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Abstract

This research explores the use of near infrared spectrum for video fire

detection and combustion diagnostics. The near infared spectrum is

somehow very under-explored in these fields. A low-cost silicon-based

backside illuminated CMOS image sensor was modified to become a

monochrome sensor exposing its full spectral sensitivity. The sensor was

tested to show its improved spectral sensitivity. The multi-spectrum

fire detection combines stereo cameras with NIR only and NIR-visible

spectrum respectively for robust fire detection. Flame image properties

in both conditions are extensively studied, whereby the NIR-only channel

corresponds to ROI extraction and texture feature extraction; the NIR-

visible channel give rise to a unique colour model for false positive

classification rejection. Machine learning algorithms were employed for

fire recognition. Practical considerations of designing a fire detection

system have been discussed in terms of sensor selection, feature extraction

as well as choice of classification algorithms. Dual-band stereo video fire

detection not only showed great potential for robust fire detection, but

also for vision-based automated firefighting. In combustion diagnostics,

low-cost NIR sensors were used for the imaging of combustion products

of fuel-lean premixed flames, which demonstrated its effectiveness in

potential flame instability related diagnostics. Moreover, the thermal



capability of NIR camera sensor were applied in conjunction with visible

and schlieren imaging, to study the mechanism of fire propagation on

solid fuel combustion. Finally, a summary was made with additional

suggestions and speculations on the subject as a whole.
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Chapter 1

Introduction

1.1 Background

Fire outbreak poses great threat to human lives and assets. Great efforts have been

made to improve fire safety, in terms of new regulations for different constructions

enforcing new fire resistant materials to be used in building or compliance fire safety

design, etc. However, in the fire alarming domain, the status quo seems to have not

been improved much over the years. The most common fire alarms uses may contain

one or more point detectors, such as smoke detector, heat detector, CO detector,

which are usually effective in the small spaces. In a large indoor or outdoor open

space, their effectiveness dramatically decreases with respect to distance. In addition,

limited by the working principles of these systems, false alarm rate is high due to many

environmental disturbances. The reduction of false alarms of the traditional fire alarm

systems is difficult given the complex nature of aerosol substance properties. Even

the detection is successful, it provides very limited information of the fire in terms

of location, size, spread rate, etc. Oftentimes, manual check is entailed to eliminate

potential fire event. One crucial fact is that the time taken for the manual check

would be quite enough for the fire to develop, especially in large indoor space with

complex structure. Moreover, the manual check may be subjected to human errors.

1



For example, the tragedy of Notre-Dame de Paris fire in 2019, was caused by delayed

human check because of no available information other than the alarm was set off [1].

The guard was sent to check but went to the wrong place, the attic of the adjoining

sacristy. By the time of the fire was discovered, fifteen minutes had passed leading to

a well-developed fire.

The lack of information is one of the vital drawbacks in conventional fire alarm

systems, not to mention the delayed response in large space. Video based fire

detection offers a promising addition, or may be an alternative choice for fire safety.

Notwithstanding the tremendous amount of surveillance cameras deployed in urban

areas, it is not an easy job to keep an eye for the event of a fire. The development

of camera sensors, hardware computability and machine vision algorithms promotes

new openings for fire detection. Video fire detection offers no time delay in receiving

signals comparing to conventional detectors. Real-time detection is achievable. In

addition, vision based technique can provide extra valuable information to operators

before firefighting. Furthermore, vision based methods are potential candidates for

future automated robots for fire detection, localization and suppression.

The main challenge in video fire detection is to reduce false alarm rate and

timely fire recognition at the earliest stage of a fire breakout. Simple as the aim

states, however, the implementation is rather challenging. Not only is fire a complex

phenomenon rendering its behaviour not easily predictable, but the dependence on

surrounding environment poses a great barrier for the robustness of a fire detection

system. Typical fuels in an event of fire contain carbon (C), hydrogen (H), oxygen

(O), fluorine (F ), nitrogen (N), chlorine (Cl) and bromine (B), which usually

are subjected to incomplete combustion [2]. The combustion process generates a

range of products, such as CO2, CO, H2, hydrogen cyanide (HCN), hydrogen

2



chloride (HCl), hydrogen fluoride (HF ) and hydrogen bromide (HBr) and carbon

(soot). Moreover, the radiation from a fire has overlapping spectrums from different

combustion products or intermediates, but usually is dominated by soot, which gives

a wide spectrum spanning from UV to far infrared.

Figure 1.1: Signal sources from a fire

With respect to these fundamental physical properties of a fire, many fire detection

systems try to tackle the problem by utilizing the fire signals, as shown in Figure

1.1. The detection strategy varies greatly according to the system design. However,

in practice, it is usually a compromise in system integration.For the most obvious

reasons, the added sensors and processing units will raise the cost significantly. It

may not be an issue for some bespoke high-end situation, but the cost-effectiveness

is the driven factor for both household and mass use for public safety. Secondly,

more data throughput and processing not only increase the computation load but

makes the decision making of the system more complicated, therefore robustness

may be compromised. Finally, the dependence on scenarios will require different
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bias on extracting appropriate information from the fire, as shown in Figure 1.2. For

example, the fire detection in shipment compartment is mostly enclosed and free from

outside light source, where a simple thresholding with IR camera would achieve great

performance [3]. By contrast, in an outdoor shopping area, many interference exist to

degrade the performance of a system, for example car lights, advertisement display,

reflections of sunlight from glasses and floors, etc. In the more complex scenario, the

detection will involve lots of computation.

In addition to fire detection, the understanding of fire propagation is also

instructive on structure design and fire retardation, which is subjected to many

factors, such as material, geometric layout, ambient air flow condition, etc. Visible

RGB cameras are the dominant choice in fire detection literature that its robustness

is questionable. There has been very limited study on video fire detection with IR

cameras, all of which used low resolution, high cost microbolometer long wavelength

IR cameras. The sensitivity of common silicon based CMOS image sensors in the near

infrared spectrum somehow has always been overlooked, which offers the capability

of near infrared imaging at a very low cost. In combination with cheap on-board

computatbility, multi-spectrum fire detection, flame diagnostics and fire propagation

will be investigated.
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Figure 1.2: Different fire detection scenarios

1.2 Aim and objectives

To promote fire safety in the domains where traditional fire detection technology

failed, the visual-based video fire detection is an effective method. However, most

existing video fire detection researches rely solely on the visible spectrum. The

exploration beyond the visible spectrum is lacking, which can expand the horizon

of the fire detection technology.

The aim is to explore the potential of the near infrared capability of low-cost

CMOS image sensors in regards to fire detection and combustion diagnostics. Both

fire detection and passive imaging combustion diagnostics, in near infrared spectrum,

are very limited in literature. Gaining understanding of flames at this spectrum as

well as its fit into video fire detection will promote its application with great cost-

effectiveness. To that end, the objectives are listed below:

• To study flame properties in visible and near infrared spectrum for diffusion,

premixed hydrocarbon flames and wood fires.

• To develop multi-stage machine learning based fire detection algorithm by
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exploring the fire image property using low-cost CMOS image sensors.

• To compare the difference between popular machine learning algorithms in the

field of video fire detection in terms of practical application and considerations.

• To modify image sensor for low-cost flame chemiluminesce and combustion

products instrumentation.

• To apply near infrared imaging for solid fuel combustion and fire propagation.

• To study fire propagation on inclined wood by means of multi-spectrum in

combination with schilieren imaging.

1.3 Thesis outline

The remaining part of the thesis follows this structure. chapter 2: a comprehensive

review of fire detection which including point based methods, video based methods,

camera hardware having sensitivity in various spectrum, sensor technology and

machine learning techniques in regards to video fire detection; chapter 3: the property

of NIR camera sensor whereby the different cameras sensors are tested and studied on

fire detection as well as NIR imaging intuitions; chapter 4: expands upon the proposed

multi-spectral fire detection system, where different stages of the processing pipeline

is are presented and discussed; chapter 5: the extended use of NIR camera for gas and

solid fuel combustion as a very low cost alternative to other IR cameras; chapter 6:

thorough conclusion and discussion upon the whole of designing fire detection system,

where future work is also suggested in several aspects.
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Chapter 2

Literature Review

To define the scope of this research, previous researches have been reviewed in two

broad areas, namely fire detection and passive imaging-based combustion diagnostics.

For fire detection, the review covers traditional point-based detection, radiation

detection, and existing video fire detection; the discussion will be based on hardware

and algorithms in the pipeline. In particular, a thorough discussion on the use

of infrared image sensor for fire detection will be provided, covering the aspects

of hardware properties and corresponding algorithms. In addition, the application

of machine learning algorithms in the field of fire detection will also be discussed.

In respect to passive imaging-based combustion diagnostics, the application of near

infrared spectrum in combustion will be discussed.

2.1 Traditional fire detection

2.1.1 Smoke detectors

The most common sensor used in fire alarm is the smoke detection. Because in

many fire breaks, smoke arises first from smouldering before flaming. The basic

structure of the ionization chamber smoke detector is shown in Figure 2.1. The

detector contains a radioactive α particle source, which releases alpha particles in

between the two electrodes to ionize the air. With the presence of smoke particles in
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the chamber formed by the electrodes, the current is reduced, whereby alarm is rang

based on the change of current. Later, new variation of such smoke detection without

the use of radioactive material was proposed, which detects the positive charge of

smoke particles from flame [3]. Fundamentally, these detectors detect the change in

electromagnetic field in the chamber by charged particles, which is directly affected

by its concentration and size. Problems arise because smoke particles vary greatly

from different combustion in terms of structure and composition [4]. They can be

insensitive to smouldering as the particle will lose the charge after cooling and can

be sensitive to dust, stream or many other particles getting into the chamber.

Figure 2.1: Schematic diagram of an ionization smoke detector

Optical smoke detection is an improved option with better sensitivity and

robustness against ambient interference. Basically, the sensing relies on optical

obscuration and scattering effects of particles. The suspended particles will scatter

and attenuate the sensing light beam, which would be picked up by the system.

The scattering of light is affected by many factors, for instance particle size, shape,

refractive index, wavelength of the light source and angle of scattering [5]. These

limited the detectable range of the particle size, where smaller particles from some

flaming situation will not trigger the alarm.

The reliance of smoke detection solely will introduce many false alarms. Despite

of the obvious drawbacks, it remains the most popular option in household and
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Figure 2.2: The emission and absorption spectral bands of common combustion gases
[9]

buildings because of its low cost. It can be very effective in detecting smokes in small

compartments, however, in large space its use is limited because of the transport time

delay. The fire can develop significantly before the smoke particles accumulate and

transported to the detector to trigger the alarm.

2.1.2 Optical gas detectors

Similar to smoke detectors that utilized the substances generated from fire, some fire

detection systems are based on the detection of gases. Common gases such as CO2,

H2O, CO, H2 and O2, from which the corresponding concentration is measured by

gas sensors. CO was reported to be the most promising choice as early fires often

started from smouldering from which the lack of oxygen give rise to increased carbon

monoxide production [6]. More dedicated detectors were available for detecting HCl,

which is usually generated from the pyrolysis of PVC materials [7]. Modern building

construction extensively use PVC, for example the cable insulator in household

circuits and appliances. The mid IR absorption spectrum is particularly useful in

detecting the combustion products, which usually covers 2.5 to 25 µm [8].
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Figure 2.3: Direct and referenced gas sensing configurations [10]

Figure 2.2 shows the emission and absorption bands of some gases in the mid IR

range. These spectrum signatures can be used to for gas detection. The prevailing

type of optical gas sensors works based on absorption spectroscopy. The basic

construction of the optical gas detector is schematized in Figure 2.3. The chamber

includes an IR light source, which give a normal input to the detector. In the presence

of a detectable gas, depending on its IR absorption, the attenuation is to be measured

by the detector. Figure 2.3 (a) and (b) give the two configurations for direct sensing

and referenced sensing. In the configuration of Figure 2.3 (a), the IR light is filtered

at the desirable absorption bands for the gas of interest, whereby it is usually called

non-dispersive IR sensors (NDIR) [11]. The measurement of the attenuation is based

on Beer-Lamberts Law as in 2.1: I(λ) where I0 and I are the light source intensity

and detected intensity (W/m2), respectively; α(λ) is the gas absorption coefficient

(L/gm); c is the gas concentration (g/L) and l is the optical path length (m).

log(I0/I) = c l α(λ) (2.1)
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The system design can take various forms with different choices of light source

and detector sensor types. Some implementations have been listed in Table 2.1. It

should be noted that these choices can vary the cost significantly, therefore affecting

their popularity in practical uses. The cost of the detectors may be reduce by CMOS

fabrication process through mass production driven by the high demand. However,

the whole system integration including downsized optical components, dedicated

light source and detection mechanisms and other peripherals would deter the cost

reduction. In addition, the mid IR sensor technology still faces the most prominent

challenge towards miniaturization, low-cost, and low power consumption, despite of

tremendous efforts previously [12]. Especially for fire detection based on wireless

sensor network, which is made more practical than ever during the era of IoT, low

cost and miniature is essential for mass distributed use.

Table 2.1: A collection of gas detectors
Emitter Detector type Wavelength (µm) Detected gas Reference
LED photo-diode 4.26 CO2 [13]
MEMS
heater

Bolometer 4.26 CO2 [14]

MEMS
heater

Pyroelectric 4.65/4.26/3.31 CO/CO2/CH4 [15]

MEMS
heater

Pyroelectric 4.26 CO2 [16]/[17]/[18]

Lamp Pyroelectric 4.66/4.26/3.33 CO/CO2/CH4 [19]
QCL HgCdTe

(photoconductive)
4.23 CO2 [20]

HeNe PbSe
(Photoconductive)

3.4 CH4 [21]

LED photo-diode
(InGaAs)

1.66 CH4 [22]

Laser PbTe
(Photoconductive)

3.31 CH4 [23]

DFB photo-diode
(InGaAs)

1.65 CH4 [24]

In summary, gas detectors are passive as the gases have to be transported to

11



the detector, which will always give rise to a time delay. These may not be an

issue for buildings with small compartments but will likely be less effective for large

space indoor or outdoor. According to the development of the state-of-the-art optical

gas sensors, the initial installation cost and the maintenance are still less economical.

Research efforts have been made towards the direction of low cost and high reliability.
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2.2 Fire detection based on radiation emission

The more conventional fire detection relies on detecting the substances involved during

the combustion process, for example smokes, various gases as mentioned in the last

section. Another approach is radiation-based, whereby the flame, as a radiation

source, the selected radiation spectrum is sensed and then processed. The most

common types of radiation detector are UV and IR detectors. This approach offers

fast response and detection effectiveness in large open space.

Figure 2.4: Detectors layouts for fire detection

As summarized in Figure 2.4, the traditional detection usually uses single or

multiple photon detectors to gather fire signature radiations. Then based on simple

logic, the alarm is triggered. Despite its improved sensitivity and reliability, it is

still subjected to false alarms in certain scenarios. Over the years, the advancement

of sensor fabrication technology, especially the success of monolithic CMOS, has

promoted the use of focal plane arrays for fire detection. This enabled a wide range

of options to exploit flame characteristics, including spectral properties, temporal

and spatial properties, shape, size, etc. Combining with the blooming in hardware

computational ability and machine learning algorithms, more feature fusion and

abstraction can therefore be realized. These new emerging technologies have the
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potential to bring robust fire detection to more practical scenarios.

2.2.1 Single or multiple photosensitive diodes

The combination of UV and IR detectors existed in literature a few decades ago

but usually with single or multiple photosensitive diodes. It was an improvement in

eliminating false alarm rates over the UV detector only system. The working principle

was the mutual exclusiveness: for non-fire sources emitting or reflecting UV does not

produce IR radiation; while for non-fire hot objects emit IR radiation but do not give

off UV. However, the problem was associated with the significant UV absorption by

aerosols such as smoke particles, water molecules, and other contaminants [25].

Figure 2.5: The complete spectral emission of hydrocarbon flames

The problems were circumvented by using dual IR detectors, monitoring the

CO2 peak from hydrocarbon flames at around 4.3 µm and the background at the

valley near 3.8 µm, as shown in Figure 2.5. At longer wavelength, those aerosol

molecules vibrational state does not overlap with the wavelength frequency, therefore

no absorption. The ratio of intensity from these two bands will be compared to infer

the presence of a fire. The main disadvantage, however, is the drastic attenuation

over distance, which give a ratio of unity at long distance. Other option also exists,
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Figure 2.6: Video fire detection road map

such as triple IR detectors, which works in three selected narrow bands with high

sensitivity, capable of detecting a range of gases. The inference to set off alarm is

based on digital signal processing [26]. It has been reported to be very robust in

the industrial environments, for instance offshore oil and gas, automotive industry,

aircraft hangars, etc. Its high cost and bulky design prevented its domestic or public

use.

2.2.2 Focal plane array: video fire detection

The focal plane array is just a technical nomenclature for camera image sensor, with

the indication that optics are used to focus the light on to a 2-D plane where the

image sensor is placed. Instead of just measuring the signal from a fire by single

or multiple units of photodiode, the camera sensors offer 2D line-of-sight integration

of the fire, from which a tremendous amount of data could possibly be extracted

for fire detection. It is a natural choice to resort to pattern recognition and machine

learning to deal with the huge amount of generated data. The video fire detection can

be coarsely divided into two groups: the rule-based expert systems, where features

are mostly engineered manually, based on which the decision is made, referring to
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Figure 2.6. Generally, features are extracted by means of image processing in the

aspects of image histogram, temporal behaviour and colour-based detection, etc. The

learning-based detection algorithms are to train a mathematical model to find the

presence of a fire in an image. Specifically, the model is just a function but can be

complicated to map the inputs (direct image or extracted features from image) to the

class label (fire or non-fire). In some learning-based algorithms, features are extracted

automatically from the trained function, for instance the recent convolutional neural

networks (CNN). Lines cannot be drawn distinctively for these two subdivisions as

modern fire detection systems are usually a mix-and-match to form a data processing

pipeline.
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2.3 Video fire detection

Due to the development in sensor hardware, embedded system and machine learning

algorithms, it is likely that video fire detection will substitute many other conventional

fire detection systems with significantly improved robustness and reliability at very

low cost. Previously mentioned flame detection can be very effective in specific

environment and some are mostly applied in a more static environment such as the

industry domain. Those deployments are more or less dedicated integration to the

plant layout. The reliability of those systems will likely to be reduced dramatically for

the use in common public area where many unexpected inferences exist. By contrast,

video fire detection provides the possibility of estimate and predict the scene base

on complex artificial intelligence algorithms. It should be reiterated that video fire

detection usually involves different stages of data processing, where each stage can

perform extraction, filtering or inferences. The final decision may be made according

to a system of criterion. Intelligent is an overstatement because whether or not to use

complicated and capable machine learning algorithms, it all boils down to the feature

selection and fine-tuning of the model to achieve automated recognition. Generally,

video detection algorithms can be categorized by the size of intake data, namely pixel-

wise, blob-wise and patch-wise. The pixel-wise algorithms compute features or label

individual pixels according to some measures. The following sections expands on the

main components of VFD systems, although it is subjected to changes in specific

cases.

2.3.1 ROI extraction and feature extraction

Modern cameras usually have large number of pixels, which generate a tremendous

amount of information per image, and this number will only increase as sensor
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technology evolves. However, in many detection cases, most of the information

contained in an image is not relevant to the object of interest. More information can

be a burden, especially for real-time applications. The throttle is at the processing

time of the algorithms with the input data. Therefore, a task to reduce the input

data while the relevant features are not compromised, becomes an essential stage for

pre-processing.

To this end, the first stage is usually to extract the potential fire patches

within the image, which is called region of interest extraction (ROI extraction).

Common strategies are colour-based extraction, moving object detection, flickering

for time series analysis, dynamic behaviours, texture pattern and other hand-crafted

descriptors, etc. A comprehensive review of the pre-processing for feature extraction

is as follows, whereby the advantages and disadvantages will be discussed.

2.3.2 Colour detection

Pixel-wise approach is among the most popular choices of the rule-based colour

isolation, as presented in [27], [28], [29], in which fire-like colour pixels were selected

by combined empirical relations in RGB and HSV colour space. The orange to red

colour of flame is natively represented by RGB colour space as the RGB colour filters

fitted to the camera can replicate any colour. However, more often than not, HSV is

used in addition to RGB colour space due to the fact that colour can be isolated from

illumination. By contrast, in RGB space, change in any channel values will alter both

the colour and intensity. The outcome of the colour algorithm from those research is

a subset of the image as potential fire candidates, which will be fed to the subsequent

stages of an algorithm.
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Figure 2.7: Rule-based colour model and curve fitting [30]

Moreover, [30] empirically determined three rules to select fire pixels: R > RT ,

R ≥ G > B, Y 1 ≥ S ≥ Y 2. S is the saturation in HSV space, as demonstrated in

Figure 2.7. Through experimentation, the colour value correlations are formulated

taking consideration of the illumination change of the scene. Similarly, [31] uses the

colour representation in RGB with saturation and intensity to form a colour matrix

of fire.

Other empirical rule-based filtering in colour space other than RGB and HSV

exists in literature, namely YUV [32][33], YCbCr, and Lab [34] colour space. For

example, [35] uses experimentally determined thresholds and rules to select fire pixels,

which bears the relationship as: Y > TY , |U − 128| < TU and |V − 128| < TV , where

Y is the luminance component; U and V are the chrominance components.

R > RT

R > G > B

S > (ST (255−R))/RT

(2.2)

The research work established in [36] combines SURF feature extraction with

rule-based colour model in 2.2 to generate features for fire detection. The first stage

was to select potential fire pixels based on the colour rules, after which wavelet based

local texture information were extracted using SURF. The feature vectors will then
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be fed into a SVM for classification.

