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Abstract

Graphene based systems admit a relativistic description in their low energy sector. This is

due to the linear dispersion around the systems Dirac points. At such low energies where the

dispersion is linear, support for bulk states at the edges of zigzag carbon nanotubes has been

theoretically demonstrated. This is due to the wavefunctions of the two triangular sub-lattices

being out of phase for certain system configurations, and the less stringent boundary conditions

applied to relativistic systems. We demonstrate that no such theoretical support for bulk states

at the edge is found for armchair carbon nanotubes. Instead, it is shown that the armchair

carbon nanotube exhibits non-relativistic results where the charge density necessarily goes to

zero at the edge, as would be expected in a system that admitted a Schrödinger description.

These results are explained in terms of the shape of the edges and the resultant boundary

conditions that we use when solving the Dirac equation for both zigzag and armchair systems in

their low energy limit. The shape of the armchair edge requires that the wavefunctions of both

sub-lattices equal zero at the edge and therefore, the density must be zero at the edge as well.
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1 Introduction

Carbon nanotubes are made from a single-atomic layer of carbon, known as graphene, wrapped

around into a tube. Graphene has a hexagonal lattice structure with carbon atoms at its vertices

and has the unusual property that its quasiparticle excitations behave according to the Dirac

equation in a way similar to electrons [1]. As the Dirac Equation is relativistic, its use in the

description of graphene predicts the emergence of certain relativistic phenomena, such as the

Klein paradox [1] and the existence of edge states on the boundary of zigzag carbon nanotubes

[2].

Figure 1: The hexagonal lattice of graphene with armchair boundaries visible on the
vertical edges and zigzag boundaries along the horizontal edges. This hexagonal lattice
can be divided into two triangular sub-lattices, coloured yellow and blue respectively.

The aim of this thesis is to analyse the emergence of similar relativistic effects in carbon

nanotubes with armchair boundaries rather than zigzag. This difference in boundary shape is

due to the angle one chooses to cut the graphene boundary at. If we have an armchair boundary,

then a zigzag boundary is a 30◦ rotation from that in either direction. We then find another

armchair boundary a 30◦ rotation after that, and this sequence repeats all around in a circle.

This means that an armchair boundary appears at every 90◦ angle to a zigzag boundary and vice

versa. When we take a quadrilateral sheet of graphene as in fig. 1, and roll it up into a carbon

nanotube, we can expect one pair of the parallel sides of the quadrilateral to be armchair and

the other zigzag. Then, the boundary of our nanotube simply depends on which two parallel

sides we choose to connect. For example, if we connect the zigzag sides to each other, we will

have a nanotube with armchair boundaries at is ends.
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This thesis will show that carbon nanotubes with the armchair boundary do not support

the same relativistic phenomena as the zigzag nanotube. It will also seek to explain why such

a small change in the setup of the nanotube can lead to such a large change in the physical

properties of the system. The second section of this thesis will introduce the basic geometry of

the honeycomb shape of the graphene lattice. The next section will serve to demonstrate how

relativistic effects in graphene can lead to counter-intuitive results. The Klein paradox will be

used as an example to demonstrate this. The Klein paradox is an usual result of relativistic

physics, where a particle incident on an infinite potential barrier, will penetrate with certainty.

Unlike the classical case where we would expect any boundary with a potential greater than the

energy of the incident particle, to reflect it. The general Klein paradox will be explored before

seeing directly how it manifests in graphene.

In section 4, we will build up some fo the background physics needed to study edge states

in carbon nanotubes. We will explore methods from many-body quantum mechanics such as

the occupation number representation and second quantisation. We will also explore the tight-

binding model, which is the appropriate model from condensed matter physics for a system like

graphene. Through, this section, our goal will be to derive an appropriate Hamiltonian which

can then be used to in our analysis of carbon nanotubes. This will lead onto section 5 where we

use this Hamiltonian to derive a general dispersion relation for graphene.

Once we have the dispersion relation for graphene, we can then apply periodic boundary

conditions to build carbon nanotubes. In section 6, we will review recent research that suggests

there is support for the existence of bulk states at the edge of zigzag carbon nanotubes [2]. This

review will consist of looking into how to quantise the momenta in a zigzag carbon nanotube

and how this can be used to reduce the general graphene dispersion relation into one for a zigzag

carbon nanotube. We will then seek to reproduce the results of [2], so that they can then be

directly compared to the analysis of armchair carbon nanotubes later on.

Section 7 will focus on performing a theoretical analysis to see if similar bulk states are

supported at the edge of armchair carbon nanotubes. In a similar fashion to the zigzag case,

we will quantise the moments in order to derive an armchair dispersion relation. This will

allow us to derive the Dirac Hamiltonian for such a system and its eigenstate solutions will be

found. After constructing standing wave solutions out of these wavefunctions, the appropriate

boundary conditions are applied, in order to to calculate the charge density at the edge. This

will demonstrate that there is no such support for bulk states at the edge of an armchair carbon

nanotube.

Finally, section 8 will display the results of numerical simulations which support the validity

of our theoretical analysis of armchair carbon nanotubes. The numerical simulation of a one

dimensional chain using our graphene Hamiltonian will demonstrate that an armchair carbon

nanotube is best described by a non-relativistic wavefunction. The results of this thesis will then
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be discussed in section 9, where the zigzag and armchair cases will be compared in order to better

understand why the two systems, which only appear to be slightly different, manifest different

physical results. The different boundary conditions that we use for the armchair and zigzag

nanotubes will be used to explain the difference in the support of edge states. The justification

for using different sets of boundary conditions will also be explained in order to make sense of

these results.

2 The Honeycomb Lattice of Graphene

Figure 2: The graphene lattice with the two triangular sub-lattices, A and B shown.
We define vectors δ1, δ2 and δ3 between nearest neighbour sites in the hexagonal
lattice. A single unit cell of the lattice is enclosed in a blue oval. n1 and n2 are the
basis vectors between unit cells, which generates the Bravais lattice of our system. We
define n1 to be parallel to the x-direction of our plane. This figure corresponds to
eq. (1), eq. (2) and eq. (3).

In order to model graphene, and subsequently a carbon nanotube, we must first describe how

to set up the mathematical framework we will use for such a condensed matter system. We will

define our coordinate system for the lattice we are describing. Again, we follow the lead of [1]

in how we set up our honeycomb lattice. In fig. 2, we divide our lattice into two triangular sub-

lattices, A and B. We then choose our unit cell to include one lattice site from each triangular

sub-lattice as shown. For simplicity, we have chosen n1 to be parallel to the x-axis. The pair of

basis vectors n1 and n2, span the space of lattice sites. This allows us to move between any two

unit cells with a vector written in terms of the basis vectors ni. If a is taken to be the lattice
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constant given by a = |ni|, then we can see from fig. 2 that we have,

n1 = a(1, 0), n2 =
a

2
(1,−

√
3). (1)

Also, if b = |δi| is the length of the nearest neighbour links, then we get,

δ1 =
b

2
(
√

3, 1), δ2 = b(0,−1), δ3 =
b

2
(−
√

3, 1), (2)

as our nearest neighbour vectors. Our choice to make the x-axis parallel to n1 allows us to

deduce from inspection that a =
√

3b because,

a = |ni| = δ1,x + δ3,x = (
√

3× b) + (0× b) = b
√

3. (3)

We can also define the reciprocal lattice to our real space lattice by using the relation Gi ·nj =

2πδij [2]. The reciprocal basis vectors, Gi that satisfy this relation are

G1 =
2π

a
√

3
(
√

3, 1), G2 =
2π

a
√

3
(0,−2). (4)

This leads to a two-dimensional, hexagonal reciprocal lattice with Dirac points at its vertices [1].

When the two-dimensional Brillouin zone is plotted against the energy to give the 3D dispersion

relation, we see that the allowed energy values crosses through the Dirac points at E = 0. More

importantly, in the low energy limit around the Dirac points, the dispersion relation appears

linear E ∼ k instead of the more common quadratic dispersion given by E ∼ k2. Famously, non-

relativistic phenomena obeys the energy-momentum relation, E = p2/2m, but when considering

relativistic physics, we must use E =
√

(pc)2 + (m0c2)2. We can see that the relativistic energy-

momentum relation implies that the energy is proportional to the momentum. Therefore, we

can use relativistic physics to describe the low energy properties of graphene systems where

E ∼ k [1].

