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Abstract 

 

 

Collinearity plays an integral role in regression studies involving epidemiological data. 

Variables often form part of a common biological mechanism or measure the same 

element of a latent structure. It is a natural feature of most data and as such it is rarely 

possible to physically control for collinearity in data collection. A focus is placed on the 

analytical assessment of the data. Departures from independence can severely distort the 

interpretation of a model and the role of each covariate. This leads to increased inaccuracy 

as expressed through the regression coefficients and increased uncertainty as expressed 

through coefficient standard errors. Such a feature has the potential to impact on the 

clinical conclusions formed from regression studies.  

 

The work in this thesis first considers an assessment of the impact of collinearity on model 

parameters and the conclusions formed. A new collinearity index is developed which 

incorporates the role of the response in moderating the impact of collinearity. The idea for 

the new index is developed using vector geometry and extended to a general measure. The 

work in collinearity is later extended to consider the formation of a dependency structure 

from a collection of collinear variables. A novel methodology, labelled the matroid 

approach, is coded and implemented on a metabolic syndrome dataset to extract a latent 

structure that could represent this clinical construct. Comparisons are subsequently made 

to existing exploratory factor analysis and clustering methods in the literature. Finally, the 

unique problem of perfect collinearity is considered in a lifecourse and age-period-cohort 

setting. The justification of constraint and non-constraint regression methods is considered 

in an attempt to provide ‘solutions’ to the identification problem generated by collinearity. 
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1.  Introduction 

1.1 Background and Motivation 

Covariates in epidemiological and clinical research are almost guaranteed to be collinear. 

The variables may form part of a common biological mechanism or measure the same 

element of a latent structure. Whilst many researchers accept collinearity as an intrinsic 

feature of the data, there is often a lack of understanding regarding the impact on 

statistical/clinical inference and the means to work with such dependencies. Whilst a great 

number of estimators have been developed since the 1960’s, the least squares approach 

provides the baseline to understanding this impact. Entering highly collinear variables 

(although not perfectly correlated) will not directly violate the traditional assumptions of 

least squares regression and so the estimates will remain unbiased with minimum variance 

in their class. However, in a single sample case, the unbiased property will have limited use 

if the estimator is not precise. This provides the motivation to delete variables, combine 

covariates into a single index or employ alternative estimators. In practice, these decisions 

are often based on common features of collinearity such as insignificant  -values and 

unexpected changes of sign on the coefficient point estimates. Such “symptoms” are 

neither necessary nor sufficient for the presence of collinearity and so this remedial action 

may lack justification. Along with external biological knowledge, the use of collinearity 

diagnostics can be vital to understanding the potential impact of collinearity. However, an 

extension to the most popular diagnostics, such as the variance inflation factor or the 

condition index, can only provide part of the answer. A review of the current methodology 

demonstrates that the role of factors external to the covariate correlations (such as the 

response, sample size and sampling variation) in moderating the impact of collinearity is 

almost entirely disregarded in the literature. 

 Study design plays a crucial role in dictating the presence and form of collinearity 

amongst covariates. Whilst the focus of a researcher may be on studying a hypothetical 

causal relationship between a main exposure and a response, observational research 
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designs (for instance) do not share the same control over measured variables as an 

experimental study. Variables that are external to the main relationship are allowed to 

vary which presents a decision for the analyst. If the role of these variables is ignored they 

can influence the cause-effect relationship between the main exposure and the disease, 

thus potentially influencing the interpretation. However, should the answer be to adjust 

for these variables in the model? If the variables are expected to have a correlation based 

on external biological knowledge, then adjustment for such a variable would increase the 

precision of the estimate. In comparison, if a causal relationship is not hypothesized, the 

correlation is a nuisance to the estimation and will add bias to the coefficient. The need to 

develop new diagnostic tools to evaluate the extent of collinearity in statistical models, 

both beneficial (i.e. adjustment for confounding) and adverse (i.e. bias) is crucial to 

understanding the impact of collinearity on the modelling process. This also demonstrates 

why the use of the term collinearity ‘diagnostic’ is an uncomfortable one in applied 

research. To have a diagnostic, we must first have a disease. This is not always an accurate 

description of collinearity.  

The notion that variables may share some common latent biological mechanism 

should motivate us to better understand the form and structure of the system through the 

analysis of observed collinear variables. As with collinearity diagnosis, ‘blanket’ approaches 

in the form of exploratory and confirmatory factor analysis have been applied in a wide 

range of subject fields, but the use of these methods and the means of application often 

experience little justification in the clinical literature. On the surface, the general intentions 

of employing such approaches are likely to be well understood, but the required 

theoretical understanding is complex. An exploratory factor analysis requires the user to 

specify the factor extraction, the number of factors to retain, the method of rotation and 

the interpretation of the factor loadings. These decisions are not arbitrary and can lead to 

a wide range of subjective interpretations. For instance, the choice of employing a 

principal components analysis or factor analysis is often made with little concern, however 

the methods are based on different underlying causal models that reflect a specific causal 

structure. For statistical inference to aid with clinical understanding, such methods must 

not be readily interchanged and the decisions must reflect the users biological or clinical 

understanding of the problem. In practice, these key decisions are often disregarded and 

confused. For example, principal components analysis is commonly listed under the 

heading of “factor analysis” in many statistical packages and simply seen as the ‘default’ 

option of an exploratory approach. It is essential that these approaches are met with a 
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greater concern and an understanding of the consequences of such decision making. If this 

can be achieved, there is the potential to attain reliable and consistent statistical evidence 

from observed collinearity that reflects an unobserved population model.  

Although some degree of collinearity is present in almost all forms of biological 

data, the presence of perfect collinearity somewhat re-defines the problem. This is a 

violation of the classical assumptions of least squares regression. A perfect linear 

relationship amongst the covariates will prevent the researcher from obtaining regression 

estimates for all of the predictors in the model. The estimator is unable to partition the 

variance explained in the response into that attributable to each of the predictors involved 

in the linear dependency. This feature can sometimes be remedied if, for instance, the 

researcher has entered predictors measuring the same quantity simply by removing one of 

the predictors in the model. However, in some applications, entering the full complement 

of predictors could be justified conceptually as essential to the problem. Therefore, simply 

removing one of the covariates may no longer be an appropriate solution as this would add 

bias to the estimation if the constraint is not reflective of the population model. Some 

researchers have turned to the use of more complex regression methods. Unfortunately, 

there is often a lack of justification in employing such methods. This is particularly crucial in 

the perfect collinearity problem to the interpretation of the results. Whilst some 

estimators will be able to bypass the terminal problem of least squares, the justification of 

these methods is often loose or simply not presented. 

This thesis is focussed on epidemiological and clinical applications. However, due 

to the popularity of regression methods, many of the ideas will be applicable to a wider 

range of subject areas if their application can be correctly justified. Whilst statistical 

approaches to problems encountered in epidemiological research will be considered in this 

work, it is important to highlight the role of the clinical context and external knowledge in 

determining what the methods indicate in practice. This adds an extra level of complexity 

to the problem. A major feature of this work is the use of vector geometry to construct 

statistical methodology and visual diagrams to simplify the problem for the benefit of both 

statistical and non-statistical thinkers. For instance, least squares, principal components 

regression, partial least squares can be compared as different geometrical projections in 

the same space. The vector geometry performs a useful role to demonstrate the 

importance of the response to the assessment of collinearity and provides the 

fundamental ideas to incorporate a response into a new collinearity index.  
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1.2 Aims of the Project 

The work in this thesis has focused on the broad topic of collinearity in epidemiology. This 

involved understanding the impact of collinearity on statistical estimates and subsequently 

any potential impact on the clinical conclusions formed. The original research proposal 

outlined specific objectives to generate a new collinearity index that would incorporate the 

important role of the response in dictating the impact of collinearity. It was intended that 

geometry would play a key role in the formation of a novel index and also communicating 

the methodology to a primarily non-statistical audience. The project began with simulation 

work to understand the statistical impact of collinearity – identifying common features 

from the analysis of collinear variables such as coefficient changes of sign, deflation (or 

inflation) of point estimates and the impact on the precision of the estimate. The notion of 

causality becomes an important concept in understanding the meaning of these features in 

epidemiology. This includes examples of confounders, mediators and competing exposures 

which may be statistically indistinguishable but conceptually very important. This had to be 

considered for any index intended for use in model building.  

The first attempt at forming a collinearity index was the development of the 

‘matroid approach’. Matroids can be used to generate a dependency structure using an 

existing collinearity index. However, as current indices focus on the covariance amongst 

the predictors only, this methodology did not provide an answer to the original goal of 

incorporating the response. Instead the matroids work generated a new project and an 

interesting statistical discussion regarding the identification of the metabolic syndrome 

construct (see chapter 6). The work progressed onto the traditional geometry of multiple 

regression. A simple adaptation of this geometry generated the idea for an entirely novel 

collinearity index - labelled the  -index. The  -index would offer a ‘global’ measure of the 

impact between regression models, which importantly incorporates the role of the 

response (see chapter 5). Partial least squares further provided an insight into the 

potential of the  -index and a justification for its use in application. The geometry also 

highlighted a further advancement of the index to identify the role of each predictor in 

contributing to this global impact. With the guaranteed presence of collinearity in 

epidemiological research, the  -index has a huge potential to impact greatly on statistical 

modelling in epidemiology and related fields. An extension project was also undertaken in 

the final year of the project to consider a special case of collinearity in epidemiology 

encountered in lifecourse and age-period-cohort studies (see chapters 7-8).  
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1.3 Thesis Structure 

The thesis consists of nine chapters in total. Chapters 2, 3 and 4 are intended to provide a 

background and explore the motivation for the methodology developed in later chapters. 

Chapters 5 to 8 consider three key areas in statistical epidemiology: the role and 

development of collinearity indices (chapter 5), the formation of a latent structure using 

exploratory analysis (chapter 6), and the analysis of perfectly collinear variables (chapters 7 

& 8). Each of these chapters includes a worked example to demonstrate an applied use of 

the techniques developed.  

 
 
Chapter 2 provides a background to regression in epidemiology. A portion of this chapter is 

dedicated to discussing the ordinary least squares estimator (   ). The concepts of 

causality and confounding are then introduced through path diagrams and the directed 

acyclic graph. This is intended to highlight the complex relationship between statistical and 

clinical inference. Finally, a vector geometry approach to regression models is introduced 

that will be utilized throughout the thesis to illustrate and develop methodology. 

 
Chapter 3 focuses on the impact of entering linearly dependent covariates on the     

estimate. A selection of collinearity indices are presented with their merits of application 

discussed in relation to applied research. These techniques will often measure the degree 

of collinearity amongst a set of covariates. This information is limited if we wish to truly 

understand the role of collinearity in regression studies. Simulation work will build upon 

the geometrical construction of chapter 2 to investigate how changes to the response, the 

predictors and the error in the model can impact on the     estimates and any 

subsequent clinical interpretations. 

 
Chapter 4 introduces a selection of multivariate methods for use in epidemiological 

application. These include principal components analysis, factor analysis, partial least 

squares and cluster analysis. They each are presented along with geometrical illustrations 

of the methods. The projection and rotation techniques that were introduced in chapter 2 

are utilized to illustrate links between techniques. A particular focus is placed on the model 

assumptions to justify their use in application. This is crucial to later chapters that discuss 

the justification of applying such methods, which will ultimately promote or place caution 

on their use. 
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Chapter 5 focuses on developing a new index to assess the impact of collinearity in 

epidemiological research. The limitations of existing techniques are first considered along 

with possible extensions to correlation based indices. The intention is to incorporate the 

covariance structure between predictors and the response into this new measure. The 

index that is formed considers the deviation in model coefficients, both from a ‘global’ 

measure of the impact on the model and also the role of individual predictors in producing 

this impact. The idea is developed from a geometrical understanding of the regression 

model. It is first illustrated using the bivariable model in 3-dimensional space. This is 

extended to the three predictor model and later to a general index. Including the response 

in an index also requires some measure of uncertainty in the estimates. This is illustrated in 

the geometry and a confidence interval produced for the bivariable case. 

 
Chapter 6 analyzes the structure of collinear risk factors in the study of metabolic 

syndrome (    ). Traditional approaches in the study of      are considered, such as 

principal components analysis and exploratory factor analysis. In psychological research, 

the use of such exploratory methods is often scrutinized, however in the epidemiological 

and clinical literature there appears to be less guidance. Prominent researchers in 

psychology have argued for caution to be taken regarding the subjectivity of the decision 

making in these methods and the use of (potentially) default decisions. These arguments 

are considered in an epidemiological context and potential alternatives are identified that 

could improve the consistency of methodological decision making and interpretations in 

applied studies. An existing technique in the     library, labelled              , is 

proposed, whilst a novel methodology based on matroid theory is coded and developed. 

 
Chapters 7 & 8 consider the problem of entering perfectly collinear variables in the 

regression model. Chapter 7 considers an example in a lifecourse setting involving 

continuous predictors and chapter 8 looks at the age-period-cohort model using 

categorical predictors. Although the concept remains the same in entering perfectly 

collinear predictors, the problem is somewhat redefined by the variable types. The 

categorical predictors encounter perfect collinearity in the full model, but also a further 

perfect collinearity in each of the categories added. The identification problem is 

considered in the least squares model with a focus placed on the generalized inverse. This 

discussion is extended to the novel use of shrinkage regression methods. The final chapter 

provides a framework for comparison of various ‘solutions’ suggested in the literature. 
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1.5 Notation 

In this thesis, matrices are denoted by boldface uppercase letters (e.g.  ), column vectors 

by boldface lowercase letters (e.g.    ) and scalar values by lower case italic letters (e.g.  ). 

The transpose of a matrix is denoted by a   in the superscript of the matrix or vector 

(e.g.    ) and a matrix inverse by a    in the superscript (e.g.    ). A vector shall be 

denoted with an arrow (e.g.       ). A generalized inverse is denoted by a – in the superscript 

(e.g.   ). A complete list of notation is provided below. 

 

   An     data matrix of observations on the independent variables 

   An  -vector of observations on the response variable 

   A  -vector of population model parameters 

   A  -vector of estimated model parameters 

   An  -vector of residual errors 

    Fitted (projected) response variable 

  

   Number of model parameters 

   Number of predictors entered into the model 

   Number of observations in the sample 

   Link function for the regression model 

   Normal Distribution 

  

   
  Variance of the residuals 

   
  Standard error of the residuals 

   
  Coefficient of determination 

  

      An     sample matrix used to demonstrate general matrix operation 

     Expectation of   

      Variance-Covariance Matrix of the predictors 

        Number of linearly independent column vectors of   

     Correlation between covariates   and   

      Semi partial correlation between   and  , holding   constant 

       Partial correlation between   and  , holding   and   constant 
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     Angle between vectors     and    

      Length of vector     (i.e. the standard deviation of  ) 

    Standard deviation of   

   Rotation Matrix 

   Projection Matrix 

      An     identity matrix 

  

     A path coefficient from   to   

  

    The     eigenvalue 

   A     diagonal matrix of eigenvalues 

   A     orthogonal matrix with eigenvectors as columns (Weights in a    ) 

   Principal Components (Loadings in a    ) 

P Weights in a Partial Least Squares  

C Partial Least Squares Components (Loadings in a    ) 

   Number of factors/components retained 

   Residual matrix of the bilinear decomposition 

  

       Cosine of   (representing correlation in vector geometry) 

       Sine of   

       Tangent of   

  

 
 
A list of abbreviations for methods, clinical terms etc. are provided in chapter 9. 

 

1.6 Statistical Software 

Most of the statistical analyses in this thesis were performed in   (  Development Core 

Team (2008).  : A language and environment for statistical computing.   Foundation for 

Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-

project.org.).     (version 9.1) is used in chapter 6 to perform         analyses and 

      (Version 12) is used in chapter 8 to perform constrained regression. Vector 

geometry illustrations were produced using Archimedes Geo3D (version 1.2.11). 
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2. Regression Analysis in Applied Clinical and 

Epidemiological Research 

Regression analysis describes a range of statistical methods that are designed to explore 

and forecast relationships amongst two or more variables. In its simplest form, it involves 

fitting a straight line to a scatter plot to explain the variation in a response variable 

attributed to changes in an explanatory variable. However, explaining the response is 

rarely restricted to a single predictor and a linear relationship. For this reason more 

advanced regression methods have been developed to handle a range of variable types 

and model structures. As such, the potential applications are huge - epidemiology alone 

can generate an almost infinite number of questions that look to investigate the natural 

and physical processes that surround us. These are often very complicated structures that 

are too complex to model in their entirety. Instead, the researcher will look to capture the 

essential features of the process, and along with sound external knowledge the models can 

be used to build and develop our understanding of a ‘true’ population structure. 

In this chapter the concept of linear regression in epidemiology is introduced, both 

from an algebraic and geometrical perspective. Ronald Fisher (1915), one of the early 

exponents of geometry in regression, used the combination of techniques to great effect 

to construct a theory that had puzzled statisticians for years (Herr 1980). The two 

disciplines require very different thought processes. Whilst the thinking behind geometry 

can be uncomfortable in some situations, it can simplify complex mathematical theory in 

others. By following a similar path, a fresh perspective can be gained on some of the issues 

faced by applying regression methods in clinical research and the development of 

methodology in these areas. This chapter is intended to provide a background in the 

statistical understanding of regression methodology. Study design is discussed along with 

the application of regression methods in epidemiology. The chapter concludes with the 

construction of the ordinary least squares (   ) estimate using only vector geometry, 

which will be valuable to understanding the behaviour of the estimator in later work.  
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2.1 The Origins of Regression in Application 

Examples of regression analysis can be found in the work of Adrien-Marie Legendre and 

Carl Friedrich Gauss as far back as the early 19th century. However, it was the combined 

efforts of Francis Galton, Francis Ysiro Edgeworth and Karl Pearson in the late 19th century 

that defined the practice and demonstrated its applicability to a wide range of research 

areas (Stigler 1990). Galton (1822-1911), an esteemed meteorologist, psychologist and 

statistician, has often been considered the catalyst behind the concept of regression and 

correlation. He was the half cousin of Charles Darwin. Along with his own experiences from 

exploration, Darwin’s first publication of evolution entitled “The origin of species” in 1859 

sparked a fascination in Galton into the study of genetics. Much of his later work from 

1865 onwards became focussed on the topic of heredity. He was particularly interested in 

how traits and characteristics were passed from one generation to the next. 

 Galton’s work in heredity was generally of a statistical nature. However, the 

statistical analyses deviated from the standard procedures of the time. In 1875 Galton 

conducted an experiment in which he provided ten sweet pea seeds of seven uniform 

weights to seven of his friends and asked each to grow the plants and return them to him. 

The sweet pea provided an ideal test subject because they appeared self-fertilizing and 

generally hardy to conditions (seemingly lowering the impact of external factors). He 

plotted diameters of the offspring against those of the parent plant. Galton observed that 

although the means differed between the parent and progeny seeds, the variability about 

the mean remained approximately constant, regardless of the original parent diameter. In 

addition, Galton reported that the mean’s of the progeny seeds (calculated from the 

sample of ten seeds for each weight), “reverted” toward a population mean. 

 

Figure 2.1: A plot of the mean diameters of Galton’s sweet pea plants. 

The plot of the parent vs. offspring seeds (Figure 2.1) was later described by Karl Pearson 

as “the first regression line” (Gillham 2002). Whilst ground breaking, this experiment was 
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hampered by two substantial flaws that ultimately impacted on Galton’s conclusions. 

Galton labelled the sweet pea plant as self-fertilizing, which is not necessarily true. They 

can be cross fertilized, meaning that if the offspring from a large plant had been the 

product of a cross with a smaller plant, the seeds would on average be smaller. Also, the 

seeds were separated by their own size, not on that of their predecessors. Therefore, a 

large seed could have originated from a plant of any size. The size of the parent plant may 

have been influenced by environmental factors, which may not have been present in the 

environment Galton’s friends grew them in. Through the nature of the experiment the 

plants were inclined to “regress” toward mediocrity.  

 Although the sweet pea experiment was flawed, it provided the first mathematical 

evidence that his theories on the passing of characteristics across generations were valid. It 

was also the first application of what we now realise to be regression analysis. These 

results encouraged Galton to progress onto what he considered his main problem in the 

natural inheritance of humans. Due to a lack of data, this extension was not straight 

forward. Galton set up an anthropometric laboratory in which he collected data from 1,567 

visitors based on various non-standard measures such as “keenness of sight”, “force of 

blow” and “breathing power” to which he had developed a range of devices to measure. 

Along with many other statistical analyses, Galton analyzed the heights of the children and 

their parents included in this sample. This added an extra dimension (and an extra level of 

difficulty) to the sweet pea plant study in that children are the offspring of two parents 

(although, unknown to Galton this was partially true in the plant study also). Therefore, 

Galton had to adjust his analysis to compensate for this. 

 The heights of the women were multiplied by a factor of 1.08 to adjust for general 

differences between men and women in height. Galton wished to compare the height of 

the adult offspring to a single height of the parents. This, he believed was justified and 

supported it by presenting a sample of 525 adults grouped by the difference in heights of 

their parents, observing no ‘significant’ pattern in the heights. The parental groups 

consisted of those with heights greater than or equal to the overall average (68 inches) 

being labelled “tall parents” and those below the average as “small parents”. The heights 

again appeared to ‘revert’ from the extreme heights of the parent toward “mediocrity”. 

This conclusion would appear to counter the theory of evolution, suggesting that everyone 

would reach the same attributes after a number of generations. This is a result of 

‘regression to the mean’ (Bland and Altman 1994;Stigler 1990;Tu et al. 2004;Tu and 

Gilthorpe 2007). Galton’s results are illustrated in Figure 2.2 , 
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Figure 2.2: Average heights when grouped on (a) parental and (b) adult offspring. 

In Figure 2.2  the heights of the adult offspring are separated by their mean height. Those 

with a height greater than or equal to the average (68 inches) are labelled “tall children”, 

whilst those shorter than the average are labelled “small children”. The average heights of 

the two groups now appear to diverge. Although both plots are based on the same set of 

data, they appear to be providing contradictory statements about the patterns of human 

height. In the first, an analyst may conclude that across many generations there will 

become fewer ‘tall’ and ‘short’ humans and eventually they will likely reach some common 

height. In the second, the interpretation is that there will be many more ‘tall’ and ‘short’ 

humans in the future. Of course, neither interpretation represents any true biological 

significance, they are instead a statistical result of ‘regression to the mean’.  

  This result occurred because the correlation between the parent and adult 

offspring heights in Galton’s data was not perfect (i.e.       - see section 1.5 for a list of 

notation). If this were the case then the lines would be parallel as the heights would not 

change. The correlation is in fact between 0 and 1, therefore the lines appear to diverge 

from the variable in which the subjects were grouped. These plots only serve to exaggerate 

the correlation found in the sample. They can easily be misinterpreted to suggest that the 

heights were diverging, when in fact the correlation could still be close to unity. Depending 

on which variables were grouped, the following measurements would always appear to 

diverge. If the heights were traced back further, then the variation in the grandparents 

would appear much larger. This is because the association between the child and the 

parent will be stronger than that between the child and the grandparent. Therefore, the 

regression plots from Galton’s data illustrate only the coefficients from a ‘simple’ (i.e. 

single predictor) regression (Tu and Law 2010). 
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The results of the sweet pea experiment along with that of the human heights, 

were presented in Galton’s book “Natural Inheritance”. This text is a culmination of all that 

Galton had worked on from 1877 to 1888 and is considered one of the most influential 

works in modern statistics and by many to be the birthplace of biometrics (Gillham 2002). 

Galton suggested that rather than height being a “simple element” it was in fact 

determined by “over a hundred bodily parts”. Although, much of what we know today in 

genetics was unknown to Galton, his ideas (although often vague and using metaphor) 

touched upon some of the fundamental concepts that provide the corner stone to which 

the work is currently built – such as environmental influences, dominant/recessive traits 

and particulate inheritance. He also hypothesized that each parent contributes half of their 

own latent and personal attributes. In a later paper entitled ‘A diagram of heredity’ (Galton 

2003), Galton presented his “law of ancestral heritage” through the division of a square 

which highlights the very essence of multiple regression (see Figure 2.3). 

 
 

 

 

Figure 2.3: Galton’s distribution of heritage. 

Each characteristic or trait has been influenced by a multitude of factors from previous 

generations, with more recent carrying a greater weight than others. Whilst Galton’s work 

generated the ideas of regression, much of it was graphical and described by example. It 

was Edgeworth (1845 - 1926) who managed to generalize the mathematics to be applied in 

a much broader scope and Pearson (1857-1936) who provided the mathematical rigour to 

the techniques (Stigler 1990). The development of regression methods has a complicated 

history and is clouded by conflicting views and disagreements. However, many of the ideas 

inspired by Galton have since been extensively studied and developed. This has made 

regression a viable option in a wide range of disciplines and when used with appropriate 

caution, can provide a valuable insight for researchers into the relationships of variables in 

an applied setting.   
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2.2 The Regression Model 

Regression analysis describes a collection of statistical methods that are intended to draw 

inferences and forecast relationships amongst variables in a scientific system (Myers 1990). 

The relationships are expressed in the form of a model that describes the behaviour of a 

response variable in terms of one or more covariates. The response is denoted   and the 

set of predictors by a group of fixed variables    (where         for   covariates with 

        observations in the sample). The general regression model is built using a link 

function   of    and a residual error term    (see eqn(2.1)). 

 

          (2.1) 

 

The link function describes the relationship between the mean response and the 

predictors. This is the deterministic portion of the model (Freund and Wilson 1998). The 

model also contains a stochastic component ( ), necessary to account for any uncertainty 

when observations deviate from the population mean (e.g. a result of model 

misspecification, measurement error or biological variation due to external influences such 

as the environment).  

 The complexity of the model function can vary greatly and is dependent on the 

application and how much is known about the process being studied (Rawlings et al. 1998). 

Most preliminary work will begin with the use of a linear additive model, 

 

                        (2.2) 

 

where    (       ) are unknown parameters to be determined from the data. These 

are labelled partial regression coefficients. They are defined as the change in the response, 

brought about by a unit change in the associated predictor whilst holding all other 

covariates in the model constant. The set of covariates    are assumed to be non-random 

and measured without error (Myers 1990). The linear model is just one of a number 

available to the researcher, but it is often the first to be utilised due to its interpretability 

and developed inference methods. When   is not the identity, eqn(2.1) is termed a ‘non-

linear regression model’, though the expression may still be a linear combination of   ’s 

(e.g. a polynomial model). This includes ‘probit’ and ‘logit’ models. The non-linear class of 

models may not follow the distributional assumptions of the linear form and so more 

complex iterative estimation and non-parametric inference methods may be required.  
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2.2.1 Applied Regression Analysis 

The aims of the researcher in a regression study are generally split into two categories - 

those who wish to forecast future values of a response, and those who look to understand 

the system. In terms of prediction, the realism of the model is of little importance as long 

as it adequately predicts future values (Rawlings et al. 1998). In comparison, if we wish to 

make inferences about the population structure, it is vital that the model reflects the form 

of the system. In some situations, a linear assumption on the parameters may not be 

adequately satisfied and a non-linear alternative may be considered more realistic (e.g. 

modelling crop growth). However, the complexity of these models makes interpretation of 

the coefficients difficult. When distributional assumptions are relaxed, non-parametric 

tests must be employed – thus further adding to the complexity.  

Naturally, the complexity of regression techniques has built with the advancement 

of computers and software. Methods that were considered too computationally heavy for 

practical use a decade ago have become viable options in mainstream statistical packages 

today. Unfortunately, this has brought its own danger. The growth in complexity should 

only heighten the caution taken by the researcher. This makes it vital for the user to 

understand and be able to justify reasons for employing a particular method and be clear 

on the aims of their research. Myers (1990) describes many of these methods as a ‘black 

box’. The data is “thrown in one end and results come out the other”. There is a risk that 

without truly understanding the process or how the estimates have been formed, we can 

easily misuse or misinterpret the results gained from such methods (Rawlings et al. 1998). 

The approach employed by Galton and Pearson to estimate the unknown 

parameters of the regression model is labelled the least squares estimator. It is the 

simplest and most intuitive available to the researcher. The estimates also have several 

desirable properties under certain assumptions. These advantages are reflected in the 

popularity of the methodology, with this estimator often providing the baseline approach. 

It is important to note that the least squares estimator is just one of a number of methods 

available. In the late 1960’s alternative estimators began to appear in regression studies 

(Myers 1990). These methods are often better suited to the data when the assumptions 

are violated in application (which is often the case). However, to recognize the ‘failings’ of 

this ‘simple’ technique, an understanding is gained of what the problem is and when an 

alternative estimator should be considered.  
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2.2.2 The Least Squares Estimator 

Least squares regression is generally credited to Carl Friedrich Gauss, with a reported first 

application in 1795. However, this work was never published and so the credit is based 

primarily on indirect evidence and the word of Gauss (Stigler 1990). Adrien-Marie Legendre 

was the first to publish evidence of the technique including an example in 1806. Gauss and 

Pierre-Simon Laplace later fully presented both the method and theory algebraically 

around 1809. The method was used principally in its early application for use in navigation 

and tracing the movement of planetary objects. However, it has since been implemented 

in a range of applications, with linear least squares (or ordinary least squares -    ) 

regression used to generate parameter estimates of the linear regression model. 

 To present the theory of the     estimate the matrix form of the general linear 

regression model is introduced, 

 

       (2.3) 

 
where   is an     vector containing the observed values,   is an     (where     

 ) fixed matrix of predictors (i.e.       ),   is a     fixed vector of unknown 

parameters and   is an     random vector of model errors. There are an infinite number 

of solutions for the unknown parameters   of the regression model. The     estimator 

looks to find   to minimize the squared difference between the observed ( ) and fitted 

values (  ) of the model (Myers 1990). The differences (or residuals) are contained in the 

residual vector  . Through the minimization of the sum of squared residuals (   ) the     

solution can be obtained. 

 

                         (2.4) 

 
The partial derivative of     (eqn(2.4)) is derived with respect to   and set to zero. This 

minimizes the     and produces a system of equations known as the ‘normal equations’ 

(eqn(2.5)). Through the solution of the normal equations the least squares regression 

coefficients can be found (eqn(2.6)). 

 

           (2.5) 

          
  

    (2.6) 
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Sample data is used to make inferences on the properties of the population model. This is 

based on certain assumptions about the population structure for the stochastic 

component  . These assumptions characterize the statistical properties of the estimated 

regression coefficients ( ). Classical least squares assumptions state that: 

 
 

A1. A linear relationship exists between the response and the predictors; 

 

                        (2.7) 

 
A2. The predictors are strictly exogenous; 

Zero conditional mean of the errors, 
 

         (2.8) 

 
This ensures that the   are uncorrelated with each predictor. This condition is satisfied 

when   is independent of   and       .  

 
A3. The predictors are full rank; 

There exists no perfect linear combination of the predictors. 
 

                

 
(2.9) 

A4. Homoscedasticity of the errors; 

The   are independent of   and   has constant variance. 
 

             (2.10) 

 
    

A5. Non-autocorrelation of the errors; 

 

                            for all       (2.11) 

 
A6. Normality of the errors. 

 

                              
    (2.12) 

 
Therefore, under assumptions 1-6 the errors will have the following distribution,  

 

           
    (2.13) 
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The distribution of the errors will have the following influence on the distributional 

properties of the response. Under assumptions A1-A3, 

 

                           (2.14) 

 
With the addition of assumptions A4-A5 the variance-covariance (  ) matrix is defined, 

 

                        
 
           

   (2.15) 

 
The distribution of the response   under the complete least squares assumptions, 

 

            
    (2.16) 

 
The sampling distribution of the response and error is useful in determining the optimal 

properties of the     parameter estimates and under what conditions these properties 

are held. 

 

2.2.3 Quality of an Estimator 

The researcher will rarely acquire data that fits the least squares assumptions perfectly. 

Therefore, they have to be viewed as flexible to some extent. In practice, the process of 

random sampling should ensure that the predictors and the errors are independent and 

that the errors are random. Also the lack of a normal distribution of the errors (and 

subsequently the least squares estimators) can be avoided by obtaining a large sample size 

(when the study design allows). This is due to the asymptotic distributional assumptions of 

the generalized central limit theorem (Fisher 2011). However, the     estimate is sensitive 

to deviations away from assumptions and so any violations will naturally impact on the 

desirable properties of the estimator. A measure of the performance of an estimator ( ) 

can be attained through the mean dispersion error (   ).  

 

                                                    
 

 (2.17) 

 
Eqn(2.17) illustrates that the     is calculated from measurements of the bias and    

matrix. When     is minimized, the performance of the estimator is maximised in this 

sense. The choice of estimator is based on an important ‘trade-off’ between accuracy and 

precision of the estimation. 
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Bias 

Bias is defined as the difference between the expected value of the estimated parameter 

and the population parameter, 

 

                 (2.18) 

 
This definition can be used to observe the first important property of the     coefficient: 

 

                
  

          
  

       

     
  

                                       as         

(2.19) 

 
Under assumptions A1-A3,     is an unbiased estimator of the population parameters. 

The bias of the estimator (eqn(2.18)) is zero - i.e.           . This implies that over a 

large sample, the average   attained from     will equal the population  . However, in 

application the user is likely to investigate a single sample. In some circumstances it may 

be useful to introduce a bias into the estimation to attain a lower     (for example, ridge 

regression will directly input a bias to attain a more stable     - see (Hoerl 1962)). 

 
Efficiency 

The    (or dispersion matrix) of an estimator is defined as follows, 

 

                        
 
  (2.20) 

 
The    is a symmetric     matrix that provides the variance of the predictors on the 

diagonal and the covariance’s above and below the diagonal. Under assumptions A4-A5, 

the     estimate has the following    matrix: 

 

                
  

          
  

    
 

 

       
  

              
  

 

    
      

  
          

  
     

      
  

 

(2.21) 

 
When the assumptions are met,     has the smallest sampling variance of all linear 

unbiased estimators and is considered the “best” (i.e. minimum variance) linear unbiased 

estimator (or     ) by the Gauss-Markoff theorem. It is subsequently referred to as 

efficient in its class (see Rao (1999) for proof).  
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  (2.22) 

 
In practice these variance properties may not be satisfied. For instance, homoscedasticity 

of the errors (A4) is regularly violated in cross-sectional and time series data (Gujarati 

2002). Whilst violation of this assumption will not affect the unbiased property of the     

estimate, it can impact on the estimates of variance of the population parameters. 

Consequently, any inferences based on standard errors (such as hypothesis tests) could be 

problematic, often leading to an increased risk of type   errors (i.e. a false-positive result). 

Similarly, autocorrelation of the errors can lead to inflated  -values, which may result in the 

rejection of a true null hypothesis. Whilst the     estimate remains unbiased, violation of 

these assumptions will often lead to an inefficient estimate. 

 

2.3 Inference in Epidemiology 

The study of epidemiology concerns factors that affect the distribution and spread of 

disease. The primary aims are in understanding the causes of a disease and subsequently 

determining the means to control and prevent it at population level. The questions 

typically posed in epidemiological research relate to the association between an ‘exposure’ 

and a ‘disease’. The disease label refers to a response of interest, such as a medical, 

psychological or social condition and an exposure (or risk factor) is a variable of interest 

that the researcher believes to be causally related to the health outcome. Whilst statistical 

analysis can provide supporting evidence to a theory, causal inference remains a 

judgement based on study findings and/or biological knowledge. 

 The statistics outlined in section 2.2 are only useful in application if they are 

considered in context and are not intended to describe features beyond their means. The 

study of epidemiology is built around causal relationships and identifying clinical 

significance. The weight given to statistical significance in many studies is alarming, 

because (as observed in later chapters) estimates such as  -values and  -statistics are 

easily influenced by factors likely to be present in almost any epidemiological study – e.g. 

collinearity. Due to the complex nature of the environments present in epidemiology, a 

great deal of thought should be involved in constructing causal models and interpreting 

the analyses. In this section a focus is placed on the nature of the epidemiological study 

and the potential pitfalls in the complex relationship between statistical and clinical 

inference.  
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2.3.1 Study Design 

To achieve the goals of research in epidemiology, a range of study designs have been 

proposed and implemented in the literature. ‘Evidence hierarchies’ are often used to 

demonstrate the relative influence of these designs on the progress of the field. As the 

questions and goals of the research differ, the order of the designs in the hierarchy is not 

an exact science. Some designs will not be suitable in all situations due to ethical and 

practical limitations. However, an illustration such as Figure 2.4 can provide a useful 

summary of the general consensus amongst researchers on the strengths of the evidence 

gained from the respective designs, 

 

 

Figure 2.4: An example Hierarchy of Evidence.  

In addition to illustrating the quality of the research designs, the pyramid representation 

has symbolised the quantity of published studies. High quality examples such as a 

systematic review or a meta-analysis have traditionally been rare in comparison to case 

reports, primarily due to monetary and time constraints in carrying out these studies. 

However, this is no longer the case with technological advancement improving the 

archiving of studies and the strengths of such designs being better recognised. The above 

hierarchy can be split into two categories – experimental and observational research. An 

experimental study involves the user assigning patients to treatment groups, whereas in an 

observational design subjects are recruited based on their exposure to some factor of 

interest – subject allocation to groups is not controlled.  

Systematic Review of RCT's 

RCT 

Cohort Study/Case Control Study 

Non-RCT 

Case Series / Case Reports 

Expert Opinion 
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Experimental studies include randomized controlled trials (   ) in which the 

treatments are randomly assigned to subjects or non-    ’s in which no randomization 

occurs. The structure of an     means that subjects are followed up in the same manner 

beyond treatment allocation and receive the same health care. The benefit of this study 

design is that allocation bias can be minimized as any external factors to the treatment 

should be (approximately) balanced between groups. This gives the experimenter a greater 

control over baseline factors. At the highest point in the hierarchy is the systematic review. 

A systematic review is a summary of evidence surrounding a specific research question. A 

powerful systematic review will identify, assess, synthesise and interpret findings from all 

relevant publications (Hemingway and Brereton 2009). 

As randomization does not occur, observational studies will give the researcher 

less control over the baseline factors of the subjects. The subjects can be matched on 

other factors, but this will not be as powerful as the randomization of an    . This can 

potentially bias the results. However, observational studies can provide a cheaper and less 

time consuming alternative to    ’s. In addition, there may be ethical considerations that 

make assigning patients randomly to treatment groups unfeasible. Also, for particular 

research questions, such as those aimed at rare diseases, large sample sizes and long study 

periods for    ’s would be required due to the infrequency of events. Although 

observational designs may be considered less robust than their experimental counterparts, 

the criteria of the study may dictate that an observational study is better suited to a 

particular research question. 

Observational designs are split into descriptive and analytical forms. Descriptive 

studies - such as case reports, case series and cross-sectional surveys – are intended to 

identify and describe the incidence and trends in disease occurrence. For instance, a cross-

sectional study can be used to take a ‘snapshot’ of the disease prevalence in a wide 

population at a particular time point. Analytical study designs are placed immediately 

above descriptive designs in the hierarchical structure. The aims of the analytical study are 

to examine why the disease is occurring, examine the nature of the causal mechanisms and 

quantify the relationship between the exposure and response. Popular analytical studies 

include case-control and cohort studies. The case-control involves the researcher selecting 

a group of individuals with the disease (i.e. cases) and a group without (i.e. controls), and 

the groups are subsequently compared. The cohort study involves the researcher grouping 

subjects who have been exposed to a risk factor of interest and another who have not. 

They are followed up to observe if and when the disease occurs in the future.  
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The main distinction between a descriptive and analytical study is the time point in 

which the response is measured. The cohort study looks prospectively at the disease 

occurrence (i.e. followed up over time), the cross-sectional study determines disease 

occurrence at the same time as the exposure or intervention and the case-control study 

retrospectively considers the exposure (often based on the recall of the individual). These 

studies are all susceptible to forms of bias, particularly as the researcher does not have the 

same level of control over the baseline variables as in an    . The studies must also 

account for hidden confounders and practical considerations to uncover the nature of any 

true causal relationships present amongst the variables of interest. 

 

2.3.2 Causation and Causal Inference 

The aim of an analytical or experimental study is to measure and explain the nature of any 

causal (or cause-effect) relationships. A ‘cause-effect’ relationship is defined when the 

incidence of a disease cannot increase without exposure to the factor of interest (Rothman 

et al. 1998). It is impossible to objectively prove a cause-effect relationship, instead 

epidemiologists will seek evidence to support a hypothesis (Scheutz and Poulsen 1999). 

Although no mathematical statement can be used to determine the existence of a causal 

relationship, a number of guidelines have been proposed. These attempts include the 

Henle-Koch postulates (1890), the Bradford-Hill criteria (1965) and Susser’s criteria (1988). 

However, support of these criteria does not prove the existence of a ‘cause-effect’ 

relationship. Similarly, the absence of some factors can still occur when a causal 

relationship exists. External evidence and an element of judgement must play a role, which 

often leaves hypotheses open to debate. 

 

 

 

Figure 2.5: Path diagram representation of a multiple regression model. 
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For the linear regression models presented in section 2.2 causality is implied, however due 

to the statistical context of the discussion it has not been of primary concern. In 

epidemiology, even the simple linear regression model implies a causal relationship 

between the exposure   and the disease  . Figure 2.5 is an example of a path diagram (  ) 

representing a multiple regression model. This illustrates the causal relationships implied 

when a multiple regression is performed as part of a statistical analysis. The variables are 

represented by nodes (or vertices) and any relationships between two variables as arcs (or 

edges). The use of a directed arc (or arrow) demonstrates a causal relationship between 

two variables, with the direction of the arrow signalling the direction of causality. A double 

ended arrow (such as those that link the covariates) represents an implied covariance 

structure (i.e. no causal direction is specified). If the structure amongst the covariates is 

thought to differ from the standard linear regression model introduced in section 2.2, an 

advanced technique such as the directed acyclic graph (   ) or a structural equation 

model (   ) may be used for the analysis.  

The use of a    allows an enormous range of variations for the researcher to input 

external knowledge about the relationships of the variables. As causality cannot be proven 

using observational studies, the use of a directed arrow represents the users’ a priori 

biological knowledge or a hypothetical relationship that they intend to assess. There is an 

implied sense of time in a   , although the study design often dictates the nature of the 

temporal relationships. For instance, in a longitudinal study it is straightforward to identify 

the temporal flow from exposure to disease as the variables are measured over time. 

However, for a cross-sectional or questionnaire design, the subject will record both 

exposure/intervention and disease at the same time. Therefore, identifying which variable 

precedes the other can sometimes be difficult. A fundamental result of the causal 

structure is that the exposure precedes the disease. The path from exposure to disease 

(i.e. following the arrows) is labelled the “causal pathway”.  

A     is a    such that no loops exist – i.e. a set of edges that can be followed to 

return to the same vertex (the    in Figure 2.5 is not a     due to the vertices linking the 

covariates). The use of a     represents a great simplification of the environment in which 

the variables exist. It is a representation of the structure the researcher believes the 

sample to have been taken from – the study data may not adhere to this hypothetical 

construct. The nature of the implied causal relationships is not specified by the researcher. 

The effect may be harmful/protective, sufficient/necessary or effect modification may be 

present. However, the simplification provides a useful link between the statistical analysis 
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and the causal inferences made in epidemiological study. It allows the researcher to clearly 

communicate the hypothetical models and translate the findings to ‘real life’ situations. 

This opens the analysis to non-statisticians to debate the inclusion or exclusion of variables 

based on existing biological knowledge.    ’s are beneficial to consider which effects may 

be present under different causal relationships. From any study design, we can only obtain 

correlations between variables and not causality. Therefore, the relationships that are 

implied from prior knowledge can dictate the interpretation of any statistical phenomena 

that may be present in the analysis.  

 

Confounding 

Suppose a simple linear regression model (i.e. single predictor) is fitted to a set of data and 

we find the model to fit well. The exposure and disease are said to have a statistical 

association, but this does not prove a biological causal relationship exists between the 

variables. There are a number of reasons for the association that do not have to imply 

causation. Consider the example of a regression model for cardiovascular disease (   ) 

with a single predictor of body mass index (   ). After observing a significant regression 

coefficient, a researcher may present the conclusion that     is a risk factor for    . This 

statement implies that there is a causal relationship between     and    . However, 

justification of the link between observing an association (or lack of) and implying causality 

is not straightforward. The implied     presents the simple regression model as follows, 

 
           

Figure 2.6:     demonstrating a causal relation between     and    . 

A potential explanation for an inflated (or in some circumstances insignificant) association 

between exposure and disease can be the presence of one or more confounding variables. 

A confounder is a variable that is a cause, or a proxy of a cause, of the disease and also 

associated with the main exposure (i.e.    ), but is not on the causal pathway (Rothman 

et al. 1998). A potential confounder may be the smoking status (   ) of the subject.  

 
     

 

         

 

Figure 2.7:     as a confounder to the relationship between     and    . 



Chapter 2  Regression Analysis in Applied Clinical and Epidemiological Research 27 

 

Evidence suggests that     can lower     and is also a proxy for increased risk of    . 

The presence of the confounder enhances the coefficient in the simple regression model. 

Therefore, the researcher may decide to adjust for     by including it in the model. This 

example is a great simplification of the relationships present in this particular environment 

and there are likely to be multiple confounders, both known and unknown to the 

researcher. For instance, through adjustment for one confounder, additional confounding 

may be introduced into the model.  

 

                                          

 

      

 

                   

 

Figure 2.8: Potential confounders brought about by the inclusion of    . 