Probabilistic colour modelling is another approach to detect fire colours, where

a set of training examples are used to extract the distribution in the corresponding

colour space. For example, the research in [37] used colour model combined with

temporal variation for each pixel to locate potential fire regions. Based on some fire

training images, the colour histograms of fire pixels in RGB channels were fitted by

Gaussian distribution with σ set to 2 in Eq(2.3). Then an empirical threshold was used

to the Gaussian smoothed histogram to generate a probabilistic colour check when

a new pixel is seen. Over a short period, an average of probability was generated

for all the pixels. After that the pixel is labelled as fire if this probability exceeds a

threshold.

hist(x)R/G/B =
1

σ
√
2π

e
− 1

2

(
xR/G/B−µ

σ

)2

(2.3)

The work from [38] also exploit the pixel-wise colour information as the first stage

of generating potential fire candidates. The colour information in RGB channels is

also modelled using Gaussian distribution using training examples. Based on the

generated probabilities of the pixels of new observations, instead of directly using

this probability, the authors normalized these over the maximum probability from

the training examples to construct a colour metrics. Finally, a threshold is used to

decide whether a pixel should be labelled as fire.

p (xi|µ,Σ) =
K∑
k=1

wkN (xi | µk,Σk) (2.4)

Because the colour interpretation by RGB colour space is sensitive to scene

illumination, a Gaussian mixture model using images from different illuminations

was trained in the work of [39]. Basically, the mixture model is a combination of K
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Gaussian distributions each with its own weight wk, as formulated in Eq(2.4). With

the help of Dirichlet Process and collapsed Gibbs sampling, the model parameters,

wk, µk, Σk, were obtained. For new observations, the model assigns a probability to

the pixels which will be assigned as fire if exceeding a threshold.

In the research work of [40], a fire detection system was proposed based on

common visible camera, which consists of six types of flame features: fire colour

probability, spatial wavelet energy, spatial temporal energy, flickering energy, dynamic

texture analysis and a spatio-temporal consistency energy. The system is rather

complicated by multiple intermediate stages, including pixel-based filtering, patch-

based processing. The stages can be generally categorized as ROI proposal stage,

feature extraction and verification and final decision making by SVM. In the first

stage, a manually constructed gaussian mixture model used to filter out fire-coloured

pixels. Then wavelet-based edge detection is used to compute spatial energy because

flame has more spatial variation than uniform flame-coloured objects. To further

distinguish fire-like objects from real fire, pixel-based temporal flicker energy is

calculated. The proposed ROI patch is then fed into a pre-trained linear dynamic

system, which then produces nonlinear features. The histograms of the extracted

features will finally be fed into a SVM for classification.

The ROI extraction used in [41] is solely based on rule-based colour model similar

to the method used in [36]. The texture analysis and statistical moments of potential

fire patches are then feed to a SVM for classification. Similarly, the work in [42] used

a slight improved colour threshold in RGB colour space for initial ROI extraction. A

neural network is trained using blue variation to segment foreground moving regions.

The final decision is made based on the growth of the ROI from previous stages in

three consecutive frames.
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The research established in [43] applied a supervised k-nearest-neighbour

algorithm to model the background in order to isolate moving targets. Then simple

colour threshold in red and value channel of RGB and HSV colour space respectively

is used for further potential flame filtering. The value channel ROI is used for

histogram of oriented gradient (HOG) extraction, where local gradients are computed.

Combining with local binary patter for flame texture feature, a SVM is used for

classification.

In summary, colour model for fire-like pixel extraction is the most popular choice

in literature. The colour of naturally occurred fire mostly a mix of yellow, orange and

red. This distinctive feature is very intuitive and easy to be implemented. The main

categories of colour detection are rule-based thresholding and probabilistic modelling.

In terms of computation complexity, they are all capable of real-time scenarios. The

only difference among these methods is that the probabilistic colour model requires

training and fine-tuning before the actual deployment. Whereas the rule-based model

is just off-the-shelf. It should be noted that many objects have similar colours to fire,

which will also be selected as fire candidates. Therefore, the subsequent filtering is

necessary to narrow down the ROI selection.

2.3.3 Moving region detection and dynamic features

Fire wobbles because of the buoyancy and the generated turbulence, making it

move randomly and consistently. Popular methods for moving region detection are

background subtraction, frame temporal difference, and optical flow. In addition,

much research targeted the motion as dynamic features as one of feature selections

for both fire and smoke. In comparison with pixel-level colour features, the dynamic

features are extracted from patches, where certain geometric measures are used for
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interpretation. In the background subtraction method, a reference image needed to

be estimated. The reference image is strongly affected by the complexity of the scene,

especially in cases where lots of movements are involved. Therefore, the result from

background subtraction can be very noisy.

Bn+1(x, y) =

{
αBn(x, y) + (1− α)In(x, y), (x, y)stationary

Bn(x, y), (x, y)moving
(2.5)

The use of background subtraction as in the work by [44], constantly updating the

estimated background image Bn+1, where a is a time constant determining how long

to update the background image. The moving region is then obtained by subtracting

current frame by Bn+1 in Eq(2.5). Similar methods have been used in many other

research [45], [46], [47], [48]. This approach requires the camera to be static. Optical

flow based moving region detection was also reported in the study by [49], [50].

The research by [51] focuses on the detection of smoke by moving region

segmentation extract in addition to dynamic features. The background of an image

is estimated using a Gaussian mixture model. The dynamic feature is computed from

the rate of change in frame difference.

The study in [52] used randomness of area size of the extract patch as a feature,

where the difference in patch area size of two consecutive frame was normalized by

the patch area from current frame. A threshold is then used for decision.

Wavelet based temporal behaviour of fire can also be useful features for detection.

It has been reported that common flames usually exhibited a flicker frequency of 10

Hz [44], [48]. However, due to the erratic nature of flame flickering, the extracted

frequencies disperse over the range of 0-10 Hz, as shown in Figure 2.8. Therefore,

this is not viable to detect fire using a specific frequency. A more practical choice is

to monitor high frequency band, for instance 5-10 Hz [30].
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Figure 2.8: Flame flicker frequency spectrum, showing a flame oscillates at random
frequency within 0-10 Hz [53]

For smoke detection, wavelet-based energy can be used to isolate smoke region.

[46] extracted the variation of the contour of the ROI to the centroid as signals for

separating the smoke from the background. Because smoke smears the edges in an

image, which will show a drop of energy in frequency domain. The ratio of the patch

energy and the background energy is used for identifying smoke region, as shown in

Figure 2.9.

Figure 2.9: Energy ratio of foreground region and background; left: no smoke, right:
presence of smoke [46]
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2.3.4 Decision-making: machine learning methods

The detection of a fire in the scene is a task of recognition through algorithms based

on some extracted features from the images. The types of features for recognition

can vary greatly. Most common features to extract from an image are usually the

colour information, object geometric properties and so on. For videos, variations

over time can be captured to temporal analysis. In addition, the images of objects

captured in spectrum other than visible light can be dramatically different from our

intuition. This is because the material properties have different interactions with

lights of different wavelengths.

The use of machine learning algorithms is to exploit signal features of the subject

to help the recognition. Image is just one kind of signals but with a 2 dimensional

layout. The research by [54] proposed a systems of three neural networks, which

intakes the frequency spectrum in a time window of signals from four IR sensor;

the core feature exploits on the flickering frequency (1-20Hz) of the flame, which is

distinguishable from other objects. Each network corresponds to one identified false

alarm sources. The work by [55] trained a CNN with a SVM for classification of fire

and hot objects in the long wavelength IR spectrum. Optimal mass transport optical

flow was used as a feature descriptor of flames in [56], which was combined with

R,G,B values as input for subsequent neural networks for classification. The research

by [57] trained a CNN based on normal RGB images for fire detection, leveraging

the public surveillance system. In the work of [58], CNN models were used for fire

detection with unmanned aerial vehicle, where several popular CNN architectures

were adopted and compared. A Bayesian classifier was employed to distinguish fire

from non-fire, which utilised colour and geometric features of the visible image of the

fire [59].
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In modern video fire detection, after feature selection and extraction, it always

comes down to how to recognize the fire. In this case, it is a binary classification

to distinguish fire from non-fires. As enough examples are collected, the extracted

feature can take some distinctive distributions.

Figure 2.10: Nonlinear feature mapping using kernel function; left: feature space,
right: transformed space

For a simple illustration with two dimensions in Figure 2.10 left panel, the fire

and non-fire data has the distribution as shown. The classification task is to draw a

line, linear or not, to separate each class. Lots of machine learning options available

to perform this task. The performance of which is sometimes not dictated by the

algorithm itself, but by the data available and other practical considerations.

2.3.4.1 Support vector machine

Support vector machine (SVM) was first introduced by Cortes and Vapnik in 1995 for

the purpose of two-group classification problems [60]. Referring to Figure 2.10, the

algorithm is to determine a function f(x) to divide one group from the other, which

take the form as in Eq(2.6):

f(x) = wTϕ(x) + b (2.6)
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From training, the weights w and bias b are obtained by convex optimization. The

form of this equation indicates a linear hyperplane. With the kernel function ϕ(·), the

original feature space is transformed into non-linear higher dimensional space where

those transformed features are easily separable, as demonstrated in Figure 2.10 right

panel. The popular choices of kernel functions ϕ(·) are linear, polynomial and RBF

(radial basis function) as formulated in Eq(2.7):

Linear kernel: ϕ(xi,xj) = xT
i xj (2.7a)

Polynomial kernel: ϕ(xi,xj) = (xT
i xj + 1)p (2.7b)

RBF kernel: ϕ(xi,xj) = e−γ||xi−xj ||2 (2.7c)

The SVM for classification algorithm is essentially to find an optimal hyperplane

with soft margins to separate the data classes, by means of numerical optimization.

For a perfectly linearly separable case, the objective of training a SVM is to define

the optimal separating hyperplane H0 that has greatest margin from the closest data

points, i.e. d in Figure 2.11. Those data points lying on the marginal planes are

support vectors.
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Figure 2.11: Finding the optimal hyperplane by maximizing the margin d, the data
points lying on H1 and H2 are support vectors [61].

For points lying on the upper marginal plane or lower marginal plane, the

expression of the hyperplane H0 evaluates to positive or negative one, respectively.

The expression of margin d is obtained by calculating the shortest distance from the

point vector to hyperplane H0, taking the expression as in Eq(2.8):

d =
w

||w||
· x +

b

||w||
(2.8)

The margin d is dependent on the normal vector w and the bias b of the hyperplane

H0. d is then assigned with a direction by multiplying the class labels yi to the

first term. The algorithm boils down to an optimization problem that tries to solve

for the optimal separating hyperplane, which is defined by normal vector w and

bias b, to give the largest margin d. To simplify the process of solving the above

formulation, through mathematical manipulation the question is reformulated into a
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convex quadratic optimization problem, taking the form as in Eq(2.9):

minimize
w,b,ζ

1

2
||w||2 + C

m∑
i=1

ζi (2.9a)

subject to yi(w · xi + b) ≥ 1− ζi (2.9b)

ζi ≥ for any i = 1, ...,m (2.9c)

The addition of ζ is a compensation for data points that cannot meet the

constraint. If ζ is exceedingly large, all examples will satisfy the constraint, rendering

the classifier not classifying anything.

2.3.4.2 Neural networks in general

The idea of neural networks originated in the 1940s, inspired by the biological process

of the brain [62]. However, it was made practical in the 70s and 80s by the introduction

of backpropagation for training, from which the gradients of the objective function

with respect to the weights are computed for update [63]. The typical structure of a

neural network is shown in Figure 2.12. The input vector is passed to corresponding

nodes by taking the inner product of the weight w, which is then transformed

by a choice of nonlinear function before passing to the next layer. This function

maps the input from the above layer to the required range, such as [0, 1] or [−1, 1].

This nonlinear function is called activation function. The nonlinear mapping of the

input data enables neural networks with deep enough layers can mimic any complex

functions.
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Figure 2.13: Schematic diagram of a perceptron with formulations: decision function,
objective function, and weight update [65].

Figure 2.12: Feedforward neural network with two hidden layers [64].

The elemental unit of neural networks is perceptron, which is illustrated in Figure

2.13 with mathematical expression. A perceptron can be used as a logic function to

represent the fundamental Boolean operator, such as AND and OR with appropriate

weights and bias. The output of a perceptron is based on thresholding of the decision

surface evaluation. Multiple of perceptrons can interpret any Boolean operations.
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Figure 2.14: Common choices for nonlinear activation functions: Sigmoid, tanh,
ReLU , Leaky ReLU [66], [67].

Even an interconnected network of perceptrons is still linear in nature, bounded

by linearity of the expression of f(x) = w ·x+b. To model more complicated function

mapping, the nonlinear capability is essential. An extra activation unit is added so

that its output is nonlinear of its inputs. Meanwhile, such function should also be

differentiable that the gradient-based update is operable. The earliest choices are the

logistic sigmoid and hyperbolic tangent, as stated in Figure 2.14. However, they are

depreciated over the years after deep learning becomes prevalent. This is because as

the network gets deeper and denser the flat part of these functions gives very small

gradients during the weight update, which will make the training process very slow

for practical use [68].

With added nonlinear activation function to the dot product, it forces the weighted

sum to be interpreted as conditional probability: P (y = 1|x), meaning the probability

of being in class y given the data x. This turns a perceptron into a logistic classifier,

which is the fundamental building block of a neural network, which is shown in Figure

2.15. Noting that the classification is based on probability thresholding on the output

of the activation function, it is a binary classifier.

To train the classifier, a cross-entropy loss function is used to measure the
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Figure 2.15: Schematic diagram of a logistic classifier with formulations: decision
function, objective function, and weight update.

difference between predicted ŷ and true label y, using the objective function LossCE.

This loss function comes from the fact that the likelihood of a binary classification is

describe by Bernoulli distribution, which take the form of P (y|x) = ŷy(1− ŷ)1−y. The

gradient update of w and b are computed by taking derivatives of log likelihood of

the loss function, which is called conditional maximum likelihood estimation. LossCE

is essentially a convex function, where a global minimum can always be achieved.

Logistic regression is similar to linear SVM as both have w · x + b for a decision

hyperplane separating the two classes. In nonlinear cases, they both employ a

nonlinear function to transform the input vectors into higher dimensional space where

the data is linearly separable. However, the way to determine the weights and bias

is different. In SVM, the expression is found based on support vectors which is a

subset of all training examples. Whereas the logistic classifier uses gradient descent

by minimizing the log likelihood with respect to the weights to update the weights

and bias. The gradient update is computed using all training examples. To use
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Figure 2.16: Schematic diagram of a multi-class logistic classifier with softmax
function [69]

logistic regression for multi-class classification, the classifier will produce a vector of

probabilities with the same dimension as the number of classes k. This is achieved

using a nonlinear softmax function as shown in Figure 2.16. Its denominator is a

normalization of the probability of each class to have a range of [0,1]. Similarly, the

weights are updated by gradient descent using cross-entropy loss, but derivative are

taken with respect to each class.

A neural network can be regarded as many logistic classifiers stacked together in

an organized structure, without the step function for thresholding, as shown in Figure

2.12. The layers in between input and output layers are called hidden layers. It is

also called feedforward network because the outputs from of a unit is passed to the

next layer only.

It should be noted that the output layer in the figure is a vector of real numbers.
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Figure 2.17: Schematic diagram of backpropagation to update neural network
parameters [59].

Probabilities for each class for classification can be computed using the softmax

function. Same as previously introduced, the learning is based on the updates of

the w and b using gradients of the loss function. Since neural networks have multiple

layers, the gradient is first computed from the output layer and propagate to reversely

to the input layer. This is the key to make the practical use of neural networks in the

late 80s. As illustrated in Figure 2.17, the partial derivatives are taken with respect

to the intermediate parameters using chain rule. The weights are updated iteratively

until the loss is minimized according to some criterion.

2.3.4.3 Convolutional neural network (CNN)

Convolutional neural network can be think of as an extension of the traditional neural

networks with integrated feature extraction component. A typical architecture of a

CNN is shown in Figure 2.18. It is more convenient to deal with 2D or 3D data
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comparing to traditional neural networks, which takes 1-D vector as input. The main

components are convolutional layer, pooling layer and fully connected layer. From the

functional point of view, the network can be divided into two parts: feature extraction,

and fully connected neural networks for classification. In the feature extraction layers,

convolutional and pooling layers with a nonlinear activation layer in between forms

a basic unit.

In the convolutional layer, a number of filters has corresponding patches of the

previous layer, where the feature maps are formed by taking the convolution and

passed to activation function. This is just the same as using filters to detect edges in

image processing, but the difference is the parameters of filters in CNN is obtained

by training through optimization. The number of filters and filter size are usually

determined through trial and error. As shown in Figure 2.18, the filter sweep

over the input from the previous layer, then produce a convoluted map, which is

then applied with a nonlinear activation function element-wise to generate a feature

map. A pooling layer is used to down-sample the output from the convolutional

layer thereafter. These together forms a structure, which can have many repetitions

depending on the architecture design.
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Figure 2.18: Schematic diagram of LeNet model for CNN illustration; lower left:
convolution layer, lower right: pooling layer for down-sampling [70], [71].

The output of the feature extraction part will be flattened to a 1-D vector for the

subsequent neural network for classification, which is usually called fully connected

layer. The fully connected layer is the same as the traditional neural networks as

elucidated in previous sections. The choice for classifier is not limited to softmax

for a probabilistic interpretation at the end of the neural networks. Training of a

CNN is just similar as a regular neural network by backpropagation, where the only

difference is the addition of trainable weights in the filters. As deeper it gets in the

feature extraction part, the size of the feature maps from each layer shrinks because

of the down-sampling, whereby the features are more focused on the details.

In summary, the fundamentals of SVM and neural networks have been explained.

As a variant of the traditional neural network, the CNN is also discussed. In terms

of similarities for classification, they both use nonlinear functions to map the input
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into higher dimensions to generate nonlinear decision boundaries. However, they are

fundamentally different regarding how the decision boundary is obtained through

optimization. For neural networks, backpropagation is used to update the weights

iteratively by taking partial derivatives until the cost function is minimized. By

contrast, SVM is more geometrically motivated [72], where an optimal separating

hyperplane is found by maximizing the margin using a subset of the data called

support vectors.

The training for these algorithms is essentially an optimization problem. For

neural networks, gradient based optimization is used to minimize the cost function.

As presented in previous sections, solving for SVM is a convex quadratic optimization

problem subjected to inequality constraints. Solving the constrained optimization

requires Lagrange multiplier, from which the weight w and bias b is obtained [73]. In

comparison, the cost function of a logistic classifier is quadratic, and its optimization

is convex, which means a global minimum is guaranteed. However, its interconnection

to form a neural network render the cost function non-convex even though the cost

function bears the same quadratic form. This is because of the nonlinearity of the

function ŷ(x) that maps the inputs to output class labels. Neural networks are always

thought to be stuck in local minima as its not convex. However in practice, it is usually

not a problem.

Another major difference is the integration of feature extraction functionality

to the classifier for neural networks. Whereas SVM is by itself a classifier. As

previously explained, features are generated from the data through the intermediate

layers (hidden layers), which is fed into the final classifier (softmax). CNN is the

same but with spatial feature extraction by 2-d filter bank. Neural networks are

designed to take raw data directly, especially for the case of CNN (images as inputs).
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Once it is trained, the features are automatically extracted. For SVM, features are

usually extracted manually according to domain expertise before feeding to the SVM

for classification. It is viable to replace a softmax classifier by a SVM for a neural

network.

In practice, the choice of a classification algorithm depends on many factors. The

most significant one is the amount of available data. For example, the CNN model

in [70] has 60000 trainable parameters. The network is trained on 60000 examples of

handwritten digits images having size of 32x32. The large number of parameters needs

to be trained to achieve desirable performance. To device a neural network model for

specific task, one crucial question before undertaking is whether enough data from

the task domain is provided. This gives an edge of SVM over neural networks because

generally SVM will perform very well with small dataset, which will usually intake

manually crafted features from the dataset. However, if the dataset is abundant,

training a neural network is actually faster than training a SVM. This is because the

optimization process requires the computation of the Gram matrix that measures the

similarity of every data point pairs by taking inner product. The memory requirement

of this matrix scales quadratically with respect to the number of training examples.

Moreover, SVM is more deployable than neural network models. The structure

and combination of layers is determined through iterative experimentation. Not only

fine-tuning the hyperparameters is workload-intensive, but the training requires many

practical tricks to achieve a good balance of the variance and bias trade-off to avoid

over-fitting. For example, adding batch normalization to re-centre the output of each

layer can accelerate the training speed [74]. Another practical trick is dropout, which

randomly shut down the connections at nodes to avoid over-fitting [75].

38



2.4 Video fire detection in IR spectrum

The use of IR cameras for fire detection is significantly different because objects

appear differently in terms of image texture. Especially in the long wavelength IR

range, some objects in the image are bright because of their own radiation coming

from the vibration and rotation bands of the molecules. Figure 2.19 demonstrated

some sample images captured by the longer wavelength IR detectors. The overall

image is more artificial than intuitive.

Figure 2.19: Long wavelength IR images; top left: MWIR, nBn InAsSb FPA [76]; top
right: uncooled V Ox microbolometers LW IR [77]; bottom left: MWIR, nBn InAsSb
FPA [78]; bottom right: MCT, mercury cadmium telluride (HgCdTe), liquid argon
cooled [79].

The use of IR detectors for video fire detection is scarce. The main reason could

be the high cost comparing to common silicon-based CMOS image sensors. Despite of

significant advancement in image sensor fabrication technologies, IR camera sensors

are still significantly more expensive. Almost all the existing fire detection research

used microbolometer based IR detectors. Even the most cheapest such IR cameras

are more expensive than its visible counterpart, not to mention they have much lower
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Figure 2.20: Fire images captured by long wavelength microbolometer IR detector
(7-14µm) [80], [81], [53].(The red highlights were post-processed in the reference, not
the original captured image.)

resolutions. In addition, from image processing point of view, the properties of a

flame in different IR spectrum are not well understood. Figure 2.20 shows the images

of flames by microbolomer IR detectors.