3 The Klein Paradox

Before considering the existence of edge states in carbon nanotubes, we will first look at

an example of relativistic effects manifesting in graphene. A textbook example of relativistic

phenomena in graphene is the Klein paradox, which we will use as an example of the strange

consequences that including relativity in our analysis can lead to. The Klein paradox is not

really a paradox, but it is a very counter-intuitive result, at odds with both non-relativistic

quantum and classical mechanics. The Klein paradox will be explored in two sections with the

first, looking at the paradox in a general one-dimensional system. This will serve to demonstrate

the effects counter-intuitiveness. We will then look at how it manifests itself in two-dimensional

graphene systems, in order to relate it back to the topic of this thesis.
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Figure 3: A Dirac fermion of energy, E is moving in the z-direction in region I and is
incident on a potential barrier of energy, V0 represented by region II.

3.1 Relativistic Particle Incident on a Potential Barrier

The Klein paradox occurs when a Dirac fermion approaches a potential barrier. In classical

mechanics, the standard result for a particle with E < V0, incident on a potential barrier, V0 as

shown in fig. 3, is that the particle will certainly be reflected by the barrier. On the other hand,

non-relativistic quantum mechanics says that there is a probability of the particle “tunnelling”

through the barrier, but the probability will decrease as the potential barrier is increased in

size [3]. The fact that the particle can tunnel through the barrier at all, is the surprising result

from non-relativistic quantum mechanics. However, it is fairly intuitive that the chance of

tunnelling will decrease when the barrier gets bigger. This is where the Klein paradox is even

more surprising, as when a fermion described by the relativistic Dirac equation approaches a

potential barrier, we actually find that the probability of tunnelling increases with the size of

the barrier. In fact, one finds that Dirac fermions should pass through the barrier with certainty

for an infinite potential [4]. We will now demonstrate how we get these results in a general,

one-dimensional system.

In non-relativistic quantum mechanics, the tunnelling phenomenon is demonstrated by con-

sidering incident and reflected waves in region I of fig. 3, and a transmitted wave in region

II. The wavefunctions in each region can be described as the sum of plane waves. Boundary

conditions equating the wave functions at the region boundaries are then applied, which allows

one to calculate the reflection and transmission coefficients at each boundary. The transmission

coefficient corresponds to the probability of a quantum particle tunnelling through the barrier

[5]. We will follow a similar analysis, based off the approach given in [6].
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As we are considering a relativistic particle, we will use the Dirac, rather than the Schrödinger

equation. The Dirac equation can be written in the form

Ĥψ = (αzpzc+ βmc2)ψ = Eψ, (5)

where pz = −i~∂z is the z-component of the momentum operator, and we have

αz =

(
0 σz

σz 0

)
=


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 , β =

(
I2 0

0 −I2

)
=


1 0 0 0

0 1 0 0

1 0 −1 0

0 0 0 −1

 , (6)

where we have introduced block matrix notation. From eq. (5), we can deduce the following

equation and it’s adjoint as

(E − βmc2 − αpc)ψ =

(
E

c
− βmc

)
ψ + i~α

∂ψ

∂z
= 0 (7)

and

ψ̄(E − βmc2 − αpc) = ψ̄

(
E

c
− βmc

)
+ i~

∂ψ̄

∂z
α = 0 (8)

where we have dropped the z index for α and p, as we are restricting ourselves to one dimension,

so it is implicit. For a free Dirac fermion, we have(
E

c

)2

= p2 +m2
0c

2, (9)

which becomes, (
E − V
c

)2

= p̄2 +m2
0c

2, (10)

in the presence of a constant potential, V [6]. In the region of constant potential, we can

expect the momentum to be different to the free particle case. Therefore, we introduce p̄ as the

momentum inside the barrier. We can substitute this back into eq. (7) (and eq. (8)) to get the

Dirac equation for a particle in a constant potential,(
E − V
c
− βm0c

)
ψ + i~α

∂ψ

∂z
= 0. (11)

The adjoint for this equation can be found analogously as

ψ̄

(
E − V
c
− βm0c

)
+ i~

∂ψ̄

∂z
α = 0. (12)

Now that we have a Dirac equation for a free particle and for one in a constant potential, we

can describe our system as shown in fig. 3. Using the fact that the potential V = V (z) is given

6



by

V (z) =


0 in region I,

V0 in region II,

0 in region III,

(13)

we can now begin to analyse what the wavefunctions in each region will look like. We can

assume that the wavefunctions take the form of plane waves. Therefore, we can assume that our

incident wave on the barrier will take the form

ψi = ui exp

{
i

~
(pz − Et)

}
, (14)

as given in [6]. We can now substitute this back into the Dirac equation (eq. (7)) and simplify

to get (
E

c
− βm0c− αp

)
ui = 0, (15)

which describes a wave, ui incident on the barrier with momentum, +p. By conservation of

momentum, we can assume that a reflected particle would have momentum, −p. We also know

that the momentum of the transmitted wave will be p̄. This allows us to define plane waves for

the reflected and transmitted components and analogously deduce that,(
E

c
− βm0c+ αp

)
ur = 0, (16)

and (
E − V0
c

− βm0c− αp̄
)
ut = 0. (17)

We are now in a position to apply our boundary conditions. At the beginning of this section,

we discussed how in non-relativistic quantum mechanics, one requires the overall wavefunction

to be continuous at the boundary. However, in the relativistic case, we only need to equate the

wavefunctions at the boundary [1]. This is a less stringent condition than requiring continuity,

where the derivatives of the wavefunction must also be equal at the boundary. By doing this to

our system between regions I and II, we require that

ui + ur = ut, (18)

where the L.H.S. represents the incident and reflected waves in region I, and the R.H.S. rep-

resents the transmitted wave moving through the barrier in region II. Our aim is to use these

boundary conditions to calculate the probability current at the boundaries, as this will give us

the probability of reflection or transmission through the barrier.
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In region I, if we take the sum of eq. (15) and eq. (16), and then rearrange our expression, we

get (
E

c
− βm0c

)
(ui + ur) = αp(ui − ur). (19)

Similarly, if we take eq. (17), we can rearrange it using eq. (18) to substitute (ui + ur) for ut

and then rearrange to get(
E

c
− βm0c

)
(ui + ur) =

(
V0
c

+ αp̄

)
(ui + ur). (20)

We can now equate the L.H.S. of eq. (19) and eq. (20), so that we have(
V0
c

+ αp̄

)
(ui + ur) = αp(ui − ur). (21)

As in [6], if we multiply through by (V0/c)− α(p+ p̄) and make use of the fact that α2 = 1, we

can express ur in terms of ui, such that ur ≡ rui. We can analogously calculate the adjoint of

this equation as u†r = ru†i . Here, r is given by

r =
(2V0/c)((−E/c) + αp)

(V 2
0 /c

2)− (p+ p̄)2
. (22)

Using the above, one can now calculate the probability current of the reflected wave, which

is given by

u†rur = u†ir
2ui = u†i

(
(2V0/c)((−E/c) + αp)

(V 2
0 /c

2)− (p+ p̄)2

)2

ui, (23)

which can be simplified by using the identity cu†iαui = (pc2/E)u†iui [6], to deduce

u†rur =

(
2V0m0

(V 2
0 /c

2)− (p+ p̄)2

)2

u†iui ≡ Ru
†
iui, (24)

where R is the reflection coefficient. It is the proportion of particles incident against the barrier

that will be reflected. We can assume that R + T = 1, where T is the transmission coefficient

as we would expect all particles to either be reflected or transmitted. From eq. (24), we can

deduce,

R =

(
2V0m0

(V 2
0 /c

2)− (p+ p̄)2

)2

, and T = 1−
(

2V0m0

(V 2
0 /c

2)− (p+ p̄)2

)2

. (25)

These expressions for R and T allow us to model the Klein paradox. If we consider the case

where V0 = 0, we have perfect transmission, which is what we would expect with no barrier.