If the confounder     is adjusted for in the model, social economic status (   ) and sex 

(   ) may become confounders in their own right (i.e. both are causes of the disease and 

of the exposure through    ). Therefore, these should be adjusted for in the model if the 

hypothesis is to be believed. This demonstrates the complexities when considering 

causality. The importance of identifying influential variables in the environment is 

apparent from this simple example – therefore the advantages of demonstrating causal 

links through    ’s are illustrated further. As there are likely to be numerous variables 

present in the study environment that can influence the relationship between the main 

exposure and the disease, the researcher must decide which variables to adjust for.  

To control for confounding the researcher can choose to adjust for a ‘sufficient’ set 

of confounders  . Adjusting for   should ensure that there is no effect from confounders 

on the relationship of interest. A simple algorithm can be applied to check for sufficiency, 

 

1. Remove all single headed arrows that leave the exposure variable; 

2. Add a non-directed arc to connect each pair of variables that share a child (i.e. a 

node that is at the arrow end of an arc) in   or a descendent (i.e. a node that 

succeeds another but is separated by one or more nodes) in  ; 

3. Assess whether there is any unblocked ‘backdoor path’ (i.e. moving against the 

direction of the arrows) that goes from exposure to disease that does not pass 

through  . 
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When condition 3 is met,   is a sufficient set to control for confounding. There is often 

more than one sufficient set to choose from. The ‘optimal’ set can be chosen to minimize 

the influence of the confounders. In addition, some sufficient sets may be unsuitable. For 

example, if the variables were not measured during the study or if particular variables had 

a greater measurement error this may also influence the decision. 

 
Competing Exposures 

Another potential influence on the relationship between the main exposure and the 

disease is the presence of ‘competing exposures’. These are similarly defined as a cause, or 

proxy of a cause, of the disease, but are instead not a cause, or proxy of a cause, of the 

main exposure. The variable should not lie on the causal pathway. The example presented 

in the previous section is as follows if     were considered a competing exposure, 

 
 

     

 
                             

 

Figure 2.9:     considered as a competing exposure to    . 

The competing exposure should have zero correlation with the main exposure in the 

population, however this may not be true in the study data due to chance sampling 

variation. Adjusting for the competing exposure in the model will not bias the estimate, 

however the association between a main exposure and an outcome will be incorrect in the 

single sample case. If this correlation structure is viewed over multiple samples, it may be 

hypothesized that there is some unobserved variable that precedes smoking status and 

   , and is causally related to both.  

 
                                                                       

Unknown Genetic Factor 

                                                                                     

 

Figure 2.10: Hypothetical presence of a preceding unobserved variable. 

If this were true,     would no longer be considered a competing exposure, but a proxy 

confounder. This would provide one explanation for the presence of an association in the 

sample. These variable types will be discussed in greater detail when collinearity is 

introduced in chapter 3.  



Chapter 2  Regression Analysis in Applied Clinical and Epidemiological Research 29 

 

 

2.3.3 Modelling Strategy 

In epidemiological research it is important that prior knowledge be utilised to drive the 

modelling strategy. Whilst consistency across studies will add strength to a hypothesis, it 

cannot prove the model correct. A famous example is that of the hypothesized causal 

relationship between smoking status and lung cancer. The work of an American medical 

student Ernst Winder and a British scientist Richard Doll first brought the link to the 

attention of the public in the early 1950’s. However, whilst numerous studies were 

conducted during the 1950’s and 1960’s demonstrating a strong association, the cigarette 

companies relied on the inability of statistical analysis to prove any causal relationship. The 

manufacturers proposed other explanations such as air pollution that could explain the 

presence of the correlation (i.e. a proxy confounder).  

Ronald Fisher (a strong critic of the causal relationship), suggested a common 

genetic factor could play a similar role in this relationship. For instance, some genetic 

component that would influence the individual to smoke may also increase the risk of 

developing cancer. This hypothesis would never be proven. Jerome Cornfield later 

presented compelling evidence to demonstrate a direct causal relationship between 

exposure and outcome using an early meta-analysis of 14 observational studies 

(1966;1969). However, Fishers hypothesis of an unknown factor could still hold true 

despite the lack of evidence (Davey-Smith 2009). It is because of the inherent biases that 

accompany observational research that despite the mounting evidence, the cigarette 

manufacturers won every court case. Whilst a correlation structure can be repeatedly 

observed across studies, it is the clinical context that dictates the ‘real world’ 

interpretation of the statistics (however unlikely the counter-argument). 

The      is a representation of what the researcher believes the population 

structure to be. These relationships are defined from prior knowledge or are hypothetical 

relationships to be assessed. They should not be driven by study data. The difference 

between the confounder and the competing exposure is that the confounder is a cause or 

proxy of a cause of the main exposure, whereas the competing exposure should not be. 

Consider the situation illustrated in Figure 2.11 -   is the main exposure,   the response 

and   is a potential confounder/competing exposure. If a correlation is observed in the 

sample data between   and  , then external information should define the nature of the 

relationship (or if we believe one exists in the population at all). 
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Figure 2.11:     demonstrating a sample correlation between two exposures. 

If   is labelled a confounder, identifying and adjusting for   in the model will be beneficial 

to the precision of the estimate (as the correlation is expected). However, if they are 

defined as competing exposures, the correlation observed does not fit the hypothetical 

model, but may still be considered a product of sampling variation. Statistically, the 

covariance structure gained from the data could be considered acceptable in both cases. 

Whilst viewing sample correlation is considered an improvement to the estimation in the 

confounding case (i.e. improving precision), in the competing exposure situation it will be 

viewed as adding bias to the estimation. Therefore, identifying and labelling the variable as 

a confounder or a competing exposure prior to the analysis should define for the 

researcher whether or not it is sensible to adjust for   in the analysis. This task becomes 

even more difficult when multiple external variables of the cause-effect relationship are 

identified and have to be defined.  

There is always a tradeoff between the complexity of the population systems in 

epidemiology and achieving model parsimony. The nature of the epidemiologic 

environment is such that the full range of factors involved in most situations would be too 

difficult to identify and include in a single model – this would generally introduce 

unnecessary measurement error and bias. If a simple model can capture the complexity of 

the population structure adequately, model parsimony should be observed. This is a similar 

notion when identifying a sufficient set of confounders to eliminate external effects. The 

issue in many studies is that the model used is often too simple to assess the research 

question (i.e. ‘enough’ factors are not accounted for). However, by adopting a technique 

such as a    , the essential features of the model can be captured that can aid with 

linking the statistical results with the clinical interpretation. This can help with the 

identification of additional factors to consider and understand how to interpret the model. 

In the final section of this chapter another extension of the traditional algebraic regression 

model is considered by studying vector geometry. Vector geometry can play a similar role 

to    ’s in simplifying the conceptual understanding of the estimates gained from the 

analytical regression model.  
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2.4 Vector Geometry of Linear Regression 

Vector geometry offers a powerful illustrative tool that has the potential to provide a fresh 

perspective to that of the algebraic approach in multiple regression. Many of the complex 

relationships present in linear algebra can be translated into intuitive geometrical 

representations (Wickens 1995). For instance, Ronald Fisher (1915) used geometry to 

identify the exact distribution of the correlation coefficient of a sample of   pairs from a 

bivariate normal distribution - a problem that Pearson had struggled with prior to Fisher’s 

breakthrough. However, it has since been mainly confined as an illustrative tool, often only 

utilized in scatter plot form. Herr (1980) proposes four theories for this; 

 
1. There is a perception amongst statisticians that the analytic approach is 

‘traditional’. It would take a major shift in the balance of statistical work to 

encourage the use and acceptance of vector geometry in the same light. 

 
2. Although papers such as Fisher’s demonstrate the power of the geometrical 

approach, it is not immediately obvious to all. This suggests that whilst it is 

appropriate to “geometrical thinkers”, it is not accessible to the majority. 

 
3. Geometry is generally thought of as a mathematical tool and a skill. To teach it in 

statistics would require a capacity for abstract thought from the subjects.  

 
4. It is believed (by some) that the geometric approach cannot achieve what the 

analytic approach can. 

 
The first three theories would seem to have some standing and will remain reasons for 

why regression continues to be presented in analytical form. However, the final theory 

should not be readily accepted by statisticians. The role of geometry can play a substantial 

part in understanding how a method operates and identifying its limitations. The intention 

of the geometry used in this work is not to fully explain regression models – as we are only 

able to directly perceive a maximum of three dimensions – but rather to generate ideas 

that may not be obvious in analytical form. The geometrical representations are primarily 

intended to convert algebraic ideas to image. To understand the problems in the geometry 

and generate ideas about a solution, the methods may be carried out in more complex 

situations without the visual use of geometry. 
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2.4.1 Variable Space and Subject Space 

The traditional graphical presentation in mathematics and statistics involves the user 

plotting observations as points on variable axes (e.g. a scatter plot). This format is referred 

to as variable space. It is an essential tool in statistics that gives an immediate summary of 

the data. Whilst this presentation is useful for gaining an insight into the observations, it 

limits our understanding of the relationship of the variables, which is one of the main 

objectives of this work. An alternative is to plot the variables in subject space. This means 

that observations become axes and the variables are plotted in the new space. The two 

plots are equivalent, but the emphasis switches from the observations to the variables 

(Wickens 1995).  

 

Figure 2.12: Observations (  ,   ) in ( ) variable and ( ) subject space. 

An issue with the subject space representation is the dimensionality required to present 

the variables in this format. For example, for 50 observations on two covariates (   ,   ), 

we would theoretically require the variables to be plotted in 51-dimensional space 

(including the intercept). This problem is overcome by some abstract thought. If the 

variables were actually plotted in this space, only three points would actually need plotting 

(i.e. the intercept,    and   ). Therefore, to investigate the relationships between these 

points, only three dimensions are required. If the data is centered, the dimensionality 

further reduces by one. The points are effectively plotted on ‘coordinate free’ axes.  

( ) ( ) 
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Figure 2.13: Simple linear regression in ( ) variable space and ( ) subject space. 

The simple linear regression example in Figure 2.13  demonstrates fundamental results for 

geometry in subject space. The correlation of the response and predictor is represented by 

the cosine of the angle between the vectors     – i.e.                . This result 

allows the user to calculate the position of any vector in relation to any other in the subject 

space based on the correlation structure. The standard deviation is demonstrated by the 

length (i.e. magnitude) of the vector. Therefore, if the variables are standardized (i.e. 

scaled to unit variance) they will be represented by a unit vector. 

 Figure 2.14 demonstrates a multiple regression with three covariates and the 

formation of confidence intervals by projection of the sampling error onto bivariate 

regression planes. Such models follow the same basic principles and will be considered in 

detail later in this thesis. 

 

Figure 2.14: An illustration of the power of multivariate geometry.  
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2.4.2 Converting Analytic Ideas to Geometry 

The vector geometry in this work is intended to provide a conceptual link to algebraic 

ideas. It appears appropriate at this stage to outline some of the basic results from linear 

algebra to help with the visualization in later sections – namely the form and role of 

rotation and projection matrices will be of particular importance to later work. 

 

The Rotation Matrix 

An axis rotation will transform a vector     around a fixed point, whilst maintaining the 

distances and correlation structure with any other vectors. Consider the example in Figure 

2.15. The axes are rotated by the angle     . The problem is to find the coordinates of the 

point       on the rotated      axes, 

 

 

Figure 2.15: An example of axis rotation. 

The derivation of this result can be demonstrated by considering the correlations (and 

subsequently the angles) between the original and rotated axes. It follows that the 

matrices shown in eqn(2.23) are equivalent, 

 

   
                  

                   
   

                      

                       
  

   
                  

                  
  

(2.23) 

  

                           

                           

    
                  

                   
   

 
    

    
  

     

 

 
In matrix form, the     rotation matrix   

transforms the coordinates as follows, 
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The Projection Matrix 

Consider   to be an  -dimensional vector space.   and   are defined as complementary 

subspaces of the original space   (i.e. such that any        can be expressed as            

   ). A projection matrix   is an     matrix operator that projects      along      onto    ; 

i.e.           (Meyer 2001). In this format,   and   are commonly referred to as the range 

and null spaces respectively. The matrix   must be idempotent – i.e. the vector      is left 

unchanged in the range of   , 

     (2.24) 

(Phatak and DeJong 1997) 
The projection matrix is labelled ‘orthogonal’ if the following property holds, 

 

     (2.25) 

 

The direction of projection is along the orthogonal complement to the projection plane. 

 

 

Figure 2.16: Orthogonal     projection of    onto the regression space spanned by  . 

Geometrically,     is an orthogonal projection of   onto the subspace spanned by   (see 

Figure 2.16). Any projection matrix that does not adhere to the property in eqn(2.25) is 

labelled an ‘oblique’ projection. For an oblique projection, it is also necessary to specify the 

direction to which      is projected onto  . The following is an example of an oblique 

projection of      onto the space   (  and   are now not orthogonal), 

 

             (2.28) 

(Phatak and DeJong 1997) 
  

                            

                   
  

          (2.26) 
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2.4.3 The Least Squares Estimate 

In this section, a geometrical example of the     estimator is presented to illustrate vector 

geometry and demonstrate the process of converting algebraic concepts to image. The 

geometrical presentation allows us to investigate the interrelationships of the variables. 

These will be used in chapter 3 to explore the changes in estimates under varying 

conditions to improve our understanding of the behaviour of the     estimate.  

The mean centered two predictor case is first considered due to the simplicity of 

working in 3-dimensional geometry (i.e. two centered covariates and a single response). 

Correlations amongst   ,    and   are obtained from the data (which determine the angles 

between vectors) along with the standard deviation of each variable (determining the 

length). If         is assigned to lie on the standard  -axis, the positional vectors of the variables 

can be constructed relative to this point. The positional vector of         is calculated using the 

correlation between    and   , along with the standard deviation of     (i.e.     
). 

 

 

 
The position of the response ( ) and its orthogonal projection (see section 2.4.2) to the 

plane (  ) spanned by   can be similarly found using a partial regression coefficient, 
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The coefficient    can be found by considering the intersection of the     projection onto     ,  

 
 

 

 
This simplifies as follows,  

 

 
      

 

   
      

   
             

          

      
 

 

    

   
        

          

      
 

  
   

      
 

  

 
      

  

      
  

    
             

 

      
  

 

 
          

     
  

 

(2.29) 

The result for    follows a similar derivation. The     estimate is centered and 

unstandardized in this geometrical construction (although the predictor standard 

deviations are equal and    is unit length). Centering has removed the intercept and 

allowed the geometry to be presented in one less dimension then required for subject 

space. The relationship expressed in eqn(2.30) will generate the standardized coefficient 

from its unstandardized form. 

      
   

    

 (2.30) 

 
where    is the standardized regression coefficient for   . If   remains centered and scaled 

to unit variance, the orthogonal projection of    onto the vector         is the product of the 

coefficient estimate and the length of the vector in unstandardized form.   
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2.5 Conclusions 

This chapter has provided an introduction to some of the basic concepts of regression 

analysis, both from a statistical and applied viewpoint. The discussion of regression in 

epidemiology (section 2.3) is intended to demonstrate some of the gaps between the 

statistical process of generating an estimate and the clinical interpretation in making use of 

it. However precise and detailed the association found in epidemiological studies, a cause-

effect relationship cannot be proven empirically. Whilst viewed as the “gold standard” 

approach in epidemiology, an experimental study (even without error) can only strengthen 

a clinical inference, rather than provide a definitive proof. 

 
“All of the fruits of scientific work, in epidemiology or other disciplines, are at best 

 only tentative formulations of a description of nature”  

(Rothman and Greenland 2005) 
 

The use of the   ,     and     are an important feature of epidemiological work - 

placing statistics in an epidemiological environment. They allow the researcher to consider 

the nature of the relationships in the study environment and open the ideas to non-

statistical thinkers. What the estimates represent can only be determined if external 

biological knowledge and potential influences are considered on the hypothetical cause-

effect relationship. The confounder and competing exposure argument presented in 

section 2.3.2 is a prime example of this feature. Whilst the covariance structure obtained 

from the study data may be identical for both hypothetical models, the interpretation and 

modelling strategy can be entirely different based on the population model assumed.  

Vector geometry plays a substantial role in this thesis in developing an 

understanding of regression and assessing the impact of collinearity. Rao (1999) utilises the 

geometry to demonstrate the theory behind the orthogonal projection minimizing the 

regression sums of squares. In section 2.4.3 the     estimate was constructed differently 

to the standard presentation in the literature. This will be used as an aid in demonstrating 

the impact of collinearity on the regression estimates. Although geometry is regularly used 

for illustrative purposes, the interest in this work is the change of the point estimates 

themselves, along with influences of factors in the model environment. A greater emphasis 

has been placed on calculating the estimates directly from the geometry. Rather than only 

discuss the ideas conceptually, this presentation allows for an understanding of the 

estimators and the role of alternative methods in handling collinear variables. 
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3. Measuring the Impact of Collinearity 

Assumptions were outlined in chapter 2 that define the ‘ideal’ conditions for the     

estimator. Under these assumptions, the estimator has uniformly minimum variance in the 

class of all unbiased estimators –      (Myers 1990). It is also important to consider the 

impact on desirable accuracy and precision properties of the estimation when these 

conditions are not met. In chapter 3 the impact of entering linearly dependent covariates 

into the regression model is considered. The independence of covariates is a desired rather 

than implicit assumption of     (unless they exhibit a perfect dependency – 

i.e.              - see chapters 7 and 8). The estimator will remain the      when the 

assumptions are satisfied; however the benefit of minimum variance amongst the 

unbiased class of estimators can be severely weakened. Subsequently, when the estimator 

is not precise, the unbiased property is of limited use in a single sample case.  

The potential impact of collinearity on the accuracy and precision of an estimator 

is well recognised in the literature. However, methodology proposed to measure such a 

feature often overlooks the role of other factors in the study environment. One influence 

that is regularly ignored is the role of the response. Vector geometry can illustrate the 

crucial role that the covariance structure between the response and the predictors plays in 

dictating the impact of collinearity on the parameter estimates. Current diagnostic indices 

provide a measure of the degree of collinearity present. As such, any remedial action 

based on such a measure may be unnecessary or misplaced. In some circumstances 

collinearity can be ‘favourable’ to the modelling process. Indices should play a crucial role 

in assessing the impact of collinearity - both adverse and beneficial to the estimation. In 

this chapter the effects of collinearity in applied regression studies are investigated both 

on the statistical and interpretational properties of the estimate. An overview is presented 

of techniques currently in use in applied research along with an investigation of their 

merits in application using simulation studies. Limitations of existing techniques will dictate 

the properties desired for a new collinearity index developed in chapter 5. 
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3.1 What is Collinearity? 

In regression analysis, collinearity (or more generally, ill-conditioning) describes the 

situation in which two predictors are highly correlated with one another. If there exists an 

approximate or exact linear relation amongst more than two predictors, it is referred to as 

multi-collinearity. The existence of highly collinear variables in a model does not directly 

violate the assumptions of least squares regression. The estimates remain unbiased and 

efficient in their class, but the effects can potentially devalue the analysis or any 

subsequent conclusions if the impact is disregarded (Freund and Wilson 1998). 

 

 

Figure 3.1: Illustrative effects of collinearity on a linear regression model. 

The Venn diagrams in Figure 3.1 provide an interpretive illustration of the impact of 

collinearity. The linear dependence in the model exhibiting collinearity (Figure 3.1 ) is 

illustrated by the relative ‘overlap’ of the covariates. As the levels of linear dependence 

increase amongst the predictors in a model, it becomes progressively difficult to partition 

the unique contribution of each predictor to the variation in the response. This results in 

unstable regression coefficients that are sensitive to changes in both sample observations 

and model specification. Elevated standard errors are brought about by the increased 

variability in the estimation of the model coefficient, resulting in a loss of precision.  

Whilst the interpretation of the model coefficients can potentially suffer in the 

presence of multi-collinearity, the predictive power of the model is of less concern. The 

area of the response ( ) overlapped with the predictors in Figure 3.1 represents the 

coefficient of determination (i.e.   
 ). That is, the variation in the response accounted for 

by the predictors in the model. The approximate equality of this measure in both diagrams 
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illustrates that collinearity is not necessarily ‘harmful’ when the purpose of regression is 

prediction. In the presence of ‘substantial’ collinearity, the confidence intervals of the 

parameter estimates will become inflated with the instability of the     estimate. 

However, the user may still feel confident to interpolate, but not to extrapolate from the 

data. As a result, when the emphasis is placed on prediction in a study, researchers will 

often be more tolerant of high levels of collinearity amongst the covariates.  

There are numerous reasons why collinearity arises in study data and it will almost 

always be present amongst variables in epidemiological and clinical examples. If 

collinearity exists amongst the predictors, it will influence the point estimates of the model 

along with commonly used statistical tests based on standard errors such as  -values,  -

tests and  -statistics. To understand how to work with collinearity the impact must first be 

presented from a statistical perspective. The strict definition of collinearity describes a 

perfect (or exact) linear relationship between two covariates. For example, there exists a 

set of parameters    (for           ) such that, 

 

               (3.1) 

 
Perfect multi-collinearity occurs when there exists one or more exact linear relationships 

amongst the covariates in the model (NB. In general, as there is no conceptual difference 

between “collinearity” and “multi-collinearity”, the former term is often used to describe 

both cases (Belsley 1991). This practice will be adopted throughout the thesis),  

 

                       (3.2) 

 
When perfect collinearity is present, the design matrix   is not full rank (i.e.           

 ).  A solution to the     estimate cannot be computed using a regular matrix inverse. The 

rank deficient (or singular) matrix, means that     can only be inverted using a 

generalized inverse procedure. This situation appears extreme and unrealistic in practice, 

however it is certainly still possible in epidemiological study (e.g. see the lifecourse and 

    models discussed in chapters 7 & 8 respectively).  

Whilst perfect collinearity is occasionally encountered, a more common situation is 

‘near-collinearity’. This is when there exists a high degree of collinearity amongst the 

covariates. By including the collinear covariates in a regression model, the covariance 

matrix produced will be near-singular. Consider the following     matrix for two 

covariates centered and scaled to unit variance, 
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   (3.3) 

 
An estimate of the regression coefficients will still be calculated by    , however the 

determinant of     becomes increasingly small as the degree of multicollinearity grows 

(i.e.       ). 

 

         
 

     
   

     
     

   (3.4) 

 

This results in an unstable     inverse, meaning that small changes in the measurements 

of the predictor variables can result in substantial deviations in the point estimates of the 

regression coefficients. O’Brien (2007) demonstrates the variance of a single predictor   , 

 

        
  

      
     

  
(3.5) 

Where    
  is the squared multiple correlation of the     predictor regressed on the other 

predictors in the model. In the general case, when    is regressed on covariates to which it 

shares a linear dependence, the variance of    explained by the predictors will be high. 

Therefore, the variance of the regression coefficients will increase, indicating that precision 

is lost in the estimation. From this example it appears that collinearity is solely related to 

the    of  . Whilst it is true that     describes the degree of collinearity amongst the 

predictors, the role of other factors in the regression model can play a substantial part in 

dictating the ‘impact’ of this collinearity on the parameter estimates of the model.  

 

3.2 Collinearity in Epidemiology 

The impact of collinearity is often overlooked in epidemiological research. The pair-wise 

covariate associations should be negligible – a most unlikely scenario for biological and 

epidemiological data. In most epidemiological studies, it will be impossible to physically 

control for collinearity. It is a natural and unavoidable feature of the data. Small departures 

from independence can severely distort the interpretation of a model and the role of each 

covariate – resulting in increased inaccuracy as expressed through the regression 

coefficients and increased uncertainty as expressed through coefficient standard errors.  

The variability in the estimation of the regression coefficients can lead to a reduction in the 
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statistical significance of the coefficient. However, the point estimate may be substantive 

and therefore clinically significant. Researchers may mistakenly conclude that the 

statistical insignificance of a variable is due to clinical insignificance rather than collinearity 

and so ignore the result – yielding an elevated risk of Type    errors. The example 

commonly used in textbooks to illustrate collinearity is that, within a regression model, the 

overall variance of the dependent variable explained by the covariates is high, yet none of 

the covariates are statistically significant (Glantz and Slinker 2001;Kirkwood and Stern 

2003). This can occur when the information given by each covariate is greatly ‘overlapped’ 

with other covariates due to collinearity (see Figure 3.1). 

 With increased parameter variance, small changes in the data can produce large 

swings in the parameter estimates. It can typically yield estimates with ‘incorrect’ sign and 

implausible magnitude (O'Brien 2007). These effects can severely hamper any clinical 

interpretation in a regression study. The emergence of the    and the importance placed 

on causality has given rise to a number of variable types that influence the impact of 

collinearity. An example was presented in section 2.3.2 that considered the interpretation 

of collinearity in the confounding and competing exposures case. The distinction between 

these phenomena can only be made conceptually, as statistically they appear identical 

(Mackinnon et al. 2000). It should not only be assumed that collinearity can make 

correlated variables redundant. On the contrary; sometimes collinearity will generate 

spuriously strong associations between the predictors and the response. However, the 

interpretation of such coefficients will depend on external evidence and the hypothesized 

underlying causal structure of the population variables. 

 

3.2.1 Causal Modelling 

Correlation amongst variables does not imply causation. However, correlation is a 

necessary condition for causation, when all external variables are controlled for. After 

observing an association between an exposure and a disease, an epidemiologist will often 

wish to determine if any causal relationship exists between the variables. This is rarely a 

simple task. It is desirable to implement an experimental study design, to physically control 

for external influences on the main relationship. However, for practical and ethical reasons 

the randomization of treatments is not possible for a number of research questions. 

Studies such as    ’s are generally only an option on a human population when 

considering potentially beneficial exposures. Whilst experimental studies can be 
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performed on animals and in vitro systems, there is still the question of how the 

hypothetical cause-effect relationship operates in humans. Therefore, the analyst is 

generally restricted to observational non-randomized studies for many research questions. 

The exposure will likely occur as a natural part of the subject’s life – such as the area they 

live, where they work etc. – and the disease occurrence is recorded. The exposed and non-

exposed groups can then be compared. The major issue with this approach (from an 

epidemiological standpoint) is that without the experimental control of external factors, 

the researcher may not be able to physically restrict the influence of intermediate 

variables and confounders. This is likely to be considered an analytical task. 

 
Working within an Epidemiological Framework 

The experimental process may begin with an ecological study - which considers analysis on 

the population rather than the individual. This is particularly useful for developing a causal 

hypothesis. However, in studying the population, characteristics are often assigned that 

may not be true of the individual. For instance, let us once again consider the classical 

cause-effect hypothesis between smoking and lung cancer. If data were gathered for the 

average cigarette consumption vs. lung cancer rates in ten different countries, a 

correlation would likely be observed. It would be tempting to conclude that this highlights 

an association between exposure and disease. However, this could be countered if the 

cigarette company suggests that it is those in the population that don’t smoke that are at 

higher risk of developing lung cancer. As only averages from a population are available, this 

argument could not be disproved. An ecologic study will instead present a fast and cheap 

option to generate a hypothesis for future more detailed studies to assess.  

  A case-control or cohort study may be performed to attain data at an individual 

level. This should enable us to counter the initial argument of the cigarette companies in 

that it can be demonstrated that those individuals with the greatest cigarette consumption 

show a greater incidence rate of lung cancer – a statistical association between exposure 

and disease, but not necessarily a causal link. If we are confident that the data presents a 

real, rather than spurious association (e.g. generated by study design), our interest 

progresses to examining whether the relationship is causal.  

  

Figure 3.2: ( ) A true causal link and ( ) an association generated by confounding. 
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Figure 3.2 demonstrates two path diagrams that would produce a statistical association 

between   and  . The example in Figure 3.2  illustrates a true causal relationship, whereas 

Figure 3.2  is an association generated by confounding. The distinction between these two 

examples is purely from a conceptual rather than statistical perspective. If a true causal 

association is observed between   and  , then an intervention on   would affect the 

incidence rate of  . If the association is a consequence of confounding, then an 

intervention on   may have no effect on the risk of disease   (Gordis 2000). The    

defines the clinical hypothesis and the necessary intervention. 

 In Figure 3.2a, the variable   is both a necessary and sufficient cause of disease  . 

This dictates that the disease could not develop without   and will always develop when   

is present. This is rare in biology. In most circumstances, when subjects are exposed to a 

risk factor, some are more susceptible than others to develop the disease (e.g. a greater 

immunity). Similarly, there are often multiple risk factors attributable to the development 

of a disease. If other risk factors can cause the effect without the presence of   , then   

becomes a sufficient, but not a necessary cause of  . This is again rare, as the guaranteed 

development of a disease is seldom the product of a single factor. A more likely scenario is 

that   is necessary, but not sufficient to the disease. Alone,   may not cause   to develop. 

However, the existence of   along with other factors will produce the disease. Finally, an 

exposure may be neither necessary nor sufficient. An intricate combination of risk factors 

may be required, but no specific combination is necessary to produce the disease. This is 

perhaps realistic of most chronic diseases (Gordis 2000). 

A popular way to consider causal mechanisms is to employ the causal pie model 

(Rothman and Greenland 2005). Each pie represents a sufficient causal mechanism of a 

disease. The segments of the pie represent a component of the overall biological 

mechanism. For instance, the ‘disease’ may be metabolic syndrome (    ), which is 

defined as a clustering of risk factors that are associated with a greater risk of developing 

cardiovascular disease and diabetes. The diagnosis of      is typically based on a 

combination of risk factors. For instance, the international diabetes federation (   ) 

require ( ) central obesity, along with two of ( ) raised triglycerides, ( ) reduced 

cholesterol, ( ) raised blood pressure and ( ) raised fasting plasma glucose. Risk factors 

are not all considered of equal importance. This is generally defined by the impact of each 

component on the incidence of the disease. The ‘importance’ of a component may change 

depending on the prevalence of others in the mechanism. To determine ‘importance’ is 

thus the role of statistics, rather than biology (Rothman and Greenland 2005). 
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Figure 3.3: A causal pie illustration of      based on the     definition. 

To characterize the     standards, there are six unnecessary but sufficient causal 

mechanisms to diagnose      (see Figure 3.3). Each consists of three ‘component causes’ 

that when occurring together are sufficient for the development of the disease. The 

‘interactions’ of multiple component causes are common of most chronic diseases and 

rarely will a necessary cause be defined. Central obesity in the     definition is itself a 

necessary cause as it appears in every sufficient causal pie. Apart from central obesity, the 

other components are neither sufficient nor necessary to cause the disease. The blocking 

or eliminating of one will not prevent the disease, however each plays an important role in 

a causal mechanism. Mackie (1974) labels this the “INUS condition”.  

The causal pie model represents a simplistic way to understand a potentially 

complex ‘causal web’. However, this methodology only partly enters the complexities of 

causal theory. For instance, more sophisticated models, such as    ’s and    ’s, have 

provided an added level of intricacy to the diagrams to better reflect the nature of ‘real 

world’ relationships (see section 2.3.2). The first consideration is that the causal pie implies 

that the ‘interactions’ amongst component causes are occurring at one point in time. In 

fact, a causal process may (and often will) occur as part of a temporal sequence of events. 

The use of directed arrows in    ’s allows for a sequential arrangement of the causal 

relationships (i.e. generally left to right). Another benefit of    ’s is in demonstrating the 

existence and role of intermediate variables and confounders.  

The causal pie model represents a probabilistic approach to causality, whereas 

the      and     are labelled counterfactual approaches. These represent two different 

philosophical views. The probabilistic approach suggests that if   causes  , then the 

presence of   will increase the likelihood of   occurring. This is conceptually appealing for 
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epidemiology, as data is often incomplete or the nature of the mechanism in itself would 

seem probabilistic; e.g. smoking will in some, but not all cases, result in the patient 

developing lung cancer. Therefore, smoking can be labelled a probabilistic cause of lung 

cancer. In contrast, the counterfactual view of causality is that all things being equal - the 

presence of   will cause  . However, epidemiological study can rarely (if ever) ensure that 

“all things are truly equal”. The probabilistic argument is a ‘loose’ definition of the 

population model. In Rothmans pie model, the causal relationships amongst the variables 

are not specified. Only the likelihood of disease occurrence increases with the presence of 

component causes.  

The     and     present a counterfactual version of causality as the models are 

not built on probability of disease occurrence, but specify direct causal relationships. The 

complexity of the model is raised; and with this, some of the uncertainty of probabilistic 

causality is removed. Each effect denoted by an arrow represents a hypothesized ‘true’ 

relationship, but in the study data this effect is moderated by biological and environmental 

factors. In approaching the complexity of a ‘real world’ system, the statistics and 

subsequent interpretation becomes progressively difficult. Whilst the pie model leaves 

many questions unanswered, the conceptual understanding of the causal mechanism still 

provides a valuable tool in application. For the discussion in this work, the     provides a 

means to demonstrate the statistical complexities of each application to study data. 

However, debate still remains as to the study of causality.  

 

3.2.2 Understanding Third Variable Effects 

MacKinnon et al. (2000) present three “third variable” examples in mediation, confounding 

and suppression where the addition of a third variable generates an effect on the main 

relationship. In each, it is the conceptual understanding of the phenomena that 

distinguishes the effects. The notion of a confounder was previously discussed in chapter 2 

- this is once again considered along with the introduction of a ‘mediator’ variable. 

 

 

 

 

  

 

Figure 3.4: Third variable effects in which   is ( ) a mediator and ( ) a confounder. 
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Mediation and Confounding 

The first effect to be considered is that of a mediator (see Figure 3.4  ). Two causal paths 

can be defined from exposure to disease. The first is a path that links   directly to   - 

where   is a ‘direct cause’ of   as there exist no intermediate steps. The second is an 

‘indirect effect’ that passes through the mediator  . As demonstrated in the    , the 

indirect effect is defined by   being a cause of   and   a cause of  .  

A path coefficient indicates only the direct effect of a cause on an effect. In Figure 

3.4, the path coefficients are denoted by   with a subscript ordering the effect to precede 

the cause.  

     (3.6) 

          (3.7) 

               (3.8) 

 
The exogenous variable   (i.e. has no arrows pointing toward it) is only determined by 

external factors and error – represented by    (this does not include measurement error 

due to the implicit regression assumption A4 – see section 2.2.2). The equation for   

demonstrates that it is formed from   (as determined by the path coefficient weighting) 

and also specific unexplained factors and error contained in   . The endogenous variable   

(i.e. that has only arrows pointing toward it) is formed partly from   and from  , in 

addition to the specific error -   . Substituting these relationships into the general 

correlation formula produces the following definitions, 

 

    
   

 
 

  

 
               

   

 
    

   

 
 

                             

(3.9) 
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     (3.11) 

 

From eqn(3.11) it is clear that the path coefficient from   to   (i.e.    ) is equal to the 

correlation between the variables (   ). This is a result that is always true when the child 
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(i.e.   in this case) is only preceded by one parent (i.e.  ) – i.e. a ‘simple’ regression. 

Subtracting         from both sides in eqn(3.9) gives, 

 
                

 
Substitute this into eqn(3.10) to gain the following, 

 
                         

                    
   

 
Which simplifies to the result in eqn(3.12). 

 

    
          

     
 

 (3.12) 

 
Therefore, the path coefficient of   to   is equivalent to the standardized beta weight from 

a regression model involving two predictors and a response (i.e. the regression coefficient 

   from the model      ) – see eqn(2.29). Similarly, the path coefficient     is the 

partial regression coefficient of   from the same model. The association between   and   

can be partitioned into the contribution of the main effect   and a mediator  ,  

 

             (3.13) 

 
Assuming all relations are linear and additive, the direct effect is simply calculated as the 

path coefficient    . The indirect effect is the product of the coefficients     and    . The 

total effect is the summation of the direct and indirect effects (i.e.           ). 

Rearranging eqn(3.10) for     presents the following result, 

 

               (3.14) 

 
Insert eqn(3.11) and eqn(3.9), 

 

                                   (3.15) 

 
The total effect is the unadjusted association of   on   (i.e. the standardized coefficient 

from a simple regression model). The total effect is the coefficient of   with a contribution 

of the mediator. By adjusting for the mediator in the model, the regression coefficient of   

is only the direct effect     (or the total effect minus the indirect effect). 
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 In the confounding case, the equations are adjusted as the direction of causality is 

reversed between   and   - i.e. the confounder ( ) becomes the exogenous variable, 

 

          (3.16) 

     (3.17) 

               (3.18) 

 

This change in the structure of causality has no impact on the statistical computation of 

the path coefficients, only the conceptual understanding of the relationships. However, in 

the confounding case the difference between the total effect and the adjusted effect 

represents an estimate of confounder bias (Mackinnon et al. 2000).  

 
The Geometry of Third Variable Effects 

Statistical adjustment for a single ‘true confounder’ will reduce the bias of the point 

estimate toward the coefficient in the population model. Whereas, adjustment for a 

mediator will introduce bias to the estimation as it lies on the causal path. In both cases, 

the inclusion of the third variable in the model will generally reduce the magnitude of the 

coefficient from the simple regression. A mediator will explain part or even all of the 

association between exposure and effect as it shares the causal path. In confounding, a 

reduced coefficient will typically occur when “confounder bias” is removed from the 

model. Therefore, by controlling for the confounding (either physically or analytically), the 

user will generally reduce the potential of Type   error from a spurious relationship.  

 

  

Figure 3.5: Statistical interpretation of ( ) a confounding and ( ) suppression effect. 
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Whilst the user may expect to see a reduced coefficient estimate when a high 

degree of collinearity is present amongst predictors, this should not be assumed. A 

suppression effect can inflate point estimates in both examples – see Figure 3.5  . 

Consider the following example, 

  

 

 

 

 

 

Figure 3.6: An example path diagram. 

Standardized regression coefficients are as follows for the bivariable model, 

 

   
           

     
 

 

   
           

     
 

 

(3.19) 

 

Consider in a sample that a non-significant positive correlation is observed between    and 

  (i.e.    ). In addition, the correlations     and     are both found to be highly positive. If 

   is considered to be the main effect and   to be the disease, then    is defined a 

mediator. The value of the numerator in eqn.3.19a is likely to be negative (due to the 

negligible    ), whilst the denominator will be close to zero. This generates an inflated 

negative coefficient on   . The coefficient    is then enhanced and remains positive 

following the inclusion of the third variable.  

The total effect in the mediation example is defined as the sum of the direct and 

indirect effects. If these were of opposite sign and equal magnitude, then adjusting for the 

third variable in the model would result in a “complete suppression” (Mackinnon et al. 

2000). The direct and indirect effects cancelling each other, resulting in a statistically 

insignificant total effect. A suppression may also be termed “inconsistent mediation” or 

“negative confounding“, depending on whether the user wishes to be specific to the 

conceptual model employed. Depending on the values of     and    , inclusion of    in the 

model can enhance an already negative    or can reverse the sign of a positive coefficient 

to negative. Even when the third variable has zero effect in the population, a single sample 

case is still likely to be interpreted as either a mediation/confounding or suppression due 

to sampling variation. Statistical insignificance and ‘incorrect’ hypothesized signs of the 

coefficients are potential ‘symptoms’ of collinearity, but neither is sufficient nor necessary 

for the presence of collinearity (Belsley 1991).   
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3.2.3 Development of a Causal Hypothesis 

Consider again the two examples in Figure 3.4. If the path diagram shows   to be a 

confounder then it should be controlled for. In theory, this decision can be made easily as 

  is not on the causal pathway. Therefore, confounding bias is removed and the precision 

of the estimation for the direct effect improved. In contrast, the mediation example is 

more complex. The mediator   will lie on the causal path between exposure and disease. 

Therefore, theoretically it is part of the total effect and shouldn’t require adjustment. 

However, if in the sample no association is observed between   and   (and this is 

repeatedly observed across studies), then should it be suggested that   is not a cause of  ? 

This is where the separation of causality and correlation becomes important. In almost any 

biological relationship there will be multiple unobserved intermediate steps (Gordis 2000).  

A causal link between parental smoking and low birth weight is almost universally 

accepted. However, there will be numerous chemical reactions and genetic relationships 

that define the nature of this causal mechanism. This may not appear important in 

situations in which a desired association is observed which fits with biological theory; 

however in other circumstances the analyst is forced to take notice. Consider the classical 

birth-control example presented by Judea Pearl (2000), 

  
 

 

 

 

 

Figure 3.7: Classical birth Control example from Pearl (2000). 

The study considers the effect of the contraception pill on the development of thrombosis. 

Evidence suggests that the pill reduces pregnancy and that pregnancy in turn increases the 

risk of thrombosis. Therefore, the indirect effect from exposure to disease is negative. To 

address the research aim we wish to know the effect of the pill on thrombosis whilst the 

mediation effect of pregnancy is held constant. If there were no direct effect, statistically 

adjusting for such a variable would create a spurious association between the pill and 

thrombosis (as pregnancy is on the causal pathway). A causal relationship could not be 

determined analytically and could potentially be misinterpreted as the presence of a direct 

relationship. The mediation effect of pregnancy must be physically controlled for as part of 

the study design (if practical limitations allow).  
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In this example, the groups under study should be women who used the pill post 

pregnancy and those who used other means than the pill to prevent pregnancy (Pearl 

2000). This would block the causal relation between the pill and pregnancy, thus removing 

the mediated effect. Consider the addition of a fourth variable labelled  , 

  

 

 

 

 

 

Figure 3.8: Presence of an additional mediator to the example. 

In this example the hypothesized direct relation is mediated by an intermediate chemical 

mechanism, which in itself could contain a number of chemical reactions etc. Many of the 

direct effects stated in these hypothetical models are in fact a simplification of a complex 

set of indirect effects. The path coefficients leading to and from   are both positive in this 

example and could cancel the negative indirect effect of pregnancy. Therefore, the total 

effect could be statistically insignificant. In isolation it may not be of great importance to 

replace the direct effect with an intermediate relation. However, the temptation to 

simplify the model by ignoring such factors can mislead the clinical interpretation. Causal 

theory would suggest not statistically adjusting for pregnancy, but if multiple pathways are 

present, the total effect can become difficult to interpret.  

 Demonstrating the effects of mediators, confounders and suppressors provides an 

insight into the complexities of the causal system. Whilst the causal pie model allows an 

overview of the sufficient mechanisms, the methodology is limited in understanding the 

complexity of the structure. The     allows the user to develop an understanding of the 

pathways and mechanisms at work in real world applications. The primary concern of this 

section is to demonstrate the epidemiological relevance of collinearity in the study data. 

The problems are complex on a statistical level, however they take on a new meaning 

when placed in a clinical context. This should be reflected in the understanding of 

collinearity and its effects. The discussion of causality discourages the notion that 

correlation in the sample must be a ‘problem’. This is crucial as the discussion progresses 

towards measures of collinearity, often labelled collinearity ‘diagnostics’. It is important to 

decide whether the index is ‘diagnosing’ a ‘disease’ or looking to understand the potential 

impact of collinearity, either detrimental or beneficial to the modelling process.  

                              

          

    

  

    



Chapter 3   Measuring the Impact of Collinearity 54 

 

 

3.3 Collinearity Diagnosis 

In epidemiological and clinical research, it is not surprising to find that many covariates are 

correlated, as they often share common physiological mechanisms, or measure different 

aspects of the same underlying mechanism. The question is not whether collinearity is an 

issue, but what the impact is on the modelling process. Indications that a collinearity effect 

is present (such as a change of sign or an inflated variance of the coefficients) must not be 

relied upon as a measure of collinearity. The suppression effect demonstrates that 

commonly experienced symptoms of collinearity are not necessary for such an effect to be 

present. Collinearity can also be beneficial to the estimation. Collinearity diagnostics have 

been developed to provide an indication of the ‘severity’ of collinearity in an applied 

regression study. They can provide a range of information, such as which variables are 

most highly involved in collinear relations and with which others they are linearly related 

to. This is intended to aid with model specification and to indicate an appropriate caution 

to place on the results of an analysis. 

It is important to consider the balance between statistical and clinical knowledge. 

In section 2.3.2 two phenomena were considered that are statistically indistinguishable, 

but conceptually very different. Therefore, any statistical measure of collinearity must be 

balanced with a guided conceptual understanding of the model environment and 

application. For instance, a researcher can strive toward obtaining a set of predictors that 

minimize collinearity in a model, but if there is no theoretical basis for the variables chosen 

then the work is of limited use. Instead we must look towards an assessment of the impact 

of collinearity to guide the researcher with its likely effects on the analysis of the model. 

The index should assess the impact of collinearity on the model parameters and inform the 

user whether implementing     is the appropriate regression technique for the dataset. 

Myers (1990) suggests that the diagnostic tool should never be thought of as a guide 

toward whether an alternative technique will be successful, but rather as an indicator of 

the inefficiency of    . It will be important to consider features in the model environment, 

such as measurement error and sample size. In particular, the role of the response can play 

a key role in moderating the impact of collinearity on the variability of the model 

coefficient and the point estimate. These effects can both enhance and diminish the 

impact of collinearity – both potentially harmful to the interpretation and the clinical 

conclusions formed from the analysis. These features can have substantial damaging 

effects on inferences when the impact is misunderstood.  
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3.3.1 Developing a Collinearity Index 

Variables considered to be clinically ‘important’ to the outcome, may produce insignificant 

 -values and  -values. Whilst this is a common feature of collinear data, it can also feasibly 

occur in non-collinear data. In contrast, a suppression effect can produce a coefficient with 

a much inflated statistical significance. The same applies for other common results of 

collinearity, such as changes of sign resulting from inclusion or exclusion of covariates. 

