
Sublinear Time Evaluation of Logically
Defined Queries on Databases of

Bounded Degree

Polly Victoria Fahey

The University of Leeds
School of Computing

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

September 2021





Declaration

The candidate confirms that the work submitted is his/her/their own, except where work
which has formed part of jointly authored publications has been included. The contribution
of the candidate and the other authors to this work has been explicitly indicated below. The
candidate confirms that appropriate credit has been given within the thesis where reference
has been made to the work of others.

Some parts of this work in Chapters 4 and 5 have been published in the following article:

• Isolde Adler and Polly Fahey, Faster Property Testers in a Variation of the Bounded
Degree Model, In 40th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, 2020

Some parts of this work in Chapters 4, 5 and 6 have been submitted for publication in the
following articles:

• Isolde Adler and Polly Fahey, Faster Property Testers in a Variation of the Bounded
Degree Model, submitted to ACM Transactions on Computational Logic

• Isolde Adler and Polly Fahey, Towards Approximate Query Enumeration with Sub-
linear Preprocessing Time, submitted to Journal of Logical Methods in Computer
Science

All three papers are primarily the work of the second author (Polly Fahey), and the
contribution of the other author (Isolde Adler) was through discussions, ideas and proof
reading.

This copy has been supplied on the understanding that it is copyright material and that no
quotation from the thesis may be published without proper acknowledgement.
©2021 The University of Leeds and Polly Fahey





Acknowledgements

First and foremost, I would like to thank my supervisor Isolde Adler. Isolde’s support
and guidance has been invaluable these past four years. She has offered many interesting
discussions, pointed me in the direction of useful results, and provided quality feedback on
my work.

I would also like to thank the friends I have met during my PhD journey. In particular,
Noleen, who proofread some of this thesis, accompanied me on many enjoyable conferences,
and who was always available for a chat.

I would like to acknowledge the University of Leeds for funding my research and my
examiners for their time and effort.

Last but definitely not least, I would like to thank my family. My Mum and Dad for
always encouraging and supporting me. My sister Naomi for her advice, listening to my long
rants, and just for being a great friend. My dog Salvador for always wanting a cuddle and
walks in the woods. And finally, Christian, who has been there for me through it all. Without
his consistent love and support, I would not be where I am today.





Abstract

Currently, there is an ever-growing need for extremely efficient algorithms to extract infor-
mation from data. However, when the input data is huge, even reading the whole input once
is too costly and hence many algorithms that are traditionally classified as ‘efficient’ (i.e. run
in polynomial time) become impractical. This motivates the study of algorithms that run
in sublinear time. To achieve sublinear time, it is unavoidable that we must sacrifice some
accuracy (since we cannot read the whole input), but in view of many practical applications
it is crucial that we provide guarantees on the accuracy of the output. In this thesis, we aim at
providing sublinear time algorithms for the approximate evaluation of queries on relational
databases of bounded degree, that come with probabilistic accuracy guarantees. We mainly
focus on queries definable in first-order logic and monadic second-order logic with counting.

For boolean queries, we use the framework of property testing. In property testing, for a
property P, the goal is to distinguish inputs that have P from those that are far from having
P with high probability correctly, by querying only a small number of local parts of the
input. Much research has focussed on the query complexity of property testing algorithms,
i. e. the number of queries the algorithm makes to the input, but in view of applications, the
running time of the algorithm is equally relevant. In the bounded degree relational database
model, which was introduced in (Adler, Harwath STACS 2018) and is a natural extension
of the bounded degree graph model, the distance to P is measured by the number of tuple
modifications (additions or deletions), that are necessary to transform a database into one
with property P. We introduce a new model, which is based on the bounded degree relational
database model, but the distance measure allows both tuple modifications and element
modifications. We begin an investigation of which conditions allow constant time property
testing algorithms in our new model. In particular, we show that on databases of bounded
degree and bounded tree-width, all boolean queries expressible in monadic second-order
logic with counting are testable in constant time.

On the way to proving our results in the new model we also partially answer an open
problem by Alon. Alon (Proposition 19.10 in: Lovász, Large networks and graph limits,
2012) proved that for every bounded degree graph G there exists a constant size graph H

that has a similar neighbourhood distribution to G . This proof is only existential and it was



viii

suggested as an open problem to find explicit bounds on the size of H . We find bounds on
the size of H for two special cases.

Furthermore, we study query enumeration of non-boolean queries. In the query enumera-
tion problem, after a preprocessing phase the aim is to enumerate all answers to the query
with only a small delay between any two consecutive answers. We introduce a new model
for the approximate query enumeration on classes of relational databases of bounded degree.
We aim for sublinear time preprocessing and constant delay. Since sublinear running time
does not allow reading the whole input database even once, sacrificing some accuracy is
inevitable for our speed-up. Nevertheless, our enumeration algorithms come with guarantees:
With high probability, (1) only tuples are enumerated that are answers to the query or ‘close’
to being answers to the query, and (2) if the proportion of tuples that are answers to the query
is sufficiently large, then all answers will be enumerated. Here the notion of ‘closeness’ is
a tuple edit distance in the input database. We identify conditions under which first-order
definable queries can be enumerated approximately with constant delay after a sublinear
preprocessing phase. In particular, we show that on databases of bounded degree and bounded
tree-width, queries expressible in first-order logic can be approximately enumerated with
constant delay after a sublinear preprocessing phase.
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Chapter 1

Introduction

Given the ubiquity and sheer size of stored data nowadays, there is an immense need for
highly efficient algorithms to extract information from the data. When the input data is
huge, many algorithms that are traditionally classified as ‘efficient’ become impractical.
Hence in practice often heuristics are used, at the price of losing control over the quality of
the computed information. In many application areas, however, such as aviation, security,
medicine, and research, accuracy guarantees regarding the computed output are crucial.

In this thesis we address this problem. We introduce new models and study existing
models which allow us to design sublinear time algorithms that approximately answer queries
on relational databases of bounded degree (where a database has degree at most d if each
element in its domain appears in at most d tuples). The models we study enable us to
decrease the running time significantly compared to traditional algorithms whilst providing
probabilistic accuracy guarantees. This speed-up in running time, whilst sacrificing some
accuracy, can be crucial for dealing with large inputs. In particular, it can be useful for a
quick exploration of newly obtained data (e. g. biological networks). Based on the outcome
of the exploration, a decision can then be taken whether to use a more time consuming exact
algorithm in a second step.

We will mainly focus on approximately solving the following query problems: The
boolean query evaluation problem and the query enumeration problem. In addition, we will
also briefly touch on approximate versions of the query membership testing and counting
problems. We will be mainly interested in relational database queries which are definable in
first-order logic and monadic second-order logic with counting. There is a close link between
the logics we study and SQL.

In the boolean query evaluation problem, given some boolean query q and relational
database D the aim is to decide whether q is true in D . To define an approximate version
of this problem we use the framework of property testing. A property is simply a class
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of objects. For example, each boolean relational database query q defines a property Pq,
the class of all relational databases satisfying q. Property testing algorithms (testers, for
short) are given oracle access to the inputs, and their goal is to distinguish between inputs
which have a given property P or are ε-far from having P with high probability correctly.
The algorithms are parameterised by a distance measure ε , where the distance measure
depends on the model. Property testers can be seen as a relaxation of the classical yes/no
decision problem for P, or if P is the property defined by some boolean database query q
it can be seen as an approximate version of the boolean query evaluation problem for q.
Testers make decisions by exploring only a small number of local parts of the input which
are randomly chosen. In much of the research on property testing, the main focus is on
developing testers that have constant query complexity, i.e. the number of queries made to
the oracle does not depend on the input size. Whilst the query complexity of a tester does
provide a lower bound on the running time, the actual running time can be much worse than
the query complexity. In this thesis we also focus on the running times of our property testing
algorithms. We use the bounded degree relational database property testing model of [4]
(which is a straightforward generalisation of the bounded degree graph model [42]). We
also propose a new natural model for bounded degree relational databases in which we can
obtain better (constant) efficiency. For example, we show that in our new model, on relational
databases of bounded degree and bounded tree-width, every property that is expressible in
monadic second-order logic with counting is testable with constant query complexity and
constant running time. Whereas in the classical model the fastest known testers for such
properties run in polylogarithmic time. Our proof methods include a result by Alon [55,
Proposition 19.10] that states that for every bounded degree graph G there exists a constant
size graph H that has a similar neighbourhood distribution to G (this can easily be extended
to relational databases). The proof of this result does not give explicit bounds on the size of
H , however, we obtain such bounds for some special cases.

In the query enumeration problem, we are given a database D and a query q, and the
goal is to compute the set q(D) of all answers to q on D . However, the set q(D) could
be exponential in the number of free variables of q, and even bigger than D , hence the
total running time required to enumerate all answers may not be a meaningful complexity
measure. Taking this into account, models for query enumeration distinguish two phases, a
preprocessing phase, and an enumeration phase. Typically, in the preprocessing phase some
form of data structure is computed from D and q, in such a way that in the enumeration
phase all answers in q(D) can be enumerated (without repetition) with only a small delay
between any two consecutive answers. We focus on data complexity, i. e. we regard the query
as being fixed, and the database being the input. Efficiency is measured both in terms of the
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running time of the preprocessing phase and the delay, i. e. the maximum time between the
output of any two consecutive answers. For the delay we can hope for constant time at best,
independent of the size of the database. For the preprocessing phase, the best we can hope
for regarding exact algorithms is linear time. We provide a new model for approximately
enumerating the set of answers to queries on relational databases where we aim at sublinear
time preprocessing and constant delay in the enumeration phase whilst providing probabilistic
accuracy guarantees. Our approximate enumeration algorithms come with the following
guarantees: With high probability, (1) only tuples are enumerated that are answers to the
query or ‘close’ to being answers to the query, and (2) if the proportion of tuples that are
answers to the query is sufficiently large, then all answers will be enumerated. Here the
notion of ‘closeness’ is a tuple edit distance in the input database. We begin an investigation
of under which conditions first-order definable queries can be enumerated approximately
with constant delay after a sublinear preprocessing phase. In particular, we show that on
databases of bounded degree and bounded tree-width, queries expressible in first-order logic
can be approximately enumerated with constant delay after a sublinear preprocessing phase.

Our algorithms rely on a fixed upper bound of the degree of the input relational database.
In practice relational databases/networks are often sparse, however, bounded degree is too
restrictive. Hence we see our work as a first step towards efficiently querying sparse databases.
Extending our work to more general classes of sparse databases (e.g classes with bounded
average degree) will need new ideas as our methods rely strongly on the fixed upper bound
of the degree (for example we use Hanf normal form of first-order logic). Furthermore, the
constants we get in our running times are often too big for implementation, and so further
research is needed to reduce these constants.

1.1 Motivation

Algorithmic meta-theorems are general algorithmic results that apply to large classes of
problems on specific classes of inputs. One of the most well known algorithmic meta-
theorems is Courcelle’s theorem [25] that states that every property which is definable in
monadic second-order logic is decidable in linear time on graphs of bounded tree-width.
There has since been many other algorithmic meta-theorems (including some very recent)
for example in [60, 35, 28, 31, 43, 21]. In this thesis we give results in a similar flavour but
in the framework of property testing with constant running times, and for approximate query
enumeration with sublinear preprocessing time (we give more details of these results in the
following section).
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In the research area of approximate query processing, the aim is to provide approximate
answers to database queries at a fraction of the running time of an exact query answer. There
has been much research in this area for example in [46, 38, 22, 12, 62]. We combine methods
from property testing, logic and query enumeration to give results in the spirit of approximate
query processing.

In property testing on graphs, as previously discussed, much of the focus is on obtaining
property testing algorithms with constant query complexity. For example, it is known that in
the bounded degree graph model every hyperfinite property is testable with constant query
complexity [57], however, bounds on the running times cannot be obtained. In other results
in property testing, for example in [17], the algorithms may have sublinear running times but
it is not discussed or made clear. In this thesis we take a different approach and focus on the
running times as well as the query complexity of our property testing algorithms.

1.2 Contributions

In this section, we will highlight our main contributions of this thesis. We will split this into
three parts, (1) approximate boolean query evaluation, (2) finding constant size databases
that preserve the local structure of large databases, and (3) approximate enumeration.

1.2.1 Approximate boolean query evaluation

Before we start let us briefly introduce the bounded degree relational database property
testing model of [4], which is a generalisation of the bounded degree graph model [42]. We
will call this model the BDRD model for short (for a more in depth introduction of the BDRD
model we direct the reader to Section 2.6). Note that we will sometimes refer to relational
databases as just databases.

Formally, a property P is an isomorphism closed class of relational databases. The BDRD
model assumes a uniform upper bound d on the degree of the input databases. For ε ∈ [0,1], a
database D with domain of size n is ε-close to satisfying P, if we can make D isomorphic to
a member of P by editing (inserting or removing) at most εdn tuples in relations of D (i. e. at
most an ‘ε-fraction’ of the maximum possible number dn of tuples in relations). Otherwise,
D is called ε-far from P. Property testing algorithms do not have access to the whole input
D , but instead are given access via an oracle. In the BDRD model testing algorithms can
make oracle queries of the form ‘what is the j-th tuple of the relation RD which contains
the i-th element of the domain?’. Note that we assume a linear order on the elements of the
domain of a database and we assume that oracle queries can be answered in constant time.
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Let C be some class of d-degree bounded databases and let P ⊆ C be a property on C. An
ε-tester for P on C is then a probabilistic algorithm which receives the size n of the domain
of the input database D ∈ C, and has oracle access to D . The ε-tester does the following:

1. If D has property P (i. e. D is a member of P), then the tester accepts with probability
at least 2/3.

2. If D is ε-far from P, then the tester rejects with probability at least 2/3.

We say that P is uniformly testable on C, if for every ε ∈ (0,1] there exists an ε-tester for P
on C that has constant query complexity i.e. the number of queries made to the oracle does
not depend on the input size.

Testing properties definable in first-order logic The main content of this thesis starts in
Chapter 3, where we consider the testability of properties definable in two different fragments
of first-order logic (FO). We first note that any property that is definable by a sentence in
the existential fragment of FO (i.e. sentences of the form ∃x1, . . .∃xℓψ(x1, . . . ,xℓ) where
ψ is quantifier free) is trivially uniformly testable in the BDRD model. We then show the
following.

Every property that is definable by a sentence in the universal fragment of FO (i.e.
sentences of the form ∀x1, . . .∀xℓψ(x1, . . . ,xℓ) where ψ is quantifier free) is uniformly testable
in the BDRD model in constant time (Theorem 3.3).

To prove Theorem 3.3 we first note that testing properties definable by a sentence in the
universal fragment of FO is equivalent to testing for the absence of induced sub-databases
isomorphic to some database from a finite set. Goldreich and Ron [42] proved that on bounded
degree graphs testing for the absence of (not necessarily induced) subgraphs isomorphic to
a graph from a finite set is uniformly testable in constant time. They start by proving that
the property of subgraph-freeness is uniformly testable in constant time and then prove that
the union of (finitely many) such properties are also uniformly testable. We modify their
tester for testing subgraph-freeness to test for induced subgraph-freeness and translate this
to databases. We then use different techniques from [42] to prove that the union of (finitely
many) induced sub-database-freeness properties are uniformly testable in the BDRD model
in constant time.

A new property testing model In Chapter 5 we propose a new model for property test-
ing on bounded degree relational databases, which we call the BDRD+/− model. In the
BDRD+/− model the distance measure allows both tuple deletions and insertions, and dele-
tion and insertion of elements of the domain. On graphs, this translates to edge insertions and
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deletions, and vertex insertions and deletions. We argue that this yields a natural distance
measure. Indeed, take any (sufficiently large) graph G , and let H be obtained from G by
adding an isolated vertex. Then G and H are ε-far for every ε ∈ (0,1] under the classical
distance measure, although they only differ in one vertex. In contrast, our distance measure
allows for a small number of vertex modifications. While comparing graphs on different
numbers of vertices by adding isolated vertices was done implicitly as part of the study the
testability of outerplanar graphs [13], to the best of our knowledge, such a distance measure
has not been considered before as part of a model in property testing, which seems surprising
to us.

Formally, in the BDRD+/− model, two databases D and D ′ are ε-close, if they can be
made isomorphic by at most εdn modifications, where a modification is either, (1) removing
a tuple from a relation, (2) inserting a tuple to a relation, (3) removing an element from
the domain (and, as a consequence, any tuple containing that element is removed), or (4)
inserting an element into the domain. Here n is the minimum of the sizes of the domains of
D and D ′. In Section 5.1 we give the full details of our model. We note that the BDRD+/−
model differs from the BDRD model only in the choice of the distance measure. While
we work in the setting of relational databases, we would like to emphasize that our results
carry over to (undirected and directed) graphs, as these can be seen as special instances of
relational databases.

We show that the BDRD+/− model is in fact stronger than the BDRD model: Any
property testable in the BDRD model is also testable in the BDRD+/− model with the same
query complexity and running time (Lemma 5.3), but there are examples that show that the
converse is not true (Lemma 5.5).

It is known that in the bounded degree graph model, every hyperfinite graph property is
(non-uniformly in n) testable [57] with constant query complexity. However, no bound on the
running time can be obtained in this general setting. Indeed, there exist hyperfinite properties
(of edgeless graphs) that are uncomputable. In [4], Adler and Harwath ask which conditions
guarantee both low query complexity and efficient running time. They prove a meta-theorem
stating that, on classes of databases (or graphs) of bounded degree and bounded tree-width,
every property that can be expressed by a sentence of monadic second-order logic with
counting (CMSO) is uniformly testable with constant query complexity and polylogarithmic
running time in the BDRD model. Treating many algorithmic problems simultaneously,
this can be seen as an algorithmic meta-theorem within the line of research inspired by
Courcelle’s famous theorem [25]. CMSO extends FO and hence properties expressible in
FO (e.g. subgraph/sub-database-freeness) are also expressible in CMSO. Other examples
of graph properties expressible in CMSO include bipartiteness, colourability, even-hole-
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freeness and Hamiltonicity. Rigidity (i. e. the absence of a non-trivial automorphism) cannot
be expressed in CMSO (cf. [26] for more details).

We show the following.
In the BDRD+/− model, on classes of databases (or graphs) of bounded degree and

bounded tree-width, every property that can be expressed by a sentence of CMSO is uniformly
testable with constant query complexity and constant running time (Theorem 5.15).

The question of whether constant running time can also be achieved in the BDRD model
remains open. For proving Theorem 5.15, we give a general condition under which properties
are uniformly testable in constant time in the BDRD+/− model. To describe this condition let
us first briefly introduce some terminology. A property P is hyperfinite on a class of databases
C if every database in P can be partitioned into connected components of constant size by
removing only a constant fraction of the tuples such that the resulting partitioned database
is in C. For r ∈ N and an element a in the domain of a database D , the r-neighbourhood
type of a in D is the isomorphism type of the sub-database of D induced by all elements
that are at distance at most r from a in the underlying graph of D , expanded by a. The
r-histogram of a bounded degree database D , denoted by hr(D), is a vector indexed by the
r-neighbourhood types, where the component corresponding to the r-neighbourhood type τ

contains the number of elements in D that realise τ . The r-neighbourhood distribution of D

is the vector hr(D)/n where D is on n elements. We show that for any property P and input
class C (which is closed under removing tuples, removing elements and inserting elements),
if P is hyperfinite on C and the set of r-histograms of the databases in P are semilinear, then
P is uniformly testable on C in constant time (Theorem 5.14). From a result in [34] about
many-sorted spectra of CMSO sentences it can be derived that the set of r-histogram vectors
of properties defined by a CMSO sentence on the class of all bounded degree and bounded
tree-width databases are semilinear [4]. It is also known that the class of all bounded degree
and bounded tree-width databases are hyperfinite and hence any property is hyperfinite on
the class of all bounded degree and bounded tree-width databases. Furthermore, it is easy to
show that the class of all bounded degree and bounded tree-width databases is closed under
removing tuples, removing elements and inserting (isolated) elements. Hence as a corollary
we then obtain Theorem 5.15 that every property definable by a CMSO sentence is uniformly
testable on the class of databases with bounded degree and bounded tree-width in constant
time.

We also discuss the constant time testability of hyperfinite hereditary properties and
hyperfinite monotone properties in the BDRD and BDRD+/− models. To the best of our
knowledge, it has not been shown explicitly that hyperfinite hereditary properties are uni-
formly testable in constant time (in the bounded degree graph or BDRD models). In [17] it
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is proved that every monotone hyperfinite property is constant time testable in the bounded
degree graph model. In [27] the authors prove that hereditary properties are testable in
constant time on classes of non-expanding hereditary properties (which include hyperfinite
hereditary classes) in the bounded degree graph model. We sketch a proof that hyperfinite
hereditary properties are uniformly testable in constant time in the BDRD model (and hence
in the BDRD+/− model) using methods similar to [17] and [27]. We then give alternative
proofs showing that hyperfinite hereditary properties are uniformly testable in constant time
in the BDRD+/− model and that hyperfinite monotone properties are uniformly testable
in constant time in the BDRD model (and hence in the BDRD+/− model) using different
techniques, similar to those used for Theorem 5.15.

In the future, it would be interesting to obtain a characterisation of the properties that are
(efficiently) testable in the BDRD+/− model.

1.2.2 Constant size databases that preserve the local structure of large
databases

Alon [55, Proposition 19.10] proved that for every bounded degree graph G there exists a
constant size graph H that has a similar neighbourhood distribution to G (and this result
easily extends to relational databases). However, the proof is based on a compactness
argument and does not give an explicit upper bound on the size of H . Finding such a bound
was suggested by Alon as an open problem [47]. Currently, the only known bounds are for
graphs with high-girth [32]. In Chapter 4 we obtain explicit bounds on the size of H for
‘semilinear’ properties, i. e. properties, where the histogram vectors of the neighbourhood
distributions form a semilinear set (Theorem 4.2), and for hyperfinite databases (Theorem
4.6). Furthermore, in the semilinear case we show that H also belongs to the semilinear
property. We believe these results are of independent interest, but Theorem 4.2 is also
essential in the proof of Theorem 5.14 which states that for any property P and input class C
(which is closed under removing tuples, removing elements and inserting elements), if P is
hyperfinite on C and the set of r-histograms of the databases in P are semilinear, then P is
uniformly testable on C in constant time.

1.2.3 Approximate enumeration

In Chapter 6 we consider databases D of bounded degree d, and we identify conditions
under which FO definable queries can be enumerated approximately with constant delay
after a sublinear preprocessing phase. We consider two different categories of FO definable
queries, local and general (including non-local) queries. A FO query is local if, given any
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bounded degree database and tuple, it can be decided by only looking at the local (fixed
radius) neighbourhood around the tuple whether the tuple is an answer to the query for the
database. We show the following.

On input databases of bounded degree, every (fixed) local FO definable query can be
enumerated approximately with constant delay after a constant time preprocessing phase
(Theorem 6.13).

On input databases of bounded degree and bounded tree-width, every (fixed) FO defin-
able query can be enumerated approximately with constant delay after a sublinear time
preprocessing phase (Theorem 6.19).

We give generalisations of the two theorems above (Theorems 6.14, 6.20 and 6.28), which
we will discuss below. We also give applications of our approach to the query membership
testing and counting computational problems on databases (Theorems 6.30 and 6.31).

First, let us give some more details. For any local FO query q, bounded degree database
D and tuple ā from D it can be decided in constant time whether ā is an answer to q on D

(Lemma 6.7). Using this fact, we show that for any fixed local FO definable query q(x̄) with
|x̄|=: k and γ ∈ (0,1), there exists an enumeration algorithm with constant preprocessing
time and constant delay, that is given a bounded degree database D with domain of size n as
input and does the following. It enumerates a set of tuples that are answers to q on D , and
with high probability it enumerates all answers to q on D if the size of the answer set of q on
D is larger than γnk (i.e. the number of answers to the query is larger than a fixed fraction of
the total possible number of answers).

Towards reducing the minimum size of the answer set required to enumerate all answers
to the query, we show we actually only require size γnc, where c is the maximum number
of connected components in the neighbourhood (of some fixed radius) of an answer to q
(Theorem 6.14). We argue that in practice, c can be expected to be low for natural queries.

If a FO query q is non-local, then for a database D and a tuple ā, we can no longer decide
in constant time whether ā is an answer to q on D . However, using Hanf-locality of FO
[44] and a result from the area of property testing, we can approximately enumerate any FO
definable query on bounded degree and bounded tree-width databases with polylogarithmic
preprocessing time and constant delay (Theorem 6.19). Let us now explain our notion of
approximation, which is based on neighbourhood types.

For d ∈ N, let C be a class of databases of degree at most d over a fixed finite schema.
In Subsection 1.2.1 we defined the r-neighbourhood type of an element of the domain of a
database D ∈ C. This can be extended to define the r-neighbourhood type of a tuple ā in
D , by considering the isomorphism type of the sub-database induced by the union of the
r-neighbourhoods of all components of ā, expanded by ā. We call such an isomorphism
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type an r-type (with |ā| centres). Given a database query q(x̄) with |x̄|=: k and a database
D with domain of size n we say that a tuple ā from D is ε-close to being an answer of q
on D and C, if D can be modified with tuple modifications (insertions and deletions) into a
database D ′ ∈ C with at most εdn modifications, such that ā is an answer of q on D ′ and ā
has the same r-neighbourhood type (for some r) in D ′ and D . We let q(D ,C,ε) be the set of
k-tuples ā of elements of D that are ε-close to being an answer of q on D and C. Note that
for any local first-order query q, q(D ,C,ε) = q(D).

We say that the enumeration problem EnumC(q) for q on C can be solved approximately
with preprocessing time H(n) and constant delay for answer threshold function f (n), if for
every ε ∈ (0,1], there exists an algorithm, which is given oracle access to an input database
D ∈ C (for each given element of the domain, the tester can query the oracle for tuples in
any of the relations containing the element, and we assume that oracle queries are answered
in constant time), and is given the number n of elements of the domain, and proceeds in two
phases. First, a preprocessing phase that runs in time H(n), followed by an enumeration
phase where a set S of pairwise distinct tuples is enumerated, with constant delay between
any two consecutive tuples. In addition, we require that with probability at least 2/3, (1)
S ⊆ q(D)∪q(D ,C,ε), and (2) if |q(D)| ≥ f (n), then q(D)⊆ S.

We consider database queries that are expressible in FO. Note that our notion of approxi-
mation is designed specifically for FO queries and sparse databases and for other classes of
queries and input databases alternative models may be necessary. We prove that for every
FO query q(x̄) with |x̄|= k the problem EnumCt

d
(q) (where Ct

d is the class of all databases
of d-bounded degree and t-bounded tree-width) can be solved approximately with polyloga-
rithmic preprocessing time and constant delay with answer threshold function f (n) = γnk for
any γ ∈ (0,1) (Theorem 6.19). As with local queries, we further prove that we can actually
reduce the answer threshold function to f (n) = γnc where c ≤ k is the maximum number
of connected components in the neighbourhood (of some fixed radius) of an answer to q
(Theorem 6.20). We also identify a condition that is based on Hanf-locality of FO [44],
which we call Hanf-sentence testability, and we prove a general theorem (Theorem 6.28),
that for every FO query q(x̄) with |x̄|= k that is Hanf-sentence testable on C in time H(n),
the problem EnumC(q) can be solved approximately with preprocessing time O(H(n)) and
constant delay for answer threshold function f (n) = γnc as above.

We illustrate our model throughout Chapter 6 with a running example which can be
motivated by the problems of subgraph matching and inexact subgraph matching in social
and biological networks (e.g. [66, 63]). We show that our running example is Hanf-sentence
testable on the class of all bounded degree graphs in constant time, and hence by Theorem
6.28 it can be approximately enumerated with constant preprocessing time.
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We further show that if we use the distance measure used in the BDRD+/− model (rather
than the distance measure used in the BDRD model) we can obtain approximate enumeration
algorithms for general first-order queries that have constant (rather than polylogarithmic)
preprocessing time and constant delay (Theorem 6.35).

1.3 Related work

In this section we will discuss related work on property testing and query enumeration.

1.3.1 Property testing

The notion of property testing was first introduced in 1996 by Rubinfeld and Sudan [58],
motivated by program checking. In their notion of property testing their property testing
algorithms distinguish with high probability correctly between functions that have some pre-
defined property from those that are far away from having the property. The distance between
two functions is measured by the fraction of elements in the domain on which the functions
disagree. They note that the existence of a robust characterisation implies the existence of a
property tester. The main aim of their work is then to find robust characterisations for the
family of low degree univariate and multivariate polynomials.

Dense graph model

Goldreich, Goldwasser and Ron in 1996, in an extended abstract of [40], then extended the
notion of property testing to testing graph properties. In their model a graph G is represented
by the function g : V ×V →{0,1} where V are the vertices of G and g(u,v) = 1 if and only
if there is an edge between u and v in G , i.e. G is represented by its adjacency matrix. The
testing algorithms are given oracle access to an input graph G , i.e. to the function g, and
hence the tester can make queries to the oracle of the form ‘is there an edge between vertices
u and v?’. In this model two n-vertex graphs G and H are ε-far if you need to insert or
remove more than εn2 edges to G and H to make them isomorphic. A graph is then ε-far
from a graph property (an isomorphism closed class of graphs) if it is ε-far from every graph
in the property. This model is most suitable for dense graphs and hence it is called the dense
graph model.

Goldreich, Goldwasser and Ron in [40] proved that in the dense graph model all general
partition graph properties (such as k-colourability, cliques etc.) are testable. Alon, Fischer,
Krivelevich and Szegedy [6] began a logical characterisation of graph properties that are
testable in the dense graph model. They showed that all graph properties that can be defined
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by a ∃∀ FO sentence are testable and some ∀∃ FO sentences are not testable. There was
a trend of using Szemerédi’s Regularity Lemma (e.g. in [6]) and this was shown to be no
coincidence by Alon, Fischer, Newman and Shapira in [7]. Szemerédi’s Regularity Lemma
states that for any large enough graph its vertices can be partitioned into a bounded number
of parts such that the edges between most of the different parts behave randomly. Alon et al.
[7] made a combinatorial characterisation, with their main result, that a graph property is
testable if and only if it is regular reducible (i.e. if testing the property can be reduced to the
property of testing for one of the finitely many Szemerédi-partitions). Hence the dense graph
model is actually fairly well understood.

Bounded degree graph model

Given a graph G on n vertices with degree at most d ∈ N, if n is large enough, then in
the dense graph model G is ε-close to every other graph on n vertices with degree at most
d. Therefore an alternative model is needed that is suitable for bounded degree graphs.
Goldreich and Ron in 1997 [41] introduced the bounded degree graph model. In the bounded
degree model an n-vertex graph G with degree at most d is represented by the function
g : [n]× [d]→{0,1, . . . ,n}, where we assume the vertex set of G is [n] and g(v, i) = u ∈ [n]
if u is the i-th neighbour of v in G and g(v, i) = 0 if v has less than i neighbours, i.e G is
represented by its adjacency list. Testing algorithms are then given oracle access to an input
graph, i.e. to the function g, and hence the testing algorithms can make queries to the oracle
of the form ‘what is the i-th neighbour of vertex v?’. In this model, two n-vertex graphs G

and H are ε-far if you need to insert or remove more than εnd edges to G and H to make
them isomorphic. A graph is then ε-far from a graph property if it is ε-far from every graph
in the property.

Goldreich and Ron in [41] showed that the following graph properties are testable in the
bounded degree model; connectivity, k-edge-connectivity, k-vertex-connectivity, Eulerianity,
planarity and cycle-freeness. They also developed Ω(

√
n) lower bounds on the query

complexity of bipartiteness and expander properties.
Other than results on testing for specific graph properties there are some testability results

where either the graph properties are restricted or the inputs come from some restricted class
of graphs. For example every minor-closed property is testable [17, 45], every hereditary
property on hereditary non-expanding graphs is testable [27] and every hereditary property is
(non-uniformly in n) testable [57].

Obtaining a characterisation of constant query testable properties is a long-standing open
problem. Ito et al. [48] give a characterisation of the 1-sided error constant query testable
monotone and hereditary graph properties in the bounded degree (directed and undirected)
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graph model. Fichtenberger et al. [33] give a result on the combinatorial structure of every
testable property, they show that every constant query testable property in the bounded degree
graph model is either finite or contains an infinite hyperfinite subproperty.

In general, the bounded degree graph model is much less understood than the dense graph
model.

Property testing on relational databases

As already mentioned, Adler and Harwath [4] introduced the BDRD model and showed that
in this model, on classes of relational databases with bounded degree and bounded tree-width,
any property that is definable in monadic second-order logic with counting is testable in
polylogarithmic time. Other than the work in [4] there are only a handful of results on
relational databases that utilise models from property testing. Chen and Yoshida [24] study
a model which is close to the general graph model (cf. e. g. [8]) in which they study the
testability of homomorphism inadmissibility. Ben-Moshe et al. [16] study the testability of
near-sortedness (a property of relations that states that most tuples are close to their place in
some desired order). A conjunctive query (CQ) is a FO formula constructed from atomic
formulas using conjunctions and existential quantification only. CQ evaluation is closely
related to solving constraint satisfaction problems (CSPs) [53]. CSPs have been studied
under different models from property testing ([23, 65, 5]).

1.3.2 Query enumeration

Recent research has been very successful in providing exact enumeration algorithms for
logically defined queries on sparse relational databases. In 2007, Durand and Grandjean
showed that on relational databases of bounded degree, every FO query can be enumerated
with constant delay after a linear time preprocessing phase [29]. This result triggered a num-
ber of papers on the exact enumeration of FO queries on relational databases with bounded
degree [50], low degree [30], locally bounded expansion [61] and bounded expansion [51].
These works culminated in Schweikardt, Segoufin and Vigny’s result that on nowhere dense
databases, FO queries can be enumerated with constant delay after a pseudo-linear time
preprocessing phase [59]. Monadic second-order logic queries can be enumerated with linear
preprocessing time and constant delay on databases of bounded tree-width [14, 52].

There are also numerous results in the dynamic setting (where databases may be updated
by inserting or removing tuples). Berkholz, Keppeler and Schweikardt [18] show that for
bounded degree relational databases and FO queries, a data structure can be constructed in
linear time that can be updated in constant time when a tuple is inserted or deleted from the
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database. After each update to the database, the data structure allows all answers to the query
to be enumerated with constant delay. A similar result was obtained by Vigny [64] for FO
queries and databases of low degree.

1.4 Organisation

The rest of this thesis is organised as follows.

1. In Chapter 2 we introduce the relevant notions used throughout this thesis.

2. In Chapter 3 we consider the testability of properties definable in the existential and
universal fragments of first-order logic.

3. In Chapter 4 we find explicit bounds on the size of the small graphs/databases from
Alon’s theorem for graphs/databases from properties whose neighbourhood histograms
form a semilinear set and for hyperfinite graphs/databases.

4. In Chapter 5 we introduce our new property testing model, the BDRD+/− model.
We prove that properties definable in monadic second-order logic with counting on
databases of bounded degree and bounded tree-width are uniformly testable in constant
time in the BDRD+/− model. We also discuss the constant time testability of hyperfi-
nite monotone properties and hyperfinite hereditary properties in both the BDRD and
BDRD+/− models.

5. In Chapter 6 we introduce a new model for the approximate enumeration of first-order
definable queries on databases of bounded degree. We show that on databases of
bounded degree, (1) every local first-order definable query can be enumerated approxi-
mately with constant preprocessing time and constant delay, and (2) every (general)
first-order definable query can be enumerated approximately with polylogarithmic
preprocessing time and constant delay.

6. In Chapter 7 we give a conclusion and a discussion on future work.

Some of the work in Chapters 4 and 5 appear in [3, 1] ([1] is the journal version of [3]).
Some of the work in Chapter 6 appear in [2].



Chapter 2

Preliminaries

In this chapter we will define the key notions used throughout this thesis. Note that there are
some notions that are only used in certain chapters and these will be given in the respective
chapter.

