive GSADF Results for Explosive Stock Behaviour 

Country GSADF test statistics 

Australia 2.2152*  

Belgium 3.4357***  

Brazil  2.5462**  

China 2.8114**  

Colombia 3.0532***  

Germany 3.3368*  

Hong Kong 2.9578***  

Indonesia 5.6884***  

Ireland 4.0490*  

Italy 3.5617*  

Japan 2.9481***  

Korea 2.3608*  

Malaysia 3.4452***  

Mexico 3.8813***  

Netherlands 3.0308*  

New Zealand 2.3567***  
Portugal 2.7517**  

Singapore 3.7580***  

Spain 2.7594**  

Thailand 2.7065**  

US 2.3036*   

Finite sample critical values 

99% 95% 90% 

2.8999 2.4644 2.2222 

Note: The finite critical values of the GADF tests are estimated from Monte Carlo simulations based on 1000 

replications. The total number of observations, T= 1140 and the lag, k=1. ***, **, * indicates 1%, 5% and 10% 

significance level, respectively. 

 

Table 2.3 presents the result of the recursive GSADF test. The test detects multiple explosive 

paths in logged stock returns at the conventional significance levels for the countries 

 
9 Phillips et al. (2011) have suggested that the minimum duration be constrained to 𝐿𝑜𝑔(𝑛), where 𝑛 is the number 

of trading day in stock markets. 
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examined10. For instance, the result shows that the test statistic of 4.04 for Ireland exceeds its 

critical value at 99%. This resulted in the rejection of the null hypothesis, H0: |ψ| = 1 of unit 

root (random walk) and implies that there were multiple episodes of bubbles. Similarly, in 

Belgium the test statistic of 3.43 is above its corresponding 99% critical value of 2.89. The null 

hypothesis, H0: |ψ| = 1 of unit root is thus rejected against the alternative, H𝐴: |ψ| > 1 of 

multiple bubbles at the 1% level of significance.  

 

Figure 2.1 displays the test results for bubbles in the respective countries. It shows the observed 

log of stock returns and the simulated test statistics alongside its corresponding 95% critical 

value sequence. The green line traces out the log of stock returns. The blue line is the test 

statistic sequence while the red line is its corresponding asymptotically distributed critical 

value at 95% confidence level. It can be seen from the figure that at times the test statistics lies 

above their critical values. This is clear indication of the presence of bubbles. It can also be 

seen that some markets have more pronounced explosive behaviour than others have. For 

instance, episodes of bubbles appear to be more prominent in Germany, Japan, and Portugal. 

There are, however, fewer episodes of bubbles in Indonesia, Korea, and the US.   

 

Figure 2.2 plots the duration of bubbles across stock markets. The figure displays the duration 

of bubbles prior to the GFC, during the crisis and post-crisis. The figure allows us to gain a 

deeper insight into the duration of bubbles. Our goal here is to compare the length of time that 

bubbles survived during these different periods. Some interesting findings across markets are 

revealed. It can be clearly observed that there were bubbles across markets particularly prior to 

the GFC. This is because the log of stock returns exceeded the minimum duration in most of 

the markets during this period. In terms of the type of economy, it is obvious that more 

emerging economies experienced bubbles and had durations that were longer than those of 

their developed counterparts, particularly in 2005 and 2006. A more interesting picture emerges 

during the GFC period. More stock markets seem to have had dramatic episodes of bubbles 

that lasted for an extended time. These dramatic episodes are witnessed in markets of both 

DEEs. As shown in the plot, during the post-crisis period particularly in 2015, there is an 

 
10 The data for Chile, France, Philippines, and the United Kingdom (UK) were also tested for bubbles. However, 

the test failed to show evidence of bubbles in their stock markets during the period examined. Due to the lack of 

evidence of bubbly episodes, these countries were excluded from our study. Although we found evidence of 

bubbles for Taiwan, Argentina, and Peru, we had to exclude them in the second stage due to paucity of 

macroeconomic data. 
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emergence of bubbles with long durations. This is surprising and so, there is need for us to 

better understand what factors are affecting bubbles’ duration in stock markets across countries.    

Figure 2.1: Recursive GSADF Test Results Based on Backward Regression for Stock 

Returns  
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Notes: the blue lines indicate the recursively estimated GSADF sequence while the red line is the 95% 

standard sequential critical value computed via Monte Carlo simulation technique. 
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Figure 2.2: The Duration of Stock Bubbles Pre-Crisis, Crisis and Post-Crisis 

Pre-crisis 

 

crisis 

 

Post-crisis 

 

Source: GSADF estimates based on Bloomberg data 

Notes: The light blue histogram is the country with lowest number of bubble episodes each year. The green 

histogram is the country with highest number of bubble episodes each year. Pre-crisis is not including Hong 

Kong, Malaysia, Portugal and the US in 2005 and Thailand in 2006. During the crisis, Japan is omitted in 

2007. Post-crisis is not including Australia, China, Hong Kong, Italy, Korea, Mexico, New Zealand, Portugal, 

Singapore, Spain and Thailand in 2013 and Hong Kong, Italy, Korea and Spain in 2015. These countries were 

omitted because there is no statistical evidence from the recursive GSADF estimates to support stock bubble 

episodes during these periods. 
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2.5.2. Results of Contagion Models 

 

The results of the baseline model with and without random effects and the model using 

splitted sample of countries are presented in this sub-section. 

 

2.5.2.1. Baseline Model Results  

 

This section analyses the quantitative results for the covariate effects of macroeconomic factors 

on duration of bubbles. Columns (1) and (2) of Table 2.4 reports the baseline results using the 

model without controls for unobserved differences across countries. The model controls for 

endogeneity. It also controls for within-country correlation in the residuals in order to obtain 

robust standard errors and for the statistical improvement of the covariate’s coefficients. The 

results are interpreted in terms of the size of covariate effects and as the probability of a bubble 

ending. 

 

The result of the baseline model shows that contemporaneous inflation is important for 

understanding how long a bubble survives as it yields a significant positive effect. An increase 

of 10% in the general price level increases the duration of bubbles by 0.72%. This suggests that 

an increase in the general price of goods and services lowers the probability that the bubble 

will end. The result also shows that the coefficient of portfolio inflows is positive and 

statistically significant at the 5% level. A rise in portfolio inflows increases the duration of 

bubbles. Specifically, a 10% increase in portfolio inflows is associated with a 0.10% increase 

in the duration of bubbles. This implies that surge of portfolio inflows triggered by higher 

returns in the home country reduces the probability that a bubble will end. 

 

The chapter next considers the conditioning set of macroeconomic variables for addressing 

possible endogeneity11. It is interesting to find evidence of the effect of lagged variables in 

determining the duration of bubbles. The size of the effect of these lagged covariates appears 

larger than their contemporaneous effects. One possible explanation for this is that the overall 

effect is affected by the presence of endogeneity. In all, there are four statistically significant 

 
11 Potential endogeneity could arise because of the correlation of regressors with error terms. 



59 
 

lagged explanatory variables, which are inflation, portfolio inflows, yield spread and volatility 

in gold prices.  

Table 2.4: Results of the Baseline Model  

  

 Model without Random 

Effects 

Model with Random 

Effects 

Variables Coefficients 

 (1)  

p- values 

(2) 

Coefficients 

 (3)  

p-values 

(4) 

Domestic factors    

Gdpc -0.025 (0.025) -0.022 (0.024) 

Infl 0.072** (0.035) 0.063 (0.053) 

Portf 0.010** (0.005) 0.011 (0.008) 

Yiespd 0.029 (0.031) 0.010 (0.052) 

Mpol 0.067 (0.064) 0.063 (0.064) 

Exogenous factors    

Rop 0.009 (0.006) 0.009 (0.009) 

Rgp -0.000 (0.000) -0.000 (0.001) 

Volatility of factors    

Gdpcvol 0.007 (0.107) 0.035 (0.112) 

Inflvol 0.155 (0.228) 0.204 (0.219) 

Ropvol 0.518 (1.629) 0.637 (1.476) 

Rgpvol 0.276 (0.236) 0.199 (0.283) 

Lag of factors    

Gdpc_L1 0.034 (0.021) 0.043* (0.024) 

Infl_L1 -0.099*** (0.029) -0.104** (0.044) 

Portf_L1 -0.009* (0.005) -0.010 (0.008) 

Yiespd_L1 -0.080** (0.035) -0.084* (0.046) 

Mpol_L1 -0.063 (0.049) -0.068 (0.056) 

Rop_L1 0.006 (0.007) 0.006 (0.012) 

Rgp_L1 -0.001 (0.001) -0.001 (0.002)  

Gdpcvol_L1 -0.164 (0.112) -0.180 (0.156) 

Inflvol_L1 0.290 (0.234) 0.411* (0.247) 

Ropvol_L1 1.486 (1.481) 1.582 (1.639) 

Rgpvol_L1 -0.784*** (0.251) -0.805*** (0.310) 

_cons 1.088 (0.739) 0.974 (1.017) 

Controls –unobserved effects No  Yes 

Wald test statistic 1.20E+06 

(0.000) 

 35.75  

(0.032) 

𝑙𝑛𝜎𝑢
2   -2.819*** 

(0.923) 

Likelihood ratio test (𝜒2)    3.70 

(0.027) 
Notes: Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01, respectively. The estimates reported are the 

standardized and not the exponentiated coefficients. The standard errors for the clog-log model using clustered by 

country residuals and the model with heteroskedastic standard errors that controls for unobserved heterogeneity 

are given in the parenthesis. The Wald test statistic with asymptotic 𝜒2 distributions for coefficient restrictions 

and likelihood ratio tests for the absence of unobserved heterogeneity are reported. 
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Inflation exerts a strong negative influence on the duration of bubbles. Precisely, a 10% 

increase in lagged inflation results in a 0.99% decrease in the duration of bubbles. Since the 

past errors of inflation reflect inflation persistence (inflation rates do not change immediately 

because its past levels influence future prediction of inflation), the result indicates that high 

level of inflation persistence increases the probability that the bubble ends.  

 

Portfolio inflows exerts a strong negative influence on the duration of bubbles. The result show 

that portfolio inflows has the weakest lagged effect on the duration of bubble and the 

relationship is negative. Indeed, a 10% increase in lagged portfolio inflows leads to 0.09% 

decrease in the duration of bubbles. This implies that large portfolio inflows in the previous 

period increases the probability that a bubble will end.  

 

Yield spreads has a negative coefficient estimate of -0.080. A 10% increase in yield spreads in 

the previous period is associated with a 0.8% decrease in the duration of bubbles.  

 

The volatility in gold prices is negatively related to the duration of bubbles and has an effect 

of 7.84%. This suggests that past effects of shocks from gold and uncertainty are associated 

with a decrease in the duration of bubbles. Higher volatility in gold prices (lagged) may dampen 

speculative trading in stock markets and increases the probability that a bubble will end. 

 

It striking to find that the coefficients of growth in real GDP per capita and yield spreads are 

not statistically different from zero. This indicates that these factors have no significant effect 

on the duration of bubbles. Similarly, the view that sustained accommodative policy stance 

(which translates to cheaper cost of borrowing or credit) is a determinant of bubbles is not 

evidenced in this chapter. Our result is thus inconsistent with the findings of He et al. (2019) 

but somewhat consistent with that of Lunde and Timmermann, (2004). 

 

To evaluate whether the baseline model yielded consistent estimates, the chapter conducted a 

model diagnostic check using the conventional Wald test for joint effects which tests the null 

hypothesis of all the coefficients being zero. The test is strongly statistically significant at the 

1% level with 𝑝 = 0.000 leading to a rejection of the null hypothesis that all the coefficients 

are jointly equal to zero. Thus, the chapter concludes that the set of coefficients used for 
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regressions are valid for the estimations. Overall, there is evidence that the duration of bubbles 

is dependent on both domestic and exogenous factors.  

 

In column (3) and (4) of Table 2.4 the chapter report the fitted estimates of the regression based 

on the model with random effects. There are clear differences between this result and 

previously obtained baseline result. Even though the baseline model controlled for within-

country correlations it still suffers from bias arising from the lack of control for unobserved 

country heterogeneity. This is because it does not pick up any variations arising from random 

effects. The inclusion of random effect lowers the degree of bias in the estimates of parameters 

and provides greater precision by improving the models fit. The Table also reports the 

likelihood ratio test for the unobserved heterogeneity, which shows that the variability arising 

from country-specific heterogeneity exists as indicated by the Chi-square, 𝜒2 statistic, which 

is statistically significant at 5% level (𝑝 = 0.027). Moreover, the error due to each country 

from the aggregate error term measured as the sigma squared (𝑙𝑛𝜎𝑢
2) is strongly significant at 

the 1% level further indicating the presence of heterogeneity across country.  

 

The result shows that the coefficient estimates of the contemporaneous factors are not 

statistically different from zero; only the lagged covariates are significant. An obvious 

explanation for the absence of contemporaneous relationship is that it could be caused by the 

influence of measurement errors arising from unobserved heterogeneity. The chapter finds that 

the relationship between the duration of bubbles and the lagged growth in GDP per capita is 

positive and statistically significant at the 10% level. With an estimated coefficient of 0.043, it 

implies that a 10% growth in lagged income increases the duration of bubbles by approximately 

0.4%, keeping other factors constant. This positive link suggests that improvement in country’s 

overall economic situation via household’s previous level of real personal income leads to a 

lower probability that the bubble will end.  

 

Holding other factors constant, inflation in the previous period is negatively significant, and 

this is consistent with the baseline result. The only difference is that the coefficient estimate is 

slightly larger in magnitude. Another significant variable, which has coefficient estimates that 

are similar in sign and magnitude with the baseline result, is the lagged yield spreads. The 

lagged yield spreads with an estimated coefficient of -0.084 is statistically significant at the 
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10% level. This suggests that expectation about countries’ economic outlook and previous 

shape of the yield curve are both important for explaining the duration of bubbles across 

countries.  

 

The random effects regression also presents evidence of lagged volatility effects. The important 

role of consumer prices in explaining duration of bubbles is manifested by the effect of its 

previous volatility levels. Its effect is nearly four times larger than the effect of previous 

changes in its level, i.e., lagged inflation. The result shows that it is statistically significant with 

a positive coefficient estimate of 0.411. A 10% increase in inflation volatility in the previous 

period leads to an increase of 4.1% in the duration of a bubble. This suggests that volatility in 

the inflation rate in a previous period might raise the current price of stocks (as a consequence 

of investor’s decision to hedge against inflation risk), cause bubbles to exist, and reduce the 

probability that bubbles will end.  

 

With respect to the coefficient estimate of volatility in gold prices in the previous period, the 

chapter finds that it is strongly significant at the 1% level and yields a large negative effect of 

8.05% on the duration of bubbles. This suggests that greater volatility of gold prices in the 

previous period might destabilize stock prices and cause overvaluation of stocks. This result 

shows the importance of the effect of exogenous shocks arising from the global commodity 

market and confirms the strong linkage between this market and the stock market. Overall, 

there is considerable evidence that the lagged effects of growth in GDP per capita and inflation 

volatility lengthen the duration of bubbles, whereas the lagged effects of inflation, yield 

spreads, and volatility in gold prices shorten the duration of bubbles. 

 

2.5.2.2. Results of the Model using Splitted Sample of Countries 

 

Tables 2.5 shows the results for the model with random effects, which controls for unobserved 

heterogeneity and is based on the splitted sample of countries. The chapter conducts a 

comparative analysis of covariates effects. It first compares the effects of high-income 

countries to those of middle-income countries (columns (1) and (2)). It then compares the 

effects of countries with high level of financial development to those at the intermediate level 

(columns (3) and (4)). 



63 
 

Table 2.5: Results of the Model using Splitted Sample of Countries 

Variables (1)  (2)  (3)  (4)  

 High-Income level Middle-income level  High level of financial 

development  

Intermediate level of financial 

development 

 Coefficients p-values Coefficients p-values Coefficients p-values Coefficients p-values 

Gdpc 0.016 (0.034) 0.040** (0.016) -0.021 (0.029) 0.123*** (0.043) 

Infl 0.061 (0.124) 0.132 (0.081) 0.031 (0.083) 0.148 (0.137) 

Portf 0.008 (0.009) 0.094** (0.044) 0.009 (0.008) 0.342 (0.223) 

Yiespd 0.067 (0.106) 0.015 (0.083) 0.013 (0.063) 0.338 (0.304) 

Mpol 0.070 (0.132) 0.117 (0.099) 0.062 (0.093) 0.093 (0.149) 

Rop 0.018 (0.014) 2.379 (1.714) 0.013 (0.011) 5.196 (3.778) 

Rgp 0.000 (0.001) -0.358*** (0.136) 0.000 (0.001) -1.104*** (0.381) 

Gdpcvol -0.099 (0.142) 0.888** (0.401) -0.097 (0.137) 2.792*** (1.077) 

Inflvol 0.544 (0.382) -0.105 (0.461) 0.405 (0.316) -0.462 (0.891) 

Ropvol 2.566 (1.991) -8.720* (4.882) 1.956 (1.786) -26.542** (11.182) 

Rgpvol 0.471 (0.377) -0.556 (0.776) 0.368 (0.340) -0.539 (1.713) 

Gdpc_L1 0.025 (0.032) 0.048 (0.031) 0.044 (0.028) 0.258** (0.126) 

Infl_L1 -0.027 (0.122) -0.123* (0.067) -0.103 (0.066) -0.109 (0.130) 

Portf_L1 -0.007 (0.009) -0.083* (0.047) -0.008 (0.008) -0.062 (0.211) 

Yiespd_L1 -0.153 (0.098) -0.117 (0.084) -0.091* (0.054) -0.181 (0.284) 

Mpol_L1 0.022 (0.130) -0.096 (0.087) -0.073 (0.084) 0.131 (0.150) 

Rop_L1 0.018 (0.018) 0.978 (1.927) 0.012 (0.014) 8.583* (4.834) 

Rgp_L1 -0.003 (0.003) 0.087 (0.115) -0.002 (0.002) -0.055 (0.248) 

Gdpcvol_L1 -0.308 (0.211) -0.322 (0.371) -0.192 (0.191) -0.330 (0.692) 

Inflvol_L1 -0.102 (0.356) 0.962** (0.470) 0.188 (0.313) 2.526** (1.091) 

Ropvol_L1 -0.477 (2.234) 8.719** (3.693) -0.031 (1.997) 26.174** (10.643) 

Rgpvol_L1 -0.735* (0.435) -0.780 (0.680) -0.716* (0.384) -2.756* (1.669) 

_cons 2.514* (1.400) -3.546 (2.159) 1.925 (1.221) -18.201*** (6.197) 

Likelihood ratio test 

(𝜒2) 
3.17 (0.038) 0.00 (1.000) 1.81 (0.089) 0.00 (1.000) 

Wald test statistic 25.26 (0.2848) 31.60 (0.0845) 26.95 (0.2129) 19.54 (0.6115) 

𝑙𝑛𝜎𝑢
2 -2.342*** (0.871) -15.781 (69.847) -2.776*** (1.035) -15.229 (82.887) 

Notes: Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01, respectively. The estimates reported are the standardized and not the exponentiated coefficients. The robust 

standard errors are shown in the parenthesis. The Wald test statistic with asymptotic 𝜒2 distributions for coefficient restrictions and likelihood ratio tests for the absence of 

unobserved heterogeneity are reported.
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In middle-income countries, growth in GDP per capita is positive and marginally significant. 

When it increases by 10%, it may lead to increases in the duration of bubbles by 0.40%. This 

suggests that real income effects matter for bubbles’ duration in middle-income countries. The 

result shows that portfolio inflows is significantly positive and this positive effect has an 

estimated coefficient of 0.094. A 10% increase in portfolio inflows is strongly associated with 

a 0.94% increase in the duration of bubbles in middle-income countries. This suggests that 

portfolio inflows from other countries to these countries may probably results in higher demand 

for equity securities by foreign investors, which will subsequently lead to higher prices and 

overvaluation and possibly cause bubbles to survive longer. The result also shows that the real 

price of gold is strongly statistically significant and has a negative explanatory effect, yielding 

a modest coefficient estimate of -0.358. This implies that a 10% increase in real price of gold 

lowers the duration of bubbles by 3.6%.  

 

For the coefficient estimates of the volatility of macroeconomic factors, the chapter finds that 

both variability in GDP per capita and the real price of oil are significant for middle-income 

countries. Volatility in oil prices yields the largest effect on the duration of bubbles. A 10% 

rise in the volatility in oil prices lead to increases of 87.13% in the duration of bubbles. This 

result is shows that uncertainties about the future real price of oil appear to be more closely 

linked to the future price changes in stocks.  

 

Turning next to the lagged influences of macroeconomic factors, the chapter reports 

statistically significant results at the 10% level for the lagged inflation effect on bubbles’ 

duration. It has a coefficient estimate of -0.123, which implies that it explains 1.23% of the 

10% decrease in the duration of bubbles. Previous changes in the price level may increase the 

probability that bubbles will end. In addition, the result shows that lagged portfolio inflows is 

negatively associated with the duration of bubbles. As lagged portfolio inflows increases by 

10%, duration of bubbles increases by 0.83%. 

 

In terms of the lagged effect of volatility of the macroeconomic factors, the lagged values of 

inflation volatility and real price of oil are both important determinants of the duration of 

bubbles in middle-income countries at the emerging phase of growth. Both factors, which are 

statistically significant at 5%, affect the duration of bubbles positively although the volatility 
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in the real price of oil exerts the largest positive influence. The result shows that 10% increases 

in inflation volatility and the real price of oil leads to increases of 9.62% and 87.19%, 

respectively in the duration of bubbles. It suggests that greater volatility in previous inflation 

may likely elongate the duration of bubbles. Likewise, for the linkage between volatility in oil 

prices and the duration of bubbles, the chapter finds that the lagged effect of a rise in oil price 

fluctuations triggered by exogenous shocks of oil volatility seem to impact on the duration of 

bubbles. For high-income countries, the result shows that the volatility in gold prices in the 

previous period has a strong effect in explaining bubbles’ duration. The lagged volatility effect 

is statistically significant at 10%. For a 10% rise in the volatility in gold prices there may be a 

negative effect of 7.35% on the duration of bubbles. 

 

The chapter now turns to the results based on the level of financial development (columns (3) 

and (4)). It finds that countries with a high level of financial development have less significant 

predictors of the duration of bubbles. A quick glance at the results show that the factors are 

yield spreads and volatility in gold prices both of which have a significant negative lagged 

effect. However, the magnitude of the effect of yield spreads appears to differ from that of the 

volatility in gold prices, which exhibits a much larger effect. Turning next to countries at the 

intermediate level of financial development, the result shows that the crucial factors that might 

be responsible for explaining the duration of bubbles include the contemporaneous variables; 

growth in GDP per capita, real gold prices, volatility in GDP per capita and volatility in oil 

prices. For the lagged variables it finds significant results for: growth in GDP per capita, real 

oil prices, inflation volatility, volatility in oil prices, and volatility in gold prices. The 

comparative analysis shows that the influence of income and price effects, economic 

uncertainties, and exogenous shocks are crucially important in understanding the duration of 

bubbles across stock markets.  

 

Taken together, this chapter finds few differences between the results for countries with high-

income and those with highly developed financial systems. The findings show that the duration 

of bubbles for countries in these sub-groups appear to be explained only by lagged 

macroeconomic factors – yield spreads and real gold prices. The results generally revealed that 

the duration of bubbles, for countries in these sub-groups, is less influenced by macroeconomic 

factors. This implies that stock markets in these sub-groups have a better ability to deal with 
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macroeconomic shocks. Similarly, it finds that there is not much difference between the results 

for countries with middle-income and those at the intermediate level of financial development. 

The results largely showed that countries in these sub-groups tend to be influenced by both 

contemporaneous and lagged macroeconomic factors. This implies that markets in these sub-

groups have a weaker ability to deal with macroeconomic shocks. It thus seems that the more 

developed a country’s financial system and the higher the country’s per capita income, the less 

likely it is for the duration of bubbles to be affected by macroeconomic factors.  

 

To evaluate whether the inclusion of a random intercept in our model is reasonable, the chapter 

conducted a check using the conditional likelihood ratio test for unobserved heterogeneity. The 

test compares between two models, the model with random effects versus a similar model but 

without random effects. It tests for the null hypothesis that all random intercepts are the same 

and rejection of this hypothesis indicates that inclusion of the random intercept is reasonable. 

Table 2.5 shows that the asymptotically distributed 𝜒2 with a statistic of 3.17 has an associated 

p-value of 0.038, which is statistically significant at 5% for high-income countries. This results 

in the rejection of the null hypothesis that the random effects are zero. Further, it suggests that 

differences in income levels exists within and between countries in this sub-group, which can 

considerably affect the coefficient estimates. In the case of middle-income countries, the 

specification test yields a p-value of 1.000 resulting in the strong non-rejection of the null 

hypothesis that the random effects are zero. When the chapter now consider sub-groups based 

on countries’ level of financial development, the highly financially developed countries have 

differences in random unobserved variations since it rejected the null hypothesis because the 

reported p-value of 0.089 is significant at 10%. However, it reached a different conclusion for 

countries at the intermediate level of financial development, which seem not to have any 

differences in random unobserved effects. 

 

2.5.3. Robustness Checks 

 

The previous section has shown that domestic and exogenous factors are important 

determinants of bubbles’ duration in stock markets of DEE. This section checks for the 

robustness of our baseline results.  
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2.5.3.1. Price and Real Income Effects 

 

To test the robustness of the baseline model the chapter first checked whether the components 

of real economic activity would have an impact on the duration of bubbles. Decomposing 

aggregate income into its key components is crucial for determining the channels of 

transmission. We, thus, excluded real GDP per capita from the model and included growth in 

consumption and investment. After conducting this robustness check, it went on to conduct 

another check where it excluded inflation based on the CPI and replaced it with an alternative 

measure of inflation, the GDP deflator.  

 

Table 2.6 contains the results of the robustness checks. The chapter finds that the sizes of the 

coefficient estimates are overall trivially smaller than the baseline results, but the signs remain 

the same. The results are quite interesting as it finds a relationship between growth in household 

consumer spending and the duration of bubbles in countries’ stock markets. Evidence of this 

relationship is confirmed with a marginal statistical significance at 5% albeit revealing a 

negative association with the duration of bubbles. A 10% increase in household consumption 

may be related with a 0.65% decrease in the duration of bubbles. This suggest that an increase 

in the allocation of household’s incomes for the procurement of goods and services decreases 

the duration of bubbles and increases the probability that bubble ends. When households 

overspend on procuring consumption goods and services, it significantly reduces household 

savings and wealth. This will contract the amount of funds available for investments like stocks 

and this could presumably explain why it increases the probability of bubbles ending. The 

tendency for bubbles to end increases with growth in household’s consumption.  

 

In contrast, the coefficient of the contemporaneous growth in investment is positive but 

statistically insignificant. This suggests that the duration of bubbles is not related to growth in 

real investments. There is no significant evidence supporting the riding of bubbles hypothesis 

that stresses on continuous investment in highly overpriced stocks by arbitrageurs so as to 

exploit additional payoffs before the bubbles eventually crashes as plausible explanation. There 

is, however, evidence of a lagged positive effect of growth in investment on the duration of 

bubbles. As growth in investment increases by 10%, duration of bubbles increases by 0.32%.  

Since arbitrageurs decide to ride on bubbles because they are fairly optimistic that they can 

resell the overpriced stocks later for a much higher price this could influence bubbles’ duration.  
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Table 2.6: Robustness Results  

Variables Coefficients p-values 

Domestic factors  

Rcons -0.065** (0.030) 

Rgi 0.005 (0.008) 

Infdf 0.035 (0.030) 

Portf 0.005 (0.008) 

Yiespd 0.020 (0.050) 

Mpol 0.058 (0.052) 

Exogenous factors  

Rop 0.009 (0.009) 

Rgp -0.000 (0.001) 

Volatility of factors  

Infdfvol 0.170 (0.205) 

Ropvol 0.339 (1.382) 

Rgpvol 0.082 (0.223) 

Lag of factors  

Infdf_L1 -0.043* (0.024) 

Portf_L1 -0.005 (0.008) 

Yiespd_L1 -0.089** (0.044) 

Mpol_L1 -0.039 (0.047) 

Rop_L1 0.006 (0.012) 

Rgp_L1 -0.001 (0.002) 

Rgp_L1 -0.001 (0.002) 

Infdfvol_L1 0.337 (0.215) 

Ropvol_L1 2.075 (1.548) 

Rgpvol_L1 -0.751*** (0.267) 

Rcons_L1 -0.049 (0.030) 

Rgi_L1 0.032*** (0.010) 

_cons 0.333 (0.235) 

Wald test 

statistic  

37.65 (0.020) 

Likelihood ratio 

test (𝜒2) 
2.97 (0.042) 

𝑙𝑛𝜎𝑢
2 -2.691*** (0.836) 

Notes: Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01, respectively. The estimates reported are the 

standardized and not the exponentiated coefficients. The standard errors clustered by country are shown in the 

parenthesis. The Wald test statistic with asymptotic 𝜒2 distributions for coefficient restrictions are reported. 

 

Overall, the results show that bubbles’ duration is not primarily driven by the amount of 

available new stock of capital invested but rather by growth in consumption. The joint test for 

the coefficients yields Wald statistics of 37.65 with a p-value of 0.0201 resulting in the rejection 

of the null that all the coefficients are jointly zero. Whereas the likelihood ratio test yields Chi-

square statistics of 2.97 with a p-value of 0.042, which indicates that it is statistically 

insignificant at the conventional level. It, further, implies that unobserved heterogeneity affects 
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estimated coefficients. The chapter thus concludes that there is evidence of variations across 

countries in the sample.  

 

In sum, the baseline model shows that these are some significant determinants of longer 

duration of bubbles. For instance, the chapter finds that an increase in contemporaneous 

inflation creates increased demand for stocks, which can result in the overvaluation of stock 

prices. The continuous overvaluation of stocks may lead to the formation of bubbles with long 

duration. Similarly, surges in portfolio inflows might trigger stock price increases and if prices 

continue to soar, then bubbles may occur. The continuous rise in prices may lengthen the 

duration of bubbles. At the same time, the model shows evidence of shorter duration of bubbles 

influenced by some factors. For instance, more persistence in inflation as captured by past 

inflation appears to shorten the duration of bubbles. As well, past portfolio inflows, which can 

influence future inflows and the yield spreads in the previous period, could also shorten this 

duration. Similarly, fluctuations in uncertainty about commodity prices in the previous period, 

in this case the volatility in gold prices in the previous period, may curtail speculative trading 

across stock markets and shorten the duration of bubbles. Finally, improvements in economic 

performance, i.e., growth in income measured using growth in GDP per capita, yield spreads 

and interest rate gap (cheaper cost of borrowing) are not important determining factors of the 

duration of bubbles.  

 

With regards to the model that controls for random effects, there is evidence that growth in 

income in the previous period and inflation volatility in the previous period could lead to longer 

duration of bubbles. There is also evidence that inflation in the previous period, yield spreads 

in the previous period and volatility in gold prices in the previous period could bring about 

shorter duration of bubbles. Past inflation, i.e., expectations about the economic outlook, is 

important for explaining the duration of bubbles across countries. Increase in inflation in the 

previous period might cause the current price of stocks to rise. The rise in the current price of 

stocks occurs because investors prefer to hedge against the risk of future instability in general 

prices. Hence, they hedge against inflation risk. Hedging against inflation risk may cause 

bubbles to exist and to survive for a short duration. The previous shape of the yield curve is 

also important in understanding the duration of bubble. Also, previous variations in economic 

uncertainty as captured by volatility in gold prices in the previous period is an important 

determinant because it appears to lessen speculative trading in stock markets which results in 
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the contraction of bubbles’ duration. If investors had previously found it difficult to predict the 

likelihood of certain economic events, then it is likely that this uncertainty can inhibit 

speculative trading in stock markets and eventually reduce the duration of bubbles. 

 

The chapter presents robust evidence that growth in household expenditure influences the 

duration of bubble across stock markets. The more households utilize their incomes for 

consumption, the shorter the duration of bubbles. Overconsumption by households reduces 

household savings and shrinks the amount of funds available for investment in stocks and this 

could be a plausible explanation for the shortened duration of bubbles. In addition, the duration 

of bubbles is driven by past inflation, past yield spreads, fluctuations in past gold prices, and 

growth in investment in the previous period.  

 

2.6. Conclusion 

 

This chapter focused on the impact of macroeconomic factors on the duration of bubbles in 

stock markets of DEE. More precisely, it examined the roles of domestic and exogenous factors 

on the duration of bubbles. The existing literature examining the role of macroeconomic factors 

on the duration of bubbles accounts for only the effect of monetary policy via real interest rates 

and ignores other possible important factors. This chapter circumvented this omitted variable 

bias by including other important macroeconomic variables as suggested by the existing 

theoretical and empirical literature. 

 

Our estimations are executed in two stages. Firstly, the recursive GSADF test, which is 

implemented using Monte Carlo simulations, is applied to the log of stock returns. The test is 

used to examine the presence of bubbles and to date stamp bubble episodes. The result of this 

test showed that there are multiple explosive processes in stock returns, which is evidence of 

the bubble phenomenon. Secondly, the clog-log baseline model was used to analyse the impact 

of macroeconomic factors on the duration of bubbles. It is estimated on a panel of 21 countries 

with sample data spanning from 1995 to 2015. The parameters of the model are estimated using 

the maximum likelihood estimator. It then controlled for an important measurement error 

caused by endogeneity bias, which can invalidate the inference. This chapter circumvented this 

bias through the inclusion of lagged macroeconomic variables in the model.  
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The baseline model presented evidence of contemporaneous inflation and portfolio inflows 

leading to longer duration of bubbles. Conversely, the lags of inflation, portfolio inflows, yield 

spreads and the volatility in gold prices appear to shorten the duration of bubbles. It also 

showed that the effect of interest rate gap on the duration of bubbles is insignificant. This 

finding is inconsistent with the existing evidence. This chapter thus argued that accommodative 

monetary policy, which is supposed to lower the cost of borrowing, does not influence the 

duration of bubbles across stock markets.   

 

After controlling for endogeneity, this chapter also controlled for heterogeneity bias arising 

from unobserved differences in country characteristics. This bias could have implications on 

the size and significance of the macroeconomic effects that affect the duration of bubbles. It 

estimated a clog-log model with random effects to control for this bias. It presented evidence 

that showed that unobserved random effects have an impact on bubbles’ duration. This 

evidence showed that unobserved heterogeneity is important for understanding the role of 

macroeconomic factors in explaining bubbles’ duration. Moreover, it presented evidence that 

the lags of growth in per capita income and inflation volatility are likely to lead to longer 

duration of bubbles. However, the lags of inflation, yield spreads and the volatility in gold 

prices decreases the duration of bubbles and these findings are broadly consistent with the 

baseline results. Moreover, the findings revealed that the duration of bubbles for countries with 

high-income and highly developed financial systems are less influenced by macroeconomic 

factors. On the contrary, the result showed that middle-income countries and those at the 

intermediate level of financial development have weaker ability to cope with macroeconomic 

shocks.  

 

Finally, the robustness checks largely confirmed the results for the baseline case, as both the 

sign and explanatory power of the relationship remained robust to changes in the model. From 

the robustness checks, it documented that growth in consumption is important in explaining 

bubbles’ duration. Overall, our analysis showed that countries’ domestic and exogenous factors 

play important roles in understanding the duration of bubbles. In addition, our analysis of the 

duration of bubbles stressed the importance of controlling for endogeneity and heterogeneity. 

The findings in this chapter are important because our understanding of macro-financial 

interactions, particularly interactions between global stock markets and the broader economy, 

is enriched. 
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The analysed macroeconomic effects have crucial policy implications for the stock market and 

the economy. The lags of inflation and its volatility, which reflect uncertainty and rise in 

persistence, are particularly important because both factors affect the duration of bubbles. This 

chapter suggests that policymakers should endeavour to prescribe more effective policies to 

stabilize the rates of inflation.  

 

A potentially interesting area that can be considered for future research is to extend the scope 

of this study to investigate how changes in the business cycles can affect the duration of bubbles 

in stock markets. Investigating the effect of the state of economies on bubbles’ duration is 

important in understanding whether there are variations in bubbles’ duration during economic 

recessions or booms. 

 

The limitation of this chapter is that given the small number of countries in the sample for 

middle-income countries and those at the intermediate stage of financial development, it means 

that the evidence reveals only the likely effects from the interactions between factors and the 

duration of bubbles. In addition, it used total portfolio inflows to proxy for short-term capital 

inflows because of the absence of data on this type of flows. In which case, the usage of this 

proxy variable can likely impinge on the resultant effect.  
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Chapter 3: Assumptions about Breaks and its Implications for Analysis of 

Stock Market Contagion  

 

3.1. Introduction  

 

This chapter argues that there are distinct breaks in variances and correlations of returns and 

relies on the assumption of distinct breaks to examine contagion among stock markets in DEEs 

during the GFC. This crisis is of importance because it exerted considerable turmoil on markets 

in DEEs and markets experienced sharp decreases in returns. This chapter argues that the crisis 

induced cross-market comovement of returns and caused contagion between markets, but the 

extent of contagion seems to differ depending on the type of break: common breaks in 

covariance or distinct breaks in the components of covariance, that is the variances and 

correlations. Empirically, the transmission of common shocks could indicate the existence of 

common breaks. Studies on contagion have generally relied on the standard assumption of 

common breaks. Under this assumption, common breaks in the covariance matrix are modelled. 

As such, breaks in the variance and correlation matrices are treated simultaneously. Treating 

breaks simultaneously could be problematic because it could lead to biased estimates of breaks 

(Blatt et al., 2015) because each component has its own distinct break point. A convenient way 

of handling this problem is to adopt an alternative assumption. Simply, one could assume that 

common shocks to variances are distinct from common shocks to correlations, and treat breaks 

in each of them sequentially, one at a time. This could be achieved through decomposition of 

the covariance matrix into variances and correlations. The literature on stock market contagion 

mainly considers breaks that are common in the covariance matrix of stock returns but has not 

focused on distinct breaks when analysing contagion. This chapter attempts to fill this gap in 

the literature. 

 

There is a broad literature that tests for contagion from the US market to markets in DEEs. This 

literature documents that common shocks are transmitted during crisis and tests for contagion 

across markets in DEEs (Chiang et al., 2007; Baur and Fry, 2009; Khan and Park, 2009; 

Kenourgios, et al., 2011; Celık, 2012; Kenourgios, et al., 2013; Dungey and Gajurel, 2014; 

Kenourgios and Dimitriou, 2015; Hemche et al., 2016). There is also a growing literature that 

examines contagion through changes and breaks in the return process. This literature has relied 
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on the assumption of common breaks and has treated breaks in variances and correlations 

simultaneously (Billio and Caporin, 2010). Even though the existing literature has stressed on 

the distinctness of breaks and that evidence of contagion might be affected depending on how 

breaks are treated, there is still scarce analysis on distinct breaks and the possible existence of 

contagion in DEEs. Forbes and Rigobon (2002) have highlighted that changes in variance are 

distinct from changes in correlation. They have pointed out that testing for changes in the 

covariance matrix does not allow for the detection of contagion. This is because the source of 

the change in the covariance matrix would be unknown as it could arise from a rise in variance 

or from an increase in correlation. Similarly, Manner and Candelon (2010) have pointed out 

that breaks in variances differs from breaks in correlations. They have shown that breaks in 

variances always precede breaks in cross-market dependence and that tests of contagion can 

turn out to be biased when breaks in variances and correlations are simultaneously estimated. 

This is because their transmission times are unlikely to perfectly coincide. Yet, so far, no 

empirical analysis has been conducted using the alternative assumption of distinct breaks for 

the analysis of contagion between markets in DEEs. This chapter contributes to the literature 

by focusing on distinct breaks for the analysis of contagion. 

 

To test for changes and breaks in returns, and the possible existence of contagion in DEEs, this 

chapter employs a multivariate VAR model, which is a system of equations that provides 

parsimonious correlation specifications for the analysis of contagion. The model can allow for 

multiple breaks in underlying time series, which affords us greater precision in the detection of 

structural breaks than using a univariate model (Bai and Perron, 1998; Qu and Perron, 2007; 

Li and Perron, 2017). For the estimation of the model’s parameters, the chapter utilizes the 

feasible generalized least squares (FGLS) procedure, which yields asymptotically efficient 

estimators. Tests for breaks using this model have relied on the assumption of common breaks 

and typically been carried out simultaneously, this chapter extends this literature and test for 

breaks sequentially. The chapter treats the model as though there is only a single break point 

and then estimates the entire break points one at a time. To implement all these, the chapter 

applies a SP. It executes the test procedure using a dynamic programming algorithm that 

sequentially searches for the location of breaks in all parameters. The procedure is 

advantageous because it provides computational savings. Moreover, when the procedure is 

applied, the break point estimator remains consistent even if the number of breaks in the series 

are incorrectly specified (Bai, 1997). 
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It is indisputable that empirical tests provide a beneficial tool in analysing contagion whose 

occurrence can be examined in different settings. Nonetheless, this chapter agrees with Forbes 

and Rigobon (2001) that there is a need for a concrete working definition of the concept of 

contagion as this is important for empirical accuracy. The chapter adopts Forbes and Rigobons’ 

(2002) definition, which refers to contagion as a significant increase in the correlation of 

returns. These increases must be large enough to cause breaks in the transmission of shocks 

between markets. However, this chapter also recognizes the different ways through which 

contagion can occur. It, thus, analyses the possible existence of contagion using an alternative 

definition. It follows Pericoli and Sbracias’ (2003) who defines contagion as spillovers, which 

are interaction effects or the linkages between markets. Diebold and Yilmaz (2009, 2012) show 

the possibility of analysing the possible existence of spillover contagion through the estimation 

of GFEVDs and the computation of spillover indices. Although our analysis follows their 

method of analysis for spillovers in DEEs it, however, continues to assume that breaks are 

distinct.  

 

The remainder of the chapter is structured as follows. Section 2 presents the theoretical 

literature. Section 3 presents the empirical literature. Section 4 presents the data and empirical 

methodologies. Section 5 presents the results on tests for contagion, spillovers analyses and 

robustness checks. Section 6 concludes.  

 

3.2. Theoretical Literature 

 

In this section, the so-called phenomenon of contagion will be defined, and its main channels 

of transmission will be set out. Emphasis will be placed particularly on contagion as the 

propagation of shocks, and contagion as spillovers of volatilities and breaks in correlations will 

also be discussed.  

