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ABSTRACT

Many systems from domains such as the cyber-physical systems (CPS) and the Internet of Things
(IoT) include distributed components that need collaborate to achieve common goals. These
systems are envisaged to provide essential services in areas including infrastructure inspection,
smart city maintenance, manufacturing, and transportation. Furthermore, they need to be self-
adaptive in order to cope with variability in workloads, changes in the environment, and changes
affecting the system’s components, such as a component leaving or joining the system.

The components of these distributed systems are typically required to perform tasks that
are physically distributed, and inter-component communication is often affected by high-latency
and low-bandwidth. As such, the control software of these systems cannot maintain up-to-date
system-level models, and needs to be decentralised in order to respond to relevant changes that
occur in the components and the environment by re-planning its actions accordingly.

In this thesis, we introduce nuDECIDE, a novel approach to achieving this decentralisation
of the control software of distributed self-adaptive systems. nuDECIDE makes novel use of
mathematical programming techniques to dynamically partition the goals of the self-adaptive
system among its components, and probabilistic model checking techniques to ensure that
each component achieves its sub-goals in the presence of environmental uncertainty. Three
mathematical programming techniques are adapted for use within nuDECIDE, namely linear
programming, integer programming, and policy synthesis for Markov decision processes.

Additionally, we introduce an application-independent software architecture and a reusable
software platform (i.e., middleware) for developing self-adaptive systems with decentralised
control. Finally, we present an engineering approach for using the nuDECIDE architecture and
software platform to develop decentralised-control self-adaptive systems.

To illustrate the effectiveness of nuDECIDE, we used its goal partitioning techniques, architec-
ture, software platform and engineering approach to develop decentralised software controllers for
several distributed self-adaptive system from the CPS domain. We illustrate how the nuDECIDE
components can be specialised for three case studies, which we developed using a combination of
real mobile robots and simulation.
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1
INTRODUCTION

1.1 Self-Adaptive Systems with Decentralised Control

A self-adaptive system (SAS) is able to cope with uncertainty arises from changes in system’s

resources and environment. Research in SAS has received a growing interest in many computer

science research communities. The research attention was on establishing the grounding princi-

ples and defining various architectures of adaptive systems[47]. Researchers paved the way to

build systems capable of handling run-time changes without defaulting on system’s constraints

and objectives. A SAS interacts with changes in their resources and environment by adjusting

system parameters or structure. The changes check is performed periodically to meet system

functional and non-functional requirements [63]. A feedback control loop [68, 160]. A prominent

control architecture comprises Monitor, Analysis, Plan, and Execute activities, which are usually

referred to as the MAPE loop [105]. A knowledge repository can be augmented to the control

architecture (MAPE-K) to reflect system state and requirements. The repository facilitates rea-

soning about system behaviour. In consequence, if the current behaviour deviate from system

requirements, a set of corrective actions are planed to restore system confidence [92, 144].

There are many different applications that require the integration and collaboration of dis-

tributed self-adaptive components. These applications consist of interconnected components and

can contribute to domains such as traffic management, advanced automobile, and infrastructure

services (e.g., power, water and communications networks). Robotics is another domain that can

provide services such as , telepresence, assisted living, and rescue operations [123]. Components

of those application are loosely coupled and deployed on distributed hardware [169]. The nature

of the tasks assigned to these software components requires the execution of parallel tasks

distributed across a geographic area. This leads to the difficulty of having a prime component

that is fully aware of the status of other components. The absence of global state renders rea-
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CHAPTER 1. INTRODUCTION

soning about system behaviour in centralised manner a challenging task [34]. However, The

absence of a leading component enhances the scalability of system components due to reducing

the communication and computation burden [184]. In addition, tasks may require resilient to

failures in execution, in which a system can recover from partial failure in components. This

resilience may not be achievable when self-adaptation architecture is centralized or hierarchical.

Therefore, the distribution of system resources and the nature assigned tasks play a pivotal role

in the selection of the appropriate self-adaptation architecture.

1.2 Self-adaptive systems requiring decentralised control

This section illustrates class of problems that require the adoption of a decentralized control

pattern in self-adaptive systems consisting of distributed components that closely coordinate

to achieve common goals. System form domains such as such as Cyber-Physical Systems (CPS)

and Internet of Things (IoT) often comprise distributed components that operate under high

levels of dynamicity. These systems have to handle workload variation and sudden variability

in system available resources in which components join and leave the system from time to time.

Systems in such domains have to address uncertainty concerns raised by interacting with human

users and operators, and dealing with changes in system environment and goals. Such system

may serve in applications, which involve satisfying goals that are characterised as safety-critical.

These goals often necessitate meeting strict functional and extra-functional requirements. For

instance, a CPS that operates in domains such as healthcare and transportation has to adhere to

strict functional requirements as the system interact with the physical environment. Similarly,

the system has to satisfy extra-functional requirements that specify strict performance and

dependability requirements. Accordingly, the control software of such system needs to address

adaptation concerns and provide assurance that the system comply with these requirements.

While there are many research approaches that deal with various adaptation concerns and

address the provision of guarantees in meeting the requirements of self-adaptive systems [47, 64],

most of the effort addresses these issues in traditional software systems excluding systems

comprise components that are physically distributed to perform their functions. The challenges

in engineering the software control of these systems differ from those in traditional systems [17].

First, for systems that consist of heterogeneous components, which can be found in domains such

as robotics, IoT and transportation, the engineering of the software control such that to provide

guarantees in fulfilling their goals is a complex task. Consider for instance a multi-robot system

comprises robots that vary in terms of their types i.e, mobile robots, drones,. . .etc, and sensing

and actuating capabilities i.e, a drone has sensors and actuators that enable it to perform tasks

that a mobile robot can not fulfill. Second, addressing adaptation concerns in a timely manner

necessitates reliable communication between system components. Reliable communication is vital

in order to maintain up-to-date global system models. However, having a reliable communication

2



1.2. SELF-ADAPTIVE SYSTEMS REQUIRING DECENTRALISED CONTROL

i.e a one with low latency and high bandwidth to accommodate the high volume of message traffic,

is not the case in many systems, that are often deployed with only affordable and unreliable

communication between components, which is the case in systems from domains such as IoT and

CPS. Third, even if reliable communication do exist, the analysis of such global models, which are

often large, is inefficient and would impose delays in reacting to adaptation concerns. Last but

not least, many software systems encompass components that belong to different organisations

such that there is no trustworthy component that can oversee self-adaptation.

The decentralisation of software control is a key ingredient to tackle these challenges and

pave the way to develop methods and software frameworks that contribute to expanding the

use of self-adaptation in new domains. Decentralisation of control facilitates the application of

self-adaptation to systems where the modeling and analysis at a system-level are impractical.

Even if modeling and analysis are possible at the system-level, the approach as a whole would

not be scalable, as it can not accommodate an increase in components. Also, if the system is

required to meet safety-critical goals, it is unfeasible to use formal methods, which require an

exhaustive analysis of the modeling space, as the models at a system-level are typically too large

and their analysis would lead to common issues such as state explosion problem [53]. Thus, using

a decentralised control resolves these challenges and yields an approach that is scalable and can

provide assurance in fulfilling safety-critical goals.

For instance, consider the CPS of unmanned underwater vehicles from [34], the system relies

on a decentralised control software to increase the efficiency in analysing mission-critical goals

and allow the system to expand by adding more vehicles. Also, the decentralisation of control

software increases the resilience of such a system to failures as the decision-making is localised

and there is no single component oversees the self-adaptation decision. Another example, consider

the IoT system from [181], the system can benefit from a decentralised software control such that

to increase the scale of the system by adding more tenants. Such an increase in size is possible

as the decentralisation of control relies on local decision-making and reduces the frequency of

communications between tenants.

Nevertheless, decentralised control software is feasible when components of a system belong

to different organizations and there are concerns (e.g., security or privacy concerns) in exchanging

information required for the decision-making between components. For instance, a smart e-health

system such as the one illustrated in [127] can benefit from the decentralised control software to

localise the decision-making and avoid sharing patient sensitive information such as medical

tests , diagnoses history,. . .etc. In summary, decentralising self-adaptation control enables dealing

with heterogeneity and inherent distribution of system components. Also, the decentralisation

enables localised decision-making, which in turn facilitates the use of formal methods to analyse

relatively small models and provide assurance in fulfilling system goals.

Therefore, there is a growing research interest in using decentralized control to develop

self-adaptive systems that include distributed components in domains such as cyber-physical
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systems (CPS) and the Internet of Things (IoT),. . .etc. As the components in these domains require

a high degree of autonomy, which can be achieved by localising the adaptation decision-making

and coordinate when possible to meet system goals. The localised decision-making enables

each component to deal locally with uncertainty arise from interacting with its environment

when possible. [159]. Augmenting these distributed autonomous component with self-adaptive

properties such as self-configuration, self-healing and self-organisation is an open challenge

[155]. Tackling this challenge requires adopting a decentralized control in order to reduce the

impact of limited communication and address adaptation concerns in timely manner [64]. There

is a lack of software engineering approaches to decentralize adaptation control in distributed

autonomous systems, while there is a large body of knowledge for engineering and experimenting

self-adaptation in service based and traditional systems. For instance, there are many initiatives

involve experimenting with self-adaptation in service-based applications such as TAS [178] and

Rainbow [50]. Our aim is to expand the range of application domains that can employ self-

adaptation to achieve system goals. To this end, our approach aims to support the development

and experimentation of self-adaptation in Cyber-Physical application domain.

In particular, requirement characteristics in CPS applications differ from those of traditional

systems. For example, consider a CPS, which consists of distributed components that are deployed

in applications from domains such as smart transportation, smart cities, and ambient assisted

living. Such system must adhere to strict functional and non-functional requirements as it

interacts with the physical environment by sensing and actuating. Providing the necessary

guarantees on satisfying system requirements require a continuous formal verification that all

system components perform their assigned partition of the requirements. This verification is

obtained at run time and is challenging to repeat continuously from a system-level after each

change that affects one of the system components. System-level formal verification imposes

restrictions on the size and complexity of the system. In addition, the nature of tasks in such

systems requires a decentralised self-adaptive control since the components of these systems

usually partition spatial tasks to meet their functional requirements. The decentralisation of self-

adaptive control allows these components to cooperate to fulfill system functional requirements by

partitioning these tasks and assign each to a system component. Nevertheless, the decentralised

control enables the components to deal with restrictions of communication, and enhance the

resilience of the system against failures in any of its components.

1.3 Formal Methods

Formal methods are mathematically based techniques supporting the rigorous development of

computer-based systems, including software and hardware systems. The approach considers the

specifications, requirements and design of such software. It provides the means for developing

and programming software systems that require robustness and rigidity in executing assigned

4



1.3. FORMAL METHODS

tasks [54]. Applying this approach to manage the behaviour of self-adaptive systems is an active

research area [38]. Runtime quantitative verification (RQV) is a promising technique that utilises

stochastic models to represent the behaviour of a SAS and its environment. It provides the

necessary tools to verify system requirements at runtime. These requirements are expressed

as a temporal logic formulae and verified continuously in a closed-loop control. However, the

effectiveness of this technique depends on the size and structure of the verified model. The larger

and more complex the model is, the more time is required to verify system requirements. This

issue is due to the exponential growth of model size as a result of expanding the size of the

system. This problem is commonly known as state explosion problem [11]. Thus, the increase of

system size reduces the effectiveness of applying RQV techniques in self-adaptation [39, 70, 73].

This may cause computation and memory overheads. The large system size introduces delays

in reacting to adaptation concerns. Therefore, this research explores the probabilistic model

checking [61] variant approach to reduce the time and computation required in the runtime

verification. In addition, it adopts the use of a decentralised adaptation control to reduce the

number of the verified states [184]. A decentralised control approach as [34] manages to reduce

computation and memory overheads by dividing the burden between distributed and coordinating

MAPE control loops.

Mathematical Programming (MP) can be employed as a type of formal methods used for

solving a broad range of problems found in domains such as finance, marketing, and personnel

management. MP provides a set of alternative mathematical models that captures specific

domain problems. Particularly problems that require optimisation to find the best solution. The

mathematical model comprises a decision variables, set of constraints, and an objective function.

The decision variables describes the a possible solution (x0) and define the values a variable can

hold. A possible solution x0 has to satisfy equalities or inequalities constraints to be a candidate

solution. The relationships between the decision variables and applied set of constraints defines

the potential solution space (A). The quality of the candidate solution x is measured using the

objective function f (x). An optimal solution is a feasible solution that maximises or minimises

the objective function. Thus, an optimal solution can be found given the following function

(1.1) f : A →R

The element x0 ∈ A is considered an optimal solution if value of its objective function f (x0) is

maximum (or minimum if the goal is to minimise) for all x ∈ A such that f (x0)≥ f (x). since our ap-

proach favors a decentralised adaptation control, a variant of mathematical programming model

is required to plan an optimal configuration for partitioning system tasks. The global allocation

of tasks require a deterministic optimization technique that yields an optimal configuration. MP

is a candidate technique for efficiently solving this class of problems.

Another formal approach that supports decision making in a wide range of applications

is policy synthesis for Markov decision processes. Markov decision processes (MDPs) [16] are

discrete-time stochastic processes used in decision making in applications with optimisation
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problems. MDP enables decision-making in such applications by providing a mathematical

framework for optimising the chosen decisions’ outcome. In an MDP, a decision problem comprises

several states, where each state has some actions that may lead to multiple random outcomes.

Typically, a decision-maker can control which action to follow from each state by associating

the decision-outcome with quantitative rewards. An MDP policy specifies which action to choose

from each state such that the non-determinism in an MDP model is solved. In particular, solving

an MDP entails synthesising a policy that defines which action to select at every state of

the MDP. The selection of actions is based on some property that needs to be achieved (e.g.,

maximising/minimising some rewards structures defined using a real function). There are a

plethora of algorithms that are implemented as libraries and software tools, which can be used

to solve MDP. For instance, there are many probabilistic model checking engines and planners

[65, 119] that employ algorithms based on techniques such as linear programming and policy

iteration.

1.4 Motivation and Research Hypothesis

In recent years, considerable research effort has been directed towards adding self-adaptive

capabilities to software controlled systems in multiple application domains [105, 138]. This

involves augmenting systems with a feedback control loop [68, 160], typically comprising monitor,

analyze, plan and execute (MAPE) steps, and a knowledge repository that captures the system

state. The feedback mechanism allows the analysis of the current system behaviour (reflected in

the knowledge repository) against the predefined requirements and intervenes when a deviation

is detected. In consequence, a set of corrective actions are planned and eventually executed to

continue to meet the system requirements [92, 144]. The proliferation of affordable cyber-physical

components has led to a growing interest to develop Cyber-Physical systems (CPS) that employ

the synergy and integration among their components to achieve common objectives. The physical

and computational components are intertwined and operate in a different spatial and temporal

scales. A CPS component consists of software on an embedded computer that implements one

or multiple feedback loops to monitor and control the physical processes. The changes in the

physical processes and execution context affects the computations in the software component and

vice versa [124].

Recently published research roadmaps identify the open challenges in engineering self-

adaptation in distributed application [47, 64]. The first challenge is the effective decentralisation

of the adaptation control to mitigate the risk in centralising the computation and communication

by assigning all the load to a single controller. The decentralisation of adaptive control eliminates

the single point of failure and improves the potential in scaling the controlled system size.

This control pattern accommodates the nature of distributed systems, in which no superior

component oversees and controls peer components. The decentralised adaptive control pattern is
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more resilient against changes in network topology, where a remote peer may fail unexpectedly.

Therefore, applying this control pattern on distributed systems increases flexibility and conforms

with the long-term autonomic computing vision [105].

The second challenge arises from safety-critical domains, which require strict compliance

with requirements in uncertain operating environments [31, 63]. Applying formal verification at

system level limits the size and complexity of distributed CPSs for which this compliance can

be achieved, especially if the verification needs to be performed at runtime. Weyns et al. [184]

describe patterns for decentralising MAPE loops, e.g. to efficiently use verification techniques at

runtime [180]. A distributed self-adaptive approach has to adjust its collective behaviour to retain

fulfillment of quality requirements (e.g, performance, efficiency, and reliability), while also using

an optimal or near-optimal configuration that satisfies global requirements without undermining

the component’s local requirements. Formal methods provide the mathematical foundation to

formally model system characteristics, but their application to distributed self-adaptive systems

is underexplored.

The hypothesis pursued by the research presented in this thesis builds on a distributed SAS

control decentralisation philosophy introduced in [34]. Called DECIDE, this philosophy proposes

that:

1. the components of a distributed SAS operate independently of each other at most times,

only exchanging the summary information required to partition (or re-partition) the SAS

goals among them when the system is deployed, and after “major disruptions” (e.g., when a

robot sensor or actuator fails);

2. both the component-level control and the system goal partitioning are carried out using

formal techniques capable of providing guarantees that the system goals will be achieved.

The preliminary evaluation of this philosophy provided in [34] shows its benefits for a small team

of homogeneous unmanned underwater vehicles that perform a simple monitoring mission. The

research work described in the thesis sets out to significantly extend and simplify the applicability

of this result, under the hypothesis that:

1. New ways of exploiting mathematical programming techniques can be used to ensure

that DECIDE-style goal partitioning can be carried out within distributed SAS with

(a) heterogeneous components, and (b) for a broad variety of distributed SAS application

goals;

2. The DECIDE principles can be captured within an application-independent software

architecture, a reusable software platform (i.e., middleware) that reifies this architecture,

and an engineering approach for specialising this platforms for a distributed SAS under

development.
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1.5 Thesis Contributions

The thesis advances the development of distributed self-adaptive systems with decentralised

control with the following contributions.

1. A repertoire of techniques for partitioning the goals of distributed SAS among their
components. We introduce three new methods for partitioning distributed SAS goals based

on the contributions that the SAS components can make towards achieving these goals. The

three methods employ different types of mathematical programming techniques, i.e., linear

programming, integer programming and policy synthesis for Markov decision processes. Each of

these methods can handle a particular class of system goals, so they are complementary to each

other, as explained later in the thesis.

2. The nuDECIDE application-independent software architecture for decentralising
the control of distributed SAS. We introduce a hierarchical-control software architecture to

support self-adaptation in distributed SAS. The new architecture comprises a system-level control

loop that partitions the goals of the distributed SAS among its components under conservative

assumptions and component-level control loops responsible for achieving the component sub-goals.

The operation of the two control loops is underpinned by models that are small enough to enable

the use of formal analysis techniques. The architecture enables the provision of assurances for

distributed SAS deployed in applications that cannot be easily handled by existing approaches.

3. The nuDECIDE reusable software platform (i.e., middleware) that reifies our sofware

architecture, and that can be specialised to support the development of distributed SAS with

decentralised control. The software platform comprises reusable software components that

implements nuDECIDE common functionality as a library of application-independent software

components. This software platform is specialised to devise the decentralised controller for three

case studies (i.e., the case studies are introduced in Chapter 3) which illustrate the effectiveness

of the platform for instrumenting several distributed SAS from the CPS domain. This software

platform extends the preliminary work in [34] in which the software platform used to devise the

decentralised control is tightly coupled with an application from the marine monitoring domain.

4. An engineering approach for specialising the nuDECIDE software platform for a

given distributed SAS. We introduce the four-step approach for using the nuDECIDE architecture

and software platform to develop the decentralised software controllers for a distributed SASs.

These steps are essential to devise the decentralised software control for a distributed SAS. The

description of the steps is accompanied with a running example that illustrate the use of the

engineering approach in an application from the infrastructure inspection domain. The first step

comprises devising the probabilistic models that captures the behaviour of the components of a
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distributed SAS. In the second step, we identify the parameters that influence the behaviour of

the devised models. The third step involves describing how the component-level and system-level

requirements are specified. Finally, the last step describes the development process aimed at

specialising the reusable software components of nuDECIDE software platform to devise the

decentralised control software for a distributed SAS.

5. An extensive evaluation of nuDECIDE through experiments using both real mobile
robots and simulation. We introduce three case studies used to evaluate the nuDECIDE

approach, including its different system-goal partitioning techniques and reusable software

platform. The first case study comprises a team of three mobile robots that simulate carrying

out a pipeline inspection mission in a lab environment. The case study includes the use of the

linear programming method to partition the pipeline route, that requires the inspection, among

these robots. The second case study involves simulating the execution of a waste management

mission using a team of mobile robots. The mission comprises deploying these robot to collect

both garbage and recyclables from multiple locations with a public park. The system goals in this

case study are encoded as as an integer programming problem and solved accordingly. The last

case study also simulates the execution of a waste management mission using a team of mobile

robots. however, this case study includes the use of two variants of the MDP policy synthesis

method in partitioning system goals. Unlike the linear and integer programming methods, the

MDP method can consider the probabilistic behavior of system components when partitioning

system goals.

1.6 Thesis Structure

The remainder of the thesis is structured as follows.

Chapter 2 introduces the concepts, terminology and modelling paradigms used by nuDECIDE.

This includes describing the architecture of a decentralised control loop and illustrates the

various interaction patterns in this architecture. As for the modelling paradigms, we introduce

discrete-time and continuous time Markov models and Markov decision process. This chapter

introduces variants of probabilistic temporal logics, which are used to specify properties for these

models. The chapter as well describes the DECIDE approach that underpin the research carried

out by the PhD project. Finally, overview a number of representative approaches to decentralising

the control software of distributed self-adaptive system.

Chapter 3 presents the repertoire of nuDECIDE goal partitioning techniques that consti-

tutes the first contribution mentioned in Section 1.5. For each technique, we first introduce its

theoretical foundation, and then provide a detailed example that illustrates its application.

Chapter 4 describes the nuDECIDE framework for the engineering of the decentralised

control software of self-adaptive systems. The framework comprises a decentralised control

architecture (presented in Section 4.1), a reusable software platform (i.e., middleware) that
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uses the goal partitioning techniques from Chapter 3 and reifies the architecture (presented

in Section 4.2), and an approach for specialising the components of the software platform for a

specific application (detailed in Section 4.3).

Chapter 5 describes the extensive experiments carried out to evaluate the goal partitioning

methods introduced in Chapter 3 and the nuDECIDE framework introduced in Chapter 4. We

performed this evaluation for a range of case studies, using both real mobile robots (for the linear

programming method from Section 3.3, Chapter 3) and simulation (for the integer programming

and MDP strategy synthesis techniques from Sections 3.4 and 3.5 in Chapter 3).

Finally, Chapter 6 summarises the contributions of the thesis, discusses their limitations,

and identifies directions for further research on decentralising the control software of distributed

self-adaptive systems.
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BACKGROUND AND LITERATURE REVIEW

2.1 Self-Adaptive Systems

Weyns [177] describes the common interpretations of the concept of self-adaptation and high-

lighted the two most common definitions of what constitutes a self-adaptive system (SAS). The

first interpretation stems from the mechanism used to realise self-adaptation. A self-adaptive

behaviour is realised by using a closed feedback loop to monitor and adapt the system’s behaviour

at runtime. The first interpretation focuses on external mechanisms that enable the system to

address adaptation concerns. The definition disregards traditional internal techniques such as

using exceptions clauses in programming languages and error-tolerant protocols to deal with

events that necessitate self-adaptation. The use of external techniques divides the SAS into a part

that deals with domain concerns related to the goals for which the system is built. Another part

deals with adaptation concerns by looking at how the system realises its goals under changing

circumstances. This division of concerns promotes the "disciplined split" view of how the SAS is

conceived.

The second interpretation for a SAS considers the existence of uncertainty in the environment

or the domain in which the system is deployed. The definition views the SAS as a system

capable of controlling its behaviour in response to the perception of changes in the environment

and the system itself. According to this interpretation, a system that has been improved with

self-adaptative capabilities is seen as a black box affected by dealing with changes imposed

on the system when interacting with external conditions such as dealing with failures, change

in the workloads, availability of resources, and demands. The self-adaptive capabilities enable

the system to deal with these changes by using the means provided by the system to address

adaptation concerns.

A system that exhibits self-adaptive characteristics has the ability to adjust their structure
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and behaviour to attain these requirements. The stakeholders of such a system can specify a

set of objectives to accomplish certain tasks under predefined QoS restrictions. The are many

factors that increase the complexity of today’s software system. Factors such as the variations

in the availability of system resources and the heterogeneity of system components raise the

complexity to the extent that managing them using human operators is in many cases, simply

not feasible. Self-adaptation provides the means for such systems to realise their goals under

changing circumstances, thus helping them address these challenges.

For example, a system may experience variability in resource availability, which can be

tackled through self-adaptation to increase system resilience when a system resource fails

to fulfil its goals. In recent decades, self-adaptive systems (SAS) have received considerable

interest from researchers within multiple areas of computer science. In particular, research on

establishing grounding principles and architectures of adaptive systems has gained momentum.

A review of the literature that has been published in this space over the last decade indicates a

relatively recent increase in the research effort in the domain of SAS from a software engineering

perspective [29].

The rapid expansion of distributed pervasive computing systems in recent years has led to an

unprecedented level of complexity in development of SASs. Such systems need more frequent

updates as they deal with changes at runtime in their requirements and operating environment.

Changes render those systems unable to achieve their goals and makes them vulnerable to errors.

Thus, traditional approaches to developing such systems are unfeasible in meeting systems goals

[163]. The problem exacerbates in systems comprised of distributed components that cooperate

to achieve the goals of the system. Each component interacts with an unstable environment that

affects the system’s stability as a whole and makes it vulnerable to failure. The development of

such systems in a way that makes them stable and able to deal with the dynamic changes that

affect their distributed components is a complex task due to several factors shown in Figure 2.1.

In the past, the majority of the research effort in software engineering has concentrated on

handling complexity and achieving quality goals during design time such as in ISO 9126-1 quality

model [76]. In contrast, self-adaptive systems substitute the traditional software development

cycle methods with approaches that are focused on system evolution during runtime with less

human operator intervention. The introduction of self adaptation in software systems is based

on the incorporation of feedback control loops [29]. The feedback control loop permits alteration

of system behaviour to address adaptation concerns. Precisely, self adaptation is carried out by

modifying the system structure or behaviour to address requirement violations. This in turn leads

to changes that may occur at the system boundary or its environment. Consider, for example,

a service-based system comprising several components. A degradation in the performance of a

system component may lead to delays in response time. The delays can be countered at runtime

by adjusting the system’s behaviour (e,g, using another component with better performance to

deliver the service).
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FIGURE 2.1. Origin of complexity in computer systems.

Being able to recover from undesirable situations at runtime, as well as optimizing some QoS

metrics such as cost, performance, and reliability requires architectural support since developing

these systems to make them self-adaptable requires looking at the mechanisms that enable

representing the behaviour of such systems and reasoning about their behaviour to check if they

fulfil their goals. In order to realize that vision, the notion of self-adaptive system architecture

has been explored by different communities. Therefore, it is essential to formulate a definition

that sufficiently covers a wider range of the spectrum. A recent published book assimilates the

different interpretations and proposes a unifying definition [126]. They identify self-adaptive

systems as software applications that constantly preserve an active representation that models

the system and its environment. The preserved representation allows the recurrent reflection of

modifications that influence the system requirements. Consequently, a knowledge repository is

maintained to accommodate the accumulated knowledge and to reason about system behaviour.

Then, if the current behaviour deviates from the system requirements, corrective actions are

planned to revert to system behaviours that satisfactorily meet the requirements. Figure 2.2

illustrates the recurrent accumulative knowledge through feedback mechanism. Also, the Figure

depicts the utilisation of gained knowledge to analyse and reason about system behaviour. The

continuous analysis and reasoning retains a persistent awareness of any violations of system

abstract higher-level aims. System aims are defined to clarify system functionality and the

scope of optimization. In order to accomplish that, self and context awareness must be enforced

periodically to reason and act accordingly [92, 144]. However, there is no unified model that

captures and represents the changes in software states. Engineers can refer to any feasible form

to reflect the current state of underlying system.

Another aspect to consider in the self-adaptation architecture is how Knowledge is modeled.

Representation models are divided based on their envisioned role into three main categories.
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FIGURE 2.2. Feedback control system.

The first category represents system abstract goals that coexist with required relevant metrics.

For instance, a descriptive knowledge representation deal with the appointed system objectives

and the governing policies. The second category employs a predictive modelling approach to

support the forecast of an adaptive decision outcome or to illustrate the execution pattern

under certain constraints. The prediction is realized through exploiting the causal relationship

between input signal and required output behaviour. An example for this model is in systems that

exhibit stochastic behaviour pattern [39]. The prediction model can foresee system throughput, in

exchanged to utilised resources and cost. The final modelling paradigm concentrates on organizing

conceived action plans under a given incident.

A survey published in 2009 advocates the organization of self-adaptive properties in a

hierarchical view [155]. As depicted in Figure 2.3, the top most layer illustrates self-adaptation

as the general aim. Followed by another layer that constitutes four different properties (Self-

Configuration, Healing, Optimization, and Protecting) for driving self-adaptation. A description

of these four themes which are reported in Kephart and Chess’s [105] seminal work, is as follow:

FIGURE 2.3. Hierarchy of the self-* properties [155].
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• Self-configuration. In a dynamic context, an autonomous system must reconfigure in

response to internal and external variations. For instance, different functionalities are

obtained from composing components in interchangeable manner with a view to derive

certain behaviour

• Self-repairing. Self-healing implies the ability to locate failures by self-diagnosis and

to recover in a reactive or proactive manner. The self-healing property allows recovering

systems that may be affected by both partial and complete failure patterns [62, 151].

• Self-optimization. This property focuses on satisfying several non-functional (QoS) met-

rics and optimising some of these metrics by adjusting predefined controller parameters.

For example, a service-based system may be required to fulfil requirements related to

efficiency, performance and reliability while at the same time improving response time

(performance) when the system provides services [165].

• Self-protection. Similar to self-healing, self-protecting systems are able to distinguish

and respond to security threats before or after occurrence [192].

The foundation layer describes self-awareness and context-awareness properties, which are

essential for fulfilling any of the attributes on the other layers [95, 154]. The former layered

organization of self-* attributes is advocated and widely accepted by the self-adaptive systems

research community, as confirmed at several Dagstuhl seminars [47, 64]. This research group

provides roadmaps for all aspects of engineering self-adaptive systems, particularly concentrating

on aspects such as decentralization of control and assurance. Over the past decade, there has

been significant effort in recognizing self-adaptation across multiple domains, which eventually

contributed in diversifying concepts and interpretations of methods for engineering a self-adaptive

system. Hence, the analysis and design of extensible engineering methods is crucial to address

present deficiencies that restrain the broad acceptance of adaptation [29, 155]

2.1.1 Taxonomy of Self-Adaptation

Krupitzer et al. [114] describe the five important concerns that have to be addressed prior to

the implementation of SASs. The five concerns are depicted in Figure 2.4, and examined in

subsequent sections.

2.1.1.1 Time

The temporal concern of self-adaptation is essential for understanding the triggering mechanism

of any self-adaptive action. It is customary to initiate adaptive plan in a reactive manner, i.e,

recovering the underlying system from faulty state or resolving a performance issue after its

occurrence. A proactive style on the other hand, enforces a predictive method to foresee any

disturbance before its appearance [114]. Although, a proactive adaptation is more convenient
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FIGURE 2.4. Taxonomy of self-adaptation requirements [114].

than a reactive one as the former avoids unnecessary interruption in system schedule. There

is a considerable risk in embracing the proactive temporal, which may occur as a result of

incorporating faulty predictive approach. Unlike a reactive approach, implementing a proactive

approach is a non-trivial task. Hence, a reactive adaptation decreases the risk of false positives

and avoids adversarial adaptation. Proactive approaches, on the other hand, have been shown to

yield closer to optimal solutions, compared to reactive adaptation [114].

2.1.1.2 Reason

As discussed in Section 2.1, a SAS needs to reason about its behaviour and plan for adaptive

actions when the behaviour of the system violates its requirements. To synthesise an adaptation

plan, a SAS examines all possible corrective actions and executes the most suitable one. In

general the reasons for triggering an adaptation action can be any of the following described

below:

1. a variation in the system itself, for instance a defect in a system component, or an optimiza-

tion of workload among components, may trigger an adaptive action;

2. a variation in system environment as for example a server experiencing a burst on requests,

which require processing in accordance to predefined timing restrictions;

3. a modification required by users, in case of changes in the set of system objectives that

yield adaptive behaviour.
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Therefore, a continuous observation of system interactions is required to detect the reasons for

triggering an adaptive decision [114].

2.1.1.3 Level

In an article published in 2013 [184], Weyns et al. emphasised the principle of separation of

concerns [129] for dividing SAS into two essential parts. These parts are the managed and

managing subsystems. The view of separation of concerns is widely advocated by researchers

in the area of SAS [182]. A SAS has a managed sub-system, which is directed by a managing

sub-system that incorporates the adaptation logic. The managed sub-system provides the means

that enable the adaptation logic from perceiving the change in the system’s behaviour and

enables the adaptation logic from applying the adaptive actions if the behaviour violates the

system’s requirements [1]. For instance, consider the unmanned marine vehicle from [34], which

has to survey a certain distance under variations in system resources. The managing part in

this scenario has to monitor the available system variables such as, movement speed, sensors

reading accuracy, and energy utilisation, to adapt when necessary in order to complete the

required task. Another example is found in the Rainbow framework [79] where the managing

system partition is a self-adaptive layer that instantiates the framework and incorporates a set

of architecture-centric models updated at runtime, whereas the managed system partition is the

system layer.

Nevertheless, an SAS operates within an environment that affects its functional and non-

functional behaviour by means of interactions. In general, a self-adaptive system observes the

changes in its environment [100]. For instance, the environment of an SAS can be comprised of

network elements with variable traffic load, hardware components, other remote systems that

interact with the SAS, and even physical objects. Consider the earlier unmanned marine vehicle

example where the vehicle encounters physical obstacles such as rocks during its operation.

In such a scenario, the vehicle has to avoid collision with the rocks by adapting its path. The

previous example indicates the inherent limitation of SAS to control their environment. Figure 2.5

summarises the relationship between the managing and the managed subsystems while also

illustrating the relationship of the SAS with its environment.

2.1.1.4 Adaptation Techniques

Krupitzer et al. [114] combine and refine the views of Handte [90] and McKinley [132] on

adaptation techniques, classifying the techniques into three main categories. These categories are:

(i) structure, (ii) parameter, and (iii) environment adaptation techniques. The structure adaptation

technique yields changes in the structure or the functional role of components in the adaptive

system. For example, the structure change refers to the introduction/removal of components from

the system or to the exchange of functional roles between components. Furthermore, changes

may also occur in the composition links between components to constitute adaptive behaviour.
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FIGURE 2.5. Self-adaptive system interactions inspired from [121]

The system component could be a variety of software and hardware resources, or even the system

contexts, that could be considered as structure adaptation. The second category of techniques is

called parameter adaptation. Adaptive behaviour is delivered through modifications in system

parameters. However, adjustment of system parameters might be a non-trivial task if there

are dependability relations between theses parameters. The last technique is environment

adaptation, which Krupitzer [114] argues is something that can be often found exclusively in the

area of pervasive computing, and not elsewhere. A pervasive adaptive system can sometimes

alter environment variables given an adequate actuator. Eventually, it is conceivable to combine

multiple adaptation techniques to derive effective self-adaptive behaviour.

2.1.1.5 Adaptation Control

There are various aspects to designing the control logic of a SAS. Adaptation control logic can

follow the separation of concern principle by splitting the managing and managed subsystems

using a modular design pattern [75, 155]. Alternatively, the adaptation logic can be intertwined

with or embedded in other components of the managed system. Following separation of concerns

increases the reusability of the adaptation control and also improves the maintainability of

adaptive systems.

A second aspect is concerned with the extent to which adaptation control is centralised or

decentralised. The centralised approach is feasible in a system with limited components, while

the decentralised approach enables increasing the size of the managed components. Weyns [184]

describes the benefits of decentralised control in certain scenarios and argues that a better

scalability in computation and communication can be achieved in a SAS with decentralised
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control. Mainly the decentralisation of control suits distributed managed components, in which

no component can be accountable for handling the adaptation decisions. In addition to the

centralised/decentralised approach, there is a hybrid approach that combines both of them.

For instance, a “parent” central control component manages two decentralised siblings that

coordinate with each other. The topic of distributed self-adaptive system with decentralised

control elaborated in more detail in Section 2.2.2.

The final aspect to consider is the knowledge representation of a target managed system

which is vital for reasoning and deriving the appropriate adaptive behaviour. Lalanda et al. [121]

state that knowledge representation plays a vital role in adapting managed systems. It also

makes reasoning about the system less complex and easier to deduce required adaptive behaviour.

In fact knowledge representation can facilitate the provision of measuring metrics to support an

adaptation decision against alternatives. Knowledge representation types are divided as follows:

1. Rule-based structure - Commonly known for its simplicity and provisioning straight-

forward reflexive adaptive action following the structure of event-condition-action (ECA).

However, a careful examination of the utilised set of rules is essential to eliminate any

conflict of events, which may result in adverse actions.

2. Model-based structure - Models capture the states of the managed system and its

environment to predict and analyse the next adaptive actions. It employs trend analysis to

reason about and devise adaptive behaviour. Models are constructed to ease the resolution

of problems.

3. Goal-based structure - Goal based structure envisages the desired target state of system

artefacts, allowing the adaptation logic to deduce adaptive actions.

4. Utility-based structure - Utility structure is used to resolve conflict in the previous goal

structure by providing necessary measurement of usefulness to rank required goals.

To conclude, knowledge representation is an important aspect to consider in designing

adaptation logic. A combination of knowledge structure can facilitate the adaptive decision-

making and ensure that the pursued decision is optimal.

2.1.2 Engineering Self-Adaptive Systems

Feedback control is a key element in introducing self-adaptive capabilities in software systems

[68, 105, 160]. Kephart and Chess [105] were the first to introduce the concept of an autonomic

manager in software engineering. As shown in Figure 2.6, the automatic manager interacts with

a managed system through two main interfaces. The first interface is known as sensors, which

facilitate the measurement of system‘s attributes during the monitor phase. These attributes

capture the system‘s current state and provide the essential metrics to evaluate system satis-

faction of functional and non-functional requirements to the analyse phase. The analysis phase
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in return is followed by the planning phase, which responds to violations in requirements by

arranging a set of corrective actions to align the managed system with the necessary require-

ments. Thereafter, these actions are performed by the execute phase utilising a second type of

interface called actuator, which adapts the underlying managed system [26]. These components

share information using a common knowledge repository. The combination of the five components

is often termed a (MAPE-K) loop in the research literature. Accordingly, engineering an SAS has

long been perceived to require the development of these five components of the MAPE-K loop.

FIGURE 2.6. The MAPE-K model [26].

