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'SUMMARY 

It is sometimes necessary to strengthen in situ concrete structures. 

Externally bonded plate reinforcement has been successfully applied to structures 

with subsequent satisfactory performance. However, little research has been 

reported, especially in respect to long term behaviour. 

The present study investigated the flexural behaviour of normal under- 

reinforced concrete beams with plate reinforcement bonded to their tensile face. 

Furthermore, long term studies of loaded and unloaded plated beams were initiated 

for testing after exposure to natural weathering conditions. The parameters 

under investigation were adhesive and steel plate thickness, the degree of 

cracking in the. beam prior to bonding on the plates, multiple plate layers and 

plate jointing techniques. 

Test results showed that although the increase in ultimate load produced 

by the bonded plates was only 17%, the service loads were increased up to 90%. 

The deformations at service loads were reduced up to 65%. In general, the 

deformations decreased for an increase in adhesive or plate thickness, the latter 

having the larger effect. The maximum crack widths in the plated beams-were up 

to 63% lower than those in the unplated beam. The ACI and CP 110 crack width 

prediction formulae overestimated the measured values. Within the limitations 

of the present test series, empirical formulae were derived for calculating 

rotations, crack widths, crack spacings and concrete surface strains. Tests on 

specimens after 18 months weathering showed no loss of flexural performance nor 

any visual deterioration of the adhesive or adhesive/steel interface. Further 

tests will be reported. 

Bonded plate reinforcement can only enhance the ultimate strength of a 

beam to limited extent. More important'are the decrease in deformations and 

consequently the increase in service loads, thus making it a viable technique 

for up-rating the load carrying capacity of existing structures. 
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CHAPTER 1 

INTRODUCTION AND OUTLINE OF THESIS 

1.1 GENERAL INTRODUCTION 

In practice, situations can often arise when the behaviour of a con- 

ventional reinforced or prestressed concrete beam is found to be inadequate, and 

replacement or strengthening then becomes necessary. Such inadequacy may be 

related to the ultimate strength of the member or to its behaviour under service 

loading. The cause may be inferior materials, design or constructional faults, 

external damage or deterioration. Alternatively it may arise from requirements 

to increase the imposed loading above the original design load. When such 

situations arise, it has to be considered whether it is more economical to 

strengthen the existing member or to replace it. 

Unless additional supports can be provided, any attempt to strengthen an 

existing structure is generally a difficult operation because of the fact that its 

strength properties are essentially determined during construction. The main 

problem in strengthening techniques is that of ensuring adequate connection and 

composite action between the reinforcing element and the existing structure. 

Methods of strengthening are generally straightforward to carry out, but may need 

great care and control. However, when extensive strengthening is required, there 

is generally a great deal of labour, plant and disruption involved whether the 

structure be steel or concrete. 

Strengthening of concrete structures can be carried out by several 

techniques. Provision of additional reinforcement along with guniting and 

external prestressing have been successfully used. More recently polymer 

impregnation techniques have been successfully used to restore a severely dis- 

integrated reinforced concrete slab at a cost Qf about £35 per sq m (75). The 

development of glues based on synthetic resins has, on the other hand, opened up 

another method of structural repair in which steel plates are bonded to the 

structural element with epoxy glue. These glues have adequate bonding strength 

and it has been shown that they provide effective composite action between the 

steel plate and the concrete element to be strengthened. However, careful 



attention is necessary at all stages of the strengthening operation to ensure 

adequate interaction. 

The method has been used to strengthen a variety of existing structures 

including: bridges in France (55), Japan (51) and England (53), a concrete crane 

gantry in France (54) and floor slabs of a telephone exchange in Zurich (56). 

Despite the advantages and future potential of the technique only a 

limited amount of systematic research has so far been reported. A review of the 

literature which has been published on this subject is given in Chapter 2. In 

concrete joints (4) shear strengths in the glue can reach 7 N/mm2 without much 

difficulty, so that failure would occur by shearing of the concrete. Although 

great emphasis has been placed on the considerable care needed in preparing the 

adherend surfaces, there is a degree of latitude which should allow satisfactory 

bonding when prepared to the tolerances attainable on site. 

1.2 OUTLINE OF THESIS 

The purpose of the present work is to investigate the static flexural 

behaviour, in both long and short term, of reinforced concrete beams strengthened 

by externally bonded steel plates glued to their tension faces. The tests were 

carried out to investigate the effects of varying: 

(a) thickness of the glue layer 

(b) thickness of the reinforcing plate 

(c) number of layers of plate 

(d) plate lapping techniques 

(e) degree of cracking prior to bonding on the plates. 

Points of stress concentration were formed in some beams by cutting notches in 

their tension faces. 

The aims of the study were: 

(i) To investigate the deformation behaviour, i. e. load-deflection and 

moment rotation characteristics. 

(ii) To determine the internal bar strains, external plate strains, and 

concrete strains through the elastic, inelastic and ultimate regions. 

(iii) To determine the first crack load in the concrete and study crack 



propagation and distribution. 

(iv) To investigate interfacial stress properties. 

(v) To compare theoretical analysis with experimental results. 

The properties mentioned above were studied (a) in beams tested approxi- 

mately 14 days after bonding on the plates and (b) in similar beams tested 

18 months after plating. 

(vi) To study the durability of the concrete/epoxy/steel bond. 

Before studying the technique of externally bonded plate reinforcement an 

appraisal of the materials involved was made. Chapter 3 reports the tests carried 

out on the materials used in the manufacture of the beams, i. e. concrete, epoxy 

resin, steel plates and bars. 

Chapter, 4 gives details of some preliminary testing on plain, unreinforced 

concrete beams which was performed to gain experience in the plating technique. 

This testing was made up of series A and B. Altogether eighteen beams were 

tested; two sizes of beams 150 x 150 x 710 mm (Series A) and 100 x 150 x 1200 mm 

(Series B) were used. Two epoxy resin systems were used in both series. The 

steel plates were of, the same material for both series. 

In series A the effects of uniform and tapering glue thickness were 

studied. In series B the provision of steps in the tension face of a beam 

forming stress concentrations was studied, together with lapping techniques. All 

the beams were tested under centre point loading over a single span. 

The major testing programme was performed on reinforced concrete beams 

155 x 255 x 2500 mm loaded at the 1/3 points of the span, which was 2300 mm. 

Firstly, the long term testing programme was started. 

Concrete and epoxy resins are both susceptible to time dependent 

deformation due to shrinkage and creep. These deformations may be critical to 

the serviceability and sometimes to the safety of structural elements, 

particularly if accompanied by a reduction in cohesive or adhesive strength of 

the epoxy resin. 

Eight beams, all of which have identical internal reinforcement are being 

subjected to sustained loading. The parameters under investigation are: 



(a) glue layer constant -3 mm 

(b) glue layer constant -6 mm 

(c) glue layer variable -3 mm to 8 mm 

(d) glue layer variable - 25 mm x 25 mm notches at load points 

(e) single plate layer, central lap 

(f) single plate layer, laps at the 1/3 points of span 

(g) two layers of plate, central lap in outer layer 

(h) two layers of plate, laps at 1/3 points of the span in the outer 

layer. 

All beams have plates 1.5 mm thick, yield stress 250 N/mm2, with internal 

reinforcement 3x 20 mm diameter bars, 0.27. proof stress 470 N/mm2. There are 

two unloaded beams corresponding to each loaded beam. All the beams were left 

outside open to the weathering effects of the elements. Eight unloaded beams 

were to be returned for testing after eighteen months. These results are given 

in Chapter 8. The remaining eight unloaded beams and the eight loaded specimens 

will be tested, in due course after 5 years exposure. 

The short term test series of twenty four beams was performed on beams 

identical to those described above for the long term tests with these additional 

parameters under investigation: 

(a) plate thicknesses 3 mm and 6 mm, glue thicknesses 1.5,3 and 6 mm 

(b) plate thickness 1.5 mm, glue thickness 1.5 mm 

(c) plate and glue thickness 3 mm, central lap 

(d) glue thickness 3 mm, no plate 

(e) plate thickness 3 mm, glue thickness 3 mm, beam loaded to 50% 

theoretical ultimate load prior to plating 

(f) plate thickness 1.5 mm, glue thickness 3 mm, beams loaded to 50% and 

90% theoretical ultimate load prior to plating. 

An unplated control beam was also tested. 6 mm diameter stirrups were 

provided at 75 mm centres in the shear spans of all these beams, to prevent shear 

failure. 

The results from the tests were reported as follows: 



Chapter 5- strength characteristics. 

Chapter 6- load-strain; load-deflection and moment rotation characteristics. 

Chapter 7- cracking characteristics. 

In most environments the hardened epoxy resins will undergo both heat 

variation and moisture changes, but unlike many other adhesives, cured epoxies 

are said to be very resistant to water. However, moisture will eventually pene- 

trate most epoxies and the bond between the resin and steel or concrete may be 

weakened. This problem was investigated using small concrete prisms 100 x 100 x 

500 mm plated on one face. The plate and glue layer were coated with different 

sealing agents to prevent the ingress of moisture. The specimens were then 

placed in a fog chamber at 100% relative humidity for 18 months prior to testing. 

Control beams with no sealant were also kept in the fog chamber and in dry 

conditions for comparison. These prisms, were tested with a single, central 

point load over a span of 450 mm. The results are given in Chapter 8. 

Wherever possible, the results of the present investigation are compared 

with those found by others. 

Lastly Chapter 9 concerns the limitations of the present work, the overall 

conclusions, design recommendations and proposals for future work. 

Appendix 1 gives a glossary of terms used in adhesives technology. 

Appendix 2 outlines the calculation of the theoretical stress distribution in a 

bonded lap joint under compression. Appendix 3 gives the methods of calculation 

of the first crack and ultimate loads for the preliminary test beams A and, B. 

Appendix 4 gives the calculations of ultimate load for the main series of 24 beams. 

Appendix 5 gives calculations of the deflections of these 24 beams by methods 

recommended by CP110, CEB and ACI. Appendix 6 gives calculations for rotations. 

Appendix 7 discusses the interfacial stresses between the glue and steel or 

concrete. Appendix 8 outlines the calculations for crack widths and Appendix 9 

gives a brief outline of the statistical methods used in the analyses. 



CHAPTER 2 

REVIEW OF LITERATURE 

2.1 EPOXY RESINS 

(Appendix I gives a glossary of terms relating to adhesive technology. ) 

2.1.1. General Introduction (1-5) 
I 

The use of adhesive materials to join two or more objects together can 

be traced back for centuries. The Ancient Egyptians used a type of glue to 

stick decorations onto their coffins. The Phonecians used bitumen as a crude 

jointing for their boat timbers and for sealing purposes. By the Middle Ages 

the art of making adhesives had made little progress, glues being made from 

animal bones and blood. From these cases it can be seen that the materials used 

for bonding were all obtained from natural products and, no real progress was 

made until the nineteenth century. 

The advent of systematic chemistry, particularly in respect of physical 

and organic chemistry, has led to an attempt by scientists to understand the 

process of adhesion. This in turn has led to the development of synthetic 

adhesives. A change in intellectual approach, rather than any specific invention, 

has given adhesives a new dimension: adhesives are now engineering materials. 

A tremendous impetus was, given to the research, by the need to form high 

strength bonds or joints, especially in the lightweight structures 'of the air- 

craft industry. 

The first practical application of epoxy resins took place in Germany and 

Switzerland in the 1930's, although their basic chemistry had been known for 

several decades. Limited production of epoxy resins started in the late 1940's 

and they became available in the early 1950's on a commercial scale. 

Epoxy formulations developed until there were available systems with a 

combination of properties which made them suitable for use as an adhesive with 



concrete. Epoxy resin systems cure without release of water or other by-products 

of a condensation reaction, and can consequently have low autogenous shrinkage (3). 

Because of the high degree of cross linking between long chain epoxide molecules 

there is little tendency to creep'under sustained loading and moisture resistance 

is good. 

The confusingly large variety of available products has hindered the 

progress of the use of epoxy resins for structural uses in the construction 

industry. The engineer requires the resin to have a consistency such that it 

allows ease of application and satisfactory curing under the prevailing weather 

conditions found on site. The bond thus formed must show little or no loss in 

adhesion as a function of time, or on exposure to moisture, sustained load and 

temperature variations. With these properties in mind the resin manufacturers 

should be able to formulate satisfactory structural engineering materials. 

2.1.2 Materials and Mixes 

A single epoxy resin system cannot be found to suit all applications. 

It is for this reason that epoxy resin systems which are sold commercially 

are generally the products of formulators who specialise in modifying the system 

with flexibilisers, extenders, diluents and fillers to meet specific end-use 

requirements. It logically follows that it is important to follow the manu- 

facturers recommendations for use. 

Conversely, the successful use of a resin system depends on the preparation 

of an adequate specification which must include such requirements as; adherend 

material, mixing/application temperatures and techniques, curing temperatures, 

surface preparation techniques, thermal expansion, creep properties, abrasion 

and chemical resistance etc. The specification should be so worded as to avoid 

any misunderstanding in these provisions for anyone concerned in the design, 

manufacture and application of the resin system from the formulating chemist to 

the site labourer. 



2.1.3 Mixing 

The accuracy of the required proportioning of resin and hardener is very 

important and a tolerance of plus or minus 2% is desirable. Some compounds can 

tolerate a wider variation but such variations should only be allowed if the 

manufacturer has test data available which show the complete effect of the 

variation on both mechanical and chemical resistance properties of the cured 

compound. The most accurate method of proportioning is by the use of pre- 

proportioned units supplied by the manufacturer so that the contents of one 

component container can be emptied into the other, usually hardener into resin, 

and then mixed together. 

A low speed electric drill with a mixing paddle may be used with the 

caution that paddle type mixers can introduce air which can reduce adhesive and 

cohesive strengths if the system cures with the air entrapped. Mixing should 

continue until the mixture is homogeneous. The manufacturers often facilitate 

this by giving the resin and hardener two distinct colours which merge to form 

one colour when mixing is complete. 

2.1.4. Temperature 

Most epoxy resin formulations available today react favourably in the 

temperature range 40 - 150°F, although below 60°F mixing usually becomes 

difficult, and above 100°F the pot life may be shortened too much. In Great 

Britain, temperatures are often below 40°F so it is helpful to raise the 

temperature of the resin system prior to mixing. This reduces the viscosity of 

the resin system which in turn reduces the tendency to whip air into the compound 

during mixing. It may also be necessary to heat the adhered surfaces. Direct 

flame heating of concrete surfaces is difficult to control and warm air cir- 

culation heating or radiant heaters are preferable. 

2.1.5 Surface Preparation 

The strength of a bonded joint depends on the degree of adhesion to the 

adherends as well as the cohesive strength of the resin. The aim of surface 

-8- 



preparation is to ensure that adhesion develops to the extent that the cohesion 

is the weaker link in the system. 

2.1.5.1 Concrete 

Concrete surfaces must be cleared to remove all substances detrimental 

to bond of epoxy compounds such as laitance, curing compounds, dust, dirt and 

other debris resulting from surface preparation operations. The simplest 

method of achieving this is to shotblast the surface and then remove dust and 

debris by jetting with compressed air. The result should be a surface abraded 

to the extent that large aggregate particles are exposed and free from dust and 

contaminants. Care should be taken to ensure that good water and oil traps are 

incorporated in the compressed air system to prevent contamination after shot- 

blasting is completed. 

2.1.5.2 Steel 

As rolled, metals have a contaminated surface layer, which is usually so 

thick that the metal surface exhibits the properties of the layer and not the 

metal itself. There are three methods which can be used to remove these surface 

contaminants: solvent cleaning or degreasing; mechanical abrasion; or chemical 

etching. 

For site applications in the construction industry it is unlikely that 

chemical treatments would be used on a large scale. Cleaning and degreasing 

using solvents is practical, but adequate time must be allowed for their 

evaporation before mechanical treatment, otherwise they can be forced deeper 

into the metal causing weakening of the adhesive bond. The only practical, 

consistent field method of assuring an adequate bonding surface is shotblasting. 

After solvent cleaning and shotblasting any dust created by the mechanical 

cleaning must be removed by jetting with compressed air. A cleaned metal 

surface is very susceptible to corrosion, particularly in a humid atmosphere, 



so the work should be planned to permit the epoxy application as soon as 

possible after cleaning. 

2.1.6 Bonding 

In its broadest sense adhesive bonding includes the application of the 

adhesive to the adherends and holding them in position until the joint acquires 

some strength. 

The applicator should ensure that the epoxy is applied at a rate 

compatible with the pot life and rate of hardening of the system. Both are 

affected by the temperature at which the epoxy is applied. 

Intimate contact is essential and all measures should be taken to ensure 

complete wetting. This is often more difficult to achieve with higher viscosity 

systems or when fillers are present. 

The application process applies a certain amount of pressure to assist 

the resin penetration of the adherend surface. This penetration can be increased 

by'applying pressure to the closed joint during the curing process. 

In the region of the adherend surface the adhesive hardly moves when 

pressure is applied, but further away the glue is squeezed out taking unwanted 

air bubbles with it. For this reason it is usual to apply more adhesive than is 

necessary in the completed joint and squeeze out the excess under pressure to 

remove air bubbles. This also gives an indication of how even the pressure was 

by inspecting the amount of resin pressed out along the joint. 

2.1.7 Curing 

To cure an epoxy resin system means to alter the physical properties by 

chemical change. This usually means polymerisation brought about by either 

heating or the use of a catalyst. This causes the union of adjacent molecules 



of adhesive, often existing as long chains, to form a tough solid resin. The 

interaction of such long chain molecules is known as cross-linking. 

During curing the joint must not be moved otherwise cracks can develop 

at the interface which could lead to loss of bond by the ingress of moisture. 

As curing progresses, strains are set up due to the differential expansion 

of the resin and adherends, and also due to polymerisation. Initially the resin 

is a liquid or paste, and as polymerisation starts it becomes a gel. During this 

period autogenous shrinkage is not important as both liquid and gel can 

accommodate volume change by flowing. The process continues and results in a 

hard polymer. At some point its strength increases so that shrinkage cannot be 

accommodated without producing internal stresses. These observations have led 

to the development of compounds in which most shrinkage occurs during the gel 

stage. Fillers can be used to reduce shrinkage but do not adversely affect 

adhesion when used in normal amounts. 

2.1.8 Safety and Health Provisions 

Just as there are proper, safe practices for handling acids, portland 

cement, etc., there are also precautions which should be observed when handling 

epoxy resins and materials used with them. 

Two typical health problems encountered with epoxy materials when 

carelessly handled are skin irritations, such as burns and rashes, and skin 

sensitisation, which is an allergic reaction. 

Safe handling can be accomplished-by working in a well ventilated area 

and using disposable equipment whenever possible. Disposable suits and gloves 

are readily available. Goggles are strongly recommended, and involuntary habits 

such as eyeglass adjustment should be avoided. In the case of direct skin 



contact solvents other than soap and water should not be used. Most solvents 

merely dilute the epoxy compound, aiding their penetration into the skin. 

The solvents used for precleaning and equipment cleaning require 

additional precautions. Many have low flash points and these should be avoided. 

Ketones are a fire hazard and if used good ventilation is required. Smoking and 

other fire initiating devices should be barred from the area of use. 

Chlorinated solvents, while not presenting a fire hazard, will present a 

toxicological problem if smoking takes place in the area or if a fire occurs in 

the immediate area. Many can be toxic when inhaled. 

No amount of equipment will substitute for worker education. Those 

involved with the use of epoxy materials should be informed of the hazards of 

the particular materials they must handle.. The handling of epoxy materials is 

not dangerous as long as reasonable care is taken and personnel and equipment 

are kept clean. 

Instances of sensitisation are rare but the possibility of burns, loss of 

an eye and other time losing accidents makes knowledge and observance of safe 

handling practices absolutely essential. 

2.2 GLUED JOINTS IN CONCRETE 

2.2.1 General Uses 

Epoxy resins have been used in concrete repair work since the 1950's. 

Tremper (7) describes the use of epoxies in repairing concrete highways; Gaul 

and Apton (9) for repair of runways and roads; Wakeman, Stover and Blye (10) and 

Ciesielski (11) describe resin injection of cracked pile caps and beams; and 

Levy (14) reports their use in the repair of precast elements. In general (8) it 

was found that bond strengths were greater than concrete strength in flexure, 

shear and direct tension. 



2.2.2 ' Surface'Prepärätion 

The generally accepted methods of concrete surface preparation are 

discussed by Batchelar (21) and Moar (22). The relative convenience of these 

methods will vary with location of construction site and availability of equip- 

ment. Moar found that mechanical treatment was less important for short term 

strength, which depended mainly on the adequate removal of dirt, grease and 

laitance. For long term strength the amount of mechanically exposed aggregate 

greatly increased the durability of the joint. 

Gorgol (23) considered concrete surfaces to be adequate, "as stripped", 

but he was only working with compression joints. 

Hallquist (24) found wire brushing to be inadequate but does not compare 

this with other preparations, nor does he make any positive recommendations. 

Lee and Neville (6), state that porous surfaces such as concrete require 

no special surface treatment. This has been shown to be incorrect by many other 

researchers. 

Guttman (12) tabulated the properties of 26 adhesives suitable for 

structural bonding. Skin grease deposits on the surfaces led to 75% reduction 

in bond strength in some cases, minute quantities of solvents used for cleaning 

were found to inhibit curing in most of the adhesives. 

Johnson (13) suggested the surfaces should be cleaned by sand blasting 

and then air blown, followed by degreasing and flushing. It would seem more 

sensible to degrease and remove dirt before shotblasting as this operation would 

tend to force the contaminants deeper into the surface. 

2.2.3 Moisture Effects 

Lee and Neville (6) state that moisture accelerates the curing process in 



agreement with the findings of Caron (29) who also found water reduced the 

mechanical properties. 

Hallquist (24) tested epoxies after exposure to humidities ranging from 

30 - 85% and found no significant effect on 7 day strength. 

Ciba Geigy (25) state that certain resins, containing polyamides exhibit 

comparitively high water absorption, which can reduce joint strengths. 

Shue Fai (26) and Batchelar (21) tested mixes in both wet and dry 

conditions. The ultimate strength was not affected, but the curing rate was 

slower in water, contradicting the opinion of Caron, Lee and Neville. 

Shaw (27) describes the use of three different epoxy resins. The strength 

of wet joints varied from 16 - 65% of the dry joints in the short term and 24 - 

75% in the long term. 

Moar (22) found moisture to have no apparent affect on initial strength 

but to be beneficial for long term strength. 

Cusens and Smith (28) tested concrete prisms, with 450 glued scarf joints, 

to compare the water resistance of four adhesive systems. Three resins gave only 

25% of the strength of dry prisms after only 8 weeks immersion in water, whereas 

the fourth resin showed an increase in strength. 

Some of these apparent disagreements can be accounted for by the different 

chemical compositions of the resins used. A full comparison of the conclusions 

drawn by individual researchers could only be made considering this factor and 

also the surface preparation techniques used. The various fillers, flexibilisers, 

dilutents etc. that can be added to the basic resin can all affect the behaviour 

of the resin system in relation to moisture. 



2.2.4 Miscellaneous 

O'Brien (18) stated that the lack of knowledge of the long term behaviour 

of bonded joints is the main factor restricting their use to gap filling 

compression joints. 

Johnson (15) performed a series of tests on glued lap joints which showed 

the long term strength to be only 50% of the short term strength. He suggested 

that vibrations may also cause creep. 

Taylor (16) investigated long term vibration of concrete scarf joints 

under compression and found the creep to be no greater than in control specimens. 

Kreigh (17) reports tests on composite beams using epoxy mortar as a shear 

connector. No debonding was evident after seven million cycles. The shear stress 

was a maximum of 2N/mm2 which is approximately only 50% of the failure stress, 

but is still significant as it is approximately the working stress. 

Johnson (20) formulated an epoxy suitable for structural joints trans- 

mitting loads by shear and compression. Flexibility and creep. were little 

greater than in concrete, and in order of magnitude less than in his earlier 

tests. No shear or tensile test results were given for the glue so its use in 

anything but compression joints is not clear. 

2.2.5 Summary 

Lee and Neville (6), and Gorgol (23) found no special surface preparation 

to be required, contrary to the conclusions of Batchelar (21), Moar (22), 

Hallquist (24), Guttman (12), Johnson (13) and Cusens and Smith (28). 

Lee and Neville (6), Caron (29), Moar (22) and in one system Cusens and 

Smith (28) found moisture to be advantageous to curing and in some cases joint 

strength. Hallquist (24), Shue Fai (26) and Batchelar (21) found moisture had 



no effect on joint'strength whereas Shaw (27), Ciba Geigy (25) and Cusens and 

Smith (28) found that moisture reduced joint strengths considerably. 

Johnson (15) (20) tested various resin systems to produce one with creep 

properties with the same order of magnitude as concrete. However, to what extent 

this affects its ability to resist moisture, temperature cycling etc., is not 

reported. 

It can be seen that there is a great deal of contradictory information 

available and comparisons could only be made when all the facts, involving glue 

chemistry; surface preparation; application; curing method and test technique; 

are known. 

2.3 STRESS DISTRIBUTION IN LAP JOINTS 

External forces seldom produce a uniform field of stress, even in an 

homogeneous body. When a body consists of two or more materials joined together 

a uniform stress is even less likely. The stress concentration, (ratio of 

highest to mean stress), depends on many factors including the elastic moduli of 

adherends and adhesive, and the shape and size of the specimen. The more highly 

stressed areas fail first and a progressive failure of the joint follows. 

The earliest theoretical analysis of lap joints due to Volkersen (30), 

considered the distribution of shear forces, in the adhesive layer, for the case 

of very stiff adherends which do not bend on loading. It was soon recognised 

that the loading of a lap joint gives rise to bending, tending to peel the 

adherends apart. 

Goland and Reissner (31) formulated a theory, taking these stresses into 

account, considering two distinct cases. Firstly, a thin stiff layer of adhesive 

is assumed to bond flexible adherends, and secondly vice-versa. 



Cornell (32) varied this theory by assuming the adherends behave like 

simple beams and the adhesive is represented by shear and tension springs. 

Wooley and Carver (33), and Amijima, Fujii and Yashida (34) carried out 

finite element analyses to investigate stress concentrations in lap joints. 

Many other theories have been suggested and are critically compared by Mylonas (35). 

Bresson (54) gives a theory for stress distributions in bonded steel/ 

concrete joints in both tension and compression. 

2.4 GLUED JOINTS IN METALS 

2.4.1 General 

- Gilibert, Delmas and Collot (36,37) studied the fabrication of test 

specimens and apparatus to ensure good reproducibility of tests for comparing 

different glue systems. The fact that there was little scatter in their results 

should facilitate research into long term properties. 

Allen (38) states that a primary loss of bond strength is due to the 

failure of molecules to achieve full cross linking due to poor batching and 

mixing. 

2.4.2 Surface Preparation 

Cagle (39) states that the service environment and life expectancy play 

the most important role in the selection of surface preparation techniques. This 

would seem to assume a greater understanding of the bonding process than is 

generally accepted. 

Smith (40) and Olsen (41) both criticise mechanical abrasion prior to 

solvent cleaning as contaminants can be driven deeper into the metal. 



Shields (42) recommends sharp jagged grits as round shots produce a peened 

surface consisting of many loose pieces of metal bent over each other resulting 

in a weak surface layer. 

Jennings (43), and Delmas and Collot (36) (37) showed optimum adhesion is 

achieved by shotblasting. However, different resins, temperatures and humidities 

would most likely give different optimum grit size for the same metal adherend. 

It should also be remembered that the fluid properties of a resin change with 

time during curing. The rate of displacement of air from the surface pockets is 

essentially controlled by viscosity, and so the application of resin to a rough 

surface can trap air, causing stress concentrations. Thus a rough surface does 

not necessarily mean a high specific contact area. If heavily filled resins are 

used, displacement of air may be incomplete due to the increased viscosity of the 

resin system. 

Ramel (44) found that rusting had little effect on bonding for various 

resins. Some could withstand 40 - 50% rusting. De Lollis (45), on the other 

hand, stated that corrosion was an important factor in loss of bond, soon after 

surface preparation. 

Shields (42) found that in addition to their cleaning action, chemicals 

modify the surface physically and chemically. 

Ciba Geigy (25) point out that chemicals can lead to inferior bond 

strengths if not used in the correct strength, or for the right duration. 

Flushing after treatment to remove all traces of chemical is also very important. 

Chemical treatment is unlikely to be used in the construction industry, however. 

2.4.3 Moisture Effects 

Buck and Hockney (46) immersed lap shear specimens for up to 1000 hours in 



water and water vapour. It was found that at 20°C the joint strength was not 

affected. At 45°C there was a 25% reduction. 

Kinloch and Gledhill (47) exposed lap joints in distilled water at 20,40, 

60 and 90°C and control 20°C; 56% relative humidity. They considered that 

immersion in water reduced the strength considerably, particularly at high 

temperature. 

2.4.4 Miscellaneous 

Tests (48) have been carried out on joints which had been held together at 

pressures ranging from 2- 400 lb/in2 during curing. There was no effect on 

joint strength, except when the joints were placed in natural weathering conditions 

when the low pressure bonded joints were adversely affected. In another series 

the rate of loading was varied from 0.35 to 26.5 tons/minute. In the limited 

number of tests no significant change in strength was observed. However, 

McNicholas (49) performed tests which showed that the high loading rates produced 

premature failure. 

Delmas and Collot (37) varied the joint thickness from 0.05 mm to 1.5 mm 

and the optimum was found to be 0.5 mm. As the thickness increased the failure 

was due to a combination of adhesive and cohesive failure, i. e. a fracture plane 

which passed partly along the interface between adherend and adhesive, and partly 

through the body of the glue. In thinner joints failure was completely adhesive. 

It was concluded from this that the joint became brittle when thicker. Theo- 

retically, the mean stress in a joint should increase with joint thickness, but 

practically thicker joints are more likely to have air bubbles, flaws and internal 

stresses. In filled resins the shrinkage and temperature stresses are much lower 

so that a filled thick joint could possibly be stronger than a thinner unfilled 

one. 



Cusens and Smith (28) have performed comparative tests on four resin 

systems in steel/steel lap joints under static and cyclic loading. The effects 

of curing at elevated temperature and of temperature cycling were included. It 

was found that shear strengths increased with the roughness of the blasted 

surface, and slightly with increase in curing temperature. Temperature cycling 

between -70C and +35°C had little effect on joint strength. There was satis- 

factory fatigue performance, with all specimens sustaining a stress range of 

4.5 N/mm2 for 107 cycles. It was found that slight contamination with dust or 

water was not harmful. 

The practical application of all these findings to predict breaking loads 

is very difficult. It is easy to control the surface preparation and application/ 

curing techniques in small test specimens, but more difficult in actual site 

applications. 

2.4.5 Summary 

There is general agreement that the best surface preparation is shot- 

blasting. However, differentresins, temperatures and humidities give different 

optimum grit sizes for the same metal adherend. Various glue thicknesses are 

recommended but these again would depend on the type of glue etc. for optimum 

strength. 

Smith (40), Olsen (41), Shields (42) and Ciba Geigy (25), all agree that 

cleaning solvents and chemical treatments can lead to loss of bond if not removed 

completely from the surface prior to bonding. The use of chemicals prior to 

mechanical blasting is not recommended as this would lead to the solvents being 

driven deeper into the metal surface. 

Buck and Hockney (46), and Kinloch and Gledhill (67) found water immersion 

to produce a loss in joint strength, which increased with temperature. 



McNicholas (49) and others (48) give contradictory results on the effect 

of varying the loading rate. 

Again, it is almost impossible to compare the different author's findings 

without knowing the resin chemistry; the exact surface preparation, loading 

techniques etc. 

2.5 GLUED JOINTS BETWEEN STEEL AND CONCRETE 

2.5.1 General 

The application of epoxy resins to civil engineering structures may be 

classified under two main headings: 

(a) resin used as a filler 

(b) applications which depend on the shear strength of adhesive. 

Tabor (50) gives examples of type (a) uses in his general review of the 

uses of epoxies in civil engineering. 

Type (b) applications still remain rare and are largely confined to repair 

and/or strengthening of bridges. In Japan (51), by 1975, some 240 bridges had 

been strengthened, against increased vehicle loading, by the addition of steel 

plates glued to their upper and lower surfaces. In South Africa 11 bridges have 

been similarly strengthened and in Britain the technique has been used at 

Quinton (52) and Swanley (53). In France (54) (55) the technique has been used 

to strengthen a travelling crane and a motorway bridge, and in Switzerland (56) 

telephone exchange floors. Franke (57) describes the use of reinforcing bars 

bonded with epoxy to strengthen a spherical prefabricated concrete tank. 