Then we see the reflection coefficient increase as V0 approaches E −m0c
2. In fact, R = 1 when

V0 = E −m0c
2 for perfect reflection, but the interesting thing happens for V0 > E −m0c

2. We

can see implicitly from eq. (25), that if we hold the momenta and masses constant, whilst we

increase the potential, the denominator of R will blow up so that R becomes smaller (T becomes

larger) and more of the particles will be transmitted through the barrier. We can even see that
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if we let V0 become infinitely large, the reflection coefficient should disappear and we will have

perfect transmission. We can quantify this by taking the limit as V0 goes to infinity in eq. (25),

which gives

Rmin = lim
V0→∞

R(V0) =
(E/c)− p
(E/c) + p

, (26)

and then we can use the fact that Tmax = 1−Rmin to get

Tmax =
(E/c) + p

(E/c) + p
− (E/c)− p

(E/c) + p
=

2p

(E/c) + p
. (27)

This shows that a large proportion of massive Dirac fermions will penetrate the infinite potential

barrier. In the example given in [6], electrons travelling at 80% the speed of light have a

transmission coefficient, T ∼ 0.83. So that 83% of electrons incident on this infinite potential

barrier will tunnel through it. In the ultra-relativistic limit, E >> mc2 we see certain penetration

through the potential barrier such that Tmax → 1 [7]. The final interesting point to note about

the general Klein paradox, is that in the massless limit, E → pc, we can see that Tmax = 1, so

that all massless Dirac fermions will penetrate the barrier with certainty.

3.2 The Klein Paradox in Single-Layer Graphene

We have just seen the one-dimensional case for the Klein paradox and we are interested in

how the Klein paradox emerges in graphene. The main difference between the general case we

have just seen and the graphene case, is that we are now dealing with a two-dimensional system.

This leads to the transmission coefficient having an angular dependence [4]. The Klein paradox

emerges in graphene when quasiparticle excitations are incident on a potential barrier on the

graphene lattice. The quasiparticle excitations turn out to be massless Dirac fermions, so in a

one-dimensional case, we would expect perfect transmission always and we will find that this is

true in the two-dimensional system when we have normal incidence [7].

In the previous section, we used a one-dimensional Dirac equation (eq. (5)) to derive the Klein

paradox. In the case of graphene, we will need it’s two-dimensional analogue for a massless spin-

half particle [1]. If we take the full Dirac equation (eq. (5)) and set m = 0, we get

Ĥψ(r) = αzpzcψ(r) = Eψ(r). (28)

The 4 × 4 matrix representation of the α and β matrices given in eq. (6) is only 4× 4 because

of the β matrix. The algebraic structure of the massive Dirac equation is given by the Clifford

algebra, which requires a 4 × 4 representation [8]. In fact, because we have a massless Dirac

equation where the β term has disappeared, we can now use a 2×2 representation as the normal

Clifford algebra reduces to {αi, αj} = 2δij for i, j = 1, 2, 3. This algebra can be satisfied by the

2 × 2 Pauli matrices, σi [6]. This means that we can replace αz with σ and we can substitute

p = −i~∂z to give,

− ivfσ ·∇ψ(r) = Eψ(r), (29)
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where we have also reduced the speed of light to the fermi velocity, vf of our quasiparticle on

the lattice, which will act as the speed of our light for our massless particle. This is the massless

Dirac equation in two dimensions [1], the solutions to which can be given as two-dimensional

plane waves analogous to the one-dimensional case.

The Klein paradox in graphene can then be demonstrated using the same method as for the

one-dimensional case. We can add together all of the plane wave contributions in the first two

regions of fig. 3 and equate them at the region boundaries in order to calculate the proportion

of particles penetrating the barrier. The transmission coefficient is then given by

T =
cos2(θ) cos2(φ)

cos2(Dqz) cos2(φ) cos2(θ) + sin2(Dqz)(1− ss′ sin(φ) sin(θ))2
(30)

as in [1], where s = sgn(E), s′ = sgn(E − V0) and qz =
√

(V0 − E)2/(v2f )− k2y. We also have φ

and θ as the angles of incidence and transmission, respectively at the boundary between regions

I, II and III. In the limit where V0 goes to infinity, we can see that ss′ = 1(−1), which is the

case where the Klein paradox arises because we have opposite signs of the energy in regions I

and II [7]. This limit reduces eq. (30) to,

T =
cos2(φ)

1− cos2(qzD) sin2(φ)
, (31)

which makes clear the dependence on the angle of incidence, φ [1]. We can see that for normal

incidence, φ = 0, that we have perfect transmission. However, we also have perfect transmission

regardless of the angle of incidence in the case when qzD = nπ for n ∈ Z. This perfect

transmission of massless Dirac fermions on the graphene lattice is an example of the Klein

paradox and has been observed experimentally in [9] and [10].

4 The Tight-Binding Model

We have just seen how relativity can lead to real, but unexpected and counter-intuitive physics

in graphene. The Klein paradox is only one example of a relativistic effect in a graphene

based system. Another relativistic effect that emerges in graphene is the existence of edge

states. In order to study these edge states, we will use the tight-binding approximation of a

second-quantised Hamiltonian. This allows us to describe a two-dimensional lattice with electron

hopping between nearest neighbouring lattice sites. The hopping across the lattice is achieved

by using creation and annihilation operators on pairs of lattice sites in a way that annihilates

an electron at one site whilst simultaneously creating one at the nearest neighbour site [11].

Firstly, we will find a second-quantised form of a general, quantum mechanical Hamiltonian,

before applying the tight-binding approximation to it.
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4.1 Second Quantisation

In order to model electron hopping between sites, we need to use a physical theory that

allows the number of particles in our system to fluctuate i.e. we want to use creation and

annihilation operators to change the particle number. Standard quantum mechanics doesn’t

allow for a varying number of particles in a system, but once second quantised, it does as it

becomes a quantum field theory. From standard quantum mechanics, we know that an electron

in a potential is described using the single-particle Schrödinger equation [3]:

Ĥ |ψ〉 =

(
p̂2

2m
+ V (r)

)
|ψ〉 = ε |ψ〉 , (32)

where p̂ = −i~∂, ε are the eigenvalues of our Hamiltonian operator and |ψ〉 is the eigenvector

in the Hilbert space, H. Our aim is to find a second-quantised version of eq. (32) by using the

occupation number representation in a way similar to [11]. We can define a many-body state as

|n1, n2, ...〉 where ni is the number of particles in the ith state, e.g. |3, 7, ...〉 would mean that

there are three particles in the first state and seven in the second. It should be noted, that

this example requires that the particles must be bosons, as no two fermions can have the same

quantum number due to the Pauli exclusion principle. This state does not exist in the same

Hilbert space as its single-particle version, |ψ〉, but instead exists in a larger Hilbert space that

can handle an undetermined number of particles, which is known as a Fock space and is given

by

F =
∞⊕
N=0

HN , (33)

which is the direct sum of single-particle Hilbert spaces [11]. It includes H0, which is the space

of the one dimensional vacuum state, |0〉 which is defined in a way such that it can’t be acted

on by our annihilation operators, which we will go onto define now.

The foundation of our second-quantisation description is the creation and annihilation opera-

tors that act as maps within our Fock space. We want to define a creation operator, a†i : F 7→ F
so that it adds a particle to the ith state number. This can be represented by

a†i |n1, ..., ni, ...〉 ≡ (ni + 1)1/2ζsi |n1, ..., ni + 1, ...〉 , ∀i ∈ N+ (34)

as given in [11]. Here we have ζsi to differentiate between the different bosonic and fermionic

behaviours and we have si =
∑i−1

j=1 nj . However, the fermionic case won’t affect the analysis we

are about to perform so we don’t need to consider the ζsi any further. The term that is raised

to the power of a half is a normalisation constant. So we can see that the creation operator acts

to add a particle to the ni particle number in our eigenvector.

We can also define the Hermitian adjoint of our creation operator, we call it the annihilation

operator, ai =
(
a†i
)†

for reasons that will become clear. When we act our annihilation operator
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on a state, it behaves according to:

ai |n1, ..., ni, ...〉 = (ni)
1/2ζsi |n1, ..., ni − 1, ...〉 , ∀i ∈ N+, (35)

which is derivable from eq. (34). It is obvious from this, that the annihilation operator subtracts

a particle from the nith particle number in our eigenvector. These operators can be used on

the vaccum state to generate any N-particle Fock space [11]. The final ingredient we need for

the occupation number representation to be of practical use to us is to define the occupation

number operator,

n̂λi = a†λiaλi (36)

which counts the number of particles in the state λi to give n̂λi |nλ1 , nλ2 , ...〉 = nλi |nλ1 , nλ2 , ...〉,
with nλi being the eigenvalue of the operator.