As shown in Figure 2.6 the autonomic manager, which holds these components, interacts

with a managed system through sensors and effectors. These sensors and effectors interface with

the managed system and expose its state (sensing) to allow the management of its resources

(effecting). IBM’s definition of a blueprint architecture for autonomic computing [1] refers to

these interfaces as touchpoints, which implements the necessary functions to sense the state of

the managed system and act on the adaptation decisions through the effectors.

Similarly, the SAS architecture proposed in [3] and depicted in Figure 2.7 promotes the

split of the autonomic manager from the managed system. The main concern of the managed

system is to derive domain functionality through the implementation of domain logic. This

Allows the managing system, which implements the adaptation logic, to meet its essential role

to autonomously adapt the behaviour of the managed system. A feedback controller following

monitor-analyze-plan-execute (MAPE) architecture [105] is embedded in the adaptation logic

which enables adaptation of the managed system. Ultimately the SAS executes in an environment

which cannot be controlled and subsequently adapted, but, can be observed by the adaptation

logic [26]. Another example is the hierarchical architecture suggested in Kephart et al. [105]

for organizing the adaptation logic in top-down format where the parent controller orchestrates

adaptation decision.

20



2.2. DISTRIBUTED SELF-ADAPTIVE SYSTEMS

FIGURE 2.7. An architecture for Self-Adaptive Software Systems [3].

2.2 Distributed Self-Adaptive Systems

2.2.1 Description

Many important software systems consist of distributed interconnected components that are

deployed on different hardware. Tel [169] defined a distributed system as a group of loosely

coupled hardware or software artefacts that are connected via some type of network. According

to this definition, artefacts have to work in isolation of each other and infrequently exchange

information to achieve overall system objectives. Distribution can occur at the data, service or

algorithmic levels [168]. The best example of distributed systems is found in web applications.

There is an unprecedented demand for using the Internet of distributed applications that are

provided worldwide. Fitzgerald describes the shortcomings in handling the staggering increase

in produced data and the lack of available software systems to utilise this data as the new

software crisis [74]. Google estimated the available internet data was five thousand petabytes (5

million terabytes) in 2005, and barely 0.004% was handled by their firm. They also predicted an

exponential increase of the available data that could potentially double in 2010 [157]. Likewise

at the hardware end, there is an exponential growth in the computation capacity which doubles

each year and half according to Moore‘s Law [156]. In 2010 a then leading futurist at Cisco

released an estimation of the number of devices connected to the internet. According to their

report, there are approximately 35 billion devices that utilise the internet. That is, around six

devices for each person who was living in 2010 [71]. This report also estimated that the number

of devices will continue to grow and could potentially reach 100 billion connected devices by 2020.

This exponential pattern of increase in data and computation power indicates the intrinsic need

for distributed systems [74]. Therefore, distributed applications such as multi-agent systems,

internet of things (IoT), and pervasive computing and robot swarms, have been widely embraced

to exploit the enormous size of the data and computation capacity [6, 72, 152, 186].

These applications require better reliability and performance to function in accordance to their
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requirements. Application requirements in turn are achieved by incorporating self adaptation

techniques [46]. Adding self-adaptation to existing distributed software systems extends its

capabilities to leverage on the obtainable computational capacity and data.

Distributed self-adaptation can be realised through centralised or decentralised control

schemes. Work by Lemos et al. [64] has focused on two factors for recognising suitable schemes

for the developed system. These factors are system characteristics and adaptation requirements.

The system characteristics such as the architecture and size of a system, at hand could impose

restrictions on deciding the control scheme. Therefore, adopting a centralised approach is more

feasible when a single node that preserves the system‘s global information exist. In contrast,

if the information required for adaptation is distributed across system nodes and there is a

limitation in preserving the global knowledge, a decentralised control scheme is more appropriate.

A decentralised scheme is essential when the system’s architecture is constantly changing, in

which no component can be accountable for handling the adaptation decisions. A component-based

system, for instance, reflects the need for decentralised control for adopting an open system in

which components enter and leave constantly [30].

The last factor to consider for determining the appropriate control scheme refers to the require-

ments of adaptation. In a centralised approach, fulfilment of the system‘s global requirements is a

trivial task in comparison with decentralised control in which local requirements are prioritized.

The satisfaction of the system‘s global requirements in decentralised control is complicated and

relies heavily on constant coordination between system constituents. A promising approach to

reduce the coordination effort in distributed self-adaptive systems with decentralised control

is evident in the work of Calinescu et al. who managed to decrease the effort of coordination

by establishing a contribution-level agreement (CLA) among the system components [34]. The

initiation of contribution-level agreement is infrequent and occurs when components join or

leave the system. Another area where decentralised control surpasses the centralised control is

scalability. Centralised approaches place constrains on the number of distributed components.

It is both difficult and infeasible to retain a consistent view of managed components in large

distributed systems [23, 142]. Directing large number of partitioned components with a single

control manager causes a considerable delay in reaction to changes in the components. This

delay is a result of the concentrated direction of the adaptation-related information to a single

control manager. Following that, the controller has to analyse the perceived information and

adapt when appropriate. Georgiadis et al. [82] highlight how efficient scalability can be obtained

with decentralised control in distributed systems. Such efficiency is achieved by excluding a

single consistent view of the system configuration. Instead, each local manager concentrates on

its managed resources and coordinates when possible with peer managers to deliver system wide

adaptation requirements. Thus, the decentralised approach eliminates any single point failure by

distributing the adaptation decision across multiple loosely coupled coordinating and controlling

entities. Table 2.1 elaborates on differences between centralised and decentralised approaches.
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Table 2.1: Capabilities of centralised and decentralised approaches

Control approach
System characteristic Adaptation requirement

Dynamic reorganization of
system architecture

Preserve system
global state

Reliability Responsiveness Scalability

Centralised control Partial supported a Supported Partial supported a depends on managed
system size

Partial support

Decentralised control Supported Not supported b Supported
Prioritising local
adaptation

Supported

a Support is restricted for changes that exclude system accountable control manager.
b System global state is distributed across system components.

2.2.2 Classification of Distributed Self-Adaptive System Control

There is a growing interest in the design of decentralised MAPE loops to adapt distributed

systems [27, 69, 82, 130, 174, 183]. Weyns et al. [184] argue that instituting self-adaptation

in a complex and heterogeneous software environment demands the employment of multiple

coordinating MAPE loops. They also advocate further exploration of effective techniques in

implementing distributed self-adaptive systems with decentralised control. There are various

interaction patterns for organizing MAPE components in a decentralised manner. These compo-

nents are implemented with various levels of decentralisation. Referencing certain aspects of

design decisions defines the variations among these patterns and facilitates the acquisition of

suitable designs. In the following section, we classify MAPE components based on their degree

of decentralisation. Then, we further describe the various interaction patterns in this class of

decentralisation.

2.2.2.1 Decentralised Control Approaches

MAPE feedback loops can be classified based on the interaction style between the loop elements

and their peers. Decentralised approaches vary based on the level of collaboration among MAPE

elements and their distributed peers. However, the decentralisation of some aspect of the control is

a common factor among these various interaction styles. The decentralised approach is considered

adequate when knowledge about the adapted system is inherently distributed. Precisely, the

scale of partitioned knowledge leads to inefficiency in realising the adaptation requirements

e.g. (cost, performance, and reliability). Another reason for applying decentralised approaches

is the lack of an accountable trusted entity for collecting system data and acting accordingly.

Consider for instance, a number competing agents in a multi agent system. Each agent has to

work individually to increase the efficiency and reduce cost. These agents could also be competing

companies where no trustworthy entity can fully adapt the system independently. In this scenario,

each agent coordinates with one another to adhere to service level agreements and governing

legislations.

As mentioned earlier, there are issues that necessitate the use of decentralised control

approaches. However, there are two main sub-classes to describe the required level of coordination

between the four MAPE activities with their corresponding peers. A definition of each class
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accompanied by illustrative diagrams adapted from work by Weyns et al. [184], is presented

below.

1. Full collaboration

The first subclass of coordination demands a complete collaboration between each of the

MAPE loop activities that manage the partitions of the managed system with corresponding

peers of other MAPE loops. That is, due to the highly interrelated nature of the managed

distributed components that require ongoing coordination between the managing com-

ponents. Each managing component implements a set of MAPE activities, where each

activity is linked to its peer activity in the other managers. In turn, the MAPE activities in

each managing component collaborate with their corresponding peers to avoid an adverse

adaptive behaviour. This undesired behaviour may occur when a local adaptive behaviour

triggers an adaptive reaction in another managed component. A sequence of counteractive

adaptive reactions may occur in the worst scenario, affecting the system functional and

non-functional requirements. As depicted in Figure 2.8, each MAPE loop activity has to

collaborate with its respective peers to eliminate the risk of faulty adaptive decision. This

collaboration prevents sub-optimal adaptation decision from the overall system viewpoint.

It also provides a consistent view of the state in all managed components. For instance, the

analyse activity in one loop shares the findings with relevant peers to asses the need for

adaptation, while the execute activity synchronises adaptive actions to avoid adverse effects

on overall system requirements. As the example indicates, the collaboration mechanism can

range from a simple exchange of information about the managed artefact to sophisticated

coordination of actions.

FIGURE 2.8. Coordinated control pattern adapted from [184].

Decentralised control approaches, in general, distribute the computation and communica-
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tion load across managing components to expand the size of managed components. The

increase of system size requires the reduction of computation and communication burden

by localising and decreasing the interaction of MAPE control components with peers. The

degree of correlation between MAPE control components could affect the expansion of

system size. If MAPE activities interact with too many corresponding nodes, both the effort

and cost to achieve adaptation will be high. This may cause delays in realizing adaptive

decisions or overheads in the communication channel. On the other hand, less coordination

may lead to inconsistent adaptation or even sub-optimal decisions.

2. Partial coordination

The second subclass requires partial coordination, mainly because the managed components

are loosely coupled. The decision raised from the adapting distributed system components

does not influence changes in peer components. The coordination pattern in this class is

limited to one activity (monitor) in the MAPE loop. In this scenario the managing compo-

nents share the state of their managed resources through collaboration in the monitoring

activity to adapt their managed resources. This approach restricts the collaboration to

the monitor activity of the MAPE loop cycle. The state information about a particular

component is exchanged to support the functional and non-functional adaptation in other

system components. The information sharing can be explicit through exchange of messages,

or implicit by means of observing the state of a managed resource. Aside from information

exchange, decentralised MAPE loops operate in isolation in the rest of the loop activities

(Analysis, Plan, Execute). Figure 2.9 illustrates the concept of partial coordination. For

example, consider a smoke alarm device to detect fire hazards. A change in device state ( e.g.

smoke or fire detection) can trigger preventive adaptive actions in nearby appliances that

share the same physical environment. In this case, each monitor activity in surrounding

appliances observes the state of the smoke detector either by observing the state of the

environment directly or by receiving the state of the environment by coordinating with

another monitor activity that observes the environment’s state.

Since the interaction is limited to monitoring activities, this approach serves better from a

scalability perspective than the previous approach that requires further coordination in

remaining activities (Analyse, Plan, Execute). However, the full collaboration approach

reduces the burden on communication and computation similarly. However, partial col-

laboration merely provides better scalability in terms of communication. Similarly, both

approaches have to minimize MAPE interactions with corresponding peers to preserve

scalability. The effect of intensive interaction is less severe in approaches that restrict

coordination to the monitor activity. This restriction eliminates any inefficiencies in adapta-

tion due to communication overheads in the remaining activities (Analyse, Plan, Execute).

The main drawback of this approach is in the situation where a local adaptation decision

may conflict with other control components and lead to a series of accidental adaptations.

25



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

FIGURE 2.9. Partial coordinated control approach inspired by [184].

Likewise, limiting collaborations to the monitor phase can help to prioritize local adaptation

requirements over global ones [184].

2.2.2.2 Hybrid Decentralised Control Approaches

In the following section, a brief discussion about the most frequently used approaches that

combine both centralised/decentralised control approaches to address specific concerns will be

provided.

1. Master/Slave Approach - Decentralised control in general promotes local adaptation by

including a MAPE loop cycle in each of the distributed subsystems and collaboration with

peers when possible to reflect on the system‘s global state on the local adaptation decisions.

However, when the overall system adaptation requirements are regarded as crucial, the

centralised pattern provides a consistent view of the system‘s overall state and require-

ments. This approach prioritises system-wide adaptation requirements by centralising the

analyse and plan activities (Master) and decentralising the monitor and execute activities

(Slave). As Figure 2.10 depicts, this architecture comprises a high-level adaptation logic

that performs analysis and planing for two or multiple components that implement the

monitor and execute activities. Each subordinate component supplies adaptations with

relevant data to the centralised analysis activity in order to inspect aggregated data for a

particular adaptation concern. Then, in case there is a need for adaptation, an adaptation

plan is constructed and passed down to the relevant execute activity.

The master/slave control approach succeeds in reflecting the state of the distributed compo-

nents and prioritising overall system adaptation requirements. However, in the course of

achieving this objective, centralising the analyse and plan activities may cause a communi-
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FIGURE 2.10. Hybrid Control Approach adapted from [184].

cation bottleneck. Especially, in the class of systems where the size of distributed managed

components (Slaves) is large. Also centralising the portion of the distributed system leads

to a single point of failure if the master adaptation logic fails to orchestrate the adaptation

decision to subordinate components.

2. Decentralised Regional Planning Approach

The decentralised regional planning approach is feasible for loosely coupled component

systems where components are divided into segments (regions) that centralise the planning

activity. Centralising the plan activity facilitates the realisation of adaptation within

regions (locally) or across regional boundaries. This approach can be illustrated through an

interconnected cloud infrastructure where utilising each segment of servers is associated

with a cost. The goal of local adaptations (within regions) is to balance the resource

utilisation. In addition, the objective of cross-boundary adaptation is to delegate excessive

load to another region. The need of load delegation is determined locally within the regional

planner and is acted upon in cross-boundary style. Unifying the plan activity regionally

allows to adopt a different strategy for local regional adaptation and for the global ones.

The reason for obtaining a different strategy in the cloud infrastructure example is the

cost factor which segregates the servers that share the same cost between two regions.

Figure 2.10 illustrates a centralised planning activity (MAPE) that plans adaptation actions

for each region. The regional planner collects adaptation requests from a group of locally

analysing activities to decide whether to act on these requests either locally or globally.

Acting on the global adaptation plan requires interaction with the corresponding planner

to coordinate adaptation actions that overrun their regional ruling. The moment a plan

is finalised and agreed upon, the associated execute activities are invoked to adapt the

necessary group of components.
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According to Weyns et al. [184] this control approach permits a layered separation of

concerns within each planning region. That is, all MAPE control loops that reside in

the same region pass the planning activity to a centralised component. Each region is

represented with a planning component that is accountable for adaptation within its

boundary and coordination with respective planners when needed. Since the regional

planner can act on adaptation on the local resource and global ones, Weyns et al. suggest

that this control approach permits an additional horizontal separation of concerns. This

approach also avoids centralising the analyse activity as in the Master/Slave control

approach. Instead, it relies on local activities to examine monitored data and for reporting

to the regional planner if adaptation is required. By localising the analysis activity, the

interaction with the centralised plan activity becomes less frequent. However, in a large

subsystem directed by a single plan activity, there is an overhead risk in computation and

communication, by aggregating local analysis data and collaborating with peer planners.

Also another risk may arise as a result of eliminating the coordination between execute

activities. That is, the regional plan activity establishes a detailed plan to orchestrate the

execution of adaptation actions.

2.2.2.3 Hierarchical Control Approach

MAPE control loops in distributed systems can be organised hierarchically for managing adapta-

tion complexity. In this approach, MAPE loops are placed on different layers for establishing a

layered separation of concerns. Each layer is themed with a specific concern at a certain level of

abstraction. As in Kramer and Magee’s architecture model [113], the top layer of control loops

are concerned with goal management. They synthesise the global adaptation strategy based user

requirements. Also, control loops at this level operate less frequently compared to the lower-layer

loops. Control loops at the lowest layer often operate more frequently because they are in direct

contact with the managed resources, while upper layers operate at longer time intervals. The

middle-layer control loops manage and synchronise adaptation in the subordinate loops. The

hierarchical control approach is feasible in highly-coupled distributed systems where adaptation

requires constant interaction and collaboration to avoid adaptation conflicts. Figure 2.11 shows a

possible instance of this control approach. There are three layers of control loops and it is possible

to add more layers to increase the level of abstraction.

Using the hierarchical control approach can potentially resolve the complexity of the adap-

tation decision in distributed systems. The hierarchical top-down structure permits a layered

separation of concerns where the bottom-layer control loops concentrate on specific adaptation

concerns. This approach also allows the control loops in the upper layers to focus on wider

perspectives and coordinate adaptation in the dependent loops. However, Weyns et al. state

that, hierarchically organising the adaptation concerns is a non-trivial task. This is particularly

difficult when adaptation requirements conflict with one another. Their work also referred to the
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possibility of a certain scenario where the management of systems that require many control

layers can become very complicated. They came to this conclusion after exploring similar hier-

archical patterns in the domain of behaviour-based architectures [4]. In addition, de Lemos et

al. [64] argue that hierarchical centralised approaches which are found in large-scale systems

respond less effectively to adaptation concerns. That is explained by the fact that centralised

decision mechanisms require exchanging all relevant data to adapt accordingly. de Lemos et al.

also indicate that centralising the knowledge required for adaptive decision making may affect

the scalability of the underlying managed system. In contrast to the hierarchical approach, decen-

tralised control scales better in terms of communication and computation, because decentralised

control loops rely on local information to adapt. This reliance on local information results in

less intense interaction and distributed computation effort across system control loops. Also,

hierarchical control approaches are considered less robust since a failure in hierarchical control

loop could disrupt the adaptation feature at the subject system [34, 49, 64, 126].

FIGURE 2.11. Centralised Control Approach.

2.3 Markovian Models

Many approaches in self-adaptation employ mathematical techniques for analysing the behaviour

of self-adaptive systems with strict requirements. Markovian models are relevant in this context

because it provide the mathematical framework for analysing the behaviour of such systems. In

this section, we are going to introduce several variants of Markov models. A Markov model is a

transition system in which the move between states is determined by a probabilistic choice. A

Markov model can be employed to model systems that exhibit stochastic behaviour. The stochastic

behaviour of such systems is modeled as a stochastic processes in which the transition among

theses processes is specified as a family of random variables defined as:

{X (t), t ∈ T}
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The behaviour of the stochastic process is defined as a collection of random variables X (t) defined

in a probability space and indexed by time such that the collection yields the the state (i.e, the

value of the random variable) of the process at time t ∈ T. T is a set of time points that are

discrete ticks of time T = {0, 1, 2, . . .} in a discrete-time stochastic process, or continuous time

T = {t : 0 ≤ t < ∞} in a continuous-time process. Thus, X (t) denotes the current state at

time t and the term state space defines the set of all possible states given by X (t). If the state

space S is considered discrete such that the states in a stochastic process are defined as a set of

discrete points S ∈N, the stochastic process is described as a chain. Moreover, if the stochastic

processes satisfy the Markov property (Definition 2.1) then the processes are referred to as

Markov processes [153]. The stochastic processes are said to satisfy the Markov property when

the future evolution of the transition system depends solely on the current state rather on the

history of previously encountered states.

Definition 2.1. A stochastic process {X (t) | t = 0, 1, . . .} comprises of a series of successive states

s0, . . . , st which satisfy the Markov memoryless property when

P[X (t) = st | X (t−1) = st−1, . . . , X (0) = s0] = P[X (t) = st | X (t−1) = st−1]

2.3.1 Discrete-Time Markov Chains

A discrete-time Markov chain is a state-transition system where transitions between states are

specified by a probabilistic distribution and the timing of these transitions occur in discrete steps

separated by a regular time interval. The state-transition system can only hold one state at

any point of time and the transitions from source to target states are regulated by a discrete

probabilistic distribution.

2.3.1.1 Definition

A definition of a Discrete Time Markov Chain (DTMC) adapted from [118] is illustrated as follows.

Definition 2.2. A labelled Discrete Time Markov Chain (DTMC) D is a tuple (S, si, P, AP, L)

where

1. S is a non-empty, finite set of states;

2. si is an initial state and si ∈ S;

3. P: S×S � [0, 1] is a transition probability matrix such that the sum of outgoing transitions

for all states:

∑
s′∈S

P(s, s′)= 1, ∀ s ∈ S;(2.1)
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4. AP is a set of atomic propositions that are valid in the state s ∈ S and L: S � 2AP is the

labelling function that assigns the atomic propositions AP to each state.

The atomic propositions facilitate reasoning about relevant characteristics of a state-transition

system. Atomic propositions along with labelling of states provide a means to declare the required

characteristic in simple statements that are associated with system states and can be evaluated

to true or false with the current state of the system. Consider the system shown in Figure 2.12

where we can use atomic propositions to encode simpler statements. For instance, " what is the

probability of reaching in the future success state".

s4
|0|0|

s0
|0|0|

s3
|0|1|

{idle}

s1
|7|0|

pi

{sensor1}

{sensor2}

1-pi

s2
|3|0|

{success}

{fail}

1

1

0.85

0.15

0.73

0.27

Figure 2.12: An example of a DTMC model augmented with state rewards and costs

Example 2.1. Consider an Internet of Things (IoT) system comprising two sensors that can take

periodic measurements of the environment. Figure 2.12 illustrates a DTMC model that represents

the behaviour of the n = 2 sensors. The system can be configured using a probability parameter

(pi) to utilise either of the sensors sensor1 and sensor2. The first sensor (sensor1) operates with

higher probability (0.85) to suggest that measurements taken are sufficiently accurate. While

the second sensor2 is less effective in producing accurate readings as its probability is at (0.73).

A successful accurate reading results in reaching state s3 (success), while a failure in providing

an adequate reading leads to state s4 (fail). Thus, the DTMC model shown in Figure 2.12 is
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described as follows:

S = {s0, s1, s2, s3, s4}

AP = {idle, sensor1, sensor2, success, f ail}

si = {s0} L(s0) = {idle} L(s1) = {sensor1}

L(s2) = {sensor2} L(s3) = {success} L(s4) = { f ail}

P =



0 pi (1− pi) 0 0

0 0 0 0.85 0.15

0 0 0 0.73 0.27

1 0 0 0 0

1 0 0 0 0


2.3.1.2 Extending DTMCs with rewards

The states and transitions of a DTMC model can be augmented with positive real-valued quanti-

ties that can be interpreted as either rewards or costs. These rewards and cost values support

the quantitative analysis of relevant system characteristics which aim to maximise or minimise.

The values also support analysis of properties for meeting a certain threshold.

Definition 2.3. Consider a DTMC model D is a tuple (S, si, P, AP, L), a reward structure is a

pair of real-valued functions (ρ, ι), where

1. ρ : S →R≥0 is a state reward function ρ(s) that defines the real-value reward/cost associated

being in state s ∈ S for one discrete time interval.

2. ι : S×S →R≥0 is a transition reward function that defines the reward/cost received on each

transition in the model.

Example 2.2. The software system described in Example 2.1 could be augmented with cost and

reward values to support the quantitative analysis of the relevant system characteristics. Thus,

in this example we assume that the cost (such as, energy consumed or time units) associated with

using sensor1 is higher than using sensor2. This is evident in the cost augmented with invoking

the state s1 (sensor1) which cost 7 energy units as annotated below the state definition in

Figure 2.12, while calling the second state s2 sensor2 costs 3 units. Depending on the application

objectives, the goal could maximise accurate reading rewards by reaching state s3 (success) more

frequently and meeting an energy budget constraint (e,g. cost associated with visiting states

sensor1 and sensor2) at the same time. In this instance, the cost and rewards are associated with

the states rather than with transitions. These costs and rewards are labeled below the state

definition and take the following form:

| < cost of invoking sensor> | < reward for an accurate reading> |
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In general, the difference between cost and reward is semantic, as the mathematical quantitative

evaluation of both quantities is similar, but the semantic interpretation of each differs. The DTMC

model described earlier in Example 2.2 is augmented to describe cost and reward associated with

visiting states as follows:

ρreward = (0,0,0,1,0) ρcost = (0,7,3,0,0)

As illustrated above, the cost (ρcost) and reward (ρreward) quantities are assigned to states

rather than to the transition between the states. In this example there are no costs and rewards

associated with transitions between states, and therefore the definition for ι is ι = 05,5, where

05,5 is a 5×5 matrix and the value of its elements is 0.

2.3.2 Continuous-Time Markov Chains

A Continuous-Time Markov Chain (CTMC) is a stochastic state transition model that com-

prises of discrete states where transitions among states occur in continuous time (e.g., any point

of time) rather than at discrete time intervals, as in a DTMC model. Similar to DTMC, CTMC as-

sumes the memory-less property of a Markov model in which the transition to next state depends

solely on the current state and not on the history of previously visited states. Since transitions

occur in continuous time and can be defined using exponential probability distributions [10, 118],

the CTMC approach is feasible for modelling QoS characteristics of a system. Characteristics

such as reliability and performance of real-time systems can be modeled and thus the behaviour

that corresponds to these characteristics can be analysed. The analysis of a real-time system

behaviour can be carried out to reason about the instant behaviour at a particular time instance

or the long term behavior.

2.3.2.1 Definition

Definition 2.4. A labelled Continuous Time Markov Chain (CTMC) C is a tuple (S, s0, R, AP, L)

where

1. S is a nonempty set of finite states;

2. s0 is an initial state and s0 ∈ S;

3. R: S×S �R≥0 is the transition rate matrix;

4. AP is a set of atomic propositions that are valid in the state s ∈ S and L: S � 2AP is the

labelling function that assigns the atomic propositions AP to each state.

Transitions in a CTMC are controlled by the transition rate matrix R, which defines the

probability that a transition between a given state s, s′ ∈ S may occur within t time units if
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R(s, s′) > 0. The transition probability of (s, s′) within t time units is given by (1 − e−tR(s, s′)).

The rate at which a transition may be triggered has an exponential distribution in which the time

required by the state s to move to s′ is independent of the time taken to wait for the transition to

occur. The rate of transition defines the time t required by state s before a transition can occur

with an exit rate

(2.2) E(s) = ∑
s′∈S

R(s, s′)

The previous formula defines the rate at which a transition may occur. However, the destina-

tion of the transition is an outcome of a probabilistic choice. The probabilistic transition choice is

independent of the time already spent in state s and provided by the embedded DTMC of the

CTMC. Once a state s has been left, the probability of being in state s′ is defined by the embedded

DTMC as follows:

Definition 2.5. The embedded DTMC D of a CTMC C = (S, s0, R, AP, L) is given by the DTMC

emb(C) = (S, Pemb(C), s0, AP, L))

where for a given s, s′ ′ S

P emb(C)(s, s′) =


R(s,s′)
E(s) if E(s) 6= 0

1 if E(s) = 0 and s = s′

0 otherwise

Definition 2.5 illustrates the expected behaviour of the CTMC once a transition from state

s is about to happen with an exit rate E(s). This defines the time that is assumed to have an

exponential distribution before leaving the state. The anticipated behaviour is an instantaneous

move to state s′ with a probability specified by P emb(C)(s, s′).

2.3.2.2 Extending CTMCs with rewards

A CTMC can be augmented with quantitative costs and rewards similarly to a DTMC. However,

the costs and rewards associated with staying in a given state are determined based on the time

spent while visiting that state.

Definition 2.6. Consider a CTMC model C is a tuple (S, s0, R, AP, L), a reward structure of C

is a pair of real-valued functions (ρ, ι), where

1. ρ : S →R≥0 is a state reward function ρ(s) which specifies the rate at which the reward is

received while the CTMC remains in state s ∈ S;

2. ι : S×S →R≥0 is a transition reward function that defines the reward/cost received on each

transition in the CTMC.
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Example 2.3. Let us consider extending the system illustrated in Example 2.1 to continuous

time transition rather than discrete steps of transition as in a DTMC. The transition system

shown in Figure 2.13 describes the mean time in seconds spent in system states. This is evident

in the transition rate which labels each edge of transition between states. The system attempts

to take a periodic sensor measurement by transitioning from state idle with a rate of 60. The

previous rate defines the mean time spent in state s0 before the system attempts to take a

measurement. Similarly sensors sensor1 and sensor2 operate with rates 30 and 40 respectively.

sensor1 provides more measurements per time ratio than sensor2 i.e. higher throughput. However,

this consumes more energy units as the reward associated with staying in state is 3.5, while the

reward for being in state sensor2 is 1.2. In contrast to how rewards are identified for visiting a

state in a DTMC, rewards in a CTMC are identified as the product of multiplying the reward

associated with being a state with time spent visiting that state. Since CTMC factors time in state

reward calculation, the reward that corresponds with taking a successful sensor measurement is

associated with transition edges to success state. Thus, the CTMC model shown in Figure 2.13 is

described as follows:

S = {s0, s1, s2, s3, s4}

AP = {idle, sensor1, sensor2, success, f ail}

si = {s0} L(s0) = {idle} L(s1) = {sensor1}

L(s2) = {sensor2} L(s3) = {success} L(s4) = { f ail}

R =



0 30 30 0 0

0 0 0 21.9 8.1

0 0 0 34 6

100 0 0 0 0

100 0 0 0 0



2.3.3 Markov Decision Processes

Unlike a DTMC, the Markov decision process (MDP) [120] provides a means to model the

probabilistic behaviour of a software system that incorporates non-deterministic behaviour.

Modeling the non-deterministic behaviour aids in defining certain aspects of a system’s behaviour

which are considered unknown and cannot be represented as a probabilistic choice. Example of

such behaviour in modeling a system comprises the ordering of action executions of two parallel

components that execute tasks in a concurrent manner. Another example is when a controller

needs to devise a strategy consisting of a series of actions synthesised at runtime for solving a

problem that is modeled by non-deterministic choices.

The later example illustrates the use of an MDP model to solve the strategy synthesis problem

in which the goal for a given MDP model M is to locate some strategy that satisfies a specified

property. Strategies describe various possible ways of resolving the non-deterministic choices to
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Figure 2.13: An example of a CTMC model augmented with state rewards and costs

meet a specified property. These non-deterministc choices are considered as under specifications

from a design point of view and left for the controller to synthesise strategies based on the range

of scenarios encountered at runtime. Also, from the various possible strategies, we can obtain an

optimal strategy which optimises a specified objective.

In the context of this thesis, we focus on the use of an MDP to address the strategy synthesis

problem. Solving this problem is carried out by employing probabilistic model checking which

provides the ability to analyse quantitative properties in an exhaustive manner. The use of MDP

to handle strategy synthesis has received growing interest in areas such as synthesis controllers

for robotic applications [135, 188], planning under uncertainty [42, 111], and synthesis strategies

for penetration attack of a software system [164]. The definition of a Markov Decision Process

(MDP) presented hereafter is adapted from [120].

2.3.3.1 Definition

Definition 2.7. A Markov decision process (MDP) is a tuple M = (S, s0, A, δM , L) where

1. S is a nonempty set of finite states;

2. s0 is an initial state and s0 ∈ S;

3. A A is a finite set of actions;

4. δM : S× A � Dist(S) is is a (partial) probabilistic transition function, mapping state-action

pairs to probability distributions over S;

5. AP is a set of atomic propositions that are valid in the state s ∈ S and L: S � 2AP is the

labelling function that assigns the atomic propositions AP to each state.
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Beginning from an initial state s0, an MDP model describes the possible course through which

the state of a system may evolve. For a given state s ∈ S, A(s) ⊆ A identifies the possible set of

enabled actions from state s. For each action a ∈ A, there is an embedded probability distribution

defined as A(s) def= {a ∈ A | δM(s, a)} such that when action s is selected, the transition to the

next state s′ is determined by the probability distribution δM(s,a). The choice of which action

a ∈ A to select in an MDP model is considered to be a non-deterministic choice.

For an MDP model M, a path (ω) comprises of a possible finite or infinite sequence of

transitions s0
a0� s1

a1�, where for all i ∈ N states in the sequence s0, s1, . . . , si ∈ S, there is an

associated action ai ∈ A(si) such that δM(si, ai)(si+1) > 0. ω[i] denotes the i-th state of path ω

and last(ω) indicates the final state if ω consists of a finite sequence of states. For a given MDP

model M, FPathM,s indicates the set of all finite paths beginning in s. Similarly, IPathM,s denotes

the set of all infinite paths starting in s.

s2
|0|0|

s1
|0|0|

s3
|0|1|

{try}

{success}

{fail}

0.85

0.15
0.73

0.27

s0
|0|0|

{idle}

a

a

a

b
|7|0|

c
|3|0|

Figure 2.14: An example of a MDP model augmented with state rewards and costs

Example 2.4. Figure 2.14 presents a MDP M, which describes the behavior of a robot equipped

with two sensors that can take periodic measurements of the robot’s environment. The model

comprises four states and for each of these states, there are one or more actions available from

the set A = {a, b, c} that allows the robot to use either of the available sensors. In state s1,

the robot chooses in a non-deterministic manner any of its two sensors, which are represented

as action b and c respectively. When either of b and c actions is triggered, the robot utilises

the corresponding sensor to provide a measurement. Once an action is triggered, a probabilistic

transition occurs to state s2 if the measurement fails to meet some accuracy criteria or otherwise

to state s3 if the taken measurement is of sufficient accuracy. Action a which is found in the rest

of states entails a probabilistic transition to an alternative state. As shown in Figure 2.14, each

transition arrow is labeled with a probability, while if the probability is 1, the label is omitted.
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The MDP model shown in Figure 2.14 is described as follows:

S = {s0, s1, s2, s3}

AP = {idle, try, success, f ail}

A = {a, b, c}

s0 = {s0} L(s0) = {idle} L(s1) = {try}

L(s2) = { f ail} L(s3) = {success}

δM =



0 1 0 0

0 0 0.15 0.85

0 0 0.27 0.73

1 0 0 0

1 0 0 0


2.3.3.2 Extending MDPs with Rewards

An MDP can be augmented with rewards to support the modelling of various quantitative

measures. The reward mechanism is used to include quantitative measures that should be

maximised (e.g., utility). The same mechanism can be utilised to define costs which comprise of

the quantitative measures that we need to minimise (e.g., time, energy consumption). Although,

rewards can be attached to states as in a DTMC, however, in the case of MDP, rewards can also

be appended to actions as shown in Figure 2.14.

Definition 2.8. For a Markov decision process (MDP) defined as a tuple M = (S, s0, A, δM , L),

a reward structure for M is defined as a function that take the form r : S× A � R≥0.

2.3.3.3 Strategies

A strategy, which is also called policy or adversary, depending on the context, is used to reason

about the behavior of an MDP [120]. A strategy is considered as a recipe for resolving non-

determinism in an MDP by means of defining which action or series of actions need to be chosen

for each state. In general, the choice of action can be made randomly and it can also be made

based on choices that have occurred in previous executions of the MDP.

Definition 2.9. For a Markov decision process (MDP) defined as a tuple M = (S, s0, A, δM , L),

A strategy of M is defined as a function that take the form σ : FPathM � Dist(A) such that

σ(ω)(a)> 0 only if a ∈ A(lastω).

Strategies are classified in terms of the mechanism in which an action is chosen that can

be randomised or depends on the memory record of the past MDP’s execution so far. Such

classification is useful as it reduces our attention to a certain class of strategies of
∑

M which

denotes a set of all strategies of M.
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1. Randomised strategy: A strategy σ is considered to be deterministic if for all finite paths of

M, σ(ω) is a point distribution for all ω ∈ FPathM . Otherwise the strategy is considered to

be a randomised strategy.

2. Memory strategy: A strategy σ is said to be based on finite-memory if each action that

occurs in a mode of strategy execution of σ(ω) is recorded and plays role along with last(ω)

of the previous finite modes. Otherwise, σ is considered to be memory-less as it relies only

on last(ω).

The behaviour of M is said to be fully probabilistic if a certain strategy σ is acquired such

that all nondeterminism in M is resolved. In Section 2.4.1, we introduce the temporal logic used

to specify properties of an MDP. Then, we explain how the specified properties of the MDP can be

verified to check whether the synthesised strategy meets the specified properties.

2.4 Probabilistic Temporal Logics

This section introduces variants of probabilistic temporal logics which is a set of specification

languages that allows to formally specify the QoS properties of interest in a software system

whose behaviour can be modelled using one of the Markovian modelling formalisms from the

previous section (i.e., DTMCs, CTMCs or MDPs). Having a formal specification of the QoS

properties helps to reason about the behaviour of a software system over time. This section

presents Probabilistic Computation Tree Logic (PCTL) [21] which is a temporal logic variant

used to specify properties of DTMC and MDP. Also the section introduces Continuous Stochastic

Logic (CSL) [9] which is another temporal logic variant used to define properties of CTMC.

2.4.1 Probabilistic Computation Tree Logic

Probabilistic computation tree logic (PCTL) [91] is a language that enables the formal

specification of probabilistic properties of a DTMC and an MDP. Through model checking engines

such as Prism [119], Storm [65], and MRMC [104], we can formally verify if the behaviour of a

software system, which represented in the relevant stochastic model i.e., DTMC or MDP, satisfies

the specified properties. PCTL logic is based on Computation Tree Logic (CTL) [52] and allows to

evaluate if a specified property holds within a certain discrete steps of time.

Definition 2.10. Below is the grammar used in PCTL to express a state formula Φ and a path

formula Ψ;

(2.3)
Φ ::= true | a | Φ∧Φ | ¬Φ | P./p[Ψ]

Ψ ::= X Φ | Φ ∪≤K Φ

and the cost/reward augmented PCTL state formulae are defined by the grammar;

(2.4) Φ ::= R./r[C≤K ] | R./r[I=K ] | R./r[F Φ]
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where Φ and Ψ denote the state and path formulae respectively, a ∈ AP is atomic proposition, ./

is a relational operator and ./ ∈ {<, ≤, ≥, >}, p ∈ [0,1] is a probability bound, k ∈ N>0 ∪ {∞}

and r is defined as a reward bound r ∈ R≥0.

A PCTL formula is defined with reference to states in a model i.e. DTMC or MDP. For instance,

a formula P./p[Φ] which comprises the probabilistic operator P can be utilised to assert if a state

formula Φ holds if the probability of the future evolution of the system satisfies the bound ./ p.

A path formula Ψ can only be specified within a probabilistic operator P. Defining an execution

path Ψ in a probabilistic operator provides bounds on the probability of system evolution. The

next formula X Φ can be used to assert if there is an execution path which has a next state

that satisfies Φ. The bounded until formula Φ1 ∪≤K Φ2 is used to check if an execution path

continuously satisfies Φ1 for all previous discrete interval steps (x) before Φ2 becomes true at

interval step x ∈ K .

Similarly, in the following we list examples of the use of the reward operator R in PCTL

semantics.