2.5.2 L'Hermite and Bresson (54,55,58,59) 

From L'Hermite's first experiments he concluded that the metal surface mus t 

be freed from contaminants and surface oxidation, and to prevent oxides reforming 

the joint must be bonded quickly, or alternatively a primer applied. 
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Beams with tension reinforcing plates all failed by concrete crushing or 

shearing, not by debonding. They behaved as normal reinforced concrete beams, 

with regard to failure load, however, the onset of cracking was delayed and crack 

propagation reduced indicating a close combined action between the steel plate 

and concrete beam. 

Beams with plate reinforcement on their sides, to increase shear capacity, 

also behaved well and both types of beam, under cyclic loading, sustained half 

their ultimate loads for one million cycles without failure. 

It is stated that after one year long term deflections increased by 20% 

but no information is given on stress level, glue type, surface preparation, etc. 

In tests on plated slabs it was found indispensible to secure the edges of 

the plates with bonded angles to prevent premature and sudden failure. 

2.5.3 Transport and Road Research Laboratories (60) (61) (62) 

Flexural Tests have been reported on six reinforced concrete beams. The 

specimens used were in fact I shaped columns with a corbel towards one end which 

had a considerable local stiffening effect. However, useful information was 

obtained from observations of the beams away from the corbel. The columns, 

4.9 m long, were positioned horizontally so that they could be regarded as under 

reinforced concrete beams. 

The tests were used to study the effects of changes in type of adhesive, 

plate thickness, a joint in the external reinforcement and load cycling. In all 

cases full composite action was developed between the steel, resin and concrete. 

Failure occurred by horizontal shear in the concrete adjacent to the glue layer. 

The main structural benefits were: 

(a) For a given crack width, the applied load for the plated beam was 

nearly double that for an unplated beam. 



(b) The post cracking stiffness was increased by 35 - 105%. 

(c) There was an increase in failure load ranging from 12 - 24%. 

A seventh beam has since been tested which was cracked under flexural 

loading before the plate was bonded to it. The results from this indicate that 

immediately prior to failure the strain in the plate was considerably less than 

in a similar beam that was not precracked. 

Long term exposure tests are being carried out on small concrete prisms, 

500 x 100 x 100 mm, reinforced with epoxy-bonded steel plates, in marine, 

industrial and high rainfall sites for periods of 1,2,5 and 10 years. Half 

the prisms are subject to sustained loading during their exposure period. 

The results to date from 1 and 2 year tests, have shown that the failure 

loads were slightly lower for high rainfall and marine sites. On the whole, the 

beams under sustained load during exposure were stronger. 

All the beams from the exposure sites showed varying amounts of steel 

corrosion, which had been in contact with the adhesive, and become partially 

debonded. The control beams kept in the laboratory showed no signs of corrosion. 

If such corrosion occurred on full scale bridge structures failure may 

occur after only a-few years. Methods of preventing corrosion, and surface 

priming techniques are being investigated and checked with additional exposure 

tests. 

Beams of'3.5 m length are at present being used to investigate: 

(a) Four different resin systems. 

(b) Four different glue line thicknesses. 

(c) Different concrete strengths. 

(d) Jointing, end bolting and multiple plate layers. 
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2.5.4 Dundee University (28) (44) (63) (70) 

Development work at the Wolfson Bridge Research Unit, Dundee, is 

investigating the practical feasibility of two main forms of decking for medium 

and long Span bridges. Both forms consist of concrete slabs reinforced with 

epoxy bonded steel plates. In each case the concrete is cast directly on to the 

steel plate which has been coated with epoxy resin. Thus the plate serves both 

as formwork and reinforcement. 

Solomon (63) used this method of bonding steel plates on to hardened 

concrete. He found a lack of ductility in the mode of failure which was probably 

due to the plate thickness used. 

For these purposes a resin which retains its strength in the presence of 

prolonged damp is required and which also has a rust inhibiting quality. The 

problem of aggregate particles penetrating the glue line during compaction would 

seem to be most important as this could facilitate permeation of water through 

the concrete and glue to cause steel corrosion and bond degradation, as well as 

forming points of weakness in the glue layer. 

Cusens and Smith (28) report on the behaviour of concrete beams of 2.0 m 

and 344 mm length. Cusens' earlier tests with Solomon confirmed the feasibility 

of using a steel plate as external reinforcement, with the procedure of casting 

fresh concrete onto the plate coated with epoxy. In more recent tests (28), 

beams 2m long have been used to study the ductility and the effects of adhesive 

type and thickness on the static flexural behaviour. It was found that a minimum 

glue thickness of 1 mm was required to ensure bond between concrete and steel and 

that ductility was good, especially for thicker glue layers. 

The smaller beams, 344 mm long, were used to investigate the effect of 

curing temperature, cyclic loading and immersion in water. In both static and 

fatigue tests the type of adhesive seemed to have little significance. The 



majority of beams survived 1.5 million cycles having a load range between 52 and 

70% of their static failure load. Water immersion of beam specimens sealed on 

all surfaces except the top causes serious loss of flexural strength (> 33%) with 

some adhesives, mainly due to corrosion on the plate surface indicating ingress 

of moisture at the interface. 

Solomon and Gopalani (70) report tests on beams similarly formed by 

pouring wet concrete onto the fresh adhesive applied to the steel sheet, which 

acts as formwork to the beam soffit. The tests were part of a feasibility-study 

for a new type of concrete floor for buildings. All the beams failed in flexure 

and showed good ductility. No mention, however, is made of durability tests. 

All the beams mentioned in this section had the reinforcing plates along their 

entire length. The loading rig supports would therefore hold the plate ends onto 

the beam under testing conditions. 

2.5.5 Warwick University 

This work concerns the strengthening of a concrete bridge by epoxy bonding 

plates, to the top surface, above supports. The beams used were subject to a 

combination of longitudinal tension, bending and vertical shear. Most beams 

failed by a crack forming at the end of the plate and spreading towards the central 

section at the level of the internal reinforcement. The results shows that the 

stress concentration at the end of the plate produces a shear/bond failure and 

thus prevents the concrete member from achieving its full flexural strength. This 

effect is probably greater in these specimens, which resisted longitudinal tension 

as well as bending and shear, than it would be in a beam, where the deeper 

compression zone would provide additional stiffness. 

2.5.6 Miscellaneous 

Lerchenthal (65) carried out tests on model slabs 300 x 300 x 30 mm 

reinforced with 0.25 mm sheets. Simultaneously, tests were carried out on slabs 

reinforced with strips, in both directions, cut from the sheets. For the same 



quantity of steel the slab with a complete sheet had almost twice the capacity, 

showing the exploitation of the biaxial strength of the sheet. Three methods of 

bonding were used; bonding onto cured concrete; pouring fresh concrete onto 

sheets with resin applied; and fresh concrete poured onto a sheet with a grip 

layer of grit and sand glued to it. No significant difference was found, and all 

failures were by rupture of sheet or concrete, not by debonding. The sheet 

reduced the depth and spacing of cracks, relative to slabs reinforced convention- 

ally with the same area of reinforcement. Because thin sheets were used no 

problem of the edges lifting was encountered as found by Bresson, who had to hold 

the edges down with bonded angle plates. 

Cirodde (66) describes beam tests with steel and aluminium plates bonded to 

concrete. The resin used showed a large amount of creep. 

Fleming and King (67) plated beams 150 x 150 x 1680 mm with no internal 

reinforcement. Failure occurred in the concrete along a plane parallel to the 

adhesive layer. 

Kaifasz (68) describes tests carried out on rectangular and T section 

concrete beams having externally bonded bars and plates. Except in the case of 

reinforcing bars simply glued to the underside of the beam, where debonding 

occurred, satisfactory results were obtained with good agreement with theoretical 

predictions. 

2.5.7 'E. M. P. A. Swiss Federal Laboratories for Testing Materials 
'and'Research (56) (69) 

Tests were carried out at E. M. P. A. to investigate the bonding properties 

of a steel/epoxy/concrete joint. The tests studied ways of anchoring the plate 

ends and the effects of long term fatigue loading. The technique of plated 

concrete as applied to floor slabs in a Zurich telephone exchange is reported. 



The first short term static tests indicated that special attention should 

be given to anchor the plate ends. A second series of tests on plated Tee beams, 

subjected to both static and dynamic loading showed an 85% increase of static 

deflection after two'million load cycles between 0.8 and 1.2 times the working 

load. No details are given of surface preparation, glue thickness and formu- 

lation. 

The efficiency of the floor slab strengthening was checked by field 

measurements. Deflections were measured before, during and after strengthening, 

for different loadings. It was concluded that the strengthening had provided an 

increase in bending stiffness thereby reducing deflections and crack widths. 

At present there is an extensive series of long and short term testing in 

progress, investigating different glue types, steel quality and thickness and 

lapping techniques. So far no report has been published on these. 

2.5.8 Sheffield University 

Bouderbalah (71) used reinforced concrete beams 100 x 150 x 1200 mm to 

investigate the adhesive type, glue thickness, plate lapping and precracking 

prior to plating. Beams were tested in flexural and shear modes and it was found 

that the addition of the steel plate increased the ultimate flexural capacity and 

the serviceability range, but had no effect on the shear capacity. The variation 

of glue thickness from 1.6 mm to 8 mm had no significant effect. The application 

of bonded plates to a precracked beam, and lapping of bonded plates were shown to 

be successful. 

Reinforced concrete beams 100 x 150 x 2400 mm were used by Ang (72) to 

investigate the effects of plate thickness. Five beams were under-reinforced 

and three over reinforced, before plating. For the under-reinforced beams the 

plates increased bending stiffness and flexural capacity and reduced crack widths. 

The beams with 1.6 mm, 3 mm and 5 mm thick plates failed in a flexural mode by 
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yielding of the steel followed by local crushing of concrete. The beam with 

10 mm thick plate failed due to plate separation at its end. 

One over-reinforced beam was plated on its tension face and the other on 

the compression face. Both gave an increase in capacity of approximately 22%. 

The mode of failure was by debonding at the plate ends followed by shearing of 

the concrete. 

The failure loads of all the plated beams could be satisfactorily 

predicted by CP 110 methods. 

A limited series of tests (73) was performed to study the effect of cyclic 

loading during glue curing. The results showed no adverse effects on flexural 

capacity when compared with control beams which were not loaded during the curing 

period. 

2.6 CONCLUSIONS 

It is apparent that many factors affecting the behaviour of bonded joints 

are still not fully understood, and consequently not fully controlled. As is 

evident from the published literature there is some degree of disagreement and 

lack of detail in the information given on the following: 

(a) glue composition and thickness 

(b) plate thickness, lapping techniques, end anchorage 

(c) behaviour of precracked beams 

(d) long term behaviour under sustained load 

(e) durability of epoxy resin bonded joints exposed to moisture. 



CHAPTER 3 

MATERIAL PROPERTIES 

Practical experience and test results such as were outlined in 

Chapter 2 illustrate that the properties of epoxy adhesives are retained under 

varying conditions. The possibility of reinforcing concrete structures simply 

and effectively using epoxies could be of particular interest to the civil 

engineer. Nevertheless, efficient use of the adhesives will depend on the 

engineer having confidence in their properties and knowing their limitations. 

Similarly, the properties of steel and concrete, involved in such 

strengthening operations, are of considerable importance. The resistance to 

cracking of concrete depends on its tensile strength and the control of 

cracking is important in maintaining the continuity of a structure; in many 

cases in the prevention of corrosion of reinforcement and in this application 

to minimise the degradation of the concrete/epoxy/steel bond. Modulus of 

elasticity is of importance in controlling the deflection of members, and in 

addition to the tensile and compressive strengths of the steel and concrete 

respectively, in the analysis of structural members. 

3.1 CONCRETE 

3.1.1 Experimental Procedure 

A trial mix was performed to assess the workability and strength 

properties of the concrete, which was consistent with that used in precast 

prestressed beams used in bridge construction. Bearing in mind that in 

practice strengthening is often carried out after several years in service, 

the concrete would have matured and acquired substantial increase in strength. 

The proportions of the concrete constituents were approximately 

1: 1.05 : 2.45, with a water/cement ratio of 0.4 and plasticised by the 

use of Febflow. The quantities for lm3 are given below. 

sand 480 kg 

19 mm aggregate 1124 kg 

cement 450 kg 



water 177 kg 

Febflow, 140 cc/50 kg cement 

Rapid hardening cement, Ferrocrete, was used. The coarse aggregate was 19 mm 

maximum, uncrushed gravel and the fine aggregate was natural river sand. The 

gradings for these are shown in Fig. 3.1. 

The mixing of concrete was carried out in a non tilting pan type mixer 

with 0.127 m3 capacity. The materials were dry mixed for two minutes, and after 

the addition of water, for a further two minutes. A poker vibrator was used 

for compaction and the specimens were cast in steel moulds as follows, 

(a) 26 - 100 mm cubes for compressive strength 

(b) 12 - 500 x 100 x 100 mm prisms for modulus of rupture 

(c) 4- 300 x 100 x 100 mm prisms for modulus of elasticity. 

The moulds were stripped after 24 hours and the specimens were then 

placed in a mist room at 21°C and 100% relative humidity, until required for 

testing. 

Compressive strength, modulus of rupture and Young's modulus tests were 

carried out in accordance with the recommendations of British Standards. 

3.1.2 Results 

Table 3.1 shows the compressive strength results. The mean strength at 

28 days was 69.5 N/mm2. 

Table 3.2 shows the modulus of elasticity results. The mean Young's 

Modulus at 28 days was 36.0 kN/mm2 with a Poisson's ratio of 0.16. 

Table 3.3 shows the modulus of rupture results. The mean value at 

28 days was 5.59 N/mm2. 

3.1.3 Conclusions 

The results for mean compressive strength modulus of rupture and 

Young's Modulus were consistent and their standard deviations fell within 

acceptable limits. 

3.2 EPOXY RESINS 

In the preliminary test series, two types of adhesive were used. 

Type A CIBA GEIGY XD 808 

Type B COLEBRAND CXL 194 
-30- 
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TABLE 3.1 CONCRETE COMPRESSIVE STRENGTH 

3 DAYS 7 DAYS 14 DAYS 28 DAYS 
N/mm mean N 1mm2 mean N/mm2 mean N/mm2 mean 

47.6 60.3 

48.0 64.1 

46.0 62.4 70.1 

48.4 61.4 64.4 70.4 

46.7 47.2 62.4 60.6 64.8 64.7 69.6 69.5 

43.5 52.3 65-2 68-4 

47.0 55.0 56.8 

47.6 63.0 

50.2 64.5 

TABLE 3.2 MODULUS OF ELASTICITY 

28 DAYS 
kN/mmz mean Pols ris 

36.2 

35.7 
36.0 0.16 

37.7 

34.5 

TABLE 3.3 MODULUS OF RUPTURE 

N /mmý 

5.71 

5.21 

5.33 

6.00 

PJ /mm, 

5.52 

5.82 

5.47 

5.31 

28 DAYS 
N /mm' 

5.64 

5.37 

5.65 

5.91 

mean 

5.59 

coe. tt o1 
variation 

4 °lo 



In the main series of long and short term tests only glue type A was 

used. 

3.2.1 Lap Shear Tests -'Steel/Steel in Tension 

A qualitative series of lap-shear tests was carried out to find the 

optimum glue thickness to be used when lapping two layers of plate, as judged 

by the average shear strength of the various glue thicknesses used. 

3.2.1.1 Experimental Procedure 

Double lap specimens were prepared, as shown in Fig. 3.2 cut from the 

same sheets of steel used as external reinforcement in the preliminary series 

of tests. The steel was shotblasted prior to bonding using steel grit with 

a mean particle size of 340 microns at a pressure of 0.55 - 0.75 N/mm2. The 

steel pieces were then bonded together within one hour after shotblasting. 

The glue was mixed using a low. speed drill, operating at 280 rpm fitted 

with a paddle, for at least two minutes, but no more than three minutes. 

Bonding took place under controlled conditions at 150C and 56% relative humidity. 

The central lapping plates were slightly offset to induce failure in the shorter 

side. The specimens were allowed to cure for ten days before testing. Four 

thicknesses of glue were used for each glue type, and two specimens for each 

thickness. 

3.2.1.2 Results 

Fig. 3.3 shows the results of the lap shear tests. The value of 

average shear stress was found for each glue and plotted against glue thickness. 

These tests showed an almost linear reduction in strength over the 

range of thicknesses used, 0.5 mm - 3.5 mm. This-series was very limited in 

scope, and the results should be treated qualitatively. The control was 

sufficient to enable a choice of 0.5 mm joint thickness between lapping plates. 

3.2.1.3 Conclusions 

The alignment of all the pieces in the lap joint is very important so as 

not to induce peeling stresses in the glue when load is applied. The co- 

efficient of variation for any batch varied from 1 to 24% and this would 

suggest that some specimens had better alignment than others, rather than any 
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fault in the resin itself. 

The general conclusions seemed to be in agreement with the findings of 

others (37) who tested lap shear joints with glue thicknesses ranging from 

0.05 mm - 1.5 mm and found 0.5 mm as the optimum. However, the fact that 

0.5 mm is the optimum in both cases seems to be coincidental as the resin 

formulation, grit size for blasting and chemical treatments, were different. 

3.2.2 Tension Tests 

Tensile tests were performed for adhesive CXL 194 only. 

3.2.2.1 Experimental Procedure 

Three types of specimen were used as shown in Fig. 3.2. Type (A) was 

cast in steel moulds of the required shape; types (B) and (C) were made from 

prisms, which were cast in steel moulds, and subsequently milled and cut to 

shape after curing. A total of 6 type (A) specimens; 24 type (B) and 12 

type (C), were made. Histograms were drawn for each type as shown in Fig. 3.4. 

Three type (C) specimens from each casting were fitted with 2 mm gauge 

length electrical resistance strain gauges, set at right angles to obtain 

Poisson's ratio. To determine the stress-strain curve, demec points were also 

fitted for strain readings over a gauge length of 50 mm. The test results are 

shown in Fig. 3.4. Type (C) specimens are shown in Plate 3.1. 

3.2.2.2 Results 

(a) Tensile strength (ftg) 

Type (A) specimens gave a mean value of 13.2 N/mm2 and a standard 

deviation of 0.92 N/mm2, coefficient of variation of 7%. 

Type (B) gave corresponding values of 14.7 N/mm2,0.77 N/mm2 and 5%. 

Type (C) gave corresponding values of 16.6 N/mm2,0.79 N/mm2 and 5%. 

(b) Modulus of elasticity (Etg) 

Young's Modulus varied considerably with the stress range as shown in 

Fig. 3.4. Between zero and 2500 microstrain Etg was 2060 N/mm2 and between 

2500 and 7000 microstrain it was 1650 N/mm2; these values are the average of 

three specimens. 

(c) Poisson's ratio ('ý 
tg) 
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The average value from three specimens over the range zero to 7000 

microstrain was 0.33. 

3.2.2.3 Conclusions 

For calculation purposes the values of the tensile properties of the 

epoxy adhesive system CXL 194 were taken as: 

Etg = 2000 N/mm2 

vtg = 0.33 

ftg = 16 N/mm2 

The coefficients of variation were of the order expected when 

testing polymers and the different types of specimen gave mean values varying 

by 12%. The value chosen from type (C) specimens seems realistic because there 

was considerable deformation of type (A) specimens within the testing machine's 

jaws, and in type (B) specimen fracture sometimes occurred at the jaws. 

3.2.3 Compression'Tests 

Compression tests were carried out for glue type CXL 194 only. 

3.2.3.1 Experimental Procedure 

The type of test pieces used is shown in Fig. 3.2. The prisms were 

fitted with 2 mm gauge length electrical resistance strain gauges for de- 

termining Poisson's ratio, and demec points on a gauge length of 50 mm for 

determining the stress strain curve. A histogram was drawn for the compressive 

strength results, from tests on 50 mm cubes, as shown in Fig. 3.5, together with 

the stress strain curve from the prisms. Plate 3.1 shows the compressive 

specimens after failure. 

3.2.3.2 Results 

(a) Compressive strength (f 
cg) 

The mean compressive strength from eighteen cubes was 40 N/mm2 with a 

standard deviation of 2.27 N/mm2, coefficient of variation 6%. 

(b) Modulus of Elasticity (Ecg) 

The mean value from three specimens was 3050 N/mm2 between zero and 

2500 microstrain and 2200 N/mm2 between 2500 and 7000 microstrain. 

(c) Poisson's ratio (vcg) 
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The mean value from three specimens was 0.36 over the range zero to 

7000 microstrain. 

3.2.3.3 Conclusions 

For calculation purposes the compressive strength properties found from 

the tests were taken as: 

Ecg = 3050 N/mm2 

V=0.36 cg 
fcg = 40 N/mm2 

3.2.4 Lap Shear Tests - Steel/Concrete in Compression 

Shear tests were carried out for glue type CXL 194 only. 

3.2.4.1 Experimental Procedure 

Three shear specimens were made up from two 100 mm concrete cubes and 

two 3 mm thick steel plates, 80 mm x 180 mm, with a3 mm thick glue layer 

as shown in Fig. 3.6. Great care had to be taken to ensure the two ends which 

would be loaded were parallel to each other and at right angles to the axis of 

the plates. The surface preparation of the steel was as described in 3.2.1.1 

and the concrete surface was abraded with a disc grinder, then hand sanded and 

blown with nitrogen to remove all loose particles and dust. The bonding took 

place within two hours of surface preparation. After twenty-eight days the 

specimens were tested in a compression machine at a loading rate of 4 kN/minute, 

up to failure. Readings of plate strains were taken at five stages during 

loading, at the locations shown on Fig. 3.6. The mode of failure was by 

shearing off one of the concrete faces very close to the adhesive layer as shown 

in Plate 3.1. SHEFFIELD 

3.2.4.2 Results 
UNIVERSITY, 

LIBRARY 

The mean shear stress at failure was calculated by dividing the failure 

load by the total area of glue being sheared. (80 x 80 mm x4-2.56.104 mm2). 

The average value from the three test specimens was 2.87 N/mm2, with a co- 

efficient of variation of 6%. 

The theoretical stress distribution is derived in Appendix 2 and shown 

in Fig. 3.7 for both the axial stress in the plate and the shear stress in the 
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I 

glue. The theoretical distribution of shear stress gives a stress intensity 

factor (maximum stress to mean stress) of 1.82 for the concrete, glue and 

plate properties used. Assuming this value and applying it to the mean 

experimental shear stress gives a value of 5.2 N/mm2 for the maximum shear 

stress in the glue at failure. 

The experimental and theoretical values of axial stress in the plate 

show good agreement as shown in Fig. 3.7. The experimental values were 

obtained from electrical resistance strain gauges of 2 mm gauge length. 

3.2.4.3 Conclusion 

The theoretical distribution of axial stress proposed by Bresson (54) 

was confirmed. The assessed value of maximum shear stress in the glue, 

5.2 N/mm2 seems reasonable as the tensile shear strength of the concrete is 

approximately 5 N/mm2. 

3.3 REINFORCEMENT 

Prior to manufacturing the preliminary beams, the stress-strain 

behaviour, of the steel reinforcing bars and plates, was investigated. 

3.3.1 Bars 

3.3.1.1 Experimental Procedure 

Two specimens from each bar diameter, 6 mm and 20 mm, were used to 

determine the Young's Modulus, yield strength and ultimate tensile strength. 

The tensile tests on the 6 mm standard round bar specimens were carried out as 

recommended in BS 18: Part 2,1970. To eliminate any initial lack of 

straightness, the specimens were first loaded to about 25% of the nominal yield 

stress, as specified by the manufacturer, and then released. The initial 

readings were then taken. The strains were measured using an extensometer of 

50 mm gauge length. The 20 mm diameter high yield steel bars were tested in 

the same manner, but without any initial "straightening". The results for both 

bar diameters are shown in Fig. 3.8. 

3.3.1.2 Results 

The high tensile steel, unlike the mild steel, had no definite yield 

point. The elastic modulus for both steels was 200 kN/mm2. The yield stress 
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of the 6 mm bar was 320 N/mm2 and for the 20 mm bar the proof stress was 

470 N/mm2. 

3.3.1.3 Conclusions 

The samples of steel which were tested behaved as expected and 

satisfied the requirements of British Standards. 

3.3.2 Plates 

3.3.2.1 Experimental Procedure 

The external reinforcement was in the form of mild steel plates of three 

different thicknesses i. e. 1.5 mm, 3 mm and 6 mm. Two specimens from each 

thickness of steel plate were used to determine their Young's Modulus, yield 

strength and ultimate tensile strength. The tests were carried out as re- 

commended in BS 18: Part 3,1970. The strains were measured by demountable 

mechanical extensometer of 50 mm gauge length. The results are shown in 

Fig. 3.9. 

3.3.2.2 Results 

The elastic modulus was 200 kN/mm2, and the yield stresses for 1.5 mm, 

3 mm and 6 mm thicknesses were 236 N/mm2,258 N/mm2 and 248 N/mm2 respectively. 

The respective fracture stresses were 310 N/mm2,316 N/mm2 and 308 N/mm2. 

3.3.2.3 Conclusions 

The samples of mild steel plate behaved as expected and were satisfactory 

for use as the external reinforcement to the plated beams. 
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CHAPTER 4 

PRELIMINARY SERIES OF TESTS 

INTRODUCTION 

Since so many factors affecting the behaviour of bonded joints are still 

not fully understood, and consequently not fully controlled, it was decided that 

a preliminary series of tests would be performed for two main reasons: 

(a) to gain some knowledge of the properties of the epoxy resin systems 

used 

(b) to investigate methods of surface preparation and resin application 

in strengthening simple unreinforced concrete beams. 

It was felt that this would ensure that the main series of large test beams 

would have less variation in results and that wastage of materials would be 

reduced to a minimum. 

The preliminary testing was made up of two series -A and B. 

4.1 EXPERIMENTAL PROGRANNE 

4.1.1 Beam Details 

In series A and B plated and unplated plain concrete beams with no tension 

bar reinforcement were tested. Altogether eighteen beams were tested; two sizes 

of beams, 150 x 150 x 710 mm (Series A) and 100 x 150 x 1200 mm (Series B) were 

used. Two epoxy resin systems were used in both series A and series B. The 

steel plates used for strengthening were the same material for both series. 

4.1.1.1 Series A 

The beams designated Al, 3,5,7 (Table 4.1) were bonded with type A resin 

and were tested on a loading rig which had no roller support. The friction force 

at the supports would therefore cause a relative increase in the applied load to 

produce a particular bending moment. 

The beams designated A2,4,6,8 were bonded with type B resin and tested 

with a roller support. 

In this series the effects of uniform and tapering glue thickness were 

studied. Eight beams were tested. Beams Al and A2 had no internal reinforcement 

at all. The other beams had shear reinforcement at the supports, to avoid shear 



TABLE 4.1 DETAILS OF PLAIN CONCRETE TEST BEAMS : SERIES A 

BEAM CONCRETE ADHESIVE 
M K. AGE AT 
NO. TESTING TYPE THICKNESS PROFILE 

das mm 

Al 86 A 4.0 Uniform glue thickness 

A2 114 B 4.5 

A3 85 A 3.5 =_ "_ 

A4 114 B 5.0 ==_ 

AS 88 A 3.8 Tapering glue thickness 

A6 114 B" 4.0 

A7 84 - - Unplated beam 

A8 114 - - =0_ 

TABLE 4.2 DETAILS OF PLAIN CONCRETE TEST BEAMS : SERIES B 

BEAM CONCRETE ADHESIVE 
MK. AGE AT 

NO. TESTING TYPE THICKNESS PROFILE 
days mm 

B1 83 A 3.5 Uniform glue thickness. 

B2 108 - B 3.0 

B3 83 A 5.0 " Uniform glue , lopped plates. 

B4 108 B 3.0 

B5 77 - - Unplated beam. 

B6 106 

B7 77 - - Unplated 
, notched beam. 

B8 106 - - 

B9 85 A 3.5 Plated 
, notched beam. 

810 100 B 3.0 

average thickness at midspon. 
-49- 



failure outside the plated length. Beams Al, A2, A3 and A4 had uniform glue 

thickness, whereas beams AS and A6 had tapering glue thickness as shown in 

Fig. 4.1. Beams A7 and A8 were unplated control beams. 

In beams Al to AS, the steel plates were 100 x 500 x1 mm thick, and were 

stopped short of the supports by about 50 mm. The beams were tested under centre 

point loading, over an effective span of 610 mm. 

4.1.1.2 Series B 

Series B consisted of the beams in which the effects of uniform glue 

thickness, lapping of plates and the provision of steps on the soffit of the beam 

were studied. The steps were cast into the beam's tension face as shown in 

Fig. 4.2 and detailed in Table 4.2. 

All the beams in this series had shear reinforcement at the supports and 

the steel plates were 75 x 1000 x1 mm thick, again stopped short of the supports. 

Beams B1 and B2 had uniform glue thickness whilst B3 and B4 had lapped plates. 

For these latter beams, two 500 mm long plates were used, butting each other, 

with a cover plate 75 x 400 x1 mm thick. The cover plate was bonded with a glue 

thickness of approximately 0.5 mm. Beams B9 and B10 had tapered, stepped glue 

lines. This was intended to simulate the soffit of a bridge deck consisting of 

precast, prestressed box beams spanning longitudinally. Beams B5 and B8 were 

unplated control beams. Beams B7 and B8 were stepped as beams B9 and B10. 

As in series A the beams with even numbered marks, i. e. B2,4,6,8,10 

were bonded with type B resin and tested with a roller support. Beams with odd 

numbered marks, i. e. Bl, 3,5,7,9 were bonded with type A resin and were tested 

without a roller support. All the beams were tested under central point loading 

over an effective span of 1100 mm. 

4.1.2 Material Properties 

4.1.2.1 Concrete 

The concrete chosen for the beams was designed to be consistent with that 

used in bridge construction using precast prestressed beams as detailed in 

Section 3.1. 

The concrete properties for the two series of tests were as follows. For 
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beams of series A, the cube strength at 28 days varied from 56-60 N/mm2 with a 

mean value of 58.3 N/mm2. The cube strength at the age of testing of the beams 

varied from 64 to 66 N/mm2 with a mean value of 65.5 N/mm2. The modulus of 

rupture of the beams at testing varied between 4.37 and 4.94 N/mm2 with a mean 

value of 4.65 N/mm2. 

For the beams of series B, the 28 day cube strength varied from 67.2 to 

75.2 N/mm2 with a mean value of 70.6 N/mm2. The cube strength when the beams 

were tested varied from 71.9 to 82.7 N/mm2 with a mean value of 76.7 N/mm2. The 

modulus of rupture at this age varied from 5.1 to 5.35 N/mm2 with a mean value 

of 5.22 N/mm2. 

The two concretes had an average elastic modulus of 36 kN/mm2 at 3 months, 

a Poisson's ratio of 0.16 and an average shrinkage of 280 x 10-6 m/m. 

4.1.2.2 Steel 

The 6 mm diameter steel reinforcing bars used for stirrups and hanger bars 

at top and bottom in the two series were as detailed in Section 3.3.1 with a 

yield stress of 320 N/mm2. 

Tensile tests were carried out on standard tensile specimens cut from the 

steel plates to determine the tensile strength. The average yield stress and 

elastic modulus were 125 N/mm2 and 200 kN/mm2 respectively. The ultimate 

tensile strength of the plates was 132 N/mm2. This plate was not the same as 

used for the main test series, as detailed in Section 3.3.2. 

4.1.2.3 Adhesives 

Two epoxy adhesives, both filled systems, were used in series A and B. 

Clue A was a2 part liquid system manufactured by Ciba Geigy Ltd. and designated 

XD 808. Glue B was also a2 part system but with a paste consistency, manu- 

factured by Colebrand Ltd. and designated CXL 194. 

To determine the shear strength of the glue, and hence the best thickness 

to use when lapping plates, double lap shear tests on specimens cut from the same 

sheet as the tensile specimens were carried out, as detailed in Section 3.2.1. 

Based on these results, 0.5 mm thickness was chosen for plate lapping. The other 

glue properties were detailed in Section 3.2. 



4.1.3 ' Preparation of'Test Specimens 

All the test beams were made in four castings. The beams and control 

specimens were stripped after 24 hours and then cured in a fog room at 21°C, 1007. 

relative humidity, until required for plating or testing. After removal from the 

fog room, the beams were kept in a warm dry atmosphere for 24 hours prior to 

surface preparation. 