To upgrade a single-particle operator, ô to its second-quantised version, Ô, we must note that

in general, Ô =
∑N

n=1 ôn for the operator acting on the nth particle [11]. This serves to show

that in our many-body system, ôn acts on each single-particle state individually and then we

can add up all of these contributions to make the many-body operator. We can expect our

single-particle operator to behave according to ôλi |λi〉 = oλi |λi〉 where oλi is the eigenvalue.

However, we must note that in general, we can have multiple particles in the same eigenstate,

λi and so a more general form of this equation is

ôλi |λi〉 = nλioλi |λi〉 (37)

where as before, nλi is the eigenvalue of the number operator. From this, we can see that our

many-body operator acts on a state according to,

Ô |nλ1 , nλ2 , ...〉 =
∑
i

ôλi |nλ1 , nλ2 , ...〉 =
∑
i

nλioλi |nλ1 , nλ2 , ...〉 . (38)

We can now sandwich our many-body operator between two states in order to derive the

relationship between single-particle and many-body operators that we need. Consider〈
..., n′λ2 , n

′
λ1

∣∣ Ô |nλ1 , nλ2 , ...〉 =
∑
i

nλioλi
〈
..., n′λ2 , n

′
λ1

∣∣nλ1 , nλ2 , ...〉
=
〈
..., n′λ2 , n

′
λ1

∣∣∑
i

nλioλi |nλ1 , nλ2 , ...〉

=
〈
..., n′λ2 , n

′
λ1

∣∣∑
i

n̂λioλi |nλ1 , nλ2 , ...〉 .

(39)

What we have done here, is make use of eq. (38) in the first line and then moved the sum of the

number and operator eigenvalues inside the bra-ket in the second line. We can do this because it

is only a number. Between the second and third lines, we swap the number operator eigenvalues

for the number operator itself, as this equality holds by definition of the number operator. Now,
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using the fact that ô |λi〉 = o |λi〉, which implies that oλi = 〈λi| ô |λi〉, we can deduce,

Ô =
∑
i

oλi n̂λi =
∑
i

〈λi| ô |λi〉 a†λiaλi . (40)

Finally, we need to swap our diagonal basis, |λi〉 for a more general basis which gives,

Ô =
∑
µ,ν

〈µ| ô |ν〉 a†µaν (41)

as expressed in [11].

We are finally in a position to derive the many-body version of our Hamiltonian from eq. (32),

by using the relations we have derived. When we have H |ψ〉 = εψ |ψ〉, we can rewrite our state

using the occupation number representation as |ψ〉 = a†ψ |0〉 and we can infer from eq. (40) that,

H =
∑
ψ

εψa
†
ψaψ. (42)

We are going to derive the position representation of our Hamiltonian such that |x〉 = a†(x) |0〉
are the basis states for our N-particle system. We can then use our general basis expression for

the second-quantised operator (eq. (41)) to get,

H =

∫
ddxddx′

〈
x′
∣∣H∣∣x〉a†(x′)a(x). (43)

If we then substitute eq. (32) into the above Hamiltonian we get,

H =

∫
ddxddx′

〈
x′
∣∣( p̂2

2m
+ V

)∣∣x〉a†(x′)a(x). (44)

which we can simplify by multiplying out the brackets and sandwiching p̂ and V inside the

bra-kets. We make use of the following relations,

〈
x′
∣∣V (x)

∣∣x〉 = V (x)δd(x− x′),
〈
x′
∣∣p̂2∣∣x〉 = −~2∂2δd(x− x′) (45)

where the d-dimensional delta functions serve to force x′ 7→ x. This gives

H =

∫
ddx a†(x)

(
p̂2

2m
+ V

)
a(x) (46)

which is the final version of our second-quantised Hamiltonian on an N-dimensional many-body

system.
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4.2 The Tight-Binding Hamiltonian for Graphene

The tight-binding model relies on considering a system that is made out of nearly-isolated

atoms. By this, we mean that the atoms are far enough apart that inter-atomic interactions

are very small but the valence band electrons have slightly overlapping wavefunctions [12]. This

gives us a model where the electrons are “tightly bound” to their parent atoms but with a small

chance of hopping to nearest-neighbour atomic sites. This approximation is valid in regimes

where the inter-atomic spacing is larger than the radius of the valence band orbitals, but not

so large that we have a system of completely isolated atoms. With the distance between two

nearest-neighbour carbon atoms in graphene being a ≈ 1.42Å, the tight-binding model is the

appropriate choice of model for graphene [1]. It should be noted that in the following derivation,

we will ignore the effects of spin, as it will not be important in our analysis of edge states in

carbon nanotubes.

In order to find a tight-binding Hamiltonian of graphene, we must make use of an important

result from condensed matter physics relating to periodic potentials: Bloch’s Theorem. This

theorem states that when we have a periodic potential of the form V (r +R) = V (r) for all R

in a Bravais lattice, then the wavefunctions ψ of a one-electron Hamiltonian can be given in the

form

ψnk(r) = eik·runk(r), (47)

which is a plane wave multiplied by a function, unk known as the Bloch function that is periodic

on the lattice according to

unk(r +R) = unk(r). (48)

What this means is that the wavefunctions of the one-electron Hamiltonian can be thought of

as periodic, up to some plane wave factor. This is more obvious from the alternative statement

of Bloch’s Theorem:

|ψ(r +R)〉 = eik·R |ψ(r)〉 , (49)

for every R in the Bravais lattice [12].

We also need to decide which basis states we want to use to describe our system. Ideally,

we want an orthonormal basis to make our analysis easier. The best basis for a tight-binding

approximation involves the use of Wannier functions as they are maximally localised and form a

complete, orthonormal basis. This means that they are ideal for systems in the limit where we

are getting close to having isolated atoms, whilst still allowing for some inter-atomic interactions,

as is the case with graphene. The Wannier states are defined to be the Fourier transform of the

Bloch functions, |ψnk〉, which carries over the property of orthogonality from the Bloch functions

[13]. So the Wannier function are defined by the following transformations,

|ψnR〉 =
1√
N

B.Z.∑
k

e−ik·R |ψnk〉 , |ψnk〉 =
1√
N

∑
R

eik·R |ψnR〉 , (50)
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where
∑B.Z.

k is a sum over all k in the first Brillouin zone [11].

Our aim from this point on is to use Bloch’s Theorem and the Wannier states to derive a

tight-binding Hamiltonian that we can use for graphene. Firstly, we can use the Wannier states

to define transformations for our creation and annihilation operators. If we fix the band so that

we can remove the n index, begin using the index i = 1, ..., N which enumerates the lattice sites

Ri, and make use of the fact that the single-particle state |ψi〉 = a†i |0〉, then we can deduce from

the definition of the Wannier functions that our creation operators can be expressed as

a†i =
1√
N

B.Z.∑
k

e−ik·Ria†k, a†k =
1√
N

∑
i

eik·Ria†i , (51)

where similar expressions for the annihilation operators can be derived in the same way.

Now, if we make use of the fact that the Bloch states diagonalise a single-particle Hamiltonian

[11], then we can use eq. (42) and substitute in the operator transformation above to give

H =
∑
k

εka
†
kak,

=
∑
k

εk

(
1√
N

∑
i

eik·Ria†i

)(
1√
N

∑
i′

e−ik·Ri′ai′

)
,

=
1

N

∑
k

∑
ii′

eik·(Ri−Ri′ )εka
†
iai′ .

(52)

We can understand this expression by looking at the creator and annihilation operator in the

last line. We can interpret this as creating a particle at the site Ri and annihilating one at

site Ri′ , which simulates the hopping of a particle between the sites. The normalisation and

k-dependent terms of the expression can be interpreted as the coupling strength that determines

the probability of the hopping between sites. In order to tidy up this expression, we can define

the coupling strength to be the matrix hopping element, tii′ such that

H ≡
∑
ii′

a†i tii′ai′ , (53)

where tii′ = N−1
∑

k e
ik·(Ri−Ri′ )εk is the coupling strength for a hopping from the Ri′ site to

Ri. For completeness, we should also include the ability to reverse this process by hopping from

the Ri site to the Ri′ one. We do this by including the Hermitian conjugate in the tight-binding

Hamiltonian

H =
∑
ii′

(a†i tii′ai′ + a†i′ti′iai) =
∑
ii′

(a†i tii′ai′ + h.c.), (54)

which is the general form of the tight-binding Hamiltonian, where h.c. is the Hermitian conju-

gate.
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Figure 4: The nearest-neighbour hopping from any site to another must always be
between the two sub-lattices. That is to say, if we begin on the A sub-lattice, any
nearest neighbour hopping will take us to the B sub-lattice. There are three possible
hoppings from any site. If we consider starting on the blue site in the centre of the
figure, then we can hop downwards within the same unit cell, or diagonally to the
nearest neighbours in other unit cells, which leads to the Hamiltonian given in eq. (56).