• R./r[C≤K ] : The reward operator R./r used to assert if the total accumulated rewards

along a path Ψ satisfies the defined bound ./ r within k interval steps.

• R./r[I=K ] : The reward operator verifies if the anticipated reward at step k meets the

bound specified by ./ r.

• R./r[F Φ] The amount of reward accumulated up to satisfying the state formula Φ meets

the bound specified by ./ r.

Analysing properties of a DTMC A DTMC model provides a formal description of the

behaviour of the underlying system. The mathematical evaluation of system behaviour necessi-

tates the incorporation of a precise language to support the formal specification of probabilistic

properties. The formal definition of system properties is utilised to verify through model checking

tools and techniques if a system model D fulfills a specification φ such that;

D |= φ(2.5)

Since the transition among states are governed by a probability distribution, this leads to various

combinations of possible execution paths starting from a given initial state. These possible

execution paths along with concrete states are used to define a property and consecutively assert

if it holds. For a given model D, a set of possible execution paths for a pair of states (s, s′)
is denoted as PathD(s). The behaviour analysis of the model D requires finding the unique

probability Prs on all paths PathD(s). The probability Prs is the outcome of the sum of all the

probabilities of all the paths PathD(s) that lead to state s′ from the state s [118]. An execution

path Ψ is defined as an non-empty finite or infinite set of consecutive states {s0, s1, . . .}, where

si ∈ S. The probability of transition P(si, si+1) in the sequence of states needs to be > 0 for all
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i ≥ 0. Ψ(i) denotes the i-th state in the execution path and |Ψ| denotes the length of the finite

sequence of states in the path.

A satisfaction relational operator (|=) is used to define the semantics of PCTL. The semantics

are expressed in reference to states s ∈ S and paths Ψ ∈ PathD(s) provided in a DTMC model.

For instance, consider the following notations:

• s |= ¬Φ : indicates that the state formula ¬Φ is satisfied in state s.

• s |= a : means that the atomic proposition a is satisfied in state s if a ∈ L(s)

• s |= Φ1 ∧ Φ2 : states that the state formulas Φ1 and Φ2 are both satisfied in state s.

Example 2.5. In the following, we extend the software system presented in Example 2.2 to

support verifying the system behaviour against requirements defined using PCTL notations.

• P≥0.95[F≤300success]: This property checks if the probability that the system reaches suc-

cess state within 300 steps exceeds the defined bound ≥ 0.95.

• P≤0.95[¬success U f ail] : The probability that the system would produce more frequently

inaccurate sensor readings before reaching for the first time a success state is ≤ 95%.

• Rreward
≥15 [C≤k] : The expected amount of accurate reading accumulated up to reaching time

step k is more than 15.

Analysing properties of a MDP For a given MDP M, the problem is to check if a strategy

σ of M satisfies the property formula φ when starting from state s. We can use the satisfaction

relation |= to express the problem as M, s, σ |= φ. As we are often interested in the behaviour of

M starting form the initial state s0 of M, the problem defined earlier is expressed as M, σ |= Φ

instead of M, s0, σ |= φ. The previous problem verifies if M satisfies φ under a certain strategy

σ. However, if we wish to verify if M satisfies φ for all possible strategies of M, then the problem

is formally defined as per the below definitions.

Definition 2.11. For an MDP M and property φ, the problem is to verify for all possible strategies

σ ∈∑
M? that M, σ |= φ holds.

This verification problem is often referred to in practice as the dual problem of strategy

synthesis [120] in which the problem is twofold. The first is concerned with identifying some

strategies of M that meet a property φ. The second part is concerned with finding the optimal

strategy that optimises a specified objective.

Definition 2.12. For an MDP M and property φ, the strategy synthesis problem is to identify if

exists, a strategy σ ∈ ∑
M such that M, σ |= φ.
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In essence, the strategy synthesis problem is a verification problem in which we need to verify

a property φ on MDP M, but the synthesis problem entails identifying optimal values using

either of the following probabilistic or expected reward operators.

Prmin
M,s(ψ) =

inf
σ ∈∑

M
{PrσM,s(ψ)} Emin

M,s(rew(r,ρ)) =
inf

σ ∈∑
M

{EσM,s(rew(r,ρ))}

Prmax
M,s (ψ) =

sup
σ ∈∑

M
{PrσM,s(ψ)} Emax

M,s (rew(r,ρ)) =
sup

σ ∈∑
M

{EσM,s(rew(r,ρ))}

Where ψ and ρ define the objective that needs to be maximised or minimised and the value of

the objective that corresponds to each operator, i.e., the probabilistic Pr[ψ] or expected reward

E[ρ] objectives, are derived from the grammar presented in Definition 2.10. For instance, consider

a dual problem that comprises of a property φ = P≤p[ψ] that needs to be verified against M and

at the same time we wish to synthesise a strategy for φ′ = P≥p[ψ]. This problem can be solved

by evaluating Prmax
M , in which φ is satisfied by M when Prmax

M (ψ)≤ p holds, and we are able to

identify a strategy σ that satisfies φ′ by computing Prmax
M (ψ) ≥ p. As we are often interested

in finding an optimal strategy i.e., one that yields the maximum value in this example, the

fixed bound p of the probabilistic operator is replaced by an alternative syntax Pmax=?[ψ] which

supports numerical queries.

Definition 2.13. Let ψ and ρ be the probability and reward objectives which can be derived

using the grammar described in Definition 2.10. An optimal value for the probability/reward

objective can be computed by using a numerical query that takes the form:

Pmin=?[ ψ ] Pmax=?[ ψ ]Rmin=? [ ρ ]Rmax=? [ ρ ]

Example 2.6. We now extend the robotic software system presented in Example 2.4 to synthesise

a strategy satisfying a reach-ability property P≤0.15[Ffail]. The aim is to identify if there exists

a strategy and can be achieved by evaluating the a numerical query Pmin=?[ F f ail ]. The

computation yields the probability value 0.15 which corresponds to the memoryless deterministic

strategy that chooses action (a) from state try which utilises sensor1 as it carries out measurement

with the least probability of failure (0.15). Another example to consider is in identifying an optimal

strategy for minimising energy cost before reaching a success state. To find the optimal strategy,

we use an expected reward property Rcost
min=?[ F success ] that takes the form of a numerical query.

The property uses a reward structure called cost, which as shown in Figure 2.14, maps the energy

cost of using either of the two actions b and c, i.e., each of the two actions is mapped to a robot

sensor. The resulting optimal strategy chooses action c i.e., the second sensor of the robot, from

state try, and has the optimal value 4.12. This optimal strategy is once more memoryless and

deterministic similar to the optimal strategy from the previous probabilistic property example.
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2.4.2 Continuous Stochastic Logic

Continuous Stochastic Logic (CSL) allows specifying properties for CTMC models. Similar

to non-probabilistic Computation Tree Logic, CSL is a branching time logic but it provides

support for a probabilistic operator P. CSL, introduced by Aziz [8], is an extension of Probabilistic

Computation Tree Logic (PCTL) [91], which was introduced by Hannson and Jonsson. Baier et

al. added to CSL the until operator [12] which facilitates defining a time bound for evaluating

CTMC properties.

Definition 2.14. Below we illustrate the grammar that dictates the syntax of Continuous

Stochastic Logic (CSL):

(2.6)
Φ ::= true | a | Φ∧Φ | ¬Φ | P./p[Ψ]

Ψ ::= X Φ | Φ ∪≤I Φ

and the cost/reward augmented CSL state formulae are defined by the grammar;

(2.7) Φ ::= R./r[C≤T ] | R./r[I=T ] | R./r[F Φ]

where Φ and Ψ denote state and path formulae respectively, a ∈ AP is atomic proposition, ./

is a relational operator and ./ ∈ {<, ≤, ≥, >}, p ∈ [0,1] is a probability bound, k ∈ N>0 ∪ {∞}

and r is defined as a reward bound r ∈ R≥0. Nevertheless, I ∈ R≥ 0 and T ∈R≥ 0 used to find

the expected reward at an interval of time and at a time instant respectively.

A CSL formula is defined in reference to the states of a CTMC model. Most of the CSL

semantics that include path formulae are interpreted in a similar manner to PCTL. The only

exception is for interpreting the until operator U when it handles the interval parameter I ∈ N>0.

Similar to PCTL, a formula that includes the probabilistic operator P and has follow the semantic

P./p[Φ], is used to assert if a state formula Φ holds if the probability of the future evolution of

the system satisfy the bound ./ p. A path formula Ψ can only be specified within a probabilistic

operator P. Defining an execution path Ψ in a probabilistic operator provides bounds on the

probability of system evolution. The next formula X Φ is used to assert if there is for a given

execution path Ψ, a next state that satisfies Φ. A formula that includes the time-bounded until

operator and follows the semantic Φ1 ∪≤I Φ2 holds. If at any time instance within the interval

I = [0,R>0], there is a path which continuously satisfies is used to check if an execution path

continuously satisfies Φ1 before Φ2 becomes true. However if the time interval is unbounded

I = [0,∞] then the time-bounded until formula becomes unbounded until one. For formula that

includes the probabilistic operator and take the form P./p[Φ], the probability bound defined by

./ p can be substituted with =? to find the probability bound which satisfies the path formula Φ.

In the following, we describe the different forms to express properties that include the reward

operator R:

• R./r[C≤T ] : The expression is used to assert if the total accumulated rewards satisfy the

defined bound ./ r up to time T.
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• R./r[I=T ] : The reward operator verifies if the anticipated reward at time instant T meets

the bound specified by ./ r.

• R./r[F Φ] The amount of reward accumulated up to satisfying the state formula Φ meet

the bound specified by ./ r.

Similar to PCTL, the reward bound ./ r can be substituted with =? to find the expected

reward in any of the reward formulas discussed earlier. A satisfaction relational operator (|=) is

used to define the semantics of CSL. The semantics are expressed in reference to states s ∈ S and

paths Ψ ∈ PathC(s) provided in a CTMC model. For instance, consider the following notations;

• s |= ¬Φ : indicates that the state formula ¬Φ is satisfied in state s.

• s |= a : means that the atomic proposition a is satisfied in state s if a ∈ L(s)

• s |= Φ1 ∧ Φ2 : states that the state formulas Φ1 and Φ2 are both satisfied in state s.

Example 2.7. In the following, we extend the software system presented in Example 2.3 to

support verifying the system behaviour against requirements defined using CSL notations.

• P≥0.85[¬ f ail U [0,T] success] : The probability that the system would produce produce ac-

curate measurements within T seconds without the encounter of failure in sensor reading

is ≥ 85%.

• P≤0.95[¬success U f ail] : The probability that the system would produce more frequently

inaccurate sensor readings before reaching for the first time a success state is ≤ 95%.

• Rreward
≥15 [C≤T ] : The expected amount of accurate reading accumulated up to reaching time

T is more than 15.

• Rcost
≤32 [C≤T ] : The expected accumulated cost of energy to provide sensor reading up to time

T is less than 32 energy units.

Analysing properties of a CTMC A path in a CTMC C is characterised as a finite or

infinite path and it is used to evaluate properties. A finite path comprises of a bounded sequence

s0t0s1t1 . . . sn−1tn−1sn, where s0, s1, . . . , sn ∈ S. Since this is a finite path, the sn needs to

be an absorbing state. The transition rates for all i = 0,1, . . . ,n−1 have to be R(si, si+1) > 0

and ti is the time consumed while being in state si. In contrast, an infinite path is an endless

sequence s0t0s1t1 . . ., where s0, s1, . . . ∈ S, t0, t1, . . . correspond to the time spent in states s0, s1, . . .

respectively. The transition rates for all i = 0,1, . . . states in the sequence need to be R(si, si+1)> 0.

We further assume that the properties of the model C are analysed over a set of PathsC which

can combine several finite and infinite paths. For any given path ω, ω[i] denotes the i-th state

on the path. If the given path ω comprises a finite sequence of states then the value domain of

i ∈ 1,2, . . . ,n, and if the path is an infinite path then i ∈N>0. Furthermore, for a finite path we

denote the time (t(ω, i)), which represents the total time spent visiting the path states and i ≤ n.
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ti corresponds to the time spent while being in the i-th state and t ≤∑n−1
i=0 ti. We use the notation

ω@t to refer to the current state at time t. For an infinite path the time spent visiting path states

t(ω, i) = ∞ and ω@t refers to the state visited at t time.

2.5 Probabilistic Model Checking at Runtime

2.5.1 Description

Probabilistic model checking (PMC) is utilised for systems that exhibit stochastic behaviour

to calculate the probability of specific condition including at runtime [153]. PMC provides a

collection of techniques applied on a probabilistic Markov chain model to quantitatively verify

the compliance of QoS properties to predetermined bounds [115]. The predefined QoS bounds

are specified in a formal stochastic expression e.g. (Continuous Stochastic Logic CSL [9, 10],

Probabilistic Computation Tree Logic PCTL [21, 91]). The probabilistic model represents the

system behaviour as a finite state transition model. The transitions between these states are

annotated with probabilities and the model can be extended to include cost/reward attributes.

Two examples of properties obtained from [153] to illustrate probabilistic QoS properties in the

field of fault-tolerant systems are as follows:

• ”the resource usage during the first month of operation should not exceed 100 units”;

• ”the likelihood of a failure occurring within the first hour is at most 0.001”.

The objective of probabilistic model checking is to verify the compliance of a given system model to

certain constraints that are formulated using probabilistic temporal logic [117]. The verification

requires a system model that captures the necessary environment‘s relevant assumptions. These

assumptions illustrate the system’s desired results taking into consideration environment specifi-

cation and requirements [193]. Particularly, PMC provides irrefutable evidence that the desired

results can be achieved in view of domain knowledge representation. An example obtained from

[35] further illustrates the use probabilistic model checking for quantitative verification. Assume

that S and R represents the specification and requirements of a system. Additionally, let D

formally capture the domain assumption of the same system. The desired requirements R hold if

both the specification (S) and domain assumptions (D) are satisfied and consistently represent

the system as:

(2.8) S,D |= R

The equation indicates that domain assumptions are important factors for fulfilling the system’s

desired requirements. This is because the satisfaction of requirements requires to reason about

an upfront consistent representation of the target system. This representation captures certain

assumptions about behaviour of the system to maintain expected requirements. If these assump-

tions, that describe the domain D, are inaccurate, then the fulfilment of the system requirements
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is compromised. Calinescu et al. [35] used the term software evolution to describe the process of

dealing with changes that divert the system from satisfying its requirements. They also suggest

that a diversion may occur as a result of violations in any of the terms outlined in (2.8). After

the software system is released, a system may require further evolution to cope with changes

in system specification requirements or domain assumptions. The first change occurs when the

system fails to deliver system functions as prescribed in its specification (S). The second change

takes place when the devised domain assumption differs from actual environment behaviour

(D). While, the third and final violation arises as consequence of misrepresenting system actual

requirements (R).

The objective of our research work is to concentrate on changes influenced by the environment

and detected by the violation of domain assumptions D. A change in captured domain assumptions

indicate that a new domain property has been introduced. In turn, the newly introduced domain

property requires modification to system specification S to conform with system requirements

R [35]. Throughout this PhD project the term self-adaptive software system refers to class of

systems that acquire autonomous capabilities to respond to changes in domain assumption D, in

order to satisfy requirements R outlined in (2.8). The variability of domain assumptions is due to

two main concerns.

The first concern is as a consequence of situating the software system in the environment

where the behaviour is considered to be highly uncertain. The second concern is due to high degree

of variance in environment behaviour that is likely to affect achieving desired requirements. To

overcome these concerns, Calinescu and Kikuchi [38] argue that expression of system properties

quantitatively permit acquiring irrefutable evidence that QoS requirements are met. Achieving

QoS requirements (e.g., performance, efficiency, etc.) necessitate expressing these requirements

with reference to system properties. Kwiatkowska [115] indicated that obtaining a mathematical

model that reflects environment behaviour, in addition to, formal quantitative representation of

the system properties, facilitates the comprehensive reasoning about achieving these properties

to meet the system requirements. Therefore, these assumptions play a pivotal role in adapting

system properties to satisfy QoS requirements.

Figure 2.15 illustrates a self-adaptive service based system that applies probabilistic model

checking to satisfy QoS requirements as in formula (2.8) [35]. The example describes a self-

adaptive medical assistance system that comprises of three main constituents. The first part

contains a formal specification S of services provided by the system. The system initially receives

a request that either require a further processing of the patient profile (service s2) or invocation

of alarm service (s1) to notify the patient with the requested alarm. In case the request requires

further analysis (s1), the outcome of this analysis directs the system to either changing the

prescribed drug (service s3) alerting the patient using service s1 or by finalising the patient

request. The second constituent, profiles the behaviour of the three services (s1,s2,s3) stated in

system specification S. The behaviour assumptions D of these services are reported according to
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the efficiency (prescribed cost) and robustness (prescribed failure probability) rates. While the

final constituent formally states QoS requirements R based on system properties expressed in D.

For example, the third requirement R3 states an efficiency threshold for handling requests.

FIGURE 2.15. Application of probabilistic model checking in service based system [35].

The MAPE (Monitor, Analyse, Plan, Execute) control model maintains a centralised knowl-

edge repository that captures an active system representation [64, 155]. This representation

continuously preserves a model that combines environment behaviour assumptions D and system

specification S. The monitor activity utilises sensors to constantly augment the system model

representation with changes detected in the system itself or its environment. Subsequently,

the analyse activity determines whether the change detected in monitor phase violates QoS

requirements R. If a violation of requirements is detected, an adaptation plan is prepared by

the plan activity. Then, the execute phase applies the adaptive change through the appropriate

effectors [35, 105].

Quantitative verification technique can be utilised to mathematically verify system model

representation conformance to QoS requirements [115]. The verification can be included in the

analysis activity to conduct an exhaustive analysis to detect or even predict the QoS requirement

violations. Requirement violation can be inferred from verification though various forms. A

detected violation can be either a simple true/false feedback or a computation that yields a

quantitative result. For instance, the verification outcome can possibly be a probability of service

failure rate or even a cost prediction for handling incoming patient request as in 2.15 the model

depicted in that represents a service based system.

Figure 2.16 illustrates quantitative verification technique to predict/detect requirement

violation. The verification is conducted by utilising probabilistic model checking tools. MRMC

[104] and PRISM [119] are considered the most frequently used tools. A list of alternative tools are

referenced in [143, 145]. In the following section, we illustrate the latest progress on approaches

that utilise runtime quantitative verification to analyse system compliance with adaptation

requirements.
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FIGURE 2.16. Quantitative verification using probabilistic model checking adopted
from [35].

2.5.2 Frameworks

A self-adaptation framework has been proposed by Calinescu and Kwiatkowska [39] for integrat-

ing self-adaptive capabilities in legacy systems. They managed to utilise Markov chain models

to represent system parameters and states at runtime. This representation allows to reason

about the system using the PRISM probabilistic model checking tool [119]. They introduced an

autonomic manager architecture that quantitatively verfies the system properties of interest to

adapt the system behaviour according to the current system states and objectives. They define a

set of essential three steps to make their autonomic architecture applicable to any legacy system

that exhibits stochastic behaviour.

These steps are generation, deployment and exploitation and used to integrate and maintain

the autonomic manager on legacy systems. These steps are divided based on the role of involved

users (developer, system administrator, and end user). The approach was used to adapt the power

consumption of a disk drive in reference to the system workload and policies. Similarly, they

integrate the autonomic manager to adopt the availability of managed clusters in a data centre

environment. The introduced framework managed to perform exhaustive quantitative analysis

to reconfigure the system to meet the encoded probabilistic temporal logic policies. However,

since the presented framework relies on centralised autonomic manager, the underlying system

may experience delays in responding to adaptation concerns. Also the system resources such as

memory and CPU may be affected by heavy workloads.

Epifani et al. [70] proposed KAMI (Keep Alive Models with Implementations) approach to

adapt systems with distributed components at runtime. Changes presented by the execution

environment demand a response to violations of the system‘s non-functional requirements. The

KAMI approach utilises the Bayesian estimation technique [18] to update the state transition

parameters in the system model (discrete time markov chain model). Updating the transition

parameters facilitates the prediction of possible failures that could potentially affect the reliability

of requirements. Also, the proposed approach reacts to adaptation concerns by using PRISM

probabilistic model checking tool [119] to ensure that the system‘s non-functional requirements

48



2.5. PROBABILISTIC MODEL CHECKING AT RUNTIME

are met.

Epifani et al. applied KAMI approach to Tele-Assistance (TA) medical system presented in [15]

to evaluate their approach. The TA system architecture consists of distributed components that

monitors a patient‘s vital health signs remotely and intervenes by sending First-Aid Squad (FAS)

if the patient‘s health signs raise concerns. The system must conform to reliability requirements

in which it has to reconfigure itself by means of adaptation to react to component failure concerns

that may endanger the patient‘s life. The conducted testing shows that the self-adaptive system

managed to predict possible failures through the application of Bayesian estimation technique.

Also, their results indicate that the system adapts in the presence of violation detected by the

PRISM model checking tool.

However, the proposed approach employs DTMC models that usually support system re-

liability requirements [89]. Therefore, the support of other non-functional requirements (e.g.

performance and efficiency) necessitate extending the approach to support continuous time

Markov chain models. Epifani et al. reported that the fulfilment of non-functional requirements

highly depends on the precision in defining system parameters which are deduced at design time

by domain experts. Also, the approach adapts to changes by altering the corresponding system

parameters. Thus, the adaptation is restricted to changes in system parameters without further

support to modify the model architecture.

Filieri et al. [73] proposed an extension to the KAMI [70] approach to support quantitative

analysis of non-functional performance requirements. The analysis of performance requirements

requires the expressing of system behaviour using continuous-time Markov Chain (CTMC) models.

Unlike DTMC models, CTMC models take into consideration the execution time of each state in

the transition path. Thus, capturing the time aspect in the system behaviour which facilitates

the reasoning about time related requirements such as system throughput. Filieri et al. utilised

CTMC models to analyse performance requirements and ensure that the execution of a certain

process is within a required time boundary.

They expressed system performance requirements using continuous stochastic logic (CSL)

[10] that supports the timing aspect. An e-commerce system proposed in [88] is used to validate

the effectiveness of their approach. The utilised e-commerce system maintains a DTMC model

to reason about reliability requirements and a CTMC model to verify the performance related

requirements. Like the original KAMI approach, the extended ones supports predicting and

detecting a violation of user predefined reliability requirements. However, the latter approach is

extended to predict performance violations using the same Bayesian estimation technique [18].

Meanwhile, Filieri et al. conducted the quantitative verification using the mainstream proba-

bilistic model checking tools. They have used PRISM [93, 116] and MRMC [104] checking tools

to continuously verify that the system requirements are met. The results of the tests conducted

by them indicate that there is a possible chance to encounter undesired delays in reacting to

adaptation concerns. Therefore, they suggest the need to devise new strategies that can achieve
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a more efficient and reliable adaptation. Efficiency and reliability in realising adaptation is

essential to adapt the system to a variety of non-functional requirements. CTMC model for

instance, annotates system states with cost and rewards that enable the verification of energy

consumption requirements. At the same time, the model can be utilised to reason about another

performance related requirement such as certain process latencies or throughputs. Also, finally,

the proposed approach lacks the support of architectural change. According to Filieri et al., a

more precision in understanding environment changes led to diversifying the architecture variety

that can aid in realising a more effective adaptation at runtime.

Calinescu et al. proposed QoSMOS (QoS Management and Optimisation of Service-based

systems) [37], a framework for realising self-adaptation in service based systems. This framework

enables the development and management of a service based system that adapts in the presence

of uncertainty in the system itself or in surrounding environment. The introduced framework

utilises ProProST component to specify high-level QoS requirements which are required to reason

about the system behaviour.

In contrast to previous approaches, QoSMOS framework provides a holistic solution that

supports all MAPE adaptation activities. A component that implements KAMI approach [70]

monitors the behaviour of the system and subsequently updates the corresponding system model

with changes that occur in system and model parameters. The updated system model is then

analysed by the PRISM [119] probabilistic model checking tool to verify QoS requirements ob-

tained from the ProProST component as a set of probabilistic temporal logic formulas. The GPAC

component [32] is then utilised to obtain the optimal configuration. The proposed framework is

validated utilising the Tele- Assistance (TA) medical system defined in [15] work. The testing

results reports concerns regarding the QoSMOS framework experiencing delays in reacting to

adaptation. The experienced delay occurs as a consequence of employing the KAMI component

which handles the monitoring and detection of requirement violations in a centralised manner.

Calinescu et al. admit that the employment of KAMI component in large-scale systems may cause

delays in responding to adaptation concerns.

Calinescu et al. introduced the DECIDE approach [34]. This is particularly relevant to

the present PhD project as it is a self-adaptation approach that employs runtime quantitative

verification in distributed systems with decentralised control. As such, we describe this approach

in detail in Section 2.6.1.

In conclusion, runtime quantitative verification (RQV) provides rigorous assertion that a

self-adaptive system complies to non-functional requirements. Probabilistic model checking

tools can verify that continuously updated system models conform with predefined reliability,

performance, and other non-functional constraints. The conducted survey that is summarised in

Table 2.2, suggests that RQV approaches are less effective in large scale systems [37, 39, 70, 73].

The limitation in effectiveness is due to delays in detecting and reacting to adaptation concerns.

Therefore, it is important to further examine efficient runtime verification approaches that reduce
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the verification time and resource utilisation [35, 84]. However, decentralised control approaches

such as DECIDE [34] managed to reduce resource overheads by dividing the computation burden

between distributed and coordinating MAPE control loops. Weyns et al. [184] indicate that

systems with decentralised control approach achieves better scalability in terms of computation

and computation. Meanwhile, the DECIDE work shows that the adaptation requirements of

a system component are prioritised over system global requirements. This issue may lead to

sub-optimal adaptation decision from a system view point.

Table 2.2: Surveyed Self-adaptive systems that utilise Runtime Quantitative Verification

Proposed solution Problem
Scope Application Domain Control

approach

Impact on
QoS

attributes
Limitation

Legacy system adaptation
framework [39], 2009

Integrating
autonomic
manager to
legacy
systems

Dynamic power management
in a Fujitsu disk disk drive [149]

Centralised
control

Energy efficiency,
Increase
availability

Resource utilisation
Overheads, Delay in
reacting to concerns

KAMI self-adaptation
approach [70], 2009.

Maintain and
verify system
models at
runtime

Tele- Assistance (TA) medical
system presented in [15]

Centralised
control

Reliability
(e.g. fault
tolerance)

Support only
reliability concerns,
and adaptation
actions that alter
system parameters

Extended KAMI self-adap-
tation approach [73], 2012.

Maintain and
verify system
models at
runtime

e-commerce system based
on [88]

Centralised
control

Reliability
and
performance

Architectural change
adaptation,
Delays in reacting to
adaptation concern

QoSMOS Self-adaptation
framework [37], 2011

Adaptation in
service based
system

Tele- Assistance (TA) medical
system presented in [15]

Centralised
control

Reliability
and
performance

Delays in reacting to
adaptation concern,
overheads in resource
utilisation

DECIDE self-adaptation
approach [34], 2015

effectiveness of
RQV in
distributed
systems

Embedded systems deployed on
distributed unmanned marine
vehicles (UUV)

Decentralised
control

Reliability
and
performance

Approach generalisation,
confidence estimation
in execution context

2.6 Distributed Self-Adaptive Systems with Decentralised
Control

This section overviews a number of representative approaches to decentralising the control

software of distributed self-adaptive systems. We start by describing in detail the approach that

the project builds on (in Section 2.6.1, and then summarise other approaches relevant to the

project (in Section 2.6.2).

2.6.1 The DECIDE Approach

The research presented in this thesis builds on the DECIDE approach to decentralising the

control of self-adaptive systems introduced in [34]. As such, we will describe this approach in

detail in this section.

DECIDE supports the development of SAS comprising collaborating components (e.g., robots,

unmanned vehicles, or smart IoT devices). Formally, DECIDE SAS comprise m > 1 components.

We use Cfgi and Envi to denote the set of possible configurations and the set of possible envi-
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1. Receive
formally-specified
system goals

2.Analyse local
capabilities &
assemble local

capability summary

3. Share
local capability

summary

4. Receive
peer capability
summaries

5. Partition
system goals &
select local

component goals

6. Execute local
control loop
& heartbeat

local major change (partial capability loss/recovery or disruptive environmental change)

peer major change (no heartbeat or new capability summary)

new system goals

Figure 2.17: Decentralised control workflow executed by each component of a DECIDE distributed
autonomous system; the dashed arrows indicate scenarios that require the re-execution of all or
of a subset of the workflow steps

ronment states for the i-th component, respectively. Thus, Cfgi corresponds to parameters of

component i that can be modified, and Envi to component parameters that can only be observed.

In addition, component i has several functional and QoS attributes. Functional attributes may

include the set of tasks that the component can perform for a given configuration, or the se-

quence in which it must execute certain tasks for specific environment states. QoS attributes are

concerned with the reliability, performance, cost, etc. with which these tasks are executed.

Definition 2.15. An attribute of a DECIDE component with configuration space Cfgi and

environment space Envi is a function attr : Envi ×Cfgi →V given by

(2.9) attr(e, c)= f (e, c,pmc(M(e, c),Φ)),

where:

• V is the set of all possible values for the attribute;

• f is a function that can be evaluated efficiently;

• M(e, c) is a stochastic model that is typically component specific and may also be attribute

specific;

• Φ is a probabilistic temporal logical formula over M(e, c);

• pmc is a function that returns the result of the probabilistic model checking of formula Φ

for model M(e, c).

From the potentially numerous attributes and configuration/environment parameters of DAS

components, DECIDE focuses on the attributes that appear in the system and local require-

ments, and on the parameters that influence the values of these attributes. Other component

attributes and parameters are typically abstracted out. Two types of requirements are supported

by DECIDE:

1. Constraints, which represent boolean-valued expressions that must be true, and are speci-

fied as first-order logic formulas over the component attributes;
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2. Optimisation objectives, which represent real-valued expressions that must be minimised

or maximised, and are defined as first-order logic terms over the component attributes.

System-level requirements (i.e. constraints and optimisation objectives) are defined over the

attributes of all DAS components, whereas the local requirements of a component are defined

over the attributes of that component. More specifically, a component-level constraint and a

component-level optimisation objective have the form:

(2.10) attrk(e, c)./ boundk, where ./∈ {<,≤,=,≥,>}

and

(2.11) minimise attrk(e, c) or maximise attrk(e, c)

respectively, for some attribute attrk of a component; while a system-level constraint and a

system-level optimisation objective have the form:

(2.12) OPm
i=1(attri,k(e, c))./ boundk, where ./∈ {<,≤,=,≥,>}

and

(2.13) minimise OPm
i=1(wiattri,k(e, c)) or maximise OPm

i=1(wiattri,k(e, c)),

respectively, where the operator OP applied to the k-th attribute of each of the m system

components is one of
∑m

i=1,
∏m

i=1,
∨m

i=1, etc, and w1,w2, . . . ,wm > 0 are weights. Finally, to achieve

autonomous operation, DECIDE systems and their components can have at most one optimisation

objective each.

DECIDE supports distributed SAS that have the compute resources to perform the low-

overhead control workflow shown in Fig. 2.17. This workflow has six steps and is executed locally

by the instance of the decentralised DECIDE controller running on each SAS component.

In step 1, the component receives a copy of the system goals, specified formally as described

later. This step is performed infrequently—when the component joins the system and, if applicable,

when new system goals are provided by its owners.

In step 2, probabilistic model checking is used to analyse stochastic models of the component

and its environment. The purpose of this analysis is to formally establish the component capa-

bilities that are relevant to the system goals (e.g., throughput, response time and cost). This

analysis takes into account any component-level requirements that might exist, and its result

is a local capability summary, i.e., a finite set of alternative contributions that the component

is guaranteed to be able to make towards achieving the system goals, for the assumed range of

environmental scenarios. These alternative contributions correspond to different levels of quality

of service (e.g., latency, reliability or energy consumption) that the component can achieve. Each

contribution is encoded as a tuple that specifies the attribute values for that contribution:

(2.14) (attrValue1,attrValue2, . . . ,attrValuen),
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where this tuple only includes the values for the n > 0 attributes that appear in the system-level

requirements (2.12) and (2.13). This step and the sharing of the local capability summary with

the peer SAS components (e.g., through a broadcast) in step 3 are also executed infrequently—

when the component joins the SAS, after receipt of new system goals, and when the component

experiences partial capability loss/recovery or disruptive environmental changes.

In step 4, the DECIDE controller instance receives similar capability summaries computed

by peer SAS components as they join the system or experience local major changes (i.e., changes

that require a re-partitioning of the system goals, and that are local to a specific component).

As indicated in Fig. 2.17, this infrequent step is skipped when the assembly and sharing of a

new local capability summary in steps 2 and 3 are due to a local major change (because the

capabilities of the peer components are unaffected in this case).

Each analysis of the local capabilities (when joining the system, when the system goals

change, or after local major changes) and the receipt of new capability summaries from the peer

components trigger the (re-)partition of the system goals among the available components and the

selection of local component goals. These tasks are executed in step 5.1 An efficient, deterministic

mathematical programming technique is used by the DECIDE controller of every component to

produce an identical partition of the system goals and the rigorous selection of local goals on each

SAS component. This replication of the system-goal partition on every component ensures that

the system does not have a single point of failure (and reduces its communication needs) with

only modest additional computation overheads. The selected local component goals represent one

of the alternative contributions from the capability summary of the local component, chosen such

that the system is guaranteed to comply with its goals as long as each component achieves its

local goals.

Most of the time, the only activities performed by DECIDE are the execution of a local control

loop and the maintenance of a low-overhead system “heartbeat” in step 6. The local control loop

ensures guaranteed compliance with the selected local component goals through local adaptation

underpinned by the probabilistic model checking of continually updated stochastic models of the

component and its environment. Infrequently, events such as disruptive environmental changes

(e.g., significant workload increases) or loss of component capabilities (e.g., the loss of a sensor)

render a DECIDE local control loop unable to achieve the local goals; or the disappearance of a

heartbeat indicates the complete failure of a peer component. These events (shown by dashed

arrows in Fig. 2.17) are termed major changes, and their detection by the local control loop is

followed by the computation and selection of new sets of local goals for the (remaining) SAS

components.

1To avoid re-executing step 5 many times when the SAS is first formed (or when the system goals change) and
multiple components share their capabilities summaries at slightly different times, DECIDE uses batch processing
to handle new capability summaries. To this end, the computation of a new local summary or the receipt of a peer
summary starts a small time window, and all new summaries computed or received within this time window are
processed together by executing step 5 only once, at the end of the window.
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As implied by the description so far, DECIDE is applicable to SAS that present the following

characteristics:

1. The system goals and the component-level requirements can be analysed through the

probabilistic model checking of stochastic models of the component behaviour and the

environment. Recent research on self-adaptive systems [114] shows that this characteristic

is common to a broad enough range of service-based [35], robotic [96], cyber-physical [22],

IoT [137] and cloud computing [35] systems to make DECIDE widely applicable.

2. The average time interval between successive major changes within the entire system

is much larger than the time required to execute steps 1 to 6 of the DECIDE workflow

(e.g., at least two orders of magnitude larger, or many minutes versus a few seconds). A

key distinguishing feature of DECIDE is its use of a tolerance factor that allows a wide

range of SAS to be augmented with this characteristic. This tolerance factor quantifies

the level of environmental uncertainty considered in the local capability analysis from

step 2 of the DECIDE workflow. In particular, a large tolerance factor makes this analysis

very conservative, yielding local capability summaries with alternative contributions that

SAS components can easily achieve through local adaptations at almost all times. This can

greatly reduce the frequency of major changes, albeit at the cost of operating with highly

suboptimal contributions from the SAS components.

3. The communication between SAS components—using broadcasts, multicasts or at least

peer-to-peer messaging—is infrequent and modest in size (e.g., tens of bytes per hour) and

can cope with high latency, but needs to be reliable. Given the availability of middleware

that can provide reliable communication over unreliable channels [106], many SAS can be

engineered to exhibit this characteristic.

Limitations of the DECIDE approach. While the philosophy underpinning the DECIDE

approach (i.e., the workflow from Figure 2.17) is general, its instantiation from [34] has major

limitations:

1. The set of local capability summaries exchanged by DECIDE components represent alter-

native contributions that a component can make, and the partitioning of the system goals

needs to select one and only one of the summaries from this set. This significantly limits

the applicability of DECIDE, e.g., precluding the use of the approach in distributed SAS

applications comprising heterogeneous tasks or tasks whose execution can be split into

parts assigned to different components.

2. The combinations of system-level constraints and optimisation objective that can be handled

by DECIDE are limited to those that can be formalised as a multiple-choice knapsack
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problem [161]. While this is an effective mathematical programming technique, it can only

encode a small range of goals of real-world distributed SAS applications.

3. The proof-of-concept implementation of DECIDE from [34] is application specific and cannot

be used for any other distributed SAS than the simulated unmanned underwater vehicle

(UUV) team it was implemented for.

4. The evaluation of the DECIDE approach is also limited to the UUV domain for which an

implementation was available, and it was only done in simulation.

The contributions of these thesis address all of the above limitations of DECIDE in Chapters

3, 4 and 5.

2.6.2 Other Approaches

Claes at al. [51] proposed a self-assembly approach tailored towards swarm robotics applications.

The author introduces a simulation for a warehouse environment using a virtual environment

where there are a set of tasks that need to be distributed to teams of robots. The approach

addresses the task allocation problem using decentralized planning where each robot solves

a Multi-Agent Markov Decision Process problem by modeling other robots using a Statistical

approach based on Monte Carlo Tree Search (MCTS). Each robot maintains a fixed computation

budget to perform planning at run-time to adapt to unexpected changes in the environment.

Matena at al. [131] demonstrates a model problem comprising of a number of autonomous

robots embarking on an office cleaning mission. The model problem includes a test-bed to facilitate

experimentation of self-adaptation techniques. Both the robots and the model problem are

implemented using ROS (Robotics Operating System) which provides a standard set of libraries

and services used in robotics implementation. The provided test-bed permits experimenting

adaptation techniques by using ROS-based stage simulator or deployment on an actual Turtlebot

robots. The provided adaptation logic is specified using DEECo, which is a compnent model based

on concepts of ensemble-based component systems (EBCS). The adaptation logic supports the

decentralised cooperation of software components at runtime.

FlashMob [167] is a decentralised control solution that implements the self-assembly adaptive

property to guide nodes’ assembly and configuration in a network. The approach is based on

the three-layer model for autonomous systems and focuses on qualitative aspects such as fault-

tolerance. The self-assembly and configuration are guided by simple utility functions that encode

the non-functional preferences. The consensus among the nodes is achieved using a gossip

protocol. The nodes in such a network are unaware of the full solution space, so the protocol

facilitates self-assembly and configuration.