2.4.1 Long Wavelength IR fire detection

The work by [82] used an IR camera operating in the long wavelength band of 8-12 µm.

For detection, the ROI extraction stage combines adaptive thresholding and centre

of gravity analysis. Two experimentally determined thresholding were proposed to

generate heat source and hot source region as in Eq(2.10) and Eq(2.11):

THheat = Iavg + 2Istd (2.10)
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THhot =

{
0.5(Iavg + 3Istd) + 0.5IY max : ifImax < Ilmax

0.5(Iavg + 3Istd) + 0.5Imax : otherwise
(2.11)

Then the distance of the centres of gravity of each regions were calculated and

thresholded empirically. Regions went through this ROI stage will then be fed to

temporal texture variation analysis. All of these features were finally used for decision

making.

A long wavelength camera was used for fire detection in the research by [83]. The

type of camera was microbolometer with sensitivity of 7.5 to 1.3 µm, and a resolution

of 160x120. The foreground is separated by Otsus method, which will produce ROI

containing human, fire and other higher temperature objects. The discrimination

among those extracted objects is by tracking the centroid of the ROI contours.

The combination of multiple spectrum can promote feature extraction. For

example, [81] combines a long wavelength camera with visible camera. Because of

the large difference of intensities between human and fire, a histogram roughness is

used as a feature. The histogram for fire has a wider span while that of human has

a spike at lower intensity range. In addition, the temporal variation of the intensity

range of the ROI is also used because human exhibits an almost uniform and small

range of intensity.

A neural network was used in the research by [80], where a CNN model was trained

for feature extraction. Then the features are fed to a subsequent SVM for further

classification. Data augmentation by horizontal flipping and adding salt and pepper

noise, whereby the training dataset was enriched. A very high performance of the

trained model has been reported. The IR camera used is FLIR-A310 320x240 V Ox

microbolometer based detector.

Another research used similar long wavelength IR camera where a FLIR camera

41



with 160x120 resolution was employed [53] . The first stage was an experimentally

determined threshold to isolate local maxima as potential fire candidates. The

reported extracted ROI were fire and people in the tested cases, which were shown in

Figure 2.20. The discrimination was made by comparing wavelet domain energy ratio

of ROI contours, because of the random movement of a flame than relative steady

movement of a human. By incorporating wavelet based flicker frequency, a hidden

Markov model was trained.

2.4.2 Choice of IR detectors for fire detection

Infrared sensors can be particularly useful for fire detection because the flame emits

more energy in the infrared spectrum as illustrated in Figure 2.21. According to

Plancks blackbody radiation curve, for a typical fire temperature, the curve should

lie in between 1000K and 2000K. By integration of the curve, the amount of energy

emitted in the visible spectrum is much more than that of visible light (shadowed

region). As the temperature of the blackbody decreases, the curve peak shifts towards

longer wavelengths.
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Figure 2.21: Blackbody radiation curves at low temperatures [84].

The infrared spectrum has a wide span, within which one may have to resort

to specific sensors for IR sub-band imaging. The whole of infrared spectrum is

conventionally divided into several sub-bands, namely Near-IR (700-1400 nm), short-

IR (1.4-3 µm), mid-IR (3-7 µm) and long-IR (7-14 µm). For the sake of fire detection,

considerations of the choice of sensors are important because of the atmospheric

absorption caused by CO2 and water molecules. From Figure 2.22, the atmosphere

has good transmission for spectral windows in NIR band, mid-IR, and long-IR.
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Figure 2.22: The atmospheric transmission with respect to wavelength.

The type of sensors used in literature to detect long-infrared radiations is, without

exception, silicon-based microbolometers, simply because of its relative lower cost

compared to short and mid uncooled IR detectors. The advance in CMOS monolithic

fabrication with silicon makes it possible to produce high quality microbolometers

in batch, therefore at much lower cost [85]. However, the cost is still high enough

to hinder its prevalence. In addition, through this fabrication process the produced

sensors achieved higher dynamic range and better linear response, which is suitable

for a variety of applications [86]. The most common materials in the fabrication of

microbolometers are V Ox, αSi and silicon diodes.

According to the best of the authors knowledge, there is not a single case in

literature using the mid-IR spectrum for fire detection. The main reason would be the

tremendous cost of those detectors; not only do they have higher price in fabrication

but the required cooling adds more cost. For safety surveillance, the amount of

deployment of the thermal cameras can be huge, which in turn the cost-effectiveness

is a necessity. Common types of mid-IR detectors are: InSb (indium antimonide)

and HgCdTe (mercury cadmium telluride). The InSb photodiode is sensitive to the
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spectrum of 1-5 µm, which has to be cooled to a temperature range of 77 to 160K

with optimized quantum efficiency [87]. The main application of this type of detectors

is for low-background astronomy applications [88]. On the other hand, the HgCdTe

detectors have a much wider range of sensitivity compared to InSb, covering from 1

to 20 µm from SWIR to LWIR. Depending on the choice of doping and substrate to

fabricate the HgCdTe sensor array, its sensitivity can be tuned to specific sub-bands

[86]. Then for each dedicated sensitivity range, its corresponding cooling strategies

should be applied. The main application of such a detector is also for astronomy

observations.

Apart from the advantages offered by using infrared detectors, there are

some drawbacks worth considering for the system design. Using different sub-

band detectors in the IR spectrum could give very distinctive appearance of

the environment, where disturbances come from different sources. For example,

background thermal radiation can produce false alarm in the spectrum above 5 µm

[89]. This is because objects at lower temperature in the surroundings will emit

considerable thermal radiation, rendering many objects looking saturated. This is

very obvious from the provided thermal image examples. In contrast, in shorter IR

spectrum from 1.0-3.0 µm, most of the disturbance comes from sunlight reflections.

The use of Long wavelength can be very effective in ROI extraction because flame

will always have high intensity comparing to the background. The resultant image

is readily bi-modal to make Otsus method very effective. However, more processing

and decision making will be intended to discriminate fire from other bright objects.
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2.5 Sensor hardware: focal plane array

Focal plane array is a general terminology of an imaging system, which means an array

of detectors located at the focal plane of an optical imaging system. The electrical

signals generated by the detectors, whether from photoelectric or thermal effects,

have to be digitized through electronic readouts. The combination of detectors with

electronic readouts forms the fundamental architecture. The advances in fabrication

have enabled the focal plane array to be made in a monolithic manner. Specifically,

in monolithic fabrication, the signal readout circuits are integrated into the detection

material. The arrays can be produced in bulky pieces with less production stages,

increased yield and lower costs. The two well-known imagers from silicon fabrication

technologies, namely charge-coupled devices (CCD) and complementary metal-oxide-

semiconductor (CMOS) imagers, are realized in this monolithic approach. Therefore,

CMOS and CCD are different approaches to transform the generated charges from

photosensors to digital signals. This transformation is realized by the readout

integrated circuits (ROIC) [90]. The basic element for CCD is the MOS capacitors

while MOSFET is for CMOS.

2.5.1 CMOS vs CCD

After the electrons generated from photoelectric effect, they need to be stored

and transported for subsequent digitization. In CCD detectors, the pixels provide

potential wells from the applied voltage clocking to achieve electron charge storage

and transportation. The clocking performs the timing of the applied voltage to shift

the charges to an output amplifier. As shown in the figure below, the elements for

clocking are the phases, which can be regarded as charge manipulator. The silicon

layer located below the phase layer confines the generated free charges. As the clocking
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calls upon each phase, the corresponding charges will be shifted. This charge shifting

process is illustrated in Figure 2.23. Then the output amplifier transforms the charge

into voltage. Finally, the chain of voltage output is converted into 2D images through

external electronics. The common types are 2, 3, or 4-phase CCDs, where each phase

is connected to a separate external voltage sequence.

Figure 2.23: CCD charge integration and shifting architectures: (a) charge readout
process; (b) 3-phase charge shifting process

While CCD sensors require external readout and controls, CMOS has the control

transistors integrated. The whole control circuits are realized in several metalization

layers. The integration of control circuits provides the on-chip processing ability for

CMOS sensors. Functionalities, such as setting the exposure time, converting charges

to voltage and readout timing, are all done within the sensor array.

Since the release of back-illuminated CMOS image sensors from SONY, it soon
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Figure 2.24: Magnified cross-sectional view of CMOS image sensor pixel [91]. left:
front-illuminated CMOS pixel; right: back-illuminated CMOS pixel.

became dominant in the portable device market [91]. Comparing to the traditional

front-illuminated CMOS sensors, they have superior quantum efficiency compared

to frontside illuminated sensors. The Figure 2.24 shows the magnified comparison

of frontside and backside illuminated CMOS sensors. The active photodiodes are

embedded in the silicone substrate layer. The metallization wiring layer, containing all

the control circuitry, is placed below the diode layer, giving a closer contact with the

micro-lens layers. This is a natural choice to improve the sensors quantum efficiency

because there are less obstacles to reflect, block or scatter the incident lights.

Silicon detectors are innately sensitive from UV to NIR. With the back

illumination configuration, it can even be used to detect soft X-rays. However,

towards longer wavelength, a sharp drop of quantum efficiency usually exists at around

1100 nm. The reason is low photon absorption due to its indirect band gap. Different

materials have different photon absorption depth as a function of wavelength. For

silicon, the absorption length of photons near 1000 nm is significantly larger than

that of shorter wavelengths, as depicted in Figure 2.25. To provide efficient detection
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in the NIR region, the thickness of the silicon layer needs to be at least 100 microns.

However, most silicon sensors are produced with thickness of 10-20 µm.

Figure 2.25: Photon absorption depth and energy in silicon [86].

In summary, CMOS image sensors became more popular than CCDs. CMOS

sensors have more complex architecture than the CCDs. Despite the superior

sensitivity and quantum efficiency of CCDs, the demand for low-power with on-board

processing ability is one of the reasons for the increase of CMOS sensors.
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2.5.2 Infrared detectors

Figure 2.26: General spectral response: photon detectors vs thermal detectors.

In general, IR radiation detectors have two categories according to the sensing

mechanisms: photon detectors and thermal detectors. Photosensitive detectors

usually have wavelength dependent spectral response for different materials, while

it is uniform for thermal detectors, as illustrated in Figure 2.26

Figure 2.27: Sensing mechanisms: photon detectors vs thermal detectors [86].

2.5.2.1 Photon detectors

For photon detectors, the material absorbs the incident radiation through the

interaction with electrons in three forms: electrons bounded to the lattice atoms,
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bounded to impurity atoms or free carriers. When the energy of the incident radiation

exceeds the band gap energy of the material, electrons will be ejected from the

material. The strength of this interaction give rise to the difference in the generated

photo-current, which is fundamentally wavelength dependent, as shown in Figure 2.25.

Based on the different interaction mechanisms, photon detectors can be categorized

mainly as: extrinsic, intrinsic and photo-emissive detectors [88]. The mechanisms of

generating electrons are shown in Figure 2.27. The emitted electrons are the primal

constituents to form an image.

2.5.2.2 Thermal detectors

Unlike photon detectors, which rely on photoelectric effect to generate electrical

signals, thermal detectors absorb the incident radiation to change the physical

properties of the material. Usually, the temperature, resistance or electrical

polarization of the sensing material is changed, which is then used to generate

electrical signals. A schematic diagram of the structure of a typical thermal detector

is shown in Figure 2.27 right panel.

In general, photodetector type of IR sensors at longer wavelength range usually

needs cooling systems in order to be functional, as shown in Figure 2.28. By contrast,

thermal detectors do not need cooling. Most of the IR detectors that requires cooling

is used for in the field of defence and astronomy. The materials used for IR detectors

are mainly semiconductor and alloy based. Based on their properties, different doping

and use of substrates and architecture design vary. For example, HgCdTe alloy based

detector has a adjustable band gap, which provides great flexibility for the design

with respect to different infrared spectrum from short IR to very far IR [92]. Many

of the IR detectors have dedicated market targets, which requires bespoke design and

fabrication process.
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Figure 2.28: IR detector materials and operating temperature [86].

Silicone based uncooled microbolometer is the most popular IR detector

comparing to others. It was a breakthrough for long wavelength IR detectors to

operate at room temperature. In addition, they can be produced in large volume in

monolithic structure based on CMOS fabrication technology, therefore relatively low

cost. A hand-hold microbolometer camera for maintenance and inspection can be

purchased nowadays with under 1000 dollars from FLIR [93].

The core component of the sensing unit in a microbolometer is the absorber, as

illustrated in Figure 2.29. The absorber has a very small heat capacity and a large

thermal coefficient, whereby the incident infrared radiation raises the temperature of

the absorber. This then generates a large change in resistance, which is detected as

a change of current. The commercial microbolometers are mostly made from V Ox,

amorphous silicon or silicon diodes, among which the V Ox bolometer is the dominant.

The trend for microbolometers is to reduce the pixel size, which is the main limiting
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Figure 2.29: Illustration of microbolometer pixel structure [93].

factor than the sensitivity. However, as microbolometer is thermal detector in nature,

the response time of the material becomes a compromise with sensitivity [94].
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2.6 Fire detection in different scenarios

Based on the type of information gathered from the event of a fire, different machine

learning algorithms may be in favour. The detection of fire can rely on algorithms

to process a fusion of information gathered through ad-hoc wireless sensor networks

(WSN). The problem associated with this technique is the redundancy of data flow

gives a heavy network working load. ,The research by [95] tested a hybrid method

combining k-means clustering with feed-forward neural network, Naïve Bayes and

decision tree respectively. This approach achieved higher fire detection accuracy with

reduced data complexity. The sensorial data was collect by four types of sensor,

namely temperature, ionization, photoelectric and CO gas sensor, having the ability

to distinguish smouldering from flaming.

J =
k∑

j=1

∑
X∈Sj

||X − µj||2 (2.12)

The algorithm computes the mean and radius of the clusters by minimizing square

of the Euclidean distance as in 2.12 (J in the objective function, also called distortion

measure) between the data points and assigned centre of the clusters, iteratively. The

k-means cluster algorithm is used as a pre-processing tool to reduce data redundancy.

Only the data within the predefined clusters will then fed to the classifier.

In the case of heavy data workload scenario, machine learning can be an effective

way to process the data and make inference. It can be handy comparing with

manually engineered features when the data is overwhelming, because the process

involving feature extraction and selection may require extensive trial and error. In

addition, the choice for the decision-making process should also have a good match to

the manually selected features, which entails further experimentation. As previously
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Figure 2.30: Illustration of wireless sensor network (WSN) [96].

mentioned, neural networks have the ability for the integration of feature extraction

and decision making, the only thing needed to be done is the selection of structure

and fine-tuning the network. This is especially the case for wireless sensor network-

based fire detection, where various types of sensors are integrated to generate data.

[94] proposed using neural network for forest fire detection by combining smoke

sensor, CO and CO2 sensors, air temperature and humidity sensors. The system

was able to detect smouldering and flaming conditions according to the different

gas concentrations. For flaming condition, CO2, H2O, NOx and SO2 are primarily

produced while CO and CH4 are dominant from smouldering.

The sensor network schematic diagram is shown in Figure 2.30. The unit in each

node is an integration of processing chips, solar panel, GPS, and all the previously

mentioned sensors. The trade-off between nodes distribution and communication

efficiency was reported. Similar research was also reported by [97], where an FPGA

unit is used to integrate sensors and neural networks.
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2.7 Passive NIR instrumentation in literature

Even though the spectral properties of CO2 and H2O consists a major part of the

emission spectrum of the combustion products, especially for the case of non-luminous

flames, the use of such information for combustion diagnostics is still limited. These

two products have banded emission and absorption spectrum in the infrared domain.

For the sake of temperature measurement of flames, several popular techniques exist,

which can be divided into two categories: measurement of luminous flame (sooty

flame) and non-luminous. The most conventional approach is to used thermal couples,

which is known for its slow response and intrusiveness. In addition, the measured

temperature by this approach may differ from the actual flame temperature because

of the catalytic activity of the coating on the thermocouple [98]. The thin-filament

technique and two-colour pyrometry are also available to determine flame temperature

[99][100][101]. The thin-filament material is ceramic made of silicon carbide (SiC),

which is regarded as grey body with known emissivity. This is especially useful for

measuring non-luminous flames. The measured temperature can be derived from the

measured intensity of the filament in the flame after calibration.

The measurable range of such techniques predominately depends on the sensor

spectral sensitivity and the choice of the bands. For example, if a silicon-based

CMOS sensor is used, the sensitivity range is up to 1100 nm, will yield a measurable

temperature of 375 Celsius with two-colour pyrometry. In terms of practicality, the

sensors response at those two narrow bands can be too weak in lower temperature

scenarios, which will require longer exposure to obtain usable response. Therefore, its

use for more dynamic combustion is limited. The better choice for such case, would

be to use a sensor that is sensitive to longer wavelengths, such as InGaAs or silicone

microbolometers. To circumvent the limited sensitivity of silicon-based CMOS sensors
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with two-colour pyrometry, the banded thermometry can be used. In this approach,

a short band of spectral response is collected. However, the uncertainties come from

the integration of emissivity for the temperature inference. For precise measurement,

the emissivity as function of wavelength and temperature is required, which is usually

a difficult task.

For a non-intrusive approach, two-colour pyrometry offers a simple and effective

choice for luminous sooty flames. The temperature is inferred by the intensity ratio

of the chosen two narrow bands. The selection of the two narrow bands depends on

a few factors, such as response change w.r.t temperature, sensor SNR, etc [102]. For

example, if the infrared narrow bands are selected, the choice should avoid the strong

absorption band of H2O and CO2. In some research, the common digital cameras

were employed for such task, which utilized the in-built banded colour filter [100].

This requires additional calibration to account for the emissivity variation, which can

introduce more uncertainties. However, the emissivity variation can be ignored in the

case of using narrow bands. The measured temperature distribution depends on the

soot particles distribution in the flames [103].

In contrast to the aforementioned methods, the non-intrusive temperature

measurement of non-luminous flames is not as practical and simple. Most of the

existing research relied on techniques based on laser diagnostics. For instance,

Rayleigh scattering technique [104], laser induced fluorescence [105] and coherent

anti-Stoke Raman scattering [106], have been used to measure flame temperature.

In general, the laser diagnostics offer thorough information of combustion physics

with high precision and accuracy. Nevertheless, the experimental setup complexity

and tremendously high cost rendering its practical use limited [107][108][109]. Other

techniques also explored the possibility of temperature measurement using the near-
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Figure 2.31: Radiance of CO2 and H2O at various temperature from HITRAN
database [113].

infrared absorption bands of water molecule [107][110]. These techniques exploit the

absorption bands of the combustion product, from which the temperature can be

inferred. The usage of emission band of the H2O and CO2 for such purpose is very

scarce. [111] used mid-IR camera to gather emission from water molecule in hydrogen

flames at 2.77 µm, which corresponds to the transient line of H2O. The temperature

and water molecule fraction were then inferred. [112] extended this approach for

hydrocarbon flames by using the emission spectrum of water molecules in the near

infrared range (less than 1.1 µm), within which the CO2 emission is negligible. Such

technique is made more approachable as it is the sensitivity range of the common

CCD and CMOS sensors, which is an economical choice comparing to other scientific

sensors. Figure 2.31 shows the spectral intensity of H2O and CO2 of hydrogen flames

compared with HITRAN database, indicating that CO2 emission spectrum is orders

of magnitude weaker than that of H2O.
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Other than the use for temperature measurement, CO2 and H2O spectrum is other

fields of combustion diagnostics, such as premixed flame instability, flame propagation

speed, equivalence inference etc. The thermal radiation heat loss of CO2 and H2O

was reported to have strong effect on lean flammability limit as well as flame speed of

near-limit laminar premixed flames [114]. In addition to the emission in IR spectrum

of these two species, they also have strong absorption IR absorption bands, from

which their re-absorption played a role in fundamental combustion physics. [115] has

demonstrated that the re-absorption can increase the flame velocity and expand the

flammability limits of premixed flames. Research has been established to show that

radiation heat loss and flame stretch can lead to the extinction of near-limit flame,

which is further coupled with spectrum re-absorption. Theoretical modelling of the

radiation re-absorption was reported that the radiation re-absorption significantly

enhance the flammability limits [116].

Those fundamental research into combustion physics in the domain of infrared

spectrum, either experimental or theoretical modelling, shed lights on the use for

such information in the field of practical combustion diagnostics. [117] deployed high

speed infrared imaging in combination with acoustic properties, to study the radiation

heat loss and local extinctions in a turbulent premixed combustor as shown in Figure

2.32. A narrow-band filter at 4.38 µm was applied to gather hot carbon dioxide

emission spectrum, whereby the localized extinction region can be identified.
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Figure 2.32: Visualization of radiation heat loss and local extinction at 4.38 µm [117]

Similar application was conducted by [113], where near-IR camera in spectral

range of 780-1100 nm was used to visualize the entropy wave of the downstream of

acoustically excited premixed swirling flame. As within this spectral range, CO2

emission is orders of magnitude less than that of H2O, and therefore neglected.

The variation of distribution of H2O intensity provides a valuable tool to study the

bearings between thermal induced instability and the flow field.

2.8 Literature review summary

Traditional fire detection relies on point-based sensors, which mainly detects the

concentration of species or the rate of change of temperature. The mechanism of

how these detector works also poses limitations. The species detection is subjected

to ambient air flow and transport delay, which limited its effectiveness. This can be

improved by point-based photosensitive diode which constantly monitors fire signals in

UV or IR. However, besides the high false alarm rate, they do not offer any information

in an event of fire. A manual check is always performed without any guidance.