In order to use eq. (54) as a Hamiltonian for graphene, there are a few things we need to note.

Firstly, as shown in fig. 2, our system is actually made up of two triangular sub-lattices, A and

B, where all the nearest neighbours of each site are part of the the other sub-lattice. This means

that all nearest-neighbour interactions happen between sub-lattices A and B. As such, we will

restrict a†i and ai to act on the A sub-lattice and introduce b†i and bi to act on the B sub-lattice.

This means our Hamiltonian in eq. (54) can be re-written as

H = −t
∑
ii′

(a†ibi′ + h.c.), (55)

where we have also made the choice to set tii′ = −t. We can do this because we are assuming

that our system is symmetric under translation, and therefore the coupling strength is constant

for all nearest-neighbour links.

Finally, we will bring our Hamiltonian into its appropriate form by changing the summation

index and considering the possible translations on the lattice. In eq. (55), we sum over all i and

i′ sites for nearest neighbour pairs. Instead, what we can do is sum over all the position vectors

in the A sub-lattice, r ∈ A. By looking at fig. 4, we can now expand eq. (55) in terms of the

three possible nearest-neighbour hoppings, which are given by the translated position vectors

r, r + n1 and r + n2. This means we can define corresponding creation operators br, br+n1

and br+n2 , that will act to create a particle on the nearest-neighbour site when our annihilation

16



operator destroys one at the central site. This gives our Hamiltonian in the form

H = −t
∑
r∈A

a†r(br + br+n1 + br+n2) + h.c. (56)

which is the primary form of the tight-binding Hamiltonian for graphene that we will use in our

analysis.

5 The Dispersion Relation for Graphene

If we are going to use eq. (56) to describe carbon nanotubes, we want to rewrite it in terms

of matrices and find it’s associated dispersion relation. This will make our analysis easier when

we come to Taylor expand our Hamiltonian about the Dirac points so that we can isolate the

relativistic phenomena in the system.

We define creation and annihilation operators for our system like before, in terms of their

Fourier transforms

ar =
1√
N

B.Z.∑
p

eip·rap =⇒ a†r =
1√
N

B.Z.∑
p

e−ip·ra†p,

br =
1√
N

B.Z.∑
q

eiq·rbq =⇒ b†r =
1√
N

B.Z.∑
q

e−iq·rb†q,

(57)

where a and b act on the A and B sub-lattices respectively, as do p and q. We can now substitute

these into eq. (56) to get

H = − t

N

∑
r∈A

B.Z.∑
p

B.Z.∑
q

e−ip·ra†p

(
eiq·r + eiq·(r+n1) + eiq·(r+n2)

)
bq + h.c.

= −t
B.Z.∑
p

B.Z.∑
q

a†pbq
(
1 + eiq·n1 + eiq·n2

)( 1

N

∑
r∈A

e−i(p−q)·r
)

+ h.c.

(58)

where N−1
∑

r∈A e
−i(p−q)·r = δpq as we are summing over the roots of unity. This leaves us

with a simplified version of our Hamiltonian given by

H =

B.Z.∑
p

(
f(p)a†pbp + f∗(p)b†pap

)
, (59)

where we define f(p) = −t(1 + eip·n1 + eip·n2). It can be seen from the above expression that

H can be expressed in terms of matrices. This matrix representation of our Hamiltonian is

H =

B.Z.∑
p

(
a†p b†p

)( 0 f(p)

f∗(p) 0

)(
ap

bp

)
. (60)
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Figure 5: The dispersion relation for graphene (eq. (65)) with the two Dirac points
visible at E(p) = 0. From this figure, the Dirac cones in the low-energy sector are
clearly visible in the direct vicinity of the Dirac points.

Finally, if we define ψp = (ap, bp)T , then we have

H =
BZ∑
p

ψ†ph(p)ψp, h(p) =

(
0 f(p)

f∗(p) 0

)
, (61)

where h(p) is the single-particle Hamiltonian. By solving the characteristic polynomial of h(p),

we find the eigenenergies are E(p) = ±|f(p)|.

Our expression for f(p) can be expanded in terms of the reciprocal basis given in eq. (4). By

making use of Bloch’s theorem and the discrete, translational symmetry of our lattice, we know

that the crystal momentum will be periodic. We can express this periodicity as Nip ·ni = 2πmi,

where mi ∈ Z, and i = 1, 2 denotes our basis vectors. This leads to our quantised crystal

momentum, which expanded in the reciprocal basis is given by

p =
a

2π

∑
i

piGi =
a

2π

(
p1G1 + p2G2

)
, (62)

where a is the lattice constant. By substituting this expression for the momentum into f(p)

and making use of the fact that Gi · nj = 2πδij , we get

f(p) = −t
(

1 + ei
a
2π

(p1G1+p2G2)·n1 + ei
a
2π

(p1G1+p2G2)·n2

)
,

= −t
(

1 + ei
a
2π
p1G1·n1 + ei

a
2π
p2G2·n2

)
,

= −t
(
1 + eiap1 + eiap2

)
.

(63)
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We can now find an expression for E(p) in terms of p1 and p2 by first considering

|f(p)|2 = f(p)f∗(p) = t2
(

3 + e−iap1 + e−iap2 + eiap1 + eia(p1−p2) + eiap2 + eia(p2−p1)
)
. (64)

This can be simplified by using Euler’s formula in the form eiapj = cos(apj) + i sin(apj) for

j = 1, 2. By substituting in Euler’s formula and simplifying, we arrive at the dispersion relation

for graphene,

E(p) = ±|f(p)| = ±t
√

3 + 2 cos(ap1) + 2 cos(ap2) + 2 cos(a(p1 − p2)), (65)

which is shown in fig. 5.

6 Review of Edge States in Zigzag Carbon Nanotubes

We are now in a position to consider the existence of edge states in graphene based systems.

These can take the form of zero modes, that exist at the edge of graphene flakes [14] or carbon

nanotubes [15]. These states are energy eigenstates localised at the edge with zero energy [7].

However, these are not the edge states we will be concerned with in this thesis. It turns out

that in carbon nanotubes with zigzag ends, there is theoretical support for bulk states at the

ends of the tube [2]. This section will summarise the results of [2], so that we can perform an

analogous analysis of carbon nanotubes with armchair edges in the remainder of this thesis.

6.1 Zigzag Momentum Quantisation and Dispersion Relation

In order to build a carbon nanotube, we must apply another set of periodic boundary condi-

tions to the system of graphene that we’ve been working with so far. The first set of periodic

boundary conditions were applied when we used Bloch’s Theorem to understand the transla-

tional symmetry of the graphene lattice in eq. (49). Referring to fig. 2, if we impose periodic

boundary conditions in the x-direction, it will create a nanotube with zigzag edges. Suppose

the circumference of the nanotube is given by Na, where N is the number of unit cells in the

x-direction and a is the lattice constant, as it was before. We can construct an infinitely long

nanotube by letting the length of the nanotube L, tend to infinity in the y-direction as we take

the thermodynamic limit. This leads to a momentum quantisation of the kind where the p2

component remains unconstrained, but with

p1 =
2nπ

Na
, (66)

in the first Brillouin zone [2].