The surface preparation of the beams consisted of the following operations. 

The beams were abraded, on the tension face, with a disc grinder to remove 

laitance and expose the aggregates. They were then wire brushed to remove all 

loose particles. Finally they were sanded, by hand, with 100 grit emery cloth. 

All remaining dust and debris were removed by blowing with nitrogen. 

The steel plates were gritblasted, as for the lap shear tests, under 

pressure to a uniform grade, as judged visually. Mixing and bonding operations 

were performed as described in Section 3.2.1.1. The glue was applied to both the 

steel plate and the prepared surface of the beam. Small pieces of hardened epoxy 

resin were used as spacers to control the glue thickness. The plate was then 

applied and held in position by weights. 

Using this technique, any entrapped air would generally be restricted to 

the body of the glue layer, and not to the glue/concrete or glue/steel interface, 

where its effect on bond is greatest. The weights were generally left for four 

days after which the beams were left for at least another ten days to allow the 

glue to cure. 

4.1.4 Testing Procedure 

All the beams were tested under a single central point load. The beams 

were loaded in stages. At each stage central deflection, concrete strain 

distribution, strain in the steel plate and the state of cracking were noted. 

The concrete and steel strains were measured at mid-span using a demountable 

mechanical extensometer on a 100 mm gauge length. The concrete strains were 

measured at the compression face and over the depth of the beam. The beams were 

tested at ages varying between 77 and 114 days (at ages from 14 to 30 days after 



gluing). The concrete cube strength and the flexural strength at the age of 

testing were given in Section 4.1.2.1. 

4.2 TEST RESULTS AND DISCUSSION 

The load-deflection curves are shown in Figs. 4.3 to 4.6 and 4.7 shows 

two typical strain distributions across the concrete section. Figs. 4.8 to 4.11 

show the load-strain curves. Plates 4.1 and 4.2 show typical beams after failure 

and Tables 4.3 to 4.6 show the test results. The properties are discussed below 

under the relevant sections. 

4.2.1 ' Deflections and Strains 

The load-deflection curves are shown in Figs. 4.3 and 4.4 for beams of 

series A and in Figs. 4.5 and 4.6 for beams of series B. These results show that 

glued reinforcement has four distinct effects: 

1. It increases the range of elastic behaviour. 

2. It increases the stiffness of the beam. 

3. It increases the ultimate flexural capacity of the beam, and 

4. It makes the beams more ductile. 

Considering beams of series A (Figs. 4.3 and 4.4), it is seen that beam A4 

with shear reinforcement at supports showed better performance than the comparable 

beam A2 without shear reinforcement. Beam A6 with a tapering glue thickness of 

3 to 6 mm, on the other hand, showed initially higher stiffness than beam A2 with 

uniform glue thickness, but with cracking at higher loads this stiffness became 

less than that of beam A2. 

In beams of series B, the presence of notches showed no adverse effects on 

the unplated beams; with plated beams, the notched beam BiO showed marginally 

better behaviour than the beam B2 with uniform glue thickness. Beam A4 with 

lapped plates also showed marginally better performance than beams B2 and B10 

(Fig. 4.6). 

The measured strain distribution over the depth of the beams is shown in 

Fig. 4.7 for two typical beams A2 and B5. These diagrams show that the strain 

distribution remained approximately linear in the compression zone throughout the 

loading range whereas in the tensile zone the strain distribution, approximately 
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linear at low loads, became increasingly non-linear at higher loads due to 

cracking. Within the limits of experimentation, Fig. 4.7 confirms that the 

assumption that plane sections remain plane is valid for plated beams as well. 

As expected, the strain distributions showed a movement of the neutral axis to- 

wards the compression face as the loading approached failure. 

The variation of strain in the steel plate at mid-span is shown in 

Figs. 4.8 and 4.9 for series A and Figs. 4.10 and 4.11 for series B. Bearing 

in mind that the steel plates used for the series A and B are of low yield 

strength (125 N/mm2), Figs. 4.8 - 4.11 show that the plates were well past the 

yielding stage, at failure, in all the beams tested in the two series. The 

steel strains in beams A2, A4 and A6 showed trends similar to the deflection 

curves shown in Fig. 4.4 and confirm the behaviour discussed earlier. In the 

series B, the beam B10 with notches on the tension side showed better behaviour 

than beams B2 and B4 (cf. Fig. 4.6). 

4.2.2 Modes'of Failure 

The first crack in all the beams occurred in the concrete in the tension 

zone above the glue and the plate. With increase in load, additional cracks 

formed but only one major crack extended into the compression zone. Because of 

the lack of internal tensile reinforcement, no extensive tensile concrete crack- 

ing was observed. Generally two or three cracks formed in the shorter beams of 

series A, whereas in the longer beams of series B, only one or two cracks were 

in evidence; in all cases only one major crack developed leading to a simple 

tensile failure. 

All the beams, except beam A3, failed by tensile yielding of the steel 

sheet followed by vertical (or nearly vertical) crack propagation towards the 

central loading point (Plates 4.1 and 4.2). Failure in all the beams was 

initiated by vertical cracking of the glue layer at a position coincident with 

the largest concrete crack. Yielding then commenced and local debonding of the 

plate occurred in the vicinity of the failure plane and the concrete crack 

propagated up to the load point leading to failure. 

In the shorter beams the failure plane sometimes developed along a shear 
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crack (due to short shear span), whereas in the longer beams, the cracks were 

generally vertical. Extensive concrete crushing never occurred, and although 

the strains, recorded at about 80-95% of the ultimate load, were only about 

600-800 x 10-6 m/m, severe strain concentration and signs of crushing occurred 

locally above the failure crack. 

Beam A3 showed extensive debonding of the plate (Plate 4.1), and this was 

found to be due to the presence of large air voids in the glue line, which had 

reduced the bonded cross-section by about 50%. However, the beam failed at 94% 

of the ultimate load for a similar correctly bonded beam. 

4.2.3 First'Crack and Ultimate Loads 

Tables 4.3 and 4.4 show the theoretical and experimental first crack and 

ultimate loads of all the beams tested in series A and B respectively. 

The experimental first crack loads relate to the visually observed cracks 

both in concrete and in the glue. The latter is necessarily more approximate 

as the observation is confined to a thin strip equal to the glue thickness. The 

theoretical first crack load in concrete is based on an uncracked transformed 

(composite) section with an E value for the glue of 6 kN/mm2. The theoretical 

first crack load in the glue is based on a cracked transformed (composite) 

section, assuming a tensile strength of 60 N/mm2 in the glue. These values were 

as supplied by the manufacturer. After the preliminary test series was complete 

further tests were performed on the glue as described in Chapter 3. Tables 4.5 

and 4.6 show the corresponding values to Tables 4.3 and 4.4, but using the 

values of E=2 kN/mm2 and tensile strength of 16 N/mm2 as determined experi- 

mentally. Sample calculations for first crack and failure loads are given in 

Appendix 3. 

The results show that the theoretically predicted first crack loads in 

the concrete consistently underestimate the experimental loads. It is likely 

that the latter is slightly overestimated as they are based on visual examination, 

but even then the composite effect on delaying the formation of the first crack 

in the concrete is clear. The theoretical first crack loads in the glue show 

good agreement with experimental values when assuming 60 N/mm2 for the glue's 
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TABLE 4.5 TEST RESULTS FOR PLAIN' CONCRETE BEAMS : SERIES A 

GLUE FIRST FAILURE MOMENTS CRACK MOMENTS 

BEAM THEORY TEST RATIO THEORY THEORY THEORY TEST RATIOS 
b. TEST / c d. e. MK 

No. THEO EST/ T6T/ TEST/ 

kNm kNm Nm m m kNm, 
TH®RY THE THECF Y 

Al 1.40 5.15 3.68 2.91 3.02 2.05 5.71 1.96 1.89 2.79 

A2 1.40 5.32 3.80 3.04 3.15 '2-05 6.43 2.12 2.04 3.14 

A3 1.40 4.24 3.02 2.78 2.89 2.04 5.34 1.92 1.85 2.61 

A4 1.40 5.32 3.60 3.17 3.28 2.07 6.87 2.17 2.09 3.32 

AS 1-40 4.81 3.44 2.86 2.97 2.05 5.60 1.96 1.89 2.73 

A6 1.40 4.56 3.26 2.91 3.02 2.05 5.95 2.04 1.97 2.90 

A7&8 as o table 4.3 

TABLE 4.6 TEST RESULTS FOR PLAIN CONCRETE BEAMS : SERIES B 
GLUE FIRST 

CRACK MOMENTS FAILURE MOMENTS 

BEAM THEORY TEST RATIO THEORY THEORYy THEORY TEST RATIOS 
MK. TEST / c. d e. 
No. THECR TEST/ TEST/ TEST/ 

kNm kNm kNm kNm kNm kNm 
THEORY THECRY THEORY 

Si 1.10 4.18 3.80 2.09 2.17 1 "53 4.74 2.27 2.1B 3.09 

B2 1.10 3.30 3.00 1.99 2.07 1.53 4.13 2.08 2.00 2.70 

B3 1.10 4.18 3.80 2.38 2.46 1.54 5.73 2.41 2.33 3.71 

B4 1.10 3.30 3.00 1.99 2.07 1.52 4.57 2.30 2.21 2.99 

B5 - B8 cs o table 4.4 

B9 1.10 3.56 . 3.24 2.09 2.17 1.54 4.70 2.25 2.17 3.06 

B10 1.10 3.98 3.61 1-99 2.07 1.52 4.26 2.14 2.06 2.81 

b- based on cracked trcnsbrmed section, E glue 2000 N/mmz, tensile strength glue 16 N/rrrn2 
c- based on yield stress of p'ete, plus tensile strength of glue(16 N/mm2) 

. d- based on ultimate stress of plate, = 
e-__=__= no tensile strength in glue. 



tensile strength but when assuming 16 N/mm2 the theoretical loads are. below the 

first crack load in the concrete which is not possible! 

The theoretical ultimate failure loads shown in Tables 4.3 and 4.4 are 

based on a rectangular stress block for the concrete in compression with a stress 

value of 0.6 fcu. Three stress distributions in the tension zone are considered 

as detailed in Appendix 3. The results suggest that the computations based on 

the ultimate strength of the plate and including the force in the glue give re- 

sults closest to experimental values. It appears that although the plates did 

not fracture, considerable straining had taken place at crack positions leading 

to large interface shear strains and strain hardening of the steel. This, 

together with-the spread of yield of the plate at each side of a crack, leads 

to local debonding. 

The theoretical first crack and failure loads given in Tables 4.5 and 4.6 

show poor agreement with experimental values. It would appear that although the 

glue tests gave a tensile strength of 16 N/mm2, the actual tensile properties 

are different when the glue is acting compositely with the steel plate and con- 

crete beam. The experimental failure moments were all almost twice the theor- 

etical values assuming 16 N/mm2 for the glue tensile strength (Tables 4.5 and 

4.6). 

4.3 CONCLUSIONS 

From the results reported in this chapter, the following conclusions can 

be drawn. It is emphasised that these conclusions are limited to the variables 

studied here. 

The use of external reinforcement in the form of steel plates glued to 

the tension face of plain concrete beams has the following effects: 

(a) it increases the range of elastic behaviour 

(b) for a given load, it reduces the tensile strains in the concrete, 

due to the composite action of the concrete, glue and steel plate, compared to 

those in unplated beams 

(c) it delays the appearance of the first visual cracks with a resulting 

increase in service loads 



(d) it increases flexural stiffness throughout loading and thus reduces 

deflections at corresponding loads 

(e) it enhances the ultimate flexural capacity 

(f) it increases the ductility at failure. 

For a constant plate area, the stiffness of the beams increased as glue thickness 

increased. Lapping plates increased stiffness compared to a corresponding beam 

with a continuous plate, probably due to the increase in lever arm. Strain 

measurements showed that plane sections remained plane throughout loading, above 

the neutral axis. Below the neutral axis it was linear with some beams and 

irregular with others. This is because once the beam has cracked, the strain 

gauge reading is not the true strain, but is an average strain which depends on 

the position of the cracks. 

For the variables studied in this series it was found that in plain con- 

crete beams, with reinforcing plates of low yield strength, the glue makes a 

significant contribution to the ultimate strength of the composite section. 

The values of first crack load in the glue and the ultimate load, based on ex- 

perimentally determined glue properties, were far below those observed in the 

tests. This suggests that the glue exhibits properties, when acting compositely 

with the steel and concrete, different from those found by testing samples of 

glue in unrestrained tests. However, further tests would be needed to confirm 

this. 

The results indicate that the glue cannot be cracked at failure because 

if it were then the theoretical failure loads would be approximately half of 

the values found by experiment. There was, however, some evidence of surface 

cracking in the glue approaching failure. 

It was interesting to find that even when large voids were present in 

the glue line, up to 50% of the width at the critical section in beam A3, the 

beam was able to sustain 94% of the load achieved by a similar beam with no 

voids in the glue. 

Experience with the preparation of the steel and concrete surfaces gained 

from these tests emphasises the need for care at all stages. With plates only 
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1.5 mm thick it was essential to grit blast both sides of the plates to prevent 

warping. Applying the glue to both concrete and plate minimises voids at the 

interfaces and confines them to the body of the glue where they are less 

critical. 



'CHAPTER 5 

STRENGTH' PROPERTIES 

5.1 INTRODUCTION 

The performance of a structure is determined by the behaviour of its 

component members which in turn depend on the properties of the materials and 

the methods adopted for their design. 

Plain concrete has low tensile strength and little resistance to crack 

propagation. Flaws or microcracks develop in the material during manufacture, 

even before any external load is applied, due to inherent volumetric and micro- 

structural changes. The poor tensile strength is due to the enlargement and 

propagation of the internal flaws which lead to brittle fracture on loading. 

In order to use concrete in a load-bearing element, it is necessary to 

impart tensile resistance properties to it. The use of reinforcing bars provides 

tensile strength in a structural member but does not increase the tensile strength 

of the concrete itself. For this reason it has become practice, since the 

establishment of reinforced concrete design techniques, to ignore the tensile 

strength of the concrete when estimating the flexural strength of a member. 

The present trend towards using high strength materials, refined design 

techniques and slender members produces structures in which the serviceability 

conditions may be more critical than strength considerations. Codes of practice 

recommend that the width of surface cracks, and magnitude of deflections at 

service loads should not exceed certain limits, which are based on criteria such 

as corrosion, aesthetics or damage to non-structural elements. 

The preliminary test series showed the effects of external reinforcement on 

plain concrete beams. It should therefore follow, that the addition of a bonded 

steel plate to the tensile face of a reinforced concrete member should result in: 

(a) producing higher cracking loads 

(b) a more even distribution of cracking 

(c) a reduced crack propagation 

(d) reduced deformations, i. e. rotation, deflection, strains etc. 

throughout the loading, up to failure. 
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This part of the investigation compares the experimental first crack, 

service and ultimate loads with those calculated by accepted methods. The 

increase in service load of the plated beams, above that of the unplated beam, 

is studied, using as a basis the different criteria of deflections, rotations, 

crack width and steel bar strains. 

5.2 EXPERIMENTAL PROGRAMME 

Previous work (54-73) has shown external bonding of steel plates onto 

reinforced concrete beams to be effective in controlling deformations and 

increasing post cracking stiffness of flexural members. 

Twenty four beams were tested in this series. The main variables were 

glue thickness; plate thickness and lapping techniques. Details of the beams are 

given in Table 5.1 and the properties of the materials used were described in 

Chapter 4. 

Three glue thicknesses were used, beams 203 to 206 had a 1.5 mm thick 

adhesive layer; beams 207 to 215 had a3 mm thick adhesive layer and beams 216 

to 219 had a6 mm thick layer. For each thickness of glue three thicknesses of 

plate were used; beams 203,207,211,212 and 216 had 1.5 mm thick plate; beams 

204,208,215 and 217 had 3 mm thick plate; and beams 205,209,210,218 and 219 

had 6 mm thick plate. 

Beams 206,213 and 214 had two layers of 1.5 mm thick plate for comparison 

with beams with a single layer of 3 mm plate. 

Beams 211,212,213,214 and 215 had laps in their plates for comparison 

with beams having continuous layers of plate. 

Beams 222 to 224 were preloaded and cracked before their plates were 

bonded on. 

Beam 220 had an adhesive layer of variable thickness, 3 mm to 8 mm, along 

its length. 

Beam 221 had 'V' notches cut in its tension face, at the loading points, 

to produce points of stress concentration. 

Beam-202 had an adhesive layer 3 mm thick, but without a plate, to 

investigate cracking of the glue. 



Beam 201 was unreinforced externally, having neither glue nor plate and 

was used for comparison. 

The beams were all identical in size: 155 mm wide, 255 mm deep and 2.5 m 

long. All beams were tested under four point bending on a span of 2.3 in. 

Stirrups, 6 mm diameter at 75 mm centres, were provided in the shear spans to 

prevent shear failure. The beam details and instrumentation are shown in 

Figs. 5.1 and 5.2. 

5.3 TEST PROCEDURE 

The beams were manufactured from the same materials and in the same manner 

as in the preliminary test series described in Chapter 4, with three control 

cubes for compressive strength and three 100 x 100 x 500 mm prisms for modulus of 

rupture testing, with each beam. 

The beams and control specimens were stripped after 24 hours and cured in 

uncontrolled laboratory conditions. 

After approximately fourteen days the beams were prepared for'bonding as 

described in Chapter 4. The plates were degreased with trichlorethylene 24 hours 

prior to shotblasting. Because of the large size of the plates they had to be 

taken to a commercial shotblasting company where they were abraded with steel 

grit of 340 micron mean size, and then returned to the laboratory immediately for 

bonding to prevent surface corrosion and contamination. The mixing and bonding 

were carried out as described in Chapter 4. A minimum of 14 days was required 

between plating and testing. 

Electrical resistance strain gauges of 7 mm gauge length were glued to the 

longitudinal bar reinforcement at three locations as shown in Fig. 5.2, one day 

prior to casting. Electrical resistance strain gauges of 6 mm gauge length were 

glued to the external reinforcing plates, after being bonded onto the beam, at 

locations as shown in Fig. 5.2. 

The day prior to testing the beam was whitewashed to facilitate crack 

viewing. Demec discs were used to locate a mechanical extensometer on a base of 

200 mm along the side of the beam at the centre section. The concrete surface 

was roughened and cleaned with acetone prior to gluing on the discs with 'Plastic 
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FIGURE 5.1 LOADING RIG AND MECHANICAL INSTRUMENTATION 
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Padding'. In the first beam demec discs were stuck to both sides of the beam at 

midspan, but as the results showed the readings on each face to be consistent, in 

subsequent beams the discs were glued on one side only. 

For measuring rotations, ball bearings resting on steel nuts were glued, 

150 mm apart at the support and loading points. An inclinometer with one second 

divisions was used. 

Deflections were measured at midspan and support with dial gauges having 

0.01 mm divisions. On the plated beams the relative vertical movement of the 

plate to the beam was also measured. The location of dial gauges is shown in 

Fig. 5.1. 

The beams were tested with their tension face uppermost to facilitate crack 

observation and measurements. Load was applied upwards at positions 383 mm on 

either side of midspan by means of a stiffened, 150 mm deep, wide flange spreader 

beam resting on a 50 ton capacity hand operated hydraulic jack at its mid point. 

The load was measured by a linear differential voltmeter and a calibrated load 

cell placed between the jack and the spreader beam. The ends of the beam were 

positioned between pairs of 35 mm diameter Macalloy bars up to crossheads that 

were secured at the top. One end was a fixed support and the other moving on 

rollers longitudinally. Both supports allowed rotation. The test rig is shown 

in Plate 5.1. 

Load was applied gradually until the first crack appeared, which was 

detected visually using a magnifying glass. Load was then applied in increments 

up to failure. Each increment was approximately 121% of the loading range. At 

each load stage the deflection; rotations; steel reinforcing bar and plate 

strains; concrete strains; crack width, spacing and height were measured and 

recorded. 

The beams were loaded to failure in order to observe the mode of rupture 

of the plate/glue/concrete composite system. After failure the cracks were out- 

lined by thick black marking pen and the beams were then photographed as shown in 

Plates 5.2 to 5.8. 



a- test beam 
b- spreader beam 
c- loading jack 
d- hand pump 
e- tie rods 
t- crosshead 
g- strain gauge apparatus 
h- digita! voltmeter 

PLATE 51., , DING ARRANGEMENT 



UNPLATED BEAM - noglue or plate 

3 rrur glue thicknes , rio plate 

3mm glue thickness, 1 5mm plate thickness. 

,, T ,!, j,.; i" '. 3i FIIf' ý, _ 
If1iý Fi , 1! t' . Ký, ", 

centre plate : ap 

. »II. »'j » ,,, 

sapped plates above the load points 
52 CRACK PATTERNS - PLATED AND UNPLATED BEAMS 



1 5mm plate thickness. 

3 mm plate thickness. 

6mm plate thickness. 

2 layers of 1.5 mm plate. 

PL:. - 5-3 -RACK PATTERNS - BEAMS WITH 1.5mm GLUE THICKNESS. 



1.5 mm plate thickness. 

3mm pkitt thickntss. 

S mm plate thickness. 

6 mm plate thickness 

PL:, ý: 5.4 
. RACK PATTERNS - BEAMS WITH 3 mm GLUE THICKNESS 



3mm plate thickness 

2 layers of 1-5mm plate, centre plate tap. 

2 layers of 1,5mm plate, lapped plates above 
the load points. 

P'_t, ' 55 : RACK PATTERNS 3mm GLUE THICKNESS 



15 mm plate thickness 

3 mm Platt thidtný 

6 mm plate thickness. 

ý, ý 5-6 
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3mm glue thickness, 1.5mm plate thickness 

:i .x., c, Rness, 1 5rrv pi... . _ý,, vA �, - -1n loader: 
50% ultimate load before bonding the plate on 

r" 

3 mm glue thickness, ] 5mm plate thickness, beam loaded to 
90"'* ultimate toad before bonding the plate on 

3mm give thickness, 3mm piate thickness 

3 mm glue thickness, 3mm plate thickness, beam loaded to 

50 'Is ultimate load before bonding the plate on. 

PLATE 5-8 CRACK PATTERNS - PRELOADED BEAMS. 



5.4 DISCUSSION OF RESULTS 

5.4.1 First Crack Loads 

The first crack loads for the concrete, at the tension face of the beam, 

were calculated based on the uncracked, transformed moment of inertia and using 

the value of modulus of rupture of the concrete from the test prisms. The 

experimental values, given in Table 5.2, were observed with a magnifying glass. 

For the plated beams the experimental load was, on average, 1.38 times the 

theoretical value. The same ratio for the unplated beam was 1.12. The experi- 

mental values being obtained visually are not accurate and the load would be 

recorded after cracking had initiated. However, the restraining effect of the 

glue and plate on the increase of crack width is apparent from the two ratios 

given above. Fig. 5.3 shows the variation of first. crack load with the plate and 

glue thickness. It can be seen that there was little effect on the cracking load 

for the range of glue and plate thicknesses used. However it is clear that the 

cracking load is well above the value for the unplated beam. The CP110 service 

load was calculated from the CP110 failure load, with Ym - 1.15 for steel and 1.5 

for concrete. The ratio of experimental first crack load to CP110 service load 

was 0.35 for the unplated beam. The mean values for beams with 1.5 mm, 3 mm and 

6 mm thick plates were 0.45,0.37 and 0.32 respectively. (Table 5.2) 

5.4.2 Increase of Service Loads 

The deflection, rotation, maximum crack width and strain in the reinforcing 

bars at the centre. section were found for the unplated beam at its CP110 service 

load; 100 M. This being defined as the ultimate load, as found by CP110 

recommendations, divided by 1.6. The properties described above were as follows: 

(a) deflection 4.6 mm 

(b) rotation 113 x 10-4 radians 

(c) maximum crack width 0.09 mm 

(d) steel bar strain 1020 x 10-6 m/m. 

For each plated beam the corresponding loads which produced the same 

respective deflection, rotation, crack width and strain were found from the 

experimental results. All these values are given in Table 5.3. 



TABLE 5 .2 STRENGTH CHARACTERISTICS 

BEAM E 
NUMBER 

XF-ERN61T 
FIRST 
CRACK 

(1) 

LOAD kN 

CP 110 
SERVI ' 
LOAD 

ý2 

kN 

(1) E 
- 
(2) 

, 03: 4ýEN E 
SERVICE 
LOAD 

(ý 

KN 

(PE4, EN 
ULTIMATE 
LOAD (4) 

UN 

(3) 
(2) 

(4) 
(2) 

E 
Ju 

E 
wU 

201 35.0 100 0.35 145 232 1.45 2.32 00 

202 39.9 102 0.39 153 245 1.50 2.40 30 0 

203 501 116 0.43 169 270 1.46 2.33 1.5 1.5 

204 50.1 134 0.37 169 270 126 2.01 1.5 3.0 

205 548 166 0.33 133 213 0.80 1.28 1.5 6.0 

206 55.0 135 0.41 138 220 1.02 1.631.5 2x1.5 

207 55.0 119 0.46 164 262 1.38 2.20 3.0 1.5 

208 49.0 135 0.36 165 264 1.22 1.96 3.0 3.0 

2 09 52.4 167 0.31 138 220 0.83 1.31 3.0 6.0 

210 50.1 166 0.30 134 215 0.81 1.30 3.0 6.0 

211 54.8 119 0.46 158 253 1.33 2.13 3.0 1-SL 

212 47.0 117 0.40 155 248 1.32 2.12 3.0 1.5L 

213 50.1 135 0.37 158 253 1.17 1.87 3.0 1.5 

214 50.1 135 0.37 158 253 1.17 1.87 3.0 15 

215 49.8 134 0.37 156 250 1.16 1.87 3.0 30L 

216 54.0 118 0.46 164 262 1.39 2.22 6.0 1.5 

217 480 135 0.36 161 257 1.19 1.90 6.0.3.0 

218 51.4 168 0.31 121 194 0.72 1.15 6.0 6.0 

219 55.0 168 0.33 138 220 0 82 1.31 6.0 6.0 

220 54.8 118 0.46 164 263 1.39 2.23 3-8 1.5 

221 548 117 0.47 161 268 138 2.21 3.0 1.5 

222 51.1 117 0.44 168 268 144 2.29 30 1.5P 

223 53.0 118 0.45 165 264 1.40 2.24 3.0 1.5P 

224 47.2 136 0.35 156 250 115 1.83 10 30P 

L -lapped plates P- precracked beams. 
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TABLE 5.3 INCREASE OF SERVICE LOADS 

BEAM 
NUMBER 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

- 216 

217 

218 

219 

220 

221 

222 

223 

224 
L- lapped plates . 

P- precracked beams. *-CP110 service load - unplated beam. 
LOAD 1- load in plated beam corresponding to 4.6 mm defection (urplc ted beam at 100 kN ) 
LARD 2-= 113x10 fad rotation ( 
LOAD 3-= 009 mm crack width ( 
LOAD 4- =__= 1020 ' microstrain (___) 

(1) 
LOAD 1 

kN 

101 

104 

110 

131 

113 

111 

126 

130 

133 

111 

11} 

110 

119 

120 

111 

123 

134 

136 

104 

111 

100 

85 

120 

(2) 
LOAD 2 

kN 

102 

106 

124 

138 

123 

106 

134 

144 

146 

117 

114 

130 

137 

133 

113 

133 

156 

160 

. 106 

111 

120 

108 

133 

(3) 
LOAD 3 

kN 

106 

144 

153 

170 

158 

153 

160 

184 

199 

145 

137 

138 

142 

158 . 
145 

145 

180 

146 

148 

123 

123 

160 

(4) 
LOAD 4 

kN 

102 

120 

151 

171 

155 

116 

150 

210 

170 

130 

130 

154 

153 

168 

143 

165 

190 

200 

130 

128 

143 

140 

172 

(1) 
100` 

1.01 

1.04 

1.10 

1.31 

1.13 

1.11 

1.26 

1.30 

1.33 

1.11 

111 

110 

1.19 

1-20 

1.11 

1.23 

1.34 

1.36 

1.04 

1.11 

1.00 

0.85 

1.20 

(2) 
100 

1.02 

1"os 

1.24 

1.38 

1.23 

1.06 

1.34 

1.44 

1.46 

1.17 

1.14 

1.30 

1.37 

1-33 

1.13 

1.33 

1.56 

1.60 

1.06 

1.11 

1.20 

1. oa 
1.33 

(3) 
100 

1-os 

1.44 

1.53 

1.70 

1.58 

1.53 

1.60 

1.84 

1.99 

1.45 

1.37 

138 

1.42 

1.58 

1.45 

1.45 

1 . 80 

1.46 

1.48 

1.23 

1.23 

1.60 

(4) 
100 

1.02 

1.20 

1.51 

1.71 

1.55 

1.16 

1.50 

z"1o 
1.70 

1.30 

1.30 

1.54 

1.53 

1"sa 

1.43 

1.65 

1.90 

2.00 

1-30 

1.28 

1.43 

1.40 

1.72 

E W z 

3.0 

1.5 

1.5 

1.5 

1.5 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

6.0 

6.0 

6-0 

6.0 

3-ß 

3.0 

3.0 

3.0 

3.0 

WY 
ý 
tt Ft 

0 
1.5 

3.0 

6.0 

Z(1-5 

1.5 

3.0 

6.0 

6.0 

1.5L 

1.5L 

va-5u 

U. 5L1 

3"0L 

1.5 

3.0 

6.0 

6.0 

1.5 

1.5 

1.5P 

1"5P 

30P 



5.4.2.1 Deflection 

The plated beams were able to sustain higher loads than the unplated beam 

before reaching a deflection of 4.6 mm. The increase varied as follows: 7 to 

11% for beams strengthened with 1.5 mm thick plate; 10 to 23% for beams 

strengthened with 3 mm thick plate and 30 to 37% for beams strengthened with 

6 mm thick plate. 

5.4.2.2 Rotation 

The plated beams again were able to sustain higher loads before reaching a 

rotation of 113.10-4 radians. The corresponding beams as for deflections gave the 

following increases: 10 to 17% for 1.5 mm thick plates; 25 to 367 for 3 mm thick 

plates and 38 to 42% for 6 mm thick plates. 

5.4.2.3 Maximum Crack Width 

When considering crack width the increases for the corresponding beams 

were as follows: 37 to 50% for 1.5 mm thick plates; 38 to 60% for 3 mm thick 

plates and 70 to 997 for 6 mm thick plates. 

5.4.2.4 Steel Bar Strain 

When considering the steel bar strains the corresponding increases were 16 

to 43% for 1.5 mm thick plates; 50 to 68% for 3 mm thick plates and 70 to 1107 

for 6 mm thick plates. 

In general it can be seen that the addition of the external reinforcing 

plates had the effect of increasing the limit states for serviceability. 

Table 5.2 shows the ratio of experimental service load, (experimental 

ultimate load = 1.6), to CP110 service load. All these ratios are greater than 

1.0, except for the beams with 6 mm thick plates, which did not reach their 

flexural capacity due to their mode of failure. The ratios for the beams with 

1.5 mm and 3 mm thick plates varied from 1.02 to 1.46, with a mean value of 1.28. 

This value would be expected to be greater than 1.0 as CP110 includes material 

safety factors. 

Fig. 5.4 shows the variation of experimental service load with glue and 

plate thickness. The beams with 1.5 and 3 mm thick plates show an increase in 

service load whereas those with 6 mm plate thickness show a decrease. 

-90- 



5.4.3 Ultimate Loads 

Three methods were used for calculating the theoretical ultimate loads of 

the test beams. 

(a) Ultimate Limit State to CP110. 

(b) Strain Compatibility - glue cracked. 

(c) Strain Compatibility - glue uncracked. 

The general assumptions and examples of calculations are given in 

Appendix 4. 

The increase in the ultimate flexural moment capacity over that of an 

unplated beam varied from 8 to 17% for beams with 1.5 mm and 3 mm thick plates. 

The beams with 6 mm thick reinforcing plates showed a decrease in ultimate moment 

capacity compared with the unplated beam varying from 5 to 16%. Plates 5.2 to 

5.8 show the beams after failure. 