Video fire detection extended with multi-spectrum capability offers the potential

for very robust fire detection. The high resolution NIR image sensors is more suitable

for machine vision applications, in terms of performance and cost-effective. To
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recognize fire, certain image features as fire signature needed to be extracted. The

features can be divided into three categories: temporal features, spatial features and

colour information. All of which requires image processing pipeline which usually

combines multiple stages of computations. These methods differ greatly depending on

the choice of cameras sensors, because the image properties varies accordingly. The

difference in image property is proportionate to the difference in sensitive spectral

wavelength.

The development of video fire detection is correlated to sensor hardware

advancement, algorithm improvement and knowledge of flame image properties. From

the hardware point of view, low-cost is crucial that not only does it motivate research

but also can make the actual deployment very economical. Despite the reduced cost of

long wavelength IR image sensors, its cost is still much higher than common cameras

with much less comparable resolution. As a niche product, its cost is unlikely to be

comparable with common CMOS image sensors.

In terms of decision making algorithms, many classification algorithms can be

employed, such as SVM, Adaboost, neural networks, Bayesian probabilistic classifiers,

Markov models and rule-based models, etc. There is no better choice of classifier

than the suitable one. All depends on the how to deal with the image data or the

extracted data. In addition, practical considerations have to be made to design the

system as a whole. Moreover, the available resources to ensure the functionalities

of the algorithms sometimes dictates the choice of algorithms. Fire in near infrared

spectrum is rarely study in the field of fire detection. The research established here

is to expand the knowledge on fire property and fire detection in the near infrared

spectrum, showing a low-cost and robust video fire detection system can be made

possible.
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Flame spectroscopic analysis is an indispensable way to study the nature of

combustion. In addition to the macroscopic physical properties of the flame, such

as burning velocities, temperature distributions, flammability etc, spectrum analysis

offers ways to study combustion in microscopic domain, which is more closely related

with chemical processes. More specifically, the spectroscopic analysis is particularly

suitable to study energy release in the process of combustion. Combustion is a

complex process, which involves many forms of energy, for instance, kinetic energy,

internal vibration and rotation of molecules, ionization and other chemical and

electronic energy. The cheap modern CMOS camera sensor offers a very cost-effective

way of spectral instrumentation within the range of 300-1100nm.

62



Chapter 3

Raspberry Pi camera system for
NIR fire detection

This chapter focuses on explaining why the near infrared spectrum is a better option

for fire detection. A background of NIR as to its engineering application and how

it interacts with the world will be provided. In addition, a method of removing the

Bayer colour filter will be introduced. The sensor will then be tested to show its

improved spectral response. Finally, NIR fire image will be tested to show its greater

contrast helps image segmentation.

3.1 Background

3.1.1 The near infrared spectrum: active imaging

The part of infrared spectrum just next to visible spectrum is vaguely defined.

In literature, the spectrum from 700 nm to 3 µm is named as short-IR spectrum

sometimes. Sub-divisions of this part of spectrum also exists. One of the Divisions

can be made to have the near-IR and short-IR, for range 700-1400 nm and 1.4-3 µm

respectively. The same convention will be followed herein. The most common detector

in this spectrum is InGaAs (Indium Gallium Arsenide) detectors, which usually have

a sensitivity range of 950-1700 nm [118].
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The active near IR imaging has various applications in the fields of product

inpsection, anti-fraud, agriculture, biomedical, food and pharmaceutical process

control. The NIR absorption characteristics by substances is the fundamental

principle for NIR spectroscopy. More specifically, the absorption bands comes

from the molecular vibrational overtones and combinations of the chemical bonds

in the materials, such as −CH, −NH, −OH, etc [119]. The transition between

various vibrational states of the molecules give rise to NIR overtone bands, which

usually have multiple peaks. The combination bands originated from the vibrational

interactions, whereby polyatomic molecule with their corresponding fundamental

frequencies interacts to create new frequencies or shift the existing ones.

Based on the absorption and scattering of NIR in substances, chemical and

physical properties can be inferred. For example, in pharmaceutical raw material

qualification, NIR is used to infer the water content, because the active ingredients

are significantly affected in terms of product consistency and storage effects [120].

The rationale of this is the intensive absorption of O −H bonds at five peaks in the

NIR spectrum, namely 760, 970, 1190, 1450, 1940 nm. Moreover, NIR spectroscopy

can also be used for measuring particle size distribution of raw materials. This

utilized the scattering effect of the powders by measuring the diffusive reflectance,

from which the correlation can be established [121]. Furthermore, other uses of

NIR spectroscopy were also available in literature, including quantification of crystal

structure, visualization of tablet coating and etc.

It was reported that NIR spectroscopy gained its favour rather late comparing

to the use of Raman and Mid-IR in pharmaceutical industry, because of its versatile

FOV imaging capability and excellent tolerance to sample topology [100]. Similar

application is also extensively practiced in the biomedical and food industry due
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to the fact that organic substances have distinctive NIR absorption signature from

the molecular overtones and combination bands. Usually chemical composition and

molecular structure can be inferred using the spectral absorption curves, which

requires data mining techniques [122].

3.1.2 The near infrared spectrum: passive imaging

The two common types of cameras readily available commercially for NIR imaging

are silicon-based CMOS/CCD cameras and InGaAs cameras. Almost all cameras on

mobile devices nowadays are CMOS Silicon sensors, mainly due to its compact size

and lower power consumption. While the latter is significantly more expensive for

dedicated scientific and industrial uses. Their typical spectral response is shown in

Figure 3.1.

Figure 3.1: Spectral response of Si-CMOS and InGaAs cameras [123].

Unlike Mid-IR and Long-IR images, NIR images capture the reflected lights

of the scene, which will require NIR illumination during the night. The images

in NIR are noticeably different from normal visible images, yet still appear less

artificial comparing to Mid/Long-IR images. The main difference comes from the
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Figure 3.2: NIR and visible image comparison. left: visible image; middle: NIR
image; right: NIR scatters more frequently in the deeper layer cells [125].

absorption and scattering of NIR from ambient subjects. The most obvious change

is the brightness of green leaves of vegetation, as illustrated in Figure 3.2. This was

called the chlorophyll effect by [124]. Due to the better ability to penetrate through

substances, NIR rays reach cells in deeper layers where multiple scattering happens,

leading to the increased brightness.

Figure 3.3: Mie and Rayleigh scattering [126].

The next noticeable difference is the large contrast of the cloud and sky because of

the Rayleigh scattering and Mie scattering as shown in Figure 3.3. Rayleigh scattering

describes the light scattering effect of molecules, which has a wavelength dependent

relationship as: I ∝ 1/λ4. The expression explains the blue colour of the sky as I

66



Figure 3.4: Wine and water in visible and NIR spectrum. Top left: visble image; top
middle: 830-1100 nm; top right: 950-1700 nm by InGaAs camera. NIR penetrates
through pigments. Bottom left: visible image; bottom middle: 830-1100 nm; top
right: 950-1700 nm by InGaAs camera [127].

favours shorter wavelengths. For NIR spectrum, the intensity decrease dramatically,

resulting darker appearance of the sky. In comparison, Mie scattering corresponds to

the scattering effect of much larger particles compared with molecules. The reduction

in intensity is much less intense. The combined effect gives the NIR image a contrast

look.

Some interesting NIR phenomenon are shown in Figure 3.4. Comparing the images

of water and mine captured by 830-1100 nm and 950-1700nm, both wine and water

have strong absorption in the higher frequency part of the short-IR spectrum (1100-

1700nm). This is mostly likely due to the IR absorption of water molecules within

such spectrum range, which coincides with Figure 2.22. In addition, longer wavelength

leads to less scattering and more penetration, which explains the clearer view of the

paint covered text from InGaAs camera than that from NIR camera.
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3.2 Back-illuminated CMOS sensor: Raspberry Pi
cameras

Raspberry Pi foundation offers two versions of Si-based images sensors: V1,

Omnivision 5647 with 500 megapixels from Texas Instruments; V2, Sony IMX219

with 8 megapixels, referring to Figure 3.5. Both versions have the NoIR options that

the IR blocker is removed for low light sensing. As previous shown in Figure 2.24, the

backside illuminated CMOS sensors have a Bayer colour filter array (BCFA) deposited

onto the pixel layer, from which colour mosaic is formed. The BCFA allows red, green

and blue banded spectral radiations reach the pixel. Depending on their respective

spectral response, certain amount of photons will be collected by the pixels. The

mechanism is illustrated by Figure 3.6 top panel. The mosiac image will processed by

pixel colour interpolation to generate normal looking images, as shown in Figure 3.6

bottom left. If the BCFA is removed, the sensor will be turned into a monochrome

camera collecting photons with respect to the complete sensor spectral sensitivity

range in all pixels, as illustrated in Figure 3.6 bottom right.
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Figure 3.6: How Bayer colour filter array works. Top: Bayer colour filter selective
collect photons; bottom left: raw unprocessed colour mosaic image; bottom right:
photons collection without the colour filter [128].

Figure 3.5: Pi cameras V1 and V2. Black ones are NoIR version. Sensor: V1,
Omnivision5647, 5 mega pixels; V2, Sony IMX219 8 mega pixels

The NoIR Pi cameras have the IR blocker removed but the BCFA is still in place.
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This will produce false colours because the BCFA has certain amount of NIR quantum

efficiency for all three colours. The extra NIR photons blend into the pixels of all

three coloured pixels. The amount of leaked NIR is determined by their respective

quantum efficiencies for all three colour filters. The false colouration due to the NIR

leakage is illustrated in Figure 3.7. As previously explained, the strong NIR scattering

from green leaves of vegetation introduce more false colour due to the NIR leakage

comparing with other objects. This effect will be further explained in subsequent

sections.

Figure 3.7: From top to bottom: V2, visible; V1, visible, V1, visble+NIR; V2,
visible+NIR [129].
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3.3 Turning Pi camera into a monochrome sensor

The Pi camera V1 OmniVision 5647 from Texas Instruments can be modified to be a

monochrome sensor by chemically removing the BCFA. As shown in Figure 3.8, the

modification enables the use of Pi camera sensor for spectral instrumentation as the

any desirable optical filters within its sensitivity range can be applied.

Figure 3.8: Removal of BCFA of Pi camera V1. Top left: the sensor module with
integrated lens and IR blocker is highted; top right: de-Bayered sensor with bespoke
lens system; bottom: illustration of BCFA removal.

The process of removing the BCFA takes six steps: firstly, using a knife to remove

the fitted lens to expose the sensor; then put the module into a bath of photoresist

remover (EKC 830TM) at heated temperature of about 100 ◦C until the bulk of the

colour filter falls off; Next, a second bath is needed to further remove the residue; in

final three stages, the module will go through consecutive baths using butyl ethanoate,
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Figure 3.9: Pixel value (digital count) comparison of original and de-Bayered V1 Pi
camera. (1): 310 nm narrowband filter; (2): 430 nm narrowband filter; (3): 515 nm
narrowband filter.

acetone and isopropyl alcohol [130], [131]. The case was then designed and 3D-printed

to mount the camera module with 9-mm focal length focusing lens with high spectral

transmission in 200-2000 nm. The lens cap can be screwed to adjust the focus.

Without the BCFA, the sensor have more quantum efficiency as the extra layer

of blockage is removed. Narrowband optical filters were applied for comparison by

capturing premixed methane flames, as shown in Figure 3.9. In addition, the linearity

tests have been performed to check the sensor performance. As illustrated in Figure

3.9, the sensor response is very linear with respect to shutter speed and ISO sensitivity,

which ensures the reliability of spectral instrumentation.
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Figure 3.10: de-Bayered Pi camera linearity tests. Top: w.r.t sensitivity; bottom:
w.r.t shutter speed.
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3.4 Advantages of NIR for fire detection

NIR spectrum seemed to have been much less favoured comparing to other parts of

the IR spectrum. In pharmaceutical, food and biomedical industries NIR spectral

absorption was the latest adopted technique comparing to that of Mid-IR and Long-

IR. It is somehow more overlooked in the field of video fire detection.

Figure 3.11: De-Bayered Pi camera spectral response, tested using a monochromator.

The NIR fire images have much higher contrast than those from of visible images.

This is a combined outcome from three sources: the nature of Si-based CMOS image

sensors, the NIR spectral properties in atmosphere and the spectral emission of typical

flames. Referring to Figure 3.1, Si-based sensors are more sensitive to NIR radiation

than to visible lights. In addition, the spectral response of the de-Bayered Pi camera

module was measured using a monochromator, revealing its higher sensitivity in NIR

spectrum up to 1100 nm, as provided in Figure 3.11. Because NIR sensor is not

able to detect thermal radiations from objects at ambient temperature, the captured

background comes from reflected NIR radiations. In an outdoor situation, the main
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Figure 3.12: Solar spectral irradiance in W/(m2nm), The curve shows the NIR
radiation is weaker than visible radiation from the sun [132].

source is sunlight. While in an indoor environment, the NIR radiation from lighting

is much weaker comparing to sunlight, especially if LED and energy efficient lighting

are used. Meanwhile, typical flames have stronger radiation in NIR spectrum than in

visible, as shown in Figure 2.5.

If the exposure is properly controlled, the background can be suppressed while the

flame is still very clearly imaged with enhanced texture comparing to visible images.

This property helps to improve the region of interest detection as one of the detection

algorithm pipeline. Not only does the NIR camera produce more contrast image, it

is able to detect thermal radiation of an object at temperature as low as ≈ 375 ◦C.

The sample images of smouldering charcoals and a flame in Figure 3.13 illustrates

the effect.

The flame image in Figure 3.13 was captured on a cloudy day which provides

very weak ambient NIR reflection. To further illustrate the high contrast image with

strong NIR reflections as disturbance in the surroundings, the test was established
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Figure 3.13: NIR and visible image comparisons: smouldering charcoals and a flame.
Left: NIR image; Right: visible light image. The flame images were captured on a
cloudy day. A cut-on filter at 950 nm was applied to the NIR sensor.
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on a sunny afternoon at 3PM during the summer when the sunlight is intense. It can

be observed that the fire region is much brighter, even with most intense of sunlight

and NIR scattering from the vegetation. From the histograms, NIR scattering from

vegetation gives intensity ranging approximately from 50 to 100. The flame region

pixels intensities have a range of 100 to 250 with almost no saturated pixels, therefore

preserves intensity spatial variation that corresponds to image texture. Moreover,

Figure 3.16 shows how simple threshold technique can be very effective in ROI

extraction. Furthermore, as shown in Table 3.15, the NIR has better atmosphere

spectral transmission comparing to longer wavelengths where CO2 and H2O have

strong absorption bands. Better atmosphere transmission make it a promising choice

for longer distance fire detection. Besides, less attenuation could potentially increase

the robustness of the algorithms as the data remains less deviated from its usual

distribution.

There are many applications of NIR spectrum for fire detection in remote sensing

through satellite imaging, where NIR is part of the hyper-spectral data used for

analysis. However, the use of NIR for video fire detection in large indoor space or

public open space is very scarce in literature. The low-cost of CMOS sensors with its

certain thermal capability comparing to mid-IR and long-IR make it more appealing,

notwithstanding it is very underdeveloped. One of the early uses of NIR for indoor

scenarios was to detect fire in shipment compartments [2]. The sensitivity of CCD

cameras in spectral range 700-900nm was exploited by applying a long pass filter.

The triggering criterion is simply based on comparing the sum of pixel intensities of

current frame to a reference value. Despite of its lack of sophistication in the detection

algorithm, fairly good results were achieved because there were very few disturbances

in such confined space. It also reported that the NIR flame images have much better
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Figure 3.14: NIR image scene test with 950 nm cut-on fitler. Image was taken at
3PM on a summer day with intense sunlight.Bottom left: histogram of the whole
scene; bottom right: histogram of the fire region. The exposure time was 551 µs at
ISO 100.

Figure 3.15: Integrated atmosphere IR spectral transmission [133].
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Figure 3.16: Illustration of thresholding for ROI extraction of fire in NIR images,
where the highlighted regions are the thresholded regions. (a) T = 90; (b) T = 100;
(c) T = 110; (d) T = 120. Threshold at 120 is the empirical choice for ROI extraction.
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contrast.

[133] tested some features of NIR on hot spots and flames with various materials.

A hot spot can be distinguishable at a minimum temperature of 350 Celsius. In

addition, a few light sources were compared in spectral range around 950nm, namely

magnesium light, yellow and red lamp. Moreover, energy fluctuation in terms of

pixel intensity, flame height fluctuation (FFT used for analysis), movement of flame

centroid as well as equivalent blackbody temperature were all combined to reach a

final decision.

3.4.1 NIR simplifies ROI extraction

As illustrated previously, the use of NIR cameras really simplify the ROI extraction

stage. However, considerations and experimentation are required for specific

situations. Otsu’s method for segmentation can be effective in certain situations

where a bi-modal image is usually captured, for example UAV scanning down to the

forest [134]. But the method can easily fail in situations like urban enviroment where

reflections and light source disturbancs are frequent.

Similar to many other fire detection, the first stage in this work is to extract

ROI (region of interest) as potential fire candidates. For Ostus method to work

properly, the pixel intensities of the image are assumed to be bi-modal. This imposes

limitations to the effectiveness of its application on some scene images containing

multiple histogram peaks. In [134], Ostus method seems robust because the UAV

hovers over the forest or vegetation which sees a uniform texture in the background.

The intensity variation of the leaves would be within a small range, and fire has higher

contrast from the background. However, disturbances from the scene can cause the

failure of Ostus method, for instance, rock reflection, sunlight reflection from water
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Figure 3.17: Scene test for Otsu’s method of thesholding: fail to segment for images
having multiple histogram peaks: red line indicates the threshold obtained from
Otsu’s method.

surface or any other bright objects.

Otsus method for ROI extraction would most likely fail under two conditions:

1. other bright objects or light sources appear in the scene; 2. the flame in the

scene occupies a small region. In the first situation, bright non-fire objects or light

sources will be extracted together with the flame, which then needs further filtering

algorithms. Whereas in the second situation, Otsus method gives a threshold far away

from the part corresponding to a flame that the resulting segmentation contains many

other objects or just fragments all over the scene. This is illustrated by Figure 3.17,

where the red dashed line indicates the threshold generated by Otsus method. In

addition, the flame is too small to be manifested in the histogram plot, which locates

around intensity of 200.

Clearly, when the NIR images contain multiple peaks, Ostus method is not robust.
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Especially for the case of urban open space, there can be reflections from windows,

car lights, etc as disturbance. Besides, the diverse texture of the scene in such a

situation highly likely gives rise to multiple peaks, which will hinder the performance

of Ostus method. For early fire detection, the flame is supposed to be small and may

be at distance to the camera. Thus it is very probable that the early fire would only

occupy a fraction of the image.

The high contrast NIR flame images were also reported in [135]. The higher

contrast between the flame and background in NIR images can be attributed to

the two factors: 1. more blackbody radiation in NIR at typical flame temperature

than that in visible spectrum; 2. according to Figure 3.18, the modelled spectral

irradiance from the sun by SMARTS radiative transfer model reveals that sunlight is

more intense in the visible spectrum than in NIR. As a result, the flames have higher

pixel values whereas the reflected NIR radiation from the background is much weaker.

The contrast of the resultant scene image is greatly improved. This is also confirmed

in the quantitative analysis, where the contrast ratio of NIR images is between 1.28

and 2.40 comparing with visible images between 0.86 and 1.58 [135].

According to the literature, three choices for thresholding are, Ostus method, fixed

threshold and adaptive threshold. It is worth noting that these methods are greatly

affected by the IR camera choice and the camera setting. As previously mentioned,

the most popular IR cameras for fire detection in literature are operating in long

wavelength band of 7-14 µm. The images from both LWIR and NIR cameras are

significantly different. Because LWIR sensors capture the thermal radiation emitted

by the objects themselves, it has a typical measurable temperature range of -25 to

300 Celsius. By contrast, the NIR spectrum is close to visible light that the captured

image remains relatively intuitive. Same as the visible light, the NIR of the scene
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Figure 3.18: Modelled spectral irradiance from the sun by SMARTS radiant transfer
model [135].

comes from diffused sunlight. The most use of Ostus method in literature couples with

the deployment of LWIR cameras. It may be robust but requires extensive scenario

tests for verification. Adaptive thresholding for ROI extraction is also an option

but with empirical formulation. [82] uses the mean and standard deviation of the

pixel values of the whole image, based on which a set of equations was formulated to

generate a threshold value. These equations contain empirically determined constants

and coefficients.

Some issues were reported in literature in terms of LWIR camera features: the fire

imaged by LWIR sensors are always saturated because of its intense radiation within

the sensitive spectrum; moreover, if the sensor gain is not adjustable, human body

temperature can even saturate the pixels. Therefore, the spatial intensity distribution

of fire pixels is lost, which means less information to be exploited as flame features

[53].
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3.4.2 Using NIR false colour for fire detection

A purplish pinkish colour was introduced if the IR blocker is removed because

NIR radiation blends into all three colour pixels. This false colour is particularly

advantageous in fire detection. For example, this can be used to distinguish fake

fire (fire advertisement on display, posters) from really fires. The fire from displays

are emulated by screen pixels emitting visible lights, which will remain its normal

reddish colour. Similarly, the pigments in advertisement posters reflect certain visible

wavelengths to mimic the look of a fire. The false colour of a flame is demonstrated

in Figure 3.19.

Figure 3.19: NIR false colour vs common visible colour of a fire. Left: A 760 nm
cut-on filter was applied to Pi camera; right: normal visible fire

3.5 Summary

Despite the InGaAs (Indium Gallium Arsenide) detectors’ high-speed and low noise

quality, its cost prevents its broad use for general safety surveillance. In contrast,

silicon-based CMOS image sensor, as used in this research, is also sensitive to NIR.

