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Abstract

The main aim of this thesis is to compute the growth rate of the q -spread
and the maximum diversity for several square grids at various scales, then
explain some of their characteristic mathematical features.

On one hand, we compute the growth rate of the q -spread of three dif-
ferent square grids at various scaling. For large n and very small scales
as well as reasonably big scales, the growth rate of the q -spread of these
squares are similar. This occurs because when the scale factor is small, we
can heuristically map the points of the square grid to the solid square, and
we numerically determine that the q -spread is seen to be very close to some
quadratic equation. While, if the scale factor is big, we can approximate the
q -spread of these squares to the q -spread of �nite subset of points in the
middle of these squares and we show that the q -spread of the square grid
over some positive function approaches zero as a scale factor goes to in�nity.

On the other hand, we compute the subsets of points for several square
grids that admit a maximum magnitude with non-negative weightings at
various scales which is the maximum diversity, and we see that the magnitude
which has non-negative weighting for 4 × 4 and 5 × 5 square grids is the
magnitude of orbits and union of orbits this implies the maximum diversity
occurred for orbits or unions of such orbits. Therefore, we conjecture that
maximum diversity always comes from orbits and union of orbits. Motivated
by this, we prove that when the scale factor is very small, the magnitude of
the orbit that contains the four corner points in the n×n square grid is bigger
than the magnitude of any other orbit of the symmetry group. Also, we show
that the set which contains the union of the four corner points and any other
orbit has negative weighting. Furthermore, we look at the behaviour of the
weights for the points in the middle row of the 201× 201 square grid metric
space at various scaling. We see that for very small scale and for the scale
bigger than 0.6 , the weighting of the points in the middle row of the space
has non-negative weights, whereas di�erent oscillations happens between the
above scalings.
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Chapter 1

Introduction

In most mathematical topics there is a canonical notion of sizes, such as,
sets having cardinality, vector spaces having dimension, probability spaces
having entropy, and topological spaces having Euler characteristics. Leinster
[29] added a new item to this already extensive list by noting that metric
spaces have a magnitude for more details see Chapter 2. This chapter has
three sections. The �rst section explains how a metric space can be viewed as
an enriched category and where the magnitude of a metric space originally
comes from. The second section provides a brief literature review of the
magnitude. In the last section, an overview of the structure of this thesis is
given.

� 1.1 Where does magnitude come from

Consider C is a �nite category whose objects are putting in some order
a1, a2, . . . , an . Let the matrix Z be an n × n matrix whose (i, j)-entry
is the cardinality of the set of the morphisms from ai to aj denoted by
# Hom(ai, aj) . A function ω : C → R with∑

aj∈C
# Hom(ai, aj)ωaj = 1

for all ai ∈ C is called a weighting on C . If the category C has at least
one weighting, then it has the Euler characteristic which is de�ned by
Leinster [30] as

χ(C) =
∑
ai

ωai .

This concept of Euler characteristic can be naturally generalized from
categories to enriched categories. For example, given a category of vector
spaces over a �eld K . This is a monoidal category with the product ⊗ is the
usual tenser product ⊗K and unit K . So we can have a category enriched of
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CHAPTER 1. INTRODUCTION

vector spaces (with only �nitely many objects a1, a2, · · · , an ), then the sim-
ple change in the above expression is # Hom(ai, aj) to dim(Hom(ai, aj)) .

In general, given the monoidal category (V, ⊗, I) , a notion of size of a
category enriched in V is a function

|.| : (ob(V ), ⊗, I) → (k, ., 1),

with the property that |X| = |Y | whenever X ∼= Y and satisfying the
multiplication axioms |X ⊗ Y | = |X|.|Y | and |I| = 1 , where k is a ring,
X, Y ∈ V and I is the unit object of V .

Now, the set of all non-negative real numbers [0, ∞] is an ordered set
under ≥ which consequently becomes a category, whose objects are elements
of [0, ∞] , and for any a, b ∈ [0, ∞] there is one morphism a → b if a 
 b
and zero otherwise. This is a monoidal category with tensor product + and
unit 0 . So we can now de�ne an enriched category over [0, ∞] .

The [0, ∞]-category A consists of

• A class of objects a, b, c, . . . ,

• For all a, b ∈ ob(A) , HomA(a, b) ∈ [0, ∞] ,

• For all a, b, c ∈ ob(A) , HomA(a, b) + HomA(b, c) ≥ HomA(a, c) ,

• For all a ∈ ob(A) , 0 ≥ HomA(a, a) ∈ [0, ∞] .

An [0, ∞]-category is generalized metric space, we write HomA(a, b) =
d(a, b) , as �rst pointed out by Lawvere [28].

The notion of size of a �nite metric space is a size function

|.| : (ob([0, ∞]), +, 0) → (k, ., 1),

satisfy |X + Y | = |X|.|Y | and |0| = 1 called magnitude.
Two examples of enriched categories are metric spaces and categories

(categories) ⊂ (enriched categories) ⊃ (metric spaces)

The comparison between categories and metric spaces is given in table 1.1.
We specialize the de�nition of Euler characteristics to metric spaces after
generalizing from ordinary to enriched categories.
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CHAPTER 1. INTRODUCTION

Category Metric space

Has objects. Has points.
For any two objects there is For any two points there is
maps between them. the distance between them.
For any three objects there is For any three points there is
an operation of composition a triangle inequality.

Table 1.1: The comparison between categories and metric spaces.

� 1.2 A brief history of magnitude

The concept of the Euler characteristic of a �nite category is de�ned in [30]
by Leinster, who demonstrated its compatibility with various concepts of
size in mathematics, including the Euler characteristics of topological space,
graphs and posets. This concept of the Euler characteristic can be easily
generalized from categories to enriched categories and then to metric spaces,
which were given in an internet posting [29] by Leinster. This internet post
contains the basic ideas of the paper [32], which was written by Leinster
and includes all the basic motivation and background; most of the papers
on magnitude that written after have already built on it. Magnitude was
extended to the compact in�nite metric spaces by Leinster and Willerton in
several ways in ([32], [39], [55] and [57]), which were shown to be equivalent
for positive de�nite spaces by Meckes in [41]. Also, Meckes [40] gave several
ways of interpreting the magnitude of compact metric spaces, one of which
used a notion of a potential function, and another using the notion of weight
distribution.

Magnitude turns out to be related to various �elds of mathematics in-
cluding di�erential geometric, diversity, graph theory and homology.

With regard to geometric information, Leinster and Willerton [39] stud-
ied the asymptotics of the magnitude of subsets of Euclidean space, and gave
a conjecture related to intrinsic volumes. More evidence of the conjecture
heuristic and computer calculations as de�ned by Willerton [55]. Barceló and
Carbery [4] gave a procedure for the explicit calculation of the formula for
the magnitude of odd-dimensional balls in Euclidean space using a potential
function that led to the Leinster and Willerton conjecture [39] in the case of
balls in dimension three, but the magnitude of higher dimensional balls does
not satisfy the principle of inclusion-exclusion. Starting from these ideas [4],
Gimperlein and Go�eng [10] gave a geometric origin of the magnitude and
obtained an asymptotic variant of the Leinster and Willerton conjecture [39],
together with an asymptotic variant of the principle of inclusion-exclusion.
Inspired by [4], Willerton [58] gave an algorithm to evaluate the magnitude
of odd-dimensional balls in Euclidean space using weight distributions. An
explanation for how these explicit formula for the magnitude of balls in odd

3



CHAPTER 1. INTRODUCTION

dimensions led to the conjecture given in [59] by Willerton, who [57] also
found the connection between magnitude and intrinsic volumes of Rieman-
nian manifolds. Meckes [42] gave the bounded version of the magnitude
of a convex body in Euclidean space in terms of its intrinsic volumes. Le-
inster and Willerton [39] investigated the concept of dimension linked to
magnitude. Meckes [40] showed that the magnitude of dimension and the
Minkowski dimension are equal in Euclidean space.

In [52], magnitude originally appeared in the context of biodiversity,
where it was described as the �e�ective number of points� in metric spaces.
Leinster and Cobbold [35] presented a one-parameter family of diversity mea-
sures, taking into account both the di�erence and the similarities between
species. Leinster [31] described the connections between the maximum diver-
sity and the magnitude of metric spaces. The main results in [36] previously
appeared in [31], but the proofs that Leinster and Meckes presented in [36] are
signi�cantly simpler. An in�nite family of diversity measures were de�ned
in [35] and [31]. Meckes [40] introduced the maximum diversity of in�nite
metric space to be the maximum value of its diversity of order 2. Using this
de�nition, Leinster and Ro� [38] described the connections between maxi-
mum diversity and Minkowski dimension. Inspired by the Leinster-Cobbold
diversity measures, Willerton [56] de�ned the concept of the spread of a �nite
metric space, which is connected to the magnitude of a metric space.

In graph theory, Leinster [33] introduced the magnitude of a graph as an
integer power series related to a graph, as motivated by the magnitude of
metric space. A survey of the theory of magnitude, from its category theory
to its relationships with this geometric information, was given by Leinster
and Mecks in [37], who also gave the maximum diversity of the graphs in
[36].

Hepworth andWillerton [18] introduced a magnitude homology for graphs,
and the magnitude homology of several graphs is accordingly computed in
[[18] and [14]]. Leinster and Shulman [37] extended magnitude homology to
metric spaces and enriched categories, which was developed in [25], [24], [47],
[17], [12], [13], [3].

� 1.3 Thesis outline

This thesis is organized as follows.
Chapter 2 recalls the basic de�nitions and characteristics which are used

in this work.
Chapter 3 discusses the notion of the q -spread dimension of a metric

space which is de�ned in the De�nition 3.0.1 as the growth rate of the q -
spread as the metric space is scaled. We compute the q -spread of di�erent
grid squares 60× 60 , 110× 110 and 160× 160 as shown in Figure 3.1 and
we see that when the scaling factor increases, these q -spread dimensions
are identical and independent to their number of points. This gives the
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notion of a scale-dependent dimension. Mathematically, we prove why this
happens in Theorem 3.1.3. Also, we plotted the 0-spread dimension, 1-
spread dimension and 2-spread dimension of a 160× 160 grid square metric
spaces together at various scales as represented in Figure 3.7, we can see
that when the scale factor is very small, these three types of dimensions are
identical. Computationally, we explain why this happens in Section 3.2.

The maximum diversity was �rst proved by Leinster [31] to be the maxi-
mum magnitude of the subsets of the metric space with non-negative weight-
ing. In Section 4.1 of Chapter 4, we determine the magnitude for the all sub-
sets of a 3× 3 grid square metric space and we show that the magnitude of
the subsets which have 3 points or less of the 3×3 metric space admits non-
negative weightings, then we compute the magnitude of the subsets which
have more than three points that have non-negative weightings at di�erent
scaling and record the maximum magnitude. From this, we get the following
conjecture, the maximum magnitude with a non-negative weighting always
comes from symmetric subsets and union of symmetric subsets. In Section
4, we compute the magnitude of the orbits which partitioned the 3× 3 , . . . ,
10 × 10 grid squares and the unions of these orbits that have non-negative
weighting and record the maximum magnitude at various scales which is the
maximum diversity. Then we prove in Section 4.3 that at very small scaling
the magnitude of the four corner points orbit of the n × n grid square is
greater than the magnitude of any other orbit. Furthermore, we show that
the set that consists of the union of the four corner points and any other
orbit have negative weighting. At the end of this chapter, we numerically
calculate the weighting for the points of the middle row for the 201 × 201
grid square and looking to their behavior at various scales.

In Chapter 5, we mathematically determine 0-spread of the disk and we
see numerically that, if the disk is scale by a factor τ > 0 , then the 0-spread
is close to some quadratic equation of τ . Also, we compute the 0-spread
dimension and the magnitude dimension of various cases of rectangular grid
metric spaces.

Appendix A contains the Maple code to compute the q -spread, the q -
spread dimension, the approximate q -spread, the approximate q -spread di-
mension and the Matlab code to compute the heuristic q -spread, for q =
0, 1, 2 .

The �rst section of Appendix B give the Maple code that deals with
�nding the magnitude of the subsets of n× n square grid metric space that
admits non-negative weightings by checking all subsets of space. Whilst, the
second section give the Maple code that deals with evaluating the magnitude
of the subsets of n × n square grid metric space that admits non-negative
weightings by checking only the orbits and the union of orbits of space. The
�nal section contains the Python code to evaluate the weighting of points
in the middle row of a 201× 201 metric space using the conjugate gradient
method.
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Appendix C contains the Matlab code to compute the 0-spread of the
disk at di�erent scaling, also it contains the Maple code to compute the
0-spread of various rectangular grid and the Python code to compute the
magnitude and the magnitude dimension of di�erent rectangular grid at
various scaling.
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Chapter 2

Background

This chapter has seven sections. Section one gives a brief review of group
actions. Section two presents some basic aspects of the magnitude of �nite
metric space: this includes many classes of metric spaces that are positive
de�nite and describes some classes of �nite metric spaces for which the mag-
nitude exists. Section three explains the diversity measures that take into
account the relative abundance and ignore species similarity, then explains
the diversity measures that take both factors into account. It also gives
some properties of the Leinster-Cobbold diversity of order q . Section four
provides the de�nition of the q -spread of �nite metric spaces and gives some
of their associated properties. Section �ve describes conditions under which
the magnitude and the maximum diversity are identical. Section six gives
the relations between magnitude and q -spread of �nite metric space. The
last section describes how to solve the linear system of equations Ax = b
using the Krylov subspace method.

� 2.1 Some basic de�nitions and results of group actions

In this section we recall some de�nitions and describe some results of the
group actions (See[7], [23] and [51]).

De�nition 2.1.1. For any set X , a partition of X is a collection of disjoint
non-empty subsets of the set X whose union is X .

De�nition 2.1.2. A relation on a set X which is re�exive, symmetric and
transitive is an equivalence relation.

De�nition 2.1.3. For a set X and an equivalence relation ∼ on X , an
equivalence class of an element a in X with respect to ∼ is a set {b ∈
X : a ∼ b} .

De�nition 2.1.4. Let G be a group and X be a non-empty set. We say
that G acts on X , if there is a function G×X → X; (g, x)→ g ∗ x which
satis�es the following axioms:

7



CHAPTER 2. BACKGROUND

• for all x ∈ X and the identity e ∈ G , e ∗ x = x ,

• for all g, h ∈ G and all x ∈ X , g ∗ (h ∗ x) = (gh) ∗ x .

De�nition 2.1.5. For a metric spaces X, Y , a map f : X → Y is an
isometry if it is preserves distances between any pair of points,

d(f(x), f(y)) = d(x, y),

for any x, y ∈ X .

De�nition 2.1.6. Let G be a group acting on a non-empty set X ,

• the orbit of any element x in X is the set {g ∗ x} and denoted by
orb(x) ,

• the stabilizer of x in X is the set of all elements g in G such that
g ∗ x = x which written stab(x) ,

• G is called transitive if for each x, y in X and for some g in G
g ∗ x = y .

Theorem 2.1.7. If G is a group that acts on a non-empty set X and orb(x)
is the orbit of x in X , then the relation ∼ de�ned as x ∼ y if and only if
g ∗ x = y for some g in G is an equivalence relation and each orbit is an
equivalence class under ∼.

Proposition 2.1.8. If G is a group which acts on a set X , then the distinct
orbits that partition X .

De�nition 2.1.9. Let Y be a subset of a set X and let G be a group that
acts on Y . Then Y is invariant under G if {g ∗ y : y ∈ Y and g ∈ G} =
Y .

Theorem 2.1.10. Let G be a �nite group which acts on a set X , for any
x in X we have

#orb(x) =
#G

#stab(x)
,

where # is a number of elements in X .

This means that every orbit is an invariant subset of X on which a group
acts transitively.

� 2.2 The magnitude of �nite metric spaces

This section has three subsections. In the �rst subsection, we recall the
de�nition of magnitude of �nite metric spaces and we give several examples.
In the second subsection, we de�ne the magnitude function and we give some
associated properties and examples. In the last subsection, we deal with the
class of positive de�nite �nite metric spaces which have a magnitude that
admits positive weightings.
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2.2.1 Basic definition

Here we de�ne the magnitude of �nite metric spaces in terms of weightings
and we give some elementary examples.

De�nition 2.2.1. (See [39]) Let A be a �nite metric space. De�ne a matrix
Z with entries Zab = e−d(a, b) for all a, b ∈ A . A weighting on A is an
assignment of a number wa ∈ R for each point a ∈ A such that weight
equation 2.1 is satis�ed. For each point a ∈ A we have∑

b∈A
e−d(a, b)wb = 1. (2.1)

If a weighting w exists, then we can de�ne the magnitude of A as

|A| =
∑
a∈A

wa,

for any weighting w , and is independent of the weighting chosen.

If a metric space has more than one weightings, then its magnitude is in-
dependent of the choice of weighting as can be seen in the following example.
See also Lemma 2.5.6 below.

Example 2.2.2. If a matrix Z of a metric space A is

(
1 1
1 1

)
, then we can

obtain a weighting w =

(
wa
wb

)
by solving the following expression.

Zw =

(
1 1
1 1

)(
wa
wb

)
=

(
1
1

)
wa + wb = 1.

We need to �nd wa and wb that satis�ed the above equation. Now if wa = 1
2 ,

then wb = 1
2 . Again if wa = −2 , then wb = 3 . In both cases the magnitude

of A is equal to 1 .

However, if a matrix Z is invertible, then a metric space A has a mag-
nitude and there is a unique weighting w given by wa is the sum of entries
in the ath row in the inverse of Z and the magnitude is equal to the sum of
all entries of Z−1 . Here are some examples(see [32]).

Example 2.2.3. If we have empty space or one point-space, then:

1. |∅| = 0 ,

2. |∗| = 1 .

9
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Example 2.2.4. Let A be the space consisting of two points a distance d
apart. Then we can obtain w by solving the following expression.

Zw =

(
1 e−d

e−d 1

)(
wa
wb

)
=

(
1
1

)
e−dwa + wb = 1.

wa + e−dwb = 1.

and we get |A| = 2
1+e−d

which is equal to 1 + tanh(d2) .

In particular, If d =∞ , then Z =

(
1 0
0 1

)
and |A| = 2 .

Example 2.2.5. In general, if the distance between any two distinct points
in a metric space A is ∞ , then Z is the identity matrix, each point has
weighting 1 and the magnitude of A is given by |A| = #A . Therefore, we
can see the magnitude as the e�ect number of points.

2.2.2 The magnitude function

The magnitude function and some of its characteristic are given here (See
[32]).

De�nition 2.2.6. If A is a metric space and t > 0 , then tA denotes the
metric space with the same points as A and dtA(a, b) = tdA(a, b) .

De�nition 2.2.7. The magnitude function of a metric space A is the
partially de�ned function t 7→ |tA| , de�ned for all t > 0 such that tA has
magnitude.

Example 2.2.8. In the two point metric space, the magnitude function is
de�ned everywhere as shown in Figure 2.1.

2 4 6 8 10
1

2

inter-point distance

m
ag
n
it
u
d
e

Figure 2.1: The magnitude function of two points space.

Theorem 2.2.9. If A is a �nite metric space, then the following hold.

10
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1. For t� 0 , the magnitude function of tA is increasing.

2. For t� 0 , there is a unique, positive weighting on tA .

3. |tA| → #A as t→∞.

De�nition 2.2.10. (See [32]) If we have an undirected graph G and t ∈
(0, ∞] , then there is a metric space tG whose points are vertices and whose
distance are minimal path lengths, a single edge having length t .

Example 2.2.11. (See [32]) [Warning example] Let A be the 5-point space
given by the shortest-path metric on the bipartite graph K3,2 . The magni-
tude of tA is:

|tA| =
7e−t − 5

2e−3t + 2e−2t − e−t − 1
.

We can see in Figure 2.2 it is true that the magnitude function satis�es
|tA| > #A for some t , also it satis�es |tA| < 0 for some t and |tA| is
unde�ned at t = log

√
2 .

0.01 0.1 1 10 100
0

1

2

3

4

5

t|tK3,2|

Figure 2.2: Magnitude function of K3,2

We can see in Example 2.2.11 that the magnitude of a �nite metric space
may be unde�ned or negative.

We now describe some classes of �nite metric spaces for which the mag-
nitude exists (See [32] and [39]).

De�nition 2.2.12. A metric space is homogeneous if its isometry group
acts transitively on points.

Theorem 2.2.13. If a �nite metric space A is homogeneous, then there is
a weighting w for which all the points have the same weights and we de�ne
a weight on each point by

wb =
1∑

a∈A e
−d(a, b)

,

11
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for any b ∈ A . Therefore, its magnitude is give by

|A| =
#A∑

a∈A e
−d(a, b)

.

We can see from the following example that the magnitude of a space
can be smaller than the magnitude of one of its subspace.

Example 2.2.14. Let tKn,n be a graph. If a similarity between points is
equal to e−dij for all i, j ∈ tKn,n , then by Theorem 2.2.13, the magnitude
of tKn,n on 2n-vertices is

|tKn,n| =
2n

1 + ne−t + (n− 1)e−2t
.

So, the average similarity between its points is

(n− 1)e−2t + ne−t + 1

2n
=

(n−1
n )e−2t + e−t + 1

n

2
.

When n is big, so the similarity between points is approximately

1

2
(e−t + e−2t).

While, the magnitude of the complete graph Kn on n-vertices is given by

|tKn| =
n

1 + (n− 1)e−t
.

So, the average similarity between the points of 2tKn is

1 + (n− 1)e−2t

n
=

1

n
+
n− 1

n
e−2t.

For big n , its average similarity is approximately e−2t .

Since e−t > e−2t , the average similarity between points of tKn,n is
greater than that of its subspace 2tKn . One over that average similarity
is the magnitude which implies that

|tKn,n| < |2tKn| .

There is a space for which limt−→0 |tA| 6= 1 , as we can see in the following
example.

12
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Example 2.2.15. If we have a graph K3,3 with vertices a1, a2, a3, b1, b2, b3
and three new edges adjoined from bi to bj whenever 1 ≤ i < j ≤ 3 , then

W =



− e−t−1
4 e−2 te−t−9 (e−t)2+2 e−2 t+2 e−t+1

− e−t−1
4 e−2 te−t−9 (e−t)2+2 e−2 t+2 e−t+1

− e−t−1
4 e−2 te−t−9 (e−t)2+2 e−2 t+2 e−t+1

2 e−2 t−3 e−t+1
4 e−2 te−t−9 (e−t)2+2 e−2 t+2 e−t+1

2 e−2 t−3 e−t+1
4 e−2 te−t−9 (e−t)2+2 e−2 t+2 e−t+1

2 e−2 t−3 e−t+1
4 e−2 te−t−9 (e−t)2+2 e−2 t+2 e−t+1


and

|tA| = 6

1 + 4e−t
→ 6

5
, as t → 0

.

2.2.3 Positive definite spaces

Here, we describe another class of �nite metric spaces which have magnitude
(See [32], [39] and [41]).

De�nition 2.2.16. A symmetric matrix Z which satis�es this condition
ντZν > 0 , for each non-zero column vector ν where ντ denote the transpose
of ν is called positive de�nite matrix.

De�nition 2.2.17. (See [2]) A principal sub-matrix P of a matrix A
can be found by selecting a subset of rows and the same subset of columns.

Proposition 2.2.18. (See [54]) The following properties of a positive de�-
nite matrix are true

1. If a matrix Z is positive de�nite, then Z is invertible.

2. Every principal sub-matrix of a positive de�nite matrix is positive def-
inite.

3. A matrix Z is positive de�nite if and only if

|Zii| ≥
∑
i 6=j
|Zij | for all i.

The prove of the following theorem can be found in [32], here we will be
proved by a di�erent way.

13
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Theorem 2.2.19. If the distance between each pairs of distinct points in a
�nite metric space A with n points is greater than log(n − 1) , then A has
a well de�ned magnitude.

Proof. As 0 and 1-point spaces have magnitude 0 and 1 respectively. we will
assume that n ≥ 2 and Z be an n×n matrix with Zxx = 1 for each x ∈ A .
We have d(x, y) > log(n − 1) , for every x,∈ A this implies −d(x, y) <
− log(n−1) and then e−d(x, y) < 1/(n−1) . so we get Zxy < 1/(n−1) . Now
by third part of Proposition 2.2.18, a matrix Z is positive de�nite and by
the �rst property of Proposition 2.2.18, a matrix Z is invertible. Therefore,
a space A have a magnitude.

De�nition 2.2.20. If a matrix Z of a �nite metric space A is positive
de�nite, then A is positive de�nite.

In general, a positive de�nite metric space has a magnitude with unique
weighting.

Theorem 2.2.21. (See [32]) Consider A is a positive de�nite metric space
with n-points. Then

|A| = sup
ν 6=0

(
∑

i∈A νi)
2

ντZν
,

where the supremum is over non-zero column vector ν ∈ Rn and ντ denotes
the transpose of ν . A vector ν the supremum is attained exactly when it is
a non-zero scalar multiple of the unique weighting on A .

Proof. Let Z be a positive de�nite matrix of A . We have the Cauchy-
Schwarz inequality

(ντZν) · (ωτZω) ≥ (ντZω)2 ⇔ (ωτZω) ≥ (ντZω)2

ντZν
,

for all ν, ω ∈ Rn . Now if we take ω to be a weighting on A , then

|A| =
∑
i

ωi =
∑
i,j

ωiZijωj = ωTZω.

Also we have ντZω =
∑

i,j νiZijωj =
∑

i νi . So we get

|A| ≥
(
∑

i∈A νi)
2

ντZν
.

Suppose that νi = cωi for a constant c 6= 0 , then

(
∑

i∈A ωi)
2

ωτZω
=
|A|2

|A|
= |A|.

Therefore |A| ≤ supν 6=0
(
∑
i∈A νi)

2

ντZν . Hence |A| = supν 6=0
(
∑
i∈A νi)

2

ντZν .
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Corollary 2.2.22. (See [32]) If B is a subspace of a positive de�nite metric
space A , then B is also positive de�nite and |B| < |A| .

De�nition 2.2.23. (See [48]) A �nite metric space A is ultrametric space

if it satis�es the following condition

max{d(a, b), d(b, c)} ≥ d(a, c),

for all a, b, c ∈ A . For example the discrete metric which is de�ned as the
distance from a point to itself equal zero while the distance between any two
distinct points equal one is an ultrametric.

Here we list some classes of metric space that are positive de�nite, or
positive de�nite with positive weighting.

Theorem 2.2.24. (See [32], [39] and [41]) The following statements are
true

1. Each �nite subspace of R is positive de�nite with positive weighting.

2. Each �nite subspace of LNp is positive de�nite where LNp is RN with

the metric induced by ‖x‖p = (
∑

i |xi|p)
1
p .

3. Each space with 3 or fewer points is positive de�nite with positive
weighting.

4. Each space with 4 points is positive de�nite.

5. Each �nite metric space A such that the distance between any disjoint
points is greater than log(#A − 1) is positive de�nite with positive
weighting.

6. Each �nite ultrametric space is positive de�nite with positive weighting.

Every homogeneous space has a positive weighting. But by Theorem
2.2.13, Example 2.2.14 and Corollary 2.2.22, it need not be positive de�nite.

� 2.3 Measures of diversity

Diversity is one of the most ecological features of a community and refers
to the number and variety of a group of the population that occur together.
The simplest measure of diversity is the number of species that can be found
in a certain location, which indicates the species richness. In fact, various
indexes have been used to measure diversity [21] that take into account the
number of species present (richness) as well as the relative abundance of
each species (evenness), such as Simpson's index, the Shannon index and
the Berger-Parker index. However, it is not only the relative abundances of
species that re�ects this realistic measure of diversity but also the similarity
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between species pairs, as measured by a coe�cient in the range from 0 to
1 , where 0 and 1 indicate total dissimilarity and complete identity of the
species, respectively.

This section has three subsections. The �rst subsection considers a nat-
ural family of diversity measures by taking into account the relative abun-
dances whilst ignoring similarities between species, and then by taking both
factors into account simultaneously in the second subsection. The last sub-
section explains where Leinster-Cobbold diversities come from.

2.3.1 Ignoring species similarity

In 1973, Hill [21] described a set of diversity numbers of various orders.
Assume that a community of organism contains S species that occurs with
the particular set of relative abundances p = {p1, p2, . . . , pS} ; where pi ≥ 0
for i = 1, 2, . . . , S and p1 + p2 + . . . + pS = 1 . The diversity number
D of order q varies in the interval [0, ∞] and can be obtained from the
following formula

Dq(p) = (

S∑
i=1

pi
q)

1
1−q , (2.2)

where Dq is the q th order of diversity, which is the e�ective species number.
The most common ways of measuring diversity are as follows.

1. Species richness. Easily seen when q = 0 in Equation (2.2) to give S ,
where S is the total number of species in the community.

2. Exponential Shannon diversity index. When q = 1 , the value of
Equation (2.2) is unde�ned. In 1961, Renyi [49] de�ned the Renyi
entropy of a sample of relative abundance p such that

∑S
i=1 pi = 1

and

1

1− q
log(

S∑
i=1

pi
q),

which is equal to the logarithm of Equation 2.2. So, using L'Hopital's
theorem, we can get

lim
q→1

1

1− q
log(

S∑
i=1

pi
q) = −

S∑
i=1

pi log(pi).

This can also be written as

log(

S∏
i=1

pi
pi)−1.

The exponential of above equation is given by

elog(
∏S
i=1 pi

pi )−1
= (

S∏
i=1

pi
pi)−1,
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which is the exponential Shannon diversity that is lim
q→1

Dq(p) .

3. Simpson's reciprocal diversity index. This can be observed by setting
q = 2 in Equation (2.2) to obtain

(
S∑
i=1

pi
2)−1.

4. Berger-Parker diversity index. This index is obtained as the reciprocal
of the relative abundance of the commonest species.

(max
i
pi)
−1.

Now in the following proposition we will show that Dq(p) as q →∞ is equal
to (max

i
pi)
−1

Proposition 2.3.1. Assume that p1, p2, . . . , pS are positive numbers such

that
∑S

i=1 pi = 1 and let Dq(p) = (
∑S

i=1 pi
q)

1
1−q . Then

D∞(p) := lim
q→∞

Dq(p) = (max
i
pi)
−1.

Proof. Consider pmax = max{p1, p2, . . . , pS} . Then we can write

Dq(p) = (pmax)
q

1−q

(
S∑
i=1

(
pi
pmax

)q) 1
1−q

.

Now the sum is bounded above because each term is at most one and there
are S terms. The sum is also bounded below because each pi ≥ 0 . We have
for q > 1

0 ≥ log

( S∑
i=1

(
pi
pmax

)q) 1
1−q
 =

1

1− q
log

(
S∑
i=1

(
pi
pmax

)q)
≥ logS

1− q
.

which tends to zero as q tends to in�nity to get

D∞(p) = lim
q→∞

(pmax)
q

1−q e0 = (pmax)−1 .