5.4.3.1 Beams with 1.5 mm Plate Thickness 

From Table 5.4 it can be seen that there was good agreement between the 

theoretical and experimental failure moments. The mean ratio of experimental to 

theoretical moments for the three methods of calculation, i. e. CP110, strain 

compatibility with no tensile contribution from the glue and strain compatibility 

including the tensile force in the glue, were 1.09,1.06 and 1.05 respectively, 

with a coefficient of variation of 3% in each case. This ratio varies only 

marginally when the tensile force in the glue is included. In the preliminary 

test series the variation was very large due to the fact that the plate used had 

a low yield strength and was only 1 nun thick. The glue, therefore, was providing 

a large proportion of the tensile force in the beam, as there was no internal 

reinforcement. As shown in Appendix 4, the experimental stress strain curve for 

the glue was used when calculating the moments by strain compatibility. More 

testing needs to be done to determine the actual stress condition in the glue in 

the composite condition. The test on beam 202, with a3 mm thick adhesive layer 

and no plate, showed that the glue was not cracked at failure. Beam 221, with V 

notches cut in the tension face to form stress concentrations had no significant 

differences from similar beams without these notches. 



TABLE 5-4 ULTIMATE LOADS 

m 

LLJ mz 

CP 110 
ULTIMATE 
MOMENT 

kNm 
(1) 

STRAIN 
CCWATBLM 
ULTIMATE 
MOMENT 
(NO GWE) 

kNm 
(2) 

STRAIN 
COMPS TBUIý 
ULTIMATE 
MOMENT 

(" CLUE) 

kNm 
(3) 

ER1V1ENT 
UIMATE 
OMENT 

kNm 
(4) 

(4) 
- (1) 

(4) 
- (2) 

(4) 
- (3) 

FAILURE 
MODE 

Zw 
w wY 

Q. -- 

201 81.2 83.7 83.7 88.9 1.09 1.06 1-06 FLEXURE 0 0 

202 82.8 85.9 87.0 93.9 1.13 1.09 1.08 FLEXURE 3.0 0 

203 90.1 92.4 92.8 103.5 1.15 1.12 1.12 FLEXURE 1.5 1.5 

204 100.1 102.5 102.9 103.5 1.03 1.01 1.01 FLEXURE/ 1.5 3.0 

205 118.7 120.3 1246 81.7 0.69" 0.61` 0"G> &LEAR 13l 1.5 6.0 

206 100.9 104.3 104.9 104.3 1.03 1.00 0.99 
FLEXURE/ 
3-EAR BCNC 1.5 2x1.5 

207 92.2 95.5 966 1046 1.09 1.05 1.04 FLEXURE 3.0 1.5 

208 100.9 103.6 104.2 101.2 1.00 0.98 0.97 SURE/ 
BCT 3.0 30 

209 11919 122.1 122.4 84.3 0.70` 0.69' 0.6T ST-ARECtt 3.0 6.0 

210 118.9 1208 121.2 824 0-69' 0.0 0.68` aim9al 3.0 6.0 

211 92.7 96.3 97.2 97.3 1.05 1.01 1.00 FLEXURE 30 1.5 L 

212 90.4 92.9 93.5 95.8 1.06 1.03 1.02 FLEXURE 3*0 1.5 L 

213 101.0 103.4 104.0 96.9 0-96 0.94 0.93 EXURE/ 3.0 "5L 

214 101.3 104.2 104.9 97.0 0.96 0.93 0.92 B. / 30 -51. 

215 102.0 . 105.2 106.0 95.8 0.94 0.91 0.90 c9 - 3'0 3-OL 

216 91.9 951 96.7 100.6 1.09 1.06 1.04 FLEXURE 6.0 1-5 

217 101.3 104.2 105.5 98.6 ' 0.97 0.95 0.93 EXURE/ 
a-ENRIM 6.0 3.0 

218 120.2 1223 122.7 74-5 0.62 0.61« 0.60' BAD 6.0 6.0 

219 120.8 123.1 124.3 84.3 0.70 0.68 0.68 6.0 6.0 

220 91.7 95.0 96.3 1008 1.10 1.06 1.05 FLEXURE 2-8 1-5 

221 91.3 93-9 94.6 98.9 1.08 1.05 1.04 FLEXURE 3.0 1.5 

222 91.4 93-9 96-3 102.7 1.12 1.09 1.07 FLEXURE 3.0 1.5P 

223 92.8 96.3 96.9 101.2 1.09 1.05 1.04 FLEXURE 3.0 1.5 P 

224 102.0 105.1 105-8 95-8 0.94 0.91 0.91 
FLEXURE/ 

E4RBa 10 30P 
1.05 -01 1.00 (* not included) 



5.4.3.2 Beams with Two Layers of 1.5'mm'Thick Plate or 
One Layer of 3 mm Thick Plate 

From Table 5.4 it can be seen that there was good agreement between the 

theoretical and experimental failure moments. The mean ratio's, as before, were 

0.98,0.95 and 0.95 respectively, with a coefficient of variation of 4% in each 

case. There was no difference between the mean ratios of failure moments, as 

given above, for the beams with one layer of 3 mm plate or two layers of 1.5 mm 

plate. 

5.4.3.3 Beams with 6 mm Thick Plate 

From Table 5.4 the mean ratios of experimental to theoretical failure 

moments, as before, were 0.68,0.67 and 0.67 with a coefficient of variation of 

5% in each case. It is apparent, therefore, that it is not possible to increase 

the ultimate capacity of a beam beyond a certain point by simply adding thicker 

and thicker plates. Nevertheless, it should be noted that the thicker plates 

greatly enhance the deformational properties at service loads. In general the 

mean ratio found from CP110 calculations were higher than those from strain 

compatibility. This is due to the fact that the CP110 calculation uses the proof 

stress of the steel and takes no account of strain hardening beyond this point. 

The ratios of experimental ultimate load to CP110 service load are given in 

Table 5.2. Except for the beams with 6 mm thick plates, the values ranged from 

1.83 to 2.33 with a mean value of 2.08. This compares with 1.60 as recommended 

by CP110. This difference is largely due to the material safety factors included 

in the CP110 design method. 

5.4.4 Modes of Failure 

5.4.4.1 Beams with 1.5 mm Thick Plates 

All beams with 1.5 mm thick reinforcing plates failed in a flexural mode 

by combined yielding of the tensile bar and plate reinforcement followed by 

crushing of the concrete in the compression zone. As the tensile reinforcement 

started to yield, the width of one or two cracks at or near the critical section, 

increased at a faster rate. With increase in load the adjacent cracks grew wider 

indicating a spread of yield in the steel bars and plate along the beam. The 



increase in crack width was accompanied by a slow propagation of crack height 

towards the compression face. Finally the concrete crushed at a point between 

the loads. None of these beams showed any signs of the plate debonding from the 

glue and/or concrete, except after failure of the compression zone. The debonding 

then occurred in the constant moment region and was only apparent after unloading. 

This debonding was probably due to the large post-failure deflections, which 

would have caused very high strains in the plates. 

5.4.4.2 Beams with Two Layers of 1.5 mm Plate or 
One Layer of 3 mm Thick Plate 

These beams failed in a mode which was a combination of flexure and shear/ 

bond. Flexure, however, must have been predominant as they achieve between 94 

and 103% of their theoretical CP110 ultimate moment capacity. There was no sign 

of debonding between the glue and concrete or plate. The strain readings in the 

steel bars and plates indicated that yielding had occurred prior to failure. 

A shear crack initiated at the end of the plate and propagated diagonally 

towards the concrete compression zone widening the crack at its root and even- 

tually causing partial separation of the plate. No debonding occurred but the 

concrete cover to the internal bars was ripped away. 

It was thought that this shear/bond type of failure could be prevented by 

reducing the area of plate at the ends. The method used to accomplish this was to 

use two layers of 1.5 mm thick plate, the first layer being glued along the full 

length as usual but the second layer was stopped halfway between the loading and 

support points. This beam, 206, therefore had 3 mm plate thickness across the 

constant bending moment region and 1.5 mm plate thickness at the ends. Its 

behaviour was compared with beams 213 and 214 which had two full length layers of 

plate 1.5 mm thick. Beam 206 reached 103% of its theoretical CP110 ultimate 

capacity compared with only 96% for beams 213 and 214, as given in Table 5.4. 

The mode of failure was still by shear/bond, however, the load-deflection and 

moment-rotation characteristics of beams 206 and 213 were almost identical. 

Further tests need to be done to investigate this technique. 

5.4.4.3 Beams with 6 mm Plate Thickness 

All these beams failed by shearing off the concrete along the level of the 

-94- 



internal reinforcement, effectively ripping off the concrete cover. There was no 

sign of debondirrg of the glue and concrete or plate prior to failure, nor was 

there any sign of cracking in the glue. The strain readings in the steel bars 

and plate indicated that yielding had not occurred prior to failure. 

Fig. 5.5 shows the variation of the failure load with the plate and glue 

thickness, and their modes of failure. It is apparent that the beams strengthened 

with 6 mm plates were not satisfactory from the ultimate load point of view. 

However, their behaviour when considering deflections, rotations and cracking 

characteristics at service loads are discussed in Chapter 6. Fig. 5.5 is replotted 

in Fig. 5.6 with ordinates changed to experimental/theoretical failure load. 

Values obtained by Cusens and Smith (28) are included for comparison. 

5.5 CONCLUSIONS 

Based on the results presented in this section the following conclusions 

can be made. 

1. The use of external reinforcement delays the appearance of the first 

visual cracks with a resulting increase in service loads. 

2. No debonding of the glue from the concrete or steel occurred prior to 

failure, thus full composite action was achieved throughout loading. 

3. No cracking was observed in the glue prior to failure, including the 

beam which had a layer of adhesive without a plate. Further tests need to be 

performed to determine the stress conditions in the glue layer when acting 

compositely with steel and concrete. 

4. The maximum increase in the ultimate strength of an unplated beam by 

the addition of externally bonded steel plates was found to be only 17%. 

5. The ultimate flexural capacity of the concrete beams with external 

plate reinforcement could be satisfactorily predicted using all three methods 

detailed in Appendix 4. 

6. More research is needed to investigate methods of preventing shear/ 

bond failures. This could possibly be achieved by: 

(a) variation of plate end geometry, either by reducing the width 

or thickness 

-95- 
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(b) variation of the glue's elastic modulus at the plate ends. A 

lower elastic modulus near the plate ends would reduce the shear stresses and 

should therefore delay the onset of the propagation of large shear cracks 

(c) provision of anchor bolts or straps at the plate ends. 



CHAPTER 6 

" DEFORMATION PROPERTIES 

6.1 INTRODUCTION 

In the past, the allowable stresses for both steel and concrete were low 

and as a result reinforced concrete members were not severely cracked under 

service load conditions. Therefore, small deflections and rotations resulted 

due to their high stiffness. 

The present trend towards the use of high strength steels and concrete, 

and the development of more accurate and sophisticated ultimate strength design 

procedures have made it possible to use slender members. However, there has 

been no corresponding increase in the elastic moduli of the construction 

materials. Although correctly maintaining an adequate factor of safety against 

collapse, this gives rise to a greater possibility of local damage due to 

increased deformations. 

Limit design theories for statically indeterminate structures. require a 

knowledge of the deformational capacity of hinging regions in members. The 

major advantage of including inelastic behaviour in a design method is that 

moment redistribution can be used. This means transferring some calculated 

moment at one position to another position in a member. If the calculated 

moment at a support is reduced then this means that the resistance moment at 

that section will be incapable of resisting the total moment it can get. So at 

this position the member will become plastic and yield. The amount of re- 

distribution depends on the deformational capacity of the structure. Several 

theories of limit design have been proposed which are based either on a know- 

ledge of the moment-curvature relationship, such as that proposed by Sawyer (87), 

or on a knowledge of the moment-rotation relationship, such as that proposed by 

Baker (88). 

It is obvious that excessive deflection can cause structural problems and 

can also give rise to public concern. The prediction and control of deformation 

is of great importance but it is complicated by the many factors which influence 



the behaviour of a member such as: the magnitude and distribution of loading; 

span and support conditions, materials and section properties; and the extent 

of cracking. Additional variables controlling long term deflections which are 

of primary importance are the effects of creep and shrinkage. 

The object of this part of the investigation was to assess the effects 

of varying glue and plate thickness, lapping techniques, multiple plate layers 

and degree of precracking on the load-strain, load-deflection and moment- 

rotation characteristics. 

The load-strain behaviour was observed for both the internal steel 

reinforcing bars and the externally bonded steel plates. In addition the con- 

crete surface strain distribution was measured. 

The use of accepted methods for predicting the deflections and rotation 

of normally reinforced concrete beams were assessed for the plated beams. 

6.2 EXPERIMENTAL PROGRAMME /PROCEDURE 

The twenty four beams described in Section 5.2 were used in this part 

of the investigation. The instrumentation, test apparatus and procedure are 

described in Section 5.3. The strains in the steel bars and plate were 

measured by electrical resistance strain gauges at various locations, and the 

concrete strains were measured by a demountable extensometer of 200 mm gauge 

length at the centre section only. The central deflection was measured by dial 

gauge and the rotations by inclinometer. The load was applied incrementally, 

the readings described above being taken at each stage. 

6.3 'DISCUSSION OF RESULTS 

6.3.1 Introduction 

Tables 6.1 to 6.3 summarise the main results obtained from the tests. 

The deflections, rotations and strains are taken directly from the measurements. 

The neutral axis depth is obtained from the strain distribution in the concrete. 

The curvature is then found by dividing the measured concrete compressive 

strain by the neutral axis depth. The experimental flexural rigidity was cal- 

culated by dividing the applied bending moment by the curvature. 
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Tables 6.1A and 6.1B show the deformation characteristics at first 

visible crack load and at 60 kN, which is just above the first crack loads. 

The latter being used for comparisons. 

Tables 6.2A, 6.2B and 6.2C show the deformation characteristics at design 

service loads. Table 6.2A is for design service load A, which was calculated 

by CP 110 methods including the material safety factors - 1.5 for concrete and 

1.15 for steel. Table 6.2B is for design service load B, which was calculated 

by taking the ultimate load found by strain compatibility methods and dividing 

by 1.6. Design service load C was taken as 130 KN for comparative purposes, 

as given in Table 6.2C. 

Table 6.3 shows the deformation characteristics near ultimate load. 

The flexural rigidities found from the experimental readings were 

compared with the theoretical values both before and after cracking (Tables 6.1 

to 6.3). 

At 60 kN load, the flexural rigidities of the plated beams were between 

3% and 86% higher than the unplated beam. When compared with the calculated 

rigidity for the uncracked sections the unplated beam gave a ratio of experi- 

mental to theoretical of 0.56 while the plated beams gave values ranging from 

0.56 to 0.86, except the precracked beam 223 which gave 0.54. For, beams with 

1.5 mm thick plates the mean value was 0.66, for 3 mm thick plates it was 0.76 

and for 6 mm plates 0.77. Thus it can be seen at this load, just above the 

first crack load, the plates have reduced the extent of cracking and therefore 

increased the stiffness of the beams. 

At 130 kN the flexural rigidities of the plated beams were between 40 

and 140% higher than the unplated beam. However, these figures represent the 

behaviour only in the constant moment region and a better representation of 

the flexural rigidity of the beams as a whole is found through the deflections 

and rotations. The ratio of experimental to theoretical flexural rigidity for 

the unplated beam was 0.74. For beams reinforced with 1.5 mm thick plates the 

mean ratio was 0.86; for beams with 3 mm plates it was 1.0 and for 6 mm plates 

0.93. At service loads, therefore, the plates are effectively increasing the 
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flexural rigidity above that of the unplated beam. 

At 190 kN load, the flexural rigidities of the plated beams were between 

100 and 300% higher than the unplated beam. However, again a better representa- 

tion of the total beam behaviour is obtained from the rotation and deflection 

characteristic as reported below. 

6.3.2 Load-Strain' Characteristics 

6.3.2.1 Literature Review 

It has been shown by many authors (94,96,97) that the tensile strain on 

the concrete surface between cracks is a very small amount that may be neglected. 

Since the crack width at the surface is given by the extension of the bars be- 

tween two cracks, it can be concluded that the strain in the reinforcing bar, and 

therefore the strain in the concrete surface across cracks, at the same level are 

identical. The demec gauge had a gauge length of 200 mm so that it crossed at 

least one crack each time it was read. The load-strain curves given in Fig. 6.1 

confirmed that the bar and concrete surface strains are almost identical. 

6.3.2.2 Reinforcing Bar Strains 

Fig. 6.2 shows that for a glue thickness of 1.5 mm, the bar strains 

are decreased as the plate thickness increases. Beam 204, with 3 mm thick 

plat e, behaved identically to Beam 206-, with two layers of 1.5 mm plate up to 

service load, and very closely thereafter. 

Figs. 6.3 and 6.4 show similar behaviour for beams with 3 mm and 6 mm 

thick glue layers respectively. Beams 209 and 210 both had 6 mm thick plates 

and 3 mm thick glue layer, but Beam 210 was considerably more flexible above 

service loads, in fact itscbehaviour was almost identical to Beam 205 (Fig. 6.9) 

which had a 1.5 mm thick glue layer. It is thought, therefore, that some of 

the spacers placed in the glue line to control its thickness must have been 

squeezed out with the excess glue. 

Fig. 6.4 shows that a beam with a glue layer only was slightly stiffer 

than the unplated beam. Beams 211 and 212, which had lapped plates, behaved 

almost identically with Beam 207 which had a continuous layer of plate. Up to 
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service load the beams with lapped plates were slightly stiffer. This would 

be expected as the lever arm is slightly increased. 

Fig. 6.5 compares Beam 208 with an unlapped 3 mm thick plate, to Beam 

215 which had a3 mm thick lapping plate at the centre section. Beams 213 and 

214 had two layers of 1.5 mm plate, the upper layers were lapped. These four 

beams behaved in a similar manner; the beams having lapped plates being 

slightly stiffer and the beam with a single 3 mm lapped plate showed lower 

strains than the beams with two layers of 1.5 mm plate. This could be explained 

by the fact that there must be a certain amount of movement between the two 

layers of 1.5 mm plate. 

Figs. 6.7,6.8 and 6.9 show the behaviour of beams with constant plate 

thicknesses of 1.5 mm, 3 mm and 6 mm respectively, when the glue thickness is 

varied. There is a general reduction in bar strains for an increase in glue 

thickness, although the effect was not as large as the reduction found when 

increasing the plate thickness for constant glue thickness. The behaviour of 

the beams with variable and notched glue layers, 220 and 221, was between that 

of the beams with 3 mm and 6 mm glue thickness. 

Figs. 6.10 and 6.11 show that for the beams which were precracked, 

before bonding on the plates, the reinforcing bar strains were reduced in 

comparison to those found in a similar beam which was not precracked. This 

behaviour seems somewhat anomalous. It could be expected that the precracked 

beams would be relatively less stiff than the beams that were not cracked 

prior to bonding on their plates. However, this behaviour could perhaps be 

explained by assuming that the glue has penetrated into the existing cracks at 

the tensile face and is resisting their propagation. This should result in an 

increased number of cracks with a reduced mean height and spacing. If the 

cracking results for beams 207 (no precracking) and 223 (90% ultimate load 

before bending) are compared the above hypothesis is not confirmed. 

Alternatively the reduced bar strains could be explained by assuming 

that bond failure had occurred adjacent to cracks when loading to 90% ultimate 

before bonding. The bar extension, after bonding on the plate, would then give 

-111- % 
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smaller strain. However, the same behaviour is also apparent in. the beams 

preloaded to only 507 ultimate load and it is unlikely that bond failure would 

have occurred at this stage. This area of research must be studied further. 

As shown in Table 6.1B at 60 kN load the internal bar strains were 

reduced to 64-80%, of the values for the unplated beam for beams strengthened 

with 1.5 mm thick plates; 47-58% for beams strengthened with 3 mm thick 

plates; and 27-33% for beams with 6 mm plates. At 130 kN load these same 

strains were reduced to 70-81% (1.5 mm); 50-58% (3 mm); and 34-41% (6 mm). 

Similarly at 190 kN load the strains were reduced to 46-62% (1.5 mm); 38-467 

(3 mm); and 24-43% (6 mm). This information is given in Fig. 6.23. If, 

instead of adding external reinforcement, the bar area had been increased by 

the same area as the plates, the calculated stresses in the bars would be 

reduced to 84%, 72% and 55% of the original beam stresses, for 1.5 mm, 3 mm 

and 6 mm plates respectively. The decrease in strains obtained with the 

plated reinforcement is greater than would have been found for the same 
increase in bar area. This would be expected to some extent due to the 

increased lever arm of the plates. However, it shows that there is good com- 

posite action between the glue, plate and concrete. 

The bar strains for the beams strengthened with 1.5 mm thick plates 

varied from 2520 to 3600 microstrain at the load stage prior to failure. 

This indicates that the bars were yielding as the elastic limit of the steel 

is approximately 2000 microstrain, see Fig. 3.8. 

The beams strengthened with 3 mm thick plates had bar strains varying 

from 2200 to 2600 at the same load stage, again indicating yielding of the 

bars. 

The beams with 6 mm thick plates had bar strains varying from 850 to 

1250 microstrain indicating that the steel was well below its elastic limit. 

6.3.2.3' External'Plate'ReinforCement'Strains 

Figs. 6.12 to 6.21 show similar behaviour for the plate strains as 

for the internal bar strains. The behaviour of the precracked beams was again 

not as expected. 
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Fig. 6.22 shows the longitudinal distribution of plate strains. For 

a constant glue thickness, increasing the plate thickness reduces the general 

level of straining. Increasing the glue thickness for a constant plate thick- 

ness has a similar but much reduced effect. It can be seen that the strain 

increases along the beam, as the bending moment, until it reaches the load 

points. The strain varies only slightly in the constant moment region. The 

strain gradient is largest at-the end of the plate, but the 6 mm gauge length 

was not suitable for obtaining an accurate measurement of this gradient. A 

more accurate measurement of the rapidly changing stress fields around the end 

of the plate, at joints and around cracks, must be developed. 

The measured values of strain can only be an approximation to the local 

strains as they are based on average values over a finite gauge length. 

Therefore, it follows that the smaller the gauge length the more accurate a 

representation of the strain distribution is obtained. It should be noted 

that the strain in the plate at any particular distance from the end of the 

plate is not constant across the width. To obtain the stress contours in 

such areas, or around joints and cracks in the concrete, many strain gauges 

of small gauge length would be needed in a grid pattern over the entire area. 

Such an array of gauges would best be monitored by a data logger. Alternatively 

it may be possible to use photoelastic techniques. It would also be useful 

to have strain gauges embedded within the glue layer to obtain similar distrib- 

utions-of adhesive stresses. 

The variations of external plate strains with plate and glue thickness 

are shown diagrammatically in Fig. 6.24. The effect of plate thickness can be 

seen to be greater than that of glue thickness. 

At the load stage prior to failure, the strain gauges at the centre 

section of the beams with 1.5 mm thick plate reinforcement indicated that the 

strains in the plates varied from 3000 to 3900 microstrain. The yield strain 

of the 1.5 mm thick plate is 1300 microstrain, as shown in Fig. 3.9. This 

indicates that extensive yielding has occurred prior to failure. Although this 

was not visually evident while the beam was under load, it became obvious when 
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releasing the load after failure. At this stage the plastically deformed 

plate warped away from the concrete beam. 

At the load stage prior to failure for the beams with 3 mm thick plates, 

the plate strains varied from 2300 to 2900 microstrain, again indicating yield- 

ing of the plates. 

For the beams with 6 mm thick plates the strains varied from 1200 to 1300 

microstrain. The yield strain, Fig. 3.9, was 1500 microstrain. This indicates 

that the plates are approaching their yield point at failure. 

In Appendix 7 some assessments of interfacial stresses are made. The shear 

stress and the anchorage bond stress are calculated from the measured plate 

strains. Local bond stresses are also given. It should be emphasised that these 

evaluations of interfacial stresses should be treated qualitatively. The tests 

were not designed to study such properties and the values found are not limiting 

nor ultimate stresses. 

6.3.2.4 Concrete Strains 

At 60 kN load, the compressive concrete strain in the unplated beam was 

455 microstrain. For the plated beams the mean values were as follows: for 

beams with 1.5 mm thick plates - 410 microstrain; for beams with 3 mm thick 

plates - 356 microstrain and for beams with 6 mm thick plates - 226 microstrain. 

At the load stage prior to failure the values were: unplated beam 3350 

microstrain; 1.5 mm plate - 2407 microstrain; 3 mm plate - 2080 microstrain; 

6 mm plate - 1230 microstrain. 

The determination of the ultimate strains involves having the gauge length 

of the demec extensometer straddling the section at which the beam would fail. 

Furthermore, the strains recorded are those measured prior to, and not at failure. 

Values of 1200 to 5000 microstrain for the ultimate limiting strain of 

normal strength concrete have been reported (98). For beams with 1.5 mm thick 

plates and some beams with 3 mm thick plates it would appear that the full 

strain capacity had been achieved, as was exhibited by crushing of the concrete 

at failure. The beams with 6 mm plate did not reach their full strain capacity. 
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Typical concrete strain distributions are given in Fig . 6.25. Before 

the beams cracked the difference between the strains at the outer tension and 

compression faces was a small amount arising from the fact that the neutral 

axis of the composite section is slightly removed from the half depth. This 

indicates that the modulus of elasticity of the concrete is of the same order 

in both tension and compression. Above the first crack load, the strain 

distributions were approximately linear above the neutral axis but non-linear 

below it. This is because once the concrete has cracked the demec reading is 

not the true strain, but is an average 'strain' which depends on the positions 

of cracks. In all the beams the neutral axis position moved closer to the 

compression face prior to failure, as the steel started to yield. The rise of 

neutral axis position was greater in the beams with 1.5 mm plate than for 

beams with 3 mm and 6 mm plates. This showed that the beams were changing from 

being well under reinforced (1.5 mm plate) to an almost balanced section (6 mm 

plate). 

The mean ratios of neutral axis to effective depths, at the load stage 

prior to failure were: 0.31 for the unplated beam; 0.40 for beams with 1.5 mm 

plate; 0.44 for beams with 3 mm plates; and 0.47 for beams with 6 mm plates. 

In normally reinforced concrete beams some limitation is placed on the 

percentage of tension steel in a beam, during the design process. The 

purpose of this is to ensure that the steel will reach its yield stress before 

the concrete fails in compression, and thus avoid brittle failure. As tension 

steel is added to a beam the ratio x/d increases. It has been found by 

experiment that the steel does not yield when x/d is approximately 0.6, there- 

fore for design it is generally limited to 0.5. For the plated beams in the 

present series the transition from purely flexural to a more brittle shear/ 

bond failure appears to come between the beams with 1.5 mm and 3 mm plates. 

Their values of x/d being 0.4 and 0.44 respectively. It would seem, therefore, 

that a limiting value of x/d of 0.4 would be better for plated beams. 



I1 

M first crack load 
(ii)service load 
(iii)near failure load 

1000 2000 3000 4000 5000 600QoP0 
20Qa 1000 0 

1000 2000 3000 4000 5003 

oý ö 
N 

ý R- 

0 
O 

2 
H 
a 
w 
0 
ý 
ý 
cn 

(d) 
BEAM 218 
6 mm. glue 
6 mm plate 

0ý 0 r- 

oý 
LO ý 

ol 07 
N 

ýu 

0 1000 2000 3000 4000 N0 1000 2000 3000 ÖC0 

FIGURE 6.25 TYPICAL STRAIN DISTRIBUTIONS IN THE CONCRETE 
AT THE CENTRE SECTION 



The beams tested by Ang (72) showed a transition from flexural to 

shear/bond also. This occurred between beams with 3 mm and 5 mm plate, their 

values of x/d-being 0.39 and 0.47 respectively. 

However, it is thought that the type of shear bond failure found in 

the beams with thicker plates could be alleviated, as discussed in Chapter 5 

under ultimate loads. By modifying the plate ends such failures could be 

changed back to a flexural mode. Further testing is needed to verify this, 

and then the limiting value of x/d suggested by the present series may be 

increased. 

6.3.3 Load Deflection Characteristics 

6.3.3.1 Review of Literature 

The actual deflection behaviour in beams is probabilistic in nature and 

requires statistical methods for a rational analysis. Even with the most 

sophisticated methods of analysis using experimentally determined material 

properties, the range of variation between measured and computed results is 

surprisingly high. Studies (82) have shown that the coefficient of variation 

for such deflections is of the order of 15 to 20%. In addition this difficulty 

is compounded when applied to actual structures, since the only property of 

the concrete known to the designer is the specified characteristic strength. 

Because of the variability of deflection, it would appear to be not 

only feasible but also essential that relatively simple procedures be used 

so that engineers will not place undue reliance on predicted results. 

When subjected to a load, a section of a beam undergoes compression on 

one side and tension on the other, which gives rise to a local curvature at 

that section. This curvature 0 may be expressed by 

cc+ et 

h 

where cc is the maximum compressive strain at the section, 

et is the maximum tensile strain at the section, and 

h is the depth of the section. 
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For a beam consisting of an elastic material, the local curvature 0 is 

given by 

ý _. 
.M 
EI 

where M is the applied moment at the section, 

E is the elastic modulus of the beam material, and 

I is the second moment of area of the section. 

The rotation or deflection of the beam may be found by computing the 

single or double integral of the local curvatures respectively. In general 

the deflection, a, is given by 

a= k01t2 

where k is a constant depending on the variation of curvature along the beam 

and k is the span of the beam. 

The most important methods of predicting short term deflections of 

reinforced concrete members, proposed over the last 20. years are given below: 

(a) 1960 - Yu and Winter (76) presented two simple methods for the calculation 

of instantaneous deflections under service load. 

Method A. The deflections are calculated using elastic methods. The 

cracked, transformed moments of inertia at the midspan is used as a constant 

value throughout the length of the beam for simple spans. 

Method B. To account for the contribution of the concrete between 

tension cracks to the rigidity of the beam the deflections from method A were 

multiplied by a correction factor F 

F=1 -*. 'Mj 

where Ml = 0.1 fcu2/3 h(h - x) and M' = service moment. The derivation of the 

correction factor followed an elastic theory approach with the factor 0.1 having 

been determined empirically. Comparison with test data for 90 beams indicated 

that method B gave somewhat better results. 
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(b) 1961 - Comit6 European du Beton (78) (CEB) gave a simplified method for 

determining deflections under short term loads, in which the value of instan- 

taneous deflection was considered equal to the sum of the deflection of the 

uncracked section under the moment at which cracking is produced, and the 

deflection of the cracked section under a moment equal to the working moment 

less the moment at which cracking is produced. This latter moment being cal- 

culated from the tensile strength of the concrete in bending. This can be 

expressed by: 

a=k R2FEC 
Mcr 

+4 
(M - Mcr) 

Iü3 ESASd (1-2q) (1-2g3)1 

where Mcr is the moment at which cracking is produced, 

M is the moment under consideration, 

EctEs are the elastic moduli of concrete and steel, 

Iu is the uncracked transformed moment of inertia, 

As is the area of reinforcement, 

d is the effective depth, and 

q "A f 
(S) (_ ) Dü J. 

cu 

This is a sound and logical method which can allow for the application 

of a load lower than the working load. In practice, however, there is some 

uncertainty in assessing the tensile strength of the concrete as this can be 

reduced considerably by shrinkage. 

(c) 1963 - D. E. Branson (77) gave a form of expression for the effective 

moment of inertia of a beam in which the effect of bending moment, section 

properties, concrete strength and extent of cracking is included. The expres- 

sion satisfies the limiting conditions Ieff a Vu when the moment at that sec- 

tion M= Mcr the cracking moment, and Ieff = approaches I' when M is very 

large in relation to Mcr 

Mcr 
n1 Ieff = Iü - (Iu - Icr) Cl 

- (M) J 



where n is an unknown power. A precedent for a power function relation 

relative to the distribution of cracking effects was established by Murashev 

(83). Branson used the results from some 58 laboratory beams, (simple and 

two span rectangular beams and simply supported T beams), to empirically 

determine the value for n. For the effective moment of inertia at an indi- 

vidual section n=4 was found to give good agreement. It was further deter- 

mined that the same type of equation but with n=3 could be used for an 

average Ieff for simply supported beams with uniform loading. The equation 

given above was rewritten as: 

Ieff im)3 Iu + Cl iMMr) 3] Icr 

The deflection, a, is then given by 

a= 
kM L2 

Ec Ieff 

where k is a coefficient which depends on the type of loading and support 

conditions. 

(d) 1968 - Beeby (84) proposed an idealised form of the moment curvature 

relationship where 0, the curvature was given by: 

Mcr 
+M- 

Mcr 

E I' X 
cu 

Firstly, it was assumed that X= Ec I' but this, overestimated the 

values when compared with the results from 133 test beams. Alternative values 

for X were given as: 

X= Eý (0.825 Icrý 

and X= (0.57 Ed Icr 

(e) 1970 - CEB (85) for beams of constant section, loaded in simple bending 

and subjected to symmetrical loading the midspan deflection is given by: 

=2 
Mcr 

+4M- 
Mcr 

a. kß (E I3 ES AS z (d - x) 



where Mcr, M, Ec, Es, IU have the same meaning as before 

z= lever arm, 

d= effective depth, and 

x= neutral axis depth. 