This type of sensor is dominant in the photography market that the low cost is
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propelled by mass production. To avoid NIR leakage to the pixels, manufacturers

integrate IR blockers to the lens system allowing only visible lights to reach the

image sensor. By removing the IR blocker and Bayer filter, it becomes a low-cost

NIR image sensor with relative high speed. Moreover, comparing to the mid and

long infrared sensors, the silicon-based sensors have much higher spatial resolution

and framerate. In terms of intelligent fire detection, high resolution is crucial for

stereo localization of the fire and mapping and planning for robot firefighters. It is

also capable of detecting non-lumious flame, such as alcohol and hydrogen flame, as

CO2 and H2O are the main combustion products having spectral emission in NIR.

Furthermore, the false colour can be used in combination with a Pi camera limited

to NIR spectrum only for fire detection to increase system robustness. The camera

system used for fire detection in this research is Pi-based stereo NIR camera system,

where one camera without IR blocker for colour detection (Visible + NIR) and the

other operates in NIR spectrum only for texture feature extraction.

85



Chapter 4

Multi-spectral fire detection
system

This chapter explores the potential of using low-cost CMOS image sensors for fire

detection in combined multiple spectrum. The scene image is captured by a stereo

system, with one camera working with visible and NIR spectrum of (400-1100 nm) and

another camera with NIR spectrum only (950-1100 nm). The captured stereo image

will then be the input of the fire detection system. The system overall structure

is demonstrated in Figure 4.1, which contains three stages: ROI extraction stage,

texture-based feature extraction and decision making stage.

In the first stage, a threshold was used to roughly locate the flame regions. A two-

stage crop was applied to ensure the ROI crops into the object. The crops will then

be fed into the second stage, where all the texture based features will be extracted to

form the feature vectors. The final stage incorporates a SVM for classification with

a GMM colour model for false positive elimination.
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Figure 4.1: Multi-spectral fire detection system: ROI extraction stage, feature
extraction stage and decision making stage.
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4.1 ROI extraction stage

Figure 4.2: Morphological operation to combine blobs into patch.

In the first stage, the main goal is to extract patches of potential fire candidates.

The NIR fire image will be threshold at 120. The threshold is empirically determined

at fixed camera setting to ensure higher contrast: exposure 551 µs and ISO 100,

showed previously in 3.16. After that, a morphological transformation by erosion and

then dilution was used to remove the noisy spots and combine the clustered bright

regions into one patch. For example, if there is a fire in the scene, the fire region after

thresholding contains clusters of blobs as shown in Figure 4.2. The morphological

transformation combines the cluster into one patch. A rectangle crop of the patch is

used to extract the pixel values as a subset of the image. Dilation and erosion are

particular useful in emerging regions and remove very small noisy regions. These two

techniques applies a Boolean filter of a chosen size to binary images. The operation

can be formulated as in Eq(4.1):

Dilation: g(n) = OR[Wf(m)] (4.1a)

Erosion: g(n) = AND[Wf(m)] (4.1b)
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The f(·) represents an image; W is the subset size and m is the stride size. In

dilation operation, the filter sweeps through the binary image with the defined stride

size, where each stride is a convolution. If any pixel within each convolution is 1, all

of the pixels will be set 1. The process is the same for erosion with reversed logic. As

shown in Figure 4.3, the increase of filter size resulted in increased blob size.

Figure 4.3: Dilation with different filter size, from left to right: 5, 10, 50, 100.

Next, rectangular patch will be cropped using the boundaries of the patch

generated in Figure 4.3. According all the scene tests, the generated ROI patch

is larger than needed for local texture extraction. In addition, in some cases, the

crop would have background around the frame. Therefore, an adaptive crop will be

performed again based on the centroid of the pixels having values in the range of

[Imax− 10%, Imax], as in Eq(4.2). This ensures the second crop is always covering the

centre which is usually the brightest region. In addition, the second crop reduced the

patch size from 100x100 to 60x60. The cropped region will be used in the next stage

for feature extraction.

x̄ =

∑m
n=1 xi

m
ȳ =

∑m
n=1 yi
m

(4.2)
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Figure 4.4: Second stage adaptive crop of 60x60. The black patch indicates the
cropped area. Top: car light, non-fire reflections from car front grill, windows; bottom:
fire on BBQ stand.
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4.2 Feature extraction stage

The ability of human perception of an image can be categorized by three fundamental

aspects, namely perception of colour (spectral information), texture (tone gradient

and spatial distribution) and semantics (meaning or representation of an image).

As human are only able to see visible light, many of the image sensors outside such

spectrum presents image as gray scale without any mosaic layer to form a colour space.

The simplest texture of an image are the edges, where the spatial tone gradient is

high. Then to understand the meaning of the image, a comprehensive evaluation of

the surrounding, actions, pose, etc, is needed.

In the case of fire detection, texture feature can be beneficial because the intensity

of a fire has its unique tone variation and spatial distribution. The tone is simply

the variation of shades of intensity, which bears no directional information. Whilst

the texture of an image is the spatial distribution of tones [136]. Different objects

have distinct image texture, ascribed to their ability of diffuse lights based on the

surface micro-structures and materials properties. Some texture can be form by a

swarm of the same objects, for instance a grass land. Grass clustered together to

have a whole background with distinct texture properties. Moreover, same object

appears distinctively imaged in different spectrum in terms of image texture. [137]

showed some statitical measures between visible and LWIR image, indicating the lack

of texture in LWIR images can help simplify computer vision problems. It is a trivial

task for human to recognize the texture in an image and promptly shout out a word

to describe it. However, the precise definition of texture by computer still requires

thorough mathematical interpretation. Three textural features will be used in this

study for fire and non-fire classification, namely homogeneity from GLCM, entropy

and variance.
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The gray-level co-occurrence matrix (GLCM) method is an effective way of

extracting texture features [136]. The GLCM algorithm assumes the textural

information of an image can be expressed as a spatial relation. The base of the

algorithm is to compute a spatial probability distribution matrices of a gray image.

These matrices can then be used to calculate 14 textural features. The generated

probability matrix is proportional to the input image. Practically, a tiny subset of

an image may suffice. Basically, the core of this algorithm is to generate a relative-

frequency matrix P (i, j; d, a), where i and j are the intensities of two neighbouring;

d specifies the distance between the pixel pair; a is the angle of orientation along

which the occurrence of pixel pairs are counted. The detailed computation can be

illustrated in Figure 4.5.

Figure 4.5: Computation of co-occurrence frequency matrices: (a) occurrence
counting orientation; (b) obtained frequency matrix; (c) example image M ; (d)
frequency matrix obtained by counting horizontally.

The next step is to normalize the frequency matrix by the total number of

occurrence of pixels pairs, which then gives a pseudo-probability interpretation

matrix. In the example above, every element of P0◦ will be divided by the sum of all
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its elements, which is 68. The resultant matrix will thereafter be used to compute

texture features. During this computation, each texture measure has its own weight

matrix. The final measure is a single number by taking dot product of GLCM and

the weight matrix.

The choice of texture used for infrared fire texture description is homogeneity,

which will give a high value is the image has less texture or less contrast. It can

be observed that in its weight matrix, the weights away from the diagonal decays

exponentially. The weight matrix biases the diagonal since the diagonal in GLCM

matrix is the frequency of pixel pairs with the same intensity value. Because the

camera is set to take advantage of the high contrast of fire to the background, most

of the background will be very dim, except for solar reflections from glossy surfaces,

car lights, traffic lights, etc. These non-fire objects will form the non-fire class.

Figure 4.6: Illustration of texture difference between fire and non-fire objects. Top:
fire; bottom (left to right): car light, sun reflection, reflection from car body, reflection
from glossy bars.

Almost all uses of LWIR (7-14 µm) for fire detection through literature reported

the saturation of fire images, in which case the texture information is no longer
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available. Therefore, the shape of outline of the fire patch was used to extract some

geometrical measures to generate features. Figure 4.6 is a comparison between fire

and non-fire cropped bright objects at this fixed camera setting. It is obvious that

the flame images have more texture, such as more edges and steaks. While the

non-fire examples mostly come from light sources and reflections that are smooth

and even. Many attempts have been carried out to find the optimal parameters for

GLCM textures. As shown in Figure 4.7, the orientation to get co-occurrence matrix

does not affect the homogeneity feature. However, the distance d between two pixel

pairs greatly affects the difference of homogeneity between fire and non-fire objects,

as illustrated in Figure 4.8. The homogeneity decreases as the distance increase for

non-fire objects, while the fire is not much affected.

Figure 4.7: GLCM texture homogeneity vs sample number at different orientations
for fire (blue) and non-fire objects (red). Top: 0◦, 45◦; bottom: 90◦, 135◦.
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Figure 4.8: GLCM texture homogeneity vs sample number at different pixel pair
distances for fire (blue) and non-fire objects (red). Top: d=1, d=5; bottom: d=10,
d=20.

The concept of entropy is commonly known from thermodynamics. From image

processing point of view, it can be regarded as the average amount of information

required to describe the state of a random variable [138]. The entropy is calculated

by Eq(4.3), where p(x) is the probability of the random variable x. The summation

is over the image patch of n pixels. For an image, the pixel intensity can be thought

as the random variable x ∈ [0, 255].

H[x] = −
n∑

i=1

p(x) log2p(x) (4.3)

Figure 4.9 shows the entropy image of a fire and a non-fire object. It can

be observed that the regions having higher entropy values hold more variations in

intensity gradient and spatial distribution. In the non-fire case here, the image is a
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sun reflection from a window. The bright region has saturated pixels which makes the

texture flat. More specifically, the entropy of pixels is computed within the available

8x8 patches within the image. For example, in an 8 by 8 matrix, the appearance of

unique pixel values will be counted. Then a probability p(x) for each value can be

obtained by normalizing with respect to the total number of pixels in the patch, 64 in

this case. After that, the entropy of each pixel can be calculated by applying Eq(4.3).

In the case of flat texture within the patch, such as the bright region, the probability

p(x) of the bright pixel value is close to one because there are many pixels with the

same intensity. Then the value of log2p(x) will come close to 0 and its entropy will

have a small positive value. In contrast, in the fire image, more texture means a wide

range of pixel values. For each pixel value, its p(x) will be close to zero. Then the

logarithm term will be close to −∞. As a result, its entropy will be large. From

probability point of view, entropy can be through as a measure of surprise: if one was

told that a highly unlikely event has just occurred, the information conveyed is more

than that one was told an ubiquitous event just happened [138].
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Figure 4.9: Entropy image of fire and non-fire objects obtained by down-sampling
with 8x8 convolution. Entropy is proportionate to spatial variation.
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Figure 4.10: Variance plot of fire and non-fire objects: fire (blue); non-fire (red).

The variance is also an effective measure of the difference between fire and non-

fire objects. Fire as a dynamic combustion phenomenon constantly interacts with

the surrounding cooler airflow, gives a relative steady distribution of pixel intensities.

However, for non-fire objects, the variance is bipolar depending on the type of bright

objects. For example, if it is sun reflection or car light, the uniform intensity across

the crop will give very small variance; whereas if some background got cropped, the

variance can be very large. Figure 4.10 illustrates the variance of some fire and

non-fire examples.
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4.3 Decision-making stage

4.3.1 Classification using SVM based on extracted features

Through previous stages, the potential fire candidates in the scene are produced and

filtered. Features were extracted from the remaining fire candidates. The 3 features,

namely pixel value variance, GLCM homogeneity and entropy, forms a 3D feature

space. A support vector machine is trained for classification. The training dataset

consists of 282 fire examples and 89 non-fire examples. Because of the scarcity of NIR

spectrum for fire detection in literature, there were no available datasets to the best

of the authors knowledge. The whole dataset used for the classifier is obtained in-

house. The fire examples were collected by burning common kindling wood. The fire

examples contain flames with different dispersion because of the ambient air flow and

combustion intensity. The non-fire examples were collected by shooting at random

scenes in urban areas. To cover a wider range of non-fire candidates that could pass

through the data processing pipeline before feeding into the classifier, some bright

objects were deliberately captured to test the classification robustness. Due to the

design of this fire detection system, only very bright objects in NIR spectrum can be

extracted for subsequent processing. Therefore, through the pipeline, most non-fire

objects were any kind of light source having strong emission or reflection in NIR,

for instance car light or sun reflections from glossy surfaces, such as from windows,

ground, car, metal bars, etc.

The support vector machine is trained with radial basis kernel function. Different

choices of kernel functions have been attempted to compare the classification

performance. Using radial basis kernel yields slightly better classification comparing

to linear and polynomial kernels. Referring to Figure 4.11, the visualization of the

training data space is roughly linearly separable. It is probable that if more data
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can be generated, the feature distribution in the feature space may become more

intertwined. Therefore, the decision boundary will become more nonlinear.

Figure 4.11: The trained SVM in feature space. Green: support vectors; blue dots:
non-fire examples; red dots: fire examples; gray planes: marginal planes H1, H2; blue
planes: decision plane H0

Referring to Equation 2.9, the regularization term contains C and ζ. ζ is a slacking

variable to tolerate some examples that does not strictly satisfy yi(w · xi + b) ≥ 1,

whereas C controls the degree of tolerance. In addition, γ in RBF controls the degree

of non-linearity. More specifically, the parameter C controls the trade-off between

classification rate and the margin length. At higher values of C, the marginal planes

will stay close to the decision hyperplane H0, while they will be far part at lower

values. This is illustrated in Figure 4.12. The parameter C shifts the decision plane

as its value changes. It is apparent that the classification accuracy in the latter two

cases is higher than the first case. In addition, smaller C will lead to more support

vectors to construct the decision plane.
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Figure 4.12: Effect of C on SVM decision plane (left to right): C = 1, C = 10, C =
100

The decision hyperplane H0 is very sensitive to parameter γ in RBF. In 3D space,

γ controls the radius of the volume of similarity of the support vectors. Referring

to the SVM optimization formulation, the dot product is just replaced by a radial

basis function. The kernel function is a similarity measure based on the Euclidean

distance between a support vector and another datapoint in the set. The value of

γ is disproportionate to the volume of influence. This is illustrated in Figure 4.12.

Large γ allow the model to try to capture the volume of the data cluster. As seen

in the figure, larger γ gives smaller radius of curvature of the decision boundary, and

vice versa. At smaller values of γ, the decision function is similar to that with linear

kernel.

The dataset used for training and testing were gathered at four distances from the

camera, namely 5, 10, 15, 20 meters with the fire roughly the same size. Based on the

system design, after the first stage of ROI extraction, the greater the distance, the

smaller the fire proportion in the crop. Then the second ROI always crops within the

first around the brightest region. Hence the final extracted ROI fed into the classifier

contains similar proportion at different distances. The main difference, however, is the

smear effect as the fire becomes smaller in the scene. Less pixel is used to represent

101



Figure 4.13: Effect of γ in RBF on SVM decision plane (left to right): γ = 0.05, γ =
0.01, γ = 0.001

the flames; therefore, the texture information may be reduced.

Figure 4.14 illustrates the misclassified examples from training. According to

the confusion matrix, totally 14 examples are misclassified, where 13 cases are false

positive and only one case for false negative. Even judged by human perception,

it is difficult to tell that it is a fire. In a real scenario, fire is always irregular

because of buoyancy and ambient air flow. Especially in a windy situation, the flame

can be frequently diluted rendering them to be dimmer. Fortunately, this is not a

problem given the system processing rate is high. Given a short period, the flame can

regain its temperature and brightness, which will be detected again by the system.

The emphasis on reducing the false positive alarms while maintaining an effective

detection, is the key for a robust fire detection system. It should be noted that the

confusion matrix measures the performance of the SVM, not the whole system. The

subsequent colour filtering algorithm will check if those predicted fire examples are

real fires.
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Figure 4.14: Misclassified examples in training: only one false negative at bottom
left.

Figure 4.15: Training confusion matrix.
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Table 4.1: Test set detection rates at each distance.
Case Detection rate

(precision)
False negative rate

5m 98.5% 20%
10m 87.9% 15%
15m 88.1% 15%
20m 93.8% 21%

Overall, the test shows good result. The detection rates in the test set are shown in

Table 4.1. Generally, the detection rate does drop slightly. The smaller proportion of

occupation does not seem to affect the performance because of the two-stage cropping

algorithm. It is observed that those mis-detected fire examples all appear dimmer and

with lower contrast than the correctly detected examples. This makes sense because

when the fire is disturbed by the wind, more mixing and cooling happened in the flow

field, giving reduced texture. The test false positive rate for each test case is around

20% at this stage. This is probably due to the lack of dataset. If more test examples

are made available, the rate is expected to drop. Secondly, the colour model in the

next stage will filter out false positives to give a much better overall false positive

rate. The results from all test cases will be shown in Figure 4.16, Figure 4.17, Figure

4.18 and Figure 4.19, where the confusion matrix and misclassified examples will be

demonstrated.

4.3.2 GMM colour model to eliminate false positives

In real-time systems, the data throughput can reach tens of images per second. Even

the algorithm does not have a very high detection rate, the system may still detect

the subject in time with such large amount of data. Therefore, the robustness of a

fire detection system depends on the rejection of false positives. In this section, a

Gaussian mixture model with Dirichlet process is used to model the unique colour
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Figure 4.16: 5m test case. top left: false negative; top right: false positive; bottom:
confusion matrix

Figure 4.17: 10m test case. Top left: trained SVM on test examples; top right:
confusion matrix; bottom: misclassified examples.
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Figure 4.18: 15m test case. Top left: trained SVM on test examples; top right:
confusion matrix; bottom: misclassified examples.

Figure 4.19: 20m test case. Top left: trained SVM on test examples; top right:
confusion matrix; bottom: misclassified examples.
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of flame captured by Pi NoIR camera, which combines visble and NIR spectrum

sensitivity with Bayer CFA. To reach this choice, a series of study was established

to investigate the effect of different NIR cut-on filters and exposure on flame colour

distribution.

The colour of a flame mostly comes from the radiation of soot formed in the

flame. The soot is usually regarded as blackbody, which has a radiation curve similar

to Plancks blackbody radiation curve. The visible part of the soot radiation perceived

by human eyes are orange to reddish colour. Common flames usually appear to be

such colour because of the presence of soot in the flame. This type of flame falls in

the category of diffusion flames, where the fuel is separated from the oxidizer before

entering the reaction region [139]. More specifically, the substances are heated to

a temperature for the material to decompose into combustibles. Most of the fuels

contains carbon, hydrogen and oxygen. Others, such as plastics, may be composed

of nitrogen, chlorine and fluorine [1]. In real scenarios, the spontaneous flames can

happen in two situations: direct flaming combustion and smouldering combustion

which can develop into flaming combustion [1]. The decomposed combustible gases

will then be transported into the reaction zone through diffusion. The phenomenon

of diffusion is driven by the gas concentration difference, which can be described as

Ficks Law [139]. As shown in Figure 4.20, the concentration of the gas and oxygen is

very low comparing to where they were transported from. Then the gas and oxygen

will be transported in the direction of high concentration to low concentration, so

that to feed the reaction. Whereas the combustion product has higher concentration

at the reaction zone, they will be transported away from the it.
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Figure 4.20: Substance concentration in lateral position of a diffusion flame.

4.3.2.1 The cause of false colour in NIR image

The objectively true colour of the flames comes from the physical phenomenon of

reaction. However, reproduction of this colour information by means of imaging, can

be affected profoundly in terms of spectral response of the hardware, such as the Bayer

CFA, the sensor, and other optical components. To be precise, the camera needs to

be colour-calibrated with colour compensation algorithms. Because the RGB micro

filters are wide bands, which has its respective peak quantum efficiencies, each of the

obtained raw image pixels is an amalgamation of photons of a range of wavelength.

Therefore, the interpretation of colours is dominated by the properties of Bayer colour

filter. Manufacturers integrates an IR blocker to let the sensors only to the visible

spectrum (400-700 nm). If the blocker is removed, there can be false colours because

of the spectral transmission of the Bayer CFA as illustrated in previous sections.

Figure 4.21 shows the typical spectral response of a Sony ICX285HQ CCD with

Bayer CFA [140]. The top left corner shows the Bayer pattern, where one colour
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Figure 4.21: Typical spectral response of a RGB camera and Bayer CFA pattern.

filter corresponds to one pixel. Referring to the spectral sensitivity curve for each

channel, the pixel value is an integration of photon counts over the sensitivity range

of its corresponding colour filter. However, the Bayer CFA is also transmissive of

IR in the range of 800 to 1000 nm. If the IR blocker is removed, NIR photons will

be collected by the pixels. Notwithstanding the decrease in sensitivity in the NIR

spectrum, the colour filter still allows a considerable amount of NIR. The additional

NIR photons give rise to the overall pinkish or purple false colour. This artificial colour

can be problematic for many other machine vision tasks. But for fire detection, the

NIR sensitivity can be used to reduce false alarm. For example, the fake fires from

advertisement posts or display will still appear as normal. Only in the events of a

real fire emit NIR to render a purple fire image. Therefore, the final stage of the fire

detection system takes advantage of this property for false positive rejection.

Figure 4.22 shows a comparison of image of diffusion methane flame with 3D

visualization of the pixel colours in RGB colour space. The left flame image was

captured without the IR blocker. In this case, the whole sensitivity spectrum with

the Bayer CFA is used. The flame image on the right captured with fitted IR blocker,
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Figure 4.22: Colour space visualization of a diffusion methane flame : (a) NIR +
Visible; (b) visible only; (c) 3D distribution in RGB colour space

which limits the sensitivity range to below 700nm. Because more light is allowed to

reach the sensor, the flame image on the left is considerably brighter. The colour

distinction is clearly presented in the RGB colour space plot.