Another crude approach is to study the correlation matrix of the dataset directly. The 

thought behind this stems from the definition of collinearity - that there is a ‘significant’ 

correlation between two covariates. Although viewing high bivariate correlations can be 

seen as an indicator of collinearity, a lack of such correlations cannot equally be considered 

a sign that collinearity is not present. Multi-collinearity describes linear combinations 

amongst two or more covariates, which may not be seen directly from the correlation 

matrix. It is possible that covariates have low bivariate correlations, but there exists an 

underlying linear relationship amongst multiple covariates. This reasoning has led to the 

development of a number of collinearity diagnostics. However, the results of such indices 

are often extrapolated to explain features beyond the limitations of the diagnostic. The 

motivation of the method may not be fully understood and regression models are deemed 

to have ‘acceptable’ or ‘unacceptable’ levels of collinearity based on overly simplistic 

approaches and arbitrary ‘rules of thumb’.  

 

3.3.2 Approaches to Diagnosing Collinearity 

Belsley (1991) presents a useful summary of the current methods available to the 

researcher for general use as diagnostics for collinearity. These range from very simplistic 

approaches (such as the presence of naïve symptoms associated with collinear data 

discussed in section 3.1), to complex diagnostic tools that acquire a heavy computational 

cost (one such method will be developed in chapter 6).  Two popular techniques in the 

variance inflation factor and condition index are first considered which are often applied in 

the regression literature. The methods developed in later sections of this thesis to study 

collinear data build upon these approaches and that of alternative estimators to    . The 

indices are both based on the dispersion matrix of the predictors (i.e.    ), but adopt 

different approaches in their assessment of collinearity amongst covariates.  
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The Variance Inflation Factor 

The statistical discussion of collinearity in section 3.1 provides the basis for one of the 

simplest and most popular collinearity indices - the variance inflation factor (   ) 

(Marquardt and Snee 1975). The theory of the     can be considered by presenting the 

variance of the estimated regression coefficient.  

 

        
  
 

      
           

  (3.20) 

     
 

     
 

 (3.21) 

 

     is the     diagonal element of the inverse correlation matrix of   (Hocking 2003). As 

the degree of correlation between the     predictor and the remaining covariates 

increases, the value of    
  will increase. If there were no correlations between the 

covariates this factor would disappear. Therefore, the quantity of        
    can be seen 

as an inflation term of the sample variance when collinearity is present in the model. 

The method can be illustrated by considering the vector geometry of the    . 

Figure 3.9 demonstrates the geometrical construction of    
 for two predictors,  

 

  

 

 

 

Figure 3.9: An illustration of the construction of    
 using vector geometry. 
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 is found by an orthogonal projection of         onto        . In Figure 3.9, the vector         is 

assigned to lie on the standard  -axis in variable space, therefore    
is identical to the  -

coordinate of           (i.e.    in the vector geometry of section 2.4.3).  

 

   
             (3.22) 

     
 

            
 (3.23) 

 
The trend of the     can be modelled by generating a simulation for two covariates    

and   . Although in reality there are two     values, they are identical in the bivariable 

model as Figure 3.9 shows. Figure 3.10 displays the change in     as the correlation 

between the covariates increases (i.e.    ). 

 

Figure 3.10: Trend of the     function in the bivariable regression case. 

The     provides a measure of the impact of collinearity on the precision of individual 

regression coefficients (Fox and Monette 1992). Belsley discusses two common ‘rules of 

thumb’ to indicate ‘severe’ collinearity amongst predictors. Thresholds that are often 

suggested include a       and        (these have been indicated in Figure 3.10 by 

the green and red dashed lines respectively). Although the     trend becomes increasingly 

difficult to map in higher dimensional cases (i.e. with additional predictors included in the 

regression model), the bivariate example here demonstrates that at these arbitrary 

thresholds the variance begins to increase steeply.  
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The Singular Value Decomposition and the Condition Index  

The condition index (  ) is a collinearity diagnostic regularly employed in regression 

studies. The theory can be demonstrated using an important result from matrix algebra - 

that any     matrix   can be decomposed into the following set of matrices, 

 

       (3.24) 

 
where   is an     matrix with orthonormal columns (i.e. the columns are the left 

singular vectors of  ),   is a     diagonal matrix with non-negative elements and   is a 

    orthogonal matrix (i.e. the columns are the right singular vectors of  ). This is a 

singular value decomposition (   ). The matrix   can be replaced with the mean centered 

    to gain the following     form, 

 

                  (3.25) 

 

Where   contains the columns of eigenvectors    of     and the diagonal elements of   

(i.e.   ) are the corresponding eigenvalues    . To attain the    matrix of the mean 

centred   , the     matrix should be divided by     , which scales only the eigenvalues. 

Therefore, these are the eigenvectors of the    matrix of  . A full complement of non-zero 

eigenvalues can only be found if     is non-singular (i.e. full rank). They adhere to the 

characteristic equation, 

                (3.26) 

 
The    can then be used to obtain the corresponding eigenvectors   , 

 

                (3.27) 

 
The set of    and     that give a non-trivial solution are the   eigenvectors and 

corresponding eigenvalues of    . The benefit of obtaining the eigen-decomposition for 

collinearity diagnosis becomes apparent when we consider the vector geometry of the 

   . For this illustration      is retained from the     geometry – i.e. a correlation of 

     between    and   . Geometrically, the effect of the eigenvalues and eigenvectors 

can be considered on an uncorrelated pair of covariates (i.e. a unit disc). The     performs 

two rotations by the eigenvectors either side of a scaling by the eigenvalues.   
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( )  Orthogonal Axes ( )  First Rotation by   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

  

( )   Scaling by   ( )   Second Rotation by   

 

 

 

 

 

 

  

 

 

 
 
 

 

Figure 3.11: Illustration of the     decomposition of the    matrix. 
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The process demonstrated in Figure 3.11 is labelled a principal axis transformation 

(Jackson 2003). The eigenvectors    represent the direction cosines, demonstrating the 

angle between the old and new axes - i.e.                . Therefore,         is at     

from the original         axis and similarly at     from the original         axis. This is demonstrated 

by elements     and     in   respectively. The initial eigenvector rotation centres the main 

direction of variation on the original         vector. The data circle is then scaled along the 

major and minor axes to represent the variation in the data. The final rotation centres the 

vectors on the    axis in ( ) as the variation in this example is distributed evenly between 

the variables (i.e.     
     

). The set of rotated axes are labelled “principal axes”. 

The eigenvalues scale the data circle (i.e. the identity matrix) to create a data 

ellipse when there exists correlation amongst covariates (Figure 3.11  ). The first 

eigenvalue gives a measure of the variance in the direction of greatest variance (i.e. the 

first principal axis). The second eigenvalue provides a measure of the variance of the axis 

orthogonal to the first and so on. Therefore, in an example with two collinear covariates, 

   will be relatively large in comparison to    . As the correlation between    and    

grows, the difference between     and    will subsequently increase. As    decreases it is 

indicating the growing redundancy of the second dimension in the data. Thus, indicating a 

greater dependency amongst the predictors. The definition of what constitutes a ‘small’ 

eigenvalue becomes the issue from a diagnostic perspective (particularly when     ). 

Belsley (1991) suggests that the problem arises due to trying to identify a small eigenvalue 

relative to zero, when an improved suggestion is to define it against others in the study. 

The    is a way of presenting the information gained from eigenvalues. Through 

considering eigenvalues as a ratio to the maximal variance, the thresholds become 

appropriate to the individual study.  

 

    
    

  
 (3.28) 

 
Similar to the    , there are popular thresholds that researchers choose to use as an 

indication of severe multicollinearity. Belsley suggests 1-10 as an indicator of weak 

collinearity and 30-50 for moderate to high collinearity. However, the range of thresholds 

employed suggests that many lack valid statistical justification. They are arbitrary values 

suggested for the benefit of the user, but caution should be taken when placing too much 

emphasis on their results.  
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3.3.3 Application of Collinearity Indices 

The     and    are based exclusively on the dispersion matrix of the covariates (as 

illustrated in the geometrical examples). Therefore, they are labelled ‘correlation based’ 

diagnostics. These inform the user of the degree of collinearity amongst the covariates, but 

nothing of further factors involved in the model, thus neglecting to indicate its potential 

impact on the model parameters. If the user solely intends to assess the collinearity 

amongst the predictors, then measures based on correlation or covariance alone will be 

adequate. However, to make justifiable decisions on model specification, the user will 

require a greater detail of the model environment in which the collinearity exists. Prior 

knowledge and model features will dictate this impact and its subsequent interpretation. 

The     and    are popular diagnostic measures and both have strong 

interpretational benefits for the users understanding of collinearity. However, both have 

limitations with regard to our original aims for a diagnostic measure. For example, whilst 

the     can indicate the contribution of a variable to the presence of collinearity, it will not 

specify how many dependencies are present nor which variables are involved in particular 

dependencies. A further issue is with the promotion of a ‘rule of thumb’ to denote a 

‘significant’ dependency. Introducing a ‘rule of thumb’ suggests a point at which the 

researcher should ‘act’ and try to remedy the ‘problem’. This misguided view of the model 

environment demonstrates a misunderstanding of the role of collinearity (in both a 

beneficial or adverse nature) and is dangerous for regression studies in epidemiology.  

 

The Condition Index 

The    addresses some of the limitations of the    , whilst it still shares the common 

restrictions of a ‘correlation based’ index. An eigenvalue ‘close’ to zero will demonstrate 

the presence of a near-collinear relation and in turn a redundant dimension in the data. 

The issue of what constitutes a “small” eigenvalue is somewhat eased (but not negated) by 

adopting a ratio that places the eigenvalue in proportion to the largest in the study. The 

use of eigenvectors in partnership with the eigenvalues are sometimes used (primarily in 

methods such as principal components analysis – see chapter 4) to indicate which variables 

play a role in the strongest dependencies, but will not provide a complete solution. This 

index can be seen as an improvement to the     as a standalone diagnostic, but caution 

should still be placed in its application. 
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Recall that the eigenvector represents a rotation of the axes in subject space to 

centre them in the direction of maximal variance. Extending the example to three 

dimensions would produce an ellipsoid shaped data cloud (without perfect collinearity), 

 

     
         

         
         

  

 
 

 

Figure 3.12: Results of a simulation from the theoretical correlation matrix. 

The final eigenvalue, measuring the ‘flattest’ part of the ellipsoid, would indicate the linear 

dependency between    and    (i.e. an approximately redundant dimension). Figure 3.12  

illustrates a random scatter of points (i.e. almost circular) demonstrating the independence 

of    with    and   . The correlation matrix produces the following    , 

 

      

  
             
              
                 

  
      
      
      

  
               
          
                   

  

 
Each eigenvector has been normalized to give a proportional weight to the original  . 

Observe that    is approximately orthogonal to the third principal axis. This is to be 

expected as the variance in    is being explained almost entirely by the second principal 

axis (i.e. no rotation of    – i.e.         ;    and    axes are orthogonal – 

i.e.           ). Orthogonality between the original axis and the principal axis would 

indicate that it plays no part in the dependency. Therefore, it would seem natural to 

assume ‘large’ elements in the eigenvector with a ‘small’ associated eigenvalue, would 

indicate variables involved in a linear dependency. However, it should not be assumed that 

small elements in the eigenvector demonstrate that the variables are not involved in the 

relationships (Belsley 1991).  

            



Chapter 3   Measuring the Impact of Collinearity 63 

 

 This misinterpretation arises from the use of the word ‘small’. A zero element in 

the eigenvector would naturally dictate that the variable is not involved in the 

dependency. However, a small element can still be involved in such a relation as 

demonstrated by a useful counter-example in Belsley (1991). The following relationship 

defines three covariates in a model, 

 

    
      

 
                   (3.29) 

 
The system is computationally singular (i.e. final eigenvalue will be zero). The eigenvector 

corresponding to the zero eigenvalue will be of the following form before scaling, 

 

    
 
 
 
  (3.30) 

 
Therefore, a small   will reduce the eigenvector element and seemingly its importance in 

the linear dependency. However, it is clear from eqn(3.29) that    plays an integral part in 

this relationship. Whilst Belsley’s example is extreme, the same problem can exist when 

the covariates are full rank. It is safe to assume that large eigenvector elements indicate a 

part in the dependency, however the reverse is not always true for small elements. 

 

Variance-Decomposition Proportions 

Belsley (1991) promotes the use of variance-decomposition proportions (   ) in 

partnership with condition indices. The theory of the     can be illustrated in part by 

features already presented in both the     and the    discussions. Consider once again the 

    of the    matrix of regression coefficients shown in eqn(3.31), 
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The     is as follows, 
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Notice that each variance of    (highlighted in red) is split into   elements of eigenvectors, 

each associated with only one singular value (i.e.   ). Each ‘small’ eigenvalue (indicating 

one linear dependency) will proportionally inflate the eigenvector as the value lies in the 

denominator – thus inflating the overall variance of the coefficient, indicating covariate 

involvement in the dependency.  

 

    
   
 

  
                   

 

   

             
   

  
 (3.32) 

(Belsley 1991) 

Each     ( ) will relate to precisely one near dependency. This concept is most easily 

presented and understood as part of a table (Belsley 1991). This can be demonstrated 

using the correlation matrix in Figure 3.12,  

 

                               

1 0.023 0.023 0.004 

1.97 0 0 0.955 

39.1 0.977 0.977 0.001 

Table 3.1: The     of the     matrix in fig.3.9. 

Notice in this simple example that each variance composition sums to unity. The variance 

of the coefficient    is almost entirely explained in the second    (i.e. the second principal 

axis). The final    is ‘large’, demonstrating the near redundancy of the final dimension. The 

    for this index contains two large elements on    and   . This demonstrates the high 

correlation between these two covariates and the approximate redundancy of    in the 

linear dependency.  

Next revisit the counter-example proposed by Belsley in eqn(3.29), 
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1 0 0 0 

4.59 0 0 0 

NA 1 1 1 

Table 3.2: The     of the counter-example used by Belsely (1991) in eqn(3.29). 

The final condition index is undefined as the      matrix is singular. Notice that all 

covariates are equally weighted in the dependency. Although this trivial example is not 

particularly informative, the     have recognised the equal importance of the three 

variables in the perfect linear relation, even when the magnitude of each covariate in the 

relation differs.  

 
All Subsets Regression 

An interesting alternative to the     and    is ‘all-subsets’ regression. The method is to 

regress each predictor on all possible combinations of the remaining covariates. The link to 

the     can be seen immediately in that    
  performs a similar operation. However,    

  

only provides information against all remaining covariates and therefore fails to specify 

which particular predictors are involved in the relationships. All subsets regression would 

provide an answer to this limitation as all possible relationships are assessed and the 

corresponding analysis would flag those found to demonstrate a linear dependency. The 

cost is that the process is computationally heavy and would provide a substantial amount 

of information to digest. However, if this can be overcome then the method can provide a 

useful extension to the     measure when the results are analyzed with care. 

Belsley (1991) highlights that although useful, this information would still be 

subject to the effects of collinearity if the subsets themselves exhibit linear dependencies 

(i.e. those cases we are particularly interested in). Any information gained from  -statistics 

and variances would be subject to the effects of collinearity. Therefore, for this method to 

be of use, it would require an understanding of which information could be used reliably – 

perhaps requiring the additional use of a collinearity index. In chapter 5 the matroid 

approach is developed, which borrows much from this idea, but instead of analyzing  -

statistics and variances, uses collinearity indices such as the     to assess the subsets of 

covariates. Although this new method is promoted as a means of forming conceptual 

models for use in confirmatory analysis, they could equally be viewed as a powerful 

(although computationally laborious) method of assessing linear dependencies.   
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3.3.4 The Impact of Collinearity on Variance 

Researchers will often use a ‘rule of thumb’ for the     to indicate ‘serious’ or ‘severe’ 

collinearity in a dataset. This will encourage the use of advanced procedures to relieve the 

problems of collinearity which can lead to additional complications in the analysis. If other 

factors had been accounted for in the initial assessment of the data, the need for such 

remedial action may be less than first thought. O’Brien (2007) questions the validity of any 

inference based solely on the     measure (although similar arguments can be extended 

to any ‘correlation based’ measure). The     provides a description of the collinearity 

present in the model. However, the variance equation of the regression coefficient 

demonstrates the influence of further factors in modifying the impact of collinearity, 

 

         
  
 

      
     

 
 (3.33) 

 
These relate to (1) the coefficient of determination -   

 , (2) the sample size and (3) 

the variance of the predictors. The vector geometry in Figure 3.9 illustrates that none of 

these additional factors have an impact on the value of the    , however when considered 

as part of a ‘model environment’ we begin to understand the potential effects of these 

factors. The geometrical illustration in Figure 3.13 is intended to demonstrate some of the 

effects of the model environment on the relative impact of collinearity.  

 

Figure 3.13: The effects of external factors on the impact of collinearity. 
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There is a rotation of the regression plane spanned by the green and red covariates in the 

models. These planes are to reflect changes in the position of the response (i.e. from 

measurement error, sampling variation etc.), but could equally (although against the basic 

assumptions of the linear model) reflect measurement error on the predictors. When the 

response is ‘closer’ to the regression plane in the green example (reflected by an 

increased   
 ), a change in the slope of the plane will conceptually have less impact on the 

coefficient point estimates. Equally, an increase in sampling variation will counter this 

restriction of movement, thus increasing the variation – but again relative to the response. 

Further to that, an increase in correlation (reflected by a smaller angle between vectors 

        and        ) would demonstrate that small changes generated by sampling error could 

greatly impact on point estimates. Each of these effects can be moderated by a response 

vector lying close to the plane, indicated by a high   
 .  

The vector geometry emphasizes the effects of these factors on the impact of 

collinearity. From an applied viewpoint it would seem difficult to make any inferences 

regarding collinearity based solely on the    , when any potential impact is governed by 

these factors. The influence of the response on the variance of the coefficients can be 

illustrated by substituting an unbiased estimate of the residual variance into eqn(3.20), 

 

        
     

           

      
              

  (3.34) 

  
        

           
  

     
  

      
  

 (3.35) 

(O'Brien 2007) 
The second fraction in eqn(3.35) highlights the extraction of a similar factor to the     

which relates to   
  instead of    

 . This is named the variance deflation factor (   ) by 

O’Brien (2007). The name refers to the ‘deflating’ effect that a high   
  can have on the 

variance of the regression estimates. The     is constructed in a similar way to the    , 

 

        
  (3.36) 

 
Therefore, a rule of thumb should account for the     as well as the    . Eqn(3.35) 

suggests that a         term would place the inflation of the sample variance in the 

context of the model. It is important to note that the vector geometry illustrates influences 

on the point estimates as well as variance of the coefficients. Both of these features are 

considered in our discussion and development of a new collinearity index.  
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3.3.5 Remedies of Collinearity  

The results of an index such as the     or    are frequently used to justify reducing the 

collinearity in the model. If a high degree of collinearity is identified amongst the variables, 

the user may remove collinear variables, enter linear combinations as a single predictor or 

employ alternative (often more complex) methodology. When the focus is on model 

specification, there is a great danger attached with allowing a statistical measure to dictate 

which variables are included in the model (e.g. forward, backward, stepwise selection 

(Derksen and Keselman 1992)). Misspecification of the model leaves the study susceptible 

to biased and inefficient estimates. This can occur when the user incorrectly removes a 

variable that is causally related to the response, without it being accounted for by others in 

the model (e.g. a sufficient set of confounders). Omitted-variable bias is present when 

parameters are over or underestimated, by leaving out important variables in the model 

(e.g. mediation, confounding, suppression examples).  

Statistical models provide a great simplification of the intermediate steps that define 

‘component causes’ in the real world. Third variable examples are a useful illustration of 

the theory of confounders, mediators etc. However, in application we are often faced with 

highly complex mechanisms. It is evident why spurious associations are often present in 

statistical analysis as the user rarely captures the complexities of the system under study. 

The ‘remedies’ focus on what we consider to be a ‘problem’ in collinearity from a statistical 

perspective. For the confounding example, a correlation was observed between   and   in 

the sample data. Adjusting for the confounder in the model would increase the precision 

of the estimation. However, this is based on a priori knowledge to distinguish the effects 

from a competing exposure with a ‘nuisance’ correlation in the study data. 

 Removing a variable based solely on a statistical measure of collinearity is ill-

advised. Also, the impact of collinearity is moderated by factors in the model environment, 

such as the predictors association with the response and the model error. Before any 

‘remedial’ measures are employed, the researcher should be confident about the source 

and the extent of the ‘problem’. It may be that in some circumstances the collinearity 

detected amongst the predictors can be used to the benefit of the estimation. Whilst 

collinearity diagnostics can play a crucial role in the specification of the model and 

understanding the estimates, the model environment and causal relationships should be 

accounted for before any remedial measures are explored.   
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3.4 Investigating the Role of the Response 

The simulations in this section are intended to demonstrate the impact of the response on 

the coefficients from a linear regression model. The simulations are purely statistical, with 

no epidemiological context implied at this point. The index developed in this project must 

account for the impact of collinearity on the point estimate as well as the coefficient 

standard errors. The simulations in this section are designed to explore both of these 

changes through varying individual influences on the behaviour of the regression estimate 

under collinearity. In each simulation, only measures available to the researcher will be 

used, such as the correlation between the covariates and the correlations between each 

covariate and the response. In each case a regression situation is considered involving two 

covariates and a single response. Many of the potential ‘symptoms’ of collinearity can be 

illustrated using this simple model.  

 

 

 

 
 

Figure 3.14: Models investigated in ( ) simulation 3.1 and ( ) simulation 3.2. 

 
Simulation 3.1 

The first simulation is designed to investigate the effect of increasing correlations between 

two predictors. Geometrically, the response is held at a constant angle from the regression 

plane (i.e.            
 ), whilst the angle between the predictors is varied (i.e.    ) (see 

Figure 3.14 ). 
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Figure 3.15: Parameter values from Simulation 3.1.   
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For the case in which the covariates are orthogonal (i.e. uncorrelated), the regression 

coefficients for the multivariable model are equal to those of the two individual univariable 

models for    and   . As the correlation between    and    is increased, the partial 

regression coefficients of the full model decrease by a common percentage change 

between simulations. There is no suppression effect in this example as the correlations 

(   ,    ,    ) are positive. Hocking and Pendleton (1983) use the analogy of a picket fence, 

in which each picket represents a covariate. The greater the collinearity, the more overlap 

there is between the pickets – obscuring the view/role of each. If we imagine balancing a 

table on these pickets (i.e. a regression plane), the closer the pickets (i.e. the collinearity), 

the less stable the table will sit. This analogy also indicates that (when feasible due to time, 

monetary, study design constraints) it may be useful to collect additional data – i.e. more 

pickets (Freund and Wilson 1998). New data points could relieve a strong spurious 

collinearity and could reduce the variance of the coefficient estimates. However, there is 

no guarantee as to the benefit of such action and this must always be balanced against the 

often high monetary costs in acquiring such data.  

The     remains constant throughout each simulation. It is only the     which 

changes to reflect the collinearity amongst the covariates. By considering different   
  (i.e. 

the different colour markers), it is clear that the     indicates this change. As the angle 

between   and the regression plane is reduced (i.e.   
  increases), the     decreases, 

subsequently deflating the variance of the estimates. The graph illustrates that this 

deflating effect has less impact when the collinearity is low. This is because the     

remains relatively close to one and so the difference in     has little influence in deflating 

the variance. The common ‘rules of thumb’ of 5 and 10 for the     have been added to the 

graphs. This corresponds to a correlation of 0.90 and 0.95 respectively between covariates 

in the bivariable model. The logic can be seen behind this rule of thumb in that the     

has relatively little effect on the variance until this point. However, it is clear that a large 

    can restrict the variance from substantially increasing beyond this point until 

‘extreme’ collinearity is observed.  

 
Simulation 2 

In the second set of simulations the angle between the response and the regression plane 

is adjusted to investigate a change in the   
 . The black, green and red lines relate to a 

    equal to 1, 5 and 10 respectively. These represent a baseline of orthogonality and two 

popular ‘rules of thumb’.  
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Figure 3.16: Parameter values from Simulation 3.2. 
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Figure 3.16 illustrates that whilst the     remains constant throughout each simulation, an 

increasing   
  decreases the variance to a negligible level. When   

  is close to unity, all of 

the variances are approximately equivalent. The         demonstrates that the green and 

red lines are equivalent when   
    along with a      ; and   

      along with 

a       . Therefore, an arbitrary ‘rule of thumb’ based only on the correlation between 

the covariates alone is dangerous to base any decisions on. The response plays an 

important role in moderating the impact of collinearity on both the variance and point 

estimates of the coefficients. 

 

Simulation 3.3 

Simulations 3.1 and 3.2 demonstrated the common (and often expected) effects of 

collinearity on the parameter estimates of the regression model. From the vector 

geometry, the projected response is held constant to lie between         and        . This produced 

a percentage decrease on the regression coefficients upon increasing the degree of 

collinearity between the covariates. In simulation 3.3, the correlations are varied between 

the projected response and the covariates (see Figure 3.17).  

 

 

Figure 3.17: Effect of an unequal correlation between covariate and response 

In this simulation, the response lies on the regression plane spanned by         and         (i.e. is 

explained entirely by the predictors). The position of the response on the plane is varied by 

its correlation (i.e. cosine angle) with the covariate   . Coloured markers are used to 

represent the correlations between predictors. 
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Figure 3.18: Change in    and    with a rotation of the response (  
   ).  

For simulation 3.3 a suppression effect can be observed in Figure 3.18. Regardless of the 

change in collinearity, the coefficient estimate on    is zero at    and      (as the angle is 

varied with respect to   ). The regression coefficient    reaches unity when the projected 

response is parallel to the vector        . It is then maximized at     and      (i.e. when the 

response is orthogonal to        ). The incremental increase in collinearity produces an 

inflation in the    regression coefficient. In contrast, the graph of    demonstrates a shift 

in the maxima toward the    maxima with increasing collinearity. As was described for the 

suppression effect in section 3.2.2, the regression coefficient on         becomes more 

negative, whilst the positive univariable coefficient on         is enhanced. At the point in 

which perfect collinearity is present, the estimates could not be determined and we can 

imagine (if only theoretically) the curves equal with opposite sign. From this simulation we 

can begin to understand the potential impact of collinearity on the interpretation of the 

coefficients. Whilst a moderate collinearity may in turn have a moderate effect on the 

coefficients, a high collinearity can have a much inflated effect dependent on the position 

of the response.  

 

Simulation 3.4 

For the final simulation the change in angle between         and    is repeated. A low and high 

correlation between the covariates is considered separately (     0.3, 0.9). In each graph, 

the angle of the response to the regression plane is varied through 0 - 360 .  
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Figure 3.19: Simulation 3.4 – Varying   
  on unequal correlations.  

 

 

Figure 3.20: Results of simulation 3.4 for (a)      0.9 and (b)      0.3. 
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In Figure 3.20 the variance (and        ) remains constant throughout each simulation 

as the collinearity and   
  are fixed. Therefore, the interest is in the point estimates of the 

coefficients. The inflation due to the suppression effect is much greater with a high   
 . 

From this extension to simulations 3.1 and 3.2, it is clear that it is the impact on the point 

estimate, as well as variance that is essential for the new collinearity index to assess. The 

change from a population coefficient to an estimated coefficient (and subsequently a 

potential change in interpretation) may be much greater under different collinearity 

conditions, whilst the variance of the estimates remains constant. This is important for the 

development of a new index in chapter 5.   

The simulations in this chapter have been designed to explore the influences of 

collinearity on the bias and standard errors of the coefficients. The     and    (along with 

other ‘correlation based’ indices) are intended to measure only the degree of collinearity. 

Understanding the impact of collinearity is far more complex than ‘correlation based’ 

diagnostics can assess. The role of the response will have a major influence on the impact 

of collinearity on the point estimate and the standard errors of the coefficients. Therefore, 

the role of   
   is essential in the variance and coefficient point estimates. The combination 

of a collinearity measure (e.g.    
 ) and a measure of the response (e.g.   

 ) appears 

potentially at the heart of a new index.   

 
“… collinearity must not only be shown to be present but also shown to be adversely 

affecting the estimate of the given coefficient” 

(Belsley 1991) 
 
This quotation by Belsley should provide the motivation for the development of a fresh 

diagnostic measure. Keeping in mind the conceptual understanding of the variable types in 

epidemiological study, it cannot be said that any of the measures discussed in this chapter 

adequately address the latter part of this challenge. Examples provided discussing the role 

of biological knowledge in interpreting a confounding, mediating or competing exposure 

are testament to this. In addition, the influence of a suppression effect (contrary to many 

researchers understanding of the impact of collinearity) can play a major role in adversely 

affecting a researcher’s interpretation of a model incorporating highly collinear variables. 

Statistical measures cannot distinguish such features, but can be built to work in 

partnership with this external knowledge. This is the primary motivation in the 

development of new techniques for applied regression studies.  
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3.5 Conclusions 

If a change of sign is observed after including a third variable in a regression model, we 

may consider this a false result. We are often led to believe that this is a negative 

consequence of collinearity. Theoretically we could have all the information on the 

variables without measurement error or sampling variation and still experience this change 

of sign. Sampling variation may generate the discrepancy, but it may also be true of the 

population parameter. It is only when we bring the biological interpretation into the work 

that the coefficient begins to be questioned – it is not a problem from a statistical 

perspective or a failure of    . The estimate is still unbiased. The change of sign or 

magnitude of the coefficient may not be what we expect biologically and so it is labelled a 

‘problem’ of collinearity. This is a difficulty of balancing disciplines. Statistics are often 

accepted when they fit with biological knowledge. However, the complexities of the real 

world systems are difficult to model with overly simplistic statistical models and this 

creates a bridge between statistical and clinical inference. 

 Epidemiology utilizes a number of advanced statistical methods. Consequently it is 

faced with the problem of applying statistics to the ‘real world’. It often appears to be 

limitations in the statistics that prevent us from ever truly answering these problems. 

However, as viewed in Pearl’s birth-control example in section 3.2.3, it is not the statistical 

method that is at fault, but rather the way in which it is used. Through including the 

mediator, the estimate does not reflect the interpretation of the causal model. 

Understanding the relevance of the statistics in the real world is one of the biggest 

challenges in applied statistics in epidemiology. The researcher should not automatically 

choose the blanket approach for all types of problems, but instead ask whether the 

assumptions and underlying model reflect the application. The collinearity diagnostics 

considered in this chapter stay very much within the realms of statistics. They do not 

address the epidemiological interpretation as they were not designed for such a purpose. 

It may be impossible for the statistics to achieve what we would like working within 

epidemiological restrictions such as study design and the seemingly guaranteed existence 

of collinear variables. The aim should remain to develop appropriate methods that address 

the epidemiological problem; to encourage the cooperation of the statistics with the 

clinical interpretation. This is the motivation for the development of a new index in chapter 

5. It also begins our discussion regarding the use and application of ‘default’ statistical 

methods for the study of      in chapter 6. 
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4. Vector Geometry of Exploratory Analysis and 

Advanced Regression Methods 

Basic concepts of vector geometry in correlation, rotation and projection were introduced 

in chapter 2 and used to derive the least squares estimator. Epidemiological study often 

dictates the need for more ‘advanced’ estimators than    . From an analytical perspective 

these techniques can appear complex. In chapter 4, principal components regression (   ) 

and partial least squares (   ) are considered which are in the class of ‘shrinkage’ 

estimators. The incorporation of such techniques into statistical software will often 

promote their use, as a thorough understanding of the methodology may not be required 

for implementation. Whilst the complexity must be respected, geometrical illustrations can 

be used to present and better understand such methods when possible. This is one of the 

reasons for discussing the     estimate in chapter 2. The intention was not to encourage 

the application of    , but instead to demonstrate a baseline approach that allows more 

complex methods to be better understood and in turn to encourage a considered 

application of the methodology. 

A selection of advanced regression methods are introduced in chapter 4 that will be 

used in the remaining chapters of the thesis. Geometrical links between methods are 

presented where possible. The intention of this presentation is threefold; (1) to aid with 

the building of new methods from a common baseline. Links are considered between     

and    , with the latter looking to maximize the covariance of the predictors and the 

response. This provides the motivation for a new collinearity index; (2) to understand the 

exploratory factor and clustering methodology and their uses in application.     is 

compared to factor analysis (   ), focussing in particular on the underlying models 

assumed by each approach; (3) to understand what insights estimators such as     and 

    can provide in novel applications. The selection of methods in this chapter is very 

much dictated by the aims of later chapters. This is to provide a framework for the 

methodology that allows justification for their application in later work.  
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4.1 Geometry of Multivariable Regression 

The geometrical extension from a bivariable regression model (i.e.    ) to a higher 

dimensional example (i.e.    ) can be made using the same basic principles that were 

presented in section 2.4. However, for the multivariable example, it is useful to understand 

the space in which the vectors exist. The  -dimensional subject space is first divided into 

two orthogonal subspaces – one containing systematic effects and one random effects 

(Wickens 1995). The ‘systematic space’ is then further divided into two orthogonal 

subspaces, consisting of a  -dimensional intercept space and a  -dimensional effect space. 

The effect space contains the   centered regression vectors (e.g. in a bivariable model this 

is the regression plane spanned by the vectors         and        ). To this point a focus has been 

placed only on the projected response contained in the effect space (   ), however the 

response vector is further built of components in the intercept (    ) and error space (   ).  

 

                (4.1) 

 
Collinearity is not changed upon mean centring and so this work is presented in the 

reduced      -dimensional space. However, collinearity will impact on the variation of 

the coefficient estimates, therefore the projection of     onto the error space is important. 

 

4.1.1 Incorporating Error into Vector Geometry 

 

Figure 4.1: An illustration of error in vector geometry. 
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The error space is not simple to demonstrate in geometrical form due to the often high 

dimensionality (i.e.        ). The illustrations in this work have displayed only the 

systematic component, which has allowed us to work in fewer than the theoretically 

necessary dimensions. The random component is often illustrated as a uni-dimensional 

vector   , when in fact it is contained in the (     )-dimensional error space. 

Unfortunately, the 3-dimensional view available in human perception is rarely adequate to 

demonstrate this. The dimension of the space in which each vector lies controls its 

freedom to move. The impact of collinearity on the variance of the estimates can be 

considered in this manner. When   predictors are orthogonal, the effect space is  -

dimensional. If there exists a perfect linear dependency amongst two predictors, they lie in 

a common dimension, meaning there is a redundant dimension in the  -dimensional effect 

space. This increases the dimensionality of the error space by one, thus allowing a greater 

movement of the error vector. This is reflected by the available degrees of freedom and 

prevents computation of     estimates under perfect collinearity (see chapters 7-8). 

 

4.1.2 The Error Space 

The linear model relies on the assumption that the    (for         for   observations) 

are independent and identically distributed normal random variables with mean zero and 

constant variance   
  (see section 2.2.2). This determines that the random error vector (   ) 

represents   independent normal random variables. Independence of the errors (i.e. 

orthogonality) and constant variance (i.e. length) dictates that     is spherically distributed in 

the geometry with radius       . The family of  -dimensional hyper-spheres provide 

the isodensity contours that define the distribution of     (Belsley 1991). The contours are 

the set of points for which the values of    give a constant probability   for the density 

function   of   (Gatignon 2003).  

 

        
 

   
    

      
 

   
    

      
 

   
    

     

  
 

       
    

    
    

      
  

 
  

 

       
          

 
    

(4.2) 

    
    

      
     

 

 

   

 (4.3) 

(Wickens 1995) 
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Eqn(4.2) implies that the error vector is uniformly distributed in any direction (Wickens 

1995). This means that the error vector can take any angle in the  -dimensional hyper-

sphere with equal probability. This demonstrates the spherical properties of the error 

distribution. When considering only two predictors, the hyper-sphere is projected onto a 2-

dimensional plane (regardless of the collinearity), therefore a spherical distribution is 

always observed in the regression space (see Figure 4.1). However, when the error 

distribution is projected onto a space consisting of more than two non-orthogonal 

predictors, the space is no longer constructed of standard orthogonal axes. Thus the 

spherical distribution will typically take the form of an ellipsoid (in the presence of collinear 

predictors) – an example of this is shown in Figure 5.22.  

 

4.1.3 Least Squares Regression in Higher Dimensions 

The     estimate in vector geometry can be viewed as a unique projection of   onto the 

regression space spanned by  . The projection that minimizes the residual error (i.e. the 

distance of the response to the regression plane) is the orthogonal projection to the 

regression space. This was demonstrated for the bivariable regression model in section 2.4.  

For the model involving two predictors and a response, the vector geometry can be fully 

presented using the conceptually appealing 3 dimensions that are required. When the 

geometry is extended to the 3 predictor model a focus must be placed instead on the 

projected response    to remain in the 3-dimensional regression space. 

 

 

 

Figure 4.2: An example of a trivariable regression model. 
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The response projected onto the regression (or effect) space for the higher dimensional 

model can be divided into components. First, consider the simple regression model 

involving only the predictor   . The projected response would lie along the vector         with 

length equal to the correlation     (i.e. the blue vector). This is equivalent to the regression 

coefficient of the univariable model. The second component is orthogonal to    in the 

plane spanned by         and         (i.e. green component). This becomes the position of the 

projected response    for the bivariable model including    and    (i.e. green vector).  

 

 

Figure 4.3: Construction of the projected response in    regression space. 

This component is orthogonal to        , which demonstrates that    is held constant in the 

computation. It equates to a semi-partial correlation between   and    (labelled      
),  

 

     
      

           

      
 

 (4.4) 

This is equivalent to the correlation between   and the residual vector of    regressed 

on   . Following the same principle, the third component is orthogonal to the plane 

spanned by    and    signifying that the addition to   
 
   

 for the three predictor model is 

found by the correlation of    with  , whilst    and    are held constant. This is the 

correlation of    and the residual vector from the bivariable model. This is labelled a 

partial correlation (       
), with the covariates held constant listed in the subscript. The 

squared components sum to obtain   
 
   

 (i.e. the length of   ).  

 

  
 
   

    
      

 
 
     

 
  

 (4.5) 

 
   is found by the orthogonal projection of    along the plane spanned by the remaining 

pair of covariates in the model onto       . Higher dimensional examples can be presented 

using the same principles of projection onto a lower dimensional space.   
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4.2 Exploratory Analysis 

The role of exploratory analysis is to examine data without a pre-conceived statistical 

model or implied hypothesis. The purpose is to test assumptions for statistical inference, 

identify potential exposures and generate models or data structures. The role of 

confirmatory analysis is to verify models and hypotheses generated a priori. A small 

selection of exploratory methods will be outlined along with a discussion regarding the role 

of confirmatory analysis in applied work. This discussion is generally of a statistical nature, 

with a clinical context later assumed in chapter 6. This also acts as a precursor to advanced 

regression methods discussed in section 4.4 and applied in chapters 7-8. 

 

4.2.1 Principal Component Analysis 

    extracts weighted composites of manifest variables (known as principal components – 

or   ’s), that are orthogonal (uncorrelated) and ordered by largest to smallest explained 

variance in  . The motivation for a      is to retain as much of the explained variance of   

in the first few components, whilst reducing the dimensionality of the correlated 

covariates (Joliffe 2002). The first    (labelled   ) explains the greatest variability in the 

data, and each successive    (   for      ) explains as much of the residual variance as 

possible. To demonstrate the construction of the   ’s, recall the     of the     matrix 

presented in section 3.4.2, 

 

         (4.6) 

 
From this composition, eigenvectors    and eigenvalues    are generated from the    

matrix of  . The   ’s are found in vector geometry by a rotation of   using the 

eigenvector   , 

       (4.7) 

 

where    is a     vector representing the         and   is a mean centred     matrix of 

observations. In    , the eigenvectors are referred to as vector ‘loadings’ or ‘weight’ 

vectors (i.e. the rotation matrix) and the elements of    as the component ‘scores’ (i.e. a 

bilinear decomposition of   ). A further useful property is that the eigenvalues are 

proportional to the variance of their corresponding   ’s (see section 3.3.2), 
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       (4.8) 

 
As the matrix containing the eigenvectors is orthonormal (as defined by the     result), 

the   ’s resulting from the transformation will be orthogonal to one another. The 

properties of the technique can be translated into their geometrical equivalent.  

 
1. The sum of the squared eigenvector elements is equal to unity. This ensures that 

the new components will be on the same scale as the original  . 

 

   
     

       
    (4.9) 

 
Predictors and   ’s pass through a common covariance ellipsoid in the geometry. 

 
2. No variation is lost in the original data; it is reassigned to maximize the 

contribution of explained variance on the first component. Therefore, the sum of 

the variances in   is equal to the sum of the variances in  . 

 

                         

                           
(4.10) 

 
In geometrical terms, the squared lengths of the vectors are equal, 

 

         
           

             
          

          
             

  (4.11) 

 
3. The   ’s are uncorrelated with one another.  

 

                          where     (4.12) 

 
This dictates that the component vectors are orthogonal, 

 

                  (4.13) 

 
4. The   ’s capture the maximal contribution to global variance conditional on the 

orthogonality and sums of squares constraints.  

 
The number of components will always equal the number of predictors (i.e. span the 

original  -dimensional space), however     creates a new set of axes for the data in which 
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the first few   ’s will retain most of the global variation. This allows the user to retain 

fewer components, whilst still explaining a high percentage of the information provided in 

the original covariates (thus reducing the dimensionality of the data). This can be a very 

useful process, particularly for high dimensional data. The information (or signal) should be 

captured in the early components, whilst the latter   ’s should contain mostly noise. 

However, as with any statistical technique, the quality of the resulting analysis is directly 

related to the ‘quality’ of the input data.  

 For a two predictor model, if the covariates are of equal variance the first    will 

bisect the covariate vectors to ensure that the weighting is equal. This is equivalent to a 

    (i.e.           ) rotation of the covariate axes onto the    axes in variable space, 

 

 

 

     
     

     
  

   
         

        
  

    
         

         
  

Figure 4.4:     analysis in subject space (   =0.71). 

The bilinear decomposition produces the first weighting (i.e.   ) equal, due to the unit 

variance on each covariate and conditional on the unity constraint on the squared 

coefficients. The second    is orthogonal to the first and adheres to the same unity 

constraint on the squared coefficients. This quantity is multiplied by the common standard 

deviation of the original covariates to obtain vector lengths when     
  .  

 

       
   
         

 

        
     

           
 
         

  
 
 
 (4.14) 

 
Eqn(4.14) demonstrates the correlation between the old and new vectors calculated using 

the general correlation formula (see Wickens 1995). When the standard deviations are not 

equal, the first    is weighted towards the covariate with the greater standard deviation in 

the bivariable example. This emphasizes the variance maximizing priority of a    .  
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4.2.2 Exploratory Factor Analysis 

Factor analysis is similar to     in that constructs are formed from manifest variables 

(labelled factors rather than components). This allows the dimensionality of the data to be 

reduced by retaining a smaller number of factors. Although the procedures are 

mathematically similar, the philosophy behind the factor extraction differentiates the 

techniques. Factor analysis assumes the variation in a predictor to be generated by various 

hypothetical constructs, known as factors. These are attributes that cannot be measured 

directly, but we realise their effects through the observed variables. 

  

Figure 4.5: The decomposition of predictors into common and shared variation. 

Figure 4.5  is a demonstration of the common factor approach. The constructs are formed 

by partitioning common variance (shown in yellow) from unique and error variance (shown 

in blue) (Costello and Osborne 2005). The common factor   represents a single latent 

variable that is influencing both    and   . The additional effect of a unique factor    for 

each covariate produces an imperfect correlation (i.e.      ). As such, geometrically the 

unique and common vectors are orthogonal and of unit length. The covariates lie in the 

space spanned by the common factor and a single unique factor. With a single common 

factor as illustrated in Figure 4.5a, the factor space is uni-dimensional, and the component 

   present in the factor space represents the common variance of    and   . If a second 

factor is introduced (as in Figure 4.5 ), the factor space becomes two-dimensional. The 

unique vectors each remain orthogonal to the factor space (and each other), however the 

common vector        does not have to lie on one of the orthogonal factors    or   , only in 

the space spanned by the factors. The    are the factor scores and can be presented in as 

few dimensions as the number of factors retained (see Figure 4.6).  
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Figure 4.6: Geometrical Illustration of a 3-dimensional factor space. 

The proportion of a variables variance that is due to shared variation is known as its 

communality – i.e. the squared length of        (Wickens 1995). The unique variance is 

computed as the total variance minus the communality estimate. The loadings are found 

by the orthogonal projection of each        onto each retained factor (e.g. Figure 4.6). 

 

4.2.3 The Role of Confirmatory Factor Analysis 

Methods of factor analysis are generally separated into exploratory (   ) and 

confirmatory factor analysis (   ). They are both based on the common factor model (see 

Figure 6.1), that assumes variables exhibiting high correlations are generated by common 

latent factors, whereas those that display low correlations by unique factors. An     looks 

to generate a theory about an underlying factor structure from a set of variables. It is 

typically used when there does not exist strong theory about the structure of the data. In 

contrast,     will take a hypothesized structure and analyze how well the data fits the 

structure based on certain constraints (often suggested by an exploratory approach).  

The use of     in scientific research has been evident since the work of Pearson and 

Spearman in the early 20th century; however the development of     in the 1960’s is a 

relatively recent addition. The techniques are commonly perceived as separate entities, 

however in applied research they should be viewed along a common continuum. When a 

researcher undertakes an     they will often have a ‘hunch’ about the form of the 

potential structure. It is ill-advised that the user simply ‘throw’ variables into the analysis 

without background reasoning (Floyd and Widaman 1995). Therefore, the driving 

difference is in the degree of a priori information specified by the user.  
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4.3 Cluster Analysis 

Cluster analysis describes a range of algorithms and statistical methods for grouping 

objects or variables by their degree of association. It is often referred to as unsupervised 

learning (or classification), meaning that the cluster formations are undefined prior to the 

analysis. The term cluster usually refers to groups of subjects or objects from data, 

however there are examples of variable clustering methodology. Some of these methods 

are comparable to     and    , but produce ‘distinct’ (non-overlapping) clusters. 