Brun et al. [27] present an architectural style for solving computationally intensive problems

across large networks in a distributed environment. The presented architecture ensures fault-

tolerance, scalability, and discreetness in large networks. This study’s unique feature is that
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it is the first method that combines architectures and self-assembly. The study declares that

the proposed method can solve all NP-complete problems by demonstrating its applicability to

problems [25] and [28]. However, they lack the demonstration of problems involving probabilistic

quantitative guarantees, and the method is unable to overcome uncertainties.

In [94], the authors present a case study defined using a framework for specifying autonomic

components and the cooperation strategies among these components. The framework supports

the rapid experimentation and reasoning about the different coordination strategies using a

discrete-event based simulation framework called IVIS. The use-case used for this proposed

method is from smart farming domain and based on actual scenario taken from AFarCloud project

[44]. The research focuses on how complex collaboration rules are quickly captured by autonomic

components (drones) and non-controllable environment agents (flocks of birds in their example).

Both discrete event simulation and real-time visualization of the use case are described. The

cooperation constructs are defined using an Internal Scala-based DSL and evaluation system for

dynamic groups at runtime.

A multi-agent approach is described in [59] for balancing performance and power in data

centres using specialized cloud environments for performance/power balancing. They use the

strategy of self-adaptive managers for sharing of information and synchronization. Unity, a decen-

tralised architecture for self-managing distributed computing systems enabling self-configuration

at initialisation and self-optimisation at runtime is introduced by [59], [170]. Every system com-

ponent in Unity consists of autonomic element that can control its own resources for meeting their

individual requirements as well as delivering services to other autonomic elements. Global view

of demand and availability of resources are maintained by resource arbiter and is responsible for

allocating the resources to autonomic elements after evaluation of service-level utility function.

In [112], [108] and [179], authors propose approaches to establish self-organisation in systems

consisting of distributed agents. The aim is to create coalitions between agents dynamically to

fulfil a system objective. In [112], the organisation’s performance is improved using the infor-

mation that is locally maintained in each agent. To improve performance, agents communicate

regularly in groups to decide actions that enhance the organisation’s performance. Kim et al. [108]

introduce a framework that varies the degrees of cooperation between agents. A robotic system

is implemented that includes robots that are organised in coalitions. Each robot communicates

with a subset of its peers to determine the degree of cooperation between the coalition members.

Robots address adaptation concerns such as failures or lack of resources and communication by

adjusting the level of autonomy and collaboration among the coalition members.

Decentralized planning is described in MAPmAKER [133], where multi-robot systems are

the primary target. MAPmAKER distributes the robots in different classes considering the local

mission of each robot. A variant of a three-valued LTL semantics planner is used to reason

under partial knowledge about mission satisfaction. However, the proposed approach is limited

to reason about the functionality aspects of the system and does not consider extra-functional
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concerns.

The work by Cheng et al. [50] proposes a hypothetical news service system called Znn.com.

The Znn.com system provides news content in variable forms (e.g. multimedia, text), depending

on the constraints such as response time and budget limit. These constraints influence the

provisioning and discharging of available servers and contribute towards altering the response

(fidelity) by changing the delivered content type (e.g. from multimedia to textual news) to serve the

end users with customised news content. The system implements a master/slave control approach

based on the Rainbow framework [79]. Since the news service components are distributed across

multiple servers, the system has to conform to the Rainbow framework by implementing a set of

probes and gauges to report system status to the centralised architecture evaluator. In turn, the

architecture evaluator analyses the received data to detect any anomalies in response time. If

a problem is detected, an adaptation manager intervenes to decide on the optimal strategy to

restore the response time to the required threshold. Finally, the decided strategy is executed by

the strategy executor utilising the distributed effectors.

Cheng et al argue that Rainbow framework is applicable to various domains because of the

analyse and plan parts of the control being centralised. To apply the framework to a target

system as in Znn.com system example, a developer has to customise the model manager to reflect

the architecture model of that system. Similar customisation is required in the architecture

evaluator and the strategy executor to project the business objectives and strategy effectors

on the target system. The Znn.com system example indicates that complying to master/slave

control approach (Rainbow framework), increases the reusability to a wide range of applications.

However, centralising some parts of the control activities may result in communication overheads.

Particularly, if the number of system components that implement probes and gauges increase.

Also if the centralised parts of control fail, the adaptation property becomes unattainable. Other

examples that illustrate the Master/Slave control approach can be found in [77, 172].
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3
MATHEMATICAL PROGRAMMING TECHNIQUES FOR GOAL

PARTITIONING IN SELF-ADAPTIVE SYSTEMS WITH

DECENTRALISED CONTROL

This chapter presents a repertoire of system-level goal partitioning techniques that enable the

applicability of SAS control decentralisation philosophy presented in Section 2.6.1 to a broad

range of distributed systems. This repertoire generalises the DECIDE solution proposed in [34],

and therefore it underpins a new SAS control decentralisation approach that we call nuDECIDE.

We start the chapter by introducing, in Section 3.1, the generalised format of the system

constraints and optimisation objective supported by nuDECIDE. We then present, in Section 3.2,

the use of exhaustive search to identify the optimal partition of the system goals among the

components of a distributed SAS. This baseline technique is not scalable, and therefore can only

be employed when the number of possible goal partitions is relatively small. Next, Sections 3.3

and 3.4 describe the use of linear programming and integer programming for the efficient

partition of the system goals, respectively, and we explain the prerequisites that the distributed

SAS requirements must satisfy for these techniques to be applicable. Finally, in Section 3.5 we

introduce the use of MDP policy synthesis as an additional, sophisticated technique that can

be used to achieve the goal partition for applications whose nondeterminism cannot be easily

expressed as an linear or integer programming problem (e.g., where task executions are not

guaranteed to succeed). We conclude the chapter with a brief summary that overviews the merits

and limitations of each of the proposed techniques in Section 3.6.
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3.1 nuDECIDE system requirements

nuDECIDE generalises the system-level constraints and optimisation objective of DECIDE

by relaxing the assumption that each of the system-level constraints (2.12) and optimisation

objective (2.13) depends on a single attribute attri,k of the i-th system component. Removing this

assumption greatly increases the types of requirements that our approach can handle, and the

goal partitioning problem to be solved takes the form detailed below.

Given a sequence of ki > 0 possible contributions

〈ci,1, ci,2, . . . , ci,ki 〉

of form (2.14) for each system component i = 1,2, . . . ,m, find the amounts xi,1, xi,2, . . . , xi,ki ≥ 0

of each of these ki contributions that component i should be assigned such that generalised

system-level constraints and a system-level optimisation objective of the form:

(3.1) f j
({

ci,1, ci,2, . . . , ci,ki

}m
i=1 ,

{
xi,1, xi,2, . . . , xi,ki

}m
i=1

)
./ j bound j,

where j = 1,2, . . . ,n, ./ j∈ {<,≤,=,≥,>}, and

(3.2) minimise/maximise g
({

ci,1, ci,2, . . . , ci,ki

}m
i=1 ,

{
xi,1, xi,2, . . . , xi,ki

}m
i=1

)
,

respectively, where f and g are functions that can take any form.

Note that this generalised formulation replaces:

• the DECIDE use of a set of component contributions, out of which the goal partitioning

selects one and only one contribution per component (see Section 2.6.1) with a sequence of

contributions, each of which can be selected in a certain “amount”;

• the operator OP from system-level requirements (2.12) and (2.13) with generic functions f

and g.

Both of these generalisations greatly expand the types of problems that nuDECIDE can handle

by comparison to DECIDE. In particular, the problem that can be solved by DECIDE is the very

special case of this general problem in which

∀i ∈ {1,2, . . . ,m}.
(∃ j ∈ {1,2, . . . ,ki}.xi, j = 1∧ (∀ j′{1,2, . . . ,ki}\ { j}.xi, j′ = 0

))
.

3.2 Goal partitioning using exhaustive search

3.2.1 Theoretical foundation

While exhaustive search does not come across as an attractive solution for the dynamic parti-

tioning of the system goals, the technique has been used successfully for the selection of new

configurations in self-adaptive systems using runtime quantitative verification [39]. In this sec-

tion, we extend the use of exhaustive search to the goal partitioning problem from Section 2.6.1.
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For the generalised goal partition problem from the previous section to be solvable by exhaustive

search, we make the additional assumption that each element xi j of the solution can only take a

finite number of values or, equivalently, that the set

{(x1,1, x1,2, . . . , x1,k1 , . . . , xm,1, xm,2, . . . , xm,km ) |
∀ j = 1,2, . . . ,n. f j

({
ci,1, ci,2, . . . , ci,ki

}m
i=1 ,

{
xi,1, xi,2, . . . , xi,ki

}m
i=1

)
./ j}

is finite and has a reasonably small number of elements.

When this is the case, we assume that the result of the goals allocation problem can be

represented as a matrix (X ) of size m×maxm
i=1 ki. The matrix describes the results of goal

partition problem by identifying the finite amounts xi,1, xi,2, . . . , xi,ki ≥ 0 of each of these ki

contributions for each system component i = 1,2, . . . ,m. In particular, the indexes [xi,k] of the

matrix refer to i-th component and the amounts of each of these ki contributions that component

i should be assigned such that system-level constraints and system-level optimisation objective

are satisfied. An element in the m×maxm
i=1 ki matrix X , is denoted by xi,k, where i and k vary

from 1 to m and ki, respectively. For each row i = 1,2, . . . ,m in the matrix if ki < maxm
i=1 ki,

padding with zero is used to substitute the missing contribution for the i-th component. Thus,

if the value assigned to the matrix element xi,k is 0, then the i-th component either does not to

perform any amount of the k-th contribution, or does not have the required capability for such

a contribution (e.g., if the contribution corresponds to a task for with the component lacks the

necessary actuator).

3.2.2 Example

Consider a distributed system comprising m mobile robots that are required to take periodic

measurements of some aspect of their environment (e.g., level of lighting), so that measurements

at N different locations are taken within t time units. Further assume that the robot travel time

between locations is negligible compared to the time required to perform the actual measurements,

that the mobile robots are provided with a reliable collision-avoidance mechanism, and that

robot i, 1≤ i ≤ m has ki ≥ 1 modes of operation. Each operation mode is associated with different

performance/energy use trade-offs, so that when robot i operates in mode 1≤ k ≤ ki, it requires tik

time units and consumes e ik energy to perform one measurement. As such, the local contribution

summary from robot i has the form

〈(ti,1, e i,1), (ti,2, e i,2), . . . , (ti,ki , e i,ki )〉

The goal partitioning problem is to allocate to robot i xi,1, xi,2, . . . , xi,ki measurements per t

time units and operating modes 1 to ki, such that the system accomplishes its mission:

1. The constraint set C comprises the following constraints:

C1 :
m∑

i=1

ki∑
k=1

xi,k = N,
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C2 : ∀ 1≤ i ≤ m .#
{
x ∈ {

xi,1, xi,2, . . . , xi,ki

} | x 6= 0
}= 1,

C3 : ∀ 1≤ i ≤ m .
ki∑

k=1
xi,k ti,k ≤ t.

where constraint C2 specifies that a single mode of operation is to be used for each robot

(i.e., only one of xi,1, xi,2, . . . , xi,ki can be non-zero).

2. The optimisation objective

O : miminise
m∑

i=1

ki∑
k=1

xi,ke i,k

subject to the constraints C1, C2 and C3 being satisfied.

To give a numerical example, consider that the system has m−= 3 robots with the following

modes of operation:

• Robot 1 has k1 = 2 modes of operation with (t11, e11)= (17,5) and (t12, e12)= (30,7).

• Robot 2 has only k2 = 1 mode of operation with (t21, e21)= (14,5).

• Robot 3 has only k3 = 1 mode of operation with (t31, e31)= (18,5).

Also, consider that the number of locations is N = 7 and that the measurements at these locations

need to be carried out within t = 30 time units.

In this simple example, the problem can be easily solved through exhaustively analysing all

possible measurement (i.e., goal) partitions, as summarised below.

nuDECIDE approach relies on formal methods that enable the analysis of the behaviour of

the robot and its environment. Namely the approach employs probabilistic model checking, which

are referred to in Chapter 4, to identify alternative contributions that are characterised by the

system constraints and objective. These contributions are perspective about what a robot can offer

towards the fulfilment of system goals, and what are the quality-of-service (QoS) characteristics

of these contributions. Given a system with the mission characteristics described earlier, the

m robot systems need to identify their possible contributions that are characterised by system

constraints and objective. We further assume that robot i identifies and shares its contribution

summary per its modes of operation 1 ≤ k ≤ ki. These contribution summaries have to satisfy

robots local constraints and identified using a local optimisation function. Depending on the

optimisation objective criteria (e.g, whether to maximise or minimise some optimisation criteria),

the function selects a summary of contribution per each operating modes of robot i.

Since the size of the variables and constraints of the introduced problem in this example is

relatively small, we may solve the problem using the brute-force search approach. The following
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allocation matrix [xi,k] illustrates the optimal assignment of measurements (tasks) to robots.

X =


4 0

2 0

1 0

 ,

where [xi,k] identifies the finite the amount of measurements xi,1, xi,2, . . . , xi,ki ≥ 0 of each of these

ki contributions for each system component i = 1,2, . . . ,m. For instance, robot 1 has to perform

sensor measurements at (N = 4) locations using its (k1 = 1) modes of operation. Moreover, the

former assignment matrix [xi,k] can be rewritten to illustrate the allocation of measurements but

in terms of the upper bound energy cost at which the i-th robot needs to perform its measurement

per its operation modes ki ≥ 1. In particular, the matrix x′i,k identifies the finite amount of energy

e i,1, e i,2, . . . , e i,ki ≥ 0 of each of these ki contributions for each system component i = 1,2, . . . ,m.

X ′ =


28 0

28 0

18 0


The matrix x′i,k defines the total energy that robot i can consume during the constrained mission

time (t=30 minutes) to execute its assigned task(s). Consider for example robot (i = 1), according

to the assignment matrix, robot (i = 1) has to fulfill its partition of system goals by executing the

sensor reading task at 4 locations. Consider for example robot (i = 1), the robot needs to perform

its measurements and consume energy less than 28 joules.

3.3 Goal partitioning using linear programming

3.3.1 Theoretical foundation

Linear programming (LP) is a mathematical technique dedicated for problems that can be

mathematically formulated using linear equations and inequalities to find optimal solutions. If a

problem can be formulated as a mathematical equations of a linear program, the method is used

to find the best solution to the problem. Linear programming problems include a set of constraints

that take the form of linear inequality and a linear objective function. The problem variables

are often termed decision variable as the software solver need to determine the set of quantities

that solve the problem. When the objective function which is typically encode some optimisation

metrics such as utility, time and energy, yields an optimal value, the values of decision variables

used to maximise/minimise these metrics are optimal and the optimisation problem is considered

to be solved.

The mathematical method can be utilised to find optimal solutions for class of problems

that deal with allocation of scarce resources to competing activities [173]. Such problems can be

expressed using set of linear decision variables and constraints that define the boundary on the

values of the variables. An optimal solution to a problem is obtained by a linear objective function
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that measures and rank the contribution of each variable to the desired outcome. Depending on

the desired solution whether to maximise a gain or minimise a cost, a linear objective function

yields the optimal (largest or smallest) set of values for the problem variables that meet the

problem constraints. Many real-world problems can be modeled and solved as a linear program

problem. The process of solving these problems require finding the adequate formalism for the

problem, which is a non trivial task [45]. Once an adequate formalism is arranged, a software

solver can be used to obtain the answer to the problem.

To exploit linear programming for the partitioning of the system goals within the nuDECIDE

approach, the constraints f j and optimisation objective g from (3.1) and (3.2), respectively, must

be of the appropriate form. Specifically, all the equations and inequalities used to formulate the

constraints f j and optimisation objective g should be of a linear form as follows.

(3.3) f j :
m∑

i=1

ki∑
k=1

xi,kF j(i,k, ci,k)≤ bound j
({〈c1,1, . . . , c1,k1 , . . . , cm,1, . . . , cm,km〉

}m
i=1

)
,

where:

• F j(i,k, ci,k) ∈R≥0 is a function that takes the k-th contribution (2.14) of component i and

returns a non-negative value based on the attribute values within this contribution;

• bound j
({〈c1,1, . . . , c1,k1 , . . . , cm,1, . . . , cm,km〉

}m
i=1

)
is a function that returns a non-negative

value based on the contribution summaries of all components.

(3.4) minimise/maximise g :
m∑

i=1

ki∑
k=1

ui,kxi,k

where ui,k ≥ 0 is a “utility” associated with component i and the k-th tuple from the contribution

summary of component i. These utilities are coming from the system-level requirements (i.e., the

system-level optimisation objective).

In general, throughout the context of our project, decision variables are used to quantify a

contribution associated with a system component. This interpretation of variables can be used to

formulate many types of allocation problems. For instance, variables can be defined to measure

the amount of resource to use in a service based system and cloud system. The problem model

presented in [178] can be extended to support self-adaptation with decentralised control in the

domain of service-based systems. Thus, the use of nuDECIDE platform is not limited to certain

domain and applications, but can be extend to support self-adaptation in areas that require

a decentralised control and can be modeled and analysed using probabilistic model checking.

Moreover, nuDECIDE platform can be applied to class of systems that exhibit system-level

requirements, which can be formulated as linear programming problem. For any problem formu-

lation, the most important initial step is to define the variables of the problem [80]. A defining of

variables play essential role in reducing the size of the problem and transforming a problem from

nonlinear to other linear variant [20]. In particular, throughout this thesis we consider linear
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programming problems in standard form, in which the variables are all non-negative. However,

there is a transformation technique [60] to cast a problem with unrestricted variables to an

equivalent standard form problem with non-negativity constraints. Such techniques are beyond

the scope of this thesis, as variables are utilised to indicate the amount of a resource consumed

or the level of a certain activity. The following section illustrates the process of formulating the

linear problem model for the plant inspection case study. The process description provides a more

concrete idea of classes of allocation problems that can be supported in nuDECIDE platform.

Many real-world problems that require optimization tasks can be formulated as a linear

programming problem. Given that the constraints and objectives of these problems can be

expressed in linear functions. This section describes the necessary steps to translate system-level

requirements of a candidate nuDECIDE application into mathematical equations that conform

to linear program model. The steps description overlooks the question of how LP problems are

solved, instead focuses on how problems are formulated to linear programs, while a computer

solver provides the solution to the formulated problem.

3.3.2 Example

In this section, we illustrate the application of the theoretical results from Section 3.3.1 to a

system comprising m = 3 mobile robots required to take regular measurements to monitor the

possible leakage of hazardous gases in an oil refinery. This section provides the description of

this system, and maps its associated goal partitioning problem to a linear programming problem.

Later in Chapter 5, we will present a complete implementation and evaluation of this case study,

using three mobile robots in a testbed that emulates the real system.

We assume that these measurements need to be taken along L1 > 0 metres of methane gas

pipelines, and L2 > 0 metres of propane gas pipelines, and that they need to be completed within

a duty rounds of Tround time units. Each robot i, 1≤ i ≤ m has mi ∈ {2, 4} sensors, i.e., (i) a pair

of sensors (m1 = 2) specialised to execute an inspection task of type = taskT ypm; or (ii) a pair of

sensors (m2 = 2) specialised to execute an inspection task of type = taskT ypp; or (iii) a pair of

each type of sensors (when m3 = 4). The first type of tasks (taskT ypm) requires the robot to use

its sensors to measure the presence of methane gas, while the second type (taskT ypp) entails

that the robot checks for the presence of propane gas leak.

A measurement taken by a sensor is associated with different measurement time/energy use

trade-offs, so that when robot i uses sensor 1 ≤ j ≤ mi, it requires t j time units and consumes

e j energy to perform one measurement. Figure 3.1 illustrates a DTMC model that describe the

behaviour of robot i. In the initial state (s0) of this model, the robot takes one reading of the

environment characteristic it is measuring. This reading is using sensor j1 with probability pi

(modelled by a transition to state s1) or sensor j2 with probability 1− pi (modelled by a transition

to state s2).

A sensor reading taken by sensor j1 is of insufficient accuracy with probability pretry
1 (mod-
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Figure 3.1: DTMC model of the i-th robot

elled by a transition to state s1) or successful with probability 1− pretry
1 (modelled by a transition

to state s3). Similarly, a sensor reading taken by sensor j2 is of insufficient accuracy with probabil-

ity pretry
2 (modelled by a transition to state s2) or successful with probability 1− pretry

2 (modelled

by a transition to state s3). In state (s3), the robot travels one meter of the assigned segment of

L1 or L2, which is modelled by a transition to the final state s4. The DTMC is augmented with

two reward structures, an “energy use” reward structure, and a “time” reward structure. The

“energy use” and “time” reward structures determines the energy cost associated with using any

of the robot’s sensors in taking one reading of the environment characteristic and traveling one

meter of the assigned segment.

We further assume that robot i moves between the task locations with speed spi ∈ (0, spmax
i ]

and the travel time between locations is captured by the reward structures of the DTMC model

shown in Figure 3.1, which illustrates the abstract behavior of the i-th robot in carrying out an

inspection task using its j-th sensor. The j-th sensor of robot i operates with probability pretry
j

that one of its readings is not of adequate accuracy for the mission purpose. The probability

captures the dynamics of the environment, in which a sensor may fail or face degradation in

its performance. Also, the robot speed (spi) may affect the accuracy of its sensor readings. A

successful completion of the mission requires the collaboration among the team of robot systems to

meet the system-level requirements from Table 3.1. Along with these system-level requirements,

each robot i must satisfy its local requirements from Table 3.2.

The DTMC model shown in Figure 3.1 is used by robot i to identify the cost associated with

contributing to system-level requirements. In particular, robot i computes the energy and time

associated with using its sensor to take a one measurement, and moving a certain distance. Also,
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Table 3.1: System-level requirements of multi-robots surveillance mission

Requirement Description Type

R1
The m- robots should take 1 measurement per meter of the
assigned segment of L1 and/or L2

Constraint

R2
The m-robots must complete the assigned tasks within Tround
minutes of the time available to complete a duty round

Constraint

R3

Subject to satisfying R1 and R2 the multi-robot system should maximise the utility
of the mission, where the utility of covering one metre of methane pipeline is u1 > 0
and the utility of covering one metre of propane pipeline is u2 > 0.
(We assume that any area not covered by the robots is covered by a human operator,
and the aim of the optimisation objective is to minimise this remaining work.)

Objective

Table 3.2: Component-level requirements of multi-robots surveillance mission

Requirement Description Type

R4
The energy required by robot to survey the
assigned area should not exceed Emax

i Joules per
duty round of mission

Constraint

R5
The time required by robot to complete the
assigned area should not exceed tmax

i minutes per
duty round of mission

Constraint

R6

If multiple configurations satisfy R4 and R5,
then the i-th robot should use the configuration that
minimises the local cost, given by
the equation: w1 × e i +w2 × ti

Objective

the robot identifies the amount of energy (E i) that can be used during a duty round to achieve

system requirements. As such, the local contribution summary from robot i has the form

〈(ti,1, e i,1), (ti,2, e i,2), . . . , (ti,ki , e i,ki ), (E i)〉

Identifying the contribution summary entails that each robot uses probabilistic model checking

to define the value for the attributes shown in Table 3.3. The table illustrates the PCTL formulas

used to establish the values for the attributes used to form the contribution of robot i. To partition

Table 3.3: PCTL formulas for establishing contribution summary

Attribute Description PCTL formula

e i

A cost reward for the total energy required by roboti
to travel one meter of mission pipeline and provide
a sensor reading

R"Energy"=? [ F "done" ]

ti
A cost reward for the total time required by roboti
to survey one meter of mission pipeline

R"Time"=? [ F "done" ]

system goals, linear programming method is used to model and solve the linear optimisation

problem. After the partition of system goals, the i-th robot deals with varying probability of its

sensor accuracy pretry
il , by modifying its configurable speed of motion spi ∈ (0, spmax

i ], adjusting

its sensor configuration pi,1− pi. For example, a robot can alter speed to compensate for the

degradation in the frequency of accurate sensor readings. Table 3.4 summarises parameters

included in DTMC model that describes the behaviour of a robot. Some of the parameters are
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configurable (i.e, those that the robot can change), while the reset of parameters are observable

(i.e, a robot can not alter the value, but it can only observe the change in the value of the

parameter).

Table 3.4: Parameters of roboti abstract DTMC model

Parameter Description Type
speed A variable for the maximum speed a roboti can travel Configurable

distance
A constant defined as a meter of the pipeline length
and is used to calculate the time of travel(ttravel)

Constant

pretry A probability of failure in roboti sensor Observable

We assume that the m = 3 robots vary in terms of capabilities in performing each type of

inspection task as follows:

1. Robot1 is equipped with (m1 = 2) sensors and only capable of executing inspection tasks of

type taskT ypm

2. Robot2 is deployed with (m2 = 2) sensors and only capable of executing inspection tasks of

type taskT ypp

3. Robot3 is equipped with (m3 = 4) sensors and capable of executing inspection tasks of type

taskT ypm and taskT ypp

Table 3.5: Capability summaries exchanged by robots

Robot Capability summary
Robot1 〈(e0, t0), (nil,nil), (E0)〉
Robot2 〈(nil,nil), (e1, t1), (E1)〉
Robot3 〈(e2, t2), (e3, t3), (E2)〉

Table 3.5 shows the capability summaries exchanged by the three robots. As shown in the table,

each robot reports its potential contribution to fulfilling system requirements based on its sensors’

ability to carry out different types of tasks. The goal partitioning problem is to allocate to robot

i segments of length xi,1 ≤ L1 and xi,2 ≤ L2 for inspection associated with the two types of gas

at the oil refinery, such that the system accomplishes its mission. Note that in this example of

a distributed SAS, we have xi,3 = 0, since the last component of the capability summary is only

used to provide information about the energy that each robot has.

The constraints (3.3) and optimisation objective (3.4) for this case study are as follows:

1. C is a set of l i = 8 constraints that can be encoded in a linear program model. The model

includes the decision variables shown in Table 3.6, which illustrates the problem variables

that are used to formulate the constraints and objective function of the linear optimisation

problem. In general, the problem described in previous section for partitioning system
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requirements can be modeled and solved using LP with 8 constraints of the form from (3.3),

with the functions F j, ./ j and bound j defined as follows:

F1(i,k, ci,k)=
{

1, if k = 1∧ ci,k 6= (nil,nil)

0, otherwise
, and bound1(·)= L1.

F2(i,k, ci,k)=
{

1, if k = 2∧ ci,k 6= (nil,nil)

0, otherwise
, and bound2(·)= L2.

For j ∈ {3,4,5}, we have:

F j(i,k, ci,k)=
{

e, if j = i+2∧k ∈ {1,2}∧ ci,k = (e, t) 6= (nil,nil)

0, otherwise
,

and, if c j−2,3 = (E), then

bound j
({〈c1,1, . . . , c1,k1 , . . . , cm,1, . . . , cm,km〉

}m
i=1

)= E.

Finally, j ∈ {6,7,8}, we have:

F j(i,k, ci,k)=
{

t, if j = i+5∧k ∈ {1,2}∧ ci,k = (e, t) 6= (nil,nil)

0, otherwise
, and bound j(·)= TRound.

These instantiations of the general format of a constraint (3.1) map to the following

application-specific constraints:

C1 : x1,1 + x3,1 ≤ L1,

i.e., robots 1 and 3 (which have methane sensors) need to jointly cover a distance x1,1 + x3,1

not exceeding L1. Likewise, for the second constraint we have:

C2 : x2,2 + x3,2 ≤ L2,

which specifies that robots 2 and 3 need to jointly cover a distance x2,2 + x3,2 not exceeding

L2. The next three constraints specify that none of the robots should be allocating work

that requires more energy to carry out than the robots have available:

C3 : e1,1x1,1 ≤ E1,

C4 : e2,2x2,2 ≤ E2,

C5 : e3,1x3,1 + e3,2x3,2 ≤ E3,

Finally, the last three constraints specify that the robots should cover the assigned distance

and not exceeding time (Tround) allocated for a duty round:

C6 : t1,1x1,1 ≤ Tround,

C7 : t2,2x2,2 ≤ Tround,

C8 : t3,1x3,1 + t3,2x3,2 ≤ Tround,

2. The optimisation objective (i.e., maximising the distance covered by the three robots taken
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together) using LP objective function of the form from (3.4), with the optimisation objective

g defined as follows:

maximise g :
3∑

i=1

2∑
k=1

ukxi,k

where u1 and u2 are the utilities associated with covering one metre of methane and

propane pipeline, respectively (see requirement R3).

Table 3.6 shows the decision variables xi,k that are non-zero according to the constraints above.

Table 3.6: Decision variables of linear optimisation problem

Variable (xi,k) Description

x1,1

A variable encoding the total distance units assigned
to robot1 to execute inspection task
of type taskT ypm (k = 1)

x2,2

A variable encoding the total distance units assigned
to robot2 to execute inspection task
of type taskT ypp (k = 2)

x3,1

A variable encoding the total distance units assigned
to robot3 to execute inspection task
of type taskT ypm (k = 1)

x3,2

A variable encoding the total distance units assigned
to robot3 to execute inspection task
of type taskT ypp (k = 2)

Finally, Table 3.7 describes the problem parameters and constraints introduced as part of

formulating the partition problem using linear programming method. In this table, L1, L2, Tround

are upper bound thresholds that are known by all robots prior the deployment to the mission.

The actual implementation and an extensive evaluation of the case study defined in this

section are presented later in the thesis, in Chapter 5.

3.4 Goal partitioning using integer programming

3.4.1 Theoretical foundation

Integer programming (IP) is a mathematical technique dedicated for problems that include

discrete decision variables that are used to formulate non-linear equations and inequalities. If a

problem can be formulated as a mathematical equations of an integer program, the method is

used to find the best solution to the problem. IP problems include a set of constraints that may

take the form of non-linear inequality and objective function. This section illustrate the use of IP

method to partition the goals of a system comprising distributed m ≥ 2 components (e.g., teams

of mobile robots, sensors in IoT system, etc.). Unlike LP method, IP method include discrete

decision variables, while the variables in a Linear programming model are continuous.

For instance, in the scope of our work, the decision variables of an integer program problem

model have to be discrete to represent actions such as to which robot a task should be assigned and
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Table 3.7: Description of LP problem variables and constraints

Variable\
Constraint Description Unit

x1,1
A variable for the total distance assigned to robot1 from the
pipeline perimeter that is used to extract methane (L1)

metre

x2,2
A variable for the total distance assigned to robot2 from the
pipeline perimeter that is used to extract propane (L2)

metre

x3,1
A variable for the total distance assigned to robot3 from the
pipeline perimeter that is used to extract methane gas (L1)

metre

x3,2
A variable for the total distance assigned to robot3 from the
pipeline perimeter that is used to extract propane gas (L2)

metre

L1
An upper bound for the total distance of mission methane
pipeline

metre

L2
An upper bound for the total distance of mission propane
pipeline

metre

e1,1
Energy cost incurred by robot1 to travel and provide a sensor
reading for 1 metre of methane pipeline

Joules/metre

e2,2
Energy cost incurred by robot2 to travel and provide a sensor
reading for 1 metre of propane pipeline

Joules/metre

e3,1
Energy cost incurred by robot3 to travel and provide a sensor
reading for 1 metre of methane pipeline

Joules/metre

e3,2
Energy cost incurred by robot3 to travel and provide a sensor
reading for 1 metre of propane pipeline

Joules/metre

E1
An upper bound for the total amount of energy available to
robot1 that can be utilized in a duty round

Joules/Tround

E2
An upper bound for the total amount of energy available to
robot2 that can be utilized in a duty round

Joules/Tround

E3
An upper bound for the total amount of energy available to
robot3 that can be utilized in a duty round

Joules/Tround

t1,1
Time required by robot1 to survey distance unit of methane
pipeline

seconds/metre

t2,2
Amount of time required by robot2 to survey distance unit of
propane pipeline

seconds/metre

t3,1
Amount of time required by robot3 to survey distance unit of
methane pipeline

seconds/metre

t3,2
Amount of time required by robot3 to survey distance unit of
propane pipeline

seconds/metre

TRound
An upper bound for the total amount of time available to
robots that can be utilized in a duty round

seconds

u1
A utility that measures preference of monitoring methane
pipeline

NP

u2
A utility that measures preference of monitoring propane
pipeline

NP
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how many tasks should be assigned to each robot. Such problem model typically include binary

variables that maps the assignment of tasks to robots. In particular, a binary decision variable

that may takes the values 0 or 1, is used to represent the assignment of a given task to a robot.

Also, the integer program model may include integer variables that represent the quantities of the

assigned tasks to each robot. Whereas decision variables of a linear programming problem have

to be continuous to capture decisions such as determining the length of distance assigned to each

robot [56]. In the scope of our work, we consider an IP problem that includes variables that are

restricted to be an integer. This problem typically is referred to as a linear integer-programming

problem, which can be used to formulate and solve many real-world problems [24]. As with solving

linear program problems, the process for solving integer program problems require finding the

adequate formalism for the problem. Once an adequate formalism is arranged, a software solver

can be used to obtain the answer to the problem.

To use integer programming method to partition system goals within the nuDECIDE ap-

proach, the constraints f j and optimisation objective g from (3.1) and (3.2), respectively, must

be of the appropriate form. Specifically, all the equations and inequalities used to formulate the

constraints f j and optimisation objective g should be of an integer form as follows.

(3.5) f j :
m∑

i=1

ki∑
k=1

yi,kF j(i,k, ci,k)≤ bound j
({〈c1,1, . . . , c1,k1 , . . . , cm,1, . . . , cm,km〉

}m
i=1

)
,

where:

• yi,k ∈Z≥0 is a discrete variable used to quantify the decision of a problem;

• F j(i,k, ci,k) ∈R≥0 is a function that takes the k-th contribution (2.14) of component i and

returns a non-negative value based on the attribute values within this contribution;

• bound j
({〈c1,1, . . . , c1,k1 , . . . , cm,1, . . . , cm,km〉

}m
i=1

)
is a function that returns a non-negative

value based on the contribution summaries of all components.

(3.6) minimise/maximise g :
m∑

i=1

ki∑
k=1

ci,k yi,k

where ci,k ≥ 0 is a “cost” associated with component i and the k-th tuple from the contribution

summary of component i. These costs are coming from the system-level requirements (i.e., the

system-level optimisation objective).

The purpose of this section is to present a class of goal partitioning problems that can be

represented and solved using integer programming formulations. In particular, we present a

candidate assignment problem and illustrate how to formulate a goal partition problem that cor-

responds to this class of integer program problems. Typically, an assignment problem is described

as combinatorial optimization problem [187] and the problem comprises several components that

need to partition several tasks. An assignee is a productive unit that can be assigned a task

or more for execution. The goal of the assignment problem is to find the optimal partition that
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maximises or minimise a common objective. Typically in such problems, the components vary

in terms of the qualitative metrics such as energy, time and utility associated with executing a

task. Also, the assignment of a task in such problems is restricted to at most one assignee. The

objective function in an assignment problem model encodes optimization of metrics like time or

energy consumed, which are factored in as costs associated with the synthesis of a partition plan.

Moreover, the problem model includes a set of constraints that place constraints on the

resources (e.g, energy, time, etc.) that an assignee can consume to perform task(s). In general, as-

signment problems are categorised into balanced and unbalanced problems [150]. An assignment

problem is described as balanced when the number of available tasks is equal to the number

of components and the assignment is carried out by assigning at most one assignee to each

task. Also, each task can only be assigned to at most one assignee to be executed. for instance, a

balanced assignment problem may comprise n components and n tasks. A feasible partition for

such problem can be represented as a bipartite graph that includes n vertices, which link at most

one component to one task and vice-versa. Whereas in an unbalanced assignment problem, a

component may perform any number of tasks as the number of tasks is not equal to the number

of components. Similar to a balanced problem, a task in unbalanced can only be assigned to at

most one component.

There are various polynomial-time algorithms that are specialised to solve some categories

of the assignment problems and obtain optimal partition that satisfy problem constrains [122,

139]. The simplex algorithm [109], which is a popular mathematical optimization technique

for linear programming problems, can also be used to solve this assignment problems under

certain conditions. These conditions require that the assignment problems can be modeled as a

transportation problem, which in turn can be modeled and solved as a special case of a linear

program. Solving an assignment problem typically entails checking all the possible combination of

assignments and verify if a given candidate solution satisfy system constraints to be considered as

a feasible solution. An objective function is used to rank all the feasible solutions and determine

an optimal partition that maximise/minimise some criteria. In general, an integer program

problem is considered to be NP-complete, in which tackling problems comprising relatively large

number of variables and constrains using brute force technique is unfeasible.

Thus, the raise in the number of decision variables and constraints of an assignment problem

increases the number of possible assignments that need to considered. Exploring all combination

of assignments at run-time using brute-force technique is inefficient as the calculation may lead

to computation overhead and delays in the partition of system goals. The situation exacerbates if

the assignment problem includes a set of constraints that need to be satisfied to consider if each

assignment is a feasible solution or not. To overcome this problem nuDECIDE employs computa-

tionally efficient mathematical techniques such as integer and linear program to formulate and

solve partition problems. These techniques are applied in a variety of real-world problems such

capital-budgeting [24], production line scheduling [147, 162], logistics and transportation prob-
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lems [189] to solve NP-hard problems and obtain optimal or near-optimal solutions in polynomial

time [125].

We demonstrate in the following Section 3.4.2, an example comprising an unbalanced as-

signment problem, which illustrates how nuDECIDE can support the use of integer program

method to partition system requirements. The example demonstrates the characteristics of

system requirements that can be formulated as an IP problem.

3.4.2 Example

In this section, we illustrate the application of the theoretical results from Section 3.4.1 to a

system comprising m = 3 robots that are required to collect waste in a public park environment.

This section provides the description of this system, and maps its associated goal partitioning

problem to an integer programming problem Later in Chapter 5, we will present a complete

implementation and evaluation of this case study, using three simulation based robots.

The park contains n ≥ 1 physically distributed waste collections tasks and the m-robot sys-

tem is equipped with the necessary tools to execute the n-th task. Each robot i, 1 ≤ i ≤ m has

mi = 8 modes of operation, which allows to associate a task execution with different time/en-

ergy use trade-offs. Each operation mode k, 1 ≤ k ≤ mi of robot i requires ti,k time units and

consumes energy e i,k to perform a task. The n-th task contains three waste collection sub-tasks

[subT1n, subT2n, subT3n]. The first sub-task (subT1n) is mandatory to execute and requires the

robot to collect general waste. Whereas the second and third sub-tasks (subT2n & subT3n) are

optional to perform and entails that the robot collects full and non-full bins of recyclable waste,

respectively.