To investigate the cause of the purplish false colour, NIR cut-on filter was applied

to the camera. Figure 4.23 shows colour histogram of flame image obtained with 760

nm cut-on filter. The histogram peaks towards the right side. There are more blue

pixels having larger values than the red pixel. This is counter-intuitive because at

typical flame temperature flame emits more radiation in the infrared spectrum than

in the visible spectrum. In addition, the silicon-based CMOS sensor is more sensitive

to NIR than to visible lights. These two intuitions suggest that there should be more

red pixels than blue pixels having higher values. However, the reason to cause the

false colour is more near infrared photon leakage into blue pixels than red pixels.

Referring to Figure 4.24, the quantum efficiency of the blue Bayer filter is higher

than that of the red filter. As a result, the blue channel of an image will have a huge

increase in pixel intensity because the response of the sensor to NIR photons is much

higher. In addition, the red channel pixel values also increase. The compound effect
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Figure 4.23: Colour histogram of diffusion flame captured with 760nm cut-on filter.

Figure 4.24: Bayer CFA spectral response up to 1000 nm [141].

is the pinkish colour of the flame images.

In the following, the colour distribution comparison will be made for two cases:

1. NIR+visible versus NIR cut-on at 760nm; 2. NIR cut-on at 950 nm at two

exposures. In Figure 4.25, the pixel cluster of NIR case is more planar, but it spreads

widely on the plane it forms. From the side view, the correlation of blue and red

is proportionate, which corresponds to red and blue colour filter quantum efficiency

curve. In comparison, the cluster for the whole spectrum case is tighter but thicker.

From Figure 4.26, it is obvious that the distribution of pixels for NIR 760 nm case is

wider than that of the NIR 950 nm case. In case 2, two exposure setting were tested:

exposure 1 was 29991 µs, and exposure 2 was 9991 µs. The clusters of two exposure
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Figure 4.25: Colour distribution: NIR+Visible (orange) vs NIR cut-on at 760 nm
(green).

cases overlap indicating that the exposure does not seem to affect the overall colour

pixel distribution.

4.3.2.2 Colour distribution modelling

To make inference, the colour distribution is modelled by a Gaussian mixture model

with Dirichlet process as prior. The conventional probabilistic models have fixed

and finite parameters, which is likely to over-fit or under-fit because the number

of parameters of the model does not match the complexity of the available data.

Therefore, the determination of the parameters poses difficulties for model selections.

On the other hand, there is the Bayesian non-parametric models to mitigate the

situation, where the underlying distribution is inferred from the data. The Pi image

sensor can be fixed at the experimentally determined setting, regardless of the scene

illumination as well as the auto-white balance to avoid colour temperature change.

The flame colour distribution showed good consistency. Therefore, it is possible to

fit a function to the flame colour space, from which the pixel colours can be checked
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Figure 4.26: Colour distribution: NIR cut-on at 950 nm at exposure: 1. 29991 µs
(orange); 2. 9991 µs (pink)

whether they belong to the flame category.

Dir(µ|α) = Γ(α0)

Γ(α1)...Γ(αK)

K∏
k=1

µk
αk−1 (4.4a)

where α0 =
K∑
k=1

αk (4.4b)

Dirichlet distribution is a generalization of multivariate beta distribution, as in

Eq(4.4). The Dirichlet distribution is a distribution of distributions. This means if one

samples from a Dirichlet distribution, a probability value sampled in the distribution

determined by alpha will be returned. From Figure 4.27, Dirichlet distribution

with a vector of three random variables (as in RGB space) are used for the sake

of visualization. The concentration factor α affects the location of higher probability

regions. The sampled distribution is multinomial implying that the sum of thetas is

one. If all alphas are large, the distribution of the vector will concentrate towards the

centre of the simplex. Whereas the probability will concentrate to the edges. Since
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Figure 4.27: Visualization of Dirichlet distribution: α = [1, 1, 1]; α = [10, 0.2, 0.2];
α = [0.1, 0.1, 0.1]; α = [10, 10, 10].

each α corresponds to one random variable in the vector, if one alpha is larger than

others the distribution will shift to its corresponding corner in the simplex.

The difference between the traditional GMM model and GMM with Dirichlet

process prior is how to choose the number of clusters. In this case, data visualization

is convenient because the RGB colour space is 3D. One could roughly decide on

the number of clusters needed to interpret the data. The orientation of each cluster

depends on the its corresponding 3D covariance matrix. The traditional GMM rely on

Expectation-Maximization (EM algorithm) with predetermined number of clusters.

However, the EM algorithm can suffer from singularities, where some clusters maye

not have enough data points to effectively estimating the covariance matrices. As
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shown in Figure 4.28, the ellipsoid represents a Gaussian visualized with 2.7 standard

deviation. It can be seen that components at the corners are very small. The shape

is almost squashed into 2D ellipse because one dimension in its covariance matrix

is close to zero. The huge ellipsoid in the middle of the plot gives a much wider

distribution than the data distribution.

Figure 4.28: Visualization of fitting GMM with EM algorithm.

Using Bayesian model with Dirichlet process prior helps for a better fitting. As

a Bayesian method, more parameters are needed than traditional GMM because

of the inclusion of a prior distribution. The choice for the prior is defined through

Dirichlet process, which is a generalization of the Dirichlet distribution to have infinite

components. In other words, the DPGMM assigns data points into Gaussian clusters

based on the probability of the data point in the present cluster. ’Infinite components’

means the model can adapt to the data points distribution and accordingly assign

Gaussian as many as needed to cover the whole of the data distribution. Figure 4.29

shows the fitting of DPGMM visualized using 2.7 standard deviation to construct the

ellipsoids.
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Figure 4.29: Visualization of fitting GMM with Dirichlet process prior, where 5
components are enough to fit the data. Right: weights assigned to each Gaussian
component.

To eliminate the false positive examples, the ROI corresponding colour image will

be checked using the fitted DPGMM. Specifically, the R, G, B values of each pixel

in the patch will be fed into the model. If the new RGB data point falls within the

ellipsoid showed in Figure 4.29, it will be marked as a fire pixel. The ROI patch

filtering is then based on the percentage of pixels in the patch satisfies the colour

model. The threshold is set to 0.2 to tolerate noise. Although the robustness of this

method needs further tests, the false positives in the training and testing dataset used

in this research were all rejected.

4.3.3 CNN for classification

Training a CNN model was also attempted to discriminate fire from non-fires. Both

methods employed the same ROI extraction strategy. Comparing to SVM, the CNN

model directly uses resized ROI patched of size 227x227 as input. Same as with

the SVM classifier, the same training data is gathered in-house using 950 nm cut-on

camera. Since there is no online database available, data augmentation was used
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to enrich the data pool size by horizontal flipping and random gamma to mimic

the intensity variation. Finally, the dataset contains 13878 fire examples and 15150

non-fire examples.

The CNN model structure is illustrated in Figure 4.30. Inspired by AlexNet in

[142], with limited resource and only binary classification, this model takes similar

but much simpler structure which contains three convolutional layers and one fully

connected layer. The model used ReLU as nonlinear activation function; batch

normalization was applied to the convolutional layers to re-centre the output from

each layer; adaptive weight update was adopted by varying the learning rate; the

initialization method used was Xavier. In total, the model contains 3936 trainable

parameters.

Figure 4.30: Illustration of CNN model structure: 3 convolution layers with max
pooling, one fully connected layer and softmax classifier.

The test set detection rate of both CNN and SVM used is ploted in Figure 4.31

with respect to distance to camera. It can be seen that the detection rate of CNN

drops significantly as the fire is further away from the camera. The SVM classifier is

only slightly affected. Figure 4.32 shows the history of loss error and accuracy during

the training at each epoch. The training accuracy was 100 percent, which is an

indication of over-fitting given the test accuracy is much lower. The trained CNN is
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far from optimal, which requires further fine-tuning to reduce over-fitting, re-structure

and more diverse dataset. Despite of the enlarged dataset by data augmentation, the

CNN performance is inferior to that of SVM. The generalization of SVM classifier is

better, given that only a few hundreds of training examples used. Moreover, training

data used for the SVM were images of 5m from camera. It still performance very well

for unseen fire images at greater distances, showing the effectiveness of the feature

extraction stages.

Figure 4.31: CNN and SVM detection rates vs distance to camera.

The comparison between CNN and SVM used in this case reflects the practical

considerations of choosing the appropriate machine learning algorithm as previously

discussed. Provided with a well-defined dataset, neural networks will give very solid

performance, but the fine-tuning may entail extensive experimentation. The fine-

tuning process is more empirical than definitive that no clear guideline on how the

structure should be for a specific case. One might resort to transfer learning to retrain

the existing model to speed up the process. However, in specific situations, these

choice might not always be available due to the different type of data for different

tasks. SVM on the other hand is very effective in cases that the dataset is limited.
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Figure 4.32: Training graphs of CNN. Left: loss error vs number of epoch; right:
accuracy vs number of epoch. Blue: training set; orange: validation set.

The training process is so much faster as only w and b needs to be found, which is

proportionate to number of features in each example.

4.4 Summary

The trained SVM is very effective in distinguish fire from non-fire objects. The

false positive examples seem to have more texture and pixel variations. The most

obvious example for this situation is light reflection from the ground. This could

happen especially when the ground if made of grits, which can be reflective and

grainy. The false negative examples all appear less bright comparing to other fire

examples for each case. The main reason is the disturbance from ambient air flow,

which reduced the texture and contrast of a flame image. Notwithstanding more

missed detections in the 10m test case, the performance is still satisfactory. Because

in real-time systems, many frames will be checked within a second, the fire will be

detected in time. Moreover, this method does not rely on temporal feature, which

make it suitable for moving camera situation.

The Bayer CFA is not only transmissive in the visible spectrum, but also in NIR

spectrum at a lesser degree. The blue colour filter allowed more NIR photons to reach
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the sensor than those of the red colour filters. The NIR photons leaked into red and

blue channel without the IR blocker gives the image a pink taint. For cases with NIR

cut-on filters, the colour distribution trend showed some consistency, especially for

the case with 950 nm cut-on filter. Moreover, the exposure seemed not to influence

the colour distribution. The ability to see NIR gives this camera sensor an edge over

the common colour cameras for fire detection. Comparing to the use of monochrome

LWIR from the fire detection literature, the colour can be used as an extra layer of

filtering to facilitate the image processing pipeline.

Two popular machine learning algorithms for classification were attempted in

the case of fire detection. They all can give very good performance given that the

hardware nowadays are better optimized for machine learning tasks. The question

of which one to use has a solution in the practical considerations for specific task.

One advantage of using Pi camera system is the system configurability that the

camera setting can be fixed and work consistently. Many fire detection research

reported that illumination change affects system robustness as the camera system’s

auto white balance shifted the colour significantly. In addition, the Pi system as a

single-board computer offers on-board computability which enables easy deployment.

Furthermore, the two camera module and the Pi platform only cost less than 100

GBP. The much lower cost with NIR capability really makes it an appealing choice

for fire detection, especially compared with any other types of IR cameras. Finally,

the combination of flame physics, algorithms and multi-spectral capability has the

potential for robust fire detection systems, comparing to many other research that

solely treating fire detection as an algorithm problem.

120



Chapter 5

NIR combustion diagnostics

5.1 Introduction

The hydrocarbon flame spectroscopy in the IR spectrum contains lots of exploitable

information for diagnostics as shown in Figure 5.1 In the field of combustion

diagnostics for lean premixed flames, NIR diode-laser based absorption spectroscopy

was well studied in literature, where the concentration of combustion products such

as H2O, CO2, CO and CH4, etc can be inferred by the integral integrated line

absorption. In addition, gas temperature can also be calculated by the ratio of line

intensities at selected absorption wavelength. The knowledge of the distribution,

concentration and gas temperature is particularly useful in combustion control

applications. Particularly, CO, CO2 and H2O as the main combustion products

in premixed lean hydrocarbon flames are effective in determining the combustion

efficiency. Moreover, the temperature of the flame is a key indicator of combustion

thermal efficiency. The vibrational overtones and combination bands of these species

are usually discretely distributed with overlapping in the infrared spectrum.

However, carefully selected narrow bands can make room for measuring individual

species with much less interference from other species. Figure 5.2 shows the line

absorption strength from HITRAN database for CO, CO2 and H2O, where non-
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Figure 5.1: Emission relative intensity of hydrocarbon flames[122].

Figure 5.2: Line absorption strength of H2O, CO2 and CO at 1500K.

overlapping regions for these species can be utilized for NIR absorption spectroscopy

studies. [123] exploited the NIR absorption spectrum, in particular for CO at 2.3

µm, H2O at 1.343, 1.392, 1.799 µm, to measure species concentrations. In addition,

the temperature was inferred from the ratio of selected bands.

The popularity of NIR absorption spectroscopy rather than the mid and

long wavelength IR for combustion diagnostics may be partially ascribed to the

advancement of sensor technology. For example, NIR detectors, such as InGaAs

detectors usually operating from 900 nm to 2.5 µm, is a common choice because of its

relative low cost and can be operated at room temperature. In addition, the natural
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advantage of photosensitive conductor is fast response comparing to the common

thermal detector type of long wavelength IR sensors, enabling its capability for high

temporal resolution applications. Meanwhile, with the CMOS fabrication technology

compatibility, ROIC can be integrated giving it fast readout and relative low-cost.

In contrast to the active instrumentation using NIR laser absorption spectroscopy,

the passive instrumentation whereby NIR radiations are passively gathered by NIR

detectors, is much less used in literature. The main reason could be the overlapping

emission spectrum of the CO2 and H2O. Nevertheless, NIR passive imaging can be

very useful in some situations.
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5.2 NIR spectrum of a flame

The emission spectrum generated in flames can be categorized to 3 types: (a).

transition of electrons from one stationary energy state to another (electronic

transition), which corresponds to single spike in the spectrum; (b). in addition to the

electronic transition in 1, the change in the internal vibrational and rotational energy

of the molecules, which usually produces multiple banded spectrum; (c) through

emission or absorption by solid particles or droplets, or by ionization or recombination,

which generate continuous spectrum [123]. The sensitivity of silicone-based CMOS

sensors is capable of acquire the line-of-sight spectrum of water molecules as well as

carbon dioxide in the NIR spectrum up to 1100 nm. Their emission in the NIR is

only a fraction of the banded spectrum throughout the whole IR spectrum. Such

emitted radiation is not generated by any change of quantum state but by the change

of vibrational and rotational energy.

Most combustion is an exothermic chemical process, which involves energy

conversion and heat transfer. The released energy interacts with the ambiance

through three manners: conduction, convection and radiation. In a real scenario, most

of the energy is lost by conduction to the burner and by convection with surrounding

cool air. The part of energy by radiation is accounted by the emission spectrum of

the flame, which usually takes a wide range of the spectrum from UV to far-IR. The

radiation from combustion under different conditions have different banded spectrum

and peaks. Generally, the energy emission in VIS and UV accounts for no more than

0.4 percent of the total combustion energy. However, the radiation energy in the

infrared spectrum can take as high as 20 percent of the total [123].

In the case of diffusion hydrocarbon flames, the presence of soot from incomplete

combustion will have an emission spectrum more resembling the Plancks blackbody
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radiation, which covers a wide spectrum. The soot radiation spectrum dominates

over that the premixed part at the root of the flame. In the case of premixed lean

hydrocarbon flames, however, main observations of the emission spectrum come from

excited intermediates, such as OH∗, C∗
2 , CH∗, etc. Extensive research has been

published, establishing the correlations between the combustion properties and the

emission of those intermediates. Different from the dominate peaks in VIS and UV of

the intermediates, which is generated during the combustion chemical process. The

main emission in IR comes from the combustion product carbon dioxide and water

vapour.
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5.3 Passive NIR imaging of fuel-lean hydrocarbon
flames

In this research, simultaneous visible and near-IR imaging of premixed methane and

hydrogen flames is utilized to study the flame behaviours and structure. Various

equivalence ratios are compared for the case of methane and hydrogen premixed

flames. In addition, a colour analysis is made to show that the colour is dependent

on the temperature of flames as well as the optical property of Bayer colour filter.

To avoid any confusion, two types of raspberry pi cameras were used: 1. Sony

IMX219 without IR blocker (pi camera V2); 2. Omnivision OV5647 (pi camera

V1). The first sensor is sensitive to near IR up to 1100 nm but still have the

Bayer Colour array on the sensor. Whereas the second sensors Bayer colour filter

is removed chemically by in-house developed procedures, which means the whole

spectral sensitivity range of the sensor is usable without any influence by in-built

components. The removal of the Bayer filter for the second sensor turns it to a

monochromatic sensor, thereby every pixel receives equal radiation. However, the

combination of near-IR sensitivity and Bayer colour filter of the first sensor will

introduced false colour because of its optical property. As the silicon-based CMOS

image sensor is more prevalent than ever, there can be NIR leakage due to the

difference of integration of IR blocker from different manufacturers. The study of

such false colour can be instructive of dealing with problems as such.

5.3.1 Fuel-lean premixed flames imaging in 300-1100 nm

Figure 5.3 shows the time averaged premixed methane flame of 10 images over the

sensors spectral sensitivity range (300-1100nm). The camera setting is fixed to 15

fps with ISO 800. It should be noted that the irregular dark spots are caused by
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the debris of the Bayer colour filter from the chemical removal. The image reveals

the inclusion of line-of-sight emission of the intermediate species, such as CH∗, C2,

OH∗, and combustion product of H2O and CO2. The inner cone bright outline

mainly comes from CH∗ and C∗
2 , which have strong peaks at 430 nm and 515 nm,

respectively. The surrounding fuzzy region of the cone corresponds to the rotational

and vibrational bands of H2O and CO2, which stretches much further upwards than

the visible appearance of the premixed flame.

It is worth mentioning that the imaging technique should be restricted for

qualitative measurements in terms of radiation signal strength, unless a thorough

spectral response of the sensor over the sensitivity range is calibrated with respect

to the absolution value. Referring to the sensor spectral response in Figure 3.11,

the spectral response is nonlinear, which is much stronger in NIR than in the visible

range.

Narrow band filters with FWHM = 10 nm (Full Width-Half Max), were applied

to the sensor at emission peaks of three species of CH∗, C2∗, OH∗. As Figure 5.4

illustrated, the sensor sensitivity at 309nm is very weak, which resulted in a weak

and fuzzy cone. The image for C∗
2 is noticeably sharper than that of CH∗, indicating

a higher concentration at the shell of the cone.

Near infrared cut-on filter was also applied to isolate the emission of H2O and CO2

as shown in 5.5. From the cut-on wavelength to sensitivity range of the sensor, hot

combustion products were visualized. It is obvious that as the bandwidth decreases,

the resultant image is dark because of less integration of photons. It is also noticeable

that the sharpness drops from the wider bandwidth to narrow bandwidth. The most

apparent change in terms of flame structure is the hot CO2 and H2O, which stretches

much longer than the normal visible flame. The necking effect can be observed at the
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Figure 5.3: Lean premixed methane flame in complete sensitive spectrum of Si-based
CMOS sensor (300-1100 nm).
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Figure 5.4: Narrow band imaging with lean-premixed methane flames. Left: 309 nm
for OH∗; middle: 430 nm for CH∗; right: 515 nm for C∗

2
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Figure 5.5: Short band NIR imaging with lean premixed hydrocarbon flames. Left:
760-1100 nm; middle: 850-1100 nm; right: 950-1100 nm.

mid length of the flame. Moreover, the cone in the core of the flame comes from the

lesser integration of line-of-sight emission of the combustion products, because the

fuel and air mixture is not reacting to produce H2O and CO2.
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5.4 Effect of Bayer CFA on hydrocarbon flame
colour

The effect of near infrared radiation of spectral range up to 1100nm on the resultant

flame colour is studied through two cases: 1. Methane diffusion flames (VIS versus

300-1100 nm); 2. Premixed methane and air flames (VIS versus 850-1100 nm). In

both cases, the sample flame images were taken simultaneous.

In Figure 5.6 top left, the extra NIR radiation of the diffusion methane flame

received by the pixels render the image with a purplish tint. It is visually noticeable

that the brightness is larger comparing to the VIS image. The hue colour scale used

here is [0, 180]. The purplish colour corresponds to hue range of 140 to 155. By

contrast, the yellowish to red colour of visible diffusion flame having a hue range of

0 to 30 and 160 to 180, which is the emission of soot particles. The weak premixed

bluish flame at the root corresponds to CH∗ and C∗
2 gives hue range of 110 to 130.

There is also a purplish colour with hue range of 130 to 160 at the edge and in the

vicinity of the joint of diffusion and premixed region in the root. Because in these

regions, both soot emission and premixed bluish radiation are weak as the integration

depth is smaller, the line-of-sight integration of both generates such colour.

Referring to Figure 5.7, a considerable amount of infrared radiation reached the

pixels through all colours of the Bayer colour filter. Especially in the blue channel, a

significant amount of pixels shifted from low values to higher value comparing to that

of the visible image. A much larger portion of pixels having values in range of 150 to

saturation, whereas no saturated pixels in the blue channel of visible flame image. It

can also be seen that a great portion of low range pixels in red channel were shifted

towards the right of the histogram.

In the premixed methane flame case, the effect of NIR from hot CO2 and H2O on
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Figure 5.6: Diffusion methane flame imaging VIS vs VIS+NIR and hue channel
distribution.
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Figure 5.7: Diffusion methane flame blue and red channel histograms: VIS vs
VIS+NIR.
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the colour of flame image is also studies across the range of equivalence ratio in the

fuel-lean condition. The radiation from CO2 and H2O is isolated by applying a cut-on

filter at 850nm, which give the sensor sensitivity range of 850 to 1100nm. Meanwhile,

the visible premixed methane flame is simultaneously captured for comparison. The

camera setting is fixed at exposure time of 15.5 ms with ISO 400 at 30fps for radiation

intensity benchmarking.