This is similar to their earlier recommendations (1961) with the part relating 

to post cracking stiffness being modified. 

(f) 1972 - Stevens (80) describes two methods for determining deflections 

from curvatures determined using the maximum tensile and compressive strain in 

the steel and concrete respectively. In the first method it was assumed that 

the concrete in the tension zone has no contribution to the rigidity of the 

beam. In the second method the concrete resists tension between the cracks 

with as much as 75% of its flexural strength. The second method was found to 

give better results. 

(g) 1972 - CP 110 (86) suggests an approach which involves finding the 

curvatures of sections initially, and then calculating the deflection by 

numerical integration along the beam. The code does, however, suggest a 

simplified approach. 

6.3.3.2 Load-Deflection Curves 

Figs. 6.26 to 6.35 show the load-deflection curves for the test beams. 

Fig., 6.26 shows that for a constant 1.5 mm glue thickness the deflections 

are reduced with increasing plate thickness. The beam with two layers of 

1.5 mm plate gave almost identical results to the beams with a single layer 

of 3 mm plate. Figs. 6.27 and 6.30 show similar behaviour for beams with 3 mm 

and 6 mm plates respectively. 

Fig. 6.28 shows that the beam with a glue layer, but no plate, is 

slightly stiffer than the unplated beam. The beams with lapped. plates showed 

the same behaviour as for strains, i. e. slightly reduced deflections compared 

with those of the beam with a continuous plate layer. Fig. 6.29 also compares 

a beam with an unlapped 3 mm thick plate to another beam having 3 mm plate 

and a central lap joint. Two other beams are shown which had two layers 
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11 

of 1.5 mm plate, the outer layer being lapped. The behaviour of all four beams 

fell within ±6% of the beam with the unlapped 3 mm thick plate. 

Fig. 6.31 compares beams with a 1.5 mm plate thickness for varying 

glue thickness. The deflections are reduced as the glue thickness increases, 

but not so much as when the plate thickness is increased for constant glue 

thickness. The beams with variable and notched glue lines follow very closely 

to similar beams with constant glue thickness. Figs. 6.32 and 6.33 show 

similar behaviour for beams with 3 mm and 6 mm thick plates. The stiffening 

produced by increasing the glue thickness is reduced as the plate thickness 

increases. 

Figs. 6.34 and 6.35 indicate that the beams loaded prior to bonding on 

the plates have deflections greater than their control beams up to working 

load, but less than the control beams above this. The control beams were not 

precracked. This behaviour, as for load-strains needs further examination. 

From Table 6.18 it-can be seen that at 60 kN load the deflections, 

except for the precracked beams, were decreased to 85 to 100% (1.5 mm plate), 

70 to 95% (3 mm plate) and 60 to 94% (6 mm plate) of the values of the unplated 

beam. At 130 RN the deflections were similarly reduced to 78 to 96% (1.5 mm 

plate), 68 to 87% (3 mm plate), and 61 to 67% (6 mm plate) of the unplated 

beam's deflection. At 190 kN the deflections were reduced to 69 to 837 (1.5 mm 

plate), 59 to 69% (3 mm plate) and 51 to 54% (6 mm plate). These results are 

. 
shown diagrammatically in Fig. 6.36. 

6.3.3.3 Theoretical Predictions'of'Deflections 

Table 6.4 shows experimental deflections at 220 kN, 130 kN and 60 kN 

loads. A measure of the ductility of the beams was found by comparing the 

deflections at 220 IN and 130 IN loads for each of the test beams. There is 

a small reduction in ductility in the plated beams, however, only one value 

was obtained for an unplated beam. The reductions were as follows: 107 for 

beams with 1.5 mm thick plates; 13% (3 mm plates) and 117 (6 mm plates). It 

should be noted that two beams, 210 and 218 failed before reaching 220 kN load 

and their values were extrapolated. 
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TABLE 6.4 DEFLECTION CHARACTERISTICS 

w N ý 
U) 

Wz 

EXP 
DEFLECTI 

ERIMENTAL 
ONS..., mm., 

THEO 
DEFLECT 

RETICAL 
IONS -(130kN) 

EX 
TH 

PERIMENTAL 
EORETICAL 

}o =ry ý 
ý ýu äu FIRST 1 30 ý 220 kN CP110. ACI. CE B. CP110. ACI. CEB. º= C ý 

mz 
ý~ CL ý CRACK mm mm mm mm mm mm 

201 - - 1-00 7-30 20-40 6"12 6.10 710 119 1-20 1-03 2-79 

202 3 - 1-20 6"90 17-70 6-12 6"10 7-10 1-13 113 0-97 2'56 

203 1-5 1-5 1"70 6-60 16-20 5-00 5-00 5-81 1-32 1-33 1-14 2"45 

204 1-5 3 1-65 6-00 13-80 4-20 4"30 4-99- 1-43 1-40 1-20 2,30 

205 1-5 6 1-20 4-60 11,00 3-50 3'43 3"97 1-31 1'34 1-16 2-39 

206 1-5 2x1"5 1-40 5-70 13-00 4-20 4-30 4"99 1"36 1-33 1-14 2-28 

207 3 1-5 1-80 6-00 16-00 5-00 5-00 5-81 1-20 1-21 1-03 2-67 

208 3 3 1.40 5"00 12"60 4-20 4-30 4-99 1-19 1-16 1"00 2-52 

209 3 6 1-30 4-50 11-50 3-50 3"43 3-97 1-29 1-31 1-13 2-56 

210 3 6 1"20 4-30 1100 3"50 3'43 3-97 1-23 1-25 1-08 2-56 

211 3 1-5, L 1,65 5-80 14-00 5-00 4"89 5-83 1-16 1"19 0-99 2-41 

212 3 1"51 1-35 5-80 14-80 5-00 4-89 5-83 1-16 1-19 0-99 2"55 

213 3 2x1"51 1-45 5-40 1300 4-20 4-30 4-99 1-29 1.20 1-08 2-41 

214 3 15. L 1-35 4-80 12-00 4-20 4-30 4-99 1-14 1"12 0-96 2-50 

215 3 3L 1-35 4-70 11-60 4"20 4-30 4-99 1-12 1-09 0"94 2-47 

216 6 1-5 1-60 5-70 1400 5-00 4-89 5"83 1-14 1-17 0-98 2-46 

217 6 3 1-00 4-80 11-60 4-20 4-22 4-99 1"14 1-12 0-96 2-42 

218 6 6 0-90 4-20 1080 3"50 3-43 3-97 1-20 1-22 0-96 2-57 

219 6 6 1-20 4-20 1040 3-50 3.43 3-97 1-20 1-22 1"06 2-48 

220 28 1"5 1-70 540 13-80 5-00 4-89 5-83 1-08 1.10 0-93 2-56 

221 3 1-5 1-70 6-60 16-00 5-00 4-89 5"83 1-32 1-39 113 2"42 

222 3 1"5. P 2-00 6-40 13-50 5"00 5-00 5-81 1-28 1-29 1-10 2-11 

223 3 1"5P 2-60 7.00 14-60 5-00 5-00 5"81 1-40 1-41 1-20 2-01 

224 3 3. P 1-65 4-80 11-00 4-20 4-30 4"99 114 1.12 0.96 2-29 

mean ratios 1.23 1.23 1.05 
L- lapped plates. 
P- precracked. 



The deflections of all the beams, as calculated by the three methods 

described in Appendix 5, are given in Table 6.4 for comparison with experi- 

mental values at 130 kN load. The mean ratio of measured to predicted deflec- 

tion for all the beams were as follows: 1.23 (CP110) ; 1.23 (A. C. I. ); 

1.05 (CEB). 

Within the present tests the CEB method for predicting deflections gives 

the best results. The test results by Ang (72) were studied and the three 

methods of calculation were found to give mean ratios of measured to theoretical 

deflections of 1.15 (CP110), 1.21 (A. C. I. ) and' 1.01 (CEB), confirming the 

latter as the most appropriate method. 

6.3.4 Moment-Rotation Characteristics 

6.3.4.1 Literature Review 

Figure 6.37(a) shows the moment-curvature diagram of a typical 

reinforced concrete beam. The total rotation can be found by integrating the 

local curvatures along the beam. The shape of the curve is a reflection of 

the behaviour of the materials making up the cross section. The curve can 

be divided into three parts corresponding to the different stages of behaviour. 

The first part, OX, is characterised by a linear relationship between the 

moment and curvature, since the section is uncracked and both concrete and 

steel behave elastically. The second part, XY, is characterised by a changing 

slope of the curve. In this region the area of concrete in compression is 

decreasing as the cracks spread towards the compression face. The concrete 

compression fibres and the steel are approaching their inelastic strain range. 

At point Y, either the steel or concrete begins to behave inelastically. The 

third part, YZ, is characterised by a rapidly changing slope of the curve. 

Between Y and Z the section reaches its ultimate capacity, the concrete under 

compression starts cracking and the tension steel reaches its strain hardening 

stage, at least in under-reinforced beams. The curvatures at these stages are 

shown in Fig. 6.37(b). Distribution 1 is typical when the beam is in the 

uncracked state and the characteristics of the beam along its length are the 
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same, thus the curvature distribution follows the bending moment distribution. 

As a result of the spread of cracks along the tension side, the characteristics 

of the cross-section vary along the beam. This corresponds to Distribution 2 

and point Y. The distribution is non-linear, especially near the loading 

point. Distribution 3 corresponds to point Z on the moment curvature curve. 

The curvature increases very rapidly over the region near the critical section, 

while it remains nearly linear over the rest of the beam. The total rotation 

over the length of the beam at any particular stage of loading can be obtained 

either by integrating the curvature along the length of the beam or by 

measuring the support rotations and adding them together. 

6.3.4.2 Moment Rotation Curves 

Figs. 6.38 and 6.47 shows the moment-rotation curves of the twenty 

four test beams. The same general behaviour, discussed under load-strain and 

load-deflection, was observed for the moment-rotation curves. 

In Tables 6.1 and 6.3 the experimental rotations are given. At 60 kN 

load, which is slightly above their first crack load, the total rotations of 

the plated beams were decreased to between 50 and 92% of the value for the 

unplated beam. For beams strengthened with 1.5 mm plate the rotations were 

reduced to 80-92% of the unplated beams value. Similarly for 3 mm and 6 mm 

plates the reductions were to 65-70% and 50-58% respectively. At 130 kN load 

the rotations were reduced in a similar manner to 81-947. (1.5 nm plate); 

69-73% (3 mm plate) and 51-697 (6 mm plate). At 190 kN the rotations were 

reduced to 83-94% (1.5 mm plate); 69-75% (3 mm plate) and 51-70% (6 mm plate). 

These results are shown diagramatically in Fig. 6.48. 

6.3.4.3 Theoretical Prediction of Rotations 

Table 6.5 shows the comparison between the measured rotations and those 

calculated in Appendix 6. It can be seen that as the load increases, the 

difference between experiment and theory increases. The rotations are greatly 

under estimated above service load. The calculated values assuming the tensile 

strength of concrete was 1 N/mm2 gave slightly better values than for 3 N/mm2. 
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To produce a more accurate prediction of rotational behaviour, some 

allowance must be made for the change in Young's Modulus which occurs as the 

strain in the compressive concrete increases. In order to check the validity 

of the present test results the 'correction' to Ec should include a factor 

which can be applied to other test beams. The compressive strain in the con- 

crete at any particular load is dependant upon the degree of loading in rela- 

tion to its theoretical capacity. Then we have 

_w, c Ecorrected - Ec -k` ultimate 

where k and c are constants, 

W= load stage under consideration, 

ultimate 
= theoretical ultimate load. 

Then log (Ec - Ecorrected) = log k+c log (W w 

ultimate 

The experimental rotations are used to find the Ecorrected required at 

each load stage, using 1 N/mm2 for the tensile strength of concrete. The 

value of EC - Ecorrected is then found and the log values were plotted against 

log (W W) in Fig. 6.49. The values of k and c were found by plotting 
ultimate 

the best fit line by linear regression. 

The resulting formula is: Ecorrected a EC - 1.37.10 (w w) 1188 

ultimate 

Table 6.5 gives the results from this formula and also the percentage 

difference between these values and experiment. In Fig. 6.50 the calculated 

values are plotted against experimental values and for the range of glue and 

plate thicknesses used, all points fell within ±12% of the experimental e 

theoretical line. 

6.4 CONCLUSIONS 

Based on the results presented in this Chapter the following conclusions 

can be drawn. 

1. As the thickness of the reinforcing plate was increased, for a constant 

glue line thickness, there was a corresponding reduction in: plate, 

bar and concrete strains, central deflection and total rotation 
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2. As the thickness of the glue line was increased, for a constant plate 

thickness, there was a reduction in these same properties but to a 

lesser degree. 

3. Beams with multiple layers of plate behaved almost identically to beams 

with a single plate of the same total thickness. 

4. Beams with lapped plates were slightly stiffer than beams with 

continuous plates of the same thickness. This was probably due to the 

slightly increased lever arm of the lapping plate at the critical 

section. 

5. The beams with notched and variable glue line thickness behaved almost 

identically to the corresponding beam with a constant glue thickness. 

6. The preloaded beams had smaller strains, deflections and rotations, in 

general, than corresponding beams which had not been cracked prior to 

bonding on the plates. This behaviour does not seem logical and 

further testing should be performed to investigate these findings more 

fully. 

7. The deflections at service loads were slightly underestimated using 

CP110 and A. C. I. recommended calculations. The method given by CEB 

gave the best results having a mean ratio of experimental to theoretical 

values of 1.05. 

8. The ductility of the plated beams was approximately 12% less than the 

unplated beam. However, as there was only one result for an unplated 

beam this figure can only be approximate. 

9. The rotations could be predicted to within ±12% of the experiment using the 

following formula for the Young's Modulus of the concrete. 

W 1"88 
Ecorrected = EC - 1937.10 (W 

ultimate 
," 



CHAPTER 7 

CRACKING PROPERTIES 

7.1 INTRODUCTION 

The tensile strength of concrete is of the order of one tenth of its 

compressive strength, and the tensile strain at which it cracks is of the order 

of 100 microstrain. This is only a fraction of the ultimate strain of the steel 

which it surrounds. Obviously, therefore, the formation of cracks, even in well 

designed reinforced concrete structures, is unavoidable. Since cracking is one of 

the criteria which a design has to satisfy in the limit state design of reinforced 

concrete structures, it is necessary that the cracks should be kept as small as 

possible for two main reasons. Firstly, wide cracks are aesthetically unpleasant, 

and can cause public concern. Secondly, corrosive elements can penetrate to the 

main steel which can lead to weakening of the structure. In addition, in plated 

structures, such penetration could cause degradation of the adhesive bonding 

mechanism. In the past, flexural cracks cause little concern since the relatively 

low permissible steel stresses used in design ensured that cracks would not be 

large. Recently there has been a considerable increase in permissible stresses 

in steel, and since crack widths are proportional to steel stress the crack widths 

are increased. It has therefore become necessary to know, with greater certainty 

the f actors which govern cracking and to be able to predict and control crack 

widths and spacings. 

7.2 REVIEW OF LITERATURE 

Gergely and Lutz (89) analysed, statistically, information from six 

experimental investigations. The major conclusions which were drawn, regarding 

factors affecting crack widths were: 

1. The steel stress is the most important variable. 

2. The cover thickness is an important variable. 

3. The bar diameter is not a major variable. 

4. The size of the side crack width is reduced by the proximity of 
the compression zone in flexural members. 

5. The bottom crack width increases with concrete strain gradient across 
the section in flexural members. 
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Illston and Stevens (90) investigated surface and internal cracking in 

reinforced concrete beams through a resin injection technique. At working loads, 

the spacings of flexural cracks were found to be a function of concrete cover and 

the surface crack width was a function of spacing and steel stresses. 

The Cement and Concrete Association conducted an extensive investigation 

by Base et al (91). Their report gave factors which influenced the width and 

distribution of cracks in zones of uniform bending moment in reinforced concrete 

beams. The most important factors affecting crack widths were: 

1. The magnitude of the steel stress. 

2. The cover thickness. 

3. No evidence was found that there was any effect on the crack width 

when varying the type of reinforcement, and the percentage within 

the range 0.85 to 2.29%. 

4. No evidence was produced that variation of concrete strength or 

curing conditions had a significant effect on cracking. 

The British Code of Practice CP110, (86) recommends that the surface crack 

width shall not exceed certain limits depending on the environment, exposure and 

service requirements of a member. When exposed to aggressive environments, the 

assessed surface crack widths at points nearest to the main reinforcement should 

not exceed 0.004 times the nominal cover. The formula in Appendix A of the code 

was proposed by Beeby (92). em the concrete surface strain is given by: 

x). 10-3 
Em el As. fy. (h - x) 

The formula for determining the design crack width, Wcr, is then given by: 

r. 7___ = 3. acr" Em 
-cr - 

' h-x 

All symbols as defined earlier. 

1+ acr'Cmin/ 
Lý_ / 
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The American Concrete Institute Code (89) recommends that the maximum 

crack width at the level of the reinforcement is given by: 

W=0.0913 
(fs - 5). 10-3 

max 1+ is/h1 

and that the maximum crack width at the tension face 

max = 0.0913 t. R(fs - 5). 10-3 
b 

where: 

(IMPERIAL UNITS) 

is given by: 

(IMPERIAL UNITS) 

t= side cover to centre of longitudinal reinforcing bar, (inches) 
s 

tb = bottom cover to centre of longitudinal reinforcing bar, (inches) 

fs = steel stress based on an elastic cracked section, (kips/in2) 

R= h2/hl 

hl = distance from neutral axis to the tension steel (inches) 

h2 = distance from neutral axis to the tension face, (inches) 

A= 
2b (h - d) 

number of bars 

b v= width of beam, (inches) 

h= overall depth of beam, (inches) 

d= effective depth, (inches) 

It is also stated that the cross section at the maximum bending moment should 

be proportioned so that fs. 3IA does not exceed 170 kips/inch for interior 

exposure and 145 kips/inch for exterior exposure. These values correspond to 

crack widths of 0.4 and 0.3 mm, respectively. 

The Comite Euro-International du Beton (85) recommend that the 

characteristic value of the crack width, Wk, at the reinforcement level should 

not exceed 1.7 times the mean crack width, Wm. 

W Srm . csm 
m 

where: 

and: 

Srm 

e8m the mean elongation of the reinforcement allowing for the 

contribution of the concrete in tension. 

Srm = 2c + 
kO 
P 

the final mean crack spacing at the reinforcement level 
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where, 

c= cover to reinforcement 

0= diameter of largest bars. 

F+ - nt h _a\ 
ý 

As As = area of steel bars. 
Z. L) V. ll-u/ 

also: 

where, 

k is a coefficient which depends on the type of steel and 

the mode of loading. 

2 Q sr £= sm 
Qs1-0os 7 

as = steel stress based on an elastic cracked section. 

asr = steel stress calculated on the assumption that the concrete 

in tension reaches its maximum tensile strength. 

is a coefficient which depends on bond characteristics; 

0.7 for high bond bars and zero for smooth bars. 

7.3 EXPERIMENTAL PROGRAMME 

Previous research (89-93) has revealed that certain variables have a 

strong influence on cracking. The most important of these being 

1. The stress in the steel 

2. The cover to reinforcement 

3. The proximity of the concrete compression zone. 

The addition of an externally bonded steel plate should effectively 

satisfy all three of these requirements. As has been shown in the section on 

strains; for the plated beams the internal bar strains are reduced considerably, 

and also the neutral axis is brought closer to the level of reinforcement. 

The test beams 201 to 224, already described, were used to investigate the 

cracking behaviour. The side and bottom cover to the reinforcement were kept 

constant and the effect on crack width at the level of reinforcement would then 

be related to the glue and plate parameters. 

At each load stage the widths, heights and spacings of all the cracks in 

the constant moment region were noted. The crack widths and spacings were read 

at the level of the internal reinforcement. 



7.4 DISCUSSION OF RESULTS 

7.4.1 General-statistical analysis_ 

The assessment of crack widths was made on a statistical basis. The 

widths of all the cracks that appeared within the constant moment region were 

read at the level of reinforcement, and the values of crack width which have a 

1% chance of being exceeded were determined. Crack widths determined in this 

manner are subject to less experimental error than the measured values of 

maximum crack width, since the former are determined from measurements on the 

entire population of cracks. Normal distribution of crack widths is a generally 

accepted phenomenon, and has been proved by Base et al (91) in their investi- 

gations. 

Instead of plotting the width of a single crack, the mean width of all 

cracks in the constant moment region, at the reinforcement level, was plotted 

against the average strain in the concrete at the same level, the latter being 

determined from Demec gauge readings on a 200 mm gauge length at the centre 

section. As was stated earlier, the strain in the reinforcing bar and the 

surface concrete strain are approximately equal. Figure 6.1 confirms this. 

The Demec readings were used, instead of electrical strain gauge readings, as 

they gave average strain rather than local strains. At each load stage the 

following values were measured and are given in Tables 7.1 - 7.6. 

(i) maximum crack width 

(ii) mean crack width, height, spacing and standard deviations 

(iii) number of cracks in the constant moment region. 

Figs. 7.1 - 7.3 show the graphs of mean crack width versus the concrete strain 

at the reinforcement levels. A roughly linear relationship can be obtained. 

Although the stress in the reinforcement is not used directly it may be 

calculated by reading off the strain in the concrete surface at the reinforcement 

level and multiplying by the elastic modulus of steel. For stresses within 

the linear range of the steel behaviour, the graphs indicated that the mean 

crack width was proportional to the stress in the reinforcement, as confirmed by 

many other authors. (89-93). 
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The method of analysis of the results was based upon the slopes of the 

graphs of mean crack width and standard deviation against the average concrete 

surface strain, at the level of reinforcement. The slopes in all cases were 

found from computed "best fit" lines based on a linear regression analysis. 

(See also Appendix 9). The values, as shown on Figs. 7.1 to 7.3, were then 

plotted against the thickness of reinforcing plate for each glue line thickness 

as shown in Fig. 7.4. 

It can be seen from Fig. 7.4 that the results are relatively scattered. 

However, this is not unexpected as it has been shown that cracking is a random 

phenomenon (89,93), and a scatter of ±507 could be expected. For each glue 

thickness a best fit line was plotted resulting in an experimental expression 

for the relationship between the slope of the mean crack width v. concrete strain, 

S, and the plate thickness, tp. To combine the three equations shown on Fig. 7.4 

it is assumed that there is a linear variation of S with change of glue thickness, 

tg. The combined equation is then in the form: 

S= (K1 + K2 tg) tp + K3tg + K4 

To find the values of K1 to K4, the slopes and intercepts of each of the three 

relationships given on Fig. 7.4 are plotted against glue thickness in Fig. 7.5, 

and the best fit lines were then drawn. The resulting relationship for all three 

glue and plate thicknesses is: 

S= [(47.2 - 1.55 tg) tP + 34.3 tg + 210 1.10- ' 

The slopes found from this expression, over the range of experimental glue 

and plate thicknesses, were plotted against the experimental values as shown in 

Fig. 7.6. All values fell within +13% and -5%. 

The results found by Ang (72) were also plotted for comparison. These 

values are consistently greater than those found in the present investigation. 

More beam test results need to be added to refine the proposed formula. 

In Fig. 7.7 the mean ultimate crack spacings, Su, were plotted against the 

mean initial crack heights, for all the beams except those which had been 

precracked and beams 210 and 218, with 6 mm thick reinforcing plates, which failed 
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before their ultimate spacings had been reached. The initial crack height is 

that at 60 KN, just above the first crack load. Best fit lines were drawn for 

each plate thickness and the following relationship was found when combining 

the three plate thicknesses: 

Su = (0.02 tp + 0'2)h60 + 0.43 tp + 35.5 

The values found from this formula were plotted against the results from experi- 

ments in Fig. 7.8. Al values fell within ±5% of the experimental - theoretical 

line. However, the above formula does not contain a term relating to concrete 

cover, which is a major factor in crack formation. Further tests need to be done 

with different covers to produce a formula for crack spacings which could be 

applied to any plated beam. 

Plates 5.2 to 5.8 show the number of cracks that reach almost to the 

neutral axis is less than at the reinforcement level. Broms (93) pointed out 

that in a reinforced concrete member primary cracks formed first which nearly 

extend to the neutral axis; with a further increase in load secondary cracks of 

shorter length are formed between these. Base et al (91) explained this in a 

different way. In the zone just below the neutral axis there would be no crack- 

ing since the tensile strain in the concrete is very small. In the zone near 

the tension face the crack spacing would be a certain value, while in between 

there would be a transition from this certain spacing to an infinite spacing. 

7.4.2 Maximum Crack Widths 

Figs. 7.9 to 7.18 show the relationship between the maximum crack width, 

in the constant bending moment region, and the applied load. The unplated beam 

had a crack width of 0.12 mm at 130 kN load, approximately the service load con- 

dition. For beams with 1.5 mm and 3 mm thick reinforcing plates this width was 

reduced by 33 to 50%. For beams with 6 mm thick plates the reduction was 58 to 

63%. The beams with 1.5 mm lapped plates had between 100 and 1.33 times the 

crack width of similar beams with a continuous layer of plate. Similarly, the 

beams with two layers of 1.5 mm plate, or one layer of 3 mm plate with lapped 

joints had between 1.0 and 1.33 times the crack width of similar beams with a 

continuous layer of 3 mm thick plate. The precracked beams with 1.5 mm thick 
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plates had maximum crack widths 83-1007. of the unplated beam while the precracked 

beam with 3 mm plate had 58% of the crack width of the unplated beam. In general, 

the maximum crack width of the precracked beams was greater than for similar 

beams which had not been precracked. 

The variation of mean crack width with glue and plate thickness is shown 

diagrammatically in Fig. 7.19. In general, there is an increase in crack width 

for a decrease in plate thickness and for an increase in glue thickness, the 

latter having the lesser effect. 

7.4.3 Crack Width' Prediction Formulae 

The crack widths were calculated, as outlined in Appendix 8, for all beams 

with a single layer of plate which had not been precracked. The experimental and 

theoretical crack widths are shown in Table 7.7. The CP 110 and ACI methods 

greatly overestimated the crack widths for the plated beams. This is further 

evidence that the bonded plates reduce crack widths considerably. It is apparent 

that good composite action is being achieved and that the presence of the bonded 

plate at the concrete tensile surface is having a restraining effect on the 

increase of crack width. 

Modifications were made to the two methods by factoring the equations to 

produce the best agreement with experimental results. This produces equations in 

which the crack width is dependent on the plate thickness, in addition to the 

other variables applicable to normally reinforced concrete beams. 

In Fig. 7.20, the coefficient, C1, by which acr. em must be multiplied for 

each test beam, in order to produce the experimental crack width, was plotted 

against the plate thickness. The best fit line produces the modified CP 110 

formula: 

Wcr = (2.0 + 0. l tp) acr. cm 

As shown in Table 7.7 this formula, which is derived from experimental 

results, gave ratios of theoretical to experimental crack widths varying from 

0.90 to 1.09. 

The ACI formula was treated in a similar manner. The coefficient C2, 

required to produce the experimental crack width is plotted against plate thickness 
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TABLE 7.7 

BEAM 
NUMBER 

EXPERIMENT 
WIDTH 

2 
mm 10 

CP 110 
THEORY 

2 
mm b 

A. C. I. 
THEORY 

2 
mm 16 

CP 110 
ORREC 

2 
mm 10 

A. C1. 
CO 

2 
mm. 10 

2 3 GLUE 
THICKNESS 

mm 

PLATE 
THICIcN S' 

mm ' 

201 12.0 10.0 10.5 - - - - - - 

203 6 -5 8.8 9.3 6-3 6.4 0.97 0-98 1-5 1.5 

204 6.0 7.4 7-6 5-7 5.9 0.95 0.98 1.5 3.0 

205 5-0 5.6 5.4 4.9 5.0 0.98 1.00 1.5 6.0 

207 6-0 8.8 9-3 6.3 6.4 1-05 1.07 3.0 1.5 

208 6.0 7.4 7.6 5-7 5.9 0.95 0-98 3.0 3-0 

209 4'5 5-6 5.4 4.9 5-0 1.09 1.11 3-0 6.0 

210 5-0 5-6 5-4 4.9 5.0 0.98 1.00 3-0 6.0 

216 7.0. 8.8 9.3 6.3 6-4 0.90 0.91 6-0 1.5 

217 6-0 7-4 7-6 5-7 5.9 0.95 0.98 6-0 3-0 

218 5.0 5.6 5-4 4.9 5.0 0.98 1.00 6-0 6 -0 
219 5.0 5.6 5.4 4.9 5-0 0.98 1.00 6-0 6-0 

220 6-0 8.8 9.3 6-3 6.4 1.05 1.07 30-8.0 1.5 

221 6.0 8.8 9-3 6.3 6-4 1.05 1.07 3-0 1.5 

TABLE 7.8 RA110 OF MAXIMUM TO MEAN CRACK WIDTH 

Hognestad. Broms. Base et at. Borges. piston. Clark Present investigations 
(94) (93) (91) (95) (90) (96) 

or .1 772 
RATIO 1.50 1.66 2.00 1 öß 2.00 1.64 1.78 or 2.25'4 

RANGE 1.03 - 210 1.20 - 2.40 - - 1.50 -2.88 1.18 -2.77 1.50 - 2.20 

CRACK WIDTHS AT 130kN LOAD 

I 

* PROBABILISTIC VALUES 



1.5 3.0 4.5 
tp= PLATE THICKNESS mm 
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as shown in Fig. 7.23. The best fit line produces the modified ACI formula: 

WAX (0.056 + 0.0046 tp) 3�ts. A (fs - 5). 10-3 
1 +tshl 

As shown in Table 7.7 this formula, derived from experimental results, gives 

ratios of theoretical to experimental crack widths varying from 0.91 to 1'11. 

7.4.4 Relationship between Maximum and Average Crack Width 

Different values of the ratio of maximum. to average crack width have been 

suggested by many authors, as shown in Table 7.8. In Fig. 7.22 the slopes of the 

mean crack width against concrete strain are plotted against the slopes of their 

standard deviations against concrete strain (Figs. 7.1 to 7.3). The best fit 

line, forced through the origin is given by: 

a=0.5 W 
ee 

If a one percent chance of a certain crack width being exceeded is chosen, 

the maximum crack width is given by: 

W 
max = Wmean + 2.5. (Standard Deviation) (Appendix 9) 

It should be mentioned here that the average coefficient of variation 

calculated at the reinforcement level at each load stage from Tables 7.1 
Wme an 

to 7.6 (108 results) was 0.46 which is in good agreement with the value from 

Fig. 7.22. These values are a little higher than those found by Base et al (91) 

42% and by Borges (95) 40%. It is thought that the random nature of cracking and 

the effects of experimental error in the techniques of crack measurement may 

account for this. The resulting relationship between maximum and average crack 

widths is given by: 

W 
max 

=W 
mean 

+ 2.5 (0.5. W 
mean) 

or max 2'25 mean 

The average ratio of maximum crack width to average crack width found in 

the tests was 1.78, ranging from 1.5 to 2.2. These are from 108 sets of readings 

as given in Tables 7.1 to 7.6. Both the range and the mean are in good agreement 

with the values found by others as shown in Table 7.8. 
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From Figs. 7.4 and 7.5 the following relationship. was found: 

W 
mean = [(47.2 - 1.55 tg)t p+ 

34.3 tg + 210]. r-m. 10-1 

Using the probabilistic value of Wmax = 2'25 Wmean the maximum crack width which 

has only a 1% chance of being exceeded can be computed from: 

max = 2-25. c M 
[(47.2 - 1.55 tg) tp + 34.3 tg + 210]. 161 

Using the calculated values of Cm, (CP 110 assumptions, Appendix 8) for the plated 

beams, the values of Wmax were calculated from the above formula. In Fig. 7.23 

these are plotted against the measured maximum crack widths. In no case did the 

experimental value exceed the predicted value, which in theory has only a 17. 

chance of being exceeded. 

It should be emphasised that this formula is only valid within the limitation, 

of the present test series and further tests would be required to check its valid- 

ity for other plated beams. 