From above, the diversity of order q is

Dq(p) =


(∑S

i=1 pi
q
) 1

1−q
if q 6= 1,∏S

i=1 p
−pi
i if q = 1,

1
max
i
pi

if q =∞.
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The value of parameter q is between 0 and ∞ and it is indicates how much
signi�cance is attached to species abundance. For example at q = 0 , D0(p)
is the number of species, at q = 1 , D1(p) is the exponential Shannon index,
at q = 2 , D2(p) is the inverse Simpson index, and at q = ∞ , D∞(p) is
the Berger-Parker index. It can be seen that for small q , Dq considers both
rare and common species equally. However, for large q , Dq considers only
common species and rare species are ignored. All four measures have the
property that if we have S species all with equal relative proportions, then
Dq(p) = S . This gives the maximum value for a population with S species.

Now, given two communities A and B of three species, namely

{30% dogs, 40% cats, 30% foxes} and {30% cats, 40% dogs, 30% wolves}

Using the above measure of diversity, these species will have the same di-
versity. We can address this by taking into account the similarity between
species.

2.3.2 Incorporating species similarity

The Hill numbers were extended by Leinster and Cobbold in [35] to take
into account analogous species. There are various ways to measure cross-
species similarity; the genetic approach [45], such as via DNA, is possibly
the most popular. The re�ned model can be used as follows. Leinster and
Cobbold [35] consider the community to be divided into S species, and they
also have a measure of the analogy between each possible pair of species.
Let this measure be a real number between 0 and 1 , where 0 is a total
dissimilarity between species and 1 represents identical species as can be
describe in the following de�nition.

De�nition 2.3.2. (See [35]) A similarity matrix Z for a �nite set A on S
points {a1, . . . , aS} is an S × S matrix Z with entries Zij in the range
0�1 , where 0 and 1 indicate total dissimilarity and identity, respectively,
between ai and aj .

De�nition 2.3.3. (See [35]) Let A be a community of S species with sim-
ilarity matrix Z and relative abundances p = {p1, . . . , pS} ; thus, pi > 0
and

∑S
i=1 pi = 1 . Then for 0 ≤ q ≤ ∞ , the Leinster-Cobbold diversity

of order q is given by

qDZ(p) =



( ∑
i:pi>0

pi(Zp)
q−1
i

) 1
1−q

if q 6= 1,∏
i:pi>0

(Zp)−pii if q = 1,

1
max
i:pi>0

(Zp)i
if q =∞,

where (Zp)i =
∑

j Zijpj for all i = {1, . . . , S} .
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The Hill numbers can be found as the Leinster-Cobbold diversities of the
identity similarity matrix. This means that di�erent species are assumed to
be totally dissimilar. Willerton [56] used the Leinster-Cobbold diversity to
obtain a concept of the size of �nite metric space by providing the space with
a canonical relative abundance, which gives rise to the q -spread.

2.3.3 Generalized measure diversity and their connection to

the spread of a finite metric space

Inspired by the measure of Leinster and Cobbold diversity, the concept of
the spread of �nite metric spaces A = {a1, a2, . . . , aS} is de�ned, which
is linked to the magnitude of �nite metric spaces (See [31] and [35]). To
measure the similarity between each pair of species, we consider the measure
to be a real number between 0 and 1 , where 0 is to be the total dissimilarity
and 1 the identical species denoting Zij as the similarity between ith and
j th species (see De�nition 2.3.2).

The similarities to be measured genetically are usually expressed as per-
centages, which provide similarity coe�cients Zij on a scale of 0 and 1
directly; however, there are cases where a measure of inter-species distance
d(ai, aj) is given by a scale of 0 to ∞ . The transformation Zij = e−d(ai, aj) ,
or more generally by Zij = e−td(ai, aj) for some positive number t , can be
used to convert distance d(ai, aj) into similarities Zij . Further, any metric
d on a set A gives rise to a similarity matrix by de�ning Zij = e−d(ai, aj) ,
thus nearby points are assumed to be near identical and distant points are
assumed to be dissimilar.

We will describe the way to measure the diversity of the community in a
step wise manner.

The S -dimensional column vector Zp can represent the similarities from
the S × S matrix Z and the relative abundances. Therefore, the ith entry
of the S -dimensional column vector Zp will take the form

(Zp)i =
∑
j

Zijpj ,

which is the expected similarity between a randomly chosen individual and
the ith species, and indeed the ordinariness of the ith species within the
community is measured by this.

The average ordinariness of an individual from the community is

S∑
i=1

pi(Zp)i.

This quantity is large when many of the population is concentrated into a
few very similar species. Therefore, average ordinariness can be considered
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in the sense of the concentration and its inverse related to diversity. The
relation between the diversity of the community and the concentration is

1∑S
i=1 pi(Zp)i

,

which is the diversity of order 2 .
Di�erent notions of averages give diversities of di�erent orders, q 6= 2 .

The weighted mean for any weights p = {p1, p2, . . . , pS} add up to
1 , which is

∑S
i=1 pixi where xi ∈ R . Also, for each t > 0 we have a

di�erent kind of average: �rst, every xi is transformed to xti ; next we take
the weighted mean, and �nally we apply the inverse transformation. This is
the referred to as the power mean (

∑S
i=1 pix

t
i)

1
t . Taking t = q − 1 and

xi = (Zp)i gives

(
S∑
i=1

pi(Zp)
q−1
i )

1
q−1 ,

which is a measure of the ordinariness of the community with its reciprocal

qDZ(p) = (

S∑
i=1

pi(Zp)
q−1
i )

1
1−q ,

that is the diversity of the community with order q . For further details (see
Subsection 2.3.2).

One of the several characteristics of the diversity measures qDZ(p) is
given in the following proposition.

Proposition 2.3.4. Let p belongs to the set of relative abundance vectors
for S species PS = {(p1, . . . , pS) ∈ RS|pi ≥ 0,

∑S
i=1 pi = 1} and let Z be

an S × S similarity matrix. Then qDZ(p) is decreasing as a function of q .

Furthermore, the diversity measure is constant, if the similarity ma-
trix is an identity matrix and there is a uniform relative abundance p ∈
{ 1
S , . . . ,

1
S } , then

qDZ(p) = S for all q .
The following lemma states other characteristics of the diversity measure

Lemma 2.3.5. (See [35]) Let p ∈ {(p1, . . . , pS) ∈ RS|pi ≥ 0,
∑S

i=1 pi = 1}
and let Z be an S×S similarity matrix. Then, the following statements are
true.

• For q ∈ [0, ∞), qDZ(p) is continuous in q ,

• lim
q→0

qDZ(p) = 0DZ(p) ,

• lim
q→∞

qDZ(p) = ∞DZ(p).

Proof. To proof (See the Appendix in [35], Propositions A1 and A2 ).
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For the case when there are no varying similarities between species, we
will have the similarity coe�cients Zij which would be 0 if i 6= j and 1 if
i = j . This makes the matrix Z an identity matrix I , and (Zp)i = pi , we
will get naive diversity Dq(p) which called the Hill number of order q (see
Subsection 2.3.1) for further details.

We use the Leinster-Cobbold diversity measures to obtain measures of the
size of �nite metric space A by providing the space with a canonical uniform
probability measure PS(x) = 1

S for all x ∈ A , named the q -spread.

� 2.4 q -spread of �nite metric spaces

The concept of the q -spread of �nite metric space has been de�ned by Willer-
ton [56], as motivated by the Leinster-Cobbold measures of biodiversity [35].

De�nition 2.4.1. (See [56]) Given a �nite metric space A with S points
and a metric d , the q -spread Eq(A) is de�ned for 0 ≤ q ≤ ∞ by

Eq(A) = qDZ

(
1

S
, . . . ,

1

S

)
.

Explicit formulas, derived from De�nition 2.4.1, are as follows.

Eq(A) =



S∑
i=1

1
S∑
j=1

Zij

if q = 0,

S.
S∏
i=1

 1
S∑
j=1

Zij


1
S

if q = 1,

S2

S∑
i,j=1

Zij

if q = 2,

S

max
i=1,...,S

S∑
j=1

Zij

if q =∞.

(2.3)

By Proposition 2.3.4, we have Eq(A) ≥ Eq′(A) whenever, 0 ≤ q ≤ q′ ≤
∞ . Willerton [56] generally concentrated on the greatest of these values,
E0(A) called the 0-spread, which is the analogue of the `number of species'
in an ecology.

The following theorem provided the basic properties of the q -spread

Theorem 2.4.2. (See [56]) If a �nite metric space A with S points is scaled
up by a factor t > 0 , then

• 1 ≤ Eq(tA) ≤ S ,
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• Eq(tA) is increasing in t,

• Eq(tA)→ 1 as t→ 0 ,

• Eq(tA)→ #A as t→∞.

In Section 2.3.3, the concept of diversity measures is de�ned as the idea
of the generalized mean. Here we give a description of the q -spread in those
terms.

If A = {a1, a2, . . . , aS} is a metric space, then we can de�ned a recip-
rocal mean similarity as

ρi =
#A

S∑
j=1

e−d(ai, aj)

,

for every ai ∈ A . Now we have ρi , for i = 1, . . . , S , then we can think
of its as a measure of how di�erent the metric space A is from the point
ai . When all the points are close to ai , then ρi being nearly 1 . However,
when all of the points are far from ai , so ρi being nearly #A . A measure of
the whole space A can be get by taking an average of these reciprocal mean
similarities. There are many several averages we can take.

Consider s is a non-zero real number, and x = {x1, x2, . . . , xn} are
positive real numbers. The generalized means with respect to x is

µs(x) =

(
1

n

n∑
i=1

xsi

) 1
s

.

Which includes many standard means: µ2 is the quadratic mean, µ1 is the
arithmetic mean, µ−1 is the harmonic mean, the µ∞ and µ0 can be �nd
as a limit when s = 0,∞ to be the maximum and the geometric mean
respectively.

The q -spread of the �nite metric space is de�ned as µ1−q with respect
to the reciprocal mean similarity ρ , for 1 ≤ q ≤ ∞ .

Eq(A) = µ1−q(ρ).

When the points of A are near to each other, the q -spread being close to 1 ,
and when the points of A are far to each other, the q -spread being close to
S .

1 ≤ Eq(A) ≤ S.

� 2.5 Comparisons between magnitude and maximum diversity

The maximum diversity is found to be the maximum of the magnitudes of
the subsets of the metric space with non-negative weighting, in which we say
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that a metric space has a non-negative weighting if there is a weighting for
a space such that all of the weights are non-negative.

In this section, we need to answer the following question.

Assume that p ∈ {(p1, . . . , pS) ∈ RS|pi ≥ 0,
S∑
i=1

pi = 1} and Z is an

S × S similarity matrix. When q ∈ [0, ∞] , for which relative abundance p
is qDZ(p) maximal?

To solve the maximum diversity problem, we will �rst give some de�ni-
tions and some results (see [31] and [36]).

De�nition 2.5.1. (See [31]) A weight distribution for a similarity matrix
Z is a relative abundance p such that (Zp)1 = (Zp)2 = . . . = (Zp)S .

Lemma 2.5.2. (See [31]) Let A be a �nite metric space. Then we have

1. If A admits non-negative weighting, then |A| > 0 ,

2. If w is a non-negative weighting on A , then
w
	|A| is a weight distribution

for A ,

3. When A admits a weight distribution, A admits a weight and |A| > 0

4. If p is a weight distribution for A , then (Zp)i =
1

|A|
.

Proof. 1. Let A be a metric space with S points. Then by De�nition
2.2.1, the magnitude of A is |A| =

∑S
i=1wi . By assumption wi ≥ 0 ,

for i = 1, . . . , S . Since S ≥ 1 and the 0-vector is not a weighting,
wi > 0 , for some i , implies that |A| > 0 .

2. Consider w
	
is a non-negative weighting, so

Zw
	

=

1
...
1

 ,
so, (Zw

	
)i = 1 , for i = 1, 2, . . . , S . De�ne p =

w
	|A| , then p is a relative

abundance as

S∑
i=1

pi =

S∑
i=1

wi
S∑
j=1

wj

=

∑S
i=1wi∑S
j=1wj

=
|A|
|A|

= 1.

And also,

(Zp)i =
(
Z

w
	∑S

j=1wj

)
i

=
1∑S

j=1wj
(Zw

	
)i =

1∑S
j=1wj

=
1

|A|
,

for all i , so p is a weight distribution.
The last two cases follow from the previous case.
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Lemma 2.5.3. (See [31]) Let A be a �nite metric space and p be a weight
distribution for A . Then, qDZ(p) = |A| for all q ∈ [0, ∞] .

Proof.

qDZ(p) =

(
S∑
i=1

pi(Zp)
q−1
i

) 1
1−q

.

By the �rst part of Lemma 2.3.5, qDZ(p) is continuous. Therefore, it is
enough to prove this for q 6= 1, ∞ . In this case, using the third part of
Lemma 2.5.2 we get

qDZ(p) =
(
|A|1−q

) 1
1−q

= |A| .

De�nition 2.5.4. (See [36]) Given a similarity matrix Z , a relative abun-
dance p in {1, 2, . . . , S} is invariant when qDZ(p) = q′DZ(p) for each
q, q′ ∈ [0, ∞] .

De�nition 2.5.5. (See [32]) A weighting on a matrix P is a column vector
w such that

Pw =

1
...
1


and a coweighting on P is a row vector v such that

vP = [1, . . . , 1].

If w is a weighting and v a coweighting on P then∑
a∈P

wa = [1, . . . , 1]w = vPw =
∑
a∈P

va.

When P admits both a weighting and a coweighting, we then can de�ne its
magnitude to be

∑
a∈P wa =

∑
a∈P va for any weighting w and coweighting

v . However, when the matrix P is invertible, P has exactly one weighting
and its magnitude is the sum of all the entries of P−1 .

In a special case we can see the independence as follows.

Lemma 2.5.6. (See [34]) Consider a matrix P and its transpose P T each
have at least one weighting. Then

∑
iwi is independent of the weighting

chosen w on P .
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Proof. Let w and w̄ be two weighting on P and let v be a weighting on
P T . Then

∑
i

wi = (1, . . . , 1)w = (P T v)Tw = vTPw = vT

1
...
1

 =
∑
i

vi.

We can similarly show that
∑

i w̄i =
∑

i vi . So
∑

iwi =
∑

i w̄i .

The measures have the property that if pi = 0 , for some i ∈ {1, 2, . . . , S}
the diversity is the same as if they had not been mentioned at all. To express
this, we introduce a number of notations

Let Z be a S × S similarity matrix and a subset B ⊆ {1, 2, . . . , S} ,
consider ZB is the matrix Z restricted to B , so that

(ZB)ij = Zij{i, j ∈ B}.

If B has m elements, then ZB is an m×m matrix.

Lemma 2.5.7. (See [31]) For a similarity matrix Z , let B ⊆ {1, 2, . . . , S} ,
and let p′ be a relative abundance on B . If p is a relative abundance achieved
by extending p′ by zero, then qDZB (p′) = qDZ(p) for each q ∈ [0, ∞] . In
general, p′ is invariant if, and only if, p is similarly invariant.

We can see by Lemma 2.5.3, that each weight distribution is invariant,
and by Lemma 2.5.7 each weight distribution extended by zero is also invari-
ant.

Now if we have a similarity matrix Z , B ⊆ {1, 2, . . . , S} and a non-
negative weighting w on ZB , consider p

′ be the weight distribution on B
given by

p′ =
w

|ZB|
,

where |ZB| is a magnitude of ZB . Thereafter extending by zero to {1, 2, . . . , S} .
We get, for any similarity matrix there is at least one invariant distri-
bution because if we consider B is one element subset, then ZB has a
unique non-negative weighting w = {1} which gives the invariant distri-
bution p′ = (0, . . . , 0, 1, 0, . . . , 0) .

Proposition 2.5.8. (See [36]) Given an S × S similarity matrix Z and

p ∈ {(p1, . . . , pS) ∈ RS|pi ≥ 0,
S∑
i=1

pi = 1} . Then the following statements

are equivalent.

1. p is invariant,

2. (Zp)i = (Zp)j , for each i, j such that pi, pj > 0 ,
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3. p is the extension by zero of a weight distribution on a ∅ 6= B ⊆
{1, 2, . . . , S} ,

4. p is equal to a weight distribution p′ with respect to B , for some ∅ 6=
B ⊆ {1, 2, . . . , S} that have non-negative weighting. Furthermore,
qDZ(p′) = |ZB| .

Let us now de�ne the maximizing distribution

De�nition 2.5.9. (See [36]) If Z is a similarity matrix and q ∈ [0, ∞] , a
relative abundance p is q -maximized if qDZ(p) ≥ qDZ(p̃) for each rela-
tive abundance p̃ . A relative abundance ismaximized if it is q -maximizing
for each q .

We will now explain some of the results of a maximizing distribution.

Lemma 2.5.10. (See [Lemma 2.11, [31]]) Given a similarity matrix Z and
an invariant distribution p that maximizes 0DZ , then it is also maximizes
qDZ .

Proposition 2.5.11. (See [31]) Every similarity matrix has a maximizing
distribution, and every maximizing distribution is invariant.

Proof. See the proof of Proposition 3.7 in the [31].

The solution to the maximum diversity problem is given by the following
theorem.

Theorem 2.5.12. (See [36]) If Z is s similarity matrix, then

1. For all q ∈ [0, ∞]
sup
∀p

qDZ(p) = max
B
|ZB| ,

where the maximum is over all subsets B ⊆ {1, 2, . . . , S} such that
ZB admits non-negative weighting.

2. The maximizing distributions are p′ = w
|ZB | , where w is a non-negative

weighting on a subset B subsets of {1, 2, . . . , S} , such that |ZB| is the
maximum.

In particular, there exists a maximizing distribution, and the maximum di-
versity of order q is the same for all q ∈ [0, ∞].

Proof. 1. Let's take p to run only through the invariant relative abun-
dances, by Proposition 2.5.11, supqpDZ(p) is constant. By Proposi-
tion 2.5.8, p is equal to a weight distribution p′ with respect to B
for some non-negative weighting w on some non-empty subsets B of
{1, 2, . . . , S} , which means supp

qDZ(p) = max
w, p′

qDZ(p′) . By Lemma
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2.5.7, qDZ(p′) = qDZB (p′) and by Lemma 2.5.3, qDZ(p′) = |ZB| .
Therefore,

sup
∀p

qDZ(p) = max
B
|ZB| ,

for each non-empty subset B ⊆ {1, 2, . . . , S} such as ZB has non-
negative weighting.

2. By Proposition 2.5.11, every maximizing distribution is invariant, and
for Proposition 2.5.8, we get the result.

Corollary 2.5.13. (See [Corollary 4.1, [31]]) If Z is a similarity matrix
and q ∈ [0, ∞], then an invariant distribution is q -maximizing if and only
if it is maximizing.

De�nition 2.5.14. (See [36]) The maximum diversity of a similarity
matrix Z is Dmax = sup∀p

qDZ(p) , which is independent of the value q ∈
[0, ∞] .

If a similarity matrix is positive de�nite, then the solution of the maxi-
mum diversity problem turns out to be simple.

Theorem 2.5.15. (See [31]) If a similarity matrix Z is positive de�nite
with a unique non-negative weighting w , then Dmax = |Z|. Moreover, w

|Z|
is a unique maximizing distribution, where |Z| is a magnitude of Z .

� 2.6 Comparisons between magnitude and 0-spread

The magnitude is an upper bound for the 0-spread, for the positive de�nite
metric spaces, as can be seen in the following results.

The following result is a trivial corollary of De�nitions 2.4.1 and 2.5.14

Corollary 2.6.1. (See [56]) The 0-spread of �nite metric space A is bounded
above by the maximum diversity of A .

E0(A) ≤ Dmax(A).

Theorem 2.6.2. (See [56]) If A is a positive de�nite metric space, then the
maximum diversity of A is bounded above by the magnitude of A .

Dmax(A) ≤ |A| .

Hence, by Corollary 2.6.1 and Theorem 2.6.2, we get that magnitude is
an upper bound for the 0-spread of the positive de�nite metric space

E0(A) ≤ Dmax(A) ≤ |A| .
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Note that, there is metric space that magnitude is not always an upper bound
for the 0-spread. In Example 2.2.11, we �nd the magnitude of the �ve-point
space at various scaling t > 0 , and we see that its magnitude is unde�ned
at t = log(

√
2) . However, the 0-spread of the K3,2 space is de�ned for all

di�erent values of t > 0 , as can be seen in Figure 2.3. The following theorem

0.1 1 10
0

1

2

3

4

5

t

|tK3,2|
E0(tK3,2)

Figure 2.3: The magnitude and the spread of K3,2 metric space.

shows that for homogeneous metric spaces, the magnitude and the q -spread
are identical,

Theorem 2.6.3. (See [56]) If a �nite metric space is homogeneous, then its
magnitude and its q -spread are equal.

Proof. Let A = {a1, a2, . . . , an} be a �nite metric space. Since A is homo-
geneous space, then by Theorem 2.2.13 the magnitude of A is

|A| = #A
n∑
j=1

e−d(ai, aj)

,

for each ai ∈ A . On the other hand, each point in A has the identical
reciprocal mean similarity ρi = #A

n∑
j=1

e−d(ai, aj)
, for i = 1, 2, . . . , n . We de�ne

the q -spread as a power mean µ1−q(ρ) . While µ1−q(ρ) of n copies of ρ is
just ρ . Therefore,

|A| = ρ = Eq(A).

� 2.7 Iterative solution of large systems of equations

One of the most problematic aspects of numerical analysis is �nding a feasible
method to solve a system of linear algebraic equations

Ax = b, (2.4)
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where A is a non-singular n× n matrix, b is a real column n-vector and x
is an unknown n-vector. There are two main classes of numerical schemes
for solving these systems.

• Direct Methods: These can be used to solve a linear system with a
�nite number of steps, and determine the exact solution. One example
is Gaussian elimination.

• Iteration Methods: These are most commonly used to solve a large
linear system, giving a sequence of approximate solutions starting from
an initial guess.

In particular, the systems of linear equations (2.4) can be solved iteratively,
using matrix-vector multiplications, where the �rst approximation to a so-
lution x1 belongs to the span of b

x1 ∈ span{b},

after which computing Ab and some linear combination of b and Ab can be
taken as the second approximate solution x2

x2 ∈ span{b, Ab},

so that this process continues until at step k it satis�es

xk ∈ span{b, Ab, . . . , Ak−1b}, (2.5)

for k = 1, 2, . . . . The subspace on the right in the expression (2.5) is called
a Krylov subspace for A with respect to b and is denoted Kk(A, b) .

We use this method to �nd the weights of the points in the middle row
of the 201 × 201 metric space in Section 4.4 and to �nd the magnitude
dimension of di�erent types of rectangular grid metric spaces in Section 5.3.
This section consists of two subsections: the �rst subsection, we describe
the Krylov subspace methods for solving linear systems and in the second
subsection, we present the conjugate gradient method based on the Krylov
subspace.

2.7.1 Krylov subspace methods

Here we will describe the Krylov subspace methods for solving linear sys-
tems. This subspace was �rst introduced in 1931 [27] by Krylov. He gave
a sequence of subspace, which is fundamental for most practical numerical
techniques that are commonly used in such applications as the conjugate
gradient method.

Let us begin with the following de�nitions and results.
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De�nition 2.7.1. (See [9]) The characteristic polynomial of an n × n
matrix A is a polynomial of degree n which is given as pA(λ) = det(λIn×n−
A) = λn+cn−1λ

n−1 + · · ·+c1λ+c0 , where In×n is the n×n identity matrix.

Theorem 2.7.2. [9, Cayley-Hamilton p. 225 ] If pA(λ) = λn + cn−1λ
n−1 +

· · ·+ c1λ+ c0 is the characteristic polynomial of A , then pA(A) = 0.

The following results are the corollaries of the Cayley-Hamilton theorem.

Corollary 2.7.3. If A is an n × n matrix and S = span{I, A, A2, . . . } ,
then S = span{I, A, A2, . . . , An−1} and dim(S) ≤ n .

Corollary 2.7.4. If an n× n matrix A is invertible and has characteristic
polynomial λn + cn−1λ

n−1 + · · ·+ c1λ+ c0 , then

A−1 = −c−1
0 (An−1 + cn−1A

n−2 + · · ·+ c2A+ c1). (2.6)

Before we explain the Krylov subspace, let us �rst give the following
de�nitions

De�nition 2.7.5. (See [50]) A monic polynomial is a polynomial whose
coe�cient of the highest degree is equal to one.

De�nition 2.7.6. (See [20]) A minimal polynomial of a square matrix A
is the monic, nonzero polynomial ρ of minimal degree such that ρ(A) = 0 .

De�nition 2.7.7. (See [15]) The Krylov sequence generated by a matrix
A ∈ Rn×n and a vector v ∈ Rn is given as

v, Av, A2v, . . . .

Since all Avi ∈ Rn , so the (n+1)-element subset v, Av, . . . , An−1v, Anv
is linearly dependent. Therefore there exists a unique d ≤ n , such that
v, Av, . . . , Ad−1v, Adv is linearly dependent but v, Av, . . . , Ad−1v is lin-
early independent. In the case that Adv is the zero vector, that linear
independence implies that α0 = α1 = · · · = αd−1 or Adv is non-zero linear
combination of the vectors v, Av, . . . , Ad−1v .

De�nition 2.7.8. (See [43]) The minimal polynomial of a vector v
with respect to a matrix A denoted ρA,v is the monic polynomial of
minimal degree such that ρA,v(A)v = 0 . Its degree is called the grade of v
with respect to A .

De�nition 2.7.9. (See [15]) Given an n× n non-singular matrix A and a
non-zero n-vector v , then the j th Krylov subspace generated by A from
v is denoted by Kj(A, v) and is given as

Kj(A, v) = span{v, Av, . . . , Aj−1v}.
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The next characterization determines the dimension of the Krylov sub-
space.

Proposition 2.7.10. (See [11]) The Krylov subspace is of dimension j if
and only if the degree of the minimal polynomial of v with respect to A is
not less than j .

In fact, the following proposition states that the Krylov subspace is non-
decreasing.

Proposition 2.7.11. (See [11]) If d is the degree of a minimal polynomial
of v , then Kd of degree d is invariant under A and Kd = Kj , for all j > d.

From above, it is clearly to see that K1 ⊆ K2 ⊆ · · · ⊆ Kd = Kj , for all
j > d . And at each step, the Krylov subspace dimension increases at most
by one.

Also, for any non-singular matrix A , there exist a minimal polynomial
and so by Corollary 2.7.4, we can evaluate A−1 using the minimal polyno-
mial. Consequently, the solution for the system of linear equations x = A−1b
lies in the Krylov subspace, as can be seen in the following theorem.

Theorem 2.7.12. (See [22]) If the degree of a minimal polynomial is d ,
then the solution to Ax = b lies within the Krylov subspace of degree d .

In general, the basic idea of the Krylov subspace iterative algorithm is to
compute a sequence of low-dimensional subspaces in which an approximation
to a solution xk , starting from initial approximate x0 approaches the exact
solution, namely

xk ∈ x0 +Kk(A, r0),

where r0 = b−Ax0 is an initial residual.
There are several approaches for choosing a good xk in krylov subspace

of degree k . Some of them are listed below:

• The conjugate gradient method in which the residual rk = b − Axk
is orthogonal to the Krylov subspace of A leading to the conjugate
gradients.

• GMRES and MINRES which minimize the residual.

• SYMMLQ which minimizes the norm of the error,

• The biconjugate gradient method in which the residual rk = b − Axk
is orthogonal to the Krylov subspace of the transpose of A .

Next, we will describe the �rst of the above methods of the Krylov sub-
space solver that satis�es the following condition: The kth approximation
xk is uniquely evaluated by

xk ∈ x0 +Kk(A, r0),

b−Axk⊥Kk(A, r0).
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Which is intended to solve the systems of linear equations.

2.7.2 Conjugate gradient method

The conjugate gradient iteration was invented in 1950 [19] by Hestenes and
Stiefel. This method is used to �nd the solution n-vector x of linear system
equations (2.4). Fletcher and Reeves in 1964 [8] introduced the idea that
the solution to these linear equations is equivalent to minimizing a quadratic
equation.

We begin with some elementary de�nitions from [44].

De�nition 2.7.13. The inner product 〈, 〉 of two vectors x = [x1, . . . , xn]
and y = [y1, . . . , yn] in Rn is given by

〈x, y〉 = xT y =

n∑
i=1

xiyi,

where xT is the transpose of x . Recall that,

〈x, x〉 = ‖x‖2 =
n∑
i=1

x2
i .

De�nition 2.7.14. We say that the vector x is orthogonal to the vector
y if 〈x, y〉 = 0 and we denote it by x⊥y .

De�nition 2.7.15. A set of vectors {x1, x2, . . . , xn} is an orthogonal set
if xi⊥xj , for all i 6= j .

De�nition 2.7.16. A vector x is orthogonal to the linear subspace

S ⊂ R if x⊥z , whenever z ∈ S .

De�nition 2.7.17. A vector x is A-orthogonal to a vector y or conju-
gate to y with respect to A if 〈x, y〉A = xTAy = 0 .

De�nition 2.7.18. A matrix A is called symmetric if A = AT and that
it is positive de�nite if xTAx > 0 , for all non-zero vector x , where AT , xT

are the transposes of A and x , respectively.

The conjugate gradient method name is derived from the case that a
sequence of orthogonal or conjugate vectors is generated. The residuals and
iterates are these vectors. Also, from the gradient of some quadratic form,
the minimization of this form is equivalent for the solution of the system of
linear equations. The conjugate gradient method is an e�ective technique
when the matrix A is symmetric and positive de�nite.
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The quadratic form

Here, we will look at the conjugate gradient technique as a method for solving
a system of linear equations by minimizing a quadratic equation φ : Rn → R ,
which is given by.

φ(x) =
1

2
xTAx− xT b, (2.7)

where A is an n×n symmetric positive de�nite matrix with coe�cients aij ,
for 1 ≤ i, j ≤ n and x, b are n-vectors.

We �rst recall some elementary de�nitions

De�nition 2.7.19. (See [5]) An assignment of a vector to any element in a
subset of space is vector �eld.

De�nition 2.7.20. (See [5]) An element of a �eld that used to de�ne a
vector space is called a scalar.

De�nition 2.7.21. (See [5]) Consider A to be an n × n matrix and x, b
n-vectors. Then, the scalar of the product

α = xTAx is
n∑
i=1

n∑
j=1

aijxixj .