Figure 3.2 illustrates a CTMC model that describes the behaviour of robot i in carrying out

the n-th task. In the initial state (s0) of this model, the robot reaches the location of the n-th task

with rate λmove (modelled by a transition to state (s1)). In state (s1), the robot performs sub-task

(subT1n) with rate λsubT1n (modelled by a transition to state (s2)). In state (s2), the robot may

encounter sub-task (subT2n) with probability p f ull (modelled by a transition to state (s3)) or

sub-task (subT3n) with probability 1 - p f ull (modelled by a transition to state (s4)).

In state (s3), the robot may choose to perform sub-task subT2n (i.e., collect full bin of recyclable

waste) with probability p1i (modelled by a transition to state s5), or otherwise avoid executing

the sub-task with probability 1− p1i (modelled by a transition to state (s7). Similarly, when the

robot encounters sub-task subT3n, it can determine whether to collect non-full bin of recyclable

waste with probability p2i (modelled by a transition to state (s6)), or otherwise not collecting the

waste with probability 1− p2i (modelled by a transition to state (s7). The CTMC is augmented

with two reward structures, an “energy use” reward structure, and a “time” reward structure.

In state s0 of this model, the reward structures are associated with the state to find the energy

and time consumed by the robot to visits the location of the n-th task. Also, the “energy use” and

“time” reward structures are associated with states s1, s5 and s6 to determines the energy and
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Figure 3.2: A CTMC model describing the behaviour of the i-th robot. Typically transitions in
a CTMC model are associated with rates. However in states s2, s3, and s4 of this model, rates
are substituted with probability distributions to capture the branching of the events that a robot
may encounter (as in state s2 a robot may encounter a full or non-full bins (i.e., modelled by
the transitions to state s3 and s4, respectively) and the decisions that the robot may make (as
in states s3 and s4 a robot may choose to collect a full and non-full bins). Though in the actual
CTMC model probabilities p f ull , pi1 and pi2 are multiplied by a constant rate λc, whose value is
large enough to avoid affecting time-related properties.

time consumed by the robot to execute sub-tasks subT1n, subT2n and subT3n.

We assume that the robot can configure parameters p1i and p2i, which define the transition

probabilities in states s3 and s4, respectively. We further assume that robot i moves between the

n-task locations with a configurable speed spi ∈ (0, spmax
i ]. The robot speed has an affects on the

rate, in which the robot reaches the location of a task. In state (s2), parameter p f ull is considered

an environment parameter, which determines the probability in which the robot may encounter a

full or non-full recyclable waste bins (i.e., the likelihood in which the robot may be able to execute

sub-tasks subT2n and subT3n, respectively). A successful completion of the mission requires the

collaboration among the team of robots to meet the system-level requirements from Table 3.9.

Along with these system-level requirements,each robot i must satisfy its local requirements from

Table 3.8.

The CTMC model shown in Figure 3.2 is used by robot i to identify alternative contributions

that are characterised by the system constraints and objective shown in Table 3.9. In particular,

robot i defines and shares its contribution summary per its modes of operation 1≤ k ≤ mi, which

takes the form

〈(ti,1, e i,1), (ti,2, e i,2), . . . , (ti,ki , e i,ki ), (E i)〉

These contribution summaries have to satisfy robot’s local constraints and identified using a

local optimisation function shown in Table 3.8. The optimisation function selects a contribution

75



CHAPTER 3. MATHEMATICAL PROGRAMMING TECHNIQUES FOR GOAL PARTITIONING
IN SELF-ADAPTIVE SYSTEMS WITH DECENTRALISED CONTROL

Table 3.8: Component-level requirements of multi-robot system deployed in a waste collection
mission

Requirement Description

C1i : ∀1≤ i ≤ m .bi ≥ 1
4 Bi

The robot should ensure that the energy left in its battery (bi) is greater
than or equal a quarter of its fully charged battery (Bi), so that to ensure
a successful return of the robot to its charging dock

O1i : ∀ 1≤ k ≤ mi ,
maximise

∑mi
k=1 w1 p1,ki +w2 p2,ki −w3eki −w4tki

Subject to the constraints C1i being satisfied by multiple configurations,
the i-th robot should use one of these configurations that maximises the
utility function. where eki and tki are the total consumed energy and time
associated with visiting and executing tasks using the k-th operating mode
of robot i. w1, . . . , w4 are weight constants to choose per each operation
mode k, an optimal configuration between several alternatives

Table 3.9: System-level requirements of multi-robot system deployed in a waste collection mission

Requirement Description

C2 : ∀ 1≤ i ≤ m ,
∑mi

k=1 yi,ki e i,ki ≤ E i

Each robot i must use energy less than or equal a threshold
(E i), to execute its tasks per its operating modes yi,ki e i,ki +
yi,ki+1e i,ki+1 +·· ·+ xi,mi e i,mi

C3 : ∀ 1≤ i ≤ m ,
∑mi

k=1 yi,ki ti,ki ≤ Tround
The m robots should execute their assigned tasks within the
time available to complete a duty round Tround

O2 : miminise
∑m

i=1
∑mi

k=1 yi,ki e i,ki

Subject to the constraints C2i and C3i being satisfied by mul-
tiple partitions, the m-robot system should use one of these
possible partitions that minimises the energy consumption
associated with carrying out the tasks by the robots

per each operating mode of robot i. Those contribution summaries capture the timeliness and

energy characteristics associated with executing a task. Table 3.10 shows the characteristics of

the attributes in a contribution summary of robot i along with domain value of these attributes.

The task partitioning problem is to allocate the n ≥ 1 tasks to yi,ki , yi+1,k+1, . . . , ym,mi

robots 1 to m, per operating modes 1 to ki, such that the system accomplishes its mission. Note

that in this example of a distributed SAS, we have yi, j i+1 = 0, since the last component of the

capability summary is only used to provide information about the energy that each robot has.

The constraints 3.5 and optimisation objective 3.6 for this case study are as follows:

1. C is a set of l i = 2 constraints that can be encoded in a integer program model. Table 3.10

illustrates the form of the local contribution summary shared by robot i. As shown in the

table, each robot has mi = 8 operation modes. These operation modes are used to formulate

the decision variables which are used to formulate the constraints and objective function

of the integer program problem. In general, the problem described in previous section for

partitioning system requirements can be modeled and solved using IP with 2 constraints of

the form from (3.5), with the functions F j, ./ j and bound j defined as follows:

For j ∈ {1,2,3}, we have:

F j(i,k, ci,k)=
{

e, if j = i∧1≤ k ≤ 8∧ ci,k = (e, t) 6= (nil,nil)

0, otherwise
,
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and, if c j,9 = (E), then

bound j
({〈c1,1, . . . , c1,k1 , . . . , cm,1, . . . , cm,km〉

}m
i=1

)= E.

Finally, j ∈ {4,5,6}, we have:

F j(i,k, ci,k)=
{

t, if j = i+3∧1≤ k ≤ 8∧ ci,k = (e, t) 6= (nil,nil)

0, otherwise
, and bound j(·)= TRound.

These instantiations of the general format of a constraint 3.5 map to the following application-

specific constraints:

C2 : ∀ 1≤ i ≤ m ,
mi∑
k=1

yi,ki e i,ki ≤ E i

This constraint specifies that the m robots should perform their assigned tasks per operating

modes yi,ke i,k + yi,k+1e i,k+1 +·· ·+ yi,mi e i,mi should be less than or equal an upper bound

(E i). Finally, the last constraint specifies that the robots should complete their assigned

tasks not exceeding time (Tround) allocated for a duty round:

C3 : ∀ 1≤ i ≤ m ,
mi∑
k=1

yi,ki ti,ki ≤ Tround

2. The optimisation objective (i.e., minimising the energy consumed by the m robots) using IP

objective function of the form 3.6, with the optimisation objective g defined as follows:

O : minimise g :
m∑

i=1

mi∑
k=1

yi,ki e i,ki

Finally, the actual implementation and an extensive evaluation of the case study defined in this

section are presented later in the thesis, in Chapter 5.

Table 3.10: Capability summaries exchanged by the m-robot system

Roboti Capability summary
Robot1 〈(e1,1, t1,1), (e1,2, t1,2), . . . , (e1,8, t1,8), (E1)〉
Robot2 〈(e2,1, t2,1), (e2,2, t2,2), . . . , (e2,8, t2,8), (E2)〉
Robot3 〈(e3,1, t3,1), (e3,2, t3,2), . . . , (e3,8, t3,8), (E3)〉

Execution of Local Control

After a successful allocation of mission tasks using the previously described method, the method

determines the contribution of each component of the system to achieve system goals. In particu-

lar, the execution of the method produces a contribution level agreement (CLA), which defines

the tasks that has been assigned to each robot along with the timeliness and energy efficiency

characteristics that each robot must adhere to when performing its tasks. The local control in-

stance running on each robot updates the system goals based on the contribution level agreement
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that shows the contribution of each of the m system components to satisfy the system constraints

and objectives. Throughout the mission, the m-robot system should satisfy mission constraints

and objectives at all times. In such a dynamic environment, each robot i should adapt to changes

in the probability of encountering more full recyclable bins (p f ull), by continually adjusting:

1. The robot speed, which can be configured to take any of the values spi ∈ (0, spmax
i ].

2. The probability (p1i) of executing sub-task subT2.

3. The probability (p2i) of performing sub-task subT3.

3.5 Goal partitioning using MDP policy synthesis

3.5.1 Theoretical foundation

Many of today’s systems include distributed components that cooperate to achieve system goals

and handle changes that occur in environments that are characterised by high levels of uncer-

tainty. For instance, robots may encounter changes, such as the emergence of obstacles, a sudden

decrease in the amount of energy available to complete tasks, or the failure of one of the robots

that render it unable to perform any tasks. Therefore, partitioning goals among components in

such systems requires the synthesis of an adaptation plan that takes into account the uncertainty

(e.g., about the outcome of the execution of tasks, timeliness, etc). For instance, a robot might be

equipped with a wheelbase that would not enable it to reach the location of task execution when

weather conditions change. Overcoming such problems requires employing models capable of

representing the problem of partitioning system goals and account for the possibility that system

components may fail to satisfy their contribution to completing system goals. An additional

challenge in this setting is providing assurances about the partition of goals, evidencing that

components are indeed capable of satisfying system goals despite the inherent uncertainty that

pervades the environment.

Given the aforementioned challenges, a suitable approach to partition system goals has to:

(i) include a modelling formalism able to represent the allocation of system goals, (ii) compare and

evaluate, based on some criteria (e.g., energy consumption, utility), the possible combinations

of system goal partitions and select one that optimises some objective criteria, (iii) consider the

(partially probabilistic) component behaviour required to satisfy their contribution to system goals,

and (iv) provide formal guarantees that the allocation meets its functional and non-functional

(e.g., timeliness, energy efficiency) constraints and objectives.

To satisfy these requirements, the goal partitioning approach proposed in this section employs

MDP policy synthesis to allocate system goals to components. This is feasible when an MDP

exists such that:
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1. the alternative values for the contribution amounts {xi,1, xi,2, . . . , xi,ki }
m
i=1 from the con-

straints (3.1) and optimisation objective (3.2) can be encoded as the parameters of an

MDP;

2. the constraints (3.1) can be specified as PCTL properties P./ jbound j [·] or R./ jbound j [·] over

the MDP;

3. the optimisation objective (3.2) requires the maximisation or minimisation of a PCTL-

encoded quantity P=?[·] or R=?[·] over the MDP.

If these conditions are met, Figure 3.3 illustrates the steps involved in synthesizing the policy

for allocating system goals, which aims to partition n tasks by assigning each task to one of

the m system components, so that system functional and non-functional goals are satisfied. In

particular, the use of the MDP policy synthesis approach entails:

(i) Producing an MDP model that encodes the possible assignments of the n tasks to the∑m
i=1 ki component contributions/modes. The alternative assignments are captured as a

nondeterministic choice that leaves the task-contribution matching underspecified, and

costs of assignments (e.g., time, energy consumption) are encoded as reward structures

populated with data from component contributions.

(ii) Producing a probabilistic temporal logic (typically a numerical multi-objective query in

PCTL) that captures the set of quantitative constraints that need to be satisfied to consider

a feasible allocation of system goals, along with an optimisation objective that maximises a

reward (e.g., or minimises cost) criteria.

(iii) Synthesising a goal partition policy using probabilistic model checking [118]. This step

takes an input the MDP model and the probabilistic temporal logic specifications generated

in the previous steps. The aim is to identify a policy, among all existing policies of the MDP,

that satisfies all the quantitative constraints and optimises a quantitative objective such

as utility, time, or energy consumed.

(iv) Translating the generated goal partition policy generated by the model checker into a

plan that can be executed by the system. The policy is encoded as a DTMC that lists

sequentially each task and the component/mode assigned to it. This translation process

entails extracting the sequence of task/component-mode pairs that each component has

to execute to contribute to satisfy system goals. It is worth noting that in some cases, the

model checker will produce a probabilistic choice for the allocation of some tasks. In such

cases, the translation process will involve an additional step, which is described later in

Section 3.5.1.3.

In the following sections, we describe in detail the different steps listed above.
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Figure 3.3: Synthesise Goal Partition Strategy

3.5.1.1 Goal Partition MDP Model Generation

To synthesise a goal partition policy, we define a high-level model of Markov decision processes

that will be employed by our approach. This SMDP model is conveniently defined to closely

resemble the high-level modelling constructs that are typically employed to describe MDP models

in widespread probabilistic model checkers like PRISM [119] and Storm [65].

Definition 3.1. A Symbolic Markov Decision Process (SMDP) is a tuple M = 〈V ,−→v0,Σ,δ, ι〉 where

V = 〈v1, . . . ,vn〉 is a tuple of variables, −→v0 ∈DV gives the initialisation conditions on the variables,

Σ is a finite, non-empty set of actions, and δ is a finite set of probabilistic transitions 〈φ,σ,PU〉
where φ⊆DV is a predicate on V which guards the transition, σ ∈Σ is the transition action, and

PU is a discrete probability distribution function over the set of update functions U, which are

defined as a set of assignments of the form u : DV →DV . Finally, ι : ID×DV ×Σ→R≥0 is a reward

structure that can be used to model different rewards or costs identified by id ∈ ID, in which

transition actions in Σ fired from states that satisfy a predicate built on V accrue a non-negative

reward/cost.

Based on that definition, we can automatically build a SMDP model by mapping elements

from a problem instance like the one defined in Section 3.5.2, into structural elements of the

SMDP.

Algorithm 3.5.1.1 generates a SMDP partition model that can be employed to synthesise a

partition policy using a probabilistic model checker.
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Algorithm 1 SMDP partition goal model generation
1: V := {talloc}∪ {sr1 , . . . , srm }
2: −→v0 := {(talloc,0), (sr1 , idle), . . . , (srm , idle)}
3: Σ :=;
4: δ := {(talloc < n∧allidle,ε, {(1, talloc := talloc +1)})}
5: ι :=;
6: for all i ∈ {1. . .m} do
7: δ := δ∪ {(talloc < n∧allidle,ε, {(1, {talloc := talloc +1, sr i := try})})}
8: δ := δ∪ {(engaged(i, try),ε, {(pci j(ci, j , talloc), {sr i := assign}), (1− pci j(ci, j , talloc), {sr i := f ail})})}
9: δ := δ∪ {(engaged(i, f ail),ε, {(1, {sr i := idle})})}

10: for all j ∈ {1. . .ki} do
11: Σ :=Σ∪ {ci, j}
12: δ := δ∪ {(engaged(i,assign), ci, j , {(1, {sr i := idle})})}
13: for all l ∈ RC do
14: ι := ι∪ {(l,>, ci, j , fci j(ci, j , l))}
15: end for
16: end for
17: end for
18: return 〈V ,−→v0,Σ,δ, ι〉

The algorithm receives as input the set of component contributions ci, j, i ∈ {1, . . . ,m}, j ∈
{i, . . . ,ki} (which will be referred to as CC in the remainder for simplicity), a function pci j :

CC×N→ [0,1] that returns the probability of successful completion of a task by component/robot

mode, a set of labels RC that identify the different dimensions of concern (e.g., energy, time), and

a function fci j : CC×RC →R≥0 that returns a cost/reward associated with a given dimension of

concern.

The first part of the algorithm deals with the initialisation of the different elements of the

SMDP. In line 1, the set of variables is built as the union of variable talloc (which is used to

keep track of the number of tasks already allocated and takes values in the domain {1, . . . ,n}),

and a set of state variables for component/robots sri, i ∈ {1, . . . ,m}, which take values in the

domain {idle, try, f ail,assign}. In line 2, the initial values for the set of variables are set as 0

assigned tasks for talloc, and idle for all system component state variables. In line 4, the set of

probabilistic transitions δ is initialised with a transition that enables skipping the assignment

of tasks to a system component by allowing to increment talloc if its value is smaller than the

number of tasks n and none of the system’s components are engaged in an assignment of tasks

(encoded by allidle ≡∧m
i=1sr i = idle). Note that in this transition (and others in the algorithm),

the action is labeled with the empty string denoted by ε, because the action associated with the

transition is not relevant for the extraction of the partition policy. The set of actions Σ and reward

structure ι are initially empty (lines 3 and 5). Note that the update of the variable in this and

other transitions that are not probabilistic occurs with probability 1.

After initialisation, the body of the algorithm builds up both the set of probabilistic transitions

δ, and the reward structure ι. Lines 7-9 add probabilistic transitions to δ that:

• (line 7) engage a system component r i by changing its state to try if all components are

idle and task assignments have not been completed.
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• (line 8) if a component is engaged in state try (captured by function engaged(x, s) ≡
∧m

i=1,i 6=xsr i = idle ∧ srx ), it changes its state to assign with probability pci j(ci, j, talloc),

which corresponds to the estimated probability of successfully completing task talloc, and

alternatively, updates state to f ail with the complementary probability,

• (line 9) if task execution has failed, it returns the state of the component to idle.

In the inner loop of the algorithm (lines 10-16), we build:

• (line 11) the set of actions Σ that correspond to the different modes of system components,

• (line 13) the set of transitions that correspond to the selection of alternative modes ci, j for

every component, and that return the state of the component to idle, and

• (lines 13-15) the reward structure ι that adds to every label l in RC that identifies a

dimension of concern, a positive reward given by fci j(ci, j, l), which is accrued whenever the

action that corresponds to ci, j is fired from any state (> denotes that the guard is always

satisfied).

The algorithm finishes by returning the SMDP tuple assembled with the elements built. It is

worth noticing that this algorithm is also valid to solve a non-probabilistic version of the problem

in which all probabilities in P are equal to one.

3.5.1.2 Probabilistic Temporal Logic Specification Generation

Having derived the MDP model for the decentralised SAS under development, each constraint

and the optimisation objective for the system need to be encoded into PCTL. The result of

this encoding is a multi-objective probabilistic logic query expressed in the extended PCTL

specification language of the PRISM probabilistic model checker. The process is straightforward

and is illustrated in (3.7).

3.5.1.3 Partition Policy Synthesis and Translation

The partition policy takes the form of a DTMC model that encodes the assignment of tasks

to robot/component capabilities. Such policies may include probabilistic assignments as part

of the task executions that correspond to a given component. Our approach turns the proba-

bilistic assignment decision into a deterministic one according to the procedure described in

Algorithm 3.5.1.3.

The algorithm receives as input a partition policy, which is a DTMC (S, si,P, AP,L) encoded

as a set of tuples D that capture probabilistic transitions. Each tuple is of the form (ss, st, p, l),

where ss ∈ S is a source state, st ∈ S is a target state, p ∈ [0,1] is a probability, and l is an action

label. As output, the algorithm produces a DTMC D′ in the same format, in which all transitions

are deterministic (i.e., with probability one).
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The algorithm starts by adding to D′ all tuples that correspond to deterministic transitions

(line 4). If a transition that corresponds to a given tuple d is not deterministic, then the algorithm

selects one of the possible outcomes of the transition by performing the following steps:

1. Function fsiblings computes the set of transition tuples having the same source state as d,

i.e., fsiblings(s)≡ {d ∈D | d.st = s} (line 6).

2. A set of probability intervals, each one associated to an action label extracted from the

corresponding tuple, is computed for the set of sibling transitions (line 10).

3. One of the sibling transition tuples is selected and added to D′ based on the selection

function select(x, intervals) ≡ {i ∈ intervals | lo(i) < x ≤ hi(i)}, where lo(x) and hi(x) re-

turn the low and the high bound of a probability interval (line 13). The generation of

the argument x in[0,1] provided to select is done by generating a sequence of random

numbers that follow a continuous uniform distribution [43]. Concretely, we define a function

generateR :N→ Rn that produces a sequence of random fractions 〈r1, r2, . . . , rn〉, where

r ∈R≥0 : 0≤ r ≤ 1. This function uses the Linear Congruential Method [110] to generate the

uniformly distributed sequence of random fractions. Function getR extracts one of such

random values from the sequence.

The partition policy takes the form of a DTMC model that encodes the assignment of tasks

to robot/component capabilities. Such policies may include probabilistic assignments as part

of the task executions that correspond to a given component. Our approach turns the proba-

bilistic assignment decision into a deterministic one according to the procedure described in

Algorithm 3.5.1.3.

The algorithm receives as input a partition policy, which is a DTMC (S, si,P, AP,L) encoded

as a set of tuples D that capture probabilistic transitions. Each tuple is of the form (ss, st, p, l),

where ss ∈ S is a source state, st ∈ S is a target state, p ∈ [0,1] is a probability, and l is an action

label. As output, the algorithm produces a DTMC D′ in the same format, in which all transitions

are deterministic (i.e., with probability one).
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Algorithm 2 Partition policy determinization
D′ :=;

2: for all d = (ss, st, p, l) ∈ D do
if d.p = 1 then

4: D′ := D′∪ {d}
else

6: siblings := fsiblings(d.ss)
intervals :=;

8: paccrued := 0
for all sibling ∈ siblings do

10: intervals := intervals∪ {(siblings.l, [paccrued , paccrued + siblings.p)}
paccrued := paccrued + siblings.p

12: end for
D′ := D∪ {select(getR (·), intervals)}

14: end if
end for

16: return D′

The algorithm starts by adding to D′ all tuples that correspond to deterministic transitions

(line 4). If a transition that corresponds to a given tuple d is not deterministic, then the algorithm

selects one of the possible outcomes of the transition by performing the following steps:

1. Function fsiblings computes the set of transition tuples having the same source state as d,

i.e., fsiblings(s)≡ {d ∈D | d.st = s} (line 6).

2. A set of probability intervals, each one associated to an action label extracted from the

corresponding tuple, is computed for the set of sibling transitions (line 10).

3. One of the sibling transition tuples is selected and added to D′ based on the selection

function select(x, intervals) ≡ {i ∈ intervals | lo(i) < x ≤ hi(i)}, where lo(x) and hi(x) re-

turn the low and the high bound of a probability interval (line 13). The generation of

the argument x in[0,1] provided to select is done by generating a sequence of random

numbers that follow a continuous uniform distribution [43]. Concretely, we define a function

generateR :N→ Rn that produces a sequence of random fractions 〈r1, r2, . . . , rn〉, where

r ∈R≥0 : 0≤ r ≤ 1. This function uses the Linear Congruential Method [110] to generate the

uniformly distributed sequence of random fractions. Function getR extracts one of such

random values from the sequence.

3.5.2 Example

To illustrate the use of MDP policy synthesis approach to partition system goals, we use the

problem described in Section 3.4.2, which consists of an multi-robot system deployed for waste

collection in a public park environment. For brevity, we only explain mission characteristics

that deal with the partition of system goals and leave out aspects that relate to the individual

behaviour of these robots, with the exception of the local constraints that each robot needs to

satisfy, which are presented in Table 3.11. In addition to that, the table illustrates the utility
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function used to identify the optimal contribution per operation mode j1, . . . , jmi for robot i, as

well as the parameters that influence its behaviour and ability to satisfy system goals.

Table 3.11: Characteristics of the multi-robot system

Characteristics of the mission and its requirements
The mission comprises N locations and each location includes two types of waste collection
tasks recyclable, general
The task of collecting general waste is mandatory to be executed, while the task of collecting
recyclable waste is optional to perform
The m-robot system must complete the tasks in all park environment regions within t
minutes
Throughout the mission, robot i,1≤ i ≤ m checks if the energy left in its battery satisfies the
constraint:

C1i : ∀1≤ i ≤ n .bi ≥ 1
4 Bi

, where (bi) is the energy left in the i-th robot battery and (Bi) is the energy available in its
fully charged battery
If the previous constraint is satisfied by multiple configurations, the i-th robot should use
one of these configurations that maximises the local utility, given by the utility function:

w1 ∗ p f ullBini +w2 ∗ pnonFullBini −w3 ∗ e ti −w4 ∗ tti
, where e ti and tti are the total consumed energy and time associated with visiting and
executing the tasks in a given location. w1, . . . , w4 are weight constants to choose per each
operation mode j, an optimal configuration between several alternatives

Characteristics of the i-th robot behaviour
The i-th robot moves with speed spi ∈ (0, spmax

i ] between the N task locations and executes
the j-th collection task j ∈ recyclable, general with rate r i j > 0
e i j, ti j refers to the energy and time consumed by robot i to execute j-th task
p f ullBini is a robot configurable parameter that represents the probability of collecting full
recyclable waste bin
pnonFullBini is a robot configurable parameter that represents the probability of collecting
non-full recyclable waste bin

3.5.2.1 Task Allocation Problem Model

Listing 3.1, illustrates an instantiation of an MDP partitioning model for our example that results

from applying Algorithm 3.5.1.1 using PRISM’s concrete syntax. The model starts by defining the

number of task assignments to be made (line 2) and the possible state values for robots, which

correspond to those defined for Algorithm 3.5.1.1 {idle, try,assign, f ail} (line 3). Note that in the

listing, parts highlighted in blue correspond to information provided as input to the Algorithm.

The model consists of a single process (module in PRISM terms) called TaskAllocation,

which contains the variables that keep track of the tasks already allocated (t_alloc) and state of

the different robots (sr1-sr3), as well as their initialization (lines 6-9). This part of the model is

generated by lines 1-2 in Algorithm 3.5.1.1.
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The rest of the process consists of a set of commands that encode how the assignment is

carried out. In particular, the number of the task to which a robot mode is being assigned is kept

in t_alloc, which is incremented every time a robot is engaged for task assignment (lines 11,

19), or whenever the task assignment is skipped (line 21). Note that there are no explicit task

identifiers in the model, because the task-robot mode matching is implicit in the order of the

actions in which actions are found in the MDP policy produced (e.g., if the first action found in

the policy is [r3c2], it means that task 1 is assigned to mode 2 of robot 3).

Commands in lines 11-14 correspond to the instantiation of transitions generated by Algo-

rithm 3.5.1.1 in lines 7-9, and take care of engaging the component for assignment, and encoding

the probabilistic action for successful execution of the task, respectively.

Lines 16-17 capture the possible assignments to a robot mode, which are encoded as a

non-deterministic choice (generated by the algorithm in line 12).

Finally, lines 28-48 capture the different reward structures, which correspond to RC =
{task-utility, time-r1, ..., time-r3, energy-r1, ...,energy-r3}.

1 mdp
2 const N = 8; // n tasks to assign
3 const IDLE =0; const TRY=1; const ASSIGN =2; const FAIL =3; // component/robot states
4
5 module TaskAllocation
6 t_alloc: [0..N] init 0; // keeps track of number of tasks assigned
7 sr1 : [IDLE..FAIL] init IDLE; // robot states
8 ...
9 sr3 : [IDLE..FAIL] init IDLE;

10 ...
11 [ ] (t_alloc <N) & (sr1=IDLE) & (sr2=IDLE) &(sr3=IDLE) -> (t_alloc ’= t_alloc +1) & (sr1 ’=TRY); //

engage r1
12
13 [ ] (sr1=TRY) & (sr2=IDLE) & (sr3=IDLE) -> p_1:(sr1 ’= ASSIGN) + (1-p_1):(sr1 ’=FAIL); // r1 tries

task
14 [ ] (sr1=FAIL) & (sr2=IDLE) & (sr3=IDLE) -> (sr1 ’=IDLE); // if r1 failed , returns to IDLE
15
16 [r1c1] (sr1=ASSIGN) & (sr2=IDLE) & (sr3=IDLE) -> (sr1 ’=IDLE); // mode selection for task
17 [r1c2] (sr1=ASSIGN - & (sr2=IDLE) & (sr3=IDLE) -> (sr1 ’=IDLE);
18 ...
19 [ ] (t_alloc <N) & (sr3=IDLE) & (sr1=IDLE) & (sr2=IDLE) -> (t_alloc ’= t_alloc +1) & (sr3 ’=TRY); //

engage r3
20 ...
21 [ ] (t_alloc <N) & (sr1=IDLE) & (sr2=IDLE) & (sr3=IDLE) -> (t_alloc ’= t_alloc +1); // skip assignment

for task
22 endmodule
23
24 formula p_1 = t_alloc=0? (0.8 : (t_alloc=1?: 0.6: (...) ); // Probability of r1 succeeding at task
25 ...
26 formula p_3 = t_alloc=0? (0.5 : (t_alloc=1?: 0.7: (...) ); // Probability of r3 succeeding at task
27
28 rewards "task-utility" // reward structure for task utility
29 [r1c1] true: 0.63;
30 [r1c2] true: 0.86;
31 ...
32 [r2c1] true: 0.64;
33 ...
34 endrewards
35
36 rewards "time-r1" // reward structure for r1 timeliness
37 [r1c1] true: 16.64;
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38 ...
39 endrewards
40 rewards "time-r3" // reward structure for r3 timeliness
41 [r2c1] true: 23.80;
42 ...
43 endrewards
44
45 rewards "energy-r1" // reward structure for r1 energy cost
46 [r1c1] true: 423.98;
47 ...
48 endrewards
49 ...

Listing 3.1: MDP model of task partition problem

3.5.2.2 Synthesis of Partition Policy

The synthesis of the partition policy requires the use of an MDP task allocation model like the

one described in the previous section. Providing that model as input to a probabilistic model

checker, we can synthesize a partitioning policy that divides the n tasks among the robots. The

policy indicates the set of tasks assigned to each robot along with the operating mode associated

with the execution of every task. The synthesis of the partition policy entails model checking

the partition model against the multi-objective PCTL property shown in 3.7, which includes two

parts: (i) A reward maximisation formula that indicates that the synthesis of partition policy

should resolve the non-determinism in the model in such a way that it maximises the cumulative

value of reward structure "task-utility" (lines 28-34). The structure captures quantifiable utility

rewards which indicate that mission robots have collected more recyclable waste. (ii) A set of

cumulative reward constraints that capture the limitation of the resources available (i.e., time,

energy) for r1, . . . , rm robots to carry out their assigned tasks. These constraints are formulated

per robot and takes the form shown in Table 3.12.

multi( R{"utility"}max=?[C]︸ ︷︷ ︸
Utility reward maximisation

, R{"time"}r1 ≤ t [C], R{"energy"}r1
≤ Er1 [C]︸ ︷︷ ︸

Reward constraints of the i−th robot

, . . .)(3.7)

Table 3.12: PCTL formulas for timeliness and energy efficiency concerns

Name PCTL Formula Description

φti R{"time"}≤ t [C]

A constraint that checks, using a "time" reward struc-
ture that is robot specific, whether the time accumu-
lated in minutes, as a result of the i-th robot executes
its assigned tasks is less than an upper bound t.

φe i R{"energy"}≤ E i [C]

A constraint that checks, using an "energy" reward
structure that is robot specific, whether the energy con-
sumed in joules, as a result of the i-th robot executes its
assigned tasks is less than a robot specific upper bound
e i

87



CHAPTER 3. MATHEMATICAL PROGRAMMING TECHNIQUES FOR GOAL PARTITIONING
IN SELF-ADAPTIVE SYSTEMS WITH DECENTRALISED CONTROL

In particular, the constraints are used to check if the cumulative value of some reward

structures that capture timeliness and energy efficiency concerns are within bounds. The bounds

that address timeliness concerns are specified as part of the mission characteristics in Table 3.11.

While the bounds that correspond to the energy efficiency concerns are robot specific and defined

based on the summary of contributions received from each robot.

3.5.2.3 Partition Policy Translation

Listing 3.2 shows an example of a partition policy DTMC encoded as a set of tuples. Notice

that lines that do not include labels are assumed to be tagged with the empty string. In this

DTMC, there is one probabilistic choice that can be observed in the tuples on lines 11-12, both

corresponding to transitions that start in state 22.

1 0 4 1 // robot2WasAllocatedTask
2 1 9 1 // robot3WasAllocatedTask
3 4 5 1 // robot2Try
4 5 1 1 r2c8
5 8 16 1 // robot3WasAllocatedTask
6 9 10 1 // robot3Try
7 10 8 1 r3c8
8 15 23 1 // robot3WasAllocatedTask
9 16 17 1 // robot3Try

10 17 15 1 r3c8
11 22 30 0.106311 // robot3WasAllocatedTask
12 22 32 0.893689 // robot2WasAllocatedTask
13 23 24 1 // robot3Try
14 24 22 1 r3c8
15 29 39 1 // robot2WasAllocatedTask
16 30 31 1 // robot3Try
17 31 29 1 r3c8
18 32 33 1 // robot2Try
19 33 29 1 r2c8
20 36 46 1 // robot2WasAllocatedTask
21 39 40 1 // robot2Try
22 40 36 1 r2c8

Listing 3.2: DTMC partition policy example

To obtain a deterministic version of this policy, Algorithm 3.5.1.3 detects that these two

tuples start from the same state and end up in different states with different probabilities

(function fs iblings). At that point, the algorithm builds a set of intervals, that in this case

would correspond to: [0,0.106311],[0.106311,1.0], and select a single transition based on the

pseudo-random fraction returned from function getR . Assuming that the value returned is 0.5,

the resulting policy can be observed in Listing 3.3.

1 0 4 1 // robot2WasAllocatedTask
2 1 9 1 // robot3WasAllocatedTask
3 4 5 1 // robot2Try
4 5 1 1 r2c8
5 8 16 1 // robot3WasAllocatedTask
6 9 10 1 // robot3Try
7 10 8 1 r3c8
8 15 23 1 // robot3WasAllocatedTask
9 16 17 1 // robot3Try

10 17 15 1 r3c8
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11 22 32 1 // robot2WasAllocatedTask
12 23 24 1 // robot3Try
13 24 22 1 r3c8
14 29 39 1 // robot2WasAllocatedTask
15 30 31 1 // robot3Try
16 31 29 1 r3c8
17 32 33 1 // robot2Try
18 33 29 1 r2c8
19 36 46 1 // robot2WasAllocatedTask
20 39 40 1 // robot2Try
21 40 36 1 r2c8

Listing 3.3: Deterministic partition policy example

In the deterministic version of the policy, it can be observed how the alternative transition

from state 22 assigning the task to r3 has disappeared and instead, a transition with probability

1 assigns the task to r2 (highlighted in red, line 11). Unreachable transition tuples are grayed

out (lines 15-16).

3.6 Selection of goal partitioning method

This section examines the characteristics of the introduced methods for solving various classes of

the goal partitioning problem. These characteristics along with the partition problem examples

introduced in sections 3.2.2, 3.3.2, 3.4.2, and 3.5.2 provide insight into the scope of applications

that can be supported by each partition method. Those characteristics clarify the criteria on which

the user should base his decision when choosing a method for solving an allocation problem.

The first method, exhaustive search, involves examining every possible partition of the

system goals among its components and is applicable when only a finite and small number of such

partitions are feasible. In particular, this method is tailored towards combinatorial optimisation

and enumeration problems where the size of the decision variables and constraints is relatively

small. Nievergelt [140] argues that the use of exhaustive search is often a necessity in handling

these optimisation problems. As the state space of such optimisation problems often lacks any

regular structures. The use of the exhaustive search method is straightforward and effective in

solving optimisation problems comprising relatively small state space.

The use of this method complements the shortcoming found in the linear program, integer

program and MDP policy synthesis methods. Although, formalising and solving a partition

problem using the earlier method is conceptually simple and effective for relatively small prob-

lems. The use of the latter methods heavily depends on how the partition problem is defined

and structured. In particular, the latter methods provide polynomial-time algorithms that are

specialised to obtain an optimal solution for well-structured and well-defined problems. However,

such methods do not provide algorithms that are effective and efficient across different formalism

of goal partition problems. Thus, the exhaustive search method is selected when the problem

model is small and does not conform to the form and structure of problems that correspond to

linear program integer program and MDP policy synthesis.
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Exhaustive search methods can be used to tackle many NP-hard problems that can not be

handled using highly efficient algorithms. As the algorithms are usually less effective for problems

that exhibit no regular structures. For instance, the travelling salesman problem comprising a

large state space is widely considered as an extremely compute-intensive problem that should

be tackled by obtaining a good approximation for solutions. The ongoing pattern in advancing

the memory size and computation power of hardware has enabled the use of exhaustive search

methods to tackle many instances of the travelling salesman problem that was once considered

to be intractable [141, 175].

The second method, linear programming, requires that the system-level constraints and

optimisation objective can be encoded as a linear programming problem. This method can be

used to formulate partition problems that belong to the deterministic class [57]. The outcome

from solving this class of problems determines with certainty (i) the assignment of sub-goals

to each component of a system, such that to achieve the system goals. (ii) the cost and utility

associated with implementing the sub-goal by each component. The linear program method can

handle partition problems that factor uncertainty [101]. The uncertainty may arise to capture

the possibility in which a system component may fail to deliver its sub-goal. For instance, the

outcome of executing a certain task by a robot may depend on the likelihood of facing some

disturbing events such as weather conditions, obstacles in the path, etc. Typically, such events are

factored in the goal partitioning model as probability distributions. Each distribution captures

the likelihood in which an event may occur. Nevertheless, this thesis focuses on using the linear

programming method to handle partition problems that are classified as deterministic. Typically,

the model that corresponds to such problems does not factor uncertainty in the sense that the

problem inputs are known. Unlike the MDP strategy synthesis method where the problem model

accounts for uncertainty in achieving system goals. In general, the linear program method is used

to capture partition problems comprising linear decision variables, linear inequalities constraints

and a linear objective function.

Many real-world partition problems can be formulated using a linear program. For a dis-

tributed SAS comprising a team of mobile robots, the linear programming method can be used to

represent partition problems that need multi-robot coordination and task allocation. Such prob-

lems may involve tasks such as search and rescue, surveillance, warehouse management, land-

mine detection can be represented and solved using the linear programming method [134, 171].