7.4.5 Concrete Surface Strain 

The concrete in the tension zone of a flexural member contributes to its 

stiffness. Therefore, the concrete strain is less than the value calculated on 

the basis of zero tensile strength in the concrete. Various expressions have 

been proposed, by many authors, to account for the reduction of the calculated 

value of strain, by allowing for the tension stiffening effect of the tensile 

concrete. Two are given below: 

em = C1 - 1.2 bt h (al - x) . 10-3 CP 110 (86) 
As h-x fy 

em = el - 4.5. b (h - x) 10-6 Beeby (92) 
As 

em - concrete surface strain 

el - value calculated on basis of zero tensile strength in concrete. 

When calculating these values of cm the combined centroid position for bars and 

plate must be used. The values of steel area are for both steel and plate. 

Table 7.9 shows the average strain, at the level of intonal reinforcement for 

the beams, from three sources: 

(a) experimental values 
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TABLE 7.9 COMPARISON OF MEASURED AND CALCULATED VALUES OF 
CONCRETE SURFACE STRAIN AT THE LEVEL OF THE INTERAL 
REINFORCING BARS. 

BEAM NUMBERS 203,207,211,212, 
216,220,221. 

204,206,213,214, 
215,217. 

205,20$ 210,218, 
219 

PLATE THICKNESS 1.5 3.0 6.0 

6 MEAN 1170 841 624 
MEASURED STRAINS 10 RANGE 960 - 1260 670 - 1000 580 - 780 

VALUES FROM CP1IO EOUATICN 10 6 1130 946 725 

VALUES FROM BEEBY EQUATION 1Ö 6 1130 960 751 

EXPERIMENTAL CP110 1.04 0.89 0.86 RATIO THEORETICAL BEEBY 1.04 0.87 0.83 

TABLE 7.10 MEASURED AND CALCULATED VALUES OF THE DIFFERENCE 
BETWEEN THE INTERNAL BAR STRAIN AND THE CONCRETE 
SURFACE STRAIN AT THE SAME LEVEL. 

BEAM NUMBERS 
203.20Z 211.212, 

216,220,221 
204,206,213,214, 

215,217, 
205,209,210,218, 

219 

PLATE THICKNESS 1.5 3.0 6.0 

MEAN MEASURED DIFFERENCE '10 6 96 134 148 
URES MEAN DIFFERENCE FROM FIG 

85 120 140 

110_1.2 bh (d-x ). 103 
A f (h-x) 86 80 69 

S y 
Bl_4.5 b (h-x). 10'6 80 65 43 
PRESENT (2 3.222 $) b (h-x) x) 10"6 100 129 INVESTIGATION 149 



(b) CP 110 equation 

(c) Beeby's equation. 

For plate thicknesses of 1.5 mm, 3 mm and 6 mm the number of beams used to find 

the mean experimental readings were 7,6 and 5 respectively. These values and the 

range for each plate thickness are given in Table 7.9. The ratio of experimental 

to theoretical values was 1.04 (1.5 mm plate) for both CP 110 and Beeby's 

equation. For 3 mm and 6 mm plate thicknesses the agreement between experiment 

and theory was not so good. In order to improve the prediction equations Figs. 7.2' 

7.25 and 7.26 were plotted. These show the calculated steel stress, on the basis 

of zero tensile strength in the concrete, plotted against the measured value of 

concrete strain at the reinforcement level. 

As shown in Appendix 8, at service load beams with 105 mm plate have a 

steel stress of 230 N/mm2. Similarly, beams with 3 mm and 6 mm plates, at service 

load, have steel stresses of 195 and 150 N/mm2 respectively. Calculations for 

steel stresses were also made at 60 kN and 190 kN loads. These values are then 

plotted against the experimental value of concrete strain, for each beam, at the 

level of the internal reinforcement. 

Best fit lines were plotted by linear regression and all the experimental 

points fell within ±15% for beams strengthened with l'5 mm thick plate, +28 and 

-30% for beams with 3 mm thick plate and +35 and -19% for beams with 6 mm thick 

plates. 

Since crack widths are usually checked at working load conditions the 

difference between the actual measured strain and the strain in the steel at the 

same stress, calculated from the steel's elastic stress/strain relationship was 

found. A comparison similar to that in Table 7.9 is shown in Table 7.10. The 

differences from Figs. 7.24 to 7.26 are compared with the values from measured 

readings and the two theoretical methods given below. 

(a) 1.2 6+h (al - x). 10-3 
As (h - x) fy 

(b) 4"5'b (h - x). 10-6 
As 
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The measured values are the difference between the mean steel strain, from 

Table 6.2 (c) and the mean concrete strain at the reinforcement level from 

Tables 7.1 to 7.6. The values for 1.5 mm plate gave good agreement but 3 mm and 

6 mm plates gave progressively worse agreement. 

b(h's x). 10-6 
was found The modified formula: em = Cl - (2.22 tp + 2.30) 

As 

to give good agreement as shown in Table 7.10. 

It should be noted that in calculations for Em, the centroid of both plate 

and bars was found and then the neutral axis position. The value of h is taken 

as the depth of the beam i. e. 255 mm. In Fig. 7.27 the method of derivation of 

the above formula is shown. The coefficient, C3, required to multiply Beeby's 

expression 
b(h 

As 
x). 10-6 

to produce the measured value was plotted against plate 

thickness. The best fit line was then plotted by linear regression. 

7.4.6 Stresses Carried by Concrete in the Tension Zone 

It is generally accepted that concrete in a tension or flexural member adds 

considerably to its stiffness through the tension zone. Yu and Winter (76) were 

the first researchers who took into account the contribution of the concrete in 

tension to the stiffness of a member. However, they did not give any numerical 

value for the effective tensile stress of the concrete to be used for this con- 

tribution. In 1972 Beeby (97) found that stresses in the concrete, for members 

subjected to pure tension and reinforced with deformed bars, remain approximately 

constant at about 1.0 N/mm2. The results for specimens reinforced with plain 

bars were considerably lower. 

A series of sustained loading tests on reinforced concrete beams was de- 

scribed by Stevens (80), in which the major factors affecting the development of 

deflection were varied. He found that there was no consistent difference between 

beams reinforced with round or deformed bars; and that varying the cover from 

25 mm to 50 mm gave no consistent difference either. An expression was proposed 

for the average tensile force, T, in the concrete after cracking. 

T= 3/16 b. h. frm fret = strength in bending. 

Cr 110 recommends that the curvature of any section may be calculated by assuming 

that the stress distribution in the concrete is triangular, having a value of 
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zero at the neutral axis and 1.0 N/mm2 at the reinforcement level. 

Fig. 7.28 shows the stress distribution in the plated beams at service 

load. The concrete is assumed to be elastic up to a compression of 1000 micro- 

strain. 

Taking moments of the tension steel about the centroid of the compression 

block: MTS = fs. As. (d - 3), but, as shown in Fig. 7.28, the steel is com- 

posed of bars and plates and d is the distance from the compression face to their 

combined centroid. 

+fpAp 3 Hence MTS = (fb" Ab ) (d - 
x) 

The difference between the applied moment Ma and MTS is thefefore the con- 

tribution of the concrete in the tension zone, Mc. 

But Mc = Qf (h 
3 

x). b. h. 

or of. = 
3Mc 

b. h. (h - x) 

where of = the tensile stress in the concrete at the tension face. 

The calculated values are given in Table 7.11. Since the beams were loaded 

incrementally, three values for each beam in the elastic range of both steel and 

concrete are given. These values did not show any significant change with increas- 

ing load and the average values were found for each beam. In Table 7.11, the 

strains given for the bars and plates are obtained from Figs. 6.2 to 6.21 and the 

neutral axis positions are from demec readings at 100 KN, plus the values given 

in Tables 6.1 (b) (60 kN) and 6.2 (c) (130 &N). The average values of tensile 

stress for each glue and plate thickness are shown in Table 7.12. The mean tensile 

stress in the concrete was then plotted against the plate thickness for each glue 

thickness, as shown in Fig. 7.29. Best fit lines were plotted and the combined 

equation, allowing for a linear change in tensile concrete stress with glue thick- 

ness was given by: 

of = (0.81 - 0.058 tg) tp + 0.59 tg + 0.36. 

The values found from this expression are given in Table 7.13 for comparison with 

Table 7.12. 
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FORCES 

c=h tx_ compressive 
2 

Tc= 9. b(h) tensile 
2 

Ts= ( fW fr A. ) tensile 

ý. x 
t_ 
N'c+7 

I 
.c 

force in the concrete above the neutral axis. 

=_= below 

steel plate and bars. 

SYMBOLS 

d combined centroid of steel bars and plate. 

subscript p denotes plate 
r= bars 

x neutral axis depth found from the measured strain distribution 
in the concrete. 

h overall beam depth. 

.C 

FIGURE 7.28 STRESS DISTRIBUTION IN PLATED BEAMS AT 
SERVICE LOAD. 



TABLE 7.11 TENSILE STRESS IN THE CONCRETE 

60kN 100 IN 130 kN &N 60 100 130 w 60 100 130 60 100 130 
m Z 

Z 
Z 

Z ä Z ý cn 0r) 
ý 

N ý I- 

ý 

N 
MOMENT OF TH 
TENSION STEEL 

TENSILE STRESS 
ä u ý_ _ = cn IN T HE 

Z i w u' o `n 1: 1- -: z w ý 
ABO 
C 

UT TH E CON CRETE AT 
Z w w ° ° °- 

EN 
COM 

TROID OF 
PRESSION 

THE EXTR 
FIBRE 

EME 
ä ý w W W ý 
m 6 

a- 
- 6 - 6 

'O Uzi z z 
10 10 10 mm mm mm mm mrrý mm2 KNm KNm KNm NhrnýNAnA Nh"m 

201 550 0 1030 0 1350 0 220 100 96 88 943 0 19"4 36"5 48"5 1.8 0.9 0.8 

202 550 0 960 0 1320 0 220 108 96 85 943 0 19-1 34-0 44.7 2-0 21 10 

203 440 500 780 900 1100 1280 226 108 102 95 943 187 19"3 34"7 490 2"0 1"7 0"6 

204 260 400 500 830 770 1200 231 118 114 110 943 375 151 302 45"7 4"4 4"4 2"3 

205 180 185 500 450 530 650 238 123 119 115 943 750 122 321 39"4 6"2 3"5 5"7 

206 260 185 400 450 740 700 231 123 119 115 943 375 12"0 28"3 37"0 6"3 5"6 71 

207 440 500 800 900 100 1280 226 112 106 100 943 187 19"2 35"2 490 2"0 1.6 0.6 

208 320 370 560 750 740 1080 231 118 114 110 943 375 168 31"2 42"9 4"2 3'8 3"7 

209 180 220 330 480 500 700 238 118 114 110 943 750 13"3 26-9 401 6"1 6"1 5'2 

210 180 200 370 480 490 680 238 123 119 115 943 750 12"6 28"1 38"8 6-0 5"7 61 

211 430 465 750 850 1000 1250 226 118 111 105 943 187 18"4 32"7 45"0 3"3 30 2"5 

212 430 600 750 1050 1020 1550 226 114 108 102 943 187 19"5 34"3 48"1 2.4 2.1 1.0 

213 280 300 520 600 750 930 231 130 120 115 943 375 14"1 266 40-7 6.7 6"6 5"0 

214 280 250 520 530 760 800 231 118 114 110 943 375 13"7 26.6 395 6"2 6"3 5"5 

215 230 250 460 550 700 900 231 123 121 120 943 375 13.6 24"4 38"1 5'4 719 6"7 

216 350 350 600 700 950 1100 226 123 119 115 943 187 14"6 26-0 41"3 4-8 6'9 4-7 

217 280 350 470 650 670 1000 231 114 110 106 943 375 15.3 26.7 39.4 5"0 61 5.4 

218 150 230 330 460 500 660 238 123 121 120 943 750 12-4 259 38"3 61 7.0 6'6 

219 150 265 300 520 460 750 238 128 124 120 943 750 13"3 26"5 39"4 5-8 6"8 6"0 

220 380 400 700 780 1000 1180 226 99 97 95 943 187 16"7 31"2 45"2 31 3-4 2"3 

221 380 400 700 780 1000 1250 226 108 103 98 943 187 16"5 30-9 45"5 4"2 3"7 2"2 

222 350 350 600 660 830 950 226 108 104 100 943 187 15"0 26"4 37"0 4"1 6 '0 7"4 

223 350 270 650 560 950 750 226 100 100 100 943 187 14.7 27"7 40-0 4-1 5"2 49 

224 230 270 430 500 650 750 231 123 116 110 943 3751 12-1 22"8 34'8 6'3 8'5 8.0 
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TABLE 7.12 MEAN VALUES OF TENSILE STRESS IN THE CONCRETE 
FROM TABLE 7.11 

la e 
glue 

r 
'ýý 1-5 3.0 6-0 

1"5 1"4 3.7 5.1 

3"0 2"4 5.7 5.9 

6 -0 4"2 5-5 6"4 

TABLE 7.13 TENSILE STRESS IN THE CONCRETE FROM THE 
DERIVED EQUATION Qf -{0; 81 - 0.058tg)tp+O. 59tg + 0.36 

glue a idcress 
hicýness 15 3-0 6-0 

1-5 2"3 3"4 5"6 

3"0 3"1 4.4 6"0 

6"0 4"6 5.3 6"7 
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best fit lines 

xaf= 0-46 tp +3-75 

03 mm 

 6 mm 

" of = 0"68 
P . 2'30 

  °f = 0-77 tP " 0"70 

1 
1.5 3.0 

PLATE THICKNESS mm 

tg = glue thickness 

x 1.5 mm 

F- 
4.5 6.0 

FIGURE 7.29 TENSILE STRESS IN THE CONCRETE V. PLATE THICKNESS 
FOR EACH GLUE THICKNESS 
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In Fig. 7.30 the calculated values of of from this formula were plotted 

against the experimentally determined values. All points, except one, lie within 

±25%. 

7.5 CONCLUSIONS 

Based on the tests carried out in this investigation the following 

conclusions are drawn: 

1. At a given steel stress and at a certain distance from a reinforcing bar, 

crack widths in concrete beams with externally bonded steel plates were less than 

those which would result in ordinary reinforced concrete beams. This allows a 

higher internal bar stress for a particular crack width to be developed, therefore 

increasing the-limit state of cracking. 

2. The mean crack width was found to be proportional to the steel stress and 

the following relationship was derived between the slope of the mean crack width 

v. concrete strain and the plate and glue thicknesses. 

S- [(47.2 - 1.55 tg) tp + 34.3 tg + 210]. 10-6 

3. The ultimate crack spacings were related to the plate thickness and the 

crack height just after first crack. The mean ultimate crack spacing was given 

by: 

4. 

Su - (0.02 tp + 0.2). h+0.43 tp + 35.5 

The application of crack width prediction formulae recommended by Codes of 

Practice, for normally reinforced concrete beams, highly overestimated the crack 

widths for the plated beams. This shows that the presence of the bonded steel 

plates effectively reduces the crack widths, both by physically restraining the 

increase in crack width and by reducing the strain in the internal bars at any 

particular load, relative to an unplated beam. The CP 110 and ACI formulae were 

modified to satisfactorily agree with the experimental results. The resulting 

equations were: 

Wcr = (0.1 tp + 2"0). acr. em (CP 110) 

and WýX = -(0 " 056 "+ 0" 0046 tp) 3 tý -(f s "- " 5) . 10-3 (ACI) 

1+ ts/hl 
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5. The relationship between maximum and average crack widths was derived 

statistically for the plated beams, as follows: 

max 
2-25 mean 

This compared with the experimental mean value of: 

Wmax m 1178' W 
mean 

(range 1.5 to 2.2) 

Both the range and mean values were in agreement with those found by other authors 

for normally reinforced concrete beams. 

6. The application of accepted formulae for predicting concrete surface strain 

was found to overestimate the strains for beams strengthened with 3 mm and 6 mm 

thick plates. A modified formula was derived from the experimental results: 

Em - el - (2.22 tp + 2.3). b(h 
A 

X). 10-6 As 

7. The contribution of the concrete in the tension zone to the stiffness of 

plated beams was more than that found in the case of normally reinforced concrete 

beams. A formula was derived for the tensile stress in the concrete: 

cf - (0.81 - 0.058 tg) tp + 0.59 tg + 0.36 

8. The number of cracks at the 'service load' of 130 kN is between two thirds 

and three quarters of those fully developed at failure. This means that the 

average crack spacing at service load is greater than at failure. The number of 

cracks at failure was generally more in the case of plated beams than for the tin- 

plated beam. 

9. It should be emphasised that the formulae derived in this section are 

applicable only within the limitations of the present tests. Other variables 

such as concrete cover and cube strength, beam size and a wider range of plate 

and glue thicknesses should be investigated in order to prove the validity and 

refine the proposed formulae. 



'CHAPTER 8 

'LONG TERM TESTING 

8.1 INTRODUCTION 

Concrete and epoxy resins are subject to time dependent deformations due 

to creep and shrinkage. Reinforced concrete elements composed of these materials 

are, therefore, subject to long term deformations under sustained load. These 

deformations may be critical to the serviceability, and sometimes to the safety 

of a structure. If such deformations were accompanied by a loss of cohesive and/ 

or adhesive strength of the resin bond there could be serious results to the 

safety of the structure. 

Highway bridges are designed for lives of 120 years, and it is necessary 

to have stable behaviour of the construction materials over this period. The 

performance of epoxy resins needs checking because experience in the aerospace 

industry has indicated that under unfavourable conditions the strength of bonded 

metal joints may be reduced drastically over periods as short as six years. 

Calder (62) reports some loss of bond and corrosion of the bonding surface over 

two years between metal/concrete bonds. 

In this chapter the long term performance and durability of loaded and 

unloaded externally plated reinforced concrete beams, under external weathering 

conditions are reported. 

8.2 EXPERIMENTAL PROCEDURE 

The same concrete, glue and steel types which were used in the short term 

testing were adopted for the long term test series. The'material properties were 

reported in Chapter 3 and the manufacture of beams was described in Chapter 5. 

Prisms, 100 x 100 x 500 mm, were cast for shrinkage and durability specimens. 

All specimens were demoulded after 24 hours and kept in the laboratory under 

uncontrolled conditions until they were either plated, tested or transported to 

their test sites. 

8.3 SHRINKAGE TESTS 

Three prisms were used as shrinkage specimens, these were fitted with 

demec points, on a 200 mm gauge length on opposite faces. Strains were read 



within 24 hours after demoulding and then at increasing intervals with time. At 

18 months the shrinkage was 320 microstrain. 

8.4 SUSTAINED LOADING/LONG TERM TESTS 

8.4.1 Introduction 

The details of the twenty four test beams are given in Fig. 5.2 and 

Table 8.1. Eight beams were subjected to sustained loading, with two unloaded 

beams corresponding to each loaded beam. The loaded beams were placed in rigs, 

as shown in Fig. 8.1, and Plate 8.1, in such a way that the maximum stress in the 

concrete under sustained load was approximately equal to one third of the twenty 

eight day cube strength. The control cubes and prisms were kept under the same 

conditions as the beams throughout testing. Each loading frame was designed to 

take two beams. The assembly and loading was performed carefully to ensure that 

the correct load was applied. This was checked both on a pressure gauge attached 

to the pump which operated the loading jack, and by checking the extensions of the 

Macalloy tie bars by means of a demountable mechanical extensometer of 300 mm 

base. All measurements of strain on the beams tension, side and compression faces 

were taken before and immediately after loading and thereafter at increasing 

intervals with time, using a demec of 200 mm gauge length. The strains in the 

steel plate were also measured at the centre section. Fig. 8.2 shows a typical 

graph of the change of maximum observed concrete compressive and steel tensile 

strains with time. The change in strain distribution across the beam depth is 

also shown. The loaded and unloaded beams were left exposed to the elements at a 

sewage treatment works (Plates 8.1 and 8.2). 

After 18 months exposure eight of the unloaded beams were brought back for 

testing in the laboratory. The test rig, loading procedure, instrumentation etc. 

were identical to that described for the short term tests in Chapter 5, with the 

exception that there were no strain gauges on the internal bar reinforcement. 

After testing three of the eight beams it was found that there was no loss of 

bond due to their 18 months exposure. It was decided, therefore, to leave the 

remaining five beams for a longer period before testing. 
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8.4.2 Discussion of Results 

8.4.2.1 Strength Characteristics 

The ultimate loads of the three beams tested at'18 months were calculated 

as detailed in Appendix 4 and are given in Table 8.2 together with the experi- 

mental values and the corresponding loads for similar beams tested at 28 days. 

For the CP110 method of calculation, the mean ratio of experimental to theoretical 

ultimate moment was 1.05, as compared to 1.05 at 28 days. The same ratios for 

the calculations by strain compatibility were 1.03 (1.01 at 28 days) assuming the 

glue to be cracked, and 1.02 (1.00 at 28 days) assuming the glue is not cracked. 

After testing three of the beams, which had been exposed for 18 months 

after plating, it was thought that there was nothing to be gained, at this stage, 

by testing the remaining five of the set of eight beams. The beams were resisting 

greater moments at failure than the beams tested at 28 days as would be expected 

due to the ageing of the concrete, assuming that there was no degradation of the 

bond between the glue and plate or concrete. The plates were stripped from the 

beams after failure as shown in Plate 8.3. Although there was evidence of a 

small amount of air pockets within the glue line (less than 5% of the area) and 

areas of insufficiently mixed resin hardener (less than 5% of the area), there 

was no sign of corrosion of the steel plate, except along its edges where some of 

the protective paint had been chipped off during transportation. The concrete 

beam was cut through with a circular saw to produce a small element of the beam 

(Plate 8.3). 

The amount of calcium hydroxide available in a hardened cement paste 

depends on the amount and composition of the calcium silicate phases in the 

cement and their degree of hydratipn. In time the alkalies react with the acidic 

constituents in the atmosphere, particularly carbon dioxide and sulphur dioxide, 

so that the alkalinity of the concrete is progressively reduced. Corrosion of 

the steel bar reinforcement occurs when moisture and oxygen gain access into the 

concrete and also there must be a value of pH less than 11, in other words the 

environment must be acidic. The diffusion of acidic vapours into the concrete 

converts the free lime to calcium carbonate thus reducing the pH, and consequently 
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the protective value of the concrete. Carbonation also tends to increase the 

shrinkage of the concrete and thus promotes the development of cracks. This in 

turn increases the penetration of moisture and chemicals which further assists 

corrosion. If the carbonation front reaches the steel bars then corrosion will 

start. Since the corrosion products occupy a greater volume than the original 

steel the concrete cover cracks and spalls off. 

The piece of beam was treated with phenolphthalein indicator on both ends 

to test for carbonation. The change in colour (colourless to pink) of the 

phenolphthalein in the pH range between 8.2 and 9.8 indicated clearly the 

boundary of complete carbonation. The depth of carbonation was measured at 

several points and the average depth was estimated to be 2 mm at the top surface 

and 3 mm on the side faces. On the bottom concrete face which had the epoxy 

resin bonded to it there was no carbonation whatever. 

It is clear from these results that the increase in ultimate strength 

provided by the bonded steel plate has not been adversely affected by the 

weathering over a period of eighteen months. The presence of the glue and plate 

has prevented carbonation proceeding at the bottom surface of the beam. 

However, this test period is very short in comparison with the design 

life of a structure and the long term behaviour of plated beams must be studied 

for much longer periods. 

It is interesting to note, nevertheless, that the plating technique not 

only strengthens the beams satisfactorily but also reduces the crack widths and 

carbonation at the beam soffit. The possibility of corrosion of the interval 

reinforcement should therefore be reduced. 

8.4.2.2 Deformation Characteristics 

Figs. 8.3,8.4 and 8.5 show the comparison between the load-strain, load- 

deflection and moment rotation characteristics, respectively, of the beams 

tested at 28 days and 18 months. There was an increase in stiffness for both 

increase in glue or plate thickness and, as at 28 days, the effect of plate 

thickness was greater than that of glue thickness. 

The load-strain curves of the beams tested at 18 months generally indicated 
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an increase of rigidity when compared with the behaviour at 28 days. The plate 

strains of beam 108 were greater than the comparable beam (214) at 28 days, 

throughout its loading. This could indicate that beam 214 had a certain amount 

of slipping between its plate layers. Beam 102 showed slightly higher plate 

strains up 'to service load, but above this the strains were lower than the 

corresponding beam tested at 28 days. 

The load-deflection curves of the beams tested at 18 months all indicated 

an increased stiffness when compared with the behaviour at 28 days. 

The values of ductility and theoretical deflections at 130 kN are given 

in Table 8.3 together with the experimental deflections. The ductility 

of the three beams tested at 18 months was slightly lower than the corresponding 

beams at 28 days, and the theoretical predictions gave good agreement with 

experiment. The calculation of deflections were as described in Appendix 5, 

with the Youngs Modulus of concrete = 38.9 I<N/mm2 (from experimental tests 

at 18 months). The mean ratios of experimental to theoretical deflections 

were 1.12 (CP110), 1.12 (ACI) and 0.95 (CEB), compared with 1.23 (CP110), 

1.23 (ACI) and 1.05 (CEB) for all the beams tested at 28 days. 

The experimental rotations were compared with theoretical values as 

calculated in Appendix 6. Again the Youngs Modulus of the concrete was 

38.9 KN/mm2, at 18 months. Table 8.3 shows both the experimental and 

theoretical rotations. As in the case of the 28 day tests, the difference 

between theory and experiment increases as the load increases. The empirical 

formula derived in Chapter 6 was also used to predict the rotations. These 

values, and the percentage difference between them and the measured rotations 

are also given in Table 8.3. For the limited series of three beams tested at 

18 months the maximum difference between the predictions of the empirical 

formula and the measured values was ±11%, compared with ±127 at 28 days. 

The moment-rotation curves closely reflect the load-deflection 

behaviour, all the beams being stiffer than at 28 days. 



TABLE 8.3 COMPARISON OF EXPERIMENTAL AND THEORETICAL 
DEFLECTIONS AND ROTATIONS 
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8.4.2.3 Cracking Characteristics 

The crack analysis was performed as for the beams tested at 28 days. 

Table 8.4 shows the test results and compared them with the 28 day tests. 

Plate 8.6 shows the beams after failure. 

The mean crack width and standard deviation were plotted against the 

surface concrete strain at the level of the internal reinforcement. The slopes 

were computed by linear regression as shown in Fig. 8.6. If the empirical 

formula derived from the 28 day tests, for the slope of the mean crack width 

against concrete strain, is used to compute values for the 18 month old test 

beams the values are very close to the experimental values. 

Slope of mean crack width v. concrete strain 

Beam No. 101 experimental 37 formula 37 
value value 

102 52 47 

108 44 44 

The empirical formula derived from the 28 day tests, for finding the 

ultimate crack spacing was then used to compute values for the 18 month old beams. 

Ultimate Crack Specing 
Beam No. 101 experimental 53 formula 55 

spacing (mm) 
102 (mm) 61 55 

108 52 50 

The agreement between the formula's prediction and experiment is good. 

In Fig. 8.7 the slope of the mean crack width against concrete strain is 

plotted against the slope of the standard deviation against concrete strain. 

The best fit lines for the beams tested at both 28 days and 18 months are given. 

The limited accuracy obtained from only 3 tests at 18 months gives close 

agreement with the 28 day tests. 

The modified CP110 and ACI crack width prediction formulae, derived from 

the tests at 28 days, were used to calculate the maximum crack widths for the 

three beams tested at 18 months, as shown in Table 8.5. The average ratio of 

theory to experimental values was 0.85 (ACI) or 0.84 (CP110), as compared with 

0.91 at 28 days for the three comparable beams. 



TABLE 8-4 CRACKING CHARACTERISTICS 
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The formulae derived at 28 days to predict the concrete surface strain 

and the tensile stress in the concrete could not be checked in the long term 

beams as there were no strain gauges on the reinforcing bars. Therefore the 

difference between the internal bar strain and the concrete surface strain was. 

not measured. 

8.5 DURABILITY TESTS 

8.5.1 Introduction 

This part of the test programme was designed to investigate the effects 

of various sealing agents on the durability of the concrete/epoxy/steel joints. 

Obviously, to be effective, the sealing agent must show stable behaviour under 

moist conditions in the long term and have good bonding to concrete, epoxy resin 

and steel. The following products were used: 

8.5.2 Coating Details 

The coatings used were easily applied using a spatula or paintbrush, 

as indicated. 

8.5.2.1 Polyurethane Rubber (Brush) 

This was a two component liquid whose shear resistance is good up to 

temperatures of 70°C. The product used was FLEXANE 30 manufactured by DEVCON Ltd. 

8.5.2.2 Silicone Rubber (Spatula) 

Generally these have the same type of resistance as the polyurethanes, 

but are one component systems, which cure in air at room temperature to produce 

a resilient rubber with heat resistance up to 260°C. The product used was 

SILITE 100 manufactured by DEVCON Ltd. 

8.5.2.3 Acrylonitrile Phenolic (Brush) 

Again these show the same sort of resistance as the polyurethanes and have 

heat resistance to temperatures of 150°C. They are one component systems which 

dry in air at room temperature. The product used was K7066 manufactured by 

SWIFT Ltd. 

8.5.2.4 Paint (Brush) 

Two coats of primer and two coats of finish coat were applied. The paint 

used was MANDERLAC manufactured by MANDERS Ltd. 



8.5.2.5 Control Specimens 

Four prisms were made with steel plates having no protective coating. 

Two were stored with the other test specimens described above and the other two 

were stored in a controlled atmosphere at 17°C, 56% relative humidity. Four 

unplated prisms were also cast and kept in the mist room at 20°C, 100% relative 

humidity. 

8.5.3 Experimental procedure 

The test specimens were concrete prisms 100 x 100 x 500 mm as shown in 

Fig. 8.8. Four prisms were cast for each of the four types of coating and the 

control specimens as detailed above. In all, therefore, twentyfour prisms plus 

three control cubes were cast. All specimens were stripped after 24 hours and 

placed in a mist room at 22°C, 100% relative humidity for 7 days before removal 

for surface preparation and plating. Ciba Giegy XD808 was used to bond on the 

plates, as used in the preliminary test series. 

After plating, the beams were left to cure in uncontrolled laboratory 

conditions for seven days before application of the coatings and for a further 

seven days afterwards. The beams were then replaced in the mist room except 

two control beams with no coating which were kept at 17°C, 56% relative humidity. 

The beams were left in the mist room for 10 months or 20 months before testing. 

The loading arrangement is shown in Fig. 8.8. The beams were tested under 

central point loading over a span of 450 mm. The loading rate was 4 kN/minute. 

The first crack load in the concrete, and the ultimate load were noted. After 

failure the plates were stripped off the beams to investigate corrosion of the 

plate, and plate/glue interface. 

8.5.4 Discussion of result 

The results are given in Table 8.6. After 10 months in the mist room the 

plated control beam, with no protective coating, had a failure load of 3106 )N. 

The average failure loads (2 specimens each) for the coated prisms were 

34'3 kN (FLEXANE); 3215 (SILITE); 35.3 (SWIFT) and 34.1 (PAINT). The uncoated 

beam which was kept at 17°C, 56% relative humidity had a failure load of 34 kN. 

Therefore after 10 months in the mist room there was no significant difference 



500 

r 

333 
Iý 

i' 

ý 
I. 

lo 

:. _ , 

C 0 
r- 

ý 

80 

glue thickness 3 mm 
plate thickness 1.5 mm 
reinforcement bars 6 mm dia. 50 mm c1c 

DETAILS OF DURABILITY SPECIMENS 

All dimensions in mm. 

250 

25 
_I 

450 

LOADING ARRANGEMENT 

FIGURE 8.8 DURABILITY TEST SPECIMENS 

-223-, 



TABLE B"6 DURABILITY TEST RESULTS. 