We start the chapter in Section 2.1 with some general set notation. In Section 2.2 we
discuss our model of computation. In Sections 2.3 and 2.4 we introduce the relevant notions
on graphs and relational databases respectively. In Section 2.5 we introduce first-order logic
and monadic second-order logic with counting, which are the main database query languages
used in this thesis. In Section 2.5 we also introduce Hanf normal form of first-order logic.
In Section 2.6 we introduce the bounded degree relational database property testing model.
Finally, in Section 2.7 we define semilinear sets and give some sets which are known to be
semilinear which will be used in future chapters.

2.1 Set notation

We let N be the set of natural numbers including 0, and we denote N\{0} by N≥1. For each
n ∈ N≥1, we let [n] = {1,2, . . . ,n}.

2.2 Model of computation

We use Random Access Machines (RAMs) and a uniform cost measure when analysing our
algorithms, i. e. we assume all basic arithmetic operations including random sampling can
be done in constant time, regardless of the size of the numbers involved. We assume that if
we initialise an array, all entries are set to 0 and this can be done in constant time for any
length or dimension array. This is achieved by using the lazy array initialisation technique
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(cf. e.g. [56]) where entries are only actually stored when they are first needed. Let k ∈ N≥1

and A be a k-dimensional array. We assume that for a tuple (a1,a2, . . . ,ak) ∈ Nk
≥1, the entry

A[a1,a2, . . . ,ak] at position (a1, . . . ,ak) can be accessed in constant time.

2.3 Graphs

In this section we will give a short introduction to the relevant graph theory notions used
throughout this thesis. In this thesis we will assume that all graphs are simple graphs (unless
otherwise stated).

Definition 2.1 (Simple graph). A simple graph G is a tuple G = (V,E) where V is a set of
vertices and E is a set of 2-element subsets of V (the edges of G ). We will often denote V by
V (G ) and E by E(G ). Furthermore, for an edge {u,v} ∈ E we simply write uv.

Let G be a graph. We say a vertex v ∈ V (G ) is incident to an edge e ∈ E(G ), if v ∈ e.
Two vertices u,v ∈V (G ) are neighbours if both u and v are incident to the same edge. Let
uv ∈ E(G ) then we let G \uv denote the graph obtained from G by removing the edge uv
from E(G ). A path between the two vertices u,v ∈V (G ) of length m is a sequence of distinct
vertices v0,v2, . . . ,vm from V (G ) such that u = v0, v = vm and vivi+1 ∈ E(G ) for all i ∈
{0, . . . ,m−1}. Two graphs G and H are isomorphic if there is a bijective map f : V (G )→
V (H ) such that for every u,v ∈V (G ), uv ∈ E(G ) if and only if f (u) f (v) ∈V (H ). A graph
H is a subgraph of a graph G if V (H ) ⊆ V (G ) and E(H ) ⊆ E(G ). A graph H is an
induced subgraph of a graph G if V (H )⊆V (G ) and E(H ) = {uv ∈ E(G ) | u,v ∈V (H )}.
A graph G is connected if there is a path between every pair of vertices in G . The connected
components of a graph G are the maximal connected induced subgraphs of G .

We will now define five different classes of graphs that will be used in the following
sections and chapters.

Definition 2.2 (Classes of graphs with bounded degree). Let G = (V,E) be a graph. The
degree of a vertex v ∈V , denoted degG (v), is the number of edges in E incident to v. The
degree of the graph G , denoted deg(G ), is the maximum degree of all vertices in V .

A class of graphs C has bounded degree d ∈ N if for all G ∈ C, deg(G )≤ d.

We next define classes of graphs with bounded tree-width, but first we need to recall the
notion of tree decomposition and the width of a tree decomposition. A graph is a tree if there
is exactly one path between every pair of vertices in the graph. A tree decomposition of a
graph G = (V,E) is a pair (X ,T ), where X = {X1, . . . ,Xk} is a family of non-empty subsets
of V (often called bags) and T is a tree whose set of vertices is exactly X such that:
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•
⋃

1≤i≤k Xi =V ,

• for every edge uv ∈ E there exists some i ∈ [k] such that u,v ∈ Xi, and

• for every v ∈V , if v ∈ Xi ∩X j for some i, j ∈ [k], then every vertex Xs on the unique
path from Xi to X j in T also contains v.

The width of the tree decomposition (X ,T ) is max{|X1|, . . . , |Xk|}−1.

Definition 2.3 (Classes of graphs with bounded tree-width). Let G = (V,E) be a graph. The
tree-width of G is the minimal width of all its tree decompositions.

A class of graphs C has bounded tree-width t ∈ N if for all G ∈ C, the tree-width of G is
at most t.

Definition 2.4 (Hereditary graph classes). A class of graphs is hereditary if it is closed under
the removal of vertices (i.e. it is closed under induced subgraphs).

Let G and H be graphs. We say G is induced H -free if it contains no induced subgraph
isomorphic to H . For a family of graphs F , we say G is induced F-free if it contains no
induced subgraph isomorphic to any graph in F . All hereditary graph classes have a (possibly
infinite) set of forbidden induced subgraphs (e.g. see [10]). For a hereditary graph class C,
the set of forbidden induced subgraphs F of C is the minimal set of graphs such that for any
graph G , G ∈ C if and only if G is induced F-free. In other words, a graph H belongs to F
if H ̸∈ C, but any induced subgraph of H is in C.

Definition 2.5 (Monotone graph classes). A class of graphs is monotone if it is closed under
the removal of vertices and edges (i.e. it is closed under subgraphs).

Definition 2.6 (Hyperfinite graph classes). Let ε ∈ [0,1] and let k ∈ N. A graph G = (V,E)
is (ε,k)-hyperfinite if by removing at most ε|V | edges from G you can obtain a graph whose
connected components have size at most k. For a function ρ : [0,1] → R+, a graph G is
ρ-hyperfinite if G is (ε,ρ(ε))-hyperfinite for every ε ∈ [0,1].

A class of graphs C is hyperfinite if there exists a function ρ such that every graph in C
is ρ-hyperfinite.

2.4 Relational databases

In this thesis we are interested in evaluating queries on relational databases. In this section
we will define all the relevant notions for relational databases.
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Definition 2.7 (Relational database). A schema is a finite set σ = {R1, . . . ,R|σ |} of relation
names, where each R ∈ σ has an arity ar(R) ∈ N≥1. A relational database D of schema
σ (σ -db for short) is of the form D = (D,RD

1 , . . . ,RD
|σ |), where D is a finite set, the set of

elements of D , and RD
i is an ar(Ri)-ary relation on D. The set D is also called the domain of

D .

We denote the maximum arity of the relation names in a schema σ as ar(σ). The size of
a schema σ , denoted by ∥σ∥, is the sum of the arities of its relation names.

We will often refer to relational databases as σ -dbs or databases (if the schema is not
relevant). We assume that all databases D are linearly ordered or, equivalently, that D = [n]
for some n ∈ N (similar to [50]). We extend this linear ordering to a linear order on the
relations of D via lexicographic ordering. We note that in this thesis we define the size of a
database D to be |D|.

Remark 2.8. An undirected graph can be seen as a {E}-db, where E is a binary relation
name, interpreted by a symmetric, irreflexive relation.

Let σ be a schema and let D be a σ -db. A sub-database of D is a σ -db that can be
formed from D by removing a (possibly empty) subset of elements from D and a (possibly
empty) subset of tuples from the relations of D . Let M ⊆ D. The induced sub-database of D

on M is the σ -db D [M] with domain M and RD [M] := RD ∩Mar(R) for every R ∈ σ .
Let σ be a schema and let D and D ′ be σ -dbs. D and D ′ are isomorphic if there

is a bijective map f : D → D′ such that for every R ∈ σ and (a1, . . . ,aar(R)) ∈ Dar(R),
(a1, . . . ,aar(R)) ∈ RD if and only if ( f (a1), . . . , f (aar(R))) ∈ RD ′

.
Throughout this thesis we will often refer to graph theoretic notions of relational databases

(e.g. tree-width, connectedness, distance etc.). We use the Gaifman graph of a relational
database to transfer graph notions to relational databases.

Definition 2.9 (Gaifman graph). Let σ be a schema. The Gaifman graph of a σ -db D is the
undirected graph G (D) = (D,E), where ab ∈ E whenever a ̸= b and there is an R ∈ σ and
a tuple (a1, . . . ,aar(R)) ∈ RD with a,b ∈ {a1, . . . ,aar(R)}.

A database D is connected if the Gaifman graph G (D) is connected. The connected
components of a database D are the maximal connected induced sub-databases of D . For
k ∈ N and schema σ , we fix a maximal set Ψ(k,σ) of non-isomorphic connected σ -dbs on
at most k elements.

We will now define multiple different classes of databases that will be used throughout this
thesis. Note that we always assume that classes of databases are closed under isomorphism.
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Definition 2.10 (Classes of databases with bounded degree). The degree degD(a) of an
element a in a database D is the total number of tuples in all relations of D that contain a.
We say the degree deg(D) of a database D is the maximum degree of its elements.

A class of databases C has bounded degree, if there exists a constant d ∈ N such that for
all D ∈ C, deg(D)≤ d.

Let us remark that the deg(D) and the (graph-theoretic) degree of G (D) only differ by
at most a constant factor (cf. e. g. [29]). Hence both measures yield the same classes of
databases of bounded degree.

Definition 2.11 (Classes of databases with bounded tree-width). The tree-width of a database
D is the the tree-width of its Gaifman graph.

A class C of databases has bounded tree-width, if there exists a constant t ∈ N such that
all databases D ∈ C have tree-width at most t.

Let ε ∈ [0,1], let k ∈ N and let σ be a schema. An (ε,k)-partition of a σ -db D on n
elements is a σ -db D ′ formed by removing at most εn many tuples from D such that every
connected component in D ′ contains at most k elements.

Definition 2.12 (Hyperfinite classes of databases). Let ε ∈ [0,1] and let k ∈ N. A database
D is (ε,k)-hyperfinite if there exists an (ε,k)-partition of D .

Let ρ : [0,1]→R+ be a function. A database D is ρ-hyperfinite if for every ε ∈ [0,1], D

is (ε,ρ(ε))-hyperfinite. Let C′ be a class of databases. The class C ⊆ C′ is ρ-hyperfinite on
C′ if for every ε ∈ [0,1] and D ∈ C there exists an (ε,ρ(ε))-partition D ′ ∈ C′ of D . We call
C hyperfinite on C′ if there exists a function ρ such that C is ρ-hyperfinite on C′.

Definition 2.13 (Hereditary classes of databases). A class of databases is hereditary if it is
closed under the removal of elements (i.e. it is closed under induced sub-databases).

Let σ be a schema and let D and B be σ -dbs. Similar to graphs, we say D is induced
B-free if it contains no induced sub-database isomorphic to B. For a family of databases F ,
we say D is induced F-free if it contains no induced sub-database isomorphic to any database
in F . In Section 2.3 we noted that all hereditary graph classes have a (possibly infinite) set of
forbidden induced subgraphs, this easily extends to databases. For a hereditary σ -db class C,
the set of forbidden induced sub-databases F of C is the minimal set of databases such that
for any σ -db D , D ∈ C if and only if D is induced F-free. In other words, a σ -db F is in F
if F ̸∈ C, but any induced sub-database of F is in C.

Definition 2.14 (Monotone classes of databases). A class of databases is monotone if it is
closed under the removal of elements and tuples (i.e. it is closed under sub-databases).
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2.4.1 Neighbourhoods

For a database D and a,b ∈ D, the distance between a and b in D , denoted by distD(a,b), is
the length of a shortest path between a and b in the Gaifman graph G (D) of D . The distance
between two tuples ā = (a1, . . . ,am) and b̄ = (b1, . . . ,bℓ) of D is min{distD(ai,b j) | 1 ≤ i ≤
m,1 ≤ j ≤ ℓ}.

Definition 2.15 (r-neighbourhood). Let r ∈N. For a tuple ā ∈ D|ā|, we let ND
r (ā) denote the

set of all elements of D that are at distance at most r from ā. The r-neighbourhood of ā in D ,
denoted by N D

r (ā), is the tuple (D [ND
r (ā)], ā) where the elements of ā are called centres.

We omit the superscript and write Nr(ā) and Nr(ā), if D is clear from the context.

Let d ≥ 2, let r ∈ N and let D be a database whose Gaifman graph has degree at most d.
In [18] the authors show that |ND

r (ā)| ≤ |ā|dr+1 where ā is a tuple from D . We can give a
similar bound on databases of degree at most d using our definition of degree.

Lemma 2.16. Let d ≥ 2 and let r ∈ N. Let σ be a schema and let D be a σ -db with degree
at most d. For a tuple ā = (a1, . . . ,ak) from D ,

|ND
r (ā)| ≤ k(ar(σ) ·d)r+1.

Proof. The degree of the Gaifman graph of D will be at most ar(σ) ·d. Therefore by Lemma
3.2 in [18], |ND

r (ā)| ≤ k(ar(σ) ·d)r+1.

Two r-neighbourhoods, (D , ā) and (D ′, b̄), are isomorphic if there is an isomorphism
between D and D ′ which maps ā to b̄.

Definition 2.17 (r-neighbourhood type). Let r ∈N and let k ∈N≥1. An ∼=-equivalence-class
of r-neighbourhoods with k centres is called an r-neighbourhood type (or r-type for short)
with k centres.

Let D be a database. We say that tuple ā ∈ D|ā| has r-type τ , if N D
r (ā) ∈ τ .

We let T σ ,d
r (k) denote the set of all r-types with k centres and degree at most d, over

schema σ . Note that for fixed d and σ , the cardinality |T σ ,d
r (k)|=: c(r,k) is a constant, only

depending on r and k. If k = 1, then we write c(r) instead of c(r,1) for short.

Definition 2.18 (Neighbourhood histogram and distribution vectors). Let r ∈ N, let k ∈ N≥1

and let σ be a schema.

• The k-centre r-histogram of a σ -db D , denoted by hr,k(D), is the vector with c(r,k)
components, indexed by the r-types in T σ ,d

r (k), where the component corresponding to
type τ contains the number of tuples in D of r-type τ .
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• The k-centre r-neighbourhood distribution of D , denoted by dvr,k(D), is the vector
hr,k(D)/nk where |D|= n.

• For a class of σ -dbs C, we let hr,k(C) := {hr,k(D) | D ∈ C}.

Note that if k = 1, then we drop the subscript k and just write hr(D), dvr(D) and hr(C).

Lemma 5.1 in [57], allows approximating the one-centre r-neighbourhood distribution of
an input graph of bounded degree by looking at a constant number of vertices. This result
easily extends to bounded degree relational databases (e.g. see [4]). We can also easily
extend this further to allow approximating the k-centre r-neighbourhood distribution of a
bounded degree relational database for k ∈ N≥1 and r ∈ N.

We let EstimateFrequenciesr,k,s be the algorithm, which given oracle access (see Section
2.6) to an input database D with degree at most d ∈ N, proceeds as follows.

1. Let v̄ be a vector with c(r,k) components all of value 0.

2. Sample s tuples ā1, ā2, . . . , ās from Dk uniformly and independently.

3. For each sampled tuple āi, compute the r-type τ j of āi. Set v̄[ j] = v̄[ j]+1/s.

4. Return v̄.

We assume that the r-types can be computed in constant time (we will discuss this in
more detail in Section 2.6). EstimateFrequenciesr,k,s has constant running time, independent
of |D|, and comes with the following guarantees (the proof of the following lemma is very
similar to the proof of Lemma 5.1 in [57] but we give it for completeness). Recall that the
ℓ1-norm of a vector v̄ on ℓ components is defined as ∥v̄∥1 := ∑

ℓ
i=1 |v̄[i]|.

Lemma 2.19. Let D be a database on n elements with degree at most d ∈N. Let λ ,δ ∈ (0,1),
let k ∈ N≥1, and let r ∈ N. If

s ≥ c(r,k)2

λ 2 · ln
(2c(r,k)

1−δ

)
then with probability at least δ the vector v̄ returned by EstimateFrequenciesr,k,s on input D

satisfies ∥v̄−dvr,k(D)∥1 ≤ λ .

Proof. Let Xi, j be the indicator random variable for the event that the r-type of āi (the i-th
tuple sampled in EstimateFrequenciesr,k,s) is τ j. Note that this event happens with probability
dvr,k(D)[ j]. Hence E[Xi, j] = dvr,k(D)[ j] and E[∑s

i=1 Xi, j] = s ·dvr,k(D)[ j]. Furthermore, we
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have E[v̄[ j]] = E[∑s
i=1 Xi, j]/s = dvr,k(D)[ j]. For every j ∈ [c(r,k)], using Chernoff bounds

(see e.g., Theorem A.1.4 in [11]) we get,

P
[
|v̄[ j]−dvr,k(D)[ j]|> λ

c(r,k)

]
= P

[∣∣ s

∑
i=1

Xi, j −E[
s

∑
i=1

Xi, j]
∣∣> λ s

c(r,k)

]
≤ 2exp

(−2λ 2s
c(r,k)2

)
≤ 2exp

(
−2ln

(2c(r,k)
1−δ

))
≤ 1−δ

c(r,k)
.

Hence by the union bound the probability that for at least one j ∈ [c(r,k)],

|v̄[ j]−dvr,k(D)[ j]|> λ

c(r,k)

is at most 1−δ . Therefore with probability at least δ for all j ∈ [c(r,k)],

|v̄[ j]−dvr,k(D)[ j]| ≤ λ

c(r,k)

and hence ∥v̄−dvr,k(D)∥1 ≤ λ as required.

Remark 2.20. The definitions of r-neighbourhoods, r-types, k-centre r-histograms and k-
centre r-neighbourhood distributions directly translate to undirected graphs (since an undi-
rected graph can be seen as a {E}-db where E is a binary relation name which is interpreted
by a symmetric, irreflexive relation).

2.5 Logics and database queries

A k-ary query q is a computable function that maps a database D to a subset of Dk. If k = 0,
then we call q a boolean query, and it maps D to either true or false.

In this thesis we will mainly be concerned with database queries that are definable in
first-order logic (FO) and monadic second-order logic with counting (CMSO).
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2.5.1 First-order logic

We will now introduce FO. For a more detailed introduction we direct the reader to the book
[54]. We will start by defining FO formulas.

Definition 2.21 (First-order formulas). Let var be a countable infinite set of variables which
will be typically denoted as x, y, z, . . . , with subscripts and superscripts. Let us fix a relational
schema σ . The set FO[σ ] of first-order formulas over σ is inductively defined as follows.

• If x,y ∈ var, then x = y is an (atomic) formula.

• If R ∈ σ and x1, . . . ,xar(R) ∈ var, then R(x1, . . . ,xar(R)) is an (atomic) formula.

• If φ1 and φ2 are formulas, then ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, φ1 → φ2 and φ1 ↔ φ2 are
formulas.

• If φ is a formula, then ∃xφ and ∀xφ (where x ∈ var) are formulas.

The set FO[{E}] is the set of first-order formulas for undirected graphs. We let FO :=⋃
σ schema FO[σ ]. We use ∃≥mxφ (and ∃=mxφ , respectively) as a shortcut for the FO formula

expressing that that the number of witnesses x satisfying φ is at least m (exactly m, resp.).
The quantifier rank of a formula φ , denoted by qr(φ), is the maximum nesting depth of
quantifiers that occur in φ . The size of a formula φ , denoted by ∥φ∥, is the length of φ as a
string over the alphabet σ ∪var∪{∃,∀,¬,∨,∧,→,↔,=}∪{,}∪{(,)}.

Definition 2.22 (Free variables). A free variable of an FO formula is a variable that does
not appear in the scope of a quantifier. For a tuple x̄ of variables and a formula φ ∈ FO, we
write φ(x̄) to indicate that the free variables of φ are exactly the variables in x̄.

Definition 2.23 (Sentence). An FO formula without free variables is called a sentence.

Let σ be a schema and let φ(x̄) ∈ FO[σ ] with |x̄|= k. Let D be a σ -db and ā be a tuple
of elements of D of length k. We write D |= φ(ā), if φ is true in D when we replace the free
variables of φ with ā, and we say that ā is an answer for φ in D . We let φ(D) := {ā ∈ D|ā| |
D |= φ(ā)} be the set of all answers for φ on D . If k = 0 (i.e. φ is a sentence) then we write
D |= φ to denote that φ is true in D . Two formulas φ(x̄),ψ(x̄) ∈ FO[σ ], where |x̄|= k, are
equivalent (written φ(x̄)≡ ψ(x̄)) if for all σ -dbs D and all ā ∈ Dk, D |= φ(ā) iff D |= ψ(ā).
Two formulas φ(x̄),ψ(x̄) ∈ FO[σ ], where |x̄|= k, are d-equivalent (written φ(x̄)≡d ψ(x̄)) if
for all σ -dbs D with degree at most d and all ā ∈ Dk, D |= φ(ā) iff D |= ψ(ā).
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Hanf Normal Form

It is known that FO is local, in the sense that databases that locally look the same cannot be
distinguished by FO formulas. This was formalised by Hanf [44] and Gaifman [37], and
their results give rise to the normal forms for FO formulas called Hanf normal form and
Gaifman normal form. We will introduce Hanf normal form only. Let us start by defining
Sphere-formulas and Hanf-sentences.

Definition 2.24 (Sphere-formulas). Let r ∈ N and k ∈ N≥1. A sphere-formula, denoted by
sphτ(x̄) (where |x̄|= k), is an FO formula which expresses that the r-type of x̄ is τ , where τ

is some r-type with k centres, and r is called the locality radius of the sphere-formula.

Definition 2.25 (Hanf-sentences). Let r ∈ N and m ∈ N. A Hanf-sentence is a sentence of
the form ∃≥mxsphτ(x), where τ is an r-type with one centre, and r is the locality radius of
the Hanf-sentence.

Definition 2.26 (Hanf normal form). An FO formula is in Hanf normal form if it is a Boolean
combination of Hanf-sentences and sphere-formulas. The Hanf locality radius of an FO
formula φ in Hanf normal form is the maximum of the locality radii of the Hanf-sentences
and sphere-formulas of φ .

A well-known theorem by Hanf states that on databases of bounded degree, every FO
formula can be transformed into an equivalent formula in Hanf normal form [44]. This
theorem was subsequently refined as follows.

Theorem 2.27 ([20]). For any φ(x̄) ∈ FO and d ∈ N≥1, there exists a d-equivalent formula
ψ(x̄) in Hanf normal form with the same free variables as φ . Furthermore, ψ can be

computed in time 2d2O(∥φ∥)
from φ and the Hanf locality radius of ψ is at most 4qr(φ).

2.5.2 Monadic second-order logic with counting

We will only briefly introduce CMSO (a detailed introduction can be found in [26]). Monadic
second-order logic (MSO) is the extension of first-order logic that also allows quantification
over subsets of the domain. CMSO extends MSO by allowing first-order modular counting
quantifiers ∃m for every integer m (where ∃mφ is true in a σ -db if the number of its elements
for which φ is satisfied is divisible by m). A free variable of a CMSO formula is an individual
or set variable that does not appear in the scope of a quantifier. As with FO, a formula without
free variables is called a sentence. In this thesis we will not consider CMSO formulas with
one or more free variables. For a σ -db D and a CMSO sentence φ (over σ ) we write D |= φ

to denote that D satisfies φ .
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2.6 Property testing

Throughout this thesis we will use the bounded degree database property testing model intro-
duced in [4], which is a straightforward extension of the bounded degree graph model [42].
Hence in this section we will only introduce the bounded degree database model but for
an in depth introduction to property testing we refer the reader to the book [39]. Note that
throughout this thesis we will sometimes call the bounded degree database property testing
model the BDRD model for short.

In this section we fix a schema σ , a degree bound d ∈ N and a class C of d-degree
bounded σ -dbs.

In the bounded degree database model a property P on C is simply a subset of C which is
closed under isomorphism. We say a σ -db D has the property P if and only if D ∈ P. Note
that every FO and CMSO sentence (or more generally any boolean database query) φ defines
a property Pφ = {D ∈ C | D |= φ} on C. We will often say that Pφ is the property defined by
φ on C. The aim of a property testing algorithm for a property P on C is to decide with high
probability correctly whether an input database from C (the input class) has P or is close to
having P (i.e. it is a relaxation of the classical decision problem). Hence we need to define a
distance measure between databases.

Definition 2.28 (Distance). Let D and D ′ be σ -dbs with degree at most d. The distance
between D and D ′, denoted by dist(D ,D ′), is the minimum number of tuples that have to be
inserted or removed from relations of D and D ′ to make D and D ′ isomorphic. If it is not
possible to make D and D ′ isomorphic by inserting or removing tuples (i.e. |D| ≠ |D′|) then
dist(D ,D ′) = ∞.

Definition 2.29 (ε-close and ε-far). Let D and D ′ be σ -dbs with degree at most d that are
both on n elements. For ε ∈ [0,1], we say D and D ′ are ε-close if dist(D ,D ′)≤ εdn, and
are ε-far otherwise. Note that if D and D ′ are not on the same number of elements then they
are ε-far.

Let P ⊆ C be some property. Then D is ε-close to P if there exists a database D ′′ ∈ P
that is ε-close to D , otherwise D is ε-far from P.

Property testing algorithms do not have access to the whole input. Instead, they are given
access via an oracle. The type of queries allowed to the oracle depends on the property
testing model (which in turn depends on the type and representation of the objects in the input
class). In the bounded degree database model, the input class C is some class of d-bounded
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degree σ -dbs. In this model a σ -db D ∈ C on n elements is represented by a function

fD : σ × [n]× [d]→{⊥}∪
⋃

R∈σ

[n]ar(R)

where fD(R, i, j) is the jth tuple in RD containing the ith element1 of D if one exists, otherwise
fD(R, i, j) = ⊥. In this model property testing algorithms are given |D| = n as auxiliary
input (we also assume the tester knows d and σ ) and oracle access to D (the function fD ).
In particular in this model oracle queries are of the form (R, i, j) (where R ∈ σ , i ≤ n and
j ≤ d) and the answer to this query is fD(R, i, j). We assume oracle queries are answered in
constant time.

Remark 2.30. Given oracle access to a database D of degree at most d ∈ N, for any r ∈ N
the r-type of an element or tuple from D can be computed in time independent of |D|.

Let us now define an ε-tester.

Definition 2.31 (ε-tester). Let P ⊆ C be a property and let ε ∈ (0,1] be the proximity
parameter. An ε-tester for P on C is a probabilistic algorithm which is given oracle access to
a σ -db D ∈ C and it is given n := |D| as auxiliary input. The algorithm does the following:

1. If D ∈ P, then the tester accepts with probability at least 2/3.

2. If D is ε-far from P, then the tester rejects with probability at least 2/3.

The ε-tester has one-sided error probability if the tester accepts any D ∈ P with probability
1.

We note that the success probability 2/3 of the ε-tester can be increased by repeatedly
running the ε-tester and returning the majority outcome.

Definition 2.32 (Query complexity). Let P ⊆ C be a property and let ε ∈ (0,1]. The query
complexity of an ε-tester for P on C is a function q : N→ N where q(n) is the maximum
number of oracle queries made when the input has n elements. The ε-tester for P on C has
constant query complexity if the query complexity does not depend on the size of the input
database.

We would like to point out here that the running time of an ε-tester can be much worse
than its query complexity. The query complexity can be seen as a lower bound of the running
time.

1According to the assumed linear order on D.
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Definition 2.33 (Non-uniform testability). Let P ⊆ C be a property. We say P is non-
uniformly testable on C in time t(n), if for every ε ∈ (0,1] and n ∈ N there exists an ε-tester
for the property {D ∈ P | |D|= n} on the input class {D ∈ C | |D|= n} which has constant
query complexity and running time at most t(n).

Definition 2.34 (Uniform testability). Let P ⊆ C be a property. We say P is uniformly
testable on C in time t(n), if for every ε ∈ (0,1] there exists an ε-tester for P on C which has
constant query complexity and whose running time on databases on n elements is at most
t(n). Note that this tester must work for all n.

Adler and Harwath showed that, on the class of all databases with bounded degree
and tree-width, every property definable in CMSO is uniformly testable in polylogarithmic
running time [4]. (Where a function is polylogarithmic in n, if it is a polynomial in logn.)

Theorem 2.35 ([4]). Let t ∈N and let Ct
d be the class of all d-degree bounded and t-bounded

tree-width σ -dbs. Each property P ⊆ Ct
d definable in CMSO is uniformly testable on Ct

d in
polylogarithmic running time.

Let us finish this section with an example.

Example 2.36. Let us take an e-commerce business that has a database containing infor-
mation on all their products and sales. Let σ = {P,S} be the schema where P and S are
relation names and ar(P) = 3 and ar(S) = 3. In practice relation names also come with a set
of attributes. In this example the attributes of P is the set {ProductId, Name, Price} and the
attributes of S is the set {SaleId, ProductId, Date}. Now let us assume we want to query the
database to find out whether all products have been sold at least once. This query is definable
by the FO sentence

φ := ∀x∀y1∀y2∃z1∃z2(P(x,y1,y2)→ S(z1,x,z2)).

Let C be the class of all σ -dbs with degree at most d. Let P ⊆ C be the property defined by
φ on C. Then we claim that P is uniformly testable on C in constant time. Let ε ∈ (0,1].
Given oracle access to a σ -db D ∈ C on n elements, the ε-tester proceeds as follows.

1. Uniformly and independently sample α = log1−ε
1
3 elements from [n].

2. For each of the sampled elements i do the following.

(a) Perform the oracle queries (P, i,1), . . . ,(P, i,d).

(b) If a tuple is returned from one of these queries with i in the first component
perform the oracle queries (S, i,1), . . . ,(S, i,d).
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3. If in Step 2 an element, i, was found such that there is a tuple in the relation PD with i
in the first component but no tuple in the relation SD with i in the second component,
then reject. Otherwise, accept.

Clearly, this tester has constant query complexity and constant running time.
Let us now prove correctness. Let D ∈ P. Then clearly the tester will always accept.
Now let D be ε-far from P. Therefore we need to insert or remove more than εdn tuples

to make D have the property. Let us call an element i ∈ [n] bad if there is a tuple in the
relation PD with i in the first component but no tuple in the relation SD with i in the second
component. For every bad i ∈ [n] we can simply remove all tuples from PD which contain
i. This requires at most d tuple modifications. Therefore there are at least εn many distinct
bad i ∈ [n]. The probability that a uniformly sampled element from [n] is bad is therefore at
least ε . The probability that we sample no bad elements is at most (1− ε)α = 1

3 . Hence the
probability the tester rejects is at least 2

3 as required.

2.7 Semilinear sets

In Chapters 4 and 5 we study properties whose set of r-histogram vectors form a semilinear
set.

Definition 2.37 (Semilinear sets). A set is semilinear if it is a finite union of linear sets. A
set M ⊆ Nc is linear if

M = {v̄0 +a1v̄1 + · · ·+akv̄k | a1, . . . ,ak ∈ N},

for some v̄0, . . . , v̄k ∈ Nc.

We can show that the set of r-histograms of the class of all d-degree bounded σ -dbs
whose connected components are all of size at most k is linear.

Lemma 2.38. Let k,r,d ∈N and let σ be a schema. Let C be the class of all σ -dbs of degree
at most d, whose connected components are all of size at most k. Then hr(C) is linear.

Proof. Recall Ψ(k,σ) is a maximal set of non-isomorphic connected σ -dbs of size at most k.
Let Ψ := Ψ(k,σ) = {D1, . . . ,D|Ψ|}. Let

M = {a1 hr(D1)+ · · ·+a|Ψ| hr(D|Ψ|) | a1, . . . ,a|Ψ| ∈ N}.

Claim 2.39. hr(C) = M.
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Proof: Let D ∈ C. Then there exists a1, . . . ,a|Ψ| ∈ N such that D contains a1 connected
components isomorphic to D1, a2 connected components isomorphic to D2, . . . , and a|Ψ|
connected components isomorphic to D|Ψ|. Therefore

hr(D) = a1 hr(D1)+ · · ·+a|Ψ| hr(D|Ψ|) ∈ M.

Let m̄ = a1 hr(D1) + · · ·+ a|Ψ| hr(D|Ψ|) ∈ M where a1, . . . ,a|Ψ| ∈ N. Then the σ -db
D with exactly a1 connected components isomorphic to D1, a2 connected components
isomorphic to D2, . . . , and a|Ψ| connected components isomorphic to D|Ψ| is in C and clearly
hr(D) = m̄. Hence hr(C) = M. ■

Therefore hr(C) is a linear set.

From a result in [34] about many-sorted spectra of CMSO sentences it can be derived
that the set of r-histogram vectors of properties defined by a CMSO sentence on the class of
all bounded degree and bounded tree-width databases are semilinear.

Lemma 2.40 ([4, 34]). Let t,d ∈ N, let σ be a schema and let Ct
d be the class of all d-

degree bounded and t-bounded tree-width σ -dbs. For each r ∈ N and each property P ⊆ Ct
d

definable by a CMSO sentence on Ct
d , the set hr(P) is semilinear.





Chapter 3

Testing first-order definable properties

In this chapter, we consider the testability of properties definable in two different fragments
of FO in the bounded degree database model. We first consider the existential fragment of
FO in Section 3.1. A FO sentence is in the existential fragment of FO if it is of the form
∃x1 . . .∃xℓψ(x1, . . . ,xℓ) where ψ is quantifier free. Given a FO existential sentence φ and
database D it is not difficult to see that we only need to modify a constant number of tuples in
D to make it satisfy φ . Therefore if D is large enough then it is close to the property defined
by φ and hence properties definable in the existential fragment of FO are trivially uniformly
testable in the bounded degree database model. We note here that boolean conjunctive queries
(FO sentences constructed from atomic formulas, conjunctions and existential quantifiers
only), which are one of the most studied class of boolean database queries, belong to the
existential fragment of FO. Hence boolean conjunctive queries are trivially uniformly testable
in the bounded degree database model. A natural question one may ask is whether properties
definable by the negation of a boolean conjunctive query φ are uniformly testable? The
negation of a boolean conjunctive query belongs to the universal fragment of FO. We will
consider the testability of the universal fragment of FO in Section 3.2. A FO sentence is in
the universal fragment of FO if it is of the form ∀x1 . . .∀xℓψ(x1, . . . ,xℓ) where ψ is quantifier
free. A sentence of the form ∀x1 . . .∀xℓψ(x1, . . . ,xℓ) is logically equivalent to the sentence
¬∃x1 . . .∃xℓ¬ψ(x1, . . . ,xℓ). Therefore it is easy to show that testing a property defined by a
universal FO sentence is equivalent to testing induced B-freeness where B is some finite set
of databases. In Section 3.2 we prove that the property of being induced B-free is uniformly
testable in constant time in the bounded degree database model (Theorem 3.8) and hence
properties definable in the universal fragment of FO are uniformly testable in constant time
(Theorem 3.3).
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Proviso. In this chapter we fix a schema σ and number d ∈ N with d ≥ 2. All databases are
σ -dbs and have degree at most d, unless stated otherwise. We use Cd to denote the class of
all σ -dbs with degree at most d.

3.1 Existential fragment

It is easy to see that properties defined by an existential FO sentence are trivially uniformly
testable in the bounded degree database model. Let us start with a simple example of a
property defined by an existential FO sentence.

Example 3.1. Let P ⊆ Cd be the property defined by the FO sentence

φ = ∃x1 . . .∃xrR(x1, ...,xr)

where R ∈ σ . We can show that P is uniformly testable on Cd with constant time
complexity.

Let ε ∈ (0,1], given oracle access to a σ -db D ∈ Cd on n elements, the ε-tester for P on
Cd proceeds as follows.

1. If n < 1
εd then do a full check for a tuple in R.

2. Otherwise, accept.

Clearly, the tester has constant query complexity and constant running time.
For correctness, if D ∈ P then the tester will always accept.
Let D be ε-far from P. We only need to insert one tuple into D to make D ∈ P. Hence

we must have 1 > εdn, in which case the tester does a full check for a tuple in R and hence
will reject.