Clustering techniques play an important role in clinical applications such as the 

classification of patients to diagnostic categories (Everitt et al. 1971) and groups reflecting 

high and low risk subjects (Avanzolini et al. 1991). 

 

4.3.1 Hierarchical Clustering 

Clustering methods are split into hierarchical and non-hierarchical techniques. Hierarchical 

clustering generates groups of highly associated objects that are nested within larger 

clusters with a weaker association (i.e. display a greater dissimilarity to other clusters). 

Non-hierarchical clustering procedures partition the dataset, producing a set of clusters 

that have no overhanging relationships amongst them.  -means clustering is a non-

hierarchical method in which the number of clusters is chosen prior to the analysis and 

cases are iteratively reassigned by their distance from cluster means (see Figure 4.7 ).  

 

  

Figure 4.7: ( ) Hierarchical and ( )  -means clustering on the     in section 3.3.3. 
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A focus is placed on hierarchical clustering due to the interpretational benefits of the 

dendrogram structure used in chapter 6 (see Figure 4.7 ). Deciding to utilize a hierarchical 

cluster analysis, the user must decide whether to employ an agglomerative or divisive 

algorithm. Agglomerative (or ‘bottom up’) clustering involves all objects or variables being 

entered as single clusters in their own right. The algorithm merges the objects using a pre-

specified measure of association until a single cluster comprising of all the objects is 

generated. Once a case is assigned to a cluster, it cannot be reassigned. The clusters can 

only grow in size. Divisive (or top down) clustering begins with a single cluster containing 

all the elements and splits the clusters until each element is separate to the rest.  

 

Proximity and Linkage Criteria 

The measure of proximity is a vital component of cluster analysis. It defines what it means 

for two observations or variables to be ‘similar’ (or equally important, to be ‘dissimilar’). 

There are a number of measures available to the user for continuous, categorical and 

binary variables (or mixtures). Green and Rao (1969) suggest that as data types and 

research objectives differ so greatly in applied research, there should be no “dominant” 

proximity measure. Instead, a range is often provided in statistical packages, usually split 

into distance and similarity measures. It is often cited as a difficult feature of clustering in 

application to relate these proximity measures to ‘real world’ concepts.  

 The linkage method defines the conditions to which the objects or clusters group 

to form a single cluster. Most clustering software will provide single linkage (i.e. elements 

are joined based on their closest distance to other elements) and complete linkage (i.e. 

based on furthest distance). However, these methods are sensitive to outliers and single 

linkage will tend to drag new elements into existing clusters rather than form separate 

clusters in their own right (known as ‘sequential joining’ or ‘chaining’). Criteria such as the 

median or centroid method may be preferable as they are based on a central measure of 

each cluster. Another popular criterion is Ward’s method (see Figure 4.7 ). This method 

looks to minimize the group sums of squares within clusters, which is intended to retain as 

much information in the data whilst forming clusters of observations.    

 

4.3.2 Visualizing the Results 

 The results of a hierarchical cluster analysis are traditionally visualized using a dendrogram 

(see Figure 4.7 ). A dendrogram is a tree-like structure that displays the formation of 



Chapter 4   Vector Geometry of Advanced Regression Methods 90 

 

clusters as a series of horizontal and vertical lines. For the illustration in Figure 4.7a (from 

the   package hclust) the  -axis displays the measure of distance or similarity that each 

cluster is formed (i.e. the level of association amongst members of each cluster). The  -axis 

contains labels for the observations that are entered into the analysis. At the bottom of 

the dendrogram the objects are independent of one another and as the threshold for 

association is lowered (higher in the diagram), the clusters form.   

When employing either an agglomerative or divisive clustering procedure a single 

cluster will be produced containing all the predictors and a level at which none of the 

variables are part of a cluster. Therefore, this can be viewed as a graduated scale in the 

strength of the cluster formations. Child (1990) criticises the subjectivity of not having a 

defined cut point to give a “sensible and representative number of clusters”. This can 

indeed be labelled subjective. However, the graduated clustering could be seen as an 

advantage in observing how the clusters develop and not needing to pre-define the 

number of clusters present (as in an    ). This should aid with reproducibility as it would 

help to identify any consistency across study populations.  

 

4.3.3 Variable Clustering  

In  -mode, observations are clustered in variable space, whereas in  -mode the data 

matrix is transposed and variables are clustered in object space (i.e. clustering rows or 

columns respectively).  -mode can be implemented using similarity measures such as 

Pearson’s    or Hoeffding’s   statistic. Further analysis can be performed on a cluster 

analysis by applying a     to the predictors within the cluster and replacing with the first 

   to analyze the structure of the ‘homogeneous’ groups (thus simplifying a     on the 

full set of variables). Clustering methodology is included in this chapter with a focus on 

variable clustering rather than the traditional object clustering. As a comparative method 

to     and    , the results of variable clustering would not produce abstract factors of 

loadings, but rather groups of observed variables.     is methodologically similar to a 

   . The difference lies in that the correlation matrix entered into the analysis is adjusted 

so that the diagonal elements equal the variances of the covariates. Therefore, the process 

must still invert the matrix, which is computationally heavy on examples consisting of a 

large number of variables. This problem is negated by clustering on similarity matrices and 

the interpretation eased by producing non-overlapping groups of covariates.  -mode 

clustering methods are often labelled discrete versions of factor analysis.  
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4.4 Shrinkage Regression 

To this point the discussion has considered only     as a method of estimating regression 

coefficients of the linear model. However, the assumptions that underlie the method are 

regularly violated in application. The benefits of employing     are somewhat weakened 

and in some circumstances the method will simply not produce estimates (e.g. perfect 

collinearity). Alternative estimators have been developed for such situations. In this final 

section principal components regression (   ) and partial least squares regression (   ), 

both labelled shrinkage (or regularization) methods, are introduced and the benefits of 

application considered. These are considered particularly useful when data exhibits a high 

degree of collinearity. Shrinkage methods are labelled as such due to their variance 

shrinkage capability on coefficient estimates. 

    is often described in a more complex form to    . However, the difference 

between the methods only exists in the weights used to construct the components. The 

methodological framework remains identical. Consider the bilinear model,  

 

        (4.15) 

 
where   contains the ‘weights’ of the decomposition (  in     and   in    ) and 

  contains the ‘loadings’ or latent variables (  in     and   in    ). Any unexplained  -

residuals are contained in  . Geometrically, the loadings represent the new axes and the 

weights are a rotation from original axes. Loadings are entered into the linear regression 

model and coefficient estimates    found by entering the latent variables as predictors,  

 

        (4.16) 

 
The estimates can then be transformed back onto the original axes by a reverse rotation to 

provide an interpretable solution, 

      (4.17) 

 
When the framework is presented in such a way it becomes simple to differentiate the 

motivations of these methods and understand key properties. This process is also the basis 

to the     procedure. Rotations have been added to the method, but the result is 

equivalent when all the variance in   is retained (i.e.    ). The length of the score vector 

represents the degree of variation explained in   for each component.   
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4.4.1 Principal Component Regression  

The bilinear decomposition of    for     is as follows, 

 

       
 

 

   

     (4.18) 

 
The   ’s ( ) are the latent variables (or loadings) and the eigenvectors ( ) are weights. 

There are no   residuals when the full complement of components is retained, therefore 

no variance is lost in the bilinear decomposition of  . The eigenvectors rotate the original 

axes to ensure the contribution to global variance is maximized on the first few 

components. The user will often wish to project only onto the first few   ’s (i.e. discarding 

the     components with the least explained variance). The linear regression model for 

    is as follows, 

         
    (4.19) 

 

where    is an     matrix consisting of the first     ’s of     . The     
  is an     

vector containing the   regression coefficients for the corresponding   ’s. The parameter 

estimates     
  that minimize     on the rotated axes are found in the same way as the 

    estimates, but replacing the original covariates with the selected   ’s.  

 

    
     

    
  

  
   (4.20) 

 
Using eqn(4.18) and eqn(4.6) the following result is obtained, 

 

  
      

         
       

       (4.21) 

 
The variance (or length) of the   ’s are proportional to the eigenvalues and the   ’s are 

uncorrelated (i.e.    is a diagonal     matrix). Using this property, eqn(4.20) can be re-

written in the following way, 

 

    
    

    
     (4.22) 

 
If the   ’s are interpretable, the parameter estimates of the component scores may be of 

some use. However, a simple transformation can attain estimates on the original axes.  
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  (4.23) 

                  

 
When    ,   regression coefficients are still obtained on the original   column space (as 

demonstrated in eqn(4.23)), however they will no longer be equal to the     estimates. 

Variance has been discarded and is contained in the  -residual matrix. Another way to 

consider the computation of the     components is to find the first eigenvector of the 

    matrix of   (left and right singular vectors are identical). The first residual matrix 

would contain the centered data matrix  . Once component scores have been found, 

these can be subtracted from the residual matrix and the process is repeated until the   

components have been found. Whilst this is less elegant than the ‘one step’     process, a 

sequential algorithm based on the residual matrix is the basis of many iterative processes 

used in statistical software (e.g.        - see Figure 4.9). The fitted values and direct 

computation of the regression coefficients in this space can be calculated as follows, 

 

     
        

       
    

  
  

        
    

     (4.24) 

       
    

     (4.25) 

 
This is of the form of the standard result for     presented in eqn(2.6). Vector geometry 

can be used to describe the relation of the reduced component estimates of     to the 

original     estimator. Phatak (1997) demonstrates that inserting           
  

 into the 

equation clarifies the link between the estimators,  

 

    
      

    
           

  
     

     
    

       
          

      (4.26) 

 

As the matrix     
 is idempotent and symmetric,      is an orthogonal projection of the 

     solution. When    , the matrix    will be equal to  . As   is 

orthonormal            , when the complete set of     ’s are entered into the model 

the solution of eqn(4.26) is equivalent to    . Eqn(4.26) demonstrates that      
  is simply 

an orthogonal projection of       onto the space spanned by the first     ’s (see Figure 

4.8).     is intended to increase the precision of the estimates by reducing noise and 

retaining artefact of interest from the original predictors.  
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Figure 4.8: ( )     on two covariates with the first    retained and ( ) on three 

covariates demonstrating the      
  projections onto regression surfaces. 

The estimates are biased as information is omitted from the bilinear decomposition of   

(i.e. the bias-variance tradeoff). It is important to question whether those   ’s with 

eigenvalues close to zero should be removed from the regression. As has been shown 

throughout the computation, the construction of the   ’s is based only on the predictors 

in the regression (i.e.    ) and so it may not be the optimal approach to choose to 

generate the regression estimates.     provides a useful alternative for the researcher. 

 

4.4.2 Partial Least Squares Regression 

In practice, it may be that those   ’s with small eigenvalues could be good predictors of 

the response. Therefore, removing these predictors from the regression model may have a 

damaging effect on the efficiency of the prediction and the stability of the estimation (Rao 

1999). The components that are retained in the model (i.e. those with the greatest 

eigenvalues) may have a limited association with the response. An alternative shrinkage 

method based on a similar procedure is    .     was initially developed in the 1970’s by 

Herman Wold as a tool for the social sciences but is now heavily used in chemometrics and 

bioinformatics. As opposed to the global variance maximizing process that defines    , 

    attempts to maximize   and   covariance (i.e.    ). The components are ordered by 

their maximal covariance with the response. As such, removing     components should 

retain the explanatory power of the model. 
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Similar to    ,     seeks to obtain linear combinations of the manifest covariates 

that are orthogonal to one another (i.e.     components). A similar bilinear decomposition 

of   can be formed such that, 

      
     (4.27) 

 
              are the       latent variables (or scores) and               are 

the weights (i.e. loadings) on the components. The     estimator is once again used to 

obtain     coefficients on the latent axes which are then transformed back to attain 

coefficients on the original axes. 

        
     (4.28) 

        
  (4.29) 

 
Although this is presented for a single response (i.e.  ), the process can be extended to a 

multiple response example (see De Jong (1993)). Whilst the links between     and     

should be clear from this bilinear presentation, the computation of the weight matrix   in 

    is computationally heavier.  

A linear combination has to be obtained for both the predictors and the response 

(Phatak and Dejong 1997). This is achieved by an iterative process to compute the optimal 

‘weight vectors’ to maximize covariance between   and  . Geometrically,   is uni-

dimensional which means that the process can only optimize for one component at a time. 

A sequential series of uni-dimensional projections maximizing covariance are required. 

Once a component is formed, the residual matrix for both   and   (i.e. the variance not 

explained by the     component) is entered again as the data matrix and the procedure is 

repeated. Similar to    , a maximum of   components can be formed, whilst fewer can be 

retained (i.e.    ) to reduce the dimensionality of the data. This has been considered 

particularly valuable in fields such as chemometrics and bioinformatics in which data often 

exists with a great number of variables and few observations. Due to the nature of the 

extraction these components are not necessarily ordered by explained variance in  . By 

the iterative process of maximizing covariance, the method of obtaining the weights   can 

be explained by considering the algorithms that perform    . Two of the most popular are 

       developed by Herman Wold (1973) and        proposed by Sijmen De Jong 

(1993). For our single response, these algorithms are equivalent (Phatak and Dejong 1997). 

The general process is illustrated in Figure 4.9. Both   and   are initially mean centered to 

provide the starting point for either     algorithm.   
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Figure 4.9: Graphical presentation of the            algorithm. 

The left side of Figure 4.9 finds the component scores on   (i.e.   ) and the right side the 

component scores on   (i.e.   ). The first factors    and    are simply weighted 

combinations of the mean centered   and   respectively (i.e.         ;        ) 

(Manne 1987). These weights can also be found as the initial pair of left and right 

eigenvectors from the     of     . For the work in this thesis,   is uni-dimensional and so 

the right singular vector is equal to one (this is later discussed in section 5.3).  

 

   
         

     
                     (4.30) 

(Dejong 1993) 

There are similarities to     in that    provides the rotation weight on   and    on  , 

however only the covariate axes are rotated as the response is univariate. Convergence is 

found when the change in   between iterations is smaller than a set percentage. When the 

    component that maximizes   
    is found, the matrices   and   are deflated by 

retaining only the residuals from the regression of   and   on    and the process is 

repeated. This loop continues until the full   orthogonal components    are extracted. 

The vector   is projected onto the first       components extracted from the data, 

 

    
     

    
  

  
   (4.31) 

 
Each weight   is calculated from the residual matrix   produced after each projection,  

Set   initially equal to the centered   

1. Regress   on   scores  

– i.e. components 

2. Scale   to unit length 
5. Scale   to unit length 
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Figure 4.10: ( ) The covariance maximizing procedure of     on the first component of a 

two predictor model and ( ) the     axes of a three predictor model. 

The first     component is found at the point in which the plane normal to the projected 

response    is at a tangent to the covariance ellipsoid (see Figure 4.10 ). The second and 

third components must lie on the plane that passes through the origin and is orthogonal to 

the first     component.    is projected orthogonally onto this plane and the tangent to the 

ellipse is used to form the second     component. The third is orthogonal to the first pair 

of components lying on the ellipse. Notice that in this illustration, the third     component 

explains more  -variance than the second. Unlike    ,     components represent the 

covariance structure and so they are not necessarily ordered by variance explained in  . 

 

4.5 Conclusions 

This chapter introduces a small selection of regression methods which are intended as a 

preliminary discussion for applications in later chapters. The methods of    ,     and 

clustering represent approaches to understand the underlying structure amongst a set of 

collinear covariates. They each experience benefits and limitations for such a purpose and 

provide ideas for which new approaches can be developed for similar applications.     

and     are useful estimators for highly collinear data. The vector geometry of     in 

particular provides the motivation for a new collinearity index that is developed in chapter 

5. The covariance maximizing feature links in well with our discussion regarding the role of 

the response.     and     can be viewed as suffering similar limitations to correlation 

based measures such as the     and   . The methods of     and     also provide a useful 

tool for analyzing perfectly collinear data which will be discussed in chapters 7-8. 
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5. Developing an Index to Measure the Impact of 

Collinearity 

The merits of a ‘correlation based’ collinearity index were considered in chapter. The 

common limitation of these methods is that they describe the degree of collinearity 

amongst predictors, rather than indicate its potential impact on the modelling process. An 

alternative was considered in the         measure which places this impact in the 

context of the model. When the deflation effect of the response on the variance is 

accounted for, the initial assessment of ‘problematic’ collinearity may be somewhat 

reduced – rendering the use of a correlation based ‘rule of thumb’ to indicate ‘severe’ 

collinearity a rather crude technique. Chapter 5 focuses on the challenge of comparing two 

sets of regression estimates, for use in model assessment and model selection. The impact 

of collinearity on the point estimate will be considered in addition to the variance. Vector 

geometry is utilized to generate ideas for how such an index could be formed. 

 An example application in body fat analysis is used to illustrate the development of 

our index and demonstrate a potential use. The intention is to place the theory in an 

applied epidemiologic setting and to be able to provide an interpretation for the results. 

The latter point will be stressed in particular as a statistical measure can only achieve so 

much without the use of clinical a priori information to define the setting. Comparisons will 

be made to the     and     indices that were discussed in chapter 3. The focus in 

particular is on the relationship between the response variable and the correlated 

covariates. The         considered this effect on the variance of the coefficient 

estimates, but this is only one aspect of common collinearity ‘symptoms’. Parameter 

estimates considered to have ‘incorrect’ sign or implausible magnitude are often features 

associated with collinear variables. Although a sign change is considered a clinical rather 

than statistical ‘problem’, the magnitude of the deviation of the coefficients could 

potentially be used as a tool for assessing the impact of collinearity. It could also provide a 

‘global’ comparison between nested models for a potential use in model building.  
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5.1 Example Application 

Body fat has been widely shown to be an important risk factor for diabetes and 

cardiovascular disease (Gregg et al. 2005). A recent study by Romero-Corral et al. (2010) 

suggested that patients with a normal body mass index (   ), but a high body fat content 

were still at high risk of cardiovascular mortality. These patients were labelled “normal 

weight obese” - highlighting that it is not sufficient to diagnose a subject based on their 

weight or physical appearance alone. In this chapter data are analyzed from a study by 

Penrose et al. (1985). The study records the percentage body fat, weight and height, along 

with 10 body circumference measures of 252 men.  

 

                                                                               

                     
       0.61            

       -0.03 0.49           
     0.49 0.83 0.32          

      0.70 0.89 0.23 0.78         

        0.81 0.89 0.19 0.75 0.92        
    0.63 0.94 0.37 0.73 0.83 0.87       

      0.56 0.87 0.34 0.70 0.73 0.77 0.90      
     0.51 0.85 0.50 0.67 0.72 0.74 0.82 0.80     

      0.27 0.61 0.39 0.48 0.48 0.45 0.56 0.54 0.61    

       0.49 0.80 0.32 0.73 0.73 0.68 0.74 0.76 0.68 0.48   
        0.36 0.63 0.32 0.62 0.58 0.50 0.55 0.57 0.56 0.42 0.68  

      0.35 0.73 0.40 0.74 0.66 0.62 0.63 0.56 0.66 0.57 0.63 0.59 

Table 5.1: Pearson correlations for the Penrose data. 

Body fat was estimated using hydrodensitometry (i.e. underwater weighing). The process 

involves each individual being lowered into a tank of water, expelling the air from their 

lungs and remaining still whilst measures are taken using adapted scales. This process is 

repeated three times and averaged to attain a measure of percentage body fat.  

Whilst hydrodensitometry is considered highly accurate (Hortobagyi et al. 1992), it 

is inconvenient and uncomfortable in practice. The covariates in this study are used to 

explore body composition using these external measurements of body circumference. The 

aim is to see how these highly correlated variables can be used to create an ‘optimal’ 

model to explain percentage body fat. This would potentially allow for a reduction in the 

number of measurements required, reducing study length, cost and participant burden 

whilst maintaining measurements that most accurately represent total body fat. Such 

studies have become particularly important with a recent focus on body fat distribution 

(Canoy 2010;Chen et al. 2011;Mundi et al. 2010). 
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5.2 Potential Applications of the Index 

As with the use of any statistical measure, a researcher should not rely exclusively on study 

data to assess the validity of a model. Prior information should be incorporated into the 

analysis to tailor the assessment to a particular discipline or setting. If the impact of 

collinearity is considered to be a ‘problem’, then to assess that problem we need an idea of 

what the population structure is. For instance, suppose    and    are two uncorrelated 

predictors in a population, but the sample values are correlated. If we believe the 

population values to be uncorrelated (i.e. an a priori assumption), the expectation is that 

the multivariable coefficient estimates of the response regressed on both    and    are 

unchanged compared to their univariable regression coefficients. The fact that the sample 

values are correlated causes the univariable and multivariable estimates to differ.  

We might believe there to be a correlation in the population, and wish to 'use' this 

as adjustment for confounding. A weaker or stronger correlation may be observed in the 

sample, again due to sampling variation. Now we wish to know the extent of the 

discrepancy between the ‘true’ adjustment (in the population) and the observed 

adjustment (in the sample). We may only ‘guesstimate’ (from external data) what the 

population correlation is supposed to be, but nevertheless be interested to know the 

impact of the sampling variation on our estimated multivariable coefficients in the sample 

compared to that in the population, and perhaps to have this assessed in relation to the 

discrepancy between the population zero correlation scenario and the true population 

correlation, i.e. relative to the ideal adjustment. 

 Another potential use for such an index is in model selection. In clinical research 

we may be given a number of clinically plausible predictors to include in a regression 

model and be required to produce a ‘minimum subset’ of covariates. The index is 

performing a similar task to the previous example. It is still comparing the disparity 

between two sets of estimates, but now the intention is to compare models consisting of 

different predictors. The index would need to provide an assessment of the impact of 

collinearity that is being introducing into the model by including these predictors. Further 

to that, the clinician may insist on biologically relevant predictors to be included in the final 

model and so a range of ‘minimum subsets’ may be produced based on the initial 

requirements and external knowledge. This index may take the form of comparing each 

model to a baseline set of estimates (formed from univariable models), or it will compare 

two sets of multivariable models (i.e. sample estimates in both cases).  
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The form of the index does not change – only how it will be employed. Whichever 

example the theory is built around, we need to assess the extent of disparity between two 

sets of point estimates with reference to collinearity. It would be an unrealistic target for 

this chapter to fully address each of these challenges individually, but the intention is to 

build a general apparatus that could be developed to perform such operations in the 

future. There is also the additional consideration when incorporating the response variable 

of the likely deviation under sampling variation. The coefficients gained from least squares 

regression are unbiased (under the assumptions outlined in section 2.2.2), however in a 

single sample case this is of little use if the variance is high. This chapter describes the 

development of a ‘global’ measure of estimate deviation, approaches to incorporate 

uncertainty in the point estimates and considers the individual roles of covariates in 

contributing to a ‘global’ impact on the modelling process.  

 

5.3 Incorporating the Response into Existing Diagnostics 

It would seem natural to seek parallels between existing indices, such as the    and    , to 

developing new ‘covariance based’ measures. The         has achieved this to provide a 

simple extension to the    . However, like the    , this index will not identify which 

variables are involved in particular dependencies. The    and     provide such a measure 

on the covariance of the predictors. Further extension is required for the         to 

maintain the goal of incorporating information of the response variable. First consider the 

scaled covariance between predictor and response    . This represents a vector of 

covariance’s (see eqn(5.1)) and a geometrical projection of      onto    (see Figure 5.1 ), 

 

 

 

 

Figure 5.1: Geometrical projection of ( )   onto   and ( )   onto  . 
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  (5.1) 

 
This vector (with a single response) corresponds to the following    , 
 

         (5.2) 

 

where   is a     matrix consisting of the left singular vectors of    ,   is a   

  diagonal matrix of eigenvalues and   is a     orthogonal matrix containing the right 

singular vector of    . Whilst the      matrix is represented geometrically by a hyper-

ellipsoid, the     only contains a single direction vector. It is a projection of   onto the 

surface of the response vector   (see Figure 5.1 ). As   is uni-dimensional, each projected 

vector of   onto   will lie on the same single dimension (i.e.    ). Therefore,   contains 

only one eigenvalue. This is the length of the co-variance vector scaled by      , 

 

                   
           

            
  (5.3) 

 

The right singular vector   is the eigenvector of the matrix         . This is a scalar value, 

therefore the eigenvector is equal to 1. The left singular vector   is the eigenvector 

of         . This will take the form of a normalized vector of co-variances (i.e. scaled to 

unit length). It is a vector weighted by the original covariance elements. This represents 

the angle between the first principal axis of the     matrix and the   vector (i.e. the 

rotation to the projection vector). The complete     for the     is as follows, 

 

          

             

             
 

             

                  
 

 

   

     (5.4) 

 

The information for this deconstruction is contained in the        matrix (as the right 

singular vector gives the same eigenvalue and an arbitrary eigenvector). However, the 

matrix is still uni-dimensional and so only the first eigenvalue will be non-zero (i.e.    
 ). To 

work with this matrix would provide only the eigenvectors orthogonal to the first and so 

provides little more useful information than the     can provide for a diagnostic criteria. A 

direct extension to     of this form would seem of little use. 

To place     in the same space as     we may consider the reverse projection - 

    will give the same     as     and therefore could be viewed as an orthogonal 
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projection of   onto   (see Figure 5.1 ). The distance from the origin to the point of 

projection on   is equal to each of (1) the covariance between   and  , (2) the least 

squares coefficient from the univariable model and (3) the square root of the coefficient of 

determination from the same univariable model. Notice the similarities with     geometry 

presented in Figure 3.9, with this process now obtaining   
  for the    . Projecting   onto 

  or   onto   is analogous to obtaining an equal     in the bivariable model.  

 In Figure 5.2, the two points of the projected response are projected once again 

parallel to the covariates to form a composite direction vector (shown in orange). This 

vector represents a weighted version of a principal axis corresponding to the covariance 

elements of the     matrix (instead of     in the principal axis transformation).  

 

  

Figure 5.2: Covariance maximizing procedure for two covariates. 

The construction of principal axes maximizing variance (shown in blue) and covariance 

(shown in orange) are demonstrated in Figure 5.2. The length of the blue vectors represent 

the eigenvalues used for the   . In comparison, the first principal axis maximizing 

covariance is of shorter length, demonstrating the compromise in explained variance on 

the predictors with explaining variance of the response. Note that this covariance vector 

can also be found by the orthogonal projection of    (or  ) onto the     ellipse. The 

    indicated in this model are the regression coefficients from the univariable models (i.e. 

an orthogonal projection of    onto the covariate vectors). The covariance maximizing axes 

in the bivariable model are identical to the two components found in a     analysis. The 

composite vector formed in the direction of the two univariable     projections is the first 

    component, labelled   . This hints at making use of the covariance maximizing axes 

formed from a     analysis in developing a new collinearity index.   
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5.4 Assessment of Deviation  

To measure the disparity between two sets of estimates, they need to be placed in a 

comparable setting. Vector geometry can do so by considering both in a common space. 

The first step is to compare the estimates from two univariable models to the multivariable 

model formed from collinear predictors. The ‘traditional’ geometrical representation 

would be to project     orthogonally onto the vectors to find the univariable point estimates 

  
  and parallel to the opposite covariate to find the multivariable estimates    (this is 

illustrated in Figure 5.3). 

  

 

Figure 5.3: The projection of    to generate univariable and multivariable estimates. 

The distance between the projections would indicate the change in regression coefficients 

on each predictor    
      (i.e. shown in blue). To gain a ‘global’ measure of the impact 

on the model the individual univariable estimates are presented as a single multivariable 

model involving uncorrelated predictors. The position of     representing the projected 

response for the univariable model is the product of the change in regression coefficients, 

relative to the collinearity in the model (i.e. shown in green in Figure 5.4).  

 

 

Figure 5.4: Placing uncorrelated univariable estimates onto collinear axes. 

This removes the effect of the non-orthogonal projection and places the estimates on 

common collinear axes. This will generate a ‘global’ measure of deviation (shown in green).  
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Figure 5.5: Deviation of point estimates in different collinearity conditions. 
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Figure 5.6 illustrates an adjustment in the discrepancy measure (labelled    for the 

bivariable example and more generally    for   predictors) under changing collinearity 

conditions. 

 

Figure 5.6: Change in    under varying collinearity conditions. 

When the covariates are independent of one another (i.e.      ), the regression 

coefficients for the univariable and multivariable models are identical. Therefore, the 

measure of deviation at baseline is always zero (i.e.     ). As the correlation is increased 

in the equal univariable coefficient case (e.g. Figure 5.5 –    ,     and     ), the    index 

tends toward the value of the common univariable coefficient. At this point, the predictors 

are entirely overlapped (i.e. perfect collinearity) and the variance of the response 

explained by the multivariable model is equivalent to that being explained by either 

univariable model (e.g. the black line in Figure 5.6). 

In the model with unequal univariable coefficients (e.g. Figure 5.5 –    ,     

and     ),    will tend toward infinity. At high levels of collinearity, the disparity introduced 

into the model can far exceed that of the ‘equal coefficient’ case. Example     of Figure 5.5 

demonstrates a change of sign on   , whilst the point estimate of    is enhanced. 

Comparatively, example     has the same    , however does not exhibit a change of sign 

and demonstrates less movement in the coefficients. This highlights an advantage of the 

 -index over the    . The change of sign is not of particular interest statistically, but it 

represents a potential change in the clinical interpretation. Under sampling variation, 

these deviations can become enhanced or diminished with a potential impact on the 

conclusions of the study.  
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5.4.1 Calculating the Index 

The calculation of    can be demonstrated by splitting the ‘global’ deviation into two 

components (labelled    and    in Figure 5.7). 

 

 

Figure 5.7: Computation of the  -index. 

The first is parallel to         (  ) and the second orthogonal to         (  ). The derivation of the 

   index (using the triangle highlighted in blue in Figure 5.7) can be shown as follows, 

 
 

                      (5.5) 

                     

          
  

          

      
 

  

 
         

             

      
 

  

     
          

      
 

         (5.6) 

 
The index is then calculated as the squared sum of orthogonal components, 
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          (5.8) 
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For the bivariable comparison to univariable model,    is equal to        (or   
  

        
 
   

     
  - squared to be proportional in magnitude to the    ). When the 

predictors are orthogonal,   
  will equal zero, as regardless of the variance explained by 

the model there is no impact of collinearity in the change between the estimates – i.e. 

   and     are identical. Similarly, when     , including both of the predictors in the 

model has explained zero variance in the response - therefore collinearity can have no 

impact on the model coefficients (contrary to any indication from the    ). As the 

collinearity increases, its relative impact on the predictors is modified by the variance 

explained in the bivariable model. If the    is high, the index will indicate that the 

collinearity impact is greater than for a low bivariable    on the same collinear predictors. 

 

5.4.2 Interpretation of the Index 

The use of vector geometry to generate this index provides insights into its interpretation 

and flexibility for future development. The composite direction vector formed from the 

two univariable regression coefficients is in the covariance maximizing direction on a single 

dimension (or a single component     model – see Figure 5.2). This is the vector 

labelled    . The    vector represents the     estimation (i.e. an orthogonal projection of 

the response onto the regression surface). By definition, this is the covariance maximizing 

direction in the bivariable model and is equivalent to a     with maximum components 

retained. Therefore,    is measuring the distance between an uncorrelated composite 

vector on a single dimension and the collinear predictors of the bivariable model – i.e. a 

comparison of     models. This can represent the impact of collinearity in moving from an 

uncorrelated prior to a correlated sample. 

 The length of the vector         is equal to the summation of the two univariable 

  
  estimates, relative to the degree of collinearity (i.e. by the cosine rule            is 

added). The length of        is equal to the    found in the bivariable model. Therefore, the 

magnitudes of the vectors follow this interpretation of a univariable to bivariable 

comparison of models. The work in this chapter initially focuses on this comparison (i.e. a 

baseline of uncorrelated predictors), however the interpretation will follow to comparing 

to a correlated baseline prior (i.e. non-orthogonal projections to represent a priori 

knowledge or a model with correlated predictors). Potential extensions and uses for the  -

index will be described throughout this and later chapters.   
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5.4.3 Comparison to a Variance Based Index 

A comparison of   
  and     values for each bivariable model in the body fat data is 

displayed in Table 5.2, with the former in the lower triangle and the latter in the upper.  

 

                                                                     

       1 1.11 1.05 1.04 1.16 1.13 1.33 1.18 1.11 1.12 1.19 
     0.03 1 2.60 2.32 2.17 1.94 1.83 1.30 2.15 1.64 2.25 
      0.03 0.31 1 6.20 3.20 2.14 2.07 1.30 2.13 1.51 1.77 

        0.03 0.40 0.56 1 4.24 2.43 2.19 1.26 1.88 1.34 1.62 
    0.06 0.21 0.34 0.53 1 5.09 3.11 1.45 2.21 1.42 1.66 

      0.04 0.16 0.27 0.39 0.31 1 2.77 1.41 2.38 1.47 1.45 
     0.09 0.14 0.26 0.37 0.27 0.21 1 1.6 1.85 1.45 1.79 
      0.01 0.06 0.12 0.14 0.13 0.09 0.10 1 1.31 1.21 1.47 
       0.03 0.15 0.26 0.31 0.21 0.19 0.14 0.06 1 1.85 1.67 

        0.02 0.10 0.17 0.17 0.12 0.10 0.08 0.03 0.11 1 1.52 
Wrist 0.02 0.13 0.23 0.27 0.16 0.10 0.11 0.04 0.10 0.05 1 

Table 5.2:   
  in the lower triangle with    ’s in the upper triangle. 

 

 

 

 

 

 

Figure 5.8:   
  and     for two pairs of predictors in the body fat data. 

There are seemingly a number of discrepancies regarding the measurement of collinearity 

between these indices (as expected between correlation and covariance based indices). 

Figure 5.8 illustrates one example to demonstrate the geometrical interpretation of the 

impact. The     is larger for the Thigh/Hip model than the Thigh/Abdomen model to 

reflect the increased correlation between the predictors. In comparison,    indicates that 

the impact of collinearity is greater in the Thigh/Abdomen model due to the increased   
 . 

If the     is adjusted by    , the Thigh/Hip model would remain the higher value as 

  
  would have a greater deflation effect on the variance. 
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For the        , the response is considered a deflating element of the variance 

on each predictor. However, for the  -index a greater   , coupled with high collinearity 

amongst the predictors, has the opposite effect.  

 

 

 

 

 
 

Figure 5.9: The role of the response in the impact of collinearity. 

The     is a comparison to baseline of unity for orthogonal predictors and     is a 

comparison to baseline of zero. The     is adjusted by     (for        ), whilst     is 

adjusted by    (for   ) to incorporate the response. At baseline (i.e. orthogonality), the 

        will remain at unity (if it were considered a ‘global’ measure – i.e.   
    for the 

baseline) whilst    will remain zero. The measures are used to represent an impact on the 

univariable predictors when they are entered together in a bivariable model. If the 

covariates are highly collinear, but also explain a high proportion of the response, then the 

variance explained attributed to each predictor reduces by a greater amount moving from 

the univariable to bivariable regression models (reflected in the point estimates). However, 

the greater the variance explained in  , the greater the precision of the estimates in the 

bivariable model.    is highlighting a greater deviation in the point estimates (an effect of 

sampling variation if we believe the predictors to be orthogonal in the population), whilst 

the         is an increase in precision of the estimates. The difference rests on our 

conceptual understanding and is not necessarily measuring the extent of a ‘problem’. 
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 A key assumption in this discussion is that         is represented as a ‘global’ 

measure. This is not actually reflective of the true index. In the bivariable case the     is 

always equal for both predictors (as demonstrated in Figure 3.9), however this is not 

necessarily true of models when    . Therefore, the baseline should be presented as the 

    adjusted by     for each predictor, which would not be unity if     or       . It is 

important to stress this difference in the measures to facilitate the progression of the 

index discussion and development. It demonstrates the novelty of generating a ‘global’ 

index in   . Comparisons must be made to the         in the current discussion as there 

does not appear a direct alternative in diagnostic literature that provides such a measure. 

In examples beyond the bivariable model (i.e.    ), representing the         as a 

global measure would require some form of generalized   . In comparison, the    can be 

extended by utilizing vector geometry (this is demonstrated in section 5.7).  

 The use of vector geometry to generate this measure provides a general 

framework for its development, but it very much remains a statistical index. The 

application and clinical assumptions are crucial to define its utility in practice. For instance, 

if the predictors are believed to be orthogonal in the population, the    would provide an 

indication of the disparity in estimates under sampling variation. If instead some 

correlation was assumed in the population model, then the baseline would need to be 

adjusted to reflect this correlation. From a model building perspective,    represents an 

overall change in the estimates (either beneficial or detrimental to the estimation) after 

including a new predictor. For this purpose, the statistical measure would require more 

information. Which predictors would generate the greater impact and which would it 

appear more beneficial (from a purely statistical perspective) to retain in the model? 

The links between the  -index and     components aid with the interpretation of 

this measure, but it may also suggest an additional use for the index to those previously 

discussed. For example, with a greater overlap of the collinear variables to the response 

(i.e. a greater   ), a single component     may become preferable over the two 

component model. Further to this, a single component model is in the direction of the 

univariable predictors (assumed to be uncorrelated), whilst the full component model is 

equivalent of an     regression. Therefore, the  -index could be adjusted to measure 

deviation between additional     component estimates by considering different 

projections in the vector geometry. This would reflect the impact of additional collinearity 

with each component added and could indicate an optimal number based on an 

interpretive rather than predictive criteria (e.g. such as the       – see Allen (1974)). 
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5.5 Deconstructing the Impact of Collinearity 

This section aims to summarize the information provided by the    ,         and    

index and compare the utility of each to deconstruct the impact of collinearity. The 

regression model consisting of the predictors ‘weight’ and ‘abdomen’ in the body fat data 

provides a model to demonstrate the features of the indices.  

 
 

  

Figure 5.10: Vector Geometry of the Weight + Abdomen model. 

The intention of ‘diagnosing’ collinearity is to deconstruct an example such as this into 

manageable information that aids with our interpretation of the impact. To test the ability 

of each index to perform the task, a further two further examples are generated on the 

same collinear axes of predictors (i.e. an equal     is used in all models).  

 
 

 

 

 

  

 

 

Figure 5.11: A high vs. low association between response and predictors. 

The bivariable    length is held constant (i.e. an equal   
 ), whilst the correlation of the 

response with the predictors is allowed to vary. Importantly, the     and   
  used in each 

of these models ensures that our ‘global’ measures will not be able to distinguish between 

these examples.  
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5.5.1 Simulation Study 

The simulations in this section are intended to highlight limitations of the  -index for use 

in model building and provide ideas for an extension that could differentiate models as 

demonstrated in Figure 5.10 and Figure 5.11. The model including predictors ‘weight’ and 

‘abdomen’ provides the example (see Figure 5.10). To avoid confusion with the real data, 

these predictors are replaced by         and          in the simulations. For both simulations the 

correlation between    and    is varied between       . In simulation 5.1 only the 

correlation between    and    is allowed to change. The   
  and     are held constant at 

0.72 and 0.89 respectively. This ensures that the    ,         and    indices each remain 

constant. The focus is instead on the change in the point estimates and variance of the 

predictors to provide further detail of the collinearity impact.  

 

Figure 5.12: Simulation 5.1 - ( ) Change in point estimate and ( ) variance for   . 

The measures in Figure 5.12 display a similar pattern. When         and        are orthogonal (i.e. 

   = 0) the change in the point estimate reaches a maximum and the change in variance on 

the point estimates is minimized between     and   . This could reflect a disparity from 

‘truth’ if reflected in the conceptual model and an increased precision of the estimates 

(reflected by a decreased variance) in the full regression model. However, the global  -

index remains constant. The curves are not identical (as expected from point estimates and 

variances) but they provide an illustration of what the extended  -index should reflect in 

relation to the         equivalent.  
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Figure 5.13: Simulation 5.2 – Variance, point estimates and index results. 
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In simulation 5.2 the value of   
  in the weight + abdomen regression model is retained 

(0.72), whist the correlation between the predictors is varied for                    . 

Clear links are observed between         and   
  in that both represent an overall 

inflation (when the         is treated as a ‘global’ measure). The    reflects the inflation 

in the point estimates, whilst the         is an inflation in variance. If this inflation were 

removed from the estimates, the curves would only be differentiated by the maxima of the 

   and    change. The reason for this feature is that the response is uni-dimensional. From 

a geometrical viewpoint, the ‘global’ effect of the response is dictated by the association 

between the univariable response and the regression space. The change in individual 

coefficients, in both point estimate and variance, is a reflection of the   variance explained 

individually by    and   , when     is held constant. This is the feature that will indicate 

the individual role of the predictors in producing the global ‘impact’. 

The optimum change on both point estimates shifts towards a similar maxima with 

increasing correlation (i.e.      ). At this point, the correlation between the response 

and each predictor is low, resulting in a greater change in the point estimates. In 

comparison, the     of the bivariable model provides the maximum point of each variance 

change curve as it is comparing to a baseline of orthogonality in the univariable model. The 

deviation of the curve away from this horizontal line is entirely determined by the change 

in    , thus highlighting that the ‘local’ (or individual) change in either graph reflects the 

predictors correlation with the response. An optimum change is observed in each 

simulation at       for    and         for   . At this point there exists the greatest 

difference between   
  and the univariate    

  and    
  respectively.  

The feature that is seen in the variance change plot is the suppression effect (see 

section 3.2.2). The suppression effect becomes apparent when the confidence change on 

the    point estimate is considered alongside   . For the orthogonal case (i.e.      ), the 

confidence curves are reflected (i.e. the black lines). When the change is maximal on the 

   point estimate (i.e.    is perfectly correlated with   ), the confidence change is minimal 

on    (i.e. no change in     or    ). However, as the collinearity is increased, the optimal 

change on both coefficients shifts to a similar point. This gives the effect that entering a 

predictor with little or no correlation to the response will produce a bivariable model with 

  
  that outweighs the combined    

  of the two univariable models. Any measure on the 

change in point estimates need only account for the correlation change and not   
 . The 

inflation relating to the variance explained in the response is captured in the global   
 .  
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5.5.2 Extending the Bivariate Index 

Consider the components    and    that were formed in the construction of    (see 

section 5.4.1). These were built to compute the  -index with    parallel to         and    

orthogonal to        . The axes were specified arbitrarily to understand the construction of the 

   measure. Figure 5.14 demonstrates that the same components can be computed as a 

projection of the fitted response   . 

 

Figure 5.14: An alternative Illustration of the computation of    and   . 

Consider a simple regression with   regressed on   .    is defined to equal zero in any 

scenario of baseline orthogonality. This should be clear as there exists no collinearity in the 

model when only one predictor is entered. Next consider the addition of a second 

predictor    which generates an impact of collinearity reflected by a non-zero    

(unless    is orthogonal to    or either predictor explains no variance in the response). A 

simple regression of the     component of    onto    will generate    (as shown in Figure 

5.14). This demonstrates the degree of     explained in the baseline model (i.e. containing 

only   ). For example, when    and    are perfectly correlated      , highlighting that 

all of the variance in the response explained by    is already explained by   . When they 

are orthogonal,     . The second component    is the semi-partial correlation of    

with   (whilst holding    constant), projected onto an axis orthogonal to        . As the semi-

partial correlation      demonstrates in Figure 5.14,    cannot be held constant under the 

collinearity present (e.g. when      ,              would be parallel to         and equal to    ). A 

portion of     that would be unique to    under orthogonality is now confounded with the 

explained variance in   . Use of the axes specified in Figure 5.14 places an emphasis on     

and identifies the impact of collinearity after the addition of    to the model.  
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Recognising the importance of point estimate change alongside the ‘global’ 

measure, approaches were considered to incorporate this feature into the  -index. There 

is an important feature that has been largely ignored to this point – that of the angle of 

deviation. This is particularly evident in the examples displayed at the beginning of section 

5.5 that    was unable to distinguish. Consider the angles between the predictor vectors 

and the    change (which is now considered in vector form -   
     ). The angles (that in turn 

provide correlations) perform a similar role to the individual changes demonstrated in the 

simulations by deconstructing the impact of collinearity. Figure 5.15 illustrates the 

calculation of these angles. 

 

 

 

 

 

 

 

Figure 5.15: Components of the correlation between the      and        . 

The vector geometry in Figure 5.15 demonstrates that each correlation between the   

vector and covariate vector (i.e. cosine of    ) can be calculated in the bivariable model as 

the ratio of     and   . This is the ratio of    (shown in eqn(5.5)) to     . The component 

   is redefined for the target variable with which we wish to identify its contribution to the 

collinearity impact. The correlation with   
      is computed by setting arbitrary axes parallel 

and orthogonal to the target covariate. Therefore, if    is added to the simple regression 

model consisting of the predictor   , the arbitrary axis would be formed parallel to    and 

represent the degree to which a proportion of     is explained by   . Simulation 5.2 

suggests that scaling by   would remove the inflation effect of collinearity, thus 

normalizing the quantity to place the estimate on a scale of 0-1. If the explained variance 

on each predictor in the univariable models is equal, then the correlations with   
      (in the 

bivariable case) will be equally split. However, if the ratio is larger on one covariate, then 

the covariate with the weaker correlation to the response will have a greater association 

with   
     .  This dictates the direction of ‘global’ change to be greater in the direction of the 

covariate with the weaker correlation to the response. 
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 Simulation 5.2 is now extended to consider the angles between      and the 

predictors         and        . As always, the graphs in Figure 5.16 should be considered alongside 

the ‘global’ inflation in the point estimates captured by   
 . 