 

3.2.1. Contagion and the Propagation of Shocks 

 

The definition of contagion in international finance has altered over the years. Scholars have 

come up with several definitions, probably one of the earliest definitions is that offered by King 

and Wadhwani (1990). To them contagion is considered a rise in the correlation between 

markets during a crisis. Changes in cross-market dependence therefore require a positive 
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change in the correlation of returns across markets. While for Eichengreen and Rose ((1999), 

p. 33) “contagion variable reflects an unmeasured shock to fundamentals that strikes several 

countries simultaneously”. In this view, shocks play an important role in the propagation 

mechanisms between markets. Shocks to fundamentals are the main source of changes in cross-

market dependence. Similarly, Edwards ((2000), p. 874) refers to contagion as “a situation 

where the effect of an external shock is larger than what was expected by experts and analysts”. 

The common element of these definitions is the acknowledgement that changes in cross-market 

dependence does not reflect contagion except such changes are driven by external shocks.  

 

With the proliferation of definitions, scholars thought it important to come up with standard 

working definitions of what constitutes contagion. In line with this thinking, contagion has now 

been categorized into two different types: shift and pure contagion.  

 

The former is the less restrictive definition, and it is sometimes referred to as fundamental-

based contagion. This type of contagion occurs when cross-market dependence significantly 

increases following a shock12 to a particular country or set of countries (Forbes and Rigobon, 

2001). Dornbusch (2000) then elaborate on the sort of shock that could be transmitted. In his 

view, common or idiosyncratic shocks are often transmitted. Common shocks are shocks 

common to all markets, transmitted through disturbances to fundamentals. As to idiosyncratic 

shocks, these shocks are country specific. Shocks can also cause breaks in the international 

transmission mechanisms between markets. This chapter adopts the less restrictive definition 

of contagion.  

 

The latter is a more restrictive definition of contagion. This type of contagion is usually 

transmitted through channels that are non-fundamental. Dornbusch et al. (2000) point out that 

such contagion will happen regardless of changes in fundamentals; it simply happens by virtue 

of investors’ behaviour13. Usually, when there is a change in the risk appetite of investors’, 

there is a tendency for them to re-evaluate their portfolio allocation strategies. Investors’ risk 

appetite will increase if they prefer to hold risky assets relative to non-risky ones. Because of 

their preference, the demand for and prices of risky assets will rise. Conversely, when their risk 

 
12 The shock could be transmitted through financial linkages, trade ties or other fundamentals. See Hernández and 

Valdés (2001) for a comprehensive discussion on the drivers of contagion. 
13 As a result, this type of contagion is often referred to as investor-behaviour contagion. 
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appetite falls, there will be a simultaneous fall in the demand for and prices of risky assets. In 

their famous paper, King and Wadhwani (1990) demonstrate that the occurrence of contagion 

is as a result of attempts by rational investors to deduce information from price changes in other 

markets. Similarly, Corsetti et al. (2005) document that market sentiments such as investors’ 

irrational herding behaviour, changes of expectation equilibrium and unanticipated market 

panics can lead to contagion.  

 

3.2.2. Contagion as Spillovers of Volatilities and Breaks in Correlations 

 

As discussed in the sub-section above, external shocks are important for the occurrence of 

contagion. In this sub-section, contagion will be discussed as spillovers of volatilities and 

breaks in the correlation of returns.  

 

The specification describing the behaviour of returns across markets is given as: 

 

𝑟𝑖 = 𝛽𝑖 + 𝛾𝑖𝑓 + 𝜀𝑖
𝑟𝑗 = 𝛽𝑗 + 𝛾𝑗𝑓 + 𝜀𝑗

                                  (3.1) 

 

where, 𝑟𝑖 and 𝑟𝑗 represent market returns in countries, 𝑖 and 𝑗, respectively. 𝛽𝑖 and 𝛽𝑗 are the 

constants, 𝛾𝑖 and 𝛾𝑖  denote country-specific factors while 𝑓  denotes the common factors 

(events) that affect the distribution of market returns, and 𝜀𝑖and 𝜀𝑗  are zero-mean random 

variables with finite-variance which can be viewed as the country-specific/idiosyncratic risk of 

assets. 

 

In a two-country model with asset markets, the standard framework used to model the data 

generating process which generates the market returns in countries, 𝑖 and 𝑗 is given in Eq. (3.1). 

This expression decomposes each country’s market return into the expected mean of returns, 

the product of the country-specific and common factors, and the country-specific risks. In most 

markets, a change in the variance of an asset’s return can either be determined by the common 

factor, country-specific risks, or jointly by both (Corsetti et al., 2005).  
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Eq. (3.1) is determined jointly by the set of assumptions about the variance and covariance 

given as follows: 

 

Var(𝑓|C) = (1 + 𝛿1)Var(𝑓|T)

Var(𝜀𝑗|C) = (1 + 𝛿2)Var(𝜀𝑗|T)

Var(𝜀𝑖|C) = Var(𝜀𝑖|T) = Var(𝜀𝑖)

Cov(𝜀𝑖, 𝜀𝑗|C) = Cov(𝜀𝑖, 𝜀𝑗|T) = 0

              (3.2) 

 

where, 𝛿1 and 𝛿2 denote the proportional change in variance of the market return compared 

with the tranquil period. C and T represent crisis and tranquil periods, respectively. Assuming 

country 𝑗 is the source country of a global crisis, an increase in the variance of 𝑟𝑗 does not imply 

that both 𝛿1 and 𝛿2 will be positive.  

 

Given the model in Eq. (3.1), and making use of the key assumptions of the model (3.2), the 

correlation coefficient between the market returns, 𝑟𝑖 and 𝑟𝑗 in the tranquil period T is given 

by:  

 

Corr(𝑟𝑖, 𝑟𝑗|T) =
1

[1 +
Var(𝜀𝑖)

𝛾𝑖
2Var(𝑓|T)

]1 2⁄ [1 +
Var(𝜀𝑗|T)

𝛾𝑗
2Var(𝑓|T)

]1 2⁄

, 

 

Similarly, the correlation coefficient in the crisis period C, is  

 

Corr(𝑟𝑖, 𝑟𝑗|C) =
1

[1 +
Var(𝜀𝑖)

𝛾𝑖
2Var(𝑓|C)

]1 2⁄ [1 +
Var(𝜀𝑗|C)

𝛾𝑗
2Var(𝑓|C)

]1 2⁄

. 

 

When these two formulations are compared, there are two possible explanations for a rise in 

correlation. On the one hand, higher correlation during a crisis inevitably signifies an increase 

in the variance of the common factor 𝑓 as opposed to the variance of the country-specific 

risk 𝜀𝑗. Pericoli and Sbracia (2003) highlight that the increase in the variance, which reflects 

asset price volatility, could spill over from the crisis country to other countries and lead to the 
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occurrence of contagion. On the other hand, higher correlation during a crisis may also be 

associated with an increase in the size of the country-specific factors, 𝛾𝑖  and 𝛾𝑗 . Thus, 

contagion occurs when the increase in correlation during a crisis ends up being significantly 

higher than the extent of dependence implied by the process in (3.1) and (3.2), i.e., the increase 

in correlation is too strong that it cannot be explained by the behaviour of the common and the 

country-specific factors. Put differently, contagion occurs when a crisis linked to country 𝑗, 

generates a higher correlation between market returns due to some structural change in the 

global economy, which affects the connections across markets. The higher correlation between 

market returns must be large enough to cause breaks. It, thus, implied that contagion has 

occurred, when higher correlation leads to breaks in the international transmission mechanisms 

between markets.  

 

A contrasting view is that increases in cross-market dependence does not indicate contagion 

but interdependence. In this view, it is recognized that cross-market dependence could remain 

at high levels in all time periods. Forbes and Rigobon (2002) have attributed such sustained 

increases in cross-market dependence to prevailing strong relations among countries. When 

there is no change in correlation it is an indication that the decoupling of some markets has 

taken place. Decoupling suggest that the markets are insulated or unaffected by a crisis. 

 

3.2.3. The Channels of Transmission for Contagion 

 

A more in-depth way of understanding contagion is to uncover the various possible channels 

of its transmission14. There are three main channels identified in the theoretical literature:  the 

correlated-information channel, the correlated-liquidity shock, and the cross-sectional portfolio 

rebalancing channel.  

 

Assuming there are two countries, 𝑖 and 𝑗 with two stock markets15 𝑆𝑀[𝑖] and 𝑆𝑀[𝑗] and two 

real sectors 𝑅𝑆[𝑖] and 𝑅𝑆[𝑗]. The correlated-information channel operates under three precise 

mechanisms (Figure 3.1). Firstly, if there is a negative shock in country 𝑖, which is diffused via 

 
14 See Forbes (2012) for discussion of the main channels of contagion. 
15 A contagion model for Bank Debt vs Sovereign Debt markets during the European sovereign debt crisis was 

also proposed by Acharya et al. (2014) and Banerjee et al. (2020). 
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real links, and if this shock is publicly perceived, then country 𝑗′𝑠 real market can be affected 

by the same shock. Since macroeconomic information has an effect on the dynamics of stock 

prices, eventually, markets in the two countries react to the diffused negative real shocks (Block 

A). Secondly, negative shocks in country 𝑖 (publicly perceived) impact on pricing mechanism 

of the market in country 𝑗. However, country 𝑗′𝑠 real and stock markets are insulated from 

these negative shocks (Block B). Lastly, if information about the negative shock is private, then 

the informational effect of this private news causes stock prices to fall in country 𝑖 . 

Nevertheless, with the fall in prices in country 𝑖, stock prices in country 𝑗 also fall because of 

the relevancy of the private information in country 𝑖  which is relevant to country 𝑗 , but 

unknown to country 𝑗 yet (as depicted in block C). It is only in the case explained in Block C 

that contagion occurs via the correlated-information channel (Pritsker, 2013). Moreover, it is 

mostly in markets with an efficient price discovery process that contagion can be diffused to 

other markets through this channel (Longstaff, 2010). 

 

Figure 3.1: Correlated-information Channel 

 

     Block A             Block B    Block C 

𝑅𝑆[𝑖]        𝑅𝑆[𝑗]                 𝑅𝑆[𝑖]        𝑅𝑆[𝑗]               𝑅𝑆[𝑖]        𝑅𝑆[𝑗] 

   

𝑆𝑀[𝑖]       𝑆𝑀[𝑗]                 𝑆𝑀[𝑖]     𝑆𝑀[𝑗]                𝑆𝑀[𝑖]        𝑆𝑀[𝑗]   

 

Source: (Pritsker, 2013)    

 

In the correlated liquidity shock channel, investors may have need for liquid assets like cash. 

They can liquidate part of their portfolio in a market, or they can liquidate their stock holdings 

in other markets to meet their cash needs. The shocks that arise from the liquidation of their 

portfolio in one market are then diffused to other markets (Calvo, 1999; Pritsker, 2013). 

Because of the correlated liquidation, the aggregate level of liquidity will fall, and this can 

affect the pricing mechanism in markets (Longstaff, 2010).  

 

The cross-market portfolio-rebalancing channel is firmly anchored on the rational expectations 

model posited by Kodres and Pritsker (2002). This channel holds that investors that are risk 
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averse transmit shocks across markets by rebalancing their portfolios. Typically, the response 

of investors to changes in market risks, following a shock in a given market, is to rebalance 

their portfolio in other markets16. The readjustment of their portfolios elicits the transmission 

of shocks across markets, shocks with contagious effects. This cross-market rebalancing of 

portfolios, which is induced by shocks in one market that spreads to others, will influence the 

pricing mechanism. This is because the rebalancing of portfolios will cause increased 

synchronization of stock prices across all markets. Kodres and Pritsker (2002) corroborate this 

view and demonstrate that shocks, in particular idiosyncratic shocks, are transmitted across 

markets by investors with different information when they rebalance their portfolios.  

 

3.3. Empirical Literature  

 

This section reviews existing studies of contagion across stock markets and brings out the 

distinction between them and the empirical research carried out in this chapter.  

 

3.3.1. Contagion - Breaks in the Returns Generating Process 

 

Breaks in the Returns Generating Process – Beyond Significant Increases in Returns? 

 

The empirical literature on contagion across stock markets is vast and growing. It usually 

focuses on unexpected significant increases in cross-market correlation of stock returns during 

periods of financial crisis; periods, which are characterized by a fall in global, market returns. 

In a seminal paper by King and Wadhwani (1990), they find contagion after the 1987 US 

market crash using correlations to approximate for contagion. Bekaert et al. (2003) present 

evidence of contagion during the South-East Asian crisis. Hon et al. (2007) present evidence 

of increased cross-market correlation of returns during the technology bubble. Fry-McKibbin 

et al. (2014) find that contagion occurred during the GFC. These studies have generally found 

higher correlation of returns across markets during crisis. They have interpreted this as 

evidence of contagion. However, it has been argued that significant increases in the correlation 

of returns among markets might not be sufficient evidence of contagion. As pointed out by 

Forbes and Rigobon (2002), higher correlations between markets could be due to 

 
16 This reaction by investors is mainly to minimize their exposure to the risks. 
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heteroscedasticity; that is increases in volatility. They argued that market volatility usually 

increases during crisis periods and that correlations across markets would also increase during 

such periods. In addition, they argued that higher correlations could be due to strong linkages 

between markets and not due to a crisis. Indeed, they concluded that the interpretations given 

by some previous works does not reflect contagion.  

 

The previous studies, which have measured contagion via increases in correlation of returns, 

have assumed time variation in the correlations structure of returns. This indicates that the 

process that generates these returns follows a random walk and varies each period (Ramchand 

and Susmel, 1998; Syllignakis and Kouretas, 2011; Celık, 2012; Bekaert et al., 2014). Some 

others have assumed asymmetric dependence in the correlation of returns (Yiu et al., 2010; 

Samarakoon, 2011; Kenourgios, et al., 2011; Dimitriou et al., 2013), while some studies have 

assumed that correlations switches between regimes (Edwards and Susmel, 2001; Billio and 

Caporin, 2005). In all, they have largely focused on the behaviour of correlation distributions, 

while possible structural instability in the correlation of returns have been ignored.  

 

Some studies have argued in favour of stable correlation of returns, that is the slopes of 

correlations are constant over time (Panton et al., 1976; Philippatos et al., 1983; Kaplanis, 1988; 

Ratner, 1992). However, these studies have been subject to criticism due to their failure to 

acknowledge trends, cycles and breaks in the correlation of returns (Baur, 2003). Their lack of 

acknowledgement could potentially result in misleading inferences. These criticisms have 

triggered a recent literature on testing the stability of the correlation of returns that have rejected 

the null hypothesis of constant correlations (see, e.g., Lee and Kim, 1993; Ramchand and 

Susmel, 1998; Baig and Goldfajn, 1999). Since their rejection indicates the possibility of breaks 

in the correlation of returns, it is crucially important to capture breaks in these time-variations.  

 

Some support for time variation in the correlation matrix of returns has been presented by 

Longin and Solnik (1995). They suggested that the time variation in returns can originate from 

three different sources, specifically from: (i) a possible time trend, (ii) threshold and 

asymmetric correlation structures, and (iii) the effect of economic regressors. These sources of 

time variation in returns could affect the distribution of correlations. However, not only is the 

behaviour of the correlation of returns important for the analysis of cross-market linkages, its 

stability is also important. Changes in return correlations may thus be partly due to its 
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behaviour itself, which varies continuously with time, and partly due to either economic or 

financial shocks. These structural shocks, which could be transmitted to markets, might cause 

breaks in the return generating process of the cross-market correlations. Failing to capture such 

breaks in the return generating process of the cross-market correlations could increase the 

likelihood of errors in statistical inference. If a portfolio of stocks is affected simultaneously 

by shocks from both transmitting and receiving countries, then the set of shocks that will 

influence returns across all markets will increase. Both sources of shocks will increase cross-

market correlations, and this will eventually result in a “correlation breakdown”. Structural 

breaks could potentially induce time variation in the correlation of returns. As a result, the 

literature has increasingly advocated for the investigation of breaks in the parameters of the 

correlations matrix of errors (Boyer et al., 1997; Forbes and Rigobon, 2002; Corsetti et al., 

2005). The evidence of which would indicate changes in the transmission mechanisms between 

markets and contagion across markets. With the recognition that time variation in cross-market 

correlation of returns could be spurred by shocks, it is important to investigate breaks in these 

returns. 

 

A growing body of literature measures contagion by examining changes in correlation of 

returns, while at the same time examining the existence of breaks in the return dependence 

structures (see, e.g., Chiang et al., 2007; Celık, 2012). Most of these studies have favoured the 

use of Generalized Autoregressive Conditional Heteroscedasticity (GARCH) type models and 

its generalizations for their analysis. In this sort of models, possible heteroscedasticity is taken 

into account and the correlation behaviour among several markets can be examined without 

including a large number of parameters. Its usefulness notwithstanding, the literature has 

highlighted three shortcomings regarding it reliability, particularly in the presence of breaks. 

Firstly, they are sensitive to the presence of breaks and the persistence in variance could lead 

to an over-estimation of the parameters (Lamoureux and Lastrapes, 1990). Secondly, GARCH 

models cannot handle breaks because they are models with path dependence; future conditional 

variances are influenced by changes in the parameter of conditional variance at time 𝑡. They 

are unable to handle breaks because the path dependence causes the size of the state space to 

grow over time. As He and Maheu (2010) point out, state space with a large size is 

computationally challenging to evaluate. Thirdly, the short-term matrix of correlations rather 

than the long-term matrix is modelled as evidence for contagion.  
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Recent empirical research on changes and breaks in the correlation of returns for the analysis 

of contagion has been modelled using general linear multivariate models such as models in a 

VAR framework. Billio and Caporin (2010) investigated the presence of contagion by testing 

for breaks in the correlation of returns for Asian and American stock markets from 1995 to 

2005. In their work, they used the unconditional correlation of returns rather than the 

conditional correlation of returns as a measure of cross-market linkage. They relied on two 

different approaches to estimate changes in correlation of returns and for the detection of breaks 

in the unconditional correlation of returns. Firstly, they employed multivariate statistical 

analyses, the concordance and strength indicators. Secondly, they relied on a multivariate VAR 

model with GARCH errors. The authors find that unconditional correlation of returns are 

characterized by breaks. They showed that some of these breaks coincided with notable crisis 

events and interpreted this as evidence of contagion.  

 

This chapter differs from the related work in several respects. Firstly, in existing work the 

structure of the model used to detect breaks is based on the unconditional correlations’ matrix, 

which relies on the implicit assumption of constant correlation. It is thus assumed that the 

residuals of correlations are independent of past information at time 𝑡 − 1. This assumption is 

restrictive, but it guarantees the positive definiteness of the covariance matrices, i.e., it allows 

the conditional variance to be non-zero and the correlation matrix to be linearly 

independent/full rank (Engle and Sheppard, 2001). However, when inference is conducted 

using this assumption and the unconditional distributions of correlations, the resultant 

parameter estimates may lack precision. This could be a possible source of measurement error 

in the underlying model.  

 

In contrast, our study abandons this assumption and does not use the matrix of unconditional 

correlations for several reasons. Estimates based on this matrix tend to be biased downward 

and this could affect inference (Boyer et al., 1997). The hypothesis of constant correlations in 

returns has been rejected empirically (Tsui and Yu, 1999) and returns have been found to vary 

over time. Stock returns are also characterized by fat-tailed distributions and heteroscedastic 

variance, such assumption is inappropriate for data with such characteristics. Under the 

assumption of constant correlations, parameter estimates are imprecisely estimated. This is 

because a small parameter space is used to search for the matrix of correlation vectors. In fact, 

the chosen estimator utilizes only the sub-spaces of this small parameter space to perform the 
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search and to generate the vectors rather than using real observations. Policy prescription could 

be affected because changes caused by the transmission of shocks are not reflected in 

unconditional correlations. Indeed, Kim et al. (2015) rightly point out that unconditional 

correlations are not useful for policy purposes. In order to avoid measurement errors and 

improve the precision of parameter estimates, abandonment of the assumption of constant 

correlations and elimination of the matrix of unconditional correlations is necessary. Thus, in 

contrast to this assumption and the matrix of unconditional correlations discussed here, our 

study relies on the conditional distribution of correlations and allow correlations to be 

conditional on its past realizations or return processes. At the moment, no empirical research 

exists that relies on the conditional correlations in VAR models for the analysis of contagion 

in DEE.   

 

Secondly, in the previous works, break points in the correlation matrix are detected, but they 

are determined at known points in time, i.e., their locations are exogenously determined or 

chosen with prior reference to data. This requires the author to impose breaks to the return 

generating processes. However, this sort of procedure has a few shortcomings, which are well 

documented in the literature. Prior knowledge of the location of break points contradict 

conventional theory of distribution (Diebold and Chen, 1996). It is likely to detect a break 

wrongly when none exists, and this could be misleading. The break date might be falsely 

detected because it is endogenous: correlated with the data (Hansen, 2001). It could conceal 

some trends, which may be crucial for detecting contagion (Tabak et al., 2016). In contrast to 

Billio and Caporin (2010), the focus of our study is placed on endogenously determined break 

points. Thus, the chapter allows changes in the parameters of the model to occur at unknown 

points in the sample; the location of breaks in the data is not known. The matrix of correlations 

will not be governed by a known break-point process, but by an unknown process. 

 

Thirdly, previous works assumed that breaks in correlations occur at common dates in the 

system of equations. Because they relied on this assumption, they applied a procedure that 

estimates break points simultaneously. If common break dates are assumed, all equations can 

only be estimated simultaneously (Bai and Carrion-I-Silvestre, 2009). This study, in contrast, 

relies on the assumption of distinct breaks and tests for the presence of breaks by applying a 

SP. This procedure is used for several reasons. It is used to decompose the covariance matrix 

of residuals into variances and correlations prior to testing for breaks. It, thus, allows one to 
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separate breaks in the parameters of the conditional correlations from those in the mean and 

variance matrices. It is used to test for breaks, but it does so sequentially, i.e., even if there are 

multiple break points, it will estimate a single break point at a time (Bai, 1997). To estimate 

the break points multi-dimensional data is used. This, in turn, improves the power of the 

sequential test and the detection of breaks in finite samples becomes more precise. There are 

some appealing features about this procedure. It is more flexible in estimating changes in 

coefficients and break dates. It remains efficient even with samples of moderate sizes and it 

provides savings in computational time. 

 

Fourthly, the confidence intervals of the estimated break dates are missing in the previous 

works. This is supposed to be a natural offshoot of estimations, but it is omitted. Because it is 

omitted, the statistical reliability and robustness of their estimated break dates can be 

questioned. It is even difficult to justify that the dates were consistently estimated due to their 

failure to provide confidence intervals. In contrast, this chapter constructs confidence intervals 

and ensures that the break dates are consistently estimated. Confidence intervals and the tests 

for their significance are performed using block bootstrap method (Efron, 1987; Künsch, 1989; 

Efron and Tibshirani, 1994; Horowitz, 2019). This method generates intervals with small 

lengths, and it is asymptotically valid because as the sample size increases, the number of 

breaks does not reduce. When this method is used in a VAR model, even in a model with 

conditional heteroscedasticity 17 , inference remains statistically valid (Brüggemann et al., 

2016).  

 

Fifthly, the two-stage least squares (2SLS) estimator is applied to estimate the parameters of 

the VAR model in the previous works. This estimator, which is analogous to a generalized 

instrumental variable estimator, cannot consistently estimate the parameters because of the 

problem of weak instrument identification (Chao and Swanson, 2005). In contrast, this chapter 

utilizes a feasible alternative estimator based on the FGLS for the estimation of the parameters. 

This estimator corrects for two econometric biases that can arise when one is estimating 

relations across different units, in this case stock markets. The first bias it can correct is the 

bias due to heteroscedasticity. This bias arises because the error variances for all markets are 

different. If one does not control for the presence of heteroscedasticity across units, estimates 

 
17 Innovations with distributions that are unknown and not Gaussian independent. 
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may be subject to substantial bias. The second bias is serial correlation, which arises because 

of omitted variables, and the correlation of errors with regressors. Unlike the 2SLS, which 

suffers from endogeneity bias particularly in the absence of valid instruments, the FGLS can 

be used even when errors are serially correlated. It is, thus, fully robust to bias from 

heteroscedasticity and serial correlation. In addition, the 2SLS has a lower efficiency relative 

to the FGLS, particularly when it is assumed that the mean and variance parameters are 

independent. In contrast, the FGLS is asymptotically efficient for estimating all parameters of 

the model. 

 

Besides these contributions, our study complements the existing literature on spillovers. As 

already mentioned before, contagion can also occur when volatility spills over. In most of the 

existing literature, spillovers among markets have been measured by assuming that breaks are 

common (Beirne, et al., 2013; Jung and Maderitsch, 2014). This indicates that shocks were 

treated simultaneously. In contrast, this chapter assumes that breaks are distinct and treats 

shocks separately. It estimates GFEVDs and then uses them to compute spillover indices. In 

general, it attempts to explore the importance of distinct breaks for the measurement of 

spillovers, with a view to improving measurement. So far, no empirical research exists that 

relies on this assumption for the measurement of spillovers across markets in DEE.   

 

3.4. Data and Empirical Methodology  

 

In this section, a detailed discussion of the econometric methodologies applied in the estimation 

of stock market contagion and the data used is provided. Because this chapter relies on three 

different methodologies for analysis, this section on methodology is divided into three. The 

first of these sub-sections provides the multivariate VAR framework, which is the main model 

used to estimate changes in the correlation of returns between markets and changes in the 

parameters of other components, i.e., changes in the conditional means and variances. The 

second sub-section presents an algorithm for the sequential procedure, which is used to test for 

breaks in the conditional means, variances, and correlations. The third sub-section presents the 

methodology on the generalized forecast error variance decompositions, which is required for 

the computation of spillover indices. 
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3.4.1. Multivariate VAR Model 

 

To study contagion among stock markets, the model in this chapter is based on the VAR, which 

is a system of multivariate equations, and which belongs to the family of linear multivariate 

regression models. Modelling in this multivariate framework provides parsimonious 

correlation specifications for the analysis of contagion. Moreover, it allows for multiple breaks 

of a set of series and enables one to identify shifts in the parameters of interest with higher 

probability than in a univariate model (Bai and Perron, 1998; Qu and Perron, 2007). Usually, 

breaks can be estimated with a higher precision when the system contains auxiliary equations. 

Even if the parameters of auxiliary equations are restricted to be invariant across regimes, the 

break can still be estimated with a higher precision. The inclusion of auxiliary equations, thus, 

allows one to locate the break better. This is because these equations bring additional influences 

on the system of equations (Perron, 2006). However, a poorly estimated break in an equation 

could affect the likelihood function via the error variance of that equation and through 

correlation with the remaining auxiliary equations. This framework, thus, can improve the 

efficiency of estimation, but one needs to ensure that there is no correlation between the errors. 

Potential endogeneity problems, which could bias estimates, may arise when regressors are a 

function of the response variable and errors are correlated. This model addresses such problems 

by allowing endogenized variables to depend on their past lags. The model is used to analyse 

the set of relationships across markets and for evaluating the effects of random innovations 

(unforeseeable changes). When estimations are carried out in this model, the variance of errors 

is substantially lower, and the efficiency of the model is improved.  

 

The standard specification of the reduced form multivariate pth-order VAR for estimating joint 

dynamics is given by: 

 

𝐲𝑡 = 𝑩0,𝑡 +∑𝑩𝑖,𝑡𝐲𝑡−1

𝑝

𝑖= 1

+ 𝛆𝑡          𝑡 = 1,… , T                       (3.3) 

 

where  𝐲𝑡 = [𝑦1,𝑡, … , 𝑦𝑛,𝑡]′ is the 𝑛 x 1 dimensional vector of stock returns in weeks 𝑡, 𝑩0,𝑡 is 

the 𝑛 x 1 vector of intercepts. 𝛆𝑡 = [𝜀1,𝑡, … , 𝜀𝑛,𝑡]′ is the 𝑛 x 1 vector of random innovations. 
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𝑩𝑖,𝑡  is the coefficient matrices or the parameter vector of the pth-order autoregressive 

component of past lagged endogenous variables.  

 

The model given by Eq. (3.3) allows for time-variation, i.e., it allows the effects of the random 

innovations to change over time18. It also subjects the parameters to structural breaks with 

unknown change points. It relies on standard assumptions but allows for conditional 

heteroscedasticity and serial correlation in the innovations. It allows for these because financial 

returns usually have these characteristics. 

 

It has earlier been mentioned that contagion can be identified when there is an increase in the 

correlation of returns across markets following a crisis event. The extent of change in the 

correlation of returns is measured using the covariance matrix 𝚺𝑡  of the innovations 𝛆𝑡 . A 

change in 𝚺𝑡 can either be caused by an increase in the variance or correlation of returns.  

 

The 𝑛 x 𝑛 covariance matrix, 𝚺𝑡 = 𝐒𝑡𝐑𝑡𝐒𝑡 is decomposed as below: 

 

 =
t
 

[
 
 
 
 
 
𝜎1 0 … 0

0 𝜎2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ 𝜎𝑛]
 
 
 
 
 

[
 
 
 
 
 
1 𝜌12 … 𝜌1𝑛

𝜌21 1 ⋯ 𝜌2𝑛

⋮ ⋮ ⋱ ⋮

𝜌𝑛1 ⋯ ⋯ 1 ]
 
 
 
 
 

[
 
 
 
 
 
𝜎1 0 … 0

0 𝜎2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ 𝜎𝑛]
 
 
 
 
 
 

 

The covariance matrix between two stock markets (𝑖, 𝑗) is the product of the sample correlation 

coefficient, 𝐑𝑡  with off-diagonal elements 𝜌𝑖𝑗  and the variance matrix, 𝐒𝑡  with diagonal 

standard deviations 𝜎𝑖, 𝜎𝑗 . The elements of the correlation matrix 𝜌𝑖𝑗 measures the strength of 

contemporaneous dependence between the two markets.  

 

Often, during crisis, which is marked by increased market uncertainty, it is possible for some 

of the elements of the variance matrix 𝐒𝑡 to strengthen. It is also possible that the transmission 

 
18 The parameters of eqn (3.3) changes randomly and the analysis is based on time-varying parameters (See Bataa 

et al. 2013, Blatt et al. 2015). The VAR methodology is used for examining dynamic interactions between stock 

returns across countries.   
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of such crisis will not occur synchronously across countries but sequentially; it is conceivable 

that the transmission of crisis occurs some periods after the eruption of the crisis. If one decides 

to impose an assumption of synchronous/simultaneous breaks in the variance and correlations, 

it could bias the estimates of structural break dates.  

 

This chapter relaxes this assumption and allows breaks to occur sequentially. To identify 

contagion, therefore, this chapter tests the correlation matrix 𝐑𝑡  for structural breaks at 

unknown points in time conditional on breaks in the variance. Prior to testing and estimating 

breaks in the correlations and the variances, the intercept 𝜷0,𝑡 and coefficient matrices 𝜷𝑖,𝑡 are 

combined into the coefficient matrix 𝜷𝑡 which corresponds to conditional mean. It is important 

that they be combined because it is also likely that 𝜷𝑡 has structural breaks (see, e.g., Wang 

and Thi, 2007; Dungey and Gajurel, 2014).  

 

3.4.2. The Sequential Procedure 

 

This chapter adopts a SP to determine the existence of breaks in the parameters of our model. 

The idea of using this procedure is to estimate break points one at a time or separately (Baltagi 

et al., 2016). This procedure was first developed by Bai and Perron (1998, 2003a) but extended 

by Qu and Perron (2007) to the case of general linear multivariate models that includes the 

VAR. They provided an efficient estimation algorithm based on iterations to compute estimates 

and to search for common breaks in the mean and covariance matrix. This chapter adopts this 

algorithm but modifies it to allow for distinct breaks in the decomposed covariance matrix. To 

separate the breaks in the conditional means, the variances and the correlations, this chapter 

utilizes the iterative procedure proposed in Bataa et al. (2013). It follows the modified 

algorithm which is outlined in six steps as follows: 

 

Step 1.  To estimate the break dates in the mean, first set the number of breaks in the mean or 

VAR coefficients 𝑚𝐵, and then estimate the break dates 𝑇̂1
(Β), … , 𝑇̂𝑚Β

(Β)
. In addition, estimate the 

coefficient matrix 𝑩̂𝑡 for each of the corresponding regimes. 
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Step 2.  Compute the residuals 𝜺̂𝑡, from each iteration of the FGLS. Set the number of breaks 

𝑚𝑆 in the standard deviations 𝑺𝑡 and the associated break dates 𝑇̂1
(S), … , 𝑇̂𝑚S

(S)
 conditional on 

breaks in the mean from Step 1. Use the computed residuals to estimate the standard 

deviations 𝜎̂𝑖𝑡  for each of the corresponding regimes. 

 

Step 3.  Compute the standardized residuals 𝜀𝑡̃ = 𝜀𝑡̂ 𝜎̂𝑖𝑡⁄ . Set the number of breaks 𝑚𝑅 in the 

correlation matrix 𝑹𝑡 and the associated break dates 𝑇̂1
(R), … , 𝑇̂𝑚R

(R)
 conditional on breaks in the 

mean and standard deviations from Steps 1 and 2, respectively.  

 

Step 4.  Return to Step 2 and repeat but conditional on the breaks previously found in 𝑹𝑡. 

 

Step 5.  Return to Step 1 and repeat but conditional on both the breaks in standard deviations19 

𝑆𝑡 and the correlation matrix 𝑹𝑡.  

 

Step 6.  Continue to perform each of the previous iteration between Steps 1-5 until there is no 

change in the number of break points and the estimated break dates. 

 

Using the modified algorithm outlined above all the coefficients of the model are tested for 

multiple structural changes, using the pseudo-likelihood ratio test, under the null hypothesis of 

no change in the coefficients against the alternative hypothesis with a set number of breaks, 𝑚. 

The test relies on multivariate normal distributions; however, this does not imply normality 

i.e., that the observations in the sample are independent and identically distributed. The 

asymptotic distributions of the resultant test statistics allow for any deviations from normality 

to be corrected. The test does not depend on the finite-sample distribution but on the asymptotic 

one, so the exact finite-sample critical value cannot be obtained. To compute the corresponding 

critical values therefore, this chapter uses Monte Carlo simulations. This is because critical 

values obtained through simulations tend to be more accurate.  

 

 
19 The chapter uses the standard deviations instead of the variances because it is expressed in similar units as our 

data (it is based on distributions around the mean) and for ease of interpretation. 



92 
 

To search for the location of multiple break points, the efficient algorithm developed by Bai 

and Perron (2003a) is employed. The estimates of the model are obtained using the FGLS 

estimator, while the 95% confidence intervals for the break dates are computed using the block 

bootstrap method. Although distinct break points in the variances and correlations are allowed, 

it is, however, assumed that parameters within each component share common break points. If 

this assumption of common breaks is not imposed, then the break test may fail to detect breaks 

due to low power. Moreover, when the test is not based on this assumption, the estimated break 

dates may be biased. This assumption is useful even if each series has its own distinct break 

point (Bai, 2010). The confidence intervals for the break dates are also estimated. The coverage 

rate for these intervals will be adequate because the chapter allows the error processes to 

undergo regime switches.  

 

3.4.3. Generalized Forecast Error Variance Decompositions 

 

In the previous section, the methodology for the detection of contagion via breaks in the 

parameters of the model was discussed. However, contagion can also be detected using an 

alternative method known as spillovers of volatilities. This chapter follows Diebold and Yilmaz 

(2009, 2012) to compute spillover indices. Prior to the computation of these indices, the VAR 

model is first, applied to generate GFEVDs (Koop et al., 1996; Pesaran and Shin, 1998), which 

are generated without orthogonalization of shocks and ordering of variables. The GFEVDs are 

the share of the forecast error variance of variable 𝑖 due to shocks to variable 𝑗 at a ℎ-step 

forecast. More explicitly, the error variance is split into components that are explained by 

different periods of shocks.  

 

Let us consider the moving average representation of the VAR(p) model20 which is given by: 

 

 y𝑡 = ∑ A𝑖
∞
𝑖= 0 ε𝑡−𝑖                              (3.4) 

 

 
20 The moving average representation of the VAR(p) model is based on Diebold and Yilmaz (2012). 
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where A𝑖  are the M x M coefficient matrices and A𝑖 = 𝑆𝐴
𝑖𝑆  where 𝑆 = [𝐼𝑀 ∶ 0 ∶ … : 0]. Eq. 

(3.4) can be recursively represented as: A𝑖 = ∅1A𝑖−1 + ∅2A𝑖−2 +⋯+ ∅𝑝A𝑖−𝑝,  withA0 =

𝐼𝑀, A𝑖 < 0  for 𝑖 < 0  where 𝐼𝑀  is an 𝑚 x 𝑚  identity matrix and ∅𝑖(𝑖 = 1,2,3, … , 𝑝)  are the 

parameter matrices. 

 

The impact of ε𝑡 on the future values of y𝑡 at horizon h is obtained by shocking the jth equation. 

The GFEVDs for the h-step ahead forecast period can then be defined as: 

  

𝜑𝑖,𝑗(ℎ) =
𝜎𝑗𝑗
−1∑ (𝑒𝑖

′AℎΣ𝑒𝑗)
2ℎ−1

ℎ= 0

∑ (𝑒𝑖
′AℎΣAℎ

′ 𝑒𝑗)
ℎ−1
ℎ= 0

                  (3.5) 

 

where 𝜎𝑗𝑗 and Σ denote the standard deviation of the jth element and the variance matrix in ε𝑡. 

𝑒𝑖 is a n x 1 vector of random elements with ones as the ith element and zeroes as the other 

elements. The share of the h-step ahead forecast error variance of variable 𝑖 due to shocks to 

variable 𝑗  is accounted for by  𝜑𝑖,𝑗 . The sum of the shares of own- and cross-variable 

generalized variance decomposition usually do not sum up to one, i.e. ∑ 𝜑𝑖,𝑗(ℎ) ≠ 1
𝑛
𝑗= 1 . For 

it to sum up, each 𝜑𝑖,𝑗(ℎ) must be normalized as: 

 

𝜑̃𝑖,𝑗(ℎ) =
𝜑𝑖,𝑗(ℎ)

∑ 𝜑𝑖,𝑗(ℎ)
𝑛
𝑗= 1

,                                    (3.6) 

 

to satisfy ∑ 𝜑̃𝑖,𝑗(ℎ)
𝑛
𝑗=1 = 1 and ∑ ∑ 𝜑̃𝑖,𝑗(ℎ)

𝑛
𝑗=1

𝑛
𝑖=1 = 𝑛. 

  

The chapter computes three measures of spillover indices: total, directional, and net. These 

measures show the extent and the direction of spillovers between markets.  

 

The total spillover index 𝑇𝑆(ℎ), which measures the shares of the total forecast error variance 

that is caused by shocks to other markets, is given as 
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𝑇𝑆(ℎ) =
∑𝑛𝑖=1 ∑𝑛𝑗=1,𝑗≠𝑖 𝜑𝑖,𝑗(ℎ)

∑𝑛𝑖=1 ∑𝑛𝑗=1 𝜑𝑖,𝑗(ℎ)
 X 100 ⋅    (3.7) 

 

Typically, an increase in this index indicates the existence of spillover contagion.  

 

The directional spillover index, which measures the spillovers sent from 𝑖 to other markets, is 

given as 

 

𝐷𝑆(ℎ)←𝑖 =
∑𝑛𝑗=1,𝑗≠𝑖 𝜑𝑖,𝑗(ℎ)

𝑛
 X 100 ⋅                       (3.8)  

 

Similarly, directional spillover index, which measures the spillovers received by market 𝑖 from 

other markets, is given as 

 

𝐷𝑆(ℎ)→𝑖 =
∑𝑛𝑗=1,𝑗≠𝑖 𝜑𝑖,𝑗(ℎ)

𝑛
 X 100 ⋅             (3.9) 

 

The net spillover index by market 𝑖, which is calculated as the difference between directional 

spillovers, sent to others and received from others. It is the contribution of each market to the 

volatility of other markets, on a net basis and it is given as 

 

𝑁𝑆𝑖(ℎ) = 𝐷𝑆(ℎ)←𝑖 − 𝐷𝑆(ℎ)→𝑖 ⋅                          (3.10)  

 

The measures of spillover indices are computed by taking into consideration breaks in VAR 

coefficients, variances, and correlations matrices. The value of the indices, which are the 

spillover effects, are associated with different breaks in the parameters of the matrices. 
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3.4.4. Data  

 

Since the investigation involves determination of the extent of change and breaks in the 

correlations of returns across countries, cross-country comparability of the data is of great 

importance. Normally, global stock markets open on different days and at different times. 

These differences create a problem of non-synchronous trading across markets. To circumvent 

this problem, this chapter uses weekly data for analysis. Data with this sort of frequency have 

already been adjusted for weekend effects, making it less ‘noisy’. The data for this chapter’s 

analysis thus comprises mainly countries’ weekly closing prices of stock. It spans from 03 

January 1995 to 03 November 2016 and has a total of 1,140 observations. The span of the data 

is long enough for this chapter’s analysis, and it even covers some major regional and global 

crisis episodes. The data is transformed to returns using the formula 𝑟𝑖𝑡 = 𝑙𝑛(𝑝𝑖𝑡/𝑝𝑖𝑡−1), 𝑡 =

1, 2, … , 𝑇, where 𝑟𝑖𝑡 denotes the stock returns for country 𝑖 at time t while 𝑝𝑖𝑡 and 𝑝𝑖𝑡−1 denote 

each countries stock prices for the periods t and t − 1. 𝑙𝑛 represents the natural logarithm. 

 

For checks on the robustness of results, data on the volatilities of stock returns21 are used. Each 

market’s volatility is computed using the formula: 𝜎(𝑋𝑡) = √
∑ (𝑋𝑖−𝑋̅𝑡)
𝑡+3
𝜏=𝑡−2

3
 where standard 

deviation of stock returns 𝜎(𝑋𝑡) is based on a three-week rolling window, i.e., it is rolled over 

a three-week period, 𝑋𝑖 are the returns at the country level. 𝑋̅𝑡 is the mean of each market’s 

return between 𝑡 − 2 and  𝑡 + 3.  