BEAM 
NUMBER 

AGE AT 
TESTING 

MONTHS 

TYPE OF 
COATING 

CP 110 
THEORY 
FIRST 
CRACK 
LOAD 

N 

CP 110 E 
THEORY 
FAILURE 
LOAD 

V 

XPERINEN1 
FIRST 
CRACK 
LOAD 

kN 

FERMEN 
FAILURE 
LOAD 

k^1 

w 
w 

U RI 

301 10 NONE 12.6 32-8 18.0 31.6 1.50 0.96 

302(1) 10 NONE 12.6 32.8 16.0 34.0 1.27 1.04 

303 20 NONE 13-0 34-0 20.0 32.7 1.54 0.96 

304(1) 20 NONE 13.0 34-0 18.0 361 138 1.06 

305 10 FLEXANE 12.6 32-8 16-0 32-3 1.27 0-98 

306 10 FLEXANE 12-6 32-8 17-0 36-2 1-35 1.10 

307 20 FLEXANE 13-0 34-0 16.0 37.2 1-23 1.09 

308 20 FLEXANE 13-0 34-0 16-0 38.7 1-23 1.14 

309 10 SIUTE 12-6 32-8 18.0 31.4 1.43 0-96 

310 10 SILITE. 12-6 32-8 20-0 33.6 1.59 1-02 

311 20 SILITE 13-0 34-0 18.0 36.8 1-38 1.08 

312 20 SILITE 13.0 34-0 20-0 38-3 1.54 1.13 

313 10 SWIFT 12-6 32.8 18.0 36-2 1.35 1.10 

314 10 SWIFT 12-6 32.8 17.0 34.4 1.46 1.05 

315 20 SWIFT 13-0 34-0 19.0 35-4 1.46 1.04 

316' 20 SWIFT 13-0 34-0 16-0 37.6 1.23 1-11 

317 to PAINT 12-6 32.8 18.0 34.4 1.43 1-05 

318 10 PAINT 12.6 32.8 17-0 33.8 1.35 1.03 

319 20 PAINT 13-0 34.0 21.0 38.2 1-61 1.12 

320 20 PAINT 13.0 34-0 17-0 36-0 1.31 1.06 

321 (2) 
10 NONE 9.2 9-2 9.5 9.5 - 1-03 

322(2) 10 NONE 9-2 9-2 9-2 9-2 - 1.00 

323(2) 20 NONE 9-5 9.5 9.7 9-7 - 1.02 
(2) 

324 20 NONE 9.5 9.5 10.0 10.0 - 1.05 
1) Uncoated plated beams kept at 17°C , 56°/°RH. (2)Uncoated, unplated beams. All beams other than those marked (1 )were kept at 20°C, 100°4 ° R. H. 
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between the protection given by the different types of coating. The control 

beam, without a coating, kept with the coated beams in the mist room had a 

slightly lower failure load than the uncoated beam which was kept under dry 

conditions. 

After 20 months in the mist room, the control beam with no coating 

had a failure load of 32'7 U. The similar beam kept at 17°C, 56% relative 

humidity had a failure load of 36.1 M. There would therefore appear to be some 

loss in strength due to prolonged exposure to moisture when no coating is applied. 

The average failure loads (2 specimens each) for the coated prisms were 38.0 

(FLEXANE): 37.6 (SILITE); 36.5 (SWIFT); and 37.1 (PAINT). These values 

all exceed the control specimen kept at 56% relative humidity showing the 

effectiveness of the coatings. 

The failure loads were calculated by CP110 methods with material safety 

factors equal to unity as described in the previous Chapters. The tensile 

stresses in the glue and steel were taken as 16 N/mm2 and 275 N/mm2 respectively. 

The cube strengths of concrete at 10 months and 20 months were 75 and 90 N/mm2 

respectively. The average ratio of experimental to theoretical values was 

1.05 at 10 months and 1.08 at 20 months. 

The first crack obtained visually were all higher than the predicted 

loads. As explained previously, this would be expected. The composite 

behaviour of the steel/epoxy/concrete system was good, and in no case did failure 

occur by debonding. Plates 8.4 and 8.5 show the beams after failure. In no case 

was there any visual deterioration of the epoxy or steel plate, even in the 

uncoated specimens, except of course on the exposed face of the latter. The 

slightly lower failure loads of the uncoated, exposed prisms could be explained, 

not due to any loss of bond through ingress of moisture to the adhesive, but 

rather because of the excessive rusting and resulting loss in thickness of the 

steel plate. This was found to be up to 0.3 mm in places, with a mean value 

of approximately 0.2 mm. 



8.6 CONCLUSIONS 

Based on the results presented in this Chapter the following conclusions 

can be made. 

1. The ultimate loads sustained by the beams tested after 18 months exposure 

were compatible with what would be expected assuming that there was no degradation 

of the epoxy bond and that the concrete was ageing normally. The ultimate loads 

could be predicted accurately by strain compatibility assuming the glue was not 

cracked. 

2. Virtually no corrosion of the steel plates had occurred in the test beams 

after 18 months exposure. The only signs of rusting occurred at the edge of the 

plate where the paint had been chipped off during transportation. Carbonation of 

the cement paste was limited to 2-3 mm depth and had not occurred at all on the 

tension face where the concrete was protected by the epoxy bonded plate. 

3. Even though there was evidence of inadequate mixing of resin and hardener, 

and inclusion of air pockets in the glue line (up to 10% of the area), the beams 

ultimate strength and deformation properties were not adversely affected. 

4. The load-strain, load-deflection and moment rotation properties closely 

followed those for similar beams tested at 28 days. In general the older beams 

showed slightly stiffer behaviour. 

5. The deflections calculated by the methods outlined in Appendix 5 were as 

accurate as those calculated at 28 days when compared with experimental values. 

The CEB method gave the best results. 

6. The empirical formula derived for the beams tested at 28 days predicted 

the rotations of the beams tested at 18 months within ±11%. 

7. For the limited number of tests at 18 months (3 beams only) the cracking 

characteristics were found to be in close agreement with the 28 day test results. 

8. The durability tests showed the effectiveness of the coatings in protecting 

the epoxy/steel system from the penetration of moisture. However, even in the 

prisms which had no protective coating there was no visual evidence of corrosion 

of the epoxy/steel interface after 20 months. The coatings themselves showed no 

visual deterioration whatever. 



CHAPTER 9 

LIMITATIONS OF PRESENT WORK, OVERALL CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

9.1 LIMITATIONS OF PRESENT WORK 

The test data presented here are considered to be the first set of results 

systematically covering a range of glue and plate thicknesses. Limitations on 

the number of beams and the duration of testing has restricted this range. 

Nevertheless, it is hoped that this work will add to our knowledge of the flex- 

ural behaviour of reinforced concrete beams strengthened with externally bonded 

steel plates. The limitations within which the main series of flexural testing 

were conducted are: 

1. The concrete strength of all the beams varied between 60-80 N/mm2. 

2. Only one type of epoxy adhesive, CXL 194, was used. 

3. Only flexural tests were performed. The shear span was kept constant. 

4. The amount of internal bar reinforcement was kept constant. All the 

beams were under reinforced prior to plating. The behaviour of actual bridge 

members may be different as prestressed beams often behave in an over reinforced 

manner. 

5. Due to the duration of testing only a limited amount of replication 

of testing was performed. 

6. The range of adhesive and plate thickness was 1.5 to 6 mm. 

7. All beams had the same dimensions. 

8. The long term tests were performed after a relatively short period 

of only 18 months. 

9. The concrete cover to the internal bars was not varied. 

9.2 OVERALL CONCLUSIONS 

Although the conclusions derived from each chapter are summarised at the 

end of that chapter, the general conclusions which can be extracted from the 

test data presented in this thesis may be summarised as follows, (these con- 

clusions are limited by the test conditions and procedures as outlined above): 

1. The maximum increase in ultimate flexural capacity on addition of bonded 
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plate reinforcement was only 177. The ultimate loads could be accurately pre- 

dicted by CP 110 or strain compatibility methods when the mode of failure was 

flexural. The failure mode changed from purely flexural, for beams with 1.5 mm 

plate, to a shear/bond type failure, for beams with 6 mm plate thickness. 

2. The service loads for the plated beams, assessed as the loads at which 

corresponding deformations in an unplated beam at its service load were attained, 

were up to 90% higher depending on which criterion was chosen from: deflections, 

rotations, steel bar strains or maximum crack widths. 

3. The service load deflections in the plated beams were up to 407. less than 

in the unplated specimen. The measured deflections could be predicted satis- 

factorily by accepted methods. The CEB recommendations were found to give the 

best correlation. 

4. The rotations were up to 48" % less in the plated beams than in the tin- 

plated beam at service loads. The measured rotations were used to produce an 

empirical formula for the Young's Modulus. of the concrete at any stage of load- 

ing. Using this, the rotations could be predicted within ±12%. 

5. The crack widths were reduced in the-plated beams by up to 63%. The 

maximum crack widths at working loads were overestimated by the crack width pre- 

diction formulae recommended by both CP 110 and ACI. These formulae were 

modified to produce empirical formulae satisfying the measured values. 

6. The flexural behaviour of the beams had not been adversely affected by 

exposure to natural weathering over a period of 18 months. No deterioration 

of the adhesive or adhesive/adhered interface was found over this period. 

Carbonation had been eliminated on the beam soffit by the presence of the bonded 

plate reinforcement. 

7. Inspection of the plates removed from the long term specimens showed 

signs of inadequate mixing of the resin/hardener system and inclusions of air. 

In one beam these areas covered up to 10% of the bonded surface. This beam 

showed no loss of strength during testing. 

8. The durability specimens showed that there are various sealing agents 

available for coating the epoxy/plat e element, which effectively prevent the 

ingress of moisture. 
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9. The preliminary test series of unreinforced concrete prisms with externally 

bonded plates seemed to indicate that the tensile strength of the epoxy resin 

when incorporated in the steel/epoxy/concrete composite system is considerably 

higher than the unrestrained tensile strength of the epoxy. 

9.3 SUGGESTIONS FOR FUTURE'WORK 

The author endeavoured, within the limited time available to assess the 

effects of the following: 

(a) glue and plate thickness, multiple layers of plate, plate jointing 

(b) degree of precracking of the beams 

(c) long term exposure. 

The range of glue and plate thickness was from 1.5 mm to 6 mm. The 

thinner layers of glue behaved as well as the thicker layers from a bonding point 

of view although the latter did provide slightly more stiffness. It is thought 

that in practice the glue layer would be applied in the thinnest layer which 

would produce a durable high strength bond. Cusens and Smith (28) tested plated 

beams with glue thicknesses ranging from 0.25 to 1.5 mm and found the minimum 

acceptable thickness to be 1 mm. However, they were using a different technique 

of pouring wet concrete onto an uncured epoxy layer applied to the reinforcing 

plate; The range of glue thicknesses employed when bonding plates onto hardened 

concrete should, therefore, be extended below 195 mm. 

The degree of precracking was investigated to a very limited extent. 

The tests showed that even with. beams loaded up to 90% of their failure load 

prior to bonding on the plate, satisfactory performance was achieved with the 

added reinforcement. However, some of the results seemed anomalous, as the 

deformations of the precracked beams were generally found to be less than in the 

beams which were not cracked prior to plating. This aspect of behaviour needs 

further examination. 

The mode of failure of the plated beams changed, as the plate thickness 

increased, from purely flexural to a shear/bond type. The latter should be 

avoided as there is less warning and it is more brittle. It is thought that 

this type of failure could be avoided by modifying the ends of the plate. The 
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plate thickness or width near the ends of the beams could be reduced, or some 

means of anchoring the plate ends may be effective. In one beam of the present 

investigation, the thickness of the plate at the ends was reduced and, this 

produced a slightly higher failure load. This is an area which requires further 

study. 

The beams in the present series were all tested with an identical shear 

span. The effect of varying this should be investigated. 

Some assessments of interfacial stresses were made from the test data of 

the present investigation. These were not limiting values. Tests should be 

designed to assess the limiting shear and bond stresses in plated beams. 

The behaviour of the epoxy resin, especially its tensile contribution in 

the calculation of the ultimate strength of a beam, should be studied further 

as it is thought that its tensile strength in the composite system could be con- 

siderably higher than the unrestrained value. 

Long term test beams have been set up. The tests performed after 18 months 

showed no loss of performance or deterioration of the epoxy resin. However, 18 

months is a very short period in comparison to the life of a structure. Tests 

must be carried out on beams after increasing lengths of exposure to the elements. 



APPENDIX 1 (12) (74) 

GLOSSARY OF TERMS RELATING TO ADHESIVES TECHNOLOGY 

The rapid growth in the use of adhesives has led to an extensive technical 

vocabulary. The following pages present a selection from various sources. 

ADHERE fasten together two surfaces by adhesion. 

ADHEREND a body which is attached to another body by an adhesive. 

ADHESION the state of being held together by means of an interlayer 

of adhesives between adherend interfaces; the attachment 

of two surfaces by interfacial forces consisting of 

molecular forces, chemical bonding forces, interlocking 

action, or combinations of these. 

ADHESIVE a material that binds other materials together by surface 

attachment. 

BATCH a production quantity derived from a manufacturing process 

or a mixture of these resulting from the same process 

conditions. 

BOND the union of two materials by adhesives. 

CATALYST a chemical substance which accelerates adhesive curing when 

added in small amounts to the larger quantities of the 

reactants: material which promotes cross linking in a polymer 

or accelerates adhesive drying. 

COHESION internal adhesion; the ability to resist rupture within the 

bulk material. 



CORROSION the chemical reaction between the adhesive or contamination 

and the adherend surfaces, due to reactive components in the 

adhesive leading to deterioration of the bond strength. 

CREEP the dimensional change with time of a material under 

sustained load. 

CROSS LINKING the union of adjacent molecules of uncured adhesives (often 

existing as long polymer chains) by catalytic or curing 

agents. 

CURE to alter the physical properties of an adhesive by chemical 

change, e. g. polymerisation, brought about by the agency of 

heat, pressure, or catalysts. 

DEGREASE to remove oil and grease from adherend surfaces. 

DELAMINATION the separation of layers due to adhesive failure. 

DURABILITY the resistance to reduction in joint strength shown by 

adhesives to moisture, heat, chemicals and biodeterioration 

etc. 

EXTENDER a non reactive liquid substance added to epoxy compounds to 

extend pot life, increase flexibility and lower the cost. 

FAILURE, joint failure such that the separation occurs at the surface 
ADHESIVE 

of the adherend, e. g. the failure in adhesion of a pressure 

sensitive tape when peeled from an adherend. 

FAILURE, joint failure within the adhesive. 
COHESIVE 



FATIGUE 

FILLER 

FLEXIBILISER 

GEL 

HARDENER 

INTERFACE 

JOINT 

PASTE 

PENETRATION 

PH 

PHASE 

PLASTICISER 

POLYMER 

a condition of stress from repeated flexing or impact force 

upon the adhesive-adherend interface. - 

an adhesive additive intended to improve their strength 

and performance. 

a substance which will react with epoxy compounds to impart 

flexibility. 

a semi-solid system consisting of a network of solid 

aggregates in which liquid is held. 

a catalytic or cross linking material used to promote 

setting of adhesives. 

the contact area between adherend and adhesive surfaces. 

the junction of two adherends which are held together by 

an adhesive layer. 

a high viscosity adhesive composition. 

the passage of an adhesive into an adherend. 

a measure of acidity or alkalinity. 

a homogenous and physically distinct part of 'a system 

separated from other parts by definite bounding surfaces. 

a material added to an adhesive to increase its flexibility. 

a compound formed by the reaction of identical simple 

molecules containing active functional groups to produce a 

high molecular weight material. 



POROSITY the ability of an adherend surface to absorb an adhesive. 

POT-LIFE the effective working time for an adhesive after preparation. 

PRETREATMENT those treatments, mechanical, chemical or physical which are 

applied to adherends to promote adhesive properties. 

PRIMER an adherend surface coating applied before the adhesive to 

improve bond performance. 

REACTIVE DILUTENT a low viscosity liquid dilutent for solvent free thermosetting 

resins of high viscosity. The dilutent undergoes chemical 

reaction with the adhesive whilst curing proceeds. 

RELATIVE HUMIDITY the ratio of the weight of water in a given volume of air to 

the weight required to saturate it at the same temperature. 

RESIN the general term for natural and synthetic polymers which are 

amorphous and have no fixed melting point. 

RETARDER an additive which slows the rate of a chemical reaction. 

RHEOLOGY the study of deformation and flow behaviour of materials under 

stress. 

SET 

SHRINKAGE 

the conversion of an adhesive into a permanently cured state 

by chemical or physical means. 

the volume reduction occurring during adhesive curing. 

SLIPPAGE the movements of adherends relative to each other during 

bonding. 

STORAGE LIFE the time period for which an adhesive remains usable when 

stored under specified temperature conditions. 



STRENGTH, CLEAVAGE the tensile load expressed as force per unit width of bond 

required to cause cleavage separation of a test specimen of 

unit length. 

STRENGTH, FATIGUE the maxmimum load that a joint will sustain when subjected 

to repeated stress application under specified conditions, 

i. e. range of stress, mean value, frequency of application. 

STRENGTH, IMPACT ability of material to resist shock. 

STRENGTH, PEEL the resistance of an adhesive joint to peel stress, the force 

per unit width of bond at failure. 

STRENGTH, SHEAR the resistance of an adhesive joint to shearing stress. 

The force per unit area sheared at failure. 

STRENGTH, TENSILE the resistance of an adhesive joint to tensile stress; the 

force per unit area under tension at failure. 

SUBSTRATE the material surface to which an adhesive material is applied 

for bonding or coating or other purposes. 

SURFACE PREPARATION the physical and chemical methods employed to prepare an 

adherend surface for bonding. 

THERMO PLASTIC susceptible to repeated softening by heating and hardening 

by cooling. 

THERMO SET a material which does not soften on heating, as a result of 

being formed from an irreversible chemical reaction 

initiated by a catalyst. 

VISCOSITY a measure of resistance to flow of a liquid. 



APPENDIX 2 (54) 

THEORETICAL STRESS DISTRIBUTION IN A BONDED LAP JOINT UNDER COMPRESSION 

Notation 

U axial deformation of adherends 

Y angular deformation 

shear stress in the adhesive 

E modulus of elasticity of adherends 
Eg 

G modulus of rigidity of adhesive 
[1(2+ý)] 

tl semi-thickness of concrete 

t2 thickness of steel plate 

d' thickness of adhesive 

c= G/d' 

P= applied load 

f 

concrete 
cube. - 

I 

L 

T t 
P j 

ý 

fi 

+dP 

P 

6 

glue 

I 

t2 

X 

P 
L I'" 
X 

'a 

arlD 
2V ý2 

od=U 1 
qd - ý2 

steel plate 
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P1 + P2 =P 

,Y- u2ul =T d' G 

or T=c (u2 - ul) 

dT (dug 
- dull 

dx C \dx dx % 

dul = Pl du2 = P2 
-ä -x Eltl dx E2t2 

dT 
dx 

C 
P2 - P1 (E2t2 

Eltl) 
C but P1 

dT 
_c 

ýP2 + P2 1_ 
cP 

dx 2t2 Eit1 Elti 

d2T =c 
äX2 

(1+1 dP2 
E, 1t1 t1 E2t2 

) 
dx 

(P -P2) 

putting w2 =c 
(Elti + 

E2t2) and t dx2 

d2T 
dx2 

-w2T =0 

The general solution of this differential equation is: 

=A Binh wx +B cosh wx 

when _x, =0 

dT 
dx 

Aw 

a 0 

-cP -c p 
Eltl 

when x=1 P2 =P 

dT 
dx = cP 

A= 
Eltl 

1-1- cP c Pw cosh wl + Bw sinh wl 

(Elti E2t2 
) 

Eiti w Eiti 

B= cp1+ cosh wl 
w sinh wl 

( 
E2t2 Eltl 

) 

-240- 



T (x) = cP cosh w(1-x) + cosh wx 
ws inh wl E lt lE 2t 2) (1) 

But 

B= 

so 
d P2 

= cP ("E-1 + 
d2 2 E2t2) 

then 

d P2 
dx 

dP2 
= c(ý 

d) 
dx2 dx dx 

d2P2 
. w2P 2 

Pc 

dx2 E 1t 1 

Pc 
Eltl 

The general solution of this differential equation is: 

P2 =A cosh wx +B sinh wx +C 

Then .d_ 
dx2 

=c (u 2-u l) 

w2 (A cosh wx -B sinh wx) 

w2(A cosh wx +B sinh wx) =. w2-(A cosh wx +B Binh wx) + 

w2C-Pc 
Eltl 

C 
Pc 

w2E, it 1 

when x=0 P2 =0 

0=A+ 
Pc 

w2E lt 1 

Pc 

w2E1t1 
.. AQ- 

when x=1P2=P 

P= -Pc cosh wl +B sinh wl + 
Pc 

w2Elt 1 w2E lt 1 

(Pc cosh wl - Pc )1+p 

w2E1t1 w2E1t1 Binh wl sinh wl 

Pc i- cosh wx + (cosh wl - 1) sinh wx 1+P 
sinh wx P2 

w2E1t1 sinh wl J sinhwl (2) 

These theoretical distributions are plotted in Fig. 3.7. 



"APPENDIX 3 

PRELIMINARY TEST SERIES 

LOADING SYSTEM - Series A, Odd numbered beams. 

- 
E 
E 
0 
ý 

F=EW/2 
tW/2 

Bending moment at X: 

X 

610mm 

No roller support. 
w2 F= µW/2 

W. 0.61 W. 0.15. u. u= coeff. of friction. 
4-2 

Assuming u=0.5 for concrete on steel: 

MX = 0.152 W-0.0375 W=0.1145 W. 

LOADING SYSTEM - Series A, Even numbered beams. 

1 

Roller support. 

oocrjp 

M=W. 0.61 = 0.152 W 
4 



CALCULATION OF FIRST CRACK LOAD IN CONCRETE - BEAM Al 
ý mm. 

E 
E 

ý 
r- 

I 100 4 
-5 

Transformed Section 

Modulus of elasticity of steel plate = 200 kN/mm2 as v 5.56 

of if concrete 36 kN/mm2 

of 

F 

n 
0"16.400 

-N, 

" glue 6 IIN/mm2 age 0.167 

Location of Neutral Axis: 

x(152.152 + 16.4 + 556.1) _ (152.1522 + 16.4.154 + 1.556.156-5) 
2 

x=7809mm 

O) 
O 

cb 
ni 

ý rn 
Lf) 

r- 

ý v 
cb r- 

Taking moments about the Neutral Axis: 

I= 152.78.093+ 152.78-09(78-09 2+ 152.73.913+ 15223091)2.73'91 (Concrete) 
12 2) 12 C2 

+ 16.4.75.912 (Glue, neglecting its inertia about its own axis) 

+ 555.78.412 (Steel, 

Iü=4"84.107mm4. 

M=ýI 

y 

11 11 11 11 11 11 11 ) 

Modulus of rupture aa4.37 N/n¢n2 

yý 73-91 mm 

X 

Neutral 
Axis 

56.100 

0% 

First Crack Moment = 4.84.107.4.37 m 3.06 kNm. 
73.91 



CALCULATION FOR FIRST CRACK LOAD IN THE GLUE - BEAM Al 

X 

Neutral 
Axis 

L100 
Moduli as before. 

Location of Netral Axis: 

I 
G16.400 

- 1 5-56.100 

C-. 
ý 
N 
"-- 

x(152x + 16.4 + 556.1) _ (152x2 + 16.4.154 + 556.1.156.5) 
2 

152x2 + 619x = 76x2 + 96714 ý 

x2 + 8.14x - 1273 m 0. 

Hence x= 31.8 mm. 

N 

C I 

QI 
Y 

4 

Transformed Section 

Moment of Inertia, taking moments about 

the Neutral Axis: 

Im 152.31083 + 152.3198 31.8 2 (Concrete) 
12 2 

+ 16.4.122.22 (Glue, neglecting insertia 

about its own axis) 

+ 555.1.124072 (Steel, neglecting in- 

sertia about its own axis) 

ICR ° 1"12.107 mm4. 

Tensile strength of glue - 60 N/mm2 

y- 120'2 mm 

First Crack Moment = 5'59 kNm. 



CALCULATIONS FOR ULTIMATE LOAD. TABLES 4.3 - 4.6. 

(c) Based on yield stress of plate, plus tensile strength of glue. 

x 

LO 

k 

-T Lr) 

F. x 
C 

Beam Al (glue thickness 4 mm). 

Force in concrete in compression (CP110) 

0.6. fcu. b. 0.6.64.6.152 

FC-5891x. N. 

FG ° 60.4.100 - 24000 N. 

FS m 125.1.100 - 12500 N. 

CD 
LO 
ý 

Wý 

r 

-4 ----1 FG 

FS 
fcu = 64"6 N/mm2 

fg = 60 N/mm2 

fy = 125 N/mm2. 

Hence x=6.20 mm. 

Then taking moments about the centroidof the compressive force: 

M= 24000 (154 - 3.1) + 12500 (156.5 - 311) - 5.539 I <Nm. 

(d) Based on ultimate stress of plate, plus tensile strength of glue. 

As for (c) except FS = 13200 N. 

Hence x=6.31 mm. 

M= 24000 (154 - 3.155) + 13-2 (156-5 - 3-155) ý 51644 VNm. 

(e) Based on ultimate stress of plate, plus no tensile strength in glue. 

X=2'24mm. 

M= 13! 2 (156"5 - 1112) = 2"051 'kNm. 



" APPENDIX 4 

CALCULATION OF ' ULTIMATE'LOADS. ' BEAMS 201 -224 

Three methods are used for calculating the theoretical ultimate capacities 

of the test beams. 

(a) Ultimate Limit'State to'CP110 

The following assumptions are made: 

1. The strain distribution in the concrete in compression is derived 

from the assumption that plane sections before loading remain plane up to 

failure. 

2. The resistance of concrete in tension is ignored. 

3. The relationships between stress and strain in the, reinforcing bar, 

plate and glue are as shown in Figs. 3.8,3.9 and 3.4 respectively. 

4. The distribution of stress in the concrete at failure may be 

assumed to be equal to a uniform stress of 0.6 fcu over the entire compression 

zone. The maximum strain at the compression face is taken as 0.35% and the 

centroid of the stress block is at half the depth of the compression zone. 

5. For the purpose of calculating the ultimate capacity of the test 

beams the material safety factors are equal to 1.0 and the stresses in the bar 

and plate are their respective 0.2% proof stresses, as taken from Figs. 3.8 

and 3.9. 

0"6 fcu 

concrete in 
compression 

d 

z= d-x/2 

steel in tension 
Ast"fP 



Tensile force = Ast. fp where fp, - 0'29. proof stress 

Compressive force = 0.6 fcu. x. b where b 

Hence x= Ast. fp 
0.6. b. fcu 

Also z=d- x/2 = d(1 - 0.83 Ast. fp) 
b. d. fcu 

s 

Therefore the ultimate moment capacity Mu is equal to: 

Mu = Ast. fp d(1 - 0.83 Ast. fp) 
b. d. fcu 

But also 'Ast. 
bd 

Mu 

width of beam 

P. 

= fp. p. bd2 (1 - 0"83 p. fp) 
fcu 

EXAMPLE BEAM 207 

ý 155 mm , 
a 

0 N 
CV 

000 

U') 
LO 
04 

ý 
ý 
aö 
U") 
(V 

A, 

Plate thickness 1'5 mm 

Glue thickness 3 mm 

fcu 70'2 N/mm2 

Plate Bar 

fp = 275 N/mm2 470 N/mm2 

p=0.0047 0.0277 

d= 258.75 mm 220 mm 



Then the ultimate moment is given by 

Mu = 275.0.0047.155.258.752 (1 - 0'83(0"0047.275 + '0277.470) 
70"2 

+ 470.0.0277.155.2202 (1 - 0.83(0.0047.275 + 0.0277.470) 
70.2 

Plate Bars 

_ (11.14 + 81.10). 106 Nnma 

92.24 kNm 

(b) Strain Compatibility 

The basic principle of strain compatibility is that for a given section, 

including the reinforcement, a neutral axis depth can be found so that the total 

compression force equals the total tension force; and hence the ultimate moment. 

The following assumptions are made: 

1. The strain distribution in the concrete in compression is derived 

from the assumption that plane sections before loading remain plane up to 

failure. 

2. The resistance of concrete in tension is ignored. 

3. The relationship between the stress and strain in the reinforcements 

are as shown in Figs. 3.8 and 3.9, found by experimental tests. 

4. The relationship between the stress and strain in the concrete is 

the rectangular stress block with a maximum concrete compression strain of 

0.0035, and a compressive stress of 0.60. fcu. 

5. The relationship between the stress and strain in the glue is as 

shown in Fig. 3.4 found by experimental tests. 

6. All material safety factors, Y m, are equal to unity. 



0 tcu 

x 

ý 

ý 
Co 
Ln 
N 

N 'ýI 

Abars = 943 mm2 
Aplate = 187 "5 mrrt2 

(1) 

e. g. Beam 207 

plate thickness 105 mm 

glue thickness 3 mm 

fcu - 70 .2 N/mm2 

First it is assumed that no tensile' contribution is made by the glue 

Guess (plate = 250 N/mm2 (bars = 425 N/mm2 

x= 75"74 mm 

0"0035 

Tensile force = Compressive force 

250.187.5 + 425.943 = 0.6 fcu. 155 x 

By strain compatibility: - 

Ebars = 220 - 75'74. '0035 - "0067 
75.74 

Eplate ° 258"75 - 75'74.00035 - "0085 
75-74 

From the experimental stress strain curves for the 

steel bar and plate, as shown in rigs. 3.8 and 3.9, 

the stresses corresponding to these strains are 

fbars' 490 N/mm2 

fplate 

The initial guess, therefore, was incorrect. 

Try fplate ° 300 and fbars ° 490 

Then 300.187.5 + 490.943 = 0.6 fcu. 155 x. 

325 N/mm2 

x= 79"39 



Hence Ebars 220-'79.39. "0035 = 00062 
79.39 

Eplate = 258.75 - 79.39. "0035 - "0079 

From the experimental stress strain graphs: 

fbars = 490 N/mm2 c 
O. K. 

fplate = 297 N/mm2 

The resistance moment is then found by taking moments about the centroid of the 

concrete stress block. (z =d-x. =d- 79.39) 
22 

Mu 187.5.300. (258.75 - 79.39) + 943.490(220 - 79039) 
22 

Mu = 95.5 kNm 

(ii) Assuming*the glue remains uncracked up to failure the force it imparts 

is included in the tensile component 

Assume fglue = 15 N/mm2 fplate = 300 N/mm2 frebar 490 N/mm2 

300.187"5 + 490.943 + 15.375 = 0"6 fcu. 155 x. 

0.0035 
Ebars - 220 - 80"25.60035 - "0061 

80.25 

ý 
LO 
(V 

ý 
CD V) 
N 

Eglue a 256'S - 80"25. "0035 - "0077 
80"25 

Eplate 258"5 - 80"25.00035 - "0078 
80"25 

from experimental stress/strain graphs: - 

f, 
rebar 

° 490 N/mm2 

fglue ° "14 N/mm2 

fplate - 297 N/mm2 

Then Mu = 187.5.300 (258.75 - 80.25) + 943.490 (220 - 80.25) 
22 

+ 15.375 (256.5 - 80025) 
2 

= 96.6 KNm 

The calculated ultimate loads are shown in Table 5.4 together with the experi- 

mental failure loads. 

x= 8025 mm 
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(c) Strain Compatibility 

An alternative, and more refined method of calculation than in (b) is to 

use the stress distribution in the concrete as suggested by iiognestad, as shown 

below. (k1, k2, cc from Fig. 4.4-1, Reinforced and Prestressed Concrete - 

Kong and Evans. ) 
155 

,, 
` 

*---l 

ý 

ý 
0 N 
N 

cb Ln N 

ýý 

7 

Beam 207 

eb = ec ( 220X xý and sp s cc 258*75 - xý 

ki. fcu. b. x= Ap. fp + Ab* fb 

Assume x= 94 mm we also have: fcu ý 70"2 N/mm2 

f= 295 N/mm2 kl e 0"48 

k2 a 0"41 

Then 0"48.70"2., 155.94 = 295.187"5 + 943. fb 

. '0 fb = 462 N/mm2 
220 - 94 

With cc = 0.0028, eb = 0.0028 ( 94 
)- '00375., ep = "00491 

From the experimental stress/strain curve, Fig. 3.8, the steel stress in the bars 

corresponding to this strain is 464 N/mm2, and for the plate the stress is found 

from Fig. 3.9,295 N/mm2. assumptions were OK. The ultimate moment is then 

given by: 

M= 464.943 (220 - 0.41.94) + 295.187.5 (258.75 - 0.41.94) 
u 

= 91.6KNM 



Similar calculations for beams 208 (3 mm plate) and 209 (6 mm plate) give 

values of 100.6 N/mm2 and 120.1 N/mm2. These differ from method (b) (i) by 

2 to 4% only. 



APPENDIX 5 

CALCULATION ' OF' DEFLECTIONS 

(a) CP 110 Recommendations 

This is dealt with in Appendix A of the code. In clause A. 1 it states that 

in general it will be sufficiently accurate to assess the moments and forces at 

serviceability limit states by using an elastic analysis. When the deflections 

of reinforced concrete members are calculated there are a number of factors 

which are difficult to allow for but which have a considerable effect on the 

reliability of the result: 

(a) support conditions 

(b) precise loading conditions, especially long term 

(c) extent of cracking. 