We will give the proof of the following observation for completeness.

Observation 3.2. Every property P ⊆ Cd that is definable by an existential FO sentence is
(trivially) uniformly testable on Cd with constant time complexity.

Proof. Let φ be an existential FO sentence and let P be the property defined by φ on Cd . We
will assume that P is non-empty (otherwise a tester can just reject). Let ε ∈ (0,1] and let c
be the minimum number such that for every D ∈ Cd , D can be modified into a database D ′

(with degree at most d) with at most c tuple modifications such that D ′ |= φ . We note that c
is bounded above by the number of existential quantifiers in φ and d and hence is a constant.
Then the ε-tester for P on Cd is very similar to the tester given in Example 3.1. Given oracle
access to a σ -db D ∈ Cd on n elements, the ε-tester for P on Cd proceeds as follows.
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1. If n < c
εd , then decide exactly if D is in P (check whether D |= φ ).

2. Otherwise, accept.

Clearly, the tester has constant query complexity and constant running time.
The proof of correctness is then very similar to the proof of correctness given in Example

3.1.

3.2 Universal fragment

The existential fragment of FO logic was trivial and not very interesting, we will therefore
move our attention to the not so trivial universal fragment of FO logic. In this section, we
will prove that any property that is definable by a universal FO sentence is uniformly testable
on Cd in constant time, which to our knowledge has not been done before in the bounded
degree database model.

Theorem 3.3. Every property P ⊆ Cd that is definable by a universal FO sentence is
uniformly testable on Cd with constant time complexity.

As with the existential fragment let us start with a simple example.

Example 3.4. Let P ⊆ Cd be the property defined by the FO sentence

φ = ∀x1 . . .∀xr¬R(x1, . . . ,xr)

where R ∈ σ is a relation symbol and r ∈ N. We will show that P is uniformly testable
on Cd with constant time complexity.

Let ε ∈ (0,1]. Given oracle access to a σ -db D ∈ Cd on n elements, a ε-tester for P on
Cd proceeds as follows.

1. Sample α = log1−ε
1
3 elements from [n] uniformly and independently.

2. For each of the sampled elements, i, perform the query (R, i,1).

3. If in the previous step all queries returned no results then accept, otherwise reject.

If D ∈ P (there are no tuples in relation RD ) then clearly the ε-tester will always accept.
Let D be ε-far from property P. Therefore there must be more than εdn tuples in the

relation RD . As the maximum degree of D is d there must be at least εn distinct elements
in the tuples of the relation RD . The probability of sampling one of these elements is
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therefore at least εn/n = ε . The probability of not choosing one of these elements is at most
(1−ε)α = 1/3 by the choice of α . Hence the ε-tester rejects with probability of at least 2/3.

This tester has constant running time and query complexity. It also has one sided error
probability.

Any universal FO sentence is logically equivalent to a sentence of the form

φ = ¬∃x1∃x2 . . .∃xℓψ(x1,x2, ...,xℓ)

where ψ is quantifier free and ℓ∈N. Hence any property definable by a universal FO sentence
is hereditary. It is known that all hereditary graph properties have a (possibly infinite) set
of forbidden induced subgraphs (e.g. see [10]) and this easily extends to databases. We
can show that properties definable by a universal FO sentence have a finite set of forbidden
induced sub-databases.

Lemma 3.5. Let P ⊆ Cd be the property defined by the sentence

φ = ∀x1∀x2 . . .∀xℓψ(x1,x2, . . . ,xℓ)

where ψ is quantifier free and ℓ ∈ N. Then P has a finite set B = {B1,B2, ...,Bm} ⊆ Cd of
forbidden induced sub-databases. Furthermore, such a set B is computable.

Proof. Let us construct the set B as follows.

1. Let B = /0.

2. For 1 ≤ i ≤ ℓ do the following.

(a) Let Πi be the set of all σ -dbs in Cd on i elements.

(b) For each B ∈ Πi, if B |= ¬φ and B contains no σ -db that is an induced sub-
database of B, then add B to B.

Let Π =
⋃

1≤i≤ℓΠi. For every B ∈ Π it can be checked whether B |= ¬φ in time only
dependent on φ , d and σ (see [60] and [36]). Furthermore, the set Π is finite (|Π| depends
only on σ , d and ℓ) and hence B is finite and computable (in time only dependent on φ , d
and σ ).

Let us now show that B is indeed a set of forbidden induced sub-databases of P. Let
D ∈ Cd . We will first show that if D is induced B-free then D ∈ P. For a contradiction
let us assume that D is induced B-free but D ̸∈ P. Since D ̸∈ P, then D ̸|= φ and hence
D |= ¬φ = ∃x1∃x2 . . .∃xℓ¬ψ(x1,x2, . . . ,xℓ). Therefore there exists some tuple of elements
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ā = (a1,a2, . . . ,aℓ) ∈ Dℓ such that ¬ψ(a1,a2, . . . ,aℓ) is true in D . Let D ′ be the induced
sub-database of D on the elements in ā. Then D ′ has at most ℓ elements and hence D ′ ∈ Π.
Furthermore, D ′ |=¬φ = ∃x1∃x2 . . .∃xℓ¬ψ(x1,x2, . . . ,xℓ). Therefore either D ′ or an induced
sub-database of D ′ will be in B. Hence D is not induced B-free, which is a contradiction.
Therefore if D is induced B-free then D ∈ P.

Now let us show that if D ∈ P then D is induced B-free. For a contradiction let us assume
that D ∈ P but D is not induced B-free. Hence there exists at least one Bi ∈ B such that D

has an induced sub-database isomorphic to Bi. Since Bi |= ∃x1∃x2 . . .∃xℓ¬ψ(x1,x2, . . . ,xℓ)
and D has an induced sub-database isomorphic to Bi, D must satisfy
∃x1∃x2 . . .∃xℓ¬ψ(x1,x2, . . . ,xℓ). This contradicts that D ∈ P and hence if D ∈ P then D is
induced B-free.

Finally, by the construction of B, B is minimal and therefore B is the set of forbidden
induced sub-databases of P.

To prove Theorem 3.3 we need to show that induced B-freeness (where B is some finite
set of σ -dbs) is uniformly testable in constant time. We will start by proving that induced
B-freeness (where B is a connected σ -db) is uniformly testable in constant time and then
extend this to cases where B is disconnected.

Goldreich and Ron [42] proved that on bounded degree graphs, the property of being
(not necessarily induced) H -free, where H is a connected graph, is uniformly testable
in constant time. It was left as an exercise in [39] to prove this for the case when H is
disconnected. We will complete this exercise, modify the testers to test for induced H -free
properties and translate the proofs from graphs to databases.

Theorem 3.6. Let B be a connected σ -db. Let P⊆Cd be the property containing all induced
B-free σ -dbs in Cd . Then P is uniformly testable on Cd with constant time complexity and
one sided error probability.

Proof. Let r be the largest distance between any two elements in B and let ε ∈ (0,1]. Given
oracle access to a σ -db D ∈ Cd on n elements, the ε-tester for P on Cd proceeds as follows.

1. Uniformly and independently sample α = log1−ε1/3 elements from [n].

2. Explore the r-neighbourhood around each sampled element.

3. If the r-neighbourhood of any of the sampled elements contains an induced sub-
database isomorphic to B, then reject. Otherwise, accept.

The r-neighbourhood of an element can be explored in constant time and with constant
query complexity. It can be checked in constant time whether the r-neighbourhood of an
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element has an induced sub-database isomorphic to B. Finally, since we sample a constant
number of elements, the tester has constant query complexity and constant running time. Let
us now prove correctness.

If D ∈ P then the tester will clearly always accept and hence the tester has one sided
error probability.

Now let us assume that D is ε-far from P. Therefore we need to insert/remove more than
εdn tuples to remove all copies of B from D . Let DB ⊆ D be the set of elements in D that
belong to an induced sub-database of D which is isomorphic to B. We claim that |DB|> εn.
We will prove that |DB| > εn by a contradiction. Let us assume that |DB| ≤ εn. For each
element b ∈ DB, if |B| > 1, then remove all tuples from D that contain b (a maximum of
d tuples), otherwise either insert or remove a tuple that only contains the element b. Let
D ′ be the resulting database. If |B|> 1, then by construction any induced sub-database of
D ′ on |B| elements that contains some element in DB will now have at least two connected
components. If |B|= 1, then by construction any induced sub-database of D ′ on an element
of DB will not be isomorphic to B. Hence the resulting database D ′ does not have an induced
sub-database isomorphic to B. Therefore if |DB| ≤ εn, then D must be ε-close to P which
is a contradiction. Therefore |DB|> εn. By the choice of r if the tester samples any element
in DB, an induced sub-database isomorphic to B will be found and the tester will reject.
The probability an element in DB is sampled is |DB|/n > ε . The probability that out of the
α elements sampled, no element in DB is sampled is at most (1− ε)α = 1/3. Hence the
probability the tester rejects is at least 2/3.

Theorem 3.7. Let B be a disconnected σ -db. Let P ⊆ Cd be the property containing
all induced B-free σ -dbs in Cd . Then P is uniformly testable on Cd with constant time
complexity and one sided error probability.

Proof. Let ε ∈ (0,1] and let B1,B2, . . . ,Bk be the connected components of B. For i ∈ [k],
let ri be the largest distance between any two elements in Bi. Let rmax = max{r1, . . . ,rk}.
Given oracle access to a σ -db D ∈ Cd on n elements, the ε-tester for P on Cd proceeds as
follows.

1. If n < 2k(ar(σ)·d)2rmax+2

ε
then decide exactly if D ∈ P.

2. Uniformly and independently sample α = log1−(ε/2)k 1/3 many tuples from [n]k.

3. For each sampled tuple b̄, check if D [Nrmax(b̄)] contains an induced sub-database
isomorphic to B, and if so reject.

4. If no induced sub-database isomorphic to B was found in the previous step, then
accept.
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If n < 2k(ar(σ) ·d)2rmax+2/ε , then it can be checked in constant time and with constant
query complexity if D ∈ P (since 2k(ar(σ) ·d)2rmax+2/ε is a constant). Otherwise, for each
sampled tuple b̄, D [Nrmax(b̄)] can be computed in constant time and with constant query
complexity. Furthermore, it can be checked in constant time whether D [Nrmax(b̄)] has an
induced sub-database isomorphic to B. Finally, since a constant number of tuples are
sampled the overall running time and query complexity is constant as required.

If D ∈ P then clearly the tester will always accept. Hence the tester has one sided error
probability.

Let D be ε-far from P. Let us assume that n ≥ 2k(ar(σ) · d)2rmax+2/ε (otherwise the
tester will reject with probability 1). Firstly, let us note that D must be ε-far from being
Bi-free for all i ∈ [k] (otherwise D would be ε-close to P). For each i ∈ [k], let DBi be the
set of elements in D that belong to an induced sub-database of D which is isomorphic to Bi.
With the same arguments as in the proof of Theorem 3.6 it can be deduced that |DBi|> εn
for every i ∈ [k]. Now let us find a lower bound on the number of tuples in [n]k which
will lead to an induced sub-database isomorphic to B being found in Step 3. For ease let
us compute a lower bound on the number of tuples (b1, . . . ,bk) ∈ [n]k where bi ∈ DBi for
every i ∈ [k] and for every i, j ∈ [k] with i ̸= j we have that bi and b j are at distance at least
2rmax +2 away from each other in D , i.e. D [Nrmax(bi)∪Nrmax(b j)] is disconnected (note that
such tuples will lead to an induced sub-database isomorphic to B being found in Step 3).
There are at least (εn− k(ar(σ) ·d)2rmax+2)k many such tuples in [n]k since for each i ∈ [k],
|DBi| > εn, and by Lemma 2.16 there are at most (ar(σ) · d)2rmax+2 many elements in the
2rmax +1-neighbourhood of an element in D . The probability a tuple is sampled that leads
to an induced sub-database isomorphic to B being found in Step 3 is therefore at least

(
εn− k(ar(σ) ·d)2rmax+2

n

)k
≥
(

ε

2

)k

since n ≥ 2k(ar(σ) · d)2rmax+2/ε . The probability we don’t find an induced sub-database
isomorphic to B is then at most (

1−
(

ε

2

)k)α

=
1
3

and hence the probability the tester rejects is at least 2/3.

To prove Theorem 3.3 it now only remains to prove that the intersection of induced
B-free properties are also uniformly testable in constant time. Goldreich and Ron [42] prove
that in the bounded degree graph model the intersection of uniformly testable (decreasing)
monotone graph properties are also uniformly testable. Therefore the intersection of (not
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necessarily induced) subgraph-free properties are uniformly testable. Their proof requires
that the properties are closed under edge removal and hence we can not use their result.

Theorem 3.8. Let B= {B1,B2, . . . ,Bm} be a finite set of σ -dbs. Let P⊆Cd be the property
containing all induced B-free σ -dbs in Cd . Then P is uniformly testable on Cd with constant
time complexity.

Proof. Let c be the number of different 1-element σ -dbs up to isomorphism (note c is a
constant as it only depends on d and σ ). Let Bmax = max{|B1|, |B2|, . . . , |Bm|}, let ε ∈ (0,1],
and let ε ′ = ε

2dmc . Given oracle access to a σ -db D ∈ Cd on n elements, a ε-tester for P on
Cd proceeds as follows.

1. If n < 2cBmax(ar(σ) ·d)2, then decide exactly if D ∈ P.

2. For each Bi ∈ B do the following.

(a) Run the ε ′-tester for induced Bi-freeness from Theorem 3.6 (if Bi is connected)
or from Theorem 3.7 (if Bi is disconnected) on D .

(b) If the tester in (a) rejected, then reject.

3. If all the testers run in Step 2 accepted, then accept.

Since |B| is a constant and the ε ′-testers from the proofs of Theorem 3.6 and Theorem
3.7 run in constant time and have constant query complexity, the tester has constant query
complexity and constant running time as required.

If D ∈P then the tester will always accept (since the ε ′-testers from the proofs of Theorem
3.6 and Theorem 3.7 have one sided error probability). Hence the tester has one sided error
probability.

Let D be ε-far from P. Let us assume that n ≥ 2cBmax(ar(σ) ·d)2 (otherwise the tester
will reject with probability 1). We need to show that for at least one i ∈ [m], D is ε ′-far from
being induced Bi-free and hence the tester will reject with probability at least 2/3. For a
contradiction let us assume that D is ε ′-close to being induced Bi-free for all i ∈ [m]. For
i ∈ [m], let Di ∈ Cd be a σ -db that is induced Bi-free and is formed by adding/removing at
most ε ′nd tuples to/from D . Let D ′ be the maximal induced sub-database of D , D1, D2, . . . ,
and Dm. Clearly, D ′ ∈ P but D ′ might have fewer elements than D . We will show that we
can add n−|D′| isolated elements to D ′ in such a way that the resulting database D ′′ is still
in P and is ε-close to D , which will give us a contradiction.

By the pigeon hole principal, there exists some σ -db H on one element such that for at
least n/c elements b ∈ D, D [b]∼= H . We will show that if we insert n−|D′| disjoint copies
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of H into D ′ then the resulting database will still be induced Bi-free for all Bi ∈ B. Let
Bi ∈ B. We will consider the three cases where, (1) Bi contains no connected component
isomorphic to H , (2) every connected component in Bi is isomorphic to H , and (3) Bi

contains at least one connected component isomorphic to H and at least one connected
component not isomorphic to H .

For case (1), clearly, no matter how many disjoint copies of H are inserted into D ′, the
resulting database will still be induced Bi-free.

For case (2), let us assume that every connected component in Bi is isomorphic to H .
We will show that if this is the case then D must be ε ′-far from being induced Bi-free which
contradicts our earlier assumption (and hence case (2) is not possible). If there exists |Bi|
distinct elements b ∈ D such that D [b] ∼= H and such that no two are at distance 1 from
each other, then D will have an induced sub-database isomorphic to Bi. If there are at least
|Bi|(ar(σ) ·d)2 distinct elements b ∈ D such that D [b]∼= H , then at least |Bi| many of them
will all be at distance greater than 1 from each other (since there are at most (ar(σ) · d)2

elements in the 1-neighbourhood of an element by Lemma 2.16). Since there are at least n/c
elements b ∈ D where D [b]∼= H , to make D be induced Bi-free we will need to insert or
remove at least

n
c
−|Bi|(ar(σ) ·d)2 ≥ n

c
−Bmax(ar(σ) ·d)2 ≥ n

2c
>

εn
2mc

= ε
′nd

tuples since n ≥ 2cBmax(ar(σ) ·d)2 and by the choice of ε ′. This contradicts the assumption
that D is ε ′-close to being induced Bi-free and hence case (2) is not actually possible.

For case (3), let us assume that Bi contains at least one connected component isomorphic
to H and at least one connected component that is not isomorphic to H . Let B′

i be
the database formed from Bi by removing every connected component isomorphic to H .
We will show that Di is induced B′

i-free and hence D ′ is also induced B′
i-free. For a

contradiction let us assume that Di is not induced B′
i-free. Since Di is formed by removing

or adding at most ε ′nd tuples from D , Di contains at least n/c− ε ′nd elements b such
that Di[b] ∼= H . Using similar arguments to those used in case (2), if Di contains at
least |B′

i|(ar(σ) ·d)2 +(|Bi|− |B′
i|)(ar(σ) ·d)2 = |Bi|(ar(σ) ·d)2 elements b ∈ Di such that

Di[b]∼= H , then Di will have an induced sub-database isomorphic to Bi. However,

n
c
− ε

′nd = n
(1

c
− ε

′d
)
≥ 2c|Bi|(ar(σ) ·d)2

(1
c
− ε

′d
)
≥ |Bi|(ar(σ) ·d)2

since n ≥ 2cBmax(ar(σ) · d)2 and ε ′ ≤ 1/2cd. This contradicts that Di is induced Bi-free
and so Di must be induced B′

i-free. Therefore D ′ is induced B′
i-free and so we can insert
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any number of disjoint copies of H into D ′ and the resulting database will still be induced
Bi-free.

Hence, if we insert n−|D′| disjoint copies of H into D ′ then the resulting database D ′′

will still be induced Bi-free for all Bi ∈ B (and therefore D ′′ ∈ P). By the construction of
D ′ and since for every i ∈ [m], Di is formed by adding or removing at most ε ′nd tuples from
D , n−|D′| ≤ mε ′nd. Therefore

dist(D ,D ′′)≤ 2d(n−|D′|)≤ 2mε
′nd2 =

εdn
c

≤ εdn.

This contradicts that D is ε-far from P and hence for at least one i ∈ [m], D is ε ′-far from
being induced Bi-free and so the tester will reject with probability at least 2/3.

This completes the proof of Theorem 3.3. The ε-tester for any property P ⊆ Cd that is
definable by a universal FO sentence φ consists of two steps. In the first step, the set of
forbidden induced sub-databases B is constructed for P (as in Lemma 3.5). The ε-tester from
the proof of Theorem 3.8 is then run on the input with the set B being the set of forbidden
induced sub-databases of P.

Note that we have also proved that any hereditary property which has a finite set of
forbidden induced sub-databases is uniformly testable in constant time.



Chapter 4

Constant size databases that preserve the
local structure of large databases

In this chapter we prove bounds on a result by Alon for two special cases. Alon [55,
Proposition 19.10] proved that on bounded degree graphs, for any graph G , radius r and
ε > 0 there always exists a graph H whose size is independent of |V (G )| and whose
r-neighbourhood distribution vector satisfies ∥dvr(G )−dvr(H )∥1 ≤ ε .

Proposition 4.1 ([55]). For every ε > 0 and constants d and r, there exists a positive integer
M(ε) such that for any d-degree bounded graph G there is a graph H on at most M(ε)

vertices such that ∥dvr(G )−dvr(H )∥1 ≤ ε .

The proof of Proposition 4.1 is based on a compactness argument, however, the proof is
only existential and does not provide an explicit bound on the size of H . Finding such a
bound was suggested by Alon as an open problem [47]. Currently, the only known bounds
are for graphs with high-girth [32], where the girth of a graph G is the length of the shortest
cycle in G .

Proposition 4.1 easily extends to bounded degree databases and can be proved in a very
similar way. We do not give the proof here, however, we will prove the existence of H and
obtain explicit bounds on the size of H for certain classes of databases. We obtain explicit
bounds for classes of graphs and databases of bounded degree whose histogram vectors form
a semilinear set, or who are hyperfinite.

For the rest of this chapter, we fix a schema σ and a number d ∈ N with d ≥ 2.
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4.1 Databases with semilinear neighbourhood histograms

We will first obtain explicit bounds on the size of H for bounded degree databases that come
from a class of databases whose neighbourhood histogram vectors form a semilinear set.
Since graphs can be seen as special instances of databases, our bounds carry over to graphs
also. Recall that c(r) := |T σ ,d

r (1)| is the number of r-types with one centre and degree at
most d, over schema σ .

Theorem 4.2. Let ε ∈ (0,1], let r ∈N and let C be a class of σ -dbs of bounded degree d such
that the set hr(C) is semilinear. Let hr(C) = M1 ∪M2 ∪·· ·∪Mm where m ∈ N and for each
i∈ [m], Mi = {v̄i

0+a1v̄i
1+ · · ·+aki v̄

i
ki
| a1, . . . ,aki ∈N} is a linear set where v̄i

0, . . . , v̄
i
ki
∈Nc(r).

Let c := c(r), k := maxi∈[m] ki +1 and v := maxi∈[m]

(
max j∈[0,ki] ∥v̄i

j∥1

)
. Then for any

n0 ≥ kv
(

1+
3kvc

ε

)
and D ∈ C with |D|> n0 + kv there exists a σ -db D0 such that

∥dvr(D)−dvr(D0)∥1 ≤ ε and n0 − kv ≤ |D0| ≤ n0 + kv.

Furthermore, D0 ∈ C.

Proof. Let n0 ≥ kv(1+ 3kvc/ε) and let D ∈ C with |D| = n > n0 + kv. Then there exists
some i ∈ [m] and aD

1 , . . . ,aD
ki
∈ N such that hr(D) = v̄i

0 +aD
1 v̄i

1 + · · ·+aD
ki

v̄i
ki

(note that n =

∥v̄i
0∥1+∑ j∈[ki] a

D
j ∥v̄i

j∥1). Let D0 be the σ -db with r-histogram v̄i
0+aD0

1 v̄i
1+ · · ·+aD0

ki
v̄i

ki
∈Mi

where aD0
j is the nearest integer to aD

j n0/n (if aD
j n0/n is precisely between two integers, then

just choose the smallest), and hence

aD
j n0

n
− 1

2
≤ aD0

j ≤
aD

j n0

n
+

1
2
.

Note that since v̄i
0 +aD0

1 v̄i
1 + · · ·+aD0

ki
v̄i

ki
∈ hr(C), D0 exists and D0 ∈ C. We need to show

that n0 − kv ≤ |D0| ≤ n0 + kv and ∥dvr(D)−dvr(D0)∥1 ≤ ε .

Claim 4.3. |D0| ≥ n0 − kv.

Proof: By the choice of aD0
j for j ∈ [ki],

|D0|= ∥v̄i
0∥1 + ∑

j∈[ki]

aD0
j ∥v̄i

j∥1
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≥ ∥v̄i
0∥1 + ∑

j∈[ki]

(aD
j n0

n
− 1

2

)
∥v̄i

j∥1

= ∥v̄i
0∥1 −

1
2 ∑

j∈[ki]

∥v̄i
j∥1 +

n0

n ∑
j∈[ki]

aD
j ∥v̄i

j∥1

= ∥v̄i
0∥1 −

1
2 ∑

j∈[ki]

∥v̄i
j∥1 +n0 −

n0∥v̄i
0∥1

n

≥ ∥v̄i
0∥1 −

1
2 ∑

j∈[ki]

∥v̄i
j∥1 +n0 −∥v̄i

0∥1

≥−kv+n0,

as ∑ j∈[ki] a
D
j ∥v̄i

j∥1 = n−∥v̄i
0∥1 and n > n0. ■

Claim 4.4. |D0| ≤ n0 + kv.

Proof: By the choice of aD0
j for j ∈ [ki],

|D0|= ∥v̄i
0∥1 + ∑

j∈[ki]

aD0
j ∥v̄i

j∥1

≤ ∥v̄i
0∥1 + ∑

j∈[ki]

(aD
j n0

n
+

1
2

)
∥v̄i

j∥1

= ∥v̄i
0∥1 +

1
2 ∑

j∈[ki]

∥v̄i
j∥1 +n0

(
1−

∥v̄i
0∥1

n

)
≤ ∑

0≤ j≤ki

∥v̄i
j∥1 +n0

≤ kv+n0,

as ∑ j∈[ki] a
D
j ∥v̄i

j∥1 = n−∥v̄i
0∥1. ■

Claim 4.5. ∥dvr(D)−dvr(D0)∥1 ≤ ε .

Proof: By definition, ∥dvr(D)−dvr(D0)∥1 = ∑ j∈[c] |dvr(D)[ j]−dvr(D0)[ j]|. First recall
that 0 < n0 − kv ≤ |D0| ≤ n0 + kv < n (by the choice of n0 and by Claims 4.3 and 4.4) and
note that for every ℓ ∈ [ki], aD

ℓ ≤ n (since ∥v̄i
ℓ∥1 ̸= 0). For every j ∈ [c], by the choice of aD0

ℓ

for ℓ ∈ [ki],

dvr(D)[ j]−dvr(D0)[ j]

= v̄i
0[ j]

(1
n
− 1

|D0|

)
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(aD
ℓ

n
−

aD0
ℓ

|D0|

)
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≤ ∑
ℓ∈[ki]

v̄i
ℓ[ j]

(aD
ℓ

n
−

aD
ℓ n0

n|D0|
+

1
2|D0|

)
= ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(aD
ℓ

n

( |D0|−n0

|D0|

)
+

1
2|D0|

)
≤ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(n
n

(kv+n0 −n0

n0 − kv

)
+

1
2(n0 − kv)

)
=
( 2kv+1

2(n0 − kv)

)
∑
ℓ∈[ki]

v̄i
ℓ[ j]

≤ kv(2kv+1)
n0 − kv

.

On the other hand,

dvr(D)[ j]−dvr(D0)[ j]

≥−
v̄i

0[ j]
|D0|

+ ∑
ℓ∈[ki]

v̄i
ℓ[ j]

(aD
ℓ

n

( |D0|−n0

|D0|

)
− 1

2|D0|

)
≥−

v̄i
0[ j]
|D0|

+ ∑
ℓ∈[ki]

v̄i
ℓ[ j]

(aD
ℓ

n

(−kv+n0 −n0

|D0|

)
− 1

2|D0|

)
=−

v̄i
0[ j]
|D0|

− ∑
ℓ∈[ki]

v̄i
ℓ[ j]

(aD
ℓ kv

n|D0|
+

1
2|D0|

)
≥−

v̄i
0[ j]

n0 − kv
− ∑

ℓ∈[ki]

v̄i
ℓ[ j]

( nkv
n(n0 − kv)

+
1

2(n0 − kv)

)
=−

v̄i
0[ j]

n0 − kv
−
( 2kv+1

2(n0 − kv)

)
∑
ℓ∈[ki]

v̄i
ℓ[ j]

≥−kv(2kv+1)
n0 − kv

.

Hence,

|dvr(D)[ j]−dvr(D0)[ j]| ≤
kv(2kv+1)

n0 − kv
≤ 3(kv)2

n0 − kv
≤ ε

c

by the choice of n0. Therefore,

∥dvr(D)−dvr(D0)∥1 = ∑
j∈[c]

|dvr(D)[ j]−dvr(D0)[ j]| ≤ ε

as required. ■

The above three claims complete the proof.
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We will make use of Theorem 4.2 in Chapter 5 to construct constant time property testers
(in the new model introduced in Chapter 5) for any property P which is hyperfinite and has a
semilinear set of neighbourhood histograms. In Chapter 5 we prove that for such properties,
for any database D which is far from the property (in the new model), there does not exist a
small constant size database in the property with a similar distribution vector to D (note that
this result requires the property to be hyperfinite). Combining this result with Theorem 4.2,
we can construct a constant time tester for any hyperfinite property with a semilinear set of
neighbourhood histograms as follows: Given an input database, we make a good estimate of
its neighbourhood distribution vector (which can be done with high probability by Lemma
2.19) and then the tester accepts if this estimate is close to the distribution vector of some
small constant size database in the property, otherwise it rejects. We point out here that to
be able to distinguish between inputs in the property from those that are far away from the
property, the small constant size database D0 constructed in Theorem 4.2 must belong to the
same class as the large database D .

4.2 Hyperfinite databases

In Lemma 2.38 we proved that if C is the class of σ -dbs of bounded degree d, whose
connected components all have at most k elements (for some k ∈ N), then hr(C) is linear
for any r ∈ N. Since any hyperfinite database is close to some database in C (assuming k is
chosen carefully), we can combine Lemma 2.38 and Theorem 4.2 to obtain explicit bounds
on the size of H for hyperfinite databases (Theorem 4.6). We note that our bounds carry
over to graphs also. Whilst we do not directly use Theorem 4.6 in our testers in the following
chapters, we believe this result is of independent interest.

Recall that Ψ(k,σ) is a maximal set of non-isomorphic connected σ -dbs of size at most
k.

Theorem 4.6. Let ε ∈ (0,1], let r ∈ N and let D be a σ -db of bounded degree d that is
ρ-hyperfinite for some function ρ . Let

ε0 :=
ε

4(ar(σ) ·d)r+1 ,

let v := ρ(ε0), let k := |Ψ(v,σ)|+1 and let c := c(r). Then for any

n0 ≥ kv
(

1+
6kvc

ε

)
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if |D|> n0 + kv, then there exists a σ -db D0 such that

∥dvr(D)−dvr(D0)∥1 ≤ ε and n0 − kv ≤ |D0| ≤ n0 + kv.

Proof. Let n0 ≥ kv(1+6kvc/ε) and let n := |D|> n0 + kv. Since D is ρ-hyperfinite and by
the choice of v, we can remove at most ε0n tuples from D to obtain a σ -db D ′ (on n elements)
whose connected components are all of size at most v. Let ā = (a1, . . . ,aℓ) be a tuple that was
removed from D to form D ′. For any element b ∈ D, if ā is in the r-neighbourhood of b in D ,
then the r-type of b in D ′ could be different from the r-type of b in D . The tuple ā is in the r-
neighbourhood of b in D if a1, . . . ,aℓ ∈ ND

r (b), or alternatively if b ∈ ND
r (a1)∩·· ·∩ND

r (aℓ).
By Lemma 2.16, |Nr(a1)∩Nr(a2)∩ ·· · ∩Nr(aℓ)| ≤ |Nr(a1)| ≤ (ar(σ) · d)r+1, and hence
every tuple that was removed from D to form D ′ could have changed the r-type of at most
(ar(σ) ·d)r+1 elements. Therefore

∥hr(D)−hr(D
′)∥1 ≤ 2ε0n(ar(σ) ·d)r+1

and
∥dvr(D)−dvr(D

′)∥1 ≤ 2ε0(ar(σ) ·d)r+1.

Let C be the class of all σ -dbs of bounded degree d whose connected components are all of
size at most v. Let Ψ := Ψ(v,σ) = {D1, . . .D|Ψ|}. By Lemma 2.38, hr(C) is a linear set and
can be written as

hr(C) = {a1 hr(D1)+a2 hr(D2)+ · · ·+a|Ψ| hr(D|Ψ|) | a1, . . .a|Ψ| ∈ N}.

Since D ′ ∈ C and by the choice of k, v and n0, by Theorem 4.2 there exists a σ -db D0 such
that

∥dvr(D
′)−dvr(D0)∥1 ≤

ε

2
and n0 − kv ≤ |D0| ≤ n0 + kv.

Finally,
∥dvr(D)−dvr(D0)∥1 ≤

ε

2
+2ε0(ar(σ) ·d)r+1 = ε

by the choice of ε0.

In Theorem 4.2, the constant size database D0 constructed also belongs to the same
class of databases as the large database D . In section 4.1, we discussed how this fact will
be essential when we use Theorem 4.2 in Chapter 5 to construct our testers. However,
for ρ-hyperfinite databases (for some function ρ), it is not clear whether the constant size
database D0 constructed in Theorem 4.6 is ρ-hyperfinite too. We will discuss this now.
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Let ε ∈ (0,1], let r ∈ N and let D be a d-degree bounded σ -db that is ρ-hyperfinite
(for some function ρ). Let ε0, v, k, c and n0 be as in Theorem 4.6. Let us assume that
|D| := n > n0 + kv and let D0 be the σ -db found in Theorem 4.6. To construct D0, first we
obtained the σ -db D ′ which is formed from D by removing at most ε0n tuples such that in D ′

every connected component has size at most v. Clearly D ′ is ρ-hyperfinite. We then construct
D0 from D ′ by applying Theorem 4.2. Let C be the class of all d-degree bounded σ -dbs
whose connected components are all of size at most v. Let Ψ := Ψ(v,σ) = {D1, . . .D|Ψ|}.
Then for i ∈ [|Ψ|], let aD ′

i be the number of connected components in D ′ isomorphic to Di.
Then

hr(D
′) = aD ′

1 hr(D1)+aD ′
2 hr(D2)+ · · ·+aD ′

|Ψ| hr(D|Ψ|).

By the proof of Theorem 4.2, D0 is the σ -db with r-histogram vector

hr(D0) = aD0
1 hr(D1)+aD0

2 hr(D2)+ · · ·+aD0
|Ψ| hr(D|Ψ|)

where for i ∈ [|Ψ|], aD0
i is the closest integer to aD ′

i n0/n. In particular D0 is the σ -db with
exactly aD0

i connected components isomorphic to Di for i ∈ [|Ψ|]. To show that D0 is ρ-
hyperfinite we need to show that for every ε ′ > 0, D0 is (ε ′,ρ(ε ′))-hyperfinite. Let ε ′ > 0. If
ρ(ε ′)≥ v then D0 is (ε ′,ρ(ε ′))-hyperfinite. So let us assume that ρ(ε ′)< v. In the worse
case scenario we need to remove ε ′n tuples from D ′ to obtain a σ -db whose connected
components are all of size at most ρ(ε ′). Let us assume this is the case. For each Di ∈ Ψ, let
bi be the minimum number of tuples that are needed to be removed from Di to form a σ -db
whose connected components are all of size at most ρ(ε ′). Hence

∑
i∈[|Ψ|]

aD ′
i bi = ε

′n.

Furthermore, to form a σ -db from D0 whose connected components are all of size at most
ρ(ε ′) we need to remove

∑
i∈[|Ψ|]

aD0
i bi

many tuples. However in the worse case scenario, aD0
i = aD ′

i n0/n + 1/2 (since aD0
i ≤

aD ′
i n0/n+1/2) for every i ∈ [|Ψ|] and n0 − kv = |D0| (since n0 − kv ≤ |D0|). If this is the

case then

∑
i∈[|Ψ|]

aD0
i bi = ∑

i∈[|Ψ|]

(aD ′
i n0

n
+

1
2

)
bi = ε

′n0+
1
2 ∑

i∈[|Ψ|]
bi = ε

′|D0|+kvε
′+

1
2 ∑

i∈[|Ψ|]
bi > ε

′|D0|.
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Therefore we cannot be certain whether D0 is ρ-hyperfinite.



Chapter 5

A new property testing model

Much research has focussed on the query complexity of property testing algorithms, but in
view of applications, the running time of the algorithm is equally relevant. In [4], in the
bounded degree relational database model (the BDRD model), it was shown that on databases
of bounded degree and bounded tree-width, every property that is expressible in monadic
second-order logic with counting (CMSO) is testable with constant query complexity and
polylogarithmic running time (Theorem 2.35). It remains open whether this can be improved
to constant running time.