For graphene, the dispersion relation is between the unconstrained momentum p = (p1, p2),

and the energy E(p). Now we have quantised p1, we have reduced our dispersion relation into

one-dimensional bands enumerated by the integer n. We are essentially taking slices of the
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dispersion relation in fig. 5, for each quantised value of the momentum. We want to substitute

our expression for p1 into the dispersion relation of graphene (eq. (65)). This gives us a zigzag

dispersion relation given by

En(k) = ±t

√
3 + 2 cos

(
2nπ

N

)
+ 2 cos

(
2nπ

N
− ka

)
+ 2 cos(ka), (67)

where p2 → k. It should be noted that En(k) has a single minima for each value of n. It is at

the low-energy limit of these bands where we find the cones of E ∼ k. These cones are centred

at the two zero energy Dirac points in the Brillouin zone. In order to focus on these low-energy

properties, we want to take th continuum limit by Taylor expanding about the minima of the

dispersion, as this will allow us to ignore the non-linear terms of the momentum. Therefore, we

will be considering the properties of the conic section of the Brillouin zone where the relativistic

energy-momentum relation is obeyed.

In order to find the minima of the dispersion, we differentiate E2
n(k), rather than En(k) as

it is easier to work with. The square of the energy will have the same minima as the energy,

therefore we can set it’s derivative equal to zero in order to find the turning points of the bands

at kmin. This gives us the equation

(
E2
n(k)

)′
= 2t2a

(
sin

(
2nπ

N
− ka

)
− sin(ka)

)
= 0, (68)

which implies that

sin

(
2nπ

N
− kmina

)
= sin(kmina). (69)

We can now make use of the fact that sin(x) = sin(y) implies that x = mπ+ (−1)my for m ∈ Z,

to obtain

kmin =

(
2n

N
−m

)
π

a(1 + (−1)m)
, m ∈ Z. (70)

In order to stop the denominator outside of the brackets from being zero, we require m to be

even, so we set m = −2l to give

kmin =

(
n

N
+ l

)
π

a
mod

2π

a
, l ∈ Z. (71)

By considering the constraint that kmin is modulo 2π/a, and the fact that n/N ∈ [0, 1], the

only possibilities for l are that l = 0, 1. We want to deduce which of these turning points is the

minima. We do this by calculating (E2
n(k))

′′
and seeing for which turning points is greater than

zero. This leads to

knmin =

π
a

(
n
N

)
if n > N

2 ,

π
a

(
n
N + 1

)
if n < N

2 .
(72)
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The case where n = N/2 does not have a minima as it is a flat band [2]. As we are only interested

in the low-energy properties of the nanotube, we will focus on the lower momentum eigenstates

where n < N/2. This means we have a final expression for our band minima, given by

knmin =
π

a

(
n

N
+ 1

)
. (73)

6.2 Support of Bulk States at the Edge

Now that we have the minima of our bands, we need to Taylor expand the Hamiltonian about

these minima to linear order in the momentum. The Hamiltonian (eq. (61)) can expanded out

in terms of its Taylor series about knmin, we do this by using

fn(knmin + p) = fn(knmin) + pf ′n(knmin) +O(p2), (74)

such that

h(p) =

(
0 fn(knmin + p)

f∗n(knmin + p) 0

)
, (75)

according to [2]. After substituting knmin (eq. (73)) into f(p) (eq. (63)), we arrive at the contin-

uum limit Hamiltonian,

h(p) =

(
0 ei

nπ
N (∆n + iatp)

e−i
nπ
N (∆n − iatp) 0

)
+O(p2), (76)

where ∆n is an effective mass of the system which represents band gaps in the dispersion. It

turns out that the system is gapless (|∆n| = 0) when n/N = 1/3 for n,N ∈ Z, which means

that N must be a multiple of 3 for this to occur. The single particle Hamiltonian above is a

(1+1) dimensional massive Dirac Hamiltonian where αx = σy and β = σx [2]. We can use this

Hamiltonian to build suitable Dirac wavefunctions for our system. According to [2], this gives

us the Dirac equation in the form(
0 ei

nπ
N (∆n + iatp)

e−i
nπ
N (∆n − iatp) 0

)(
ψA

ψB

)
= En(p)

(
ψA

ψB

)
, (77)

where ψA and ψB can be interpreted as the wavefunctions of the A and B triangular sub-lattices,

respectively. The wavefunctions can then be found to be of the form

ψn,p =
1√
2

(
1

se−inπ/Neiθn,p

)
eipx, (78)
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where s = sgn(En) and θn,p = arg(∆n+ iatp) is an angle in the complex plane. Using the above,

we can build a superposition out of forward and backward propagating standing waves,

ψn,p =

(
1

e−inπ/Ne−iθn,p

)
eipx +R

(
1

e−inπ/Neiθn,p

)
e−ipx, R ∈ C. (79)

All that needs to be done is apply the zigzag boundary conditions to our standing waves and

see what we are left with. The boundary conditions for the zigzag edge are given by

ψA(0) = ψB(L) = 0 (80)

for the continuum limit approximation of a carbon nanotube of length L [1][2]. These bound-

ary conditions are not as simple as the non-relativistic case where for a particle obeying the

Schrödinger equation, we just require the wavefunction to be zero at the boundary. In fact,

eq. (80) are a special case of the more general rule for Dirac boundary conditions, which re-

quires the Dirac current normal to the boundary to be zero. This different rule for the boundary

conditions is due to the fact that in certain situations, requiring the wavefunction to be zero at

the boundary would make a Dirac spinor zero everywhere, which is unhelpful in understanding

physical situations [2]. This requirement on the current, rather than the value of the spinor at

the edge of the system, is what allows the spinor in certain situations, to give rise to a non-zero

density at the edge. We will now see an example of how this manifests itself for a zigzag carbon

nanotube.

By applying the boundary conditions of eq. (80) to eq. (79), the final solution of the wave-

function for a finite, zigzag carbon nanotube is given by

ψn,p = Nn,p

(
sin(px)

e−inπ/N sin(px− θn,p)

)
, (81)

in position space, where N is some normalisation constant [2]. The second equality of the

boundary conditions means that we require pL − θn,p = mπ for m ∈ Z. If we continue to

interpret the upper component of the spinor as the A sub-lattice and the bottom one as the B

sub-lattice, then we can see that θn,p acts as a phase difference between the wavefunctions of

the two triangular sub-lattices.

By using the definition of the charge density, we can see that

ρn,p = ψ†n,pψn,p = |N |2
(

sin2(px) + sin2(px+ θn,p)
)
. (82)

which is understood to be the sum of the charge densities of the sub-lattices A and B, such that

ρ = ψ†ψ = |ψA|2 + |ψB|2. We can see from the above equation that the density is not necessarily
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Figure 6: Numerical simulation of a zigzag carbon nanotube taken from [2]. The three
colours represent the first three eigenstates of the system, where red is the ground
state, blue is the first excitation and green is the second. Top row: the left and right
plots show the charge density of the A and B sub-lattice respectively, which can be
interpreted as the top and bottom components of the spinor in eq. (81). The density is
plotted against the length of the system, 0 < x < L. We see that for each sub-lattice,
there is a non-zero density at one of the edges. Bottom row: we plot the overall charge
density, ρ = |ψA|2 + |ψB|2 which is non-zero at both edges. This plot corresponds to
and agrees with eq. (82).

zero at the edges of the carbon nanotube,

ρn,p(0) = ρn,p(L) = |N |2 sin2(θn,p), (83)

which is maximised for θn,p = arg(∆n + iatp) = π/2. This condition for the maxima suggests

that the edge density of the nanotube is maximised for a gapless system (∆n = 0), as this

would correspond to the π/2 rotation in the complex plane. Therefore, as we know the gapless

band only occur when n/N = 1/3, this is also the condition that maximises the edge density.

The maximum edge density is not dependent on the momentum of the system and is given by

ρn = |N |2 = 1/L. According to [2], the density at the edge becomes vanishingly small when a

gap is opened in the dispersion. These results are all supported by numerical simulations [2],

which is demonstrated in fig. 6.