 

The data come from the MSCI database on Bloomberg and includes twenty-six countries: the 

US, the UK, France, Germany, Belgium, the Netherlands, Portugal, Italy, Ireland, Spain, 

Brazil, Chile, Colombia, Mexico, Peru, Argentina, China, Hong Kong, Indonesia, Japan, 

Korea, Malaysia, Philippines, Singapore, Taiwan, and Thailand. The countries are grouped into 

three regions; developed Europe (nine countries), Pacific and emerging Asia (10 countries) and 

emerging Latin America (six countries) with the US featuring in each group. The US is 

included to act as the source of the global crisis. Table 3.1 presents the summary statistics for 

stock returns.22  

 
21 The structure of cross-market correlation has breaks in returns, but it is also possible that there are breaks in 

volatility (Chiang et al., 2007). 
22 A detailed summary statistic for volatility of stock returns is presented in Appendix 3.  
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Table 3.1: Summary Statistics, Stock Returns 

  
Average 

return 

Maximum 

return 

Minimum 

return 

Std. 

Dev. 
Skewness Kurtosis 

Panel A: DE markets 

UK 0.0009 0.1336 -0.2088 0.0235 -0.5684 10.9223 

France 0.0013 0.1306 -0.2173 0.0291 -0.4502 6.7851 

Germany 0.0014 0.1692 -0.2122 0.0314 -0.3527 7.0087 

Belgium 0.0012 0.1247 -0.1954 0.0286 -0.8611 8.6755 

The Netherlands 0.0013 0.1662 -0.2568 0.0292 -0.8287 9.9424 

Portugal 0.0003 0.1255 -0.1729 0.0276 -0.5033 6.0929 

Italy 0.0005 0.2026 -0.2221 0.0320 -0.4136 7.7106 

Ireland 0.0006 0.1859 -0.3139 0.0343 -0.9451 12.3638 

Spain 0.0016 0.1447 -0.2142 0.0321 -0.4430 6.0854 

Panel B: PEA markets 

China 0.0008 0.2511 -0.2160 0.0443 0.0681 6.1687 

Hong Kong  0.0013 0.1462 -0.1904 0.0322 -0.2324 5.9220 

Indonesia  0.0029 0.3266 -0.2179 0.0457 0.5027 9.9092 

Japan  0.0002 0.1012 -0.2000 0.0283 -0.4205 5.6721 

Korea  0.0018 0.2070 -0.1926 0.0407 0.0879 6.5039 

Malaysia  0.0009 0.3008 -0.1826 0.0299 0.8430 17.7223 

Philippines  0.0010 0.1824 -0.1857 0.0334 -0.1869 6.8437 

Singapore 0.0005 0.1882 -0.1921 0.0292 -0.0700 9.4374 

Taiwan 0.0006 0.2136 -0.1341 0.0362 0.1635 5.6261 

Thailand 0.0008 0.2700 -0.2487 0.0437 0.5311 8.2306 

Panel C: ELA markets 

Brazil 0.0022 0.2919 -0.2814 0.0525 -0.0852 6.6123 

Chile 0.0009 0.2108 -0.2929 0.0328 -0.6540 10.9766 

Colombia 0.0018 0.1622 -0.2519 0.0391 -0.3772 6.5911 

Mexico 0.0023 0.2529 -0.2641 0.0417 -0.0082 7.8526 

Peru 0.0025 0.2467 -0.2544 0.0402 0.1258 7.5582 

Argentina 0.0022 0.2885 -0.2857 0.0536 -0.0930 7.1467 

Panel D: Crisis source market 

US 0.0016 0.1221 -0.1822 0.0240 -0.4994 8.2057 

Source: Author’s compilation 

 

The second and fifth columns of Table 3.1 contains average and standard deviations obtained 

from data on stock returns. It reveals that average returns ranged between a low of 0.02% and 

a high of 0.29%. It also shows that, on an average basis, Indonesia has the highest return while 

Japan recorded the lowest return. With regards to standard deviations, it ranged between 0.024 

and 0.046, implying that returns are fairly dispersed across markets. Column (6) contains the 

statistics for the skewness of returns, which are the tail distributions. It shows that about 81% 
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of the sample is left skewed implying that distributions cluster below their mean values while 

the remaining 19% are skewed to the right.  

 

Figure 3.2 plots the evolution of stock returns for each market23. A visual inspection of the 

plots show that the pattern of returns varies across markets. However, during the GFC of 2007-

2008, one can clearly see the comovement of returns across markets.   

 

Figure 3.2: Stock Returns  

 

Source: MSCI Bloomberg data and author’s computation  

Notes: The figure plots the weekly stock returns (three-week rolling window) across country and time. The dashed 

blue line in this figure depicts the stock returns. 

 

3.5. Empirical Results  

 

This section documents the main findings of the investigation on contagion in stock markets 

of DE, PEA, and ELA. However, prior to providing in-depth analysis, how the econometric 

model was set-up and implemented will be discussed in detail.  

 

 
23 The plots of the evolution of volatility of returns for each market are presented in Appendix 4. 
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The first step in the model set-up involves the trimming of the finite-sample (𝑇 = 1,140  

observations). To accomplish this, a moderate trimming fraction of 𝜀 = 0.05 is adopted. This 

fraction is chosen because of the reasonably modest size of the sample. It is pertinent that the 

sample is trimmed in order to reduce the sensitivity of the sample to outliers. Besides reducing 

sensitivity to extreme values, trimming will allow us to have reasonable partition between 

successive breaks, i.e., regime intervals. Hence, following the trimming, each regime interval 

is going have a minimum partition period ℎ = [𝜀𝑇] containing 57 observations.  

 

The second step involves setting of the number of breaks (𝑚) in the parameters of the model. 

The maximum number of breaks for the parameters of the conditional means, variances and 

correlations are set to three24.  In the third step, the optimum lag length, 𝑝 is determined and it 

is set to one because the Bayesian Information Criterion selects the lag order of one. 

 

After this, the chapter proceeds to conduct the estimation of the multivariate VAR models in 

order to estimate breaks. This estimation will require the implementation of several sequential 

iterations of the simulation process until convergence is achieved. The significance level for 

all estimations are set to ∝= 0.05. The chapter sequentially searches for co-breaks in VAR 

coefficients, standard deviations, and correlation coefficients. Co-breaks are breaks that occur 

when there is a constant parameter. The chapter searches for up to three simultaneous co-breaks 

in all the 𝑛(𝑛 + 1 + 2) = 754 VAR coefficients. It also searches for up to three simultaneous 

co-breaks in 𝑛 = 26 standard deviations, however these searches are conditional on breaks in 

VAR coefficients. It searches for up to three simultaneous co-breaks in 
𝑛(𝑛−1)

2
= 325 

correlation coefficients. These searches, however, are conditional on breaks in VAR 

coefficients and standard deviations. It obtains the corresponding upper (lower) 95% bootstrap 

confidence bands of all breaks and computes critical values using Monte Carlo bootstrapping 

simulation based on 100 replications. 

 

 

 

 
24 Bai and Perron (2003a) suggest that the maximum number of breaks should be set to 8 when 𝜀 = 0.10. 

However, they do not provide any economic explanation for this selection.  
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3.5.1. Changes and Breaks in Conditional Means and Variances of Returns 

 

The results of changes in the estimated coefficients of the conditional means and variances, 

and their estimated break dates are provided in Panels A and B of Tables 3.225. Changes in 

estimated coefficients are obtained by taking the difference between the coefficient estimates 

in two different regimes, i.e., the change in the estimated coefficients in the second column are 

the difference between the coefficient estimates between regime 1 and 2, and so on.  

 

To evaluate whether breaks exist, the chapter compares the value of the maximum log-

likelihood ratio tests with their equivalent 99% critical values. The corresponding p-values for 

the maximum log-likelihood ratio estimates are given in squared brackets. The results reveal 

some interesting evidence across markets. 

 

The regressions of the conditional means for all sub-regions were found to yield statistically 

significant results. In all, the chapter detects three significant common or synchronous break 

points for each sub-region. This implies that markets within each sub-region had three dates 

that were identical. For the DE, the result shows that estimated common break points for 

markets in this sub-region are significant at 5% level, [𝑝 − 𝑣𝑎𝑙 = 0.00]. The result shows that 

dates for the common break falls on 30 July 1999, 28 September 2007, and 10 February 2012, 

respectively. The initial break date might be associated with the build-up to the dot-com bubble 

of early 2000, which was prompted by the emergence of internet stocks. Several stock markets 

in the DE had previously experienced a protracted period of increased market exuberance in 

1999. It thus shows the period of extremely high speculative activity in the trading of internet 

stocks in the DE. This speculative activity caused bubbles to form with its eventual bursting 

on 10 March 2000.  

 

 

 

 

 

 

 
25 More results on changes in coefficients of conditional means and variances but using data on volatility of 

returns are presented in Appendix 5. 
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Table 3.2: Results of Changes and Breaks in Conditional Means and Variances of Returns  

Panel A: Conditional means  

max LR test T.S [696.74]  C.V [381.76]  p-value [0.00] 

      

Estimated break dates  30-Jul-99  28-Sep-07  10-Feb-12 

95% confidence intervals 

[28-May-99, 

23-Aug-02]  

[26-Dec-03, 

28-Sep-07]  

[10-Feb-12, 

08-Jun-12] 

      

Coefficients changes for the DE Regime 1 to 2  Regime 2 to 3  Regime 3 to 4 

Constant -0.022  -0.045  0.041 

GERt-1 0.595  1.039  0.402 

FRAt-1 -1.125  0.099  0.568 

IRLt-1 -1.419  0.349  -0.347 

ITLt-1 -0.321  0.117  1.504 

PORt-1 -0.523  -1.587  -0.099 

UKt-1 1.082  -5.486  5.360 

BELt-1 0.695  0.414  0.401 

NETt-1 0.121  0.501  -2.082 

SPAt-1 -0.821  -2.464  1.702 

USt-1 1.980   6.164   -7.514 

max LR test T.S. [723.05]  C.V [438.07]  p-value [0.00] 

      

Estimated break dates  01-Oct-99  30-Jul-04  23-Jan-09 

95% confidence intervals 

[28-May-99, 

17-Dec-99]  

[13-Feb-04, 

10-Sep-04]  

[12-Dec-08, 

09-Jul-10] 

      

Coefficients changes for PEA Regime 1 to 2  Regime 2 to 3  Regime 3 to 4 

Constant -0.004  0.020  -0.024 

CHNt-1 0.444  -0.211  0.198 

HKGt-1 -1.401  1.453  -0.437 

INDt-1 0.135  -1.083  1.334 

JPNt-1 0.492  -1.650  0.912 

KORt-1 -1.267  0.747  0.676 

MALt-1 -0.876  1.727  -0.723 

PHIt-1 -0.670  -0.374  4.871 

SINt-1 1.824  0.177  -0.675 

TAIt-1 -1.039  1.057  -1.480 

THAt-1 0.575  -2.251  0.578 

USt-1 4.633   0.128   -2.145 

max LR test T.S [346.28]  C.V [207.29]  p-value [0.00] 

Estimated break dates  20-Aug-99  20-Apr-07  09-Sep-11 

95% confidence intervals 

[28-May-99, 

12-Oct-01]  

[27-May-05, 

27-Apr-07]  

[02-Sep-11, 

15-Jun-12] 

      

Coefficient change for ELA Regime 1 to 2  Regime 2 to 3  Regime 3 to 4 

Constant 0.019  -0.015  -0.013 

BRAt-1 0.543  0.035  -0.281 

CHIt-1 -0.124  -2.144  1.261 

COLt-1 -0.120  -1.437  2.037 

MEXt-1 -0.397  -1.980  1.988 

PERt-1 -0.681  2.353  -1.443 

ARGt-1 -0.668  -0.759  0.723 

USt-1 1.111  3.695  -5.247 
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Panel B: Conditional variance           

max LR test T.S [929.35]  C.V [304.47]  p-value [0.00] 

      

Estimated break dates 11-Apr-03  24-Aug-07  13-Jan-12 

95% confidence intervals 

[27-Sep-02, 

11-Apr-03]  

[24-Aug-07, 

31-Aug-07]  

[06-Jan-12, 

08-Jun-12] 

      

Change in standard deviation for the DE      

 Regime 1 to 2  Regime 2 to 3  Regime 3 to 4 

GER -0.011  0.016  -0.014 

FRA -0.012  0.019  -0.015 

IRL -0.006  0.031  -0.027 

ITL -0.015  0.026  -0.012 

POR -0.011  0.016  -0.001 

UK -0.008  0.017  -0.014 

BEL -0.011  0.021  -0.015 

NET -0.010  0.016  -0.014 

SPA -0.013  0.023  -0.010 

US -0.009  0.018  -0.017 

max LR test T.S [2353.74]  C.V [561.15]  p-value [0.00] 

      

Estimated break dates  11-Oct-02  13-Jul-07  02-Dec-11 

95% confidence intervals 

[05-Jan-01, 21-

Feb-03]  

[23-Feb-07, 

20-Jul-07]  

[25-Nov-11, 

04-May-12] 

      

Change in standard deviation for PEA Regime 1 to 2  Regime 2 to 3  Regime 3 to 4 

CHN -0.023  0.016  -0.023 

HKG -0.018  0.014  -0.016 

IND -0.025  0.010  -0.015 

JPN -0.005  0.010  -0.005 

KOR -0.021  0.006  -0.020 

MAL -0.025  0.004  -0.009 

PHI -0.012  0.010  -0.017 

SIN -0.014  0.015  -0.019 

TAI -0.014  0.007  -0.015 

THA -0.027  0.006  -0.016 

US -0.009   0.017   -0.017 

max LR test T.S [433.56]  C.V [333.34]  p-value [0.00] 

      

Estimated break dates  25-Apr-03  21-Sep-07  03-Feb-12 

95% confidence intervals 

[28-Dec-01, 

02-May-03]  

[07-Sep-07, 

21-Sep-07]  

[03-Feb-12, 

15-Jun-12] 

      

Change in standard deviation for ELA Regime 1 to 2  Regime 2 to 3  Regime 3 to 4 

BRA -0.013  0.018  -0.019 

CHI -0.007  0.022  -0.021 

COL 0.003  0.002  -0.008 

MEX -0.018  0.023  -0.022 

PER 0.002  0.018  -0.024 

ARG -0.018  0.021  -0.007 

US  -0.010  0.019  -0.017 
Notes: The estimated break dates are the same for all countries in the sample. The dates in parenthesis are the 95% 

confidence intervals break dates. T.S and C.V denote test statistic and critical value, respectively. 
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The next break date corresponds with the period when markets showed signs of strong 

synchronous comovement. This comovement happened three months after the sub-prime 

mortgage crisis began in the US. The crisis is traceable to the securitization of sub-prime 

mortgage-backed assets and the failure of sub-prime mortgage borrowers in US to fulfil their 

repayment obligations. The growth in mortgage defaults by borrowers in the US increased the 

risk of some banks in the DE because of their high level of ownership of US mortgage-backed 

securities. These defaults by the US sub-prime lenders resulted in large losses on investments, 

which affected both markets and banks of the DE because of their high level of exposure to the 

US mortgage-backed securities. The final break date occurs around the period that the US 

market witnessed dramatic declines in stock prices post-GFC crisis. Interestingly, it appears 

that the date captures the period of significant regulatory change. It seems to coincide with the 

period of monetary policy shift, when the European Central Bank (ECB) announced policy 

prescriptions to address the sovereign debt crisis arising from huge defaults by periphery 

member countries in the Euro area. Part of the ECB’s response included the long-term 

refinancing operations, which aimed at providing liquidity with extended maturities. 

Additionally, it coincided with the week when the Greek government passed an approval for 

new austerity measures as part of the European Union bailout plan. It is likely that these policies 

and the news effect quickly affected stock returns in the Euro area. 

 

So far, the chapter has adduced reasons for breaks in the conditional means and variances for 

markets in the DE. Next, it analyses the results of changes in the coefficients of the conditional 

means and variances, which are presented in columns (1) – (3) of Tables 3.2. In addition, 

Figures 3.3 –3.5 graphically displays these changes alongside their respective dates of breaks. 

The sign of the coefficient changes reflects the change in estimated coefficients between 

successive regimes. A positive change in the mean coefficient signifies that cross-market 

dependence following a shock has strengthened whereas a negative change indicates it 

worsened. The result of changes in the estimated coefficients are analysed in relation to the 

three common break dates.  During the first break of 30 July 1999, the result shows that markets 

in Germany and Belgium had strong positive changes in their conditional means whereas the 

remaining seven markets had either positive or negative changes. 
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Figure 3.3: Changes in Coefficients of Conditional Means and Variances for the DE 

 

     
             

During the second break of 28 September 2007 markets which appear to have experienced 

substantial negative change in the conditional means include the UK (-5.486), followed by 

Spain (-2.464) and Portugal (-1.587). Contrariwise, Germany had the largest positive change 

in conditional mean of 1.039, followed by The Netherlands (0.501), Belgium (0.414), Ireland 

(0.349), Italy (0.117) and France (0.099).   

 

The chapter now turns to examine the results of breaks in the conditional means and variances 

for the PEA. In this sub-region, the first identified location of common break in the conditional 

mean occurs around the late 1990’s, precisely on the week of 01 October 1999. This result 

reveals that markets continued to co-move strongly almost two years after the East Asian crisis. 

The crisis, which was mainly confined to the countries within the region, influenced the 

dynamics of markets. This clearly is an evidence of strong regional equity market integration.  

 

The result shows that the second estimated date of common breaks occurred on the week of 30 

July 2004. It is associated with the period when many markets witnessed high volatility and a 

period of uncertainty. It is also linked to the burst of the internet bubble in 2004, which occurred 

two years after the dot-com bubble and seriously affected the performance of markets.  

 

The result shows that the third estimated date of common breaks occurred on the week of 23 

January 2009, which is linked, to the period after the emergence of the GFC. The break 

occurred several months after the collapse of Lehman Brothers in the US. Prior to their 

collapse, they had filed for bankruptcy, but the US government had refused to bail it out. The 
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failure to rescue the investment bank later caused a financial crisis and eventually this crisis 

plunged into a new stage when global stock markets reacted to the negative news increasing 

market sentiments and resulting in the strong comovement of markets with the US market. 

Many markets witnessed extreme downturn precipitated by this crisis. The crisis dramatically 

worsened the already falling stock prices across global markets, which began in 2007 because 

of the housing market crisis, and this fall in prices persisted into 2009. The crisis seems to have 

adversely affected the performance of markets in the Asian region. This suggests that the role 

of shocks in the transmission of market contagion cannot be ignored.  

 

The results show that during the first break of 01 October 1999 markets in China, Indonesia, 

Japan, Singapore and Thailand had positive changes in their conditional means whereas the 

other markets within the sub-region had negative changes. During the second break of 30 July 

2004, the results show Hong Kong, Korea, Malaysia, Singapore, and Taiwan has positive 

changes while the remaining markets had negative changes. Finally, during the third break of 

23 January 2009, the results show that markets in China, Indonesia, Japan, Korea, Philippines, 

and Taiwan had positive, the rest of the markets had negative changes.  

 

Figure 3.4: Changes in Coefficients of Conditional Means and Variances for PEA 
 

        

 

Figure 3.4 plots the changes in the coefficients of the conditional means and variances for PEA. 

The plot for the conditional means shows that the conditional mean of Thailand exhibits the 

highest negative change of -2.251. This is followed by Japan (-1.650), Indonesia (-1.083), 

Philippines (-0.374) and China (-0.211). Similarly, for positive changes, the result shows that 

it is higher for Malaysia (1.727) while Singapore (0.177) has the lowest positive change.  
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Finally, the chapter examines the results of breaks in conditional means and variances for the 

ELA. The result shows that the first break is detected in the week of 20 August 1999 for this 

sub-region. This date reflects the period prior to the technology bubble and its burst. It falls 

within the period of increased return and bullish market that lasted for over 17 years but ended 

in 10 March 2000 following the speculative bubble burst of internet stocks.  

 

Figure 3.5: Changes in Coefficients of Conditional Means and Variances for ELA 

 

 

 

The result shows that the second break date is detected in the week of 20 April 2007. Although 

this date does not coincide with the US housing market crisis, it falls within the period of 

market exuberance. The result shows that third break date occurred on the week of 09 

September 2011. This date corresponds to the time when stock markets experienced 

considerable downturn following the aftermath of the GFC. The downturn is associated with 

the bear-market, which started in August 2011 and continued to the end of 2011.  

 

Figure 3.5 plots the changes in the coefficients of the conditional means and variances for ELA. 

The plot for the conditional means clearly shows only two out of six countries this region has 

positive coefficient changes during the second break on the week of 20 April 2007. The positive 

change of coefficient associated with conditional mean is high for Peru (2.353) and quite low 

for Brazil (0.035) whereas the conditional mean of Chile (-2.144) has the highest negative 

coefficient change. This is followed by Mexico (-1.980), Colombia (-1.437) and lastly by 

Argentina with a significantly lower negative coefficient change of -0.759. The negative 

change in the coefficient indicates that cross-market dependence following a shock worsened.  
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3.5.2. Changes and Breaks in Conditional Correlation of Returns 

 

In the previous sub-section, broad interpretations for the dates of breaks in the conditional 

means and variances are provided. It also provided discussions on changes in their coefficients. 

In this sub-section, our goal is to test for increases in conditional correlations and the existence 

of breaks in these correlations as well as to determine the dates of breaks. Typically, conditional 

correlations could change because of changes in interdependence across markets. Tables 3.3 – 

3.5 present the results of the breaks in conditional correlations, the dates of breaks, and the 

changes in correlation coefficients for different country pairs. The Tables reveals the 10 x 10, 

11 x 11, and 7 x 7 matrices of the bivariate relationship across markets in the DE, PEA and 

ELA, respectively. The upper triangulation of the matrices provides the results of the estimated 

pairwise correlations with their changes while the lower triangulation reports the estimated 

break dates. There are three possible outcomes for a change in correlations; First, a positive 

change in correlations implies that an increase in returns offered by a stock market results in a 

corresponding increase in returns in a counterpart market, which supports the contagion 

phenomenon. Second, the change in correlations can be negative which is in support of 
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Table 3.3: Changes and Breaks in Conditional Correlation of Returns for Markets in the DE  

  GER FRA IRL ITL POR UK BEL NET SPA US 

GER 

  0.8443  0.5821  0.7460    0.6423 

  

0.0847                      

0.0150                          

−0.0166 

0.6363 
0.2483                         

0.0486                                     

−0.1143 

0.6241 
0.0768                              

0.0920                            

−0.1409 

0.7475 0.8623 0.7869 
0.1383                          

0.1012                             

−0.1701 

  0.9274   0.7648   0.7739       0.7117 

FRA 

01-Aug-03               

[08-Feb-02,  

01-Aug-03]      

0.4994 0.6527 0.5873 0.6841 0.6733 0.8200 0.7586 0.6372 

14-Dec-07               

[14-Dec-07,  

21-Dec-07]      

0.0303                             

0.2193                                      

−0.0449 

0.2068                         

0.0654                            

−0.0726 

−0.0573                          

0.2617                                       

−0.1015 

0.2017                         

0.0636                            

−0.1289 

0.1857                            

−0.0481                          

0.0013 

0.0885                           

0.0247                                    

−0.0179 0.0922 

0.1587                               

0.0857                                          

−0.1329 

04-May-12               

[27-Apr-12,  

15-Jun-12]      

0.7041 0.8524 0.6901 0.8206 0.8122 0.9153 0.8508 0.7487 

IRL 

  

30-Jul-99               

[28-May-99, 

20-Oct-00]         

0.4674 0.5398 

  

- 
04-Mar-05               

[12-Dec-03,  

28-Dec-07]      

0.5649 0.4542 0.6067 0.2096 0.1850 0.5588 0.5538 

  

25-May-12               

[17-Jul-09,  

15-Jun-12]            

0.6769 0.7249 
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  ITL POR UK BEL NET SPA US 

ITL 

  0.4365 0.5390  0.5813 0.6600 0.5079 

  

0.1207                       

0.2365                          

−0.1114 

0.2909                         

0.0387                            

−0.2072 

0.6749 
0.2308                        

0.0717                            

−0.1096 

0.1072                         

0.0455                         

0.0825 

0.2026                           

0.1113                                 

−0.1712 

  
0.6823 0.6615   0.7742 0.8954 0.6506 

POR 

16-Jul-99                      

[04-Jun-99, 

28-Mar-03]      

0.4553 0.5390 0.5035 0.6080 0.3437 

10-Aug-07               

[09-Jan-04, 

10-Aug-07]      

0.1146                            

0.1883                                        

−0.1327 

−0.1675                            

0.2807                                       

−0.1006 

−0.0081                             

0.2534                               

−0.1320 

−0.0630                               

0.2573                                       

−0.1062 

0.1185                            

0.2211                                          

−0.1195 

23-Dec-11                      

[23-Dec-11, 

15-Jun-12]      

0.6256 0.5516 0.6167 0.6960 0.5639 

UK 

11-Aug-00               

[25-Sep-99, 

05-Apr-02]    

11-Apr-03                      

[10-Sep-99,  

20-Jun-03]         

0.6385 

10-Aug-07               

[22-Apr-05, 

26-Oct-07]    

02-Nov-07                  

[24-Nov-07,  

28-Dec-07]      

0.7126 0.8136 0.7198 
0.1249                          

0.1309                            

−0.1003 

23-Mar-12                      

[23-Dec-11, 

15-Jun-12]    

11-May-12                      

[16-Mar-11,  

15-Jun-12]            

0.7941 
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  BEL NET SPA US 

BEL 

      0.4986 

  

0.791 0.6734 

0.1524                          

0.0935                            

−0.0987 

      0.6458 

NET 

     0.6581 

- 
  

0.7638 
0.1790                                 

−0.1044 

      0.7327 

SPA 

      0.5407 

- - 

  

0.1717                          

0.0627                                     

−0.1166 

      0.6586 

US 

22-Aug-03               

[11-Jun-99, 

22-Aug-03]      

28-Sep-01              

[28-May-99,  

28-Feb-03]      

04-Jan-08               

[04-Jan-08,  

01-Feb-08]    

17-Mar-06                

[02-Nov-01,  

02-Mar-07]    

24-Aug-07              

[10-Feb-06,  

21-Sep-07]      

15-Jun-12    

[18-May-12,  

15-Jun-12]    

15-Jun-12                      

[18-May-12,  

15-Jun-12]    

03-Feb-12                      

[06-Jan-12,  

15-Jun-12]      
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interdependence. Finally, no change in correlations, confirming market interdependence and 

the decoupling of markets. Table 3.3 presents the result of the changes and breaks in conditional 

correlation of returns for markets in the DE. The results are quite remarkable as it shows that 

there are 28 significant pairwise correlation breaks out of a possible 45. The results also show 

that pairwise correlations between markets are of varying strengths. The result reveals that 

stock markets in the DE have higher pairwise correlations values, which are sometimes close 

to unity, than markets in other sub-regions. The estimated correlation values for the DE ranged 

from 0.3437 to 0.9274 while those for PEA and ELA ranged from -0.009 to 0.7700 and 0.1565 

to 0.7064, respectively (see Tables 3.3 – 3.5). The higher correlation values for markets in the 

DE clearly reflects a high level of market integration between markets in the sub-region. 

Remarkably, the result of the pairwise correlations reveal the presence of strong comovements 

between stock markets in the DE even before the global panic caused by the collapse of Lehman 

Brothers on 15 September 2008.  

 

Next, the chapter turns to analyse the result of the changes in correlation coefficients and 

estimated break dates for the DE. The result shows that the value of the change in correlation 

between the UK and Italy is 0.0387 and the estimated break date is located on the week of 10 

August 2007. By the same token, the result shows a high change in correlation between 

Germany and the US, a positive change of 0.1012 and between France and the US, a positive 

change of 0.0857. Both breaks occurred on the week of 16 June 2006. 

 

The chapter now proceeds to analyse the results for PEA. Table 3.4 presents the result of the 

changes and breaks in conditional correlation of returns for markets in PEA. The results show 

that out of a possible 55 country pairwise correlations only 34 are significant. Strikingly, in 

some instances, the results show positive changes in correlations during the second breaks 

which appears to support the phenomenon of contagion. It shows that the change in correlations 

between Indonesia and Taiwan is positive and that the pair had the highest coefficient change 

of 0.5179. The change in correlations between this country pair is over five times higher than 

that between China and Hong Kong. The result also reveals that Indonesia had the strongest 

comovement with the US with a positive coefficient change of 0.4115. This strong 

comovement with the US occurred on the week of 30 September 2005. The change in 

correlations for Indonesia and the US is over three time higher than that of Taiwan and the US.  

The result shows that Taiwan had the weakest comovement with the US, posting a coefficient 
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change of 0.1321. It is interesting to observe the absence of comovement between the US 

market and those in Hong Kong, Korea, Singapore, and Thailand. This clearly suggests 

interdependence and the decoupling of these markets, which implies that not all crisis episodes 

can be considered contagious. 
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Table 3.4: Changes and Breaks in Conditional Correlation of Returns for Markets in PEA  

  CHN HKG IND JPN KOR MAL PHI SGN TAI THL US 

CHN 

  0.4566 0.2977 0.2394 0.1323   0.4493 0.3843 0.3817   0.1319 

  

0.2648                          

0.1039                                   

−0.0552 

−0.1130                          

0.3738                            

−0.6362 

0.1635                            

0.2492                            

−0.2777 

0.3609                               

0.1582                                   

−0.1140 

0.4274 
−0.3200                     

0.3761                                   

−0.4423 

0.2362                               

0.1582                             

−0.2481 

0.2482                                       

−0.1184 
0.3758 

0.2313                          

0.2451                            

−0.2021 

  
0.7703 −0.0776 0.3745 0.5375   0.0632 0.5306 0.5115   0.4063 

HKG 

12-May-00               

[28-May-99, 

16-Jun-00]      

0.4024 0.2380 0.2840  0.5774     

29-Oct-04               

[24-Sep-04, 

01-Feb-08]      

−0.1938                         

0.3671                           

−0.6387 

0.2128                         

0.2321                           

−0.3044 

0.2107                         

0.1576                                   

−0.2019 

0.4207 
−0.4693                         

0.4609                            

−0.4957 

0.6605 0.4924 0.4085 0.4622 

15-Jun-12                

[13-Mar-09, 

15-Jun-12]      

−0.0630 0.3785 0.4504   0.0732         

IND 

28-Jan-00               

[28-May-99, 

28-Jan-00]    

06-Apr-01                  

[04-Jun-99, 

20-Jul-01]      

0.1953 0.2964 0.4058   0.4739 0.2686 0.4751 0.3292 

11-Jun-04               

[11-Jun-04, 

20-Apr-07]    

02-Dec-05               

[19-Aug-05, 

20-Apr-07]      

0.0604                           

0.2711                            

−0.5944 

−0.1460                            

0.3665                            

−0.5260 

−0.1258                       

0.3306                           

−0.6468 

0.3649 
−0.2789                             

0.3970                                 

−0.6358 

−0.2677                            

0.5179                             

−0.4745 

−0.1721                       

0.2441                                  

−0.6626 

−0.2396                        

0.3767                     

−0.5567 

02-Sep-11                     

[31-Oct-08, 

01-Jun-12]    

02-Sep-11                     

[14-May-10, 

08-Jun-12]      

−0.0675 −0.0090 −0.0361   −0.0438 0.0442 −0.1155 −0.0903 
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  JPN KOR MAL PHI SGN TAI THL US 

JPN 

  0.2422 0.1913 0.2602 0.3503 0.2062   0.3368 

  

0.2256                          

0.1948                                

−0.3274 

0.0881                         

0.2310                           

−0.3408 

−0.1350                          

0.4325                             

−0.5290 

0.2919                            

−0.2069 

0.2465                        

0.1562                             

−0.3412 

0.3504 

0.1639                          

0.1952                     

−0.2155 

  
0.3353 0.1697 0.0287 0.4353 0.2678   0.4804 

KOR 

31-Dec-99                  

[28-May-99, 

24-Mar-00]      

0.1863 0.2370 0.2826 0.2079     

06-Aug-04               

[14-May-04, 

28-Sep-07]      

0.1341                               

0.2429                           

−0.2398 

−0.0860                        

0.3474                                       

−0.5168 

0.2089                            

0.1875                             

−0.2485 

0.4042                          

0.1105                             

−0.1843 

0.4031 0.4374 

09-Mar-12               

[20-Feb-09, 

08-Jun-12]      

0.3236 −0.0184 0.4305 0.5385     

MAL 

13-Jul-01                  

[28-May-99, 

03-Aug-01]    

29-Dec-00                 

[28-May-99, 

27-Sep-02]      

        0.2841 

16-Dec-05               

[25-Nov-05, 

20-Jul-07]    

16-Mar-07               

[20-May-05, 

20-Jul-07]      

0.3209 0.4761 0.3850 0.3753 
−0.1650                  

0.2999                                 

−0.1619 

02-Dec-11               

[30-Apr-10,  

08-Jun-12]    

02-Dec-11               

[29-Jul-11, 

15-Jun-12]      

        0.2570 
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  PHI SGN TAI THL US 

PHI 

    0.32969 0.5614 0.3729 

  

0.3752 

−0.1273                          

0.3043                             

−0.4907 

−0.3087                           

0.2193                                  

−0.3970 

−0.2467                         

0.4115                             

−0.4053 

    
0.0159 0.0749 0.1324 

SGN 
-   0.4810 0.4437 0.4815 

 
     

TAI 

02-Jul-99                

[28-May-99, 15-Sep-00]          
0.2219 

04-Feb-05 

[14-Nov-03, 02-Dec-05]    

- 

  

0.3647 

0.2244                          

0.1321                           

−0.1471 

23-Apr-10                

[19-Jun-09, 15-Jun-12]          
0.4314 

THL 

08-Sep-00                  

[28-May-99, 07-Dec-01]           

28-Apr-06                

[28-Jan-05, 09-Jun-06]    
- - 

  
0.3264 

22-Oct-10                

[10-Sep-10, 15-Jun-12]            

US 

06-Oct-00                   

[04-Jun-99, 18-May-01]      

25-Apr-03                   

[20-Aug-99, 25-Apr-03]        

30-Sep-05                

[18-Feb-05, 09-Dec-05]    
- 08-Sep-07                     

[07-Sep-07, 09-Sep-07]    
- 

  

23-Apr-10                

[19-Feb-10, 08-Jun-12]      

20-Jan-12                       

[20-Jan-12, 15-Jun-12]        
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Turning now to analyse the results for ELA. Table 3.5 presents the result of the changes and 

breaks in conditional correlation of returns for markets in ELA. The results show that 17 

country pairwise correlations are significant out of 21 country pairwise correlations. The results 

show that most of the changes in correlations are positive, particularly during the second break. 

It shows that quite a number of countries in ELA experienced market comovements prior to 

the housing market crisis in the US. In contrast, negative changes in correlations appear to be 

more prevalent during the third break suggesting absence of contagion. The result shows that 

the change in correlation between Chile and Colombia is the highest, posting a value of 0.5084 

and this change occurs on the week of 06 January 2006. With respect to changes in correlations 

between the US and markets in this region, the result shows that the highest change in 

correlations is between Argentina and the US. The strong positive change of 0.3984 between 

them occurred in the week of 26 February 2006. 

 

Table 3.5: Changes and Breaks in Conditional Correlation of Returns for Markets in ELA 

  BRA CHL COL MEX  PER ARG US 

BRA 

   0.2163 0.5730 0.4317 0.6573 0.4251 

  

0.6358 
0.0958                           

0.3940                                   

−0.1433 

0.1342                           

0.1498                                  

−0.2121 

0.1704                

0.2254                             

−0.2298 

−0.2601                             

0.3349                                

−0.3952 

0.2562                             

0.1068                          

−0.3095 

    
0.5628 0.6449 0.5976 0.3370 0.4786 

CHL 

   0.2954 0.4478    

- 

  

−0.1585                       

0.5084                                  

−0.0531 

0.1278                          

0.1308 
0.5241 0.4772 0.5115 

    0.5922 0.7064       

COL 

15-Feb-02               

[23-Jul-99, 

11-Mar-02]    

22-Dec-00               

[28-May-99, 

10-Aug-01]      

0.1565 0.2279 0.2040 0.1666 

14-Jul-06                        

[30-Jun-06, 

12-Oct-07]    

06-Jan-06                       

[06-May-05, 

23-Nov-07]      

0.2674                         

0.2778                           

−0.0946 

0.0465                 

0.3581                                       

−0.1371 

−0.0979                       

0.4707                           

−0.2718 

0.2386                         

0.2385                               

−0.1818 

24-Feb-12               

[26-Nov-10, 

15-Jun-12]    

20-Apr-12                       

[28-May-10, 

15-Jun-12]      

0.6071 0.4953 0.305 0.4619 
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MEX  PER ARG US 

MEX 

  0.3288 0.6679 0.5314 

  

0.1529                

0.3060                             

−0.3111 

−0.2957                       

0.3533                           

−0.3449 

0.2014                        

0.1350                                   

−0.2006 

  0.4767 0.3806 0.6673 

PER 

03-Dec-99               

[04-Jun-99,  

17-Jan-03      

0.4940 0.2148 

21-Sep-07               

[14-May-04,  

30-Nov-07]      

−0.3146                             

0.5050                                 

−0.3690 

0.1802                             

0.3232                                   

−0.2364 

11-May-12               

[03-Feb-12,  

15-Jun-12]      

0.3155 0.4820 

ARG 

14-Sep-01               

[04-Aug-00,  

05-Jul-02]    

30-Mar-01               

[18-Jun-99,  

28-Sep-01]      

0.4359 

22-Dec-06               

[03-Feb-06,  

07-Sep-07]    

24-Feb-06               

[02-Sep-05,  

03-Aug-07]      

−0.1935                      

0.3984                          

−0.1946 

20-Jan-12                       

[20-May-11,  

15-Jun-12]    

23-Dec-11               

[27-Aug-10,  

15-Jun-12]      

0.4462 

US 

30-May-03               

[25-Jun-99, 

30-May-03]    

21-Mar-03               

[27-Aug-99,  

04-Apr-04]    

23-Mar-01                

[29-Oct-99,  

12-Oct-01]      

12-Oct-07                       

[12-Oct-07, 

07-Dec-07]    

17-Aug-07               

[03-Aug-07,  

04-Jan-08]    

26-Feb-06            

[12-Aug-05,  

07-Sep-07]      

20-Apr-12                       

[24-Feb-12,  

15-Jun-12]    

18-May-12               

[30-Dec-11,  

15-Jun-12]    

20-Jan-12                       

[13-Aug-10,  

15-Jun-12]      

 

In addition, the result shows a high positive change of 0.3232 between Peru and the US which 

occurred on the week of 17 August 2007. Generally, it appears that all markets exhibited strong 

positive comovements with the US market. Interestingly, the result shows that the 

corresponding 95% confidence intervals of the break dates for all country pairs appear to be 

quite close. This implies that the dates are precisely estimated and largely can be viewed as the 

true dates.   
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Taken together, the chapter finds substantial changes in the conditional correlation of returns 

during the GFC. It also finds that stock markets in the DE exhibited higher pairwise correlations 

than markets in other sub-regions. Markets in the DE also exhibited higher changes in 

correlations with US than markets in counterpart sub-regions. In addition, it finds evidence of 

breaks in the conditional correlations for markets in all the different sub-regions. It thus 

presents evidence in favour of contagion phenomenon, but this evidence is true for more 

markets in the DE than in other sub-regions. It finds evidence consistent with interdependence 

and decoupling phenomenon for markets in PEA and ELA.  

 

3.5.3. Distinct Breaks and Spillovers of Volatilities 

 

As discussed in the previous sub-sections, there are breaks in conditional mean, variance, and 

correlation of returns for markets in the DE, PEA, and ELA. Such evidence strongly suggests 

the need to account for these breaks in models on stock returns. In this sub-section, therefore, 

our goal is to determine whether these breaks are important for the computation of spillover 

indices. To determine this, two VAR models26 are estimated; the first model is without any 

breaks while the second27 one assumes distinct breaks in conditional means, variances, and 

correlations, and obtains these breaks using the SP. The indices are computed using GFEVDs 

obtained from the VAR models based on forecast horizon length of ℎ = 5 − weeks28. Then 

the indices obtained using the model with distinct breaks are compared to those obtained using 

the model without any breaks. The comparison of the two indices will allow us to demonstrate 

the importance of distinct breaks in the computation of spillovers. Figure 3.6 plots the total 

spillovers generated from other markets to one market for each of the different regions. 

 

The chapter contrasts the two curves on total spillovers with (without) breaks and some 

interesting insights emerge. It is obvious to observe that the curve based on the model without 

breaks is a straight line, which does not show any evolution in spillovers over time. In contrast, 

it turns out that the other curve obtained with the model with distinct breaks shows time 

variation in the evolution of spillovers. This time variation arises from the large number of 

 
26 The method of modelling is time-varying parameter vector autoregression (TVP-VAR). 
27 Prior to the estimation of the second model, the chapter divided the sample into several regimes. This was done 

because of the evidence showing large number of breaks in the previous sub-section. 
28 The h-step-ahead rolling time horizon corresponds to over one month of trading. 
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distinct breaks and shifts in regimes. The curve based on the model without breaks in the first 

panel shows that over 80% of volatility shocks arising from other stock markets spills over to 

markets in the DE. In the middle and last panel, the plots show that a little above 60% of 

volatility from other markets spills over to markets in ELA and PEA. In contrast, the curve 

based on models with breaks in the first panel shows that the spillovers of volatilities from 

other stock markets to markets in the DE oscillates around 78% and 84%. In the middle panel, 

which displays spillovers to markets in ELA, the plot shows that it fluctuates between 49% and 

71% while in the last panel which shows spillovers to markets in PEA it oscillates between 

59% and 80%. 

 

Figure 3.6: Total Spillovers, by Region 
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Notes: The figure reports the total spillovers by region. Spillover effects without breaks (dotted lines) and with 

sequences of breaks in the conditional means, variances, and correlations (dashed lines). The figures are drawn 

using 5-step-ahead rolling forecast horizon and isolates the contribution from own shocks. 