In this chapter, we introduce a new model, which is based on the BDRD model, but
the distance measure allows both tuple modifications and element modifications (we call
our model the BDRD+/− model for short). We show that every property that is testable
in the BDRD model is testable in the BDRD+/− model with the same query complexity
and running time, but the converse is not true (Lemmas 5.3 and 5.5). Our main theorem
shows that on databases of bounded degree and bounded tree-width, every property that is
expressible in CMSO is testable with constant query complexity and constant running time
in the BDRD+/− model (Theorem 5.15). Our proof methods include the semilinearity of
the neighbourhood histograms of databases having the property and the result by Alon [55,
Proposition 19.10] that states that for every bounded degree graph G there exists a constant
size graph H that has a similar neighbourhood distribution to G .

We actually prove two more general results than Theorem 5.15. First, we prove that any
hyperfinite property whose histogram vectors form a semilinear set are uniformly testable in
constant time in the BDRD+/− model (Theorem 5.14). We also prove that being hyperfinite
and having a set of histogram vectors that are close to being semilinear is enough for constant
time uniform testability in the BDRD+/− model (Theorem 5.19).

The authors in [17] show that monotone hyperfinite properties are testable with constant
query complexity and constant running time in the bounded degree graph model. It can be
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derived from this result that hyperfinite hereditary properties are testable with constant query
complexity and constant running time in the BDRD model (and hence also in the BDRD+/−
model). Using our methods, we give alternative proofs that hyperfinite monotone properties
are testable with constant query complexity and constant running time in the BDRD and
BDRD+/− models, and that hyperfinite hereditary properties are testable with constant query
complexity and constant running time in the BDRD+/− model.

In Section 5.1 we introduce our property testing model for relational databases of bounded
degree and we compare it to the BDRD model. In Section 5.2 we define a notion of locality
in both the BDRD and BDRD+/− models and prove that hyperfinite properties are local in
the BDRD+/− model. In Section 5.3 we prove our main theorems. In Section 5.4 we prove a
more general theorem of that proved in Section 5.3. In Section 5.5 we give an alternative
proof of the constant time uniform testability of hyperfinite hereditary properties in the
BDRD+/− model. Finally, in Section 5.6 we give an alternative proof of the constant time
uniform testability of monotone hereditary properties in the BDRD model.

Proviso. For the rest of the chapter, we fix a schema σ and numbers d, t ∈ N with d ≥ 2.
All databases are σ -dbs and have degree at most d, unless stated otherwise. We use Cd to
denote the class of all σ -dbs with degree at most d, Ct

d to denote the class of all σ -dbs with
degree at most d and tree-width at most t and finally we use C to denote a class of σ -dbs
with degree at most d (which is closed under isomorphism).

5.1 The model

We will now introduce our property testing model for bounded degree relational databases,
which is an extension of the BDRD model introduced in Section 2.6. The notions of oracle
queries, properties, ε-tester, query complexity and uniform testability remain the same but
we have an alternative definition of distance and ε-closeness. In our model, which we shall
call the BDRD+/− model for short, we can add and remove elements as well as tuples and
can therefore compare databases that are on a different number of elements.

Definition 5.1 (Distance and ε-closeness). Let D ,D ′ ∈ Cd and ε ∈ [0,1]. The distance
between D and D ′ (denoted by dist+/−(D ,D ′)) is the minimum number of modifications
we need to make to D and D ′ to make them isomorphic where a modification is either (1)
inserting a new element, (2) deleting an element (and as a result deleting any tuple that
contains that element), (3) inserting a tuple, or (4) deleting a tuple. We then say D and D ′

are ε-close if dist+/−(D ,D ′)≤ εd min{|D|, |D′|} and are ε-far otherwise.
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m

Fig. 5.1 The graphs Gn,m and Hn,m (respectively) of Example 5.2.

The following example illustrates the difference between the distance measure of the
BDRD and the distance measure of the BDRD+/− model.

Example 5.2. Let P = {Gn,m | n,m ∈ N>1} where Gn,m is an n by m grid graph as shown in
Figure 5.1. Let us consider the graph Hn,m for some n,m ∈ N>1 which is formed from Gn,m

by removing a corner vertex. In the BDRD+/− model the distance between Hn,m and Gn,m

is 1 (we remove a corner vertex from Gn,m to get Hn,m) and therefore Hn,m is at distance 1
from P in the BDRD+/− model. In the BDRD model if two graphs are on a different number
of vertices then the distance between them is infinity. Therefore if nm−1 is a prime number
then Hn,m is at distance infinity from P in the BDRD model.

We now show that if a property is uniformly testable in the BDRD model then it is also
uniformly testable in the BDRD+/− model but the converse is not true. This allows for more
uniformly testable properties in the BDRD+/− model.

Lemma 5.3. Let P ⊆ C be a property on C. If P is uniformly testable on C in time f (n)
in the BDRD model then P is also uniformly testable on C in time f (n) in the BDRD+/−
model.

Proof. Let ε ∈ (0,1]. Let π be an ε-tester, that runs in time f (n), for P on C in the BDRD
model. We claim that π is also an ε-tester for P on C in the BDRD+/− model. Let D ∈ C
be the input σ -db. If D ∈ P then π will accept with probability at least 2/3. If D is ε-far
from P in the BDRD+/− model then it must also be ε-far from P in the BDRD model and
therefore π will reject with probability at least 2/3. Hence π is an ε-tester for P on C in the
BDRD+/− model.

Theorem 5.4 ([42]). In the bounded degree graph model, bipartiteness cannot be tested with
query complexity o(

√
n), where n is the number of vertices of the input graph.
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Lemma 5.5. There exists a class C of σ -dbs and a property P ⊆ C such that P is trivially
uniformly testable on C in the BDRD+/− model but is not testable on C in the BDRD model.

Proof. Let C be the class of all graphs with degree at most d. Let P = P1 ∪P2 ⊆ C be the
property where P1 contains all bipartite graphs in C and P2 contains all graphs in C that
have an odd number of vertices. In the BDRD+/− model every G ∈ C is ε-close to P if
|V (G )| ≥ 1/(εd) and hence P is trivially testable on C in the BDRD+/− model (the tester
accepts if |V (G )| ≥ 1/(εd) and does a full check of the input otherwise). In the BDRD
model, if the input graph has an even number of vertices then it is far from P2 and so we have
to test for P1. By Theorem 5.4, bipartiteness is not testable (with constant query complexity)
in the BDRD model. In particular, in the proof of Theorem 5.4, Goldreich and Ron show
that for any even n there exists two families, G1 ⊆ C and G2 ⊆ C, of n-vertex graphs such
that every graph in G1 is bipartite and almost all graphs in G2 are far from being bipartite
but any algorithm that performs o(

√
n) queries cannot distinguish between a graph chosen

randomly from G1 and a graph chosen randomly from G2. Therefore P is not testable on C in
the BDRD model.

Note that the underlying general principle of the above proof can be applied to obtain
further examples of properties that are testable in the BDRD+/− model but not testable in
the BDRD model.

5.2 Locality of properties

It is known that every hyperfinite property is ‘local’ in the BDRD model (Theorem 5.7),
where a property is ‘local’ if a σ -db D has a similar r-histogram to some σ -db (with the
same domain size) that has the property, then D must be ε-close to the property [57, 4]. This
is summarised in Definition 5.6 and Theorem 5.7 below. We define an equivalent definition
of locality in the BDRD+/− model (Definition 5.8). We prove that any property that is
local in the BDRD model is also local in the BDRD+/− model (Lemma 5.9) and hence
every hyperfinite property is local in the BDRD+/− model (Theorem 5.10). Theorem 5.10 is
essential for the proof of Theorem 5.14.

Definition 5.6 (Locality in the BDRD model). Let ε ∈ (0,1]. A property P ⊆ C is ε-local
on C in the BDRD model if there exists λ := λ5.6(ε) ∈ (0,1], r := r5.6(ε) ∈ N and N :=
N5.6(ε) ∈N 1 such that for each D ∈ P and D ′ ∈ C with the same number n ≥ N of elements,
if ∥hr(D)−hr(D ′)∥1 ≤ λn, then D ′ is ε-close to P in the BDRD model.

1Note that we use the definition number as a subscript so we can clearly refer to these parameters later.
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We call the parameters r and λ the locality radius and disc proximity of P for ε , respec-
tively. A property is local in the BDRD model if it is ε-local in the BDRD model for every
ε ∈ (0,1].

Theorem 5.7 ([57, 4]). Let C be closed under removing tuples. If a property P ⊆ C is
hyperfinite on C, then P is local on C in the BDRD model.

We now define the notion of locality in the BDRD+/− model.

Definition 5.8 (Locality in the BDRD+/− model). Let ε ∈ (0,1]. A property P ⊆ C is ε-
local on C in the BDRD+/− model if there exists λ := λ5.8(ε) ∈ (0,1], r := r5.8(ε) ∈ N
and N := N5.8(ε) ∈ N such that for each D ∈ P and D ′ ∈ C, on |D| ≥ N and |D′| ≥ N
elements respectively, if ∥hr(D)−hr(D ′)∥1 ≤ λ min{|D|, |D′|}, then D ′ is ε-close to P in
the BDRD+/− model.

We call the parameters r and λ the locality radius and disc proximity of P for ε , respec-
tively. A property is local in the BDRD+/− model if it is ε-local in the BDRD+/− model for
every ε ∈ (0,1].

Lemma 5.9. Let C be closed under removing and inserting elements. If a property P ⊆ C is
local on C in the BDRD model, then P is local on C in the BDRD+/− model.

Proof. Let ε ∈ (0,1]. Let r5.6(ε/4), λ5.6(ε/4) and N5.6(ε/4) be as in Definition 5.6 for P
and ε/4. Let r := r5.6(ε/4), let N := N5.6(ε/4) and let

λ :=
ελ5.6(ε/4)

1+2(ar(σ) ·d)r+1 .

We will prove that P is ε-local on C in the BDRD+/− model with r5.8(ε) = r, λ5.8(ε) = λ

and N5.8(ε) = N.
Let D ∈ P and D ′ ∈ C where |D| ≥ N and |D′| ≥ N. Let us assume that ∥hr(D)−

hr(D ′)∥1 ≤ λ min{|D|, |D′|} and P is local on C in the BDRD model. We will show that D ′

is ε-close to P.
If |D|= |D′| then since λ ≤ λ5.6(ε/4), r = r5.6(ε/4) and N = N5.6(ε/4), D ′ is ε/4-close

to P and hence D ′ is also ε-close to P. So let us assume that |D| ≠ |D′|. Let D1 be the σ -db on
|D| elements formed from D ′ by either removing |D′|− |D| elements if |D|< |D′| or adding
|D|− |D′| new elements if |D′|< |D| (note that D1 ∈ C). Note that as ∥hr(D)−hr(D ′)∥1 ≤
λ min{|D|, |D′|} and by definition ∥hr(D)−hr(D ′)∥1 =∑

c(r)
i=1 |hr(D)[i]−hr(D ′)[i]| we have∣∣|D|− |D′|

∣∣≤ λ min{|D|, |D′|}. When an element is inserted no other elements r-type will
change, however, when an element a is removed, the r-type of any element in Nr(a) will
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change. Since |Nr(a)| ≤ (ar(σ) ·d)r+1 (by Lemma 2.16) and
∣∣|D|− |D′|

∣∣≤ λ min{|D|, |D′|},
we have ∥hr(D ′)−hr(D1)∥1 ≤ 2λ min{|D|, |D′|}(ar(σ) ·d)r+1. Therefore

∥hr(D)−hr(D1)∥1 ≤ λ min{|D|, |D′|}(1+2(ar(σ) ·d)r+1)≤ λ5.6(ε/4)|D|

by the choice of λ . Since P is local on C in the BDRD model, |D|= |D1| and D ∈ P, D1 is
ε/4-close to P in the BDRD model. Hence there exists a σ -db D2 ∈ P such that |D2|= |D|
and dist(D1,D2)≤ εd|D|/4. By the definition of the two distance measures dist and dist+/−,
we have dist+/−(D1,D2)≤ dist(D1,D2)≤ εd|D|/4 and by the construction of D1 we have
dist+/−(D

′,D1)≤ λ min{|D|, |D′|}= λ min{|D′|, |D2|}. Therefore

dist+/−(D
′,D2)≤

εd|D|
4

+λ min{|D′|, |D2|} ≤ εd min{|D′|, |D2|},

since λ ≤ εd/2 and since

|D| ≤ (1+λ )min{|D|, |D′|} ≤ 2min{|D|, |D′|}= 2min{|D′|, |D2|}

(if |D|< |D′| then clearly this holds, otherwise since
∣∣|D|− |D′|

∣∣≤ λ min{|D|, |D′|}, |D| ≤
|D′|+ λ min{|D|, |D′|} = (1+ λ )min{|D|, |D′|}). Hence in the BDRD+/− model D ′ is
ε-close to P as required.

By combining Theorem 5.7 and Lemma 5.9 we obtain the following theorem.

Theorem 5.10. Let C be closed under removing tuples, removing elements and inserting
elements. If a property P ⊆ C is hyperfinite on C, then P is local on C in the BDRD+/−
model.

5.3 Constant time testability of monadic second-order logic
with counting

We begin this section with the first of our main theorems (Theorem 5.11). We show that for
any property P which is ε-local (in the BDRD+/− model) on the input class C, if the set of
r-histograms of P is semilinear, then for every σ -db D in P there exists a constant size σ -db
in P with a neighbourhood distribution similar to that of D , but this is not true for σ -dbs in
C that are far from P. We then use this result to prove that for such properties there exist
ε-testers in the BDRD+/− model that run in constant time (Theorem 5.13). As corollaries
we obtain that hyperfinite properties whose set of r-histograms is semilinear is constant time
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testable (Theorem 5.14) and CMSO definable properties on σ -dbs of bounded tree-width
and bounded degree are uniformly testable in constant time (Theorem 5.15).

Theorem 5.11. Let ε ∈ (0,1]. Let P ⊆ C be a property that is ε-local on C (in the BDRD+/−
model) such that the set hr(P) is semilinear, where r := r5.8(ε) is the locality radius of P for
ε . Then there exist nmin := nmin(ε),nmax := nmax(ε) ∈ N and f := f (ε),µ := µ(ε) ∈ (0,1)
such that for every D ∈ C with |D|> nmax,

1. if D ∈ P, then there exists a D ′ ∈ P such that nmin ≤ |D′| ≤ nmax and ∥dvr(D)−
dvr(D ′)∥1 ≤ f −µ , and

2. if D is ε-far from P (in the BDRD+/− model), then for every D ′ ∈ P such that
nmin ≤ |D′| ≤ nmax, we have ∥dvr(D)−dvr(D ′)∥1 > f +µ .

Proof. Let λ := λ5.8(ε) and N := N5.8(ε) be as in Definition 5.8 for P and ε , and let c := c(r)
(the number of r-types with one centre). First note that if P is empty then for any choice
of nmin, nmax, f and µ , both 1 and 2 in the theorem statement are true and hence we
shall assume that P is non-empty. As hr(P) is a semilinear set we can write it as follows,
hr(P) = M1∪M2∪·· ·∪Mm where m ∈N and for each i ∈ [m], Mi = {v̄i

0+a1v̄i
1+ · · ·+aki v̄

i
ki
|

a1, . . . ,aki ∈ N} is a linear set where v̄i
0, . . . , v̄

i
ki
∈ Nc and for each j ∈ [ki], ∥v̄i

j∥1 ̸= 0. Let

k :=maxi∈[m] ki+1 and v :=maxi∈[m]

(
max j∈[0,ki] ∥v̄i

j∥1

)
(note that v > 0 as P is non-empty).

Let

• nmin := n0 − kv,

• nmax := n0 + kv,

• f := λ

3c , and

• µ := λ

6c

where
n0 := max

{9N
5
,kv

( 3ckv
f −µ

+1
)}

.

Note that nmin > 0 by the choice of n0, f and µ .
(Proof of 1.) Assume D ∈ P and |D| = n > nmax. Then by Theorem 4.2 there exists a

D ′ ∈ P such that nmin ≤ |D′| ≤ nmax and ∥dvr(D)−dvr(D ′)∥1 ≤ f −µ .
(Proof of 2.) Assume D is ε-far from P and |D| = n > nmax. For a contradiction let

us assume there does exist a σ -db D ′ ∈ P such that nmin ≤ |D′| ≤ nmax and ∥dvr(D)−
dvr(D ′)∥1 ≤ f +µ . Since D ′ ∈ P there exists some i ∈ [m] and aD ′

1 , . . . ,aD ′
ki

∈ N such that
hr(D ′) = v̄i

0 +aD ′
1 v̄i

1 + · · ·+aD ′
ki

v̄i
ki

. Let D ′′ be the σ -db with r-histogram v̄i
0 +aD ′′

1 v̄i
1 + · · ·+
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aD ′′
ki

v̄i
ki
∈Mi where aD ′′

j is the nearest integer to aD ′
j n/|D′|. Note as v̄i

0+aD ′′
1 v̄i

1+ · · ·+aD ′′
ki

v̄i
ki
∈

hr(P), D ′′ exists and D ′′ ∈ P.

Claim 5.12. D is ε-close to P.

Proof: Since P is ε-local on C (and |D| ≥ N, D ∈ C and D ′′ ∈ P), if |D′′| ≥ N and ∥hr(D)−
hr(D ′′)∥1 ≤ λ min{n, |D′′|} then D is ε-close to P. We will start by obtaining a bound
on |hr(D)[ j]−hr(D ′′)[ j]|. First note that as ∥dvr(D)−dvr(D ′)∥1 ≤ f + µ and hr(D ′) =

v̄i
0 +aD ′

1 v̄i
1 + · · ·+aD ′

ki
v̄i

ki
, for every j ∈ [c]

v̄i
0[ j]+∑ℓ∈[ki] a

D ′
ℓ v̄i

ℓ[ j]
|D′|

− f −µ ≤ dvr(D)[ j]≤
v̄i

0[ j]+∑ℓ∈[ki] a
D ′
ℓ v̄i

ℓ[ j]
|D′|

+ f +µ

and therefore

n
( v̄i

0[ j]+∑ℓ∈[ki] a
D ′
ℓ v̄i

ℓ[ j]
|D′|

− f −µ

)
≤ hr(D)[ j]≤ n

( v̄i
0[ j]+∑ℓ∈[ki] a

D ′
ℓ v̄i

ℓ[ j]
|D′|

+ f +µ

)
.

Hence, by the choice of aD ′′
ℓ for ℓ ∈ [ki],

hr(D)[ j]−hr(D
′′)[ j]≤ v̄i

0[ j]
( n
|D′|

−1
)
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(aD ′
ℓ n
|D′|

−aD ′′
ℓ

)
+ f n+µn

≤ v̄i
0[ j]

n
|D′|

+ ∑
ℓ∈[ki]

v̄i
ℓ[ j]

(aD ′
ℓ n
|D′|

−
(aD ′

ℓ n
|D′|

− 1
2

))
+ f n+µn

= v̄i
0[ j]

n
|D′|

+
1
2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]+ f n+µn.

Similarly, by the choice of aD ′′
ℓ for ℓ ∈ [ki] and as n > |D′|,

hr(D)[ j]−hr(D
′′)[ j]≥ v̄i

0[ j]
( n
|D′|

−1
)
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(aD ′
ℓ n
|D′|

−aD ′′
ℓ

)
− f n−µn

≥−v̄i
0[ j]

n
|D′|

+ ∑
ℓ∈[ki]

v̄i
ℓ[ j]

(aD ′
ℓ n
|D′|

−
(aD ′

ℓ n
|D′|

+
1
2

))
− f n−µn

=−v̄i
0[ j]

n
|D′|

− 1
2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]− f n−µn.
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Therefore,

|hr(D)[ j]−hr(D
′′)[ j]| ≤ v̄i

0[ j]
n

|D′|
+

1
2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]+ f n+µn

≤ n
|D′| ∑

0≤ℓ≤ki

v̄i
ℓ[ j]+ f n+µn

≤ nkv
|D′|

+ f n+µn

= n
( kv
|D′|

+
λ

3c
+

λ

6c

)
≤ n

(
λ

18c
+

λ

3c
+

λ

6c

)
=

5λn
9c

by the choice of f and µ and since

|D′| ≥ nmin ≥
3c(kv)2

f −µ
=

18(ckv)2

λ
≥ 18ckv

λ
.

If |hr(D)[ j]−hr(D ′′)[ j]| ≤ λ

c min{n, |D′′|} then ∥hr(D)−hr(D ′′)∥1 ≤ λ min{n, |D′′|}. Clearly,
5λn
9c < λn

c , but we must also show that 5λn
9c ≤ λ |D′′|

c . We have

|D′′|= ∥v̄i
0∥1 + ∑

ℓ∈[ki]

aD ′′
ℓ ∥v̄i

ℓ∥1

≥ ∥v̄i
0∥1 + ∑

ℓ∈[ki]

(aD ′
ℓ n
|D′|

− 1
2

)
∥v̄i

ℓ∥1

= ∥v̄i
0∥1 −

1
2 ∑
ℓ∈[ki]

∥v̄i
ℓ∥1 +

n
|D′| ∑

ℓ∈[ki]

aD ′
ℓ ∥v̄i

ℓ∥1

≥−kv+
n

|D′|
(|D′|−∥v̄i

0∥1)

≥− n
18

+
17
18

n

>
5n
9

since

|D′| ≥ 18ckv
λ

≥ 18v ≥ 18∥v̄i
0∥1 and kv ≤ (ckv)2

λ
≤ nmin

18
≤ n

18
.
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Therefore, 5λn
9c ≤ λ |D′′|

c and hence ∥hr(D)−hr(D ′′)∥1 ≤ λ min{n, |D′′|}. Furthermore, by
the choice of nmax, 5n

9 ≥ N and hence |D′′| ≥ N. Therefore, D is ε-close to P. ■

Claim 5.12 gives us a contradiction and therefore for every D ′ ∈ P such that nmin ≤
|D′| ≤ nmax, we have ∥dvr(D)−dvr(D ′)∥1 > f +µ as required.

Our aim is to construct constant time testers for local properties whose set of r-histograms
are semilinear. If we can approximate the (one-centre) r-neighbourhood distribution of a
σ -db then by Theorem 5.11 we only need to check whether this distribution is close or
not to the r-neighbourhood distribution of some small constant size σ -db. Recall that
EstimateFrequenciesr,k,s is the algorithm that, given oracle access to an input σ -db D , sam-
ples s many elements uniformly and independently from Dk and computes their r-type. The
algorithm then returns the k-centre r-neighbourhood distribution vector of the sample.

Theorem 5.13. Let ε ∈ (0,1] and let P ⊆ C be a property that is ε-local on C (in the
BDRD+/− model). If for each r ∈ N the set hr(P) is semilinear, then there exists an ε-tester
for P on C in the BDRD+/− model that has constant running time and constant query
complexity.

Proof. Let r := r5.8(ε) be the locality radius of P for ε , let nmin := nmin(ε), nmax := nmax(ε),
f := f (ε) and µ := µ(ε) be as in Theorem 5.11 and let s = c(r)2/µ2 · ln(20c(r)). Assume
that the set hr(P) is semilinear. Given oracle access to a σ -db D ∈ C and |D|= n as an input,
the ε-tester for P on C proceeds as follows:

1. If n ≤ nmax, do a full check of D and decide if D ∈ P.

2. Run EstimateFrequenciesr,1,s and let v̄ be the resulting vector.

3. If there exists a D ′ ∈ P where nmin ≤ |D′| ≤ nmax and ∥v̄−dvr(D ′)∥1 ≤ f then accept,
otherwise reject.

The running time and query complexity of the above tester is constant as nmax is a constant
(it only depends on P, d, σ and ε) and EstimateFrequenciesr,1,s runs in constant time and
makes a constant number of oracle queries.

For correctness, first assume D ∈ P. By Theorem 5.11 there exists a σ -db D ′ ∈ P such
that nmin ≤ |D′| ≤ nmax and ∥dvr(D)−dvr(D ′)∥1 ≤ f −µ . By Lemma 2.19 with probability
at least 9/10, ∥v̄−dvr(D)∥1 ≤ µ and therefore ∥v̄−dvr(D ′)∥1 ≤ f . Hence with probability
at least 9/10 the tester will accept.

Now assume D is ε-far from P. By Theorem 5.11 for every D ′ ∈ P with nmin ≤
|D′| ≤ nmax, we have ∥dvr(D)− dvr(D ′)∥1 > f + µ . By Lemma 2.19 with probability
at least 9/10, ∥v̄−dvr(D)∥1 ≤ µ and therefore for every D ′ ∈ P with nmin ≤ |D′| ≤ nmax,
∥v̄−dvr(D ′)∥1 > f . Hence with probability at least 9/10 the tester will reject.
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Combining Theorems 5.10 and 5.13 we obtain the following as a corollary.

Theorem 5.14. Let C be closed under removing tuples, removing elements and inserting
elements. Let P ⊆ C be a property that is hyperfinite on C. If for each r ∈ N the set hr(P) is
semilinear, then P is uniformly testable on C in constant time in the BDRD+/− model.

Let G be a graph. It is known that the tree-width of any subgraph of G is at most the
tree-width of G (e.g. see [19] for a proof). Furthermore, the tree-width of a graph is the
maximum tree-width of its connected components (e.g. see [19] for a proof). Hence since
the tree-width of a database is the tree-width of its Gaifman graph, the class of databases Ct

d

is closed under removing tuples, removing elements and inserting (isolated) elements. The
class Ct

d is hyperfinite [45, 9] (and so any property is hyperfinite on Ct
d) and so by combining

Theorem 5.14 and Lemma 2.40 we obtain the following as a corollary.

Theorem 5.15. Every property P definable by a CMSO sentence on Ct
d is uniformly testable

on Ct
d with constant time complexity in the BDRD+/− model.

5.4 Hyperfinitness and near semilinearity together implies
constant time testability

We begin this section by defining the notion of δ -indistinguishability, which is based on the
definition of indistinguishability in the dense graph model given in [6]. We then prove that any
hyperfinite property which, for every δ ∈ (0,1], is δ -indistinguishable from a property whose
r-histograms are semilinear is constant time testable in the BDRD+/− model (Theorem 5.19).

Definition 5.16 (δ -indistinguishable). Let δ ∈ (0,1]. Two properties P and Q are called
δ -indistinguishable if there exists N := N5.16(δ ) ∈N that satisfies the following. For every σ -
db D ∈ P with |D|= n ≥ N elements there exists a σ -db D ′ ∈ Q such that dist+/−(D ,D ′)≤
δd min{n, |D′|}; and for every σ -db D ∈ Q with |D|= n ≥ N elements there exists a σ -db
D ′ ∈ P such that dist+/−(D ,D ′)≤ δd min{n, |D′|}.

The following two lemmas will be useful in the proof of Theorem 5.19.

Lemma 5.17. Let D and D ′ be two σ -dbs and let δ ∈ (0,1]. If

dist+/−(D ,D ′)≤ δd min{|D|, |D′|}

then for any r ∈ N,
∥dvr(D)−dvr(D

′)∥1 ≤ 3cδdr+2 ar(σ)r+1
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and
∥hr(D)−hr(D

′)∥1 ≤ 2δdr+2 ar(σ)r+1 min{|D|, |D′|}

where c := c(r).

Proof. Let δ ∈ (0,1] and let r ∈ N. Let us assume that dist+/−(D ,D ′)≤ δd min{|D|, |D′|}.
The distance between D and D ′ is the minimum number of modifications needed to make
D and D ′ isomorphic. The four different types of modifications allowed are: (1) inserting
a new element, (2) deleting an element, (3) inserting a new tuple, and (4) deleting a tuple.
If a new element is added to D or D ′ then no existing elements r-type is changed. If
an element is deleted from D or D ′ then the r-type of any element at distance at most r
from the deleted element could have changed. If a tuple ā is inserted or deleted from D

or D ′ then the r-type of any element that is at distance at most r from every element in ā
could have changed. Hence, since the number of elements in the r-neighbourhood of an
element is at most (ar(σ) · d)r+1 (by Lemma 2.16), every modification to D or D ′ could
change the r-type of at most (ar(σ) ·d)r+1 many elements. Therefore, ∥hr(D)−hr(D ′)∥1 ≤
2δdr+2 ar(σ)r+1 min{|D|, |D′|} as required.

By definition,

∥dvr(D)−dvr(D
′)∥1 =

c

∑
i=1

∣∣∣hr(D)[i]
|D|

− hr(D ′)[i]
|D′|

∣∣∣.
Let i ∈ [c], then since ∥hr(D)−hr(D ′)∥1 ≤ 2δdr+2 ar(σ)r+1 min{|D|, |D′|},

hr(D)[i]
|D|

− hr(D ′)[i]
|D′|

≤ hr(D ′)[i]
|D|

+
2δdr+2 ar(σ)r+1 min{|D|, |D′|}}

|D|
− hr(D ′)[i]

|D′|

≤ hr(D
′)[i]

( 1
|D|

− 1
|D′|

)
+2δdr+2 ar(σ)r+1.

Then since |D′| ≤ |D|(1 + δd) (as dist+/−(D ,D ′) ≤ δd min{|D|, |D′|}) we have |D| ≥
|D′|/(1+δd) and hence

hr(D
′)[i]

( 1
|D|

− 1
|D′|

)
+2δdr+2 ar(σ)r+1 ≤ hr(D ′)[i]δd

|D′|
+2δdr+2 ar(σ)r+1.

Similarly,

hr(D)[i]
|D|

− hr(D ′)[i]
|D′|

≥ hr(D ′)[i]
|D|

− 2δdr+2 ar(σ)r+1 min{|D|, |D′|}
|D|

− hr(D ′)[i]
|D′|

≥ hr(D
′)[i]

( 1
|D|

− 1
|D′|

)
−2δdr+2 ar(σ)r+1
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≥ −hr(D ′)[i]δd
|D′|

−2δdr+2 ar(σ)r+1

since |D′| ≥ |D|(1−δd) and hence |D| ≤ |D′|/(1−δd). Hence,

∥dvr(D)−dvr(D
′)∥1 ≤

c

∑
i=1

(hr(D ′)[i]δd
|D′|

+2δdr+2 ar(σ)r+1
)

= δd +2cδdr+2 ar(σ)r+1

≤ 3cδdr+2 ar(σ)r+1

as required.

Lemma 5.18. Let D1,D2,D3 ∈ C, let r ∈N and let x ∈R such that x ≥ 0. If
∣∣|D1|− |D2|

∣∣≤
xmin{|D1|, |D2|}, then

(1− x)min{|D1|, |D3|} ≤ min{|D2|, |D3|} ≤ (1+ x)min{|D1|, |D3|}.

Proof. Let us assume that
∣∣|D1|−|D2|

∣∣≤ xmin{|D1|, |D2|}. To prove that min{|D2|, |D3|} ≤
(1+x)min{|D1|, |D3|} we shall consider the cases where out of |D1|, |D2| and |D3|, (1) |D1|
is the smallest, (2) |D2| is the smallest, and (3) |D3| is the smallest. In cases (2) and (3), since
(1+ x)≥ 1, the inequality holds. For case (1),

min{|D2|, |D3|} ≤ |D2| ≤ |D1|+ xmin{|D1|, |D2|}= (1+ x)min{|D1|, |D3|}

since
∣∣|D1|− |D2|

∣∣≤ xmin{|D1|, |D2|} and |D1| is the smallest.
To prove that (1−x)min{|D1|, |D3|}≤min{|D2|, |D3|} we shall again consider the above

three cases. In cases (1) and (3), since 1− x ≤ 1, the inequality holds. For case (2),

min{|D2|, |D3|}= |D2| ≥ (1− x)|D1| ≥ (1− x)min{|D1|, |D3|}

since
∣∣|D1|− |D2|

∣∣≤ xmin{|D1|, |D2|} ≤ x|D1|.

We now prove our main result of this section.

Theorem 5.19. Let C be closed under removing tuples, removing elements and inserting
elements. Let P ⊆ C be a property that is hyperfinite on C. If for every δ ∈ (0,1] there exists
a property Qδ ⊆ C such that

1. P and Qδ are δ -indistinguishable, and

2. for every r ∈ N, hr(Qδ ) is semilinear
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then P is uniformly testable on C in constant time.

Proof. Let ε ∈ (0,1]. We shall prove that there exists an ε-tester for P on C that runs in
constant time and has constant query complexity. By Theorem 5.10, P is local on C in
the BDRD+/− model. Let NP := N5.8(ε/4), λP := λ5.8(ε/4) and rP := r5.8(ε/4) be as in
Definition 5.8 for P and ε/4. Let c := c(rP). Let

δ := min
{

ε

6d
,

λP
40c2dr+2 ar(σ)r+1

}
and let us assume that there exists a property Qδ ⊆ C that is δ -indistinguishable from P and
for every r ∈ N, hr(Qδ ) is semilinear.

Let r := rP, λ := λP/2 and N := (NP +1)(N5.16(δ )+1)(1+ εd/4) where N5.16(δ ) is as
in Definition 5.16 for P and Qδ .

Claim 5.20. The property Qδ is ε/2-local on C in the BDRD+/− model with r5.8(ε/2) = r,
λ5.8(ε/2) = λ and N5.8(ε/2) = N.

Proof: Let DQ ∈ Qδ and let DC ∈ C such that |DQ| ≥ N and |DC| ≥ N. Let us assume that
∥hr(DQ)−hr(DC)∥1 ≤ λ min{|DQ|, |DC|}. We need to prove that DC is ε/2-close to Qδ .

We will start by showing that DC is ε/4-close to P (using the locality of P on C).
Since P and Qδ are δ -indistinguishable and N ≥ N5.16(δ ), there exists DP ∈ P such that
dist+/−(DP,DQ)≤ δd min{|DP|, |DQ|}. By Lemma 5.17,

∥hr(DP)−hr(DQ)∥1 ≤ 2δdr+2 ar(σ)r+1 min{|DP|, |DQ|}.

Hence,

∥hr(DP)−hr(DC)∥1 ≤ λ min{|DQ|, |DC|}+2δdr+2 ar(σ)r+1 min{|DP|, |DQ|}.

We have ∣∣|DP|− |DQ|
∣∣≤ δd min{|DP|, |DQ|}

since dist+/−(DP,DQ)≤ δd min{|DP|, |DQ|} and we have∣∣|DC|− |DQ|
∣∣≤ λ min{|DC|, |DQ|}

as ∥hr(DQ)−hr(DC)∥1 ≤ λ min{|DQ|, |DC|}. Hence by Lemma 5.18,

min{|DQ|, |DC|} ≤ (1+δd)min{|DP|, |DC|}
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(where D1 = DP, D2 = DQ and D3 = DC) and

min{|DP|, |DQ|} ≤ (1+λ )min{|DP|, |DC|}

(where D1 = DC, D2 = DQ and D3 = DP).
Therefore,

∥hr(DP)−hr(DC)∥1

≤ λ (1+δd)min{|DP|, |DC|}+2δdr+2 ar(σ)r+1(1+λ )min{|DP|, |DC|}
≤ (λ +5δdr+2 ar(σ)r+1)min{|DP|, |DC|}
≤ λP min{|DP|, |DC|}

by the choice of λ and δ . Since dist+/−(DP,DQ) ≤ δd min{|DP|, |DQ|} we have |DP| ≥
|DQ|−δd min{|DP|, |DQ|} ≥ |DQ|−δd|DP|. Hence,

|DP| ≥
|DQ|

1+δd
≥ N

1+ εd/4
≥ NP

by the choice of δ and N. Therefore, since P is local on C (and r = rP, |DP| ≥ NP, |DC| ≥
N ≥ NP and ∥hr(DP)−hr(DC)∥1 ≤ λP min{|DP|, |DC|}), DC is ε/4-close to P.