De�nition 2.7.22. (See [46]) Given a vector (x1, x2, . . . , xn) ∈ Rn , O can
be described in terms of partial derivative operators as

O =

[
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

]
.

De�nition 2.7.23. (See [46]) The O operator acts on a scalar from ψ(x)
produces a vector �eld

Oψ =

[
∂ψ

∂x1
,
∂ψ

∂x2
, . . . ,

∂ψ

∂xn

]T
, (2.8)

is called a gradient.

Proposition 2.7.24. (See [16]) The following statements are true

∂xi
∂xl

=

{
1, if i = l,

0, if i 6= l,

and

∂(xixj)

∂xl
=


2xi, if i = j = l,

xi, if j = l and i 6= l,

xj , if i = l and j 6= l,

0, otherwise.
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Proposition 2.7.25. (See [8]) Consider A is an n × n matrix and x, b
are n-vectors and de�ned a quadratic equation φ : Rn → R , as φ(x) =
1
2x

TAx− xT b. Then, Oφ = 1
2(A+AT )x− b.

Proof. Since the scalar resulting from the product

z = bTx is
n∑
i=1

bixi,

and the scalar of the product

α = xTAx is
n∑
i=1

n∑
j=1

aijxixj .

Using Proposition 2.7.24, we get

∂z

∂xl
=

∂

(
n∑
i=1

bixi

)
∂xl

=
n∑
i=1

bi
∂xi
∂xl

= bi,

so,
Oz = b. (2.9)

Also,

∂α

∂xl
=

∂(
n∑

i,j=1
aijxixj)

∂xl

=

∂
(
allx

2
l +

∑
i 6=l
ailxixl +

∑
j 6=l

aljxlxj +
∑

i 6=l,j 6=l
aijxixj

)
∂xl

,

= all
∂x2

l

∂xl
+
∑
i 6=l

ail
∂xixl
∂xl

+
∑
j 6=l

alj
∂xlxj
∂xl

+
∑

i 6=l,j 6=l
aij

∂xixj
∂xl

,

= 2allxl +
∑
i 6=l

ailxi +
∑
j 6=l

aljxj + 0

=
n∑
i=1

ailxi +
n∑
j=1

aljxj ,

for l = 1, 2, . . . , n , this implies that

Oα = (A+AT )x. (2.10)

By formulae (2.10) and (2.9) we get

Oφ =
1

2
(A+AT )x− b. (2.11)
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At the minimize of the formula (2.7), a solution of the gradient of function
equal to zero. By Proposition 2.7.25 we get

Oφ =
1

2
(A+AT )x− b = 0.

Since A is a symmetric matrix, then Ax − b = 0 . This is true if and only
if Ax = b . This means that x minimizes φ(x) and is also a solution for
Ax = b , which means it is minimize the error.

De�nition 2.7.26. (See [8]) The error vector is a di�erence between an
actual value and an estimated value.

We will show in the following lemma that the error vector ||x− x∗|| for
x in Krylov subspace is minimized with respect to A-norm ||x− x∗||A by x
which minimizes φ(x) , where x∗ = A−1b is a solution of linear system (2.4).

Lemma 2.7.27. (See [26]) Suppose xk minimizes the quadratic equation φ
over the Krylov subspace x0 + Kk(A, r0) , then xk minimizes ||x − x∗||A =
||rk||A−1 over x0 +Kk(A, r0) , where rk = b−Axk .

Proof. Let x∗ = A−1b , so we can de�ne ‖x− x∗‖A = (x − x∗)TA(x − x∗) ,
and note that

(x− x∗)TA(x− x∗) = xTAx− xTAx∗ − x∗TAx+ x∗TAx∗

= xTAx− xTAx∗ − xTATx∗ + x∗TAx∗

= xTAx− 2xTAx∗ + x∗TAx∗

= xTAx− 2xT b+ x∗TAx∗

= 2φ(x) + x∗TAx∗.

Since x∗TAx∗ is independent to x , so that minimizing φ(x) is equivalent to
minimizing ‖x− x∗‖A .

Again, we have

‖x− x∗‖2A = (x− x∗)TA(x− x∗)

=
(
A(x− x∗)

)T
A−1

(
A(x− x∗)

)
= ‖b−Ax‖2A−1 .

Next we will explain the uniqueness of the solution

De�nition 2.7.28. (See [60]) Let x be a real n-vector, the second order
derivative of a function ψ of x is known as Hessian matrix, and is de�ned
as

H =
∂2ψ

∂x∂xT
=


∂ψ

∂x1∂x1

∂ψ
∂x1∂x2

· · · ∂ψ
∂x1∂xn

...
...

. . .
...

∂ψ
∂xn∂x1

∂ψ
∂xn∂x2

· · · ∂ψ
∂xn∂xn


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Since the second derivative of Equation (2.7) using the above matrix is

∂2φ

∂x∂xT
= A,

and A is positive de�nite, the solution of the formula φ is unique as seen in
the following lemma.

Lemma 2.7.29. (See [Minimizing function, [1]]) If φ : Rn → R is a function
and Oφ(x) = 0, with positive de�nite Hessian, then x is the unique minimum
of φ .

The conjugate gradient algorithm

Consider a sequence of non-zero A-conjugate search direction {d0, d1, . . . , dk−1} ,
for k ≥ 1 . These conjugate vectors with respect to the symmetric positive
de�nite A are linearly independent.

Proposition 2.7.30. (See [19]) Consider A is positive de�nite, and a set
of non-zero vectors {d0, d1, . . . , dk−1}, for k ≥ 1 are A-conjugate. Then
these vectors are linearly independent.

Proof. If {di}k−1
i=0 are linearly dependent, then for j = 0, . . . , k − 1 there

exist αj ∈ R , not all zero such that

k−1∑
j=0

αjdj = 0.

Multiply the above formula by A , we get

k−1∑
j=0

αjAdj = 0.

Multiply the above equation by dT0

k−1∑
j=0

αjd
T
0 Adj = α0d

T
0 Ad0 = 0.

But A is positive de�nite, dT0 Ad0 > 0, so α0 = 0 . Which is contradiction.

(See [19]) This implies that the sequence {dj}k−1
j=0 are linearly dependent,

so the search direction dk can be written as

dk = α0d0 + α1d1 + · · ·+ αk−1dk−1,

and thus dk belongs to same subspace in R .
The following theorems observation indicate that how to compute the

coe�cients {αj}k−1
j=0 , for an integer k ≥ 0 which minimizes the quadratic

formula (2.7).
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Theorem 2.7.31. (See [46, Conjugate direction algorithm])
Suppose that {d0, d1, . . . , dk−1} , for an integer k ≥ 0 is a sequence of
non-zero orthogonal vectors with respect to A . Then the set of iterates
{x1, . . . , xk} generated by

xi = xi−1 + αi−1di−1,

with

αi−1 = arg min{φ(xi−1 + αdi−1) : α ∈ R},

for i = 1, 2, . . . , k . Which is converges to the solution of a linear equations
after k steps, where x0 is an initial iterate and d0 = b−Ax0 .

Theorem 2.7.32. (See [Expanding subspace theorem, [6]])
Suppose that {d0, d1, . . . , dk−1}, for an integer k ≥ 0 is a set of non-zero
orthogonal search directions with respect to A . Then for i = 1, 2, . . . , k , the
sequence generated by

xi = xi−1 + αi−1di−1,

with

αi−1 =
dTi−1ri−1

dTi−1Adi−1
, (2.12)

having the property that φ reaches it minimum value on the subspace x0 +
span{d0, . . . , dk−1} at xk .

Now, consider the following equation

xi = xi−1 + αi−1di−1, (2.13)

for i = 1, 2, . . . , k . Multiplying Equation (2.13) by −A and then adding b
to both sides, we will get the residual ri

ri = ri−1 − αi−1Adi−1,

with r0 = b−Ax0 .

In addition, we can choose the search direction di for i = 1, 2, . . . , k , by
composing the residual at the present point with that of a previous direction
as it is stated in the following theorem.

Theorem 2.7.33. (See [26]) Let A be a symmetric positive de�nite and
consider ri−1 6= 0. Then for i = 1, 2, . . . , k and an integer k ≥ 0 , we have

di = ri−1 + βi−1di−1, (2.14)

with d0 = r0 = b−Ax0 .
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We can �nd the value of β in Formula (2.14), by multiply both sides of
the Formula 2.14 by dTi−1A for i = 1, . . . , k to be

dTi−1Adi = dTi−1Ari−1 + βi−1d
T
i−1Adi−1,

by A-orthogonality of di and di−1 for i = 1, 2, . . . , k , we have

dTi−1Adi = 0.

Thus we obtain

βi−1 = −
dTi−1Ari−1

dTi−1Adi−1
. (2.15)

There are di�erent equations of αi−1 , βi−1 that appear in Expressions
(2.12) and (2.15) respectively. They are the common implementation of the
conjugate gradient method, as modi�ed in the next result.

Lemma 2.7.34. (See [26]) Let A be symmetric positive de�nite matrix.
Then

αi−1 =
rTi−1ri−1

dTi−1Adi−1
,

and

βi−1 =
rTi ri

rTi−1ri−1
,

for i = 1, . . . , k and an integer k ≥ 0 .

Putting all above relations together, we obtain the next algorithm

Algorithm 1 conjugate gradient

(See [26])

Ensure: a matrix A and a unit vector b
Ensure: x0 an initial approximation
r0 = b−Ax0

d0 = r0

for i = 1, 2, . . . until ri = 0 do

αi−1 = rTi−1ri−1/d
T
i−1Adi−1

xi = xi−1 + αi−1di−1

ri = ri−1 − αi−1Adi−1

if ri 6= 0 then

βi−1 = rTi ri/r
T
i−1ri−1

di = ri−1 + βi−1di−1

end if

end for
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Chapter 3

The q-spread dimensions of

grid square metric spaces

The concept of the q -spread of �nite metric space has been de�ned in De�-
nition 2.4.1.

If all the points of A are very close together, Zij ≈ 1 , and accordingly
all the formula give Eq(A) ≈ 1 , which makes sense because A looks like one
point. However, if all the points of A are widely separated, so its points look
like a collection of disconnects points, then all give Eq(A) ≈ #A . These can
be seen as good measures of the size of �nite metric space A , then we can
de�ne the concept of the q -spread dimension for q ∈ {0, 1, 2, ∞} .

De�nition 3.0.1. (See [56]) The q -spread dimension of metric space A is
the growth rate of the q -spread of tA at t = 1 , as de�ned by

dimq(A) =
d log(Eq(tA))

d log(t)

∣∣∣
t=1

.

We have used the formal de�nition of the chain rule to calculate this deriva-
tive, this gives us the following equation

dimq(A) =
t

Eq(tA)
.
d(Eq(tA))

dt

∣∣∣
t=1

.

Note that the q -spread dimension of the metric space tA is then

dimq(tA) =
d log(Eq(sA))

d log(s)

∣∣∣
s=t

.

This chapter consists of two sections. Both sections discuss the growth
rate of the q -spread at di�erent scalings, which can be considered as a size-
dependent dimension of the metric space. In the �rst section, we prove
Theorem 3.1.3, which shows that for the large scale, the q -spread dimension
is independent of the number of points of the square grid. In second section,
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the heuristic q -spread dimension is numerically calculated; this is viewed
as being very close to some quadratic function at2 + bt + c where a, b, c
are positive constants, that represents a best-�t for a large space and small
scales.

� 3.1 q -spread dimension for �nite square grid metric spaces

We will �rst de�ne the concept of the 0-spread dimension for square grid
metric space as the growth rate of the 0-spread of the space. This concept
of dimension is scale-dependent.

The square grid metric space A with an even number n of points
per side is the n× n matrix of points called p1, . . . , pn2 , where pi ∈ A is a
pair of numbers (x, y) and x, y ∈ {1, 2, . . . , n} , such that p1 = (1, 1), p2 =
(2, 1), . . . , pn2 = (n, n) . For t > 0 , the 0-spread of tA with side length
t(n− 1) is de�ned by the De�nition 2.4.1 as

E0(tA) =
n2∑
i=1

1
n2∑
j=1

e−td(pi, pj)

,

where the distance between the points d(pi, pj) is the usual distance in
Euclidean space and the square grid is scaled by a factor t . This 0-spread
is a measure of the size of the grid square, so an associated dimension can
be de�ned as the growth rate of the size.

In particular, the 0-spread dimension dim0(A) of the metric space A by
the De�nition 3.0.1 is given by

d log(E0(tA))

d log(t)

∣∣∣
t=1

=
t

E0(tA)
.
d(E0(tA))

dt

∣∣∣
t=1

.

It is informative to look at the 0-spread dimension as an n× n square grid
A being scaled by factor t > 0 . We used a number of computer calculations,
as performed using Maple (see Appendix A), to partition the metric space
A into four subsets under the action of a subgroup of order four of the
symmetry group of the square. Let A1 be one of these subsets, then we can
evaluate ∑

pi∈A1

1∑
pj∈A

e−td(pi, pj)
,

and multiply the above result by four to get the 0-spread of tA . We repeat
this process for various scale factors t , after that we save the 0-spread of
square grid with its scaling factor to obtain a list of pairs of points. Then
we approximate the logarithmic derivative by �nding the gradient, which
is equal to the change in 0-spread between two data points divided by the
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change in scale factor t between the corresponding two data points, then
plotting the result (see Appendix A.1.1). For instance, we found the 0-
spread dimension of grid squares with 60 × 60 , 110 × 110 and 160 × 160
points, as represented in Figure 3.1. We can see that this concept of the 0-
spread dimension changes according to the factor t . When the scale factor
of the square grid is very small, the square points appear to be just a single
point, which is of dimension zero. When the scale is increased, it appears
to be more like a true square with a dimension of just under two; however,
as the scale is increased further, distinct points become apparent and the
dimension drops back to zero.

0.001 0.01 0.1 1 10 100

0

1

2

inter-point distance

0
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p
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60× 60
110× 110
160× 160

Figure 3.1: The 0-spread dimensions of various square grids.

Furthermore, the 0-spread dimensions of those squares are similar, and
approximately independent of the number of points, for t > 1 .

To �nd out why this happens, we �rst considering a point p = (n2 +
1, n2 + 1) to be the bottom left-hand corner of the �rst quadrant of the
grid square (see Figure 3.3), and let X be a subset of these square grids of
10× 10 points of the square grids such that tX contains the square with a
side-length t , so p ∈ X as can be seen in Figure 3.3. Since t� 0 , then the
impact of a point on other points reduces exponentially with distance, the
points in tA only know what is going on locally. therefore, the weight of the
points in tX are reasonable constants.

1∑
pj∈A

e−td(p, pj)
∼

1∑
pj∈X

e−td(p, pj)
,

for p ∈ A . An estimate of the 0-spread of A scaled by a factor t denoted

41



CHAPTER 3. THE q -SPREAD DIMENSION

by F0(tA, p) and de�ned as

F0(tA, p) =
#A∑

pj∈X
e−td(p, pj)

. (3.1)

Then, we divided the 0-spread for three metric spaces 60×60, 110×110, 160×
160 and estimate of the 0-spread by their corresponding numbers of points.
After that, we used Maple code (see A.1.2) to plotting them together, as
shown in Figure 3.2.

0.001 0.01 0.1 1 10

-3

-2

-1

0

1

Inter-point distance

60× 60

110× 110

160× 160

estimated 0 -spread

Figure 3.2: The 0-spread of various square grids and the estimate 0-spread
that de�ned in Formula (3.1) divided by their number of points.

From above �gure, we see that the 0-spread of the three metric spaces and
the estimate 0-spread divided by their number of points are approximately
the same, and independent of the number of points, when the inter-point
distance of the square grid is greater than one.

In general, if the large square grid scaled by a factor bigger than one, then
the estimate 0-spread of square grid with respect to p over the 0-spread of
square grid is small as shown in the next proposition.

Proposition 3.1.1. For any large number n , if an n × n square grid of
lattice points is scaled by a factor t > 1 , then

F0(tA, p)

E0(tA)
→ δ as t→∞,

where 1
4 ≤ δ ≤ 1.

Proof. Given a large n × n grid square metric space A , the 0-spread of A
scaled by a factor t > 0 is

E0(tA) =
∑
p̂∈A

1∑
p̄∈A e

−td(p̂,p̄)
.
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Now if a point p is an upper right-hand corner of the middle square of side
length t of square grid scaled by factor t , then the estimate of the 0-spread
with respect to p of square grid A scaled by a factor t > 0 is

F0(tA, p) =
#A∑

p̄∈A e
−td(p, p̄)

.

If the value of F0(tA, p) is divided by the value of E0(tA) , we get the average
over p of 1/

∑
p̄∈A e

−td(p, p̄) divided by the average over p̂ of 1/
∑

p̄∈A e
−td(p̂, p̄)

to be

F0(tA, p)

E0(tA)
=

#A/
∑

p̄∈A e
−td(p, p̄)∑

p̂∈A(1/
∑

p̄∈A e
−td(p̂, p̄))

=
1/
∑

p̄∈A e
−td(p, p̄)∑

p̂∈A(1/
∑
p̄∈A e

−td(p̂, p̄))

#A

≈
1/
∑

p̄∈A e
−td(p, p̄)

1/
∑

p̄∈A e
−td(p̂, p̄)

=

∑
p̄∈A e

−td(p̂, p̄)∑
p̄∈A e

−td(p, p̄)
.

Now the proof is dependent on the position of the point p̂ in the grid square.

Case 1. Let p̂ be the point on the boundary or nearest point to the
boundary (less than ten units). Since n is large, t is big and impact of a
point on the other points decays exponentially with distance. so, the point
only know what happening around it. Therefore, it is clearly to see that∑

p̄∈A
e−td(p̂, p̄) ≈ 1

4

∑
p̄∈A

e−td(p, p̄),

this implies
F0(tA, p)

E0(tA)
→ 1

4
as t→∞.

Case 2. Let p̂ be a point far at least ten units away from the boundary. Let
X̂ be a subset of square grid A of 10×10 points such that p̂ is in the square
of side length one in X̂ . Since the scale factor of the large square grid is big,
and e�ect of a point on other points decays exponentially with distance, so
the points in X̂ only know what is happening locally. Then we get∑

p̄∈A
e−td(p̂, p̄) ≈

∑
p̄∈A

e−td(p, p̄),

which implies that

F0(tA, p)

E0(tA)
→ 1 as t→∞.

43



CHAPTER 3. THE q -SPREAD DIMENSION

The following lemma relates to the incomplete Gamma function. This
result is important to proving the theorem which follows, as can be explained
by the fact that when the measures of the distance of points t grow larger,
the dimension becomes independent of the number of points for the square
grid.

Lemma 3.1.2. For a non-negative integer n and t, k > 0 , we have

∞∫
r=k

e−trrn dr =
e−kt

tn+1

n∑
i=0

n !

i !
tiki.

Proof. We proceed the proof by induction on n. The base case being the
known case n = 0 , that

∞∫
r=k

e−tr dr =
−1

t
e−tr

∣∣∣∞
r=k

=
e−kt

t1
0 !

0 !
t0k0.

Assume the statement is true for some n
∞∫

r=k

e−trrn dr =
e−tk

tn+1

n∑
i=0

n !

i !
tiki.

We need to show that it is true for n+ 1 . Now evaluating

∞∫
r=k

e−trrn+1 dr,

we integrate by parts

∞∫
r=k

e−trrn+1 dr =
−rn+1

t
e−tr

∣∣∣∞
r=k

+
(n+ 1)

t

∞∫
r=k

e−trrn dr

=
kn+1

t
e−tk +

(n+ 1)

t

∞∫
r=k

e−trrn dr,

By the induction assumption

=
kn+1

t
e−tk +

(n+ 1)e−kt

tn+2

n∑
i=0

n !

i !
tiki

=
e−kt

tn+2

(
kn+1tn+1 +

n∑
i=0

(n+ 1)n !

i !
tiki
)

=
e−kt

tn+2

n+1∑
i=0

(n+ 1) !

i !
tiki.
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So we have a base case when n = 0 , and we have shown that if the statement
is true for any n this implies that it is also true for n + 1 . This completes
the proof.

Theorem 3.1.3. There is some positive function χ of t such that for any
large and even number n , an n × n grid square A with a unit distance
between adjacent points is scaled by a factor t� 0 . Then

dim0(tA)

χ(t)
→ 1 as t→∞.

Proof. Given a large n× n grid square A , the 0-spread of A as scaled by a
positive factor t is

E0(tA) =
∑
p∈A

1∑
p′∈A

e−td(p, p′)

We divide this by the number of points in A

E0(tA)

#A
=

1

#A

∑
p∈A

1∑
p′∈A

e−td(p,p′)
,

to get the average over p of

1∑
p′∈A

e−td(p,p′)
.

Let p be a point far from the boundary. We select a point p to be a upper
right-hand corner of the middle square of side length t (see Figure 3.3). If
the scale of the distance between points t is su�ciently large, then the points
are far away from each other, so we shall prove that∑

p′∈A
e−td(p,p′) (3.2)

depends mainly on the distance from the nearest point. De�ne X to be the
sub-grid square of a size 10×10 which contains the point p as seen in Figure
3.3. We then split Expression (3.2) into the sum of two parts∑

p′∈A
e−td(p, p′) =

∑
p′∈X

e−td(p, p′) +
∑

p′∈A\X

e−td(p, p′).

Since n is even, the points in the grid square A can be divided into four
identical quadrants by symmetry. Without loss of generality, we can assume
that p the bottom left-hand corner point of the �rst quadrant is translated
to the origin. Writing d(0, p′) = |p′| , we obtain∑

p′∈D
e−td(p, p′) =

∑
p′∈D

e−t|p
′|,
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D

X p

D̄

Figure 3.3: Determining the region D and the region D̄ (for illustration
purposes X is down 4× 4 instead of 10× 10).

where D is the �rst quadrant region of A\X .
Consider the function f : D̄ → R>0 given by

f(p′) = e−t|p
′|.

We now de�ne a step function f̂ : D̄ → R>0 to be constant at each unit
lattice square as

f̂(p′) = f(p̂′),

where p̂′ = (dxe, dye) is the lattice point at the top right of the square
containing p′ = (x, y) . Also, because f(p′) is decreasing in |p′| so f̂ ≤ f .

If D̄ is a region containing the points in D and the points in D which
completes the unit squares in D , as can be seen in Figure 3.3, then by
construction, as each square has unit area ∆A = 1 , we have∫

p′∈D̄

f̂(p′) dp′ =
∑
p̂′D̄

f(p̂′)∆A.

Assume that k > 0 such that |p′| > k for p′ in D . Also we know that
f̂ ≤ f , then∑
p̂′∈D̄

f(p̂′) =

∫
p′∈D̄

f̂(p′) dp′ ≤
∫

p′∈D̄

f(p′) dp′ ≤
∫
|p′|>k

f(p′) dp′ =
1

4

∫
|p′|>k

e−t|p
′| dp′.

Since p′ is belongs to the �rst quadrant of the square grid and the four
quadrants are symmetric, then we can write

4
∑
p̂′∈D̄

f(p̂′) ≤
∫
|p′|>k

e−t|p
′| dp′
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Let us change the variables of this integral to polar coordinates to obtain

∫
|p′|≥k

e−t|p
′| dp′ =

2π∫
0

∞∫
r=k

e−trr dr dθ = 2π

∞∫
r=k

e−trr dr = 2π
e−kt

t2
(1 + kt).

The last equality is by Lemma 3.1.2.
Let Q1(t) = 2π e

−kt

t2
(1 + kt) . This implies that

|
∑

p′∈A\X

e−td(p, p′)| < Q1(t).

Therefore, Expression (3.2) is∑
p′∈A

e−td(0,p′) <
∑
p′∈X

e−td(0,p′) +Q1(t).

So, the 0-spread of tA is

E0(tA) ≈ #A∑
p′∈X

e−td(0,p′) +Q1(t)
.

Now, we can return to the evaluation of the 0-spread dimension of tA which
is by De�nition 2.4.1 equal to

t

Eq(tA)
.
d(Eq(tA))

dt
≈ t

#A∑
p′∈X

e−td(0,p′)+Q1(t)

d

dt

 #A∑
p′∈X

e−td(0,p′) +Q1(t)



= t

∑
p′∈X

e−t|p
′| +Q1(t)


( ∑
p′∈X

|p′|e−t|p′| − d
dtQ1(t)

)
( ∑
p′∈X

e−t|p′| +Q1(t)

)2

=

∑
p′∈X

t|p′|e−t|p′| − d
dtQ1(t)∑

p′∈X
e−t|p′| +Q1(t)

,

where d
dtQ1(t) = −2π e

−kt

t3
(2 + 2kt + t2k2) . Consider Q2(t) = −2π e

−kt

t3
(2 +

2kt+ t2k2) . Then dim0(tA) is given by∑
p′∈X

td(0, p′)e−td(0,p′) +Q2(t)∑
p′∈X

e−td(0,p′) +Q1(t)
.
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Whereas the Taylor series can be used to approximate Q1(t) and Q2(t) as
t � 0 to be O(t−1) . Which are very small that can be neglected and we

denoted the remain by χ(t) =

∑
p′∈X

td(0,p′)e−td(0,p
′)

∑
p′∈X

e−td(0,p′)
. Therefore,

dim0(tA)

χ(t)
→ 1 as t→∞. (3.3)

We are again plotting the 0-spread dimension for di�erent types of square
60×60, 110×110 and 160×160 with the estimated 0-spread dimension χ(t)
evaluated in Theorem 3.1.3. As can be seen in Figure 3.4, the dimension of
metric spaces are approximately the same for larger values of the inter-point
distance.
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Figure 3.4: The 0-spread dimension of various spaces with the estimation of
the 0-spread dimension at di�erent scaling.

In a similar manner to that described in the beginning of Section 3.1,
we give the square grid metric space A and a positive scaling factor t . The
q -spread of tA for q = 1, 2 , by De�nition 2.4.1, is de�ned as

Eq(tA) =


n2.

∏
p∈A

( 1∑
p′∈A

e−td(p,p′)
)

1
n2 if q = 1,

n4∑
p∈A

∑
p′∈A

e−td(p,p′)
if q = 2,

where the metric d is the usual Euclidean distance formula between two
points in A and so is a measure of size. Now we investigate that how the
associated size changes under scaling and use this to describe the concept
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of the q -spread dimension dimq(tA) as the growth rate of the q -spread as
q = 1, 2 , which by De�nition 3.0.1 is

dim(tA) =
d log(Eq(sA))

d log(s)

∣∣∣
s=t

=
t

Eq(sA)
.
d(Eq(sA))

ds

∣∣∣
s=t

.

We use numerical evaluation in Maple (see Appendix A.1.1), to determine
the q -spread dimensions of di�erent grid squares with 60 × 60 , 110 × 110
and 160× 160 points.
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Figure 3.5: A q -spread dimension for grid squares of di�erent sizes at various
scaling.

Observe in Figure 3.5 that the q -spread dimension of these grid squares
are roughly the same when the inter-point distances are greater than one.

We clarify that by considering a square subset tX of tA with at least
10× 10 points that contain the points of a middle square of side length t of
the square grid tA , then dividing the q -spread of the metric space tA by
their number of points.

Eq(tA)

n2
=



∏
p∈A

( 1∑
p′∈A

e−td(p,p′)
)

1
n2 if q = 1,

n2∑
p∈A

∑
p′∈A

e−td(p,p′)
if q = 2,

these are respectively the geometric average and the harmonic average over
the point p of the expression

1∑
p′∈A

e−td(p,p′)
.
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It follows from the proof of Theorem 3.1.3, this expression equal to:

1∑
p′∈X

e−td(p, p′) +O(t−1)
.

Also, from the proof of Theorem 3.1.3

χ(t) ≈

∑
p′∈X

td(p, p′)e−td(p, p′)

∑
p′∈X

e−td(p, p′)
.

Now, as seen in Figure 3.6, the q -spread dimension and the above esti-
mated q -spread dimension are equivalent when inter-point distance becom-
ing larger.
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Figure 3.6: A q -spread dimension of grid squares of di�erent sizes compared
with the estimated q -spread dimension χ(t) .

As we can see from the graph in Figure 3.7, when the inter-point distance
of the 160 × 160 square grid is very small, the q -spread dimension (for
q = 0, 1, 2) is approximately the same. we shall describe the details in the
following subsection.
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Figure 3.7: The q -spread dimension of the 160×160 square grid at di�erent
scales.

� 3.2 Heuristic for the q -spread dimension of a grid square

In this section, we present a heuristic that approximates the q -spread dimen-
sion of a grid square using a solid square. We see from numerical computa-
tions that the q -spread dimension is often close to some quadratic formula
of a positive τ , independent of q = 0, 1, 2 .

Let τQ be a τ × τ square subset of R2 . For every τ > 0 , this is a solid
square, not a grid of points, so τQ is di�erent to tA . Here we are looking �rst
at the 0-spread as a function of side length not distance between points. The
square τQ can be approximated by an n×n square grid of points τQ̈n with
a distance between adjacent points of τ

n−1 . This means that Q̈n = 1
n−1A .

Using computer algebra such as Maple (see Appendix A.2), the 0-spread
dimensions for n×n square τQ̈n for various values of n such as 60 , 110 and
160 can be numerically calculated. Then we plot the results, where τ > 0 is
the side length of the square.

We can see from Figure 3.8 that the 0-spread dimension of the τQ̈n for
three di�erently values of n are nearly the same and independent of the
number of points, at some smaller scales τ .

Next, we present a heuristic estimate for the contribution to the 0-spread
from the bulk of points in a solid square. We see from numerical computa-
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Figure 3.8: The 0-spread dimensions of various square grids Q̈n of points at
di�erent scales.

tions that for small positive τ the 0-spread is close to the quadratic formula

aτ2 + bτ + c,

for some positive values of a , b and c . Also, if the distance between adjacent
points in the n×n square grid is very small for large n , then the square grid
is approximately the solid square in R2 , which is essentially independent of
n . So, the 0-spread of the solid square is supposed to give an approximation
to the 0-spread of the n× n square grid.

Theorem 3.2.1. If Q ∈ R2 is a 1 × 1 square that is approximated by an
n× n grid square Q̈n of lattice points, then we have

E0(Q̈n) → E0(Q) as n → ∞.

Proof. Since the points of Q̈n will be very close to each other for a large
number of points, then the square grid Q̈n can be approximated to a solid
square Q with length sides 1 . Take f : Q → R be a function on a square
region Q = [0, 1]× [0, 1] = {(a, b)| 0 ≤ a, b ≤ 1} . We can partition Q into
n2 sub-squares Qij of width ∆a = 1

n and length ∆b = 1
n . This partitions

the region Q into n2 sub-squares Qij , each of which has an area ∆Aij = 1
n2

for each 1 ≤ i, j ≤ n . We can choose a middle point (ai, bj) from every
sub-square Qij and consider the expression∑

i

∑
j

f(ai, bj)∆Aij ,

as max ∆Aij → 0 , we get∑
i

∑
j

f(ai, bj)∆Aij →
∫
Q

f(a, b) dA.
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By De�nition 2.4.1, the 0-spread of Q̈n with length sides n−1
n is

E0(Q̈n) =
n∑
i=1

n∑
j=1

1
n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2

=
n∑
i=1

n∑
j=1

1
n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2
∆A

∆A.