 

Interestingly, from the plots one can visualize that the pattern of volatility spillovers appears to 

vary over time, i.e., the spillovers of volatilities are changing over time. There is a high degree 

of time variation in the spillovers of volatilities in markets across different regions. In each 

region, it is noticed that spillovers are initially constant, particularly in the 1990’s but soon 

after began to intensify. This intensification is because of the rise in transmitted market 

volatilities experienced across markets in the 2000’s. The figure shows long and sustained rise 

in spillovers for markets in the DE and PEA than in markets in ELA. It is also interesting to 

observe time-varying volatility, which is in response to shocks from the GFC. Besides, one can 

observe that prior to the GFC spillovers had been on the rise in all regions with the exclusion 

of those in ELA. Remarkably so, it was only in ELA that the rise in spillovers tapers out prior 

to the GFC, i.e., between 2005 and 2006 as seen in the middle panel of the figure. Figure 3.6 

also shows that the strongest spillovers occurred between 2008 and 2013, which falls within 

the period of the GFC. During this period, spillovers jumped dramatically by almost over 10 

percentage points from its pre-GFC level in markets of all the regions. However, during post-

GFC, markets in all regions witnessed relatively stable spillovers from 2013 to end of 2016. 

The chapter now considers directional spillovers between markets within a region and 

thoroughly examine spillovers. Table 3.6 presents the direction of spillovers. It shows the 

transmission of spillovers from and to markets, and net spillovers with the signs of spillovers.  
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                 Table 3.6: The Direction of Spillovers  

Country/Region 𝑇𝑓 𝑇𝑡 𝑁𝑠 

Panel A: Markets in the DE     

UK + + - 

France + + + 

Germany + + + 

Belgium + + - 

The Netherlands + + + 

Portugal + + - 

Italy + + +/- 

Ireland + + - 

Spain + + +/- 

US + + - 

Panel B: Markets in PEA     

China + + + 

Hong Kong  + + +/- 

Indonesia  + + +/- 

Japan  + + +/- 

Korea  + + +/- 

Malaysia  + + - 

Philippines  + + +/- 

Singapore + + +/- 

Taiwan + + +/- 

Thailand + + +/- 

US + + - 

Panel C: Markets in ELA     

Brazil + + + 

Chile + + - 

Colombia + + - 

Mexico + + +/- 

Peru + + +/- 

Argentina + + +/- 

US + + - 

         Notes: 𝑇𝑓 denotes transmission from or transmitting countries and 𝑇𝑡 denotes transmission to or  

                           receiving countries. 𝑁𝑠 indicates net spillovers. 

 

Table 3.7 presents the transmission of spillovers. It sheds additional light on the directional 

spillovers for each country in terms of spillovers from transmitting country to other countries 

and vice versa, and the strength of spillovers transmission during the GFC. It shows that the 

transmission of spillover from the US to markets in the DE rose, though by a small margin.  In 

contrast, it draws the reverse conclusions for spillovers from the US to markets in PEA and 

ELA. This is because spillovers to markets in these regions are substantially higher than 

spillovers to markets in the DE. Generally, the results show increases in contemporaneous 

correlations. 
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                Table 3.7: Transmission of Spillovers  

Country/Region 𝑇𝑓 𝑇𝑡 𝑇𝑓𝑔𝑓𝑐 𝑇𝑡𝑔𝑓𝑐 
Panel A: DE markets     

UK 7 8 ↑ M ↑ L 
France 10 8 ↓ L ↑ L 
Germany 11 8 ↓ H ↑ L 
Belgium 7 8 ↑ L ↓ L 
The Netherlands 11 8 ↓ H ↑ L 
Portugal 7 6 ↑ L ↑ L 
Italy 9 8 ↑ H ↓ L 
Ireland 7 8 ↑ H ↓ L 
Spain 10 8 ↑ L ↓ L 

US 8 8 ↑ L ↑ L 

Panel B: PEA markets     
China 9 5 ↑ H ↑ L 
Hong Kong  7 7 ↑ M ↓ L 
Indonesia  6 5 ↓ M ↑ M 
Japan  4 6 ↑ M ↑ L 
Korea  8 5 ↑ L ↓ L 
Malaysia  4 6 ↓ L ↑ M 
Philippines  6 5 ↓ L ↑ L 
Singapore 7 8 ↑ H ↓ L 
Taiwan 6 6 ↓ L ↑ L 
Thailand 7 6 ↓ M ↑ L 

US 5 6 ↑ H ↓ L 

Panel C: ELA markets     
Brazil 15 9 ↓ M ↑ H 
Chile 7 10 ↑ L ↑ L 
Colombia 7 6 ↓ L ↑ H 
Mexico 13 9 ↑ H ↑ L 
Peru 8 9 ↑ H ↑ L 
Argentina 9 7 ↑ L ↓ M 

US 7 11 ↑ H ↓ L 

Notes: 𝑇𝑓 and 𝑇𝑡 denotes transmission from and to (averages for the entire sample period). 

𝑇𝑓𝑔𝑓𝑐  and 𝑇𝑡𝑔𝑓𝑐  refers to transmission from and to (during the GFC). Spillover strength is 

categorized into three, where L corresponds to low spillover, M to moderate spillover and 

H to high spillover. 

 

Figure 3.7 plots the directional spillovers for markets in regions across time. In Panel A of 

Figure 3.7, which plots the directional spillovers for markets in the DE, it is clearly seen that 

France, Germany and The Netherlands have positive net spillovers. This suggests that they 

transmit structural shocks to other markets in the DE and the US, which causes the spillovers 

of volatilities. In contrast, Belgium, Portugal Ireland, and the UK have negative net spillovers, 

which suggests that they receive structural shocks from other markets in the DE and the US. It 

also shows that in some periods Italy and Spain experience positive or negative net spillovers. 

The primary transmitters of volatility shocks in the DE are Germany and The Netherlands. 

Each of these markets transmit about 11% of their volatility to other markets in the DE.  
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Figure 3.7: Directional Spillovers, by Country and Region 

 

Panel A: DE 

 

 

 

Panel B: PEA  
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Panel C: ELA 

 

Notes: The figure displays the directional spillovers for each country across different regions (with the US). The 

figure shows the transmission from or transmitting countries (dotted lines), transmission to or receiving countries 

(dashed lines) and the net transmission (solid lines). 

 

Panel B of Figure 3.7 plots the directional spillovers for markets in PEA. Surprisingly, China 

is the only one with positive net spillovers, while Malaysia is the one and only market with 

negative net spillovers. All the other markets in PEA switch between positive or negative net 

spillovers. China is the largest transmitter of volatility shocks within PEA. It transmits about 

9% of its volatility to other markets in the region. In contrast, Singapore receives more volatility 

shocks than other markets in PEA.  
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As displayed in Panel C of Figure 3.7, which plots the directional spillovers for markets in 

ELA, it is obvious that only Brazil has positive net spillovers, while only Chile and Colombia 

have negative net spillovers. The remaining markets in ELA switch between positive or 

negative net spillovers. Brazil is the largest transmitters of volatility shocks in ELA. It transmits 

about 15% of its volatility to other markets in ELA. In contrast, Chile receives more shocks 

than other markets in ELA.  

 

Overall, the chapter finds that volatilities spilled over across markets in all regions. It also finds 

that shocks caused by the GFC generated a substantial rise in volatilities, which spilled over 

markets and interpreted this as evidence of contagion. In addition, it finds that volatilities 

exhibited a high degree of time variation, which varies considerably across markets. The degree 

of time variation in volatilities is more pronounced for markets in ELA and PEA than those in 

the DE. Because the chapter allowed for distinct breaks during the estimation of the model, one 

was able to observe time-variation in the spillovers of volatilities. In addition, the model 

captures the timing of the GFC remarkably well. However, it is noticed that when the chapter 

did not allow for distinct breaks during estimation the spillovers of volatilities became time 

invariant. The chapter, thus, shows that allowing for distinct breaks in the conditional means, 

variances and correlations during estimation allows one to observe time variation in the 

spillovers of volatilities. In contrast, it shows that an alternative empirical model that does not 

allow for distinct breaks during estimation yields volatility spillovers that are time invariant. It 

also results in the over- and under-estimation of forecast error variances, which are required 

for the computation of spillover indices. To this end, it suggests the estimation of VAR models 

allowing for distinct breaks in structural innovations. 

 

3.5.4. Robustness 

 

This sub-section will use data on volatility of returns and explore the robustness of our results 

on changes and breaks in conditional correlations to this alternative data. Table 3.8 presents 

the result of changes and breaks in conditional correlations for markets in the DE. The results 

are largely consistent with our main result using data on stock returns. The result shows that 

changes in correlations ranges from 0.2331 to 0.8529 for markets in the DE. The result shows 

that the change in correlation between Ireland and the US is 0.4121 and this change occurred 
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on the week of 22 August 2008. The result shows a high and positive change in correlation of 

0.7139 between UK and the US. This change occurs on the week of 07 November 2008. The 

result shows a change of 0.4684 in the correlation between Belgium and the US which occurs 

on the week of 20 February 2009. 



126 
 

Table 3.8: Changes and Breaks in Conditional Correlation of Return Volatilities for Markets in the DE  

  GER FRA IRL ITL POR UK BEL NET SPA US 

GER 

  0.6958   0.4973      

  

0.1302                              

0.0269 
0.4023 0.6281 

−0.3206                        

0.3154                           

−0.1151 

0.6647 0.5481 0.6707 0.6295 0.5548 

  0.8529     0.377           

FRA 

  
0.3686   0.5166 0.4198 0.6241   

07-Mar-03                                  

[18-Jun-99,  

25-Jun-04]     

−0.1428                             

0.1939                            

0.1219 

0.7149 0.387 

0.2627                                       

0.0930                              

−0.2044 

0.3102                                

−0.3411                            

0.2535 

0.1752                               

0.0274 
0.6798 0.572 

07-Nov-08                                

[20-Jul-07,  

08-Jun-12]      

0.5416     0.6679 0.6424 0.8268     

IRL 

  

09-Jul-99                                         

[28-May-99, 

09-Jul-99]            

0.4486 

- 

21-Nov-03                                  

[21-Nov-03,  

07-May-04]      

0.3448 0.2331 0.3892 0.3507 0.4268 0.3451 
−0.2371                              

0.0191                               

0.1815 

  

19-Sep-08                                        

[30-May-08,  

15-Jun-12]                 

0.4121 

 

 

 



127 
 

  ITL POR UK BEL NET SPA US 

ITL 

  0.3533    0.6037  

  

−0.0576                          

−0.0755                          

0.3302 

0.6166 0.4465 0.6273 0.4465 0.4359 

  
0.5503 

      
0.7801 

  

POR 

19-Nov-99                                           

[28-May-99, 

10-Dec-99]        

0.3495 0.6328 

 

23-Apr-04                                           

[02-Apr-04, 

07-May-04]      

0.3287 0.3274 
−0.2083                                           

0.0785                                       

0.2388 

−0.3986                                                         

−0.0561                                                          

0.4208 

0.2538 

19-Sep-08                                           

[05-Sep-08, 

08-Jun-12]          

0.45862 0.5989 

  

UK 

       0.4035 

- -   

0.5055 0.6506 0.5507 
0.0653                                

0.2450    

            0.7139 
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  BEL NET SPA US 

BEL 

    0.3203 

  

0.5732 0.4396 
−0.0814                                   

0.0785                                 

0.1510 

      0.4684 

NET 

-  

0.5738 0.4584 

SPA - 

-  

0.4246 

US 

      28-May-99                                   

[28-May-99, 28-May-99]          

      10-Oct-03                                      

[10-Oct-03, 08-Oct-04]    - -   

      20-Feb-09                                                  

[29-Feb-08, 08-Jun-12]          
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In Table 3.9, the chapter reports the result for changes in correlations and their estimated breaks 

dates for markets in PEA. The result shows that changes in correlations ranges from -0.0025 to 

0.5190 for markets in this region. The result shows that changes in correlations between China 

and the US is 0.3066 while changes between Korea and the US is 0.1411. It shows that both 

changes occur on the week of 14 November 2008. The result shows that changes in correlations 

between Taiwan and the US is 0.3220 and this change occurs on the week of 09 October 2009.  
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Table 3.9: Changes and Breaks in Conditional Correlation of Return Volatilities for Markets in PEA  

  CHN HKG IND JPN KOR MAL PHI SGN TAI THL US 

CHN 

  0.3086   0.0261 −0.0492   0.4493       0.1300 

  

0.3207                                   

0.0805                                   

−0.1909   

0.1784 
0.1990                                    

0.2488                                         

−0.3129 

0.1591                                             

0.2410                                           

0.0661 

0.4274 
−0.3200                                            

0.3761                                        

−0.4423    

0.2961 0.2508 0.2102 
−0.1156                                       

0.0607                                           

0.2314  

  
0.5190 

  
0.1611 0.417   0.0632       0.3066 

HKG 

28-Dec-01                          

[28-May-99,  

07-Feb-03]       

0.0901 −0.0094  0.4040   0.2056  

28-Dec-07                           

[19-May-06, 

18-Jan-08]      

0.1265 
0.2004                                            

0.2129                                               

−0.3200 

0.2349                                             

0.2016                                      

−0.2809 

0.2581 
−0.5719                                                       

0.5982                                             

−0.4178         

0.4515 0.4924 
−0.1026                                                

0.3331                                              

−0.4417   

0.2075 

01-Jun-12                         

[11-May-12, 

15-Jun-12]       

0.1836 0.1461  0.0125 

  

−0.0056 

 

IND 

      −0.0096 −0.0254 0.3116   0.3823 0.1047     

- -   

0.0579                                                    

0.3133                                      

−0.3758 

0.1452                                                

0.2175                                                  

−0.4520 

−0.3282                                        

0.4219                                   

−0.4773   

0.3036 
−0.5032                                                       

0.5001                                           

−0.4690 

−0.2026                                              

0.3798                                               

−0.5139 

0.1547 0.0272 

    
−0.0142 −0.1147 −0.0720   −0.0897 −0.2319 
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  JPN KOR MAL PHI SGN TAI THL US 

JPN 

  0.0491 0.0302  0.1078 −0.0833   

  

0.4459                                           

−0.2088                                 

−0.1113 

0.1028                                                   

0.2522                                              

−0.3112 

0.1333 
0.1674                                          

0.2398                                                 

−0.1130  

0.4778                                              

−0.1616                                        

−0.1283 

0.1466 0.2186 

  
0.1749 0.0741 

  
0.4021 0.1045 

    

KOR 

12-Nov-99                                

[12-Nov-

99, 30-

May-03]      

−0.0982  0.1324 0.0269  −0.0931 

19-Oct-07                                

[02-Feb-07, 

07-Dec-07]      

0.2743                                                

0.2559                                        

−0.2266   

0.0627 
0.1650                                               

0.2031                                              

−0.2261 

0.39831                                               

0.1489                                             

−0.2098 

0.1394 
0.3165                                            

0.0598                                           

−0.1421       

20-Apr-12                                 

[02-Mar-

12, 15-Jun-

12]      

0.2053   0.2745 0.3643   0.1411 

MAL 

07-Sep-01                                   

[11-Jun-99, 

16-Aug-02]    

17-Sep-99                                 

[28-May-99, 

04-Oct-02]      

0.3828     

26-Jan-07                                

[20-Jan-06, 

23-Nov-07]    

02-Mar-04                                

[06-Feb-04, 

07-Dec-07]      

−0.3887                                                   

0.3780                                                      

−0.4307 

0.3158 0.2315 0.1554 0.0816 

06-Apr-12                                

[10-Jun-11, 

15-Jun-12]    

15-Jun-12                                  

[15-Jul-11, 

15-Jun-12]      

−0.0586 

        

 



132 
 

  PHI SGN TAI THL US 

PHI 

  0.3780 0.0463   

  

−0.4028                                                    

0.4237                                           

−0.4378   

0.2787                                                 

-0.4192   
0.1153 0.0767 

  
−0.0388 −0.0940 

    

SGN 
-  

0.2911 0.1904 0.2624 

TAI 

      
0.2737 

30-Sep-05                         

[22-Oct-99, 13-Oct-06] -   

0.1348 

−0.2785                                                                            

0.1550                                                                              

0.1723 

18-Mar-11                          

[26-Feb-10, 08-Jun-12]       
0.3220 

THL 
- - -  0.0822 

US 

    

      28-May-99                              

[28-May-99, 28-May-99]        

- - 

      10-Oct-03                                

[10-Oct-03, 27-May-05]    -   

    

      09-Oct-09                              

[21-Mar-08, 15-Jun-12]        
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Table 3.10 provides the results for changes and breaks in conditional correlation for ELA. The 

change in correlations range from -0.0120 to 0.5525 for ELA. The result shows that only 

Colombia exhibits correlation with the US. The change in correlation between Colombia and 

the US is 0.2842 and this change occurred on the week of 13 March 2009. 

 

Table 3.10: Changes and Breaks in Conditional Correlation of Return Volatilities for Markets 

in ELA 

  BRA CHL COL MEX  PER ARG US 

BRA 

   0.0395     

  

0.3795 
−0.0606                                            

0.3235                                               

0.0930 

0.4565 0.3812 0.312 0.2984 

    0.3955         

CHL 

   0.0774 
    

-   

−0.1589                                         

0.4483                                                   

0.0936            

0.3760 0.3103 0.2448 0.2206 

    0.4605         

COL 

18-Jun-99                        

[28-May-99, 

19-Jun-99]    

25-Jun-99                                               

[28-May-99, 

25-Jun-99]      

0.1107  0.0098 -0.0120 

31-Oct-03                             

[31-Oct-03, 

23-Feb-07]    

07-Nov-03                                

[07-Nov-03, 

13-Apr-07]      

−0.2117                                                 

0.4738                                                    

0.1110 

0.1391 
−0.1457                                            

0.4039                                                        

−0.2288  

−0.1464                                                                   

0.3134                                                           

0.1292    

08-Jul-11                               

[02-Jan-09, 

25-May-12]    

23-May-08                         

[09-Sep-11, 

15-Jun-12]      

0.4839   0.0390 0.2842 
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  MEX  PER ARG US 

MEX 

   0.5525  

  

0.2783 
−0.3862                                                            

0.1626                                                              

−0.3425 

0.4597 

  
 −0.0135 

  

PER 

-  

0.2500 0.1889 

ARG 

      28-May-99                               

[28-May-99, 23-Aug-

02]         
      12-Jan-07                               

[07-Nov-03, 04-May-

07]    -   

0.1890 

      16-Sep-11                        

[27-May-11, 15-Jun-12]          

US 

- - -  

 

In sum, the chapter finds that correlations considerably changed following the GFC shock. As 

before, the degree of change in correlations differs across markets in the different regions. It 

still finds that markets in the DE were strongly correlated with the US market than markets in 

counterpart regions. Generally, our results on changes and breaks in conditional correlations 

suggest the existence of contagion.  

 

3.6. Conclusion 

 

This chapter has measured changes in the returns of three components– conditional means, 

variances, and correlations between stock markets in the DE, PEA, and ELA with the US 

market in VAR models using data from 03 January 1995 to 03 November 2016. It examined 

the existence of breaks in the parameters of all these components separately and dated breaks 

using these models. It examined the existence of breaks by employing SP and assumed that the 

breaks are distinct. In addition, it evaluated the role of structural breaks in volatility spillovers 

among markets. To assess the relevance of structural breaks for estimating models of volatility 

spillovers, it compared volatility spillovers obtained by incorporating structural breaks that 
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were obtained by employing the SP (where it assumed distinct breaks in conditional means, 

variances, and correlations) against those without breaks.  

 

In recognition of the fact that VAR models with measurement problems can potentially yield 

incorrect inferences, which may be of no use to policy design, our study goes beyond the prior 

literature. The previous research has tested for breaks in correlations using unconditional 

correlations under the restrictive assumption of constant correlation (the parameters of a model 

are constant overtime). Relying on this assumption could potentially affect the precision of the 

estimates of breaks as opposed to using conditional correlations under the assumption of 

changing correlations (parameters of a model are allowed to change). In addition, the previous 

research estimates the timing of break points in a model with known break points (exogenously) 

and estimate models by treating the location of all break points simultaneously. Such models 

rely on the assumption of common breaks in covariances. Relying on this assumption is likely 

to lead to misleading conclusions about contagion as opposed to assuming distinct breaks and 

estimating the break points sequentially. These differences in assumption may likely affect the 

estimation and tests for break points. Another important issue with the previous research is that 

the break dates are not consistently estimated. Failing to construct the confidence intervals for 

the estimates of the break dates could indicate that the break dates are not precisely estimated. 

It is important to ensure that the break dates are reliably estimated by computing their 

confidence intervals. Finally, in the previous research, the degree of changes in correlations 

and other components are evaluated by applying the 2SLS as opposed to using the FGLS 

estimation procedure. These were all in an attempt to avoid measurement errors, provide better 

inference and richer implications. 

 

This chapter yielded four main results. First, it presented evidence of changes in correlations 

of returns of varying degrees between markets in the different regions. Specifically, it found 

that the markets in DE exhibit higher correlations than markets in counterpart regions, perhaps 

in part due to high level of market integration. Second, it found that the sequential test detects 

break points in conditional correlations, which are associated with significant increases in the 

correlation of returns following the recent financial crisis shock. It found that the estimated 

break dates of all break points are consistently estimated based on the constructed confidence 

intervals. This suggests that the estimated break dates are likely to be true dates. It provided 

substantial support for the existence of contagion from the evidence of breaks in conditional 
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correlations and the significant increases in the correlation of returns following the recent 

financial crisis. The chapter finds overwhelming evidence in favour of contagion for more 

markets in the DE than other regions. Third, the findings support interdependence and 

decoupling for markets in PEA and ELA. Fourth, it finds that volatility spillovers are directly 

affected by distinct breaks. Specifically, it detected time-variation in volatility spillovers 

through the inclusion of breaks in conditional means, conditional variances, and conditional 

correlations. It finds that allowing for distinct breaks in VAR models to obtain the spillover 

effects leads to time-variation in the volatility spillovers than models without breaks. It also 

finds that the VAR models that accounted for structural breaks by assuming distinct breaks 

captured the periods of significant increases in volatility, even the GFC period. It documented 

that it is difficult to observe the time variation in spillovers in the absence of distinct breaks. It 

finds that not accounting for distinct breaks when estimating models for volatility spillovers 

may results in the over- or under- estimation of the degree of spillovers.  

 

Our result of breaks in conditional correlations suggests the true DGP for returns undergoes 

shifts in conditional correlations. Our result on breaks in conditional correlations is robust to 

alternative data on stock returns. Specifically, our result is robust to using data on volatilities 

rather than returns. Our results show the relevance of structural breaks, which are obtained by 

employing the SP, and assuming distinct breaks in correctly identifying the timing of abrupt 

changes from one regime to another and in detecting contagion. Our results indicate that the 

detection of breaks is improved by applying the SP due to the higher power of the test.  

 

Our findings also highlight the relevance of structural breaks (obtained by assuming distinct 

breaks) for estimating models of volatility spillovers. The measurement of spillover effects 

across markets can be improved by allowing for distinct breaks. By allowing for distinct breaks, 

one can capture changes in volatility between markets and uncover the time variation in 

volatility spillovers. Allowing for structural breaks that are obtained by assuming distinct 

breaks is not only important for the detection of the time variation in volatility spillovers, it is 

also important for generating more precise estimates of spillover effects. This assumption 

allows us to observe time-variation in the evolution of spillovers. Accordingly, earlier studies 

that do not allow for structural breaks that are obtained by assuming distinct breaks when 

estimating spillover effects may have over- or under- estimated these effects. It is important to 

allow for structural breaks because when one does so, it introduces dynamics into the 
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measurement of spillovers. Thus, incorporating structural breaks that are obtained by assuming 

distinct breaks in models might be a plausible way to improve the estimation of spillovers. In 

all, our findings suggest that the presence of structural breaks that are derived under the 

assumption of distinct breaks does matter for understanding volatility spillovers.  

 

Our findings are particularly relevant to both investors and policy makers concerned about 

contagion. One important implication of these findings that confirm contagion is that at the 

regional level, regional portfolio diversification benefits would be smaller or even disappear. 

It is often sensible for investors to diversify their portfolio in the international markets when 

returns are highly correlated, but some investors may be reluctant to do so in countries that are 

less financially developed or markets outside their region due to high country risks and their 

adverse consequences for stock markets. For instance, when countries in the DE experience 

negative shocks, the size of change in the correlation of returns were found to be larger 

compared to those of its counterparts in other regions. Hence, when there is existence of 

contagion within the DE, it is quite unlikely that investors from this region would want to 

diversify their portfolio in a country with high risks, even when returns are highly correlated. 

This is because it runs contrary to their motive, which is to hold portfolios that reduce their risk 

of losses. This suggests that countries, particularly those from this region, might want to 

consider carefully policies that could be used to insure against adverse shock transmission or 

limit exposure to global shocks, mitigate market risks, and increase resilience in the markets 

or the speed with which the returns recover from shocks. Overall, our result may be useful to 

help investors make better decisions on portfolio diversification and the management of their 

portfolio risks. 

 

Our results suggest that researchers should avoid the use of unconditional correlations, because 

stock returns tend to vary overtime and so, the assumption of constant correlation may be too 

restrictive. Our results also suggest the use of SP whenever possible since the test has the ability 

to detect the location of break points more precisely. Furthermore, our findings suggest that 

breaks in conditional means, variances, and correlations are important sources of time variation 

in the spillovers of volatilities across markets. Researchers should therefore consider 

accounting for breaks in all these three components when estimating spillovers. 
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Our study suggests several possible interesting directions for future research. One important 

direction would be to extend our analysis to the sector level using the empirical strategy in this 

chapter. Our investigation tells us nothing about which economic sectors would have 

significant changes in the correlation of returns following a shock. The extension should help 

in uncovering which specific sectors of the stock markets would be subject to contagion, but 

also recommend useful suggestions aimed at addressing this phenomenon. Two, the chapter 

did not study contagion across asset classes but within an asset class. The study could easily be 

extended to understand inter-market contagion in general linear multivariate models. Thus, the 

analysis can be extended to other contexts, which are related to the stock market, and markets 

where returns are feasible, but this is beyond the scope of this chapter. Three, a SP to determine 

the number of breaks, that is, where the number of breaks are unknown, such as the one 

proposed by Kejriwal and Perron (2010) could be used to examine whether our results could 

be affected by the selected number of breaks.  
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Chapter 4: Crisis Date Determination and Stock Market Contagion through 

Coskewness  

 

4.1. Introduction 

 

Analyses of contagion during the global financial crisis (GFC) has been based on changes in 

correlations (Samarakoon, 2011; Syllignakis and Kouretas, 2011; Aloui et al., 2011; Bekaert 

et al., 2014). Several of these have endogenously determined the date the GFC started 

(Dimitriou et al., 2013; Dungey and Gajurel, 2014; Luchtenberg and Vu, 2015; Kenourgios 

and Dimitriou, 2015), while others have exogenously determined this date (Lee, 2012; Hemche 

et al., 2016). Only recently have the literature on contagion begun to test for the existence of 

contagion in higher-order moments such as coskewness (Fry, et al., 2010). This recent literature 

focuses on the coskewness for two reasons. Firstly, the distributions of returns are not only 

characterized by the mean and variance of returns, but also by the coskewness of returns. 

Secondly, when investors want to choose their portfolio, their preferences are beyond the mean 

and variance of returns of an asset. They also prefer the coskewness of return of an asset. 

Indeed, they even prefer assets that increase the skewness (right-skewed) of their portfolios to 

those that decrease it (left-skewed) (Harvey and Siddique, 2000a; Caccioli, et al., 2014). This 

preference is as a result of their risk aversion behavior. 

 

Prior to testing for contagion among stock markets, however addressing some challenging 

issues is crucial. One of such issues is the demarcation of the crisis from the non-crisis period 

(Dungey et al., 2005). This demarcation allows for testing of cross-market relationships during 

a stable period and testing for significant increases in these relationships after a shock in order 

to determine whether contagion occurred. Demarcation is of critical importance because the 

length of the crisis and non-crisis periods could considerably affect test of contagion and the 

accuracy of estimates (Serwa and Bohl, 2005). Typically, the date that a crisis starts is required 

for this demarcation. This date, however, has to be determined. It can be either exogenously 

determined using the sequence of crisis events/ex post observation of events, or endogenously 

determined via empirical procedures. In this respect, Dungey et al. (2015) have shown that 

dates exogenously determined often under- and over-estimates the date of transition between 

different phases of crisis. The approach adopted in selecting the demarcation date, therefore, is 
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of critical importance because if an inexact date is chosen, the length of time and the set of 

observations that will be drawn upon for estimation will not reflect the actual crisis and non-

crisis periods. The date chosen could have a direct impact on estimates of contagion models 

and affect inferences (Dungey and Zhumabekova, 2001; Dungey 2005; Baur, 2012).  

 

A few papers have exogenously determined this date for the analysis of contagion in the context 

of coskewness (Chan et al., 2018) (hereafter CFH), while others have endogenously determined 

this date (Fry-McKibbin et al., 2019). However, does it really matter whether this date is 

exogenously or endogenously determined for the analysis of contagion measured using higher-

order comoments like coskewness? Even though studies have exogenously and endogenously 

determined the date, as of yet, no study exists as to the sensitivity of contagion estimates to the 

choice of the crisis start date. Since this chapter cannot assume that the approach used to 

determine the date does not affect estimates of contagion. This chapter argues that depending 

on the approach adopted, the magnitude of contagion estimates can change. It is, therefore, 

important to evaluate quantitatively the relative importance of endogenously versus 

exogenously determined crisis dates by ascertaining whether the choice of the crisis date could 

possibly affect estimates of higher-order comoments. This chapter endogenously determines 

the start date of the GFC across stock markets in DEE and adopts the exogenously determined 

start date in CFH. It carefully evaluates the magnitude of coskewness estimates obtained from 

contagion model with endogenously determined date and gauges them against those obtained 

from contagion model with CFH’s exogenously determined date. This comparison uncovers 

the extent of differences in estimates. This chapter fills the gap in the empirical literature by 

being the first to examine the sensitivity of estimates of contagion measured through 

coskewness to the way the demarcation date is chosen. 

 

The empirical investigation in this chapter focuses on the contagion during the GFC. This crisis 

is particularly interesting to study because it was prominent and prolonged, and it generated 

substantial turmoil in global markets. A great deal of empirical work has documented that the 

dramatic movement of returns in the US stock market following the crisis had a strong impact 

on other markets across the globe (Guo et al., 2011; Aloui et al., 2011; Bekaert et al., 2014; 

Mollah et al., 2016). Baur (2012) points out that the global dimension of the GFC could make 

it difficult for one to detect the date the crisis began. In addition, the empirical research in this 

chapter is carried out for a set of markets in DEE, i.e., markets in the DE, PEA and ELA regions, 
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respectively29. These markets are examined because the phenomena of contagion could impact 

differently on markets in different regions. Moreover, contagion may not be global in nature. 

As pointed out by Calvo (1999) and Kaminsky and Reinhart (2000), contagion tends to be more 

of a regional phenomenon than a global one. Based on this view, the chapter expects that 

contagion should have different important implications for the dynamics of market returns in 

different regions. 

 

While there is a growing literature that investigates contagion through coskewness, these 

investigations have focused on fewer stock markets in DEEs. Investigating more stock markets 

in DEEs is crucial for having a better understanding of the changing behaviour of correlation 

and coskewness of returns for the analysis of contagion and for rich comparisons of contagion 

results. This chapter adds to this growing literature by focusing on a broader set of markets 

within DEEs. To obtain the start date of the crisis period, country-level data on stock returns 

has been used for this purpose. Due to the large number of markets in our dataset, the chapter 

argues that the use of this data would result in the estimation of too many break dates. It is 

meaningful to use the GDP-weighted average of stock returns in order to obtain a single date 

for countries within a region. To date, no such data has been used for analysis in this context; 

this chapter is the first to do so.  

 

For the analysis of contagion through coskewness, a few models and empirical tests have been 

applied to endogenously determine the start date of the GFC. Some of these models and 

empirical tests are known to suffer from a number of shortcomings such as the non-fulfilment 

of some standard regularity conditions needed for the estimation of parameters for the detection 

of transitional behaviour and strong prior beliefs about the break date (Hansen, 2001). The 

chapter argues that if these shortcomings are not avoided or mitigated, it could bias estimates 

of contagion. This study econometrically differs on tests used to determine the start date, in 

order to avoid empirical shortcomings inherent in models and tests applied, and to obtain 

consistent estimates. This chapter avoids potential empirical shortcomings and uses the 

Quandt-Andrews (QA) and Bai and Perron (BP) test procedures in linear regression model to 

determine the date with the expectation of avoiding these shortcomings. The use of these test 

procedures is a convenient way to obtain the true date. They allow breakpoints to occur at 

 
29 The US is included in the data set of each region to act as the source of idiosyncratic shocks. 
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unknown break date, i.e., they are endogenously detected from data, and they do not treat the 

date of breaks as known a priori, but rather assume that the date is endogenous within the 

breakpoint model30. No study has used these test procedures to determine the dates for the 

analysis of contagion in the context of coskewness across markets of DEE. 

 

The chapter tests for the existence of contagion for the different regions, individually and 

jointly. To do this, it relies on an extension of the regime switching model and assumes that 

the distributions of the model are skew normal31. It is advantageous to use this model because 

the switching processes are well suited for capturing the influence of both linear and non-linear 

time-varying changes in stock return behaviour. In addition, the switching processes can avoid 

possible heteroscedasticity problems and control for the effect of asymmetry on the distribution 

of returns. Finally, it allows the parameters to change across different regimes. These switches 

across regimes allows for consistent estimation of the parameters. The chapter adopts a 

Bayesian estimation approach for estimating the parameters of the model. This approach offers 

several attractive features such as allowing for the inclusion of uncertainties in our estimates 

in view of limited data or hidden factors. In addition, it allows one to incorporate prior 

information into our estimates. It is based on the MCMC Gibbs sampling technique, which 

allows one to draw accurate probabilistic inference about parameters. A key advantage of this 

technique is that it readily accommodates data with high dimensionality, and it is efficient at 

sampling a high dimensional vector of variables. It utilizes the posterior distributions during 

estimation to provide efficient estimates, which makes it particularly suitable and convenient 

for the joint estimation of parameters. Moreover, it provides a satisfactory performance because 

it does not suffer from the problem of non-convergence. The model is, thus, estimated with 

greater flexibility using this approach.  

 

The remainder of this chapter is organized as follows: Section two discusses the theoretical 

background. Section three reviews existing studies on contagion through coskewness and the 

determination of the crisis date. Section four describes the data and presents the empirical 

 
30 In this chapter, the breakpoint model is a linear regression model, which is consistently estimated using least 

squares estimators. 
31 This chapter relies upon this assumption because stock returns normally exhibit skewness and tail behaviour.  
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methodology. Section five reports the results on the identified dates, the estimation results for 

analysis of contagion, and summarizes the sensitivity analysis. Section six concludes. 

 

4.2. Theoretical Background  

 

This section presents a critical review of conventional capital asset pricing theory. This widely 

accepted theory has given sufficient attention to the role of covariance in expected returns. 

However, capital asset pricing theory has gradually evolved with the shifting risk preferences 

of investors and the subsequent unfolding characteristics of the distribution of asset returns. 

Researchers have now pursued and outlined new economic theories of capital asset pricing 

with a view to reflecting these changes. One area of recent theoretical development in the 

theory of capital asset pricing was the introduction of the role of higher-order moment in 

explaining expected returns and the incorporation of higher-order risk. This “new” capital asset 

pricing theory has provided the formal basis for much of the recent work that relates to 

contagion measured by higher-order comoments such as the coskewness of returns, which is 

characterized by asymmetries in distributions or extreme outcomes. During crisis, contagion 

could also occur if there are significant changes in these extreme outcomes across markets.  

 

4.2.1. Capital Asset Pricing Model  

 

Capital Asset Pricing Model – Alternative Theoretical Framework? 

 

The basic premise of the theory of asset pricing is to understand the risk factors that explain 

variations in the cross section of expected returns, i.e., it focuses on the determinants that 

contribute to the expected returns of an asset. The theory is based on the standard two-moment 

capital asset pricing model (CAPM) developed by Sharpe (1964) and Lintner (1965). In this 

model, cross-sectional change in asset returns is only explained by the asset’s joint variability 

with the market portfolio. As a result, the model can only provide effects of asset covariances 

(asset betas) on expected returns. In view of this, assets with higher covariances would cause 

larger changes in the variance of the market portfolio than those with lower covariances. Thus, 

assets with higher covariances should have greater systematic risk than those with lower 
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covariances. Hence, they would require higher risk premium from investors. The theory shows, 

in principle, that it is possible for investors to determine their expected returns. 

 

The standard two-moment CAPM has arguably played a fundamental role at providing the 

framework for the understanding of cross-sectional variation in asset returns behaviour. 

However, a number of studies have seen it as inherently flawed and have criticized the use of 

this simple model for determining the pricing of assets. The model suffers from three 

shortcomings. Firstly, it does not allow assets covariances to vary with time. Secondly, it 

assumes that covariance risk alone is sufficient to explain asset valuation (Campbell et al., 

1997; Campbell, 2000). Thirdly, it neglects the influence of potential non-linear dynamics in 

the pricing of assets, i.e., it rules out possible asymmetries in the distribution of returns such as 

coskewness. Put differently, the role of non-linearity or asymmetries in the distribution of 

returns is ignored by the standard model. As pointed out by Merton (1973), the model assumes 

that investors select their portfolios subject to the mean-variance criterion of Markowitz 

(1959)32. In addition to this, the model has to be subjected to large number of necessary 

conditions in order to meet the criterion and for its validity33.  

 

Arrow (1971) and Pratt (1964) have provided compelling theoretical justification for the 

importance of asymmetries in distributions. The so-called Arrow-Pratt theory posits that the 

utility function of an investor exhibits absolute risk aversion (ARA). This notion is consistent 

with investors who reduce the absolute amount invested as their wealth increases. The theory 

defines the ARA as, 

 

A(𝑐) = −
𝑢′′(𝑐)

𝑢 ′(𝑐)
,  (4.1) 

 

where A(·) is the ARA while 𝑢′(𝑐) and 𝑢 ′′(𝑐) represent the first and second order derivatives 

with respect to 𝑐, respectively.  

 
32 The CAPM assumes that returns are normally distributed. Thus, the mean-variance criterion is when this 

assumption holds or when investors’ preferences are quadratic (Fung and Hsieh, 1999). 
33 Due to these criticisms, several extensions of the standard framework have been proposed to overcome these 

drawbacks (see, e.g., Harvey and Siddique, 2000a; Dittmar, 2002; Guidolin and Timmermann, 2008; Chabi-Yo, 

2012; Chabi-Yo et al., 2014). 
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A necessary condition that should be satisfied is that a rational utility function should exhibit 

a non-increasing ARA. This desirable property indicates that investors with a globally greater 

risk aversion would prefer skewness that is more positive and as investors’ wealth increases, 

there would be a concomitant growth in their demand for risky assets. The theory is, thus, 

important for understanding how the risk aversion behaviour of investors influences their 

preference for skewness and the resultant effect of this behaviour on asset pricing. Arditti 

(1967) also demonstrates that non-increasing ARA reflects investor’s predisposition in favour 

of positive skewness.  

 

Alternative Framework 

 

Some theoretical studies extend the standard CAPM framework to incorporate the role of 

asymmetries in the distribution of returns. The seminal contribution of Kraus and Litzenberger 

(1976) is one of such extension. They recognized the importance of distributional asymmetries 

in returns and assumed that higher-order moments of risk premia also account for the pricing 

of assets. They address the misconception that asset pricing is conditional on the joint 

variability of assets alone and thus extend the standard model to develop a three-moment 

pricing model, which incorporates the role of non-linearity. They embedded a systematic 

skewness34 term within the CAPM framework for asset pricing and showed that systematic 

skewness adds to the risk premium of an asset. In general, their version of CAPM is related to 

investors’ preference. In this context, they postulate that the preference of all rational investors 

that are averse to market risk would be to hold assets with positive return skewness in their 

portfolio. Investors who favour holding assets with this sort of skewness would have portfolios 

with lower market risk premiums or expected returns. The effect of strong preference for this 

sort of skewness is that it causes many investors to hold similar assets which makes assets to 

become over-priced, leading to low expected returns. 

 

A modified version of the three-moment CAPM, which accounts for asymmetric risk in asset 

return, exists. Harvey and Siddique (2000a) build this modified version and incorporate 

conditional coskewness into the standard model. Their model captures both variability and 

 
34 The systematic skewness is used by many studies to capture coskewness to circumvent scale problems (Jiang 

et al., 2016). A negative systematic skewness is, thus, equivalent to a positive coskewness and vice versa. 
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skewness risks in the cross-section behaviour of asset returns. They define the coskewness of 

an asset as the excess return, which is measured by the covariance of returns and the squared 

return of the market. To them, coskewness indicates how much an underlying asset contributes 

to the skewness of the market portfolio. Typically, an asset with higher coskewness should be 

more desirable to hold because it contributes more to the systematic skewness of market 

portfolio. Because of this, the expected return on assets with this sort of coskewness would be 

lower. By linking the coskewness of an asset with market portfolio, it is assumed that the price 

of an asset with high coskewness risk would be negative in the cross-section of expected 

returns. They show that the unconditional distribution of coskewness does not account for 

asymmetric risk, but the conditional one does, and it is of relevance in portfolio selection and 

hedging. For instance, an asset with positive coskewness can be used as a “hedge asset” in 

times of market volatility.  

 

The general representation of the three-moment CAPM is given by 

 

𝐸(𝑟̃𝑖) = 𝜆1𝛽𝑖 + 𝜆2𝛾𝑖,                                                               (4.2)                   

 

where 

 

𝑟̃𝑖 = (
𝑅̃𝑖 − 𝑟𝑓

𝑟𝑓
), 

 

𝛽𝑖 =
Cov(𝑟̃𝑖,𝑟̃𝑚)

Var(𝑟̃𝑚)
, and  

 

𝛾𝑖 =
𝐸 [(𝑟̃𝑖 − 𝐸(𝑟̃𝑖))(𝑟̃𝑚 − 𝐸(𝑟̃𝑚))

2
]

𝐸 [(𝑟̃𝑚 − 𝐸(𝑟̃𝑚))
3
]

, 

 

where 𝑅𝑖 is the excess return of the ith asset’s which equals one plus the expected return of the 

ith asset. 𝑟𝑓 is the risk-free return or excess return on the risk-free asset. It is measured as one 

plus the risk-free asset return. 𝛽𝑖 is the beta of asset, which accounts for systematic risk. 𝛾𝑖 

denotes higher-order systematic skewness risk (conditional standard deviation of coskewness) 
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of the individual asset. 𝜆1 and 𝜆2 are the risk premiums coefficients for both systematic risk 

and higher-order systematic skewness risk, respectively.  