We will now show that since DC is ε/4-close to P, DC is ε/2-close to Qδ . Since DC is
ε/4-close to P, there exists D ′

P ∈ P such that

dist+/−(DC,D
′
P)≤

εd min{|DC|, |D′
P|}

4

which implies
∣∣|DC|− |D′

P|
∣∣≤ εd min{|DC|, |D′

P|}/4. Therefore

|D′
P| ≥ |DC|−

εd min{|DC|, |D′
P|}

4
≥ |DC|−

εd|D′
P|

4
,

and hence we have

|D′
P| ≥

|DC|
(1+ εd/4)

≥ N
(1+ εd/4)

≥ N5.16(δ )

by the choice of N. Therefore there exists D ′
Q ∈ Qδ such that dist+/−(D

′
P,D

′
Q) ≤

δd min{|D′
P|, |D′

Q|} (which implies
∣∣|D′

Q|− |D′
P|
∣∣≤ δd min{|D′

Q|, |D′
P|}) . Hence,

dist+/−(DC,D
′
Q)≤

εd min{|DC|, |D′
P|}

4
+δd min{|D′

P|, |D′
Q|}
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≤
εd(1+δd)min{|DC|, |D′

Q|}
4

+δd
(

1+
εd
4

)
min{|DC|, |D′

Q|}

=
(

εd
4

+
εδd2

2
+δd

)
min{|DC|, |D′

Q|}

≤
(

εd
4

+
ε2d
12

+
ε

6

)
min{|DC|, |D′

Q|}

≤
(

εd
4

+
εd
12

+
εd
6

)
min{|DC|, |D′

Q|}

=
εd
2

min{|DC|, |D′
Q|}

by Lemma 5.18 and the choice of δ . Therefore, DC is ε/2-close to Qδ as required. ■

By Claim 5.20 and Theorem 5.13 there exists an ε/2-tester for Qδ on C that runs in
constant time and has constant query complexity. Let µ := µ(ε/2), f := f (ε/2), nmin :=
nmin(ε/2) and nmax := nmax(ε/2) be as in Theorem 5.11 for Qδ and ε/2. Note that by Claim
5.20 the locality radius and disc proximity of Qδ for ε/2 are rP and λP/2 respectively, and
therefore by Theorem 5.11, µ = λP/12c. Let πε/2 be the ε/2-tester for Qδ on C from the
proof of Theorem 5.13 but in πε/2 let us increase the number of elements sampled in the
second step to s = c2 /(µ −3cδdr+2 ar(σ)r+1)2 · ln(20c). Note that µ −3cδdr+2 ar(σ)r+1 ∈
(0,1) by the choice of δ and since µ = λP/12c. Then Given oracle access to a σ -db D ∈ C
and |D|= n as an input, the ε-tester for P on C proceeds as follows.

1. If n < N5.16(δ )(1+ εd/2), do a full check of D and decide if D ∈ P.

2. Run πε/2 on D and accept if πε/2 accepts and reject otherwise.

Clearly the above tester runs in constant time and has constant query complexity.
For correctness, first assume that D ∈ P, |D| = n > nmax and n ≥ N5.16(δ )(1+ εd/2)

(otherwise the tester will accept with probability 1). As P and Qδ are δ -indistinguishable
there exists a σ -db D ′ ∈ Qδ such that

dist+/−(D ,D ′)≤ δd min{n, |D′|}.

By Lemma 5.17,
∥dvr(D)−dvr(D

′)∥ ≤ 3cδdr+2 ar(σ)r+1.

By Theorem 5.11 there exists a σ -db D0 ∈ Qδ such that nmin ≤ |D0| ≤ nmax and ∥dvr(D ′)−
dvr(D0)∥1 ≤ f −µ . Hence

∥dvr(D)−dvr(D0)∥1 ≤ f −µ +3cδdr+2 ar(σ)r+1.
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By Lemma 2.19 and the choice of s with probability at least 9/10, the vector v̄ returned in
Step 2 of πε/2 satisfies

∥v̄−dvr(D)∥1 ≤ µ −3cδdr+2 ar(σ)r+1

and therefore ∥v̄−dvr(D0)∥1 ≤ f . Hence with probability at least 9/10 the tester will accept.
Now assume D is ε-far from P and |D| ≥ N5.16(δ )(1+ εd/2). We will show that D is

ε/2-far from Qδ . Let DQ ∈ Qδ . If
∣∣|DQ|− |D|

∣∣> εd min{|DQ|, |D|}/2, then D is ε/2-far
from DQ. So let us assume that

∣∣|DQ|− |D|
∣∣≤ εd min{|DQ|, |D|}/2. This implies that

|D|
1+ εd/2

≤ |DQ| ≤ |D|(1+ εd/2).

Hence, since |D| ≥ N5.16(δ )(1+ εd/2), |DQ| ≥ N5.16(δ ). Therefore there exists a σ -db
DP ∈ P such that dist+/−(DP,DQ) ≤ δd min{|DP|, |DQ|} (and therefore

∣∣|DQ| − |DP|
∣∣ ≤

δd min{|DP|, |DQ|}). Since D is ε-far from P, dist+/−(D ,DP)> εd min{|D|, |DP|} and so

dist+/−(D ,DQ)> εd min{|D|, |DP|}−δd min{|DP|, |DQ|}.

By Lemma 5.18 (with D1 = DQ, D2 = DP and D3 = D),

min{|D|, |DP|} ≥ (1−δd)min{|D|, |DQ|}.

Furthermore we can show that

min{|DP|, |DQ|} ≤ (1+ εd/2)min{|D|, |DQ|}.

To see this consider the case when |D| is the smallest out of |D|, |DQ| and |DP|, then

min{|DP|, |DQ|} ≤ |DQ| ≤ |D|(1+ εd/2) = (1+ εd/2)min{|D|, |DQ|}.

If |DQ| or |DP| are the smallest then the inequality clearly holds. Therefore,

dist+/−(D ,DQ)> εd min{|D|, |DP|}−δd min{|DP|, |DQ|}

≥ (εd(1−δd)−δd(1+
εd
2
))min{|D|, |DQ|}

≥
(

εd − ε

6
− ε2d

4

)
min{|D|, |DQ|}

≥
(

εd − εd
6

− εd
4

)
min{|D|, |DQ|}
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≥ εd
2

min{|D|, |DQ|}

by the choice of δ . Hence D is ε/2-far from every DQ ∈ Qδ and so D is ε/2-far from Qδ .
As πε/2 is an ε/2-tester for Qδ on C, with probability at least 2/3 the tester will reject.

5.5 Constant time testability of hyperfinite hereditary prop-
erties

To the best of our knowledge, in the bounded degree graph model, it has not been shown
explicitly that hyperfinite hereditary properties are uniformly (in n) testable in constant time.
Benjamini, Schramm and Shapira in [17] prove that every monotone hyperfinite property is
uniformly testable in constant time (in the bounded degree graph model). Their tester starts
by testing for hyperfiniteness (which they show can be done in constant time). Newman and
Sohler in [57] prove that every hyperfinite property is non-uniformly (in n) testable. We are
interested in obtaining testers that are uniform in n and run in constant time. Furthermore,
Hassidim et al. in [45] show that it is possible to approximate the distance to non-degenerate
hereditary properties for hyperfinite graphs in constant time.

With methods similar to [17] and [27] it can be shown that every hereditary hyperfinite
property is uniformly testable in constant time in the BDRD model.

Theorem 5.21. Every hyperfinite hereditary property P ⊆ Cd is uniformly testable on Cd in
constant time in the BDRD model.

By Lemma 5.3 and Theorem 5.21, we immediately get that every hyperfinite hereditary
property is uniformly testable in constant time in the BDRD+/− model.

Theorem 5.22. Every hyperfinite hereditary property P ⊆ Cd is uniformly testable on Cd in
constant time in the BDRD+/− model.

In this section, we will sketch a proof of Theorem 5.21 which follows closely to the proof
given in [17]. We will then give an alternative proof of Theorem 5.22. In our alternative
proof, we show that every hereditary hyperfinite property is close to having semilinear
neighbourhood histograms and hence by Theorem 5.19 is uniformly testable in constant time
in the BDRD+/− model.

5.5.1 In the classical bounded degree model

First, we start with some definitions which are based on those used in [17].



5.5 Constant time testability of hyperfinite hereditary properties 67

Let b ∈ N, recall that Ψ(b,σ) is a maximal set of non-isomorphic connected σ -dbs of
size at most b. From now on we let Ψ(b) := Ψ(b,σ). For each S ⊆ Ψ(b), let D(S) be the
disjoint union of the σ -dbs in S. Let P be some hereditary property. Then let ΦP(S) be the
smallest integer g such that the σ -db obtained by taking g disjoint copies of D(S) is not
in P. If no such integer exists (i.e. every σ -db that only contains connected components
isomorphic to those in S is in P) then ΦP(S) = ∞.

Definition 5.23. For a fixed hereditary property P and b ∈N, let Πb
P = {S ⊆ Ψ(b) | ΦP(S)<

∞}. We then define the function ΦP : N 7→ N as follows:

ΦP(b) =

0 if Πb
P = /0

max
S∈Πb

P

ΦP(S) otherwise

Some notes on the function ΦP

First note that the function ΦP(b) is well defined as the set Ψ(b) is finite. All hereditary
properties can be characterised by a set of (possibly infinite) forbidden induced sub-databases
(see, e.g. [10]). We claim that the value of ΦP(b) is related to the number and sizes of the
connected components in the set of forbidden induced sub-databases of P. We will first
demonstrate this in the following example.

Example 5.24. Let P be the property containing all bounded degree chordal graphs (a graph
is chordal if every cycle of length four or greater has a chord, where a chord of a cycle is
an edge that is not in the edge set of the cycle but has endpoints in the cycle). A graph G

is chordal if and only if G does not contain a cycle of length four or greater as an induced
subgraph. Therefore the set of forbidden induced subgraphs of P is the set of cycles of length
four or greater, i.e. every forbidden induced subgraph has one connected component. For any
b ∈ N and S ⊆ Ψ(b), if one of the graphs in S contains a cycle of length four or greater as an
induced subgraph then ΦP(S) = 1, otherwise ΦP(S) = ∞. Hence if b > 3, then ΦP(b) = 1,
otherwise ΦP(b) = 0.

In general, ΦP(b) is bounded above by the maximum number of connected components
of a σ -db in the set of forbidden induced sub-databases of P whose connected components
are all of size at most b. Furthermore, if every σ -db in the set of forbidden induced sub-
databases has a component of size greater than b then ΦP(b) = 0. We will summarise this in
the following.

Observation 5.25. Let P ⊆ C be a hereditary property and let b ∈ N. Let Q be the set of
forbidden induced sub-databases of P and let Qb ⊆ Q contain all the databases in Q whose
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connected components have size at most b. Let m be the maximum number of connected
components of the databases in Qb. Then

1. ΦP(b)≤ m, and

2. if Qb = /0, then ΦP(b) = 0.

Proof. Let us start by proving 1. Let S ⊆ Ψ(b) where ΦP(S) = g < ∞ (note that if there exists
no such S, then ΦP(b) = 0 ≤ m). We will show that m ≥ g. Let Dg and Dg−1 be the databases
that consists of g and g−1 disjoint copies of D(S) respectively. By definition, Dg ̸∈ P and
Dg−1 ∈ P. Hence there exists D ∈ Qb such that D is an induced sub-database of Dg but D is
not an induced sub-database of Dg−1. We claim that the number of connected components in
D is at least g. To see this let us assume that the number of connected components in D is at
most g−1. Let D ′ be a database which is formed as follows: For each connected component
in D , pick a database A ∈ S such that the connected component is an induced sub-database
of A (note at least one such A exists), then add a disjoint copy of A to D ′. Clearly D is
an induced sub-database of D ′, and so D ′ ̸∈ P. Furthermore, D ′ has at most g−1 disjoint
copies of each A ∈ S and so is an induced sub-database of Dg−1. However this then implies
that Dg−1 ̸∈ P, which is a contradiction. Hence the number of connected components in D is
at least g, and therefore m ≥ g as required.

Now let us prove 2. Let Qb = /0 and let S ⊆ Ψ(b). Then since every database in Q has a
connected component of size greater than b, for any g ∈ N the database that consists of g
disjoint copies of D(S) will not be in P. Hence ΦP(S) = ∞ and therefore ΦP(b) = 0.

Note that for many well known hereditary graph properties (for example chordal, perfect,
acyclic and bipartite graphs) the maximum number of connected components in the set of
forbidden induced subgraphs is 1.

Sketch of the proof of Theorem 5.21

Let ε ∈ (0,1] and let P be a hyperfinite hereditary property on Cd . Let ε0 := ε0(ε) be a
carefully chosen constant and let k be such that any database in P is (ε0,k)-hyperfinite. Let
us start by describing the ε-tester for P on Cd . Let D be the input database. The tester
starts by deciding correctly with high probability whether D is (ε0,k)-hyperfinite or not
(ε/2,k)-hyperfinite (ε0 is chosen in such a way that D cannot be both (ε0,k)-hyperfinite
and not (ε/2,k)-hyperfinite). This can be done in constant time and with constant query
complexity in the BDRD model (by extending methods in [17]). This is an ε-tester for the
property of being (ε0,k)-hyperfinite since if D is ε-far from being (ε0,k)-hyperfinite it is not
(ε/2,k)-hyperfinite. If D is declared to be not (ε0,k)-hyperfinite then the tester rejects. If D
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is declared to be (ε/2,k)-hyperfinite then the tester samples a constant number m = m(ε)

of elements from D and for each element the tester explores its k-neighbourhood. If the
induced sub-database of D on the union of the k-neighbourhoods of the sampled elements is
not in P, then the tester rejects. Otherwise, the tester accepts. This can be done with constant
running time and constant query complexity.

Now to prove correctness (which follows closely to that in [17]), let us assume that D ∈ P.
By the choice of k, D is (ε0,k)-hyperfinite and so with high probability will be accepted in
the first step of the tester. Then since P is hereditary the second step of the tester will accept
with probability 1.

Let us now assume that D is ε-far from P. Let us assume that D is (ε/2,k)-hyperfinite
(otherwise the tester would reject with high probability). Let D ′ be the database that is
formed from D by removing the minimum number of tuples required (at most εn/2 tuples)
such that every connected component in D ′ is of size at most k. Note that D ′ is ε/2-far
from P. Let S ⊆ Ψ(k) be such that each A ∈ Ψ(k) is in S if and only if there are at least
εn/4k|Ψ(k)| connected components in D ′ isomorphic to A . We then let D ′′ be the database
formed from D ′ as follows. For every A ∈ Ψ(k), if A ̸∈ S, then remove every tuple in D ′

that is in a connected component isomorphic to A . It is easy to see that the total number
of tuples removed is at most εdn/4 and therefore D ′′ is ε/4-far from P. Since D ′′ ̸∈ P
and P is hereditary, ΦP(S) ≤ ΦP(k) < ∞. Since each A ∈ S appears at least εn/4k|Ψ(k)|
times in D ′′ and D′′ = D we can choose m, the number of elements the tester samples,
carefully to ensure that with high probability for each A ∈ S the tester samples at least
ΦP(S) elements from connected components in D ′′ that are isomorphic to A . Furthermore,
if we assume n is greater than some function of ε then with high probability each sampled
element is from a distinct connected component (in D ′′) and their k+ 1-neighbourhoods
don’t intersect (in D). Let a1, . . .am be the elements sampled in the tester. Let D0 be the
induced sub-database of D on the union of the k-neighbourhoods of a1, . . .am and let D ′′

0

be the union of the connected components of D ′′ that contain an element ai. With high
probability, by definition, D ′′

0 ̸∈ P. Let a ∈ D. It is easy to see that the connected component
in D ′′ containing a is an induced sub-database of the k-neighbourhood of a in D (since D ′

was formed with the minimum required number of tuple deletions). Therefore, if none of
the k+1-neighbourhoods of a1, . . .am in D intersect (which happens with high probability),
D ′′

0 is an induced sub-database of D0. Finally since P is hereditary and with high probability
D ′′

0 ̸∈ P, with high probability D0 ̸∈ P and the tester rejects.
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5.5.2 In the new model

We will show that for every hyperfinite hereditary property P and δ ∈ (0,1] there exists a
property Q that has a semilinear set of r-histograms and is δ -indistinguishable from P.

Lemma 5.26. Let P ⊆ Cd be a hyperfinite hereditary property and let δ ∈ (0,1]. Let ρ be
the function such that P is ρ-hyperfinite on Cd and let

b := ρ

(
δd

2(1+δd)

)
.

Let Q ⊆ P be the property such that for every D ∈ P, D ∈ Q if and only if all connected
components in D are of size at most b and for each A ∈ Ψ(b), D has either 0 or at least
ΦP(b) connected components isomorphic to A . Then

1. P and Q are δ -indistinguishable, and

2. for every r ∈ N, hr(Q) is semilinear.

Proof. Let us start by proving 1 of the lemma statement. Let

N :=
2(1+δd) ·ΦP(b) · |Ψ(b)| ·b

δd
.

We will show that P and Q are δ -indistinguishable with N5.16(δ ) = N. If D ∈ Q then D ∈ P
as Q ⊆ P. Hence to prove P and Q are δ -indistinguishable, we only need to show that
for every D ∈ P with |D|= n ≥ N there exists a σ -db D ′ ∈ Q such that dist+/−(D ,D ′)≤
δd min{n, |D′|}. Let D ∈ P with |D|= n > N. Since P is ρ-hyperfinite on C, by removing
at most δdn/2(1+ δd) tuples from D we can obtain a σ -db D1 ∈ C that has connected
components of size at most b (by the choice of b). For every tuple ā that was removed from
D to form D1, pick one element from ā and remove it (and as a result any tuple containing
that element) from D . Let D2 be the resulting σ -db. Note that as P is hereditary, D2 ∈ P.
Furthermore, D2 has connected components of size at most b (as D2 is a sub-database of D1)
and as at most δdn/2(1+δd) elements were removed from D to form D2,

dist+/−(D ,D2)≤
δdn

2(1+δd)
and |D2| ≥

(
1− δd

2(1+δd)

)
n =

n(2+δd)
2(1+δd)

.

Now for every A ∈ Ψ(b), if D2 contains less than ΦP(b) many connected components
isomorphic to A , remove all such connected components from D2. Let D ′ be the resulting
σ -db. Since P is hereditary, D ′ ∈ P and by the construction of D ′, all connected components
in D ′ are of size at most b and for each A ∈Ψ(b), D ′ has either 0 or at least ΦP(b) connected
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components isomorphic to A . Therefore, D ′ ∈ Q. At most ΦP(b) · |Ψ(b)| many connected
components were removed from D2 to form D ′ and hence

|D′| ≥ |D2|−ΦP(b) · |Ψ(b)| ·b ≥ n(2+δd)
2(1+δd)

−ΦP(b) · |Ψ(b)| ·b

and dist+/−(D2,D
′)≤ ΦP(b) · |Ψ(b)| ·b. Therefore,

dist+/−(D ,D ′)≤ δdn
2(1+δd)

+ΦP(b) · |Ψ(b)| ·b

≤ δdn
2(1+δd)

+ΦP(b) · |Ψ(b)| ·b+ δdn
2

− (1+δd) ·ΦP(b) · |Ψ(b)| ·b

=
δdn(2+δd)

2(1+δd)
−δd ·ΦP(b) · |Ψ(b)| ·b

≤ δd|D′|

as n ≥ N and so δdn
2 − (1+ δd) ·ΦP(b) · |Ψ(b)| · b ≥ 0. When constructing D ′ from D

we only removed elements and hence |D′| ≤ |D| (and so |D′| = min{|D|, |D′|}). There-
fore dist+/−(D ,D ′) ≤ δd min{|D|, |D′|}. This completes the proof that P and Q are δ -
indistinguishable.

We will now prove 2 of the lemma statement. Let r ∈ N and for every S ⊆ Ψ(b) let
QS ⊆ Q be the set of σ -dbs such that for every D ∈ Q, D ∈ QS if and only if D contains at
least ΦP(b) many connected components isomorphic to every A ∈ S but does not contain a
connected component isomorphic to a σ -db in Ψ(b)\S. Note that

Q =
⋃

S⊆Ψ(b)

QS.

We will prove that for every S ⊆ Ψ(b), if ΦP(S)< ∞, then QS is empty and if ΦP(S) = ∞,
then hr(QS) is a linear set. Since Q is the union of the sets QS, this will imply that hr(Q) is a
semilinear set.

Firstly let us prove that for every S ⊆ Ψ(b), if ΦP(S) < ∞, then QS is empty. For a
contradiction assume that for some S ⊆ Ψ(b), ΦP(S)< ∞ and there exists a σ -db D ∈ QS.
Let D ′ be the σ -db that for each A ∈ S contains exactly ΦP(b) connected components
isomorphic to A and contains no other connected components. By the definition of ΦP(b)
and as ΦP(S) < ∞, D ′ ̸∈ P. However, D ′ is an induced sub-database of D and since P is
hereditary and D ∈ P (as QS ⊆ P) this implies D ′ ∈ P which is a contradiction. Hence for
every S ⊆ Ψ(b), if ΦP(S)< ∞, then QS is empty.
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We will now prove that for every S ⊆ Ψ(b) if ΦP(S) = ∞, then hr(QS) is a linear set. Let
S = {D1,D2, . . . ,Dℓ} ⊆ Ψ(b) be such that ΦP(S) = ∞. Let v̄ = ∑1≤i≤ℓΦP(b)hr(Di) and let

M = {v̄+a1 hr(D1)+a2 hr(D2)+ · · ·+aℓ hr(Dℓ) | a1, . . . ,aℓ ∈ N}.

Clearly M is a linear set and we claim that M = hr(QS). Let ū = v̄+u1 hr(D1)+u2 hr(D2)+

· · ·+uℓ hr(Dℓ) ∈ M for some u1, . . . ,uℓ ∈ N and let D be the σ -db with exactly ΦP(b)+u1

connected components isomorphic to D1, ΦP(b)+ u2 connected components isomorphic
to D2, . . . , ΦP(b)+ uℓ connected components isomorphic to Dℓ and no other connected
components. Clearly ū = hr(D). Then as P is hereditary and ΦP(S) = ∞, D ∈ P and so by
the definition of QS, D ∈ QS. On the other hand let D ∈ QS then by definition for some
u1, . . . ,uℓ ∈ N, D contains exactly ΦP(b)+ u1 connected components isomorphic to D1,
ΦP(b)+u2 connected components isomorphic to D2, . . . , ΦP(b)+uℓ connected components
isomorphic to Dℓ and no other connected components. The r-histogram vector of D is then
v̄+u1 hr(D1)+u2 hr(D2)+ · · ·+uℓ hr(Dℓ) and hence hr(D) ∈ M. Therefore M = hr(QS).

We have proven that for every S ⊆ Ψ(b), hr(QS) is either empty or a linear set and hence
hr(Q) is semilinear.

Combining Theorem 5.19 and Lemma 5.26 we obtain Theorem 5.22 as a corollary.

5.6 Using our techniques in the classical bounded degree
model

One natural question is can any of the methods we have used in the BDRD+/− model be
used to also obtain constant time testers in the BDRD model. In this section, we will show
that any hereditary and local (in the BDRD model) property whose r-histograms are close to
being semilinear is constant time uniformly testable in the BDRD model (Theorem 5.32).
To prove Theorem 5.32 we start by showing that for any property P which is hereditary
and local (in the BDRD model) on the input class C, if the r-histograms of P are close to
being semilinear, then for every σ -db D in P there exists a constant size σ -db in P with a
neighbourhood distribution similar to that of D , but this is not true for σ -dbs in C that are
far from P (Theorem 5.29). To prove Theorem 5.29 we use similar techniques to those used
to prove Theorem 5.11. Let us start by defining indistinguishability in the BDRD model.

Definition 5.27 (δ -indistinguishable in the BDRD model). Let δ ∈ (0,1]. Two properties P
and Q are called δ -indistinguishable in the BDRD model if there exists N := N5.27(δ ) ∈ N
that satisfies the following. For every σ -db D ∈ P with |D| = n ≥ N elements there exists
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a σ -db D ′ ∈ Q such that dist(D ,D ′)≤ δdn; and for every σ -db D ∈ Q with |D|= n ≥ N
elements there exists a σ -db D ′ ∈ P such that dist(D ,D ′)≤ δdn.

The following lemma will be useful in the proof of Theorem 5.29.

Lemma 5.28. Let D and D ′ be two σ -dbs on n elements and let δ ∈ (0,1]. If dist(D ,D ′)≤
δdn then for any r ∈ N,

∥dvr(D)−dvr(D
′)∥1 ≤ 2δdr+2 ar(σ)r+1

and
∥hr(D)−hr(D

′)∥1 ≤ 2δdr+2 ar(σ)r+1n.

Proof. Let δ ∈ (0,1] and let r ∈ N. Let us assume that dist(D ,D ′) ≤ δdn. The distance
between D and D ′ is the minimum number of modifications needed to make D and D ′

isomorphic. The two different types of modifications allowed are: (1) inserting a new tuple,
and (2) deleting a tuple. If a tuple ā is inserted or deleted from D or D ′ then the r-type of any
element that is at distance at most r from every element in ā could have changed. Hence, since
the number of elements in the r-neighbourhood of an element is at most (ar(σ) ·d)r+1 (by
Lemma 2.16), every modification to D or D ′ could change the r-type of at most (ar(σ) ·d)r+1

many elements. Therefore, ∥hr(D)−hr(D ′)∥1 ≤ 2δdr+2 ar(σ)r+1n as required.
By definition,

∥dvr(D)−dvr(D
′)∥1 =

c(r)

∑
i=1

∣∣∣hr(D)[i]
n

− hr(D ′)[i]
n

∣∣∣= 1
n
∥hr(D)−hr(D

′)∥1.

Hence, ∥dvr(D)−dvr(D ′)∥1 ≤ 2δdr+2 ar(σ)r+1 as required.

Theorem 5.29. Let P ⊆ C be a hereditary property that is local on C in the BDRD model.
Let us assume that for every δ ∈ (0,1] there exists a property Qδ ⊆ P such that P and Qδ are
δ -indistinguishable (in the BDRD model), and for every r ∈ N, hr(Qδ ) is semilinear. Then
for every ε ∈ (0,1] there exists nmin := nmin(ε),nmax := nmax(ε) ∈ N and f := f (ε),µ :=
µ(ε) ∈ (0,1) such that for every D ∈ C with |D|> nmax,

1. if D ∈ P, then there exists a D ′ ∈ P such that nmin ≤ |D′| ≤ nmax and ∥dvr(D)−
dvr(D ′)∥1 ≤ f −µ , and

2. if D is ε-far from P (in the BDRD model), then for every D ′ ∈ P such that nmin ≤
|D′| ≤ nmax, we have ∥dvr(D)−dvr(D ′)∥1 > f +µ .
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Proof. Let ε ∈ (0,1]. Let N := N5.6(ε), λ := λ5.6(ε) and r := r5.6(ε) be as in Definition 5.6
for P and ε . Let c := c(r) and let

δ :=
λ

90cdr+2 ar(σ)r+1 .

Let us assume there exists a property Qδ ⊆ P such that P is δ -indistinguishable from Qδ and
hr(Qδ ) is semilinear. Let Nind := N5.27(δ ) be as in Definition 5.27 for P, Qδ and δ .

First note that if P is empty then for any choice of nmin, nmax, f and µ , both 1 and 2 in the
theorem statement are true and hence we shall assume that P (and hence Qδ ) is non-empty.
As hr(Qδ ) is a semilinear set we can write it as follows, hr(Qδ ) = M1 ∪M2 ∪ ·· · ∪Mm

where m ∈ N and for each i ∈ [m], Mi = {v̄i
0 +a1v̄i

1 + · · ·+aki v̄
i
ki
| a1, . . . ,aki ∈ N} is a linear

set where v̄i
0, . . . , v̄

i
ki
∈ Nc and for each j ∈ [ki], ∥v̄i

j∥1 ̸= 0. Let k := maxi∈[m] ki + 1 and

v := maxi∈[m]

(
max j∈[0,ki] ∥v̄i

j∥1

)
(note that v > 0 as Qδ is non-empty). Let

• nmin := n0 − kv,

• nmax := n0 + kv,

• f := λ

20c , and

• µ := λ

40c

where

n0 := max
{

Nind +N + kv,kv
( 3ckv(ar(σ) ·d)r+1

f −µ −2δdr+2 ar(σ)r+1 +1
)}

.

Note that nmin > 0 by the choice of n0, f , µ and δ .
We will start by proving 1 of the lemma statement. Let D ∈ P with |D| = n > nmax.

Then since P and Qδ are δ -indistinguishable and nmax ≥ Nind, there exists D1 ∈ Qδ such
that dist(D ,D1)≤ δdn. By Lemma 5.28, ∥dvr(D)−dvr(D1)∥1 ≤ 2δdr+2 ar(σ)r+1. Since
hr(Qδ ) is semilinear and by the choices of n0, nmin and nmax, by Theorem 4.2 there ex-
ists a σ -db D ′ ∈ Qδ such that nmin ≤ |D′| ≤ nmax and ∥dvr(D1)− dvr(D ′)∥1 ≤ f − µ −
2δdr+2 ar(σ)r+1. Therefore, ∥dvr(D)−dvr(D ′)∥1 ≤ f −µ as required.

Next let us prove 2 of the lemma statement. Let D ∈ C be ε-far from P with |D|= n >

nmax. For a contradiction let us assume there does exist a σ -db D ′ ∈ P such that nmin ≤ |D′| ≤
nmax and ∥dvr(D)−dvr(D ′)∥1 ≤ f +µ . Then since P and Qδ are δ -indistinguishable and
|D′| ≥ nmin ≥ Nind, there exists a σ -db D ′

Q ∈ Qδ such that |D′
Q|= |D′| and dist(D ′

Q,D
′)≤

δd|D′|. By Lemma 5.28, ∥dvr(D ′
Q)− dvr(D ′)∥1 ≤ 2δdr+2 ar(σ)r+1. Since D ′

Q ∈ Qδ
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there exists some i ∈ [m] and aD ′
Q

1 , . . . ,aD ′
Q

ki
∈ N such that

hr(D
′
Q) = v̄i

0 +aD ′
Q

1 v̄i
1 + · · ·+aD ′

Q
ki

v̄i
ki
.

Let DQ be the σ -db with r-histogram

hr(DQ) = v̄i
0 +aDQ

1 v̄i
1 + · · ·+aDQ

ki
v̄i

ki
∈ Mi

where aDQ
j is the nearest integer to

(
1+

λ

6c(ar(σ) ·d)r+1

)
·

naD ′
Q

j

|D′
Q|

.

Note as v̄i
0 + aDQ

1 v̄i
1 + · · ·+ aDQ

ki
v̄i

ki
∈ hr(Qδ ), DQ exists and DQ ∈ Qδ . We claim that n ≤

|DQ| ≤ kv+(1+λ/6c(ar(σ) ·d)r+1)n and ∥hr(DQ)−hr(D)∥1 ≤ λn
3 .

Claim 5.30. n ≤ |DQ| ≤ kv+(1+λ/6c(ar(σ) ·d)r+1)n.

Proof: First note that |DQ|= ∥v̄i
0∥1 +∑ℓ∈[ki] a

DQ
ℓ ∥v̄i

ℓ∥1. By the choice of aDQ
ℓ for ℓ ∈ [ki],

∥v̄i
0∥1 + ∑

ℓ∈[ki]

aDQ
ℓ ∥v̄i

ℓ∥1

≤ ∥v̄i
0∥1 + ∑

ℓ∈[ki]

((
1+

λ

6c(ar(σ) ·d)r+1

)
·

naD ′
Q

ℓ

|D′
Q|

+
1
2

)
∥v̄i

ℓ∥1

= ∥v̄i
0∥1 +

1
2 ∑
ℓ∈[ki]

∥v̄i
ℓ∥1 +

(
1+

λ

6c(ar(σ) ·d)r+1

)
· n
|D′

Q|
∑
ℓ∈[ki]

aD ′
Q

ℓ ∥v̄i
ℓ∥1

≤ kv+
(

1+
λ

6c(ar(σ) ·d)r+1

)
n

Similarly, by the choice of aDQ
ℓ for ℓ ∈ [ki],

∥v̄i
0∥1 + ∑

ℓ∈[ki]

aDQ
ℓ ∥v̄i

ℓ∥1

≥ ∥v̄i
0∥1 + ∑

ℓ∈[ki]

((
1+

λ

6c(ar(σ) ·d)r+1

)
·

naD ′
Q

ℓ

|D′
Q|

− 1
2

)
∥v̄i

ℓ∥1

= ∥v̄i
0∥1 −

1
2 ∑
ℓ∈[ki]

∥v̄i
ℓ∥1 +

(
1+

λ

6c(ar(σ) ·d)r+1

)
· n
|D′

Q|
∑
ℓ∈[ki]

aD ′
Q

ℓ ∥v̄i
ℓ∥1
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= ∥v̄i
0∥1 −

1
2 ∑
ℓ∈[ki]

∥v̄i
ℓ∥1 +n

(
1+

λ

6c(ar(σ) ·d)r+1

)
·
(

1−
∥v̄i

0∥1

|D′
Q|

)

since ∑ℓ∈[ki] a
D ′

Q
ℓ ∥v̄i

ℓ∥1 = |D′
Q|−∥v̄i

0∥1. Then since |D′
Q| ≥ nmin ≥ 12∥v̄i

0∥1c(ar(σ) ·d)r+1/λ ,

∥v̄i
0∥1 −

1
2 ∑
ℓ∈[ki]

∥v̄i
ℓ∥1 +n

(
1+

λ

6c(ar(σ) ·d)r+1

)
·
(

1−
∥v̄i

0∥1

|D′
Q|

)
≥−kv+n

(
1+

λ

6c(ar(σ) ·d)r+1

)
·
(

1− λ

12c(ar(σ) ·d)r+1

)
=−kv+n+n

(
λ

6c(ar(σ) ·d)r+1 −
λ

12c(ar(σ) ·d)r+1 −
λ 2

72c2(ar(σ) ·d)2r+2

)
≥−kv+n+

λn
24c(ar(σ) ·d)r+1

≥−kv+n+ kv = n

as n > nmax ≥ 24ckv(ar(σ) ·d)r+1/λ . ■

Claim 5.31. ∥hr(DQ)−hr(D)∥1 ≤ λn
3 .

Proof: First note that as ∥dvr(D)− dvr(D ′)∥1 ≤ f + µ and ∥dvr(D ′
Q)− dvr(D ′)∥1 ≤

2δdr+2 ar(σ)r+1 we have ∥dvr(D ′
Q)−dvr(D)∥1 ≤ 2δdr+2 ar(σ)r+1 + f +µ . Then since

hr(D ′
Q) = v̄i

0 +aD ′
Q

1 v̄i
1 + · · ·+aD ′

Q
ki

v̄i
ki

, for every j ∈ [c]

hr(D)[ j]≥ n
( v̄i

0[ j]+∑ℓ∈[ki] a
D ′

Q
ℓ v̄i

ℓ[ j]
|D′

Q|
− f −µ −2δdr+2 ar(σ)r+1

)
and

hr(D)[ j]≤ n
( v̄i

0[ j]+∑ℓ∈[ki] a
D ′

Q
ℓ v̄i

ℓ[ j]
|D′

Q|
+ f +µ +2δdr+2 ar(σ)r+1

)
.

Hence, by the choice of aDQ
ℓ for ℓ ∈ [ki],

hr(D)[ j]−hr(DQ)[ j]

≤ v̄i
0[ j]

( n
|D′

Q|
−1

)
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(naD ′
Q

ℓ

|D′
Q|

−aDQ
ℓ

)
+ f n+µn+2δdr+2 ar(σ)r+1n

≤
nv̄i

0[ j]
|D′

Q|
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(naD ′
Q

ℓ

|D′
Q|

−
((

1+
λ

6c(ar(σ) ·d)r+1

)
·

naD ′
Q

ℓ

|D′
Q|

− 1
2

))
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+ f n+µn+2δdr+2 ar(σ)r+1n

≤
nv̄i

0[ j]
|D′

Q|
+

1
2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]+

λn
6c(ar(σ) ·d)r+1 + f n+µn+2δdr+2 ar(σ)r+1n.