 

Figure 5.16:  Correlations between predictor and   
       for simulations 5.2. 

In Figure 5.16 the correlation between         and   
      (labelled    ) follows a linear 

relationship as     is increased (i.e. the dashed line). The reason for this trend is seen from 

eqn(5.5) (as     and    are fixed and the correlations are adjusted by    ). The quantity 

    is minimized when       and maximized when       or   . When     is 

minimized,      is maximized (to maintain the constant   
 ), so the addition of    to the 

model containing    is maximally beneficial to the estimation (from a statistical 

perspective). At the point in which     is maximized,        and the addition of    adds 

nothing to the existing model in terms of variance explained. However, as 

  
  demonstrates in Figure 5.13, adding    to the model increases the ‘global’ impact of 

collinearity on the point estimates.  

 

 

 

 

Figure 5.17:     (a) minimized and (b) maximized for simulation 5.2. 
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The curve of     is not identical when the collinearity is varied. This is a result of the 

simulation procedure which remains on a scale of    . As the correlation between the 

predictors is increased, the maxima of the curves shift to the right (i.e. closer to      ). 

Therefore, when     is high, a high     will dictate that     is also high. However, the 

benefit to variance explained in   of adding the second predictor is reduced. 

 

 

 

 

Figure 5.18: Equal correlations between covariate and   under differing    . 

When     are equal, neither of the covariates would be preferable to retain in the model. 

However, if they are both equal and high, the impact of collinearity will also be high 

(indicated by an inflated   ). In comparison, if they are equal and both low then they may 

both be contributing to explained variance in the full model and it may be valuable to 

retain both in the model. This would indicate that it is useful to consider   
  in addition 

to   ,     and    . Whilst an increased   
  would allow for a greater impact of the existing 

collinearity (inflating the   ), a high   
  coupled with a low    would indicate an optimal 

model. This result is obvious for the bivariable example, but it may not be in models with a 

greater number of covariates. 

  If one of the correlations is substantially different in magnitude to the other then 

it would indicate a preference to retain one predictor. The predictor with the lower 

correlation to   
      would explain a greater portion of the variance in the response. It is the 

magnitude of one correlation in relation to the other that is particularly important. This 

may indicate that the use of a ‘rule of thumb’ would be misguided for this index. From an 

earlier discussion in chapter 3 this is perhaps a useful feature. It should encourage the 

conceptual understanding of the problem to drive the interpretation of this statistical 

index. It may also be useful to consider a combination of    in addition to   . The 

information of    would already be contained in    and    (therefore, it would seem only 

sensible to consider 2 of the 3 measures), however when extending to higher dimensional 

examples, this partitioning may seem more natural to understanding the impact of adding 

a single new predictor to the existing model.  
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5.6 Measurement Error and Sampling Variation 

If we compare a multivariable estimate to an a priori expectation, there is no 'problem' in 

the two sets of estimates. Rather there is an a priori assumption that brings an a priori 

expectation that is not satisfied due to sampling variation. The estimates are not 'wrong' 

nor 'biased' (if classical     assumptions are satisfied – see section 2.2.2). The 'problem' 

occurs (i.e. the reason there is a discrepancy between the sample estimates and the 

population estimates) due to sampling variation. Thus, what is true is the population 

estimate (for which there is no collinearity) and the 'problem' estimate is the sample 

estimate, which is strictly speaking unbiased, but not in agreement with the population 

estimate in this single sample case (i.e. the precision of the estimation). 

 For model selection two sets of sample estimates are compared. Rather than 

accounting only for the variation introduced in taking a single sample, we require a 

comparison of the uncertainty between model estimates. The  -index alone will provide a 

direct measure of change in the estimates of the two models. However, variation in the 

original univariable estimates will change the value of the index. Therefore, the uncertainty 

in the measure must be accounted for along with the uncertainty added in the new model 

(a further feature of ‘model environment’). It may be that the ‘guesstimate’ of the 

population must be made within a confidence region. As a result, some measure of 

confidence is required for the index. This is a fresh challenge to existing ‘correlation based’ 

indices in that they only consider fixed covariates in the      matrix.  

 The challenge is to represent the variance for the two models in the geometry to 

illustrate and assess this change as part of the  -index. To this point the geometry has 

been presented in subject space rather than the traditional object space. Although the 

vectors are in  -dimensional space, it has been possible to present them in as few 

dimensions as there are covariates, as the remaining     dimensions are effectively 

redundant. To now consider effects such as sampling variation, a greater understanding of 

the subject space is required. For instance, in each of the diagrams containing two 

covariates and a response, the geometry has been presented in    space, meaning that 

there are     redundant dimensions. When sampling variation is considered, the actual 

position in which the response vector lies in  -dimensional space may deviate in future 

samples (theoretically requiring more than the visually appealing   dimensions). A 

discussion of the error space was presented in section 4.1.2. This becomes essential to the 

work as the effects of sampling variation are considered on the index.  
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5.6.1 The Construction of a Confidence Interval 

The work in this section considers how the error distribution appears in the vector 

geometry developed earlier and how the impact on the regression coefficients can be 

illustrated. The standard error of the estimated coefficient provides an indication of how 

far the point estimate is likely to deviate from the population coefficient. The standard 

error      is calculated by taking the root of eqn(2.21) and substituting an unbiased 

estimate of   
  (see O’Brien (2007)), 

 

    
  

  
 

      
     

 
  

     
     

         

      
     

 
 

  
  
      

       

  
       

              
 

          
 

       
 
  

 

   
 
  

(5.9) 

 
The standard error is used to construct confidence intervals for the partial regression 

coefficient. The 95% confidence interval for    is as follows (Wonnacott 1981),  

 

                        
  

 
The impact of collinearity through the confidence interval can be demonstrated using 

vector geometry and standard     projections.  

 

 

Figure 5.19: Confidence intervals of orthogonal predictors. 
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A circle is used to represent the bivariate normal distribution of a particular confidence 

region of    , centered on the point estimate (see section 4.1.1). The outermost points of 

the circle are projected along the covariates (analogous to obtaining a coefficient point 

estimate) to construct the individual confidence interval of    and   . This demonstrates 

the impact on the variance of the coefficient estimate by decreasing the angle between         

and         ; and subsequently the projection of the error circle onto the predictors, 

  

Figure 5.20: Confidence intervals for two sets of highly correlated predictors. 

The distribution of the error is independent of the predictors in the model and so the 

radius of the confidence region is not influenced by a change in correlation. Due to the 

construction of the geometry, the size, shape and position of the confidence region will not 

change if the covariates are standardized, as the regions are scaled by the standard 

deviation of the predictor. By holding the     and the length of the covariate vectors 

constant, the impact of collinearity on the confidence intervals can be illustrated by 

adjusting the projection of the    confidence region with respect to     (see Figure 5.20).  

 

Figure 5.21: Demonstration of the construction of the confidence region. 

          

          

    

        

        

 

                       

        

          

        

        

    

    

  

   

                  
     

     

     



Chapter 5 Developing an Index to Measure the Impact of Collinearity 123 

 

The radius of the confidence circle can be determined by multiplying the bivariate standard 

error used in confidence interval (eqn(5.9)) by               (i.e.       ). This highlights 

why the correlation has no effect on the confidence region of    in the geometry, as the 

angle of the projection (determined by the collinearity) will cancel with the     in the 

confidence interval (see Figure 5.21). This nicely demonstrates the independence of error 

with the covariates. Therefore, the bivariate normal confidence region (i.e. the radius of 

the circle on the geometrical axes) is determined from eqn(5.10), 

 

           
 

       
  

  
 

   
   (5.10) 

 
This geometrical idea is extended to the three predictor example in Figure 5.22.  

 

 

 

Figure 5.22: An illustration of the construction of the ellipsoid confidence region. 

Confidence circles have been produced on each 2D regression plane formed by the pairs of 

predictors (i.e. the green circles). However, for the confidence region in 3 dimensions, the 

projection of each of these circles onto the 3D regression space spanned by        ,         and         

would produce an ellipsoid centered on    . This is a spherical error projected onto the 

regression space of the correlated axes. The representation of error in the geometrical 

example provides an illustration of uncertainty. The next step is to decide how to 

incorporate this impact as part of the  -index.   
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5.6.2 Confidence Interval of the D-Index 

A focus was first placed on the probability of the estimate to produce a ‘symptom’ of 

collinear data relevant to epidemiology. This was initially based on the likelihood of a point 

estimate changing sign. The vector geometry was split into integration regions showing the 

probability of a change of sign under sampling variation (see Figure 5.23a).  

 

 

 

 

Figure 5.23: (a) Change of sign regions and (b) uncertainty region for a ‘guesstimate’.  

The integration ideas were an attempt to incorporate effects of sample size, sampling 

variation and measurement error directly into the metric of the index. The problem was 

that the integration gave a greater percentage (indicating less movement) if the     and 

sample size were low (i.e. the result of a greater confidence region) and inflated the 

percentage with a smaller  -index (i.e. a positive result). Therefore, this method appeared 

to have conflicting results from a model building perspective when indicating the impact of 

collinearity.  

The integration ideas would appear feasible for other purposes. For instance, a 

confidence region for a ‘guesstimate’ (see Figure 5.23b). A high percentage would suggest 

that a greater sample size, or correlation with the response is necessary for the sample 

estimates to be closer to the population parameter. However, for model building purposes 

a holistic index such as this confused the effects. A greater variance explained generates a 

greater movement in the point estimates. This would seem to suggest a greater problem, 

which works against our conceptual understanding of the beneficial role of the response 

from a variance perspective. The work returned to the  -index as a standalone measure 

and to provide a confidence interval to highlight uncertainty as an external feature. 

Double 

change of sign 

Change of 

sign on    

Change of 

sign on    

No change of 

sign 
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The confidence region of        can be mapped onto          using the components as 

illustrated in section 5.5.2. This relationship is scaled by the correlation between the 

predictors      , which is a fixed effect as the predictors are assumed to be measured 

without error – see section 2.2.2.  

 

 

 

Figure 5.24: The translation of the confidence region from the bivariable models. 

A confidence interval for   
  is presented by Cohen (2003). The standard error is given by 

the following estimation, 

 

    
   

   
      

  
 
        

           
 (5.11) 

 
The confidence interval is calculated using the   distribution for a sample size >60. 

 

  
        

   (5.12) 

 

As the predictors are fixed, the    
  is a scalar quantity. This is the reason for correlation 

based indices not requiring a confidence interval. Therefore, using eqn(5.12) the interval 

for   
  is as follows, 

   
    

        
   (5.13) 

 

With the addition of a confidence interval, the index for the bivariable   
  is now complete. 

The  -index and the angles could be developed in a different form in the future and so for 

now the confidence interval appears most useful as a separate element rather than a 

holistic measure (as demonstrated in the integration idea). The next stage in the 

development is to extend the concept to higher dimensional examples.  
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5.7 Diagnosis in Higher Dimensions  

For the index to be of use in application it must be extended to models with     

predictors. The work now assumes the impact in the bivariable model to be calculated by 

   and looks to build on the metric developed earlier.  

 
 

 

 

 
 

Figure 5.25:    from the model including biceps, hip and abdomen. 

   can be calculated on a    plane spanned by any two predictors within the    

regression space. The development of    can be illustrated by building on the regression 

model containing          and         (biceps and hip respectively), with the    space for    

spanned by these covariate vectors (see Figure 5.25a). A third predictor         (abdomen) is 

then added to the model. The    can be calculated for each of the three pairs of predictors 

in the new model (see Figure 5.25b and Table 5.3).   

 

           
          

  

        0.39 0.74 0.21 

        0.67 0.68 0.31 

        0.69 0.87 0.53 

Table 5.3:    from the model including biceps, hip and abdomen. 

Table 5.3 identifies the greatest    with hip and abdomen entered as predictors. The 

second highest    is seen in the model with biceps and abdomen. Whilst the correlation is 

weakest between these predictors, the higher variance explained in comparison to the 

model with biceps and abdomen has generated a greater inflation in the point estimates.  
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Two options are considered for extending    to   . The first is to calculate the 

additional impact on the existing bivariable model (including    and   ) of adding a third 

predictor    (labelled   
 ), and second the impact of collinearity on a baseline model that 

assumes orthogonality amongst all of the predictors (labelled   ). The difference between 

these approaches is the model assumed at baseline, however the metric remains the 

same. Both can be seen as a direct extension to    in that the bivariable example can be 

viewed as an additional impact of adding    and also an impact to baseline orthogonality 

(as the univariable model has zero collinearity for a single predictor).    

 

Figure 5.26: Illustration of the extension to    with    included. 

Figure 5.26 illustrates the vector geometry for the three predictor regression model. The 

fitted response       is first projected orthogonally onto the covariate vectors        to obtain 

the individual     (i.e. regression coefficients from each univariable model). The     are 

then projected along the plane formed by the remaining two predictors to identify 

      
  representing the baseline model of orthogonality amongst the covariates. The 

distance between        and       
  forms the new    (analogous to    in computation). The 

fitted response in the three predictor model        is an extension of        in the direction 

orthogonal to the plane spanned by         and        . The orthogonality with the plane 

demonstrates that this extension represents a partial correlation between   and   , 

holding    and    constant – labelled       
. The       

  is an extension of       
  in the 

direction of         with length (i.e. variance) equal to    . 
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First consider the computation of an additional impact of adding    to the already 

assumed    impact from the bivariable case. The vector    
       is projected onto the  -

dimensional plane spanned by the vectors         and        . The projected   
      is demonstrating 

the overlap between    with variance     and the existing predictors in the model (i.e. 

        and        ) – analogous to    in the bivariable index.  This projection is labelled   , which is 

composed of    and a further component    (as illustrated in Figure 5.26). Following the 

previous construction of   ,    is computed as two components. The first is parallel to         

found by an orthogonal projection of    with variance     onto        , 

 

 
 
          (5.14) 

 
This represents the overlap of    (of length    ) and    .The second (labelled    ) is in the 

direction orthogonal to         in the plane spanned by         and        . This demonstrates that         is 

held constant, thus defining a semi-partial correlation between         and        , holding    

constant (labelled     ).  

             (5.15) 

 

Therefore,    is calculated as the squared sum of orthogonal components, 

 

       
     

           
 
           

 
 (5.16) 

 
Eqn(5.16) is an extension to    in the plane spanned by    and    after adding   to the 

model. Finally, there is an additional deviation that would represent the new   

component.    represents a deviation of the coefficients in the dimension orthogonal to 

the computation of   . The geometry illustrates that this is a projection of the remaining 

explained variance of    (i.e. the component of   orthogonal to         ) onto an arbitrary axis 

orthogonal to the plane spanned by         and        . There is a residual from    (of length    ) 

after regressing on    and   . This residual is composed of       
 and    (analogous to the 

proof for    with the residual of      
 and   ). Therefore,    is an impact of collinearity 

representing the explained variance of the original model confounded with   . 

 

       
       

        

  (5.17) 
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The index   
  can be calculated as the squared sum of the components    and   , 

 

  
     

    
      

      
       

         
       

        

   
 

 (5.18) 

 

Returning to the vector geometry, the computation of   
  can be summarized as follows. 

The response    has been split into two components (    and            
). The point     

is projected onto the surface spanned by         and         (which would have zero correlation if it 

were uncorrelated with the baseline model) and             
  projected onto          

(which would similarly be uncorrelated at baseline). However, if a correlation is present it 

will generate a deviation of the point estimates represented by a non-zero   
 . The 

advantage of using this measure (i.e. the bivariable model as baseline) is that the 

interpretation is much the same as the previous example for   . There are again two 

components of the response to project, only in this example one component represents a 

baseline model with the explained variance of two predictors rather than one.  

 The second index    is an impact of collinearity in moving from uncorrelated 

covariates at baseline to the three predictor model. In other words, if    had zero 

correlation with both    and   ,   
  would always be zero. However,    and    could still 

be correlated and so an impact on the point estimates from baseline orthogonality would 

still be observed, but it would be represented solely in the   . The index is now computed 

as an overall impact of collinearity to give    and    a common baseline. In this 

computation an emphasis is placed on    by considering the first component of    to be     

(followed by      
 and       

), however any construction of    would produce the same 

‘global’ result. This is only important for when the contributions of the individual 

predictors to the overall impact are considered using angles of deviation.  

In the    measure,    is once again split into two components. The first deviation 

is the component parallel to        , which is the summation of   and    . This represents the 

portion of explained variance from    and    overlapped with   . There is a second 

component of this impact in the plane spanned by         and        . This consists of the shared 

variance of     with   , whilst holding    constant. This is represented by the addition of 

    and   . The final component of    is the deviation orthogonal to the plane spanned by 

        and         - this is the component    - identical to that already computed for   
  (see 

eqn(5.17)). The   
  demonstrating the overall impact from baseline of orthogonality can 

now be expressed as follows,  
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(5.19) 

 
In both measures, the components of the response are projected onto vectors which 

would have zero correlation at baseline. This deviation contributes to the global measure. 

The indices generated for the trivariable model can now be extended to the general case 

with   predictors as follows.  

 

  
       

      
       

                     

     

                    

       

             
  

 

 

(5.20) 

 
 

  
                          

 
                              

 
 
 

                      
 
 

               
      

       

             
  

 

 

(5.21) 

 
It may be assumed that the  -index in higher dimensions represents a generalized form of 

     . The first index   
   measures the impact of adding a single predictor to a baseline 

model assumed as the model including     predictors. The second   
  assumes the 

predictors to be uncorrelated at baseline and incorporates the previous     
  impact as 

part of an overall impact.  

 

5.7.1 Extending the Multivariate Index  

The index    is restricted for model building purposes in that it is unable to identify the 

most influential predictors to generating the impact of collinearity (as was found for   ). 

Once again the correlations can be considered between the covariate vectors and the 

deviation index   
       (i.e. the direction of deviation). The calculation of any  -statistic is not 

dependent on the order in which the predictors are entered, however the order is 

important to compute the correlations. Figure 5.27 demonstrates that the angle between 

      and the predictor        can be calculated by an orthogonal projection of       onto any    

plane containing   . The change in the direction parallel to         is calculated as   
     

 . 
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Figure 5.27: Orthogonal projection of   
       onto        . 

The correlation is calculated as the ratio of   
     

  and   
  for the target covariate. For 

example, the correlation of       with         (i.e. the target covariate) is as follows, 

 

                                     (5.22) 

 

For the general case, a similar orthogonal projection of    can be made onto any 

predictor. The correlation between   
       and         would be as follows, 

 

       
     

                                            (5.23) 

 

The correlation between   
       and any predictor can be found by placing the first arbitrary 

axis of the    calculation parallel to the target covariate. For   , if the overlap of    and 

   with    is high in comparison to the overlap with either of the other predictors the 

deviation will be towards the    vector (i.e. will receive a greater weight in the direction 

vector). This will produce a greater     and be flagged as an important contributor to the 

overall impact of collinearity on the point estimates. At this point the new index is 

complete for the general case.  

 

5.8 Regression Study: Body Fat Analysis 

The aim of the original study was to discover which subset of body circumference 

measurements could be used to represent body fat. In this example the focus is on four 

predictors in particular –   =wrist,   =neck,   =abdomen and   =biceps. A global 

measure of point estimate deviation is made using the index    (eqn(5.21)) and 

correlations between    and    (eqn(5.23)) are included to highlight the role of the 

individual predictors in producing this impact (i.e.    ). 
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       0.24 0.13 (0.08 to 0.18) 0.99 0.71 - - 

       0.70 0.27 (0.25 to 0.29) 0.97 - 0.41 - 

       0.25 0.10 (0.06 to 0.13) 0.99 - - 0.70 

       0.70 0.40 (0.36 to 0.43) - 0.97 0.59 - 

       0.28 0.15 (0.10 to 0.20) - 0.93 - 0.93 

       0.67 0.31 (0.28 to 0.34) - - 0.60 0.99 

          0.71 0.89 (0.65 to 1.16) 0.92 0.92 0.62 - 

          0.28 0.50 (0.32 to 0.74) 0.95 0.87 - 0.81 

          0.70 0.79 (0.54 to 1.05) 0.92 - 0.62 0.87 

          0.70 1.06 (0.80 to 1.32) - 0.95 0.69 0.89 

            0.71 1.77 (1.28 to 2.33) 0.89 0.93 0.70 0.85 

Table 5.4: Results from the  -index for the four predictor body fat example.  

Considering first the collection of   
  produced by each model, the greatest impact of 

collinearity is highlighted for the model involving    and   . This follows with the maximal 

correlation and subsequently the     (        ,         ). The     demonstrates that 

the covariate with the greater correlation to the response is    (        ), highlighting 

that    provides the greater contribution to the impact of collinearity on the point 

estimate. Studying the correlations between covariates indicates that the model 

involving     and    has a similarly high correlation (         ). For this example the 

variance in   explained by both predictors is low (        ,          ) and so the 

impact of collinearity on the model has been limited by the low model   
 . However, both 

    are large indicating that the collinearity is high in this example. Therefore, the 

individual predictors can perform an important role in indicating a potential ‘problem’ 

even when the overall inflation is low. 

In each bivariable model the covariate         had the strongest correlation with   
     . 

This is demonstrated by the low correlation with   (i.e.          ). The covariate    

consistently had the lowest correlation with    (for any model) suggesting that it would be 

a useful predictor to include in the model due to its high explanatory power. A confidence 

interval for the bivariable model was formed using the eqn(5.13) discussed in section 5.6.2 

The three and four predictor models were bootstrapped using a “leave one out” method 



Chapter 5 Developing an Index to Measure the Impact of Collinearity 133 

 

(Tukey 1958). The   
  does not increase greatly beyond the two predictor model that 

included    and    (0.7). The correlations     indicate that    was the main contributor to 

this impact of collinearity in the bivariable model. A very moderate increase in   
  is found 

after including    into this model (0.71). However, with this inclusion    has increased 

from 0.27 to 0.89. The additional impact of adding the predictor    to this model can be 

calculated as   
       . This would appear high when viewed alongside other bivariable 

measures to attain a small increase in   
 .  

When    is entered into the model along with    and    the     are equal for 

both    and   . In comparison, when    is added to the model along with    and   ,     is 

greater than    . This demonstrates how the role of each predictor changes dependent on 

other predictors entered into the model. In the full four predictor model the   
  reaches 

0.71, however the deviation peaks at 1.77. The collinearity structure of the four predictors 

and the variance explained suggests that    is the greatest contributor to this impact of 

collinearity. This is a change to    being consistently high in previous models. Observing 

model parsimony would seem to discount the four predictor model. Removing    

produces a model with a high   
  (0.7) and moderately low   

  (0.79). Excluding    from 

the model wouldn’t seem obvious from only observing the three predictor models (due to 

the consistently high    ), however noticing the impact in the full model has highlighted 

the dependence of the predictor with others in the study. 

From a model building perspective the bivariable model with    and    included as 

predictors would appear optimal. This model explained a high variance of the response 

and had a relatively low   . Whilst moderately increasing   
 , adding the 

predictor    would generate a high impact on the existing model. Also, when considering 

the full set of predictors    would seem to have the greatest impact. Therefore, if any 

predictor would be added to the bivariable model,    would appear to be the best option. 

However, adding    does not increase the explanatory power of the model and so this 

would not seem sensible.  This example has been much simplified as the nature of any 

causal relationships amongst the covariates has not been considered. This would raise the 

complexity of the problem and our understanding of incorporating collinearity in the 

model. Instead this example has focussed on the statistical aspect of the  -index in 

application. However, it is possible to imagine how this tool could be adapted to a range of 

applications such as those discussed in section 5.2. Possible adjustments are considered in 

section 5.9 that would adapt the framework to such applications.  
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5.9 Discussion 

When interpreting the  -index from a model building perspective it may appear 

conceptually appealing to assume a greater   
  to be beneficial to the estimation. 

However, it is important to stress that the index is not necessarily measuring a ‘problem’ 

(as a ‘correlation based’ measure may be assumed to be doing). A high   
  will inflate the 

point estimates and this is subsequently reflected in the index. If the user were comparing 

to a baseline prior, whether that be a zero correlation or some ‘guesstimate’ of a 

population correlation, then they would wish to know the deviation of the estimates away 

from the expectation. This is not representing a biased or ‘wrong’ estimate, but a 

population prior that is not reflected in the single sample case. Therefore, if a greater   
  

inflates the change in coefficients, then we would wish to know the degree of inflation 

resulting from the   
  and the collinearity in the sample data.  

When considering the analysis of the body fat data in section 5.8, the greatest 

change in impact from    to    is after adding    to the model including    and   . 

However,    contributes the greatest explained variance individually (        ) and so 

including this predictor would appear to be positive in the model building process. It is 

labelled the most beneficial of the predictors by the correlations with     , suggesting    and 

   contribute greatly to the impact of collinearity in this model. The high change in global 

impact could be misleading if it were interpreted as a measure of some collinearity 

‘problem’. This is why it would seem beneficial that any change in   between models be 

balanced with a change in   
 . If little explained variance is gained by including an 

additional predictor in the model, but the point estimate inflation is high, then this should 

perhaps be viewed as a potential warning (based on the conceptual model employed) of 

the impact of collinearity on the parameter estimates.  

The index could be developed in the future to produce a more natural 

interpretation for this purpose. Replacing explained variance with some reciprocal 

estimate may produce the desired deflation effect. This should certainly be considered in 

the future. The formation of a ‘global’ index is a novel aspect of this work and one that can 

play an important role in understanding the impact of collinearity in a range of 

applications. However, collinearity remains a complex feature in epidemiology and the 

development of a blanket statistical approach still requires a very careful conceptual 

understanding to be of benefit in application.   
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5.10 Conclusions 

The aim of this chapter was to build a general apparatus for measuring the impact of 

collinearity. The  -index provides this tool and its development has been demonstrated 

from the basic two predictor model and extended to the general case. In some aspects, the 

construction of this statistic has provided new challenges in comparison to ‘correlation 

based’ indices, such as the     and   , as the  -index incorporates information of the 

response. From general regression theory (shown in 2.2.2), the covariates are assumed to 

be measured without error. Subsequently, correlation based diagnostics are not given a 

confidence interval. However, considering the response incorporates error into the 

measure. A confidence interval was created for the bivariate example, however extension 

to the general case is left as a future development as our primary interest has been 

invested in demonstrating the utility of the index itself. 

 A useful feature of this measure is in its links to    . The  -index measures 

between a single and full component     (in any dimension). This allows for a useful 

interpretation in comparing between a baseline (either an uncorrelated prior or univariate 

estimates) and target model. This may be interpreted as the impact of collinearity from a 

single dimension to the correlated covariates. Interesting links were also highlighted to the 

        measure proposed in chapter 3. For the bivariate   
  index, these links are clear 

in that the measures both utilize information from    
  and   

 . Similarities can also be seen 

in the extension to higher dimensions. However, the  -index assesses a ‘global’ impact, 

whilst the         will only provide indices on the individual covariates. Therefore, the 

collinearity is partitioned in ways to represent an       in the general case. A measure on 

the individual contribution of predictors to the global impact (such as that provided by 

the        ) is achieved by correlations between      and each covariate vector. 

An achievement in the development of the  -index is in the use of vector 

geometry to create the measure and also to understand it. One of the reasons for 

proposing the geometric alternative to the         is that it allows a flexibility to 

incorporate different a priori knowledge as to the original aims of the index. This may be 

extended to assessing an optimal number of     components to retain (i.e. finding a 

balance between signal and incorporating collinearity). Another development would be to 

develop machinery to process the information from the index to create a dependency 

structure. The matroid method developed in chapter 6 could provide an ideal vehicle to 

achieve this aim to produce a structure that incorporates the   information. 
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6. Approaches to Unravel the Latent Structure 

within Metabolic Syndrome 

In previous chapters a focus has been placed on understanding the relationship between a 

response variable and a set of correlated predictors. In chapter 6 the focus is on the 

covariates to identify common mechanisms that influence them. The aim is to analyze the 

dependence structure amongst manifest variables, to discover the existence and structure 

of unobserved latent constructs. Techniques such as     and     are frequently used for 

this purpose (see section 4.2). Whilst a single dataset can generate a range of heuristic 

models from either technique, a considered methodological approach based on biological 

and statistical theory is required to identify factors that reflect ‘real life’ constructs. The 

balance between clinical and statistical evidence must be carefully understood to generate 

consistent and considered reasoning behind their application. 

The widespread use and software availability of     methods has contributed to it 

becoming a traditional and accepted means of applied research across a number of diverse 

fields. However, the results obtained are often highly subjective. The methodological 

decisions made during their application are rarely given appropriate consideration in their 

context and this often leads to hypotheses and conclusions based on questionable 

evidence. Research into the existence and structure of metabolic syndrome is one such 

application. The use of exploratory and confirmatory factor analysis to analyze the 

structure of risk factors appears almost compulsory in this field, however the rationale 

behind the application leaves the analysis open to misuse and misinterpretation. These 

issues will be discussed along with potential alternative methodology with roots in cluster 

analysis. In contrast to    , variable clustering takes a very different approach to achieve 

similar structural goals. The aim of this study is to encourage a consistently high contextual 

validity, without the need to increase the complexity in the application of statistical 

methods. Two advanced techniques of clustering in the         and matroid methods 

are developed and applied to      data, with the results compared to the traditional    . 



Chapter 6 Approaches to Unravel the Latent Structure within Metabolic Syndrome 137 

 

 

6.1 Example Application 

Metabolic syndrome (    ) defines a clustering of risk factors that act as an indicator for 

chronic diseases such as kidney disease, cardiovascular disease (   ) and type-2 diabetes 

(  -  ) (Gami et al. 2007;McNeill et al. 2006;Wilson et al. 2005), however components of 

     are still controversial. In recent literature,     and     have been used to generate 

and test a latent structure amongst      components and regression modelling is used to 

test the relation between chronic diseases and      components (Mannuicci et al. 

2007;Pladevall et al. 2006). Proposed risk factors, such as obesity, hypertension, insulin 

resistance and lipid metabolism, are typically correlated and clustered, and this poses a 

challenge for statistical modelling. Collinearity amongst these components can have 

serious implications in regression analysis if it is not identified and treated with care. 

Whilst some exploratory analyses can provide an insight into the structure of the data, the 

results are often difficult to interpret and methodological decisions are rarely justified.  

A cross-sectional study by Shen et al. (2003) is considered in this work. Data were 

collected from 847 men aged between 21 and 81 years in the ‘Normative aging study’. The 

study based in Boston, Massachusetts included a total of 2,280 predominantly white 

community-dwelling males (with a mean age of 61 years). The subjects were selected from 

an original 6,000 applicants who were screened at entry for existing health conditions. 

Those suffering from known chronic diseases, such as     and   -  , were excluded 

from the study. The subjects selected for the application, were those examined between 

1987 and 1991 who provided complete data for the following covariates: fasting insulin 

(   ), postchallenge insulin (     ), fasting glucose (   ), postchallenge glucose (     ), 

body mass index (   ), waist/hip ratio (   ), high density lipoprotein cholesterol (   ), 

triglycerides (    ), systolic blood pressure (   ) and diastolic blood pressure (   ).  

 
                                          

      0.65         

    0.27 0.26        

      0.29 0.55 0.53       

    0.45 0.37 0.21 0.21      

    0.33 0.29 0.11 0.15 0.46     

    -0.22 -0.21 -0.13 -0.1 -0.27 -0.2    

     0.29 0.36 0.16 0.22 0.24 0.26 0.47   

    0.17 0.23 0.10 0.21 0.10 0.12 -0.02 0.15  

    0.17 0.17 -0.01 0.09 0.19 0.11 -0.01 0.12 0.57 

Table 6.1: Pearson correlations for the 10 metabolic risk factors. 
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6.2 Defining Metabolic Syndrome 

The concept of      was first proposed by Eskil Kylin (1923) as a syndrome involving 

hypertension, hyperglycaemia and hyperuricemia (Alberti 2005). The structures to define 

     have frequently changed - more recently with an increased attention to grouping risk 

factors for   -   and    . Criteria for the diagnosis of      have been proposed by a 

number of leading health bodies. Two of the most commonly accepted are those of the 

World Health Organization (   ) and the National Cholesterol Education Adult Treatment 

Panel     (       ) (Darsow et al. 2006). A study by Ford and Giles (2003) compared the 

prevalence of      using these two definitions. In a nationally representative sample of 

8,608 Americans they found disagreement on 13.8% of the subjects classified as suffering 

from     . The variance in definitions demonstrates an uncertainty in the underlying 

mechanisms. If we are unable to identify the core disease that we are trying to 

characterize, then it is impossible to form a precise definition of such a disease or even to 

justify its existence. Clustering amongst the risk factors should stimulate research into an 

understanding of the relationships, but the use of existing definitions should be 

implemented with caution (Kahn 2007). Further research is required to provide 

consistency and reproducibility across studies to form a sound evidence base for the 

existence and structure of a      construct. 

The study by Ford and Giles highlighted substantial differences amongst subgroups 

of the population (e.g. 16.5% of African-American men were diagnosed as suffering from 

     using the         criteria, whilst 24.9% were diagnosed using the     criteria). 

Evidence suggests that the form of the hypothesized syndrome may not be consistent 

across members of populations (Ford and Giles 2003;Shen et al. 2006). Therefore, 

statistically methodology is required that is flexible to accommodate this change, but 

remains able to identify consistency when it is present across subgroups. The clinical 

relevance should be the primary aim for selecting this methodology. If the same dataset 

were given to ten different researchers to produce an    , they could conceivably return 

ten different hypotheses. This does not demonstrate consistency in either the method or 

the interpretation. If it is difficult to achieve this on a single dataset, the task is only 

magnified across a range of studies and study populations. Discussion regarding the misuse 

of factor analysis in psychological research is quite common (Fabrigar et al. 1999;Ford et al. 

1986;Streiner 1994), however many of the same issues are rarely noted in the clinical and 

epidemiological literature.  



Chapter 6 Approaches to Unravel the Latent Structure within Metabolic Syndrome 139 

 

 

6.3 Factor Analysis and Clustering Procedures 

The work of Galton and Pearson in developing the correlation coefficient provided the 

stimulus for both factor analysis and clustering methodologies to develop. The first to arise 

was a form of factor analysis in psychology and the study of intelligence. The concept of 

“intelligence” is a subject of great debate in psychology. A number of theories have been 

proposed in trying to identify the structure and define such a construct. Charles Spearman 

(1904) developed the “two factor theory” to represent human ability. The “model of 

intelligence theory” was developed upon the results of an     on the scores from 

psychometric tests (Spearman 1904). Spearman noted that all the test scores measuring 

mental ability were positively correlated. He postulated that if this is the case, there must 

be some underlying factor that generates this positive relationship amongst the scores. 

Using a simple form of factor analysis Spearman developed the two factor theory, that 

suggested the presence of a ‘ -factor’ representing an individual’s “general intelligence” 

and a unique factor specific to the abilities required for each individual test.  

 The evidence proposed by Spearman for the two factor theory was heavily 

criticized for being overly simplistic by fellow researchers Edward Thorndyke and Louis 

Thurstone (1934). They believed that the single  -factor was a spurious finding bourn from 

limitations of the early methodology used by Spearman. Factor analysis was later 

developed by Cyril Burt (1909) to extract multiple factors. In 1948, Thurstone published a 

different structure that suggested the presence of seven “primary mental abilities”. These 

were labelled (1) verbal comprehension, (2) reasoning, (3) perceptual speed, (4) numerical 

ability, (5) word fluency, (6) associative memory and (7) spatial visualization (Thurstone 

1948). A major difference between Spearman’s and Thurstone’s theories is in the inter-

correlations of the factors (Goodman 1943). Spearman believed that the factors must be 

uncorrelated, whereas this was not deemed important as part of Thurstone’s theory. A 

later study analyzed test data from subjects with a similar    which again supported the 

seven factor structure. However, when this process was repeated on a sample of children 

with seemingly similar mental ability, Thurstone’s structure was less clear, appearing to 

instead support Spearman’s  -factor approach. Instead of the two theories contradicting 

one another, it is possible to consider them as part of a common hierarchical structure. 

The  -factor would overarch the seven primary mental abilities. This example in the early 

developments of factor analysis encompasses the hierarchical structures common to many 

statistical models representing ‘real world’ concepts. 
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Although Spearman was limited by technology of the time, the results of the 

factoring approach highlighted the usefulness of the methodology in a much broader range 

of fields. Robert Tryon (1935) recognised the use of factor analysis from this evidence, but 

the complex factor structures and having to perform the analysis by hand drove him 

toward a goal of improving the practicality of the method.  

 
“The price of such mathematical elegance was one’s not knowing exactly what  

 one had measured”  

(Tryon and Bailey 1970) 
Tryon pictured observations in geometry – observing ‘natural’ formations and clusters. He 

proposed the idea of cluster analysis, citing that the structure of objects can be generated 

using ‘objective’ methodology, without the need to impute complex latent variables 

underlying those observed.  

Paralleled with the development of personal computers in the 1960’s the number 

of automated clustering methods has substantially increased since Tryon’s initial work. The 

range of methodology is now at a stage in which cluster analysis can be considered an 

independent scientific discipline in itself (Kaufman and Rosseeuw 1990). Cluster analysis 

was originally conceived as an alternative to factor analysis for theory development. This 

meant employing one methodology over another would benefit from some advantages, 

whilst compromising on the useful features of the other. However, the development of the 

clustering algorithms has seen the lines between the methods fade. For instance, there are 

techniques such as “partitioning” (e.g.  -means clustering) in which the number of clusters 

to be extracted is specified by the user prior to the analysis and “fuzzy clustering” in which 

predictors are allowed to appear in more than one cluster (similar to the factors generated 

in a factor analysis) – see section 4.3.  

The discussion regarding cluster analysis must be fairly vague as it encompasses a 

number of algorithms and definitions. The sheer range of options provided by clustering 

methodology often leads to criticism in applied work, with the dissimilarity in the results 

being cited as too ‘subjective’. However, the range of options should be viewed as 

beneficial to research. It is the responsibility of the user to decide the appropriateness of 

the methodology to the research question. The discussion will begin with considering the 

advantages and limitations of the ‘traditional’ approaches in factor analysis and cluster 

analysis. It will then be considered how to tailor the methodology of both to the potential 

benefit of      research. This will encourage the development of a novel technique 

designed for this specific application in section 6.7.  
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6.4 PCA vs. EFA in Applied Research 

A range of     and     methods have developed from the early work of Thurstone and 

Burt. They are extensively used techniques in the social, business and biological sciences. 

Both     and     provide tools for dimension reduction and are similar in procedure, 

which commonly leads to the terms being interchanged in texts and statistical packages 

(e.g.     /      label both techniques as forms of “factor analysis”). However, subtle 

methodological differences differentiate the methods. Conceptual differences in the 

techniques should ensure that the two procedures are not readily interchanged in 

definition or application (Costello and Osborne 2005;Fabrigar et al. 1999). 

 

  

Figure 6.1: Model assumed by applying (a)     and ( )    . 

The preferred use of an     or     is dependent on the hypothesis the user intends to 

assess. There is an important conceptual difference between factors and components. The 

model structures in Figure 6.1 demonstrate how the theoretical direction of causality 

between variables and latent constructs is reversed. Factor analysis assumes an underlying 

causal structure – that the covariation amongst the predictors is being caused by one or 

more latent factors - i.e. a reflective model. If the user believes latent factors to be 

exerting some influence on the manifest variables, then an     can be employed to 

discover and interpret those factors. For example, in the      data the observed variables 

are entered as “symptoms” exhibited by the patient. When an     is performed on the 

data, the researcher intends the factors produced to represent a “syndrome” as 

collectively they characterize some unobserved condition (Child 1990).  
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    is intended to maximize total variation in the first few components. It makes 

no distinction between unique and shared variance. The components are linear 

combinations of the original variables (i.e. influenced by the observed variables) – i.e. a 

formative model. The technique has been developed only for dimension reduction and 

makes no causal assumptions. For this reason     should not be considered a form of 

factor analysis, but an alternative technique with a different interpretation. The issue with 

    in many practical applications arrives when trying to apply the results to “real life” 

concepts (such as “syndromes” and “symptoms”). The   ’s generated are statistical 

constructs. Therefore, conceptually     should not be considered a form of factor analysis 

and freely interchanged by the user. 

 

6.4.1 Decision Making in an EFA Study 

A considered use of     can provide an insight into the underlying model structure of a set 

of manifest variables. However, the use of the technique requires careful decision making 

and an understanding of the potential consequences of each decision. Preacher and 

MacCallum (2003) define three major methodological decisions for employing    : 

1. the method used to extract the factors;  

2. the number of factors to retain; and 

3. the method of rotation to obtain an interpretable factor solution.  

In addition, the following methodological challenges can have a major effect on the 

interpretation of the results: 

4. the approach used to determine a ‘significant’ loading;  

5. the sample size; 

6. violation of the linearity assumption; and  

7. using too few variables to construct a factor. 

These decisions define the nature of     and should be carefully considered by the user. 

 
Factor Extraction 

Although     and     should be labelled separate entities due to conceptual differences, 

this is not the practice of many researchers and statistical software. They are frequently 

described under the umbrella of “factor analysis” and seen as different methods of “factor 

extraction”. To discuss the mindset of researchers in employing a factor analysis and to 

avoid confusion over these techniques, this discussion will reluctantly include     as an 
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option in employing a “factor analysis”. In addition to    , methods of extraction include 

maximum likelihood (  ), principal axis factoring (   ), iterative principal (  ) factor 

analysis and alpha factoring. With the exception of    , they each follow the same 

common factor model (as illustrated in Figure 6.1 ), but proceed with different methods of 

computing the loadings. Each approach has advantages and disadvantages. For instance, 

   estimation allows for the formation of confidence intervals, significance testing of 

factor loadings and goodness of fit statistics to be performed on the resulting model 

(Cudeck and Odell 1994). However, the procedure assumes multivariate normality (which 

is not an assumption of principal factor methods). Therefore, when the data does not 

adhere to the distributional assumption, principal factor methods are preferable – but with 

these, many of the statistics available to    factoring are forfeited.  

 
Factor Retention  

If strong assumptions cannot be made about the number of factors, methods such as 

Kaiser’s criterion (in which factors are retained if the associated eigenvalues are greater 

than one) or retaining enough factors to explain a fixed variance percentage are often 

popular techniques. They can be implemented with no user intervention, thus appearing 

to give objectivity to the analysis. However, such an arbitrary threshold is not without 

limitations. There is often very little solid reasoning for choosing one limit over another. 

Why should eigenvalues greater than one indicate ‘important’ factors? Why should this 

threshold be transferable across subject fields? A number of studies have been produced 

to test the performance of Kaiser’s criterion and few appear to demonstrate support for 

the index in application (Fabrigar et al. 1999). 

 Another popular method used to decide the number of factors to retain is the 

scree test (Cattell 1983). This method involves plotting the eigenvalues of the correlation 

matrix in decreasing order and identifying a ‘substantial’ drop between factors. The 

number of factors included before the drop is then adopted for the analysis. In contrast to 

Kaiser’s criterion, this method is often criticized for being too subjective – it is left to the 

user to decide what represents a ‘substantial’ drop (if one exists). A final and perhaps more 

promising method is that of parallel analysis. Parallel analysis compares the eigenvalues 

obtained for the actual data against those of a random dataset matching the same criteria 

(i.e. equal sample size and variable number). This method appears to provide a balance 

between the ‘objective’ Kaiser’s criterion and the ‘subjective’ scree test. Simulation studies 

have shown this technique to perform well in practice (Humphreys and Montanelli 1975). 
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 The objective of a factor analysis is to obtain a parsimonious model that 

adequately reflects a ‘real life’ construct. A considered     should encourage a 

combination of methods for factor selection to see if there is any agreement between 

them. It is generally thought to be more dangerous to choose too few factors (i.e. 

underfactoring) rather than too many (i.e. overfactoring) (Wood et al. 1996). When too 

few are retained, variables that would load on factors left out of the analysis can falsely 

load on those left in. In addition to this, factors that are independent may become 

combined, thus hindering the interpretation of the true factor structure. In contrast, by 

ignoring model parsimony and ‘overfactoring’ we can give strength to factors that 

demonstrate little evidence of any clinical importance.  

 

Factor Rotation 

The results of direct solutions from extraction methods such as         ,    etc. will 

follow the desired mathematical structure, but the loadings do not have to present a clear 

and interpretable solution in application. This is just one view of an almost infinite number 

of mathematically equivalent models. Thurstone (1940) proposed that the “best” structure 

(i.e. a structure that is interpretable, unique and replicable) is the “simple” structure – 

each factor defined by a small number of variables that load highly in relation to others 

and each variable loading ‘highly’ on a small number of factors (preferably only one).  

 

1. Each row of the loadings matrix should contain at least one zero loading. 

2. Each column of the loadings matrix should contain at least   zero loadings. 

3. For every pair of columns of the loadings matrix, there should contain factors with a zero 

in one column and a high loading in the other. 

4. If more than four factors are extracted, then every pair of columns should have several 

rows with zeros in both columns. 

5. Every pair of columns should contain few rows with nonzero loadings in both columns. 

 
The direct solution will rarely realize this form. The variables will often have ‘high’ loadings 

on a number of factors, subsequently making interpretation difficult.  

A factor rotation can be employed to obtain an approximate ‘simple’ structure, 

whilst still accounting for the same level of variation as the original (i.e. a derived solution). 