 

These risk premiums are the expected excess returns rewarded to investors for taking on market 

risks. The higher-order systematic skewness risk reflects the market premium for an asset’s 

coskewness with the market. A positive 𝜆1  implies that investors are compensated with a 

positive risk premium for bearing risk and so they expect higher returns from assets with 

positive systematic risk. Conversely, a negative 𝜆2 implies that investors are compensated with 

a positive risk premium because they expect the higher-order systematic skewness to be 

positive. In general, if the skewness of market returns is positive (negative), an asset's co-

skewness with the market (𝜆2) would have a market premium that is negative (positive). 

 

Asymmetries in the Distribution of Returns 

 

When selecting a portfolio, investors usually have a preference for the mean (expected value) 

and variance (value of risk) of returns. Markowitz (1952) developed a mean-variance analysis 

for the selection of a portfolio of stocks. His analysis is based on utility functions that are 

quadratic, i.e., an investor reduces the nominal amount invested in risky assets as his wealth 

increases. One of the conditions required for this analysis is that the distributions of returns 

must be normal. Moreover, he assumes that all portfolio selection problems have the same 

objective function (Markowitz and Todd, 2000). He showed that a mean-variance efficient 

portfolio is one that provides: (1) less variance compared to any other portfolio with the same 

expected return and (2) more expected returns compared to any other portfolio with the same 

variance. More explicitly, minimizing risk for any feasible of expected return and maximizing 

expected return for any feasible level of risk. However, some studies criticise the use of the 

mean-variance analysis of portfolio selection (see, e.g., Borch, 1969; Feldstein, 1969). 

 

Some studies have documented that most financial returns are not normally distributed. Hence, 

the mean and variance may not be sufficient measures of risk. In the context of stock returns, 

several studies have shown that its distributional form departs slightly from normality due to 

the existence of extreme observations (Officer, 1972; Peiró, 1994; Cont, 2001). Specifically, 

stock returns exhibit skewness like characteristics or asymmetry, particularly positive 
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skewness, vary with time and have significant tail behaviour. These attributes of stock returns 

could preclude the use of the mean-variance analysis for portfolio selection. Thus, selecting a 

portfolio with this analysis may be unacceptable by investors because the distributional 

properties of stock returns somewhat deviates from normality. Due to this distributional form, 

it means that other risks besides the variance of returns such as risks related to higher-order 

moments might be plausible for portfolio selection. 

 

A few studies have shown that higher-order moments such as skewness are relevant to an 

investor’s decision on portfolio selection (Lai, 1991; Chunhachinda, et al., 1997). These studies 

show that investors prefer skewness when selecting a portfolio and hence, assume that the 

objective function to maximize the expected value of an investor’s utility function has a non-

linear form (polynomial) to incorporate this preference. Since the skewness of a portfolio is 

important to investors, it must be that the coskewness risk could also be rewarded. For example, 

Barone Adesi et al. (2004) and Ang et al. (2006) show that the risk of coskewness is becoming 

increasingly relevant to investor’s decision because the risk is separately priced from the mean-

variance risks. They argue that existence of coskewness risk arises because investors consider 

asymmetries in asset return by evaluating right (highly positive returns) skewed assets 

separately from left (highly negative returns) skewed assets. Moreover, it is documented that 

investors normally prefer right-skewed assets than left-skewed ones (Harvey and Siddque, 

2000a; Smith, 2007) in comparison with the market portfolio. This indicates the existence of 

asymmetric preferences for coskewness by investors. They are willing to receive a lower 

average return during periods of high market volatility reflecting their preference for right-

skewed assets. By contrast, assets, which makes investor’s portfolio to be more left-skewed, 

can cause the overall portfolio’s return to fall making such assets less attractive to hold by 

investors because of the asset’s high susceptibility to downside losses. Accordingly, investors 

who hold left-skewed assets need to be compensated with higher average returns for bearing a 

greater coskewness risk (Ang et al., 2006). By providing justification for the importance of 

coskewness in returns, since returns are non-normal and coskewness is of importance to 

investors concerned about extreme outcomes, it might therefore be necessary for us to consider 

testing contagion in this context.  

 

From the foregoing, the distributional form of returns has to reflect its characteristics. This is 

of crucial importance, particularly when modelling asset returns. If the assumptions made about 
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the form of distribution is incorrect, it could be a potential source of error. Typically, the 

estimates of models on asset returns relies heavily on the assumptions made regarding the shape 

of distributions. In this view, MacKinlay and Richardson (1991) and Badrinath and Chatterjee 

(1988) point out that statistical inference depends greatly on distributional assumptions. The 

shape that the distribution of asset returns takes, therefore, is of great importance in order to 

improve model accuracy.  

 

It is, therefore, important to determine the stable distribution that fits asset returns. In the 

context of stock returns, there is ample evidence in the prior literature that its distributions are 

non-normal (Mandelbrot, 1963; Fama, 1965; Praetz, 1972; Richardson and Smith, 1993) but 

rather it exhibits skewness, particularly positive skewness (Brunnermeier et al., 2007; 

Bessembinder, 2018), changes with time (Singleton and Wingender, 1986; Harvey and 

Siddique, 2000b), and has significant tail behaviour (Bollerslev, 1987; Kearns and Pagan, 

1997; Cont, 2001).  

 

Typically, skewness in stock returns is adduced to asymmetries caused by extreme events. 

These extreme events are the outliers in the distribution of returns that lead to asymmetries. 

Since the attributes of returns are skewed, the Gaussian assumption that distributions are 

independently and identically distributed, which is commonly used, will be inappropriate for 

modelling such returns. A handful of studies have shown that return distributions do not 

converge to normality (Peiró, (1994, 1999); Aparicio and Estrada, 2001). According to these 

authors, due to their non-convergence, such an assumption will not provide the best fit with 

observed returns data. There are studies that have even shown that the distributions of returns 

observed on daily frequency are not entirely normal (Officer, 1972; Fama, 1976; Brown and 

Warner, 1985; Akgiray and Booth, 1988; Mills, 1995; Harris and Küçüközmen, 2001; Wen 

and Yang, 2009). The evidence from these studies, therefore, invalidates the use of Gaussian 

assumptions for the modelling of returns. This is because the standard assumption of normal 

distributions does not provide a reasonable model fit and it cannot accommodate asymmetries 

like skewness and fat-tails. 

 

Due to these evidences, a wide variety of alternative forms of distribution for stock returns has 

been proposed (Blattberg and Gonedes, 1974; Kon, 1984; Bookstaber and McDonald, 1987; 
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Gray and French, 1990; Linden, 2001), including skew-normal distributions. This type of 

distribution has been the focus of a few studies (Azzalini, 1985, 1986; Azzalini and Valle, 

1996; Azzalini and Capitanio, 1999, 2003; Gupta et al., 2004). In these studies, it has been 

shown that stock returns follow a skew-normal distribution, and it provides a better fit than the 

normal distribution. As a result, modelling of returns based on this type of distribution is 

becoming increasingly popular (Sahu et al., 2003; Adcock and Shutes, 2005; Harvey et al., 

2010).  

 

Skew-normal distributions are normally distributed but have attributes of skewness, i.e., they 

are a mixture of normal distribution. It is a skewed extension that nests the density of Normal 

and Student t-distributions. The model for estimating such distributions contains distinct 

parameters accounting for non-normalities such as skewness and fat tails. In the model for 

determining this type of distribution, which is useful in handling possible outliers or both 

positive and negative skewness, there are three key skewness parameters, namely, location, 

scale and correlation.  

 

This type of distribution which has been studied in the case of univariate models is extended 

to a multivariate case with n-dimensional dataset (Adcock and Shutes, 2005; Harvey et al., 

2010). The multivariate model has been particularly popular in financial studies and Azzalini 

(1985, 1986) and Genton (2004) have extensively studied its key properties. This popularity is 

mainly because it provides a better fit than purely symmetric models like multivariate normal 

models. For example, Sahu et al. (2003) demonstrate that the model can be fitted without much 

difficulty by applying Bayesian methods and MCMC approximations. The model has other 

attractive features, which include high flexibility in capturing both asymmetric and symmetric 

processes in one probability density function, and the tractability of analysis. This type of 

distribution is derived by transforming the standard normal distribution. The distributions are 

then generated by an approximation procedure. This chapter uses this model to compute the 

distributions of stock returns for the analysis of contagion.   

 

 

 



151 
 

4.3. The Study of Stock Market Contagion in Empirical Literature 

 

This section focuses on the empirical literature on contagion among stock markets. This chapter 

draws on and contributes to two main strands in the literature on contagion. The first strand of 

literature focuses on the issue of coskewness of returns for understanding the phenomenon of 

contagion. The second strand of literature concentrates on the issue of determining the start 

date of crisis period for the analysis of contagion. It, thus, reviews existing studies in these 

strands of empirical literature and contrasts these studies with the investigation conducted in 

this chapter in order to highlight the differences between them. 

 

4.3.1. Literature Review on Contagion through Coskewness 

 

The global transmission of shocks from one stock market to another one during a financial 

crisis is not new. Changes in the transmission mechanism which cause a significant increase in 

the comovement of stock returns – a phenomenon often labelled contagion (Forbes and 

Rigobon, 2002; Pericoli and Sbracia, 2003) has received considerable attention over several 

years in the academic literature because of its implications for portfolio diversification. The 

areas investigated include changes in the mean and variance between market stock returns 

(Baur, 2003). Finally, many authors have analysed contagion between markets through the 

changing behaviour of correlations of market returns across crisis and non-crisis periods (Baig 

and Goldfajn, 1999; Billio and Pelizzon, 2003, Billio et al., 2005; Billio and Caporin, 2010; 

Hon et al., 2004; Chiang et al., 2007; Kenourgios et al., 2011; Syllignakis and Kouretas, 2011; 

Dimitriou et al., 2013; Hemche et al., 2016). As Forbes and Rigobon (2002) point out, they are 

relatively straightforward to use in examining the existence of contagion. Moreover, the 

authors have further highlighted that it is particularly suited for the analysis of linear 

dependence between markets. Within the context of the recent GFC, some studies show a 

significant increase in correlation between market stock returns. Many of these authors confirm 

the existence of contagion through correlations during this crisis (Guo et al., 2011; Aloui et al., 

2011; Bekaert et al., 2014; Mollah et al., 2016).  

 

However, some authors argue that tests for contagion based on the correlations are an 

inadequate measure of market linkages because of the bias arising from heteroscedasticity or 
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changing market volatility of returns (Boyer et al., 1997; Longin and Solnik, 2001; Forbes and 

Rigobon, 2002). Bae et al. (2003) have highlighted that contagion is linked with extreme 

returns because small return shocks transmit in a different way from large-return shocks. Based 

on this, the authors argue that correlations may be inappropriate if contagion is characterized 

by non-linear changes of market linkages. Due to this well recognized empirical 

characterization of stock returns, correlations are incapable of fully capturing market linkages. 

This because it is assumed that return realizations in the left and right tail of the distribution 

are generated by closely similar processes (Cappiello et al., 2014). Moreover, in the 

computation of correlations, returns are equally weighted. Although there are obvious concerns 

highlighted in the literature about the use of correlations, the empirical literature almost 

exclusively tests for contagion within this context.  

 

However, as shown by Fry et al. (2010), a deeper insight of contagion might be gained from 

an analysis of significant changes in the higher-order comoments of stock returns during crisis 

periods like coskewness. They have highlighted that a natural point of departure in testing for 

contagion is to focus on correlations, but it is possible that there are additional contagious 

channels operating through higher-order comoments during a financial crisis through which 

contagion can manifest, which require examination. When compared with the large body of 

work on contagion through correlation, the analysis of such a phenomenon through coskewness 

is still relatively limited. Even though coskewness is an important characteristic of stock 

returns, it is largely ignored. Harvey et al. (2010) have highlighted that one reason coskewness 

is overlooked is that simple descriptions of asset returns often show scanty evidence of higher-

order comoments. More recently, however, a small but growing literature investigates the 

importance of coskewness of stock returns covering aspects such as the role of coskewness in 

the pricing of assets (Harvey and Siddique, 2000a; Barone Adesi et al., 2004), asset allocation 

and portfolio selection (Guidolin and Timmermann, 2008; Harvey et al., 2010), return 

predictability (Martellini and Ziemann, 2010), linkage between coskewness of stock returns 

and liquidity risk (Nguyen et al., 2007), among others. Harvey and Siddique (2000a) have 

documented that coskewness is important in explaining stock returns and it considerably 

increases the explanatory power of pricing models. In addition, Potì and Wang (2010) and 

Lambert and Hübner (2013), among others, provide compelling evidence that coskewness of 

returns are priced in stock markets. In this vein, Smith (2007) shows that the price of 
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coskewness appears to be large. In general, these authors note the importance of coskewness 

in stock returns.  

 

 

With regards to tests of contagion by means of coskewness based analysis, Fry et al. (2010) 

note that these are typically tests for changes in coskewness between the crisis and non-crisis 

periods, which mainly arise from changes in the interaction of volatility, and the average 

returns across markets. Most of the studies that have considered the analysis of contagion 

through coskewness show that cross-market coskewness significantly increased after a crisis, 

which in turn indicates that the transmission mechanism between markets reinforced after the 

crisis. Evidence of such an increase has been interpreted as the occurrence of contagion across 

markets through coskewness. In general, studies on contagion through coskewness have 

highlighted that there are other important channels for the transmission of contagion besides 

correlations. For example, Fry et al. (2010) have pointed out that tests of contagion based on 

coskewness detected linkages across markets stemming from contagion, which tests based on 

correlations, failed to identify. In addition, Fry-McKibbin et al. (2014) have highlighted that 

during a crisis, significant changes in linkages are transmitted through all channels of contagion 

and that, most countries experience contagion through a combination of channels. 

 

The existing studies have been conducted on different crises, markets with different structures 

and sizes in different countries. For example, Fry-McKibbin et al. (2014) focus on changes in 

the dependence structures of stock markets through coskewness to examine the phenomena of 

contagion during nine crises in OECD and emerging markets. The authors show evidence of 

manifestations of the phenomena through the coskewness channel for some of the crises. 

Similarly, CFH test for the existence of contagion through coskewness between four DE 

markets and the US during the GFC. The authors’ document increased coskewness of returns 

across stock markets, which they interpret as evidence of contagion. In addition, they 

interpreted it as additional comovements in returns which are only present in the crisis period 

but not in the non-crisis period. 

 

More recently, Fry-McKibbin et al. (2019) developed joint contagion tests for coskewness and 

apply the test to Eurozone stock markets with the US as the crisis source country. The authors 

tested for contagion during three distinct crisis periods namely the subprime, the GFC, and the 
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European debt crises. The authors provide evidence that strongly supports contagion through 

coskewness from the US to countries in the Eurozone. However, these studies investigate the 

contagion phenomena across markets through coskewness mainly from the perspective of 

Europe, rather than DEEs. The literature notes the changing dependence of returns across stock 

markets, but there is no recognisable empirical consideration of how this changing behaviour 

of returns between crisis and non-crisis manifests as a phenomenon of contagion through 

coskewness for DEEs.  

 

4.3.2. Literature Review on the Determination of the Crisis Date  

 

The determination of the start date of a crisis period, which is an important requirement prior 

to testing for contagion between markets, is of crucial importance. As already discussed, this 

date, which has to be determined, is used for the demarcation of the full sample into non-crisis 

and crisis periods.  

 

Carefully determining this date is crucial otherwise there might be sample selection bias35. 

Dungey et al. (2015) argue that one of the most widespread difficulties in the contagion 

literature is the demarcation of the crisis period from the non-crisis period preceding them. 

Broadly speaking, there are two main approaches for determining the crisis dates for the studies 

of contagion among stock markets: exogenous and endogenous.  

 

The use of exogenous approach is more widespread. This is mainly due to the ease of obtaining 

the date by the researcher as it is mostly obtained through use of sequence of events rather than 

the underlying processes, which generate market returns. The crisis date is determined using 

exogenous approach by Forbes and Rigobon (2002), Billio and Pelizzon (2003), Chiang et al. 

(2007), Kenourgios et al. (2011), Gallegati (2012), Dimitriou et al. (2013) among others. For 

example, in a recent study by CFH they examine contagion through changes in the correlations 

and coskewness of returns between four DE countries and the US during the GFC using daily 

stock return data from 2005 to 2014. They separate the non-crisis and crisis periods using an 

 
35 There are several potential biases that one should overcome to accurately measure contagion, and these include 

heteroscedasticity or volatility bias which occurs due to the changing volatility of returns at times of crisis (Boyer 

et al., 1997; Forbes and Rigobon 2002; Dungey and Renault, 2018), endogeneity bias (Pesaran and Pick, 2007), 

and omitted variables (Corsetti et al., 2005) amongst others. See Dungey et al. (2005) for a survey of the common 

methodologies and empirical biases in contagion studies. 
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exogenously determined start date for the GFC. They ignored the true process that generates 

the return series, but instead they set the start date of the GFC to March 3, 2008, which 

corresponds, to the date of the bailout of Bear Stearns. They find evidence that supports that 

correlations and coskewness of returns significantly increased during the crisis. The evidence 

of contagion, however, is hard to rationalise as their analysis may have been subjected to bias 

from the selection of samples and their estimates may have been influenced by the date chosen.  

 

Although the use of exogenous approach gives reliable information about timing of the crisis, 

it may be inappropriate, particularly when the true DGP for stock returns exist. Failure to allow 

the true DGP determine the date i.e., to search for points of breaks in the data on stock returns 

series, even with sufficiently large amount of data at high frequency, 36  could result in 

estimation issues. This is because the underlying processes that generate the series could 

exhibit abrupt change at some point in time and that point could be associated with the start 

date of the crisis.  

 

Given these studies, one can state that the use of exogenously determined crisis date has two 

serious potential drawbacks. Firstly, it is subjective, as it requires one to decide the date by 

oneself (self-selection) or derives from author’s independent judgement. This could confound 

attempts to demarcate the sample accurately. Secondly, it may lead to sample selection bias. 

This bias is likely to result in substantial estimation errors for the parameter estimates of 

contagion models due to the unrepresentativeness of the sample. From an empirical standpoint, 

these drawbacks are enough to allow us to raise a question on the accuracy of the parameter 

estimates from contagion models that have previously used this approach and to question the 

validity of their inferences.  

 

The use of the endogenous approach to the determination of the crisis date, has been the focus 

of attention in the more recent literature, though still to a limited extent. Dungey and Gajurel 

(2014) have shown that that this approach generates more accurate dates than the other 

approach previously discussed. The approach is used by a few of papers which, utilizing the 

returns generating processes in econometric models, identify the crisis date and carry on to 

present evidence of contagion (Samarakoon, 2011; Syllignakis and Kouretas, 2011; Dimitriou 

 
36 Most studies on contagion are conducted using this sort of data and data frequency. 
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et al., 2013; Luchtenberg and Vu, 2015; Fry-McKibbin et al., 2014; Fry-McKibbin et al., 2019). 

In this vein, few models and empirical tests have been applied in the literature to endogenously 

determine the crisis date. There are, of course, few shortcomings to the use of these models and 

tests applied. For example, Dungey et al. (2015) endogenously determined the start date of the 

GFC for the US market. They used smooth transition models, which uses time threshold 

procedure for this purpose and simultaneously measured contagion effects with a multivariate 

structural GARCH model. They searched for breakpoints using the transition speed for regime 

changes. They employed quasi-maximum likelihood estimators, which are consistent and 

asymptotically normal, thereby making inference straightforward. This estimator is only 

consistent and asymptotically normal under a set of standard regularity conditions. However, 

often these conditions, which are crucial and necessary for the estimation of this type of model, 

are neither guaranteed nor likely to be always fulfilled. Thus, it may not be feasible for one to 

expect that these conditions would hold all the time.  

 

Similarly, Fry-McKibbin et al. (2014) employed the regime switching model to date a number 

of crisis periods. The model is applied to data on stock returns for all markets and it is estimated 

using Bayesian techniques. Typically, prior information on the period of trigger event is 

required to conduct the estimation and to determine the crisis date, which may be subjective. 

In a more recent study by Fry-McKibbin et al. (2019), they used a multivariate generalization 

of Diebold and Chen’s (1996) endogenous break test to determine the timing of the start of the 

crisis period. The test is conducted in a dynamic model with multivariate processes, which 

allows for interconnections among markets. It is, therefore, robust for understanding the 

transmission of crises across markets unlike univariate processes or a model with single 

regressor. However, the test itself is the standard chow test, which is based on strong prior 

beliefs about the timing of potential breakpoints in regression models, i.e., it cannot be 

implemented if the possible location of breakpoints are not assumed known a priori. In 

addition, for each sub-sample that will be estimated, the number of observations must not be 

less than the number of parameters or else the test will be indeterminate.  

 

The studies discussed above provide important empirical insights into the different models and 

empirical tests applied by researchers to determine the crisis date. They, however, do not use 

models nor apply empirical tests that generate true dates. Moreover, as stressed above, they do 

not know the degree to which the choice of their dates might affect the magnitude of their 
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estimates. This chapter directly turns to the evidence from the above laid out literature, while 

complementing and extending it in several ways. Firstly, all the previous studies discussed 

above focus on a few stock markets in DEE. This chapter, in contrast, uses a database that 

comprises a large sample of stock markets from DEEs situated in different regions. This, in 

turn, allows for rich and meaningful country/regional comparisons of the contagion results. By 

investigating a broader set of markets, one can have a better understanding of the changing 

behaviour of correlation and coskewness of returns for the analysis of contagion. 

 

Secondly, fundamentally important, this chapter is interested in the models and tests applied in 

endogenously determining the crisis start date. While the previous studies use models and 

empirical tests whose shortcomings have already been discussed above. This chapter, in 

contrast, econometrically differs on tests used to endogenously determine the date. In 

particular, this chapter uses two different types of endogenous dating test procedures proposed 

in the literature: QA and a variety of BP tests.  

 

Thirdly, this chapter has argued that depending on the approach adopted, the magnitude of 

contagion estimates can change. Differences in estimates of contagion might arise due to 

differences in the approaches used to determine the date. Rather than ignoring the sensitivity 

of estimates to the selected date, this work focuses primarily on the choice of date and the 

extent to which it might affect the magnitude of contagion estimates. This, in turn, requires a 

comparative analysis of the magnitude of contagion estimates obtained using an exogenously 

determined date to those obtained using an endogenously determined date.  

 

Fourthly, this chapter is interested in GDP-weighted average of stock returns over time (in log), 

which is the regional index of stock returns. This chapter uses weighted averages in a manner 

similar to studies on trade, see, for example, Feenstra et al. (2013) and Kovak (2013). The data 

is used to test the hypotheses of no breaks in the underlying process that generates returns. This 

data and the hypothesis will be used to address the economic research question of endogenously 

determining the start date of crisis for higher-order comoment. Using this data will allow us to 

obtain a common break date for markets within a region. This has not been done in the literature 

before. In contrast, much of the previous studies have mostly used data on country-level stock 

returns for testing this hypothesis. It makes sense, however, to consider using data on GDP-
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weighted average of stock returns over country-level stock returns for two reasons. Firstly, it 

will allow us to estimate less break dates. The use of each country’s return series would 

eventually result in the estimation of too many models. In addition, testing for breaks separately 

for each country may result in too many estimates of break dates due to the large number of 

countries in our dataset. Secondly, since the analysis on contagion would be based on countries 

within a region, it is meaningful to consider using the GDP-weighted average of stock returns. 

The use of this data would not affect the size of our parameter estimates.  

 

4.4. Data and Empirical Methodology 

 

This section is divided into three sub-sections. The first sub-section presents the econometric 

model based on regime switching. The second sub-section presents test procedures for breaks. 

Finally, the last sub-section describes the data. 

 

4.4.1. Regime Switching Model 

 

The model used is an extension of the popular seminal work based on the constancy of regime 

switching probabilities proposed by Hamilton (1989). In our case, the switching probabilities 

are allowed to vary across regimes; in particular, they are allowed to switch between two 

regimes over time. Correlation and coskewness processes are allowed to be affected by changes 

in regimes. Given that all the correlation and coskewness parameters of the model, 𝑍𝑡 follow a 

two-regime Markov process 𝑠𝑡, by extension the behaviour of correlation and coskewness of 

returns will be regime-specific. The model takes a similar functional form to CFH for regime 

switching in contagion models.  

 

The underlying empirical specification for 𝑦𝑡, which is representing stock returns, dependent 

upon 𝑠𝑡 is given by: 

 

𝑦𝑡 = 𝜇𝑠𝑡 + Ω𝑠𝑡𝑍𝑡 + 𝜀𝑡,                                                           (4.3) 

𝜀𝑡 ∼ 𝑖. 𝑖. 𝑑.  𝑁(0, Σ𝑠𝑡),                                                                (4.4) 

𝑍𝑡 ∼ 𝑖. 𝑖. 𝑑.  𝑁(𝑐1𝑚, 𝐼𝑚) 1 (𝑍𝑗𝑡  > 𝑐, 𝑗 = 1,… ,𝑚 ).            (4.5) 
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where 𝑦𝑡 = (𝑦1𝑡, … , 𝑦𝑚𝑡)
′  and and 𝑍𝑡 = (𝑍1𝑡, … , 𝑍𝑚𝑡)

′  are 𝑚 -dimensional matrices of 

random vectors based on period 𝑡 = 1,… , 𝑇, respectively. 𝜇 is an 𝑚 x 1 vector of constants, Ω 

is an 𝑚 x 𝑚 skewness-coskewness matrix due to the skew-normal distribution, 𝜀𝑡 is an 𝑚 x 1 

error disturbances vector which are 𝑖. 𝑖. 𝑑.  across 𝑡, Σ denote the 𝑚 x 𝑚 matrix of the variance-

covariance, 1𝑚 is an 𝑚 x 1 column vector of 𝑚 ones and 𝐼𝑚 is the 𝑚 x 𝑚 identity matrix. By 

incorporating the vector 𝑍𝑡 , skewness is allowed in the distribution which improves the 

dependency structure between the underlying components of matrix 𝑦𝑡 . 𝑍𝑡 , 1(·) = 1 if 𝑍𝑗𝑡 

holds true and 0 otherwise, i.e., it is true when 𝑍𝑗𝑡 (sample test statistics) exceeds 𝑐 (associated 

MCMC Bayesian statistics). The subscript 𝑠𝑡 denotes the time-varying switching regime 𝑠 at 

period 𝑡.  

 

The distribution of the skew-normal variable 𝑦𝑡 has a joint probability density function (P.D.F) 

given by:  

 

𝑓(𝑆𝑁) (𝑦𝑡; 𝜇, Σ, Ω) =  
2𝑚

𝑑𝑒𝑡(Σ + Ω)1 2⁄
𝑓(𝑁) ((Σ + Ω

2)−
1
2(𝑦𝑡 − 𝜇))  Pr (𝑉 > 0),                (4.6) 

 

where  

 

                                  𝑉 ∼ 𝑁(Ω(Σ + Ω2)−1(𝑦𝑡 − 𝜇), 𝐼𝑚 − Ω(Σ + Ω
2)−1Ω).                       (4.7)  

 

Pr (𝑉 > 0) indicates that the P.D.F is a non-negative function that generates finite positive 

probabilities. 𝑓(𝑁)(𝑦𝑡) is the P.D.F of the conventional Gaussian distribution with the mean 

taking on value 𝜇 = 0 while it requires the covariance matrix 𝐼𝑚 to be positive definite and 

conditional upon 𝑦𝑡. If the sample space of the skew-normal distribution is set to 0, i.e., Ω = 0 

then Eq. (4.3) to (4.5) collapses to that of a joint P.D.F for the Gaussian distribution given by 

 

𝑓(𝐺) (𝑦𝑡; 𝜇, Σ) =  
1

𝑑𝑒𝑡(Σ)1 2⁄
𝑓(𝑁) (Σ

−
1
2(𝑦𝑡 − 𝜇)).                                                       (4.8) 
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There are two-regime variables in the model taking on values 𝑠𝑡 ∈ {0, 1}. The two regimes, 

which captures the behaviour of economies during the non-crisis and crisis periods, allows for 

parameter switches. Specifically, the two possible regimes of 𝑠𝑡 is defined as 

 

𝑠𝑡 = {
1,         if  𝑠𝑡 =                       crisis 
0,         if  𝑠𝑡 =           non − crisis 

 

 

In Eq. (4.3) and (4.4), there are three switching parameters, {𝜇𝑠𝑡 , Σ𝑠𝑡 , Ω𝑠𝑡}𝑠𝑡=0,1
 which 

represents the means,  𝜇𝑠𝑡  cross-variances,  Σ𝑠𝑡  and coskewness,  Ω𝑠𝑡 . These parameters are 

allowed to change in regime 0 and 1. A switch in 𝑠𝑡 is, thus, expected to bring about a change 

in these parameters. Once there are changes in the parameters of correlation and coskewness 

during 𝑠𝑡 = 1,  it is assumed that contagion has occurred because they are measures of 

dependence. 

 

For ease of estimation, it is computationally convenient to rewrite Eq. (4.3) to (4.5) as 

 

𝑦𝑡 = 𝑋𝑡𝛽𝑠𝑡 + 𝜀𝑡,                                                           (4.9) 

𝜀𝑡 ∼ 𝑖. 𝑖. 𝑑.  𝑁(0, Σ𝑠𝑡),                                                    (4.10) 

where 

𝑋𝑡 = (𝐼𝑚, 𝐼𝑚⊗𝑍𝑡
′), 𝛽𝑠𝑡 = (𝜇𝑠𝑡

′ , 𝜔𝑠𝑡
′ ),  𝜔𝑠𝑡 = vec (Ω𝑠𝑡

′ ).   

 

where ⊗ is the kronecker product for the matrix operation. As previously defined, 𝑦𝑡 has mean 

𝜇𝑠𝑡
′ , variance, 𝜔𝑠𝑡

′  and sample space, Ω𝑠𝑡
′ . 𝑚, 𝑘 and (𝑚 + 𝑘) with 𝑘 = 𝑚2 are respectively the 

matrix dimensions of 𝜇𝑠𝑡,  𝜔𝑠𝑡 and 𝛽𝑠𝑡.  

 

The time-varying switching parameters, which are conditionally regime-dependent, are 

Θ = (𝛽0, 𝛽1, Σ0, Σ1),                                                                 (4.11) 
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These parameters, (𝛽0, 𝛽1, Σ0, Σ1) switch regimes via an unobservable Markov process. For 

model completeness, the time-varying Markov switching conditional probability of 𝑠𝑡 is given 

by  

 

𝑝𝑖𝑡 = Pr (𝑠𝑡 = 1|𝑠𝑡 = 𝑖) for 𝑖 = 0 and 1.                           (4.12) 

 

where 𝑝𝑖𝑡 are conditional probabilities. These probabilities are seen as fixed constants that vary 

over time. 

 

In what follows, it is more convenient to stack up the data for given variables (observable and 

hidden) at 𝑇  as: 𝑦 = (𝑦1
′ , … , 𝑦𝑇

′ )′ , 𝑍 = (𝑍1
′ , … , 𝑍𝑇

′ )′  and 𝑠 = (𝑠1, … , 𝑠𝑇)
′.  And for ease of 

implementation, the log-likelihood function, 𝑙  is used. Henceforth, the chapter defines the 

mean by 𝜇𝑖,𝑙 whose 𝑖th element is 𝜇𝑙 = 𝑙 = 0, 1 and denote the sample covariance and sample 

space as Σ𝑖𝑗,𝑙 and Ω𝑖𝑗,𝑙, respectively. For convenience, it estimates the correlations instead of 

the covariances. Specifically, the correlation 𝜌𝑖𝑗,𝑠𝑡 (often denoted as 𝜌𝑖𝑗,𝑙 with 𝑙 = 0, 1) to be 

evaluated over 𝑠𝑡 = 0, 1 is given by 

 

𝜌𝑖𝑗,𝑠𝑡 =
Σ𝑖𝑗,𝑠𝑡 

√Σ𝑖𝑖,𝑠𝑡 √Σ𝑗𝑗,𝑠𝑡 
,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗.                            (4.13) 

 

In this chapter, the regime switching model employs the Bayesian approach to estimate the 

model parameters. This approach is based on the MCMC Gibbs sampling technique, which 

allows us to draw accurate probabilistic inference about the parameters of correlation and 

coskewness. The technique readily accommodates data with high dimensionality and utilizes 

the posterior distributions during estimation to provide efficient estimates. In addition, it 

provides a satisfactory performance because it does not suffer from the problem of non-

convergence, and it allows for the possibility of modelling parameter uncertainty. 
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There are several potential empirical biases that the model in Eq. (4.9)37 controls for during 

estimation. First, it controls for possible heteroscedasticity using adjusted standard errors to 

ensure that the estimates are robust. Second, it allows for capturing both the influence of linear 

and non-linear time-varying changes in market dependence of returns. Third, the effect of 

asymmetry on the distribution of returns is taken into consideration. Fourth, the parameters of 

interest are allowed to change across different regimes. However, the model does not provide 

the crisis start date to demarcate the two-regime variables 𝑠𝑡 ∈ {0, 1}, even though there are 

important in the model. Hence, researchers are required to determine the date of the switch in 

regime from a non-crisis to a crisis one. If this date is not correctly determined, one could 

conclude that there were significant increases in the parameters of correlation and coskewness 

during 𝑠𝑡 = 1 when, in fact, there were none and vice versa. Thus, an outstanding issue that 

needs to be addressed is the determination of the date where the regime switches. The test 

procedures used in determining this date will be discussed in the next section. 

 

4.4.2. Tests Procedures for Determining the Dates – Breaks at Unknown Dates 

 

As mentioned above, the regimes are an inherent part of the model to be estimated and the date 

that will be used to separate these regimes has to be determined. In this sub-section, therefore, 

the test procedures for determining this date will be discussed. Two test procedures are used to 

determine this date: Quandt-Andrews (QA) and Bai and Perron (BP). These procedures allow 

for breaks at unknown points in time, i.e., the possible location of break points and the 

estimation of their dates are treated as endogenous.  

 

Quandt (1960) proposes the QA test procedure, but Andrews (1993) provided the approximate 

asymptotic distributions of the supremum (𝑆𝑢𝑝)  test statistics. The procedure is a 

generalization of the standard chow test. It is employed for testing whether there exist one or 

more unknown break points in the sample for a specified equation. The test procedure is based 

on the supremum of the individual Wald statistics, which have a non-standard distribution. 

Hansen (1997) computes the approximate asymptotic p-values for the test. Andrews and 

 
37 The empirical strategy, i.e., implementation steps, for estimating the model using Bayesian inference methods, 

the procedure to perform tests for contagion is presented in Appendix 6 while the methods for hypothesis 

evaluation for these tests and decision rules are presented in Appendix 7 and 8. 
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Ploberger (1994) developed stronger optimality properties for the test, namely the 

exponentially weighted (𝐸𝑥𝑝𝐹) and average (𝐴𝑣𝑒𝐹) test statistics. 

 

When the break date, k lies in the range [𝑘1, 𝑘2], the relevant test statistics that can be 

computed are the  

 

Quandt test statistic 

𝑆𝑢𝑝𝐹𝑛 = sup
𝑘1≤𝑘≤𝑘2

𝐹𝑛(𝑘) 

 

and the Andrews and Ploberger (1994) test statistics  

 

𝐸𝑥𝑝𝐹𝑛 = ln(
1

𝑘2 − 𝑘1 + 1
∑ exp(

1

2
𝐹𝑛(𝑘))

𝑘2

𝑡=𝑘1

) , 

 

𝐴𝑣𝑒𝐹𝑛 = (
1

𝑘2 − 𝑘1 + 1
∑(𝐹𝑛(𝑘))

𝑘2

𝑡=𝑘1

). 

 

Moving next to the BP test procedures. Various BP testing procedures have been proposed by 

Bai and Perron (1998, 2003a). These procedures are 𝑆𝑢𝑝𝐹𝑇 (𝑚), “double maximum” and 

𝑆𝑢𝑝F𝑇(ℓ + 1|ℓ) test statistics. They have been employed extensively in several applications 

and are particularly useful because they allow for multiple breaks in linear regression models. 
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The 𝑆𝑢𝑝𝐹𝑇  (𝑚) test statistic  

Consider the linear regression model38 with multiple breaks, 𝑚 (and 𝑚 + 1 regimes) given by 

 

𝑦𝑡 = 𝑥𝑡
′𝛽+ 𝜀𝑡                            𝑡 = 𝑇𝑗−1 + 1,… , 𝑇𝑗,     for 𝑗 = 1,… ,𝑚 + 1         (4.14) 

 

The regression specification employed is 

 

𝑦𝑡 = 𝛽0 +𝛽1𝑥𝑡 + 𝜀𝑡                                                    (4.15) 

 

where 𝑦𝑡  is dependent variable at time  𝑡 . 𝑥  is the vector of covariates.  𝛽  is the vector of 

regression coefficients. 𝜀𝑡  is the error at time  𝑡 . 𝑇  denotes the total sample size. 𝑗  are the 

different regimes defined by the 𝑚-partition (𝑇1, … , 𝑇𝑚) or break points. These break points 

are explicitly dealt with as unknown and the convention that 𝑇0 = 0 and 𝑇m+1 = 1 is adopted. 

The aim, here, is to estimate 𝛽 alongside the break points using the available 𝑇 observations 

on (𝑦𝑡, 𝑥𝑡). Eq. (4.15) has the following matrix form given by 

 

𝑌 = 𝑋𝛽 + 𝛦                                                                    (4.16)                      

                     

where 𝑌 = (𝑦1, … , 𝑦𝑇)
′
, 𝑋 = (𝑥1, … , 𝑥𝑇)

′
 and 𝛦 = (𝜀1, … , 𝜀𝑇)

′
. Let (𝑇1

0, … , 𝑇𝑚
0) denote the 

true break points so that the true DGP is assumed to be  

 

𝑌 = 𝑋𝛽0 + 𝛦                                                                    (4.17) 

 

 
38 In our case, the chapter considers three models: one for each of the three regions in our study. The dependent 

variable of each model is the regional index of stock returns (log) while the regressor in each model is the U.S. 

stock returns (log). 
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The estimation of Eq. (4.15) is based on the least-squares principle. The corresponding least-

squares estimates of 𝛽 for each of the 𝑚-partition (𝑇1, … , 𝑇𝑚) are obtained by minimizing the 

sum of squared residuals (SSR) function, 𝑆𝑇(𝑇1, … , 𝑇𝑚) = (𝑌− 𝑋𝛽)
′(𝑌− 𝑋𝛽) given by 

 

𝑆𝑇(𝑇1, … , 𝑇𝑚) = ∑

𝑚+1

𝑖=1

∑ [𝑦
𝑡
− 𝑥𝑡

′𝛽]
2

𝑇𝑖

𝑡=𝑇𝑖−1+1

                      (4.18) 

 

In terms of notation, let us denote all the 𝑚-partition (𝑇1, … , 𝑇𝑚) as {𝑇𝑗} and let 𝛽̂({𝑇𝑗} ) 

denote all the estimates of the vector of parameters. 𝛽̂({𝑇𝑗} is relevant for estimating the break 

points. Hence, substituting 𝛽̂({𝑇𝑗}  into the objective function given by Eq. (4.18) 

𝑆𝑇(𝑇1, … , 𝑇𝑚) and minimizing this function, the estimated break points (𝑇̂1, … , 𝑇̂𝑚) obtained 

are given by 

 

(𝑇̂1, … , 𝑇̂𝑚) = arg min(𝑇1,…,𝑇𝑚)𝑆𝑇(𝑇1, … , 𝑇𝑚), 

 

where the minimization of the objective function is taken over all 𝑚-partitions (𝑇1, … , 𝑇𝑚) 

such that 𝑇𝑖 − 𝑇𝑖−1 ≥ 𝑞 , where 𝑞  denotes the degrees of freedom. From Eq. (4.18), the 

estimators for the break point are global minimizers of the objective function. One can use the 

efficient algorithm developed by BP, which is based on the principle of dynamic programming 

to compute the estimates of the break points as global minimizers of the SSR. This algorithm 

draws upon at most a number of SSR of order 𝑂(𝑇2) for any number of 𝑚, as opposed to a 

standard grid search procedure, which uses SSR operations of order 𝑂(𝑇m)39. Hereafter, the 

parameter estimates of the least squares regression, i.e., 𝛽̂ = 𝛽̂({𝑇̂𝑗} ), which are the estimates 

 
39 Break points can only take a finite number of values because they are discrete parameters. These break points 

can be estimated by a grid search. However, Bai and Perron (2003a) argued that the estimation by a grid search 

can becomes rapidly computationally excessive when m > 2. They developed an alternative and more efficient 

method to compute the break points using a dynamic programming algorithm.  
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belonging to the 𝑚-partition {𝑇̂𝑗}, can be computed. The number of breaks (𝑚) can then be 

tested using several testing procedures developed by Bai and Perron (1998)40.  

 

The 𝑆𝑢𝑝𝐹𝑇 (𝑚) test is carried out under the null hypothesis of no structural breaks 𝑚 = 0 

versus the alternative of a fixed number of breaks 𝑚 = 𝑘 breaks, where 𝑘 is the pre-specified 

number of breaks. Let 𝑇1, … , 𝑇𝑘 be a partition such that 𝑇𝑖 = [𝑇𝜆𝑖] (𝑖 = 1,… , 𝑘), where 𝑇𝑖 is 

the time index and 𝜆𝑖 are the possible break fractions in 𝑇. Let us define any generic stochastic 

matrix 𝑅 such that (𝑅𝛽)
′
= (𝛽1

′ − 𝛽2
′ , … , 𝛽𝑘

′ − 𝛽𝑘+1
′ ). The 𝐹-statistic associated with this test 

given by   

 

𝐹𝑇(𝜆1, … ,𝜆𝑘) =
1

𝑇
(
𝑇−(𝑘+1)2

2𝑘
) 𝛽̂′𝑅′(𝑅𝑉̂(𝛽̂)𝑅′)

−1
𝑅𝛽̂,  

 

where 𝛽̂ corresponds to the vector of least-squares coefficient estimates. Meanwhile 𝑉̂(𝛽̂) is 

the estimate of the variance-covariance matrix for the parameter estimates, 𝛽̂ that is robust to 

violations of the normality assumption, i.e., it is robust to both heteroscedasticity and serial 

correlation.  