Similarly, by the choice of aDQ
ℓ for ℓ ∈ [ki] and as n > |D′

Q|,

hr(D)[ j]−hr(DQ)[ j]

≥ v̄i
0[ j]

( n
|D′

Q|
−1

)
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(naD ′
Q

ℓ

|D′
Q|

−aDQ
ℓ

)
− f n−µn−2δdr+2 ar(σ)r+1n

≥−
nv̄i

0[ j]
|D′

Q|
+ ∑

ℓ∈[ki]

v̄i
ℓ[ j]

(naD ′
Q

ℓ

|D′
Q|

−
((

1+
λ

6c(ar(σ) ·d)r+1

)
·

naD ′
Q

ℓ

|D′
Q|

+
1
2

))
− f n−µn−2δdr+2 ar(σ)r+1n

=−
nv̄i

0[ j]
|D′

Q|
− 1

2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]−

λn
6c(ar(σ) ·d)r+1|D′

Q|
∑
ℓ∈[ki]

v̄i
ℓ[ j]a

D ′
Q

ℓ

− f n−µn−2δdr+2 ar(σ)r+1n

≥−
nv̄i

0[ j]
|D′

Q|
− 1

2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]−

λn
6c(ar(σ) ·d)r+1 − f n−µn−2δdr+2 ar(σ)r+1n.

Therefore,

|hr(D)[ j]−hr(DQ)[ j]|

≤
nv̄i

0[ j]
|D′

Q|
+

1
2 ∑
ℓ∈[ki]

v̄i
ℓ[ j]+

λn
6c(ar(σ) ·d)r+1 + f n+µn+2δdr+2 ar(σ)r+1n

≤ n
|D′

Q|
∑

0≤ℓ≤ki

v̄i
ℓ[ j]+

λn
6c(ar(σ) ·d)r+1 + f n+µn+2δdr+2 ar(σ)r+1n

≤ nkv
|D′

Q|
+

λn
6c(ar(σ) ·d)r+1 + f n+µn+2δdr+2 ar(σ)r+1n

= n
( kv
|D′

Q|
+

λ

6c(ar(σ) ·d)r+1 +
λ

20c
+

λ

40c
+

λ

45c

)
≤ n

(
λ

20c
+

λ

6c
+

λ

20c
+

λ

40c
+

λ

45c

)
≤ λn

3c
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by the choice of f , µ and δ and as

|D′
Q| ≥ nmin ≥

20ckv
λ

.

Hence,

∥hr(DQ)−hr(D)∥1 ≤
λn
3

as required. ■

Let D ′′ be the σ -db on n elements formed from DQ by removing |DQ|−n many elements
at random (note that by Claim 5.30, |DQ| ≥ n). Since DQ ∈ Qδ ⊆ P and P is hereditary,
D ′′ ∈ P. Furthermore, since |DQ|−n ≤ kv+λn/6c(ar(σ) ·d)r+1 by Claim 5.30, and each
element that was removed from DQ potentially causes the r-type of at most (ar(σ) ·d)r+1

elements to change (by Lemma 2.16), ∥hr(DQ)− hr(D ′′)∥1 ≤ 2kv(ar(σ) · d)r+1 +λn/3c.
Therefore by Claim 5.31,

∥hr(D)−hr(D
′′)∥1 ≤ 2kv(ar(σ) ·d)r+1 +

λn
3c

+
λn
3

≤ λn

since n > nmax ≥ 6kv(ar(σ) ·d)r+1/λ . Finally, since P is local on C in the BDRD model,
|D′′| = n > nmax ≥ N and D ′′ ∈ P, we get that D is ε-close to P in the BDRD model
which is a contradiction. Therefore for every D ′ ∈ P such that nmin ≤ |D′| ≤ nmax, we have
∥dvr(D)−dvr(D ′)∥1 > f +µ .

Using Theorem 5.29, we can now show that any hereditary and local (in the BDRD
model) property whose r-histograms are close to being semilinear is constant time uniformly
testable in the BDRD model. The proof of Theorem 5.32 is very similar to the proof of
Theorem 5.13.

Theorem 5.32. Let P ⊆ C be a hereditary property that is local on C in the BDRD model.
If for every δ ∈ (0,1] there exists a property Qδ ⊆ P such that

1. P and Qδ are δ -indistinguishable (in the BDRD model), and

2. for every r ∈ N, hr(Qδ ) is semilinear

then P is uniformly testable on C in constant time in the BDRD model.

Proof. Let ε ∈ (0,1]. Then using very similar arguments as in the proof of Theorem 5.13,
but using Theorem 5.29 instead of Theorem 5.11, there exists an ε-tester for P on C (in the
BDRD model) that has constant query complexity and constant running time.
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5.6.1 Monotone hyperfinite properties

As discussed earlier, in [17] a proof for the constant time testability of monotone hyperfinite
properties in the bounded degree graph model was given. We extended this proof to the
BDRD model (and to hyperfinite hereditary properties) in Theorem 5.21. We will give an
alternative proof of the constant time testability of monotone hyperfinite properties in the
BDRD model. We start by showing that for every monotone hyperfinite property P and
δ ∈ (0,1] there exists a sub-property of P that has a semilinear set of r-histograms and is
δ -indistinguishable from P in the BDRD model (Lemma 5.33).

Lemma 5.33. Let P ⊆ C be a monotone property which is hyperfinite on C and let δ ∈ (0,1].
Let ρ be the function such that P is ρ-hyperfinite on C and let

b := ρ

(
δ

2

)
.

Let Q ⊆ P be defined as follows: For every D ∈ P, D ∈ Q if and only if all connected
components in D are of size at most b and for each A ∈ Ψ(b)\{B}, where B ∈ Ψ(b) is
the σ -db with exactly one element and no tuples, D has either 0 or at least ΦP(b) connected
components isomorphic to A . Then

1. P and Q are δ -indistinguishable in the BDRD model, and

2. for every r ∈ N, hr(Q) is semilinear.

Proof. Let us start by proving 1 of the lemma statement. Let

N :=
2 ·ΦP(b) · |Ψ(b)| ·b

δ
.

We will show that P and Q are δ -indistinguishable in the BDRD model with N5.27(δ ) = N.
If D ∈ Q then D ∈ P as Q ⊆ P. Hence to prove P and Q are δ -indistinguishable, we only
need to show that for every D ∈ P with |D|= n ≥ N there exists a σ -db D ′ ∈ Q such that
dist(D ,D ′)≤ δdn. Let D ∈ P with |D|= n > N. Since P is ρ-hyperfinite on C, by removing
at most δn/2 tuples from D we can obtain a σ -db D1 ∈ C that has connected components of
size at most b (by the choice of b). Let B ∈ Ψ(b) be the σ -db with exactly one element and
no tuples. Now for every A ∈ Ψ(b)\{B}, if D1 contains less than ΦP(b) many connected
components isomorphic to A , remove all tuples from such connected components from D1.
Let D ′ be the resulting σ -db. Since P is monotone, D ′ ∈ P and by the construction of D ′,
all connected components in D ′ are of size at most b and for each A ∈ Ψ(b) \ {B}, D ′

has either 0 or at least ΦP(b) connected components isomorphic to A . Therefore, D ′ ∈ Q.
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At most ΦP(b) · |Ψ(b)| · b · d many tuples were removed from D1 to form D ′ and hence
dist(D1,D

′)≤ ΦP(b) · |Ψ(b)| ·b ·d. Therefore,

dist(D ,D ′)≤ δn
2

+ΦP(b) · |Ψ(b)| ·b ·d

≤ δnd
2

+
δnd

2
= δdn

since n ≥ N and by the choice of N. This completes the proof that P and Q are δ -
indistinguishable in the BDRD model.

We will now prove 2 of the lemma statement. Let r ∈ N. For every S ⊆ Ψ(b)\{B}, let
QS ⊆ Q be the set of σ -dbs such that for every D ∈ Q, D ∈ QS if and only if D contains at
least ΦP(b) many connected components isomorphic to every A ∈ S but does not contain a
connected component isomorphic to a σ -db in Ψ(b)\ (S∪{B}). Note that

Q =
⋃

S⊆Ψ(b)\{B}
QS.

We will prove that for every S ⊆ Ψ(b) \ {B}, if ΦP(S) < ∞, then QS is empty and if
ΦP(S) = ∞, then hr(QS) is a linear or semilinear set. Since Q is the union of the sets QS,
this will imply that hr(Q) is a semilinear set.

Firstly let us prove that for every S ⊆ Ψ(b) \ {B}, if ΦP(S) < ∞, then QS is empty.
For a contradiction assume that for some S ⊆ Ψ(b) \ {B}, ΦP(S) < ∞ and there exists a
σ -db D ∈ QS. Let D ′ be the σ -db that for each A ∈ S contains exactly ΦP(b) connected
components isomorphic to A and contains no other connected components. By the definition
of ΦP(b) and as ΦP(S) < ∞, D ′ ̸∈ P. However, D ′ is a sub-database of D and since P is
monotone and D ∈ P (as QS ⊆ P) this implies D ′ ∈ P which is a contradiction. Hence for
every S ⊆ Ψ(b)\{B}, if ΦP(S)< ∞, then QS is empty.

We will now prove that for every S ⊆ Ψ(b)\{B} if ΦP(S) = ∞, then hr(QS) is either
a linear set or a semilinear set. We will look at two cases, one where S is non-empty and
one where S is the empty set. First let S = {D1,D2, . . . ,Dℓ} ⊆ Ψ(b)\{B} be non-empty,
let v̄ = ∑1≤i≤ℓΦP(b)hr(Di) and let

M = {v̄+a1 hr(D1)+a2 hr(D2)+ · · ·+aℓ hr(Dℓ)+aℓ+1 hr(B) | a1, . . . ,aℓ,aℓ+1 ∈ N}.

Clearly M is a linear set and we claim that M = hr(QS). Let

ū = v̄+u1 hr(D1)+u2 hr(D2)+ · · ·+uℓ hr(Dℓ)+uℓ+1 hr(B) ∈ M
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for some u1, . . . ,uℓ,uℓ+1 ∈ N and let D be the σ -db with exactly ΦP(b)+ u1 connected
components isomorphic to D1, ΦP(b)+ u2 connected components isomorphic to D2, . . . ,
ΦP(b)+uℓ connected components isomorphic to Dℓ, uℓ+1 connected components isomorphic
to B and no other connected components. Clearly ū = hr(D). Then since P is monotone and
ΦP(S) = ∞, D ∈ P and so by the definition of QS, D ∈ QS. On the other hand let D ∈ QS

then by definition for some u1, . . . ,uℓ,uℓ+1 ∈ N, D contains exactly ΦP(b)+u1 connected
components isomorphic to D1, ΦP(b)+ u2 connected components isomorphic to D2, . . . ,
ΦP(b)+uℓ connected components isomorphic to Dℓ, uℓ+1 connected components isomorphic
to B and no other connected components. The r-histogram vector of D is then

v̄+u1 hr(D1)+u2 hr(D2)+ · · ·+uℓ hr(Dℓ)+uℓ+1 hr(B)

and hence hr(D) ∈ M. Therefore M = hr(QS). Now let S = /0. Then QS contains only the σ -
dbs in Q with connected components only isomorphic to B. If ΦP({B}) = ∞, then any σ -db
with connected components only isomorphic to B is in P and hence hr(QS) = {v̄+a1 hr(B) |
a1 ∈N} where v̄ contains only 0’s. Now if ΦP({B})= g<∞, let Bi be the σ -db with exactly
i connected components isomorphic to B and no other connected components. Then for
every i where 0≤ i< g, Bi ∈ P and for any i≥ g, Bi ̸∈ P. Hence, hr(QS) =

⋃
0≤i<g{hr(Bi)}

which is a semilinear set. We have proven that for every S ⊆ Ψ(b)\{B}, hr(QS) is either
empty or a linear or semilinear set. Hence hr(Q) is semilinear.

Note that in the BDRD model we cannot obtain a similar result to Lemma 5.33 for
hyperfinite hereditary properties. This is due to being only able to compare databases on the
same number of elements in the BDRD model.

Combining Lemma 5.33 and Theorems 5.7 and 5.32 we obtain an alternative proof of the
constant time testability (in the BDRD model) of any monotone hyperfinite property P ⊆ C,
where C is closed under removing tuples.





Chapter 6

Towards approximate query
enumeration with sublinear
preprocessing time

In this chapter we introduce a new model for approximate query enumeration on classes of
relational databases of bounded degree. We first prove that on databases of bounded degree
any local first-order definable query can be enumerated approximately with constant delay
after a preprocessing phase with constant running time. We extend this, showing that on
databases of bounded tree-width and bounded degree, every query that is expressible in
first-order logic can be enumerated approximately with constant delay after a preprocessing
phase with sublinear (more precisely, polylogarithmic) running time.

Durand and Grandjean [29] proved that exact enumeration of first-order queries on
databases of bounded degree can be done with constant delay after a preprocessing phase
with running time linear in the size of the input database. Hence we achieve a significant
speed-up in the preprocessing phase. Since sublinear running time does not allow reading
the whole input database even once, sacrificing some accuracy is inevitable for our speed-up.
Nevertheless, our enumeration algorithm comes with the following guarantees: With high
probability, (1) only tuples are enumerated that are answers to the query or ‘close’ to being
answers to the query, and (2) if the proportion of tuples that are answers to the query is
sufficiently large, then all answers will be enumerated. For local first-order queries, only
actual answers are enumerated, strengthening (1). Moreover, both the ‘closeness’ and the
proportion required in (2) are controllable. Our algorithms only access the input database by
sampling local parts, in a distributed fashion.
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While our preprocessing phase is simpler than the preprocessing phase for the exact
algorithm, our enumeration phase is more involved, as we push parts of the computation into
the enumeration phase, allowing us to keep on enumerating answers.

We combine methods from property testing of bounded degree graphs with logic and
query enumeration, which we believe can inspire further research.

We start this chapter, in Section 6.1, by introducing some notions and our running
example which will be used throughout the chapter. In Section 6.2 we give some useful
normal forms of first-order queries along with some results on local first-order queries. In
Sections 6.3 and 6.4 we prove our main theorems on the enumeration of local and general
first-order queries respectively. In Section 6.5, in an attempt to push the boundaries further,
we prove strengthened versions of the theorems proved in Sections 6.3 and 6.4, showing
how the required answer threshold can be reduced. In Section 6.6 we prove a generalisation
of our main theorem on approximate enumeration of general first-order queries showing
that the assumption of bounded tree-width can be replaced with the weaker assumption of
Hanf-sentence testability. We also provide results on approximate membership testing and
approximate counting. Finally, in Section 6.7, we prove that if we use the distance measure
of the BDRD+/− model (introduced in Chapter 5), we can obtain approximate enumeration
algorithms for general first-order queries that have constant (rather than polylogarithmic)
preprocessing time and constant delay.

6.1 Preliminaries

6.1.1 Enumeration problems

Let σ be a schema, let C be a class of σ -dbs and let φ(x̄)∈ FO[σ ]. The enumeration problem
of φ over C denoted by EnumC(φ) is, given a database D ∈ C, to output the elements
of φ(D) one by one with no repetition. An enumeration algorithm for the enumeration
problem EnumC(φ) with input database D ∈ C proceeds in two phases, a preprocessing
phase and an enumeration phase. The enumeration phase outputs all the elements of φ(D)

with no duplicates. Furthermore, the enumeration phase has full access to the output of the
preprocessing phase but can use only a constant total amount of extra memory.

The delay of an enumeration algorithm is the maximum time between the start of the
enumeration phase and the first output (or the ‘end of enumeration message’ if there are no
answers), two consecutive outputs, and the last output and the ‘end of enumeration message’.

We focus on data complexity, i.e. we regard the query as being fixed, and the database
being the input.
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Fig. 6.1 The four 2-types of Examples 6.1 and 6.16. The vertices labelled ‘c1’ and ‘c2’ are
the centres.

6.1.2 Local and non-local first-order queries

Let σ be a schema. We call an FO[σ ] formula φ(x̄) (with k free variables) local if there
exists some r ∈ N such that for any σ -dbs D1 and D2 and tuples ā1 ∈ Dk

1 and ā2 ∈ Dk
2, if

N D1
r (ā1)∼= N D2

r (ā2) then, D1 |= φ(ā1) if and only if D2 |= φ(ā2). We call r the locality
radius of φ . If an FO formula is not local we say it is non-local. We highlight that this notion
of locality differs from that of Hanf locality and Gaifman locality of FO and should not be
confused.

Proviso. For the rest of the chapter, we fix a schema σ and numbers d, t ∈ N with d ≥ 2.
All databases are σ -dbs and have degree at most d, unless stated otherwise. We use Gd to
denote the class of all graphs with degree at most d, Cd to denote the class of all σ -dbs with
degree at most d, Ct

d to denote the class of all σ -dbs with degree at most d and tree-width
at most t, and finally, we use C to denote a class of σ -dbs with degree at most d (which is
closed under isomorphism).

6.1.3 Running example

The following example is the basis of our running example which will be used throughout
this chapter.

Example 6.1. On the class Gd , consider the isomorphism types τ2 and τ4 of the
2-neighbourhoods (N2,(c1,c2)) and (N4,(c1)) where N2 and N4 are the graphs shown in Fig-
ure 6.1 with centres (c1,c2) and (c1). Let φ be the FO[{E}]-formula φ = ∃x∃ysphτ2

(x,y)∧
¬∃zsphτ4

(z). Let P be the property defined by φ on Gd . We show that on the class Gd , P is
uniformly testable with constant time. For this, let ε ∈ (0,1]. Given oracle access to a graph
G ∈ Gd and |V (G )|= n as an input, the ε-tester for P on Gd proceeds as follows:

1. If n < 24d3/ε , do a full check of G and decide if G ∈ P.
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2. Otherwise, uniformly and independently sample α = log1−εd/3 1/3 vertices from [n].

3. For each sampled vertex, compute its 2-neighbourhood.

4. If a vertex is found with 2-type τ4 then the tester rejects. Otherwise it accepts.

Claim 6.2. The above ε-tester accepts with probability at least 2/3 if G ∈ P and rejects with
probability at least 2/3 if G is ε-far from P. Furthermore, the ε-tester has constant query
complexity and runs in constant time.

Proof: Note that in τ4, every vertex has 1 or 3 neighbours. For showing correctness, first
assume G ∈ P. Then the tester will always accept as there exists no vertex with 2-type τ4.

Now assume G is ε-far from P. Then at least εdn edge modifications are necessary to
make G isomorphic to a graph in P. If n < 24d3/ε then the tester will reject so assume
otherwise. Inserting a copy of τ2 requires at most 8(d+1) modifications (pick 8 vertices and
remove all incident edges then add the 8 edges to make an isolated copy of τ2). Removing an
edge uv from G will change the 2-type of any vertex in the set NG

2 (u)∩NG
2 (v). Lemma 3.2

(a) of [18] states that |NG
2 (u)| ≤ d2+1 and |NG

2 (v)| ≤ d2+1. Therefore, |NG
2 (u)∩NG

2 (v)| ≤ d3

and hence inserting a copy of τ2 could add at most 8d4 many copies of τ4. After inserting
a copy of τ2 we need to remove all copies of τ4. Let v ∈ V (G ) be a vertex with 2-type
τ4. Let u be the neighbour of v with degree 1. If we remove the edge uv ∈ E(G ), v’s
2-type is no longer τ4. Note that v has exactly 2 neighbours and u has 0 neighbours in
G \uv. Moreover, we claim that by removing uv, we have introduced no new vertices with
2-type τ4. To see this, observe that deleting uv will only affect the 2-types of vertices in
NG

1 (v). But each vertex x ∈ NG
1 (v) will have a vertex with exactly two neighbours in its

2-neighbourhood in G \uv. Hence the new 2-type of x is not τ4. This shows that there are
at least εdn−8(d +1)−8d4 vertices with 2-type τ4 in G . Since n ≥ 24d3/ε and d ≥ 2, we
have 8(d + 1) ≤ 8d4 ≤ εdn/3. The probability that we sample a vertex with 2-type τ4 is
therefore at least εdn/3n = εd/3. Hence the probability that none of the α sampled vertices
have 2-type τ4 is at most (1− εd/3)α = 1/3. Therefore with probability at least 2/3 the
tester rejects.

For the running time, if n < 24d3/ε then we can do a full check of the input graph and
decide if it has the property in time only dependent on d, ε and φ . Otherwise, note that
the tester samples only a constant number of vertices in (2), and for each of the sampled
vertices, the tester needs to make a constant number of oracle queries only to calculate its
2-neighbourhood in (3) because the degree is bounded. It can then be checked in constant
time whether a vertex has 2-type τ4. Therefore the tester has constant query complexity and
constant running time. ■
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6.2 Properties of first-order queries on bounded degree

In this section, we will give some useful normal forms of FO queries. We will then give a
characterisation and some results for local FO queries.

6.2.1 General first-order queries

We make use of the following lemma to simplify Boolean combinations of sphere-formulas.
We will use this result to show we can write FO queries in a special type of Hanf normal
form that groups the Hanf-sentences and the sphere-formulas in a convenient way. Recall
that T σ ,d

r (k) is the set of all r-types with k centres and degree at most d, over schema σ .

Lemma 6.3 ([18]). Let r,k,d ∈ N with k ≥ 1, d ≥ 2 and let σ be a schema. For every
Boolean combination φ(x̄) of sphere-formulas of degree at most d and radius at most r, there
exists an I ⊆ T σ ,d

r (k) such that φ(x̄) is d-equivalent to
∨

τ∈I sphτ(x̄).
Furthermore, given φ(x̄), the set I can be computed in time poly(∥φ∥) ·2(kdr+1)O(∥σ∥)

.

In the following lemma, we show that we can write any FO query as a disjunction of
conjunctions of a sphere-formula and a boolean combination of Hanf-sentences. This normal
form will be used in Lemma 6.18.

Lemma 6.4. Let φ(x̄) ∈ FO and |x̄|= k. Let r be the Hanf locality radius of φ . For every
d ∈ N with d ≥ 2 there exists a computable, d-equivalent formula to φ of the form

χ(x̄) =
∨

i∈[m]

(
sphτi

(x̄)∧ψ
s
i

)
(6.1)

for some m ∈N, where for all i ∈ [m], τi is an r-type with k centres and ψs
i is a conjunction of

Hanf-sentences and negated Hanf-sentences. For each φ(x̄) ∈ FO, we fix such a d-equivalent
formula to φ (so we can refer to the d-equivalent formula of φ in the form (6.1)).

Proof. From φ we can construct a formula in the required form as follows. Firstly, by
Theorem 2.27 we construct a d-equivalent formula in Hanf normal form. Next, we write the
resulting formula in disjunctive normal form to obtain a formula of the form

χ(x̄)′ =
∨
i∈[l]

(
ψ

f
i (x̄)∧ψ

s
i

)

for some l ∈ N, where for i ∈ [l], ψ
f

i (x̄) is a conjunction of sphere-formulas and negated
sphere-formulas and ψs

i is a conjunction of Hanf-sentences and negated Hanf-sentences.
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Then, by Lemma 6.3, we can replace each ψ
f

i (x̄) with a d-equivalent formula
∨

t∈λi
spht(x̄)

where λi is a set of r-types with k centres. Finally, we replace each
∨

t∈λi
spht(x̄)∧ψs

i with∨
ti∈λi

(sphti(x̄)∧ψs
i ). The resulting formula is in the required form.

In Theorems 6.14 and 6.20, we reduce the minimum size of the answer set required to
enumerate all answers to the query φ in our approximate enumeration algorithms. We show
we only actually require an answer set of size γnc, where c := conn(φ ,d) is the maximum
number of connected components in the r-neighbourhood (where r is the Hanf-locality radius
of φ ) of an answer to φ . We define conn(φ ,d) below.

Definition 6.5 (conn(φ ,d)). Let φ(x̄) ∈ FO[σ ] where |x̄| = k and let χ(x̄) be the formula
in the form (6.1) of Lemma 6.4 that is d-equivalent to φ . We define conn(φ ,d) as the
maximum number of connected components of the neighbourhood types that appear in the
sphere-formulas of χ . Note that conn(φ ,d)≤ k.

Recall that we fix a formula χ in the form (6.1) of Lemma 6.4 for each FO formula φ ,
and hence conn(φ ,d) is well defined.

6.2.2 Local first-order queries

We will start by showing that for any local FO query φ we can compute a set of r-types T
(where r is the locality radius) such that for any σ -db D and tuple ā, ā is an answer to φ on
D if and only if the r-type of ā is in T .

Lemma 6.6. There is an algorithm that, given a local query φ(x̄) ∈ FO[σ ] with k free
variables and given the locality radius r of φ , computes a set of r-types T with k centres such
that for any σ -db D and tuple ā ∈ Dk, ā ∈ φ(D) if and only if the r-type of ā in D is in T .

Proof. Let T be an empty list. For each r-type τ with k centres we do the following. Let
Dτ be a representative σ -db of τ where c̄ is the centre tuple, then if Dτ |= φ(c̄) add τ to T .
Then since φ is local and r is the locality radius of φ , for every σ -db D and tuple ā ∈ Dk,
D |= φ(ā) if and only if the r-type of ā in D is in T .

Using the previous lemma we will show that for any local FO query, σ -db D and tuple ā
from D it can be decided in constant time whether ā is an answer to φ on D . We will use
this when approximately enumerating answers to local FO queries.

Lemma 6.7. Let φ(x̄) ∈ FO[σ ] be a local query with k free variables. There is an algorithm
that, given a σ -db D and a tuple ā ∈ Dk, decides whether ā ∈ φ(D) in constant time.
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Proof. Let r be the locality radius of φ . First let us compute the set of r-types T as in Lemma
6.6. We will then compute the r-type τ of ā in D . By Lemma 6.6 if τ ∈ T then ā ∈ φ(D)

and if τ ̸∈ T then ā ̸∈ φ(D).
Since r does not depend on D , the r-type of ā in D can be computed in constant time.

Furthermore, computing the set T does not depend on D , and hence it can be decided in
constant time whether ā ∈ φ(D).

We will finish this section with the following characterisations of local FO queries. We
do not make use of these characterisations but we include them to aid intuition.

Observation 6.8. Let φ(x̄) ∈ FO[σ ]. Then φ is local if and only if φ is d-equivalent to a
boolean combination of sphere-formulas.

Proof. Let |x̄| = k. First let us assume that φ is d-equivalent to a FO formula χ that is a
boolean combination of sphere-formulas. Let r be the Hanf locality radius of χ . Then since
χ contains no Hanf-sentences, for any σ -dbs D1 and D2 and tuples ā1 ∈ Dk

1 and ā2 ∈ Dk
2, if

N D1
r (ā1)∼= N D2

r (ā2) then, D1 |= φ(ā1) if and only if D2 |= φ(ā2). Hence φ is local and r
is the locality radius of φ .

Now let us assume that φ is local. Let T be the set of r-types as constructed in Lemma 6.6.
Therefore φ is d-equivalent to the formula

∨
τ∈T sphτ(x̄) which is in the required form.

Observation 6.9. For any local FO query φ , the locality radius of φ is equal to the Hanf
locality radius of φ . Therefore, since the Hanf locality radius of an FO query is computable
by Theorem 2.27, the locality radius of a local FO query is also computable.

Proof. Let φ be a local FO formula and let r ∈ N be the Hanf locality radius of φ . Since
φ is local there exists an r′ ∈ N such that for any σ -dbs D ′

1 and D ′
2 and tuples ā′1 ∈ D′k

1

and ā′2 ∈ D′k
2, if N D ′

1
r′ (ā′1)∼= N D ′

2
r′ (ā′2) then, D ′

1 |= φ(ā′1) if and only if D ′
2 |= φ(ā′2). We

will prove that r = r′. Let χ(x̄) =
∨

i∈[m]

(
sphτi

(x̄)∧ψs
i

)
be the formula that is d-equivalent

to φ and is in the form (6.1) of Lemma 6.4. Note that the Hanf-locality radius of χ is
r. If χ contains no Hanf-sentences then clearly r = r′. So let us assume χ does contain
Hanf-sentences (which is possible for example if one of the sentence parts ψs

i is unsatisfiable).
Now let us group the conjunctions in χ that contain the same sphere-formula. Therefore we
obtain a d-equivalent formula to χ of the form

χ
′(x̄) =

∨
i∈[m′]

(
sphτi

(x̄)∧ (ψs
i1 ∨ψ

s
i2 ∨·· ·∨ψ

s
iℓi
)
)
.

For a contradiction let us assume that r ̸= r′. Therefore there exists some σ -dbs D1

and D2 and tuples ā1 ∈ Dk
1 and ā2 ∈ Dk

2 such that N D1
r (ā1) ∼= N D2

r (ā2) and exactly one
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of D1 |= φ(ā1) and D2 |= φ(ā2) is true. Without loss of generality let D1 |= φ(ā1) and
D2 ̸|= φ(ā2). Since D1 |= φ(ā1), D1 |= χ ′(ā1) and hence there exists some i ∈ [m′] such that
D1 |= sphτi

(ā1)∧(ψs
i1 ∨ψs

i2 ∨·· ·∨ψs
iℓi
). If there are no Hanf-sentences in the i-th subformula

of χ ′ then we immediately reach a contradiction as N D1
r (ā1)∼=N D2

r (ā2) and τi has radius r
(by the construction of χ ′). So let us assume there are Hanf-sentences in the i-th subformula
of χ ′. Let us denote the sentence (ψs

i1 ∨·· ·∨ψs
iℓi
) as ψi.

If r′ < r, then since N D1
r (ā1)∼=N D2

r (ā2) it must also be true that N D1
r′ (ā1)∼=N D2

r′ (ā2).
Hence, by the definition of r′ we have that D1 |= φ(ā1) if and only if D2 |= φ(ā2), which is a
contradiction. So let us assume that r′ > r. Let us consider a σ -db D that contains k-tuples
b̄1 and b̄2 such that N D1

r′ (ā1)∼= N D
r′ (b̄1) and N D2

r′ (ā2)∼= N D
r′ (b̄2) (which exists since we

can just take the σ -db that is a disjoint union of the fixed representatives of the r′-types of
ā1 and ā2). Note that since r′ > r, we have N D1

r (ā1)∼= N D
r (b̄1) and N D2

r (ā2)∼= N D
r (b̄2).

Furthermore, since N D1
r (ā1)∼= N D2

r (ā2), we also have that N D
r (b̄1)∼= N D

r (b̄2). By the
definition of r′ and since D1 |= φ(ā1), D |= φ(b̄1), and hence D |= χ ′(b̄1). Recall that
i ∈ [m′] is such that D1 |= sphτi

(ā1)∧ψi and τi has radius r. Furthermore, χ ′ contains only
one subformula which contains sphτi

(x̄) and each sphere-formula in χ ′ has radius r by
construction. Therefore, D |= sphτi

(b̄1)∧ψi and so D |= ψi. By the definition of r′ again and
since D2 ̸|= φ(ā2), D ̸|= φ(b̄2) and hence D ̸|= χ ′(b̄2). This implies that D ̸|= sphτi

(b̄2)∧ψi.
However, D |= sphτi

(b̄2) since N D
r (b̄1)∼= N D

r (b̄2), and so it must be the case that D ̸|= ψi

which is a contradiction. Hence r = r′.

6.3 Enumerating answers to local first-order queries

Assume φ is a local FO query with k free variables and D is a σ -db, such that the set
φ(D) is larger than a fixed proportion of all possible k-tuples, i. e. |φ(D)| ≥ µ|D|k for some
fixed µ ∈ (0,1). It is easy to construct an algorithm that enumerates the set φ(D) with
amortized constant delay, i. e. the average delay between any two outputs is constant. For
each tuple ā ∈ Dk (processed in, say, lexicographical order), the algorithm tests if ā is in
φ(D) (which can be done in constant time by Lemma 6.7 as φ is local) and outputs ā if
ā ∈ φ(D). Since we are assuming that |φ(D)| is larger than a fixed proportion of all possible
tuples, the overall running time of the algorithm is O(|D|k) and hence the algorithm has
constant amortized delay. In this section we prove that we can de-amortize this algorithm
using random sampling.

We begin this section by showing that there exists a randomised algorithm that does the
following. The input is a set V which is partitioned into two sets V1 and V2. We assume
that the algorithm can test in constant time if a given element from V is in V1 or V2. After
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a constant time preprocessing phase, the algorithm enumerates a set S of elements with
S ⊆V1, with constant delay. Furthermore, we show that if |V1| is large enough then with high
probability S =V1. We then use this result to prove our main theorem of this section (Theorem
6.13) on the approximate enumeration of the answers to a local query. In Theorem 6.14 we
show that the relative size of the answer set can be reduced whilst still guaranteeing that with
high probability we enumerate all answers to the query.

Lemma 6.10. Fix µ ∈ (0,1) and δ ∈ (0,1). There exists a randomised algorithm which
does the following. The input is a set V which is partitioned into two sets V1 and V2. We
assume that the algorithm is given access to the size of V and can decide in constant time
whether a given element from V is in V1 or V2. The algorithm outputs a set S ⊆V1 such that
if |V1| ≥ µ|V | then, with probability at least δ , S =V1.

The algorithm has constant preprocessing time and enumerates S with no duplicates and
constant delay between any two consecutive outputs.

Proof. Let |V |= n and let us assume that V comes with a linear order over its elements, or
equivalently that V = [n]. If V does not come with a linear order over its elements then we
use the linear order induced by the encoding of V . Let q = min((1−µ(1−µ))2,(1−δ )2/9).
The preprocessing phase proceeds as follows:

1. Initialise an array B of length n. The array B contains one entry for each element in [n]
and it is used to record sampled elements. For an element a ∈ [n], the entry B[a] is 1 if
a has previously been sampled and it is 0 otherwise.

2. Initialise an empty queue Q, to store tuples to be enumerated.

As discussed in Section 2.2 an array of any size can be initialised in constant time using
lazy initialisation and hence the preprocessing phase runs in constant time.

Moving on to the enumeration phase, between each output the algorithm will sample a
constant number of elements as well as going through a constant number of the elements in
[n] in order. The enumeration phase proceeds as follows:

1. Sample α = ⌈log1−µ(1−µ) q⌉ many elements uniformly and independently from [n]
and let t be a list of these elements.

2. Add the next ⌈1/µ2⌉ elements from [n] to t. If there are less than ⌈1/µ2⌉ elements
remaining just add all the remaining elements to t.

3. For each element a in t, if B[a] = 1, skip this element. Otherwise, set B[a] = 1 and if a
is in V1 add a to Q.
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4. If Q ̸= /0, output the next element from Q; stop otherwise.

5. Repeat Steps 1-4 until there is no element to output in Step 4.

In Steps 1 and 2 a list of elements is created which is of constant size. For each element
in this list, in Step 3, the algorithm can check whether it is in V1 in constant time and the
arrays Q and B can be read and updated in constant time. Hence, each enumeration step can
be done in constant time. This concludes the analysis of the running time. We now prove
correctness.

Clearly, no duplicates will be enumerated due to the use of the array B and the only
elements enumerated are those that are in V1. Let S be the set of elements that are enumerated.
We need to show that with probability at least 2/3 if |V1| ≥ µ|V |, then S = V1. In each
enumeration step we take the next ⌈1/µ2⌉ elements from [n]. Assuming |V1| ≥ µ|V |, after
⌈n ·µ2⌉ ≤ ⌈µ|V1|⌉ enumeration steps the algorithm will have checked every element in [n]
and therefore S = V1. Let us find a bound on the probability that we do at least ⌈µ|V1|⌉
enumeration steps. We will start with the following claim which we will use when finding a
bound on the probability that we do at least ⌈µ|V1|⌉ enumeration steps.