When n → ∞ , the length sides of the grid square n−1
n approaches 1 , and

∆A approaches 0 , then we have

E0(Q̈n)→
∫
Q

1∫
Q

e−
√

(a−a′)2+(b−b′)2
dA

dA

=

1∫
a=0

1∫
b=0

1
1∫

a′=0

1∫
b′=0

e−
√

(a−a′)2+(b−b′)2
da′ db′

da db,

which is the 0-spread of Q .

By the above theorem, the 0-spread of the solid square gives an approx-
imation to the 0-spread of the n× n square grid. Now if we scale the �nite
square grid Q̈n by a factor for various values of τ , we will show that the
0-spread of the large square grid τQ̈n is approximately equal to a quadratic
function of τ .

Remark 3.2.2. If a large �nite grid square metric space Q̈n is scaled by a
very small factor τ , then there is a function f of τ such that

E0(τQ̈n) → f(τ) as n→∞.

Similarly to the proof of Theorem 3.2.1,

E0(τQ̈n)→
τ∫

a=0

τ∫
b=0

1
τ∫

a′=0

τ∫
b′=0

e−
√

(a−a′)2+(b−b′)2
da′ db′

da db,

where n→∞ . We use MATLAB to calculate this integral for various values
of τ ranging from 0.0001 to 5 (see Appendix A.2.1). We have used polyno-
mial curve �tting in PYTHON, which involves �nding the best polynomials
to �t the data to obtain the quadratic formula 0.157τ2 + 0.48τ + 1.01 which
is approximately close to τ2

2π + 1
2τ + 1 .
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Figure 3.9: Comparison of the 0-spread of square grid Q̈160 with the
quadratic formula τ2

2π + τ
2 + 1 .

We plot that quadratic expression with the 0-spread of the Q̈160 which
gives us a best �t as seen in Figure 5.3.

This means that for small value of τ , the 0-spread of the square grid
τQ̈n for large n is independent to n , so its dimension approximately will
not dependent to n , for large n .

The square subset τQ of R2 and the grid square τQ̈ are de�ned in the
same manner as at the beginning of Subsection 3.2. Now, we will look at
the 1-spread and 2-spread as a function of side length not distance between
points. The square τQ can be approximated by an n × n square grid of
points τQ̈n . We used Maple to compare q -spread dimensions for the 60×60 ,
110 × 110 and 160 × 160 grids square, where q = 1, 2 , as represented in
Figure 3.10.
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Figure 3.10: A q -spread dimension of the grid square Q̈n for di�erent n at
various sizes.

In fact, the three expressions that we plotted are similar when τ is very
small.

As we mentioned before, the distance between any two adjoining points
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τ
n−1 in the n× n grid square is quite small for large n and small τ . Hence,
the grid square is approximately a solid square. The next theorem shows
that the 1-spread of the solid square is roughly equal to the 1-spread of the
grid square.

Theorem 3.2.3. If we approximate a 1 × 1 square subset Q of R2 by an
n× n grid square Q̈n of lattice points, then the following is true

E1(Q̈n) → E1(Q) as n → ∞.

Proof. For larger n , the points of Q̈n are very near to each other, that looks
like a solid square with sides of length 1 . We can take a function f : Q→ R
in a region Q = [0, 1]× [0, 1] = {(a, b)| 0 ≤ a, b ≤ 1} . The region Q can
divided into n sub-squares Qij of equal width ∆a = 1

n and length ∆b = 1
n ,

each having an area ∆A = 1
n2 . We can choose a middle point (ai, bj) in

each sub-square and consider the expression∏
i

(∏
j

(
f(ai, bj)

)∆a)∆b
.

Take the logarithm of above expression

ln(
∏
i,j

(
f(ai, bj)

)∆A
) = ∆A

∑
i,j

ln
(
f(ai, bj)

)
,

so ∏
i,j

(
f(ai, bj)

)∆A
= e

∑
i,j ln (f(ai, bj))∆A

As max ∆A→ 0 we have∏
i,j

(
f(ai, bj)

)∆A
= e

∫
Q ln f(a,b) dA.

The 1-spread of Q̈n by De�nition in 2.4.1 as q = 1 is

E1(Q̈n) = n2
n∏
i=1

n∏
j=1

( 1
n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2

) 1
n2

=

n∏
i=1

n∏
j=1

(
n2)n

2
(

1
n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2

) 1
n2

=

n∏
i=1

n∏
j=1

( n2

n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2

) 1
n2
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then we can take the logarithm of both sides

lnE1(Q̈n) =
1

n2
ln
( n∏
i,j=1

1
1
n2

( 1
n∑

l,k=1

e−
√

(ai−al)2+(bj−bk)2

))

=
n∑

i,j=1

ln
( 1

n∑
l,k=1

e−
√

(ai−al)2+(bj−bk)2 1
n2

) 1

n2
,

so

E1(Q̈n) = e

n∑
i=1

n∑
j=1

ln
(

1

n∑
l=1

n∑
k=1

e
−
√

(ai−al)2+(bj−bk)2
∆A

)
∆A

.

As n→∞ the max ∆A→ 0 , then we obtain

E1(Q̈n)→ e

∫
Q ln
(

1∫
Q e−
√

(a−a′)2+(b−b′)2 dA

)
dA

= e

∫ 1
a=0

∫ 1
b=0 ln

(
1∫ 1

a′=0

∫ 1
b′=0

e−
√

(a−a′)2+(b−b′)2 da′ db′

)
da db

.

This gives the 1-spread of Q .

Again, we can scale the Q̈n square grid by di�erent positive values of
τ and we show that the 1-spread of that square is approximately equal to
some quadratic equation of τ .

Remark 3.2.4. Consider a grid square Q̈n for large n and a positive value
τ . Then there is a function of τ such that

E1(τQ̈n) → f(τ) as n→∞.

In the statement of Theorem 3.2.3, the 1-spread of Q̈ approaches to

e

∫ 1
a=0

∫ 1
b=0 ln

(
1∫ 1

a′=0

∫ 1
b′=0

e−τ
√

(a−a′)2+(b−b′)2 da′ db′

)
da db

.

We apply MATLAB (see Appendix A.2.2) to evaluate the above integral for
di�erent values of τ ranging from 0.001 to 5 , and use polynomial curve
�tting to �nd the quadratic function 0.157τ2 + 0.47τ + 1.02 which is also
closer to the formula τ2

2π + τ
2 + 1 .

In the next theorem, we show that the 2-spread of the solid square is
approximately equal to the 2-spread of the grid square Q̈n .

Theorem 3.2.5. If we approximate the grid square Q̈n by a 1× 1 subset Q
of R2 , then

E2(Q̈n) → E2(Q) as n → ∞.
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Proof. For a big value of n , all the points of Q̈n are very close to each other,
and Q̈n is approximately a solid square Q with sides of length 1 . We take the
function f : Q → R on a region Q = [0, 1] × [0, 1] = {(a, b)|0 ≤ a, b ≤ 1} ;
we divide Q into n2 sub-squares Qij of equal width and length ∆a, ∆b = 1

n .
This partitions the region Q into n2 sub-squares Qij , each of which has an
area ∆Aij = 1

n2 . For each sub-square Qij , we choose a middle point (ai, bj)
and thus we consider the expression∑

i

∑
j

f(ai, bj)∆Aij ,

as maxAij → 0 , we get

∑
i

∑
j

f(ai, bj)∆Aij →
∫
Q

f(a, b) dA.

Now, by De�nition 2.4.1 for q = 2 , the 2-spread of Q̈n is

E2(Q̈n) =
n4

n∑
i=1

n∑
j=1

n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2

=
1

n∑
i=1

n∑
j=1

n∑
l=1

n∑
k=1

e−
√

(ai−al)2+(bj−bk)2 1
n2

1
n2

.

As n→∞ , the value 1
n2 approaches 0 , so

E2(Q̈n)→ 1∫
Q

∫
Q

e−
√

(a−a′)2+(b−b′)2
dAdA

=
1

1∫
a=0

1∫
b=0

1∫
a′=0

1∫
b′=0

e−
√

(a−a′)2+(b−b′)2
da′ db′ da db

which is the 2-spread of Q .

Here we scale the square grid Q̈n by di�erent values of τ and prove that
the 2-spread of that square is approximately equal to the quadratic formula
aτ2 + bτ + c , for some positive values a, b, c provided that n is large.

Remark 3.2.6. Given a grid square Q̈n for big n and a positive value τ .
Then there is a function of τ such as

E2(τQ̈)→ f(τ) as n→∞.
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The 2-spread of τQ̈n by the statements of Theorem 3.2.5 approaches to

1
1∫

a′=0

1∫
b′=0

1∫
a=0

1∫
b=0

e−τ
√

(a−a′)2+(b−b′)2
da′ db′ da db

the above integral is determined for various values of τ using MATLAB (see
Appendix A.2.3) and the curve �tting allows us to calculate the quadratic

formula 0.1575τ2+0.485τ+1.02 that very closer to the expression τ2

2π+ τ
2 +1 .

Therefore, the 0-spread, 1-spread and 2-spread of the square grid τQ̈n
for large n appear to converge to the quadratic function τ

2π + τ
2 + 1 .

Willerton [55] approximate a 1 × 1 square Q by the square grid Q̈ of
150 × 150 points, then the magnitude of tQ̈ is numerical determined for
several values of t . Also de�ne the penguin valuation of a square Q scaled
by a factor t > 0 , to be

P (tQ) =
t2

2π
+
t

2
+ 1.

Plotting them together on a graph, (see Figure 4 in [55]), there is a markedly
good �t.
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Chapter 4

The magnitude and the

maximum diversity of the

square grid metric spaces

Leinster in [32] established magnitude to be a numerical isometric invariant
of metric spaces. Magnitude is de�ned for a �nite metric space A with a
metric d by starting from a square matrix Z =

(
Zab
)
whose columns and

rows are indexed by the points of A , with entries

Zab = e−d(a, b). (4.1)

Given this, the weighting for A is a column vector w such that

Zw =

1
...
1


When the weighting is de�ned, the magnitude |A| is the sum of the entries
in the vector w . Here there are two basic principles: the weights are not
always positive, and when we have more than one weighting the magnitude
is independent of the choice of weighting. If the distance between any pair
of points in the metric space A is very small they will appear to be a single
point and its magnitude by [Theorem 2.6 , [39]] is lower semi-continuous, so

lim
t→0

inf |tA| ≥ | · | = 1;

conversely, if the distances between the points are very large, then the metric
space will appear to be a collection of separate points and its magnitude by
[Proposition 2.8, [37]] is

lim
t→∞
|tA| = #A.

59



CHAPTER 4. MAGNITUDE AND MAXIMUM DIVERSITY

This means that the magnitude is viewed as the e�ective number of points,
as was �rst described in the biodiversity literature [52] and which is referred
to therein as the e�ective number of species.

Diversity indices are mathematical measures of species diversity in a given
community. Some such measures are the Shannon diversity index, Simpson's
diversity index and the Berger Parker diversity index as de�ned in Section
2.3. Let us consider a community containing S species with relative frequen-
cies of p1, . . . , pS . The diversity indices mentioned above have the feature
that for a �xed number of species S they are maximized by the uniform rel-
ative abundance in which pi = 1

S , for i = 1, 2, . . . , S and take the value S
there, so can be thought as e�ective numbers of species. However, there has
been a growing realization that this simple model of biological community
is not particularly representative of reality, and does not fully consider the
similarities between species. This realization led to a new diversity measure
that takes inter-species similarity into account.

Leinster and Cobbold in [35] introduced a new family of diversity mea-
sures which takes into account both similarity between the species and their
relative abundance. Such a measure is referred to the diversity of order q on
relative abundance p = {p1, . . . , pS} and similarity matrix Z .

Now consider a list of S species with a known similarity matrix Z ; one
can ask, what is the maximum diversity of order q , and which probability
maximizes it? Leinster [31] provided the answers to these questions, namely
that if the similarity matrix of A admits non-negative weighting, then the
maximum diversity is simply the magnitude of A . However, if there are any
negative weightings, then the maximum is over all B ⊂ {1, . . . , n} such
that ZB admits a non-negative weighting, so the maximum diversity is the
magnitude of that subset, which is independent of q .

This chapter consists of four sections. The �rst section determines the
largest magnitude with a non-negative weighting for all subsets of an 3× 3
square grid metric space at various scales to achieve maximum diversity. In
the second section, we are interested in the symmetry points of the square
grid, and consider only symmetric orbits that are equivalent under the group
of symmetries of a square, then for 3 × 3, . . . , 10 × 10 , we determine the
maximummagnitude with non-negative weightings of these orbits and unions
of these orbits at di�erent scales to ensure maximum diversity. The third
section describes how the magnitude of the orbit that contains the four corner
points of an n×n square grid is greater than a magnitude of any other orbits,
for su�ciently small scale factor t . Also, when we added any other orbit to
the four corner orbit, then the new subset have negative weights on the small-
scale. The fourth section studies the weighting of the points in the middle
row of the 201 × 201 grid metric space at di�erent scaling using conjugate
gradient method.
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� 4.1 The magnitude and the maximum diversity of a 3× 3
square grid

In this section, we determine the maximum diversity of square grid metric
space with 3× 3 points at various scaling.

Let tA be a 3× 3 square grid metric space on the unit grid scaled by a
factor t > 0 and labeled by {[i, j] : 1 ≤ i, j ≤ 3} which is a subset of R2 ,
with metric t times the usual Euclidean metric. Its exponential matrix Z
with entries Zij = e−td(i, j) is

1 e−t e−2 t e−t e−t
√

2 e−t
√

5 e−2 t e−t
√

5 e−2 t
√

2

e−t 1 e−t e−t
√

2 e−t e−t
√

2 e−t
√

5 e−2 t e−t
√

5

e−2 t e−t 1 e−t
√

5 e−t
√

2 e−t e−2 t
√

2 e−t
√

5 e−2 t

e−t e−t
√

2 e−t
√

5 1 e−t e−2 t e−t e−t
√

2 e−t
√

5

e−t
√

2 e−t e−t
√

2 e−t 1 e−t e−t
√

2 e−t e−t
√

2

e−t
√

5 e−t
√

2 e−t e−2 t e−t 1 e−t
√

5 e−t
√

2 e−t

e−2 t e−t
√

5 e−2 t
√

2 e−t e−t
√

2 e−t
√

5 1 e−t e−2 t

e−t
√

5 e−2 t e−t
√

5 e−t
√

2 e−t e−t
√

2 e−t 1 e−t

e−2 t
√

2 e−t
√

5 e−2 t e−t
√

5 e−t
√

2 e−t e−2 t e−t 1


A weighting on A is a column vector w such that

Zw = u,

where u is a unit column vector. We use Maple (see Appendix B.1) to
determine these weightings for di�erent values of t . For example, when
t = 0.001 , we can determine the weighting as follows

w =



0.3203514298

−0.002318084306

0.3203514298

−0.002318084306

−0.2542313684

−0.002318084306

0.3203514298

−0.002318084306

0.3203514298



(4.2)
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We see from Equation (4.2) that there are some negative weighting, so we
need to �nd the maximum magnitude of the subsets of A that admit a non-
negative weighting at various scales, and this maximum is the maximum
diversity.

We claim that the subsets which have 0, 1, 2 and 3 points have a non-
negative weighting. The empty subsets have a weighting 0 and one-point
subsets have a weighting 1 . Also, the weighting of a subset consisting of two
points is positive, as can be seen from the following example.

Example 4.1.1. Take the subset consisting of two points a distance d apart.
The weighting of this subset can be found by solving the following equations{

e−dwa + wb = 1,

wa + e−dwb = 1.

The solution is

w =

[ 1
1+e−d

1
1+e−d

]
.

Furthermore, any 3 point subset of the square grid has non-negative
weighting, as follows from [Proposition 2.4.15, [32]]. Whether or not a sub-
set of tA containing more than three points has a non-negative weighting
depends on the value of t . We use Maple code (see Appendix B.1) to evaluate
the magnitude of all subsets of the square grid with non-negative weightings,
and the maximum magnitude is the maximum diversity.

Now, we �nd the maximum magnitude of the subsets of tA for di�erent
values of t > 0 , as follows

• If the scale factor of A is t = 0.1 , then we obtain the subset of four
corner points

B = {[1, 1], [1, 3], [3, 1], [3, 3]} (4.3)

which has the maximum magnitude with non-negative weighting.

• When the square grid A is scaled by 0.3 we get the subset of the
boundary points

{[1, 1], [1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2], [3, 3]} (4.4)

that has maximum magnitude with non-negative weights.

When the 3×3 square grid is scaled by t ≥ 0.9 , so the distance between each
pair of distinct points in the metric space tA is greater than log10(#A− 1) ,
then by [Proposition 2.5, [37]], A possesses a positive weighting. Whereas,
when the 3× 3 square grid is scaled very small, then the four corner points
have a larger magnitude with non-negative weights than the magnitude of
the subsets consisting of three or fewer points, as the next proposition shows.
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Proposition 4.1.2. Given an 3 × 3 grid square A scaled by a factor 0 <
t � 1 , the magnitude of the subset of four corner points B is greater than
the magnitude of the subsets of the square grid that contain three-points or
fewer.

Proof. Since the four corner points B of the 3×3 square grid are symmetry,
so by Theorem 2.2.13, its magnitude is

|tB| = 4

1 + 2e−2t + e−2
√

2t
,

as t� 1 , we approximate the exponential terms in the above expression by
the �rst-order Taylor series expansion, to get

|tB| = 4

4− 2(2 +
√

2)t+O(t2)
=

1

1− 2+
√

2
2 t+O(t2)

= 1 +
2 +
√

2

2
t+O(t2)

≈ 1 + 1.707t+O(t2).

(4.5)

One can see clearly, that the magnitude of tB is greater than the magnitude
of 0 and 1 point subsets. So it remains to look at the subsets of the 3 × 3
square grid that contain 2 or 3 points.

Case 1. From Example 4.1.1, the magnitude of the 2-points subsets tB1

of the square grid with a distance d apart is

2

1 + e−dt
,

when t � 1 , the following an approximate is obtained by applying a �rst
order Taylor series expansion

|tB1| =
2

2− dt+O(t2)

=
1

1− 1
2dt+O(t2)

≈ 1 +
1

2
dt+O(t2),

Since, d is either 1 or
√

2 or
√

5 or 2
√

2 or 2 , for all cases 2 +
√

2 > d , so
|tB| > |tB1| .

Case 2. Consider the 3-point subset B2 = {a1, a2, a3} of the square grid
with distance dij between ai and aj for i < j .

Firstly, if d13 = d12 + d23 , then by [Theorem 4, [39]], the magnitude of
tB2 is

|tB2| = 1 + tanh

(
d12t

2

)
+ tanh

(
d23t

2

)
.
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For t� 1 , using Taylor series approximation we obtain

|tB2| ≈ 1 +
d13

2
t+O(t3).

Since, d13 is either 2 or 2
√

2 , for both cases 2 +
√

2 > d13 . Therefore,
comparing with Equation (4.5) we get |tB| > |tB2| .

Secondly, if d13 6= d12 + d23 , let us �rst consider the exponential matrix
ZB2 

1 e−d12 t e−d13 t

e−d12 t 1 e−d23 t

e−d13 t e−d23 t 1

 .
Then, we can solve the linear equation with respect to wB2 ,

ZB2wB2 =

1
1
1


where wB2 is the column vector of unknown variables, to get

wB2 =



−e−d12 t−d23 t−e−d13 t−d23 t+e−2 d23 t+e−d12 t+e−d13 t−1
−2 e−d12 t−d13 t−d23 t+e−2 d12 t+e−2 d13 t+e−2 d23 t−1

−e−d12 t−d13 t+e−2 d13 t−e−d13 t−d23 t+e−d12 t+e−d23 t−1
−2 e−d12 t−d13 t−d23 t+e−2 d12 t+e−2 d13 t+e−2 d23 t−1

−e−d12 t−d13 t−e−d12 t−d23 t+e−2 d12 t+e−d23 t+e−d13 t−1
−2 e−d12 t−d13 t−d23 t+e−2 d12 t+e−2 d13 t+e−2 d23 t−1


.

By the third part of the Theorem 2.2.24, the weighting wB2 is positive. So
the magnitude of tB2 is

|tB2| = (−e−2 d23 t+2 e−d23 t−d12 t−e−2 d12 t+2 e−d12 t−d13 t−e−2 d13 t−2 e−d23 t

+ 2 e−d23 t−d13 t − 2 e−d12 t − 2 e−d13 t + 3)/(2 e−d23 t−d12 t−d13 t − e−2 d23 t

− e−2 d12 t − e−2 d13 t + 1).

Since t � 1 , we can approximate the above expression using Taylor series
to be

1+2
d12 d23 d13

−d12 2 + 2 d12 d23 + 2 d12 d13 − d23
2 + 2 d13 d23 − d13

2 t+O
(
t2
)
(4.6)

There are eight possibilities for the distances d12, d23, d13 .

1. When d12 , d23 , d13 are 1 , 1 ,
√

2 , we have

|tB2| = 1 + 0.773t+O
(
t2
)
,
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2. When d12 = 1 , d23 =
√

2 , d13 =
√

5 , we have

|tB2| = 1 + 1.1243t+O
(
t2
)
,

3. When d12 = 1 , d23 = 2 , d13 =
√

5 , we have

|tB2| = 1 + 1.206t+O
(
t2
)
,

4. When d12 = 1 , d23 =
√

5 and d13 = 2
√

2 , we have

|tB2| = 1 + 1.4409t+O
(
t2
)
,

5. When d12 , d23 , d13 are
√

2 ,
√

2 , 2 respectively, we have

|tB2| = 1 + 1.094t+O
(
t2
)
,

6. When d12, d23 = 2 , d13 = 2
√

2 , we have

|tB2| = 1 + 1.547t+O
(
t2
)
,

7. When d12, d23 =
√

5 d13 = 2 , we have

|tB2| = 1 + 1.44t+O
(
t2
)
,

8. When d12, d23 =
√

5 and d13 =
√

2 , we have

|tB2| = 1 + 1.328t+O
(
t2
)
.

From formula (4.5) the magnitude of tB is 1+1.707t+O(t2) which is greater
than |tB2| (for t� 1) in all eight cases.

We see above that when t is very small, the maximum diversity is the
magnitude of the set of four corner points. While we compute (see Appendix
B.1) the magnitude of all set that have more than 3 points at di�erent scaling
and we get the following

• When 0 ≤ t < 0.23 , the maximum magnitude with non-negative
weighting is a magnitude of the four corner points,

• when 0.23 < t ≤ 0.87 , the maximum magnitude with non-negative
weighting is a magnitude of the boundary points,

• when t > 0.87 , the maximum magnitude with non-negative weighting
is a magnitude of the grid square.

We also, compute the magnitude of all subsets of the 4×4 and 5×5 square
grids and we get the magnitude that has non-negative weighting to be the
magnitude of orbits and union of orbits. This implies that the maximum
diversity occurred for orbits, or unions of such orbits. So we conjectured that
maximum diversity always comes from symmetric subsets and concentrated
on symmetric subsets. We will explain more details in the next section.
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� 4.2 The maximum diversity of the square grid metric spaces

with 3× 3, . . . , 10× 10 points

Speyer [53] showed that all points of a �nite metric space have the same
weighting if they carry a transitive action of a group of isometries. The
symmetry group of the square acts on the n×n grid square metric space A
via isometries but is not transitive, while there are some subsets of the n×n
grid square whose group acts transitively on points. Therefore, we think of
the symmetry of the square grid of points only considering symmetric subsets
that are invariant under the symmetries of the square. Now, assume a group
D4 of symmetries of the square acts by isometries on the n×n metric space
A . To �nd the orbit of any p ∈ A , we need to rotate and re�ect all points of
A around the midpoint to calculate the symmetry functions (see Appendix
B.2). Thereafter, we verify the symmetries of all points of A , so for each
point in metric space and each of the symmetries, we �nd the symmetric
image of that point; after checking all points of A , this gives a number
of equivalence classes which partition A into a union of disjointed subsets
which, by Theorem 2.1.7 these equivalent classes are orbits.

The following formulae show that if a group acts isometrically on a metric
space and the metric space admits a weighting, then there is an invariant
weighting for the metric space.

Proposition 4.2.1. If the isometry group G acts on the points of a metric
space A and w is a weighting for A and the invariant weighting is de�ne,
for p ∈ A ,

w̄(p) :=
1

#G

∑
g∈G

w(g ∗ p),

where ∗ is the group action, then

1 w̄ is a weighting of A ,

2 w̄ is invariant under G , i.e. w̄(g ∗ p) = w̄(p) for all p ∈ A , g ∈ G .

Proof. Part 1. We check that w̄ satis�es the weight equations. For t > 0
and p ∈ A ,

∑
p′∈A

e−td(p,p′)w̄(p′) =
∑
p′∈A

e−td(p,p′) 1

#G

∑
g∈G

w(g ∗ p′)

=
1

#G

∑
p′∈A

e−td(p,p′)
∑
g∈G

w(g ∗ p′)

=
1

#G

∑
p′∈A

∑
g∈G

e−td(p,p′)w(g ∗ p′)
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Now the set {g ∗ p : g ∈ G} is an orbit that is invariant under G . G acts
by isometries, so d(p, p′) = d(g ∗ p, g ∗ p′) for all g ∈ G and p′ ∈ A . Then
we get ∑

p′∈A
e−td(p,p′)w̄(p′) =

1

#G

∑
g∈G

∑
p′∈A

e−td(g∗p,g∗p′)w(g ∗ p′).

But g ∗ p and g ∗ p′ are in A , this means that∑
p′∈A

e−td(g∗p,g∗p′)w(g ∗ p′) = 1.

Then, ∑
p′∈A

e−td(p,p′)w̄(p′) =
1

#G

∑
g∈G

1 =
#G

#G
= 1.

This implies that w̄ satis�es the weight equation.

Part 2. We need to show that w̄ is invariant, for all p ∈ A , h, g ∈ G we
have

w̄(g ∗ p) =
1

#G

∑
h∈G

w(h ∗ (g ∗ p)),

=
1

#G

∑
hg∈G

w(hg ∗ p)),

= w̄(p).

The invariant weighting w̄ from Proposition 4.2.1 take the same value
at points of an orbit. We partition A into a number of orbits, and now
consider a fundamental domain to be a subset of A that contains exactly
one point from each orbit.

Via some computational code (see Appendix B.2), for each point in the
fundamental domain we �nd its invariant weighting, then the magnitude of
A is found as the sum of the individual products of the weighting and the
number of points in each orbit. The maximum diversity and the magnitude
are the same if there are no negative invariant weights, but when there are
some negative invariant weights, linear algebra (see Appendix B.2) can be
used to determine the 2#orb(A) subsets of the fundamental domains. The
magnitude of the corresponding orbit and union of orbits can then be evalu-
ated and recorded if the weighting is non-negative. The maximum recorded
magnitude is then the maximum diversity of A .

We divided this section into four subsection to determine the maximum
diversity of 3× 3, 4× 4, . . . , 9× 9, and 10× 10 metric spaces.
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4.2.1 The maximum diversity of a square grid with 3× 3 and

4× 4 points

In this subsection, we compute (see Appendix B.2) the magnitude of orbits
and union of orbits of 3× 3 and 4× 4 square grids that have non-negative
weighting at di�erent scaling, then we determine its critical values.

Let A and B be two square grids with 3×3 and 4×4 points, respectively.

[1, 1]

[1, 2]

[1, 3]

[2, 1]

[2, 2]

[2, 3]

[3, 1]

[3, 2]

[3, 3]

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

If the group of symmetries of a square acting on the metric spaces A and
B , then these square grids are partitioned into three orbits.

The partitions for A and B are

• orbit1 = {[1, 1], [1, 3], [3, 1], [3, 3]} ,

• orbit2 = {[1, 2], [2, 3], [3, 2], [2, 1]} ,

• orbit3={[2, 2]} ,

and

• orbit1={[1, 1], [1, 4], [4, 4], [4, 1]} ,

• orbit2={[1, 2], [2, 1], [4, 3], [3, 4], [1, 3], [2, 4], [4, 2], [3, 1]} ,

• orbit3={[2, 2], [2, 3], [3, 3], [3, 2]} ,

respectively. Now consider that fundamental domains of these metric spaces
are {[3, 3], [3, 2], [2, 2]} and {[4, 4], [4, 3], [3, 3]} , which form triangles of
points in Figure 4.1.

Figure 4.1: The fundamental domains of square grids with 3× 3 and 4× 4
points.
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We used certain Maple code (see Appendix B.2) to obtain the invariant
weighting equations for each point in the fundamental domain and solved
them for various values of t , as shown in Figure 4.2.
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Figure 4.2: The weighting for 3× 3 and 4× 4 grid squares at various scales.

From Graph 4.2, we note that there are non-positive invariant weights.
However, when the 3×3 and the 4×4 are scaled by t ≥ 1 , all the weighting
values are non-negative and in this case the maximum diversity is equal to
the magnitude of the metric space. But, there are some points in the square
grids which have negative weightings when A and B are scaled between
0 and 1 . So we have to �nd subsets of A and B that have maximum
magnitude with non-negative weighting as follows

• The �rst subsets S1 and S′1 of 3 × 3 and 4 × 4 are the orbit1 , when
the scaled factor t is between 0 and t0 .

We �nd the magnitudes of the �rst subset of A and B to be

|S1| = 4
(

2 e−2 t + e−2 t
√

2 + 1
)−1

and

|S′1| = 4
(

2 e−3 t + e−3 t
√

2 + 1
)−1

respectively.