Figure 5.8: Premixed methane flame imaging in fuel-lean condition: VIS (bottom) vs
VIS+NIR (top).

Figure 5.8 shows the synchronized dual band imaging at premixed equivalence
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ratio from 0.4 to 0.9. The total volumetric flow rate for methane case as well as

hydrogen case are fixed at 3.0 L/min. There is a discernible shift of colours as the

equivalence ratio increases towards stoichiometric. Because of the cut-on filter fitted

to the camera, the images are the captured CO2 and H2O in the spectral range

of 850 to 1100 nm. The wobble of the hot combustion products is stronger as the

equivalence ratio increases. The hue channel histogram of flames at each equivalence

ratio is plotted in Figure 5.9. Overall, the flame colours shift from blue (120-125) to

purple (up to 145) until the equivalence ratio reaches 0.9.

Figure 5.9: Premixed methane flame colour shift w.r.t equivalence ratio: (850-1100
nm).

In comparison, the visible flame colours are very consistent and centred at hue

of 120, as shown in Figure 5.10. At equivalence ratio of 0.7, 0.8 and 0.9, a peak
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Figure 5.10: Premixed methane flame colour shift w.r.t equivalence ratio: visible
spectrum.

of light blue centred approximately within 110-115. This should be caused by the

mixed emission from CH∗ and C∗
2 , which highly concentrates at the vicinity of the

cone where the combustion starts [144].

To consolidates that the tinted colour appearance is due to the Bayer colour filter

having significant transmission of the NIR radiations, the colour channel histogram

in RGB colour space is plotted for the case of equivalence ratio of 0.8 in Figure 5.12.

It is obvious that all channels in the NIR case have histograms shifted towards the

right comparing the that of the visible case. Figure 5.11 gives the official spectral

response of this camera sensor with IR blocker. The integrated Bayer colour filter

throttles all three colours near 700 nm, which is presumably cause by the IR blocker.

The actual spectral response should have peaks in the region of 700 to 1100 nm.
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Figure 5.11: Camera Bayer CFA spectral response in visible spectrum [145].

Because the Bayer colour filter are long-pass filters with peaks at each desired

colour wavelength, it is expected that the red channel has a considerable response in

the spectrum of 850 to 1100 nm. Nonetheless, the comparison of channel intensity

histograms prove that the blue and green filter has higher transmission of NIR than

that of the red filter.
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Figure 5.12: Premixed methane flame R,G,B histograms at equivalence ratio 0.8.
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5.5 Premixed flame with NIR imaging

Premixed flames are widely used in industrial applications. The control of such flames

to achieve stability is of great importance. There are many factors affecting the

flame stability, some of which have quantified variables to relate the phenomenon

to theoretical modelling, for instance the Lewis number in Eq(5.1), which is the

ratio of thermal diffusivity and mass diffusivity [146]. Also, Damkohler numbers Da

defined as the ratio of reaction rate to mixing rate. The instability is also coupled

with concentration of reactants. [147] showed that if both reactants have similar

proportion, given the Lewis number is larger than unity, flame pulsation is likely to

happen. In the regime of premixed flame, the Lewis number of lean reactants will

introduce diffusive-thermal instability [148]. Moreover, the effect of Lewis number

and equivalence ratio on the cause of flame pulsation has been studies experimentally,

which showed good agreement with theoretical modelling [149].

Lei =
α

Dij

(5.1)

Instability is also caused by stretch rate of the flame. These parameters bearing

different names are independent as mathematical quantities. However, they are

closely related in terms of physical meaning. Contrasting to premixed hydrocarbon

flames, hydrogen premixed flames is more sensitive to stretch, which is more likely to

cause instability [149]. The coupling effect of fuel diffusion and thermal conduction

can also promote thermal-diffusion instability in the case of stationary planar flame.

Because instability arose dependently on diffusive process, which is dominantly

affected by combustion chemical reaction [150].

Thermal radiation loss is another significant aspect on flame instability. The

139



radiation energy emission is usually larger from the downstream hot combustion

product than the upstream reacting gases [151]. This loss of energy contributes

to the lower maximum temperature comparing to the adiabatic flame temperature.

Therefore, the ability of direct imaging of CO2 and H2O provides a valuable tool for

premixed flame diagnostics at a very accessible cost.

5.5.1 Premixed methane and hydrogen flame pulsation with
NIR imaging

To study the pulsation of premixed flames through NIR imaging, the experiment was

set up to visualise the combustion product of CO2 and H2O. The experiment layout

is shown in Figure 5.13. Flow meters were used to control the equivalence ratio. And

a short band optical filter of 850-1100nm was applied to the camera.

Figure 5.13: Experiment setup for NIR combustion product visualisation.

Time series data were extracted from images captured with spectral range of (850-

1100 nm), for two cases: premixed methane and air, premixed hydrogen and air. For

premixed methane flames, the equivalence ratio was kept at 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

For premixed hydrogen, it was kept at 0.5, 0.7 and 1.0. As illustrated in Figure 5.14,

a patch of pixels in blue channel for both cases were extracted for analysis. The patch

was centred at pixel location of (225, 425) for methane, where the necking occurred.
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Figure 5.14: pixel value extraction lines for monitoring. Vertical: centre line;
horizontal: necking position; square patch: intensity monitoring.

It is centred at location of (320, 450) for hydrogen flame. To analyse the pulsation

of the flame, the flame length at the vertical centreline and horizontal position were

also recorded. The vertical stretching and horizontal wobble of hot CO2 and H2O are

good indicator for quantitative measurement of pulsation with respect to equivalence

ratio. Image sequence were gathered at 30 fps with fixed exposure and ISO, thereby

comparative intensity analysis can be made.

The power spectral density (PSD) of the mean value of the extracted patch at

various equivalence ratios are plotted in Figure 5.15. All equivalence ratio cases

141



Figure 5.15: PSD of NIR intensity variation in premixed methane flame. Right panel
is the enlarged view on the second peak near 11 Hz.

exhibited similar trends. The most energy containing region is at the low frequency

part. However, for all cases, a dominant peak is located around frequency of 8 Hz.

The zoomed in plot on the right panel of Figure 5.15 also indicate a second weaker

peak centred 11 Hz. By observation, the intensity variation frequency is roughly

disproportionate to the equivalence ratio. The variation of intensity is due to the

intermittent rising of hot combustion product.

The PSD of the extracted length with respect to time of the vertical centreline and

horizontal line showed great consistency for all equivalence ratios as shown in Figure

5.16. Both curves peak at 8 Hz, which is in agreement with the PSD of intensity.

A second peak locates around 11 Hz. By comparison, the power strength of the

peaks, vertical pulsation has greater amplitudes comparing to the horizontal. This is

expected because of the buoyancy effect trying to stretch the hot combustion products

upwards. The flame wobbles due to the vertical stretching. Previous research have

shown that the oscillation of pressure [152], equivalence ratio and chemiluminescence

spectral emission [153], have similar frequency spectrum as obtained by monitoring
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Figure 5.16: PSD of NIR premixed methane flame pulsation. Left: vertical; right:
horizontal.

the spectrum of H2O and CO2. [143] also reported the fluctuation in infrared

emission is consistent with the simultaneously measure acoustic response. Even

though those research focused on the turbulence flames in combustors, it validates the

method of monitoring hot combustion products as an effective tool for combustion

instrumentation.

In the hydrogen premixed flame case, frequency spectrum is not as so obviously

structrued as that for methane premixed flames. A predominant peak was only

observed at stoichiometric, which centres at 5 Hz. Another less strong peak locates

neat 10Hz. At equivalence ratio of 0.5, the intensity variation spectrum spans wider

than the rest of the cases, with irregular power distribution over the frequency range

from 1 to 10 Hz. Overall, the oscillation are reduced by the decrease in equivalence

ratio for hydrogen premixed flames.
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Figure 5.17: PSD of NIR intensity variation premixed hydrogen flame. Blue: φ=0.5,
yellow: φ=0.7, green: φ=1.0.

The fluctuation PSD of the extracted centreline and horizontal lines for hydrogen

premixed flame shows great consistency for all equivalence ratios. Referring to Figure

5.18, most of the frequency spectral power is contained in the low frequency region.

A decay is observed from approximately 0.4 Hz to the end of the spectrum. Observed

from the image sequence of premixed hydrogen flames, for the lean premixed cases,

the flame tends to stay vertical, and no periodic wobble appeared as in the methane

cases. The sporadic wobble may be caused by the ambient air flow or fluctuation

from the burner pipe. Only when the equivalence ratio reaches stoichiometric, the

flame exhibited periodic stretch and wobble.
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Figure 5.18: PSD of NIR premixed hydrogen flame pulsation. Left: vertical; right:
horizontal.

5.5.2 Premixed methane and hydrogen flame evolution with
NIR imaging

The evolution of one pulsation cycle of methane flame are plotted in Figure 5.19

and Figure 5.20 at each equivalence ratio. The colour contour is based on the blue

channel image, which is normalized by 255. At equivalence ratio of 0.4, the flame

shows the weakest NIR emission. The excess of air in the lean mixture suppresses

the flame temperature. Near the reaction zone, for equivalence ratio of 0.5, 0.6, 0.7,

all revealed strong NIR emission. It should be mention that the pixels are saturated

for these three cases. This is compromise for intensity benchmarking as the image

sensors dynamic range is limited. For equivalence ratio from 0.8 and 0.9, cooling is

observed as there is very small region of saturation or no saturation at all. This may

be caused by more intense mixing of the hot combustion products with ambient air

due to stretching and wiggling. By visual inspection, the flame has greater stretching

and waving as equivalence ratio approaches stoichiometric.

The camera setting ISO for imaging hydrogen flames was set to 100 instead of

400 for methane case, and other settings were kept the same. The NIR radiation
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from premixed hydrogen flames is much stronger than that of the methane flames,

indicating higher temperature distribution of the flame vicinity. In contrast to the

shape methane flame, hydrogen premixed flame did not show significant wobble and

necking.
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Figure 5.19: Colour contour of premixed methane flames at fuel-lean condition. Top
to bottom: φ = 0.4, 0.5, 0.6.
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Figure 5.20: Colour contour of premixed methane flames at fuel-lean condition. Top
to bottom: φ = 0.7, 0.8, 0.9.
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Figure 5.21: Colour contour of premixed hydrogen flames at fuel-lean condition. Top
to bottom: φ = 0.5, 0.7, 1.0.
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The time averaged intensity distribution of premixed methane flames at

equivalence ratio 0.7, 0.8, 0.9 over 4 seconds (120 frames) is illustrated in Figure

5.22, which is superimposed by the outline of visible flame cone. It can be seen that

the high intensity region at the centre of the contour plot shrinks with the increase

of equivalence ratio. The high intensity outline corresponds to the CH∗ and C2

radicals which occurs at the boundary of reaction. Research have reported that these

two radical are better correlated with temperature profile that with OH∗ in some

situations [154]. This is in agreement with the overlapping of cone tips and high

intensity contour region. The layered protruding contour from the flame root to the

high intensity region reveals the preheating of the fuel and air mixture before entering

the reaction zone. Moreover, region of high NIR intensity region stretches along with

the flame cone, with respect to the equivalence ratio.

Figure 5.22: Time averaged premixed methane flames for 120 frames with CH∗ and
C∗

2 outline. Left to right: φ = 0.7, 0.8, 0.9.
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5.6 Usage of NIR imaging in solid fuel combustion

5.6.1 Background

As natural wood processed and reclaimed wood is extensively used in construction

and furniture of domestic household as well as in public environment, the fire safety

regarding to these materials is of great importance. Wood combustion is a highly

complex process, which involves different substances in the wood subjected to thermal

decomposition that active chemical reaction will eventually lead to combustion.

Wood is mainly made of lignin, polyoses and cellulose, which is a kind of polymer

but made by nature. These are intertwined together in a cellular form during the

plants growing process. Under thermal decomposition, wood materials can undergo

different combustion states, such as smoking, pluming, smouldering and flame-out.

Figure 5.23 illustrates the components of plant biomass and wood, where cellulose,

polyoses (hemicellulose) and lignin contributes the major weight of the wood.

Figure 5.23: Illustration for biomass and wood constituents [155].

Cellulose accounts for approximately 40-50 percent of the weight, which also

responsible for the hardness of the material [156]. Figure 5.24 is the basic constituent
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Figure 5.24: Molecular structure of cellulose polymer [157].

of cellulose polymer, called cellobiose unit. The cellobiose unit is a combination of

two glucose anhydride, which is formed by breaking the bond of water to it. The

cellobiose unit is replicated 5000-10000 times to form a long chain. Such chains will

then be bonded by hydrogen bonds. Afterwards, these chains intertwine to form the

fibres [157].

Another main constituent is the hemicellulose or polyoses, which can take

up to 35% of the weight [156]. The building block of the hemicellulose is

heteropolysaccharide, which consists of several polymerized monosaccharides. The

repetition of the units is around approximately 150, which is much smaller than

that of the cellulose. Simpler structure makes it less stable than the cellulose with a

decomposition temperature of 200-260 Celsius which is also easier to produce volatiles

[158].

The third element is lignin, which contributes to 16-33 percent of the weight

depending on the type of the wood [159]. Unlike cellulose and hemicellulose, the

structure of lignin is random which is made of cross-linked resin. Because of its

amorphous structure, many possible linkages between different building units of other

constituents exists. Lignin acts as a glue to bind other fibrous constituents [160].

The decomposition temperature of lignin has a range of 280-500 Celsius [158]. The

decomposition of lignin produces liquid products called pyroligneous acid, which has
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about 20% aqueous constituents and around 15% tar. In addition, it also produces

flammable gases, such as methane, ethane and carbon monoxide, which in total

accounts for 10% of weight of lignin [155].

The chemistry involved in wood combustion process consists of thousands of

reactions, where as much as hundreds of chemical substances interact [161]. Such

thermal decomposition is called pyrolysis, which in short wood is decomposed to

combustible gases and consumed by combing with oxygen, leaving only solid charcoal.

The mechanism of pyrolysis is significantly dependent on temperature. A reported

critical temperature of 300 Celsius, below or above which the pyrolysis will bias

towards charring and gasification. Wood fire is always orange because of the soot

formation by the amalgamation of free carbons from the charring of the wood. Near

the root of the flame, there can be bluish flame from carbon monoxide, methane and

ethane. The lack of oxygen in the wood as it is charring promotes carbon monoxide

generation.

The sustained flaming of wood is a self-supplying loop as illustrated in Figure

5.25, where the wood is heated by the flame to generate combustible gases through

pyrolysis. Those gases mix with air and then transported into the flame by buoyancy.

Fire will sustain and propagate by heating the adjacent virgin wood in order to

produce enough gases for the flame. The heating of the wood mainly takes two

manners: convection and radiation; the dominance of which varies from case to case,

depending on the flame scale and the setup condition.

The scale of the fire is an essential factor for the dominance of the type of heat

transfer to sustain the cyclic combustion process. In the case of wall fire, radiation

grows to become stronger than convective heat flux as the flame increase in size

[162].The radiation of a wood fire is contributed from particulate, condensed tar,

153



Figure 5.25: The loop of self-sustained wood combustion.

water as wood moisture and other combustion products of gases from pyrolysis which

are mainly CO2 and H2O. They emit radiation in different part of the spectrum. Solid

particles usually have a radiation curve resembles the blackbody radiation, having an

emission over a wide spectrum. Whereas the emission of CO2 and H2O falls into the

infrared spectrum. The radiation from both gaseous products and solid particulate

also depends on their concentration [163]. In the case of pool fire, the heat transfer

becomes radiation-lead for pan size larger than 20 cm [164]. If the flame scale is further

increased, the flame temperature will rise because of soot blockage. The prolific soot

prevents effective radiation loss therefore increases flame temperature [163]. As a

result, the energy loss due to radiation is reduced. Figure 5.26 shows the radiative

energy starts to drop dramatically after the pan diameter reached approximately 5

meters. Apart from the material properties of the wood, geometric properties can play

a vital role in promoting or suppressing fire propagation. Heat transfer by convection

is greatly affected by the geometry setup of the scenarios. Basically, convection is
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Figure 5.26: Radiation energy versus flame size for pool fire [165].

the interaction between flow field and energy transport. Hot fluid will rise due to

buoyancy effect resulted from change in density. Hence, the combustion of wood is

more likely to sustain as the unburn fuel is in the downstream of the hot fluid, which

helps to preheat for drying and then pyrolysis. In contrast, heat transfer by radiation

is in the electromagnetic form, and is omni-directional.

Smouldering can happen in a low temperature situation. Temperature drop or a

change in oxygen supply can cause can invert flaming into smouldering or vice versa.

In the smouldering process, significant production of carbon monoxide is observed,

taking more than 10% of the total fuel weight. The sustenance of smouldering relies

on air diffused into the reaction zone, as illustrated in Figure 5.27. The reaction rate

is dictated by the supply of oxygen within a certain limit, after which the excess of

oxygen initiate flaming.
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Figure 5.27: Schematic diagram of smouldering in wood [1].

5.6.2 Fire propagation on wood with combined imaging
system

In the test case of this research, flame propagation on inclined oak wood is studied

with synchronized imaging technique combining visible, NIR and schlieren. The

dominance of convective preheating was confirmed to be the main mechanism for

prolonged flame propagation. Even though the wood rod samples are pre-dried to

have consistent moisture content, two other factors can significantly influence the

outcome of the test, namely wood density variations in individual samples and grain

orientations. Qualitative analysis of the physical phenomenon is based on repetitive

experiments to mitigate randomness. The mechanism of fire propagation in this test

setup will be investigated.

The schematic diagram of the experiment setup is shown in Figure 5.28. The

cylindrical wood sample is clamped onto a stand, where the angle of inclination

θ can be controlled. Cylindrical oak wood was used, which has a length of 30

cm and cross-sectional diameter of 9 mm. A pilot flame was used for ignition at

the lower end. For a controlled ignition, the pilot flame was produced at fixed

equivalence ratio and volumetric flow rate. The duration for ignition is 20 seconds for

all tests. The multi-spectrum imaging was combined with schlieren visualization for
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Figure 5.28: Schematic diagram of the experiment setup.

combustion diagnostics. Specifically, the visible images were used to observe charring;

the schlieren visualized the hot flow surrounding the wood sample; finally, the NIR

sensors were able to locate the regions possibly undergone pyrolysis as it can see

radiation of object with temperature as low as 375 Celsius.

The layout of the imaging system is shown in Figure 5.29. In the Z-type schlieren,

the test space is in the middle of the parallel light path, which has double the focal

length of the parabolic mirror (3 metres). A stereo raspberry pi camera system with a

visible and short banded NIR sensor. The pi system is placed along the parallel path

but slightly below the line of sight aiming upwards to avoid blocking the schlieren

light path. Testing sets were made at inclination θ of 0, 20, 25, and 30 degrees. Each

test case was repeated for 10 times to mitigate random influence.
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Table 5.1: Summary of fire propagation in test cases at different inclinations.
Angle θ Average

propagated
length (cm)

Indefinite
propagation
probability

20◦ 4.89 0%
25◦ 4.85 36%
30◦ 5.49 64%

Figure 5.29: Layout of combined imaging system.
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The overall trend of all tested groups was summarized in Table.5.1. Because at

θ = 0◦, the flame cannot propagate lengthwise and extinguish very soon, therefore

excluded from the summary. In general, the burning lifetime and propagated length

vary greatly. Such variation mainly comes from the inconsistency of the wood

material, especially the density, grain alignment with the length and porousness.

The averaged propagated length has a significant increase at θ = 30◦ because of the

longer preheating length. Therefore, it is more likely for the self-supplying process to

survive. Limited by the length of the wood sample, cases of indefinite propagation

were counted. In total, 64% percent of all test cases of θ = 30◦ propagated through

the whole length. The grain orientation can enhance the combustion. For example,

in cases that the grains lead to upstream, the combustible gases from pyrolysis are

naturally transported to the reaction zone. Whereas, if the grains lead to the lower

end, from which the gases are expelled and then ignited without contributing to the

pre-heating.
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5.6.2.1 Some observations and discussion

For illustration, the case with θ = 30◦ is provided in Figure 5.30. The combined

visualization of flame propagation in both visible vs schlieren and NIR vs schlieren is

presented. The schlieren helps to visualize the hot air flow generated by the flame.

The NIR imaging enables the visualization of pyrolysis area.

By observation, the hot flow caused by the flame encompasses a longer length,

which pre-heat the downstream virgin wood by convection. The larger the inclination

angle θ, the longer the pre-heating. As a result, the fire is more likely to propagated.

The right column shows the heated wood at time instant of 30 seconds apart.

The glowing regions on the burning wood indicates a temperature zone above 375

Celsius. This is the temperature zone that the wood is subjected to significant

mass loss [166]. The cell structure of the material is degraded, which leads to

dimensional change. More specifically, the crystal structure of cellulose and lignin will

be completely destroyed rendering an undefined structure [167]. This destruction of

the polymer structure is accompanied with carbonization within 300-500 Celsius. As

the temperature increased, the developed carbon structure will produce bio-morphous

carbons [168]. The shrinkage of the wood dimension is obvious as it burns. This

can be seen at t = 60s of Figure 5.30 that the lower end is much thinner and

slightly bent upwards. The use of NIR sensors helps to identify the temperature

regions corresponding to different stages of pyrolysis, which can be an effective tool

for combustion diagnostic inference.

The combined imaging technique reveals the different wood combustion regimes.