 

Bai and Perron (1998) follow Andrews (1993) and others, and consider the supremum 𝐹-

statistic to test the null hypothesis of no structural breaks which takes the form,   

 

𝑆𝑢𝑝𝐹𝑇(𝑘) = 𝐹𝑇(𝜆̂1, … , 𝜆̂𝑘),  

 

where 𝜆̂1, … , 𝜆̂𝑘 is used for the global minimization of the SSR. The asymptotic distribution, 

which can be used for testing of breaks, is based on a trimming parameter, 𝜏 through the 

imposition of a minimal length ℎ for each sample segment (regime), namely 𝜏 = ℎ 𝑇⁄ . Thus, 

a restriction that no less than 𝜏 proportion of 𝑇 should be included in each segment is imposed 

on the objective function, i.e., 𝑆𝑇(𝑇𝜆1, … , 𝑇𝜆𝑘)  is under restriction of (𝜆̂1, … , 𝜆̂𝑘) ∈ Λ𝜏, 

 
40 In this chapter, the SP is employed to estimate the number of breaks. 
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where Λ𝜏 = {(𝜆1, … ,𝜆𝑘); |(𝜆𝑖+1 − 𝜆𝑖) ≥ 𝜏,𝜆1 ≥ 𝜏,𝜆𝑘 ≤ 1 − 𝜏}  and Λ𝜏  denotes the set of 

allowable segments that satisfy this restriction. 

 

Double maximum statistics  

 

Double maximum statistics are used to test the null hypothesis of no breaks against the 

alternative of an unknown number of breaks for some given upper bound/maximum of the 

number of multiple breaks allowed, 𝑀.  The first double maximum statistic, 𝑈𝐷𝑚𝑎𝑥F𝑇(𝑀) is 

an equal weighted statistic where the weights41 on all residuals are all set equally. The second 

statistic, 𝑊𝐷𝑚𝑎𝑥F𝑇(𝑀) , which is also a weighted statistic, applies the weights to the 

individual test statistics such that the 𝑝-values are equal across values of 𝑚, these statistics are 

given by   

 

𝑈𝐷𝑚𝑎𝑥F𝑇(𝑀) = 𝑚𝑎𝑥1≤𝑚≤𝑀𝑠𝑢𝑝𝐹𝑇(𝜆1, … , 𝜆𝑚), 

 

𝑊𝐷𝑚𝑎𝑥F𝑇(𝑀) = 𝑚𝑎𝑥1≤𝑚≤𝑀
𝑐(𝑞,𝛼,1)

𝑐(𝑞,𝛼,𝑚)
𝑠𝑢𝑝𝐹𝑇(𝜆1, … , 𝜆𝑚). 

 

where 𝑐, 𝑞 and 𝛼 respectively denotes the critical value, degrees of freedom and significance 

level. 𝑐(𝑞, 𝛼,𝑚) is the asymptotic critical value of the 𝑆𝑢𝑝𝐹𝑇(𝜆1, … , 𝜆𝑚) test. 

 

The 𝑆𝑢𝑝𝐹𝑇(ℓ + 1|ℓ) statistic  

 

The 𝑆𝑢𝑝F𝑇(ℓ + 1|ℓ) statistic is used for testing the null hypothesis of a number of changes, 

say ℓ breaks versus the alternative hypothesis that an additional break exists, ℓ + 1 breaks. 

This procedure is applied to test for additional breaks if the null hypothesis of breaks is rejected 

by the “double maximum” statistics. The implementation of the test starts with the global 

minimization of the SSR in a regression model with ℓ breaks. Each of the segments defined by 

the ℓ breaks are tested for the presence of additional breaks. Next, from all the segments where 

 
41 These weights possibly will reflect the imposition of some priors on the likelihood of several numbers of breaks. 
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an additional break is included, the segment that minimizes the SSR the most is chosen as the 

model with breaks. Finally, the 𝑆𝑢𝑝F𝑇(ℓ + 1|ℓ) statistic is applied to test whether allowing for 

an additional break will result in a significant reduction in the SSR. This process is continued 

by increasing ℓ in a sequential way, starting with ℓ = 0, ℓ = 1,... until the test fails to reject 

the null hypothesis of ℓ breaks.  

 

The test statistic is of the form  

 

    𝐹𝑇(ℓ + 1|ℓ) = {𝑆𝑇(𝑇̂1, … , 𝑇̂𝑙) − min
1≤𝑖≤ℓ+1

inf
𝜏∈Λ𝑖,𝜀

𝑆𝑇[(𝑇̂1, … , 𝑇̂𝑖−1, 𝜏, 𝑇̂𝑖, … , 𝑇̂ℓ )]} 𝜎̂2⁄  

 

where   

 

Λ𝑖,𝜀 = [𝜏; 𝑇̂𝑖−1 + (𝑇̂𝑖 − 𝑇̂𝑖−1)𝜀 ≤ 𝜏 ≤ 𝑇̂𝑖 − (𝑇̂𝑖 − 𝑇̂𝑖−1)]   

 

The test42 rejects the null hypothesis in favour of a model with (ℓ + 1) breaks if the SSR has 

an overall minimal value that is sufficiently smaller than the SSR from the model with ℓ break. 

The break date that would be selected is the one that corresponds with this overall minimum. 

This test procedure has some appealing features. Firstly, the appropriate number of breaks in 

the data are consistently determined because it allows for a specific to general modelling 

approach. Secondly, the general specifications for computing the test statistics allows for 

different serial correlation in the errors and data with different distributions. In addition, it 

allows for different types of errors. The errors can differ across segments or have a common 

error structure. Thus, estimated break dates will still be consistent even when the errors have 

serial correlation. 

 

4.4.3. Data 

 

The analysis in this chapter uses data on stock returns (all denominated in US Dollar). The 

chapter proceeds to compute country-level data on stock returns using daily data on stock 

 
42 Bai and Perron (2003b) provide relevant conventional critical values for this test. 
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prices. The data on stock prices come from Bloomberg’s MSCI database. The stock prices data 

begin in January 4, 2005 and end October 17, 2018, which provides us with 𝑇=3450 daily 

observations. There is a problem that researchers confront when using stock data. This problem 

presumably arises from the non-synchronization of trading hours across global stock markets. 

However, this chapter does not have any concern about this problem because it has already 

been addressed by the source of the data. Therefore, there is no need to adjust for time-zone 

differences nor to resort to the use of lead and lag indices in the dataset.  

 

Following standard practice, the chapter defines stock returns as the log difference of daily 

stock prices expressed in percent and this is given by: 

 

𝑟𝑖𝑡 = 100 x (𝑙𝑛(𝑝𝑖𝑡) − 𝑙𝑛(𝑝𝑖𝑡−1)) 𝑡 = 1, 2…𝑇,          (4.19)  

 

where 𝑟𝑖𝑡 denotes stock returns in market 𝑖 at day 𝑡. 𝑝𝑖𝑡 and 𝑝𝑖𝑡−1 represents the stock price of 

market 𝑖 at close of day 𝑡 and 𝑡 − 1, respectively. (𝑙𝑛) denotes natural logarithm.  

 

To test for breaks and to estimate break dates, the GDP-weighted average of stock returns over 

time (in log) is used. This return series will be constructed using data on a broad set of DEE 

countries, twenty-four in total. The countries which include Belgium, Brazil, Chile, China, 

Colombia, France, Germany, Hong Kong, Indonesia, Ireland, Italy, Japan, Korea, Malaysia, 

Mexico, the Netherlands, Peru, Philippines, Portugal, Singapore, Spain, Thailand, the UK will 

be grouped into 3 main regions, namely, the DE (nine countries), PEA (nine countries), and 

ELA (five countries). Within each region, the US will be included to act as the crisis source 

country.  

 

To construct the dataset on the GDP-weighted average of stock returns (in log) the chapter 

proceeds as follows. Firstly, data on nominal GDP and consumer price index (CPI) (in the base 

year 2010) are obtained for the period 2005 to 2018 from the database of the World Bank. 

Next, to compute their real GDP, each country’s nominal GDP are divided by their respective 

CPI. Secondly, the real income level share for each country in a region are obtained. It derives 

these by dividing country’s real GDP with the total value of real GDP for all countries in a 
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particular region. Each country is then weighted by its share of GDP, i.e., according to the size 

of its economy. Thirdly, the average weight for each country is obtained by dividing the sum 

of country’s real income share with the total number of years. Finally, the weighted stock 

returns for each country is computed by multiplying their average weight by their daily stock 

returns. The average of the weighted stock returns of all countries in a particular region is then 

the GDP-weighted average of stock returns for that region.  

 

The GDP-weighted average of stock returns 𝑅𝑡 can be expressed as 

 

𝑅𝑡 =∑𝜔𝑖

𝑛

𝑖=1

𝑟𝑖𝑡                 (𝑖 = 1, … , 𝑛)      (4.20) 

 

where 𝑅𝑡 denotes the GDP-weighted average of stock returns for region 𝑖 at time 𝑡, 𝑟𝑖𝑡 is the 

stock return in market 𝑖, the weights for each country is defined as 𝜔𝑖 =
𝑥𝑖𝑡

∑ 𝑥𝑖𝑡
𝑛
𝑖=1

. 𝑥𝑖𝑡 is the real 

income level of country 𝑖 and ∑ 𝑥𝑖𝑡
𝑛
𝑖=1  is the total real income for all countries in a region. 

 

In general, to determine the crisis date using break tests, this chapter uses data on the GDP-

weighted average of stock returns. To estimate the contagion model, however, it uses data 

country-level on stock returns.  

 

Tables 4.3 presents some basic summary statistics for the sample of stock returns at country 

level during the period, January 4, 2005 to October 17, 2018. Panel A of Table 4.3 pertains to 

sample characteristics for stock markets in ELA while Panels B, C and D concern markets in 

PEA, the DE, and the crisis source market, respectively. For markets in ELA, the average 

returns ranged between 0.0067 and 0.02 percent, respectively. In the markets within PEA, the 

lowest and highest average returns are 0.0043 and 0.02 percent, respectively. The average 

returns are in the range of -0.0084 and 0.0084 percent for markets in the DE.  

 

The degree of dispersion around the mean as measured by the standard deviation shows that 

stock return series are quite far from their mean. This is particularly so for stock markets 

situated in ELA. This is because the standard deviations of their returns are relatively higher  
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Table 4.1: Summary Statistics, Country-level Stock Returns 
 

Source: Author’s compilation

 Average 

return 

Maximum 

return 

Minimum 

return 
Std. Dev. Skewness Kurtosis  Jarque-Bera  Prob. 

Panel A:   Markets in ELA    
Brazil  0.0084  9.8283 -7.9576  0.9823 -0.1613  12.4964  12978.73  0.0000 

Chile  0.0067  9.6184 -5.0453  0.6094  0.4206  27.4857  86287.21  0.0000 

Colombia  0.0122  7.1632 -5.6324  0.7331 -0.3146  12.1241  12024.13  0.0000 

Mexico  0.0082  6.6824 -4.7331  0.7122 -0.1546  10.6969  8529.85  0.0000 

Peru  0.0204  6.2880 -7.1670  0.8283 -0.3581  10.9357  9126.511  0.0000 

Panel B:  Markets in PEA    
China  0.0054  6.6979 -3.9695  0.4756  0.2465  20.4302  43708.17  0.0000 

Hong Kong   0.0084  4.9907 -5.4549  0.5567 -0.2576  14.3001  18394.09  0.0000 

Indonesia   0.0201  4.4015 -6.1272  0.6904 -0.4719  10.4132  8027.92  0.0000 

Japan   0.0047  5.6725 -4.5322  0.6149 -0.4265  11.0515  9423.56  0.0000 

Korea   0.0117  5.0907 -4.7651  0.5691 -0.3623  11.7036  10965.16  0.0000 

Malaysia   0.0058  2.2588 -2.5558  0.4060 -0.1767  7.0948  2428.36  0.0000 

Philippines   0.0143  4.0645 -5.9375  0.5828 -0.5274  10.4263  8087.83  0.0000 

Singapore  0.0043  3.6417 -4.2698  0.4981 -0.2106  10.8514  8887.02  0.0000 

Thailand  0.0104  5.7331 -7.8538  0.6222 -0.7019  20.2596  43106.03  0.0000 

Panel C:   Markets in the DE    
UK  0.0042  4.7365 -3.9772  0.4955  0.0233  12.9040  14100.65  0.0000 

France  0.0048  5.7178 -4.0404  0.5852  0.0403  11.2971  9897.01  0.0000 

Germany  0.0072  5.7747 -3.6625  0.5805  0.0409  11.1799  9619.58  0.0000 

Belgium  0.0013  4.5434 -4.8478  0.5607 -0.4700  10.4066  8012.84  0.0000 

The Netherlands  0.0084  5.8183 -4.0172  0.5454  0.0089  12.5173  13020.77  0.0000 

Portugal -0.0074  6.2179 -4.6794  0.5619  0.0489  12.4145  12742.51  0.0000 

Italy -0.0070  6.4208 -5.9052  0.6797 -0.1337  10.4537  7996.73  0.0000 

Ireland -0.0084  5.8110 -7.7081  0.7695 -0.6091  12.8133  14056.61  0.0000 

Spain  0.0001  6.3059 -6.0596  0.6641 -0.0521  12.1818  12120.63  0.0000 

Panel D: Crisis source market   
US  0.0108  4.4918 -4.1319  0.5121 -0.4920  14.8093  20186.78  0.0000 
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than standard deviations of the returns of other regions. Skewness, which measures the degree 

of asymmetry in the distribution of returns, shows both left and right skew of varying degree 

for markets in the DE. Whereas for markets in PEA and ELA, many of them have return 

distributions that are mostly left skewed. This is possibly due to falling returns over a long time 

in our sample for some markets in these regions. The return distributions in the crisis source 

market is also left skewed. Kurtosis, which are informative about the peakedness of the 

distribution, shows that the returns data for all markets have distributions that are leptokurtic, 

i.e., positive kurtosis. Under the null hypothesis of a normal distribution, the residuals in the 

returns for all markets fail the Jarque-Bera normality test. All the test statistics are highly 

statistically significant at the 5% level of significance. Overall, our sample of country-level 

stock returns largely have non-symmetrical distributions. This gives further indication that the 

distributional assumptions that accommodates the skewness of the return distributions should 

be considered for analysis.  

 

    Table 4.2: Summary Statistics, GDP-Weighted Average of Stock Returns 

          ELA  PEA DE 

 Average return  0.0027  0.0012  0.0002 

 Maximum return  2.0628  0.9458  0.5578 

 Minimum return  -1.5689  -0.6023  -0.3806 

 Std. Dev.  0.1896  0.0730  0.0584 

 Skewness -0.2875 -0.2851 -0.1024 

 Kurtosis  13.6486  19.0380  10.7526 

    

 Jarque-Bera  16347.75  37021.91  8645.86 

 Probability  0.0000  0.0000  0.0000 

 

Table 4.2 reports summary statistics for the GDP-weighted average of stock returns for ELA, 

PEA, and the DE. Markets in ELA have the largest average stock return of 0.0027 percent. This 

is followed by markets in PEA with an average of 0.0012 percent and by markets in the DE 

with the least average return of 0.0002 percent. Skewness in the daily return of stocks weighted 

by GDP is left skewed for all regions. The Jarque-Bera test statistic are all statistically 

significant at the conventional significance level (𝑝-value of 0.00). It, thus, rejects the normality 

hypothesis for markets in all regions. 
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Figure 4.1 plots the evolution of country-level stock returns for each of the market in our 

sample. Clearly, it can be seen from the figure that the behaviour of stock returns differs across 

markets. The figure shows that all markets experienced sharp declines in their respective 

returns in 2008. There is a strong possibility that the fall in returns across markets are associated 

with the GFC, but one cannot fully claim that this crisis is responsible for the decrease in 

returns.  

 

Figure 4.1: Country-level Stock Returns  
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Notes: The figure plots the evolution of stock returns (log) for all markets. 
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Figure 4.2 plots the GDP-weighted average of stock returns across three regions. The figure 

shows a dramatic rise and fall in returns during the sample period. There are differences in 

returns across regions, which continues to a large degree over the years. Stock returns in the 

DE exhibit substantially more variability (changeability) than in PEA and ELA. Returns have 

fallen even more rapidly in this region than in PEA and ELA. In 2008, however, stock markets 

in all regions exhibited quite similar patterns. 

 

Figure 4.2: Plot of GDP-Weighted Average of Stock Returns across Regions  
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Relative to markets in other regions, returns declined sharply by almost 0.4 percent in the DE. 

However, it declined by over 0.6 and 1.5 percent, respectively in PEA and ELA. The timing of 

the sharp decline in returns across all regions appears to have occurred during the GFC. The 

magnitude of the decline in returns becomes less pronounced from 2009 forward in all the 

regions. 

 

To motivate the type of distributional form that would govern stock returns, the chapter 

graphically illustrates how observed stock return distributions differ from normal 
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approximations. Figure 4.3 depicts the Q-Q plot of stock returns (log) by country with 

superimposed normal distributions. It compares the distribution of returns (shown by the blue 

curve) with the fitted normal distribution (solid red line).  

 

Figure 4.3: Q-Q Plot of Stock Returns (log) by Country and their Normal Approximations 
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Notes: The distribution of the normal density function (solid red line). The finite-sample size n= 3450. 
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A closer observation of the figure shows that there are extreme observations in the data on 

returns. Further, the graphical illustration suggests that returns have distributions that are not 

consistent with normality. The finite-sample distribution of the returns does not fit normal 

distributions well even though the series are log transformed data and not in levels, i.e., it is 

not well approximated by a normal distribution. The plots in the figure are quite similar for 

most of the countries and quite informative.  

 

The figure reveals three interesting stylized facts about the precise properties of stock returns. 

Firstly, it is evident from the figure that the distribution of returns exhibits departures from 

normality with noticeably fatter tails. Secondly, one observes that the distributions have higher 

peaks than normal indicating excess kurtosis. Thirdly, there is evidence of asymmetry in the 

distribution of returns. This is because the distributions seem to exhibit slight left or right 

skewness. The distributional differences between the returns and the normal distributions 

indicates that our finite-sample data on stock returns are not completely consistent with 

normality assumption.  

 

Based on these characterizations revealed from our data, it is obvious that the chapter must use 

a different distributional form, which does not fully rely on the underlying assumptions of 

normality during estimation in order to obtain reliable parameter estimates. Therefore, to allow 

for all these characterizations, it would use a mixture of normal distribution such as the skew-

normal distributions for the estimation of our contagion models. Moreover, this distribution 

would help us to overcome the lack of fit. Overall, this illustration is informative about the 

behaviour of the returns and that non-normal distributions may provide a good fit for stock 

returns. This chapter relies on distributions derived from a skew-normal model for its empirical 

estimations. This model captures the conventional behaviour of returns including heavy tails, 

excess kurtosis, and asymmetry, thereby correcting for them in our analysis.  

 

4.5. Empirical Results  

 

This section is divided into four sub-sections. The first sub-section presents the results of the 

different test procedures based on least square estimation that were used to determine the start 

date of the GFC. The second sub-section provides the benchmark results of the regime 

switching model for contagion using endogenously determined crisis date and estimated by the 
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Bayesian estimation approach. The third sub-section contrasts the benchmark results of the 

model against the results of an alternative model using exogenously determined crisis date. The 

fourth sub-section reports the results of the sensitivity analysis. 

 

4.5.1. Crisis Date Determination using Test Procedures 

  

This sub-section is on crisis date determination using test procedures of QA and BP. As already 

mentioned, these procedures are used to locate break points in the underlying processes, which 

generate returns, and to estimate the dates of these break points with the goal of determining 

the crisis start date. Determining the location of break points involves two steps. Firstly, 

estimating the regression model in Eq. (4.17) separately for each of the different regions and 

using the least squares method of estimation to obtain the parameter estimates of the model. 

Secondly, relying on the regression results obtained from the first step, break tests at unknown 

points in time using the various procedures are conducted in order to estimate the break dates. 

However, before these tests are performed, the trimming of the distribution is required43. The 

trimming allows us to set the minimum length for each sample segment (regime or sub-sample), 

ℎ. For test based on the QA procedure, the chapter imposes a trimming parameter, 𝜏 = 0.15. 

This implies that the minimum length for each sample segment is 15% of T days. Tests based 

on BP procedures also requires trimming, so it again considers a trimming of 𝜏 = 0.15. These 

tests, however, are carried out at 𝛼 = 0.05 significance level for 𝑚 = 5 maximum number of 

breaks44.  

 

Table 4.5 reports the results of the break tests at unknown points in time45. It reports the test 

statistics and their corresponding 𝑝-values. It also reports the estimated break dates. The 

chaptere assesses whether these test statistics would reject the null hypothesis of no structural 

break at the conventional 5% significance level using the 𝑝-values for these test statistics. Panel 

A of Table 4.5 presents the results of the QA test procedure using 𝑆𝑢𝑝 𝐿𝑅, 𝐸𝑥𝑝 𝐿𝑅 and 𝐴𝑣𝑒 𝐿𝑅 

 
43 If the break is too near the top or bottom of the distribution, the test might be misleading. 
44 Bai and Perron (2003a) suggested that larger values of the trimming parameter should be considered to achieve 

break test with correct size in finite samples as small values may lead to tests with substantial size distortions. 

Moreover, larger values are required when allowing for serial correlation in the errors or heterogeneity across 

segments. They demonstrated that when 𝜏 = 0.15 the maximum number of breaks permissible is 5. This chapter 

follows this recommendation and so, the trimming percentage that it adopts will not affect consistency of the test.  
45 The results of the QA and BP tests along with the estimated break dates when it uses the country-level data on 

stock returns are presented in Appendix 9. 
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test statistics. The test rejects the null hypothesis when using the 𝑆𝑢𝑝 𝐿𝑅 test statistic for all 

the different regions. The 𝑝-value of the break points associated with the DE and ELA are 

essentially zero. With respect to 𝐸𝑥𝑝 𝐿𝑅 and 𝐴𝑣𝑒 𝐿𝑅 test statistics, the results are mixed for 

the various regions. For PEA, the null hypothesis cannot be rejected when using the 𝐸𝑥𝑝 𝐿𝑅 

test statistic. It can only reject the null for the DE and ELA using this tests statistic. In addition, 

the 𝐴𝑣𝑒 𝐿𝑅 test statistic strongly rejects the null hypothesis for the DE and ELA but fails to 

reject the null hypothesis for PEA. The evidence in the 𝑆𝑢𝑝 𝐿𝑅  test statistic is not fully 

supported by 𝐸𝑥𝑝 𝐿𝑅 and 𝐴𝑣𝑒 𝐿𝑅 test statistics, especially for PEA.  

 

The estimated break dates using the QA test based on 𝑆𝑢𝑝 𝐿𝑅 test statistic for all regions 

coincides remarkably well with the period of the GFC. For instance, in the DE and ELA 

regions, the dates identified by this test are 30/3/2009 and 13/11/2008, respectively. In PEA 

region, the break occurred earlier than that of the DE and ELA. More specifically, this break 

occurred on the 19/9/2008 for markets in this region.  

 

Panel B of Table 4.5 reports the results of the BP tests for ELA, PEA, and the DE. It reports 

test statistics of 𝑆𝑢𝑝𝐹𝑇 (𝑚), double maximum, and 𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) tests. It also reports the 

estimated break dates. For all the regions, the 𝑆𝑢𝑝𝐹𝑇 (𝑚) test rejects the null hypothesis of no 

structural breaks at the 5% level of significance. The test detects a total of 5 break points each 

for the DE and ELA while it detects a total of 4 break points for PEA. The double maximum 

tests based on 𝑈𝐷𝑚𝑎𝑥F𝑇(𝑀) and 𝑊𝐷𝑚𝑎𝑥F𝑇(𝑀) statistics rejects the null hypothesis of no 

structural breaks for all the regions. The rejection of the null suggests that there is at least one 

break point. Finally, the 𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) test detects 2 break points each for the DE and ELA 

and 1 break point for PEA. 

 

Next, the chapter analyses the results of the estimated break dates for both 𝑆𝑢𝑝𝐹𝑇 (𝑚) and 

𝑆𝑢𝑝𝐹𝑇  (ℓ + 1/ℓ) tests. In the case of ELA, the first break occurred on 31/7/2007. This break 

date falls within the first phase of the GFC, which occurred, from July 2007 to June 2008. It is 

associated with the reversal in the housing market coupled with the deterioration of the balance 

sheets of financial institutions, which lead to a contraction in supply of credit. The second break 

date occurs on the 13/11/2008, which corresponds to a similar date earlier identified using, the 
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QA test. Subsequent breaks occurred on 24/5/2010, 09/09/2011, 30/7/2012, 18/08/2014, 

22/08/2014 and 23/9/2016, respectively.  

 

Table 4.3: Results of the Break Tests at Unknown Points in Time  

Tests ELA PEA DE 

Panel A: QA test    

   Sup LR Statistic 28.4340*** 8.4957** 41.5236*** 

      p-value (0.000) (0.004) (0.000) 

     Break dates 13/11/2008 19/9/2008 30/3/2009  

   Exp LR Statistic 8.0406*** 0.8707 16.5056** 

      p-value (0.000) (0.238) (0.001) 

   Ave LR Statistic 6.1466*** 1.0494 10.8719*** 

      p-value (0.000) (0.357) (0.000) 

Panel B: BP tests    

𝑆𝑢𝑝𝐹𝑇 (𝑚) statistics    

Sequential F-statistic determined 

breaks 

5 4 5 

   Break: 1 ** 28.4340 8.4957 41.5236 

   Break: 2 **   18.3917   5.7938   29.0883 

   Break: 3 ** 13.8103 4.5242 20.3140 

   Break: 4 ** 10.8852 3.6763 15.8434 

   Break: 5 **   6.7552  12.8995 

    

Double maximum statistics     

   UDmax Statistica 56.8680** 16.9914**         83.0473** 

   WDmax Statisticb 56.8680** 16.9914** 83.0473** 

    

𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) statistic    

Sequential F-statistic determined 

breaks 

2 1 2 

   Break test: 0 vs. 1 ** 28.4340 8.49571 41.5236 

   Break test: 1 vs. 2 **   8.2301  15.8442 

    

Estimated break dates    

 31/10/2007 19/09/2008 27/02/2007 

 13/11/2008 13/11/2008 30/03/2009 

 24/05/2010 15/12/2010 01/06/2009 

 09/09/2011 11/08/2014 30/08/2011 

         30/07/2012 28/05/2015 02/10/2013 

 18/08/2014 07/09/2016 24/08/2016 

 22/08/2014   

 23/09/2016   

Notes: Reported tests for breaks include the QA and BP tests, respectively. These tests are based on a linear 

regression model for each region log of GDP-weighted stock return indices with the US stock index. *, ** and 

*** denote statistical significance at the 10%, 5% and 1% level, respectively. The figures in the parentheses are 

the probability values (p-values). The p-values for the tests are calculated using the method in Hansen (1997). a 

5% UDmax critical value is 11.70. b 5% WDmax critical value is 12.81. For the 𝑆𝑢𝑝𝐹𝑇 (𝑚) test, the critical values 

for breaks 1, 2, 3, 4, and 5 are 11.47, 9.75, 8.36, 7.19 and 5.85, respectively. For the 𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) test, the 

critical value for break test: 0 vs. 1 is 11.47 and the critical value for break test: 1 vs. 2 is 12.95.  
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In the case of PEA, the first break date occurs on 19/09/2008, which falls in the second stage 

of the GFC. This break occurs shortly after the Lehman Brothers bankruptcy filing in 

September 2008. The second and third break date occurs on 13/11/2008 and 15/12/2010, 

respectively. The chapter also finds evidence in favour of break points on 11/8/2014, 28/5/2015 

and 07/09/2016, respectively. 

 

In the DE, the first break date occurs on 27/7/2007. This date is linked to the period of turmoil 

in the credit market, which occurred in the summer of 2007. The second break date occurs on 

30/3/2009, which is consistent with the date identified by the QA test. The third break date 

occurs almost two years after the initial break date on 01/06/2009. For this region, the 

remaining breaks occur on 30/8/2011, 02/10/2013 and 24/8/2016, respectively. Since our 

interest is in the start date of the GFC, the chapter only selects the first break date that falls 

within the 2007 - 2009 period for each of the different regions. It uses these estimated dates in 

our regime switching model to demarcate the non-crisis regime from the crisis one. 

 

4.5.2. Benchmark Results from the Contagion Model 

 

This sub-section presents benchmark results from the contagion model. The purpose of 

determining the crisis dates using a variety of test procedures in the previous section is to obtain 

the start dates of the GFC for each of the regions in our sample and to incorporate these dates 

in the regime switching model before performing individual and joint tests of contagion. The 

tests of contagion are based on changes in the correlation and coskewness of returns in the 

crisis regime 𝑠𝑡 = 1  as opposed to non-crisis regime 𝑠𝑡 = 0 . Significant increases in the 

parameters governing market dependence, i.e., correlation and coskewness of returns during 

the crisis regime implies contagion. 

 

Table 4.6 present the benchmark results of the estimation for the contagion model.46 It provides 

the changes in correlation and coskewness between the US market and markets in each of the 

different regions. The probability value (P) is used to evaluate the results of the tests of 

contagion through correlation, where a value of 1 indicates evidence of contagion. In contrast, 

 
46 Plots of probability values and log of Bayes factor for the benchmark results are presented in Appendix 10. 
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the log of the Bayes factor (BF) is used to evaluate the tests of contagion through coskewness, 

where a value that is more than -4.6 provides decisive evidence in favour of contagion. The 

more negative the value, the stronger the contagion.  

 

As mentioned above, to assess whether there are estimation errors arising from the choice of 

date, the magnitude of estimates of changes in the correlation and coskewness for benchmark 

model will be compared to those of the alternative model. This chapter takes the difference 

between the probability values or the log of the Bayes factor of these models in order to conduct 

this assessment. If the difference is positive, then the alternative model overestimates the 

probability values and vice-versa. Also, if the difference is positive, then the alternative model 

underestimates the log of the Bayes factor and vice-versa. An overestimated value or factor 

might substantially exaggerate the occurrence of contagion while an underestimated value or 

factor might understate its existence.  

 

Panel A of Table 4.6 reports the results of the test for contagion between the US and markets 

in ELA region. The individual test results reveal four out of five countries in this region exhibit 

changes in correlation during the GFC. This is because the values of their probabilities of 

correlations are 1, i.e., 100%, providing strong evidence in support of the occurrence of 

contagion through correlation. It is only in Colombia that there is no evidence in favour of 

contagion through correlation. When all the markets are jointly considered, there is still strong 

evidence of contagion through correlation; this is because their probabilities are 100%. This 

result confirms the findings of a recent study by Mollah et al. (2016) that estimate contagion 

models and highlights that the dynamic correlations between the US market and markets in 

ELA were high during the GFC. This is also consistent with the findings of Dungey and Gajurel 

(2014) and Aloui et al. (2011) that find correlations between the US and ELA markets during 

this crisis. 

 

Turning now to the test for contagion through coskewness, the individual test results show that 

there is no evidence of contagion occurring through coskewness between the US and markets 

in ELA, except for Chile. This lack of evidence is because the values of the log of the Bayes 

factor for other markets all fall outside the scale for evidential support for contagion. Since the 

result shows that most of the markets in ELA did not exhibit changes in coskewness during 
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crisis, these findings suggest that the coskewness of returns either remained stable or declined 

during the crisis. When the chapter considers the result of the joint test for contagion through 

coskewness between the US market and markets in ELA, it shows that the log of the Bayes 

factor has a value of -456.55. This indicates that there is decisive evidence in favour of 

contagion through coskewness between the US market and markets in ELA. 

 

The row at the bottom of Panel A of Table 4.6 reports the result of the individual and joint tests 

for the joint occurrence of contagion through both correlation and coskewness. For the 

individual test, the result shows that the log of the Bayes factor between the country pairs 

Brazil-US, Chile-US, Colombia-US, Mexico-US, and Peru-US are -15.60, -150.23, -6.47,            

-81.89 and -34.00, respectively. These findings suggest there is decisive evidence of contagion 

through both correlation and coskewness. The dependence between Chile-US and Mexico-US 

are particularly stronger than between the US and other markets in the region. Similarly, for 

the joint test, the log of the Bayes factor with a value of -677.66 provides decisive evidence of 

contagion jointly occurring through correlation and coskewness.  

 

Panel B of Table 4.6 presents the results for the individual and joint tests for contagion between 

the US and PEA. The individual tests for contagion in correlation between the US and markets 

in PEA reveals evidence of contagion in six out of the nine country pairs. These country pairs 

include China-US, Japan-US, Indonesia-US, Philippines-US, Singapore-US, and Thailand-US. 

There is evidence of contagion because the probabilities for these individual tests are all 100%. 

In contrast, probabilities of correlation for individual tests for the following country pairs, Hong 

Kong-US, Korea-US, and Malaysia-US are 99%, 88% and 99%, respectively. These results 

suggest that the stock markets in Hong Kong, Korea and Malaysia are largely not affected by 

the crisis of the US. This is in line with the findings by Mollah et al. (2016) who document that 

Asian markets were partially affected by the GFC. Nonetheless, when the chapter jointly tested 

for contagion through correlation between the US and markets in PEA, it finds that correlation 

has a probability of 100%, this finding provides evidence in support of contagion through 

correlation between the US market and markets in PEA.  

 

In terms of the coskewness, the individual test results show that only one country out of nine 

exhibits changes in coskewness of returns during the crisis. In particular, the result shows that 
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there is decisive evidence in favour of contagion between the US market and the market in the 

Philippines. With respect to the joint test for contagion through coskewness, the chapter finds 

that the log of the Bayes factor for the coskewness has a value -1359.5. This result indicates 

that there is decisive evidence in favour of contagion through coskewness between the US and 

all markets in PEA.  

 

In the context of joint occurrence of contagion through correlation and coskewness, the 

individual test results show that eight out of nine markets in this region exhibit changes in both 

correlation and coskewness of returns during the crisis. These countries include China, Japan, 

Hong Kong, Indonesia, Korea, Philippines, Singapore, and Thailand. The log of the Bayes 

factor for all these markets falls within the scale of decisive evidence in support of contagion. 

With respect to the joint test, the results show that all markets in this region exhibit changes in 

both correlation and coskewness of returns during the GFC. This is because the log of the Bayes 

factor has a value of -1405.2, which falls within the scale for decisive evidence.  

 

Panel C of Table 4.6 presents the contagion test results between the US market and markets in 

DE. From the results individual tests, it is striking to find that all nine markets in the DE exhibit 

changes in correlation during the crisis that favours contagion with the US market. The results 

show that the probabilities of correlation between the US market and markets in the DE are all 

1, i.e., 100%. This finding suggests that following the GFC, the level of dependence between 

the US market and markets in this region increased. Now when the chapter turns to the joint 

test, the result clearly shows that the probabilities of correlation are all 100%. This result further 

suggests that movements in US returns strongly affected markets in the DE. This is consistent 

with a previous finding by Dungey and Gajurel (2014) who attributed the greater contagion 

effect in markets of the DE to panic among investors about the effect of the US crisis on 

European markets. In general, it is not surprising that it finds all markets in the DE being 

correlated with the US market during crisis. It simply reflects the regions integration with the 

global capital markets, which might explain why it exhibits strong comovement with the US 

market even during crisis.  

 

When the chapter individually tests for contagion through coskewness, the results show that 

seven out of the nine markets in the DE exhibit changes in coskewness during the crisis. It 
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shows that the value of the log of the Bayes factor for these seven markets exceeds -4.6. Thus, 

except for markets in Portugal and Ireland, it cannot rule out decisive evidence in favour of 

contagion. Next, when it jointly tests for contagion through coskewness, the results show that 

the value of the log of the Bayes factor for the joint test for the coskewness is -975.12. Thus, it 

still concludes that there is decisive evidence of contagion through coskewness.  

  

Finally, the chapter carried out individual and joint tests for the joint occurrence of contagion 

through correlation and coskewness for this region. The results for these tests are reported in 

the last row of Panel C in Table 4.6. The results show that the log of the Bayes factor for all 

markets have values that suggest decisive evidence in favour of contagion through both 

correlation and coskewness. It reaches similar conclusions when the joint tests are conducted. 

This is because the log of the Bayes factor with a value of -6280.4 provides the decisive 

evidence in support of this conclusion. 

 

Overall, the results of the individual and joint tests for contagion through the correlation and 

coskewness were considered. In addition, tests for the joint occurrence of contagion were also 

considered. These tests have been evaluated using either the probability value or the log of the 

Bayes factor. The analysis provides several findings. First, one observes that evidence in favour 

of contagion occurring through correlation is strongest for markets in the DE than their 

counterparts in other regions. Second, within the context of coskewness, interestingly the 

chapter finds decisive evidence in favour of contagion through coskewness for more markets 

in DE than in ELA and PEA regions. These findings suggest that there may be comovements 

in extreme returns during the GFC and strong dependence between the US market and other 

markets. The findings reveal that this dependence is stronger for markets in the DE than other 

regions. It seems reasonable to conclude that contagion through correlation dominates, 

although this does not diminish the importance of contagion through coskewness. Overall, it 

provides evidence of contagion through both correlation and coskewness. 
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4.5.3.  Exogenously or Endogenously Determined Crisis Date for Analysis of Higher-

order Comoments 

 

The analysis, so far, has focused on the benchmark results of the model with endogenously 

determined crisis date. This sub-section aims to compare magnitude of estimates from this 

model with those from an alternative model where the dates were exogenously determined47. 

This direct comparison allows us to assess whether there are estimation errors arising from the 

approach used, i.e., whether the choice of this date is a potential source of estimation error in 

the measurement of contagion and whether the choice of the crisis date affects the magnitude 

of correlation and coskewness. Panels A, B and C of Figure 4.4 plot the differences in the 

probability value of correlation, differences in the value of the log of the Bayes factor for 

coskewness and differences in the value of the log of the Bayes factor for both correlation and 

coskewness. In each panel, the plots show with solid pyramids these differences in values. The 

chapter plots these differences in values for only markets where it found evidence of contagion. 

Since our focus is on this notion, it would make sense to evaluate whether there are any 

differences between the benchmark and alternative model results only when it can present 

evidence of contagion. 

 

The results in Figure 4.4 are striking and it is evident from these figures how sample selection 

bias due to the inaccurate identification of the crisis date affects the test of contagion through 

correlation and coskewness. Clearly, one can see that the figure reveals considerable 

differences in the magnitude of estimates between the benchmark model and the alternative 

one. This is because employing contagion models with different crisis dates fails to yield 

similar magnitudes. 

 

In Panel A of Figure 4.4, the chapter displays the differences in the probability of correlation 

for all three regions. In ELA, the probability of correlation for both Chile and Mexico appear 

to have been underestimated. For these two countries, the benchmark results show evidence of 

contagion through correlation. However, when the alternative model where an exogenously 

determined date is used for the demarcation of the non-crisis and non-crisis periods, it finds 

 
47 The exogenously determined crisis date of March 3, 2008 used in the study by CFH is adopted. 
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that there is no evidence of contagion through correlation for these two countries. For PEA, the 

figure shows that the probability of correlation is underestimated for China but overestimated 

for Korea. Finally, when it considers the DE, the chapter does not find any differences between 

the results of the two models. Since it obtained identical results, it does not have any evidence 

to suggest differences in magnitude of estimates for correlation for only this region. 

 

Of interest also is whether there are differences in the values of the log of the Bayes factor 

regarding tests for contagion through coskewness. Panel B of Figure 4.4 explores this as it 

displays the magnitude of differences between the results of the benchmark model and the 

alternative one. In the first plot of Panel B, which corresponds to the plots of differences in the 

values of the log of the Bayes factor for ELA, one can see that the value of the log of the Bayes 

factor is overestimated for Chile alone.  

 

Figure 4.4: Differences in Magnitude of Estimates 
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Panel B: Differences in the Log of the Bayes Factor for Coskewness 
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Panel C: Differences in the Log of the Bayes Factor for Correlation and Coskewness 
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This shows that the estimated value of the log of the Bayes factor is higher for the alternative 

model (in absolute value) than the benchmark model. The value of the log of the Bayes factor 

is estimated as being larger than it really is. This suggests that a contagion model that uses an 

exogenously determined start date may exaggerate the extent of change in coskewness. 

Conversely, one can clearly see that for PEA region, i.e., in the middle plot, the value of the 

log of the Bayes factor is underestimated for only Philippines. This suggests that a contagion 

model that uses exogenously determined dates could also understate the extent of change in 

coskewness.  

 

In the last plot of Panel B, which displays the differences between the values of the log of the 

Bayes factor obtained by the benchmark and alternative models for the DE, the chapter finds 

that the number of overestimates exceeds the number of underestimates. In particular, the 

values of the log of the Bayes factor are overestimated for Spain, Italy, UK, France, and 

Germany. Further, one can see that Germany and France have considerably larger magnitude 

of differences than Spain, Italy, and the UK. In contrast, the plot shows that the values of the 

log of the Bayes factor are underestimated for only Belgium and The Netherlands. It is obvious 

that the magnitude of differences in the value of the log of the Bayes factor is much larger for 

Belgium than The Netherlands. This suggests that the extent of change in coskewness may be 

understated. This is likely to happen when contagion models use exogenously determined 

dates. 



188 
 

The chapter now turns to examine whether there are differences in the values of the log of the 

Bayes factor for the joint occurrence of contagion through correlation and coskewness. As seen 

in the first plot of Panel C, which shows the plot of differences in the magnitude of estimates 

for contagion through both correlation and coskewness for ELA, the values of the log of the 

Bayes factor are largely overestimated for most markets in the region, with the exception of 

Mexico. It is striking to observe that the value of the log of the Bayes factor for Peru is highly 

overestimated. The difference in magnitude is even more pronounced when it considers 

Colombia. Obviously, the plot suggests that the observed differences in the values of the log 

of the Bayes factor for the joint occurrence of contagion through correlation and coskewness 

is mainly due to differences in the start date of the crisis period, which have been determined 

differently.  