• The second subsets S2 and S′2 are the union of orbit1 and orbit2 , that
the scale factor t is t0 ≤ t < t1 , where t0 and t1 are found at the end
of this section.
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The magnitudes of the second subset of 3× 3 and 4× 4 are

|S2| = 4

 4 e−t + 4 e−t
√

5 − 2 e−t
√

2 − 3 e−2 t − 2− e−2 t
√

2

−2 e−4 t − e−2 t(1+
√

2) − 4 e−t(2+
√

2) − 2 e−3 t
√

2 + e−2 t

+ 8 e−t(
√

5+1) + 4 e−2 t
√

5 − e−2 t
√

2 − 2 e−t
√

2 − 1


and

|S′2| =
N0(t)

D0(t)
,

respectively, where

N0(t) = −4
(

5 e−3 t − 3 e−t − 4 e−2 t − 4 e−t
√

13 − 3 e−t
√

2
√

5

+ 2 e−t
√

5 + e−2 t
√

2 + e−t
√

2 + 3 + 2 e−3 t
√

2
)
,

and

D0(t) = −1 + e−3 t − e−3 t
√

2 − 2 e−t(
√

2
√

5+3) − e−t
√

2(
√

5+3) − 2 e−t
√

5

+ 4 e−t(
√

2
√

5+2) + 4 e−t(
√

2
√

5+
√

13) − e−3 t(1+
√

2) − 4 e−t(
√

5+3)

− 2 e−t(2
√

2+3) − 2 e−t(
√

2+3) − 2 e−t(3
√

2+
√

5) + 4 e−t(
√

13+1)

+ 4 e−t(
√

13+2) − e−4 t
√

2 − e−5 t
√

2 − e−t(3
√

2+1) + 4 e−t(
√

2
√

5+1)

+ 2 e−2 t
√

13 + 2 e−2 t
√

2
√

5 − 2 e−6 t − e−t
√

2
√

5 − e−t
√

2 − e−2 t
√

2

+ 2 e−2 t − e−t.

• The third subsets S3 and S′3 are made up from the 3 × 3 and 4 × 4
square grids, with scale factor t ≥ t1 .

The magnitudes of 3× 3 and 4× 4 square grids are

|S3| =
N1(t)

D1(t)
,

and

|S′3| =
N2(t)

D2(t)
,

respectively, where
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D2(t) = −1 + 9e−3 t + e−3 t
√

2 + 6 e−t(
√

2
√

5+3) − 3 e−t
√

2(
√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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D1(t) = 20 e−t(2+
√
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√
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√
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and

N2(t) = 4 [−4− 2 e−t(
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√
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We plotted three above magnitudes together for various values of t to
look at where these were crossed as shown in Figure 4.3 and we found that
there are the points where the curves intersect.
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Figure 4.3: The magnitude for the three subsets of 3 × 3 and 4 × 4 grid
squares at di�erent scales.

From Figure 4.3, we see that the three subsets of 3 × 3 and 4 × 4 grid
squares have very similar magnitude for low values of t . But there is a small
di�erence, we check it for the value t = 0.1 as can be seen as follows

The magnitude of subsets of 3× 3 and 4× 4 grid squares at t = 0.1 are

• the magnitude of �rst subset is 1.179558317 ,

• the magnitude of second subset is 1.180421838 ,

• the magnitude of third subset is 1.184872337

and
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• the magnitude of �rst subset is 1.275555949 ,

• the magnitude of second subset is 1.276138864 ,

• the magnitude of third subset is 1.286455041 .

respectively.
To calculate graphically the point of intersection curves, we �rst �nd the

places for the values of t where the curves intersected, then select the regions
of the graph around these points. We can apply the same idea algebraically
which is called determining the critical values, by setting the di�erence
of above formulae of A and B equal to zero such as

|S2| − |S1| = 0

|S3| − |S2| = 0
(4.7)

and

|S′2| − |S′1| = 0

|S′3| − |S′2| = 0
(4.8)

respectively. The Maple code (see Appendix B.2.1) used to solve the formulea
(4.7) and (4.8) to obtain the critical values of t , t0 = 0.2323 , t1 = 0.877
for magnitude tA , and t0 = 0.1547 , t1 = 0.6863 for magnitude tB , so the
maximum magnitudes of square grids with non-negative weighting are gives
as

|A| =


|S1|, 0 ≤ t ≤ t0
|S2|, t0 < t ≤ t1,
|S3|, t > t1,

and

|B| =


|S′1|, 0 ≤ t ≤ t0
|S′2|, t0 < t ≤ t1,
|S′3|, t > t1,

which is continuous at critical points t0 and t1 . Now, in both square grids
we have when 0 ≤ t ≤ t0 , the points in orbit1 give the maximum magnitude
with non-negative weights, that is, the maximum diversity. And for t0 <
t ≤ t1 , the points in the orbit1 union orbit2 have maximum magnitude with
non-negative weights, which is maximum diversity and �nally, when t > t1
the magnitudes of square grids are maximum diversity.

In this manner, the maximum diversity of A , denoted Dmax(A) is

Dmax(A) =


|orbit1|, if 0 ≤ t ≤ 0.2323,

|orbit1 ∪ orbit2|, if 0.2323 < t ≤ 0.877,

|A|, if t > 0.877.
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And the maximum diversity of the 4×4 metric space, denoted Dmax(B) ,
is equal to

Dmax(B) =


|orbit1|, if 0 ≤ t ≤ 0.1547,

|orbit1 ∪ orbit2|, if 0.1547 < t ≤ 0.6863,

|B|, if t > 0.6863.

Furthermore, to examine whether the maximum diversity formulae for A
and B are smooth, we use Maple (see Appendix B.2.1) to compute the �rst
derivatives of |A| and |B| with respect to the two critical values of t as

d

dt
|S1|(t0) = 2.066877,

d

dt
|S2|(t0) = 2.066877,

d

dt
|S2|(t1) = 2.713363,

d

dt
|S3|(t1) = 2.713363,

from that, we found
d

dt
|S1|(t0) =

d

dt
|S2|(t0)

and
d

dt
|S2|(t1) =

d

dt
|S3|(t1).

Similarly for S′i . This means that the above formulae are smooth, as shown
in the following �gure.
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Figure 4.4: The maximum diversity of 3 × 3 and 4 × 4 metric spaces at
various scales.
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4.2.2 The maximum diversity of 5× 5 and 6× 6 square grid

Here we compute (see Appendix B.2) the magnitude of orbits and union of
orbits of 5 × 5 and 6 × 6 square grids that have non-negative weighting at
various scaling, then we calculate its critical values.

Grid squares with 5× 5 and 6× 6 points are de�ned as

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

To determine the weighting for A and B , we �rst identify the six orbits
that partition the points of the two metric spaces (see Appendix B.2).

The six orbits of the 5× 5 are

• orbit1 = {[1, 1], [1, 5], [5, 5], [5, 1]} ,

• orbit2 = {[1, 2], [2, 1], [5, 4], [4, 5], [1, 4], [4, 1], [5, 2], [2, 5]} ,

• orbit3 = {[1, 3], [3, 1], [5, 3], [3, 5]} ,

• orbit4 = {[3, 3]} ,

• orbit5 = {[2, 3], [3, 2], [4, 3], [3, 4]} ,

• orbit6 = {[2, 2], [4, 2], [4, 4], [2, 4]} ,

and the orbits of 6× 6 are

• orbit1 = {[1, 1], [6, 1], [6, 6], [1, 6]} ,

• orbit2 = {[1, 2], [2, 1], [6, 5], [5, 6], [1, 5], [5, 1], [6, 2], [2, 6]} ,

• orbit3 = {[1, 3], [1, 4], [6, 3], [6, 4], [3, 1], [4, 1], [3, 6], [4, 6]} ,

• orbit4 = {[3, 3], [4, 3], [4, 4], [3, 4]} ,

• orbit5 = {[2, 3], [2, 4], [5, 3], [5, 4], [3, 2], [4, 2], [3, 5], [4, 5]} ,

• orbit6 = {[2, 2], [2, 5], [5, 5], [5, 2]} .
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Figure 4.5: The fundamental domains of 5× 5 and 6× 6 square grids

The triangles shown in Figure 4.5 are the fundamental domains of the
5× 5 and 6× 6 metric spaces.

These points have distinct invariant weights, and by applying the com-
putational program (see Appendix B.2) the weight equations for points in
the fundamental domain can be solved for di�erent values of t from 0.0001
to 30 , as represented in Figure 4.6 and by adding individual products of
the weighting and the number of points in that orbit; the magnitude can be
obtained
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Figure 4.6: The weighting for 5 × 5 and 6 × 6 metric spaces at di�erent
scales.

We can see from the Figure 4.6, when the inter-points of 5× 5 and 6× 6
are bigger than 1 , all values of weighting are positive, so the maximum
diversity is the magnitude of these square grids. Moreover, for some smaller
values of inter-points, there are negative weights. We determine the subsets
that contains the orbits and the union of orbits of the 5×5 and 6×6 metric
spaces that have a maximum magnitude with non-negative weights, and to
simplify these subsets we used software such as Maple look at (Appendix
B.2).

• The �rst subset is the orbit1

76



CHAPTER 4. MAGNITUDE AND MAXIMUM DIVERSITY

• The second subset is the union of orbit1 and orbit2

• The third subset is the union of orbit1 , orbit2 and orbit3 .

• The fourth subset is the union of orbit1, . . . , orbit4 .

• The �fth subset is the union of orbit1, . . . , orbit5 .

• The last subset is the 5× 5 and 6× 6 metric spaces.

We have computed the magnitude of the those subsets of 5×5 and 6×6 ,
then plotting them together as shown in the Figure 4.7 and from the �gure,
we see that the magnitude of the six subsets of 5× 5 and 6× 6 grid squares
are very similar for small values of t . But there is a small di�erence, we
check it for the value t = 0.1 as can be seen in the following statements

The magniyude of subsets of 5× 5 and 6× 6 grid squares at t = 0.1 are

• the magnitude of �rst subset is 1.375226962 ,

• the magnitude of second subset is 1.375341110 ,

• the magnitude of third subset is 1.375353511 ,

• the magnitude of fourth subset is 1.382828470 ,

• the magnitude of �fth subset is 1.391389478 ,
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• the magnitude of sixth subset is 1.391389477 ,

and

• the magnitude of �rst subset is 1.478125582 ,

• the magnitude of second subset is 1.478169922 ,

• the magnitude of third subset is 1.478178143 ,

• the magnitude of fourth subset is 1.490971596 ,

• the magnitude of �fth subset is 1.496744198 ,

• the magnitude of sixth subset is 1.499663457 ,

respectively.
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Figure 4.7: The magnitude for the six subsets of 5×5 and 6×6 grid squares
at various scales.

We've seen that there are places where the curves intersect and we �nd
the points of the intersection curves in the same way that we found the
critical points of the 3× 3 and the 4× 4 square grids to obtain the critical
values of the 5× 5 to be

t0 = 0.1159,

t1 = 0.1167,

t3 = 0.5195,

t4 = 0.5757,

t5 = 0.757,
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and the critical values of the 6× 6 are

t0 = 0.0927,

t1 = 0.0933,

t3 = 0.433,

t4 = 0.5424,

t5 = 0.612.

It is clear from the Graph 4.7, for the subsets of each of the square grids
that when the scale factor is between 0 and t0 , the maximum diversity is
equal to the magnitude of the four corner points. However, as the scale
factor is between t0 and t1 , the maximum diversity is the magnitude of
the four corner points with the eight-boundary points that represent the
neighboring corners, while in scaling from t1 to t2 the maximum diversity
is the magnitude of the boundary grid points. For the square grids scaled
by factor between t2 and t3 , the maximum diversity is the magnitude of
the boundary grid points with midpoints of the initial square grid. For scale
square grids from t3 to t4 , the maximum diversity is the magnitude of the
boundary grid points and midpoints of the initial square grid with midpoints
of the �rst rows of interior points. At a scale factor between t4 and t5 , the
maximum diversity is the magnitude of the square grid points, though in
the latter case with the exception of the four interior points neighboring the
corners. As the scale factors greater than t5 , the maximum diversity is the
magnitude of the square grids as shown in the Figures 4.8.
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Figure 4.8: The maximum diversity of 5 × 5 and 6 × 6 grid squares at
di�erent scales.

4.2.3 The maximum diversity of 7× 7 and 8× 8 square grids

In this subsection, we compute (see Appendix B.2) the magnitude of orbits
and union of orbits of 7× 7 and 8× 8 square grids metric spaces that have
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non-negative weighting at di�erent scaling.
The points below on the squared grid can be partitioned into ten orbits

which are invariant under the symmetries of square.

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[1, 7]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[2, 7]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[3, 7]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[4, 7]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[5, 7]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[6, 7]

[7, 1]

[7, 2]

[7, 3]

[7, 4]

[7, 5]

[7, 6]

[7, 7]

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[1, 7]

[1, 8]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[2, 7]

[2, 8]

[3, 1]

[3, 2]
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[3, 5]

[3, 6]

[3, 7]

[3, 8]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[4, 7]

[4, 8]

[5, 1]
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[5, 3]

[5, 4]

[5, 5]

[5, 6]

[5, 7]

[5, 8]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[6, 7]

[6, 8]

[7, 1]

[7, 2]

[7, 3]

[7, 4]

[7, 5]

[7, 6]

[7, 7]

[7, 8]

[8, 1]

[8, 2]

[8, 3]

[8, 4]

[8, 5]

[8, 6]

[8, 7]

[8, 8]

The ten orbits that partition the 7× 7 metric space are

• orbit1 = {[1, 1], [7, 1], [7, 7], [1, 7]} ,

• orbit2 = {[1, 2], [6, 1], [7, 6], [2, 7], [7, 2], [1, 6], [6, 7], [2, 1]} ,

• orbit3 = {[1, 3], [5, 1], [7, 5], [3, 7], [7, 3], [1, 5], [5, 7], [3, 1]} ,

• orbit4 = {[1, 4], [4, 1], [7, 4], [4, 7]} ,

• orbit5 = {[4, 4]} ,

• orbit6 = {[3, 4], [4, 3], [5, 4], [4, 5]} ,

• orbit7 = {[3, 3], [5, 3], [5, 5], [3, 5]} ,

• orbit8 = {[2, 4], [4, 2], [6, 4], [4, 6]} ,

• orbit9 = {[2, 3], [5, 2], [6, 5], [3, 6], [6, 3], [2, 5], [5, 6], [3, 2]} ,

• orbit10 = {[2, 2], [6, 2], [6, 6], [2, 6]} .

The orbits that partition the points of the 8× 8 metric space are

• orbit1 = {[1, 1], [8, 1], [8, 8], [1, 8]} ,

• orbit2 = {[1, 2], [7, 1], [8, 7], [2, 8], [8, 2], [1, 7], [7, 8], [2, 1]} ,

• orbit3 = {[1, 3], [6, 1], [8, 6], [3, 8], [8, 3], [1, 6], [6, 8], [3, 1]} ,

• orbit4 = {[1, 4], [5, 1], [8, 5], [4, 8], [8, 4], [1, 5], [5, 8], [4, 1]} ,

• orbit5 = {[4, 4], [5, 4], [5, 5], [4, 5]]} ,
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• orbit6 = {[3, 4], [5, 3], [6, 5], [4, 6], [6, 4], [3, 5], [5, 6], [4, 3]} ,

• orbit7 = {[3, 3], [6, 3], [6, 6], [3, 6]]} ,

• orbit8 = {[2, 4], [5, 2], [7, 5], [4, 7], [7, 4], [2, 5], [5, 7], [4, 2]} ,

• orbit9 = {[2, 3], [6, 2], [7, 6], [3, 7], [7, 3], [2, 6], [6, 7], [3, 2]} ,

• orbit10 = {[2, 2], [7, 2], [7, 7], [2, 7]} .

The fundamental domains of the 7×7 and 8×8 metric spaces are the points
of the triangles on the square grids in the Figure 4.9.

Figure 4.9: The points in the fundamental domains of the 7 × 7 and 8 × 8
square grids

We �nd the weighting for the points in the fundamental domains at
various values of t . When we compute these weighting for t = 0.01 , we
obtain some negative weights. The invariant weighting for the points of the
7× 7 grid square is

w =



0.3052337457

0.03734563589

0.05367790685

0.05291024745

−0.09616225542

−0.05044423720

−0.04615687010

−0.01591022453

−0.01398006767

−0.01221072246



.
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The invariant weighting for the points of the 8× 8 grid square is

w =



0.3020945816

0.03753349442

0.05277179010

0.05103112775

−0.09286364280

−0.04746400140

−0.04178668675

−0.01408817302

−0.01168125478

−0.009493372626



.

Therefore, to evaluate the maximum diversity we need to compute (see Ap-
pendix B.2) the subsets of square grids that have the maximum magnitude
with non-negative weights at di�erent scaling.

• The �rst subset is the orbit1

• The second subset is the union of orbit1 and orbit2

• The third subset is the union of orbit1 , orbit2 and orbit3

• The fourth subset is the union of orbit1, . . . , orbit4

• The �fth subset is the union of orbit1, . . . , orbit5
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• The sixth subset is the union of orbit1, . . . , orbit6

• The seventh subset is the union of orbit1, . . . , orbit7

• The eighth subset is the union of orbit1, . . . , orbit8

• The ninth subset is the union of orbit1, . . . , orbit9

• The tenth subset is the grid square of points

From computation evaluation, we see that the scaling factors that transition
one subset which has maximum magnitude with non-negative weighting to
another subset that has maximum magnitude with non-negative weighting
are very close to each other, also the magnitude equations are very big, so
it is very di�cult to �nd the critical points for the grid squares greater than
6× 6 especially for large subsets.

4.2.4 The maximum diversity of the square grids with 9× 9
and 10× 10 points

Here, we compute (see Appendix B.2) the magnitude of orbits and union of
orbits of 9 × 9 and 10 × 10 square grids that have non-negative weighting
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at di�erent scaling, then we determine the invariant weighting for the points
in those orbits at very small scale factor t .

There are �fteen orbits that partition the points of the square grids A
and B that have 9× 9 and 10× 10 points respectively.

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[1, 7]

[1, 8]

[1, 9]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[2, 7]

[2, 8]

[2, 9]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[3, 7]

[3, 8]

[3, 9]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[4, 7]

[4, 8]

[4, 9]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[5, 7]

[5, 8]

[5, 9]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[6, 7]

[6, 8]

[6, 9]

[7, 1]

[7, 2]

[7, 3]

[7, 4]

[7, 5]

[7, 6]

[7, 7]

[7, 8]

[7, 9]

[8, 1]

[8, 2]

[8, 3]

[8, 4]

[8, 5]

[8, 6]

[8, 7]

[8, 8]

[8, 9]

[9, 1]

[9, 2]

[9, 3]

[9, 4]

[9, 5]

[9, 6]

[9, 7]

[9, 8]

[9, 9]

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[1, 7]

[1, 8]

[1, 9]

[1, 10]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[2, 7]

[2, 8]

[2, 9]

[2, 10]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[3, 7]

[3, 8]

[3, 9]

[3, 10]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[4, 7]

[4, 8]

[4, 9]

[4, 10]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[5, 7]

[5, 8]

[5, 9]

[5, 10]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[6, 7]

[6, 8]

[6, 9]

[6, 10]

[7, 1]

[7, 2]

[7, 3]

[7, 4]

[7, 5]

[7, 6]

[7, 7]

[7, 8]

[7, 9]

[7, 10]

[8, 1]

[8, 2]

[8, 3]

[8, 4]

[8, 5]

[8, 6]

[8, 7]

[8, 8]

[8, 9]

[8, 10]

[9, 1]

[9, 2]

[9, 3]

[9, 4]

[9, 5]

[9, 6]

[9, 7]

[9, 8]

[9, 9]

[9, 10]

[10, 1]

[10, 2]

[10, 3]

[10, 4]

[10, 5]

[10, 6]

[10, 7]

[10, 8]

[10, 9]

[10, 10]

The orbits that partition the A and B metric spaces are

• orbit1 = {[1, 1], [9, 1], [9, 9], [1, 9]} ,

• orbit2 = {[2, 1], [8, 1], [9, 8], [2, 9], [9, 2], [1, 8], [8, 9], [1, 2]} ,

• orbit3 = {[3, 1], [7, 1], [9, 7], [3, 9], [9, 3], [1, 7], [7, 9], [1, 3]} ,

• orbit4 = {[4, 1], [6, 1], [9, 6], [4, 9], [9, 4], [1, 6], [6, 9], [1, 4]} ,

• orbit5 = {[5, 1], [1, 5], [9, 5], [5, 9]} ,

• orbit6 = {[5, 5]} ,

• orbit7 = {[5, 4], [4, 5], [6, 5], [5, 6]} ,

• orbit8 = {[4, 4], [6, 4], [6, 6], [4, 6]} ,

• orbit9 = {[5, 3], [3, 5], [7, 5], [5, 7]} ,

• orbit10 = {[4, 3], [6, 3], [7, 6], [4, 7], [7, 4], [3, 6], [6, 7], [3, 4]} ,

• orbit11 = {[3, 3], [7, 3], [7, 7], [3, 7]} ,

• orbit12 = {[5, 2], [2, 5], [8, 5], [5, 8]} ,

• orbit13 = {[4, 2], [6, 2], [8, 6], [4, 8], [8, 4], [2, 6], [6, 8], [2, 4]} ,

• orbit14 = {[3, 2], [7, 2], [8, 7], [3, 8], [8, 3], [2, 7], [7, 8], [2, 3]} ,
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• orbit15 = {[2, 2], [8, 2], [8, 8], [2, 8]} .

and

• orbit1 = {[1, 1], [10, 1], [10, 10], [1, 10]} ,

• orbit2 = {[1, 2], [9, 1], [10, 9], [2, 10], [10, 2], [1, 9], [9, 10], [2, 1]} ,

• orbit3 = {[1, 3], [8, 1], [10, 8], [3, 10], [10, 3], [1, 8], [8, 10], [3, 1]} ,

• orbit4 = {[1, 4], [7, 1], [10, 7], [4, 10], [10, 4], [1, 7], [7, 10], [4, 1]} ,

• orbit5 = {[1, 5], [6, 1], [10, 6], [5, 10], [10, 5], [1, 6], [6, 10], [5, 1]} ,

• orbit6 = {[5, 5], [6, 5], [6, 6], [5, 6]} ,

• orbit7 = {[4, 5], [6, 4], [7, 6], [5, 7], [7, 5], [4, 6], [6, 7], [5, 4]} ,

• orbit8 = {[4, 4], [7, 4], [7, 7], [4, 7]} ,

• orbit9 = {[3, 5], [6, 3], [8, 6], [5, 8], [8, 5], [3, 6], [6, 8], [5, 3]} ,

• orbit10 = {[3, 4], [7, 3], [8, 7], [4, 8], [8, 4], [3, 7], [7, 8], [4, 3]} ,

• orbit11 = {[3, 3], [8, 3], [8, 8], [3, 8]} ,

• orbit12 = {[2, 5], [6, 2], [9, 6], [5, 9], [9, 5], [2, 6], [6, 9], [5, 2]} ,

• orbit13 = {[2, 4], [7, 2], [9, 7], [4, 9], [9, 4], [2, 7], [7, 9], [4, 2]} ,

• orbit14 = {[2, 3], [8, 2], [9, 8], [3, 9], [9, 3], [2, 8], [8, 9], [3, 2]} ,

• orbit15 = {[2, 2], [9, 2], [9, 9], [2, 9]} .

respectively.
By Proposition 4.2.1, all points [a, b] in the same orbit Orb have the

invariant weights.

w =
1∑

[c, d]∈Orb

e−td([a, b],[c, d])
. (4.9)

When the scale factor t > 0 is very small, we can use a Taylor series approx-
imation to approximate the value of e−td([a, b], [c, d]) , so∑

[c,d]∈Orb

e−td([a,b],[c,d]) = #Orb− t
∑

[c,d]∈Orb

d([a, b], [c, d]) +O(t2), (4.10)

Consider the points in the fundamental domains of these square grids are

{[9, 9], [9, 8], [9, 7], [9, 6], [9, 5], [8, 5], [7, 5], [6, 5], [5, 5], [6, 6], [7, 7],

[8, 8], [7, 6], [8, 6], [8, 7]}
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and

{[10, 10], [10, 9], [10, 8], [10, 7], [10, 6], [9, 6], [8, 6], [7, 6], [6, 6], [7, 7],

[8, 8], [9, 9], [8, 7], [9, 7], [9, 8]}

respectively, which are the points of the triangles on the square grids.

Figure 4.10: The fundamental domains of 9× 9 and 10× 10 square grids.

We can determine the general formula of the invariant weight of the
points in the fundamental domains of 9 × 9 and 10 × 10 grid squares (the
pattern for order the points of the fundamental domain is the points that
complete the biggest square to the points that complete the smallest square
in the grid squares) which can be used in the Theorem 4.3.3.

1. The invariant weightings of the �rst point of these fundamental do-
mains are given by

[9, 9]

side-length (#A− 1)t

[10, 10]

side-length (#B − 1)t

1∑
[c,d]∈orbit1

e−td([9,9],[c,d])
=

1

1 + 2e−8t + e−
√

2∗8t

=
1

4− (2 +
√

2) ∗ 8t+O(t2)
,

(4.11)
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and

1∑
[c,d]∈orbit1

e−td([10,10],[c,d])
=

1

1 + 2e−9t + e−
√

2∗9t

=
1

4− (2 +
√

2) ∗ 9t+O(t2)
.

(4.12)

2. The invariant weightings of the second point of these fundamental do-
mains are

[9, 8] [10, 9]

1∑
[c,d]∈orbit2

e−td([9,8],[c,d])

= 1/
(

1 + e−6t + 2e−
√

72+12t + e−7
√

2t + e−
√

62+82t + e−8t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 7 + 2

√
72 + 12 +

√
62 + 82 +

√
2
]

+O(t2)
)
,

(4.13)

and

1∑
[c,d]∈orbit2

e−td([10,9],[c,d])

= 1/
(

1 + e−7t + 2e−
√

82+12t + e−8
√

2t + e−
√

72+92t + e−9t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 8 + 2

√
82 + 12 +

√
72 + 92 +

√
2
]

+O(t2)
)
.

(4.14)

3. The invariant weightings of the third point in these fundamental do-
mains of the square grids are
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[9, 7] [10, 8]

1∑
[c,d]∈orbit3

e−td([9,7],[c,d])

= 1/
(

1 + e−4t + 2e−
√

62+22t + e−6
√

2t + e−
√

42+82t + e−8t + e−2
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 6 + 2

√
62 + 22 +

√
42 + 82 + 2

√
2
]

+O(t2)
)
,

(4.15)

and

1∑
[c,d]∈orbit3

e−td([10,8],[c,d])

= 1/
(

1 + e−5t + 2e−
√

72+22t + e−7
√

2t + e−
√

52+92t + e−9t + e−2
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 7 + 2

√
72 + 22 +

√
52 + 92 + 2

√
2
]

+O(t2)
)
.

(4.16)

4. The invariant weightings of the fourth point of theses fundamental
domains are given as

[9, 6] [10, 7]

1∑
[c,d]∈orbit4

e−td([9,6],[c,d])

= 1/
(

1 + e−2t + 2e−
√

52+32t + e−5
√

2t + e−
√

22+82t + e−8t + e−3
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 5 + 2

√
52 + 32 +

√
22 + 82 + 3

√
2
]

+O(t2)
)
,

(4.17)
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and

1∑
[c,d]∈orbit4

e−td([10,7],[c,d])

= 1/
(

1 + e−3t + 2e−
√

62+32t + e−6
√

2t + e−
√

32+92t + e−9t + e−3
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 6 + 2

√
62 + 32 +

√
32 + 92 + 3

√
2
]

+O(t2)
)
.

(4.18)

5. The invariant weightings of the �fth point of these fundamental do-
mains are

[9,5] [10,6]

1∑
[c,d]∈orbit5

e−td([9,5],[c,d])
=

1

1 + 2e−4
√

2 + e−8t

=
1

4− (1 +
√

2) ∗ 8t+O(t2)
,

(4.19)

and

1/
∑

[c,d]∈orbit5

e−td([10,6],[c,d])

= 1/
(

1 + e−t + 2e−
√

52+42t + e−5
√

2t + e−
√

12+92t + e−9t + e−4
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 5 + 2

√
52 + 42 +

√
12 + 92 + 4

√
2
]

+O(t2)
)
.

(4.20)

6. The invariant weightings of the points [8, 8] and [9, 9] in the funda-
mental domains are
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[8, 8]

side-length (#A− 3)t

[9, 9]

side-length (#B − 3)t

1∑
[c,d]∈orbit15

e−td([8,8],[c,d])
=

1

1 + 2e−6t + e−6
√

2t

=
1

4− (2 +
√

2) ∗ 6t+O(t2)
,

(4.21)

and

1∑
[c,d]∈orbit15

e−td([9,9],[c,d])
=

1

1 + 2e−7t + e−7
√

2t

=
1

4− (2 +
√

2) ∗ 7t+O(t2)
,

(4.22)

respectively.

7. The invariant weightings of [8, 7] and [9, 8] in the fundamental domains
are given by

[8,7] [9,8]

1∑
[c,d]∈orbit14

e−td([9,8],[c,d])

= 1/
(

1 + e−4t + 2e−
√

52+12t + e−5
√

2t + e−
√

42+62t + e−6t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 5 + 2

√
52 + 12 +

√
42 + 62 +

√
2
]

+O(t2)
)
,

(4.23)
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and

1∑
[c,d]∈orbit14

e−td([9,8],[c,d])

= 1/
(

1 + e−5t + 2e−
√

62+12t + e−6
√

2t + e−
√

52+72t + e−7t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 6 + 2

√
62 + 12 +

√
52 + 72 +

√
2
]

+O(t2)
)
,

(4.24)

respectively.

8. The invariant weightings of the [8, 6] and [9, 7] points in the funda-
mental domains of the square grids are

[8, 6] [9, 7]

1∑
[c,d]∈orbit13

e−td([8,6],[c,d])

= 1/
(

1 + e−2t + 2e−
√

42+22t + e−4
√

2t + e−
√

22+62t + e−6t + e−2
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 4 + 2

√
42 + 22 +

√
22 + 62 + 2

√
2
]

+O(t2)
)
,

(4.25)

and

1∑
[c,d]∈orbit13

e−td([9,7],[c,d])

= 1/
(

1 + e−3t + 2e−
√

52+22t + e−5
√

2t + e−
√

32+72t + e−7t + e−2
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 5 + 2

√
52 + 22 +

√
32 + 72 + 2

√
2
]

+O(t2)
)
,

(4.26)

respectively.

9. The invariant weightings of [8, 5] and [9, 6] are
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[8, 5] [9, 6]

1∑
[c,d]∈orbit12

e−td([8,5],[c,d])
=

1

1 + 2e−t
√

2∗3 + 6

=
1

4− (1 +
√

2) ∗ 6t+O(t2)
,

(4.27)

and

1∑
[c,d]∈orbit12

e−td([9,6],[c,d])

= 1/
(

1 + e−t + 2e−
√

42+32t + e−4
√

2t + e−
√

12+72t + e−7t + e−3
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 4 + 2

√
42 + 32 +

√
12 + 72 + 3

√
2
]

+O(t2)
)

(4.28)

10. The invariant weightings of the points [7, 7] and [8, 8] are

[7, 7]

side-lenght (#A− 5)t

[8, 8]

side-lenght (#B − 5)t

1∑
[c,d]∈orbit11

e−td([7,7],[c,d])
=

1

1 + 2e−4t + e−4
√

2t

=
1

4− (2 +
√

2) ∗ 4t+O(t2)
,

(4.29)

and

1∑
[c,d]∈orbit11

e−td([8,8],[c,d])
=

1

1 + 2e−5t + e−5
√

2t

=
1

4− (2 +
√

2) ∗ 5t+O(t2)
,

(4.30)
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respectively.