If the factors are imagined as axes (such as in the geometrical illustrations in Figure 4.6), a 

factor rotation can be demonstrated as a rotation of these axes about the origin (i.e. a 
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transformation of the factor loadings). The two main forms are an orthogonal rotation 

(which maintains an uncorrelated structure) and an oblique rotation (which allows 

correlation amongst factors). The varimax rotation developed by Kaiser (1958) has become 

the standard procedure for orthogonal rotation. It is considered that whilst an orthogonal 

structure is more generalizable across studies, an oblique rotation is often more likely to 

achieve the criteria of a ‘simple’ structure.  

The strengths of the oblique and orthogonal rotation methods can be 

demonstrated on the      dataset. A series of bi-plot’s are used to demonstrate the first 

two factors attained from a     extraction with various rotation methods employed, 

 

  

  

 

Figure 6.2: ( ) Scree plot and bi-plot’s of ( ) raw, ( ) varimax, ( ) promax solutions. 

( ) ( ) 

( ) ( ) 
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Kaiser’s criterion and parallel analysis are used to decide the number of factors to retain. 

Both methods recommend retaining 4 factors (see Figure 6.2 ). In the first example, no 

rotation has been used (Figure 6.2 ). Moderate loadings are observed on all variables with 

most shared evenly between factor 1 and factor 2. The third and fourth examples use a 

varimax (i.e. orthogonal) and promax (i.e. oblique) rotation (Cureton and Mulaik 1975) 

respectively. The factors retain their orthogonal structure in the varimax rotation, however 

in the promax rotation the variables are more clearly defined as belonging to a single 

factor or to none at all (i.e. clustering around the origin). 

 
“The reason for using uncorrelated reference traits can be understood but it  

 cannot be justified”  

(Thurstone 1947) 
The quotation above is Thurstone’s opinion speaking as a psychologist, but this view 

should be transferable to most studies analyzing biological mechanisms. In utilizing an 

oblique rotation the complexity of the interpretations will increase as the user must 

consider the correlation of the factors along with interpretation of the loadings. However, 

in many cases correlated factors will be more likely to reflect structures closer to ‘real life’ 

biological systems (Child 1990). Obtaining a solution that is interpretive and meaningful 

should be the ultimate goal of exploratory research.  

 

A Further Consideration 

The three methodological decisions listed by Preacher and MacCallum define the 

computational options available to the researcher in an     study. Along with these, there 

are equally important interpretational challenges. A major decision is deciding what 

constitutes a ‘significant’ factor loading. Child (1990) proposes an arbitrary cut-point of 

     for data with sample size equal to or greater than 100 (further alternative criteria 

have been suggested for different sample sizes). Another suggestion by Burt and Bank’s 

(1952) is that from the first factor onwards the levels to which the loadings become 

significant should increase, to compensate for the lesser variance explained by the factor. 

However, the criterion employed is still a rather subjective decision that the researcher 

must make and justify. As yet, an adequate method of testing the significance of a loading 

does not exist (Leng and Wang 2009). There should always be application specific 

knowledge used when interpreting the components as opposed to arbitrary measures and 

so application of such techniques for our purposes would require greater thought.   
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6.4.2 Limitations of Factor Analysis 

In 1967 Armstrong published an article discussing the utility of factor analysis in applied 

research. He used a sample dataset to demonstrate the pitfalls of ‘automatic’ decision 

making in the use of    . The example contained 11 measurements of 63 right angled 

parallelepipeds of various sizes. The hypothetical situation defined that the user had no 

previous experience in these particular objects, but intended to use factor analysis to 

define a classification system. The 11 measurements were as follows, 

 
1. Length 4. Volume 7.  Total surface area 10. Thickness 

2. Width 5. Cost per Pound 8.  Cross-sectional area 11.  Length of internal               

diagonal 3. Density 6. Weight 9.  Total edge length 

 
The reasoning behind the user employing     was that the measures presented a high 

degree of collinearity and they aimed to reduce the number of covariates to produce a 

more economical classification system. Unknown to the user, the actual structure is very 

simple. The characteristics of the object can be completely defined by measures 1-5 and 

the remaining six are combinations of the initial five. A     was performed with the user 

adopting ‘popular’ methodology, which included retaining factors with eigenvalue greater 

than one (i.e. Kaiser’s criterion) and using a varimax rotation method (see Armstrong 

(1967) for original     results). They found that the approach suggested 3 factors with an 

explained variance of 90.7%. Armstrong suggests that these factors may be describing ( ) 

“compactness” (  ) “intensity” and (   ) “shortness”. However, knowing the structure, it is 

frustrating that     produced a complicated structure that only explains a portion of the 

variance, when it can be fully explained by a very simple model.  

 As is often the case, the supervisor has failed to provide (or has) valid reasoning 

behind the methodological decisions taken in the analysis. The decisions have led to an 

uncomfortable set of results that leave the user forming sketchy descriptions of abstract 

factors, which are unrealistic of the population model (i.e. a heuristic interpretation). The 

supervisor may have arrived at these decisions for any number of reasons; (1) they are ill-

informed of the procedure, the alternatives, or the effects of the decisions; (2) A certain 

approach appears traditional (e.g. the literature suggests an optimum method, or by 

employing the same procedure it enables a comparison of results); (3) the ‘default’ options 

of the statistical software make the decisions for the user (Fabrigar et al. 1999). Another 
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researcher could conceivably repeat the analysis with more appropriate methodology. For 

instance, employing prior knowledge of the components which traditionally make up 

similar classification systems would have aided the user in deciding the number of 

components to retain. Both models (as well as numerous others) are statistically 

acceptable, however employing reliable a priori knowledge is likely to lead to a result that 

is representative of the clinical hypothesis the user intends to form. 

When the conclusions of an explorative study are heavily dependent on the 

application of the method, the reasoning behind each decision must be made on stronger 

grounds than those in this illustrative example. The decision making process and the 

interpretation of the components make     a very subjective approach. The ease and 

speed of performing an     on modern statistical software has encouraged widespread 

use of the methodology, but this should only serve to heighten the caution adopted with 

the results. Despite repeated attempts to warn against the dangers of misguided decision 

making in factor analysis (Fabrigar et al. 1999;Floyd and Widaman 1995), they are still too 

commonly found in the clinical literature. A further danger is that the decisions (and the 

reasons for them) are rarely commented on in the literature to allow the reader to make a 

judgement on the validity of the analysis. The analysis can be easily swayed in a particular 

direction without solid reasoning for doing so. 

 
“At the present time, factor analysis still maintains the flavour of an art, and no 

single strategy should yet be chiselled into stone” 

(Johnson and Wichern 2002) 
There are very few guidelines for researchers undertaking an     in applied 

research. To add further confusion, many of the same methods exist under different 

terminology across statistical packages (Costello and Osborne 2005). Often researchers 

choose to employ the ‘default’ options in the software, which gives strength to methods 

such as    , Kaiser’s criterion and the varimax rotation. These decisions (along with the 

others in an    ) should be appropriate to the data under consideration and the 

hypothetical questions being analyzed (such as the concept of     ). The example used by 

Armstrong was in fact very simple. However, this is rarely the case in many applications. 

The absolute model (if one exists) will often be more complex in clinical examples and 

there will be less background theory to guide the researcher. Fabregar et al. (1999) 

suggests that it is not the utility of the method that we are concerned about, but rather the 

way in which it is employed. However, the utility of the method must be questioned when 

it is so heavily dependent on its application.   
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6.5 The Relationship of Factor Analysis and Metabolic Syndrome 

Returning to the concept of heredity discussed in section 2.1, an argument that has been 

regularly levelled toward evolutionary theory is Plato’s concept of ‘essentialism’ (Dawkins 

2009). Plato saw the universe as truly perfect and that as humans we can only view a poor 

interpretation of this perfect state (i.e. the perceived universe).  

 

“…although they make use of the visible forms and reason about them, they are 

thinking not of these, but of the ideals which they resemble ” 

(Plato)  

The essentialist viewpoint implies that everything we perceive is simply a deformed copy 

of a perfect state. For instance, the species label of a ‘homo sapien’ describes an 

unchanging universal form that defines a human. This theory however counters the 

concept of evolution and natural selection – that any two living things have evolved from a 

common ancestor at some point in the evolutionary chain i.e. “population thinking" (Mayr 

1970). The idea of a perfect human would appear counterintuitive of this notion and that 

the species label is just an artificial descriptive term. The essentialist viewpoint is often one 

taken when defining     . If we view the concept of      as an essentialist we consider 

an absolute model never changing. However, striving for an absolute model of the 

mechanisms (and subsequently the concept) may explain some of the difficulties 

encountered in the study of      and defining such a construct.  

There is growing evidence to suggest that factors defining socio-economic position 

(   ) such as income, education and occupation can have a ‘significant’ impact on the 

prevalence of   -   and    . Therefore, it is highly likely that the study environment in 

which the subject exists can be having a substantial effect on the structure of      (Ford 

and Giles 2003;Loucks et al. 2007). Along with    , factors such as smoking, alcohol and 

sleep levels have all been proposed as risk factors for   -   and     (Kaplan and Keil 

1993;Lawlor et al. 2002). From this evidence it appears dangerous to define      as 

though there exists an absolute model across populations and population individuals (i.e. 

as an essentialist). If we accept that the form of the construct can change then this should 

motivate us to understand how and why it changes. For this, methodology is required that 

can identify consistency as well as change across constructs. Whilst the use of     is 

increasing in popularity in the study of     , the use of     is essential to generate 

hypotheses across populations and analyze new risk factors (Tang et al. 2005).   
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6.5.1 Factor Analysis and MetS 

In the      example discussed in section 6.1, Shen (2003) considers evidence from a range 

of exploratory studies to construct three hypothetical models of the structure of     . The 

evidence was gained from the use of     and in particular    . The subjective nature of 

factor analysis as an exploratory technique is highlighted by Shen. The series of factor 

structures underline the range of potential hypotheses and heuristic interpretations. 

Instead, a     is employed based on the results of previous     studies and biological 

knowledge. The use of     is repeated in Shen (2006) to examine the structure of      

across sex and ethnic groups, citing the conflicting and inconsistent results of     studies 

as the motivation for this approach. Combined with sound prior knowledge, a     can be 

used effectively to validate potentially complex structures; allowing the testing of specific 

questions about the nature of underlying mechanisms (Lawlor et al. 2004).  

 The difficulty with employing     in the      example is the sheer range of 

potential structures suggested by previous studies (as commented on by Shen). In      

analysis there are many hypothetical structures available that can be tested, but little 

definitive evidence (as illustrated by the numerous definitions). A primary reason for the 

varying structures is that researchers can bias an    , using particular thresholds or 

rotational methods, to prize out a preconceived structure. Additionally, the (potentially 

default) orthogonal rotations and     extraction used in many applications of factor 

analysis for      data will be unlikely to represent the concept of an underlying construct 

and appear contradictory to the notion of a single unified syndrome (Shen et al. 2003).  

 To gain a solution using     a principal axis factoring (   ) method is selected for 

the Shen data (incidentally, the    solution of this data generated an ultra-Heywood case 

– i.e. a negative variance on a factor, which invalidates the result - see Khatree and Naik 

(2000)). As with any ‘true’ factor analysis method (i.e. excluding    ),     extraction is 

based on the common factor model. The intention of employing this model is to capture 

the clinical notion of an underlying construct amongst the manifest variables (as discussed 

in section 6.4). The scree test and parallel analysis are used in addition to the arbitrary cut 

value employed by Kaiser’s criterion. A substantial drop is not clearly defined, however 

each suggest the use of a four factor structure. Studies analysing similar risk factors of 

     have also proposed a four factor structure and so this will form the basis of the     

model (Lafortuna et al. 2008;Shah et al. 2006).  
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Variable Loadings Communality 

 Factor   Factor    Factor     Factor        

     0.69 -0.07 -0.07 0.25 0.55 

       0.76 -0.05 0.12 0.14 0.62 

     0.43 -0.18 0.37 -0.12 0.36 

       0.58 -0.08 0.48 -0.10 0.58 

     0.56 -0.06 -0.24 0.16 0.40 

     0.46 -0.05 -0.26 0.11 0.29 

      0.37 0.20 0.30 -0.30 0.36 

     -0.50 -0.09 -0.23 0.32 0.41 

     0.35 0.58 0.06 -0.10 0.48 

     0.30 0.61 -0.07 -0.03 0.47 

Variance Expl. 2.71 0.81 0.65 0.34 4.51 

Table 6.2: PAF extraction (Loadings     are in bold to indicate significance). 

Using the arbitrary 0.3 threshold suggested in Child (1990), it is clear that the direct 

solution does not adhere to the criteria for Thurstone’s ‘simple’ structure (i.e. ‘significant’ 

loadings highlighted in bold). For instance,      demonstrates a ‘significant’ loading on 

three of the four factors.  

 

Variable Loadings Communality 

 Factor   Factor    Factor     Factor        

     0.66 0.30 0.12 0.13 0.55 

       0.57 0.50 0.17 0.14 0.62 

     0.11 0.58 -0.01 0.11 0.36 

       0.17 0.73 0.12 0.08 0.58 

     0.57 0.11 0.09 0.23 0.40 

     0.47 0.03 0.08 0.23 0.29 

      -0.19 -0.06 0.03 -0.56 0.36 

     0.23 0.17 0.11 0.56 0.41 

     0.08 0.13 0.67 0.04 0.48 

     0.14 -0.01 0.67 0.03 0.47 

Variance Expl. 1.47 1.26 0.98 0.79 4.51 

Table 6.3: A Varimax rotated factor pattern for the     extraction. 
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Variable Loadings Communality 

 Factor   Factor    Factor     Factor        

     0.70 0.11 -0.01 -0.05 0.55 

       0.52 0.37 0.04 -0.03 0.62 

     -0.06 0.63 -0.08 0.06 0.36 

       -0.04 0.77 0.04 0.00 0.58 

     0.63 -0.08 0.00 0.09 0.40 

     0.53 -0.13 0.00 0.12 0.29 

      -0.08 0.00 0.06 -0.57 0.36 

     0.07 0.09 0.08 0.55 0.41 

     -0.06 0.08 0.69 0.01 0.48 

     0.06 -0.11 0.69 -0.01 0.47 

Variance Expl. 2.34 1.89 1.27 1.28 4.51 

Table 6.4: Promax factor solution (Loadings     are in bold to indicate significance). 

The oblique solution is very similar to the orthogonal, with generally higher loadings 

increasing further and smaller loadings reducing further. The loadings are approaching a 

‘simple’ structure. Evidence of this can be seen with     becoming insignificant on factor    

after oblique rotation. This risk factor is only ‘significantly’ loaded on factor  . However, it is 

important to remember that oblique factors are correlated as demonstrated in Table 6.5.  

 
 Factor   Factor    Factor     

Factor      

Factor    0.54   

Factor     0.36 0.27  

Factor    0.49 0.27 0.13 

Table 6.5: Correlations between factors in the ‘promax’ solution. 

Factor   and factor    display the largest correlation, with factor   and factor    also 

moderately high. It appears from the loadings that    ,      ,     and     could form 

part of a system along with     and      . Lipid factors are clearly marked as Factor   . 

There is evidence to suggest that blood pressure (i.e. factor    ) is independent of the other 

factors in this study, but that obesity may still be associated with this factor. This alone 

would not prove (or equally discount) the potential existence of a single unified factor, 

such as that hypothesized for     . 



Chapter 6 Approaches to Unravel the Latent Structure within Metabolic Syndrome 153 

 

 An orthogonal solution is regularly promoted as easier to generalize amongst 

studies. The interpretation is often simpler (with no correlations amongst the factors) and 

there is a clear favourite rotation method amongst the orthogonal solutions - i.e. the 

‘varimax’ rotation. Also, the loadings produced by an orthogonal and oblique rotation are 

usually similar (as seen in our example). However, by opting for the simpler interpretation, 

the user is sacrificing the ‘simple structure’ of the factors to the data that an oblique 

rotation can achieve. This is the view of Thurstone (1947) and Cattell (1978) who suggested 

that “in half of these cases it is evidently done in ignorance of the issue rather than by 

deliberate intent”. The issue appears to be that the analysis has to be simplified to achieve 

a consistency in the decision making across studies at the expense of the machinery 

available. When poor decision making in exploratory analysis is spread over a large scale of 

studies (such as the study of     ), they can be of great hindrance to a researcher 

intending to make valid conclusions from the findings. If to achieve a greater consistency in 

     study we have to choose unsuitable options then it appears necessary that the field 

considers alternative methodology better suited to the application. 

 

6.5.2 Why is Factor Analysis Chosen for MetS? 

A major reason that some decisions have become popular amongst researchers is due to 

the complexity of the methods and interpretation. Employing Kaiser’s criterion requires no 

user input and an orthogonal rotation may experience a simpler interpretation. However, 

as highlighted by Shen (2003), orthogonal factors would appear counterintuitive of an 

underlying syndrome. If the factors happen to be orthogonal, an oblique rotation will 

result in orthogonal factors anyway (and provide counter evidence to the hypothesis of a 

single unified syndrome). This demonstrates interesting parallels to the comparison of the 

Spearman and Thurstone models of intelligence. The decision was directly related to the 

hypothesis, which is also true in      application. The scree test or parallel analysis 

demonstrate a considered reasoning by the user for the number of factors to retain. 

Unfortunately, ‘default’ choices in statistical packages give strength to options such as 

    and Kaiser’s criterion without particular reason.  

When biological or statistical evidence is available for a researcher to confidently 

propose a single or small number of plausible models, then a     can be an effective 

approach. It will narrow the decision making automatically for the user by determining 

features of the model. Also, as opposed to the primarily ‘data driven’ nature of exploratory 
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analysis, the assumptions made mean that the user will be less likely to obtain ‘chance’ 

results from the dataset. When the researcher cannot be certain of the form of the model, 

    should become the preferred choice. The form of the model is open to ensure that 

plausible models are not ruled out of the analysis. This is particularly useful when 

investigating data from different populations or including lesser studied risk factors in the 

analysis. It appears that for an     to provide consistent and valid reasoning to be 

employed for a      study we often require a greater complexity than the ‘default’ 

options used in statistical software. This is a problem highlighted by many researchers such 

as Armstrong, Fabregar and MacCallum in the psychological literature.  

It is important to emphasize that the use of     should not be considered invalid 

or redundant for      analysis from this discussion. Various tests and measures of model 

fit exist to validate the structure of      and identify when a hypothetical structure does 

not fit the study data well. However, are we confident that the state of knowledge in 

proposing the      structures is sufficient for the use of    ? The answer to this question 

is likely to differ greatly amongst researchers in the field. Current evidence, definitions and 

debate regarding the      structure and its existence suggests that     still has an 

important role to play in our understanding of this construct. The use of either 

methodology rests at what point the user believes the current knowledge to exist on the 

continuum from     to    . Can a complete model be suggested, or is there sufficient 

uncertainty that an explorative approach can relieve? These methods are not separate 

entities; they are instead a reflection of the confidence in the a priori knowledge. A 

considered and justified decision making process for     research can provide a powerful 

tool in developing an understanding of the      construct in partnership with    . 

The reasons suggested in section 6.4.2 for the misuse of     in such applications 

all appear to stem from a similar cause - the user does not fully understand the factor 

analysis procedure and the impact of their decisions. This has to be expected as in the 

majority of cases non-statisticians will not wish to search through complex mathematical 

articles to understand a procedure when computer software performs the task with 

minimum effort. It appears unrealistic to expect a great number of applied researchers to 

readily employ and understand the reasoning for this more complex methodology when 

simpler methodological options would seem to provide similar results. Instead, alternative 

techniques may be proposed that could provide consistent and easily interpretable results 

intended for      application without the need for such complex decision making. The 

discussion returns to cluster analysis to provide motivation for these methods.  
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6.6 Cluster Analysis 

The intention of this work is to improve the consistency in results and interpretation across 

     studies. Although many algorithms exist for clustering objects, the results of ‘hard’ 

clustering (i.e. clustering observed covariates) and in particular hierarchical clustering 

methods can bring substantial improvements in these areas. One of the major motivations 

behind employing a hierarchical cluster analysis is the visual element to aid with 

interpretation. The user is able to observe the natural groupings in the data and see where 

the relationships originate from. The visual element of hierarchical clustering is seen as 

particularly beneficial for small datasets (such as the      example).  

 
“Cluster analysis relies much more upon subjective judgement and much less on 

 statistical analysis than factor analysis”  

(Child 1990) 
A main criticism by Child is the number of choices available in performing a cluster analysis, 

with the algorithm and proximity criteria demonstrating little relevance to ‘real world’ 

concepts. A similar ‘subjectivity’ of     has been highlighted regarding the decision 

making and interpretation, and so to balance the argument these issues will be discussed 

for clustering methodology in the remainder of the chapter. 

 

 

Figure 6.3: Cluster analysis using Pearson    with ( ) single and ( ) average linkage. 
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The hierarchical cluster analysis in Figure 6.3 demonstrates the results of a variable 

clustering of the      dataset (i.e.  -mode). The two examples in Figure 6.3 appear 

different in their interpretation of the data. This difference can be expected as algorithms 

are designed to extract clusters with different features. For instance, single linkage will 

often produce chains of variables (e.g. highlighted in red in Figure 6.3 ), whilst average 

linkage will generally produce ‘compact’ clusters. The analysis of observed covariates 

rather than abstract factors should make clustering techniques an attractive option in 

applied research. The problems associated with a heuristic reading of components in factor 

analysis are much simplified by considering distinct clusters, allowing for datasets with a 

large numbers of variables to be analyzed with substantially less difficulty and improved 

consistency. As the clusters do not overlap (as with factor analysis), hierarchical clustering 

allows for images to be constructed to aid with interpretation. Also, the techniques make 

no assumptions about the underlying distribution of the data (i.e. violation of the linearity 

assumption is avoided). 

An issue that hinders cluster analysis as a technique to identifying latent structures 

is that the analysis is based on pair-wise near dependencies. This means that underlying 

relationships amongst covariates may not be identified (similar to using correlations to 

diagnose collinearity) - for example, a variable   can be approximated as a function of 

  and  , but none of the variables are involved in a pair-wise near dependency. This will be 

problematic for any method dependent on a distance or similarity metric. Another issue is 

that agglomerative hierarchical methods do not have any procedure to rectify wrongly 

placed variables in later results. Once a variable forms part of a cluster, it cannot move to 

another if it appears more applicable in lower thresholds. Some researchers also argue 

that in an applied setting, clustering methods suffer in a similar subjective manner to     - 

different similarity and distance measures can be used to confirm the prior hypotheses of 

the researcher (Anderberg 1973). Differences can also occur due to fluctuations in the data 

(often leading to criticism of purely data driven methodology). 

 

6.6.1 The VARCLUS Procedure 

An alternative approach to clustering variables using similarity/dissimilarity measures is to 

utilize     in a hierarchical clustering framework - labelled the         approach.  The 

process builds clusters around latent components. The technique computes the first    of 

each cluster (beginning at a cluster containing all the covariates) and iteratively splits them 
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into two separate clusters based on some predefined criteria.  For example, the user may 

employ Kaiser’s criterion to suggest that any cluster with an eigenvalue greater than one 

demonstrates evidence of an additional dimension or the user can pre-define the number 

of clusters to extract. The variables are assigned to the cluster in which they demonstrate 

the highest squared correlation (  
 ) and later reassigned if the variance explained 

increases by including it in another cluster. Each cluster is formed from a different 

overhanging set of variables to any other, and so the orthogonality assumption of     is 

relaxed. The components obtained are naturally oblique and are subsequently referred to 

as “cluster components” rather than principal components.  

The process compromises on the maximal variance extraction of a traditional     to 

maintain intuitive advantages of clustering observed variables. In addition,         

provides an   
  for each variable within its own cluster (similar to a     - labelled     

 ), 

and also with the nearest cluster in which it demonstrates the greatest   
  (labelled 

        
 ). If the clusters are well defined (i.e. the degree of association is maximal for 

variables within the same cluster and minimal to those in others) the value will be high for 

their own cluster and low for the nearest.              in     provides a ratio of the 

two values, calculated as        
              

  . Low values indicate ‘strong’ 

clustering. These measures are particularly useful when considered with the limitations of 

the ordinary ‘hard’ clustering procedures. Whilst the results of a         are of the form 

of a hard clustering method, the   
  ratio gives an indication of how ‘fuzzy’ the clusters are. 

The   
  results can be interpreted in a similar way to component/factor loadings in an    .  

The exploratory methods discussed in this chapter are based on different statistical 

approaches and so agreement cannot be guaranteed between the methodologies. 

Methods of     optimize the fit of the data to a model in which the "common 

components" of the observed variables are expressed in terms of a  -dimensional 

collection of "common factors" for some selected  . Only in a secondary step are rotation 

methods used to provide some indication of how the original variables cluster together, 

and the identification of such clusters is generally ad-hoc and not incorporated in the 

original model fitting. By contrast, the         approach sacrifices the goal of providing a 

best fitting  -dimensional representation, but instead is designed to directly identify 

clusters of observed variables. This achieves maximal simplicity by postulating only 1-

dimensional clusters of mutually pair-wise correlated variables. The various interpretations 

given by these procedures can be used to strengthen research, by reducing the subjectivity 

of relying solely on one methodology.    
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6.6.2 Application of VARCLUS 

Two examples of the         procedure are performed on the      dataset. The first 

uses     to define the cluster components and a maximum eigenvalue of 1 (analogous to 

Kaiser’s criterion) to define the point at which the clusters are split.  

 

 Members Variance Explained Proportion  2nd Eigenvalue 

Cluster   4 1.95 0.49 0.98 

Cluster    2 1.57 0.79 0.43 

Cluster     4 2.29 0.57 0.93 

 Tot. Variance: 5.81   

Table 6.6: A summary of the cluster components generated. 

The cluster summary in Table 6.6 highlights that three cluster components were formed 

from the options specified. These explain 58% of the total variation in the dataset, with 

cluster     explaining the largest variation (these values are similar to variance explained in 

an    ). The ‘proportion’ column represents the variance of the covariates in the cluster 

divided by variance explained. 

 

 Variable      
           

         
         

    

Cluster        0.50 0.17 0.60 

     0.47 0.09 0.59 

       0.48 0.05 0.54 

      0.50 0.12 0.57 

Cluster         0.79 0.06 0.23 

     0.79 0.02 0.22 

Cluster          0.54 0.21 0.58 

       0.70 0.20 0.37 

     0.42 0.05 0.61 

       0.62 0.06 0.40 

Table 6.7:    measures demonstrating the quality of each cluster component. 

Table 6.7 lists the members of each cluster. Cluster    represents a hypertension 

component and appears well defined (i.e. high     
  and low         

 ). Cluster     appears 

to be describing insulin resistance and cluster   combining obesity and lipid metabolism 

measures. This cluster structure suggests a potential association between lipid metabolism 

and obesity.  
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 Cluster   Cluster    Cluster     

     0.46 0.19 0.74 

       0.44 0.23 0.84 

     0.22 0.05 0.65 

       0.24 0.17 0.79 

     0.71 0.16 0.41 

     0.68 0.13 0.30 

      -0.70 -0.02 -0.22 

     0.71 0.15 0.35 

     0.14 0.89 0.24 

     0.16 0.89 0.15 

Table 6.8: A cluster summary of variable loadings on each cluster component. 

 
 Cluster   Cluster    

Cluster     

Cluster    0.17  

Cluster     0.46 0.22 

Table 6.9: The inter-cluster correlations. 

The cluster structure has the same interpretation as factor loadings in a factor analysis. The 

inter-cluster correlations are also analogous to inter-factor correlations of an oblique 

solution. They add further strength to the independence of a blood pressure factor. The 

0.46 correlation between components 1 and 3, along with the high   
  ratios appear to 

demonstrate the presence of an additional component. 

 

Figure 6.4: A dendrogram summary of the         procedure with maxeigen=1. 
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The purpose of the following         analysis is to investigate the strength of a four-

cluster structure. A maximum cluster option of four is specified, whilst     is once again 

used to construct the cluster components. 

 

 Members Variance Explained Proportion 2nd Eigenvalue 

Cluster   2 1.47 0.79 0.53 

Cluster    2 1.57 0.79 0.43 

Cluster     4 2.29 0.57 0.93 

Cluster    2 1.46 0.73 0.54 

 Tot Variance: 6.79 0.68  

Table 6.10: Cluster components generated for the four cluster solution. 

 

Cluster Variable      
           

         
         

    

Cluster         0.74 0.08 0.29 

     0.74 0.12 0.30 

Cluster         0.79 0.06 0.23 

     0.79 0.03 0.22 

Cluster          0.54 0.21 0.58 

       0.70 0.15 0.35 

     0.42 0.04 0.60 

       0.62 0.04 0.39 

Cluster         0.73 0.17 0.33 

     0.73 0.09 0.30 

Table 6.11:    measures demonstrating the quality of each cluster component. 

 

Variable Cluster   Cluster    Cluster     Cluster    

     -0.30 0.19 0.74 0.46 

       -0.33 0.23 0.84 0.39 

     -0.17 0.05 0.65 0.19 

       -0.19 0.17 0.79 0.21 

     -0.30 0.16 0.41 0.85 

     -0.27 0.13 0.30 0.85 

      0.86 -0.02 -0.22 -0.28 

     -0.86 0.15 0.35 0.29 

     -0.10 0.89 0.24 0.13 

     -0.08 0.89 0.15 0.18 

Table 6.12: Cluster loadings of the 4 cluster model. 
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 Cluster   Cluster    Cluster     

Cluster      

Cluster    -0.10   

Cluster     -0.33 0.22  

Cluster    -0.33 0.17 0.41 

Table 6.13: Inter-correlations of the cluster components. 

 

 

 

Figure 6.5: Dendrogram of the cluster components for the second         analysis. 

The cluster components of this analysis appear to relate to lipid metabolism (cluster  ), 

blood pressure (cluster   ), insulin resistance (cluster    ) and obesity (cluster   ). This is 

analogous to model 1 and model 3 investigated in Shen (2003). Low   
  ratios for clusters  , 

   and    indicate that the components are ‘well formed’. However, cluster     exhibits high 

  
  ratios for insulin and glucose predictors in particular. The cluster structure analysis 

confirms that     loads highly on cluster    and relatively highly on cluster  . This is further 

evidenced by the correlation between cluster     and cluster   . 

 The cluster structure explains 68% of the total variation and reduces the dimension 

of the variables from 10 to 4. This simple example has allowed us to gain an immediate 

insight into the cluster structure, whilst still observing that the variables are likely to be 

involved in multiple mechanisms. The cluster structure and   
  statistics indicate which 

covariates appear ‘least comfortable’ within the clusters and with which others they are 

associated with. For instance,     has a high   
  ratio (0.6), but it is not highly associated 
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with another cluster (i.e. low     
 ) - the variable itself is not explained well within its own 

cluster. This adds further strength to the involvement of     and       in other 

dependencies; namely, a relationship between     and insulin risk factors (as suggested in 

the     analysis). Also,     again demonstrates a high loading on the ‘insulin resistance’ 

cluster component (i.e. cluster    ). In addition, the analysis provides further evidence as to 

the independence of a ‘blood pressure’ component (i.e. cluster   ). 

It is a particular advantage of the         methodology that a non-orthogonal 

structure can be achieved without needing to raise the complexity of the methodology or 

the interpretation substantially. The method has provided a structure for a     if required, 

but also indicated how stable the clustering is. The         approach is a very effective 

method in balancing the sophistication of a     with the interpretive power of a cluster 

analysis. With this approach the user can choose an eigenvalue or variance explained 

threshold to base the analysis on, whilst providing a complete summary of the overall 

factor structure. The methodological decisions are limited, which provides an objective and 

consistent reasoning for the model they choose in      analysis. There are also direct links 

to features of an    , such as variance explained, factor loadings and inter-factor 

correlations. The   
  ratio provides a very useful tool for variable selection and again has a 

simple interpretation for the user. However, whilst the iterative reassignment of variables 

makes some attempt to rectify wrongly placed variables, this process is still somewhat 

hindered by the need to maintain a hierarchical structure in the computation. 

A recent     literature search identified only 12 references of the use of         

in practice. The intention of statistical software such as      is to make statistical methods 

available and simple to use to the non-statistician. The ‘drop down’ menus and default 

options mean that a    /    can be produced in a matter of seconds with no manual 

coding required. There is no doubt that this has a major impact on the use and popularity 

of these techniques.     and     have been developed over a long period and discussed 

at length in numerous articles. This has led to an accepted use of such techniques in a 

number of fields. It also potentially prejudices caution towards modern techniques such 

as        , which has only recently been introduced through statistical software 

packages. The importance of such a technique in practice is that the statistics can be easily 

digested by the non-statistician, whilst also reaching closer to biologically justifiable 

decisions of a considered     application. It is this balance in disciplines of statistics and 

clinical relevance that should be encouraged and provides the motivation for the next 

methodology in this discussion.  
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6.7 Variable Clustering using Matroids 

Although the method chosen to perform variable clustering still has a subjective nature, 

there are fewer methodological decisions and the ability to picture the form of a 

complicated structure is of great benefit in interpreting the results. However, in developing 

disjoint clusters, it appears necessary of each technique to ensure that the results are 

consistent and do not overlap. This is achieved by a continuous process of joining or 

splitting clusters based on a single criterion. At each threshold, the results build upon those 

attained in the previous to ensure continuity. The issue with this approach is that the 

results have to be reduced to only their uni-dimensional relationships, at the potential cost 

of missing higher dimensional relationships.  

 It is realistic for the user not to expect predictors in a complicated structure (such 

as     ) to form ‘neat’ hierarchical groups. Rather this is forced with ‘hard’ clustering 

techniques (i.e. distinct clusters). This form of clustering is useful because of the benefits to 

interpretation it brings, but with it we bypass some of the subtleties in the relations that 

    attempts to identify (thus adding to an often difficult interpretation). In a complicated 

structure such as      it would seem likely that the predictors may be involved in multiple 

dependencies. It may therefore be useful to run both a         and     with oblique 

rotation for comparison. The results can indicate how ‘fuzzy’ the clusters are and how 

much is compromised by gaining the intuitive advantages of the hierarchical         

procedure. 

A novel methodology is instead proposed, labelled the matroid approach that 

could provide a compromise to this, whilst retaining the general ‘hard’ structure of the 

clusters. A matroid does not describe a method in itself, but rather a structure that 

adheres to an axiom system. In applying certain axioms that define the structure, we can 

look to avoid the consistency limitations of an ordinary variable clustering procedure. If the 

axioms of the matroid can be maintained within a dataset, the consistency of the clusters 

can be ensured, whilst retaining the subtle dependence structures present in the dataset. 

A matroid is a combinatorial structure that captures some notion of “independence”. 

Hassler Whitney (1935) developed this notion of independence in a graph theory setting. 

Whitney identified similarities between this and the concept of linear independence in 

linear algebra. He also developed a notion of rank in graph theory which relates to the idea 

of dimensionality in linear algebra. Thus, a matroid can be viewed as a useful tool that 

generalizes the idea of independence across different fields in mathematics.  
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A matroid independence structure         is defined such that the following 

axioms (I1) - (I3) are satisfied: 

 
 (I1)     . 

 (I2) If     and      then     . 

 (I3) If         and          , then there exists         such that        . 

(Welsh 1976) 

These axioms provide the framework for a number of properties relating to bases, ranks 

and circuits of subsets. They can even be used as axiom systems in their own right to 

define a matroid. The result that is of particular interest to our application is that any 

subset of   not labelled linearly independent is subsequently dependent. 

 

6.7.1 Matroids to Identify Latent Structures 

The use of matroids to identify linear dependencies is a recent development in the context 

of forming a dependency structure. Suggested by Greene (1990), the method draws from 

existing successful ideas in the field of collinearity diagnosis and cluster analysis, whilst also 

introducing favourable properties of matroids, which have previously been confined to 

theoretical work. The intention of employing this method is to produce a detailed mapping 

of the linear dependencies throughout a dataset, not only to provide an intricate picture of 

their structure, but to indicate how we may look to handle ‘problematic’ dependencies in 

future regression analyses. In this approach the general concept of ‘hard clustering’ is 

retained, in that the variables are considered in groups of a hierarchical form (although not 

of a traditional dendrogram), but effectively a dependency structure is produced at each 

threshold. The matroid approach seeks to identify not only 1-dimensional clusters of 

mutually correlated variable, but also higher dimensional near dependencies in which 

collections of the observed variables are identified as falling close to lower dimensional 

subspaces. Due to the flexibility of applying matroid axioms, it also allows the user to apply 

their own measure of linear dependence (i.e. a collinearity index) within the coding.  

  

The Matroid Approach 

The matroid approach works on the variables as subsets, rather than considering the entire 

set at once. Initially, data are divided into all the possible permutations of covariates. 

Therefore, for the      data, there are            possible combinations of 
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covariates. These permutations are then assigned to either a ‘dependent’ or ‘independent’ 

group using a suitable collinearity index. For example, a ‘dependent’ subset may be 

defined by the smallest eigenvalue being lower than a particular threshold; any remaining 

subsets are subsequently labelled ‘independent’ (i.e. similar to the   ).  

 

Figure 6.6: Plot of      ,     and      , indicating the smallest eigenvalue. 

The plot in Figure 6.6 illustrates the subset of      ,     and       with the minimum 

eigenvalue indicated by the red arrow. The cardinality of this subset is 3, however if the 

selection criteria assigns it to the dependent set, the clustering may be displayed as a 2-

dimensional plane. It is clear from the theory of     that using the minimum eigenvalue 

will give a measure of the variance of the final    (see section 4.2.1). If this value falls 

below a chosen threshold, then a redundant dimension can be defined and therefore a 

linear dependency. If the threshold used to assign the subsets is varied, we capture 

dependencies at multiple levels in the dataset, which are used to build a detailed mapping 

of the linear dependencies. 

The challenge with the matroid technique is how to convey the information of all 

the dependent subsets in the simplest form to the user. Greene suggests extracting a 

combinatorial group of permutations known as flats. A rank-  flat is a maximal set of 

covariates that can be represented by a  -dimensional projection (Greene 1991). 

Therefore, the flats ensure that every covariate involved in a dependency is identified. If 

we are unable to add another covariate (  ) to the subset without increasing its rank, then 

it is labelled a flat (see eqn(6.1)). 

 

                   (6.1) 
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The Labelled Hasse Diagram 

The illustration proposed by Greene to display the flats is termed a labelled Hasse diagram 

(   ). It is a hierarchical graphing of the dependencies in the dataset, in which the rank 

(i.e. the lowest dimensional projection that accurately approximates the subset) is 

illustrated by the horizontal level it occupies. In order to present data in hierarchical form 

it is vital that the subsets conform to the basic axioms of linear dependence (see Whitney 

(1935)). For instance, if there exists three covariates in which two pairs can be described by 

a uni-dimensional projection, then the third should similarly be described by a uni-

dimensional projection. It is very possible that in real data, the subsets will be inconsistent 

with these laws. Matroids do not suffer these problems and by converting the dependent 

set into a matroid the subsets demonstrate a combinatorial structure corresponding to 

linear relationships amongst a collection of variables.  

 
 

 

Figure 6.7: An example of an LHD depiction. 

The     demonstrates distinct differences to the dendrogram used in a hierarchical 

cluster analysis. They both share a hierarchical structure and link groups of covariates (i.e. 

flats/clusters). However, the      differs in that each threshold produces its own 

hierarchical structure containing dependencies of any dimension. The flats are displayed as 

ellipses and those presenting no dependency as squares. The rank of each subset is 

illustrated on the left of the    . The flats joined with lines are to show the sources of any 

dependency. A multiple   
  (in brackets alongside each variable) in the form of a     (see 

eqn(3.21)) has been added to the     diagram suggested in the original paper by Greene. 

The motivation is from the   
  measures present in the         analysis which provided a 

useful measure of the ‘fuzzy’ nature of a ‘hard’ structure.  
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Selection of the Matroid Criteria 

 

  

Figure 6.8: Problematic situation using the eigenvalue selection criteria. 

The minimum eigenvalue is a selection criteria suggested by Greene, however it has 

limitations as part of the process. The definition of linear dependence is that each column 

should be dependent on the other columns in the subset (Greene 1990). Figure 6.8 

illustrates a situation that should not be termed linearly dependent. However, the 

minimum eigenvalue approach would generally identify this subset as dependent due to 

the high correlation between    and   . If the intention is to identify flats to show higher 

ranked dependencies between uni-dimensional flats, then selecting this subset as 

dependent would be an issue as         is almost orthogonal to the other two covariates.  

The advantage in this work is that existing measures of collinearity can be 

employed. Any ‘correlation based’ index could in theory be used in the matroid framework 

(when no response is defined). If it is difficult to justify different linkage methods in cluster 

analysis as rigorous approaches to identifying dependencies amongst the predictors, then 

this should be considered an improvement in using matroids. However, as demonstrated 

by the minimum eigenvalue criteria, the measure must be chosen carefully within the 

context of the method. They will adopt a different meaning when used as part of a 

collective analysis. One criterion that it would be of interest to test is the  -index 

developed in chapter 5. It would seem ideal to place a  -statistic on each of the subsets, 

use component measures to indicate covariate involvement in each dependency and 

analyze the consistency of the measure as part of the matroid framework. However, this 

index would not be suitable for the current application of      as there is no response 

variable. Instead, the following analysis takes a step back and employs a criterion based on 

the    . This would appear more suitable for the current application. 
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MetS Results 

The matroid procedure was coded using   (version 2.8.1). The method has been applied to 

the Shen dataset using a ‘minimum    ’ criteria - if a subset displays a     higher than the 

given threshold it is assigned dependent. In this example the threshold has been modified 

to represent the inverse of the minimum     to give the     a finite scale of 0-1 (i.e. the 

tolerance). 
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Figure 6.9: Matroid analysis of the      data using an inverse     criterion. 

The ‘uncorrelated’ factors identified by Shen using     are consistent with the 0.79 

threshold level of the matroid depiction. The flats have been summarized as ‘insulin 

resistance’, ‘obesity’, ‘lipid metabolism’ and ‘hypertension’. They follow the results of 

similar studies analysing comparable risk factors of      (Lafortuna et al. 2008;Shah et al. 

2006). This construction is also consistent with the four factor solution identified in the 

        analysis (see section 6.6.2). In comparison, the matroid technique has shown to 

be in relative agreement over the      example, but each provides a different perspective 

on the cluster formation. In the 0.78 threshold an overarching flat of rank-2 is observed 
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that links     and     with the insulin resistance flat. This was hypothesised in the 

second         in observing a high correlation between these dependencies and a high 

loading of the Insulin predictor on the obesity cluster component. Also, in the 0.77 

threshold    ,     and      are linked with insulin resistance, however     is not. This 

agrees with cluster   of the four cluster         solution.  

 

6.7.2 Matroid Analysis in MetS Research 

The reason that matroids can provide a different perspective is that they are based on a 

unique philosophy to identifying dependencies. The uni-dimensional (i.e. rank 1) flats can 

be considered equivalent to the clusters produced in a traditional hierarchical clustering 

technique, however there are important differences. With the matroid procedure, the 

‘reallocation’ of misplaced clusters is allowed. This is vital as early results in a hierarchical 

clustering can typically affect those later in the analysis. Each threshold is constructed 

individually, meaning that previous results and the order in which the variables are entered 

will have no influence on the structure at each threshold. The number of flats to extract is 

not decided prior to the analysis, but the structure presented at a range of dependencies. 

It is subsequently possible to observe how the dependencies develop at different 

thresholds and consider which, if any, are in agreement with prior evidence as opposed to 

employing some arbitrary thresholding.  

 An important feature of the matroid technique is found with the higher ranked 

subsets extracted at particular thresholds. For instance, at the 0.77 threshold there is a 

rank-3 flat containing {   ,      ,    ,      ,    ,    ,     } that is not identified 

elsewhere in the clustering. This may indicate an underlying mechanism amongst the 

variables. The advantage is that we retain the interpretive benefits of ‘hard’ clustering 

whilst identifying relationships potentially masked by stronger dependencies at higher 

thresholds. The flats in this example appear to demonstrate that the risk factors (aside 

from     and    ) are ‘fuzzy’ in nature and overhanging dependencies of higher rank 

could be viewed as evidence of a structure such as     . A common intention of 

dimension reduction is in variable selection and matroid analysis has its benefits in this 

area. The rank that follows each of the flats gives an indication of the approximate 

dimensionality of the subset. Therefore, if a factor analysis or     were applied to any of 

these flats, the user would have strong reasoning for the number of factors/components 

to retain to represent the subset.  
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6.8 Identifying Consistency across MetS Studies 

This section considers a second example of      data using a longitudinal study by Maison 

et al. (2001). The study appeals as an illustrative example because it provides a similar set 

of variables to the Shen data, but on a different study population. It also stratifies the 

population by sex and treatment group. This provides an interesting examination of the 

consistency in the statistical methods amongst study populations. The motivation of this 

study is to identify a common underlying pathway for     and   -  . This may be in the 

form of an insulin resistance component or as proposed in the original paper centered on 

overall/central obesity. Maison suggests that the definition of      and the assumptions 

made about the structure are easily accepted, whilst the evidence is still unconvincing. 

Many researchers use this ‘established’ theory as a reason to automatically choose a     

study based on prior hypotheses. The incentive for Maison is to identify a centrally 

dominant factor (such as obesity), without imposing a prior structure on the analysis. For 

this aim, selecting an     approach seems justified by Maison. 

The paper considers a sample of 937 subjects aged between 40-65 years in 

Cambridgeshire, England. The subjects were recruited as part of the “Ely study” (Forouhi et 

al. 2007;Sandhu et al. 2002). Each took part in a medical examination between 1990-1992 

and once again between 1994-1996 (i.e. a 4.5 year follow-up). At both examinations, 

patients undertook a glucose tolerance test and were measured on 9 risk factors 

associated with     . An additional subset of 471 patients was also considered who did 

not receive treatment for hypertension and dyslipidemia. The correlation structure 

displayed in Table 6.14 is for the change in risk factors amongst the female subjects in the 

study (       – overall,         subgroup).  