These problems share similarities in the characteristic of their tasks. In general, such problems

comprise distinct tasks that spread over multiple geographic locations. The multi-robot system

needs to collaborate to execute these scattered tasks to satisfy system goals. Examples of tasks

derived from those problems can be surveying a square kilometre to detect landmines, or moving

some goods from one location to another in a warehouse environment.

The third method uses integer programming for variants of the goal partitioning that can be

expressed as an integer programming problem. In particular, the decision variables in a pure
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integer programming problem must be discrete (e.g., to which robot a task should be assigned),

while the decision variables in a linear programming problem are continuous (e.g., determining

the distance each robot should cover). An integer programming problem is referred to as a mixed-

integer problem when it contains both discrete and continuous decision variables. Unlike linear

programming, an integer programming problem can factor logical constraints on the decision

variables. In general, an integer programming problem can include binary decision variables

which enable formulating logical constraints. For instance, we can formulate a conditional

constraint to ensure that if robot1 is assigned task (A) then robot2 should carry out task (B).

The generic formulation of a partition problem (i,e. presented in Section 3.4.1) provides insight

into the scope of goal partitioning problems that can be represented using integer programming.

The integer programming method is considered important since many practical situations can be

modelled as integer programs [56]. For example, the method can be used to represent allocation

problems involving scheduling robots to perform tasks [55] or assigning robots to tasks [128].

Similar to the linear programming method, the scope of using the integer programming method

is limited to partition problems that are classified as deterministic.

Integer programming is a known branch of combinatorial optimisation problems which are

often referred to as NP-hard optimisation problems [187]. Obtaining a solution in polynomial

time for a problem instance of considerable size is known to be a challenge. Typically there is not

a single algorithm that can be used to tackle different forms of this problem. Instead, there are

various heuristic approaches and approximate algorithms [81] for obtaining in some cases an

optimal solution and in others a near-optimal one.

Finally, the fourth method employs MDP strategy synthesis to allocate system goals. This

method is feasible if there exists an MDP model that encodes the various possible partitions

of system goals. This model exploits the notion of non-determinism to represent the task allo-

cation problem. Unlike the previously mentioned methods (i.e, namely the exhaustive search,

linear program and integer program methods), the MDP strategy synthesis method accounts for

uncertainty in satisfying system goals.

The MDP strategy synthesis method can be used to handle partition problems that are

classified as combinatorial optimisation problems. In general, the MDP strategy synthesis method

is able to solve an optimisation problem of this class if the optimisation metrics (i,e. metrics like

utility, energy and time) of such problems can be encoded as reward structures. More specifically,

the alternative values for the optimisation metrics need to be encoded as parameters of an

MDP strategy. In addition, the optimisation problem is solvable if the problem constraints and

optimisation objective can be specified as a PCTL multi-objective property over the problem

model.
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3.7 Summary

This chapter provided a generalised formalisation of the goal partitioning problem for distributed

SAS with decentralised control (in Section 3.1), and introduced four methods for solving important

classes of this problem.

The classes of goal partitioning problems solved by the four methods are not disjoint. For

instance, exhaustive search could potentially be used instead of integer programming or for MDP

strategy synthesis if a deterministic strategy is sought, but would be extremely inefficient. To aid

the selection of a suitable method, we summarise the advantages and limitations of the proposed

methods in Table 3.13.

Table 3.13: Comparison of methods used to partition system goals

Method Algorithms/Tools for parti-
tion efficiency

Probabilistic be-
haviour Characteristics of contribution amounts

Linear program Many available algorithms such
as [103, 109] No Supports continuous decision variables

Integer program
Some classes of the problem can
be solved with polynomial time
algorithms

No Supports only discrete decision variables

MDP strategy syn-
thesis

Multiple probabilistic model
checking tools [65, 119]

Supports partial proba-
bilistic behaviour

Supports only amounts encoded as the parameters of an
MDP policy

For each of the four goal partitioning methods, a detailed example was provided to illustrate

the steps of applying the method. The examples from Sections 3.3.2, 3.4.2 and 3.5.2 are based on

multi-robot systems that will also be used (in Chapter 5) to evaluate the theoretical results from

this chapter and the nuDECIDE software platform from the next chapter.
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DECENTRALISED CONTROL FRAMEWORK FOR SELF-ADAPTIVE

SYSTEMS

This chapter describes the nuDECIDE framework for the engineering of the decentralised control

software for self-adaptive systems. The framework comprises a decentralised control architecture

(presented in Section 4.1), a reusable software platform (i.e., middleware) that uses the goal

partitioning techniques from Chapter 3 and reifies the architecture (presented in Section 4.2),

and an approach for specialising the components of the software platform for a specific application

(detailed in Section 4.3).

4.1 nuDECIDE Architecture

To enable the practical use of the DECIDE philosophy detailed in Section 2.6.1 and of the goal

partitioning techniques developed in Chapter 3, we devised the generic nuDECIDE architecture

shown in Figure 4.1, a preliminary version of which was presented in [191]. This architecture

comprises a fully decentralised hierarchical MAPE-K control instances. In particular, each

decentralised control instance comprises;1. a parent System-level MAPE-K control loop, which

partitions the system goals among the system components under conservative assumptions about

the environment, and 2. a subordinate Component-level MAPE-K control loop, which ensures

that each component achieves its planned contribution to the system goals for as long as these

assumptions are met.

Violation of assumptions require a repartition of the system goals by the high-level control

loop, and the frequency of these partitions depends on how conservative the assumptions are.

Unlike many existing approaches used for developing distributed SASs, nuDECIDE uses formal
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analysis within both control loops, with scalability concerns addressed thanks to the hierarchical

nature of the architecture. The hierarchical control architecture enables the split of adaptation

concerns, which yields smaller formal models to analyse at runtime and subsequently reduces

the computation burden. A key ingredient of our approach is the use of conservative assumptions

in the Analysis activity of the system-level control loop. For instance, the analysis activity

in a robotic system may assume that a robot travels a distance slower than expected in past

missions and consumes more energy. This conservative assumption reduces the need for frequent

adaptation among the distributed autonomous system and allows extra slack for the analysis

activity in the component-level control to handle changes detected in the environment that do

not violate the assumptions.

The system-level Analysis step on each system component uses formal verification to identify

alternative contributions that the component can make for the achievement of the system goals.

The execution of this step is infrequent as it is carried out only when a new component joins

the system, or the component-level MAPE-K loop can not achieve the component-level goals.

Each contribution is associated with cost(s) for implementing this contribution. For example,

for a robotic team used in a search and rescue mission, each robot can cover different parts

of the search and rescue area, and each of these parts is associated with different (predicted)

energy consumption, risks, etc. When a component computes new contribution summaries, these

contributions are propagated to the Peer Monitor activity located on all peer components. Those

contributions along with the contributions proposed by Analysis instance running on each peer

component are passed to the Plan activity located on each component system-level control.

Plan activity uses formal techniques to formalise and partition system goals among the

distributed components. The use of formal techniques provides guarantees that each component

can accomplish its assigned (sub)goals. The Execution step is responsible of configuring the

component-level MAPE-K in line with the assigned sub-goals. Once the component-level control

loop is configured, the Local Monitor oversees its operation. The component-level plan (P) step

synthesises the adaptation plan for the component Execution step. When the plan step faces

difficulties in synthesising a local adaptation plan, the Local Monitor is notified to synthesise

a global adaptation plan. Then the Local Monitor invokes the Analysis step to recalculate the

capability summary.

As in [34], the analysis of local capability summary is carried out under conservative assump-

tion. This renders the execution of the system-level Analysis to be infrequent. The Analysis step

is only invoked when the component plan step experiences difficulties or when a new component

joins the system. Furthermore, nuDECIDE can vary how conservative its assumptions are, e.g.,

it may assume that the robot from our example will consume up to 10% or up to 50% more

energy than usual. This enables a wide range of trade-offs between the efficiency with which the

components operate, and the frequency with which the component-level MAPE-K loops become

unable to synthesise a component-level plan after environmental changes and need to report
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FIGURE 4.1. Fully-decentralised version of the hierarchical-control architecture.

a major local change to the Local Monitor. Thus, a robot that assumes up to 50% higher than

normal energy use will be less likely to encounter situations where this assumption is violated

than a robot that assumes only up to 10% extra energy use; but the former robot would be

allocated a smaller part of the search and rescue area in the Planning step than the latter robot.

The use of a fully decentralised system-level MAPE-K loop provides significant benefits such

as the absence of single points of failure, and the reduced need for inter-component commu-

nication and synchronisation [63]. However, alternative variants of the architecture can use

other decentralised MAPE-K loop patterns [184]. In particular, the centralised execution of the

Planning has the advantage that the system-level goal partitioning is not redundantly performed

by each component, and therefore it can employ techniques that may not yield the same partition

each time they are applied (e.g., meta-heuristics as in [83]).

The workflow executed by each component of a nuDECIDE self-adaptive system is detailed

in Figure 4.2. This diagram depicts how the stages of the decentralised control are carried out
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Figure 4.2: Decentralised control workflow executed by each component of a DECIDE distributed
autonomous system

Local capability analysis and assemble of capability summary

In this control stage, each nuDECIDE component uses probabilistic model checking at run-

time to compute alternative contributions that are relevant for fulfilling the system goals. The

computation considers any component-level requirements that might exist, and generates a local

capability summary, which comprises a finite set of alternative contributions towards achieving

the system goals. nuDECIDE approach relies on the use of conservative assumptions about

the component’s environment to reduce the recurrence of global-adaptation and provide the

component with an opportunity to address locally environment changes that do not invalidate

these conservative assumptions. For instance, in identifying the contribution of a multi robot

system, we may assume that robots execute tasks with higher latency and energy consumption

than in previous missions. The pessimistic assumptions reduce the need for frequent global

adaptation and provide each robot with an opportunity to handle changes detected in the robot

environment that do not violate these assumptions. As a result, those assumptions make the

execution of this stage infrequent and reduce the need to reallocate system goals.

nuDECIDE uses a statistical type of estimation referred to as confidence interval [66] to

quantify the level of conservativeness that has been assumed when a component capability

summary is identified. A capability summary is obtained with an α-level of confidence about

environment uncertainty. Consider the earlier example of the multi-robot system, if a robot
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computes its capability summary with 0.99 level of confidence, the robot becomes less impacted

with changes that stem from interacting with environment. As the local control instance that

manages this robot would be able to address locally adaptation concerns with a probability of

at least 0.99. The more value applied to the confidence level factor (α), the more conservative

the assumptions are with regard to environment uncertainty. In general, if an attribute that

corresponds to the system requirements is computed with an α-level of confidence, then the local

control can fulfill the system requirement that is associated with this attribute, with a probability

of at least α.

Definition 4.1. An α-confidence capability summary for a nuDECIDE component comprises

a finite sequence of tuples containing attribute values, which are computed under conser-

vative assumptions. The capability summary of the i-th nuDECIDE component comprises

{(tuple1), (tuple2), . . . , (tuplen)} and the attribute values of each n-tuple takes the following

generic form:

(attrVal1, attrVal2, . . . , attrValN )︸ ︷︷ ︸
tuplei,1

+ . . . + (attrVal1, attrVal2, . . . , attrValN )︸ ︷︷ ︸
tuplei,n

The conservative assumptions enable the local control instance to handle environment uncertainty

and achieve these attribute values with a probability of at least α. Since the attribute values are

obtained with α-level of confidence, the local control instance can provide guarantee that it can

conservatively and simultaneously accomplish these values unless the local control instance of

the component encounters disruptive environmental change that violates the assumed range

on environment scenarios. The identification of the values of these attributes consider any local

constraints that the component must meet to satisfy the component-level requirements. However,

the attributes that are associated with the component-level requirements are not included in the

capability summary as they are not relevant to the partition of system goals.

Each contribution summary establishes the quality-of-service (QoS) characteristics (e.g.,

throughput, energy consumption, etc.) that are associated with contributing to the fulfillment

of system goals. The executions of local capability stage is infrequent and occurs when a new

nuDECIDE component joins the system and receives capability summaries from the controller

instances that manage other nuDECIDE components. Also this stage is executed after a nuDE-

CIDE component recovers from a failure and when the managed component experiences partial

loss in capability, or disruptive environment change that render the component unable to fulfill

system goals. Figure 4.3 illustrates the expected inputs and outputs of this control stage along

with the various steps to compute the capability summary of a nuDECIDE component.

In general, a capability summary for a nuDECIDE component is identified through the

exhaustive analysis of component configuration space (C f g) against environment state to find

the set of configurations that satisfy the system and component constraints. Then, a component-

level objective function which encodes some optimisation criteria, is used to identify a set of
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possible alternative contributions. To this end, the local capability analysis control stage requires

as an input a set of all possible configurations, which corresponds to all possible combinations of

values for the configurable parameters of a nuDECIDE component. This control stage takes as

prerequisite, as well, a number of parameters which define the environment state (i.e., parameters

that the component can only observes). Then in step (A) as shown in Figure 4.3, an abstract

behaviour model for a nuDECIDE component is synthesised from a model template to include

the configurable and environment parameters.

This model is used to exhaustively analyse all possible alternative configurations of a compo-

nent against the environment state to define the behaviour of a component towards satisfying

system goals. The model is abstract as it assumes a wide range of environment scenarios and

focuses on evaluating attributes that are relevant to the partition of system goals. For instance,

in the search and rescue mission described above, the mission may require that the robotic team

partitions the areas that need to be searched. Describing the robot’s behaviour in executing a

search task in each area requires the synthesis of a model for each task. For a robot to establish

its contribution summary, the robot needs to perform an exhaustive analysis of its behaviour in

executing each task. Performing such analysis at run-time would be infeasible as it introduces a

high computation burden and delays in addressing adaptation concerns.

To reduce such computation burden, we may use a single abstract model instead of using a

unique model for describing the robot’s behaviour in executing each search task. This abstract

model assumes a wide range of environment scenarios and can be used to identify the robot set of

possible alternative contributions to satisfy system goals (i.e., the system goals in this example is

to partition the search and rescue areas) . Typically, an abstract behaviour model is small enough

to allow performing an exhaustive analysis of a nuDECIDE component configuration space at

run-time, and such analysis is carried out using only modest computational resources.

In step (B), we pass the formalised probabilistic temporal logic formulas, which are used to

specify properties that need to be evaluated, along with the synthesised model from step (A)

to the model checking engine. Subsequently in Step (C), the model checking engine uses the

synthesised model from step (A) to carry out an exhaustive verification of all possible alternative

configurations of a nuDECIDE component against all the probabilistic temporal logic formulas to

obtain the values of attributes that appear in the system and component requirements. If the

values for attributes that correspond to a given configuration satisfy the system and component

constraints, then the configuration is considered to be a feasible configuration, in which it can be

used to fulfill the system and component requirements. Then in Step (D) of the figure, all the

feasible configurations that are identified as a result of verifying the configuration space of a

nuDECIDE component are passed to a component-level optimisation function. The optimisation

function may encode several QoS metrics, such as energy time and utility, to find the set of

optimal configurations that minimise/maximise a single optimisation objective.

Finally, the values of the attributes that appear in the system-level requirements are used to

98



4.1. NUDECIDE ARCHITECTURE

assemble the possible alternative contributions of a nuDECIDE component using the component

set of optimal configurations. Thus, the output of the local capability analysis control stage is

a capability summary that contains a set of alternative contributions, where each contribution

is associated with its QoS characteristics. These alternative contributions and the value of

attributes that appear in the system-level requirements can be used to partition system goals.

The execution of this control stage is infrequent and occurs when a nuDECIDE component joins

the distributed SAS, and when the component experiences partial capability loss/recovery or

disruptive environmental changes.
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FIGURE 4.3. Process for computing and assembling a capability summary executed by
a DECIDE component

Share local capability summary

In this control stage, a nuDECIDE component shares with peer components, the assembled

capability summary, which contains all possible alternative contributions and the QoS charac-

teristics associated with achieving these contributions. A capability summary of a nuDECIDE

component is expressed as a finite sequence of tuples, where each tuple contains the value of

attributes that have the generic form (attrVal1, attrVal2,..., attrValN ). The capability summary is

produced under conservative assumptions in which, we assume that a nuDECIDE component can

achieve its contributions with α confidence. An α-confidence capability summary corresponds to

the level of conservativeness assumed for the environment parameters that are used to produce

the capability summary. In general, a capability summary identified with an α level of confidence

means that a nuDECIDE component can achieve the contributions associated with this capability

summary with a probability of at least α. This control stage is triggered after a nuDECIDE

component identifies and assembles its capability summary as part of executing the previous

control stage.
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Receipt of peer capability summary

As indicated in Figure 4.2, this control stage is executed infrequently when a nuDECIDE

component receives capability summaries identified by peer nuDECIDE components as they

join the system or experience local major changes (i.e., changes that require a re-partitioning

of the system goals, and that are local to a specific component). The execution of this control

stage is skipped when a nuDECIDE component experiences local major change that requires the

component to recompute and assemble its capability summary. This control stage is skipped as

the capability summaries of the peer components are unaffected in this case.

Partition System Goals and Select Local Component Goals

Figure 4.4 details how a nuDECIDE system comprising distributed components partition system

goals. The objective of this control stage is to partition the system goals into component (sub)goals,

such that the system is guaranteed to comply with its goals as long as each component achieves

its (sub)goals. As shown in Figure 4.4, a nuDECIDE component uses as an input its capability

summary along with summaries computed by other components to synthesise at run-time an

allocation problem model that formally describes the system goals and the possible alternative

contributions of the components involved in the the partition (i.e., such model typically only

include the capability summaries of active components that can contribute towards achieving

system goals). Depending on the used formal technique, the synthesis of an allocation problem

model may factor as input environment parameters that describe the behaviour of a nuDECIDE

component in fulfilling system goals.

nuDECIED approach is not perspective about goal allocation technique used to partition

system goals. As demonstrated in Examples 3.3.2, 3.4.2 and 3.5.2, the choice of which technique

to use for partitioning system goals depends on the characteristics of the systems requirements.

Thus, the approach assumes a formalism that is problem specific that can represent the task

allocation problem. Also, such formalism must include the system constraints and optimisation

objective that need to be factored in when system goals are partitioned. System constraints are

included to represent for instance the limitation in a given component resource. For example, we

may include a constraint to place a threshold for the amount of energy or time a component can

use to achieve system goals. An optimisation objective is used to encode a metric of choice such

as utility, time or energy consumed, which are factored in to identify the optimal allocation of

system goals.

As seen in Figure 4.4, we assume that the partition of system goals (i.e., the partition goals

process) is carried out by the DECIDE controller of every component and using an efficient and

deterministic technique such as the methods introduced in Chapter 3 to select the local goals of

each nuDECIDE component. The selected local component goals represent the contribution level

agreement (CLA) of a component, chosen such that the system is guaranteed to comply with its

goals as long as each component achieves its CLA.
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Figure 4.4: Process for goal partitioning of system goals executed by each component of a DECIDE
distributed SAS

Execution of local control loop and heartbeat

Once a nuDECIDE component selects its CLA, the local control loop ensures that the component

comply with the selected local component goals. In particular, the local control loop uses proba-

bilistic model checking to analyse a continually updated problem behaviour model that captures

the state of the component and its environment. When the nuDECIDE component selects its

local component goals, the local control loop synthesises a problem stochastic model inline with

its CLA. The local control loop may also update when needed the thresholds that are encoded

in the system-level constraints. This update enables the local control loop from verifying if the

component is complying with its CLA.

In general, this control stage is the predominant control stage in nuDECIDE control workflow,

as the local control loop and the maintenance of a low-overhead system heartbeat are the activities

that are executed most of the time. Infrequently, events such as disruptive environmental changes

(e.g., significant workload increases) or loss of component capabilities (e.g., the loss of a sensor)

render a DECIDE local control loop unable to achieve the local goals; or the disappearance of a

heartbeat indicates the complete failure of a peer component. These events (shown by dashed

arrows in Figure 4.2) are termed major changes, and their detection by the local control loop is

followed by the computation and selection of new sets of local goals for the (remaining) DECIDE

components.

4.2 nuDECIDE Software Platform

To ease the adoption of the nuDECIDE architecture in practical applications, we developed a

reusable software platform (i.e., middleware) that implements all the application-independent

functionality of the nuDECIDE architecture and control workflow. Figure 4.5 shows the compo-

nents of this software platform, which we implemented in Java. It also highlights the high-level
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architecture of a nuDECIDE team devised using our framework. The figure shows the two options

for forming the team members that are deployed to execute the mission. In the first option, the

team comprise several mobile ActivityBot robots with a high-level system controller on a laptop

that coordinates the robots. For the second option, the team consists of multi-robot simulator

instances with a high-level system controller on a laptop that coordinates the robot simulator

instances. Instrumenting a robot simulator for a specific robot team application requires special-

ising a JAVA built software component that comprises ManagedComponentSimulator. java

class. In using either of the deployment options, there is a two-way communication between the

robots (i.e., or the robot simulators) and laptops as they interchange information related to the

mission.

Local capability
analysis 

NuDECIDE

Communication with
peers

System goals
partition

Local controlNuDECIDE
managerKnowledgeRequirement

Communication with
managed component

NuDECIDE NuDECIDE

Communication
Protocol

Managed component
simulation instance

Option  
real mobile robot

Option  
robot simulator

Figure 4.5: Each robot is controlled by a nuDECIDE instance. nuDECIDE manager oversees
the overall execution. nuDECIDE components could be specialised based on application-specific
requirements

In the oil pipeline inspection mission described in Section 3.3.2 of Chapter 3, the robot will be

sharing the status of its environment parameters, such as the degradation in its sensors. While,

the running nuDECIDE control instance performs high-level actions such as requesting the robot

to move to a specific position or altering the robot speed spi. The nuDECIDE framework has

been used to develop several case studies from the oil pipeline inspection and waste management

domains. In the remaining part of this section, we illustrate how the nuDECIDE components are

specialised to devise the high-level controllers for the pipeline inspection application. The lab-

based testbed comprising the team of ActivityBot and the robot simulator instances are described

in Chapter 5 as part of the evaluation for the applications that use either of the deployment
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options.1 Specialising the main nuDECIDE components (Java classes) shown in Figure 4.5 are

essential for instrumenting nuDECIDE for a specific robot team application. The nuDECIDE

control workflow shown in Figure 4.2 illustrates the activities which these components combine to

implement. In the following, we describe the components used to devise the nuDECIDE controller

for pipeline inspection application and where relevant we include the number of the nuDECIDE

workflow stage associated with each component.

nuDECIDE manager. The java class MainPipeInspection. java has the responsibility to

control the mission and ensure that the robots are executing and achieving their tasks. This class

oversees the robot operations and executes the nuDECIDE control stages shown in Figure 4.2.

This class also has the responsibility to execute the reallocation of tasks if needed and make sure

that the mission’s overall goals are achieved.

Local Capability Analysis (Stage 1) : The RobotLocalCapabilityAnal ysis. java class em-

ploys probabilistic model checking to identify alternative contributions that the robot can make

towards the system goals that are encoded in the Allocation Problem model as part of Knowledge

layer. To establish the robot contributions, the class analyses recursively through probabilistic

model checking the robot’s capabilities that are encoded in the robot Abstarct Behaviour model.

Typically, an object of the RobotConf iguration. java class encodes robot configuration elements,

and defines a robot capability. In particular, the class object defines the value for the configuration

elements spi, p1iand p2i, which determines the speed of a robot and the sensors that are used

to execute the inspection task. In general, the configuration elements act as parameters in an

abstract behaviour model, which describes the robot’s behavior during an inspection task.

To assess the robot capabilities, the probabilistic model checking engine is provided with an

abstract behaviour model that encodes robot configuration elements and the environment state.

The environment state is encoded in an object of the RobotEnvironment. java class, which

defines the environment elements (pretry
1i , pretry

2i ). Where elements pretry
1i and pretry

2i define the

probabilities that the measurements taken by sensors p1i and p2i respectively, are of insufficient

accuracy. The nuDECIDE controller obtains the values of these environment elements at run-time

from each robot. The result from the capability analysis summarizes robot’s alternative contribu-

tions, which include QoS metrics associated with each contribution such as the time and energy

required to perform an inspection task and the total energy available in the robot to execute in-

spection tasks. Such metrics are encoded in an object of RobotCapabilitySummary. java class

and transmitted to peer nuDECIDE controllers. The capability analysis is performed infrequently

when a robot joins/rejoins the system or after partial capability loss/recovery.

1Lack of access to the mobile robots testbed due to COVID-19 restrictions made it impossible to evaluate all case
studies using real robots.
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Communication with Peers (Stage 2): The java class CommunicateWithPeers. java has

the responsibility to share with peer nuDECIDE controllers the contribution summaries identified

as part of the capability analysis (Stage 1), and execute the heart beat mechanism, which traces

the changes experienced by the peer controllers (Stage 3). The class implements an application

specific communication interface that allows the exchange of data between the nuDECIDE

controllers. In the pipeline inspection application, the transmission of data is carried out using

broadcast communication protocol [148], however any reliable communication protocol can be used

to exchange data between the nuDECIDE controllers. To share the contribution summaries, the

nuDECIDE controller serialises objects of RobotCapabilitySummary. java class that contain

the robot’s alternative contributions, and transmits these contributions to peer nuDECIDE

controllers.

Subsequently, the nuDECIDE controller uses the contributions that has been identified

by its local capability analysis along with the alternative contributions received from peer

nuDECIDE controllers (in stage 3) to find an optimal partition/re-partition of the inspection

tasks. Also, the CommunicateWithPeers. java class has the responsibility to execute the heart

beat mechanism. Executing the heart beat mechanism entails using a dedicated execution thread

that sends periodic alive messages to peer nuDECIDE controllers and traces messages received

from the peer controllers to assess that each peer controller is functioning as usual. If the heart

beat mechanism identifies incidents such as a peer robot joins the team or has experienced a

major change or failure, that necessitates the re-partition of inspection tasks, the mechanism

interrupts the execution of the local control activity (stage 5), which is implemented using

RobotLocalControl. java class. The execution of the communication with peers stage may be

skipped in the rare event, when the team of robots comprises a single robot only.

Allocation of System Goals (Stage 4): The LinearSelectionMethod. java class has the

responsibility to synthesise the Allocation Problem model and execute the goal allocation algo-

rithm to partition inspection tasks. In the case of pipeline inspection application, the partition

of system goals entails implementing an API for an open-source solvers called OR-Tools [146]

for combinatorial optimization problems and encoding the linear optimisation problem. The

optimisation problem comprises linear decision variables, linear inequalities constraints and a

linear objective function. The problem is solved using the linear optimiser to obtain the optimal

values for the decision variables. The capability analysis is performed infrequently when a robot

joins/rejoins the system or after partial capability loss/recovery.

The execution of the linear allocation method in LinearSelectionMethod. java is triggered

when the robot identifies and shares its contribution summaries (Stage 1) or when a peer robot

shares its capability summaries (Stage 3) . As a result, each robot’s controller performs the

partitioning algorithm to create an identical partition of system goals. The aim is to partition

inspection tasks and identify each robot‘s local goals such that the multi-robot system is guaran-

teed to comply with its goals as long as each robot achieves its local goals. For example, the team
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of robots complies with its system goals when each robot performs its inspection task(s) within

the time limit allocated to complete a duty round.

Local controller (Stage 5): The RobotLocalControl. java class implements a local control

loop that employs probabilistic model checking to ensure that the robot complies with the selected

local goals. The probabilistic model checking is carried out using a continually updated stochastic

models of the robot and its environment. The probabilistic model checking engine is provided

with a stochastic model that defines the robot’s behavior in line with the robot’s assigned local

goals.

Similar to the local capability analysis, the behaviour model that encodes robot configuration

elements and the environment state and the model is included as part of Knowledge layer. The

nuDECIDE controller obtains the values of these environment elements at run-time from the

robot. The class is responsible of executing a low-overhead heartbeat mechanism to ensure the

liveliness of the underlying managed robot. Infrequently, events such as disruptive environmental

changes (e.g., significant degradation in sensor performance) or a sudden robot failure render a

nuDECIDE local control loop unable to achieve the local goals. Also, the execution of the local

control loop is interrupted when a peer robot shares its capability summaries or experiences a

complete failure.

4.3 nuDECIDE Engineering Approach

This section describes the four-step approach that needs to be carried out to use the software

platform presented in the previous section to implement a nuDECIDE self-adaptive system. The

description of the approach is illustrated using the pipeline inspection robotic system introduced

in Section 3.3.2 as a running example.

4.3.1 Behaviour model development

In the first step of the nuDECIDE approach, the software engineers need to devise the proba-

bilistic models that describes the stochastic behaviour of a nuDECIDE component. Describing

the methods used to obtain these models is beyond the scope of this chapter. Using inaccurate

models to reason about a nuDECIDE component through probabilistic model checking may lead

to incorrect self-adaptation actions. There is a great body of knowledge on approaches to devise

such stochastic models. For instance, a common approach is to relay on domain experts to devise

a stochastic model for a system by analysing the system’s logs to elicit its behaviour models

[85]. Another approach is to use model to model transformation to devise stochastic models [13].

Finally, numerous examples of developing such models are available from the research literature

in application domains including service-based systems [36, 178], software product lines [86, 87],

robotic system controllers [2], web applications [135, 136] and others.
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A nuDECIDE control instance typically uses the probabilistic model checking to analyse

stochastic models that describe the behaviour of a component and its environment. These models

can be any of the Markov model variants introduced in Chapter 2. The choice of which model

variant to use depends on the characteristics of the requirements that need to be analysed.

However, the model used must capture the behaviour of a nuDECIDE component, in line with

the sub-goals that can be assigned to the component. This type of models is typically probabilistic

and focuses on configuration/environment parameters that influence the values of attributes

that correspond to the component-level requirements. However, these type of models do not need

to abstract out environment parameters as these models only represent a proportion of system

goals, so they are typically small enough to enable an efficient verification. We assume that the

verification techniques used by the system-level and component-level controllers are based on the

same modelling paradigm. This is essential as the analysis stage of the system-level controller

plans for the assumed range of environmental scenarios what a component-level controller will

achieve of system sub-goals.

For the pipeline inspection self-adaptive system from our running example, this step involves

devising the DTMC model from Figure 3.1. This model is described in detail in Section 3.3.2.

4.3.2 Identification of configurable and observable parameters

In this step of the nuDECIDE approach, the software engineers have to define the parameters

that influence the behaviour of a nuDECIDE component towards satisfying its requirements.

Mainly, a stochastic model includes two types of parameters. An observable parameter is the

first type of parameters, which is used to capture the environment state. While the second type

are the configurable parameters, which represent the parameters that a nuDECIDE controller

can alter to address changes observed in the environment parameters. C f g i denotes all possible

combinations of values for the configurable parameters of nuDECIDE component i and the

environment space Envi is the set of all possible combinations of values for the environment

parameters of the same component. Typically, a component i reacts to changes observed in the

environment parameters by selecting a configuration from all possible combinations of values for

the configuration parameters C f g i.

For the pipeline inspection self-adaptive system from our running example, this step involves

devising the configuration parameters for the DTMC model from Figure 3.1.

Example

The configuration parameters for robot i from the running example in Section 3.3.2 are pi1 ∈ [0,1],

pi2 ∈ [0,1], and spi ∈ (0, spmax
i ]. Where pi1, pi2 specify the probability for robot i to use either

of its two sensors to perform the inspection tasks. Typically the probability for robot i to use its

second sensor pi2 is 1− pi1.Thus, the configuration space for robot i to execute in inspection task
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of type k is

Cfgik = [0,1]︸ ︷︷ ︸
pi1

× [0,1]︸ ︷︷ ︸
pi2

× (0, spmax
i ]︸ ︷︷ ︸

spi

The environment parameters for robot i are its probabilities pretry
i2 , pretry

i2 of having to repeat

inspection task as the obtained reading is of insufficient quality. The environment space Envi for

a given pair of sensors that are specialised to perform an inspection task of type k is the set of all

possible combinations of values for the environment parameters and is defined as follows:

Envik = [0,1]︸ ︷︷ ︸
pretry

i1

× [0,1]︸ ︷︷ ︸
pretry

i1

For the m-robot system to complete their mission successfully, they should comply with system-

level and component-level requirements. To evaluate these requirements, we use a probabilistic

model checking engine to verify the functional and QoS attributes associated those requirements.

Functional attributes may include the type of inspection tasks that the robot can perform for a

given configuration. QoS attributes are concerned with Qos characteristics such as timeliness,

energy consumption, etc. with which these tasks are executed. The evaluation is carried out using

the probabilistic model checking, which analyses a model that describes a component’s behaviour

and encodes the state of its configurable and observable parameters against a probabilistic

temporal logical formula Φ, as described in Section 2.6.1.

4.3.3 Specification of system-level and component-level requirements

In this step, the component-level requirements need to be specified in a probabilistic temporal logic

appropriate for the model(s) used to establish the component attributes as shown in Section 3.3.2

(i.e., PCTL for DTMCs and MDPs, or CSL for CTMCs). Additionally, the system-level goals

(constraints and optimisation objective) need to be expressed in a formalism suited for the goal

partitioning method used by the distributed SAS under development.

For instance, for the robotic system from the running example, we used a DTMC to model the

relevant behaviour of individual robots, so the component requirements were specified in PCTL,

as detailed in Section 3.3.2, while the system-level requirements were specified as constraints

and an optimisation objective that, taken together, defined a linear programming problem (see

Section 3.3.2).

4.3.4 Specialisation of the software platform

In this step, the software engineer needs to define Java classes that specialise the abstract

classes of the nuDECIDE software platform. This development process is described in Section 4.2,

and involves defining Java classes that extend the key components of the nuDECIDE platform,

including the SystemGoalsPartition. java abstract class. For the pipeline inspection case study,

the software engineer has to specialise this class to define the abstract functions’ behaviour shown
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in Figure 4.6. In particular, the LinearSelectionMethod. java class includes the synthesisePa-

rtitionModel method, which enables encoding the linear decision variables, linear inequalities

constraints and linear objective function that are used to formulate the linear partition problem

model. While the execute function includes the linear programming solver, which uses the encoded

partition problem model to identifies the optimal allocation of system goals.

<<java class>>
LinearSelectionMethod 

- execute(peerCS: Map<String, ContributionCollection >, robotCS: ContributionCollection) :boolean
- synthesisePartitionModel(CapabilitySummaryCollection, Environment) :boolean

<<java abstract class>>
SystemGoalsPartition 

- execute(CapabilitySummaryCollection, Environment) :boolean
- synthesisePartitionModel(CapabilitySummaryCollection, Environment) :boolean

<<extend>>

Figure 4.6: A class diagram for extending the SystemGoalsPartition. java class

4.4 Summary

This chapter presented the nuDECIDE architecture and software platform, and described the

engineering approach for developing a nuDECIDE self-adaptive system by specialising the

software platform.
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EVALUATION

In this chapter, we describe the extensive experiments carried out to evaluate the goal partitioning

methods introduced in Chapter 3 and the nuDECIDE framework introduced in Chapter 4. We

performed this evaluation for a range of case studies, using both real mobile robots (for the linear

programming method from Section 3.3, Chapter 3) and simulation (for the integer programming

and MDP strategy synthesis techniques from Sections 3.4 and 3.5 in Chapter 3)1

The chapter is organised as follows. First, Section 5.1 describes the evaluation of the nuDE-

CIDE framework when using the linear programming method for system-level goal partitioning.

This evaluation was carried out using a testbed comprising a team of three mobile robots. Next,

Sections 5.2 details the evaluation of the software platform for a simulated multi-robot mission

that used the integer programming goal partitioning method. Finally, Section 5.3 presents the

evaluation of the platform combined with the MDP policy synthesis for the goal partitioning.

Two different scenarios were assessed for this method, namely when the MDP encoded only the

nondeterminism associated with the goal partitioning, and when the MDP encoded both this

nondeterminism and probabilistic aspects of robots execution of tasks.

5.1 Evaluation of Linear Programming method

5.1.1 Research questions

From reviewing the literature, numerous realistic robotic team missions exist [7, 58, 107] whose

requirements can be formalised in such a way that the linear programming method can be used.

The experiments carried out to evaluate this method aimed at assessing whether:

1Lack of access to the mobile robots testbed due to COVID-19 restrictions made it impossible to evaluate the last
two methods using real robots.
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1. Given a robotic team mission whose requirements can be formalised as a linear program-

ming problem, nuDECIDE can use linear programming method to successfully adapt the

decentralised robotic team to a range of disruptions comprising the following:

• robots failing completely/leaving the team;

• new/recovered robots (re)joining the team;

where by successful adaptation we mean the following:

• after a period of time since the disruption, the tasks of the mission are partitioned to

the robot team with consideration of modified robot team members and/or modified

robot capabilities, and in line with the system requirements;

• with nu-DECIDE appropriately configured, the period of time from the previous bullet

point is “short” (i.e., within seconds).

• nuDECIDE with linear programming method can operate with acceptable overheads

for at least small teams of robots.

• nuDECIDE is configurable so that optimality and overheads of the solution can be

traded-off for one another, i.e. there is a way for the user to select values for the

nu-DECIDE configuration parameters so that the robots synchronise more frequently

and therefore handle disruptions faster if needed, but this means higher overheads.

Conversely, the user can configure nu-DECIDE to operate with lower overheads, but

this means a longer time to recover from disruptions.

2. nu-DECIDE with linear programming method can operate with acceptable overheads for

at least small teams of robots.

To carry out this assessment, we formulated the research questions (RQs) summarised below.

RQ1 (Effectiveness) Can nuDECIDE with linear programming method handle different

patterns of disruptions from item 1 above successfully?

The experiments performed to answer this research question aim to illustrate the effective-

ness of nuDECIDE in addressing adaptation concerns for distributed self-adaptive systems. To

demonstrate the effectiveness, we present several end-to-end scenarios in which the system

from the case study experiences a number of synthesised events over a simulated period of time.

Consider, for example, the case study of pipeline inspection, which is described in Section 3.3 of

Chapter 3. We have conducted several experiments that demonstrate how several real mobile

robots are deployed to simulate performing gas inspection tasks. In order to assess the effec-

tiveness of the decentralised control loop, we simulate several mission scenarios that include a

number of synthesised events over a simulated period of time. These events demonstrate different

failure patterns that the multi-robot system may experience when deployed in a real mission. For
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example, robot2 fails at time instance 120, recovers at time instance 250, etc. These experiments

aim to build confidence that the approach is effective in general, and the decentralised control

loop deals with adaptation concern without undermining the satisfaction of system goals and

component goals. These experiments include a pattern of failures that necessitate the repartition

of system goals or in some other scenarios, the synthesis of a local adaptation plan when the

control instance that manages a robot can address an adaptation concerns locally. Thus, the aim

is to build confidence that the system addresses adaptation concerns and provides the necessary

assurance that the components are achieving their goals. These events differ in the way they are

synthesised when simulating the missions and are categorised into two types.