11. The invariant weightings of [7, 6] and [8, 7] in the fundamental domains
are

[7, 6] [8, 7]

1∑
[c,d]∈orbit10

e−td([7,6],[c,d])

= 1/
(

1 + e−2t + 2e−
√

32+12t + e−3
√

2t + e−
√

22+42t + e−4t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 3 + 2

√
32 + 12 +

√
22 + 42 +

√
2
]

+O(t2)
)
,

(4.31)

and

1∑
[c,d]∈orbit10

e−td([8,7],[c,d])

= 1/
(

1 + e−3t + 2e−
√

42+12t + e−4
√

2t + e−
√

52+32t + e−5t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 4 + 2

√
42 + 12 +

√
52 + 32 +

√
2
]

+O(t2)
)
,

(4.32)

respectively.

12. The invariant weightings of [7, 5] and [8, 6] in the fundamental do-
mains are

[7, 5] [8, 6]

1∑
[c,d]∈orbit9

e−td([7,5],[c,d])
=

1

1 + 2e−t
√

2∗2 + 4

=
1

4− (1 +
√

2) ∗ 4t+O(t2)
,

(4.33)
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and

1∑
[c,d]∈orbit9

e−td([7,6],[c,d])

= 1/
(
1 + e−t + 2e−

√
32+22t + e−3

√
2t + e−

√
12+52t + e−5t + e−2

√
2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 3 + 2

√
32 + 22 +

√
12 + 52 + 2

√
2
]

+O(t2)
)

(4.34)

13. The invariant weightings of [6, 6] and [7, 7] points are

[6, 6]

side-length (#A− 7)t

[7, 7]

side-length (#B − 7)t

1∑
[c,d]∈orbit8

e−td([6,6],[c,d])
=

1

1 + 2e−t
√

2∗2 + e−2t

=
1

4− (2 +
√

2) ∗ 2t+O(t2)
,

(4.35)

and

1∑
[c,d]∈orbit8

e−td([7,7],[c,d])
=

1

1 + 2e−t
√

2∗3 + e−3t

=
1

4− (2 +
√

2) ∗ 3t+O(t2)
,

(4.36)

14. The invariant weightings of [6, 5] and [7, 6] in the fundamental do-
mains are given as

[6, 5] [7, 6]
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1∑
[c,d]∈orbit7

e−td([6,5],[c,d])
=

1

1 + 2e−t
√

2∗1 + e−2t

=
1

4− (1 +
√

2) ∗ 2t+O(t2)
,

(4.37)

and

1∑
[c,d]∈orbit7

e−td([7,6],[c,d])

= 1/
(

1 + e−t + 2e−
√

22+12t + e−2
√

2t + e−
√

12+32t + e−3t + e−
√

2t
)

= 1/
(

8− t
[
(2 +

√
2) ∗ 2 + 2

√
22 + 12 +

√
12 + 32 +

√
2
]

+O(t2)
)

(4.38)

15. The invariant weightings of the [5, 5] and [6, 6] are

[5, 5]
[6, 6]

side-length t

1

e−td([6,6],[6,6])
= 1 (4.39)

and

1∑
[c,d]∈orbit6

e−td([6,6],[c,d])
=

1

1 + 2e−t
√

2∗1 + e−1t

=
1

4− (2 +
√

2) ∗ t+O(t2)
,

(4.40)

Now the invariant weighting on the grid square A of an 9 × 9 points can
be easily calculated by selecting an arbitrary point [a, b] of the square grid
such that b ≤ a and 1 ≤ a, b ≤ 5

1. For 1 ≤ b ≤ 4 , the invariant weights of the orbits that contain the four
points with sides length (#A− (2b− 1))t are equal to

1

4− (2 +
√

2)(#A− (2b− 1))t+O(t2)
, (4.41)

as can be seen from Expressions (4.11), (4.21), (4.29) and (4.35),
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2. The invariant weights of the points in the orbit of [a, b] , where b < a
and 1 < a, b ≤ 4 , are equal to

1/
(
8− t

[
(2 +

√
2)(#A− (a+ b− 1)) + 2

√
(#A− (a+ b− 1))2 + (a− b)2+√

(#A− (2a− 1))2 + (#A− (2b− 1))2 + (a− b)
√

2
]

+O(t2)
)
,

(4.42)

as can be observed in Equations (4.13), (4.15), (4.17), (4.23), (4.25)
and (4.31),

3. The weighting of each points of the orbits [a, b] , where a = 5 and
1 ≤ b ≤ 4 , are equal to

1

4− (1 +
√

2)(#A− (2b− 1))t+O(t2)
, (4.43)

as can be seen from Equations (4.19), (4.27), (4.33) and (4.37).

Also, the invariant weighting for the grid square B of a 10× 10 can be
determined by choosing an arbitrary point [a, b] in the square grid such that
b ≤ a and 1 ≤ a, b ≤ 5

1. For 1 ≤ b ≤ 5 , the invariant weighting of the orbits with sides-length
(#B − (2b− 1))t are equal to

1

4− (2 +
√

2)(#B − (2b− 1))t+O(t2)
, (4.44)

that can be seen from Expressions (4.12), (4.22), (4.30), (4.36) and
(4.40),

2. The invariant weighting of the orbits of [a, b] , where b < a and 1 ≤
a, b ≤ 5 , are equal to

1/
(
8− t

[
(2 +

√
2)(#B − (a+ b− 1)) + 2

√
(#B − (a+ b− 1))2 + (a− b)2+√

(#B − (2a− 1))2 + (#B − (2b− 1))2 + (a− b)
√

2
]

+O(t2)
)
,

(4.45)

as seen in the Expressions (4.14), (4.16), (4.18), (4.20), (4.24), (4.26),
(4.28), (4.32), (4.34) and (4.38).

We use Maple code (see Appendix B.2), to determine the invariant weight-
ing equations of points in the= fundamental domains of the 9×9 and 10×10
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grid squares at t = 0.01 . The invariant weighting of points for 9× 9 square
grid is

w = [0.2993352826, 0.03759810521, 0.05204502052, 0.04968219598,

0.04873154586, −0.09046078997, −0.04546380615, −0.03907528662,

− 0.03761929683, −0.01296539496, −0.01033596374, −0.009799619799,

− 0.007988725876, −0.007495290624, −0.007011024439].

The invariant weighting of points for 10× 10 square grid is

w = [0.2968893377, 0.03759690549, 0.05144925402, 0.04865744587,

0.04710294444, −0.08861467667, −0.04401992904, −0.03724800080,

− 0.03501383443, −0.01220637112, −0.009485727106, −0.008669390846,

− 0.007094337741, −0.006363739331, −0.005664141309].

From above we can see that there are some negative weights. So, we consider
the subsets of the metric spaces which have maximum magnitudes with non-
negative weights to represent the maximum diversities at various scaling.

• The �rst subset is the orbit1

• the second subset is the union of orbit1 and orbit2

• the third subset is the union of orbit1 , orbit2 and orbit3

• the fourth subset is the union of orbit1, . . . , orbit4
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• the �fth subset �ve is the union of orbit1, . . . , orbit5

,

• the sixth subset is the union of orbit1, . . . , orbit6

,

• the seventh subset is the union of orbit1, . . . , orbit7

,

• the eighth subset is the union of orbit1, . . . , orbit8

,

• the ninth subset is the union of orbit1, . . . , orbit9

,

• the tenth subset is the union of orbit1, . . . , orbit10

,

• the eleventh subset is the union of orbit1, . . . , orbit11
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,

• the twelfth subset is the union of orbit1, . . . , orbit12

,

• the thirteenth subset is the union of orbit1, . . . , orbit13

• the fourteenth subset is the union of orbit1, . . . , orbit14

• the last subset is the 9× 9 and 10× 10 metric spaces

As can be seen above, if the group of symmetries for the square act by
isometries on n−1×n−1 and n×n square grids of points, for n = 4, 6, 8,10.
This gives some equivalent fundamental domains which partition the metric
space into a union of disjointed orbits. When we scale those grid squares
by a scale factor t , we can see that as the scale factor increases, the order
in which you take the union of orbits, in terms of representative points in a
triangular fundamental domain as illustrated (See Figures 4.1, 4.5, 4.9, and
4.10), is as follows. You start in the top right corner. Then you proceed
down the right-hand edge until you reach the right angle. Then you jump
to the lower-left vertex (at or near the center of the square, according to
as n is odd or even, respectively). After that, you move rights through the
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remaining columns of dots in the triangle, traversing each one from bottom
to top.

Also, we calculate the weights of the points on the 9 × 9 and 10 × 10
grid squares by �nding the invariant weights of the points on these orbits.
Furthermore, we observe that when the grid square is scaled by a factor
t > 0 , the invariant weights are not necessarily positive. Therefore, at each
scale, there is a subset (as their order described above) of the metric space
that has a maximum magnitude with non-negative weighting which is the
maximum diversity.

Now, in all cases, when the scale factor is very small, the four corner
points have maximum magnitude with non-negative weighting. We shall
prove this in the next section.

� 4.3 The magnitude of the four corner points of an n× n grid

square

In this section, we will �nd the general formula for the invariant weights
of points of the n × n square grid metric space and we will show that the
four corner points of the square grid have a larger magnitude derived from
the magnitude of all other orbits for very small scaling factor t . Also, if we
consider the set that contains the orbit of four corner points and any other
orbit, then that set have negative weights.

The symmetry group of the square acts on the n×n square grid of points
by isometries which partitions the metric space into a union of disjointed
orbits.

When n is an odd number and n > 3 , there are four types of orbit,
which are used in the Theorem 4.3.3.

In the �rst type, the orbit has four points in a square with sides length
` = (n− (2b− 1)) , as 1 ≤ b ≤ n−1

2 . The weighting of this orbit is

1

1 + 2e−`t + e−
√

2`t
,

as t� 1 , we have
1

4− (2 +
√

2)`t+O(t2)
, (4.46)

this can be seen from Equation (4.41).

In the second type, the orbit has eight points. The invariant weighting
of this orbit is

1/
(
1 + e−(n−(2a−1))t + 2e−

√
(n−(a+b−1))2+(a−b)2t + e−(n−(a+b−1))

√
2t+

e−
√

(n−(2a−1))2+(n−(2b−1))2t + e−(n−(2b−1))t + e−(a−b)
√

2t
)
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as t� 1 , we get

1/
(
8− t

[
(2 +

√
2)(n− (a+ b− 1)) + 2

√
(n− (a+ b− 1))2 + (a− b)2+√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]

+O(t2)
)
,

(4.47)

where, 1 ≤ b < a ≤ n−1
2 , as can be viewed from Expression (4.42).

In the third type, the orbit has four points in a diamond shape.

r

r

√
2r

The weighting of this orbit is

1

1 + 2e−
√

2rt + e−2rt
,

when t� 1 , we obtain

1

4− (2
√

2 + 2)rt+O(t2)
, (4.48)

as can be observed of Equation (4.43).

In the fourth type, we have the single point
[
n+1

2 , n+1
2

]
. The weighting

of this orbit is 1 .

Let us begin with the preparatory results, which are important to demon-
strate Theorem 4.3.3.

Lemma 4.3.1. For positive integer numbers n, a, b such that n > 3 is an
odd number, and 1 ≤ b < a ≤ n−1

2 then the following inequality is true

2((n− (2b− 1)) + (a− b)) > 2
√

(n− (a+ b− 1))2 + (a− b)2.

Proof. We have b < a and b ≥ 1 , so

b+ b− 1 < a+ b− 1

n− (2b− 1) > n− (a+ b− 1).
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If we square both sides of the previous inequality, then adding (a − b)2 to
both sides gives

(n− (2b− 1))2 + (a− b)2 > (n− (a+ b− 1))2 + (a− b)2.

Taking the square root of both sides of the above expression and multiplying
by 2 gives

2
√

(n− (2b− 1))2 + (a− b)2 > 2
√

(n− (a+ b− 1))2 + (a− b)2. (4.49)

Since (n− (a+ b− 1))2 and (a− b)2 are positive, we have

2

√
(n− (2b− 1))2 + 2

√
(n− (2b− 1))2(a− b)2 + (a− b)2 >√

(n− (2b− 1))2 + (a− b)2,

which implies that√(√
(n− (2b− 1))2 +

√
(a− b)2

)2
> 2
√

(n− (2b− 1))2 + (a− b)2

2
√

(n− (2b− 1))2 + 2
√

(a− b)2 >2
√

(n− (2b− 1))2 + (a− b)2.

Then the following holds

2((n− (2b− 1)) + (a− b)) > 2
√

(n− (2b− 1))2 + (a− b)2. (4.50)

Therefore, from Inequalities (4.49) and (4.50), the proof is completed.

Lemma 4.3.2. Given integer numbers n, a, b. Where n is an odd number,
n > 3 and 1 ≤ b < a ≤ n−1

2 . Then

(2 +
√

2)(n− 1) > (2 +
√

2)
[
(n− (2b− 1)) + (a− b)

]
. (4.51)

Proof. As 1 < b and 1 < a , we have

3 < 3b

1 < 3b− 2

1 < 2b− 1− 1 + b

1 < 2b− 1− a+ b

n− 1 > n− (2b− 1) + (a− b) .

Multiplying each side of the above inequality by 2 +
√

2 , we get Formula
(4.51).

The next theorem shows that, if an n×n square grid is scaled very small,
then the magnitude of the orbit that contains the four corner points is larger
than the magnitude of all other orbits of the square grid.
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Theorem 4.3.3. If we consider the orbits under the action of the isometry
group of a square n × n grid tA with n > 3 , then when t � 1 , the largest
magnitude is on the orbit consisting of the four corner points.

Proof. Suppose we have the square grid A scaled by a factor t > 0 and an
action of the symmetry group of the square on A , so that the square grid is
partitioned by the orbits.

Since from Formula (4.46) when b = 1 , the magnitude of the four corner
points A0 of a square grid scaled by factor t is equal to

4

1 + 2e−(n−1)t + e−
√

2(n−1)t
, (4.52)

as t� 1 , the Taylor series approximations gives

4

4− (2 +
√

2)(n− 1)t+O(t2)
=

1

1− 2+
√

2
4 (n− 1)t+O(t2)

= 1 +
2 +
√

2

4
(n− 1)t+O(t2).

(4.53)

We divide the rest of the proof into four parts.

i Let A1 be any orbit that contain the corners of the square with sides
` = (n − (2b − 1)) , such as 1 ≤ b ≤ n−1

2 . We need to show that
|tA0| > |tA1| ,

ii Consider A2 is any orbit which contains eight points, We shall prove
that |tA0| > |tA2| ,

iii Suppose that A3 is any orbit which consist of points of the square
diamond-shape, we will show that |tA0| > |tA3| ,

iv Let A4 be the orbit {[n+1
2 , n+1

2 ]} ; we want to prove |tA0| > |tA4| .

Part (i) . When t� 1 , the magnitude of the corners of the square with side
length ` = (n− (2b− 1)) from Formula (4.46) is equal to

4

4− (2 +
√

2)`t+O(t2)
=

1

1− 2+
√

2
4 `t+O(t2)

= 1 +
2 +
√

2

4
`t+O(t2),

where 1 ≤ b ≤ n−1
2 . The last formula is an increasing function of ` , so larger

squares have bigger magnitudes.

Part (ii) . As t� 1 , the magnitude of tA2 from Formula (4.47) is
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8/
(
8− t

[
(2 +

√
2)(n− (a+ b− 1)) + 2

√
(n− (a+ b− 1))2 + (a− b)2

+
√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]

+O(t2)
)

= 1/
(
1− t/8

[
(2 +

√
2)(n− (a+ b− 1)) + 2

√
(n− (a+ b− 1))2 + (a− b)2

+
√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]

+O(t2)
)

= 1 + t/8
[
(2 +

√
2)(n− (a+ b− 1)) + 2

√
(n− (a+ b− 1))2 + (a− b)2

+
√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]

+O(t2),

where 1 ≤ b < a ≤ n−1
2 and n > 3 . To show |tA0| > |tA2| , we need to

prove that

(2+
√

2)(n−1) >
1

2

[
(2+
√

2)(n−(a+b−1))+2
√

(n− (a+ b− 1))2 + (a− b)2

+
√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]
. (4.54)

We can clearly see that, as b < a b + b − 1 < a + b − 1 , so n − (2b − 1) >
n− (a+ b− 1) .

Multiplying both sides of above inequality by (2 +
√

2) gives

(2 +
√

2)(n− (2b− 1)) > (2 +
√

2)(n− (a+ b− 1)). (4.55)

Also, when a > b ≥ 1 and n > 3 , we have

n− (2b− 1) > n− (2a− 1) ≥ 0,

square both sides of above inequality and adding (n−(2b−1))2 to each side,
then taking square roots of both sides, we obtain

√
2(n− (2b− 1)) >

√
(n− (2a− 1))2 + (n− (2b− 1))2. (4.56)

Now adding the three formulae, the �rst one is (4.55), the second formula is
from the Lemma 4.3.1, and the third formula is (4.56), we have

(2 +
√

2)(n− (2b− 1)) + 2(n− (2b− 1)) + 2(a− b) +
√

2(n− (2b− 1))

> (2 +
√

2)(n− (a+ b− 1)) + 2
√

(n− (a+ b− 1))2 + (a− b)2+√
(n− (2a− 1))2 + (n− (2b− 1))2. (4.57)

If we add
√

2(a− b) to each side of Inequality (4.57), then
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(2 +
√

2)(n− (2b− 1)) +
1

2
(2 +

√
2)(a− b)

>
1

2

[
(2 +

√
2)(n− (a+ b− 1)) + 2

√
(n− (a+ b− 1))2 + (a− b)2

+
√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]
. (4.58)

It is obvious that

2(2+
√

2)(n−(2b−1))+2(2+
√

2)(a−b) > 2(2+
√

2)(n−(2b−1))+(2+
√

2)(a−b),

this implies

(2+
√

2)
[
n− (2b−1)+(a− b)

]
>
[
(2+
√

2)(n− (2b−1)+
1

2
(2+
√

2)(a− b)
]
.

By Lemma 4.3.2

(2 +
√

2)(n− 1) > (2 +
√

2)(n− (2b− 1) +
1

2
(2 +

√
2)(a− b). (4.59)

From Formulae (4.58), (4.59), we get the inequality (4.54).

Part (iii) . If t� 1 , then the magnitude of tA3 from Formula (4.48)

4

4− (1 +
√

2)`t+O(t2)
=

1

1− 1+
√

2
4 `t+O(t2)

= 1 +
1 +
√

2

4
`t+O(t2),

(4.60)

where ` = (n − (2b − 1)) , as 1 ≤ b ≤ n−1
2 . Therefore, Expression (4.53) is

greater than Expression (4.60).

Part (iv) . Since the magnitude of [n+1
2 , n+1

2 ] is equal to one. for nonzero
very small scale factor t , the magnitude of tA0 from Expression (4.53) is
greater than one. The proof is completed.

When an n × n square grid is scaled very small, then the subsets that
contain the union of the four corner points orbit and the points of some
other orbits have negative weightings. We shall prove this result in the next
theorem.

Theorem 4.3.4. Given an odd number n > 3 , and an n × n square grid
tA which is partitioned into the union of disjoint orbits under the action of
the isometry group. If we consider a subset B that contains the union of
the four corner points orbit with any other orbit, then when t� 1 , B have
negative weighting.
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Proof. Suppose that the points of a grid square A are labeled by {[i, j] : 1 ≤
i, j ≤ n} and can be partitioned into the union of disjoint orbits under the
symmetry group of the square. We have to �nd the weighting the disjoint
union of two orbits of A . There are four cases as follows

Case 1. The subset B1 is the union of the four corner points orbit and the
middle point orbit,

Case 2. The subset B2 is the union of the four corner points orbit and a dia-
mond shaped orbit,

Case 3. The subset B3 is the union of the corner points orbit and a square
shaped orbit,

Case 4. The subset B4 is the union of the four corner points orbit and an eight
points orbit.

Case 1. The weighting equations of the �rst subset B1 are

(
1 + 2e−(n−1)t + e−

√
2(n−1)t

)
w11+e−

√
2

2
(n−1)tw12 = 1,

4e−
√

2
2

(n−1)tw11+ w12 = 1,

where w11 is an invariant weighting of four corner points and w12 is an
invariant weighting of the middle point. As t� 1 , the exponential functions
of the above expressions can be approximated using the Taylor series of
exponential function, to get

(
4− (2 +

√
2)(n− 1)t+O(t2)

)
w11+

(
1−
√

2

2
(n− 1)t+O(t2)

)
w12 = 1,

4
(
1−
√

2

2
(n− 1)t+O(t2)

)
w11+ w12 = 1,

(4.61)
The values of w11 can be obtained, by multiplying the second formula of

(4.61) by 1−
√

2
2 (n− 1)t+O(t2) , then subtracting the �rst expression from

the second.

w11 =
1− 1 +

√
2

2 (n− 1)t+O(t2)(
4− (2 +

√
2)(n− 1)t+O(t2)

)
− 4
(
(1−

√
2

2 )(n− 1)t+O(t2)
)2 .
(4.62)

By substituting these formula in the �rst expression of (4.61) we have

w12 =
4− (2 +

√
2)(n− 1)t+O(t2)−

(
(4− 2

√
2)(n− 1)t+O(t2)

)
4− (2 +

√
2)(n− 1)t+O(t2)− 4

(
(1−

√
2

2 )(n− 1)t+O(t2)
)2 .
(4.63)
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Simplifying the numerators and the denominators of Formulae (4.62) and
(4.63), we get

w11 =

√
2

2 (n− 1) +O(t)

(3
√

2− 2)(n− 1) +O(t)
,

w12 =
−(2−

√
2)(n− 1) +O(t)

(3
√

2− 2)(n− 1) +O(t)
.

This implies when n > 1 , the values of w11 is positive and w12 is negative.
Case 2. Let [a, b] be a point in the diamond shaped orbits such that

1 ≤ b < a and a = n+1
2 . So, the weighting equations of subset B2 are

(
1 + 2e−(n−1)t + e−

√
2(n−1)t

)
w21 +

(
2e−

1
2

√
(n−1)2+4(b−1)2t

+ 2e−
1
2

√
(n−1)2+4(n−b)2t

)
w22 = 1,

and(
2e−

1
2

√
(n−1)2+4(b−1)2t + 2e−

1
2

√
(n−1)2+4(n−b)2t

)
w21 +

(
1 + e−(n−(2b−1))t

+ 2e−
√

2
2

(n−(2b−1))t
)
w22 = 1,

where w21 is an invariant weighting of four corner points and w22 is an
invariant weighting of the diamond shaped orbits. As t� 1 , Using Taylor's
approximation formula we have(

4− (2 +
√

2)(n− 1)t+O(t2)
)
w21 +

(
4− (

√
(n− 1)2 + 4(b− 1)2

+
√

(n− 1)2 + 4(n− b)2)t+O(t2)
)
w22 = 1,

so,

(
4− (2 +

√
2)(n− 1)t+O(t2)

)
w21 +

(
4− ((n− 1)(

√
1 + (

2(b− 1)

n− 1
)2)

+ 2(n− b)
√

1 + (
2(n− 1)

n− b
)2)t+O(t2)

)
w22 = 1, (4.64)

and(
4− (

√
(n− 1)2 + 4(b− 1)2 +

√
(n− 1)2 + 4(n− b)2)t+O(t2)

)
w21

+
(
4− (1 +

√
2)(n− (2b− 1))t+O(t2)

)
w22 = 1,

so,

(
4− ((n−1)(

√
1 + (

2(b− 1)

n− 1
)2)+2(n− b)

√
1 + (

2(n− 1)

n− b
)2)t+O(t2)

)
w21

+
(
4− (1 +

√
2)(n− (2b− 1))t+O(t2)

)
w22 = 1. (4.65)
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Since 1 ≤ b < n+1
2 , so (2(b−1)

n−1 )2 and ( n−1
2(n−b))2 are less than one. Therefore,

Formulae (4.64) and (4.65) can be written as follows

(
4− (2 +

√
2)(n− 1)t+O(t2)

)
w21 +

(
4−

(
(n− 1)(1 +

2(b− 1)2

(n− 1)2
)

+ 2(n− b)(1 +
(n− 1)2

8(n− b)2
)
)
t+O(t2)

)
w22 = 1, (4.66)

and(
4−

(
(n− 1)(1 +

2(b− 1)2

(n− 1)2
) + 2(n− b)(1 +

(n− 1)2

8(n− b)2
)
)
t+O(t2)

)
w21

+
(
4− (1 +

√
2)(n− (2b− 1))t+O(t2)

)
w22 = 1, (4.67)

where ε1 = 2(b−1)2

(n−1)2 and ε2 = (n−1)2

8(n−b)2 . Since n > 3 and b ≥ 1 . If we multiply

Formula (4.66) by
(
4− (1 +

√
2)(n− (2b− 1))t+O(t2)

)
and Formula (4.67)

by
(
4 −

(
(n − 1)(1 + ε1) + 2(n − b)(1 + ε2)

)
t + O(t2)

)
, then subtract one

formula from other to obtain the value of w21 and substitute the result into
the Expression (4.64) to have w22 , then simplifying the resulting expression
and neglecting the very small values ε1 and ε2 to obtain

w21 =
2(n− 1)−

√
2(n− (2b− 1)) +O(t)

8(1−
√

2)(n− b) + 4(n− 1) +O(t)
,

and

w22 =
−
√

2(n− 1) + (n− (2b− 1)) +O(t)

8(1−
√

2)(n− b) + 4(n− 1) +O(t)
,

It is easy to see that w21 is positive, and w22 is negative.
Case 3. If [a, b] is a point in the square shaped orbits such as 1 < a < n+1

2
and a = b , then the weighting formulae of B3 are(

1 + 2e−(n−1)t + e−
√

2(n−1)t
)
w31 +

(
e−
√

2(b−1)t + 2e−
√

(n−b)2+(b−1)2t

+ e−
√

2(n−b)t)w32 = 1,

and(
e−
√

2(b−1)t + 2e−
√

(n−b)2+(b−1)2t + e−
√

2(n−b)t)w31 +
(
1 + 2e−(n−(2b−1))t

+ e−
√

2(n−(2b−1))t
)
w32 = 1,

where w31 is an invariant weighting of four corner points and w32 is an
invariant weighting of the square shaped orbits. As t � 1 , we can use the
Taylor approximation to get(

4−(2+
√

2)(n−1)t+O(t2)
)
w31+

(
4−(
√

2(n−1)+2
√

(n− b)2 + (b− 1)2)t

+O(t2)
)
w32 = 1,
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so,(
4− (2 +

√
2)(n− 1)t+O(t2)

)
w31 +

(
4− (

√
2(n− 1)

+ 2(n− b)
√

1 + (
b− 1

n− b
)2)t+O(t2)

)
w32 = 1,

and(
4− (

√
2(n− 1) + 2

√
(n− b)2 + (b− 1)2)t+O(t2)

)
w31

+
(
4− (2 +

√
2)(n− (2b− 1))t+O(t2)

)
w32 = 1.

so,

(
4− (

√
2(n− 1) + 2(n− b)

√
1 + (

b− 1

n− b
)2)t+O(t2)

)
w31

+
(
4− (2 +

√
2)(n− (2b− 1))t+O(t2)

)
w32 = 1.

Since 1 < b < n+1
2 and n ≥ 3 , so b−1

n−b)
2 < 1 . Then the above formulae can

be written as(
4− (2 +

√
2)(n− 1)t+O(t2)

)
w31 +

(
4− (

√
2(n− 1)

+ 2(n− b)(1 +
(b− 1)2

2(n− b)2
))t+O(t2)

)
w32 = 1, (4.68)

and

(
4− (

√
2(n− 1) + 2(n− b)(1 +

(b− 1)2

2(n− b)2
))t+O(t2)

)
w31

+
(
4− (2 +

√
2)(n− (2b− 1))t+O(t2)

)
w32 = 1 (4.69)

Multiply Formula (4.68) by 4− (2 +
√

2)(n− (2b− 1))t+O(t2) and Formula

(4.69) by 4− (
√

2(n− 1) + 2(n− b)(1 + (b−1)2

2(n−b)2 ))t+O(t2) , then subtract the

one from the other to get w31 , after that substitute the value of w31 into
Expression (4.68) gives w32 , then simplifying the resulting expression and

neglecting the very small value (b−1)2

2(n−b)2 to obtain

w31 =
(2 + 2

√
2)(b− 1) +O(t)

8
√

2(n− 1)− 8
√

2(n− b) +O(t)
, (4.70)

and

w32 =
−
√

2(n− 1) + (n− (2b− 1)) +O(t)

8
√

2(n− 1)− 8
√

2(n− b) +O(t)
. (4.71)

Clearly see that the Expression (4.70) is positive and the Expression (4.71)
is negative.