7 Analysis of Armchair Carbon Nanotubes

Now that we have reviewed the existence of edge states in zigzag carbon nanotubes, we will

perform a similar analysis on a nanotube with armchair edges and compare the results. In this

section, we will follow the same process as we outlined for zigzag carbon nanotubes.
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7.1 Armchair Momentum Quantisation and Dispersion Relation

As in the previous section, the first step is to apply a periodicity to the momentum, along

the circumference of the edge. For the zigzag case, we chose the boundary to go along the n1

direction in fig. 2. For the armchair case, we need to use a slightly more complicated choice

and use the n1 +n2 direction. We then use Bloch’s Theorem (eq. (49)) to derive the necessary

quantisation condition for our momenta. If we consider a unitary translation operator acting on

our momentum eigenstates |p〉,
T (r) |p〉 = eip·r |p〉 , (84)

then we can substitute our armchair momentum vector for r, to give

T (n1 + n2) |p〉 = eip·(n1+n2) |p〉 . (85)

We note that for a carbon nanotube with circumference of length Na, that

T (N(n1 + n2)) |p〉 = eiNp·(n1+n2) |p〉 = |p〉 , (86)

because we move around the edge N times and arrive back at our starting position. This implies

that Np · (n1 +n2) = 2πn for n ∈ Z. By substituting in our expression for p as given in eq. (62)

and using Gi ·nj = 2πδij to simplify, we arrive at the armchair momentum quantisation where

p1 + p2 =
2πn

Na
. (87)

This means that just like in the zigzag case, we have quantised momenta around the circumfer-

ence of the nanotube in the n1 + n2 direction, but unconstrained momenta along the length of

the nanotube in the n1 − n2 direction.

Our quantised momenta can now be substituted into the graphene dispersion relation (eq. (65))

in order to get

En(k) = ±t

√
3 + 2 cos

((
2nπ

Na
− k
)
a

)
+ 2 cos

((
2nπ

Na
− 2k

)
a

)
+ 2 cos(ka), (88)

which is shown in fig. 7. As before, we need to find the minima of this dispersion for the lower

energy bands in order to focus in on the relativistic phenomena. We will work with E2
n(k) again

as it has the same turning points as the dispersion relation. We have

E2
n(k) = t2

(
3 + 2 cos

((
2πn

Na
− k
)
a

)
+ 2 cos

((
2πn

Na
− 2k

)
a

)
+ 2 cos(ka)

)
, (89)

which can be differentiated and set to zero to give the turning points,

(
E2
n(kmin)

)′
= 2t2

[
a sin

((
2πn

Na
− kmin

)
a

)
+ 2 sin

((
2πn

Na
− 2kmin

)
a

)
− sin(kmina)

]
= 0, (90)
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Figure 7: The dispersion relation for a carbon nanotube with armchair edges (eq. (88)).
This is a numerical simulation of the first 20 energy bands En(p) of the system. In
this simulation, t = a = 1 and the nanotube circumference is determined by N = 20.

which can be reduced to

sin
(πn
N
− kmina

)[
2 cos

(πn
N
− kmina

)
+ cos

(πn
N

)]
= 0. (91)

Either the sin function or the contents of the square brackets must equal zero. If we set the sin

function to be zero, we get

kmin =
π

a

(
n

N
−m

)
, m ∈ Z (92)

and if we set the square brackets equal to zero,

kmin =
1

a

(
πn

N
∓ arccos

(
−1

2
cos
(πn
N

))
− 2πm

)
, m ∈ Z. (93)

One of these expressions for kmin will give the minima and the other will give the maxima. In

order to find which is which, we could differentiate E2
n(kmin) again. However, we can make life

easier for ourselves by numerically plotting the values of kmin against an energy band in the

dispersion, as we have done in fig. 8. From this, we can see that eq. (93) is the band minima.

7.2 Wavefunctions for the Armchair Carbon Nanotube

We are now in a position to Taylor expand about our band minima. As we want to focus on

the low-energy section of the system, we can choose to work in the ground state and set n = 0.

By substituting our armchair momentum quantisation into eq. (63), we deduce that

f(k) = −t
(

1 + ei
(

2πn
Na
−k
)
a + eika

)
. (94)
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Figure 8: The energy band of the ground state n = 0, is shown in the blue and orange
lines. The ground state turns out to be gapless for all values of N . The vertical red
lines that go through the minima correspond to eq. (93) and the green line through
the maxima corresponds to eq. (92).

In order to find the Taylor expansion of our Hamiltonian (eq. (75)), we need to find the terms

for eq. (74) by our new expression for f(k). Therefore, we differentiate f(k) to get

f ′(k) = −iat
(
− ei

(
2πn
Na
−k
)
a + eika

)
n=0
= −iat

(
− e−ika + eika

)
, (95)

and then we can substitute in our minimum values of the momentum kn=0
min , which gives us

f ′(k0min) = −iat
(
− e±i arccos(−1/2) + e∓i arccos(−1/2)

)
. (96)

From eq. (74), and using the fact that f(k0min) = 0, we can see that

f(k0min + p) = pf ′(k0min) +O(p2)

≈ −piat
(
− e±i arccos(−1/2) + e∓i arccos(−1/2)

)
= −piat

(
− e±i2π/3 + e∓i2π/3

)
= ∓
√

3pat.

(97)

Which can then be paired with eq. (75) to acquire the armchair version of the Dirac equation,(
0 ∓

√
3pat

∓
√

3pat 0

)(
ψA

ψB

)
= En(p)

(
ψA

ψB

)
. (98)
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We are starting to see a divergence between the zigzag and armchair cases in the non-appearance

of a band gap in the Hamiltonian above. This is because the ground state of the armchair case

is always gapless, regardless of the value of N . In the zigzag case, the dependence of the gap on

certain values of N was directly related to the requirements for the emergence of edge states in

the system.

The Hamiltonian we have found for the armchair case is given by

h(p) = ∓
√

3pat

(
0 1

1 0

)
= ∓
√

3pat · σx, (99)

where σx is the Pauli x-matrix. The eigenvalues of the Pauli x-matrix are given by ±1, which

implies that the eigenvalues of our Hamiltonian are just λ1,2 = ±
√

3pat and that the eigenvectors

are the same as the ones for σx. This means they are given by

ψ± =
1√
2

(
1

±1

)
, (100)

with ψ+ being the positive energy solutions. Which gives us a position space solution of the

Dirac equation in the form

ψ(x) =
1√
2

(
1

1

)
eipx. (101)

This allows us to build a forward and backward propagating wave,

ψp =
1√
2

(
1

1

)
eipx +

R√
2

(
1

1

)
e−ipx. (102)

7.3 Charge Density at the Edge

An armchair edge requires a different set of boundary conditions to the zigzag case [1]. In fact,

whilst zigzag boundary conditions are generic, we find that the armchair ones are very specific

and only occur for very specific edge orientations [7]. This is due to the fact that we require

the normal current at the edge of the nanotube to be zero [2], but that we have a different

shape for the armchair edge than we do the zigzag, and therefore we have a different set of

’missing’ links. If we refer back to fig. 1 and consider rolling up our graphene into a zigzag

nanotube, then we have ’missing’ links at the top and the bottom where the edges are. The top

and bottom edges are labelled by x = 0 and x = L. We can see in the figure that the atoms

at the edge are all part of one of the A and B sub-lattices and from this, we can see where the

zigzag boundary conditions (eq. (80)) come from. They do not require any equality between the

different sub-lattice wavefunctions.

If we now do the same kind of thought experiment and consider rolling up the graphene in

fig. 1 into an armchair nanotube. We can see that there are atoms from both sub-lattices at each
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edge. This means we will require the boundary conditions to equate the wavefunctions from

both sub-lattices where we didn’t for the zigzag case. This leaves us with a set of boundary

conditions defined by

ψA(0) = ψB(0) = ψA(L) = ψB(L) = 0. (103)

We can see from these boundary conditions, that both sub-lattice wavefunctions are required to

be zero at both edges of the nanotube. Given that the charge density on a nanotube is given by

ρ = ψ†ψ = |ψA|2 + |ψB|2, (104)

We can immediately see that there can be no support for bulk states at the edge, as both ψA

and ψB are required to be zero at the edge. Which can be expressed as

ρ(0) = ρ(L) = |ψA(0)|2 + |ψB(0)|2 = |ψA(L)|2 + |ψB(L)|2 = 0. (105)

8 Numerical Simulation of a 1D Chain

In order to test the validity of our theoretical analysis, we will now encode our tight-binding

Hamiltonian on a one-dimensional chain. A similar analysis done in [2], confirmed the support

of bulk states at the edge for zigzag carbon nanotubes, the results of which are shown in fig. 6.

We will use a similar numerical simulation for our armchair analysis as a way of checking the

work we have already done. The benefit of simulating a one-dimensional chain compared to

the full two-dimensional system, is that we can fix the momenta and focus in on of the Dirac

points, as we have done in our analysis above. A two-dimensional simulation would simulate

contributions from both Dirac points, which would lead to noisier wavefunctions that would be

more difficult to compare to our analytical results.