The first type of synthesised events includes handcrafted events scripted using prepared

scenarios. In this type of synthesis, the system from a case study experiences several patterns

of failures that are predetermined over a simulated period of time. The second type of event

synthesis comprises scenarios that include random events. The randomness covers the timing

of which an event is introduced and the type of failure pattern that is simulated. The failure

patterns differ according to the characteristics of the system being tested.

RQ2 (Scalability) How does the overhead of using nu-DECIDE with linear programming

method increase as the number of robots in the team grows?

For evaluating the above research questions, we carried out several experiments using a 2.5

GHz Intel Core i7 MACBOOK Pro computer with 16GB memory, running Mac OS X 10.14. All

experiments that required the partition of system goals using the linear programming method,

we implemented an API for an open-source solvers called OR-Tools [146], which enables encoding

and solving linear programming problems.

5.1.2 Case study: pipeline inspection

Using the testbed described in Section 5.1.3, which includes real mobile robots and a testing

track designated for each robot. We conducted two sets of experiments aimed at evaluating

nuDECIDE. The first set includes experiments to assess the effectiveness of nuDECIDE in

addressing adaptation concerns. The second set aims at assessing the scalability of nuDECIDE.

In the second set of experiments, we examine the effect of increasing the number of robots on

the ability of nuDECIDE to deal with systems of different sizes. In particular, the experiments

related to the scalability concern focus on the partition phase of the system goals, since the

analysis accompanying the partitioning process is performed at a system level and is considerably

affected by the increase in system size.

The first set of experiments comprises (m = 3) real mobile robots, while the experiments con-

cerned with scalability simulates the use of 3≤ i ≤ 34 robots to imitate the steady increase in the

number of robots from one experiment to another. The results of the second group of experiments

are obtained through simulations due to the lack of sufficient space to carry out experiments
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System charac-
teristic

Parameter
space Parameter description

Speed of roboti spi ∈ (0, spmax
i ]

A configurable parameter determines the speed
in moving between task regions

Sensors per roboti mi ∈ {2, 4}

roboti is deployed with mi ∈ [2, 4] on-board sen-
sors and each pair of sensors in robot i is spe-
cialised to perform a specific type of task from
types {taskTypm, taskTypp}.

Sensor probability pi j ∈ [0,1]
pi j is configurable parameter specifying the prob-
ability for robot i to use the j-th sensor to perform
the inspection task

Table 5.1: Characteristics of the i-th robot deployed to perform mission tasks

and the limited number of real robots available for testing. In general, the experiments differ in

terms of the number of robots m used.

Table 5.1 illustrates the characteristics of the ensemble of robots used in these experiments.

The robots’ characteristics may differ from one robot to another, as is the case in the number

of sensors the robot has and the type of tasks that a sensor can perform. All experiments were

carried out on a 2.5 GHz Intel Core i7 Macbook Pro computer with 16GB memory, running Mac

OSX 10.14.

5.1.3 Robotic testbed

This section introduces the Parallax ActivityBot robots that are used to simulate the execution

of the missions described in the earlier presented case studies. This section also reviews the

different components that make up the robot that were used during the experiments. Also, the

section describes the program, that is developed for the purpose of this research, and used to

control robots.

ActivityBot Hardware

The Propeller Activity Board is the most important component of an ActivityBot robot, which

enables an 8-core Propeller P8X32A-Q44 micro-controller to control all the connected sensors

and components [98]. The micro-controller comprises eight 32-bit processors, called cogs that

enable the robot to execute simultaneous tasks such as using a sensor to gather an environment

reading while traveling to a destination. An ActivityBot robot comes equipped with wheels that

are connected to High-Speed Servos, which allow the robot to move in any direction. These Servos

can continuously rotate the wheels in two different directions (e,g, bidirectional way ) and move

these wheels at varying speeds ranging from 0 to up to 180 RPM [98]. ActivityBot robots are

equipped with four IR sensors that enable each robot to track the path and follow it back and

forth. An ActivityBot robot can be programmed a language derived from C/C++ called Propeller
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C [98] and includes a metallic chassis that enables mounting the IR sensors, and a breadboard

for connecting the sensors and other circuitry to the CPU. Each robot is programmed to navigate

the testing track using data collected from its sensors, which enables the robot to Simultaneously

determine its location and the regions it must visit to carry out its tasks.

Also, each robot is mounted with a communication module called WiFi module WX ESP8266,

as shown in Figure 5.1. The communication module enables the robot to send and receive two

classes of communication messages. The first class enables the robot from sending periodic alive

messages indicating the state of the robot and includes simulated readings for changes detected

in the robot’s environment. The alive messages enable the running instance of nuDECIDE control

from deducing whether the robot has failed by examining the difference between sequential

alive messages. Also, this class of messages includes information that enables the controller

from reasoning about the robot’s behavior and address adaptation concerns when the behaviour

violates the constraints and objectives imposed on the robot in carrying out its tasks. The second

class of messages enables the robot to receive commands sent from the nuDECIDE control, which

specify the tasks that the robot must perform and configure the speed that the robot must adhere

to when heading to the regions, where tasks are executed.

Figure 5.1: WiFi communication module

ActivityBot Software

The program for controlling the ActivityBot is illustrated in the activity diagram shown in Fig-

ure 5.2. This software is deployed in all the ActivityBot robots that are used to execute the mission

described in 3.3.2. The software comprises two parallel tasks that allow the robot to execute

mission objectives. The first task enables the robot to communicate with the nuDECIDE controller

that coordinates its action. The second task involves executing a line following algorithm that

enables the robot to detect where it’s about from the testing track route.

In the first task, an ActivityBot robot has to establish a serial connection using a WiFi module

that enables communication with the nuDECIDE control instance running on payload computer.

If such communication is established, the robot has to send periodic messages within some time

window. These messages typically include environment readings that define the probability of

how accurate is the readings provided by the robot’s sensors. Also, the messages demonstrate
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to the nuDECIDE controller that the robot does not experience a fetal failure. The second task

is executed in parallel with the first task. It involves running a nested loop that enables the

robot from realising its position from the testing track and define to which region/segment of the

pipeline the robot should move.

controls the activityBot

Configures a serial
connection using
the WiFi module

Task 1
Task 2

Send environment
reading 

"alive message"

Received
new

command

Sleep
3000 millisecond

No

Run task

Communicate with
Nu-DECIDE controller

Run task

Execute line
following algorithm

Wait for
initial

command

Set region
destination array

[r1, r2, r3, ...]

Yes

Travel to next region

Set next region

Initial
command

Yes

No

Yes

Received
new

command

Yes

No

Figure 5.2: Activity diagram for the software running on the ActivityBot robots

5.1.4 Experimental results

5.1.4.1 RQ1 (Effectiveness)

The testbed provided as part of the development of our approach along with case studies allow

for easy experimentation with goal partition techniques. For evaluating the effectiveness of

nuDECIDE, we used this testbed, which comprises (m = 3) real mobile robots and a testing track

designated for each robot. Figure 5.3 illustrates the testing track, where each consists of (k = 8)

tasks and a path that links these tasks in sequential style. The testbed simulates a refinery

environment containing tasks of two different types. tasT ypm and tasT ypp are the first and

114



5.1. EVALUATION OF LINEAR PROGRAMMING METHOD

Robot i
# deployed sen-
sors Type of task(s)

robot1 m1 = 2 tasT ypm
robot2 m2 = 2 tasT ypp
robot3 m3 = 4 {tasT ypm, tasT ypp}

Table 5.2: Characteristics of sensors deployed in the i-th robot

second types of tasks. In particular, tasks {1,2,3,4} are of the first type, while tasks {5,6,7,8} are

of the second type. In this section, we will review the results obtained from analysing a typical

5

1 2 3 4

678

Robot

Track

5

1 2 3 4

678

Robot

Track
5

1 2 3 4

678

Robot

Track

Figure 5.3: Testbed used to experiment with m-robot system

mission comprises (m = 3) robots that partition the tasks shown in Figure 5.3. Table 5.2 shows

the sensors that each robot is equipped with, which in turn determines the type of tasks a robot

is able to execute. In general, the results obtained from experiments are categorised according

to the method used in synthesising the events. In particular, there are predefined events and

randomly synthesised events. Robots must fulfil the mission constraints and objectives, outlined

in Table 5.3, when they are deployed in scenarios involving any of these events. We set the upper

bound of constraint (l2) to 15 minutes. This constraint defines the time allocated to complete a

duty round that the m-robot system must adhere to when carrying out their tasks. Similarly, we

set the upper bound of constraint (l3), which defines the maximum energy that robot i ∈ {1,2,3}

may use during a duty round, to 180, 200, and 260 joules respectively. In the following, we present

the results obtained from deploying Activitybot robots in two missions to simulate robots’ use to

perform gas inspection tasks in a refinery plant environment. The scenario of the first mission
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Requirement
Type Details Description

constraint (l1) ∀ 1≤ i ≤ n . xi e i ≤ Emax
i

The energy required by roboti to execute all tasks
should be less than the energy available for the
robot per a duty round of the mission

constraint (l2) ∀ 1≤ i ≤ n . xi ti ≤ t

The time required by roboti to execute all the
assigned tasks should be less than 15 minutes,
which is the time available to complete a duty
round

Local objective miminise∑n
j=1 w1 × e i j i +w2 × ti j i

If multiple configurations satisfy constraints l1, l2
and l3 and then the i-th robot should use the
configuration that minimises the cost function

System objec-
tive

maximise
∑n

i=1 uixi j i

If multiple configurations satisfy constraints l1, l2
and l3 then the multi-robot system should max-
imise the covered area such that to reduce the
area covered by a human operator

Table 5.3: Characteristics of mission constraints and objectives

includes predetermined events (e,g., handcraft events), while the second scenario contains events

that are randomly synthesised. Events that occur in both scenarios simulate patterns of failures,

such as robot failure, sensor degradation, etc.

Predetermined events. Figure 5.4 shows the timeline for a mission execution scenario con-

sisting of three robots collaborating to achieve mission objectives. It shows the period between the

emergence of events and addressing the adaptation concerns raised by these events. The figure

also illustrates the execution of the nuDECIDE stages by these robots over 700 seconds ( roughly

12 minutes) of the simulated time period.2 The circled numbers 1,2,3,4 represent the execution of

nuDECIDE stages by the control instance running on each robot. Figure 5.5 depicts an activity

diagram that describes 1-4 stages of nuDECIDE. Table 5.4 illustrates the characteristics of the

events derived from the mission execution scenario and affect the multi-robot system. In the

following, we review the time moments (t) for these events and describe some of nuDECIDE

controllers’ primary operations running on these robots:

• (t ≈ 0s). At system startup, nuDECIDE control instance running on each robot executes

the local capability analysis stage and share contribution summary with peer controllers.

After sharing the summary, nuDECIDE control waits for a specified time window to receive

contribution summaries from peer controllers. Then each nuDECIDE control instance

executes the partition of system goals stage. Subsequently, this stage defines each robot

(sub)goals based on the alternative contributions proposed by the nuDECIDE control

2Note that the timings from the experiment assume very short task execution times for convenience. In a
real-world scenario, performing this mission may well require many hours.
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Figure 5.4: Execution of nuDECIDE stages 1–4 for a three-robot deployed in a mission involves
handcrafted event

Robot (i) Sensor (pretry
i j )

Event period
(start:finish)

Type of event (fail-
ure (f), degradation
(d), recovery (r))

robot1 pretry
11 206:255, d 65%

robot3 pretry
31 , pretry

32 ,
pretry

33 and pretry
34

125:192, 619:654, f, r

Table 5.4: Events introduced in the mission scenario

instances running on each robot. The execution of the partition stage identifies the CLAs of

robot i ∈ {1,2,3} per task type as follow:

– robot1 = tasT ypm{2.83, 71.41, 14.7}

– robot2 = tasT ypp{2.4, 69.02, 14.97}

– robot3 = tasT ypm{1.165, 37.97, 6.75}, tasT ypp{1.397, 40.93, 8.24}

The CLA defines the robot’s contribution to each type of tasks that the robot has the

specialised sensors to perform. In particular, the CLA specifies for each the amount of

distance the robot must cover for each type of gas inspection tasks. The CLA also determines

how much energy and time each robot can use during a duty round to perform its tasks. In

this mission, a task is defined as the meter distance a robot has to inspect with its sensors.
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• (t ≈ 125s). Robot3 experiences a failure renders the robot unable to continue fulfilling

its CLA. As a result, the robot stops sending its periodic heartbeat messages and loses

contact with its peers (robot1 and robot2). After a period of time (approximately 35 seconds),

the heartbeat mechanism running on robot1 and robot2 detects that robot3 is missing

and subsequently interpret the execution of local control stage. Then, robot1 and robot2

re-execute the partition of system goals stage to define the CLA for each robot, which is as

follows:

– robot1 = tasT ypm{2.83, 71.41, 14.7}

– robot2 = tasT ypp{2.4, 69.02, 14.97}

As Figure 5.4 depicts, robot1 has to perform the task of inspecting the presence of methane

gas in which the robot must cover a distance of 2.83 meters to inspect the leakage of

methane gas. While robot2 needs to inspect 2.4 meters of the pipeline to ensure there is no

leakage of propane gas.

• (t ≈ 206s). Robot1 undergoes a major local change where Sensor 1 suffers from a significant

degradation of service. As it is unable to meet its CLA, it computes and shares with

peer its new contribution summary. The new robot’s CLA provides less contribution to

system requirements as the sensor affected by the degradation takes less time when taking

readings. The new CLAs established for robot1 and robot2 are as the following:

– robot1 = tasT ypm{1.69, 58.71, 14.92}

– robot2 = tasT ypp{2.4, 69.02, 14.97}

• (t ≈ 619s). As robot3 has recovered after experiencing a total failure, the robot calculates

and notifies peers of its contribution summary, and thus initiates a new CLA re-negotiation

which results in the following CLAs:

– robot1 = tasT ypm{1.69, 58.71, 14.92}

– robot2 = tasT ypp{2.4, 69.02, 14.97}

– robot3 = tasT ypm{1.165, 37.97, 6.75}, tasT ypp{1.397, 40.93, 8.24}

Random events. For the second type of experiments, which is performed to answer the re-

search question RQ1, the experiment was carried out using m = 3 real-robots that were deployed

in a mission scenario that included randomly generated disruptive events. The mission scenario

includes disruptions events such as degradation of a robot sensor, total failure of a robot or one of

its sensors. It is worth mentioning that randomness in generating events is not limited to the type

of the generated event but includes the timing during which an event occurs. There is a time gap

between 20 and 200 seconds between the successive events in synthesising these events. In the
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Figure 5.5: Workflow of a decentralised nuDECIDE controller

following, we review the results of one of these experiments, which cover a period of 725 seconds,

in Figure 5.6. Table 5.5 demonstrates the characteristics of the randomly generated events which

derive from the actual mission execution. The system parameters for this experiment contain

the values mentioned in Table 5.9, and the description of the scenario and adaptation actions

performed by the robots is provided below:
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Figure 5.6: Execution of nuDECIDE stages 1–4 for a three-robot deployed in a mission involves
random event

• With in the first 60s of the experiment, the three robots are forming into a team. At the

system startup stage the nuDECIDE control instance running on each robot computes its

contribution summary and shares its this summary with peers. After sharing the summary,

nuDECIDE control waits for a specified time window to receive contribution summaries

from peer controllers. Then, each control instance uses linear programming method to
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Robot (i) Sensor (pretry
i j )

Event period
(start:finish)

Type of event (fail-
ure (f), degradation
(d), recovery (r))

robot1 pretry
11 360:409, 626:668 f, r

robot1 pretry
12 360:409, 626:668 f, r

robot2 pretry
21 489:509, d 22%

robot3 pretry
31 104:122, 212:261, d 12%, d 28%

Table 5.5: Random events introduced in the mission scenario

formulate and partition system goals, in which the method rigorously selects the local goals

for each robot. Thus, the execution of the partition stage establishes the initial CLAs for

robots 1, 2 and 3 per each task type as follow:

– robot1 = tasT ypm{1.52, 38.56, 14.84}

– robot2 = tasT ypp{1.87, 53.76, 14.89}

– robot3 = tasT ypm{1.76, 50.8, 8.9775}, tasT ypp{0.73, 21.38, 5.2}

• Between time instant t = 42s and t = 106s, the robots carry out their tasks as allocated, and

regularly exchange heartbeats, run the local control loop.

• At approximately time instant t = 125s, robot3 experiences a major local change where

Sensor 1 suffers from a slight degradation of service 16%. To continue achieving its CLA,

the robot changes its configuration to an alternative configuration that satisfies its CLA.

In particular, the robot reduces its speed from 4 cm/s to 2 cm/s and changes its sensor

configuration p3,2 = 0.75 to relay more on Sensor 2 in obtaining measurements. The new

configuration of the robot consumes more energy to carry out its tasks, but the robot still

achieves its local goals.

• Between time instant t = 212s and t = 261s, robot3 undergoes a major local change where

Sensor 1 suffers from a significant degradation of service. In particular, The accuracy of

the sensor readings degrades by 28%, which renders the robot unable to meet its CLA. As

a result, the robot notifies its peers by computing and sharing with its new contribution

summary. By notifying its peers, the robot initiates a new CLA re-negotiation which results

in the following CLAs:

– robot1 = tasT ypm{1.52, 38.56, 14.84}

– robot2 = tasT ypp{1.87, 53.76, 14.89}

– robot3 = tasT ypm{0.82, 33.82, 5.83}, tasT ypp{0.92, 25.79, 6.34}
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The new CLA for robot3 shows that the robot contributes less than before in using its

sensors to make measurements along the methane pipeline, while it contributes more to

making more measurements along the propane pipeline.

• At time instant t ≈ 360s, robot1 suffers from a total failure, which makes the robot unable

to satisfy its CLA and sending periodic heartbeats to its peers. In return, robot2 and robot3

discover, after a short period of time, about 25 seconds, that robot1 is missing. Thus, the

remaining active robots re-execute the partition of system goals control stage and establish

the following CLAs:

– robot2 = tasT ypp{1.87, 53.76, 14.89}

– robot3 = tasT ypm{1.34, 54.46, 13.56}

• Between time instant t = 489s and t = 509s, robot2 experience a local change, where the

accuracy of measurements provided by Sensor 2 degrades by 22%. The robot alters its

configuration by adjusting the probability (p2,1), which makes the robot rely more on Sensor

1 for taking the necessary measurements along the propane pipeline. The new configuration

requires the robot to consume more energy to perform the readings, but it meets the robot’s

CLA.

• At approximately time instant t = 626s, robot1 re-joins the system after experiencing

a complete failure. The robot notifies its peers, by establishing and disseminating its

capability summary. Thus, the robot initiates a new CLA selection, which results in the

following CLAs:

– robot1 = tasT ypm{1.52, 38.56, 14.84}

– robot2 = tasT ypp{1.87, 53.76, 14.89}

– robot3 = tasT ypm{0.82, 33.82, 5.83}, tasT ypp{0.92, 25.79, 6.34}

5.1.4.2 RQ2 (Scalability)

To assess how a nuDECIDE system that uses linear programming method to partition system

goals, can scale with systems with different sizes. We performed a set of experiments and varied

the number of robots in each experiment. The number of robots from these experiments is

between 2 and 42 robots. The aim from varying the size is to compare the CPU time taken by

linear programming solver to partition system goals. As shown in Figure 5.7, the time required

for the goal partitioning grows approximately linearly with the number of robots, starting at

under 0.0002s for m = 3 robots and reaching above 0.0008 seconds for the largest system we

considered (with m = 42 robots). This shows that the approach is scalable to considerable robot

team sizes, when linear programming method is consider for partitioning system goals.
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Figure 5.7: nuDECIDE scalability analysis for the use of linear programming method to partition
system goals

5.1.5 Discussion

The experimental results from Sections 5.1.4.1 and 5.1.4.2 show that the hypothesis underpinning

our evaluation of linear programming method were valid. More specifically, the results from 5.1.4.1

provide evidence that a system comprising a team of real-robots enhanced with self-adaptive

capability using nuDECIDE can address adaptation concerns at runtime. The multi-robot system

has demonstrated resilience when faced with disruptive changes such as a degradation in

sensor measurement accuracy and a total robot failures. In particular, the results indicate the

nuDECIDE with the use of linear programming method, has managed to effectively re-partition

the system goals, in the case where the disruption can not be handled by the local control instance,

or when the multi-robot system realises that one of its robots is missing.

During all these disruptions, the system has proven that it is able to re-partition its goals

within a relatively short period of time, thus making the system restore the ability to achieve its

goals. For instance, the multi-robot system managed to handle a sudden degradation in a robot’s

sensor that renders the robot unable to satisfy its CLA. The nuDECIDE controller instance

that coordinate this robot computed and shared robot with peer its new contribution summary.

Subsequently, the multi-robot system initiated the re-negotiation of selecting a new CLA to

restore compliance with system requirements. Those results provide evidence that nuDECIDE

can effectively support the dependable adaptation in a system comprising distributed components.

The pipeline inspection case study described in Section 3.3.2 is chosen to illustrate that

nuDECIDE can use linear programming method to successfully adapt the decentralised robotic

team. In particular, the case study comprises a realistic robotic team mission that includes
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requirements that can be formalised using the linear programming method. We believe this

case study includes requirements that share characteristics with many of the requirements that

appear in many realistic robotic team missions such as [7, 58, 107]. The aim of implementing

this case study using the real multi-robot system is twofold.

The first aim is to demonstrate how effective is the use of linear programming method in a

team of real-mobile robots that have been enhanced with self-adaptive capabilities using nuDE-

CIDE. Two experiments have been implemented to demonstrate the effectiveness of nuDECIDE

that uses the linear programming method to successfully adapt the decentralised robotic team to

a range of disruptions. These experiments include a number of synthesised events over a simu-

lated period of time. The second goal is to illustrate that nu-DECIDE with linear programming

method can operate with acceptable overheads for systems of different sizes. A set of experiments

were implemented to measure the CPU time taken by the linear programming solver to partition

system goals. The experiments differ in terms of the size of the goal partitioning problem, where

the state space of the problem has increased by adding two robots from one experiment to another.

The aim of carrying out these experiments is to illustrate that for a given robotic team mission

whose requirements can be formalised as a linear programming problem, nuDECIDE can operate

with acceptable overheads.

Moreover, the case study demonstrates that nuDECIDE can capture the behaviour charac-

teristics of the robotic system along with the characteristics of the goal partitioning problem.

However, further research is required to assess the applicability of nuDECIDE with linear

programming method to a number of additional domains. In particular, we need to examine if

nuDECIDE is able to capture the behaviour characteristics of systems from other domains such

as IoT and transportation. Also, we need to inspect if the linear programming method can capture

the goal partitioning problem from these domains.

In addition, the pipeline inspection case study has been implemented using nuDECIDE

framework, which relies on Prism as the model analysis engine of choice. The requirements that

have been considered as part of the case study are limited to those which may be represented

using discrete-time Markov chains. We envisage that nuDECIDE framework can support the

analysis of requirements for systems from other domains if these requirements can be represented

using Markovian models. The implementation of the pipeline case study provides an insight

into the scope of distributed SASs that can be developed using the nuDECIDE framework. More

specifically, the implementation illustrates the characteristics of the modelling techniques that

can be used to capture the system behaviour and the goal partitioning problem.
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Type of event Description
Robot failure (F) roboti is experiencing a total failure
Battery degradation (D) A sudden degradation in robot i battery level

Probability Increase (I)

An increase in the probability p f ull that defines
the likelihood in which robot i may encounter
the n-th sub-task (subT2,n) (i.e., this sub-task
requires that a robot may be able to collect a full
recyclable bin)

Robot recovery (R)
robot i has joined/(re)joined the team or recovered
its capability

Table 5.6: Events introduced in the mission scenario

5.2 Evaluation of Integer Programming method

5.2.1 Research questions

From reviewing the literature, numerous realistic robotic team missions exist [7, 58, 107] whose

requirements can be formalised in such a way that the integer linear programming method

can be used. In this section, we demonstrate several experiments that aim at assessing the

effectiveness and scalability of nuDECIDE when integer programming method is used to formalise

and partition system goals. In particular, evaluating the effectiveness in using the integer

programming method to formalise the requirements of a given a robotic team mission entails

asserting that the nuDECIDE can successfully adapt the decentralised robotic team to a range

of disruptions. While, the aim form assessing the scalability is to ensure that nu-DECIDE with

integer programming method can be used to partition system goals with acceptable overheads for

at least small teams of robots. To carry out this evaluation, we formulated the research questions

(RQs) summarised below.

RQ1 (Effectiveness) Can nuDECIDE with integer programming method handle different

patterns of disruptions successfully?

To evaluate the effectiveness, we carried out experiments that aim at illustrating how a

robotic team that is enhanced with self-adaptive capabilities using nuDECIDE can use integer

programming method to successfully adapt the decentralised robotic team to a range of disrup-

tive events. The experiments were performed using a simulated multi-robot missions whose

characteristics and requirements are found in Section 3.4.2. The simulated multi-robot system

comprises (m = 3) robots that are deployed for waste collection in a public park environment. The

experiments comprise an end-to-end scenarios that include a number of disruptive events over a

simulated period of time. Table 5.6 shows the different patterns of disruptive events that were

seeded in these experiments.

The experiments differ in terms of the method used to synthesise events that are included
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in the end-to-end scenarios. To assess the effectiveness we performed two experiments. The

first experiment comprises an end-to-end scenario that include predetermined events. Whereas,

the second experiment includes randomly generated events. The aim from these experiments

is to build confidence that the nuDECIDE decentralised controllers can deal with the impact of

different types of failure.

RQ2 (Scalability) How does the overhead of using nu-DECIDE with linear programming

method increase as the number of robots in the team grows?

To assess the scalability, we carried out a set of experiments aimed at examining the impact

of increasing the number of simulated robots on the ability of nuDECIDE to deal with systems of

different sizes. In particular, the experiments related to the scalability concern focus on the goal

partitioning control stage, since the analysis that takes place at this control stage is performed at

a system level and is considerably affected by the increase in system size.

For evaluating the above research questions, we carried out several experiments using a 2.5

GHz Intel Core i7 MACBOOK Pro computer with 16GB memory, running Mac OS X 10.14. All

experiments that required the partition of system goals using the integer programming method,

we used an interface from the JAVA programming language to a linear and nonlinear integer

programming solver called SCIP [78], which is used to formulate and solve the partition problem.

This library was used to encode the models for the partitioning problem. These models are used

when executing the goal partitioning stage of the nuDECIDE decentralised control.

5.2.2 Case study: waste management

To answer the research questions from the previous section, we considered the multi-robot waste

management application introduced in Section 3.4.2. In this application, m > 1 mobile robots are

used to collect both garbage and recyclables from n ≥ 1 physically distributed waste collections

locations in a public park environment. The full details of the application are provided earlier

in the thesis, so this section focuses on describing the two sets of experiments that we ran in

simulation in order to address our research questions.

5.2.3 Waste management simulator

A decentralised discrete-event simulator was implemented in Java to enable the experiments

detailed in this section. An instance of this simulator was run for each of the m mobile robots

from the system. A key component of this instance was the nuDECIDE software platform that

was specialised for the waste management application by following the engineering approach

described in Section 4.3.
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5.2.4 Experimental results

5.2.4.1 Experiments for research question RQ1

For this research question, we carried out two different types of experiments, each of which

considered a robot team comprising m = 3 robots. The former type of experiment involved creating

a synthetic scenario in which the three-robot system had to dynamically adapt in order to cope

with a set of predefined disruptions occurring at predefined times. The purpose of this experiment

was to establish whether the expected adaptations would be performed by the robots. Depending

on the type and severity of the introduced pattern of failure, the expected adaptation may take

the following form:

• Assuming that a disruptive event has affected the i-th robot and the local control loop of

that robot can address this adaptation concern locally. The robot has to successfully adapt

after a period of time since the disruption, and modify its behaviour (i.e., configuration) to

continue achieving its CLA;

• If the disruptive event requires that m-robot system partition/(re)partition the tasks of

the mission. The multi-robot system successfully adapt after a period of time since the

disruption, and the tasks of the mission are partitioned to the robot team with consideration

of modified robot team members and/or modified robot capabilities, and in line with the

system requirements outlined in Section 3.4.2;

• with nuDECIDE appropriately configured, the period of time from the previous bullet point

is “short” (i.e., within seconds).

• nuDECIDE with integer programming method can operate with acceptable overheads for

at least small teams of robots.

The values of the system parameters for this experiment are shown in Tables 5.7 and 5.8. While,

the experimental results are shown in Figure 5.8 (which covers an 800-second system mission3)

and are detailed below:

• Within the first 60s of the experiment, the three robots are forming into a team, and the

nuDECIDE control instance running on each robot computes a disseminates its contribution

summary. Then, a nuDECIDE controller waits for a short period time (time_window2) which

is Table 5.7, to allow the opportunity to synchronise the start timing between controllers and

avoid the situation in which a nuDECIDE control instance executes the partition control

stage twice as it has started before others. Then each nuDECIDE control instance uses

integer programming method to formulate and solve the partition problem. The execution

3Like for the robotic-team application from Section 5.1, small execution times were assumed for the tasks
performed by the robots. In a real-world scenario, this type a mission is likely to take a much longer time to complete,
e.g., several hours.
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Figure 5.8: Execution of nuDECIDE stages 1–4 for a three-robot deployed in a mission involves
predetermined event

of the partition stage identifies CLAs of robot i ∈ {1,2,3}. A CLA specifies the collections

tasks assigned to each robot along with determining the amount of energy and time (e i, ti)

a robot can use to perform tasks. The initial CLAs are defined as follow:

– robot1 is assigned collection tasks (1) and must consume energy and time less than

(352.28, 310.61).

– robot2 is assigned collection tasks (2, 3, 4) and should consume energy and time less

than (1029.96, 940.83).

– robot3 is assigned collection tasks (5, 6, 7, 8) and must consume energy and time less

than (987.12, 1070.6).

• Between time instant t = 60s and t = 210s, the robots carry out their tasks as allocated, and

regularly exchange heartbeats, run the local control loop.

• At approximately t = 210s, robot2 experiences a significant increase by 75% in the probabil-

ity (p f ull2), which defines the likelihood that the robot would encounter a full recyclable

bin. As a result its local control loop can not comply with the robots CLA, and the robot

computes and shares to its peers an updated contribution summary. Then, the multi-robot

system re-execute the partition of system goals control stage to define the CLA for each

robot, which is as follows:
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– robot1 is assigned collection tasks (1) and must consume energy and time less than

352.28,310.61.

– robot2 is assigned collection tasks (2, 3) and should consume energy and time less

than 858.3,940.41.

– robot3 is assigned collection tasks (4, 5, 6, 7) and must consume energy and time less

than (987.12, 1070.6).

• Between time instant t = 270s and t = 330s, the team of robots perform their tasks as

normal, and regularly exchange heartbeats, run the local control loop.

• At time instant t = 332s, robot1 experiences a local change where the total energy available

for the robot to achieve its CLA has degraded by 15%. To continue achieving its CLA,

the robot reduces its speed from the value 3 to 1 and adjust the probability (p1,2) of

collecting non-full bin to 0.6 (i.e., the probability of performing sub-task (subT3) ).The new

configuration reqires that the robot to consume more time in executing its allocated task,

however the robot can still meet its CLA.

• Finally, at time instant t = 712s, Robot1 experiences a total failure, which renders it unable

to fulfil its CLA. As a result of this failure, the robot stops sending periodic messages

indicating that it operates as usual. In return, the peers of the robot (Robot2 and Robot3)

lose contact with the robot and, after a short period of time, about 25 seconds, begin to

re-negotiate the partition of system goals. This short period of time is configurable as part of

the parameters from Table 5.7 that define the parameters for the mission’s characteristics.

The time_window1 parameter specifies the period of time during which the robot must wait

for a heartbeat message from its peers before concluding that they are missing. The new

CLAs established for the remaining two robots are as follow:

– robot2 is assigned collection tasks 1,2 and should consume energy and time less than

858.3,940.41.

– robot3 is assigned collection tasks 3,4,5,6 and must consume energy and time less

than 987.12,1070.6.

These results provide evidence that the robotic team that is enhanced with self-adaptive capa-

bilities using nuDECIDE can use the integer programming method to successfully adapt the

decentralised robotic team to a range of disruptive events such as a sudden increase in a robot’s

workload and total failure of a robot. More specifically, the results illustrate that if the disruptive

event requires the multi-robot system to re-negotiate the partition of system goals as a robot could

not achieve its CLA, the affected robot notifies its peers, and a new CLA is selected for each robot

in the system. Also, the results demonstrate that if a disruptive event that can be handled by

local adaptation occurs, the affected robot changes its configuration to restore its compliance with
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Parameter Description Value
n Number of waste collection tasks 8

distance
Amount of distance between the consecu-
tive tasks

180 meter

time_window1

Amount of time between sending the fre-
quent alive messages (i.e., the frequency of
the heartbeat)

20 seconds

time_window2
Amount of time for the frequency of execut-
ing the local control loop

10 seconds

α
Amount of confidence used to compute the
capability summary

0.90

time_per_round Amount of time available for a duty round 1200 seconds

Table 5.7: Parameters defining the mission characteristics

its CLA. These remarks provide evidence that nuDECIDE can support dependable adaptation as

the results indicate that nuDECIDE can handle effectively different pattern of failures.

For the latter type of experiment carried out to answer research question RQ1, the simulation

involved having the three-robot system dealing with a similar scenario, but with the adverse

events generated randomly, such that:

1. the scenario included random event types covering all types of adverse events listed in

Table 5.6;

2. the timing of the events was also randomly chosen, in such a way that there was a gap of

between 20s and 200s between events.

We report the results of one such experiment, covering a period of 2000 seconds, in Figure 5.9. The

system parameters for this experiment had the values reported in Table 5.9, and the description

of the scenario and adaptation actions performed by the robots is provided below:

• Within the first 60s of the experiment, the multi-robot system is forming into a team,

and the nuDECIDE control instance running on each robot establishes and shares its

contribution summary with its peers. Then, the nuDECIDE control instance waits for a

specified period time, to receive contribution summaries from peer controllers. Then the

nuDECIDE control instance running on each robot, initiate the the partition of system

goals control stage. This control stage uses integer programming method to formulate and

solve the partition problem. The execution of the partition control stage results in the

CLAs:

– robot1 is assigned collection tasks (1, 2, 3) and must consume energy and time less

than (980.88, 1009.77).
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Parameter Description Value
Parameters of robot1
E1 Amount of energy available per duty round 1200 Joules
B1 Amount of total energy available for the mission purpose 6000 Joules
sp1 A variable for the speed of a robot in moving between task locations sp1 ∈ {1, 2, 3, 4} m/s
r1,1 The rate for executing sub-task (subT1) 0.0023
r1,2 The rate for executing sub-task (subT2) 0.0012
r1,3 The rate for executing sub-task (subT3) 0.001
e1,1 The rate of energy consumption for executing sub-task (subT1) 0.44 joules/second
e1,2 The rate of energy consumption for executing sub-task (subT2) 0.51 joules/second
e1,3 The rate of energy consumption for executing sub-task (subT3) 0.38 joules/second
t1,1 The rate of time consumption for executing sub-task (subT1) 0.019
t1,2 The rate of time consumption for executing sub-task (subT2) 0.024
t1,3 The rate of time consumption for executing sub-task (subT3) 0.012
Parameters of robot_2
E2 Amount of energy available per duty round 1150 Joules
B2 Amount of total energy available for the mission purpose 5750 Joules
sp2 A variable for the speed of a robot in moving between task locations sp2 ∈ {1, 2, 3, 4} m/s
r2,1 The rate for executing sub-task (subT1) 0.0024
r2,2 The rate for executing sub-task (subT2) 0.0013
r2,3 The rate for executing sub-task (subT3) 0.001
e2,1 The rate of energy consumption for executing sub-task (subT1) 0.41 joules/second
e2,2 The rate of energy consumption for executing sub-task (subT2) 0.47 joules/second
e2,3 The rate of energy consumption for executing sub-task (subT3) 0.36 joules/second
t2,1 The rate of time consumption for executing sub-task (subT1) 0.012
t2,2 The rate of time consumption for executing sub-task (subT2) 0.017
t2,3 The rate of time consumption for executing sub-task (subT3) 0.006
Parameters of robot_3
E3 Amount of energy available per duty round 1100 Joules
B3 Amount of total energy available for the mission purpose 5500 Joules
sp3 A variable for the speed of a robot in moving between task locations sp3 ∈ {1, 2, 3, 4} m/s
r3,1 The rate for executing sub-task (subT1) 0.0024
r3,2 The rate for executing sub-task (subT2) 0.0013
r3,3 The rate for executing sub-task (subT3) 0.001
e3,1 The rate of energy consumption for executing sub-task (subT1) 0.39 joules/second
e3,2 The rate of energy consumption for executing sub-task (subT2) 0.45 joules/second
e3,3 The rate of energy consumption for executing sub-task (subT3) 0.34 joules/second
t3,1 The rate of time consumption for executing sub-task (subT1) 0.009
t3,2 The rate of time consumption for executing sub-task (subT2) 0.014
t3,3 The rate of time consumption for executing sub-task (subT3) 0.002

Table 5.8: Parameters defining the characteristics of robot i behaviour
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– robot2 is assigned collection tasks (4, 5) and should consume energy and time less

than (707.24, 706.6).

– robot3 is assigned collection tasks (6, 7, 8) and must consume energy and time less

than (996.48, 1113.6).

• Between time instant t = 60s and t = 165s, the robots carry out their tasks as allocated, and

regularly exchange heartbeats, run the local control loop.

• At time instant t = 166, two simultaneous disruptive events occurring at approximately

the same time (i.e., the time between occurrence of the two events is approximately 6

seconds). In the first event, robot3 experiences a slight increase in the probability p f ull7 ,

which defines the likelihood that the robot would encounter a full recyclable bin. The

local control loop of the robot manages to synthesise a local adaptation plan to restore its

compliance with its CLA. The robot alter the configurable parameter (p3,1), which defines

the probability of collecting full recyclable bin (i.e., executing the sub-task (subT2)). While

in the second event, robot2 undergoes a major local change, where the total energy available

for the robot to execute its tasks has degraded by 25%. As a result, the robot can not achieve

its CLA and initiate a new CLA re-negotiation, which leads to the following CLAs:

– robot1 is assigned collection tasks (1, 2, 3) and must consume energy and time less

than (980.88, 1009.77).

– robot2 is assigned collection tasks (4) and should consume energy and time less than

(447.14, 414.79).