 

In the case of PEA, one can clearly observe from the middle plot of Panel C that the number 

of underestimates far exceeds that of overestimates. The values of the log of the Bayes factor 

for the joint occurrence of contagion through correlation and coskewness are underestimated 

for Korea, Japan, China, Philippines, Hong Kong, and Indonesia. Japan has the greatest 

difference in value of the log of the Bayes factor. The estimate of the benchmark model is 

almost 20 times larger than the estimated value obtained with the alternative model. Moreover, 

the value for the log of the Bayes factor obtained using our benchmark model supports the 

finding of contagion for Japan but this conclusion is not supported when the alternative model 

is used. In contrast, the values of the log of the Bayes factor for the joint occurrence of 

contagion through correlation and coskewness are overestimated for Malaysia, Thailand, and 

Singapore. The lowest and highest difference in value of the log of the Bayes factor occurs for 

Malaysia and Singapore.  

 

The chapter also plots differences in the magnitude of estimates for the DE. One can see from 

the last plot in Panel C that there are far more underestimates than overestimates. Of the nine 

markets in the DE, seven of them have the values of the log of their Bayes factor understated 

while only two are overestimated. These values are grossly underestimated for Portugal, 

Ireland, Spain, UK, Italy, France, and Belgium. For instance, the difference in magnitude is so 

large for Ireland that for the estimated value of our benchmark model to match the alternative 

model, it would have to decrease by almost half. On the other hand, the plot shows that the 

value of the log of the Bayes factor for the joint occurrence of correlation and coskewness are 
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overestimated for The Netherlands and Germany. This reveals that the alternative model 

arguably exaggerates the value of the log of the Bayes factor for the joint occurrence of 

contagion through correlation and coskewness.  

 

In general, it is harder to find evidence of contagion through correlation using the alternative 

model as opposed to the benchmark model. This is because the chapter finds that the number 

of underestimates in the probability value for contagion through correlation exceeds the 

number of overestimates. On the other hand, it is easier to find evidence of contagion through 

coskewness using the alternative model versus the benchmark model. It attributes this to the 

fact that the number of overestimates in the value of the log of the Bayes factor for contagion 

through coskewness is much more than the number of underestimates. Thus, the alternative 

model seems to favour the existence of contagion through coskewness where there is none and 

thus, erroneously attribute changes in coskewness during crisis to the notion of contagion. In 

fact, even when it considers the joint occurrence of contagion through correlation and 

coskewness, it finds that it is much easier to find evidence in favour of contagion when it uses 

the alternative model as against the benchmark model. This finding is attributed to the fact that 

the number of overestimates in the value of the log of the Bayes factor for contagion through 

coskewness is greater than the number of underestimates.  

 

Taken together, the results suggest that there are substantial differences in the magnitude of 

estimates of contagion depending on whether estimations are based on the alternative or 

benchmark model. It is straightforward to see that when the start date of the crisis period used 

to split the full sample into regimes is exogenously determined it is likely to lead to the 

overestimation (underestimation) of the values of correlation and coskewness. Overstating the 

values of correlation and coskewness would suggest exaggeration of the extent of contagion 

and vice versa. Our results suggest that previous works of contagion through correlation and 

coskewness are likely to suffer from estimation errors due to sample selection bias when the 

start dates of the crisis period are not endogenously determined. There is no paper, yet which 

shows this result, this chapter is the first to show this result.  

 

In particular, the estimation error in correlation is trivial, although at times opposite conclusions 

are reached. It is, however, enormous for coskewness. Thus, the estimates are likely to be 
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affected by selection bias arising from the choice of the crisis date. If there is no sample 

selection bias due to the choice of the start date for the crisis period, then the magnitude of 

estimates of the benchmark and alternative models should not have differed. By and large, from 

our comparison, the magnitude of estimates for correlation and coskewness seems to depend 

crucially on how the crisis start date is determined. One might conclude that the choice of the 

crisis date can bias the estimates. Hence, it can make an enormous difference whether an 

exogenously or endogenously determined crisis date is adopted. A crisis date that is 

endogenously determined might provide more accurate estimates due to correct sample split 

into non-crisis and crisis periods. In addition, the analysis suggests that the approach used to 

determine the crisis start date might be an important avenue through which the magnitude of 

contagion estimates are affected. Thus, accurate determination of this date should be an 

important consideration when modelling contagion. 
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                         Table 4.4: Contagion Test: Correlation and Coskewness  

Panel A: ELA          

Contagion tests (i=j) Contagion model Method 

(DR) 

Individual Tests Joint Tests 

   BRA CHL COL MEX PER US for all 

Correlation Exogenously 

determined date 

(CFH)  

P 1 0.9923 0.9998 0.9999 1  1 

Correlation Endogenously 

determined date   

P 1 1 0.9999 1 1  1 

          

Coskewness Exogenously 

determined date 

(CFH)  

BF -1.7211 -87.3098 1.4496 1.2754 1.6284  -812.905 

Coskewness Endogenously 

determined date   

BF 1.0608 -6.3063 0.7919 1.0816 -1.771  -456.552 

          

Correlation & coskewness Exogenously 

determined date 

(CFH)  

BF -20.3224 -155.868 -62.574 -79.6233 -61.9661  -1063.900 

Correlation & coskewness Endogenously 

determined date   

BF -15.6014 -150.236 -6.4793 -81.8931 -34.0022  -677.664 
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Panel B: PEA             

Contagion tests (i=j) Contagion model Method 

(DR) 

Individual Tests Joint 

Tests 

   CHN JPN HKG IND KOR MAL PHI SGN THL US for all 

Correlation Exogenously 

determined date 

(CFH)  

P 0.9984 1 1 1 0.8848 0.9992 1 1 1  1 

Correlation Endogenously 

determined date   

P 1 1 0.9999 1 0.8822 0.9992 1 1 1  1 

              

Coskewness Exogenously 

determined date 

(CFH)  

BF -1.0217 1.6086     0.6235 -0.1424 1.6664 1.2828 0.5151 1.0478 0.7583  -1202.300 

Coskewness Endogenously 

determined date   

BF 0.3927 -1.4778 1.2264 1.1364 1.4456 1.453 -5.3315 1.7622 1.675  -1359.500 

              

Correlation & coskewness Exogenously 

determined date 

(CFH)  

BF -11.7703 -1.3471 -7.2677 -12.844 -4.5671 1.1383 -3.9817 -28.32 -9.6353  -1227.800 

Correlation & coskewness Endogenously 

determined date   

BF -33.2178 -25.944 -16.146 -16.111 -47.283 1.9582 -18.0677 -12.662 -6.1869  -1405.200 
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Panel C: DE             

Contagion tests (i=j) Contagion model Method 

(DR) 

Individual Tests Joint Tests 

   UK FRA  GER BEL NET POR ITL IRL SPA US for all 

Correlation Exogenously 

determined date 

(CFH)  

P 1 1 1 1 1 1 1 1 1  1 

Correlation Endogenously 

determined date   

P 1 1 1 1 1 1 1 1 1  1 

              

Coskewness Exogenously 

determined date 

(CFH)  

BF -14.6978 -57.1641 -76.6795 -72.5509 -8.9033 -1.2381 -9.0002 1.1945 -12.0863  -1331.000 

Coskewness Endogenously 

determined date   

BF -9.4688 -34.8086 -43.9603 -76.8237 -9.8624 -2.5772 -5.8494 0.9093 -10.6026  -975.121 

              

Correlation & coskewness Exogenously 

determined date 

(CFH)  

BF -117.653 -157.3676 -176.5072 -208.7548 -151.7906 -502.1482 -182.8199 -100.9056 -107.206  -5183.000 

Correlation & coskewness Endogenously 

determined date   

BF -163.056 -195.086 -147.4942 -239.6388 -131.5898 -659.4279 -228.1659 -195.1463 -178.3153  -6280.400 
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4.5.4. Sensitivity Tests of Contagion Model 

 

In this sub-section, the chapter explores the sensitivity of our benchmark model to alternative 

specification with respect to the crisis date. It will examine the sensitivity of our benchmark 

results to two different start dates for the GFC. These dates were arbitrarily chosen based on 

own judgement. It examines the sensitivity of our results to dates that occur (1) one month 

before the endogenously determined date, and (2) one month after the endogenously 

determined date. These two dates are not too far from the endogenously determined dates 

analysed in the earlier. It will, thus, change start dates in the benchmark model for each region 

to these new dates and re-estimate the model. Running these sensitivity tests will allow us to 

check whether the magnitude of estimates is sensitive to changes in the dates. In addition, it 

will allow us to check whether the researcher’s use of judgement in selecting the date can affect 

the magnitude of estimates.  

 

In Table 4.7, the chapter reports the results of the sensitivity test to changes in the crisis dates 

for markets in the different regions. To evaluate these results, it contrasts them against the 

benchmark results. As in the previous sub-section, similar results are again obtained, but using 

a different set of crises dates. An important finding presented in Table 4.7 is that estimation 

errors in correlations remain negligible. This finding is in line with our benchmark results 

presented in the earlier. The probability of correlation is reasonably close to the benchmark 

results, there are just some slight differences in the values of probability. For instance, when it 

considers ELA region, the result shows that the alternative model slightly underestimates the 

value of the probability of correlation when the date occurs one month before or after the 

endogenously determined date. For example, the probability of correlation is underestimated 

for Chile, Colombia, and Mexico when the date occurs a month before. It is, however, 

underestimated for only Chile when the date occurs a month after.  In the case of PEA, the 

result shows that the probability of correlation appears overestimated for Hong Kong and Korea 

when the date occurs one month before. In contrast, probabilities are underestimated for China 

and Singapore, but when the date occurs one month after, probabilities are overestimated for 

Hong Kong, Korea, Malaysia. Finally, for the DE the result shows that when the date occurs 

one month before and after, the probability of correlation is the same as that of the benchmark 
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              Table 4.5: Sensitivity Test: Contagion through Correlation and Coskewness  

Panel A: LA          

Contagion tests (i=j) Contagion model Method 

(DR) 

Individual Tests     Joint Tests 

   BRA CHL COL MEX PER US for all 

Correlation Benchmark model   P 1 1 0.9999 1 1  1 

Correlation 1 month before  P 1 0.9947 0.9998 0.9999 1  1 

Correlation 1 month after P 1 0.9972 0.9999 1 1  1 

          

Coskewness Benchmark model   BF 1.0608 -6.3063 0.7919 1.0816 -1.771  -456.5517 

Coskewness 1 month before  BF -3.1684 -117.3651 0.8619 1.1117 1.7028  -718.9337 

Coskewness 1 month after BF -0.7507 2.1897 0.8826 0.3228 -4.3373  -335.0372 

          

Correlation & coskewness Benchmark model   BF -15.6014 -150.2359 -6.4793 -81.8931 -34.0022  -677.6638 

Correlation & coskewness 1 month before  BF -18.7227 -172.4814 -47.0637 -83.5215 -40.7874  -947.0036 

Correlation & coskewness 1 month after BF -13.7594 -19.5768 -4.5635 -37.2769 -162.2721  -548.6066 
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Panel B: PEA             

Contagion tests (i=j) Contagion 

model 

Method 

(DR) 

Individual Tests Joint 

Tests 

   CHN JPN HKG IND KOR MAL PHI SGN THL US for all 

Correlation Benchmark 

model   

P 1 1 0.9999 1 0.8822 0.9992 1 1 1  1 

Correlation 1 month before  P 1 1 1 1 0.8966 0.9992 1 1 1  1 

Correlation 1 month after P 0.9999 1 1 1 0.9779 1 1 0.9999 1  1 

              

Coskewness Benchmark 

model   

BF 0.3927 -1.4778 1.2264 1.1364 1.4456 1.453 -5.3315 1.7622 1.675  1359.500 

Coskewness 1 month before  BF -0.5914 1.4063 -0.7172 -1.1269 1.5486 1.5335 1.4589 -4.2997 1.7643  1393.800 

Coskewness 1 month after BF -2.9421 0.9596 -0.2785 -1.1983 1.4037 -0.2166 -1.5514 1.832 1.4392  1437.300 

              

Correlation & 

coskewness 

Benchmark 

model   

BF -33.2178 -25.9437 -16.1456 -16.1112 -47.2826 1.9582 -18.0677 -12.6618 -6.1869  1405.300 

Correlation & 

coskewness 

1 month before  BF -13.1074 -1.9375 -8.7431 -29.2813 -4.2209 1.6001 -2.4173 -47.5127 -4.5376  1460.300 

Correlation & 

coskewness 

1 month after BF -17.5263 -5.9724 -11.5783 -49.208 -9.0285 0.2677 -46.5993 -60.4719 -5.2379  1527.000 
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Panel C: DE            Joint Tests 

Contagion tests (i=j) Contagion model Method 

(DR) 

Individual Tests for all 

   UK FRA  GER BEL NET POR ITL IRL SPA US  

Correlation Benchmark 

model   

P 1 1 1 1 1 1 1 1 1  1 

Correlation 1 month before  P 1 1 1 1 1 1 1 1 1  1 

Correlation 1 month after P 1 1 1 1 1 1 1 1 1  1 

              

Coskewness Benchmark 

model   

BF -9.4688 -34.8086 -43.9603 -76.8237 -9.8624 -2.5772 -5.8494 0.9093 -10.6026  -975.121 

Coskewness 1 month before  BF -0.455 -17.9014 -1.2937 2.3055 1.7308 -0.2125 -48.7362 2.0512 -135.0413  1164.500 

Coskewness 1 month after BF -0.3711 -8.8746 -1.4351 2.2918 1.6908 -0.2552 -30.7194 2.0716 -120.5469  1230.300 

              

Correlation & 

coskewness 

Benchmark 

model   

BF -163.0558 -195.086 -147.4942 -239.6388 -131.5898 -659.4279 -228.1659 -195.1463 -178.3153  -6280.400 

Correlation & 

coskewness 

1 month before  BF -265.4792 -245.9674 -172.4138 -185.1403 -251.003 -406.8745 -295.9606 -274.4528 -341.5386  -6868.600 

Correlation & 

coskewness 

1 month after BF 292.7933 -253.6647 -189.7594 -255.9804 -190.5836 -383.0902 -257.2561 -306.523 -311.2089  -7487.700 
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model. In a nutshell, the value of the probability of correlation is either slightly understated or 

overstated depending on the date used for markets in ELA and PEA except for those in the DE. 

A second finding shown in Table 4.7 is that estimation errors in coskewness remains enormous. 

When the chapter considers the ELA region, the log of the Bayes factor is underestimated for 

Colombia, Mexico, and Peru while it is overestimated for Brazil and Chile when the date occurs 

one month before. In sharp contrast, it is underestimated for Chile and Colombia while 

overestimated for Brazil, Mexico, and Peru when the date occurs one month after. In the case 

of PEA, the result shows that the log of the Bayes factor is overestimated for China, Hong 

Kong, Indonesia, and Singapore while it is underestimated for Japan, Korea, Malaysia, 

Philippines, and Thailand when the date occurs one month before. In contrast, it appears 

overestimated for China, Hong Kong, Indonesia, Korea, Malaysia, and Thailand, while it is 

underestimated for Japan, Philippines, and Singapore when the date occurs one month after. 

Lastly, for the DE the result shows when the date occurs one month before, the log of the Bayes 

factor appears underestimated for the UK, France, Germany, Belgium, The Netherlands, 

Portugal, and Ireland whereas it is overestimated for Italy and Spain. In contrast, it is 

underestimated for the UK, France, Germany, Belgium, The Netherlands, Portugal, and Ireland 

while it is overestimated for Italy and Spain when the date occurs one month after.  

 

Thus far, the chapter has analysed the results for correlation and coskewness. It now analyses 

the results for the joint occurrence of contagion through correlation and coskewness. The 

results reveal that there are noticeable differences between results of the benchmark model and 

the models with dates occurring one month before or after. For example, the result shows that 

the log of Bayes factor is overestimated for all markets in ELA when the date occurs one month 

before. In contrast, it is underestimated for Brazil, Chile, Colombia, and Mexico, but 

overestimated for Peru when the date occurs one month after. For markets in PEA, the result 

shows that the log of Bayes factor appear overestimated for Indonesia, Malaysia, and 

Singapore, while it is underestimated for China, Japan, Hong Kong, Korea, Philippines, and 

Thailand when the date occurs one month before. In contrast, the log of Bayes factor is 

overestimated for Indonesia, Malaysia, Philippines, and Singapore, while it is underestimated 

for China, Japan, Hong Kong, Korea, and Thailand when the date occurs one month after. 

Finally, for the DE the result shows that the log of Bayes factor is underestimated for Belgium 

and Portugal whereas it is overestimated for the UK, France, Germany, The Netherlands, Italy, 

Ireland, and Spain when the date occurs one month before. Conversely, when it adjusts the date 
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to one month after, it finds that it is underestimated for the UK and Portugal, but overestimated 

for France, Germany, Belgium, The Netherlands, Italy, Ireland, and Spain.  

 

Overall, our results are highly sensitive to changes in the crisis start dates. Even when the dates 

are not too far from the endogenously determined one, the results are quite different. In 

addition, the chapter finds that there are wide differences in the magnitude of estimates, 

especially for the coskewness. This suggests that the use of researcher’s judgement in selecting 

the date appear to affect the magnitude of estimates in contagion models. All the analyses in 

this sub-section have been conducted using high frequency data. Consequently, endogenously 

determining the date is important, but it is even more important for high frequency analysis 

using daily data. This is because it might be extremely difficult to use one’s judgement or even 

event-based markers to pick out the true date that a crisis started from daily frequency data. 

 

4.6. Conclusion 

 

This chapter demonstrated that determining the start date of a crisis endogenously matters for 

magnitude of contagion model estimates. The chapter employed the QA and a variety of BP 

test procedures based on least-squares estimation. These tests were used to select the location 

of break points in the regional index of stock returns (vis-à-vis US stock returns) for stock 

markets in DE, PEA and ELA. It has also estimated dates for these break points and have 

identified the start dates for the GFC across markets in these different regions. The econometric 

tests were performed to allow us to identify the start dates of the crisis period accurately. 

Moreover, these tests have also been conducted to avoid potential sample selection bias prior 

to testing for contagion. This bias could arise when the full sample is not correctly split into 

non-crisis and crisis periods. Individual and joint tests for contagion through correlation and 

coskewness in regime switching models, where it assumed stock returns follow a skew normal 

distribution, have also been performed. In regime switching models, the endogenously 

determined start dates for the GFC were used to demarcate the non-crisis from crisis periods. 

The tests for contagion were all carried out using the Bayesian approach to inference. All our 

analyses were conducted using data from 04 January 2005 to 17 October 2018. 
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Many models for testing contagion in much of the previous research have used crisis start dates 

that were exogenously determined to partition the sample into non-crisis and crisis periods. 

Using this approach to partition the sample could result in a sample selection bias because the 

researcher forces a split of the full sample at an observation, which is not the true crisis start 

date, and as such, sub-samples may not be representative of the non-crisis and crisis periods. 

Clearly, sample selectivity might be present when the dates are exogenously determined. Even 

though the use of exogenously determined crisis start date is convenient, as the date can be 

easily be determined from event-based markers. Researchers run the risk of mis-specifying 

contagion models, which may confound results and the validity of inferences. The chapter 

proceeded to also test for contagion using models with exogenously determined dates. It 

compared the magnitude of estimates from contagion models with endogenously determined 

dates against models with exogenously determined dates. This comparison allowed us to 

evaluate whether there are differences between the estimates of contagion models based on 

these two approaches to crisis date identification. It also allowed us to ascertain whether 

estimation errors could arise from the choice of the crisis start date. Finally, this chapter 

explored the sensitivity of our benchmark results to different crisis start dates for robustness.  

 

Based on our analysis, the chapter documents some important findings. First, it finds break 

dates associated with the global crisis. These dates are different for the three regions in our 

analysis. Our results thus justify the use of test procedures for structural breaks to identify crisis 

dates for contagion analysis, rather than determining these dates exogenously. Second, it finds 

evidence in favour of contagion occurring through correlation and this evidence is strongest 

for markets in DE than their counterparts in other regions. This suggests that markets in DE 

may be more closely linked to the US. Within the context of coskewness, interestingly it finds 

decisive evidence in favour of contagion for more markets in DE than in ELA and PEA. This 

finding suggests that there may be asymmetries in the dependence between US stock returns 

and returns of other regional markets. It also finds that contagion occurs mostly through 

correlation, rather than through coskewness. So, although coskewness does not account for 

most of the change in returns during crisis, it partly accounts for the change in returns. Third, 

it finds that the results of tests for contagion can substantially differ depending on how the start 

date of the crisis period is identified. This is because our result for the benchmark model that 

uses endogenously determined crisis date cannot be reconciled with the alternative model of 
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contagion that uses exogenously determined crisis date. The result shows that changing the 

approach for date selection has a significant impact on the estimated results.  

 

It is harder to find evidence of contagion through correlation using the benchmark model; 

however, it is easier to find evidence of contagion through coskewness using the alternative 

model. Although the chapter sometimes find that the alternative model attenuates the values of 

correlation and coskewness, it finds that it exaggerates these values and hence favours the 

existence of contagion where there is none. Our finding of overestimation and underestimation 

of the values of correlation and coskewness indicates a problem of sample selection bias with 

the use of exogenously determined dates in contagion models, which often tend to result in 

estimation errors. This finding shows that previous works of contagion through correlation and 

coskewness may likely suffer from estimation errors due to sample selection bias, especially 

when the start dates of the crisis period are not identified correctly. In general, it finds that the 

estimation error in correlation is trivial while it is enormous for coskewness. Thus, forthcoming 

studies on contagion based on higher-order comoment must determine crisis start dates using 

econometric tests prior to testing for contagion; otherwise researchers might run the risk of 

biasing results of contagion models.  

 

In all, our findings suggest that the choice of the crisis start date can affect the magnitude of 

change in correlation and coskewness. Hence, it can make an enormous difference whether an 

exogenously or endogenously determined crisis start date is adopted. Identifying the crisis start 

date endogenously is crucial when the analysis is based on high frequency stock returns since 

it can be quite difficult to select the true start date of a crisis from such a frequency. 

 

Our empirical work argues clearly against the use of exogenously determined crisis start dates 

in contagion models. A crisis start date that is endogenously determined might provide 

researchers with more accurate estimates due to correct sample split for the non-crisis and crisis 

periods. Finally, for robustness, our sensitivity analysis findings further indicate that contagion 

models are sensitive to the choice of the crisis start date. This suggests that the determination 

of the crisis start date for contagion analysis across stock markets is an important issue. The 

general conclusion that this chapter draws from our results is that the determination of the crisis 

start date might be such an important means through which the magnitude of correlation and 
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coskewness are affected and neglecting the correct identification of the crisis start dates might 

lead one to either overstate or understate the magnitude of correlation and coskewness. 

 

Our findings underline the importance of identifying crisis dates using empirical procedures, 

because any other approach to identification such as sequence of events may otherwise generate 

contagion estimates that are biased. The measurement of contagion can be improved by 

determining the crisis start date accurately using endogenously determined crisis start dates. 

By endogenously determining the crisis start dates, one will have a correctly specified 

contagion model and the estimated values of correlation and coskewness will become accurate. 

It is important to determine the crisis dates endogenously because when one does so, it allows 

the data on stock returns to speak for itself and this would not bias our findings on contagion. 

Thus, instead of exogenously determining the crisis start date, one could perhaps use structural 

break tests to locate the break points in the data on stock returns and estimate the break dates, 

this would help to overcome sample selection bias and model misspecification caused by the 

use of the wrong start date for the crisis period. Identifying the crisis start date accurately is not 

only useful in avoiding sample selection bias; it is also useful in eliminating estimation errors 

in contagion models. Applying our test procedures is the one of the most acceptable way of 

improving the accuracy of tests for contagion because one is able to avoid sample selection 

bias and this may guarantee that unbiased estimates are obtained, allowing one to make reliable 

inferences. Modelling contagion more accurately by correctly identifying the start date of a 

crisis should be an important consideration in contagion studies and should not be ignored. 

 

It would be interesting if future research could consider applying our approach in other 

applications, for example, for studies on other financial market.  Our study says nothing about 

other possible measures of contagion such as, co-kurtosis and co-volatility. Our empirical 

strategies may be useful for research in these contexts since it can easily be applied to most 

model specifications of contagion. While our focus has been on the crisis date, one could extend 

this analysis to examine other potential sources of estimation error in contagion models, but 

this is beyond the scope of our analysis in this present chapter. So, future research could 

investigate other unexplored but potential sources of estimation error. An interesting area 

would be to determine whether some other bias exists beside sample selection bias, and to 

explore how these biases would affect contagion estimates. Finally, another study could 
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replicate our own study to investigate contagion from other crisis. This chapter does not pursue 

these extensions. The empirical strategies used are rather general and could be applied to any 

other study on crisis date identification.  
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Chapter 5: Conclusion  
 

This thesis has presented a quantitative approach to the analysis of bubbles and financial 

contagion in stock markets of DEEs. Specifically, the analysis has focused on the stock markets 

in three different regions – developed Europe, Pacific and emerging Asia, and emerging Latin 

America. It has investigated some of the macroeconomic factors which contributed to the 

duration of stock bubbles and examined the existence of contagion in the presence of distinct 

breaks. Finally, it investigated how the choice of the crisis start date affects the magnitude of 

changes in coskewness. The investigation was based on multivariate clog-log and multivariate 

VAR, and the regime switching models.  

 

The thesis showed empirically that the duration of bubbles has been primarily influenced by 

some macroeconomic factors. It has shown the significance and effect of factors on duration 

of stock bubbles. It has also showed that stock markets in DEE were affected by the recent 

financial crisis that originated from the US, and that the transmission of shocks has resulted in 

contagion, rather than interdependence during the GFC. If contagion has occurred between 

markets, then it is going to have significant implications for the international diversification of 

portfolios.  

  

This chapter contains two sections. Section 1 provides a summary of the research undertaken 

in this thesis. Section 2 discusses some of the potential implications the empirical findings of 

the thesis might have for stock market dynamics in DEEs. In addition, this section concludes 

with some potential directions for future research. It places emphasis on the need to 

complement the analysis conducted in this thesis with research into other potential 

measurement issues and how these issues would affect the accuracy of contagion estimates and 

an investigation of business cycles effects on bubbles and its duration could be explored.  

 

5.1. Summary of Research 

 

This thesis was divided into 5 chapters. Chapter 1 presented a succinct summary of the 

motivation, key contributions, and layout of the thesis.  
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Chapter 2 investigated empirically whether macroeconomic factors affect the duration of 

bubbles in stock markets of DEEs. Emphasis was placed on the role of growth in GDP per 

capita, inflation, real oil prices, real gold prices, volatility in GDP per capita, inflation volatility, 

volatility in oil prices, volatility in gold prices and portfolio inflows, real interest rate gap and 

yield spreads in DEE. It also examined these roles across group of countries with different 

levels of income and financial development. The chapter argued that examining the roles of 

factors using the duration of bubbles, rather than the dynamics of bubbles, is also crucial 

because duration is also an important characteristic of bubbles. It further argued that exogenous 

factors matter, rather than just domestic factors. The chapter, first, examined the existence of 

bubbles in stock markets of DEE and extracted the durations of the bubbles for further analysis. 

It identified three important biases, which could pose problems and affect estimates: firstly, it 

argued that stock markets are heterogeneous and that there are factors that could affect the 

pricing of stocks that are not directly observable. Largely, this may be true for DEEs given 

their different local environments and different managerial quality in the international stock 

market. Thus, heterogeneity among markets and the problem of unobserved random effects 

needs to be addressed. Secondly, the chapter argued that estimates could be weakened due to 

the presence of endogeneity caused by the correlations of macroeconomic variables with the 

error terms, which violates the assumptions of independence and strict exogeneity. Thirdly, it 

argued that the omission of other possible explanatory variables in estimation model, which 

can be relevant for the analysis of the duration of bubbles in stock markets, could result in an 

omitted variable bias. The chapter addressed all these important sources of bias and adopted a 

multivariate clog-log regression model that could account for heterogeneity among stock 

markets and analyse the role of macroeconomic factors on the duration of bubbles. The chapter 

presented the baseline results and documented that two macroeconomic factors 

contemporaneously determined the duration of bubbles across all markets: firstly, the important 

role of inflation for the duration of bubble in stock markets of DEEs; and secondly, the role of 

portfolio inflows for bubble duration. The chapter concluded that both of these 

contemporaneous macroeconomic factors increased the duration of bubbles and reduced the 

probability that bubbles would end. Results also showed that some lagged macroeconomic 

factors determined the duration of bubbles across all markets. These factors, which consisted 

of past inflation, past portfolio inflows, past yield spreads, and past volatility in gold prices, 

decreased the probability of bubble duration. The results also showed that unobserved random 

effects influenced the duration of bubbles in DEE’s stock markets. It thus highlighted that it is 
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crucially important to control for heterogeneity in stock markets to obtain accurate estimates. 

Finally, the chapter recognized that there are important differences between countries and so 

separated countries based on their level of income and financial development. The results based 

on countries’ levels of income and financial development showed that macroeconomic factors 

had weaker effects on the duration of bubbles in financially developed stock markets situated 

in developed economies.  

 

Chapter 3 empirically examined and tested whether there are changes and breaks in conditional 

correlation of returns during the GFC to assess contagion in stock markets of DEE. It argued 

that contagion occurred when cross-market dependence increased significantly following a 

shock to a particular country or set of countries. It further argued that it is only when such 

increased dependence is large enough to cause breaks in the process that generates returns that 

it can be implied that contagion has occurred. It further argued that common shocks were 

transmitted during the crisis. In addition, this chapter also argued that contagion occurred when 

return volatility spilled over from the crisis country to other countries. It relied on the 

assumption of distinct breaks for testing the existence of contagion through changes and breaks 

in conditional correlation of returns, and spillovers of return volatilities across stock markets 

of DEE. The chapter thus relied on this assumption to examine contagion as changes and breaks 

in conditional correlation of returns. While maintaining this assumption, it also examined 

contagion through spillovers of volatilities, which represented an empirical investigation into 

the behaviour, and evolution of spillovers of volatilities across stock markets. The chapter used 

a multivariate VAR model and a novel sequential procedure, to examine and test whether there 

are changes and breaks in conditional correlation of returns. It used the same model to obtain 

generalized forecast variance decompositions and used the variance decompositions to 

compute spillover indices. The indices were then used to examine the behaviour and evolution 

of volatility spillovers. Results showed that conditional correlations of returns changed 

significantly during the GFC and that transmission of shocks during this period caused breaks 

in the conditional correlation of returns, which were associated with the period of the GFC. 

Still in terms of changes in conditional correlation of returns, the result showed that the degree 

to which it changed varied across stock markets. Importantly, these changes were not 

interpreted as interdependence, but as evidence in support of the view that these correlations 

significantly increased during the GFC and caused contagion across stock markets of DEEs. 

The result showed that the evidence in favour of contagion was true for more markets in the 
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DE than markets in other regions. This reflected, in part, DE’s high level of market integration 

in global financial markets. Finally, the result further showed that spillovers of volatilities 

exhibited time-variation because the model used for estimation relied on the assumption of 

distinct breaks. It thus established that the assumption of distinct breaks was important for 

detection of time variation in spillovers of volatilities.  

 

Chapter 4 examined whether the approach used to determine the start date of the GFC crisis 

matters for estimates of contagion through coskewness for markets in DEE. It argued that, 

although the start date has been determined exogenously and endogenously for the analysis of 

contagion through coskewness, the magnitude of the change in coskewness could be affected 

by the choice of the date. Thus, the estimation accuracy could be affected by the choice of the 

crisis start date. In relation to the crisis start date, the chapter highlighted that it is crucial for 

demarcating the sample into non-crisis and crisis sub-samples prior to the analysis of 

contagion. It highlighted that two approaches could be used to determine the date: (i) 

exogenous, and (ii) endogenous. It, however, pointed out that the demarcation using dates 

based on the chronology of crisis events, i.e., exogenously determined dates, could result in a 

sample selection bias, and may result in biased estimates. It argued that if the underlying 

stochastic process for stock returns exists, then the start date of a crisis period could be 

determined quite precisely in models by applying test procedures that are inherently designed 

to detect the exact date, i.e., endogenously determined. It further argued that the magnitude of 

changes in higher-order comoments like coskewness could be affected by the approach used to 

determine the date. The chapter is thus an investigation of how the choice of this date affects 

the magnitude of changes in the coskewness of returns. The chapter presented the 

methodologies on structural break tests at unknown dates in linear regression based on least 

squares estimators for endogenously determining the start date of the GFC for markets in DEE. 

It also presented a detailed discussion of a regime switching model with skew normal 

distributional assumptions. The model, which was estimated using Bayesian approach based 

on the MCMC Gibbs sampling technique, was used for the analysis of contagion through 

changes in correlation and coskewness. Result showed different endogenously determined start 

dates of the GFC for the three regions under investigation. It further showed increased 

correlation and coskewness of returns in the stock markets of DEE during the GFC and that 

contagion occurred through both channels. The increased coskewness was interpreted as 

evidence of contagion, which suggested that there might be comovements in extreme returns 
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during the GFC and strong dependence between the US market and other markets. In addition, 

contagion transmitted through the channel of correlation dominated, rather than coskewness. It 

confirmed that contagion through both channels was much stronger for markets situated in the 

DE than markets in other regions. This stronger contagion was interpreted as close links 

between markets in the DE and the crisis country. Importantly, the chapter showed that 

estimates of contagion models using endogenously determined crisis dates could not be 

reconciled with models that exogenously determined these dates. It thus highlighted the 

importance of endogenously determining the start date of a crisis particularly for higher-order 

comoment like coskewness. Overall, this chapter highlighted that the magnitude of contagion 

estimates could substantially differ depending on how the start date of the crisis period is 

determined. 

 

It conducted this investigation by assessing the magnitude of changes in the coskewness of 

returns from models with endogenously and exogenously determined dates. 

  

5.2. Implications for Policy 

 

In the case of bubbles, this thesis has shown empirically its existence in stock markets of DEE. 

Stock prices can change dramatically, and markets can boom. When the sharp run-up in stock 

prices is caused by a bubble it usually boosts economic activity. However, sustained periods 

of rising stock prices will also generate inflation (Mishkin, 2008). This will raise policy 

concerns about the most appropriate and effective monetary policy measures to formulate to 

combat the inflation. The intervention of the monetary authority will be required and 

ultimately, the attempt by them to fight inflation or reduce inflationary pressure, however, 

through tighter monetary policy stance, could eventually destabilize the economy. This is 

because the monetary authority would maintain interest rates at high level and this contraction 

in policy could intensify liquidity constraints for firms, particularly small firms. Indeed, in this 

thesis, there was evidence that past inflation and the fluctuation of these rates - which reflect 

uncertainty and rise in persistence, were the driving forces behind the duration of stock bubbles. 

Prescription of improved inflation stabilization policies is necessary while ensuring liquidity 

constraints are addressed.  
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Against the background of increased financial integration in DEE’s, it was earlier highlighted 

in this thesis that contagion is an important aspect of this integration. The stock markets of 

DEE experienced sharp falls in returns and increased volatility during the GFC. The plummeted 

returns and enormous volatility experienced by markets was caused primarily by the 

transmission of shocks that arose from the crisis. In the context of volatilities, a higher 

fluctuation in stock returns prompted investors to withdraw money from markets, particularly 

markets in emerging economies, which triggered large underperformance in these markets 

(Niklewski and Rodgers, 2013).  

 

The behaviour of stock markets in DEE becomes severely affected in the case of increased 

cross-market dependence, measured by either correlation or coskewness, particularly if this 

pronounced increases in cross-market dependence is caused by a crisis event. During the GFC, 

the stock markets of DEEs were characterised by significantly increased cross-market 

dependence and sudden breaks in extreme comovements. Indeed, the crisis in fact caused 

structural changes across stock markets of DEE, i.e., crisis-induced changes in the structure of 

stock markets. As mentioned earlier, the dynamics observed in the stock markets of DEE’s 

during the GFC bring, yet again, the question of international portfolio diversification to the 

centre of discussion. It is argued that the diversification of investors’ portfolios would help to 

eliminate non-compensated risk (Goetzmann and Kumar, 2008), but following the recent 

financial crisis, many investors were unable to hold a diversified portfolio of stocks.  

 

This thesis has support for the theory of contagion across stock markets of DEE during the 

GFC. Indeed, the policy measures that would insure against adverse shock transmission and 

increase resilience in the stock markets are advocated. It is thus paramount that countries reduce 

their vulnerability to such shocks. To prevent the build-up of vulnerabilities, according to 

Forbes and Rigobon (2000), the channel through which shocks are transmitted matters. For 

instance, if they are transmitted mainly through transitory channels — which are channels that 

exist just after a crisis has occurred —, then capital controls, which is a type of short-run 

isolation strategy, could be extremely effective in reducing the effect of shocks transmitted 

from a crisis to other parts of the world. Thus, this strategy could be crucially important in 

times of crisis to prevent large and sudden breaks in the transmission mechanisms between 

markets. However, this strategy would not always be appropriate particularly if shocks are 
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transmitted largely through permanent channels — which are channels that exist in all states 

of the world, i.e., when there is no contagion. This is because the use of capital controls will 

cause a delay in the country's adjustment to shocks. Thus, in Forbes and Rigobons’ (2000), 

view, capital controls could be useful in temporarily delaying the transmission of a crisis from 

one country to the other; however, this strategy cannot inhibit the necessary fundamental 

adjustment through long-term linkages such as trade. Obviously, this strategy is not sufficient 

to insure against shock transmission to stock markets of DEEs. Complementary strategies are 

important.  

 

Following the general discussion about insuring against adverse shock transmission presented 

above, more specific policy implications that directly stem from our results will be discussed 

hereafter. The finding of this thesis provides important insights for policy makers in DEEs and 

for researchers. The results suggest that the magnitude of changes in coskewness are 

considerably affected by how the crisis start dates are chosen. Researchers need to ensure that 

these dates are always endogenously determined, as this is important for avoiding sample 

selection bias and unbiased contagion effects. Second, the results show evidence of breaks in 

conditional correlation of returns during crisis and contagion. Policy makers need to consider 

strategies that could be used to insure against adverse shock transmission and increase 

resilience in the markets. Finally, the results show that macroeconomic factors are important 

for the duration of bubbles, especially inflation. To this end, effective policy tools must be 

continuously used by policy makers to stabilize general prices. 

 

This thesis has opened up three interesting directions for future research on contagion and 

bubbles based on the results and their implications discussed earlier. First, the findings of this 

thesis have revealed that the choice of the crisis start date is a source of bias in estimates of 

contagion models. Other unexplored but potential sources of measurement issues can be 

explored to determine how these issues would affect contagion estimates. Second, an extensive 

investigation into the breaks in conditional correlations using contagion models the rely on the 

assumption of distinct breaks is necessary, if possible using data on the different economic 

sectors in the stock market would provide a deeper insight into the specific sectors affected by 

the transmission of shocks. Finally, an investigation of whether business cycles effects are 

important for the duration of stock bubbles is an area that could be considered in future 
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research. Investigation into all these areas will be rewarding and will produce important policy 

implications. 
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Appendices 
 

Appendix 1: List of Countries Grouped by Income and Financial Development Levels 

Countries  

Grouping by  

income level 

Grouping by level of financial 

development 

Australia High High 

Belgium High High 

Brazil Middle High 

China Middle Intermediate 

Colombia Middle Intermediate 

Germany High High 

Hong Kong High High 

Indonesia Middle Intermediate 

Ireland High High 

Italy High High 

Japan High High 

Korea High High 

Malaysia Middle High 

Mexico Middle Intermediate 

Netherlands High High 

New Zealand  High Intermediate 

Portugal High High 

Singapore High High 

Spain High High 

Thailand  Middle High 

US High High 

Notes: Countries were classified into high- and intermediate- levels of financial development using the IMF’s 

country ranking for level of financial development. Countries with highly developed financial sectors have a score 

between 0.951 and 0.635 on the ranking scale while countries at the intermediate level of financial development 

have a score ranging between 0.634 and 0.318. 
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Appendix 2: Variables, Variable Description and Sources 

Variables  Description Sources 

Stock returns Changes in the log of stock prices  

MSCI and own 

computations 

duration of 

bubbles 

The total time period that a stock market is at 

risk of bubbles 

own computations 

based on GSADF test 

estimates 

Bubbles 

Dummy variable that equals one if a stock 

bubble survives, and zero otherwise 

own computations 

based on GSADF test 

estimates 

Growth in 

GDP per 

capita  

The growth in GDP per capita deflated by the 

Purchasing Power Parity (measured in US$) World Bank 

Real oil 

prices 

Brent crude oil prices deflated by the CPI 

(measured in US$) IMF 

Real gold 

prices 

Gold prices deflated by the CPI 

(measured in US$) IMF 

Growth in 

consumption  

Growth in consumption is measured as the 

change in real consumption. Real consumption is 

the nominal final consumption expenditure 

deflated using the CPI and divided by GDP 

(measured in US$)   World Bank 

Growth in 

investment  

Growth in investment is measured as the change 

in real gross capital formation. Real gross capital 

formation is the nominal gross capital formation 

deflated by the CPI divided by GDP (measured 

in US$)  World Bank 

Inflation  Rate of change in CPI multiplied by 100 World Bank  

Portfolio  

inflows  

Portfolio investment liabilities divided by GDP 

in percentages World Bank 
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Variables  Description Sources 

Interest rate 

gap 

Interest rate gap is the difference between the 

short-term real interest rate and the Wicksell’s 

natural rate of interest 
IMF, OECD and own 

computations 

Yield 

spreads 

Yield spreads is computed as the difference 

between the 10-year sovereign bond yields and 

the treasury bills rates 

IMF, Thomson 

Reuters DataStream 

and Eikon 

volatility in 

GDP per 

capita  

Volatility in GDP per capita is the standard 

deviation of the log difference of real GDP per 

capita 

World Bank, own 

computations 

Inflation 

volatility 

Inflation volatility is computed as one plus the 

standard deviations of three-year rolling window 

of the CPI inflation rate in logarithms 

 

World Bank, own 

computations  

Volatility in 

oil prices  

Volatility in oil prices is the standard deviation 

of the log difference of real crude oil prices 

IMF, own 

computations 

Volatility in 

gold prices  

Volatility in gold prices is the standard deviation 

of the log difference of real gold prices  

IMF, own 

computations 

GDP deflator  

Inflation as measured by the rate of price change 

of the GDP implicit deflator World Bank 

Inflation 

volatility, 

GDP deflator 

Inflation volatility is computed as one plus the 

standard deviations of three-year rolling window 

of the GDP deflated inflation rate in logarithms 

World Bank, own 

computations  
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Appendix 3: Summary Statistics for Returns Volatility 

  

Mean 

volatility 

of returns 

Maximum  Minimum  
Std. 