 
                                        

    1 0.25 0.15 0.16 0.19 0.21 0.22 -0.07 0.29 
    0.21 1 0.06 0.00 0.12 0.03 0.11 -0.03 0.09 
    0.18 0.11 1 0.75 0.05 0.08 0.07 -0.10 0.06 
    0.19 0.08 0.78 1 0.06 -0.03 0.01 -0.14 0.09 
    0.23 0.13 0.08 0.07 1 0.1 0.16 -0.11 0.07 
    0.21 0.01 0.07 0.05 0.12 1 0.27 0.04 0.10 

      0.21 -0.02 0.01 -0.02 0.09 0.33 1 -0.14 0.16 
    -0.09 -0.01 -0.03 -0.05 -0.06 0.01 -0.09 1 -0.11 
     0.25 0.05 0.05 0.06 0.16 0.14 0.19 -0.09 1 

Table 6.14: Female study population - coefficients for the entire population of the Ely 

study are displayed in regular typeface, coefficients in bold are for subgroup patients. 
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    and       represent fasting plasma glucose and plasma glucose 120min respectively, 

whilst the remaining abbreviations are the same as the Shen example. The procedure 

employed by Maison uses     (although labelled factor analysis) to identify independent 

‘factors’ for both sexes. Kaiser’s criterion (    ) is used to identify ‘significant’ factors. In 

addition, an orthogonal varimax rotation is used and any loadings       are labelled 

‘significant’. It is possible to suggest why these methodological decisions were made. The 

main finding of this study is that     is a central component of the      structure, 

demonstrated by the ‘significant’ loadings. However, this is only observed by a loading of 

0.28 on factor   for the male cohort (see original paper for factor loadings). It seems 

unlikely that the 0.25 cut point has been chosen by chance from this finding. These results 

appear instead as a reflection of the author’s hypothesis regarding the role of    . The 

methodological decisions such as the use of    , Kaiser’s criterion and orthogonal rotation 

experience no justification in the text and so we are left to assume that they are either 

default or unreliable decisions. They appear neither suited to the original hypothesis, nor 

an attempt to identify a simple solution. A     model based on a similar population could 

provide strength to the findings; however an     with justified methodological decisions 

could also uncover an alternative structure with a greater biological relevance.  

  

Figure 6.10: Scree plots of (a) the study population and (b) the untreated subgroup. 

Four components were identified using Kaiser’s criterion and they explain 64.4% and 63.4% 

of the overall variation respectively. However, the scree plot demonstrates a clear elbow in 

the graph at three components for both samples in Figure 6.10. This solution would 

instead explain 53.2% and 52.2% of the variation respectively.   

( ) ( ) 
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 Study Population Untreated Subgroup 

                          

    0.94 0 0.06 -0.04 0.93 0.05 -0.04 -0.09 

    0.94 0.03 0.09 0.00 0.93 0.07 0.07 -0.01 

    0.07 0.77 0.07 0.18 0.03 0.05 0.84 0.16 

      -0.04 0.77 0.01 -0.14 -0.02 0.15 0.65 -0.33 

    -0.03 0.03 -0.02 0.93 -0.10 0.03 0.07 0.89 

     0.00 0.38 0.34* -0.33 0.06 0.42 0.21 -0.25 

    0.00 0.13 0.61 -0.10 -0.01 0.32 0.17 -0.39 

    0.19 0.35 0.59 -0.12 0.17 0.67 0.31 -0.06 

    0.05 -0.22 0.75 0.15 -0.04 0.81 -0.17 0.07 

Table 6.15: Factor loadings for females using the original methodological decisions. 

Maison identifies the four components of the full sample as (1) hypertension {    ,     }, 

(2) lipid metabolism {    ,      }, (3) glucose metabolism {    ,      ,     ,     } and 

(4) a component including the risk factors {    ,    ,    ,     *} (*     was found non-

significant in reported loadings).     (i.e. the focus of the study) loads ‘significantly’ on the 

glucose metabolism component and another relating to    ,      and    . In the 

untreated subgroup, similar components for blood pressure and the additional component 

are found. However,      is found insignificant in the glucose metabolism factor, whilst     

and       produce significant loadings on the lipid metabolism factor. Also,      is found 

only just significant using the original 0.25 threshold. 

 Maison’s solution is complex as risk factors load significantly on multiple factors in 

both analyses. The component structure also appears substantially different between the 

full sample and the sub-sample. Is this a biological difference, or simply a statistical 

artefact borne from the methodological decisions employed in Maison’s study?  The notion 

that     is the central component in the mechanism is difficult to justify when a variable 

such as      experiences similarly high loadings across multiple factors. This analysis is 

repeated using a ‘true’    ,         and matroid methodology to examine the 

consistency across the subsets and compare to the biological interpretation of Maison. The 

analysis will stay true to Maison’s original motivation to generate a structure free from 

prior assumptions about the number and structure of the factors. The common factor 

model of a     extraction is applied.  
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Figure 6.11: Scree plot for the eigenvalues of the factors in each group.  

 

 Study Population Untreated Subgroup 

                         

    0.84 -0.01 0.00 0.70 0.82 0.05 -0.08 0.69 

    0.83 0.01 0.00 0.70 0.82 -0.05 0.09 0.66 

    0.04 0.49 -0.04 0.23 0.00 -0.09 0.51 0.21 

      -0.04 0.53 -0.04 0.26 -0.02 0.16 0.35 0.22 

    0.00 -0.07 -0.11 0.02 -0.08 -0.29 0.12 0.07 

     -0.03 0.25 0.22 0.16 0.00 0.34 0.07 0.15 

    -0.03 0.08 0.34 0.14 -0.01 0.27 0.08 0.10 

    0.06 0.22 0.39 0.30 0.06 0.40 0.19 0.31 

    0.00 -0.14 0.39 0.12 -0.06 0.35 0.00 0.11 

    1.48 0.87 0.87 2.64 1.41 0.97 0.80 2.52 

Table 6.16:     extraction with promax rotation (loadings > .3 highlighted in bold). 

 

 Factor   Factor    Factor   Factor    

Factor       

Factor    0.10  0.26  

Factor     0.34 0.47 0.10 0.60 

Table 6.17: Inter-factor correlations. 

( ) ( ) 
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The scree plots for both groups identify an elbow at 3 factors and so this is the initial 

decision for factor retention (see Figure 6.11). Similar to    ,      loads highly on factor    

and factor    , but with a higher loading on the former. Employing the     with oblique 

rotation, less factors and a higher threshold has produced a simpler structure than 

Maison’s results, with factors clearly marked as Hypertension (Factor  ), Glucose (Factor   ) 

and Obesity/Insulin Resistance (Factor    ) in the full sample. In the subset, the only change 

to this structure is the drop in significance of     in the obesity factor. Instead,     almost 

reaches significance on this factor, but still has the lowest communality estimate of all the 

risk factors. The communality on     indicates that it is not explained well by the factors 

in either model. This suggests that it may well be independent of the other risk factors.  

The         analysis is next considered to try to uncover the role of     ,     

and     risk factors as part of an underlying mechanism. The decision of how many 

clusters to extract is aided by the previous     in noting the variance explained by three 

factors and the potential independence of the     risk factor. Therefore, a four cluster 

solution is considered. 

 
 

Cluster Members Variance Explained Proportion  2nd Eigenvalue 

Cluster   2 1.78 0.89 0.22 

Cluster    2 1.33 0.67 0.67 

Cluster     4 1.53 0.38 0.95 

Cluster    1 1 1  

 Tot Variance: 5.64 Proportion: 62.67% 

Table 6.18: A summary of the cluster components from a four cluster solution. 

 

Cluster Variable      
           

         
         

    

Cluster        0.89 0.03 0.11 

     0.89 0.03 0.11 

Cluster         0.67 0.04 0.35 

       0.67 0.04 0.35 

Cluster          0.55 0.07 0.48 

     0.25 0.01 0.76 

     0.39 0.02 0.62 

      0.34 0.04 0.69 

Cluster         1 0.01 0 

Table 6.19: Cluster structure with    measures to indicate the stability of each cluster. 
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    is independent in cluster    and so automatically has a perfect correlation with itself. 

The useful statistic is that the correlation is low with any other cluster and so evidence for 

the independence of this covariate appears strong (contrary to Maison’s     analysis). 

    and     are highly correlated within their own cluster and have small correlations 

with any other. Therefore, the overall   
  ratio is low. Clusters    and     appear less well 

defined. In the original    , {    ,    ,    ,      } formed an individual factor whilst 

each loaded significantly along with glucose.     and      in particular have a high 

correlation with their nearest cluster. However,     is explained well in its own cluster 

and also has a high correlation with the nearest cluster.  

 

Variable Cluster   Cluster    Cluster     Cluster    

     0.20 0.26 0.74 -0.09 

     0.10 0.00 0.50 -0.01 

     0.94 0.05 0.17 -0.03 

     0.94 0.02 0.17 -0.05 

     0.08 0.13 0.62 -0.06 

     0.06 0.82 0.21 0.01 

PG120 0.00 0.82 0.20 -0.09 

     -0.04 -0.05 -0.11 1.00 

      0.06 0.20 0.58 -0.09 

Table 6.20: Loadings on each cluster. 

 
 Cluster   Cluster    Cluster     

Cluster      

Cluster    0.04   

Cluster     0.18 0.25  

Cluster    -0.04 -0.05 -0.11 

Table 6.21: Inter-correlations of the clusters. 

Notice that     also loads highly on the blood pressure cluster component (cluster  ) and 

again suggests a possible overhanging relation.      loads highly on both cluster    and 

cluster     whilst not being explained well by either. The role of      appears weaker than 

    but of a similar nature. The ‘small’ loadings on cluster    add further strength to the 

independence of    . As expected, factors    and     are highly correlated (particularly as 

they are essentially defined as independent factors - i.e. 0.25). Therefore, it appears that 

both     and      play a role in glucose and insulin factors. The analysis using the matroid 

technique is illustrated in Figure 6.12. 
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Figure 6.12: Matroid analysis using minimum     criteria for the complete sample. 

The matroid analysis highlights the independence of the     risk factor and the blood 

pressure factor until high thresholds are reached. The remaining risk factors display a 

similar pattern to what has been previously observed. The glucose flat is independent until 

the 0.96 threshold, whilst     and      form a separate flat with     and finally     

forming.     displayed the lowest     
  in the         analysis and this result is 
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demonstrated in the matroid analysis. It appears that the four factor structure is best 

defined from the exploratory analysis, with     overhanging separate glucose and insulin 

factors in a hierarchical model. The notion of     as a central component to all factors 

appeared weak from the initial     analysis, however the    ,         and matroid 

analyses have given this hypothesis a greater strength. The untreated members of the 

female population are next considered. The low communality of    ,     and     from 

the     in Table 6.16 may suggest a 5 or 6 cluster structure. 

 

Cluster Members Variance Explained Proportion  2nd Eigenvalue 

   3 1.43 0.48 0.91 

    2 1.75 0.88 0.25 

     2 1.27 0.64 0.73 

    1 1 1  

   1 1 1  

 Tot Variance: 6.45 Proportion: 72.67% 

 
 

Cluster Variable      
           

         
         

    

        0.63 0.07 0.4 

     0.36 0.01 0.65 

      0.44 0.03 0.58 

         0.88 0.02 0.13 

     0.88 0.02 0.13 

          0.64 0.03 0.38 

       0.64 0.06 0.39 

         1 0.02 0 

        1 0.04 0 

 
 

Variable Cluster   Cluster    Cluster     Cluster    Cluster   

     0.79 0.17 0.27 -0.07 0.19 

     0.60 0.03 0.09 -0.03 0.12 

     0.14 0.94 0.09 -0.10 0.05 

     0.13 0.94 -0.01 -0.14 0.06 

     0.19 0.06 0.16 -0.11 1 

     0.18 0.03 0.80 0.04 0.10 

       0.24 0.04 0.80 -0.14 0.16 

     -0.10 -0.13 -0.06 1 -0.11 

      0.66 0.08 0.16 -0.11 0.07 

Table 6.22: Five factors - ( ) cluster summary, ( )     measures and ( ) loadings.  

( ) 

( ) 

( ) 
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 Cluster   Cluster    Cluster     Cluster    

Cluster       

Cluster    0.14    

Cluster     0.26 0.04   

Cluster    -0.10 -0.13 -0.06  

Cluster   0.19 0.06 0.16 -0.11 

Table 6.23: Inter-correlations of the clusters from the five cluster solution. 

The 2nd eigenvalue on cluster   suggests that the cluster is not stable. There is also a 

decrease in the stability of the glucose cluster. The cluster summary illustrates that       

also has a close correlation with another cluster.     is clustered independently of the 

remaining risk factors, however it has a relatively high         
 , suggesting that it may not 

be independent. The cluster structure in general is similar to the previous         on the 

full sample. The lower stability of the glucose cluster is due to a high correlation of       

with the     cluster. However, this is still well formed with a low         
 .     has high 

loadings on clusters   and    , whilst also to a lesser extent clusters    and  . This is further 

demonstrated by the inter-correlations of cluster   with the remaining clusters. Whilst 

insulin forms its own cluster it still has relatively high correlations with clusters   and    . 

    once again appears independent. 
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Figure 6.13: Matroid analysis of the female subset cohort 
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The matroid analysis is in agreement with the findings from     and        . The     

risk factor is independent until the very highest threshold is reached. The hypertension flat 

is once again independent, until the 0.98 threshold. Seemingly this flat joins a larger 

dependency due to the association with    .     remains independent until 0.97, in which 

a higher ranked flat demonstrates a link to glucose and    /     flats.  

 
Discussion 

Recall the structure from Maison’s paper self-labelled (1) hypertension {    ,     }, (2) 

lipid metabolism {    ,      }, (3) glucose metabolism {    ,      ,     ,     } and (4) a 

component including {    ,    ,    ,      }. It appeared as though the model changed 

substantially between the complete data and the untreated subgroup, with      becoming 

insignificant in the glucose metabolism factor, whilst     and       became significant on 

the lipid metabolism factor. Also,      was only just significant on lipids by the 0.25 

threshold employed by Maison. The analyses produced from    ,         and matroid 

methods demonstrate an alternative structure.     appears independent in women for 

both samples. There is some effect on blood pressure between groups, but not to change 

its overall position in the construct, just the strength of the association with general 

obesity. Each methodology has identified a separate glucose factor, with a close 

association to obesity. However, there also appears to be a pathway through     . In the 

complete sample     appears uncomfortable as part of an    /     clustering and in the 

untreated sample     appears independent. This structure is reflected in all analyses and 

the original correlations. The lipid lowering drugs may have had some effect on this part of 

the structure. An association could occur more naturally between physical exercise and 

triglycerides in the untreated group.  

 
 

 

Figure 6.14: Potential factor structure from complete data 
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Figure 6.15: Potential factor structure from untreated sample. 

The analyses employed in this example have reached a similar conclusion to the Maison 

paper in labelling     as a central construct to     and   -  . This example has 

demonstrated that whilst the ‘simple’ default options in performing an     may appear to 

give an easily interpretable structure, they are also likely to complicate the analysis and 

interpretation. Choosing suitable options for the      hypothesis is likely to produce the 

consistency required to identify subtle differences in the structure amongst study 

populations. Whilst the paper chose to use Kaiser’s criterion to automatically select four 

components, a combination of judgement in the scree plot, analyzing which factors load 

together in the     and identifying independent risk factors lead us to selecting a three 

factor model. This was followed by a four cluster         to test the presence of the 

three factors in addition to the independence of the     risk factor. The agreement 

between these methods increases the confidence in the overall model.  

The difficulty with      is that the structure is likely to be hierarchical in nature (at 

least from a statistical perspective). A     with ‘default’ methodological decisions is 

unsuitable to match the complexity of the      construct. It may be that a hierarchical or 

second order factor analysis could provide an appropriate tool for      analysis (with the 

intention to separate ‘broad’ factors from ‘narrow’ factors). The promax rotation in an 

   , correlated cluster components and matroid flats represent methods to identify 

oblique factors of different weight. However, it is important to remember the context in 

which these methods are to be used. A likely reason that an oblique     or a hierarchical 

factor analysis are rarely used in practice is due to the statistical complexity. Therefore, it is 

important to remain mindful of this when promoting methodology such as         and 

matroid approaches to retain a simpler interpretation, whilst raising the consistency and 

appropriateness of the decision making in      study.   
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6.9 Conclusions 

An     of a      dataset can generate an enormous range of hypotheses and 

interpretations.  It is clear that for biologically meaningful structures to be obtained, the 

methodological decisions should be application specific and justified by the user. The use 

of     requires a great number of decisions that can have a substantial influence on the 

results obtained in an explorative study.  In many practical applications, these decisions are 

made with little consideration of the potential impact on the results and conclusions 

formed. When poor decision making is repeated over a large number of studies the full 

effects of these decisions are observed through the range of potential model structures 

suggested. The methodological variation can cloud any deviation due to population 

differences and the lack of reasoning provided for these decisions in many studies does 

little to encourage the reader of the usefulness of the study findings. 

A considered approach to selecting and applying methodology can provide 

consistent and meaningful results, but many of these options increase the complexity of 

the procedure substantially. To some researchers this is an acceptable compromise to 

obtain clinically relevant results. However, default software options appear to give weight 

to simpler methodologies (on the surface), but these may not be appropriate to an 

application such as     . Alternative methodology must be provided and be suited to the 

context under examination. Two such techniques have been presented in the         

and matroid approaches. The aspect that has been focussed on is the use of visual image 

and ‘hard’ clustering to simplify interpretation. These proposed methods can be used in 

tandem with     to unravel the latent structure of     .  

The criteria for     , such as those proposed by the     and        , have been 

developed to diagnose subjects, whereas the methods presented in this chapter are not 

intended to form such criteria. However, the continued use of explorative techniques is of 

great importance. If methods such as     or     fail to reveal an underlying latent 

structure, the very existence of      becomes questionable. The intention of developing 

methodology such as the         and matroid approaches is primarily to encourage 

consistency and reproducibility across      studies. It is not possible to judge from the 

explorative methods which will provide the ‘correct’ structure, and there may never be 

such a structure. Exploratory approaches should instead be valued on which yield the more 

useful results in terms of understanding the complex inter-relationships amongst the 

metabolic risk factors. 
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7. Identifying the Critical Phase of Growth in the 

Lifecourse 

The aims of this project have focussed on collinearity amongst covariates in applied clinical 

and epidemiological research. In chapter 7 a unique case is considered in which the 

predictors present an exact linear dependency - labelled ‘perfect collinearity’ (see section 

3.1). An example is considered from lifecourse epidemiology. The predictors that are 

considered in this study – birth size, growth and current size – are perfectly collinear (i.e. 

birth size + growth = current size). Whilst the individual effects of these covariates on 

various health outcomes have been studied extensively, entering all of the covariates 

simultaneously into a regression model presents a challenge to the researcher in both 

computation and interpretation of the model coefficients. The challenge in the lifecourse 

study is to identify a critical phase of growth for health outcomes in later life. This could 

potentially allow for earlier interventions prior to the onset of chronic disease.  

 The dependence amongst covariates in the lifecourse model means that it suffers 

from a well known identification problem - the design matrix is ill-defined. This prevents 

the inversion of the     matrix by a regular inverse which prevents the computation of 

    parameter estimates for the full set of predictors. To obtain coefficient estimates for 

each of the predictors, a constraint is required in the estimation of  . Statistical software 

often proceeds by removing one of the predictors from the regression model. This is 

effectively constraining the regression coefficient of the removed covariate to zero. The 

choice of such a constraint will naturally impact on the usefulness of the estimation in 

practice. Shrinkage methods such as     and     can introduce a bias into the estimation 

that allows for the inversion of the     matrix (or even remain unbiased if the constraint 

employed is correctly specified). However, an investigation of the benefits of these 

estimates in the perfect collinearity case has not been fully explored. In this chapter a 

conceptual link is provided between these methods using analytical and geometrical 

methods to aid with the interpretation of the results in the lifecourse problem.   
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7.1 Example Application 

The example for this chapter has been chosen from a prospective study of 3,080 subjects 

based in the Philippines. The invited participants included all the pregnant residents of 33 

randomly selected communities in Metro Cebu during the year 1983. Height and weight 

measures were collected for each of the children at six intervals from birth to 19yrs – (at 

0yrs, 1yrs, 2yrs, 8yrs, 15yrs, 19yrs). In addition, measurements of average systolic blood 

pressure (   ) and average diastolic blood pressure (   ) were taken for each of the 

children involved in the study (in mm/Hg). These outcome measures are based on the 

average of three measurements taken at 19yrs. The focus will be on     for each analysis 

in this chapter as an indicator of hypertension. The data was attained from the website of 

the University of North Carolina Population Centre (http://www.cpc.unc.edu/ 

projects/cebu/datasets.html) and further detail of the study can be found on this website 

and in selected papers (Adair et al. 2011;Adair and Popkin 2001;Tudor-Locke et al. 2003).  

The data used in this chapter comprises of the 960 boys with complete 

measurements for weight, height and blood pressure. To demonstrate different 

approaches to the perfect collinearity problem the discussion will begin with a 3 predictor 

example – i.e.     at birth (    ), current     (     ) and change in     (       ) 

(where                   ). The correlation matrix for the variables in this study is 

illustrated in Table 7.1, 

 
                       

         

         -0.32   

       0.11 0.91  

     0.01 0.33 0.35 

Table 7.1: Pearson correlations of the     predictors and     in Metro Cebu. 

The analysis is extended in section 7.8 with increased information through including 

multiple body size measurements over the lifecourse (i.e. six interval measures). The     

change will be defined by the difference between neighbouring     values (i.e.        

         ). Note that regardless of how the data is partitioned, the perfect collinearity 

problem remains. The common motivation is to identify a critical phase of growth for the 

subjects, determining lasting effects on hypertension that are experienced in their late 

teenage years – known as ‘biological programming’ (Ben-Shlomo and Kuh 2002).  
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7.2 The Foetal and Developmental Origins of Disease 

The ‘foetal origins of adult disease’ (    ) or ‘Barker’s hypothesis’ states that an 

individual’s later life health outcomes may have been influenced much earlier in the 

subjects’ life (Barker 1992).  In particular, a low birth weight due to a factor such as 

malnutrition prior to birth has been suggested to have an inverse relationship to many 

chronic diseases in later life (Henriksen and Clausen 2002). It has been theorized that the 

trajectory of growth is defined in the very early stages to benefit the child in its immediate 

early years. However, this trajectory could have adverse effects to health in later life 

(Gluckman et al. 2005). This theory has been met with great debate in epidemiology over 

the past two decades. Recent evidence has been presented to suggest that a low birth 

weight, coupled with a rapid compensatory growth, may increase the risk of adverse 

health outcomes such as    , hypertension and   -  . This theory has been labelled the 

‘developmental origins of health and disease’ (     ) hypothesis (Barker 2004). 

Whichever theory the researcher chooses to believe, the evidence is generally accepted 

that nutrition at some critical period in the individual’s lifecourse can dictate the onset of 

chronic disease in later life (Adair and Prentice 2004).  

 

7.3 Adjustment for Lifecourse Variables 

                                                                                         

 

 

                    

 

Figure 7.1: A path diagram of a hypothesized system in the lifecourse model. 

A number of studies have reported an inverse relationship between birth weight (  ) and 

chronic diseases (  ) such as     (Barker et al. 1993;Rich-Edwards et al. 1997), non-

insulin dependent diabetes (Lindsay et al. 2000;Lithell et al. 1996) and hypertension (Law 

and Shiell 1996). The unadjusted association is usually non-significant. Upon adjusting for 

current weight (  ), the association between    and    enhances the negative 

coefficient, which often becomes significant (e.g. see Figure 3.5 ). This has been suggested 

as evidence for the       hypothesis. However, the statistical practice has experienced 

much criticism (Huxley et al. 2002;Lucas et al. 1999).  
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The variable    is usually reported to have a positive association with both    and 

  . The inclusion of this predictor in the model is often justified by labelling    as a 

confounder and it is seen to be ‘dampening’ the unadjusted association between    and 

   (see section 3.2.2). However, considering the notion of causality, it is questionable 

whether    is a ‘true’ confounder. Adopting the hypothetical model in Figure 7.1,    lies 

on the causal pathway, which defines the covariate instead as a mediator. Two pathways 

are observed from exposure to disease; A ‘direct’ path from    to    and an ‘indirect’ 

path from    to    (with    on the causal pathway). From the perspective of the path 

model the analyst would seem to have two options to proceed. Either consider the total 

effect between    and   , or the association between    and   , with    included as 

a confounder. To adjust for    would bring about a suppression effect. The coefficient of 

   would become more negative and the positive coefficient for    would be enhanced 

(as observed by a number of studies). The adjustment for a ‘false’ confounder is a primary 

criticism of the statistical evidence of the      hypothesis.  

 Change in weight (  ) now takes on a potential significance. It has been thought 

that the inverse association between    and    could signify the importance of    over 

   (primarily due to the non-significant correlation between    and   ). A small    

coupled with a rapid compensatory “catch-up” growth  could be a strong predictor of later 

life chronic disease (Ong et al. 2000). The statistical evidence to support this hypothesis is 

generally no stronger than that already discussed for the model in Figure 7.1.  

 
 
 

Variable Univariable 

Regression 

Coefficient (95% CI) 

Bivariable Regression 

  

Coefficient (95% CI) 

Bivariable 

Regression    

Coefficient (95% CI) 

Bivariable 

Regression     

Coefficient (95% CI) 

Unstandardized     

      0.08 (-0.47 to 0.63) 1.09 (0.55 to 1.63) -0.26 (-0.77 to 0.26)  

         1.2 (0.98 to 1.42) 1.35 (1.12 to 1.58)  0.26 (-0.26 to 0.77) 

       1.33 (1.1 to 1.56)  1.35 (1.12 to 1.58) 1.09 (0.55 to 1.63) 

Standardized     

      0.1 (-0.57 to 0.77) 1.34 (0.67 to 2.01) -0.32 (-0.95 to 0.32)  

         3.44 (2.81 to 4.08) 3.87 (3.21 to 4.54)  0.74 (-0.75 to 2.22) 

       3.66 (3.03 to 4.29)  3.69 (3.06 to 4.33) 2.99 (1.5 to 4.47) 

       11.85 11.85 11.85 

Table 7.2: Unstandardized and standardized     coefficients of the Cebu data. 
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For the univariable estimates,      had no association with    , whilst the coefficients for 

        and       had a positive association with    . When         is entered into 

the bivariable model along with     , the coefficient for      remains positive and 

becomes significant. In comparison, entering       along with      reverses the sign 

on      but remains non-significant. These relationships are linked and can be explained 

using a simple relationship inherent in the data.  

 

                             (7.1) 

 
The coefficients rest on the intrinsic relationship defined by the lifecourse problem – i.e. 

                  . The estimates from any of the three combinations of     , 

        and       can be calculated using this model as follows, 

 

                                     
   

                                    
 (7.2) 

 

                          
                

                                    
 (7.3) 

 
Regardless of the model the researcher chooses to analyze, the estimates are all 

intrinsically linked by the coefficients and each have the same explained variance (i.e.   
 ). 

One model would appear equally plausible to any other from a statistical perspective. The 

differences in estimated coefficients make the epidemiological interpretation of the 

coefficients from any one model difficult to justify.  

 The statistical problem is defined by the causal model adopted. If        is not 

believed to lie on the causal pathway, then controlling for it in the model may be justified. 

This is reflected in the literature, with the proposal of a range of hypothetical models. 

However, assuming the causal model illustrated in Figure 7.1, care should be taken 

regarding which coefficients to interpret. Ordinarily a researcher would look to include all 

three covariates in a multiple regression model to analyze the ‘importance’ of each phase 

of growth. However, this introduces new problems in regression analysis. The reason that 

such relationships in eqn(7.2) and eqn(7.3) can be found from eqn(7.1) is that any two 

covariates can be used to find the remaining one. It becomes impossible to partition the 

unique contribution of each covariate to explained variance using least squares estimation. 

This is labelled the identification problem.  
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7.4 The identification Problem 

The restriction to identifying a critical phase of growth in the lifecourse is in the failure of 

    to provide estimates when all of the predictors are entered simultaneously. The 

presence of perfectly collinear covariates violates one of the classic assumptions of     

regression and prevents computation of the estimated coefficients (see A3 in section 

2.2.2). The problem lies with the inversion of a singular     matrix in     computation. In 

general, the identification problem ensures that there will exist more than one solution to 

the estimated coefficients that produce an equally high explained variance (i.e.   
 ). The 

challenge is to obtain a justifiable solution out of those available. 

 

7.4.1 SVD of the Ill-Defined Matrix 

To demonstrate the statistical problem of the ill-defined matrix, it is useful once again to 

consider the     formulation presented in section 3.3.2. The     matrix is constructed of 

an orthogonal matrix   containing the columns of eigenvectors    and a diagonal matrix   

of eigenvalues    . 

              (7.4) 

 

As the matrix   is orthonormal (i.e.       ), the inverse is calculated as follows, 

 

                       

        
(7.5) 

 
The     coefficient      can be represented in the following form, 

 

               (7.6) 

 

When perfectly collinear predictors are entered into the model, the     matrix is rank 

deficient. This will result in at least one of the eigenvalues in the diagonal of the matrix   

to be zero. Principal components maximize variance, therefore the zero eigenvalue 

illustrates a redundant dimension (i.e. a null space of  ). The matrix   is defined as 

singular, which prevents the inversion of   by regular full rank regression methods. 

Therefore, at least one covariate must be removed from the model to attain an estimate 

from    . A useful illustration of this problem can be provided by the vector geometry.  
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7.4.2 Vector Geometry of the Lifecourse 

Vector geometry can provide a conceptually appealing illustration of the lifecourse 

problem. The relationship between the variables in the lifecourse study is uniquely defined 

by eqn(7.7), 

                
           (7.7) 

 
The Metro Cebu data demonstrates the identification problem in that each of the three 

predictors lies in a common 2-dimensional regression plane, 

 

 

Figure 7.2: Perfectly collinear standardized predictors in the Cebu study. 

To obtain the partial regression coefficient for     , the     solution would project    

along the plane formed by         and       (see section 4.1.3). However,      already 

lies on this plane and so the projection would not produce a unique solution. Therefore, 

the effect of      is considered to be completely confounded by         and      . 

There are infinitely many solutions to the identification problem (i.e. parallel planes). 

Therefore, some form of constraint must be placed on the estimation to produce a unique 

solution. The challenge is to choose the solution with the most appropriate justification to 

the hypothesis. To add further confusion, a great number of solutions have been proposed 

(out of the infinitely many) for similar problems in the epidemiology, sociology and 

bioinformatics literature. It is not always clear what assumptions these techniques are 

making, with some authors choosing not to justify them. This ultimately defines the utility 

of the method in application.   
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7.4.3 Should the Variables be Standardized? 

Before considering potential ‘solutions’ to the identification problem, it is important to 

discuss the decision of whether to enter standardized or unstandardized predictors into 

the regression. In the Metro Cebu example (and typically in studies considering body 

weight in general),      (1.63) has a smaller variance than       (2.74) and         

(2.88). Many researchers choose to scale the covariates to unit variance to prevent 

penalizing the estimated coefficients. The vector geometry of the unstandardized 

predictors was demonstrated in Figure 7.2, with the standardized covariates presented in 

Figure 7.3. 

 

 

Figure 7.3: Vector Geometry of the Standardized Predictors. 

When the variables are scaled, the direct intrinsic relationship will not remain (eqn(7.7)). 

However, perfect collinearity will still exist.  

 

                    
         

               (7.8) 

 
The user must decide whether it is appropriate to standardize the variables under study. 

Should      be given a lesser weighting as it is furthest from     at 19 years, or is the 

smaller variance valid as      has a lesser impact? In the Metro Cebu example it could be 

argued that both stances are justified if correctly interpreted. Understanding the weighting 

for different estimation methods is vital. The discussion will return to the weights shown in 

eqn(7.8) when discussing alternative estimators to    . 
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7.5 Tracing the Lifecourse 

A growth trajectory plot (Figure 7.4a) is often presented as evidence for the       and 

     hypotheses. This approach is demonstrated on the Metro Cebu data, 

 

 

Figure 7.4: Growth trajectory plot of ( ) the raw data and ( ) z-scores. 

Studies have used these plots to identify a distinct growth trajectory for subjects who go 

on to develop adult chronic diseases. Tracing the raw data in the Metro Cebu example 

(Figure 7.4a) shows that the mean trajectories follow a similar path from birth to age 8. 

Beyond this age, the hypertensive group (i.e.     > 115 mmHg - shown in red) 

demonstrates a steeper growth trajectory towards       than the ‘normal’ group (shown 

in blue). To examine the differences in trajectories between groups, studies have used 

mean  -score growth trajectories (Figure 7.4b). These are calculated by centring and 

standardizing the observations in each group. It can be observed from the plot that 

the      of the hypertensive group begins lower than that of the ‘normal’ group (i.e. a 

lower than average     ). Although the lines meet at age 1 (indicating no difference 

between groups), the general trend of the ‘hypertensive’ group is a rapid increase in     

in comparison to the ‘normal’ group (i.e. a postnatal ‘catch up’ in    ). When this reaches 

the late teenage years,     appears much greater than the average for their age. These 

results would seem to give strength to the       hypothesis for hypertension (Barker et 

al. 2005;Eriksson et al. 2000). However, whilst interpreting the plots we must remind 

ourselves of a statistical phenomenon highlighted earlier using Galton’s data (see Figure 

2.2) – labelled “regression to the mean”. 
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 If the data are centered for  -scores, the overall mean (including both groups) 

becomes zero by definition. Therefore, when one group demonstrates a mean below zero 

(i.e. the dashed line), the other will automatically be greater than zero - a reflection if the 

number of subjects are equal in both groups. At the two points in which the lines cross, the 

plot implies that there is no association between     and hypertension (i.e. no difference 

between the ‘normal’ and ‘hypertensive’ groups). Similarly, as the average  -scores of the 

group begin to separate past the age of 2 an increasing association is observed between 

    and hypertension. Therefore, the greatest association between     and hypertension 

is viewed at 19yrs (i.e.      ). The increased gradient of the line indicates the rate of 

change in association. However, this is brought about by the original correlations between 

    and    . The covariates closer to the event have a greater association with the health 

outcomes and are positive, whilst the correlation at birth is weak and negative (see Table 

7.1). Observing the change in association (i.e. a simple regression) is not adequate to 

determine which of     ,       or         is most important to predicting the onset of 

hypertension in later life. The plot amounts to observing a series of ‘simple’ regressions, 

whilst regression to the mean can only serve to bias the result. 

The      hypothesis was originally suggested by Professor David Barker at the 

Univerisity of Southampton in 1989. In application, it would imply that improving maternal 

health and foetal development could be hugely beneficial to the child adapting to its 

environment in later life - thus reducing the risk of adverse health outcomes. This would 

naturally suggest that the health intervention should occur prior to birth. In contrast, the 

      hypothesis suggests that the critical period occurs at the postnatal stage of 

development and is in fact the ‘catch up’ or change in     that is most significant to 

adverse later life health outcomes. If this were true, the intervention would occur in 

limiting weight gain in postnatal development. For epidemiological study, the interventions 

implied by the      and       hypotheses are substantially different (Cole 2010). Plots 

such as Figure 7.4 could be interpreted to provide evidence to either theory (i.e. the low 

birth weight and the rapid ‘catch up’ growth of the hypertensive group). The  -scores 

indicate the changing association across the lifecourse, but are limited for identifying the 

critical phase of growth. Regression methods would then seem the obvious progression. 

 The lifecourse plot is a simple graphical approach that is generated by regressing 

    on the  -score body size measurements (i.e. not change) and plotting the partial 

regression coefficients (Cole 2004). The critical phase of growth is determined by a rapid 

change in the coefficients (i.e. an increasing risk of later life health outcomes). Whilst  -
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score trajectories represent a series of simple regressions, the lifecourse plot ensures that 

the coefficients are conditional on other predictors entered into the model. This in turn 

introduces the guaranteed presence of collinearity amongst covariates. When the 

lifecourse     measures are split into a greater number of partitions (as will be used in 

section 7.8) the collinearity between neighbouring measures naturally increases. This 

typically results in the presence of many of the effects associated with collinearity that 

were discussed in chapter 3. This includes changes in sign and magnitude of the point 

estimates from the inclusion or exclusion of collinear variables. These can change rapidly 

upon the inclusion or exclusion of correlated covariates. This can make the identification of 

the critical phase of growth particularly difficult.  

 A greater attention may instead be placed on change in body size (i.e.         in 

the Metro Cebu study). This extension would seem intuitive, with aiming to identify a 

critical period of growth in the lifecourse. Consider regressing     on the change in  -

score. This would appear a useful approach as the aims in the previous methodology have 

looked to identify steep increases in trajectory or regression coefficients. The researcher 

could enter      and measures of     change; or       along with     change 

(although which is preferable is unclear). To include all seven covariates would bring about 

the identification problem. For   measurements of    , there would be a total of     

    change covariates. In total, along with      and      , there will be     predictors 

entered into the model with only   degrees of freedom - i.e. an infinite range of solutions 

for  . Two attainable  -variable models with one of      or       entered into the model 

are linked by a simple equation (similar to computing eqn(7.2) or eqn(7.3) from eqn(7.1) in 

the three predictor example). This is demonstrated in section 7.8 when the example is 

extended to seven predictors.  

Advanced modelling techniques have been employed to tackle the lifecourse 

problem. Methods based on an     approach are conceptually appealing as relationships 

can be specified in the data. However, the model specifications must be carefully selected 

as different choices can lead to a widely varying interpretation. Tu et al. (2011) discuss the 

use of a growth mixture model, with the approach suffering from a similar problem 

regarding the model specification (along with issues of convergence and violation of 

assumptions). Without venturing into the complexities of the wider range of methods, this 

discussion will explore the notion of setting arbitrary constraints on the model parameters. 

It will also demonstrate many of the complexities surrounding this problem and what 

differentiates it from near perfect collinearity as discussed prior to this chapter.  
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7.6 Constraint Solutions of the Ill Defined Matrix  

The problem that defines the lifecourse model is the need to invert a singular (or rank 

deficient) design matrix to compute estimates from the model. Whilst unconditional 

estimates can be found using     (i.e. via simple regressions), the need to compute 

individual estimates conditional on the remaining covariates appears key to identifying a 

critical phase of growth. An approach that directly computes an inverse of the     matrix 

is the generalized (or  -) inverse. When a matrix is non-singular, the g-inverse and the 

ordinary inverse will be equivalent. However, in cases in which an inverse is unattainable, a 

g-inverse (sharing some properties of the ordinary inverse) may still be found. The  -

inverse of an     matrix   is based on the     in eqn(7.9), 

 

         (7.9) 

 
where   is an     matrix with orthonormal columns,   is a     diagonal matrix with 

non-negative elements,   is a     orthogonal matrix and    is the  -inverse of  . A  -

inverse is defined when the matrix   satisfies the following properties, 

 

       (7.10) 

         (7.11) 

 
When these properties hold, a  -inverse will exist, but is rarely unique unless the matrix   

is invertible. Through the  -inverse the least squares estimation of the regression model 

can be formed by solution of the normal equations (see section 2.2.2).  

 

                

          (7.12) 

 
Justification of the choice of inverse is important to this work. This discussion will provide 

the basis to link a range of solutions from biased estimators that can be used to obtain 

parameter estimates from the perfectly collinear model. The following sections will look to 

generalize the solutions to these problems and discuss alternative estimates from 

shrinkage regression that fit a common least squares framework. The g- inverse lies at the 

heart of the proposed ‘solutions’ to the singular matrix and so the discussion will begin by 

considering various linear constraints.   
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7.6.1 Linear Constraints on the Estimation 

Due to insufficient degrees of freedom in the lifecourse model, a linear restriction is 

required on the estimation to allow for the computation of a unique   . There are in 

general an infinite set of solutions to the      
 
      problem when     is not full 

rank. These differ in the constraints imposed on the estimation. Subsequently, the 

constraints define the usefulness of the estimation in the study. The following section will 

consider estimates from proposed solutions in the literature and look to identify the set of 

conditions imposed on the inverse.  

The Metro Cebu example is used to consider some of the constraints that can be 

placed on the estimation. The normal equations for the unstandardized predictors are as 

follows, 

           

 

  
                     
                      
                    

     

     

        

       

     
      
       
       

   (7.13) 

 

 

 

As the first two rows equal that of the third there are only two equations for three 

unknowns (i.e. the null vector is         ). One of the normal equations can be replaced 

with a linear restriction that defines a desired relationship of the parameter estimates. 

Mazumdar et al. (1980) demonstrate that for each linear restriction there exists a 

corresponding  -inverse with the same solution, 

 

1. Convert the rank-deficient matrix       to a non-singular matrix by replacing one 

of the rows with a linear restriction.  

e.g. The third row defined by the linear restriction                  

becomes                 . 

2. The inverse of this matrix can then be calculated. 

3. Finally, the third column of the inverted matrix is replaced by a column of zero’s. 

This produces the desired g-inverse. 

 
Example 1 Set one of the coefficients equal to zero; e.g.         will correspond to the 

following restriction in step 1 - (0, 0, 1). 
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Statistical software packages will often proceed with this solution. This restriction 

corresponds to removing one variable from the model to obtain a solution from     (see 

bivariable model   in Table 7.2). In other words, a variable is removed when a singularity is 

found. This restriction implies that in the population,    has no effect. This is a strong 

assumption that should reflect exactly the population model. Similarly, setting a coefficient 

equal to a non-zero value would require similarly robust a priori evidence. 

 

Example 2 Set a linear restriction such that two coefficients are equal. e.g. equating the 

coefficients for      and         would correspond to the following restriction (0, 1, -1) 

 

   
    
    
    

   

 

In the three predictor example this would appear limiting as the challenge is to separate 

the effects. However, when the example is later extended to consider a series of 

measurements we may assume two neighbouring estimates to have minimal change. This 

approach is discussed in Kupper (1985b) for the age-period-cohort model. The merits of 

this will be considered when the example is later extended (see section 7.8 and chapter 8).  

 

Example 3 Set a linear restriction such that the coefficients sum to zero; e.g.       

     would correspond to the following restriction on the coefficients (1, 1, -1)  

 

   
    
    
    

  (7.14) 

 

This would appear a more ‘natural’ restriction than the previous two in that the solution 

follows the intrinsic relationship of the variables (i.e.                   ). The 

degrees of freedom are still reduced by one, allowing a solution to be found, but not 

defining the value of any of the coefficients in the population. This constraint has 

advantages for interpretation and justification (see section 8.6.1), however it can still be 

argued that it is imposed on the solution in this example (for standardized variables the 

relationship is weighted, but the process remains equivalent – see section 7.7.1).   
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7.6.2 The Moore-Penrose Generalized Inverse 

When   is singular there will exist an infinite range of g-inverse solutions which only 

adhere to select assumptions of the ordinary inverse. The Moore-Penrose (  )  -inverse 

(denoted by   ) is one that always exists and is unique for an     matrix   of real or 

complex entries under eqn(7.10)-(7.11) and the following constraints, 

 

           (7.15) 

           (7.16) 

 
The     -inverse is defined by imposing the following condition on the diagonal matrix   , 

 

     
     

 
      

     

     
 (7.17) 

 
For the Metro Cebu example, this is as follows, 

 

              

  
               
             
             

  
          

          
   

  
               
             
             

 

 

 
(7.18) 

 

     
  

 
 

  
               
             
             

  
            

            
   

  
               
             
             

 

 

 
 

  
                            

                             

                            

  (7.19) 

 
Notice that the sum of the first two columns of the     -inverse equals that of the third 

(before rounding) similar to example 3 in section 7.6.1. This naturally translates to the 

solution in eqn(7.20).  

 

    

     

        

      

    
    
    
    

  
(7.20) 
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Maintaining this relationship demonstrates an important result to be able to justify the use 

of the     -inverse in the lifecourse problem.     would consider the same     of the 

    matrix (i.e. the eigen-decomposition) as the    g-inverse (prior to inversion). 

Therefore, the vector geometry of these matrices are equivalent for both procedures. 

Consider the structure of the eigenvectors in variable space geometry (i.e. an ordinary 

scatter plot). All of the data points are distributed on a common    plane   , 

 

                   –         (7.21) 

 

 

Figure 7.5: Illustration of the planes in which the three   ’s must lie. 

The first two eigenvectors must lie on the plane    with positional vectors that follow the 

relationship defined in eqn(7.21). The cosine of the angle (i.e. correlation) between the 

original axes and the eigenvectors can be found using the dot product (see Jackson (2003)), 

 

                            

                            

                              

 
The second eigenvector must lie on the plane    and be orthogonal to the first. Therefore, 

it corresponds to the same relationship. 
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The plane    is fixed by the null vector. Therefore the redundant third dimension is 

represented by the normal vector to this plane (1,1,-1) – i.e. the null. The vector    must 

lie on the plane    orthogonal to    passing through the origin (i.e.            

        
           ). This determines a unit direction vector (fixed for all examples) 

for the    weights (     ,       ,      ) to maintain orthogonality.  

The eigenvector for the Metro Cebu data maintains the intrinsic relationship of the 

variables in the first two components.  