109



CHAPTER 4. MAGNITUDE AND MAXIMUM DIVERSITY

Case 4. Consider [a, b] belong to the eight-points orbits such as 1 ≤ b <
a < n+1

2 . Thus, the weighting equations for the subset B4 are(
1+2e−(n−1)t+e−

√
2(n−1)t

)
w41 +

(
2e−
√

(a−1)2+(b−1)2t+2e−
√

(n−a)2+(b−1)2t

+ 2e−
√

(n−b)2+(a−1)2t + 2e−
√

(n−a)2+(n−b)2t
)
w42 = 1,

and(
e−
√

(a−1)2+(b−1)2t + e−
√

(n−a)2+(b−1)2t + e−
√

(n−b)2+(a−1)2t

+ e−
√

(n−a)2+(n−b)2t
)
w41 +

(
1 + e−(n−(2a−1))t + 2e−

√
(n−(a+b−1))2+(a−b)2t

+ e−
√

2(n−(a+b−1))t + e−(n−(2b−1))t + e−
√

(n−(2a−1))2+(n−(2b−1))2t

+ e−(a−b)
√

2t
)
w42 = 1,

where w41 is an invariant weighting of four corner points and w42 is an
invariant weighting of the eight-points orbits. As t� 1 , we can approximate
the above formula by the Taylor expansions(

4− (2 +
√

2)(n− 1)t+O(t2)
)
w41 + 2

(
4− (

√
(a− 1)2 + (b− 1)2

+
√

(n− a)2 + (b− 1)2 +
√

(n− b)2 + (a− 1)2 +
√

(n− a)2 + (n− b)2)t

+O(t2)
)
w42 = 1, (4.72)

and(
4− (

√
(a− 1)2 + (b− 1)2 +

√
(n− a)2 + (b− 1)2 +

√
(n− b)2 + (a− 1)2

+
√

(n− a)2 + (n− b)2)t+O(t2)
)
w41+2

(
4−(n−(a+b−1))+

√
2

2
(n−(a+b−1))

+

√
2

2
(a− b) +

√
(n− (a+ b− 1))2 + (a− b)2

+
1

2

√
(n− (2a− 1))2 + (n− (2b− 1))2)t+O(t2)

)
w42 = 1. (4.73)

Multiply Formula (4.72) by
(
4−((n−(a+b−1))+

√
2

2 (n−(a+b−1))+
√

2
2 (a−

b)+
√

(n− (a+ b− 1))2 + (a− b)2+1
2

√
(n− (2a− 1))2 + (n− (2b− 1))2)t+

O(t2)
)
and Formula (4.73) by

(
4−(

√
(a− 1)2 + (b− 1)2+

√
(n− a)2 + (b− 1)2+√

(n− b)2 + (a− 1)2+
√

(n− a)2 + (n− b)2)t+O(t2)
)
and subtract one ex-

pression from the other, to obtain

w41 =
C −B +O(t2)

AC −B2 +O(t2)
, (4.74)

the values of w42 can be �nd by substitute w41 into Formula 4.72

w42 =
A−B +O(t2)

AC −B2 +O(t2)
, (4.75)
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where

A = 4− (2 +
√

2)(n− 1)t,

B = 4−
(√

(a− 1)2 + (b− 1)2 +
√

(n− a)2 + (b− 1)2

+
√

(n− b)2 + (a− 1)2 +
√

(n− a)2 + (n− b)2
)
t,

C = 4−
(
(n− (a+ b− 1)) +

√
2

2
(n− (a+ b− 1))

+

√
2

2
(a− b) +

√
(n− (a+ b− 1))2 + (a− b)2

+
1

2

√
(n− (2a− 1))2 + (n− (2b− 1))2

)
t.

The denominators of Expressions (4.74) and (4.75) are equal to

16−
(
4(n− (a+ b− 1)) + 2

√
2(n− (a+ b− 1)) + 2

√
2(a− b)

+ 4
√

(n− (a+ b− 1))2 + (a− b)2 + 2
√

(n− (2a− 1))2 + (n− (2b− 1))2

+ 8(n− 1) + 4
√

2(n− 1)
)
t+O(t2)− 16 +

(
8
√

(a− 1)2 + (b− 1)2

+ 8
√

(n− a)2 + (b− 1)2

+ 8
√

(n− b)2 + (a− 1)2 + 8
√

(n− a)2 + (n− b)2
)
t+O(t2),

(4.76)

by simplifying the above expression we get,

− 8(n− a)− 8(n− b)− 2
√

2(n− a)− 6
√

2(n− b) + 8(n− a) + 8(n− b)
+ 4
√

2(n− a) + 4
√

2(n− b) + 8(a− 1).

When 1 ≤ b < a and n > 3 , 8(a−1) > 2
√

2(a−b) , so the Expression (4.76)
is greater than zero.

Also, the numerator of Formula (4.74) is

4−
(
(n− (a+ b− 1)) +

√
(n− (a+ b− 1))2 + (a− b)2 +

√
2

2
(n− (a+ b− 1))

+
1

2

√
(n− (2a− 1))2 + (n− (2b− 1))2 +

√
2

2
(a− b)

)
− 4

+
(√

(a− 1)2 + (b− 1)2 +
√

(n− a)2 + (b− 1)2 +
√

(n− b)2 + (a− 1)2

+
√

(n− a)2 + (n− b)2
)
,

(4.77)

simplifying Formula (4.77) we have,
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−
(
(n− (a+ b− 1)) +

√
(n− (a+ b− 1))2 + (a− b)2 +

√
2

2
(n− (2b− 1))

+
1

2

√
(n− (2a− 1))2 + (n− (2b− 1))2

)
+
(
(n− 1) +

√
(n− b)2 + (a− 1)2

+
1

2

√
(n− a)2 + (n− b)2 +

√
2

2
(n− 1

2
(a+ b))

)
.

Since 1 ≤ b < a < n+1
2 and n > 3 , then the next statements are true

1

2

√
(n− a)2 + (n− b)2 >

1

2

√
(n− (2a− 1))2 + (n− (2b− 1))2,√

(n− b)2 + (a− 1)2 >
√

(n− (a+ b− 1))2 + (a− b)2,
√

2

2
(n− 1) >

√
2

2
(n− (2b− 1)),

2−
√

2

2
(n− 1) +

√
2

2
(n− 1

2
(a+ b)) > (n− (a+ b− 1)),

so, Expression (4.77) is bigger than zero. However, the numerator of Formula
(4.75) is

4− (2 +
√

2)(n− 1)− 4 +
(√

(a− 1)2 + (b− 1)2 +
√

(n− a)2 + (b− 1)2

+
√

(n− b)2 + (a− 1)2 +
√

(n− a)2 + (n− b)2
)
,

(4.78)

simplifying Expression (4.78) we obtain,

−(1 +
√

2)(n− 1) + 2(n− b)

Again, as b ≥ 1 and n > 3 , we have −(1 +
√

2)(n − 1) > 2(n − b) . This
means Formula (4.78) is less than zero. Which implies that the value w41 is
non-negative and the value w42 is negative. The proof is completed.

Furthermore, for an even number n > 2 , there are two cases for the
orbits that partition the points of the n× n square grid.

The �rst case is the orbit that contains the four points with side length
` = n− (2b− 1) , as 1 ≤ b ≤ n

2 . If `� 1 , then the weightings of these orbits
is

1

4− (2 +
√

2)`t+O(t2)
, (4.79)

which can be seen from Formula (4.44).
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The second case is the orbit with eight points. When t� 1 , the invariant
weightings of these orbits is

1/
(
8− t

[
(2 +

√
2)(n− (a+ b− 1)) + 2

√
(n− (a+ b− 1))2 + (a− b)2+√

(n− (2a− 1))2 + (n− (2b− 1))2 + (a− b)
√

2
]

+O(t2)
)
,

(4.80)

where 1 ≤ b < a ≤ n
2 , as can be seen from Expression (4.45).

The next statement shows that when the square grid is scaled very small.
So the four corner points have a greater magnitude than the magnitude of
all other orbits of the square grid and the subsets of the grid square that
contains the four corner orbit with any other orbit have a negative weighting.

Corollary 4.3.5. Suppose that a scale factor t of a square grid tA of an
even number n > 2 of points is very small. the magnitude of the four corner
orbit is bigger than the magnitude of all other orbits as well as if we added any
orbit to the four corner points, then the new subset has a negative weighting.

Proof. Since n > 2 is an even, there are two types of the orbits that partition
the points of a square grid n× n .

The �rst type is the orbits that consist of the square-shaped point of the
square grid. As t� 1 , by the �rst part of Theorem 4.3.3, the largest square
has a larger magnitude.

The second type is the orbit that consists of the eight points of the n×n
metric space. When t � 1 , form the second part of Theorem 4.3.3, the
magnitude of the four corner points of the metric space should be greater
than the magnitude of these orbits.

To prove that a new subset that contains the union of the four corner
points orbit and any other orbit must have negative weightings. There are
two cases to show that.

The �rst case, a subset of the square grid that contains the union of the
four corner point and the square shaped points. From Case 3 of the proof of
Theorem 4.3.4, it has negative weighting.

The second case, a subset of the metric space which contain the union
of the four corner points and the eight points. From Case 4 of the proof of
Theorem 4.3.4, it has negative weighting. The proof is completed.

From Theorem 4.3.3 and Theorem 4.3.4 and Corollary 4.3.5, we observe
that the magnitude of the boundary point at the corner of side length n−1 is
larger than the magnitude of all other orbits. However, the union of the orbit
of side length n− 1 and each other orbit have a negative weight. Moreover,
for n = 3, 4, . . . , 9, 10 when we compute the subsets of the n×n grid square
at a very small scale, we see that.

• The union of any two orbits, must one of them have negative weight,
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• The union of more than two orbits, at least one of them have negative
weights.

Also, we think that at each scale, one of the types that presented in the
�gures in the last three pages of Subsection 4.2.4 will have maximum mag-
nitude with non-negative weighting, but had no way to prove this. However,
the last case, when the grid square has a maximum magnitude that admits
a non-negative weighting was proved by Leinster [Proposition 2.1.3, [32]].

� 4.4 Finding the weighting of the points in the middle row of

the square grid metric space using Krylov subspace method

The programming language Python was used to calculate the weights of the
points in the middle row of the 201 × 201 metric space using the Krylov
method as follows.

We determine the weighting of the points on the middle row of the 201×
201 grid square at various scaling from 0.000001 to 0.6 . For each scale, we
�rst obtain the distance matrix for the 201× 201 points. After that, we use
the conjugate gradient method described in Subsection 2.7 to calculate the
weighting of that points. Then, we create a vector of the weighting of the
middle row points, and �nally we create a text �le for that vector with the
associated scale factor (see Appendix B.3).

In this section, we will look a little closer at the weights behavior of the
points in the middle row of 201 × 201 grid square at di�erent scaling and
trying to see how there can be a smooth transition form the weighting of
middle row of the square grid at small scale to the weighting of middle row
of the square grid at large scale.

It is not clear what is happening when the grid square is scaled very small.
The points of the middle row of the 201 × 201 grid square have constant
positive weighing, when the square grid is scaled by a factor t = 10−7 . After
that those weighting of points have di�erent values when the square grid is
scaled between t = 10−6 and t = 62×10−5 and we get the various positions
of curves as can be seen in the following �gures.
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If the square grid with 201× 201 points is scaled by the factors between
10−4 and 0.6 , we have short oscillations happening in the centre compar-
ing to the long oscillations occurring on the bounders. Both short and long
oscillations increase in number as scale factor getting bigger. Moreover, the
long oscillations decrease in number and tend to one, while the short ones
decrease in amplitude and the amplitudes tend to zero, i.e. the oscillations
settle at some horizontal level, which are graphically represented in the fol-
lowing �gures.
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From �gures, the following features are apparent.

• The weights of the centre points in the middle row of the grid square
are identical and those points increasing as the scale factor gets bigger,

• The weights of the points on the boundary are always positive. As the
scale factor gets bigger, the set of points with negative weights shrinks
in size, moving close to the boundary, and eventually disappearing, as
we see below for t = 0.6 ,

• All points in the middle row having the positive weighting when the
metric space is scaled by 0.6 .

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1
0

0.5

1

1.5

2
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Figure 4.11: The weighting of the points in the middle row of the square
grid when the metric space is scaled by 0.1 .
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Figure 4.12: The weighting of the points in the middle row of the square
grid when the metric space is scaled by 0.6 .
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Chapter 5

The magnitude dimension and

the q-spread of another shapes

of metric spaces

This chapter consists of three sections. In the �rst section, we evaluate a 0-
spread of the disk, and similar to the square grid in Section 3.2, we consider
D to be a disk of radius R and take D̈n to be a large �nite grid points
metric space and from the numerical calculation, we see that, if the D̈n is
scaled by a small factor τ > 0 , then the squre grid points inside circle is
approximately the solid disk in R2 , which is essentially independent of the
number of points. So, the 0-spread of the solid disk is supposed to give an
approximation to the 0-spread of the large grid points inside circle. Also, the
0-spread of τD̈n is often close to some quadratic formula of τ for very small
τ . In the second and third sections, we numerical evaluate the 0-spread
dimension and magnitude dimension of di�erent types of rectangular grid
metric spaces respectively.

� 5.1 0-spread of the solid disk

Here we �nd the 0-spread of the disk and numerically proved that if a large
square grid points inside a circle D̈n metric space is scaled by a small factor
τ > 0 , then 0-spread of D̈n is numerical approximations to 0.8τ2 + 1.43τ +
1.02 .

Let us start with the following de�nition.

De�nition 5.1.1. (See [56]) If (A, d) is a metric space equipped with a
measure µ such that µ(A) <∞ , then we can de�ne the 0-spread of A by

E0(A) =

∫
a∈A

dµ(a)∫
b∈A e

−d(a, b)dµ(b)
.

In the following result, we evaluate the 0-spread of a disc D .
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Theorem 5.1.2. if we consider a disk D of radius R , then a 0-spread of
D is equal to∫ R

x=0

x dx∫ R−x
r=0 e−rr dr + 1

π

∫ R+x
r=R−x e

−rr cos−1(x
2+r2−R2

2rx ) dr
.

Proof. Suppose that a ∈ D , we rotate the disc, so a is in a x-axis. We want
to calculate ∫

b∈D
e−d(a,b) db. (5.1)

Using the cosine rule, we get

Figure 5.1: The disc D .

R2 = x2 + r2 − 2rx cos(α′),

this implies that

α′ = cos−1(
x2 + r2 −R2

2rx
).

We can see from Figure 5.1, that α = π − α′ , so

π − α = cos−1(
x2 + r2 −R2

2rx
).

Also from Figure 5.2 we can �nd the region.∫
b∈D

e−d(a,b) db =

∫
b∈D′

e−d(a,b) db+

∫
b∈D′′

e−d(a,b) db.
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Figure 5.2: The region D′ and D′′ .

Now, we rewrite the above formula in a polar coordinates to obtain∫
b∈D

e−d(a,b) db =

∫ 2π

Θ=0

∫ R−x

r=0
e−rr dr dΘ +

∫ 2π−α

Θ=α

∫ R+x

r=R−x
e−rr dr dΘ,

=

∫ 2π

Θ=0
dΘ

∫ R−x

r=0
e−rr dr +

∫ R+x

r=R−x

∫ π+α′

Θ=π−α′
e−rr dΘ dr,

= 2π

∫ R−x

r=0
e−rr dr + 2

∫ R+x

r=R−x
e−rrα′ dr,

= 2π

∫ R−x

r=0
e−rr dr + 2

∫ R+x

r=R−x
e−rr cos−1(

x2 + r2 −R2

2rx
) dr.

The 0-spread of D is

E0(D) =

∫ 2π

φ=0

∫ R

x=0

x dx dφ

2π
∫ R−x
r=0 e−rr dr + 2

∫ R+x
r=R−x e

−rr cos−1(x
2+r2−R2

2rx ) dr
,

=

∫ 2π

φ=0
dφ

∫ R

x=0

x dx

2π
∫ R−x
r=0 e−rr dr + 2

∫ R+x
r=R−x e

−rr cos−1(x
2+r2−R2

2rx ) dr
,

=

∫ R

x=0

x dx∫ R−x
r=0 e−rr dr + 1

π

∫ R+x
r=R−x e

−rr cos−1(x
2+r2−R2

2rx ) dr
.

Now, if we scale a large �nite grid points inside a disk D̈n by scale factor
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τ > 0 , then the 0-spread of τD̈n de�ned by the De�nition 2.4.1 as

E0(τD̈n) =

n2∑
i=1

1
n2∑
j=1

e−τd(pi, pj)

,

where the distance between the points d(pi, pj) is the usual distance in
Euclidean space.

Now, if the scale factor τ > 0 is very small, then the points of D̈n will
be very close to each other for a large number of points, then the square
grid inside the circle D̈n can be approximated to a solid disk D with length
sides 1 . So, the disk D can be approximated by an grid of points inside disk
τQ̈n .

Next, we show that the 0-spread of the τD̈n is numerical approximations
to some quadratic function of τ .

Remark 5.1.3. If a large �nite grid points inside disk metric space D̈n is
scaled by a very small factor τ , then there is a function f of τ such that

E0(τD̈n) → f(τ) as n→∞.

Since the points of D̈n will be very close to each other for the large number
of points and small scale factor, then the grid points inside D̈n can be
approximated to the disc D . So, by the proof of Theorem 5.1.2,

E0(τD̈n)→
∫ R

x=0

x dx∫ R−x
r=0 e−rr dr + 1

π

∫ R+x
r=R−x e

−rr cos−1(x
2+r2−R2

2rx ) dr
.

We use Matlab (see Appendix C.1) to calculate this integral for various values
of τ ranging from 0.0001 to 5 . We have used polynomial curve �tting in
Python, which involves �nding the best polynomials to �t the data to obtain
the quadratic formula

0.8τ2 + 1.43τ + 1.02. (5.2)

Willerton (See [55]) approximated a �nite grid of points D̈ to a circle
D of radius 1 , then numerically calculated the magnitude of D̈ scaled by
a factor of τ and plotted that magnitude and the penguin valuation (see
end of Section 3.2) of τD together (see [Figure 5, [55]]). Now we plotted the

Expression 5.2 with the penguin valuation of τD = τ2

2 + πτ
2 + 1 as seen the

Figure 5.3.

124



CHAPTER 5. MAGNITUDE, q -SPREAD DIMENSION

0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

1

1.5

2

2.5

3

τ

E0(D̈n)
penguin valuation

Figure 5.3: Comparison of the 0-spread of the disc with the penguin valua-
tion τ2

2 + π
2 τ + 1 .

� 5.2 The 0-spread dimension for various rectangular grid

In Section 3.1, we found the 0-spread dimension of square grids with 60×60 ,
110 × 110 and 160 × 160 points as the growth rate of the 0-spread of the
square. In this section, we will present the concept of 0-spread dimension of
two types rectangular grid metric spaces which is the instantaneous growth
rate of the 0-spread of the metric space. This concept is a scale-dependent
dimension, as we will see that the rectangular grids can have 0-spread di-
mension close to zero, one, or two, depending on the scale.

It is informative to look at the 0-spread dimension as rectangular grids
is scaled. We used a number of computer calculations, as performed using
Maple (see Appendix C.2). Firstly, starting with the 0-spread dimensions
of 1 × 1600 , 1 × 6400 and 1 × 14400 , we notice that if the points are very
close to each other, the 0-spread dimension is close to zero, then the line
at that scale is look like a point. However, when the line of points is scaled
up, it looks more and more like a line, the 0-spread dimension is close to
one. Moreover, when the line of points is scaled up further and further, the
0-spread dimension drops to zero as shown in Figure 5.4.
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Figure 5.4: The 0-spread dimensions of various lines at di�erent scaling.
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Secondly, we will look at the 0-spread dimension of the rectangular grids
with 20 × 80 , 20 × 320 and 20 × 720 points. Again, at small scales the
0-spread dimension is close to zero while the grid looks like a small point.
Then when it is scaled up there is a regime, where the large space 20× 720
looks like a line and the 0-spread dimension is approximately one. Whilst, if
it is scaled up more, then the width is apparent and the 0-spread dimension
heads towards two. Finally, if it is scaled up even more, then the point-like
nature becomes apparent and the 0-spread dimension descends to zero as
can be represented in Figure 5.5.
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Figure 5.5: The 0-spread dimensions of di�erent rectangle grids at various
scaling.

Finally, we can plotted the 0-spread dimension of three cases of rectan-
gular grids with equally spaced points together as shown in Figure 5.10.
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Figure 5.6: The 0-spread dimensions of various rectangle grids with 14400
points.

Furthermore, from �gures 5.4 and 5.5, we can see that the 0-spread
dimensions of those rectangular grids become closer and closer for su�ciently
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large τ , also we see from Figure 5.6 that the 0-spread dimensions of 20×720
and 120×120 rectangular grids become closer and closer and approximately
independent of the number of points, as the scale factor getting bigger..

� 5.3 The magnitude dimension for various rectangular grid

In this section, we will present the concept of the magnitude dimension of
various rectangular grid metric spaces which is de�ned as follows

De�nition 5.3.1. (see [40]) The magnitude dimension dim(|A|) of a metric
space A is the instantaneous growth of its magnitude function.

dim(|A|) = lim
t→∞

log(|tA|)
log(t)

.

This concept of dimension is scale-dependent. For example, depending
on the scale, the points can have a magnitude dimension close to zero, one,
or two. We look at three types of rectangular grids and the magnitude di-
mension at various lengths can then be computed numerically using Krylov
method in Python (See Appendix C.3). Firstly beginning with the magni-
tude dimensions of various lines with 1 × 1600 , 1 × 6400 and 1 × 14400
points, we see that when the points are very close together the magnitude
dimension is close to zero, so the line at that scale is point-like. As the line
of points is scaled up, it looks more and more like a line, the magnitude
dimension is close to one. As the line of points is scaled up further and
further, the magnitude dimension drops to zero again as can be represented
in Figure 5.7.
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Figure 5.7: The magnitude dimensions of various lines at di�erent scales.

It looks like the computation method breaks down when the scale factor
is very small in Figure 5.7. Then, we compute the magnitude dimension of
the rectangular grids with 20 × 80 , 20 × 320 and 20 × 720 points. Again,
at very small scales the magnitude dimension is close to zero whilst the grid
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looks like a small point. After that as it is scaled up there is a regime, where
the large space looks line-like and the dimension is approximately one. when
it is scaled up further, the width is apparent and the magnitude dimension
heads towards two. Then, as it is scaled up further, the point-like nature
becomes apparent and the magnitude dimension descends to zero as can be
seen in Figure 5.8.
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Figure 5.8: The magnitude dimensions of 20 × 80 , 20 × 320 and 20 × 720
rectangle grids at various scales.

Finally, we �nd the magnitude dimension of the square grids with 40×40 ,
80× 80 and 120× 120 points, we see that this starts o� looking like a point
at small scales, with the magnitude dimension being close to zero, after that
as the square grid is scaled up, it looks more like a genuine square and has
a magnitude dimension of just under two. Thereafter as the square grid
is scaled up further, the point-like nature is apparent and the magnitude
dimension drops to zero as can be shown in Figure 5.9.
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Figure 5.9: The magnitude dimensions of various n × n square grids at
di�erent scales.

Now we can look at the magnitude dimension of three types of rectangular
grids with 14400 points as shown in Figure 5.10.
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Figure 5.10: The magnitude dimensions of various rectangle grids with 14400
points.

In additional, from Figures 5.7, 5.8 and 5.9, we �nd out that the mag-
nitude dimensions of those rectangular grids become closer and closer when
the scale factor is getting bigger, and we see from Figure 5.10 that the mag-
nitude dimensions of 20 × 720 and 120 × 120 rectangular grids get closer
and closer which are approximately independent of the number of points, for
su�ciently large scale factor τ .

Also, we plotted the 0-spread and the magnitude of the 40 × 40 grid
square metric space at di�erent scaling as shown in the �gure 5.11. From
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Figure 5.11: The magnitude and the 0-spread of a 40×40 grid square metric
space at various scales.

above �gure, we see that when the scale factor is bigger than one, then the 0-
spread and magnitude of the 40×40 grid square metric space get closer and
closer together. So the 0-spread dimension and the magnitude dimension of
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grid square with 40 × 40 points are also identical when the scale factor is
bigger than one as seen in the �gure 5.12.
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Figure 5.12: The magnitude dimension and the spread dimension of grid
square with 1600 points.

This happen because by Proposition 3.1.1, the 40×40 grid square metric
space is homogeneous and by Theorem 2.6.3, their magnitude and 0-spread
are similar.

� 5.4 Future works

• In Section 4.2, we compute the subsets of n × n square grids, for
n = 3, . . . , 10 at di�erent scaling that have maximum magnitude with
non-negative weighting to be maximum diversity and we see that those
subsets are always orbits or union of such orbits. This implies that the
maximum diversity occurred for orbits, or unions of such orbits. So
we conjectured that maximum diversity of n × n grid square always
comes from symmetric subsets and union of symmetric subsets.

• In Section 4.4, we compute the weights of the points in the middle row
of the 201 × 201 metric space using the Krylov method at di�erent
scaling factors t , then we look at their behavior. We will explain why
this happens in the future.

• In Sections 3.1 and 5.3, we plotted the 0-spread dimension and mag-
nitude dimension of various rectangular grids (see Figures 5.4, 5.5, 5.7,
5.8, 5.9) at di�erent scaling. We see that when the scale factor is
big than 1 , then the 0-spread dimension and magnitude dimension of
those rectangular grids are identical. We will explain why this happens
in the future.
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• In Section 5.2, we plotted the 0-spread dimension of 20 × 720 and
120× 120 rectangular grids at various scaling (see Figure 5.6) and we
see that the 0-spread dimension of those rectangular grids get closer
and closer and approximately independent of the number of points, as
the scale factor bigger than one. We will explain why this happens in
the future.

• In Section 5.3, we plotted the magnitude dimension of rectangular
grids with 14400 points at various scaling (see Figure 5.12) and we see
that the magnitude dimension of those rectangular grids become closer
and closer and approximately independent of the number of points for
su�ciently large scale factor. We will explain why this happens in the
future.
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Appendix A

Numerical computation of the

q-spread dimension of a metric

space

The computer codes described in this chapter is used in Chapter 3 to de-
termine the q -spread dimension of the square grid metric space and the
heuristic q -spread dimension. This chapter is divided into two sections. The
�rst section computes the q -spread, q -spread dimension and we approximate
the q -spread of the large square grid to the q -spread of a small square grid
such as 10 × 10 . The second section computes the heuristic 0-spread, the
heuristic 1-spread and the heuristic 2-spread, respectively.

�A.1 Finding the q -spread of the square grid

The computer code was used to identify the q -spread for a �nite metric space
which has an n×n square grid of points such that the distance between any
two points is the usual distance in Euclidean space.

Now, if n is an even number, then the points of the grid square can
be partitioned into four equivalent parts under the action of a subgroup of
order four of the symmetry group of the square containing the rotation of the
points by 0◦ and 180◦ and re�ection of the points about the y -axis, and the
x-axis about the midpoint. After that, we create a procedure to compute
these symmetries of the square and return the image of a point under them.

We create a new subset and calculate these symmetric images for each
point in the set of square grid points and for each of the above four symme-
tries of the square. This image is added to the new subset and removed from
that set of points and the above process repeated until the set of square grid
points becomes empty. Thus by a process of exhaustion, we partition the
grid points into orbits for the action of the subgroup.

If we choose a representative from each orbit for the action of the sub-
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group, then we will get one of the four equivalent pieces. For instance, if a
4× 4 square grid is {[i , j] : 1 ≤ i, j ≤ 4} . The orbits are

{[1, 1], [4, 4], [4, 1], [1, 4]}, {[1, 2], [4, 3], [4, 2], [1, 3]},
{[2, 1], [3, 4], [3, 1], [2, 4]}, {[2, 2], [3, 3], [3, 2], [2, 3]}.

Now, we select one point from each of the above orbits in order to get the
four parts that partition A , which are

{[1, 1], [1, 2], [2, 1], [2, 2]}, {[4, 4], [4, 3], [3, 4], [3, 3]},
{[4, 1], [4, 2], [3, 1], [3, 2]}, {[1, 4], [1, 3], [2, 4], [2, 3]}.

Then the q -spread (see De�nition 2.4.1) of one of these parts of A for q =
0, 1, 2 can be found for di�erent scales of t and the result multiplied by four
to get the q -spread of A . After that, convert these results to the data and
put them to the text �le.

A simple piece of the Maple code is given below:

# load packages ,

with(LinearAlgebra ):

with(plots):

# Define $n^2$ points and put them in a matrix A.

A[i, j] := [i, j]:

# Define four symmetries of the square

# The identity rotation ,

R[0] := proc(p) return[p[1], p[2]]; end proc:

# The 180 degree rotation ,

R[1] := proc(p)return [(n+1)-p[1], (n+1)-p[2]]; end proc:

# Reflection through the $y$ -axis ,

R[2] := proc(p) return [(n+1)-p[1], p[2]]; end proc:

# Reflection through the $x$ -axis ,

R[3] := proc(p) return[p[1], (n+1)-p[2]]; end proc:

# Convert the matrix of points $A$ to a set ,
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original_list_of_points := convert(A, set):

# First , we consider an empty subset and

# consider p is the first point in the set A,

# then add the image of symmetry of square of a

# point p in a subset , and removed from A,

# and repeated the process again until the set A

# is empty.

k := 1:

while original_list_of_points <> {} do

subset[k] := []:

p := original_list_of_points [1];

for i from 0 to 3 do

subset[k] := [op(subset[k]), R[i](p)];

end do;

original_list_of_points := original_list_of_points

minus {R[0](p), R[1](p), R[2](p), R[3](p)}:

newsubset[k] := subset[k];

k := k + 1:

end do:

# k-1 is the number of subsets that we obtained

# from the partition A,

# calculate q-spread Eq for q = 0, 1, 2,

E_0 := 4*add(1/add(add(exp(-t*Distance(

newsubset[i][1], A[j][c])), c = 1..n),

j = 1..n ), i = 1..k-1):

E_1 := n^2*mul(1/add(add(exp(-t*Distance(

newsubset[i][1], A[j][c])), c = 1..n),

j = 1..n)^(4/n^2), i = 1..k-1):

E_2 := n^4/(4*( add(add(add(exp(-t*Distance(

newsubset[i][1], A[j][c])), c = 1..n),

j = 1..n), i = 1..k -1))):

# The text file for the E0 loglog data and

# the other q-spread are the same.

# l is the number of points of the square grid

135



APPENDIX A. COMPUTE THE Q-SPREAD DIMENSION

stem := "/home/smp13sam/maple11/":

data_E0 := sprintf("0_spread_of_grid_%g.txt", l);

fopen(cat(stem , data_E0), WRITE):

pdata[l] := loglogplot(E0[l], t = 0.0001 .. 1000);

writedata(data_E0 , convert(op(1, op(1, pdata[l])),

matrix), [float , float ]);

The q -spread of di�erent n is converted to the data in the text �le. We use
these to evaluate the q -spread dimension.

A.1.1 Approximating the q - spread dimension of a square grid

The Maple code was used to determine the q -spread dimension for n × n
square grid A in Section ??. We have some expression for Eq(tA) from
Section A.

There are two approaches to calculate the q -spread dimension (see Def-
inition 3.0.1).

• Get Maple to compute the logarithmic derivative of the q -spread of
the square grid A as t > 0

dimq(tA) =
d(log(Eq(tA)))

d(log(t))
.

• We read the q -spread text �le from Section A and use these data to
approximate derivative to be

dimq(tiA) =
Eq(ti−1A)− Eq(ti+1A)

ti−1 − ti+1
,

where i = 2, . . . , 199 are the numbers of the data in the text �le.

After that, we put the dimension data with the data representing t in
a text �le and get latex to plot it.

The code below is for a 0-spread. Furthermore, other q -spread code are
identi�ed in the same manner.