Dev. 
Skewness Kurtosis 

Panel A: DE markets 

UK 0.0192 0.1268 0.0003 0.0144 2.6980 15.9420 

France 0.0247 0.1359 0.0004 0.0166 2.1029 11.2885 

Germany 0.0253 0.1428 0.0004 0.0188 2.3133 11.5896 

Belgium 0.0230 0.1461 0.0001 0.0169 2.1746 10.8129 

The Netherlands 0.0237 0.1579 0.0004 0.0172 2.3885 13.9890 

Portugal 0.0217 0.1320 0.0002 0.0166 2.0528 9.9266 

Italy 0.0256 0.1877 0.0008 0.0189 2.6515 15.9779 

Ireland 0.0274 0.2034 0.0001 0.0227 2.9399 16.3819 

Spain 0.0265 0.1501 0.0004 0.0186 2.0436 10.3613 

Panel B: PEA markets 

China 0.0356 0.2077 0.0010 0.0259 1.8490 8.2879 

Hong Kong  0.0262 0.1106 0.0001 0.0177 1.5779 6.2185 

Indonesia  0.0348 0.2542 0.0006 0.0305 2.7908 14.9752 

Japan  0.0240 0.1297 0.0012 0.0154 1.7357 9.1597 

Korea  0.0325 0.2038 0.0007 0.0262 2.0542 9.2673 

Malaysia  0.0209 0.1929 0.0002 0.0206 3.2148 18.8190 

Philippines  0.0267 0.1347 0.0004 0.0189 2.0322 9.6671 

Singapore 0.0223 0.1481 0.0001 0.0183 2.3684 11.6765 

Taiwan 0.0299 0.1491 0.0008 0.0204 1.6024 7.0785 

Thailand 0.0334 0.1835 0.0007 0.0270 2.1726 9.1893 

Panel C: ELA markets 

Brazil 0.0430 0.2579 0.0005 0.0311 2.3000 12.4360 

Chile 0.0254 0.2553 0.0001 0.0205 3.9311 34.8829 

Colombia 0.0302 0.1480 0.0006 0.0216 1.6834 7.1830 

Mexico 0.0334 0.2342 0.0004 0.0252 2.5987 14.6728 

Peru 0.0318 0.2082 0.0003 0.0239 2.3435 13.0762 

Argentina 0.0429 0.0310 0.0001 0.2311 2.2620 11.2853 

Panel D: Crisis source market 

U.S. 0.0196 0.1150 0.0004 0.0146 2.4370 12.5565 

Source: Author’s compilation 
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Appendix 4: Evolution of Returns Volatility 

 

Figure A4.1: Plots of the Evolution of Returns Volatility  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13/06/1991 13/06/1999 13/06/2007 13/06/2015

0.000

0.061

0.122

0.000

0.059

0.118

0.000

0.088

0.176

0.000

0.081

0.162

0.000

0.057

0.114

0.000

0.055

0.110

0.000

0.063

0.126

0.000

0.069

0.138

0.000

0.064

0.128

0.00

0.05

0.10

 

Dates

 Germany

 

 France

 

 Ireland

 

 Italy

 

 Portugal

 

 United Kingdom

 
 Belgium

 

 Netherlands

 

 Spain

 

 

 United States

13/06/1991 13/06/1999 13/06/2007 13/06/2015

0.00

0.09

0.18

0.000

0.048

0.096

0.00

0.11

0.22

0.000

0.055

0.110

0.000

0.088

0.176

0.000

0.084

0.168

0.000

0.059

0.118

0.000

0.064

0.128

0.000

0.064

0.128

0.00

0.08

0.16

 

Dates

 China

 

 Hong Kong

 

 Indonesia

 

 Japan

 

 Korea

 

 Malaysia

 

 Philippines

 

 Singapore

 

 Taiwan

 

 

 Thailand

13/06/1991 13/06/1999 13/06/2007 13/06/2015

0.00

0.11

0.22

0.00

0.11

0.22

0.000

0.064

0.128

0.0

0.1

0.2

0.00

0.09

0.18

0.0

0.1

0.2

 

Dates

 Brazil

 

 Chile

 

 Colombia

 

 Mexico

 

 Peru

 

 

 Argentina



237 
 
 

Appendix 5: Conditional Means and Variances using Returns Volatility 

 

Table A5.1: Results of Changes and Breaks in Conditional Means and Variances using Returns 

Volatility  

max LR test T.S [739.35] C.V [364.60] p-value [0.00] 

Estimated break dates  15-Oct-99 19-Mar-04 15-Aug-08 

95% confidence intervals 

[20-Aug-99, 

05-Nov-99] 

[27-Feb-04, 

02-Apr-04] 

[01-Aug-08, 

24-Oct-08] 

    

Coefficients changes for DE Regime 1 to 2 Regime 2 to 3 Regime 3 to 4 

Constant 1.862 -4.118 4.896 

GERt-1 -4.279 1.984 -1.629 

FRAt-1 1.766 -3.733 -0.748 

IRLt-1 4.452 0.531 6.455 

ITLt-1 2.344 3.330 1.865 

PORt-1 4.907 -4.131 1.326 

UKt-1 -0.260 0.192 -0.117 

BELt-1 5.490 -2.537 5.293 

NETt-1 -1.364 -5.472 4.535 

SPAt-1 -2.538 2.551 -2.791 

USAt-1 -0.415 0.242 -0.169 

max LR test T.S [845.99] C.V [420.66] p-value [0.00] 

Estimated break dates  10-Mar-00 08-Jun-07 28-Oct-11 

95% confidence intervals 

[20-Aug-99, 

25-Aug-00] 

[02-Sep-05, 

15-Jun-07] 

[21-Oct-11, 

06-Apr-12] 

    

Coefficients changes for PEA Regime 1 to 2 Regime 2 to 3 Regime 3 to 4 

Constant -53.201 112.515 -30.300 

CHNt-1 49.949 -81.058 39.894 

HKGt-1 -0.226 0.221 -0.249 

INDt-1 -0.017 0.423 -0.186 

JPNt-1 -0.392 2.809 -0.929 

KORt-1 -3.178 4.769 -5.198 

MALt-1 -2.704 2.730 -1.277 

PHIt-1 0.617 -0.488 2.551 

SINt-1 0.536 0.442 -2.438 

TAIt-1 1.754 -8.215 6.878 

THAt-1 2.847 -1.174 -1.546 

USAt-1 -0.442 -1.152 1.823 

max LR test T.S [450.74] C.V [193.84] p-value [0.00] 

Estimated break dates  14-Apr-00 16-Dec-05 21-May-10 

95% confidence intervals 

[25-Jun-99, 

22-Dec-00] 

[21-Oct-06, 06-

Jan-06] 

[30-Apr-10, 

27-Aug-10] 

Coefficient change for ELA Regime 1 to 2 Regime 2 to 3 Regime 3 to 4 

Constant 21.374 71.010 -1.108 

BRAt-1 -0.763 0.028 0.040 

CHIt-1 -0.567 2.650 -1.728 

COLt-1 2.187 -0.527 -0.898 

MEXt-1 -0.160 0.116 -0.073 

PERt-1 1.135 -0.853 0.971 

ARGt-1 0.471 -0.240 -0.124 

USAt-1 -1.273 -0.219 2.066 
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Panel B: Conditional variance       

max LR test T.S [1156.96] C.V [387.02] p-value [0.00] 

    

Estimated break dates 11-Oct-02 06-Apr-07 19-Aug-11 

    

95% confidence intervals 

[18-Feb-00, 

22-Nov-02] 

[23-Feb-07, 

06-Apr-07] 

[19-Aug-11, 

04-May-12] 

    

Change in standard deviation for DE Regime1 to 2 Regime 2 to 3 Regime 3 to 4 

GER -0.425 0.420 0.040 

FRA -0.408 0.556 -0.217 

IRL -0.278 0.265 -0.529 

ITL -0.500 0.320 -0.285 

POR -0.515 0.369 -0.255 

UK -5.010 8.454 -2.881 

BEL -0.232 0.144 0.015 

NET -0.476 0.389 -0.025 

SPA -0.246 1.015 -0.412 

USA -4.242 5.085 0.518 

max LR test T.S [2488.23] C.V [281.24] p-value [0.00] 

    

Estimated break dates  02-Feb-01 22-Dec-06 06-Jan-12 

95% confidence intervals 

[22-Dec-00, 

06-Jul-01] 

[14-Jul-06, 13-

Jul-07] 

[20-May-11, 

25-May-12] 

    

Change in standard deviation for PEA Regime 1 to 2 Regime 2 to 3 Regime 3 to 4 

CHN -0.931 0.792 -0.569 

HKG -51.436 71.526 -35.219 

IND -2.824 38.644 8.837 

JPN -2.329 2.078 0.393 

KOR 0.244 3.183 -2.166 

MAL -2.573 2.043 -1.185 

PHI -4.771 4.529 1.307 

SIN -4.195 9.141 -9.144 

TAI -1.363 0.224 -0.708 

THA -2.650 2.012 0.063 

USA -1.754 3.647 -0.940 

max LR test T.S [3906.73] C.V [270.48] p-value [0.00] 

    

Estimated break dates  04-Jun-99 21-Oct-03 18-Apr-08 

95% confidence intervals 

[28-May-99, 

09-Jul-99] 

[17-Oct-03, 

05-Dec-03] 

[04-Apr-08, 

03-Apr-09] 

    

Change in standard deviation for ELA Regime 1 to 2 Regime 2 to 3 Regime 3 to 4 

BRA -5.333 25.875 5.701 

CHI -3.478 7.460 11.526 

COL -1.232 5.788 4.710 

MEX 7.339 24.556 22.497 

PER -1.242 10.190 5.505 

ARG -2.269 9.559 16.077 

USA 5.979 -5.668 4.771 
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Figure A5.1: Changes in Coefficients of Conditional Means and Variances for the DE 

  

 

 

Figure A5.2: Changes in Coefficients of Conditional Means and Variances for PEA 

         

 

Figure A5.3: Changes in Coefficients of Conditional Means and Variances for ELA 
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Appendix 6: Bayesian Inference Methods via Gibbs Sampling MCMC Technique 

 

Here, the empirical strategy for estimating the regime switching model and the implementation 

steps is briefly presented. Approximation techniques, specifically MCMC technique, are 

commonly applied when performing standard Bayesian inferences. To generate useful 

posterior distribution approximations and to arrive at accurate probabilistic inferences of model 

parameters, it applies Bayesian inference methods by Gibbs sampling MCMC approximation 

technique due to the presence of hidden factors. This chapter adopts this technique because it 

readily accommodates data with high dimensionality, it is efficient at sampling high 

dimensional vector of variables, and it provides a satisfactory performance because it does not 

suffer from the problem of non-convergence.  

 

The MCMC procedure utilizes the posterior distributions during estimation to provide efficient 

estimates, which makes it particularly suitable and convenient for the joint estimation of the 

model’s conditional parameters. The posterior distributions are generated by updating the prior 

belief of our model parameters through Bayesian iterative procedure with likelihood functions. 

The updating process that this chapter uses is via Gibbs-type posteriors based on Kim et al., 

(1998), Kim and Nelson, (1999), Koop and Korobilis, (2010) and Del Negro and 

Primiceri (2015). Thus, the regime switching model can be estimated with greater flexibility. 

Moreover, the procedure allows for the possibility of modelling parameter uncertainty. It is 

important to model uncertainty in model parameter because there might be considerable prior 

uncertainty in the parameters of the specified model, which can be crucial for understanding 

the behaviour of stock returns. The Bayesian procedure can handle higher-order moments in 

the probability density function.  

 

Consider the likelihood function given by 

 

𝑓 (𝑦|𝑍, Θ, s) = (2𝜋)−
𝑚𝑇
2  ∏|Σ𝑠𝑡|

−
1
2

𝑇

𝑡=1

𝑒𝑥𝑝 {−
1

2
∑[𝑦𝑡 − 𝑋𝑡𝛽𝑠𝑡]

′
Σ𝑠𝑡
−1[𝑦𝑡 − 𝑋𝑡𝛽𝑠𝑡]

𝑇

𝑡=1

},        (1) 

 

where Θ = (𝛽0, 𝛽1, Σ0, Σ1) and 𝑠𝑡 ∈ {0, 1}, Π denotes the underlying distribution.  
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The Prior specification 

To implement the joint estimation of returns for the different measures of contagion, for each 

measure, this thesis uses the following prior parameters given by 

 

𝛽𝑠𝑡 ∼ 𝑁 (𝛽, 𝑉𝛽),                                                                                       (2) 

Σ𝑠𝑡 ∼ 𝐼𝑊( 𝑆Σ, 𝜏Σ),                                                                                    (3) 

𝑝𝑖𝑡 = Pr (𝑠𝑡 = 1|𝑠𝑡 = 𝑖),            1 − 𝑝𝑖𝑡  = Pr (𝑠𝑡 = 0|𝑠𝑡 = 𝑖),     (4) 

 

where 𝐼𝑊( 𝑆Σ, 𝜏Σ) denotes the normal inverted Wishart distributions used as the conjugate 

prior having a positive definite scale matrix,  𝑆Σ  with degree of freedom, 𝜏Σ. In our empirical 

analysis, the prior mean, 𝛽 and prior covariance matrix, 𝑉𝛽 are set to 𝛽 = (𝜇′, 𝜔′)
′

 and 𝑉𝛽 =

[
𝜙𝜇𝐼𝑚 0

0 𝜙𝜔𝐼𝑘
], respectively, where 𝑘 = 𝑚2. A fraction 𝑝𝑖𝑡 of the measures of contagion have 

its parameters obtained from the normal inverted Wishart distributions when 𝑠𝑡 = 1while a 

fraction 1 − 𝑝𝑖𝑡 of the measures have truncated normal distributions. 

 

The Posterior specification 

From Bayesian inference, it follows that the joint posterior distribution depends on the joint 

prior distribution, 𝜋 (Θ, 𝑍, 𝑠|𝑦) and the likelihood function for all data, 𝑓 (𝑦|𝑍, Θ, s) 𝑓 (𝑍) 𝑓 (s|Θ) 

which is defined as 

 

  𝜋 (Θ)⏟  
joint posterior distribution

= 𝜋 (Θ, 𝑍, 𝑠|𝑦)⏟        
joint prior distribution

    𝑓 (𝑦|𝑍, Θ, s) 𝑓 (𝑍) 𝑓 (s|Θ)⏟                
likelihood function for all data 

  ,              (5) 

 

where 𝜋 denotes probability density functions (p.d.f.) for the prior and posterior. Equation (5) 

shows that the joint posterior distribution, on the left-hand side of the equation, consists of two 

terms. The first term on the right-hand side of this expression, is the joint prior distribution, 

which is the distribution based on relevant and available prior information. The second term is 

the likelihood function for all data, which is the sample information. 

 

If this thesis assumes that the independence assumption holds between 𝛽 and Σ, then the joint 

prior density of Eq. (5) is 

 



242 
 
 

𝜋 (Θ) =  𝜋 (𝛽0)𝜋 (𝛽1)𝜋( Σ0)𝜋 (Σ1).          (6) 

 

The sampling procedure, which requires drawing random samples via the Gibbs sampler from 

the true joint posterior distributions, 𝜋(·) proceeds in several steps:  

 

Step 1. Specify initial values for all parameters in the set Θ(0) = (𝛽0
(0)
, 𝛽1
(0)
, Σ0
(0)
, Σ1
(0)
) and 𝑍(0) 

where 𝛽𝑙
(0)
(𝜇𝑙

(0)′
, 𝜔𝑙

(0′)
)
′

. Restrict the interval of the elements for all parameters over the range 

zero to one, 𝑙 = 0, 1. Then initialize counter for 1 to nth iterative loop.  

 

Step 2. Sample 𝑠(𝑙𝑜𝑜𝑝) from 𝜋(𝑠|𝑦, 𝑧(𝑙𝑜𝑜𝑝−1), Θ(𝑙𝑜𝑜𝑝−1)) where Θ(𝑙𝑜𝑜𝑝) = (𝛽(𝑙𝑜𝑜𝑝), Σ(𝑙𝑜𝑜𝑝)).  

 

Step 3. Sample 𝛽𝑙
(𝑙𝑜𝑜𝑝)

 from 𝜋(𝛽𝑙|𝑦, 𝑧
(𝑙𝑜𝑜𝑝−1), Σ(𝑙𝑜𝑜𝑝−1), 𝑠(𝑙𝑜𝑜𝑝)). 

 

Step 4. Sample Σ𝑙
(𝑙𝑜𝑜𝑝)

 from 𝜋 (Σ𝑙|𝑦, 𝑧
(𝑙𝑜𝑜𝑝−1), 𝛽𝑙

(𝑙𝑜𝑜𝑝−1), 𝑠(𝑙𝑜𝑜𝑝)). 

 

Step 5. Sample 𝑧(𝑙𝑜𝑜𝑝) from 𝜋(𝑍|𝑦, Θ(𝑙𝑜𝑜𝑝−1), 𝑠(𝑙𝑜𝑜𝑝)). 

 

Step 6. Return to step 2 and repeat up to nth loop 

 

As with any standard Bayesian inference method, our MCMC technique for approximating the 

skew-normal sampling distributions involves repeatedly generating realizations for each 

parameter through simulations.  

 

The posterior distribution of the parameter, 𝛽𝑙 = 𝑙 = 0, 1 which is conditional on (𝑦, 𝑍, Σ0, Σ1) 

and 𝑠 has a 𝑞-variate normal distribution with 𝑞 = 𝑚 + 𝑘 is 

 

(𝛽𝑙|𝑦, 𝑍, Σ𝑙 , s)  ∼ 𝑁𝑞(𝛽̂𝑙 , D𝛽𝑙),   𝑙 = 0, 1,                                          (7) 

 

where D𝛽𝑙 = (𝑉𝛽
−1 + ∑ 1(𝑠𝑡 = 𝑙)𝑋𝑡

′∑ 𝑋𝑡
−1
𝑠𝑡

𝑇
𝑡=1 )

−1
 and 𝛽̂𝑙 = D𝛽𝑙 [𝑉𝛽

−1𝛽 + ∑ 1(𝑠𝑡 = 𝑙)𝑋𝑡
′∑ 𝑦𝑡

−1
𝑠𝑡

𝑇
𝑡=1 ].  
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The posterior distribution of the parameter, Σ𝑙 = 𝑙 = 0, 1 which is conditional (𝑦, 𝑍, 𝛽0, 𝛽1) on 𝑠 

is a normal inverted Wishart distribution given by 

 

(Σ𝑙|𝑦, 𝑍, 𝛽𝑙 , s)  ∼ 𝐼𝑊 ( 𝑆Σ, 𝜏Σ),                                                                 (8) 

 

where  𝑆Σ =  𝑆Σ + ∑ 1(𝑠𝑡 = 𝑙)(𝑦𝑡 − 𝑋𝑡𝛽𝑠𝑡)
𝑇
𝑡=1 (𝑦𝑡 − 𝑋𝑡𝛽𝑠𝑡)

′
 and  𝜏Σ = 𝜏Σ + ∑ 1(𝑠𝑡 = 𝑙)

𝑇
𝑡=1 . The 

hidden variables 𝑍1, … , 𝑍𝑇 are conditionally independent on 𝑦, 𝛽0, 𝛽1, Σ0, Σ1 and 𝑠. Each 𝑍𝑡 has 

an independent 𝑚-variate truncated normal. 

 

(𝑍𝑡|𝑦, Θ, s)  ∼ 𝑖. 𝑖. 𝑑 𝑁 (𝑍̂𝑡 , D𝑧𝑡)1 (𝑍𝑗𝑡  > 𝑐, 𝑗 = 1,… ,𝑚 ),                   (9) 

 

where D𝑧𝑡 = (𝐼𝑚 + 𝛿𝑠𝑡
′ ∑ 𝛿𝑠𝑡

−1
𝑠𝑡 )

−1
 and 𝑍̂𝑡 = D𝑧𝑡(𝑐𝐼𝑚 + 𝛿𝑠𝑡

′ ∑ (𝑦𝑡 − 𝜇𝑠𝑡)
−1
𝑠𝑡 ). 

 

Testing for Contagion and Hypothesis Evaluation Methods for Contagion Tests  

 

The details of the procedure for testing contagion are set out in this sub-section. This thesis is 

interested in performing tests for contagion individually and jointly. It will discuss the 

restrictions on the parameters of the regime switching model that are required to perform these 

tests for contagion. It will also lay out the methods applied in evaluating the hypothesis.  
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Appendix 7: Hypothesis Evaluation for Contagion Tests 

 

Table A7.1: Summary of the restrictions on the parameters of the model and the methods for 

hypothesis evaluation for contagion tests 

Tests Method 

(decision rules) 

Restrictions 

Contagion tests (𝑖 ≠  𝑗) market 𝑖 ∀𝑖 
Correlation 

Coskewness 

Corr. & coskew. 

𝑝 

𝐵𝐹 

𝐵𝐹 

𝑝𝑖𝑗,0 < 𝑝𝑖𝑗,1 

𝜔𝑖𝑗,0 = 𝜔𝑖𝑗,1 

𝑝𝑖𝑗,0 = 𝑝𝑖𝑗,1, 𝜔𝑖𝑗,0 = 𝜔𝑖𝑗,1 

𝛾0 < 𝛾1 

Ω0 = Ω1 

𝛾0 = 𝛾1, Ω0 = Ω1 

Joint contagion (𝑖 ≠  𝑗) 
All 

 

𝐵𝐹 

 

𝑝𝑖𝑗,0 = 𝑝𝑖𝑗,1, 𝜔𝑖𝑗,0 = 𝜔𝑖𝑗,1 

 

𝛾0 = 𝛾1, Ω0 = Ω1 

Notes: The tests are for comparing change in model parameters during the crisis period 𝑠𝑡  =  1 as against a non-

crisis period 𝑠𝑡  =  0. The hypothesis evaluation method (decision rules) for the different tests is shown in the 

table. 𝑝 and 𝐵𝐹 denote decisions based on probability and the log of the Bayes factor. 

 

The unrestricted model (𝑀𝑢) which is the regime switching model has two sets of regime-

specific parameters, i.e., it has mean vectors 𝜇0 and 𝜇1 (each of dimension 𝑚 𝑥 1), covariance 

matrices Σ0 and Σ1 (each of dimension 𝑚 𝑥 𝑚) and coskewness matrices Ω0 and Ω1 (each of 

dimension 𝑚 𝑥 𝑚). Recollect that 𝜇𝑖,𝑙, Σ𝑖𝑗,𝑙 and Ω𝑖𝑗,𝑙 denote the 𝑖th elements of 𝜇𝑙, Σ𝑙 and Ω𝑙, 

respectively. The correlation coefficient 𝑝𝑖𝑗,𝑙 is the covariance (Σ𝑖𝑗,𝑙) divided by the product of 

the square root of the variances Σ𝑖𝑖,𝑙 and Σ𝑗𝑗,𝑙. 𝛾𝑙 denotes the sum of the individual correlation 

coefficients 𝛾𝑙 = ∑ ∑ 𝜌𝑖𝑗,𝑙
𝑚
𝑗≠𝑖

𝑚
𝑖=1  used in the joint test for contagion through correlation.  

 

This thesis uses two decision rules for evaluating the contagion hypotheses subject to the form 

that the hypothesis takes. The hypotheses can either have inequality or equality restrictions. 

For hypotheses with inequality restrictions, the probability of contagion is calculated using the 

proportion that the hypothesis is true in the MCMC draws and this is denoted by 𝑝. On the 

other hand, for hypotheses testing with equality restrictions the Bayesian model comparison 

method using the natural logarithm of the Bayes factor are conducted and this is denoted by 

𝐵𝐹.  

 

The Bayesian model comparison method is a unified approach for comparing non-nested 

models. This method is an alternative to the classical hypothesis test. Consider comparing two 
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models, 𝑀𝑟 and 𝑀𝑢, evidence in support of the restricted model 𝑀𝑟 can be measured using a 

Bayes factor (𝐵𝐹𝑟𝑢), which is the ratio of the marginal likelihoods of the two models, is defined 

as 

 

𝐵𝐹𝑟𝑢 =
𝑝(𝑦|𝑀𝑟)

𝑝(𝑦|𝑀𝑢)
                              (10) 

 

where 𝑝(𝑦|𝑀𝑟) and 𝑝(𝑦|𝑀𝑢) are the marginal likelihoods of the data under models 𝑀𝑟 and 

𝑀𝑢 . More explicitly, 𝑝(𝑦|𝑀𝑟)  is the marginal distribution of 𝑦  under model 𝑀𝑟  and it is 

evaluated using the data. Clearly, if the data are improbable under the 𝑀𝑟  model, then the 

marginal likelihood will be small and vice versa. Thus, the Bayes factor is used to show the 

model that the data are better predicted under. 

 

Consider model 𝑖, the marginal likelihood of the data under this model can be defined as 

 

𝑝(𝑦|𝑀𝑖) =
𝑓(𝑦|Θ)𝜋(Θ)

𝜋(Θ|𝑦)
, 𝑖 = 𝑟, 𝑢,                (11) 

where Θ is a parameter set in the model, 𝑓 (𝑦|Θ) and 𝜋(Θ|𝑦) are the likelihood function and 

posterior density. The prior density can be evaluated without difficulty; however, MCMC 

methods would be required to evaluate the likelihood and the posterior density. The marginal 

likelihoods can be computed using the Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001).  
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Appendix 8:  Decision Rules 
 

Table A8.1: Scale of Evidence for Bayesian model selection  

Value of the log of the Bayes factor 𝑙𝑛(𝐵𝐹𝑟𝑢) Evidence categories for Bayesian model selection  

(0,∞) 

(−1.15, 0) 

(−2.30,−1.15) 

(−4.60,−2.30) 

(−∞,−4.60) 

Evidence in favour of model 𝑀𝑟  

Very slight evidence in favour of model 𝑀𝑢 

Slight evidence in favour of model 𝑀𝑢 

Strong evidence in favour of model 𝑀𝑢 

Decisive evidence in favour of model 𝑀𝑢 

Notes: Following Jeffrey’s rule (Jeffreys, 1998), the log of the Bayes factor used for model selection is 𝑙𝑛(𝐵𝐹𝑟𝑢) =

𝑙𝑛(𝑝(𝑦|𝑀𝑟)) − 𝑙𝑛(𝑝(𝑦|𝑀𝑢)).  

 

The posterior odds ratio for model 𝑀𝑟 relative to model 𝑀𝑢 is given by  

 

𝑃𝑂𝑟𝑢 =
𝜋(𝑀𝑟)

𝜋(𝑀𝑢)
 𝐵𝐹𝑟𝑢,                            (12) 

 

where 𝜋(𝑀𝑟)  and 𝜋(𝑀𝑢)  are the prior probabilities of models 𝑀𝑟  and 𝑀𝑢 , respectively. 

Apparently, if the posterior odds ratio for the two models under comparison are equally likely 

prior to observing the data, then in principle the posterior odds ratio of both models is also the 

Bayes factor. Assuming the two models are nested, the Bayes factor can be easily computed 

using a generalization of the Savage-Dickey density ratio (Verdinelli and Wasserman, 1995). 

This density ratio can be used for the computation of the Bayes factor because hypothesis 

testing can be applied as though one is comparing nested models. If the Bayes factor in favour 

of model 𝑀𝑟 is sufficiently large, then model 𝑀𝑟 will be selected instead of model 𝑀𝑢. The 

scale of evidence for Bayesian model selection proposed Jeffreys (1998) upon which this 

decision is based is shown in Table A8.1 above. 

 

The contagion tests are based on changes in correlation and coskewness. To test for the 

presence of contagion between asset markets 𝑖  and 𝑗  based on increases in the correlation 

coefficient in regime 𝑠𝑡  =  1 relative to 𝑠𝑡  =  0 the contagion test is a test of the restriction:    
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𝜌𝑖𝑗,𝑠𝑡=1 > 𝜌𝑖𝑗,𝑠𝑡=0,   𝑖 ≠ 𝑗.                    (13) 

 

The prior is that the correlation coefficients are likely to increase as asset markets comove even 

more closely during a crisis. The relevant representation of the test for changes in correlation 

between asset markets 𝑖 and 𝑗 is 𝜌𝑖𝑗,1 − 𝜌𝑖𝑗,0 > 0. Probability of contagion through correlation 

between markets 𝑖 and 𝑗 that can be estimated directly from MCMC draws is  

 

Pr(𝜌𝑖𝑗,1 − 𝜌𝑖𝑗,0 > 0|𝑦,𝑀𝑢)                    (14) 

 

Testing for the presence of contagion through joint correlation between 𝑚 − 1 pairs of asset 

returns with market 𝑗  is also possible. Accordingly, the test is based on the relevant 

representation of this restriction: 

 

𝛾0 ≤ 𝛾1,                                                      (15) 

 

where 𝛾𝑙 is the sum of the individual correlation coefficients 𝛾𝑙 = ∑ ∑ 𝜌𝑖𝑗,𝑙
𝑚
𝑗≠𝑖

𝑚
𝑖=1 .  

The joint probability of contagion through correlation across the 𝑚− 1 markets with market 𝑗 

can also be estimated from the MCMC draws.  

To test for the presence of contagion based on changes in the asymmetric dependence 

(coskewness) of returns 𝑖 and 𝑗 in 𝑠𝑡  =  1 relative to 𝑠𝑡  =  0 the contagion test is a test of the 

restriction:   

 

𝜔𝑖𝑗,𝑠𝑡=0 ≠ 𝜔𝑖𝑗,𝑠𝑡=1,      𝑖 ≠ 𝑗.                       (16) 

 

The restricted model for contagion test based on changes in coskewness is 𝜔𝑖𝑗,0 = 𝜔𝑖𝑗,1,   𝑖 ≠

𝑗.  

Along similar lines, the joint test for contagion through coskewness across all 𝑚 asset markets 

is similar to the bivariate statistic by Fry et al. (2010). The restriction on the model 
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∑ ∑ 𝜔𝑖𝑗,0 = 𝜔𝑖𝑗,1
𝑚
𝑗≠𝑖

𝑚
𝑖=1  can also be expressed as 𝜔0 = 𝜔1. Marginal likelihoods are used to 

compute the relevant Bayes factors. 
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Appendix 9: QA and BP Tests using Country-Level Data on Stock Returns 

 

Table A9.1: Results of the QA and BP Tests using Country-Level Data on Stock Returns  

Structural break tests BEL BRA CHL CHN COL FRA 

Panel A: QA test       

   Sup LR Statistic 25.6758*** 36.5126*** 13.2929*** 6.6834** 14.1906*** 41.7534*** 

      p-value (0.000) (0.000) (0.000) (0.023) (0.000) (0.000) 

     Break dates 25/3/2009 13/11/2008 27/10/2008 11/6/2009 12/8/2014 27/3/2009 

   Exp LR Statistic 8.7075*** 11.1639*** 1.6451** 1.5585* 5.0835*** 16.5060** 

      p-value (0.000) (0.000) (0.045) (0.054) (0.000) (0.001) 

   Ave LR Statistic 6.7284*** 7.9415*** 2.2530* 2.0806* 7.4887*** 9.7360*** 

      p-value (0.000) (0.000) (0.054) (0.071) (0.000) (0.000) 

Panel B: BP test       

𝑆𝑢𝑝𝐹𝑇 (𝑚) statistic       

Sequential F-statistic 

determined breaks 

5 5 4 5 5 5 

   Break: 1 ** 25.6758     36.5126 13.2929 6.6834 14.1906 41.7534 

   Break: 2 ** 18.2052    19.3367    13.3287    8.0139    14.7975    29.0483 

   Break: 3 ** 14.0109 14.3178 10.4018 6.3570 12.5184 20.0000 

   Break: 4 ** 10.9034 11.4431 8.3158 4.9591 10.2706 15.7221 

   Break: 5 ** 8.4155 5.7383  3.4418 8.1785 12.9841 

       

Double maximum statistics        

   UDmax Statistica 51.3516** 73.0253** 26.6574**  16.0279**  29.5950**  83.5069** 

   WDmax Statisticb 51.3516** 73.0253** 31.3601**  18.8554**  34.8159** 83.5069** 

       

𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) statistic       

Sequential F-statistic 

determined breaks 

2 1 2 1 3 2 

   Break test: 0 vs. 1 ** 25.6758 36.5126 13.2929 6.6834 14.1906 41.7534 

   Break test: 1 vs. 2 ** 7.2400  13.2698  15.2867 15.8626 

   Break test: 1 vs. 3 **     7.8426  

       

Estimated break dates       

 27/2/2007 11/07/2007 27/10/2008 20/2/2007 13/3/2007 27/2/2007 

 01/10/2008 13/11/2008 23/11/2010 16/10/2008 13/11/2008 27/3/2009 

 25/3/2009 24/5/2010 21/12/2010 02/6/2009 15/4/2009 01/6/2009 

 12/11/2010 09/9/2011 23/1/2013 11/6/2009 09/12/2010 02/9/2011 

         29/12/2011 06/8/2012 13/3/2014 16/11/2010 09/6/2011 03/10/2013 

 02/1/2013 17/12/2012 15/12/2015 28/9/2011 11/8/2014 24/8/2016 

 19/3/2014 07/10/2013  14/12/2012 12/8/2014  

 06/9/2016 29/8/2014  13/8/2014 23/9/2016  

  28/1/2016  20/3/2015   

  29/1/2016  06/9/2016   

  23/9/2016  07/9/2016   
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Structural break tests GER HKG IND IRL ITL JPN 

Panel A: QA test       

   Sup LR Statistic 30.4343*** 9.0486** 3.9215 11.3775*** 77.9070*** 4.0383 

      p-value (0.000) (0.002) (0.217) (0.000) (0.000) (0.199) 

     Break dates 30/3/2009 19/9/2008 28/10/2008 09/10/2008 27/2/2009 22/6/2015 

   Exp LR Statistic 10.5818*** 0.9005 0.5125 1.8606 32.8888 0.9433 

      p-value (0.000) (0.223) (0.512) (0.029) (1.000) (0.203) 

   Ave LR Statistic 7.7342*** 0.8364 0.9045 2.3599** 22.6982 1.6006 

      p-value (0.000) (0.493) (0.445) (0.046) (1.000) (0.150) 

Panel B: BP test       

𝑆𝑢𝑝𝐹𝑇 (𝑚) statistic       

Sequential F-statistic 

determined breaks 

5 4 3 5 5 2 

Break: 1 ** 30.4343 9.0486 3.9215 11.3775 77.9070 5.4062 

   Break: 2 **    21.0589    6.3667    5.4107    10.7531    46.6137    4.4377 

   Break: 3 ** 15.7263 4.8406 4.5119 8.4324 34.5385  

   Break: 4 ** 12.7950 3.7423  6.5981 26.4531  

   Break: 5 ** 10.5166   4.9846 21.3099  

       

Double maximum statistics        

   UDmax Statistica  60.8687**  18.0973** 10.8215**  22.7550** 155.8140**  10.8125** 

   WDmax Statisticb 60.8687** 18.0973** 12.7306**  25.3002** 155.8140** 12.7200** 

       

𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) statistic       

Sequential F-statistic 

determined breaks 

2 1 0 2 3 

 

   Break test: 0 vs. 1 ** 30.4343 9.0486  11.3775 77.9070  

   Break test: 1 vs. 2 ** 11.4981   10.0688 14.7010  

   Break test: 1 vs.3 **     9.9058  

        

Estimated break dates       

 28/8/2007 19/9/2008 28/10/2008 21/6/2007 30/1/2007 05/11/2008 

 10/10/2008 12/1/2011 19/8/2011 09/10/2008 27/2/2009 05/6/2012 

 30/3/2009 16/6/2011 13/1/2016 16/7/2009 27/10/2011 25/6/2015 

 10/8/2011 30/5/2013  12/11/2010 18/12/2013  

         18/8/2011 28/5/2015  28/9/2011 24/8/2016  

 17/9/2013 24/6/2015  13/5/2014   

 24/8/2016   12/9/2016   
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Structural break tests KOR MAL MEX NET PER PHI 

Panel A: QA test       

   Sup LR Statistic 8.8273** 16.6906*** 26.5027*** 18.8397*** 10.4892*** 3.1910 

      p-value (0.003) (0.000) (0.000) (0.000) (0.000) (0.363) 

     Break dates 10/10/2008 21/11/2008 22/10/2007 01/6/2009 19/9/2008 07/11/2008 

   Exp LR Statistic 0.7583 3.3915** 10.0605*** 6.0706*** 1.6150** 0.3928 

      p-value (0.303) (0.001) (0.000) (0.000) (0.048) 0.655 

   Ave LR Statistic 0.9213 3.0562** 9.1384*** 5.1417** 2.1730* 0.6996 

      p-value (0.434) (0.016) (0.000) (0.001) (0.061) 0.600 

Panel B: BP test       

𝑆𝑢𝑝𝐹𝑇 (𝑚) statistic       

Sequential F-statistic 

determined breaks 

4 5 5 5 5 
 

  Break: 1 ** 8.8273 16.6906 26.5027 18.8397 10.4892  

   Break: 2 **    6.6518    9.3355     17.5152    14.3792   12.1136  

   Break: 3 ** 4.9270 7.3420 12.2652 10.5846 9.2909  

   Break: 4 ** 3.8309 6.2123 10.0708 8.4674 7.1661  

   Break: 5 **  3.9063 8.2974 6.8939 5.8340  

       

Double maximum 

statistics  

      

   UDmax Statistica  17.6546**   33.3813** 53.0054**  37.6795**  24.2273**  

   WDmax Statisticb 17.6546** 33.3813** 53.0054** 37.6795** 28.5013**  

       

𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) statistic       

Sequential F-statistic 

determined breaks 

1 1 2 2 1  

   Break test: 0 vs. 1 ** 8.8273 16.6906 26.5027 18.8397 10.4892  

   Break test: 1 vs. 2 **   8.4136 9.8223   

       

Estimated break dates       

 10/10/2008 08/4/2008 07/6/2007 23/4/2007 24/4/2007  

 23/9/2011 21/11/2008 22/10/2007 01/6/2009 19/9/2008  

 05/1/2011 24/5/2010 31/10/2007 27/10/2011 28/5/2009  

 30/1/2013 15/10/2012 12/8/2009 07/6/2012 21/6/2011  

         22/6/2015 13/1/2011 02/9/2011 11/8/2014 27/8/2014  

  27/7/2012 06/9/2011 06/9/2016 27/8/2015  

  20/2/2013 06/11/2013  23/9/2016  

  21/8/2014 12/9/2016    

  30/1/2015 23/9/2016    

  19/3/2015     

  23/6/2015     

  15/9/2016     
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Structural break tests POR SNG SPA THL UK 

Panel A: QA test      

   Sup LR Statistic 56.7553*** 8.7191** 42.3882*** 9.5215** 9.6309** 

      p-value (0.000) (0.003) (0.000) (0.001) (0.001) 

     Break dates 02/10/2009 03/9/2008 01/6/2009 11/8/2008 30/3/2009 

   Exp LR Statistic 25.0503 1.4396* 17.5685** 1.1725 2.1959** 

      p-value (1.000) (0.070) (0.008) (0.124) (0.014) 

   Ave LR Statistic 24.7238 1.6943 11.1012*** 1.1148 2.2239* 

      p-value (1.000) (0.130) (0.000) (0.323) (0.057) 

Panel B: BP test      

𝑆𝑢𝑝𝐹𝑇 (𝑚) statistic      

Sequential F-statistic determined breaks 5 5 5 5 5 

   Break: 1 ** 56.7553 8.7191 42.3882 9.5215 9.6309 

   Break: 2 **   32.4916    6.1691    28.8629    6.7506    11.8797 

   Break: 3 ** 26.5149 4.5062 20.1552 5.1966 8.3239 

   Break: 4** 21.1043 3.8651 15.4685 4.4167 6.6476 

   Break: 5 ** 17.2911 3.1351 12.5536 2.9963 5.5608 

      

Double maximum statistics       

   UDmax Statistica 113.5108** 17.4383** 84.7765** 19.0430** 23.7594** 

   WDmax Statisticb 113.5108** 17.4383** 84.7765** 19.0430**  27.9508** 

      

𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) statistic      

Sequential F-statistic determined breaks 3 1 2 1 2 

   Break test: 0 vs. 1 ** 56.7553 8.7191 42.3882 9.5215 9.6309 

   Break test: 1 vs. 2 ** 7.9974  14.9136  13.7869 

   Break test: 1 vs. 3 ** 14.0682     

      

Estimated break dates      

 21/2/2007 22/2/2007 12/2/2007 08/8/2007 27/2/2007 

 23/7/2007 03/9/2008 01/6/2009 11/8/2008 30/3/2009 

 05/6/2009 18/3/2009 17/6/2009 17/9/2008 01/6/2009 

 17/8/2009 25/4/2011 19/6/2012 01/9/2009 07/6/2012 

         02/10/2009 24/7/2012 31/7/2014 08/12/2010 11/8/2014 

 02/8/2011 02/10/2013 24/8/2016 27/9/2011 06/9/2016 

 07/7/2014 15/9/2016  23/7/2014  

 12/9/2016   25/7/2014  

    22/8/2016  

    12/9/2016  

Notes: Reported tests for testing structural breaks include the QA test and the BP test, respectively. These tests 

are based on a linear regression model for each region log of GDP-weighted stock return indices with the US 

stock index. *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. The figures 

in the parentheses are the probability values (p-values). The p-values for the tests are calculated using the method 

in Hansen (1997). a 5% UDmax critical value is 11.70. b 5% WDmax critical value is 12.81. For the 𝑆𝑢𝑝𝐹𝑇 (𝑚) 
test, the critical values for break 1, 2, 3, 4, and 5 are 11.47, 9.75, 8.36, 7.19 and 5.85, respectively. For the 

𝑆𝑢𝑝𝐹𝑇 (ℓ + 1/ℓ) test, the critical value for break test: 0 vs. 1 is 11.47, the critical value for break test: 1 vs. 2 is 

12.95 and the critical value for break test: 1 vs. 3 is 14.03. 
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Appendix 10: Plots of Probability and Log of Bayes Factor 

 

Figure A10.1: Plots of Benchmark Results  
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Panel B: Log of the Bayes Factor for Coskewness 
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Panel C: Log of the Bayes Factor for Correlation and Coskewness 
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