Claim 6.11. For all q ∈ [0,1) and m ∈ N≥1, ∏
m
i=1(1−q

i+1
2 )≥ 1−3q

1
2 .

Proof: First let us prove that

m

∏
i=1

(1−q
i+1

2 )≥ 1−q
1
2 −q−q

3
2 +q

m+2
2

by induction on m.
For the base case, let m = 1, then

1

∏
i=1

(1−q
i+1

2 ) = 1−q ≥ 1−q
1
2 −q−q

3
2 +q

3
2

as required.
Now for the inductive step. Let us assume the claim is true for m and we shall show the

claim is true for m+1. We have

m+1

∏
i=1

(1−q
i+1

2 ) =
( m

∏
i=1

(1−q
i+1

2 )
)
· (1−q

m+2
2 ) ≥ (1−q

1
2 −q−q

3
2 +q

m+2
2 )(1−q

m+2
2 )

by the inductive hypothesis.

(1−q
1
2 −q−q

3
2 +q

m+2
2 )(1−q

m+2
2 ) = 1−q

1
2 −q−q

3
2 +q

m+3
2 +q

m+4
2 +q

m+5
2 −qm+2
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≥ 1−q
1
2 −q−q

3
2 +q

m+3
2 ,

as q(m+4)/2 +q(m+5)/2 −qm+2 ≥ 0.
Therefore,

m

∏
i=1

(1−q
i+1

2 )≥ 1−q
1
2 −q−q

3
2 +q

m+2
2 ≥ 1−3q

1
2

as required ■

Claim 6.12. Assume that |V1| ≥ µn. The probability that at least ⌈µ|V1|⌉ distinct elements
from V1 are enumerated is at least 1−3q

1
2 .

Proof: We shall start by showing that for j ∈ N, where 1 ≤ j ≤ ⌈µ|V1|⌉, the probability that
at least j distinct elements from V1 are enumerated is at least ∏

j
i=1(1−q(i+1)/2).

We shall prove this by induction on j. For the base case, let j = 1. If an element from V1

is sampled in the first enumeration step, then at least one element from V1 will be enumerated.
An element that is in V1 is sampled with probability

|V1|
n

≥ µn
n

= µ ≥ µ(1−µ).

The probability that out of the α elements sampled in the first enumeration step there is none
from V1 is at most (1−µ(1−µ))α ≤ q as α = ⌈log1−µ(1−µ) q⌉ ≥ log1−µ(1−µ) q. Therefore
with probability at least 1− q at least one element from |V1| is enumerated and hence we
have proved the base case.

For the inductive step, assume that the claim is true for j, where 1 ≤ j < ⌈µ|V1|⌉, we
will show it is true for j+1. Let us assume j distinct elements from V1 have already been
enumerated, and a total of at least ( j+1)α elements have been sampled (of which at least j
are from V1). The probability an element from V1 that was not already enumerated is sampled
is (|V1|− j)/n. Therefore, the probability that exactly j unique elements from V1 have been
sampled is at most (

1− |V1|− j
n

)( j+1)α− j
< (1−µ(1−µ))( j+1)α− j,

as |V1|− j > |V1|−µ|V1| ≥ µn(1−µ). Then

(1−µ(1−µ))( j+1)α− j ≤ q j+1

(1−µ(1−µ)) j ≤
q j+1

(q
1
2 ) j

= q
j+2
2 ,

since α = ⌈log1−µ(1−µ) q⌉ ≥ log1−µ(1−µ) q and since q ≤ (1−µ(1−µ))2 (by the choice of
q). Therefore, the probability that there are at least j+1 elements from V1 in these sampled
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tuples is at least 1−q( j+2)/2. Then by the inductive hypothesis, the probability that at least
j+1 elements from V1 are enumerated is at least

( j

∏
i=1

(1−q
j+1
2 )

)
· (1−q

j+2
2 ) =

j+1

∏
i=1

(1−q
i+1

2 )

as required.
Finally, by Claim 6.11, the probability that at least ⌈µ|V1|⌉ many distinct elements from

V1 are enumerated is at least

⌈µ|φ(D)|⌉

∏
i=1

(1−q
i+1

2 )≥ 1−3q
1
2 .

■

By Claim 6.12 the probability that S =V1 if |V1| ≥ µn is at least (1−3q
1
2 )≥ δ by the

choice of q. This completes the proof.

We now use Lemma 6.10 to prove the following theorem.

Theorem 6.13. Let φ(x̄) ∈ FO[σ ] be a local query with k free variables and let γ ∈ (0,1).
There exists an algorithm that is given a σ -db D as an input, that after a constant time
preprocessing phase, enumerates a set S (with no duplicates) with constant delay between
any two consecutive outputs, such that:

1. S ⊆ φ(D), and

2. if |φ(D)|| ≥ γ|D|k (i.e. the number of answers to the query is larger than a fixed
fraction of the total possible number of answers), then with probability at least 2/3,
S = φ(D).

Proof. Given a tuple ā ∈ |D|k we can test in constant time whether ā ∈ φ(D) or ā ̸∈ φ(D) by
Lemma 6.7. We can partition the set Dk into two sets based on whether a tuple is in φ(D) or
not. Therefore the algorithm from Lemma 6.10 (with δ = 2/3, µ = γ , V = |D|k, V1 = φ(D)

and V2 = |D|k \φ(D)) meets the requirements in the theorem statement.

In our algorithms, to achieve constant preprocessing time and constant delay we require
the number of answers to the query to be some fixed fraction of the total possible number of
answers. Otherwise, with high probability the algorithm would not sample an answer in the
enumeration phase and the algorithm would stop.

It seems natural to expect that for queries occurring in practice, the elements of an answer
tuple are within a small distance of each other in the input database (i. e. the r-neighbourhood
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of the answer has few connected components). In such scenarios, we can strengthen our
main theorem by reducing the number of answers required to output all answers to the query
with high probability.

Theorem 6.14. Let φ(x̄)∈ FO[σ ] be a local query with locality radius r and let γ ∈ (0,1). Let
c := conn(φ ,d), i.e the maximum number of connected components in the r-neighbourhood
of a tuple ā ∈ φ(D) for any σ -db D . There exists an algorithm that, given a σ -db D as
input, after a constant time preprocessing phase enumerates a set S (with no duplicates) with
constant delay between any two consecutive outputs, such that the following hold.

1. S ⊆ φ(D), and

2. if |φ(D)|| ≥ γ|D|c, then with probability at least 2/3, S = φ(D).

We defer the proof of Theorem 6.14 to Section 6.5.

6.4 Enumerating answers to general first-order queries

We now shift our focus to enumerating answers to general FO queries, now they can be
non-local in the sense that we can not check if a tuple is an answer to the query by only
looking at its neighbourhood. We are aiming at sublinear preprocessing time hence we cannot
read the whole input database and therefore will need to sacrifice some accuracy. We allow
our algorithms to enumerate ‘close’ answers as well as actual answers. We start this section
by defining our notion of approximation before proving our main result.

6.4.1 Our notion of approximation

We will start by defining our notion of closeness.

Definition 6.15 (ε-close answers to FO queries). Let D ∈ C be a σ -db and let ε ∈ (0,1]. Let
φ(x̄) ∈ FO[σ ] be a query with k free variables and Hanf locality radius r. A tuple ā ∈ Dk is
ε-close to being an answer of φ on D and C if D can be modified (with tuple insertions and
deletions) into a σ -db D ′ ∈ C with at most εd|D| modifications (i.e dist(D ,D ′) ≤ εd|D|)
such that ā ∈ φ(D ′) and the r-type of ā in D ′ is the same as the r-type of ā in D .

We denote the set of all tuples that are ε-close to being an answer of φ on D and C as
φ(D ,C,ε). Note that φ(D)⊆ φ(D ,C,ε).

We shall illustrate Definition 6.15 in the following example.
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Example 6.16. On the class Gd , consider the isomorphism types τ1, τ2 and τ3 of the 2-
neighbourhoods (N1,(c1,c2)), (N2,(c1,c2)) and (N3,(c1,c2)) shown in Figure 6.1. Let
φ ∈ FO[{E}] be given by φ(x,y) := sphτ1

(x,y)∨ (sphτ2
(x,y)∧¬(∃z∃wsphτ1

(z,w))). This
formula might be useful in scenarios where ideally we want to return pairs of vertices with a
specific 2-type τ1 but if there is no such pair then returning vertex pairs with a similar 2-type
will suffice.

Let G ∈ Gd be a graph on n vertices and ε ∈ (0,1]. First observe that for any pair
(u,v) ∈V (G )2 with 2-type τ1, (u,v) ∈ φ(G ) and hence (u,v) ∈ φ(G ,Gd,ε).

Assume (u,v) ∈V (G )2 has 2-type τ2. Then (u,v) ∈ φ(G ) if and only if G contains no
vertex pair of 2-type τ1. The pair (u,v) is in φ(G ,Gd,ε) if and only if G can be modified
(with edge modifications) into a graph G ′ ∈ Gd with at most εdn modifications such that
(u,v) ∈ φ(G ′) and the 2-type of (u,v) in G ′ is still τ2.

For example if G is at distance at most εdn−4d −6 (assuming that n is large enough
such that εdn − 4d − 6 > 0) from a graph G ′′ ∈ Gd such that G ′′ |= ∃x∃ysphτ2

(x,y)∧
¬(∃z∃wsphτ1

(z,w)) then (u,v) ∈ φ(G ,Gd,ε). To see this let us assume that such a graph
G ′′ exists. Note that since Gd is closed under isomorphism we can assume that G and
G ′′ are on the same vertices. Then if (u,v) has 2-type τ2 in G ′′, (u,v) ∈ φ(G ,Gd,ε) since
εdn − 4d − 6 ≤ εdn. So let us assume that (u,v) does not have 2-type τ2 in G ′′. Let
(u1,v1) ∈ V (G ′′)2 have 2-type τ2 (we know one exists). Then we remove every edge that
has u, v, u1 or v1 as an endpoint (there are at most 2d + 3 such edges), and then for each
edge we removed we insert the same edge back in but swapping any endpoint u to u1 and
v to v1 and vice versa (this requires at most 2(2d + 3) many edge modifications in total).
By doing this we have essentially just swapped the labels of the vertices u and u1 and v
and v1. Hence in the resulting graph G ′, (u,v) has 2-type τ2 and G ′ still contains no pair of
vertices with 2-type τ1. Therefore (u,v) ∈ φ(G ′), and the distance between G and G ′ is at
most εdn−4d −6+2(2d +3) = εdn.

Finally, for any pair (u,v)∈V (G )2 with 2-type τ3, (u,v) ̸∈ φ(G ) and (u,v) ̸∈ φ(G ,Gd,ε)

as for every G ′ ∈ Gd there does not exist a pair with 2-type τ3 that is in φ(G ′).

The set φ(D ,C,ε) contains all tuples that are ε-close to being answers to φ . A tuple
ā ∈ Dk is in φ(D ,C,ε) if only a relatively small (at most εdn) number of modifications to
D are needed to make ā an answer to φ without changing ā’s neighbourhood type. This
can be seen as a notion of structural approximation. One might be tempted to define
φ(D ,C,ε) differently, namely as the set of tuples that can be turned into an answer to φ on D

(without necessarily preserving the neighbourhood type) with at most εdn modifications to
D . However, if φ(D) ̸= /0, say, ā ∈ φ(D), then we can turn any tuple b̄ ∈ Dk into an answer
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for φ on D with only a constant number of modifications. This can be done by exchanging
b̄’s r-neighbourhood with ā’s, for some r depending on φ . This is not meaningful.

Let χ be as in (6.1) of Lemma 6.4 for φ . Note that only tuples with a neighbourhood type
that appears in χ can be in the set φ(D ,C,ε). Nevertheless, the difference |φ(D ,C,ε)|−
|φ(D)| can be unbounded. The following example demonstrates this.

Example 6.17. Let φ , τ1 and τ2 be as in Example 6.16. For m ∈ N≥1, let G1,m be the graph
that contains m disjoint copies of τ2 and 1 disjoint copy of τ1. Note that G1,m has n = 8(m+1)
vertices. The graph G1,m can be modified with one edge modification to form a graph which
satisfies ¬(∃z∃wsphτ1

(z,w)) without modifying the 2-type of any pair (u,v) ∈ V (G1,m)
2

with 2-type τ2 in G1,m. Therefore if 1 ≤ εdn then every pair (u,v) ∈V (G1,m)
2 with 2-type

τ2 is in φ(G1,m,Gd,ε). Hence, assuming 1 ≤ εdn we have |φ(G1,m,Gd,ε)|− |φ(G1,m)| =
m+1−1 = Θ(n).

While φ(D ,C,ε) is a structural approximation of φ(D), Example 6.17 illustrates that
it may not be a numerical approximation. However, in scenarios where the focus lies on
structural closeness, this might not be an issue.

We say that the problem EnumC(φ) can be solved approximately with O(H(n)) prepro-
cessing time and constant delay for answer threshold function f (n), if for every parameter
ε ∈ (0,1], there exists an algorithm, which is given oracle access to an input database D ∈ C
and |D|= n as an input, that proceeds in two steps.

1. A preprocessing phase that runs in time O(H(n)), and

2. an enumeration phase that enumerates a set S of distinct tuples with constant delay
between any two consecutive outputs.

Moreover, we require that with probability at least 2/3, S ⊆ φ(D)∪ φ(D ,C,ε) and, if
|φ(D)| ≥ f (n), then φ(D)⊆ S. The algorithm can make oracle queries of the form (R, i, j)
as discussed in Section 2.6 which allows us to explore bounded radius neighbourhoods in
constant time. We call such an algorithm an ε-approximate enumeration algorithm.

6.4.2 Main results

Before proving our main result of this section on the approximate enumeration of general
first-order queries, we start by proving the following lemma. In this lemma, we show that
for a given database D and FO query φ we can compute a set of neighbourhood types in
polylogarithmic time, that with high probability only contains the neighbourhood types of
tuples that are answers or close to being answers to φ on D . To compute this set we write
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φ in the form (6.1) as in Lemma 6.4 and then run property testers on the sentence parts to
determine with high probability whether tuples with the corresponding r-type (the r-type that
appears in the sphere-formula) are answers to φ on the input database or are far from being
an answer to φ on the input database.

Lemma 6.18. Let φ(x̄) ∈ FO[σ ] with |x̄| = k and Hanf locality radius r and let ε ∈ (0,1].
There exists an algorithm Aε , which, given oracle access to a σ -db D ∈ Ct

d as input along
with |D|= n, computes a set T of r-types with k centres such that with probability at least
5/6, for any ā ∈ Dk,

1. if ā ∈ φ(D), then the r-type of ā in D is in T , and

2. if ā ∈ Dk \φ(D ,Ct
d,ε), then the r-type of ā in D is not in T .

Furthermore, Aε runs in polylogarithmic time.

Proof. If n < 8k/ε then we do a full check of D and form the set T exactly. Otherwise, Aε

starts by computing the formula χ(x̄) that is d-equivalent to φ and is in the form (6.1) as in
Lemma 6.4. Let m be as in Lemma 6.4. By Theorem 2.35, any sentence definable in FO is
uniformly testable on Ct

d in polylogarithmic time. Hence for every i ∈ [m] there exists an ε/2-
tester that runs in polylogarithmic time and with probability at least 2/3 accepts if the input
satisfies ∃x̄sphτi

(x̄)∧ψs
i and rejects if the input is ε/2-far from satisfying ∃x̄sphτi

(x̄)∧ψs
i .

We can amplify this probability to (5/6)1/m by repeating the tester a constant number of
times and we denote the resulting ε/2-tester as πi. Next, Aε computes the set T as follows.

1. Let T = /0.

2. For each i ∈ [m], run πi with D as input, and if πi accepts, then add τi to T .

By Lemma 6.4, χ(x̄) can be computed in constant time (only dependent on d, ∥φ∥ and
∥σ∥). Moreover, each ε/2-tester πi runs in polylogarithmic time. Since m is a constant, Aε

runs in polylogarithmic time.
It now only remains to prove correctness. Let ā ∈ Dk and let τ be the r-type of ā in

D . Let us assume that each πi correctly accepts if D satisfies ∃x̄sphτi
(x̄)∧ψs

i and correctly
rejects if D is ε/2-far from satisfying ∃x̄sphτi

(x̄)∧ψs
i , which happens with probability at

least (5/6)(1/m)·m = 5/6.
First let us assume that ā ∈ φ(D). We shall show that τ ∈ T . Since D |= φ(ā), there

exists at least one i ∈ [m] such that D |= sphτi
(ā)∧ψs

i (as φ is d-equivalent to χ(x̄) =∨
i∈[m]

(
sphτi

(x̄)∧ψs
i

)
). Hence, D |= ∃x̄sphτi

(x̄)∧ψs
i and as we are assuming πi correctly
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accepted, the r-type τi will have been added to T . Since D |= sphτi
(ā), τi = τ , and therefore

τ ∈ T .
Now let us assume that ā ∈ Dk \ φ(D ,Ct

d,ε). We shall show that τ ̸∈ T . For a con-
tradiction let us assume that τ ∈ T and hence there must exist some i ∈ [m] such that D

is ε/2-close to satisfying ∃x̄sphτi
(x̄)∧ψs

i on Ct
d and τi = τ . By definition there exists a

σ -db D ′ ∈ Ct
d such that D ′ |= ∃x̄sphτi

(x̄)∧ψs
i and dist(D ,D ′)≤ εdn/2. Since any property

defined by a FO sentence on Ct
d is closed under isomorphism we can assume that D ′ can

be obtained from D with at most εdn/2 tuple modifications. If in D ′ the r-type of ā is no
longer τ then we can modify D ′ with at most 4dk tuple modifications into a σ -db D ′′ ∈ Ct

d

such that the r-type of ā is τ in D ′′ and D ′′ ∼= D ′ (and hence ā ∈ φ(D ′′)). To do this we
choose a tuple b̄ whose r-type is τ in D ′ and for any tuple that contains an element from ā
or b̄, delete it and add back the same tuple but with the elements from ā exchanged for the
corresponding elements from b̄ and vice versa. This requires at most 4dk tuple modifications.
Hence dist(D ,D ′′)≤ εdn/2+4dk ≤ εdn if n ≥ 8k/ε (which we can assume as otherwise
we do a full check of D and compute T exactly) and so by definition ā ∈ φ(D ,Ct

d,ε) which
is a contradiction. Therefore τ ̸∈ T .

Hence with probability at least 5/6, for every ā ∈ Dk, if ā ∈ φ(D), then the r-type of ā in
D is in T , and if ā ∈ Dk \φ(D ,Ct

d,ε), then the r-type of ā in D is not in T .

We now use Lemmas 6.10 and 6.18 to prove our main result of this section (Theorem
6.19).

Theorem 6.19. Let φ(x̄) ∈ FO[σ ] where |x̄|= k. Then EnumCt
d
(φ) can be solved approxi-

mately with polylogarithmic preprocessing time and constant delay for answer threshold
function f (n) = γnk for any parameter γ ∈ (0,1).

Proof. Let r be the Hanf locality radius of φ . Let D ∈ Ct
d with |D|= n, let ε ∈ (0,1] and let

γ ∈ (0,1). We shall construct an ε-approximate enumeration algorithm for EnumCt
d
(φ) that

has answer threshold function f (n) = γnk, polylogarithmic preprocessing time and constant
delay.

In the preprocessing phase, the algorithm starts by running the algorithm from Lemma
6.18 on D to compute a set T of r-types with k centres. Then the algorithm from the proof of
Lemma 6.10 with µ = γ , δ = 5/6, V = Dk, V1 = {ā ∈ Dk | the r-type of ā in D is in T} and
V2 = Dk \V1 is run.

By Lemma 6.18, the set T is computed in polylogarithmic time. Hence as the prepro-
cessing phase from the proof of Lemma 6.10 runs in constant time, the whole preprocessing
phase runs in polylogarithmic time. By Lemma 6.10 there is constant delay between any
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two consecutive outputs. This concludes the analysis of the running time. We now prove
correctness.

Let S be the set of tuples enumerated. By Lemma 6.10 no duplicates are enumerated and
S ⊆ V1 = {ā ∈ Dk | the r-type of ā is in T}. By Lemma 6.18, with probability at least 5/6,
for every ā ∈ Dk, if ā ∈ φ(D), then the r-type of ā in D is in T , and if ā ∈ Dk \φ(D ,Ct

d,ε),
then the r-type of ā in D is not in T . Therefore with probability at least 5/6, φ(D) ⊆ V1

and V1 ⊆ φ(D ,C,ε). Hence with probability at least 5/6 > 2/3, S ⊆ φ(D)∪φ(D ,C,ε) as
required. As previously discussed with probability at least 5/6, φ(D) ⊆ V1 (note that if
φ(D)⊆V1, then |V1| ≥ |φ(D)|). If we assume that φ(D)⊆V1 and |φ(D)| ≥ γnk = γ|V |, then
|V1| ≥ γ|V | and by Lemma 6.10 with probability at least 5/6, S =V1 and hence φ(D)⊆ S.
Therefore the probability that φ(D)⊆ S if |φ(D)| ≥ γnk is at least (5/6)2 > 2/3 as required.
This completes the proof.

As discussed in Section 6.3, it is natural for us to expect that for queries that occur in
practice, the neighbourhood of the answer tuple has few connected components. We saw that
for local FO queries, in such scenarios we can reduce the number of answers required to
output all answers to the query with high probability (Theorem 6.14). The following theorem
shows how we can reduce the answer threshold function for general FO queries.

Theorem 6.20. Let φ(x̄) ∈ FO[σ ] and let c := conn(φ ,d). Then the problem EnumCt
d
(φ)

can be solved approximately with polylogarithmic preprocessing time and constant delay for
answer threshold function f (n) = γnc for any parameter γ ∈ (0,1).

We defer the proof of Theorem 6.20 to Section 6.5.

6.5 Reducing the answer threshold function

Before we prove Theorems 6.14 and 6.20 we start with some definitions (which are based on
those introduced by Kazana and Segoufin in [50]) and some lemmas.

For each type τ ∈ T σ ,d
r (k) we fix a representative for the corresponding r-type and fix a

linear order among its elements (where, for technical reasons, the centre elements always
come first). This way, we can speak of the first, second, . . . , element of an r-type. Let D be
a σ -db and let ā be a tuple in D with r-type τ . For technical reasons, if there are multiple
isomorphism mappings from the r-neighbourhood of ā to the fixed representative of τ , we
use the isomorphism mapping which is of smallest lexicographical order (recall that we
assume that D comes with a linear ordering on its elements). The cardinality of τ , denoted
as |τ|, is the number of elements in its representative.
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Let D be a σ -db and ā be a tuple of elements from D . We say that ā is r-connected if the
r-neighbourhood of ā in D is connected.

Let s ∈ N, let F = (α2, . . . ,αm) be a sequence of elements from [ds+1] (recall that the
maximum size of an s-neighbourhood is ds+1), and let x̄ = (x1, . . . ,xm) be a tuple. We write
x̄ = F(x1) for the fact that, for j ∈ {2, . . . ,m}, x j is the α j-th element of the s-neighbourhood
of x1. We call each such F an s-binding of x̄. Given s-type τ , we say that an s-binding F of x̄
is r-good for τ if F(x1) is r-connected for every x1 with type τ .

For a given tuple x̄ = (x1, . . . ,xk), an r-split of x̄ is a set of triples
C = {(C1,F1,τ1), . . . ,(Cℓ,Fℓ,τℓ)} where for each i ∈ [ℓ]

• /0 ̸=Ci ⊆ x̄, Ci ∩C j = /0 for i ̸= j ∈ [ℓ] and
⋃

1≤i≤ℓCi = {x1, . . . ,xk},

• τi is a 3rk-type with 1 centre, and

• Fi = (α2, . . . ,α|Ci|) is a 3rk-binding of a tuple with |Ci| elements such that for each
j ∈ {2, . . . , |Ci|}, α j ∈ [|τi|] and Fi is r-good for τi.

We write x̄i to represent the variables from Ci, xi
1 to represent the most significant variable

from Ci (i.e the variable in Ci which appears first in the tuple x̄), xi
2 to represent the second

most significant variable from Ci (i.e the variable in Ci which appears second in the tuple x̄)
and so on. We define the formula

SplitCr (x̄) :=
∧

1≤i ̸= j≤ℓ

(Nr(x̄i)∩Nr(x̄ j) = /0)∧
∧

(Ci,Fi,τi)∈C

(x̄i = Fi(xi
1)∧ sphτi

(xi
1)).

We let Sσ ,d
r (k) denote the set of r-splits of tuples with k elements for σ -dbs with degree at

most d. We denote the cardinality of Sσ ,d
r (k) as s(r,k).

Remark 6.21. For any r,k ∈ N, σ -db D and tuple ā ∈ Dk there exists exactly one r-split C
such that D |= SplitCr (ā).

Let D be a σ -db, let r,k,c ∈ N where c ≤ k and let C be an r-split for a tuple with k
elements. For tuples ā ∈ Dc and b̄ ∈ Dk we say that b̄ is found from ā and C, if c = |C|,
D |= SplitCr (b̄) and for every i ∈ [c], the element bi

1 (from b̄) according to C, is equal to ai.
Intuitively, ā consists of the most significant elements from b̄ according to C.

Remark 6.22. Let D be a σ -db and let r,k ∈N. For any b̄ ∈ Dk there exists exactly one r-split
C (of a tuple with k elements) and tuple ā from D such that b̄ is found from ā and C.

Lemma 6.23. Let r,k,c ∈ N where c ≤ k. There exists an algorithm which, given a σ -db D ,
a tuple ā ∈ Dc and an r-split C of a tuple with k elements as input, returns a tuple b̄ ∈ Dk
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that is found from ā and C if one exists and returns false otherwise. Furthermore if such a b̄
exists then it is unique.

The running time of the algorithm depends only on r, |C|, k, σ and d.

Proof. Let D be a σ -db, let ā ∈ Dc and let C be an r-split of a tuple with k elements. The
following algorithm returns a tuple b̄ ∈ Dk that is found from ā and C if one exists and returns
false otherwise.

1. If |C| ̸= c or D ̸|=
∧
(Ci,Fi,τi)∈C sphτi

(ai) then return false.

2. For each i ∈ [c], let b̄i be the tuple whose first element is ai such that D |= (b̄i = Fi(ai)).
Then let b̄ be the tuple found by combining all the b̄i according to C.

3. If D |=
∧

1≤i ̸= j≤c(Nr(b̄i)∩Nr(b̄ j) = /0), return b̄. Otherwise, return false.

The 3rk-neighbourhood of an element can be computed in time only dependent on r, k,
σ and d. Hence Steps 1 and 2 run in time only dependent on r, k, σ , d and |C| since each b̄i

can be found by exploring the 3rk-neighbourhood of ai. In Step 3, for every i ∈ [c], Nr(b̄i)

can be computed in time only dependent on r, |b̄i| ≤ k, σ and d and hence the running time
of Step 3 depends only on r, k, σ , d and |C| also. Therefore the overall running time of the
algorithm depends only on r, k, σ , d and |C| as required.

Assume a tuple b̄ is returned by the above algorithm from C and ā. Then clearly c = |C|,
D |= SplitCr (b̄) and each bi

1 according to C is equal to ai. Therefore b̄ is found from ā and C.
Now assume that there does exist a tuple b̄ ∈ Dk that is found from ā and C. Then

b̄ is unique as there is only one way to choose each tuple b̄i such that D |= (b̄i = Fi(ai)).
Furthermore, it is easy to see that b̄ will be outputted by the above algorithm.

Lemma 6.24. Let T ⊆ T σ ,d
r (k). We can compute a set of r-splits S for x̄ = (x1, . . . ,xk) such

that the following holds: For any σ -db D and tuple ā ∈ Dk, D |=
∨

τ∈T sphτ(ā) if and only if
D |=

∨
C∈S SplitCr (ā).

Proof. The algorithm proceeds as follows. Let S be an empty set. For each possible r-split
C = {(C1,F1,τ1), . . . ,(Cℓ,Fℓ,τℓ)} of the tuple x̄ do the following. Let D0 be the disjoint
union of the fixed representatives of each τi. Let b̄ ∈ Dk

0 be a tuple such that D0 |= SplitCr (b̄)
(note that such a tuple exists by the definition of an r-split). Then if b̄’s r-type in D0 is in T ,
add C to S.

Towards correctness let D be a σ -db and let ā∈Dk. Let C = {(C1,F1,τ1), . . . ,(Cℓ,Fℓ,τℓ)}
be the r-split such that D |= SplitCr (ā) (note that C is unique by Remark 6.21). Let D ′ be
the disjoint union of the fixed representatives of each 3rk-type that appears in C and let
b̄ ∈ D′k be a tuple such that D ′ |= SplitCr (b̄). It remains to show that N D

r (ā) ∼= N D ′
r (b̄).
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This completes the proof because by the construction of S, it implies that C ∈ S if and only
if the r-type of ā in D is in T (i.e. D |=

∨
τ∈T sphτ(ā) if and only if D |=

∨
C∈S SplitCr (ā)).

Recall that we use ai
j and bi

j to represent the elements from ā and b̄ respectively that
are the elements from Ci that appear j-th in the tuples ā and b̄ respectively. As D |=
SplitCr (ā) and D ′ |= SplitCr (b̄), by the definition of the formula SplitCr (x̄), it follows that
N D

3rk(a
i
1)

∼= N D ′
3rk (b

i
1) for every i ∈ [ℓ]. For every i ∈ [ℓ] and j ∈ [|Ci|], ai

j is at distance at
most (2r+ 1)(|Ci|− 1) ≤ (2r+ 1)(k− 1) ≤ 3rk− r from ai

1 in D , and bi
j is at distance at

most (2r+1)(|Ci|−1)≤ (2r+1)(k−1)≤ 3rk− r from bi
1 in D ′ (since each Fi is r-good

for τi). Therefore for every i ∈ [ℓ], the r-neighbourhoods of āi and b̄i are contained in the
3rk-neighbourhoods of ai

1 and bi
1 respectively and hence N D

r (āi)∼= N D ′
r (b̄i). Then since

ND
r (āi)∩ND

r (ā j) = /0 and ND ′
r (b̄i)∩ND ′

r (b̄ j) = /0 (since D |= SplitCr (ā) and D ′ |= SplitCr (b̄)),
it follows that N D

r (ā)∼= N D ′
r (b̄).

Let us first prove Theorem 6.20.

Proof of Theorem 6.20. Let D ∈ Ct
d with |D| = n, let ε ∈ (0,1] and let γ ∈ (0,1). We will

construct an ε-approximate enumeration algorithm for EnumCt
d
(φ) that has answer threshold

function f (n) = γnc, polylogarithmic preprocessing time and constant delay.
In the preprocessing phase, the algorithm starts by running the algorithm from Lemma

6.18 on D to compute a set T of r-types with k centres (where r is the Hanf locality radius of
φ ). The algorithm then computes the set of r-splits S from T as in Lemma 6.24. An empty
queue Q is then initialised which will store tuples to be outputted in the enumeration phase.

Let V =
⋃

1≤i≤c Di. Let V1 be the set that contains all ā ∈V such that there exists a C ∈ S
and b̄ ∈ Dk where b̄ is found from ā and C. Finally let V2 =V \V1. Note that by Lemma 6.23,
given a tuple ā ∈V it can be decided in constant time whether ā ∈V1.

The algorithm from Lemma 6.10 is then run with µ = γ/(c · s(r,k)), δ = 4/5 and V , V1

and V2 as defined above. Once the enumeration phase of the algorithm from Lemma 6.10
starts we do the following.

1. Each time a tuple ā is enumerated from the algorithm from Lemma 6.10, for each
C ∈ S: run the algorithm from Lemma 6.23 with ā and C and if a tuple is returned add
it to Q.

2. If Q ̸= /0, output the next tuple from Q; stop otherwise.

3. Repeat Steps 1-2 until there is no tuple to output in step 2.

From Lemma 6.18 the set T can be computed in polylogarithmic time. The set S can
be constructed in constant time as |T | is a constant and the number of possible r-splits
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for a k-tuple is also a constant. Then as the preprocessing phase from the algorithm from
Lemma 6.10 runs in constant time the overall running time of the preprocessing phase is
polylogarithmic.

In the enumeration phase, by Lemma 6.10 there is constant delay between the outputs of
the tuples ā used in Step 1. For every such tuple, by the definition of the set V1, there exists at
least one r-split in S that leads to a tuple being added to Q. Then as |S| is a constant and the
algorithm from Lemma 6.23 runs in constant time, the enumeration phase has constant delay
as required. This concludes the analysis of the running time. Let us now prove correctness.

By Lemma 6.10 in Step 1 of the enumeration phase no duplicate tuples ā will be consid-
ered. Since for every tuple b̄ ∈ Dk there exists exactly one r-split C and tuple ā from D such
that b̄ is found from C and ā (Remark 6.22), no duplicates will be enumerated.

Now let us assume that the set of r-types T were computed correctly (i.e. for any ā ∈ Dk,
if ā ∈ φ(D), then the r-type of ā in D is in T , and if ā ∈ Dk \φ(D ,Ct

d,ε), then the r-type of
ā in D is not in T ) which happens with probability at least 5/6 by Lemma 6.18. Let b̄ ∈ Dk

have r-type τ in D and let C ∈ Sσ ,d
r (k) be such that D |= SplitCr (b̄).

If b̄ ∈ Dk \ φ(D ,Ct
d,ε), τ ̸∈ T and hence by Lemma 6.24, C ̸∈ S and so b̄ will not be

enumerated. Therefore with probability at least 5/6 only tuples from φ(D ,Ct
d,ε) will be

enumerated.
If b̄ ∈ φ(D), then τ ∈ T and hence by Lemma 6.24, C ∈ S. Let ā be the tuple such that

b̄ is found from ā and C. Note that as the maximum number of connected components in
the r-neighbourhood of b̄ in D is c, |ā| ≤ c and hence ā ∈ V . Then by definition ā ∈ V1.
Hence if every tuple from V1 is considered in Step 1 of the enumeration phase, every tuple in
φ(D) will be enumerated. By Lemma 6.10 with probability at least δ if |V1| ≥ µ|V |, every
tuple from V1 will be considered in Step 1. We know that |V1| ≥ |φ(D)|/s(r,k) since every
ā ∈V1 leads us to at most |S| ≤ s(r,k) many tuples from φ(D) (since by Lemma 6.23 for any
r-split C ∈ S there is at most one tuple that is found from ā and C). If |φ(D)| ≥ γnc then
|V1| ≥ γnc/s(r,k)≥ γ|V |/(c · s(r,k)) = µ|V | since |V |= ∑

c
i=1 ni ≤ cnc and by the choice of

µ . Hence if |φ(D)| ≥ γnc with probability at least δ ·5/6 = 2/3 every tuple from φ(D) will
be enumerated. This completes the proof.

We now prove Theorem 6.14 which is similar to the proof of Theorem 6.20.

Proof of Theorem 6.14. First let us note that if φ is local then by Lemma 6.6 we can compute
a set T of r-types (where r is the locality radius of φ ) in constant time such that for any σ -db
D and tuple ā from D , the r-type of ā in D is in T if and only if ā ∈ φ(D).

Then to construct an algorithm as in the theorem statement we can just use the algorithm
from the proof of Theorem 6.20 but change it in two ways. Firstly we allow the input class to
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be any class of bounded degree σ -dbs and secondly, we construct T as discussed above. The
only part of the algorithm from the proof of Theorem 6.20 that runs in non-constant time is
the construction of T and hence our algorithm has the required running times.

To prove correctness first note that in the proof of Theorem 6.20 the only reason the input
class was Ct

d was to allow the set T to be computed efficiently and with high probability
correctly. Now T is computed exactly and since the algorithm will only enumerate tuples
that have r-type in T , only tuples that are answers to the query for the input database will be
enumerated as required. The proof of (2) from the theorem statement is then very similar
to the last paragraph in the proof of Theorem 6.20 (the only difference is that now for local
queries this happens with higher probability as T is computed exactly every time).