# Read the text file that contains the $q$ -spread data

# with $t$ data ,

data_E0 := sprintf("0_spread_of_grid_%g.txt");

data:= readdata(data_E0 , 2);

# Evaluate the dimension $q$ spread ,

# where i is the number of data in the text file ,

for i from 2 to 199 do
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dim[i] := (data[i -1][2] - data[i+1][2])/

(data[i -1][1] - data[i+1][1]):

end do:

dim_data := {seq([data][i][1], dim[i]], i = 2..199)};

# Open a text file and write the data to it

data_dim_E0 := sprintf("dimension_0_spread.txt");

fopen(cat(stem , data_dim_E0), WRITE):

writedata(file , convert(dim_data , listlist),

[float , float ]);

end do:

A.1.2 Estimate q -spread of a square grid

The below Maple code is described in Section 3 to compare the q -spread of an
n×n grid square A divided by the number of points n2 with the estimated
q -spread B for a 10 × 10 grid square such that contains the square with a
length-side of one, as seen in Formula 3.1.

Eq(tB) =
1

10∑
i=1

10∑
j=1

e−td((a,b),(ci,dj))

,

where (a, b) is the point nearest to the middle of the square grid, say (n2 +
1, n2 + 1) and (ci, dj) are �nite points of A around (a, b) . Also, we compute
the estimated q -spread dimension for a 10 × 10 grid square B using the
logarithmic derivative of the estimated q -spread. Then, each of the above
calculations is converted to data and saved into a text �le. Get Latex to plot
these data.

The program code below is for a 0-spread, and the other q -spread code
are the same. Also the code to �nd the four subsets are same as the code in
Section A

E0/n^2 :=

(4*add(1/add(add(exp(-t*Distance(Subset[i][1], A[j][c])),

c = 1..n), j = 1..n), i = 1..k-1))/n^2:

# stem is the location where the text file can be saved.

stem := "/home/smp13sam/maple14/":

f_0 := sprintf("0spread_dividedofnumberofpoint.txt");

fopen(cat(stem , f_0), WRITE):

data := loglogplot(E0, t = 0.0001..1000);

writedata(f_0 , convert(op(1, op(1, data)),

matrix), [float , float ]):
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estimate_E0 :=

1/add(add(exp(-t*Distance ([n/2, n/2], B[j][c])),

c = 1..10) , j = 1..10);

approximate_spread :=

loglogplot(estimate_E0 , t = 0.001..1000):

f_1:= sprintf("estimate_E0.txt");

fopen(cat(stem , f_1), WRITE):

writedata(f_1 , convert(op(1, op(1, approximate_spread )),

matrix), [float , float ]):

estimate_dimension_E0 :=

t*(add(add(exp(-t*Distance ([n/2, n/2], B[j][c]))*

Distance ([n/2, n/2], B[j][c]), c = 1..10) , j = 1..10))/

add(add(exp(-t*Distance ([n/2, n/2], B[j][c])),

c = 1..10) , j = 1..10):

approximate_dimension :=

loglogplot(estimate_dimension_E0 , t = 0.001..1000):

f_2:= sprintf("approximate_dimension.txt");

fopen(cat(stem , f_2), WRITE):

writedata(f_2 ,

convert(op(1, op(1, approximate_dimension )),

matrix), [float , float ]):

To achieve a better approximation, we need to take a su�ciently large num-
ber of points. The main constraints on how large a number of points one can
reasonably consider are the computational time and the memory available.
I have used the Iceberg at the University of She�eld to run my programs,
choosing the number of points 60 × 60 , 110 × 110 and 160 × 160 . This
program used about 9GB to 90GB of RAM and could take between 9 to
64 hours to evaluate a q -spread at di�erent scales.

�A.2 Calculation of a heuristic q -spread dimension

The code in this section is used in Section 3.2 to calculate the heuristic q -
spread. All the code used are the same as those in Appendix A, but rather
than scale A by a factor t , it is instead scaled by a factor τ , where τ = t

n−1 ,
to calculate the q -spread and the q -spread dimension, for q = 0, 1, 2 .
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A.2.1 Heuristic 0-spread

The 0-spread of the square grid by the proof of Theorem 3.2.1 is

1∫
a=0

1∫
b=0

1
1∫

a′=0

1∫
b′=0

e−τ
√

(a−a′)2+(b−b′)2
da′ db′

da db.

The MATLAB code used to calculate the above integral for di�erent values
of τ are:

# Let i be an initial point ,

# We will running the same block of code

# several times , each time with a different value used

# to perform a loop.

i = 1

for tau = 0.0001: 0.001 : 5

result_integral(i) =

integral2(@(a, a') arrayfun(@(a, b)1./ integral2(

@(a', b')exp(-tau.*sqrt((a - a').^2 + (b - b').^2)) ,

0 , 1, 0, 1), a, a'), 0, 1, 0, 1);

i = i + 1;

end

Further, the above integration is computed through the width of the square
scaled by τ .

i = 1;

for tau = 0.0001: 0.01 : 5

result_integral(i) =

integral2(@(a, b)arrayfun(@(a, a')1./ integral2(

@(a', b')exp(-sqrt((a - a').^2 + (b - b').^2)) ,

0 , tau , 0, tau), a, a'), 0, tau , 0, tau);

i = i + 1;

end

In both cases we obtain the same result.

A.2.2 Heuristic 1-spread

The 1-spread, by the proof of Theorem 3.2.3, is:

e

1∫
a=0

1∫
b=0

ln
(

1
1∫

a′=0

1∫
b′=0

e−τ
√

(a−a′)2+(b−b′)2 da′ db′

)
da db

.

The MATLAB code used to evaluate this integral is given by:
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function result = shint4(a, b)

k = 0;

L = length(a : 0.01 : b);

result = zeros(1, L);

for tau = a : 0.01 : b

k = k + 1;

result(k) = exp(integral2(@(x1, x2)arrayfun(@(x1, x2)

log (1./ integral2(@(y1, y2)exp(-tau.*

sqrt((x1 - y1).^2 + (x2 - y2).^2)) ,

0, 1, 0, 1)), x1, x2), 0, 1, 0, 1));

end

end

A.2.3 Heuristic 2-spread

By proof of Theorem 3.2.5, the 2-spread is:

1
1∫

a=0

1∫
b=0

1∫
a=0

1∫
b′=0

e−τ
√

(a−a′)2+(b−b′)2
da′ db′ da db

The MATLAB code used to �nd this integral is given by:

function result = shint3(a, b, h)

i = 0;

tau = length(a : h : b);

result = zeros(1, L);

for tau = a : h : b

i = i + 1;

rr = (integral2(@(x1, x2)arrayfun(@(x1, x2)( integral2(

@(y1,y2)exp(-tau.*sqrt((x1-y1 ).^2+( x2 -y2 ).^2))

, 0, 1, 0, 1)), x1, x2), 0, 1, 0, 1));

result(i) = 1/rr;

end

end
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Computation to �nd the

maximum diversity for a grid

square metric space

In this chapter, we consider some of the forms of code that can be used in
Chapter 4. We have divided this chapter into three sections. The �rst section
focuses on the code used to �nd the magnitude of all subsets of a square grid
with non-negative weighting, then recorded all of those magnitudes that
admits non-negative weightings to have a maximum magnitude which is
equal to a maximum diversity. In the second section, we �nd the symmetric
subsets under the group of action, then �nd the magnitude of each of these
orbits for a square grid, which we then plotted together to obtain the critical
values for these orbits, and we also compare the magnitude of all of these
orbits and their union to obtain the largest magnitudes at di�erent scaling.
The last section evaluates the weighting of the points in the middle row of
the 201× 201 grid square at various scales.

�B.1 Determining the subsets of the n× n square grid that have

a maximum magnitude with non-negative weightings

We have programming code to �nd a maximum diversity for n × n grid
square such that the distance between its points is the usual distance in
Euclidean space.

Assume that A is a metric space with n × n matrix of points called
p1, . . . , pn2 where pi is a pair of numbers [x, y] for i = 1. · · ·n2 and x, y are
points in x-axis and y -axis respectively such that p1 = [1, 1] and pn2 = [n, n]
and let tA be the metric space A with the metric d scaled up by a factor
of t , for t > 0 .

De�ne Z to be n2 × n2 matrix whose rows and columns are indexed by
the points of A and (pi, pj)-entry of Z is Zpipj = e−td(pi,pj) where td(pi, pj)
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is a distance between the point pi and the point pj in A scaled by a factor
t , where Distance is a distance function in Maple which tends (pi, pj) to√

(pi[1]− pj [1])2 + (pi[2]− pj [2])2.

Also de�ne the column vector weights w = (wp1 , . . . , wpn2 ) that satisfy the

weighting equation Zw = (1, . . . , 1)T where (1, . . . , 1)T is a transpose of
(1, . . . , 1) which are n2 equations with n2 unknowns variables. and add up
the entries of w together to obtain the magnitude of A .

Now to evaluate the maximum diversity of A we will check all entries
of w . If all entries of w are non-negative, then the maximum diversity of
A is equal to the its magnitude. However if there are some non-positive
entries, then we will check all subsets of A . For each of those subsets we
de�ne the exponential distance matrix ZB and �nd the weight equation of
it, then using some linear algebra to decide whether ZB has non-negative
weighting and if it does, then record its magnitude and the maximum of all
the recorded magnitude of B is equal to the maximum diversity of A .

Here is some useful Maple code:

# load packages ,

with(LinearAlgebra ):

with(combinat );

# Define the exponential matrix Z

A := Matrix(n, n, 0):

for i from 1 to n do

for j from 1 to n do

A[i, j] := [i, j];

end do;

end do;

listofpoints := convert(A, list):

M := Matrix(nops(listofpoints), nops(listofpoints),

shape = symmetric ):

for i from 1 to nops(listofpoints) do

for j from 1 to i do

M[i, j] := Distance(A(i), A(j));

end do;

end do;

Z := map(x->exp(-t*x), M):

# Finding the weightings and the magnitude

W:= LinearSolve(Z, Vector(nops(listofpoints), 1)):

Magnitude := add(W[i], i = 1.. nops(listofpoints )):
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B := 0:

a := 0:

Listofsubsets := subsets(listofpoints );

weight_is_negative := false:

max_magnitude_B := 0:

while `not `( Listofsubsets[finished ])do

d := Listofsubsets[nextvalue ]():

M_B:= Matrix(nops(d),nops(d)):

for i from 1 to nops(d) do

for j from 1 to nops(d) do

M_B[i, j] := Distance(d[i], d[j]):

end do:

end do:

Z_B := map(x -> exp(-t*x), M_B):

W_B :=

LinearSolve(subs(t=0.9, Z_B), Vector(nops(d), 1)):

for i in W_B do

if i < 0 then

weight_is_negative := true:

end if:

od:

if weight_is_negative = false then

magnitude_B := simplify(add(W_B[i], i = 1.. nops(d))):

if magnitude_B > max_magnitude_B then

max_magnitude_B := magnitude_B:

B := d:

end if:

end if:

weight_is_negative := false:

a := a + 1:

end do:

We calculate the maximum diversity of the 3 × 3 and 4 × 4 metric spaces
at di�erent scales. However, we have used Iceberg, to run these code for
5× 5, 6× 6, . . . square grids at various scaling. Whereas, the program used
about 65GB of RAM and take about 85 hours to determine the maximum
diversity of the all subsets of those square grids at the selected small scale
factor t , but we did not get the result. Therefore, we are thinking of the
symmetric subsets of the square grid which have a maximum magnitude as
explained in the next section.

143



APPENDIX B. COMPUTE THE MAXIMUM DIVERSITY

�B.2 Determining the orbits of the square grid which have a

maximum magnitude with non-negative weights

The programming code involved in identifying the maximum diversity for a
metric space with an n × n square grid of points with the usual Euclidean
distance between any two points. Consider a metric space A with points
p11, p21, . . . , pnn scaled by a factor t > 0 , where

pij = [i, j]

for i, j = 1, 2, . . . , n .
To evaluate a weighting for these points, we need to partition the points

of square grid into a number of parts under the eight-fold symmetry group
of the square: an identity rotation, a 90◦ rotation, a rotation of 180◦ , a
rotation by 270◦ , a �ip about horizontal axis, a �ip about the vertical axis,
a �ip about the main diagonal and a �ip about the other diagonals.

Let [a, b] be any point of A and let [n+1
2 , n+1

2 ] be the midpoint of A .
Now, rotations and re�ections of [a, b] about a midpoint that is not at the
origin are:

1. The identity rotation of [a, b] about the midpoint is [a, b] ,

2. If [a, b] is rotated 90◦ anticlockwise about the midpoint, its image is[n+ 1

2
,
n+ 1

2

]
+R90

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [(n+ 1)− b, a],

3. If [a, b] is rotated clockwise through 180◦ about the midpoint, its image
is[n+ 1

2
,
n+ 1

2

]
+R180

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [(n+1)−a, (n+1)−b],

4. The image of [a, b] after a 270◦ clockwise rotation about the midpoint
is [n+ 1

2
,
n+ 1

2

]
+R270

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [b, (n+ 1)− a],

5. If [a, b] is re�ected about the x-axis (horizontal) through the midpoint,
its image is[n+ 1

2
,
n+ 1

2

]
+Rh

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [a, (n+ 1)− b],

6. When [a, b] is re�ected through the y -axis (vertical) about the mid-
point, its image is[n+ 1

2
,
n+ 1

2

]
+Rv

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [(n+ 1)− a, b],
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7. If [a, b] is re�ected about the main diagonal y = x about the midpoint,
then its image is[n+ 1

2
,
n+ 1

2

]
+Rd1

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [b, a],

8. The image of [a, b] re�ected through the diagonal line y = −x about
the midpoint is[n+ 1

2
,
n+ 1

2

]
+Rd2

[
[a, b]−

[n+ 1

2
,
n+ 1

2

]]
= [(n+1)−b, (n+1)−a].

We will �rst describe the procedures to compute these symmetries of the
square and return a symmetric point. Secondly, we will create a new set
and convert the points of A to a set referred to as the original list of points;
for every point in the original list of points and for each of the above eight
symmetries of the square, we determine the symmetric image of that point.
We then add the image to the new set and delete it from the original list.
The new set contains the disjointed orbits of A, then the next step is to �nd
the weight equations for the �rst point in each orbit, then solve these weight
equations for w .

1. If all entries in w are non-negative, then the maximum diversity of A
is equal to its magnitude.

2. If there are some negative entries in w , then we check the subsets B
of the new set by de�ning the exponential distance matrix ZB , and
then

• Use linear algebra to decide whether ZB has a non-negative weight-
ing.

• If it does, then record the magnitude of ZB , which is equal to the
sum of the weighting entries.

Finally, the magnitude of the maximum ZB recorded that have non-
negative weightings is equal to the maximum diversity.

Some useful Maple code is given below:

# load packages ,

with(LinearAlgebra ):

with(plots):

with(combinat ):

# Define an $n \times n$ matrix of points.

# for i, j from 1 to n,
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A[i, j] := [i, j];

# Define procedures that compute the symmetries of the

# square and return the image of the symmetric point ,

sy[0] := proc(p) return[p[1], p[2]]; end proc:

sy[1] := proc(p) return [(n+1)-p[2], p[1]]; end proc:

sy[2] :=

proc(p) return [(n+1)-p[1], (n+1)-p[2]]; end proc:

sy[3] := proc(p) return[p[2], (n+1)-p[1]]; end proc:

sy[4] := proc(p) return [(n+1)-p[1], p[2]]; end proc:

sy[5] := proc(p) return[p[1], (n+1)-p[2]]; end proc:

sy[6] :=

proc(p) return [(n+1)-p[2], (n+1)-p[1]]; end proc:

sy[7] := proc(p) return[p[2], p[1]] end proc:

# To identify orbits , we want to convert A to

# the set ,

original_list_of_points := convert(A, set):

# Let k be an initial point ,

k := 1:

# To create a disjointed orbit

# Let p be the first point of the original set ,

# First find the image of p,

# then removed the image of p from original set

while original_list_of_points <> {} do

new_subset[k] := []:

p := original_list_of_points [1];

for i from 0 to 7 do

if member(sy[i](p), s[k]) = false then

s[k] := [op(s[k]), sy[i](p)];

end if;

end do;

original_list_of_points :=

original_list_of_points minus

{sy[0](p), sy[1](p), sy[2](p), sy[3](p),

sy[4](p), sy[5](p), sy[6](p), sy[7](p)}:

subset[k] := new_subset[k];

k := k + 1:

end do:
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# To evaluate the weight equations of k-1 new orbits ,

# begin by finding the exponential distance between

# the first point of each orbit and other points of A

# and multiply by representative weight vector ,

# after that solve these weight equations.

for i from 1 to k-1 do

for j from 1 to k-1 do

distance[j] :=

add(exp(-t*Distance(subset[i][1], subset[j][c]))*w[j],

c = 1.. nops(subset[j]));

end do;

equation[i] := add(distance[j], j = 1..k-1) = 1;

end do:

a := 1:

weighting_of_subset := {}:

equation_subset := {}:

while a <> k do

equation_subset := equation_subset union{equation[a]};

weighting_of_subset := weighting_of_subset union {w[a]};

a := a + 1;

end do:

system := convert(equation_subset , list):

variable := convert(weighting_of_subset , list):

B, b := GenerateMatrix(system , variable ):

weighting := LinearSolve(B, b):

# Plot the weightings for different values of t

plot([seq(weighting[i], i = 1..k-1)], t = 0..8);

# Multiply the number of points in each orbit by their

# weights , then add together to obtain the magnitude of A.

magnitude := add(nops(subset[i])* weighting[i], i = 1..k-1):

# To evaluate the maximum magnitude with non -negative weightings

# of the subsets of square grid at different values of t.

# Find the weights for each subset d and

# check if there are some negative weights , if yes ,

# check another subset , while if not ,

# evaluate the magnitude of that subset ,

# where this process is repeated until the list of subsets

# become empty ,
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# Where max_d is a subset that takes a maximum magnitude ,

max_d := []:

subweights := {}:

subequations := {}:

magnitude_of_subset := 0:

weight_is_negative := false:

List_of_subsets := subsets ({seq(subset[i], i = 1..k -1)}):

while `not `( List_of_subsets[finished ]) do

d := List_of_subsets[nextvalue ]();

for i from 1 to nops(d) do

for j from 1 to nops(d) do

distance_of_subset[j] :=

add(exp(-t*Distance(d[i][1], d[j][c]))*w[j],

c = 1.. nops(d[j])):

end do;

eq_of_subset[i] :=

add(distance_of_subset[j], j = 1.. nops(d)) = 1;

end do:

for e from 1 to nops(d) do

subequations := subequations union {eq_of_subset[e]};

subweights := subweights union {w[e]};

end do:

subsystem := convert(subequations , list):

subvariable := convert(subweights , list):

sB, sb := GenerateMatrix(subsystem , subvariable ):

weighting_of_subset :=

subs(t = 0.02, LinearSolve(sB, sb)):

for h in weighting_of_subset do

if h < 0 then

weight_is_negative := true:

end if:

end do:

print(weight_is_negative ):

if weight_is_negative = false then

submagnitude :=

add(nops(d[i])* weighting_of_subset[i], i = 1.. nops(d)):

if submagnitude > magnitude_of_subset then

magnitude_of_subset := submagnitude:

max_d := d;

end if;

end if;

weight_is_negative := false:

subequations := {}:

subweights := {}:

148



APPENDIX B. COMPUTE THE MAXIMUM DIVERSITY

end do;

We have used Iceberg, the University of She�eld's central high-performance
computing resource, to run these code for di�erent square grids of points
between 3× 3 to 10× 10 . The program used about 2GB to 95GB of RAM
and could take between 1 to 100 hours to determine the maximum diversity
of the square grid for various scale factors.

B.2.1 Determining the critical values of the magnitude of

the symmetric subsets of the square grid

In the previous Appendix B.2, we identi�ed all the symmetric subsets of
square grids that have a maximum magnitude with non- negative weighting
at di�erent scales. We now evaluate the magnitude of each of these subsets
and plot them together. Also, the critical values are calculated and the
derivatives of these magnitudes at the (number of subsets−1) critical values
are computed. For instance, the 3 × 3 grid square has three symmetric
subsets, the following code is used to determine the magnitude of each subset
and plot them together with the critical values and the derivatives of the
magnitude formulae at the critical values.

# load of packages ,

with(LinearAlgebra ):

with(plots):

# Define the three subsets of the square grid

d1 := {[[1, 1], [3, 1], [3, 3], [1, 3]]}:

d2 := {[[1, 1], [3, 1], [3, 3], [1, 3]]} union

{[[1, 2], [2, 1], [3, 2], [2, 3]]}:

d3 := {[[2, 2]]} union {[[1, 1], [3, 1], [3, 3], [1, 3]]}

union {[[1, 2], [2, 1], [3, 2], [2, 3]]}:

# Define the distance between the points in same subset

# and find a weight equation of these subsets

# k = 1, 2, 3

for i from 1 to nops(dk) do

for j from 1 to nops(dk) do

distance_of_subset_k[j] :=

add(exp(-t*Distance(dk[i][1], dk[j][c]))*w[j],

c = 1.. nops(dk[j])):

end do;

equation_k[i] :=

add(distance_of_subset_k[j], j = 1.. nops(dk)) = 1;

end do:

equation_subset_k := {}:
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weights_k := {}:

for e from 1 to nops(dk) do

equation_subset_k :=

equation_subset_k union {equation_k[e]};

weights_k := weights_k union {w[e]};

end do:

system_subset_k := convert(equation_subset_k , list):

variable_subset_k := convert(weights_k , list):

sBk , sbk :=

GenerateMatrix(system_subset_k , variable_subset_k ):

weighting_subset_k :=

simplify(LinearSolve(sBk , sbk));

magnitude_subsetk := simplify(

add(nops(dk[i])* weighting_subset_k[i], i = 1.. nops(dk)));

# We identified the magnitude_subset1 , magnitude_subset2 ,

# and magnitude_subset3. Then the critical values are

t0 := fsolve(

magnitude_subset2 - magnitude_subset1 = 0, t = 0..0.3);

# the result is t0 := 0.2321907228

t1 := fsolve(

magnitude_subset3 - magnitude_subset2 = 0, t = 0.1..1);

# the result is t1 := 0.8776945691

# plot the magnitude_subset1 , magnitude_subset2 , and

# magnitude_subset3 together

a1 : =plots[semilogplot ]( magnitude_subset1 , t = 0..t0):

a2 := plots[semilogplot ]( magnitude_subset2 , t = t0..t1):

a3 := plots[semilogplot ]( magnitude_subset3 , t = t1 ..30):

display(a1, a2, a3);

#define the equations as functions

f1 := unapply(magnitude_subset1 , t):

f2 := unapply(magnitude_subset2 , t):

f3 := unapply(magnitude_subset3 , t):

# The derivative of the magnitude_subset1 at t0,

simplify(subs(x = t0, diff(f1(x), x)));

# The result is 2.066877690
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# The derivative of the magnitude_subset2 at t0,

simplify(subs(x = t0, diff(f2(x), x)));

# The result is 2.066877546

# The derivative of the magnitude_subset2 at t1,

simplify(subs(x = t1, diff(f2(x), x)));

# The result is 2.713363781

# The derivative of the magnitude_subset3 at t1,

simplify(subs(x = t1, diff(f3(x), x)));

# The result is 2.713363798

Also, we used Iceberg to run the above code for the square grids. The critical
values for subsets of 3× 3 to 6× 6 were obtained which these take between
1 to 40 hours and use about 1GB to 35GB of RAM.

�B.3 Determining the weighting of the middle row points for

the square grid with the odd large number of points

The code in this section is used in Subsection 4.4 to evaluate the weighting
of the points of the middle row of an n×n square grid metric space for large
and odd-numbered n at di�erent scaling from 0.000001 to 1 . For each scale,
we obtain the distance matrix for the points, then use the conjugate gradient
method described in Subsection 2.7 to determine the weighting of the points
of the metric space. After that, we create a vector of the weighting of the
middle row points, then create a text �le for that vector with the associated
scale factor.

A simple segment of the Python code is given as follows

import numpy as np

import matplotlib.pyplot as plt

import scipy.spatial

from krypy.linsys import LinearSystem , Cg

import sys

# l is a change from 1 to 20

l = sys.argv [1]

# Define the range of the scale factor t

t = int (10)**( - int(l)/5)

# The grid will be $n \times n$ points.

n = 201

N = n**2

print("Number of points is", N)
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points = np.array ([[i, j] for i in range(n)

for j in range(n)])

# Obtain the distance matrix of the points.

D = scipy.spatial.distance.pdist(points , metric='euclidean ')

D = scipy.spatial.distance.squareform(D)

# Give an initial guess of the weighthing to be fixed in to

# the algorithm.

w = np.ones(N)/N

# Calculate the magnitude for each t, iteratively feeding

# the previous weighting in as a start point.

linear_system = LinearSystem(np.exp(-t*D), np.ones(N),

self_adjoint=True , positive_definite = True)

w = Cg(linear_system , x0 = w).xk

#""" Evalute the weighting of middle row points """

middle_W = []

for i in range((n**2-(n-1))//2 , (n**2-(n -1))//2+(n)):

middle_W.append(w[i])

# Creat a text file that contain the weighting

# of the points in the middle row

f = open("weighting_middle_row_201x201_%g.txt"

% int(l), "w");

for W in middle_W:

f.write("{0}\t{1}\n".format(t, W[0]))

x = 0

for W in middle_W:

f.write("{0}\t{1}\n".format(x, W[0]))

x += t/(n-1)

We applied Iceberg, the University of She�eld's central high-performance
computing resource, to run these code for 201 × 201 square grid metric
space. The program used about 37GB RAM and 7 minutes to �nd the
weighting for the points of the middle row of 201× 201 square grid at each
scale.
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Compute the 0-spread of the

disk and the magnitude of the

rectangular grid metric space

The computer code describes in this chapter is used in Chapter 5 to determine
the 0-spread and the magnitude of various metric spaces.

�C.1 Determining the 0-spread of the disk

The Matlab code in this section is used in Section 5.1 to calculate the 0-
spread of the disk.

unction result1 = shint121(n, h)

k = 0;

L = length (5 : h : n);

result1 = zeros(1, L);

for R = 6 : h : n

k = k + 1;

f1 = @(x)arrayfun(@(x)( integral(@(r) r .* exp(-r),

0, R - x)), x);

f2 = @(x)arrayfun(@(x)( integral(@(r) r .* exp(-r).*

acos(( r.^2 + x.^2 - R.^2) / (2 .* x .* r)),

R - x, R + x)), x);

f = @(x)(x./(f1(x) + 1 ./ pi .* f2(x)));

result1(k) = integral(@(x)arrayfun(f, x), 0, R);

end

end
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�C.2 Determining the 0-spread of the rectangular grid metric

space

The computer code was used to calculate the 0-spread (see De�nition 2.4.1)
for a �nite metric space which has an n ×m rectangular grid of points at
di�erent scaling.

A simple piece of the Maple code is given as:

# load packages ,

with(LinearAlgebra ):

with(Student:-Precalculus ):

n := 20:

m := 80:

A := Matrix(n, m, 0):

for i from 1 to n do

for j from 1 to m do

A[i, j] := [i, j];

end do;

end do;

E0 := add(1/add(add(exp(-t*Distance(A(i), A[j][c])),

c = 1..m), j = 1..n), i = 1..n*m):

stem:="/home/smp13sam/maple8/spread_of_rectangle/":

with(plots):

f_1 := sprintf("spread_of_rectangle_1x%g.txt", m);

fopen(cat(stem , f_1), WRITE):

pdata := loglogplot(E0 , t = 0.00001..10000):

writedata(f_1 , convert(op(1, op(1, pdata)), matrix),

[float , float ]):

The 0-spread of di�erent n and m is converted to the data in the text �le.
We use these to evaluate the 0-spread dimension (see A.1.1).

�C.3 Determining the magnitude of the rectangular grid metric

space

The code in this section is used in Section 5.3 to identify the notion of
magnitude dimension of di�erent rectangular grid metric spaces which is the
instantaneous growth rate of the magnitude of the spaces.

Firstly, the magnitude of various rectangular grids can be found at di�er-
ent scaling. Then, convert these results to the data and put them to the text
�le. After that, we used these data to determine the magnitude dimension

A simple segment of the Python code is given by

import numpy as np

import matplotlib.pyplot as plt

import scipy.spatial
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from krypy.linsys import LinearSystem , Cg

import sys

l = sys.argv [1]

# Define the range of the scale factor t

log_min = -4

log_max = 1.5

num_points = 81

log_t = np.linspace(log_min , log_max , num_points)

t = int (10)** log_t

# The grid will be $n \times m$ points.

n =l

m = l

N = n*m

print(n,m)

print("Number of points is", N)

points = np.array ([[i, j] for i in range(n)

for j in range(m)])

# Obtain the distance matrix of the points.

D = scipy.spatial.distance.pdist(points ,

metric='euclidean ')

D = scipy.spatial.distance.squareform(D)

magnitude = np.zeros_like(t)

# Give an initial guess of the weighthing.

w = np.ones(N)/N

# Calculate the magnitude for each t, iteratively

# finding the previous weighting in as a start point.

for i in range(len(t)):

linear_system = LinearSystem(np.exp(-t[i]*D), np.ones(N),

self_adjoint = True , positive_definite = True)

w = Cg(linear_system , x0 = w).xk

magnitude[i] = sum(w)

# Open a text file that contain the data of

the magnitude scales by a factor t

col_format = "{:<25}"*2 + "\n"# to left -justfied columns

# with 25 character width

f = open("magnitude_of_rectangle_grid_nxm_ {0}. txt".

format(N), "w")

for x in zip(t, magnitude ):

f.write(col_format.format (*x))

f.close()

Now we will read the text �le and evaluate the magnitude dimension as can
be seen in the following Python code.

import numpy as np
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import matplotlib.pyplot as plt

from os import listdir

N = 6400

log_min = -4

log_max = 1.5

num_points = 81

log_t = np.linspace(log_min , log_max , num_points)

t = int (10)** log_t

mag_file = []

f = open("magnitude_of_rectangle_grid_nxm_6400.txt", "r")

for line in f:

values = [float(s) for s in line.split ()]

mag_file.append(values [1])

dimension = np.zeros_like(t)

for i in range(1, len(t) - 1):

dimension[i] =

((np.log10(mag_file[i+1]) - np.log10(mag_file[i-1])) /

(log_t[i+1] - log_t[i-1]))

f1 =

open("mag_dimension_of_rectangle_nxm_ {0}. txt".format(N), "w")

for i in range(len(t)):

f1.write("{0}\t{1}\n".format(log_t[i], dimension[i]))

f1.close()

We used Iceberg, the University of She�eld's central high-performance com-
puting resource, to run these code for di�erent rectangular grids. The pro-
gram used between 3GB and 32GB RAM and between 2 and 8 minutes,
to �nd the magnitude at various scaling.
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