In order to run such a numerical simulation, we will need to get our tight-binding Hamiltonian

into a form that can be easily encoded on a computer. The first step in this will be to use a new

basis. The basis we have used in our analysis helped to keep things simple, but for encoding a

one-dimensional chain, we will be better off working with a Hamiltonian expressed in a Cartesian

basis, êx and êy. Using the same logic as we did to get eq. (56), we can use fig. 9 to derive a

version of our tight-binding Hamiltonian in a Cartesian basis as

H = −t
∑
r∈A

a†r(br+êx−êy + br−êx−êy + br) + h.c. (106)

With the corresponding creation and annihilation operators expressed as

a†r =
1√
Ny

∑
py

e−ipyya†x(py), br =
1√
Ny

∑
qy

eiqyybx(qy). (107)

As we did when we derived the dispersion relation for graphene, we can substitute the creation
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Figure 9: The graphene lattice with unit cell vectors defined in terms of a Cartesian
basis. Using these vectors to define hopping between nearest neighbour sites leads to
the Hamiltonian given in eq. (106).

and annihilation operators into our new Hamiltonian to get

H = − t√
Ny

3

∑
r∈A

∑
py

∑
qy

e−ipyya†x(py)
(
eiqy(y+1)bx−1(qy) + eiqy(y−1)bx−1(qy) + eiqyybx(qy)

)
+ h.c.

= − t√
Ny

∑
x

∑
py

∑
qy

a†x(py)
(
eiqybx−1(qy) + e−iqybx−1(qy) + bx(qy)

)( 1

Ny

∑
y

ei(qy−py)
)

+ h.c.

(108)

where the terms in the last set of brackets equal δpyqy . We can then use the Euler equation to

simplify the exponentials in Hamiltonian, which gives us

H =
∑
py

(
− t√

Ny

∑
x

a†x

(
2 cos(py)bx−1 + bx

)
+ h.c.

)
=
∑
py

H(py).
(109)

In order to encode our Hamiltonian, we want to find the single-particle Hamiltonian in terms of

Dirac delta functions such that h(p) = hi,j . Therefore, we factor out the creation operator in

H(py) to express it in terms of delta functions,

H(p) = − t√
N

∑
i,j

a†i

(
2 cos(p)δi−1,j + δi,j

)
bj + h.c. (110)
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(a) Spectrum of Eigenstates (b) Ground State Charge Density

Figure 10: Numerical simulation of a 1D chain of atoms described by our tight-binding
Hamiltonian along an armchair boundary for system size N = 30. We find the eigen-
states and eigenvalues of the single-particle Hamiltonian given in eq. (112) numerically.
This allows us to plot the charge density for the ground state eigenvector. (a) shows
the spectrum of possible eigenstates for our Hamiltonian and their respective eigenen-
ergies, (b) shows the charge density for the ground state where n = 0.

By comparing to eq. (61), we arrive at

hi,j = − t√
N

(
2 cos(p)δi−1,j + δi,j

)
, (111)

where we can take p = 2πn/N as we are now quantising it in the direction of one of our basis

states, as we did for the zigzag case in section 6. This gives us

(hn)i,j = − t√
N

(
2 cos

(
2πn

N

)
δi−1,j + δi,j

)
(112)

This gives us the Hamiltonian in a form that we can encode computationally.

We have

Hn =
(
a† b†

)( 0 hn

h†n 0

)(
a

b

)
= ψ†Hnψ (113)

as in [2]. We can now use numerical methods to diagonalise Hn and find its eigenvectors and

eigenvalues. We can then compute the charge density from these results and plot them along

the length of the chain. The results of this simulation are displayed in fig. 10. They show clear

agreement with the theoretical analysis done in the previous section, as we can see the charge

density has a non-relativistic profile as it goes to zero at the edges of the system.
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9 Conclusion

In section 6, it was demonstrated that in zigzag carbon nanotubes we see support for the

extension of bulk states to the edge. This was shown to be the result of the boundary conditions

that we applied to the system. At a zigzag edge, all of the atoms belong to the same sub-lattice

and the boundary conditions only require that one of the sub-lattice wavefunctions be zero at

the boundary [1], leaving the other to be non-zero at the edge. The wavefunction of the entire

system is a superposition of the two sub-lattice wavefunctions and therefore, we can add the

charge densities of each sub-lattice together. This allows for a non-zero density of bulk states

at the edge when the two sub-lattice wavefunctions have certain phases which can be controlled

by the dimensions of the carbon nanotube, as shown in [2].

Contrastingly, for the armchair edge, we see that it is made up of atoms belonging to both of

the triangular sub-lattices. As we design our boundary conditions in order to keep the normal

current at the edge equal to zero, this means that we have to set both sub-lattice wavefunctions

to be zero at the edge. By definition, the charge density is given by ρ = ψ†ψ and therefore, any

boundary conditions that require all of the wavefunctions to be zero at the edge, must have zero

density at the edge as well.

The only true test of the validity of these results is experiment. There is currently no exper-

imental data to support these findings, but as nanotechnology and our ability to control these

systems in a laboratory setting improves, such results might be demonstrated in the future. In

the meantime, the best we can say is that these results are supported by numerical simulations.

The zigzag case is supported by one-dimensional chain simulations in [2] and the armchair case

by the same type of simulation in section 8 of this thesis. This at least suggests that the the-

oretical analysis presented here has been done correctly. Furthermore, similar results for edge

states existing at zigzag edges of a graphene nanoribbon have been found, along with the result

that no such edge states are expected in the armchair case [16][17]. This reinforces the concept

that these physical results are consequences of the edge shape, which would explain why they

translate from nanotubes to ribbons and vice versa.

It will be of interest in the future to see if experiment can confirm or falsify the results of this

thesis. From a theoretical point of view, it would be interesting to examine whether punctures in

graphene based systems with zigzag or armchair edges offer any other counter-intuitive results.

Also, to see if such research would reaffirm the results of this paper, that only the zigzag edges

result in certain relativistic phenomena where the armchair ones don’t. Further theoretical

demonstration of this idea could reinforce the results of this thesis.
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A Source Code for Plots and Numerics

Below is the code used to produce the plots and numerical simulations contained in this thesis,

all of which was done using Python 3. The functionality of the code will be briefly explained.

A.1 Graphene Dispersion Relation Plot

Figure 11: The code used to produce the graphene dispersion relation fig. 5.

The first 12 lines of this code serve to set up our system and figure, by defining certain values

such as N and then setting up the x and y values. We then input the expression for the graphene

dispersion relation as a function z = z(x, y) on line 13. The rest of the code plots the 3D surface

in the figure and customises the axes. On line 30, we rotate the figure in a way that best shows

the Dirac cones. The final two lines produce the figure as a .png file that is used as fig. 5.
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A.2 Armchair Carbon Nanotube Dispersion Relation Plot

Figure 12: The code used to produce the dispersion relation for an armchair carbon
nanotube in fig. 7.

This code works in a very similar way to the code that produces the graphene dispersion

relation. The first 7 lines set up the system. The lines from 9 to 14 plot the positive and

negative energy solutions in the figure for all n in the range 0 to N . Lines 16 to 19 customise

the axes labels and the last three lines produce the .png file used in this thesis.
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A.3 Ground State Energy Band with Minima Plot

Figure 13: The code used to produce the ground state energy band plot for an armchair
carbon nanotube. The code also marks the minima and maxima of the energy band
by using vertical lines. This code produces fig. 8.

The first 14 lines of this code are recreating the code from the armchair dispersion plot, but

only for the ground state n = 0. Lines 15 to 22 plot the values of eq. (92) and eq. (93) as green

and red vertical lines respectively. The last five lines label the axes and produce the .png file

that appears in this thesis.

36



A.4 Numerical Simulation of a 1D Chain

Figure 14: The code used to numerically simulate an armchair system on a 1D chain
in fig. 10.

The first 5 lines of this code set up the system. Lines 8 and 9 define a function that we can use

as a Dirac delta function. From line 11 to 16, we create a the matrix version of our Hamiltonian

out of eq. (112). Line 18 then calculates the eigenstates and eigenvalues. The following lines

up to line 26 then plots the eigenstates against the eigenvalues. Line 28 calculates the density

before the rest of the code plots it against the system size.
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