6.6 Further results

In this section, we start by generalising our result on approximate enumeration of general FO
queries (Theorem 6.20). We identify a condition that we call Hanf-sentence testability, which
is a weakening of the bounded tree-width condition, under which we still get approximate
enumeration algorithms with the same probabilistic guarantees as before. Finally, we discuss
approximation versions of query membership testing and counting.

6.6.1 Weakening the conditions for approximate enumeration

We first introduce Hanf-sentence testability, which is based on the Hanf normal form of a
formula. It allows us to compute the set of r-types as in Lemma 6.18 efficiently. Theorem 6.28
below is the generalisation of Theorem 6.20, and Example 6.29 illustrates the use of this
generalisation.

Definition 6.25 (Hanf-sentence testable). Let φ(x̄) ∈ FO[σ ] and χ(x̄) be the formula in the
form (6.1) of Lemma 6.4 that is d-equivalent to φ . Let m be the number of conjunctive clauses
in χ . We say that φ is Hanf-sentence testable on C in time H(n) if for every i ∈ [m], the
formula ∃x̄sphτi

(x̄)∧ψs
i is uniformly testable on C in time at most H(n).

We will illustrate Hanf sentence testability in the following example.

Example 6.26. Let φ be as in Example 6.16 and let G ∈ Gd . If there exists (u,v) ∈V (G )2

with 2-type τ1 then there exists a vertex with 2-type τ4 (where τ4 is as in Example 6.1)
and vice versa. Hence, φ can be easily transformed into the form (6.1) of Lemma 6.4 by
replacing the subformula ¬(∃z∃wsphτ1

(z,w)) with ¬∃≥1zsphτ4
(z). The resulting formula

then has two conjunctive clauses, sphτ2
(x,y)∧¬∃≥1zsphτ4

(z) and sphτ1
(x,y). We saw in
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Example 6.1 that ∃x∃ysphτ2
(x,y)∧¬∃≥1zsphτ4

(z) is uniformly testable on Gd in constant
time. The formula ∃x∃ysphτ1

(x,y) is trivially testable in constant time on Gd since we can
insert a copy of τ1 into a graph G ∈ Gd with at most 8d + 7 modifications and therefore
if 8d + 7 ≤ εd|V (G )| we can always accept and otherwise (i.e. if |V (G )| < (8d + 7)/εd)
we can just do a full check of the graph for a copy of τ1 in constant time. Hence, φ is
Hanf-sentence testable on Gd in constant time.

Note that any FO query is Hanf sentence testable on Ct
d in polylogarithmic time. We will

now prove a result that is similar to Lemma 6.18 but works for any class C and FO query
φ where φ is Hanf-sentence testable on C. This will then be used to show we can replace
bounded tree-width with Hanf sentence testability and still obtain enumeration algorithms
with the same probabilistic guarantees.

Lemma 6.27. Let φ(x̄) ∈ FO[σ ] with |x̄|= k and Hanf locality radius r and let ε ∈ (0,1]. If
φ is Hanf-sentence testable on C in time H(n) then there exists an algorithm Bε that runs
in time O(H(n)), which, given oracle access to a σ -db D ∈ C as input along with |D|= n,
computes a set T of r-types with k centres such that with probability at least 5/6, for any
ā ∈ Dk,

1. if ā ∈ φ(D), then the r-type of ā in D is in T , and

2. if ā ∈ Dk \φ(D ,C,ε), then the r-type of ā in D is not in T .

Proof. The algorithm Bε is nearly identical to the algorithm Aε from Lemma 6.18. The only
difference being is we replace the input class Ct

d with C. The ε/2-testers πi used now have
input class C (rather than Ct

d) and as φ is Hanf-sentence testable on C in time H(n) each πi

runs in time O(H(n)) (rather than polylogarithmic). Since all other parts of the algorithm Aε

run in constant time, it follows that Bε runs in time O(H(n)) as required. The proof of the
correctness of Bε is then identical to the proof of the correctness of Aε (but with the input
class Ct

d replaced with C).

We will now show that if a FO query φ is Hanf-sentence testable on a class C in time
H(n) then EnumC(φ) can be solved approximately with preprocessing time O(H(n)) and
constant delay. Note we are still able to reduce the answer threshold function.

Theorem 6.28. Let φ(x̄) ∈ FO[σ ] and let c := conn(φ ,d). If φ is Hanf-sentence testable
on C in time H(n), then EnumC(φ) can be solved approximately with preprocessing time
O(H(n)) and constant delay for answer threshold function f (n) = γnc for any γ ∈ (0,1).
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Proof. Let ε ∈ (0,1], let γ ∈ (0,1) and let us assume that φ is Hanf-sentence testable on C in
time H(n). If we take the ε-approximate enumeration algorithm for EnumCt

d
(φ) with answer

threshold function f (n) = γnc given in the proof of Theorem 6.20, which we will denote
by Eφ ,Ct

d ,ε
, and make the following changes: replace the input class Ct

d with C, and use
Lemma 6.27 instead of Lemma 6.18 to compute the set of r-types T . Then we argue that the
resulting algorithm Eφ ,C,ε is an ε-approximate enumeration algorithm for EnumC(φ) with
preprocessing time O(H(n)) and constant delay for answer threshold function f (n) = γnc.

In the preprocessing phase of Eφ ,Ct
d ,ε

the only part that runs in non-constant time is the
construction of the set T (which takes polylogarithmic time). In Eφ ,C,ε it takes O(H(n))
time to compute T and hence Eφ ,C,ε has preprocessing time O(H(n)). Since Eφ ,Ct

d ,ε
has

constant delay, Eφ ,C,ε also has constant delay.
Since the only differences in Lemma 6.18 and Lemma 6.27 is the running times and the

input class, the proof of the correctness of Eφ ,C,ε is the same as the proof of the correctness
of Eφ ,Ct

d ,ε
but with the input class Ct

d replaced with C.

We will now return to our running example where we discuss an FO query and input
class, which previous theorems did not give us an approximate enumeration algorithm for,
but by Theorem 6.28 can now be approximately enumerated.

Example 6.29. Let φ be the formula as in Example 6.16. We saw in Example 6.26 that φ

is Hanf-sentence testable on Gd in constant time and that the formula in the form (6.1) of
Lemma 6.4 that is d-equivalent to φ is χ(x,y) = sphτ1

(x,y)∨ (sphτ2
(x,y)∧¬∃≥1zsphτ4

(z)).
The maximum number of connected components of the neighbourhood types that appear
in the sphere-formulas of χ is one. Hence, by Theorem 6.28, EnumGd(φ) can be solved
approximately with constant preprocessing time and constant delay for answer threshold
function f (n) = γn for any parameter γ ∈ (0,1).

6.6.2 Approximate query membership testing

The query membership testing problem for φ(x̄)∈ FO[σ ] over C is the computational problem
where, for a database D ∈ C, we ask whether a given tuple ā ∈ Dk satisfies ā ∈ φ(D). We
call ā the dynamical input and the answer (‘true’ or ‘false’) the dynamical answer. Similar to
query enumeration, the goal is to obtain an algorithm, that, after a preprocessing phase, can
answer membership queries for dynamical inputs very efficiently. The preprocessing phase
should also be very efficient. Kazana [49] shows that the query membership testing problem
for any φ(x̄) ∈ FO[σ ] over C can be solved by an algorithm with a linear time preprocessing
phase, and an answering phase that, for a given dynamical input, computes the dynamical
answer in constant time.



108 Towards approximate query enumeration with sublinear preprocessing time

Given a local FO query, by Lemma 6.7, for any σ -db D and tuple ā from D we can
test in constant time whether ā ∈ φ(D). Hence in this section we shall focus on general FO
queries.

We introduce an approximate version of the query membership testing problem. We
say that the query membership testing problem for φ(x̄) ∈ FO[σ ] over C can be solved
approximately with an O(H(n))-time preprocessing phase and constant time answering
phase if for any ε ∈ (0,1], there exists an algorithm, which is given oracle access to a
database D ∈ C and |D|= n as an input, and proceeds in two phases.

1. A preprocessing phase that runs in time O(H(n)).

2. An answer phase where, given dynamical input ā ∈ Dk, the following is computed in
constant time.

• If ā ∈ φ(D), the algorithm returns ‘true’, with probability at least 2/3, and

• if ā /∈ φ(D ,C,ε), the algorithm returns ‘false’, with probability at least 2/3.

The following follows from the proof of Lemma 6.18.

Theorem 6.30. The query membership testing problem for φ(x̄)∈ FO[σ ] (where |x̄|= k) over
Ct

d can be solved approximately with a polylogarithmic preprocessing phase and constant
time answering phase.

Proof. Let r be the Hanf locality radius of φ . In the preprocessing phase a set T of r-types
as in Lemma 6.18 is computed. Then in the answer phase, given a tuple ā ∈ Dk, the r-type
τ of ā is computed. If τ ∈ T then the algorithm returns ‘true’, otherwise it returns ‘false’.
By Lemma 6.18 the set T can be computed in polylogarithmic time and it takes constant
time to calculate τ . By Lemma 6.18 with probability at least 5/6 > 2/3, if ā ∈ φ(D), then
the r-type of ā in D is in T , and if ā ∈ Dk \φ(D ,Ct

d,ε), then the r-type of ā in D is not in
T . Therefore with probability at least 2/3 if ā ∈ φ(D) the algorithm outputs ‘true’ and if
ā /∈ φ(D ,C,ε) the algorithm outputs ‘false’ as required.

Note that we can get a similar result for Hanf sentence testable FO queries over any class
of bounded degree graphs.

6.6.3 Approximate counting

The counting problem for φ(x̄) ∈ FO[σ ] over C is the problem of, given a database D ∈ C,
compute |φ(D)|. It was shown in [15] that the counting problem for any φ(x̄) ∈ FO[σ ] over
C can be solved in linear time.
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Recall that EstimateFrequenciesr,k,s is the algorithm, which is given oracle access to
an input database D ∈ C, that samples s tuples from Dk uniformly and independently and
explores their r-neighbourhoods. EstimateFrequenciesr,k,s returns the distribution vector v̄ of
the r-types of this sample. EstimateFrequenciesr,k,s has constant running time, independent
of |D|. By Lemma 2.19 if

s ≥ c(r,k)2

λ 2 · ln
(2c(r,k)

1−δ

)
then with probability at least δ the vector v̄ returned by EstimateFrequenciesr,k,s on input D

satisfies ∥v̄−dvr,k(D)∥1 ≤ λ .
By combining Lemmas 6.18 and 6.24 and Lemma 2.19 we get the following result.

Theorem 6.31. Let φ(x̄) ∈ FO[σ ] with |x̄| = k, let ε ∈ (0,1], let λ ∈ (0,1) and let c :=
conn(φ ,d). There exists an algorithm, which, given oracle access to D ∈ Ct

d and |D|= n as
an input, returns an estimate of |φ(D)| such that with probability at least 2/3 the estimate is
within the range [|φ(D)|−λcnc, |φ(D)∪φ(D ,Ct

d,ε)|+λcnc]. Furthermore, the algorithm
runs in polylogarithmic time in n.

Proof. Let r be the Hanf locality radius of φ , let δ = (9/10)1/c and for every i ∈ [c], let

si =
c(3rk, i)2

λ 2 · ln(2c(3rk, i)
1−δ

).

The algorithm first runs EstimateFrequencies3rk,i,si
on input D for every i ∈ [c]. Let v̄1, . . . , v̄c

be the vectors returned.
Next, the algorithm computes a set T of r-types with k centres as in Lemma 6.18, and

then computes a set of r-splits S from T as in Lemma 6.24. Let χ be the formula in the form
(6.1) of Lemma 6.4. Note that since T contains only r-types that appear in χ , by Lemma
6.24 and the definition of the formula SplitCr (x̄) every C ∈ S satisfies |C| ≤ c. Then for each
i ∈ [c], let v̄′i be the vector with c(3rk, i) components where the j-th component is the number
of C ∈ S such that in the fixed representative σ -db of the j-th 3rk-type with i centres there
exists a tuple that is found from C and the tuple of centres.

Then to estimate |φ(D)| the algorithm returns

∑
i∈[c]

(
∑

j∈[c(3rk,i)]
ni · vi[ j] · v′i[ j]

)
.

Since c is a constant and each EstimateFrequencies3rk,i,si
runs in constant time, it takes

constant time to compute the vectors v̄1, . . . , v̄c. By Lemma 6.18, T is computed in poly-
logarithmic time. Computing S does not depend on D and as each c(3rk, i) and |S| are
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constants the tuples v̄′i can be computed in constant time by Lemma 6.23. Finally, the esti-
mate of |φ(D)| is computed from the vectors v̄i and v̄′i and hence the overall running time is
polylogarithmic. Now let us prove correctness.

By Lemma 6.18 with probability at least 5/6, for any ā ∈ Dk, if ā ∈ φ(D), then the r-type
of ā in D is in T , and if ā ∈ Dk \φ(D ,Ct

d,ε), then the r-type of ā in D is not in T . Therefore,
with probability at least 5/6 the number of tuples in D with r-type in T is within the range
[|φ(D)|, |φ(D)∪φ(D ,Ct

d,ε)|. Hence our aim is to estimate the number of tuples with r-type
in T . We argue that the number of tuples in D with r-type in T is equal to

t = ∑
i∈[c]

(
∑

j∈[c(3rk,i)]
ni ·dv3rk,i(D)[ j] · v′i[ j]

)
.

Let ā ∈ Dk have r-type τ in D . Let C be the r-split such that D |=
∨

C∈S SplitCr (ā) and let
b̄ be the tuple from D such that ā is found from C and b̄ (note that C and b̄ are unique by
Remark 6.22). Let τ ′ be the 3rk-type of b̄ in D . First let us assume that τ ∈ T . Then we will
show that ā will be counted exactly once in the sum t.

In the fixed representative σ -db of τ ′ there exists a tuple that is found from C and the
tuple of centres (since the 3rk-type of the i-th centre is equal to the 3rk-type of bi in D).
Therefore the value of v′|b̄|[τ

′] will be increased by one for C. Since there exists no other

C ∈ S and tuple b̄ from D such that ā is found from C and b̄, ā will be counted exactly once
by t. Now assume τ ̸∈ T . We will show that ā will not be counted by t. By the construction
of S, C ̸∈ S. Therefore the value of v′|b̄|[τ

′] will not be increased by one for C. Since there

exists no other C ∈ S and tuple b̄ from D such that ā is found from C and b̄, ā will not be
counted by t. Therefore the number of tuples in D with r-type in T is equal to t.

By Lemma 2.19, with probability at least (9/10)c/c = 9/10 for every i ∈ [c], ∥v̄i −
dv3rk,i(D)∥1 ≤ λ . Hence with probability at least 9/10, ∑i∈[c] ∥v̄i − dv3rk,i(D)∥1 ≤ cλ .
Therefore by looking at the two extreme cases, with probability at least 9/10 ·5/6 > 2/3

|φ(D)|− cλnc ≤ ∑
i∈[c]

(
∑

j∈[c(3rk,i)]
ni · vi[ j] · v′i[ j]

)
≤ |φ(D)∪φ(D ,Ct

d,ε)|+ cλnc

as required.

The obvious limitation of Theorem 6.31 is that |φ(D)∪φ(D ,Ct
d,ε)| can be much larger

than |φ(D)|, as discussed in Example 6.17. Nevertheless, in application where the focus is
on structural closeness and very efficient running time, this might be tolerable.
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6.7 Reducing the running time of the preprocessing phase
to constant

In Chapter 5 we introduced the BDRD+/− model. We showed that in this model any property
definable by a CMSO sentence (and hence by an FO sentence) on Ct

d is uniformly testable
in constant time (Theorem 5.15). In this section, we will modify our definition of ε-close
answers to FO queries to use the distance measure of the BDRD+/− model (i.e. allow
inserting and deleting elements as well as tuples). We can then modify the proof of Lemma
6.18 to use Theorem 5.15 (rather than Theorem 2.35) to show that for a given database D

and FO query φ we can compute a set of neighbourhood types in constant time, that with
high probability only contains the neighbourhood types of tuples that are answers or close
to being answers to φ on D . This then allows us to solve EnumCt

d
(φ) approximately (in the

BDRD+/− model) for any φ ∈ FO with constant (rather than polylogarithmic) preprocessing
time and constant delay.

We will start by defining ε-close answers to FO queries in the BDRD+/− model.

Definition 6.32 (ε-close answers to FO queries in the BDRD+/− model). Let D ∈ C be a
σ -db and let ε ∈ (0,1]. Let φ(x̄) ∈ FO[σ ] be a query with k free variables and Hanf locality
radius r. A tuple ā ∈ Dk is ε-close to being an answer of φ on D and C in the BDRD+/−
model if D can be modified (with tuple and element insertions and deletions) into a σ -db
D ′ ∈C with at most εd min{|D|, |D′|} modifications (i.e dist+/−(D ,D ′)≤ εd min{|D|, |D′|})
such that ā ∈ φ(D ′) and the r-type of ā in D ′ is the same as the r-type of ā in D .

We denote the set of all tuples that are ε-close to being an answer of φ on D and C in
the BDRD+/− model as φ+/−(D ,C,ε). Note that φ(D)⊆ φ+/−(D ,C,ε).

We will illustrate Definition 6.32 in the following example.

Example 6.33. Let τ1, τ2, τ3 and φ(x,y) be as in Example 6.16. Let G ∈ Gd be a graph on
n vertices and let ε ∈ (0,1]. First observe that for any pair (u,v) ∈ V (G )2 with 2-type τ1,
(u,v) ∈ φ(G ) and hence (u,v) ∈ φ+/−(G ,Gd,ε).

Assume (u,v) ∈ V (G )2 has 2-type τ2. Then (u,v) ∈ φ(G ) if and only if G contains
no vertex pair of 2-type τ1. The pair (u,v) is in φ+/−(G ,Gd,ε) if and only if G can
be modified (with edge and vertex modifications) into a graph G ′ ∈ Gd with at most
εd min{|V (G )|, |V (G ′)|} modifications such that (u,v) ∈ φ(G ′) and the 2-type of (u,v)
in G ′ is still τ2.

For example if there exists a graph G ′′ ∈ Gd such that G is at distance at most

εd min{n, |V (G ′′)|}−4d −10
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from G ′′ (assuming that n is large enough such that εd min{n, |V (G ′′)|}−4d −10 > 0) and
such that G ′′ |= ∃x∃ysphτ2

(x,y)∧¬(∃z∃wsphτ1
(z,w)) then (u,v) ∈ φ+/−(G ,Gd,ε). To see

this let us assume that such a graph G ′′ exists. Note that since Gd is closed under isomorphism
we can assume that either V (G )⊆V (G ′′) or V (G ′′)⊆V (G ). Then if (u,v) ∈V (G ′′)2 and
(u,v) has 2-type τ2 in G ′′, (u,v) ∈ φ+/−(G ,Gd,ε) since εd min{n, |V (G ′′)|}− 4d − 10 ≤
εd min{n, |V (G ′′)|}. So let us assume that either (u,v) ̸∈ V (G ′′)2 or (u,v) ∈ V (G ′′)2 but
(u,v) does not have 2-type τ2 in G ′′. Let (u1,v1) ∈ V (G ′′)2 have 2-type τ2 (we know one
exists). Then if u ̸∈ V (G ′′), remove u1 and insert u into G ′′ and similarly if v ̸∈ V (G ′′),
remove v1 and insert v into G ′′. This requires at most 4 modifications. Then we remove
every edge that has u, v, u1 or v1 as an endpoint (there are at most 2d + 3 such edges),
and then for each edge we removed (including those which were removed as a result of
removing either u1 or v1) we insert the same edge back in but swapping any endpoint u
to u1 and v to v1 and vice versa (this requires at most 2(2d +3) many edge modifications
in total). By doing this we have essentially just swapped the labels of the vertices u and
u1 and v and v1. Hence in the resulting graph G ′, (u,v) has 2-type τ2 and G ′ still contains
no pair of vertices with 2-type τ1. Therefore (u,v) ∈ φ(G ′), and the distance between G

and G ′ is at most εd min{n, |V (G ′′)|}−4d−10+2(2d+3)+4 = εd min{n, |V (G ′)|} since
|V (G ′′)|= |V (G ′)|.

Finally, for any pair (u,v) ∈V (G )2 with 2-type τ3, (u,v) ̸∈ φ(G ) and
(u,v) ̸∈ φ+/−(G ,Gd,ε) as for every G ′ ∈ Gd there does not exist a pair with 2-type τ3 that is
in φ(G ′).

We say that the problem EnumC(φ) can be solved approximately in the BDRD+/− model
with O(H(n)) preprocessing time and constant delay for answer threshold function f (n), if
for every parameter ε ∈ (0,1], there exists an algorithm, which is given oracle access to an
input database D ∈ C and |D|= n as an input, that proceeds in two steps.

1. A preprocessing phase that runs in time O(H(n)), and

2. an enumeration phase that enumerates a set S of distinct tuples with constant delay
between any two consecutive outputs.

Moreover, we require that with probability at least 2/3, S ⊆ φ(D)∪φ+/−(D ,C,ε) and, if
|φ(D)| ≥ f (n), then φ(D)⊆ S.

Before proving the main result of this section on the approximate enumeration of FO
queries in the BDRD+/− model, we prove a similar lemma to Lemma 6.18 for the BDRD+/−
model. However, in the BDRD+/− model we obtain an algorithm that runs in constant time
rather than polylogarithmic.
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Lemma 6.34. Let φ(x̄) ∈ FO[σ ] with |x̄| = k and Hanf locality radius r and let ε ∈ (0,1].
There exists an algorithm Aε , which, given oracle access to a σ -db D ∈ Ct

d as input along
with |D|= n, computes a set T of r-types with k centres such that with probability at least
5/6, for any ā ∈ Dk,

1. if ā ∈ φ(D), then the r-type of ā in D is in T , and

2. if ā ∈ Dk \φ+/−(D ,Ct
d,ε), then the r-type of ā in D is not in T .

Furthermore, Aε runs in constant time.

Proof. If n < 8k/ε then we do a full check of D and form the set T exactly. Otherwise, Aε

is similar to the algorithm given in Lemma 6.18. The algorithm Aε starts by computing
the formula χ(x̄) that is d-equivalent to φ and is in the form (6.1) as in Lemma 6.4. Let m
be as in Lemma 6.4. By Theorem 5.15, any sentence definable in FO is uniformly testable
on Ct

d in constant time (in the BDRD+/− model). Hence for every i ∈ [m] there exists an
ε/2-tester that runs in constant time and with probability at least 2/3 accepts if the input
satisfies ∃x̄sphτi

(x̄)∧ψs
i and rejects if the input is ε/2-far (in the BDRD+/− model) from

satisfying ∃x̄sphτi
(x̄)∧ψs

i . We can amplify this probability to (5/6)1/m by repeating the
tester a constant number of times and we denote the resulting ε/2-tester as πi. Next, Aε

computes the set T as follows.

1. Let T = /0.

2. For each i ∈ [m], run πi with D as input, and if πi accepts, then add τi to T .

By Lemma 6.4, χ(x̄) can be computed in constant time (only dependent on d, ∥φ∥ and
∥σ∥). Moreover, each ε/2-tester πi runs in constant time. Since m is a constant, Aε runs in
constant time.

It now only remains to prove correctness. Let ā ∈ Dk and let τ be the r-type of ā in D . Let
us assume that each πi correctly accepts if D satisfies ∃x̄sphτi

(x̄)∧ψs
i and correctly rejects

if D is ε/2-far (in the BDRD+/− model) from satisfying ∃x̄sphτi
(x̄)∧ψs

i , which happens
with probability at least (5/6)(1/m)·m = 5/6.

First let us assume that ā ∈ φ(D). With the same arguments given in the proof of Lemma
6.18, τ ∈ T .

Now let us assume that ā ∈ Dk \ φ+/−(D ,Ct
d,ε). We will show that τ ̸∈ T . For a

contradiction let us assume that τ ∈ T and hence there must exist some i ∈ [m] such that
D is ε/2-close to satisfying ∃x̄sphτi

(x̄)∧ψs
i on Ct

d and τi = τ . By definition there exists a
σ -db D ′ ∈ Ct

d such that D ′ |= ∃x̄sphτi
(x̄)∧ψs

i and dist+/−(D ,D ′) ≤ εd min{|D|, |D′|}/2.
Since any property defined by a FO sentence on Ct

d is closed under isomorphism we can
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assume that D ′ can be obtained from D with at most εd min{|D|, |D′|}/2 tuple and element
modifications. Note that ā may not be in D′k. If ā ̸∈ D′k or in D ′ the r-type of ā is no longer
τ then we can modify D ′ with at most 4dk+2k tuple and element modifications into a σ -db
D ′′ ∈ Ct

d such that ā ∈ D′k, the r-type of ā is τ in D ′′ and D ′′ ∼= D ′ (and hence ā ∈ φ(D ′′)).
To do this we choose a tuple b̄ ∈ D′k whose r-type is τ in D ′. Then for each element ai in
ā, if ai ̸∈ D′, then insert ai into D ′ and remove the corresponding element bi of the tuple b̄
from D ′. This requires at most 2k element modifications. We then remove every tuple that
contains an element from ā or b̄, and for every tuple that was removed (including those which
were removed as a result of removing an element of b̄ from D) add back the same tuple but
with the elements from ā exchanged for the corresponding elements from b̄ and vice versa.
This requires at most 4dk tuple modifications. Hence

dist+/−(D ,D ′′)≤ εd min{|D|, |D′|}
2

+4dk+2k

≤ εd min{|D|, |D′|}
2

+6dk

=
εd min{|D|, |D′′|}

2
+6dk

since |D′|= |D′′|. Furthermore, since dist+/−(D ,D ′)≤ εd min{|D|, |D′|}/2, we have |D′| ≥
|D|− εd min{|D|, |D′|}/2 ≥ |D|− εd|D′|/2 and hence |D′′|= |D′| ≥ |D|/(1+ εd/2). Then
if |D| ≥ 12k(1+ εd/2)/ε (which we can assume as otherwise we do a full check of D

and compute T exactly), min{|D|, |D′′|} ≥ 12k/ε and so 6dk ≤ εd min{|D|, |D′′|}/2. Hence
dist+/−(D ,D ′′)≤ εd min{|D|, |D′′|}. Therefore by definition ā ∈ φ+/−(D ,Ct

d,ε) which is
a contradiction and so τ ̸∈ T .

Hence with probability at least 5/6, for every ā ∈ Dk, if ā ∈ φ(D), then the r-type of ā in
D is in T , and if ā ∈ Dk \φ+/−(D ,Ct

d,ε), then the r-type of ā in D is not in T .

Theorem 6.35. Let φ(x̄) ∈ FO[σ ] and let c := conn(φ ,d). Then the problem EnumCt
d
(φ)

can be solved approximately in the BDRD+/− model with constant preprocessing time and
constant delay for answer threshold function f (n) = γnc for any parameter γ ∈ (0,1).

Proof. The proof of this Theorem is very similar to the proof of Theorem 6.20. The
algorithm is the same except T is computed by Lemma 6.34 in constant time. That is
the set T of neighbourhood types computed in the algorithm now, with high probability,
contains all r-types of ā ∈ φ(D) but no r-types of ā ∈ Dk \ φ+/−(D ,Ct

d,ε) (rather than
ā ∈ Dk \φ(D ,Ct

d,ε)). Since the only step in the algorithm given in the proof of Theorem
6.20 that runs in non-constant time is the construction of T , our algorithm has constant
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preprocessing time and constant delay as required. The proof of correctness is then identical
to that given in the proof of Theorem 6.14.





Chapter 7

Conclusion

7.1 Summary of contributions

In this thesis, we have studied existing models and introduced new models for the approximate
evaluation of logically defined relational database queries. For boolean queries, we used the
framework of property testing, where we used the bounded degree relational database model
(the BDRD model) and introduced a new model, which is an extension of the BDRD model,
called the BDRD+/− model. For non-boolean queries, we introduced a new model for the
problem of approximate query enumeration on relational databases of bounded degree that
can be seen as a relaxation of the classical exact version.

7.1.1 Approximate boolean query evaluation

In the BDRD model, in Chapter 3, we noted that the existential fragment of FO is (trivially)
uniformly testable in constant time, and we proved that any property definable in the universal
fragment of FO is also uniformly testable in constant time. Furthermore, in Chapter 5 we
gave an alternative proof of the constant time uniform testability of hyperfinite monotone
properties in the BDRD model.

In Chapter 5 we introduced our new model, the BDRD+/− model, where we also allow
the insertion and deletion of elements in our distance measure. In this model, we showed
that any property definable by a CMSO sentence is uniformly testable in constant time on
databases of bounded degree and bounded tree-width (Theorem 5.15). This result improves
the best known running time for such properties given in [4].

We actually proved two more general results than Theorem 5.15. First, we proved that any
hyperfinite property whose histogram vectors form a semilinear set are uniformly testable in
constant time in the BDRD+/− model (Theorem 5.14). We then proved that being hyperfinite
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and having a set of histogram vectors that are close to being semilinear is enough for constant
time uniform testability in the BDRD+/− model (Theorem 5.19). We proved that hyperfinite
hereditary properties are examples of such properties, i.e. they are close to being semilinear
(Lemma 5.26). Combining Theorem 5.19 and Lemma 5.26 we get an alternative proof that
hyperfinite hereditary properties are uniformly testable in constant time in the BDRD+/−
model (Theorem 5.22). We believe that this highlights that semilinearity of neighbourhood
histograms is a natural and powerful concept.

7.1.2 Constant size databases that preserve the local structure of large
databases

On the way to proving our results in the BDRD+/− model, we partially answered an open
question by Alon. Alon [55, Proposition 19.10] proved that on bounded degree graphs, for
any graph G , radius r and ε > 0 there always exists a graph H whose size is independent of
|V (G )| and whose r-neighbourhood distribution vector satisfies ∥dvr(G )−dvr(H )∥1 ≤ ε .
This easily extends to relational databases. The proof of this result is only existential, however,
and does not provide explicit bounds on the size of H , it was suggested as an open problem
by Alon to find such bounds. In Chapter 4 we found explicit bounds on the size of H for
graphs/databases from a class of graphs/databases whose histogram vectors form a semilinear
set, and for hyperfinite graphs/databases.

7.1.3 Approximate enumeration

In Chapter 6 we introduced a new model for the problem of approximate FO query enumer-
ation on relational databases of bounded degree. For a query q, class of bounded degree
databases C and database D ∈ C, we relax the set of answers q(D) by admitting tuples
from the superset q(D ,C,ε)⊇ q(D), a set of ε-approximate answers, that are structurally
close to being in q(D) (note that for local FO queries q(D ,C,ε) = q(D)). Our enumera-
tion algorithms, with high probability (1) only enumerate tuples in q(D ,C,ε), and (2) if
|q(D)| ≥ f (n), where f (n) is the answer threshold function, then every tuple in q(D) is
enumerated.

We proved that for any local FO queries q with arity k and γ ∈ (0,1), on any class
of databases C of bounded degree, the enumeration problem EnumC(q) can be solved
approximately with a constant time preprocessing phase and constant delay for answer
threshold function f (n) = γnk (Theorem 6.13). Furthermore, for local FO queries with
probability 1 we only enumerate actual answers. We then proved that in our model, for
all general FO queries q with arity k and γ ∈ (0,1), the enumeration problem EnumCt

d
(q)
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can be solved approximately with a preprocessing phase that runs in polylogarithmic time
and constant delay for answer threshold function f (n) = γnk (Theorem 6.19). We actually
strengthened both of these results by reducing the answer threshold functions to f (n) = γnc

(Theorems 6.14 and 6.20), where c is the maximum number of connected components in the
(fixed radius) neighbourhood of an answer tuple to q for any database. In practice we would
expect c to be small.

We generalised our result on the approximate enumeration of general FO queries. We
identified the condition of Hanf-sentence testability (which is a weakening of the bounded
tree-width condition), under which we still get the same probabilistic guarantees of Theorem
6.20.

Furthermore, we extended our model and results to the computational problems of
approximate query membership testing (a relaxation of the exact query membership testing
problem) and approximate counting. We showed that for every FO query q on the class of all
bounded degree and bounded tree-width databases, (1) the problem of approximate query
membership testing can be solved with a polylogarithmic preprocessing phase and constant
time answering phase, and (2) we can estimate the number of tuples that are or are close to
being answers in polylogarithmic time.

A natural question is, can the running time of the preprocessing phase of our enumeration
algorithm for the problem EnumCt

d
(q) (where q is any FO query) be improved to constant

time? We answered this positively if we adopt the distance measure used in the BDRD+/−
model (rather than the distance measure used in the BDRD model) in our definition of close
answers. It remains open whether the preprocessing phase running time can be improved to
constant whilst using the distance measure of the BDRD model.

7.2 Future work

7.2.1 Approximate boolean query evaluation

Obtaining a characterisation of constant query testable properties is a long-standing open
problem in the bounded degree graph model. It would also be interesting to obtain a charac-
terisation of constant query testable properties in the BDRD+/− model, or better yet obtain a
characterisation of efficiently (sublinear running time) constant query testable properties. In
the bounded degree graph model Ito, Khoury and Newman [48] give a characterisation of the
1-sided error constant query testable monotone and hereditary graph properties. A starting
point in obtaining a characterisation of constant query testable properties in the BDRD+/−
model would be to see if the characterisation given in [48] carries over to the BDRD+/−
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model. One of the main tools used in [48] is that every testable property has a canonical
tester. A canonical tester is a testing algorithm that samples vertices uniformly at random,
explores the r-neighbourhood (for some r) around the sampled vertices, and then makes its
decision based on the explored neighbourhoods. To translate the results of [48] a crucial step
would be to prove that in the BDRD+/− model every testable property has a canonical tester.

In Chapter 5 we showed that every property that is uniformly testable in the BDRD
model is uniformly testable in the BDRD+/− model but the converse is not true. We gave an
example of a property that is (trivially) uniformly testable in the BDRD+/− model but is not
uniformly testable in the BDRD model. It would be interesting to obtain other such examples
of properties that are uniformly testable but not necessarily trivially uniformly testable in
the BDRD+/− model. It would also be interesting to find properties that are testable in the
BDRD model but have more efficient testers in the BDRD+/− model. For example, can it be
shown that properties definable by a CMSO sentence on databases of bounded degree and
bounded tree-width cannot be tested in constant time in the BDRD model?

In Chapter 5 we showed that being hyperfinite and semilinear (the histogram vectors of
the databases in the property form a semilinear set), or even just close to semilinear, gives us
constant time uniform testability in the BDRD+/− model. Properties definable by a CMSO
sentence on databases of bounded degree and bounded tree-width are examples of such
properties. We also proved that hyperfinite hereditary properties are close to being semilinear.
In the future, it would be good to obtain other examples of hyperfinite properties that are
close to being semilinear. Furthermore, it would be interesting to try and understand the
exact link between semilinearity and efficient uniform testability in the BDRD+/− model.

7.2.2 Approximate enumeration

In Chapter 6 we only considered bounded degree databases. It would be interesting to
explore what results we can obtain if we consider more general classes of sparse databases,
for example, databases with bounded average degree or low degree. We would need to use
a different property testing model, and it would require different techniques because the
number of r-types up to isomorphism is no longer bounded and we can no longer compute
the r-type of a tuple in constant time. In our enumeration algorithms we only considered
queries definable in FO. We could consider other query languages such as CMSO.

In our approximate enumeration algorithms we require the set of answers to a query to be
sufficiently large in order to output every answer with high probability. We could investigate
how to reduce this required answer set size. To do this we would need new ideas and we may
possibly need a new framework.
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In this thesis we have only considered enumeration in the static setting. There has
been numerous results on the exact enumeration of queries in the dynamic setting (where
databases may be updated by inserting or removing tuples). It would be interesting to study
approximate enumeration in the dynamic setting.
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