The approach used is to assess the curvatures of sections under the appropriate 

moments and then calculate the deflections from the curvatures. The recommended 

procedure involves calculating the curvatures at successive sections along the 

beam and using numerical integration to compute the deflection. For calculating 

the curvatures clause A. 2.2 gives a procedure which employs an appropriate set 

of assumptions depending on whether the section is cracked or uneracked. The 

test beams were all cracked at service load. The assumptions for this are 

straight forward and are illustrated diagrammatically in Fig. A. 5.1. 

(1) Strains are calculated on the assumption that plane sections before 

loading remain plane after loading. 

(ii) The reinforcement is assumed to be elastic and its modulus of 

elasticity is taken as 200 kN/mm2. 

(iii) The concrete in compression is assumed to be elastic. Under short 

term loading, the modulus of elasticity Ec is used. 

(iv) Stresses in the concrete in tension may be calculated on the assumption 

that the stress distribution is triangular having a value of zero at the neutral 

axis and a value of 1 N/mm2 at the centroid of the tension steel. 

To obtain a relationship between the bending moment and the curvature a 

force diagram is drawn and the bending moments taken. The equation for the 
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73 

SECTION STRAIN 

Compressive force 

bxEc c 
2 

but _ cc(d-x) 
x 

fs 

STRESS 

_ Te n sil e force 

= Es es As 

E5 / Eý = ae cnd As/ bd= 9 

therefore bx Eo c= ES c(ý) AS 
2 

or x2 = 2aepd(d-x) 

then z+ 2aep dx - 2ae 9 d2 

solving this quadratic equation gives: 
or .d= -%? s ae9(2 "«e9) 

also z=d -x. = d(1-x 

and 

3 3d 

1/r =/x 

X=-%9d'-dae9ae9' 

le = 
ýb. 2x + bx(2Z "ýý, (d-x)2 

or b; 
=3 d)3+ý9ý1 -d):. 

fc = Ec' Ec 

FIGURE A5.1 ELASTIC ASSUMPTIONS FOR CALCULATING CURVATURES 



neutral axis depth becomes rather complicated and a further assumption is made 

to simplify this. It is assumed that the neutral axis depth is calculated on the 

basis of zero stress in the concrete in the tension zone. This will slightly 

underestimate the neutral axis depth. Thus, the concrete in tension is ignored 

when calculating the neutral axis depth, but taken into account when calculating 

the resistance moment. 

In the case of the plated beams the plate area has been added to the bar 

area and the effective depth is taken to their combined centroid. 

EXAMPLE Beam 207 

Glue thickness 3 mm E, - 36 kN/mm2 

Plate thickness 1.5 mm 

ý 

1 
000 

12 5I 
155 

0 (V 
N 

LO 
LO 
(V 

-ý- 

Ln 

Co 
LD 
N 

ES e 200 kN/mtn2 

ae - 200 -5.56 
36 

p- 187 943 - 3.23.102 
155.226 

Abý 943mrr? 

000 
ae. p - 0.179 

A 187rrrr2 

From Fig. A. 5.1 x= -0.179 + 0.179(2.179) Hence x" 100.6 mm 
d 

and 1= (0.445)3 + 0.179 (1 - 0.445)2 Hence I-1.51.108 mm4 
bd3 3 

Next the resistance moment is calculated allowing for the tension stiffening of 

the concrete. As shown in Fig. A. 5.2 the moment due to the concrete in tension 

is given by fct. b(h - x) 3 
3 (d - x) 

The deflections of the test beams were calculated at 130 KN load for comparison 

with experimental values. The applied moment (W. L) corresponding to 130 KN load 
6 

is 49"8 KNm. 
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W 
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L 
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ý 

X 
i 

.D 
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r 

ä 

Ct 

TENSILE CONCRETE 

stress at reinforcement level ict 
stressof extreme fibre =f (h-x 

ct (d-x) 
force in tensile concrete = Fct 

ct ' iC lhg) =X .bh -x 
moment of tensile concrete about 
neutratcxis= Ft, 2/3 (h- x) 

ct = f., b. (h-x) 
3(d-x) 

FIGURE A5.2 BENDING MOMENT DUE TO THE CONCRETE 

IN THE TENSION ZONE 
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The resistance moment. = 49.8 - 1.155'(255'_'100.7)3.10-6 KNm 
3 (226 - 10017) 

= 48"3 KNm 

The curvature is then found from simple bending theory. M"E 
It 

Therefore 1= 48.3.106 = 8.9.10-6 radians. 
R 36.10 . 1.51.10 

The deflection can then be found by the simplified approach recommended in 

clause A. 2.3 from the equation a= k12 1. 
R 

Where K is a constant which depends on the loading and support conditions, 

and 1 is the effective span. The Code Handbook, in Table A3 gives values of K 

for various loadings and support conditions. In general the deflection of a 

beam is given by the formula a= Kl W13, but also the bending moment, 
EI 

M= K2. W. 1. 

For the test beams the loadings are symmetrically placed at the 1 points 
3 

of the span and the value of K2 is 1 or 0.167. 
6 

For the value of K1 Macaulay's (81) method can be used as shown in 

Fig. A. 5.3 and is equal to 23 = 0001775. 
1296 

Combining the equations containing K1 and K2: a- K1.12. Pi 

K2 EI 

or K=0.01775 = 0.1065 as shown in Table A3 of the code. 
0.1666 

Then the deflection for beam 207 is given by: 

a=0.1065.23002.0189.10-5 - 5.0 mm. 

(b) ACI Recommendations 

From the work performed by Branson (77) the effective moment of inertia is 

given by Ie = 
(Mcrl 3 Il + C1 - 

(IMcrr l3 J" 11 er 
.M/LM 

// 

The deflection is then given by a 23 . W13 
1296 EI 

ce 

The same assumptions apply as for CP 110, i. e.: 

(i) plane sections remain plane 

(ii) reinforcement is elastic 
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W/ 2 W/2 
L/3 ý. L/3 L/3 

tw 
/2 

Convention 

x_L 

General expression for bending moment at distance 

M=EI dä 
dXz 

JM= EI da 
dx 

! JM = E'_ a 

.2Wý (x 
-T 

"2CJx-3) i "A 

'- Ax 
4" 

x-2'3ý ý( 

(a)qucntities within curly brackets are taken as zero if 
their value is negative. 

( h)terms within curly brackets are integrated with respect 
to the terms within the brackets. 

-Wx . W/x-i1 
2 2l 3ý 

- 4X `4 {x-1`ýs 
3 

_ -W)ý "V1IJx-Lý 
' 

12 12 l3 

Boundcry conditions 
when x=O, &L a=0 

Therefore B=0 and 

fW/2 

x from the end. 

.g 

-AL= -W l_' +2(. 2J-)ý 
3 iýZ 

or A= 2WL1 
36 

Then: 
3 Ela = -Wz +W (x-1. ý +W{ x-2L} « 2W Lx 

12 12 31 -l-2 3 36 

The central deflection : 

when 
2 

EI 96 12216 324 

or a= 23 W 
1296 EI 

I 

FIGURE A5.3 CENTRAL DEFLECTION BY MACAULAYS METHOD 



(iii) concrete in compression is elastic. 

EXAMPLE Beam 207 

Mcr, the theoretical cracking moment, depends on the moment of inertia of 

the uncracked section (Fig. A. 5.4) and the modulus of rupture which was determined 

by experiment - 5.56 N/mm2. 

Thus Mcr = 2.694.108.5.56 = 13.2 I(Nm. 
113.83 

M, the moment under consideration, = 49.8 kNm (130 IN load). The value 

of the cracked, transformed moment of inertia a 1.54.108 mm4 (Fig. A. 5.5). 

Hence the effective moment of inertia 

= Ie 13.2 32"694.108 +1- 13"2 3ý 1'S4.108 mm4 (49"8ý [ (49"8) 

= 1"561.108 mm4 

Then a= 23 . 130.103.23003 
1296 36.103.1.561.108 

= 5'0 mm 

(c) CEB Recommendations 

The deflections are calculated from considerations of whether the section 

is cracked or uncracked. In simply supported structures the deflections under 

short term loading may be calculated on the assumption that the stiffness'in the 

cracked state = Es. A. z(d - x). Thus the total deflection is split into two 

parts, one applying before cracking and the other after. 

Before cracking the curvature, I Mcr , notation as before 
rl EcI u 

After cracking the curvature, 1 e4 (M-Mcr ) 
r2 3'EsABZ d-x) 

The deflection, a, is then given by a- k12 1+1 
ri r2 

EXAMPLE Beam 207 

Mcr as in ACI method 

Iiu if it 11 

K as in CP 110 method 

X 
11 It 11 

Z 
tt of 11 

° 13"2 kNm 

2.694.108 mm4 

0"1065 

ý 100"6 mm 

ý 192"5 mm 
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CO LO 
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Neutral axis position -x 
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2 

Hence 7= 141.17mm. 

ý ý 
s 

- -ý--"jo--2r- 
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i 

I 

i 

I 

-ý !: j 

(1 87 x 5.56 ) 
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12 
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12 
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+ 187.556.117.56= = 0.14.106 (steel plate, 
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90 CO ý. 

TOTAL Iu = 2.69.10s mm 

=i 

FIGUREA5.4 MOMENT OF INERTIA OF UNCRACKED TRANSFORMED SECTION 
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Esteel 200 KN/ mm` 

Neutral axis position -z 
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Co 
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Moment of inertia: 
taking moments about the Neutral Axis: 

I=155101.15'. 155.101.15(1. QiJ. )2.0.54.10nmm'` (concrete) 
12 2 

"943.5.56.11885 = 0.74.10(steel bcrs, neglecting Inertic about their own axis. ) 

+187.5-56.157-601= 0.26J0(steel plate 
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TOTAL 1cß = 1.54.10 mm 

FIGURE A5.5 MOMENT OF INERTIA OF CRACKED TRANSFORMED SECTION 



As = 943 (bars) + 187 (plate) 
.a 1130 mm2 

Hence a= 0"1065.2300 r '13.2.106 +4 (4918 - 1302). 106 ý 
L 36.103.2.694.108 3 2.105.1130.1925.125i4 

= 5'81 mm 



APPENDIX 6 

CALCULATION OF ROTATIONS 

From basic bending theory 
m=R 

where M= applied bending moment 

I= moment of inertia of the section 

E= Young's Modulus 

1= 
curvature at the section under consideration 

The integral of the curvatures at each section along a beam produces 

the rotation. Hence the integral of 
EI 

along the beam also gives the rotation. 

This is equivalent to the area under the bending moment diagram divided by 

EI, assuming a constant stiffness along the length of the beam. As in the 

calculation of deflections two cases must be considered, one before cracking 

occurs and the other after. ' Before cracking occurs the rotation " 

Area under Bending Moment Diagram 

Eu 

where Ec = Young, 's Modulus of concrete, short term 

and Vu = uncracked, transformed moment of inertia. 

In the second case the bending moment, resisted by the concrete in 

compression and the tension steel, is reduced by the moment resisted by the 

concrete in tension between the cracks. This is taken as, Met, 

6 (h-x)3 Met f 
ct 3 (d-x) Fig. A5.2 

The bending moments were calculated at four stages after cracking, up to 

failure, allowing for the tensile contribution of the concrete. The neutral 

axis positions found from the measured strain distributions were used and the 

effective depth was taken to the centroid of the steel bar and plate areas, 

The second moment of area was calculated at each stage using the snore neutral 

axis positions. The rotations were then calculated as described above for a 

cracked section. Two values of tensile stress in the concrete were assumed, 

Firstly, fcr =1 N/mm2 as recommended by CP110 and secondly, 3 N/mm2. The 

. W. 



latter value was not thought to be unreasonable as the modulus of rupture had an 

average value of 5.6 N/mm2. A value of approximately half this did not seem too 

high. 

EXAMPLE Beam 207 

(i) Moments to be resisted by the section 

Load Moment 6> Mct fct=1 N/mm2 fct-3 N/mm2 

(kN) (Nmm) (10. x) (106) 

60 60.2300.1000 
-f 

L55_(255-11213 
a 21.7 19.0 6 ct' 3 V2-26-112) 

130 
130.2300.1000 

-f 
155(255-100 13 

48.3 4ý" 3 
6 ct' 3 26-100 J 

190 190.2300.1000 
_f 

155 (255-901 9; 
71"1 67 - "7 6 ct 3 \226-90 

250 250.2300.1000 
-f ct 

155(255-80 13 
93"9 9001 

63\ 226-80 
J 

(ii) Moment of Inertia 

The section is assumed to be cracked to some degree at all the load 

stages shown above. The neutral axis positions are as shown in the moment 

calculations, and concrete below the neutral axis is assumed to have no 

contribution to the moment of inertia, and (ae a 5.56). 

Section 

N. A. 

(943x5.56 
I 
E 

I 
I 

(187x556) 

O 
C14 
CV 

Ln r7 
00 
U') 
N 

Load Moment of Inertia ( 108) 
(cN) (mm4) 

155.1123 2 
60 I- 12+155.112\122)+5243.1082+1040.146.75 21.52 

155.3 130 I= 1100 +155.100 
120+5243.1202+1040.158.75 21.53 

190 I= 1512903 
+155.90 

(92 )2+5243.1302+1040.168.75 
21.56 

250 I= 
1512 803 

+155.80 
()22 

+1040.17ß"752-1"62 

neglecting the inertia of the steel bar and plates about their own axes. 



(iii) Rotations - Area under B. M. diagram -21- EI. 

Load Rotation 
(1 N) (radians 104) 

60 2300.2. M : 36000.1.52.108 

fct=1 N/mn2 

61 

fct"3 N/mm2 

3 
53 

130 2300.2. M 36000.1.53.108 = 135 126 
3 

190 2300.2. M : 36000.1.56.108 = 195 186 
3 

250 2300.2. M = 36000.1.62.108 247 237 
3 

These rotations are given in Table 6.5. It is clear that at higher loads 

the predicted rotations are greatly exceeded. The main reason for this is that 

as cracking becomes more widespread and the concrete compressive strain increases 

the value assumed for Ec is not realistic. 



APPENDIX 7 

INTERFACIAL STRESSES 

In this appendix an assessment is made of the bond stresses between the 

adhesive and plate and the shear stresses within the adhesive. It must be 

emphasised that the values should be treated qualitatively and that they in no 

way represent limiting or ultimate stresses. The beam tests were not designed 

to investigate such stress conditions but rather to study the flexural behaviour. 

Bond Stresses 

For concrete and steel to work in a beam it is necessary that stresses 

be transferred between the two materials. The term 'bond' can be used to 

describe the means by which slip, between the steel and concrete, is prevented 

or at least minimised. Wherever the tensile or compressive stresses in the 

reinforcing element change, bond stresses must act along their surface to produce 

this change. 

Research on normal reinforced beams. has shown that the bond stresses in a 

beam is neither uniform nor gradually varying from point to point. Rather, it 

has been found that very large bond stresses exist adjacent to cracks, 

essentially ultimate bond stresses, even- at low loads. Very much smaller bond 

stresses exist close by on the same bar. Thus there is a practical problem as 

to how to describe, measure or evaluate such a fluctuating stress condition, . and" 

large bond stresses_ can exist in members at relatively low loads without signs of 

distress. Codes of Practice use two approximate methods to measure bond stress, 

(a) Local Bond Stress 

These are the shear stresses at the bar surface which prevent longitudinal 

movement of the bar in the concrete. Local bond failures are produced by large 

changes in the tensile force over a short length of bar. This change in tensile 

force is produced by a change in bending moment and the rate of change of bending 

moment is the shear force. 



For plated beams the local bond stress at the plate/glue or concrete/glue 

interface is a horizontal shear stress given by 

V. A. y. 
1. bp 

where A= area of plate or area (plate + glue), 

by = width of plate, 

V= shear force, 

y= distance from the neutral axis to the section under consideration, 

I= second moment of area of the cracked transformed section. 

The results are given in Table A. 7.1. The mean local bond stress near 

failure was 1.46 N/mm2. CP110 limits the local bond stress in plain bars to 

2.7 N/mm2 (grade 40 concrete and above). These stresses are for the glue/plate 

interface. 

(b) Anchorage Bond Stresses 

This is the average bond stress over a particular length of bar.. The 

removal of a bar from the concrete is resisted by shearing stresses, between the 

concrete and steel, which are assumed to be uniform along the length of the bar. 

S I 

1 

£ 

ý__ý Tensile, Force in bar diameter 

Considering the equilibrium of the forces at the ultimate limit state: 

n 02. fu = 4 7r. 0. fbs. R, 

f 
In CP110 fu for the steel is limited to to produce the allowable 

m 
ultimate anchorage bond stresses. Certain experimentally determined limiting 

values are tabulated for different steel and concrete properties in'Table 22 

(CP110). 

For evaluating the actual average: anchorage bond stress between the plate 

and glue, in the test beams, a similar expression is used: 



TABLE A 7.1 LOCAL BOND STRESSES IN PLATED BEAM S 

co 

E 
Ew 
w 

EN 
Ew 
w ji 

L' ä 

SHEAR 
FORCE AT 
SERVICE 
LOAD 

kN 

COMBINED 
CENTROID 

AT 
SERVICE 
LOAD mm 

LOCAL 
BOND 
STRESS 

N/mm-2 

SHEAR 
FORCE AT 
ULTIMATE 
LOAD 

kN 

COMBINED 
CENTROID 

AT 
ULTIMATE 
LOAD mm 

LOCAL. 
BOND 
STRESS 

N/mm= 

203 1.5 1.5 65 226-1, ' 0`"55r . 125 226 1.05 

204 1.5 3.0 65 231- 0 "89 125 -" 231 1.70 

205 1.5 6.0 65 238 '1.23 y 95 238 1.80 

207 3.0 1.5 65 226. _... 0.55 125 . 226 1.05 

208 3.0 3.0 65 231 0.90 125 231 1.72 

209 3.0 6.0 65 238 1.24 95 238 1.81 

210 3.0 6.0 65 238 1.24 95 238 1.61 

216 6.0 1.5 65 226 0.57 125 226 1 "09 

217 60 3.0 65 231 0190 125 231 1.74 

216 6.0 6.0 65 238 .;: 1.24 . -V 95 238 1" Bl 

219 6.0 6.0 65 238 1-24 95 238 1 "61 

220 3 -8 1.5 65 226 0.55 125 226 1.05 

221 3.61) 1.5 65 226 0.55 125 226 1.05 

222 3.91 1.5 65 226 V 0; 55 125 226 1.05 

223 3.9 1.5 65 226-" ý 0.55 ", ;- 125 ," 226 1.05 

224 3.91 3.0 65 231 V 0*'90 = '" 125" 231 1.74 
(1) notched beam. 
(2) precracked beams. 

PLATE '- 
THICKNESS mm 

MEAN SERVICE 
STRESS N/mn 

AN ULTIMATE 
STRESS N/mrrr 

0.55 1-05 5 (0.55) (1 "05) 
3.0 0.90 1.72 

- (0.90) `- ' ,, (1.74) 
6 .0. 1.24 1" ßi 

Figures in brackets - precracked beams. 
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fbs P 
Ac 

p) where fp is the stress in the plate (= c-. E 

Ap is the cross section area of the, plate 

Ac is the contact area between glue and plate (= by R) 

eP, EP, 

respectively, 

Then, 

For the test beams: 

tp = 

bp 

EP = 

E 
.= 

plate to the loading point = 742 nmi. 

tp and by are the strain, Young's Modulus; thickness and width, 

of the steel plate, and k is the anchorage length. 

t_p bp 
f bs eP EP b ß; P 

thickness of plate varies - 1.5 mm to 6 mm 

width of plate constant - 125 mm 

Young's Modulus 200,000 N/IIan2 

strain in the plate varies 

ý ý 

;r 

R= anchorage length is taken as the distance from, the 

Substituting we have: 

fbs = 269 eP tp 

E 

end of the 

Using the strains obtained by experiment at both4working load and near 

ultimate load the anchorage bond stresses were calculated for beams 

1 ayers of continuous plate. The results are given in Table A7.2. 

with single 

The mean anchorage bond stress at the load stage prior to failure was 

2,12 N/mm2, and at service load it was 0.81 N/mm2. The limiting values, at 

these load stages, given in CP110 for plain bars are 1.9 and 1.0 N/mm2 

respectively, (for concrete f. 
u 

40 N/um2 and: above. ) 

(c) Shear Stresses in the Glue 

Considering longitudinal forces on a short length of'steel plate 6R, 

the change in load corresponding to a change in strain of 6e is given by: 

dcp. Ep. bp. tp (Symbols as before) 



TABLE A 7.2 ANCHORAGE BOND STRESSES IN THE PLATED BEAMS 

co 

E 
Ez 
?R 
ýý 

E 
Ez 
c R- 
n? 

DESIGN 
SERVICE 
LOAD 

kN 

PLATE 
STRAIN 

AT CENTRE 

micrestrain 

CHCP. Xl 
BOND 

STRESS 
N/mmz 

ULTIMATE 
LQAD 

kN 

PLATE 
STRAIN 
AT CENTRE 

microstrar 

A' CHOFVCE 
BOND 
STRESS 

N/mm= 

203 1.5 1.5 130 1300 0.5 250 4900 2.0 

204 1.5 3.0 130 1200 1.0 250 3700 2.9 

205 1.5 6.0 130 650 1 '0 190 1200 1.9 

207 3.0 1.5 130 1300 0.5 250 4900 2-0 

208 3.0 3.0 130 1100 0.8 250 3200 2.6 

209 3.0 6.0 130 700 1.1 190 1350 2.2 

210 3.0 6.0 130 650 1.0 190 1250 2.0 

216 6.0 1.5 130 1100 0.4 250 4200 1.6 

217 6.0 3.0 130 1000 0.8 250 2900 2'3 

218' 6.0 6.0. 130 660 1'0 190 1200 1.9 

219 6.0 6.0 130 750 1.2 190 1350 2.2 

220 3-8 1'S 130 1200 0-5 250 4200 1'7 

221 3.61) 1.5 130 1300 0.5 250 4500 1.8 

222 3.62) 1.5 130 950 0.4 250 2900 1-2 
2 

223 3"D 1.5 130 700 0.3 250 2300 0.9 

b 224 3 3.0 130 750 0.6 250 2400 1'9 
(1) notched beam 
(2) precrocked beams 

PLATE 
THICKNESS mm 

MEAN SERVICE 
STRESS N /=m 

MEAN WIMATE 
STRESS N/ mm` 

1.5 0.49 1.19 
(0.35) (1.02) 

3.0 0.87 2.59 
(0.59) (190) 

6.0 1.07 2 00 

Figures in brackets - precrncked beams. 
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This must be balanced by a shear force in the resin which is given by: 

t. R . bp where t= shear stress at the plate/glue interface. 

Hence T=E. tp 
Se 

. ýQ P, 

In the limit T= EP. tP. 
d 

where 
deP is the strain gradient. 

aK di 

This analysis has ignored. the thickness of the glue and therefore assumes that 

the strain in the contact face of the steel is the same as the contact surface 

strain in the concrete. 

It is evident that the glue will be subjected to high shear forces where 

the strain gradient is high. Such gradients occur where there is a sudden change 

in section, for example at the end of the plate, a joint in a plate or at a crack 

in the concrete. The strain gradients were measured at the plate ends for the 

test beams. However, the measured values ofýstrain can only be an approximation 

to the local strains as they are based on average values over a finite length. 

Gauges of 6 mm length were used and in such a region of rapidly changing strain 

are not small enough to determine an accurate strain gradient. Nevertheless, 

the tests do give some indication of the order of magnitude of the shear stresses. 

The shear stresses are given in Table A7.3, for beams with single continuous 

layers of plate. 



TABLE A"7.3 SEAR STRESS IN THE GLUE LAYER AT THE END OF 
THE PLATE. 

w Co 

ýým` z 

EN 
Ez 
wý 5- 

Eu) 
Ew 
Ua 

DESIGN 
SERVICE 
LOAD 

kN 

STRAIN 
GRADIENT 

micrýtrcin 
per mm 

SHEAR 
STRESS 

N/mm2 

ULTIMATE 
LOAD 

kN 

STRAIN 
GRADIENT 

micrmtroin 
per mm 

SHEAR 
STRESS 

N/mm' 

203 1.5 1.5 130 2.4 0.7 250 5.4 1.6 

204 1.5 3.0 130 1.8 1.1 2 50 4.4 2.6 

205 1.5 6.0 130 1.4 1-7' 190 3.0 4.1 

207 3.0 1.5 130 2.6 0.8 250 6.6 2,0 

208 3.0 3.0 130 2.0 1.2 250 5.5 3.3 

209 3.0 6.0 130 1.3 1.6 190 3.8 4.6 

210 3.0 6.0 130 1.8 2.2 190 3.6 4.3 

216 6.0 1.5 130 2.7 0.8 250 8.5 2-6, 

217 6.0 3.0 130 2.2 1.3 250 6.0 3.6 

218 6.0 6.0 130 1 "5 1.8 190 4.0 4.8 

219 6.0 6.0 130 
. 

2-0 2.4 190 4.2 5.0 

220 3-8 1-5 130 3.7 1.1 250 8.2 2.5 

221 3.8 1.5 130 2.7 0.8 250 7.7 2.3 
2) 

222 30 1.5 130 2.0 0.6 250 6.5 2.0 

223 3.62' 1.5 130 2.0 -. 0.6 250 6'7 2.0 

224 3.02 3.0 130 1.2 ` 0.7 250 4.4 2.6 
(1) notched beam. 
(2) precracked beams. 

PLATE 
THICKNESSmm 

MEAN SERVICE 
SHEAR TRE1SS 

MttN MAT 
SH TREýS 

1.5 0.85 2'18 
(0.60) (2.00) 

3.0 1.43 3.18 
(0.70) (2.60) 

6.0 1.72 4.56 

Figures in brcckets 
- precr cked beams. 
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APPENDIX 8 

CALCULATION OF CRACK WIDTHS 

The crack widths were calculated by two methods: 

a. British Standard Code of Practice CP110. 

As with deflections an elastic analysis of the concrete section was used 

for calculating the stiffness. Any calculations to determine the moments and 

forces for deflections can also be used for cracking. 

In Clause A. 3.2 of the code, Equation 61 is'given for determining the 

crack width 

Wcr = 3. acr. C in 
1+2 ýacr-Cmin 

h 

At the level of reinforcement acr = Cmin hence the formula becomes: 

Wcr = 3. acr " Em % 

The average strain at the level of reinforcement, em, is calculated from s1, 

the strain calculated ignoring the stiffening effect of the concrete in the 

tension zone, and then allowing for the tensile stiffening as shown by: 

£m = E1 - 1.2. bt. h. 

A. (h-x) . fy 

The code states that the formula only applies if the strain in the tension 

reinforcement is limited to 0.8 fy/Es, and that when calculating strains the 

modulus of elasticity of the concrete should be taken as half the instantaneous 

value obtained from Table 1 in the code or by experiment. However, the proposed 

crack width formula gives a value which has a certain probability of being 

exceeded during the life of a structure. With repeated and sustained loadings, 

crack widths can increase over a period of time. To compute values for beams 

tested in the laboratory at an age of 28 days and loaded for only a few hours 

it is more reasonable to use the full elastic modulus of the concrete. 

Calculations were performed using both values, i. e. Ec and 0.5 E. The values 

given in brackets at the end of the calculations are for 0.5 Ec for comparison. 
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Beam 207 

ae 

P 

and bars. 

Glue thickness 3 mm 

Plate thickness 1.5 mm 

200,000 = 5.56 
36,00 

_ 
As 
ET 

d, the effective depth, is taken to the combined centroid of the plate 

-K ým 

d- 226 mm 

a N 
N 

000 
ý--r- c--ý- 

ý 
cl- 

Co 
LC) 
N 

Abars- 943 mm` 

d. (943+187) = 220.943 + 187.158"75 

0 

I Aplate 187 mm2 

Thüs p= (187 + 943) = 0.032 
155.226 

x 
ä= ae"P(2+aeP - ae. p 

= 0.44 Hence x= 100.5 mm 

and Z= d- . 
2i = 192.5 mm 

The crack widths are all calculated at 130 KN load which corresponds to a moment 

of 49.8 KNm. 

The stress in the reinforcement (at the *combined centroid) is given by: 

=M 
49.8.106 2 fs Z. As 192.5.1130 230 N/mm 

Hence the strain, e1, = 200230 000 =0 00115. 

Correcting for the tension stiffening of the concrete: 

em = 0.00115 - 1.2.155.255. (226-100.5). 10-3 
187.250+943.410)(255-100.5 

= 0"00107 
The crack width is then given by: 

Wcr = 3. acr. e. m 

For all the beams the cover to the bars; acr, is 27.5 mm. 



Hence Wcr. = 3.27.5 . 0.00107 

= 0.088 'mm (0! 093) 

For beams with 3 mm plate the values are 0.074 mm (0.079) 

and for beams with 6 mm plate the values are 0.056 mm (0.061). 

The values are shown in Table 7.7. 

b. American Concrete Institute. 

The formula for crack width at the reinforcement level, as recommended 

by Gergely and Lutz (89) is given by: 

Wmax = 0"0913 ts. A (fs-5) . 10-3 

1+ tS 
'ff-i 

(IMPERIAL UNITS) 

Beam 207 Value Ec assumed. 

The depth to the centroid of steel = 226 mm 

Neutral axis depth = 100.5 mm 

hl, the distance from the neutral axis to the centroid of the tension 

steel = 226 - 100.5 = 125.5 mm. 

For normally reinforced concrete beams A 2b(h-d) 
number of bars 

For the plated beams it is assumed that the concrete surrounding the 

plate is equal to that surrounding each bar, and that the plate is the same 

width as the beam. 

0 
CV 
N 

V 

J, 

000 

In 
LC) 
N 
Ii 

b- 155 
Thus f for the plated beams, the thickness of plate is assumed not to 

affect A, but does affect the positions of the combined centroid of steel and 

hence x and d, which in turn affect hl and the steelstress, fs. 

b. c = 
[2(h-220) 

-c]. 
3 

C= 
(h-220) 

2 

and A=b. 
h-220 

", 2712 mm2 

As for CP110 fs 
zA - 230 N/mm2 

s 



Converting to Imperial Units 

is = 37'5 mm (to centre of bar) = 1.48 inches 

A= 2712 mm = 4.2 in 

fs = 230 N/mm = 33.3 Kips/in 

hi = 125.5 mm = 4.94 in 

Then max = 0.091 
s 1.4 (33.3 - 5). 10-3 

_ 
1.48 

j -f- 4.94 

Hence W=0,093 mm 
max 

The results are given in Table 7.7. 



APPENDIX 9 

STATISTICS 

a. STANDARD DEVIATION. a 

When calculating the standard deviation of a set of numbers 

Q= 
ý1 (xl _ Xý2 

N 

where N is the number of elements 

R is the mean 

b. COEFFICIENT OF VARIATION 

This is taken as 
standard deviation a 

mean i 

c. LINEAR REGRESSION 

In many disciplines it is desirable to express one variable in terms of 

another even though the variables are not necessarily analytical functions of 

each other. An accepted practice is to perform a least-squares regression 

which is designed to minimise the sum of the squares of the deviation of the 

actual data points from the straight line of best fit. In practice we are 

essentially constructing a plot of the variables, called a scatter diagram, 

and drawing the best straight line which uniformly divides the points. The 

result is a linear equation in the form y= mx + b. 

It can be shown that the slope and y intercept are determined as follows: 

EXiEy1 
- 

in =N Exiyi 

(Exi)2- 
Ex. 

2 

N 

and b=y- mR 

EX1 

N 

I: yi N 

The degree of association between the two variables x and y is called 

the correlation, r. 



CFX 
where r=m. Q 

Y 
(a = standard deviation) 

In most applications it is advisable to select a degree of certainty 

that is desired when analysing a population of numbers. To facilitate this 

statisticians have constructed tables based on the areas under different portions 

of the normal curve. These tables are called 'Z' values and enable a 

prediction for the range of the mean value to a specific degree of certainty. 

In the present case of cracking in the test beams, the relationship 

between the maximum and mean crack width is required. 

W=w+Z. standard deviation. 
max mean 

The experimental results from 24 test beams are used and from statistical 

tables this gives a factor of 2.5. 

This gives: 

W=W+2.5. a. 
max mean 
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