– robot3 is assigned collection tasks (5, 6, 7) and must consume energy and time less

than (996.48, 1113.6).

• Between time instant t = 234s and t = 920s, the team of robots carry out their tasks as

allocated and continue to satisfy their CLAs.

• At time instant t = 921s, robot3 experiences a complete failure that makes the robot unable

to achieve its CLA. As a result, the robot stops sending its periodic heartbeats and loses

contact with its peers (robot1 and robot2). After a short period of time (approximately 25

seconds), the nuDECIDE control instances running on robot1 and robot2 realise that robot3

is missing and re-execute the partition of system goals control stage, which establishes the

new CLAs as follow:

– robot1 is assigned collection tasks (1, 2, 3) and must consume energy and time less

than (980.88, 1009.77).

– robot2 is assigned collection tasks (4) and should consume energy and time less than

(447.14, 414.79).
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• Between time instant t = 986s and t = 1416s, both robot1 and robot2 execute their tasks as

allocated, and regularly the two robots exchange heartbeats.

• At time instant t = 1417s, robot1 experiences a sudden increase in its workload, where the

value of environment parameter (p f ull3) has increased by 80%. This parameter defines the

probability, in which the robot may have to collect a full recyclable bin (i.e., the likelihood in

which the robot may encounter the sub-task (subT2)). As a result, the robot can not comply

with its CLA and it notifies robot2 with its updated contribution summary. Thus, the two

robots identify the following new CLAs:

– robot1 is assigned collection tasks (1, 2) and must consume energy and time less than

(649.84, 840.34).

– robot2 is assigned collection tasks (3) and should consume energy and time less than

(447.14, 414.79).

• At approximately time instant t = 1933s, robot3 rejoins the multi-robot system. The robot

notifies its peers that it can contribute towards achieving system goals by computing and

sharing its capability summary. Thus, the robot initiates a new CLA re-negotiation, which

results in the following CLAs:

– robot1 is assigned collection tasks (1, 2) and must consume energy and time less than

(649.84, 840.34).

– robot2 is assigned collection tasks (3) and should consume energy and time less than

(447.14, 414.79).

– robot3 is assigned collection tasks (4, 5, 6) and must consume energy and time less

than (996.48, 1113.6).

The results of the second type of experiments demonstrate the ability of the multi-robot

system, which has been enhanced with the self-adaptive capabilities using nuDECIDE, to

cope with various randomly generated disruptions. For example, the results indicate that the

decentralised controllers are able to deal with disruptive events that may occur in two different

robots, but simultaneously (e.g., as in time instant t = 166s), and the nuDECIDE control instance

that coordinates the adaptation abilities of each robot can synthesise an adaptation plan as

needed. More specifically, if the control instance can address the adaptation concerns through its

local control loop by synthesising a local adaptation plan that satisfies its CLA, no notification

is sent to its peers. If, however, the disruptive event can not be handled with local adaptation,

the control instance recalculates its contribution summary, then its peers are notified, and the

system goals are re-partitioned.

These observations contribute to building confidence that the approach works in general and

can handle predefined and randomly generated disruptions, limiting its components’ ability to
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Figure 5.9: Execution of nuDECIDE stages 1–4 for a three-robot deployed in a mission involves
random event

meet their local goals. In particular, the results from the two types of experiments show that the

nuDECIDE variant using integer programming for the partition of the system goals can handle

all types of events identified in Table 5.6, while the time required to respond to the different

types of disruption varied between 5s and 60s.

5.2.4.2 Experiments for research question RQ2

For this research question, we executed the goal partitioning stage of the nuDECIDE decen-

tralised control for robot teams comprising between m = 2 and m = 66 robots. The full simulation

was not executed because all the other nuDECIDE stages only involve local computations with

local models and local data. Therefore, assessing the scalability of nuDECIDE with integer

programming only requires the evaluation of the goal partitioning stage, whose experimental

results are shown in Figure 5.10, which we carried our for a problem instance with the same

system parameters as in Tables 5.7 and 5.8. These experimental results, which were carried out

with a 2.5 GHz Intel Core i7 MACBOOK Pro computer with 16GB memory, running Mac OSX

10.14., shown that time required for the goal partitioning grows approximately linearly with the

number of robots, starting at under 0.02s for m = 3 robots and reaching above a fraction of second

(0.1s) for the largest system we considered (with m = 66 robots). This shows that the approach is

scalable to considerable robot team sizes.
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Parameter Description Value
Parameters of robot_1
E1 Amount of energy available per duty round 1150 Joules
B1 Amount of total energy available for the mission purpose 5750 Joules
sp1 A variable for the speed of a robot in moving between task locations sp1 ∈ {1, 2, 3, 4} m/s
r1,1 The rate for executing sub-task (subT1) 0.0024
r1,2 The rate for executing sub-task (subT2) 0.0013
r1,3 The rate for executing sub-task (subT3) 0.001
e1,1 The rate of energy consumption for executing sub-task (subT1) 0.41 joules/second
e1,2 The rate of energy consumption for executing sub-task (subT2) 0.47 joules/second
e1,3 The rate of energy consumption for executing sub-task (subT3) 0.36 joules/second
t1,1 The rate of time consumption for executing sub-task (subT1) 0.012
t1,2 The rate of time consumption for executing sub-task (subT2) 0.017
t1,3 The rate of time consumption for executing sub-task (subT3) 0.006
Parameters of robot2
E2 Amount of energy available per duty round 1100 Joules
B2 Amount of total energy available for the mission purpose 5500 Joules
sp2 A variable for the speed of a robot in moving between task locations sp2 ∈ {1, 2, 3, 4} m/s
r2,1 The rate for executing sub-task (subT1) 0.0034
r2,2 The rate for executing sub-task (subT2) 0.0019
r2,3 The rate for executing sub-task (subT3) 0.004
e2,1 The rate of energy consumption for executing sub-task (subT1) 0.46 joules/second
e2,2 The rate of energy consumption for executing sub-task (subT2) 0.51 joules/second
e2,3 The rate of energy consumption for executing sub-task (subT3) 0.39 joules/second
t2,1 The rate of time consumption for executing sub-task (subT1) 0.016
t2,2 The rate of time consumption for executing sub-task (subT2) 0.022
t2,3 The rate of time consumption for executing sub-task (subT3) 0.010
Parameters of robot_3
E3 Amount of energy available per duty round 1100 Joules
B3 Amount of total energy available for the mission purpose 5500 Joules
sp3 A variable for the speed of a robot in moving between task locations sp3 ∈ {1, 2, 3, 4} m/s
r3,1 The rate for executing sub-task (subT1) 0.0025
r3,2 The rate for executing sub-task (subT2) 0.0013
r3,3 The rate for executing sub-task (subT3) 0.001
e3,1 The rate of energy consumption for executing sub-task (subT1) 0.40 joules/second
e3,2 The rate of energy consumption for executing sub-task (subT2) 0.46 joules/second
e3,3 The rate of energy consumption for executing sub-task (subT3) 0.35 joules/second
t3,1 The rate of time consumption for executing sub-task (subT1) 0.011
t3,2 The rate of time consumption for executing sub-task (subT2) 0.016
t3,3 The rate of time consumption for executing sub-task (subT3) 0.007

Table 5.9: Parameters used for the second type of experiments that define the characteristics of
the i-th behaviour
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5.2.5 Discussion

The experiments we conducted in Section 5.2.4.1 demonstrate that nuDECIDE with the integer

programming method can effectively support self-adaptation in a multi-robot system. The use of

the integer programming method allows representing and partitioning system goals among the

robots effectively. These experiments provide evidence of how effective the method is, whether the

method was used at the start-up stage, where the team of robots is forming, and the system goals

need to be allocated for the first time, or after the occurrence of disruptive events that require

the re-allocation of system goals.

The results also demonstrate how the various control stages, from nuDECIDE control, behave

in response to disruptions that affect a robot’s ability to satisfy its CLA. For example, when the

robot experiences an event that renders the robot unable to achieve its local goals, the local

control loop of the affected robot tries to synthesise a local adaptation plan, which includes

changing its configuration to restore the robot’s compliance with its CLA. However, suppose the

robot is unable to synthesise a local adaptation plan within the local control stage. In that case,

it requests a global adaptation that would lead to selecting new CLAs for the multi-robot system.

Also, the experimental results illustrate that the estimated time for executing the control

stages of nuDECIDE is relatively small, as the highest recorded time is 25 seconds, which was

due to a total failure in one of the robots. In such an event, the remaining robot would detect that
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a robot has failed after a short period of time. As for the experiments conducted in Section 5.2.4.2,

the results show how scalable the approach is when the integer programming method is used to

formulate and partition system goals. The results provide evidence on the impact of expanding

the system’s size by increasing the number of robots. The experiments simulate the execution of

the goal partitioning stage using a variable size of robots. These experiments provide evidence

that the estimated time for executing the goal partitioning in a system comprising m = 66 robots

is relatively marginal. Indeed, especially when considering the size of the robots and the number

of constraints included in the model. For instance, for a robot team comprising m = 66 robots,

the number of decision variables and constraints included in the model that corresponds to this

partitioning problem is 1056 variables and 662 constraints.

The waste management case study is selected as it provides insight into the scope of goal

partitioning problems that can be represented using the integer program method. Specifically, the

case study examines deploying a multi-robot system to a mission that includes a goal partitioning

problem that can be formulated using the integer programming method. We believe that this case

study includes requirements with similar characteristics to requirements for many applications

[55, 56, 128]. By implementing and evaluating this case study, we aim at demonstrating that

nuDECIDE can use the integer programming method to successfully adapt the decentralised

robotic team.

This case study illustrates that nuDECIDE with the integer programming method can

represent the behaviour characteristics of the robotic system along with the characteristics of

the goal partitioning problem. Unlike the pipeline inspection case study, this case study uses

continuous-time Markov chain (CTMC) models to captures the temporal characteristics of robots.

For instance, CTMCs allow quantifying if the time required by a robot to finish its tasks is less

than a threshold. Thus, the use of CTMCs rather than DTMCs in this case study complements

the shortcomings in the pipeline inspection case study. As the waste management case study

expands the characteristics of behaviour, which can be represented and reasoned about using

nuDECIDE framework.

Also, this case study exhibits the use of the integer programming method to partition system

goals. This method expands the characteristics of goal partitioning problems that can be repre-

sented using nuDECIDE. Unlike linear programming, integer programming includes decision

variables that are restricted to be integer. In general integer programming is a discrete mathemat-

ical optimisation problem that comprises a linear objective function that includes integer decision

variables. The optimisation of the objective function is subject to a set of linear constraints. Since

the integer programming method uses discrete decision variables, many real-life problems can

be formulated as integer programming problems. For example, assignment problems in which

only a subset of the tasks can be undertaken at any one time. Another example is scheduling

problems which necessitates respecting the precedence among tasks that need to be executed.

We believe that this case study provides insight into the scope of distributed systems that
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can be enhanced with self-adaptation using nuDECIDE with integer programming method. In

particular, the case study demonstrates the characteristics of goal partitioning problems that

can be modelled using the integer programming method. Also, the case study illustrates the

characteristics of requirements that can be reasoned about using nuDECIDE framework. The

evaluation of this case study covers the efficacy and scalability aspects. It does not extend to

consider the role of the confidence interval on optimising the system goals.

nuDECIDE is a pessimistic approach and relies on the use of conservative assumptions

to configure how conservative is the contributions of a robot. This conservativeness leads to a

less optimal configuration from a system point of view. These conservative assumptions allow a

certain amount of “slack” for robots to handle environment uncertainties locally. While, they lead

to an increase in the system-level costs (e.g., energy and time associated with achieving system

goals). Further research is required to establish the tradeoff between the efficiency with which

the robots operate, and the frequency with which the robots become unable to satisfy system

goals.

5.3 Evaluation of MDP Policy Synthesis method

5.3.1 Research questions

In this section, we review several experiments aimed at evaluating the efficacy and scalability

of nuDECIDE when using the MDP policy synthesis method for partitioning system goals. In

particular, the use of the MDP policy synthesis method provides the ability to consider the

uncertainty arising from the behaviour of some system components towards achieving its sub

goals during the partition of system goals among its components. Considering this uncertainty in

the behaviour of any of the system components towards achieving its objectives, helps to avoid

repeated self-adaptation at the system-level. In general, this type of adaptation is more expensive

than a component-level adaptation because it requires the concerted efforts of all components of

the system to achieve it.

The use of the MDP policy synthesis method also provides the ability to represent the partition

of system goals in the form of a probability distribution. This representation does not compromise

with the required level of guarantees in achieving system goals. More specifically, the partition of

system goals using this method provides the necessary guarantees for a system to achieve its

goals whenever the system components adhere to their local goals. Below we review the research

questions aimed at assessing the efficacy and scalability of the approach when using the MDP

policy synthesis method in partitioning system goals.

RQ1 (Effectiveness) Can nuDECIDE with the MDP policy synthesis method handle different

patterns of disruptions successfully, and what are the benefits in considering the probabilistic

behaviour of the robots in the second variant of the method?
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To address this research question, we performed several experiments aimed at evaluating the

efficacy of nuDECIDE when using the MDP policy synthesis method for partitioning system goals.

In particular, a number of experiments have been conducted that aim to compare the benefits of

using an MDP model variant that represents the partition problem, considering the behaviour

of a robot in implementing system goals, with another MDP model variant that represents the

partition problem but does not factor the behaviour of a robot in achieving system goals.

RQ2 (scalability) How does the overhead of using nu-DECIDE with MDP policy synthesis

method increase as the number of robots in the team grows?

We performed several experiments to assess the scalability of nuDECIDE when using MDP

policy synthesis method to partition system goals. These experiments are conducted by simulating

the steady increase in the number of robots from one experiment to another. The aim is to assess

the impact of this increase on the timely synthesis of adaptation plans that partition the system

goals. As in other experiments conducted to assess scalability, these experiments focus on the

control phase that is concerned with the allocation of system goals because this control stage is

the only control activity carried out at a system- level.

For evaluating the above research questions, we carried out several experiments using a

2.5 GHz Intel Core i7 MACBOOK Pro computer with 16GB memory, running Mac OSX 10.14.

All these experiments include the execution of the goal partitioning stage of the nuDECIDE

decentralised control for robot teams. In encoding the models used to represent the partition

problem, we used PRISM’s concrete syntax. While the partition of goals is carried out using the

PRISM probabilistic model checking tool.

5.3.2 Case study: waste management

For the evaluation of MDP policy synthesis method, we used a slightly modified version of the

waste management case study from Section 3.4.2. The change that we made to that case study

involved extending models that describe the behaviour of the robots with a task utility reward

structure that was used to quantify the rewards, which accumulate when a robot performs the

task of collecting recyclable waste from full and non-full bins.

5.3.3 Simulation environment

We conducted the experiments for this part of the evaluation using the same simulation environ-

ment as described in Section 5.2.3.
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5.3.4 Experimental results

5.3.4.1 RQ1 (Effectiveness)

For evaluation the effectiveness, we conducted two sets of experiments aimed at demonstrating

how a robotic team that uses nuDECIDE could benefit from using the MDP policy synthesis

method in the partition of system goals among its components. The two sets of experiments differ

in terms of the characteristics of the MDP model used to allocate system goals. The first set of

experiments was carried out using an MDP model variant that represents the partition problem

and includes a probability distribution to capture a robot’s behaviour towards achieving the

system goals. While the second group of experiments was conducted using an MDP model variant

that represents the partition problem but without considering the behaviour of robots towards

achieving the system goals. For illustration purpose, we refer to the first set of experiments

that uses an MDP model variant that includes the probability distribution as (UmP), while the

second set of experiments that uses an MDP model variant without including such probability

distribution is referred to as (UmWP).

Each set of experiments comprises 10 experiments, in which each experiment is performed

using a simulated multi-robot mission whose characteristics and requirements are found in

Section 3.5.2. Each mission simulates the deployment of (m = 3) robots to fulfil the mission

requirements during a duty round. Each mission involves deploying the m-robot system to collect

both garbage and recyclables from n = 8 physically distributed waste collections locations in a

public park environment. In this section, we focus on describing the two sets of experiments that

we ran in simulation in order to address the first research question (RQ1).

In general, the experiments carried out in each set involved creating a synthetic scenario in

which two robots may experience disruptive events that affect their ability in collecting waste

from the n-th location. More specifically, such disruptive events may occur from one experiment

to another based on a probability distribution. The experiments from the two sets are similar in

terms of the mission characteristics and requirements. These experiments are similar in terms of

the probability distribution used to introduce disruptive events that may occur randomly from

one experiment to another. In performing each set of experiments, we assumed that robot2 and

robot3 could fail to carry out the waste collection task at location n = 8 during one-third of the

experiments that were conducted within each set of experiments.

Regarding the first set of experiments, we assume that there is a probability distribution,

which captures the behaviour of each robot toward carrying out tasks in locations n = 1. . .8. This

probability distribution represents the ability of a robot to execute tasks in a location. We further

assume that robot1 and robot2 can execute tasks in all locations successfully with the probability

1. However, robot3 is able to successfully perform the tasks in all locations, except for location

(n = 8), as we assume that the robot may fail to reach the location to perform the tasks with the

probability 0.33. We included this probability distribution in the MDP model that represents the

partition problem and can capture robots’ behaviour towards task execution.The evaluation of
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Location n Loc #1 Loc #2 Loc #3 Loc #4 Loc #5 Loc #6 Loc #7 Loc #8
Robot assign-
ment

robot$_2$ robot$_2$ robot$_1$ robot$_2$ robot$_3$ robot$_1$ robot$_3$ robot$_3$

Table 5.10: Assignment of robot i to execute the tasks in the n-th location

the results and observations obtained from conducting the two sets of experiments was carried

out in three stages. In the following, we describe the criteria that have been used to evaluate the

results in each stage:

1. In the first stage (Stage 1), we use the result obtained from the first set of experiments,

which are performed using an MDP model with probability (UmP), to compare the be-

haviour of each robot that is derived from simulating the robot execution of tasks during

experiments, against the behaviour that is derived from the probabilistic model checking

analysis that is carried out at the local control loop of each robot and involves analysing a

CTMC model that describes the behaviour of a robot and its environment.

2. In the second stage (Stage 2), we use the result obtained from the second set of experiments,

which are performed using an MDP model without probability (UmWP), to compare the

behaviour of each robot that is derived from simulating the robot execution of tasks during

experiments, against the behaviour that is derived from the probabilistic model checking

analysis that is carried out at the local control loop of each robot and involves analysing a

CTMC model that describes the behaviour of a robot and its environment.

3. Finally, in the last stage (Stage 3), we compare the results obtained from two previous

stages (Stages 1 and 2) to demonstrate the benefit of using the MDP model variant from

the first set of experiments against the alternative MDP model variant form the second set

of experiments.

For illustration purpose, we refer to the behaviour that is derived from the simulation results as

(SIM), while the behaviour that is derived from the model checking as (MC). As mentioned earlier

in the evaluation criteria (List 5.3.4.1), our approach to evaluating the obtained results is based

on comparing the behaviour of robots. More specifically, we use QoS metrics that are factored

as reward structures in the CTMC model, which describes a robot’s behaviour. These metrics

are associated with a robot’s behaviour towards achieving the tasks assigned to the robot during

the partition of system goals. Namely, these metrics concern the utility, timeliness, and energy

consumption, which can be used to quantify and compare a robots’ task-execution behavior in

line with all of the evaluation criteria. In the following, we describe the criteria that have been

used to evaluate the results in each stage:

(Stage 1): evaluating results using an MDP model with probability (UmP) Table 5.10

shows the outcome of the partition of tasks among robots during the first set of experiments,
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which were performed using the MDP model with the probability to represent the partition

problem. As shown in the table, the tasks in location n = 8 were not assigned to robot3 because

the partition model considers the behaviour of robots in carrying out the tasks. Therefore, during

the simulation of implementing the first set of experiments, none of the robots failed to perform

the assigned tasks.

As Table 5.11 shows, the results obtained from the probabilistic model checking of the robots

behaviour model are relatively close to the results obtained by simulating the robotics team’s

execution of tasks. In general, the results obtained using simulation for energy consumption,

timeliness and utility metrics are better by 7.54%, 13.76%, and 1.39%, respectively, than those

obtained using model checking. The multi-robot system consumed less energy and time when

executing the tasks, and the system gained more utility due to robots completing more waste

collection tasks.

Results obtained through model checking (MC) and using an MDP model
with probability (UmP)

Comparison
criteria

Time Energy Utility

Total average 224.31 3569.72 12.03

Results obtained through simulation (SIM) and using an MDP model
with probability (UmP)

Comparison
criteria

Time Energy Utility

Total average 207.39 3078.49 12.2

Delta -16.92 -491.23 0.17

Table 5.11: Characteristics of the QoS metrics when using an mdp model with a probability
distribution (UmP)

Stage 2: evaluating results using an MDP model without probability (UmWP): The

results obtained from carrying out the second set of experiments are demonstrated in Table 5.13.

Whereas, Table 5.12 shows the outcome of the partition of tasks among robots during the this

set of experiments. The experiments comprise comparing the variation in the utility, energy

consumed and timeliness metrics that are derived from the behaviour of robots obtained using

model checking (MC) against the behaviour observed during the simulation of task execution by

the multi-robot system. The table shows the discrepancy between the results obtained through

Location n Loc #1 Loc #2 Loc #3 Loc #4 Loc #5 Loc #6 Loc #7 Loc #8
Robot assign-
ment

robot$_2$ robot$_2$ robot$_1$ robot$_2$ robot$_3$ robot$_1$ robot$_3$ robot$_3$

Table 5.12: Table describing the assignment of robot i to execute the tasks in the n-th location
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the probabilistic model checking of the robots behaviour model compared to the results obtained

during the simulation. This variance is due to the failure of robot3 in performing the tasks

assigned to it in some experiments. In particular, the robot failed to perform the tasks in location

n = 8, which affected the amount of utility that the multi-robot system obtained from carrying

out the tasks. As shown in the table, the amount of utility had decreased by 8.9 % compared to

the amount estimated during the probabilistic model checking stage. Also, the amount of energy

and time consumed by the robotic team increased by 25 % and 13.86 %, respectively, due to the

failure of robot3 in achieving its local goals.

Results obtained through model checking (MC) and using an MDP model
without probability (UmWP)

Comparison
criteria

Time Energy Utility

Total average 219.12 3524.37 11.87

Results obtained through simulation (SIM) and using an MDP model
without probability (UmWP)

Comparison
criteria

Time Energy Utility

Total average 188.73 2639.972 10.802

Delta -30.39 -884.398 -1.068

Table 5.13: Characteristics of the QoS metrics when using an mdp model without a probability
distribution (UmWP)

5.3.4.2 RQ2 (Scalability)

To assess this research question, we conducted several experiments, which are limited to executing

the goal partitioning stage of the nuDECIDE decentralised control. In particular, we conducted

two sets of experiments; the first set comprises experiments that evaluate the scalability in the

first variant of the MDP policy synthesis method that uses an MDP model that can represent

robots’ behaviour in implementing system goals. The second set of experiments assesses the other

variant of the MDP policy synthesis method, which does not consider the robot’s behaviour in

partitioning system goals. In this section, we describe the experiment settings used in evaluating

each variant of the method, along with the results obtained from carrying the experiments.

To evaluate the scalability in nuDECIDE with the first variant of the MDP policy synthesis

method, we executed the goal partitioning stage of the nuDECIDE decentralised control for

robot teams comprising between m = 2 and m = 14 robots. The plan was initially to simulate

executing the partition stage using teams of robots ranging in size from 2 to 32. Still, the results

from Figure 5.11 shows the time required for the goal partitioning grows exponentially with the

number of robots, starting at under fraction of a second (0.014s) for m = 2 robots, 0.60 second for

m = 6, and reaching 19.6 seconds for the largest system we considered (with m = 14 robots).

142



5.3. EVALUATION OF MDP POLICY SYNTHESIS METHOD

As for the second set of experiments, we simulated the execution of the goal partitioning

stage for robot teams comprising between m = 2 and m = 26 robots. Figure 5.12 illustrate the

results obtained from carrying out these experiments, which aim to evaluate the scalability

in nuDECIDE with the second variant of the MDP policy synthesis method. As with the case

of the first variant of the method, the time required grows exponentially with the number of

robots, starting at under a fraction of a second (0.01s) for m = 2 robots, 0.07 second for m = 6, and

reaching 9.86 seconds for the largest system we considered (with m = 26 robots).

As shown in Figure 5.11 and 5.12, the time required to partition system goals using the two

variants of the method grows exponentially with the size of the multi-robot system (with slightly

smaller times for the second variant of the MDP policy synthesis method compared to the first

variant). This is expected for a model checking technique, and means that this goal partitioning

method is only applicable to systems with a relatively small number of components.
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Figure 5.11: nuDECIDE scalability analysis for the use of the first variant of MDP policy synthesis
method to partition system goals

5.3.5 Discussion

The experiments in Section 5.3.4.1, were conducted to evaluate the effectiveness of nuDECIDE

with two variants of the MDP policy synthesis method. The results illustrate that the method

variant that considers robots’ behaviour when system goals are partitioned among robots outper-

form results obtained from simulating the use of the alternative variant of this method. More

specifically, the results obtained through simulating the execution of tasks by the multi-robot are

relatively consistent with the system’s behaviour derived from the probabilistic model checking.

The results in metrics such as utility, energy consumption, and timeliness associated with task
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Figure 5.12: nuDECIDE scalability analysis for the use of the second variant of MDP policy
synthesis method to partition system goals

execution indicate that the behaviour obtained from simulation outperform the one derived

from model checking. On the other hand, the results obtained through using the second variant

of this method indicate that the behaviour derived from model checking the task execution is

relatively better than what obtained from simulating the task execution by the team of robots.

Thus, considering robots’ behaviour in partitioning system goals can add to the effectiveness and

efficiency of a nuDECIDE system comprising a team of robots.

The results demonstrated in Section 5.3.4.2, which are obtained from simulating the execution

of the goal partitioning stage using the two variants of the MDP policy synthesis method, indicate

the limitation in applying these methods in robot teams comprising a relatively large number

of robots. The results illustrate the exponential growth pattern of the required time when the

system’s size increases.

This case study illustrates the differences when using nuDECIDE with the MDP strategy

synthesis method instead of the integer programming method to partition system goals. In

particular, the case study is chosen to highlight the differences between the two methods and to

show the characteristics of goal partitioning problems that can be supported by each method. In

contrast to the integer programming method, the MDP strategy synthesis method can account

for uncertainty in allocating system goals. In general, the latter method allows capturing the

behaviour of robots towards achieving system goals. Moreover, the two methods differ in terms of

the outcome of the goal partition, when using the MDP strategy synthesis method, the outcome is

a strategy that allocates the goals of the system using probability distributions. While in the case

of using the integer programming method, the outcome of the partition assigns each sub-goal of

the system to a specific robot in a deterministic manner.
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Similar to the integer programming method, we believe that the MDP strategy synthesis

method can be applied to partition problems that are characterised as a pure discrete optimisation

problem [102] where all of the decision variables used are restricted to be an integer. However,

further research is required to assess the applicability of these methods to partition problems

from additional domains. Also, all the goal partition problems that are considered in the context

of this thesis consider a single optimisation metric (i,e. namely optimising the covered distance,

consumed energy and gained utility when using the linear program, integer program and MDP

strategy synthesis methods, respectively). Further research is required to expand the applicability

of nuDECIDE to domains where the partition problem includes several optimisation metrics that

need to be optimised simultaneously.

This case study demonstrates the characteristics of goal partition problems that can be

represented using nuDECIDE with the MDP policy synthesis method. We believe that the

findings of the case study show the advantages of using the MDP model variant that factors for

the uncertainty in achieving system goals compared to the model variant that does not account

for such uncertainty. Also, the findings demonstrate the drawbacks in regard to the scalability

concerns when using the MDP strategy synthesis method compared with the use of the integer

programming method.

5.4 Threats to Validity

This section reviews many of the factors that affect the validity of the findings presented in this

chapter. These factors are classified according to the origin of the threats. In general, validity

threats arise from internal and external factors. Below, we review and discuss the various factors

that affect the validity of the findings presented in this chapter.

External validity factors may pose threats to the applicability of the nuDECIDE frame-

work to developing the decentralised control software for a wide range of systems. Such threats

are evident when the characteristics of the multi-robot system and its requirements are not

captured in the three case studies (i.e., introduced in Chapter 3), which illustrate the effectiveness

of the nuDECIDE framework for implementing several distributed SAS from the CPS domain.

To expand the range of systems that can benefit from nuDECIDE approach, we introduced

three alternative methods to partition distributed SAS goals based on the contributions that

SAS components can make toward achieving these goals. Each method represents a particular

class of system goals, demonstrating that the various goal partitioning formalisms defined in

Chapter 3 are sufficient to expand the applicability of the nuDECIDE framework to a wide range

of applications.

From reviewing the literature, numerous realistic robotic team missions exist whose require-

ments can be formulated using linear programming [48, 190], integer programming [5, 7, 58]
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and MDP policy synthesis [67, 158, 166] methods. Although we believe that the nuDECIDE

framework can support the development of decentralised control software for distributed SAS

systems in other domains, the variance in the characteristics of such systems and their require-

ments may pose threats to validity. Further evaluation of the applicability of the nuDECIDE

framework in applications from different domains such as service-based [35], IoT systems [137]),

etc. is required to assess the generalisability of our approach. Also, further evaluation is required

to assert that nuDECIDE framework is able to accommodate employing more mathematical

programming methods to expand the applicability of the approach to a new domain. Methods

such as network flow optimisation [185], constraint programming [176], nonlinear programming

[19], and multiple criteria optimisation could enable the development of distributed SASs not

supported by the techniques covered in this thesis.

Another external threat factor may arise if models required to partition the system goals or

analyse the behaviour of a nuDECIDE component are too large for addressing adaptation concerns

in a timely manner. This threat can be alleviated by extending the nuDECIDE framework to

support hierarchical goal decomposition. The hierarchical decomposition of system goals enables

forming different component teams or groups. The various teams share a common objective

on a system level but differ in terms of the roles in which each team has to carry to satisfy

the common objective. The teams can be formed based on collaboration rules as in [94], which

enable dividing system goals into sub-goals captured using relatively smaller models that can be

analysed efficiently.

Internal threats to validity may stem from the methods used to perform experiments and

analyse the results. In particular, threats to validity may arise from the use of simulation in

conducting the experiments for evaluating the effectiveness and scalability of distributed SASs

that are developed using nuDECIDE. Such threats are mitigated by simulating the execution

of missions that include a wide range of scenarios with different characteristics in terms of the

number of robots and the mechanism in which failure/degradation patterns are introduced during

the simulation. Also, the results were obtained from several independent experiments. The real

mobile robots were substituted with deploying software components that simulate the use of

robots in conducting experiments. Each software component communicates with its nuDECIDE

control instance to send heartbeat messages and environment readings, and receive configurable

parameters that determine its behaviour.

According to Banks [14], the use of simulation in experimental studies is an established

approach for evaluating research in software engineering. The simulation involves imitating

the operation of a system over time and aims to create an artificial history that includes the

operating characteristics of the system being represented. The artificial history is subsequently

used to infer conclusions about the observed system. In general, simulation is used to reduce

the time, costs and risks of experiments and also facilitate the reproducibility of experimental

studies as simulations are usually conducted in virtual environments. In the context of this
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thesis, simulating the use of robots has contributed to reducing the time and costs of conducting

experiments that examine the effectiveness and scalability of nuDECIDE when using the various

goal partition methods. In particular, simulating the conduct of these experiments made it

possible to anticipate the effects of implementing such experiments. We believe that relying on

simulation in conducting those experiments facilitates the reproducibility of the generated results

and contributes to raising the productivity of the research and the scope of the experiments.

5.5 Summary

This chapter presented three case studies used to evaluate the nuDECIDE approach, including

its different system-goal partitioning techniques and reusable software platform. The first case

study used a team of three mobile robots that emulated a pipeline inspection mission in a lab

testbed at the University of York, and employed linear programming to partition the pipeline

route requiring inspection among these robots, which were assumed to have different types of

sensors. The second case study involved the simulation of a waste-management autonomous

system in which a team of mobile robots collected both garbage and recyclables from multiple

locations within a public park. Given the fact that each robot could only be allocated an integer

number of such locations in this case study, the goal partitioning for the system was encoded as an

integer programming problem and solved accordingly. Finally, the third case study also simulates

the execution of a waste management mission using a team of mobile robots. however, this case

study includes the use of two variants of the MDP policy synthesis method in partitioning system

goals. Unlike the linear and integer programming methods, the MDP method can consider the

behavior of system components when partitioning system goals. However, this advantage of using

MDP policy synthesis comes with a significant increase in computational overheads, which grow

exponentially with the number of system components, limiting the applicability of the method to

small and medium sized systems.
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CONCLUSION AND FUTURE WORK

6.1 Conclusions

There is a growing interest in approaches that support self-adaptation in distributed systems. In

particular, the focus is on engineering approaches that relies on decentralised software controllers

to address self-adaptation concerns in business-critical applications [33]. For instance, many

applications from the CPS and IoT domains often deal with strict dependability and performance

requirements. Such systems must adapt to dynamic changes that occur as a result of interacting

with their physical environment. These systems’ requirements often necessitate that the adopted

self-adaptive approach should provide guarantees in which the system complies with its strict

requirements.

This thesis provided several contributions to the engineering of decentralised control software

for such systems. First, a repertoire of formal methods for partitioning the goals of a distributed

SAS among its components was introduced. These methods make novel use of three mathematical

programming techniques to enable the engineering of decentralised-control distributed SAS with

different types of goals. A goal-partitioning method based on linear programming enables the

development of such system whose goals can be specified in terms of linear constraints and

a linear optimisation objective at system level. Another goal-partitioning method, based on

integer programming whose goals can be represented and solved using integer programming

formulations. The partition model of such method includes discrete decision variables that are

used to formulate non-linear equations and inequalities. Finally, a goal-partitioning method

employing MDP policy synthesis supports employing models capable of representing the problem

of partitioning system goals and account for the possibility that system components may fail

in achieving their contributions towards system goals. In particular, the method is feasible

149



CHAPTER 6. CONCLUSION AND FUTURE WORK

for applications whose non-determinism cannot be easily expressed as an linear or integer

programming problem. We introduced two variants of the MDP policy synthesis method. The first

variant of the method can account for the uncertainty in the behavior of system components when

system goals are partitioned. While, the second variant does not consider such uncertainty in

components’ behaviour, however the synthesised partition in both variants can include probability

distributions that describe the assignment of goals to system components.

A second major contribution of the thesis is the development of an application-independent

software architecture and a reusable software platform for decentralised control software for

distributed SAS. These are complemented by an engineering approach for specialising the

platform to enable the development of a distributed SAS for a given application.

All contributions summarised above were evaluated through three case studies involving

distributed SAS comprising multiple mobile robots. The first of these case studies used a team of

real mobile robots in a lab testbed, and confirmed the applicability of linear-programming goal

partitioning. The second case study involves simulating the execution of a waste management

mission using a team of mobile robots. The mission comprises deploying these robot to collect

both garbage and recyclables from multiple locations with a public park. The system goals in this

case study are encoded as as an integer programming problem and solved accordingly. The last

case study also simulates the execution of a waste management mission using a team of mobile

robots. however, this case study includes the use of two variants of the MDP policy synthesis

method in partitioning system goals.

While our experimental results show how the research contributions provided in the thesis

advance the engineering of distributed SAS with decentralised control, they also identify several

limitations of the new results. In particular, the goal partitioning techniques introduced in

Chapter 3 require non-trivial execution time (sub-second for linear programming, but up to tens

of seconds for integer programming). As such, these techniques can only be used for distributed

SAS where the major changes triggering new executions of the goal partitioning are infrequent,

e.g., not happening more frequently than once every few tens of minutes.

The second limitation stems from employing a fully decentralised system-level MAPE loop

architecture. In such architecture nuDECIDE component has to perform the system-level goal

partitioning stage redundantly. In comparison, a fully decentralised system-level MAPE loop has

significant benefits, such as eliminating a single point of failure and reducing the need for inter-

component communication and synchronisation [63]. Alternative variants of the architecture can

use other decentralised MAPE loop patterns [184]. In particular, the centralised execution of the

Planning has the advantage that each component does not redundantly perform the system-level

goal partitioning, and therefore it can employ techniques that may not yield the same partition

each time they are applied (e.g., metaheuristics as in [83]).

Since nuDECIDE employs a fully decentralised system-level MAPE loop architecture, the

partitioning of system goals is carried out at the system-level. Such architecture prioritises
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component goals over system ones, which leads to the synthesis of a sub-optimal adaptation

plan from a system viewpoint. As the synthesis of such plans is performed under conservative

assumptions, in which a system component can achieve more towards achieving the system

objective, but the component report that it can achieve less (i.e., the local capability analysis

control stage computes the contribution summary under conservative assumptions).

Finally, one further limitation is due to the evaluation of our research contributions exclusively

for multi-robot SAS. While we expect the results to be equally applicable to other distributed

component-based systems (e.g., multi-agent software and service-based systems), this generality

of the research remains a hypothesis.

6.2 Future work

Many extensions of the research contributions presented in the thesis are possible. This sec-

tion provides a summary of some of the main future work directions that would expand the

applicability of our nuDECIDE research.

First, the adaptation of additional mathematical programming techniques for use within

our nuDECIDE framework could enable the development of distributed self-adaptive systems

not supported by the techniques covered in the thesis. Such additional technique could include

mixed-integer programming, network flow and constraint programming [24, 185].

Second, the project described in the thesis evaluated the nuDECIDE framework exclusively

for multi-robot system. To demonstrate the generality of the framework, further work may include

its specialisation for other types of distributed self-adaptive systems, such as IoT systems [97]

and multi-agent software systems.

Third, the current nuDECIDE partition methods do not support defining any dependencies

between tasks, e.g., executing a given task may only be possible after another task was executed,

or a given task cannot be assigned to a system component unless another task is assigned to

the same component. In the current nuDECIDE framework, any such dependencies have to be

considered and encoded manually when the system goals are partitioned. Extending nuDECIDE

with a domain-specific language for specifying such task dependencies and with a constraint solver

such as Alloy [99] for handling these dependencies along the lines of the research from [40–42]

would greatly expand the types of distributed self-adaptive systems supported by the framework.

Finally, the nuDECIDE framework does not currently support hierarchical goal decomposition,

so that different component teams or groups can satisfy goals that contribute to others that exist

at a higher level in the hierarchy. Extending nuDECIDE with the capability of forming teams

based on collaboration rules will enable the framework to support larger systems and higher

degrees of flexibility in the way in which the goals are partitioned and satisfied.
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