Firstly, the NIR imaging reveals the pyrolysis zone at a temperature above 375 Celsius,

as illustrated by region As in Figure 5.31. The decomposition of lignin and polyoses

and degradation of the material ultrastructure seem to coexist. In the left panel, the
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Figure 5.30: Combined imaging with NIR, visble and schlieren for θ = 30◦. Top to
bottom row: t = 0s; t = 30s; t = 60s.
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Figure 5.31: Visualization of different regimes of wood combustion. Region A: >375
Celcius →degradation and carbonization →free carbon →orange flame; region B:
<375 Celcius →Hemicellulose and lignin decomposition only →mostly combustible
gases →blue premixed flame; C: flame lift-off.

colour of flame at region A is mixed blue with oranges. The orange colour should

be caused by the generated free carbon from polymer structural destruction, which

entail a temperature range of 300-500 Celsius. This overlaps with the capability of

the NIR imaging on the right panel at region A.

In region B, it is highly likely that the polyoses and lignin undergo thermal

decomposition, which produce most of the gas generation. The temperature is likely

to have a temperature range of 200 to 300 Celsius. This is deduced from the non-

glowing part but still within the hot air flow field. Moreover, it can also be inferred

by the absence of soot emission in the region A of the left panel with only bluish

flame presented. Because sooty flames come from the free carbon released after the

structural deconstruction at temperature above 350 Celsius, which is exemplified

by region A. The inference is in consensus with previous studies, which stated the

temperature for the pyrolysis of lignin and polyoses to produce combustible gases are

260 [169] and 240 Celsius [170]. The flame maximum lift-off is indicated by C. The

flame lift-off the most significant at the propagation front in all test cases. A possible

mechanism to explain this phenomenon is that the excess of produced combustible
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gases at the front in combination with buoyancy effect from the combustion increases

the flow velocity, which then gives rise to the lift-off. The lift-off is observed in all

cases when there is a corresponding underneath bluish flame (as in region B).

The temperature gradient along A and B from IR imaging, indicates the different

stages of pyrolysis the wood is undergone. The closer to the high front of the flame,

the lower the temperature, but more combustible gases generated. The closer to the

lower end, the higher the temperature. Because the fuel has already been consumed

for propagation, the lignin and polyoses left inside has a lower rate of conversion

to gases. Therefore, the lift-off is smaller. The lift-off height along the length seems

disproportionate to the temperature gradient long the length. The lift-off seems to be

larger as the inclination θ is larger. This is expected as θ increases, more pre-heated

length immersed in the hot flow, hence more combustible gases produced.

Figure 5.32: Illustration for the dominance of convection or radiation.

Convection or radiation dominant for fire propagation in this case? The main heat
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transfer in this case is convection as discussed previously. Despite of contribution

by radiant heat transfer from the luminous flame, the drive for flame propagation

is by convective heat transfer. Studies have shown that the radiation will become

dominant when the flame scale reaches 0.2-0.3 m and beyond [171]. In this research,

in the most violent case, the flame was no larger than about 10cm. Whether the

convection or radiant heat transfer is dominant may be deduced from the images.

Referring to Figure 5.32, the charring boundary is highlighted by the dash line for

that instance. As the flame propagates, the charring boundary roughly stays at such

an orientation. This seems to be the hot flow separation region, where the hot mixture

is then transported by buoyancy to form the diffusion flame. The flow separation

leaves a lower temperature region above the fuel. As the hot flow immerses more of

the upstream wood, the whole cross-section of the wood will be burnt. It is difficult

to qualitative measure the significance of convection and radiation. The radiation

is believed to have some contribution at much lesser degree comparing to that of

convection. The evidence is the orientation of the charring boundary (highlighted by

dashed line): if the radiation is significant, the region above dashed line in Figure

5.32 will most likely be burnt into char rather than leaving a boundary illustrated by

the dash line.
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5.6.3 Fire propagation on wood with combined imaging
system with fan

In this test case, a fan and a diffuser were applied to the test setup for θ = 30◦, as

shown in Figure 5.33. The fan has adjustable speeds at 5 levels: 1.1, 2.1, 3.2, 4.2, 5.3

m/s. The fan is turned on right after the pilot ignition is turned off. The aim is to

study the effect of controlled air flow on the flame propagation.

Figure 5.33: 2-D Schematic diagram of the experiment setup with fan.

At each wind speed, repetitive tests were established to eliminate randomness.

Table.5.2 gives the summary of the test case. At speed 1, all test cases can propagate

along the whole length of the sample. As the speed increase, the rate of indefinite

propagation drops. As maximum wind speed, the preheating is disturbed strongly so

that the flame extinguishes very soon. For the measure of average time taken to reach

8 cm, only cases that the flame successfully propagated over 8 cm were considered.

It is very clear that at speed 1, the applied wind greatly enhances propagation and

combustion. Not only all test cases are can indefinitely propagate, but the propagation

speed is notably larger comparing to the no fan case. At higher wind speed, even

though the propagation is faster in some cases, in more cases the flame extinguishes
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Table 5.2: Summary of fire propagation in test cases at different inclinations.

θ = 30◦
Indefinite

propagation
probability

Average
time

taken to
reach 8
cm (s)

phenomenon

No fan 65% 165 -

Speed 1 100% 86 violent flaming, much
longer preheating

Speed 2 50% 97

violent flaming, cooling
observed, flame propagates

underneath starts to
appear

Speed 3 55% 73
More cases with flame only

propagate long the
underneath

Speed 4 17% 81
Mostly flame stays

underneath the sample and
very small

Speed 5 0% - Significant cooling,
extinguish shortly

due to the cooling and shifted preheating by the wind. Referring to Figure 5.34, the

flame at the same time instant after ignition turned off, demonstrated the difference in

combustion conditions. The schlieren reveals the effect of wind speed on preheating.

More concretely, at speed 1, the wind helps to bend the hot air flow towards upstream

fuel, which increases the preheating length. In contrast, at speed 4, the wind speed is

too high that the hot air flow is soon disturbed and dissipated to the lower left region,

decreasing the contact of preheating. Despite the hot air is still exist underneath

the sample, the resident time of the hot air is very small to effectively preheat the

unburnt fuel upstream. Moreover, the underneath thin flame as shown in Figure 5.34

(d) started to appear at speed 2 and became dominant for higher speed cases, which

reveals the cooling effect.
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Figure 5.34: Combined imaging at different fan speeds. (a): speed 1, (b): speed 2,
(c): speed 3, (d): speed 4.
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The cooling of the applied wind can be quantified through schlieren imaging. At

the core of schlieren imaging, the contrast image of the flow field is obtained by the

using a knife edge blocking the deflected rays. Because light will deflect if passing

through medium with different density, which gives different refractive index n. The

deflected angle ε with respect to the optical axis is proportionate to the change of

refractive index. As a result, different density regions in a schlieren image have

corresponding local change of intensity ∆I comparing to the ambient undisturbed

region. The relationship can be established as in Eq(5.2).

∆I

I
=

f2
a

∫ ζ1

ζ2

1

n

∂n

∂y
dz (5.2)

n− 1 = Kρ (5.3)

Combining Gladstone-Dale relation in Eq(5.3), which is the expression to calculate

density by refractive index, the ratio of intensity change, and undisturbed intensity

can be expressed as Eq(5.4) [172]:

∆I

I
=

Kf2
a

∫ ζ1

ζ2

∂ρ

∂y
dz (5.4)

K is Gladstone-Dale constant. f2 is focal length of the second parabolic mirror, a

is the height of light source image at the focal plane of the second parabolic mirror.

ζ1 and ζ2 are the coordinates, the difference of which is the depth of test area along

the optical axis. As shown in the schematic diagram of Figure 5.35, the deflection

angle ε can be positive or negative with respect to the coordinate system. Depending

on the orientation of the knife edge, positive gives rise to the increase in intensity,

while negative gives decrease in intensity as these deflected rays are blocked.
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Figure 5.35: Illustration of deflected light rays caused by density change in schlieren
system.

The calculation of local density is possible but requires rigorous calibration and

setup. However, the change in density is easily obtainable according to Eq(5.4), where

change in density is proportional to the change in intensity. The change of density

is coupled with the significance of cooling from applied wind. To this end, a patch

of pixels in the underneath of the sample where the wood is undergone pyrolysis is

monitored over 60 frames of one second for each case. Since there can be positive

and negative change in intensity, the absolute value is calculated. Finally, the spatial

average is taken for each patch.

∆I = |Ipatch − avg(Iambience)| (5.5)

The extracted patch locations and processed results are illustrated in Figure 5.36.

The average change in intensity is the largest at speed 1, while it is very similar for

higher wind speed cases. At speed 1, the wind is not strong enough to cool the hot
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Figure 5.36: Illustration of patch intensity change from schlieren image. Left: average
intensity change ∆I; right: patches for monitoring.

air but to enhance the combustion by bending the hot air towards the upstream fuel.

As a result, the hotter the air flow, the larger the difference in intensity and then the

larger change in density. At higher wind speeds, the hot air from wood combustion

is cooled by the rapid mixing with ambient air. The reduced temperature gives less

change in density. Therefore, the refractive index is close to that of the ambient air.

The change in intensity is smaller. In addition, the histogram of intensity change

of the monitored patch over the period is plotted in Figure 5.37. It is obvious that

at speed 1 larger change in density because of enhanced combustion is evident. In

contrast, at higher speeds the histogram has a peak around 20, showing the cooling

by wind to prohibit wood combustion in this case.
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Figure 5.37: Histogram of pixel intensities in the extracted patch underneath the
wood sample over 60 frames for each speed.

5.7 Summary

The modified sensor is capable of accurate chemiluminescence instrumentation with

improved spectral response. It also has its limitations. For example, its nonlinear

spectral response can limit its use to low temporal resolution situations, because

the radiation intensity is much weaker in narrwo-band imaging. In addition, for

absolute spectral irradiance measurement, the sensor requires accurate calibration

for benchmarking.

The NIR sensitivity of the silicon-base CMOS sensor is exploited for the imaging

of hot combustion products of H2O and CO2. As previously discussed, the intensity

is predominantly from H2O. The fluctuation of the flame as well as the interaction
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of the flame and its combustion product can be observed and quantified. From the

PSD, methane flames displayed strong fluctuations centred at 8 Hz; while for hydrogen

flame, periodicity is only observed when the equivalence ratio reached stoichiometric.

In addition, the hydrogen flames seem to be more sensitive to perturbations than

methane flames. The immediate visualisation offered by the NIR capability can be

used for premixed combustion of syn-gas, especially for the visualisation of regions of

radiative heat loss.

Finally, the NIR thermal capability not only provides a handy visualisation of hot

area, but can also be used for two-colour pyrometry with extended measurable range

comparing to common visible camera.
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Chapter 6

Conclusion and future work

6.1 Conclusion

This research explored the use of low-cost near infrared image sensors for fire

detection and combustion diagnostics. The flame as a combustion phenomenon is

a complex exothermic chemical and physical process, where molecules disintegrate

and recombine to form new products together with the release of energy. Alongside

this process, radiation is produced over a wide spectrum from UV to infrared. Some

excited intermediates output radiations at specific spectrum with unique peaks. Other

end products, such as carbon (soot), CO2, and H2O dominate the infrared spectrum.

The use of near infrared spectrum (700-1100 nm) for flame and combustion study

has always been overlooked, especially in the case of passive imaging. Two possible

reasons may have caused the situation: firstly the overlapping of NIR emission

from CO2, and H2O may cause difficulties in instrumentation; secondly, the part

of NIR spectrum from 700-1100 nm is not particularly targeted from the main sensor

manufactures, which may also be subjected to the limitations of mainstream sensor

material properties.

In this thesis, state-of-the-art fire detection was comprehensively reviewed. The

overall structure of a video fire detection algorithm consists three main parts: region
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of interest (ROI) extraction, feature selection and extraction and decision-making.

There can be multiple sub-stages within each part. Many fire detection in literature

only treat fire detection as an algorithm problem. It is believed by the author that

a comprehensive knowledge of sensor hardware as well as a bespoke algorithm is the

key to robust and informative fire detection. In addition, video fire detection has

very limited extension to the infrared spectrum throughout literature. Not only is

the captured flame signal different from our intuition, but the interaction between

the environment and the infrared spectral radiation is less studied. All of which helps

to shed lights on the detection and improve the robustness of fire detection system.

The usability of near infrared spectrum can also be valuable for flame diagnostics,

especially for lean premixed flames where the radiation disturbance from soot is

minimal. The excellent near infrared spectral sensitivity make it very promising in

combustion products (CO2, and H2O) monitoring. Because of the infrared spectrum

of these two products contributes a great portion of the radiant energy of the flame,

their visualization and instrumentation can be used for combustion diagnostics,

especially for thermal induced instability. Moreover, the near sensitivity gives limited

thermal capability that it can visualize the temperature distribution of objects having

temperature as low as 375 Celsius. This was conveniently used to visualize wood

pyrolysis regions in the study of flame propagation of solid fuel combustion. The

main aspects of the research have been concluded as follows:

• The modification and characterization of CMOS image sensor. The Bayer colour

filter array is commonly used to generate colour mosaic from which the complete

visible spectral colour can be reproduced by interpolation. With the integrated

Bayer CFA, the quantum efficiency of the sensor pixels is reduced. In addition,

the IR blocker also integrated in the camera lens system to prevent the near
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infrared rays from reaching the sensors. The removal of Bayer CFA and IR

blocker unlocks the full potential of silicon based CMOS image sensor, enabling

it to sense UV to near infrared spectral radiation (300-1100 nm). The test

showed great linearity of camera response with respect to ISO and exposure.

The spectral response of the sensor is non linear. The use of the sensor for

instrumentation of absolute spectral irradiance requires normalization of its

spectral response.

• The image property of NIR fire image has been extensively studied. Similar

to visible camera, the NIR camera also relies on the reflected NIR radiation

from the scene to form an image. Difference is also very noticeable, especially

from vegetation, sky and clouds because of the different scattering effect of NIR

wavelength comparing to that of visible lights. The combined effect of higher

sensitivity in the NIR spectrum and fire radiation property give rise to the

huge contrast between flame and the background. The camera system has high

configurability that the fixed setting can circumvent the camera’s auto white

balance and adaptive exposure, therefore eliminate the effect of illumination in

the scene. Tests showed that the image maintained its high contrast between

foreground fire and background even with very strong sun reflection in the

surroundings. In an indoor situation with lighting, most of the scene were

nearly dark and the light sources were very dim comparing to fire. Simple

empirically determined threshold is effective in the ROI extraction.

• For fire recognition, spatial texture features were used, namely the image

entropy, homogeneity and intensity variance, which are seldom used. Probably

because texture is greatly affected by illumination and the exposure of an image.
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In many research, fire detection algorithms were proposed using common visible

camera, none of which shed lights on the camera hardware setting and control.

This is potentially problematic as the adaptive exposure depends on the scene

illumination. In addition, in the case of using public surveillance system for fire

detection, the control over the camera setting may also be limited. Moreover, in

the fire detection of using long wavelength IR microbolomer detector, frequent

mention of fire image saturation have been noticed. For these situations, texture

based feature can be very unreliable as the spatial intensity variation cannot

be consistently preserved. Therefore, in research utilizing long wavelength IR

cameras, movement based feature were extracted, which measures the contour

variation of the saturated foreground fire. Hence, it can be concluded that the

choice of feature extraction largely depends on camera hardware and application

scenarios. A comprehensive knowledge on both hardware and algorithms are

beneficial in designing robust video fire detection systems.

• On machine learning based classification algorithms, kernel support vector

machine (SVM) and convolutional neural network (CNN) were tested. It is

worth reiterating that most algorithms in theory performs similarly. The right

question to ask is whether the algorithm is practically realizable given the

current resources. The point has been demonstrated in this research. Neural

networks usually have much more trainable parameters in addition to the hyper-

parameters in fine tuning. Therefore, the optimization process requires large

amount of data to achieve better function fitting between the input and output.

Notwithstanding the training process has been drastically accelerated owing

to the AI enhanced processing units, more time can be dedicated in model

architecture experimentation and training techniques, which are an iterative
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process with extensive efforts. In the case of SVM however, it is a sparse model

where only a subset of the training examples (support vectors) are used to

find the optimal decision plane, offering much easier training and deployment.

This is ideal for the case with limited data resources. The performance of

a SVM for a classification task depends on the features. More relevant and

distinctive features of the objects of interest were extracted, more likely the

classification performance will be good. For example, the features of each class

are highly intertwined or clustered in the feature space, the nonlinear kernel

SVM will find a highly nonlinear decision surface that tries to distinguish each

class. Because of the distribution of the features from each class are so similar

(intertwined), it is very likely that the optimal decision plane will have much

reduced performance.

• The combination of NIR and visible spectrum with Bayer colour filter array

(Bayer CFA) produces purple to pinkish colour of flames, showed a consistent

colour distribution for both diffusion and premixed flames. This feature has

been utilized in fire detection as an extra colour filtering to increase system

robustness by false positive reduction. Gaussian mixture model with Dirichlet

process prior was employed to model the colour of the flame. Comparing to

conventional GMM, the non-parametric Bayesian approach generates a much

better fit of the colour distribution. Such false colour is caused by the addition

of near infrared radiation into blue and red pixels. This is immune to false fire

as in advertisement or on display, which only emits visible lights. In addition,

the system is also capable of detecting non-luminous flames.

• In the field of gas combustion diagnostics, the NIR sensitivity allows the camera
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to capture the emission of combustion products (CO2 and H2O). Test cases

of lean premixed methane/hydrogen and air flame showed the convenience of

imaging of flame pulsation, which is difficult by imaging in visible spectrum.

The visualization of hot combustion products can be applied to more complex

combustion conditions to study thermal interaction of flame with flow field. In

addition, the removal of Bayer CFA provides the capability of precise narrow

band imaging with improved pixel quantum efficiency from UV to NIR spectrum

(300-1100 nm) at a much less cost comparing to other NIR camera sensors such

as InGaAs cameras.

• The sensitivity of NIR of such sensors is capable of thermal imaging to a lesser

degree comparing to mid and long wavelength cameras, but with much less

cost and much higher spatial resolution. In the case study, the multi-spectral

sensitivity of the camera sensor was exploited in conjunction with schlieren

imaging forming a comprehensive visualization technique for solid fuel fire

propagation. The low temperature regions corresponding to wood pyrolysis and

the visualization of convective hot flow field explained the mechanism of flame

propagation with respect to sample inclination. Despite the lesser capability

of thermal imaging comparing to longer wavelength thermal cameras, the NIR

camera sensor will find its ground in solid fuel combustion diagnostics with

incomparable cost-effectiveness. Moreover, the correlation between intensity

variation and media density change has also been studied through schlieren

imaging test case, where the cooling effect can be quantified.
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6.2 Future work

Future work can be established by following along the two main bifurcations: Multi-

spectrum fire detection and NIR combustion diagnostics.

• The robustness of the fire detection system needs further tests. Real world

situation can be replicated in laboratory. Particularly, short wavelength infrared

is prone to affected by thermal reflections. If the fire is close to wall or some

other kinds of surfaces, the reflection will have a great effect on the fire images.

The reflectance varies on different surfaces, which all depends on the material

and finishing. The interaction of NIR radiation with various common materials

need further investigation. Therefore, a range of real world surfaces need to be

tested in regards to the change of fire image and to test detection algorithm.

Moreover, in a museum situation, glass is extensively used. If there is a

fire, there can be multiple reflections of the fire which may introduce more

interference. Furthermore, the NIR radiation may bouncing between glass or

glossy surfaces that could potentially render further disturbance. Such real

world condition can be emulated to help further study.

• Further filtering to reject false positive classification is worth investigation using

Kolmogorov-Smirnov statistical test (KS test) in addition to the DPGMM

colour model. This can be though as a statistical texture information because

the flame in NIR only mode at controlled setting has a distinctive spatial

distribution as well as pixel intensity distribution. With enough samples (fire

images), the empirical cumulative distribution function can be obtained. For

a potential fire image patch, its distribution can be compared using KS test

whereby the maximum distance in the two distribution function spaces can be
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computed. Then corresponding threshold needs to be found to reject the null

hypothesis that the new distribution (potential fire patch) is drawn from the

empirical cumulative distribution.

• The stereo cameras are useful for inferring the flame size and distance to the

camera. Stereo camera model operates on two cameras having the same visible

camera, where image registration and matching from both image is readily

available. However, in the stereo imaging system with cameras operating

at different spectrum, image registration can be a challenge. The image

registration between NIR and NIR+Visible fire image can be studied. This

particularly promising for future automated robot firefighter to locate fire and

navigate through space. With on-board computation capability of raspberry

pi system, the ease of system integration can make the cost of prototyping of

future automated fire fighting very affordable.

• It is well known that long wavelength IR radiation can penetrate smoke as the

scattering effect is dramatically reduced for long wavelength . In comparison,

the NIR wavelength is much shorter, which has limited smoke penetration.

Therefore, to what degree does the smoke affect fire image is a topic worth

study. For experimentation, smoke can be generated in an enclose space where

the density of smoke can be controlled. Fire imaging test can be established

accordingly.

• The use of NIR for combustion products imaging of lean premixed flame can

be further extended to more complex situations. For example, the imaging

can be applied to tubular premixed flame propagation in quartz tube. The

visualization of CO2 and H2O could bring new insights to the internal pressure
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and flame oscillations. Moreover, the excellent NIR sensitivity can be utilized

for real-time temperature measurements by two-colour methods, with one

selected band for each camera, offering great spatial resolution.
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Appendix A

Fire detection algorithm

The code produced in this research can be found in the link below:

https://drive.google.com/drive/folders/1KcAVp3IiqsuYzxSORsWVML44TJUNHJ

Pa?usp=sharing

See the comments in the file for explanation.

https://drive.google.com/drive/folders/1KcAVp3IiqsuYzxSORsWVML44TJUNHJPa?usp=sharing
https://drive.google.com/drive/folders/1KcAVp3IiqsuYzxSORsWVML44TJUNHJPa?usp=sharing
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