 

   
               
             
             

  (7.22) 

 
It is the scaling by the eigenvalues that determines the variance explained by each   . This 

is demonstrated by the     of the     -inverse for the perfectly collinear covariates, 

 

     
  

 

  

        

        

           

  
      
      
   

  

     
     

                 
  

 

  

                                         

                                         

                                                         

  

 

(7.23) 

The third column in the eigenvector (i.e. the null vector) has no effect on the computation 

of the  -inverse due to the corresponding zero eigenvalue (i.e.     ). The intrinsic 

relationship corresponds to each of the columns as well as rows of the    g-inverse.  This 

follows in turn to the estimated coefficients. The estimates gained from the (1, 1, -1) linear 

restriction and the     -inverse are identical, however the distinction between the 

approaches is that in the former the restriction is imposed and in the latter it is maintained 

from the intrinsic relationship in the data and the null vector. This is an important feature 

of the analysis that allows this restriction to be promoted as the most ‘natural’ given the 

structure inherent in the data. 
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7.7 The Application of Shrinkage Methods to the Lifecourse 

In section 4.4,     and     were introduced as shrinkage regression methods. Although 

employing a biased estimator will impact on the accuracy of the estimation, it can 

substantially improve precision. The techniques are particularly useful for situations in 

which high levels of collinearity are likely to be present. As such, they are widely employed 

in areas such as chemometrics and bioinformatics – particularly when   >>  . In 

comparison, these methods have experienced relatively little use and discussion in 

epidemiological study (Cole 2010). A particular benefit is that shrinkage techniques can 

impose (or rather maintain) constraints in the estimation process to provide estimates 

from the rank deficient matrix. In this section,     and     methodology are revisited to 

consider a potential application in the lifecourse problem. The interpretation of the results 

will be explored as well as the justification for employing the methodology. 

 

7.7.1 Principal Component Regression 

The use of     in the prefect collinearity problem dictates that one covariate must be 

removed to obtain unique estimates. For    , the same problem would exist if the full 

complement of components is retained (as the result is identical to     - see eqn(4.26)). 

However, by retaining the first two   ’s in a    , the zero eigenvalue of   will be removed 

(and hence the null vector).  

 

    
            

   
   

  (7.24) 

    
    

     

     
  (7.25) 

 
The   ’s are entered into eqn(4.22) to obtain the regression coefficients for the     

estimator. The components represent a combination of the original three covariates. This 

process (for    ) corresponds to performing an     -inverse on the     matrix. For 

the   -inverse procedure, the zero row in     cancels with the corresponding redundant 

eigenvector in   (see eqn(7.23)). Therefore, retaining two components produces the same 

estimation of   as the     -inverse and the          linear restriction in section 7.6.1. 

This is an important step in being able to justify the result. In using a     the intrinsic 

structure of the variables is maintained. 
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 As was also shown in section 7.6.2, each column of   (apart from the third 

corresponding to the null) will follow the intrinsic relationship amongst the variables. This 

translates to the regression coefficients. For instance, the first eigenvector provides the 

‘weight’ for the first component                    (see eqn(7.22)). Using eqn(4.18) the 

weights can then be used to find the first    (   ), 

 

                            
            (7.26) 

 
Following eqn(4.20),   is regressed onto   to find the single     regression coefficient 

    
        . Following eqn(4.23),     

    is multiplied by the weight matrix   to rotate the 

estimates back to the original axes.  

 

Variable     Coefficients 

1 Component Model (95% CI) 

    Coefficients 

2 Component Model (95% CI) 

Unstandardized   

      -0.04 (-0.06 to -0.01) 0.28 (-0.06 to 0.62) 

         0.68 (0.56 to 0.8) 0.53 (0.34 to 0.73) 

       0.64 (0.53 to 0.75) 0.81 (0.59 to 1.03) 

Standardized   

      -0.42 (-0.73 to -0.11) 0.43 (-0.14 to 1) 

         1.83 (1.5 to 2.16) 1.75 (1.41 to 2.08) 

       1.73 (1.39 to 2.07) 2.03 (1.65 to 2.4) 

          11.64 11.85 

Table 7.3:     results for one and two component models on the Metro Cebu data. 

Confidence intervals have been provided using jack-knife “leave one out” (Tukey 1958). 

Data is re-sampled with one observation removed and coefficient estimates calculated for 

each repetition. The cumulative   
  in the two component model is the same as the least 

squares bivariate models (as no variance is discarded). The single component model 

explains 98% of the covariance relative to the full model. This appears preferable to reduce 

the collinearity impact. For the single component model      had a small negative 

association with    .         and       both had significant positive associations. For 

the standardized model,      had a negative association with the response, whilst 

        and       both had strong positive associations. In the 2 component models, 

     reversed sign, but remained non-significant. 
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Figure 7.6: ( ) Unstandardized and ( ) standardized coefficients from    . 

In the perfectly collinear example, reducing to two components still explains the same 

variance in the response (  
 ) as     for any bivariable model because the data is two-

dimensional. The vector geometry in Figure 7.2 explains this feature well in that the 

regression space spanned by any two predictors is the same as that of the full three 

predictor model. Therefore, the projected response    is equivalent for both estimators. 

The intrinsic relationship amongst the covariates directly translates for the unstandardized 

predictors as follows, 

 

                             
              

                                              

                                       

                          
(7.27) 

 
From eqn(7.27) a direct link can be observed to the regression coefficients and variance 

explained from the     result in Table 7.2 (although some rounding occurs). Therefore 

    can be viewed as a natural extension of     onto axes that partition variance for the 

ill-defined matrix. If maintaining the intrinsic relationship of the variables justifies the use 

of     in the 3 predictor lifecourse problem, then the next stage is to discuss questions 

regarding its application – i.e. how many components to retain and whether to use 

standardized or unstandardized covariates. For this purpose, the discussion returns to the 

use of vector geometry to illustrate     on perfectly collinear data. 
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When variances are equal for covariates in the bivariable model, the first    

bisects the two covariate vectors perfectly (e.g. see Figure 4.4). However, this is not the 

case in the Metro Cebu example. The first    is weighted toward the covariate with the 

greater standard deviation (i.e.         in Figure 7.7),  

 

  

Figure 7.7: Illustration of     for ( ) a bivariable and ( ) full model. 

Notice that in the bivariable example, the covariance ellipse passes through each of the 

covariate vectors (see Figure 7.7 ). The covariance ellipse can only be maintained in the 

    process because it rests on the assumption that the sum of squared weights is equal 

to unity (see section 4.2.1). This ensures that the   ’s are on the same scale as the original 

covariates. As demonstrated in Figure 7.7 , the ellipse is proportional to the three 

predictors entered and so will no longer pass through each vector. This is a result of 

considering the data for three variables on a 2-dimensional plane.  

  The process of standardization is to give a weighting to the constraint in the data, 

such that those variables with a smaller variance are not penalized in the analysis (see 

eqn(7.8)). All data are centered. However, the researcher may choose to enter 

standardized data, or to standardize the coefficients after calculating the components. If 

the data are entered unstandardized, the     procedure based on     would produce 

unstandardized predictors. These would directly follow the intrinsic relationship of the 

data in eqn(7.21) (as demonstrated in section 7.6.2). If the coefficients are then 

standardized directly using eqn(2.30), the following weighting would transform back to the 

intrinsic relationship, 

 

      

      
 

         

        
 

 

       

       (7.28) 

 
If instead the covariates are standardized prior to    , the covariates would be weighted 

by their standard deviation as follows, 
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                   (7.29) 

 
where   are scaled covariates with unit length. The ordinary         procedure would 

naturally translate the same relationship to the coefficient estimates, 

 

                       
          

                   (7.30) 

 
The coefficients are weighted by standard deviation. Similarly, unstandardized estimates 

can then be generated based on standardized data by using the relationship in eqn(2.30), 

 

      
                  

           
        

            (7.31) 

 
The coefficients would now be weighted by variance (this result can be verified using the 

coefficients in Table 7.3). The important result is that in each of these examples, whilst the 

intrinsic relationship may not hold directly, these weights prove that the variables still 

adhere to the same condition. Therefore, the decision over whether to employ 

standardized or unstandardized weights is very much conceptual and must be factored 

into the interpretation of any analysis. 

 

 

Figure 7.8: Illustration of     for the standardized predictors in the full model. 

The first    in Figure 7.8 is not orthogonal to      and so standardization has generated a 

greater weight on this variable. This result was expected as      is heavily penalised in the 

unstandardized geometry. The greater covariance between       and         still 

dictates that these covariates load highly on the first   .   
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7.7.2 Partial Least Squares Regression 

For     the focus returns to the     matrix. The intrinsic relationship of the lifecourse 

covariates directly translates to the covariances in this matrix as follows, 

 

                                 
     

                           
 

 
                   

                      
           

                           
 

 
                        

                            
  

                           
                           

  

                   
          

 

                            
    (7.32) 

 

Using this relationship, the     of     generates eigenvectors that follow the same 

intrinsic relationship (see section 5.3 for     of    ). 

 

          

             

             

             
                  

 
 

   

     

 
The     for the Metro Cebu data is as follows, 

 

     
     
      
      

   

         
         
         

                                

 

 

    
    
   
    

              (7.33) 

 
This is an important result as each factor extracted in     will maintain this relationship 

within the data and the coefficients are given a weighting ( ) that corresponds to this 

relationship. For instance, the left singular vector in eqn(7.33) provides the following 

weights for the first     component to obtain the scores (  ) (see eqn(4.27)),  
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Following eqn(4.28),   is regressed onto the scores matrix   (which contains only    in this 

case) to attain the single     regression coefficient     
         . Following eqn(4.29), 

the     coefficients are transformed back onto the original axes, 

 

 
    
   
    

       
    
    
    

  

 
The residuals of both   and   matrices are then re-entered into the algorithm and the     

is once again implemented to obtain the second     component. As the left singular 

eigenvector of     maintains the intrinsic relationship in the data, the same relationship 

translates to the regression coefficients for both     and     components.  
 

     Coefficients 

1 Component Model 

(95% CI) 

    Coefficients 

2 Component Model 

(95% CI) 

Unstandardized   

      0.01 (-0.05 to 0.06) 0.28 (-0.06 to 0.62) 

         0.66 (0.54 to 0.78) 0.53 (0.34 to 0.73) 

       0.67 (0.55 to 0.79) 0.81 (0.59 to 1.03) 

Standardized   

      0.05 (-0.3 to 0.41) 0.43 (-0.14 to 1) 

         1.81 (1.49 to 2.14) 1.75 (1.41 to 2.08) 

       1.93 (1.58 to 2.28) 2.03 (1.65 to 2.4) 

          11.73 11.85 

Table 7.4:     results for one and two component models on the Metro Cebu data. 

The single component model explains more than 98% of the covariance between     and 

the three     measures. Based on the   
  it would seem that the single component model 

would be preferable. The     analysis with a single component retained produced 

coefficients that were similar to those from the simple     regressions (The reasons for 

this were discussed for the  -index - see Figure 5.2).      had no association with the 

response, whilst       and         both had strong significant positive associations with 

   . In the standardized single component model, the coefficients followed a similar 

pattern with positive associations strengthening further. For the two component model, 

     demonstrated no association with    .       had a slightly stronger positive 

association, whilst         had a slightly weaker positive association. 
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Figure 7.9: Plot of the ( ) unstandardized and ( ) standardized coefficients from    . 

Similar to    , the two component model has a direct relationship to the     result from 

Table 7.2, 

 

                             
              

                                              

                                        

                          (7.34) 

 
It is clear that     (like    ) is partitioning the variation in     as to the intrinsic 

relationship that defines the lifecourse covariates.     and     coefficients for two 

component models are identical. No variance is discarded by either method and so the 

results would always be the same when     components are retained. 

 The discussion regarding the weighting of the unstandardized and standardized 

models is identical to that presented for the     model. Although the coefficients do not 

directly follow the intrinsic relationship, it can be seen from the weightings that this result 

still holds. Once again, the discussion rests on whether conceptually it seems appropriate 

to penalize      due to the smaller variance in relation to       and        . In a     

analysis, the variables with a greater correlation with the outcome are naturally given a 

greater weight due to the covariance maximizing aim of the method. If two components 

are retained the result is identical to    , however the axes are built on the covariance 

maximizing philosophy.  
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Figure 7.10:     components from (a) standardized and (b) unstandardized data.   

The vector geometry in Figure 7.10 illustrates this idea well. Removing    in the 

unstandardized model removes almost all of the variance of      (this is demonstrated in 

the one component models in Table 7.4). However, in the standardized model, the change 

between     and     components is much greater. This is because of the greater 

weighting given to      through standardization is countered by the greater weighting 

given by     to those variables closer to the outcome (i.e.         and      ). Although 

the two component model produces the same estimates after reverse transformation to 

the original axes, the single component model places a lesser weight on     . Therefore, 

choosing unstandardized or standardized single component models (in this example) has a 

minimal effect due to the small association between      and    .  

 This discussion has been useful to demonstrate that any application of     or     

is equally justifiable based on maintaining the intrinsic relationship of the variables. These 

coefficients are weighted differently, whether the standard deviations of the variables are 

believed to be important to the interpretation, however the same relationships exist (if 

only indirectly). The decision of standardization becomes a conceptual one, with either 

seemingly plausible if accompanied by justification of the choice and incorporated into the 

interpretation. With retaining only a single component in    , a greater variation on 

        and       is retained as these have a greater association with the response. 

Standardizing the variables has no effect on the correlations, but it does on variance 

distribution. One issue that has been largely ignored in this example is the decision of how 

many components to retain. In both     and     examples the single component model 

has been adequate with a high explained variance in the response.   
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7.8 Identifying the Critical Phase of Growth 

The Metro Cebu data is extended to incorporate     measurements on each of the 

participants at birth (    ), 1 year (    ), 2 years (    ), 8 years (    ), 15 years 

(     ) and 19 years (     ) to identify the critical phase of growth for     in later life. A 

total of five     change measurements (defined by the change in neighbouring     raw 

scores) are entered into the analysis, along with      and      . Whilst variance 

explained may increase with the addition of covariates, the perfect collinearity remains.  

 
                                                   

            
       -0.57       
       -0.06 -0.41      
       -0.01 -0.06 -0.33     
        0.02 0.10 -0.02 0.14    
         0.00 -0.04 -0.04 0.08 -0.21   
      0.11 0.14 -0.03 0.45 0.66 0.43  
    0.01 0.04 -0.03 0.16 0.23 0.19 0.35 

Table 7.5: Correlations of the Cebu data including     change measures. 

The example here differs from our original paper (Tu et al. 2010) in that     is considered 

rather than weight to provide a different interpretation on the results gained from the 

methods. Also, the results from unstandardized covariates are considered in addition to 

the standardized measures (i.e. centered and scaled to unit length). This differs from the  -

scores that were used in the original paper. The use of  -score change in place of         

(as defined here) is perhaps confusing. It amounts to standardizing      and       and 

then observing change (which is then not unit variance). This will maintain direct links 

between the estimates that were observed for the unstandardized covariates, however it 

does become difficult to interpret on the original weightings. 

As Table 7.5 demonstrates, the inclusion of additional     measurements will 

predictably increase the correlation amongst the covariates. This will subsequently 

increase any potential impact of collinearity on parameter estimates obtained from 

regression procedures (without remedial action). Similar to the three covariate example in 

section 7.7, all seven covariates cannot be entered simultaneously into an     regression. 

This is due to the covariates spanning only six dimensions (i.e. insufficient degrees of 

freedom). Instead, five     change covariates can be entered along with     , or five     

change covariates along with      .  
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Variable Univariable 

Regression 

Coefficient (95% CI) 

Multivariable Regression  

Model   Coefficient  

(95% CI) 

Multivariable Regression 

Model    Coefficient  

(95% CI) 

Unstandardized    

      0.08 (-0.47 to 0.63) 0.58 (-0.12 to 1.29)  

         0.29 (-0.15 to 0.73) 0.70 (0.06 to 1.35) 0.12 (-0.42 to 0.66) 

         -0.31 (-0.89 to 0.27) 0.62 (-0.11 to 1.36) 0.04 (-0.71 to 0.79) 

        1.24 (0.74 to 1.73) 1.03 (0.48 to 1.57) 0.44 (-0.32 to 1.21) 

         1.38 (1.01 to 1.75) 1.50 (1.12 to 1.88) 0.92 (0.06 to 1.77) 

          1.32 (0.90 to 1.75) 1.65 (1.23 to 2.07) 1.07 (0.25 to 1.89) 

      1.33 (1.10 to 1.56)  0.58 (-0.12 to 1.29) 

Standardized    

      0.10 (-0.57 to 0.77) 0.72 (-0.15 to 1.59)  

        0.45 (-0.23 to 1.12) 1.07 (0.09 to 2.06) 0.18 (-0.64 to 1.00) 

        -0.36 (-1.03 to 0.31) 0.72 (-0.13 to 1.57) 0.04 (-0.82 to 0.91) 

        1.65 (0.98 to 2.31) 1.37 (0.64 to 2.10) 0.59 (-0.43 to 1.61) 

         2.43 (1.78 to 3.09) 2.65 (1.98 to 3.32) 1.62 (0.11 to 3.13) 

          2.04 (1.38 to 2.70) 2.54 (1.89 to 3.19) 1.64 (0.38 to 2.90) 

      3.66 (3.03 to 4.29)  1.60 (-0.34 to 3.54) 

 Adj     12.12 12.12 

Table 7.6: Coefficient estimates from two attainable models using     regression. 

 

 

Figure 7.11: Plots of ( ) unstandardized and ( ) standardized coefficient estimates. 
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When     was regressed on      and the 5     change covariates, a positive association 

was observed for all covariates with the outcome.      had the lowest unstandardized 

coefficient (0.58 (-0.12 to 1.29)) and was non-significant.        was also non-significant 

(0.72 (-0.13 to 1.57)). It is noticeable from Figure 7.11  that the coefficients follow parallel 

trends.       is the summation of the incremental     change and     , therefore the 

coefficients in model    can be calculated from model  .  

 

                        
        

 (7.35) 

                       
          

        
  

           
               

             (7.36) 

 
Notice that the coefficient estimate for       in model    is equal to that of      in model 

  (for the non-standardized model). Also when the incremental     change covariates are 

entered, the coefficients in model    would always be reduced by the same coefficient of 

      in model   (i.e. reduced on the condition that       is positive). Therefore, these 

models are intrinsically linked and it again appears difficult to justify one as superior to the 

other or any more useful in answering the original research hypothesis.  

 The fundamental problem of tracing the  -scores is that it will suffer from 

regression to the mean (see section 7.5), whilst examples such as the lifecourse plot will 

incorporate high levels of collinearity using an increased number of measures. It was 

discussed in section 7.6.1 that dropping a variable from the model is equivalent to setting a 

linear restriction equal to zero. This does not seem an ideal solution to the collinearity 

problem and in particular to answer the initial research question (as shown by the plots in 

Figure 7.11). Generating any of the five remaining attainable 6 covariate     models by 

dropping incremental     change covariates rests on similar prior assumptions.  

A possible ‘solution’ that would (on the surface) appear more feasible when a 

greater number of covariates are entered is setting any neighbouring change in coefficients 

equal.  This is discussed in Kupper (1985b) for the age-period-cohort model (see chapter 

8). With increased measures, the difference between two covariates is seemingly reduced 

and so setting two effects equal would appear less dangerous. However, as Kupper 

discusses, this restriction must be representative of the (unattainable) population model, 

otherwise the results will be biased. Without robust a priori information to justify the 

restriction, this ‘solution’ would seem best avoided due to the increasing collinearity in the 

model with increased measurements.  
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1 Component  

     

2 Component  

 

3 Component  

 

4 Component  

Unstandardized     

      0.04 (0.00 to 0.08) 0.11 (-0.05 to 0.28) 0.03 (-0.15 to 0.22) 0.00 (-0.21 to 0.21) 

       0.09 (0.03 to 0.15) -0.04 (-0.32 to 0.24) 0.08 (-0.21 to 0.37) 0.09 (-0.20 to 0.39) 

       -0.04 (-0.07 to 0.00) 0.00 (-0.08 to 0.09) -0.06 (-0.17 to 0.05) 0.02 (-0.26 to 0.30) 

       0.23 (0.15 to 0.31) 0.24 (0.14 to 0.34) 0.26 (0.16 to 0.37) 0.17 (-0.18 to 0.51) 

        0.48 (0.37 to 0.59) 0.41 (0.13 to 0.68) 0.27 (0.03 to 0.51) 0.29 (0.03 to 0.54) 

         0.22 (0.12 to 0.31) 0.31 (0.00 to 0.62) 0.46 (0.21 to 0.72) 0.50 (0.21 to 0.78) 

       1.02 (0.83 to 1.20) 1.04 (9.85 to 1.23) 1.06 (0.87 to 1.24) 1.07 (0.88 to 1.26) 

Standardized     

      -0.10 (-0.63 to 0.42) 0.34 (-0.02 to 0.70) 0.34 (-0.09 to 0.77) -0.11 (-0.52 to 0.30) 

       0.58 (0.00 to 1.15) 0.08 (-0.30 to 0.47) 0.08 (-0.32 to 0.48) 0.17 (-0.20 to 0.54) 

       -0.67 (-1.04 to -0.30) -0.45 (-0.79 to -0.11) -0.45 (-1.12 to 0.21) 0.23 (-0.26 to 0.72) 

       1.08 (0.64 to 1.52) 1.15 (0.80 to 1.50) 1.15 (0.66 to 1.64) 0.79 (0.36 to 1.21) 

        1.12 (0.76 to 1.49) 1.21 (0.80 to 1.62) 1.21 (0.32 to 2.09) 1.17 (0.71 to 1.63) 

         0.52 (0.03 to 1.01) 0.63 (0.17 to 1.08) 0.63 (-0.14 to 1.40) 1.28 (0.78 to 1.79) 

       1.53 (1.02 to 2.05) 1.70 (1.35 to 2.04) 1.70 (1.30 to 2.10) 2.00 (1.63 to 2.36) 

Adj      11.99 12.01 12.11 12.05 

 5 Component  6 Component  
 

 

 

 

Unstandardized   

      -0.02 (-0.43 to 0.39) -0.29 (-0.80 to 0.23) 

        0.09 (-0.24 to 0.41) -0.17 (-0.62 to 0.28) 

        0.04 (-0.38 to 0.46) -0.25 (-0.80 to 0.30) 

        0.18 (-0.26 to 0.63) 0.16 (-0.29 to 0.61) 

        0.29 (0.03 to 0.54) 0.63 (0.14 to 1.12) 

         0.49 (0.20 to 0.79) 0.78 (0.34 to 1.23) 

       1.07 (0.88 to 1.26) 0.87 (0.58 to 1.16) 

Standardized   

 

      0.06 (-0.45 to 0.58) -0.13 (-0.85 to 0.59) 

        0.27 (-0.16 to 0.69) 0.02 (-0.77 to 0.81) 

        0.11 (-0.44 to 0.65) -0.08 (-0.81 to 0.66) 

        0.53 (-0.08 to 1.13) 0.45 (-0.18 to 1.07) 

        1.22 (0.76 to 1.68) 1.43 (0.70 to 2.16) 

         1.36 (0.84 to 1.87) 1.48 (0.87 to 2.09) 

       2.03 (1.66 to 2.40) 1.89 (1.39 to 2.39) 

Adj      11.96 12.12 

Table 7.7: Results of the     analysis with 1-6 components retained.  
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1 Component  

     

2 Component  

 

3 Component  

 

4 Component  

Unstandardized     

      0.01 (-0.07 to 0.10) -0.08 (-0.41 to 0.25) -0.30 (-0.92 to 0.32) -0.28 (-0.85 to 0.28) 

       0.07 (-0.04 to 0.18) 0.00 (-0.37 to 0.38) -0.11 (-0.60 to 0.38) -0.18 (-0.63 to 0.28) 

       -0.04 (-0.12 to 0.04) -0.07 (-0.39 to 0.25) -0.18 (-0.93 to 0.58) -0.23 (-0.83 to 0.37) 

       0.22 (0.12 to 0.33) 0.19 (-0.13 to 0.51) 0.11 (-0.51 to 0.74) 0.15 (-0.36 to 0.66) 

        0.44 (0.31 to 0.57) 0.35 (0.08 to 0.62) 0.60 (0.07 to 1.14) 0.63 (0.13 to 1.13) 

         0.32 (0.21 to 0.44) 0.62 (0.30 to 0.93) 0.76 (0.30 to 1.23) 0.78 (0.33 to 1.23) 

       1.03 (0.85 to 1.21) 1.01 (0.82 to 1.21) 0.89 (0.55 to 1.23) 0.87 (0.58 to 1.16) 

Standardized     

      0.05 (-0.30 to 0.40) 0.00 (-0.51 to 0.51) -0.07 (-0.69 to 0.55) -0.08 (-0.83 to 0.67) 

       0.23 (-0.13 to 0.59) 0.12 (-0.36 to 0.60) 0.16 (-0.37 to 0.69) 0.06 (-0.77 to 0.89) 

       -0.19 (-0.54 to 0.17)  0.09 (-0.44 to 0.62) 0.02 (-0.63 to 0.66) -0.08 (-0.84 to 0.69) 

       0.86 (0.49 to 1.23) 0.56 (0.01 to 1.10) 0.48 (-0.14 to 1.10) 0.43 (-0.20 to 1.06) 

        1.27 (0.87 to 1.66) 1.28 (0.78 to 1.79) 1.33 (0.74 to 1.91) 1.41 (0.67 to 2.16) 

         1.06 (0.68 to 1.45) 1.39 (0.85 to 1.93) 1.43 (0.86 to 2.01) 1.47 (0.86 to 2.08) 

       1.91 (1.56 to 2.25) 1.98 (1.61 to 2.36) 1.96 (1.54 to 2.37) 1.91 (1.40 to 2.43) 

Adj      12.19 12.35 12.38 12.30 

 5 Component  6 Component  
 

 

 

 

Unstandardized   

      -0.29 (-0.83 to 0.25) -0.29 (-0.80 to 0.23) 

        -0.17 (-0.62 to 0.28) -0.17 (-0.62 to 0.28) 

        -0.25 (-0.81 to 0.32) -0.25 (-0.80 to 0.30) 

        0.16 (-0.32 to 0.64) 0.16 (-0.29 to 0.61) 

        0.63 (0.14 to 1.12) 0.63 (0.14 to 1.12) 

         0.78 (0.33 to 1.23) 0.78 (0.34 to 1.23) 

       0.87 (0.58 to 1.16) 0.87 (0.58 to 1.16) 

Standardized   
 

 

      -0.13 (-0.85 to 0.59) -0.13 (-0.85 to 0.59) 

        0.02 (-0.77 to 0.81) 0.02 (-0.77 to 0.81) 

        -0.08 (-0.82 to 0.66) -0.08 (-0.81 to 0.66) 

        0.45 (-0.18 to 1.07) 0.45 (-0.18 to 1.07) 

        1.43 (0.70 to 2.16) 1.43 (0.70 to 2.16) 

         1.48 (0.87 to 2.09) 1.48 (0.87 to 2.09) 

       1.89 (1.39 to 2.39) 1.89 (1.39 to 2.39) 

Adj      12.21 12.12 

Table 7.8: Results of the     analysis with 1-6 components retained. 
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Summary of Results 

The univariate     coefficient for      was positive and non-significant (0.08 (-0.47 to 

0.63)), but became significant upon adjustment for         (1.09 (0.55 to 1.63)). The 

coefficient reversed sign but remained non-significant upon adjustment for       (-0.26 (-

0.77 to 0.26)). When six of the seven     measures were entered simultaneously (i.e.     

change along with      or      ) all of the coefficients were positive. The covariate 

         had the strongest association with     in the unstandardized case for both 

models, whilst          became the strongest for      and the five     change variables 

for the standardized model. Using eqn(7.2) and eqn(7.36) a unique relationship amongst 

the     coefficients was defined by the dependency inherent within the lifecourse data. 

This was illustrated by the parallel curves in Figure 7.9 showing that the coefficients are 

describing a trend in the data. 

 Whilst the     example was forced to consider one fewer than the full 

complement of predictors, this was not the case for     and     methods. Components 

replace the predictors in the estimation and each component is a combination of the 

original predictors. Therefore, one or more components can be removed from the 

estimation to reduce the dimensionality of the data and obtain unique estimates on the 

original axes. When a two component     (or    ) was employed on the three covariates, 

positive coefficients were obtained for all predictors (although      was not significant). 

Due to the dimensionality of the data, removing one component in either approach would 

produce the same result as no information is lost when the maximal attainable 

components are used. However, whilst the coefficients are estimable, the design matrix is 

still likely to be collinear and experience common features attributed to collinearity (as 

with any other problem). Therefore, it may be decided to retain only the first component. 

     became negative and significant for     (-0.04 (-0.06 to -0.01)), whilst in     the 

same coefficient remained positive and non-significant (0.01 (-0.05 to 0.06)). The change in 

coefficients between the one and two component models were small for     and 

explained 99% of the original variance. 

 The analysis was extended to include five     change variables in place of the 

single predictor. The results from     are displayed in Table 7.7. For the single component 

model the coefficients early in the lifecourse are small (with        negative) with a 

fluctuation in magnitude at        . The change in   
  is greatest up to the 3 component 

model. Beyond this, the incremental change is small. For the 3 component model, there 

was no significant association between     ,       ,        and    . Following this, the 
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predictors                   and       had an increasing significant positive 

association with    . The addition of more components only produced small changes on 

the coefficient estimates, but the width of the confidence intervals increased with some 

changes of sign on the coefficients. There is a great variability in the estimates from the 

    plots, indicating that discarding components carries a greater risk of discarding 

important information. The results of the     analysis are displayed in Table 7.8. In the 

single component model the results follow a similar pattern to     with 3 components 

retained. The coefficients in the early lifecourse (i.e.     ,        and       ) have no 

significant association, whilst those later in the lifecourse (i.e.       ,        ,          

and      ) demonstrate a positive association. Moving to the 2 and 3 component models 

       becomes non-significant. However, it is noticeable that increasing the number of 

components does little to effect the pattern of the coefficients. The variation is explained 

predominantly in the first two components and there is no association between the early 

measurements (i.e.     ,        and       ) and    , whilst the effects of growth 

generally increase with age up to      . Including multiple measurements of the 

lifecourse will increase the information, however it also increases collinearity and so     

becomes a very useful tool to reduce the dimensionality of the data further than the 

necessary degrees of freedom. Employing     can extract signal whilst discarding noise in 

the data, although this is directly related to the ‘quality’ of the data.   

 A final word of caution must be made with regard to the original discussion of the 

problem. In many ways the problem has been simplified in that each of the predictors are 

assumed to have a unique and independent contribution and are interpreted as such. 

However, this contradicts our conceptual understanding of the problem and thus 

promotes a simple application of methods such as     and     for such application. The 

path model in Figure 7.1 would define current weight as a mediator of      to   . 

Therefore, if such a causal model is adopted the results must be carefully analysed. 

Following the discussion in section 3.2, the three coefficients from the causal model would 

not be interpreted. The total effect of      on     (i.e. unadjusted) may be interpreted or 

     considered as a confounder of      . This analysis has broken away from the causal 

model that was used to define the problem, however as always the conceptual 

understanding of the problem must underpin the statistical analysis. The analysis could be 

extended to methods such as partial least squares path modelling (   -  ) to incorporate 

these causal ideas, however this is beyond the scope of the current work.  



Chapter 7 Identifying the Critical Phase of Growth in the Lifecourse 217 

 

 

7.9 Discussion 

The constraint in     and     is not being imposed on the solution and so would seem to 

provide the most simple interpretation for a solution. The relationship is directly 

maintained for all of the coefficients in the unstandardized model. It is also true if the 

differential weighting is applied as standardized predictors (as defined in eqn(7.30)). 

However, it remains that any constraint that has been imposed on the estimation must 

reflect that of the population model exactly to obtain unbiased estimates (Kupper et al. 

1983). Even with knowledge of the population this is an unachievable aim. Methods such 

as the lifecourse plot will typically constrain      or       to zero. Such a solution could 

only be fully justified if it was reflective of the population constraint. Any deviation from 

this “truth” will generate a bias on the estimation. 

 Shrinkage methods will input some bias into the estimation when     

components are retained (unless the constraint employed is correct), however this seems 

less of a problem when unbiased estimates are seemingly unachievable. A     or     with 

maximal components retained (i.e.       for the lifecourse example), will produce 

the same estimation, as no information is discarded in the process. However, ‘solving’ the 

identification problem in this manner does not avoid the remaining collinearity. The design 

matrix is still likely to be near singular. When an increasing number of predictors are 

entered into the model, such as in the extension task, the degree of collinearity will 

increase. This is only natural as neighbouring     measures are broken down into finer 

and finer measurements. We are then likely to experience common ‘symptoms’ of 

collinearity such as a changes of sign, inflated variance or magnitude of the parameter 

estimates. Therefore, shrinkage methods such as     and     provide a useful extension 

to the   -inverse and related linear restrictions in that fewer components can be retained 

to further reduce the dimensionality of the data, but the ‘natural’ constraint maintained.  

 It must be decided how many components to retain. In the 3 predictor example 

this decision was justified using the high variance explained in the single component 

model. With the goal of maximizing variation in the components, the decision in     is 

generally defined based on measures such as eigenvalues. This may involve scree plots, 

parallel analysis or some arbitrary rule of thumb such as Kaiser’s criterion (as discussed for 

    in section 6.4.1).     looks to maximize covariance. Using measures based on 

explained variance (such as   
 ) would seem a natural extension. A range of methods have 

been developed for this purpose. One such measure is labelled the “predictive residual 



Chapter 7 Identifying the Critical Phase of Growth in the Lifecourse 218 

 

error sums of squares” (or      ) (Allen 1974). This is found by splitting the data into 

groups. A model is formulated on one group and tested on the other.       seeks the 

differences between the predicted and observed values. When the       statistic is low, 

the model has a ‘high internal consistency’. The       statistic calculates residuals for 

each data sample and so effectively represents a cross-validated    . This value is used in 

place of     to calculate a cross-validated   
 . Whilst this statistic is based on the 

predictive capability of the model, this does not necessarily demonstrate the usefulness of 

the coefficients for interpretation purposes.  

 It would be beneficial if an optimal number of components to retain could be 

decided based on something other than a predictive guide. For instance, changes of sign 

on the estimates are a common feature of collinear data. It is well known that the full 

component model gives the same result as the     estimate. As the number of 

components retained is reduced, a single component solution in the direction of a simple 

regression would be reached (see Figure 5.2). This may be used as a guide based on the 

number of sign changes away from simple regressions. Whilst this would seem a rather 

rough guide (with the potential for much criticism), it would depart from relying on a 

predictive index. Comparing a vector in the direction of simple regression to an     result 

was also the basis for our  -index developed in chapter 5. With some adaptation the index 

could be used as an aid for    . The vectors could represent     solutions from differing 

numbers of components and the angles of projection adjusted for each additional 

component. This index could allow a judgement to be formed on the balance between 

explained variance and the impact of collinearity between components. 

 This chapter has focussed on the statistical aspects of     and     to illustrate the 

constraints that are made by the methods and the computation of the coefficients. 

However, variations of these approaches could be employed such as partial least squares 

path modelling (   -  ) to incorporate the path modelling ideas (see section 3.2.1). 

Alternative approaches can also be identified that would be analogous to current methods 

in the lifecourse literature. Employing     on the original lifecourse variables (i.e. not     

change) would be similar to the lifecourse plot that utilized     estimates. Similar to the 

original approach the user would then look for steep changes in the estimates (considering 

different numbers of components) to demonstrate a critical period in the lifecourse. Raw 

predictors could also be included in addition to change. The implementation of this 

method would be dictated by the available degrees of freedom deciding how many 

components could be retained.  
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7.10 Conclusions 

The identification problem of perfectly collinear covariates is not one that is just limited to 

lifecourse epidemiology. There are numerous examples in the social sciences, economics, 

bioinformatics etc. The theme to this problem is that there is no single solution to the ill-

defined matrix, instead there are infinitely many (as demonstrated by the g-inverses) 

which demonstrate an equal model fit. In studies such as the Cebu example, the researcher 

is effectively seeking a distortion of an unattainable ‘truth’. As such, numerous proposals 

for computation of the coefficients have been suggested, but many appear to have little 

interpretational benefit. Whilst it appears unrealistic to search for a single ‘solution’ to the 

perfect collinearity problem (which would be impossible to prove) the researcher should 

look to find one that is interpretable and justifiable for the problem. 

This chapter has considered why an additional constraint is required for a ‘direct’ 

solution in the lifecourse model and the options available to the researcher in 

implementing a linear restriction. The restriction that would appear most suitable (without 

incorporating external information) is that maintained by the     -inverse. This is because 

the corresponding constraint (i.e. 1, 1, -1) is an intrinsic condition of the lifecourse data 

(i.e.      +         –       = 0). This particular inverse is equivalent to the     

shrinkage regression method. General theory on the     estimator can also identify a 

fundamental limitation of applying this methodology. The components attempt to 

maximize only the variance amongst the predictors and thus ignore the association of the 

response with the predictors.  

 An extension to the     approach can be found in the use of    .     is focussed 

on maximizing the covariance between   and   and as such estimates are obtained on 

rotated axes to achieve this feature. Whilst a discussion such as this highlights justifiable 

criteria for selecting a methodology, one researcher may argue that simply dropping the 

covariate with the smallest regression coefficient is as good as any approach. Due to the 

nature of the problem     can be promoted as the most justifiable approach, but it would 

be incorrect to argue it as the ‘best’ based on providing the most accurate estimation. 

Chapter 8 considers a small selection of methods in the age-period-cohort literature to 

bypass the singularity problem. There are also additional difficulties when studying the 

critical phase of growth that have been ignored in this chapter to simplify the 

mathematical problem (e.g. measurement error, sampling variation, non-linear terms). The 

effects of these factors are also considered. 
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8. Perfect Collinearity in the Age-Period-Cohort 

Model 

A second example of perfectly collinear covariates occurs in the analysis of age-period-

cohort (   ) data. The     model studies the effects of three temporal covariates – age, 

period and cohort – on disease incidence and mortality rates of various health outcomes. 

These rates are usually presented in the form of a two way table of age versus period. Birth 

cohorts would be identified on the diagonals of the table. These variables once again 

present a perfect collinearity, such that Age + Period = Cohort. In the     analysis the 

problem is changed to consider the data as interval variables. In this case there is more 

than one example of perfect collinearity. The categories of age, period and cohort will 

present an exact dependency within each group in the dummy coding (as regularly seen in 

categorical regression), whilst there will be an overall perfect dependency across the 

categories (analogous to the continuous lifecourse problem).  

Early approaches to the     problem focussed on graphical techniques. Whilst 

these methods provide a direct description of the data, they are limited in studying 

individual effects. The work followed to regression analysis to provide quantitative 

estimates of the effects. The methods proposed in the literature generally focus on 

bypassing the identification problem (see section 7.4) by imposing constraints on the 

coefficients or by considering ‘estimable’ effects. In the former, the interpretation of the 

results must reflect the constraints imposed. In contrast, whilst linear effects are perfectly 

collinear, the deviations from linearity are not reliant on the choice of constraint. Chapter 

8 provides a brief review of the development of influential methods in the     literature 

and considers some of the more recent proposals to alleviating the identification problem. 

The novel application of latent variable methods such as    ,     and the intrinsic 

estimator (  ) are considered using a recent     dataset. The work looks to identify the 

constraints imposed on the     solution and the rationale for choosing one over another. 

The discussion is intended to identify a place for these methods in the     literature.    
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8.1 Definition of the Variables and APC Data 

    analysis in epidemiology is used to model and forecast trends of disease incidence and 

mortality rates.  The model attributes risk to three influences; (1) an age effect, (2) a period 

effect and (3) a generational (or cohort) effect. Each of these variables have historically 

been considered important by epidemiologists (Holford 1992;Mortimer and Shanahan 

2006). In particular, the influence of birth cohorts has long been cited as an important 

determinant of later life disease (Fienberg and Mason 1982;Frost 1939;Kermack et al. 

1934).     analyses have been used in a wide range of fields such as demography, 

sociology and economics. Epidemiologists will look to improve understanding of the 

aetiology of a health outcome and to identify important cohort effects that lead to a long 

lasting impact on disease risk. The definition of a cohort effect rests on the definitions of 

period and age effects. An age effect reflects a particular age (or stage in the lifecourse) in 

which physiological change or accumulation of exposure to some risk factor or social 

influence are directly associated with the process of aging (Keyes et al. 2010). A period 

effect represents a change in the incidence rate that may be the result of an 

environmental, medical or technological change impacting on subjects of all ages. A cohort 

effect is present when the incidence rate of a health outcome changes due to subjects 

exposed to new or changing risk factors in different time periods affecting various age 

groups differently. In epidemiology a cohort effect is often viewed as a type of restricted 

age by period interaction (Kupper et al. 1983). 

    data is usually presented in the form of a two-way table of rates (   =   /   , 

where     is the observed response at age   and period   (i.e. cases) and     is the total 

number of subjects at risk within this time (i.e. person years)). This table is labelled a ‘Lexis 

diagram’, with age groups forming the rows and period groups the columns of the table, 

 
  Period Interval   

                       

                         

                           

Age Interval                           

                          

                          

 

Table 8.1: An example lexis diagram. 

Cohort 8 

Cohort 6 

Cohort 5 
Cohort 1 
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The rates of the chosen response (   ) are displayed in the cells of the table. There are a 

total of          age groups,         periods of time and therefore             

birth cohort groups. The cohort groups (shown in red) are found diagonally in the table, 

with the oldest cohort in the bottom left and the youngest in the top right. The data 

obtained for     studies are often vital statistics which are readily available and easily 

digested, but limited in detail. The variables listed may be assumed to represent latent 

constructs. For instance, the definition of age is a generalisation of what is actually 

observed. Individuals will typically age both physiologically and socially at different rates 

(Hobcraft et al. 1982). Also, a variable such as socio-economic status (   ) would appear to 

be a strong candidate for adjustment in such a model. A technological advancement or 

change in health care may be developed in a particular period of observation; however 

such an improvement may not be readily available to the less wealthy or those living in 

poorer areas. This could not be attributed directly to a period or cohort effect. The 

observable measure that is utilized for period and cohort are similarly likely to be poor 

representations of the latent constructs that they are assumed to represent. 

By the nature of the intervals selected, the cohort groups often overlap. For 

instance, if     represents the interval 25-29 and     the period 1985-1989, then the 

birth cohort group attributed to this cell will contain subjects born 1956-1964. Assuming 

equal interval widths, the following cohort with age 25-29 during the period 1990-1984, 

will contain subjects born 1961-1969. Therefore, a subject can move between 

neighbouring cohorts as they age (i.e. they are not uniquely assigned to one cohort). When 

date of births are known, it would be possible to incorporate a finer grid to produce a 

uniquely defined cohort group such that this ambiguity is lost (this is described further in 

section 8.5.3). It is also common for the cohorts in the extremes of the table to contain 

very few observations in relation to the intermediate cohorts (Kupper et al. 1985b).  

 It is noticeable from the lexis diagram that the groups are not balanced. The 

number of age and period groups may be specified to be equal, however cohort would 

naturally be unbalanced (i.e.       cohorts for   age and   period). This feature of the 

data can be of importance to the analysis and is one that may easily be understated or 

hidden in the results of a statistical analysis (see section 8.6.2). Also, the predictors are of 

interval categorical form, whilst they represent continuous time effects. Therefore, it may 

be argued that “cross-time” effects are hidden when considering a coarser grid of data. 

This will play an important role when discussing various solutions and tabulation on the 

potential impact of collinearity on estimates computed.  
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8.2 Example Application 

The dataset considered in this chapter is a recent example published by Dahlquist et al. 

(2011). The study considers onset of type-1 diabetes in Sweden between 1983 and 2007.  

 
 

 1985 1990 1995 2000 2005 

2 17.6 (217) 16.7 (241) 22.8 (335) 27.4 (328) 28.1 (360) 

17.2 (201) 14.9 (204) 22.4 (313) 24.3 (276) 25.0 (303) 

7 28.1 (352) 28.6 (361) 31.2 (462) 39.8 (590) 46.4 (570) 

 28.8 (343) 27.6 (331) 35.9 (504) 40.0 (564) 53.3 (621) 

12 32.0 (448) 37.1 (473) 38.7 (502) 42.3 (635) 59.2 (894) 

 33.1 (442) 31.0 (376) 33.9 (417) 38.5 (547) 46.6 (670) 

17 20.2 (301) 20.0 (285) 17.1 (223) 22.2 (293) 20.4 (312) 

 12.4 (176) 12.3 (166) 11.9 (148) 11.9 (149) 12.4 (180) 

22 18.2 (273) 15.1 (232) 15.7 (229) 18.3 (243) 17.4 (238) 

 9.2 (132) 11.1 (163) 9.6 (135) 11.3 (144) 9.8 (128) 

27 16.2 (232) 18.0 (283) 14.4 (229) 15.8 (235) 14.6 (204) 

 9.8 (135) 7.9 (118) 8.2 (125) 8.6 (124) 6.2 (83) 

32 15.0 (224) 13.9 (206) 12.9 (208) 11.5 (185) 10.6 (164) 

 6.9 (99) 6.7 (94) 6.1 (93) 6.3 (97) 5.4 (81) 

Table 8.2: Cumulative incidence at 35 years in Sweden during 1983-2007, with absolute 

numbers of cases in brackets for males (standard font) and females (bold font). 

The incidence rate of childhood onset type-1 diabetes has been reported to be increasing 

worldwide, although the reasons for this trend are not well known (Pitkaniemi et al. 2004). 

Scandinavian countries, such as Sweden and Finland, have reported the highest increases 

over the past 20 years (Dahlquist and Mustonen 2000). Type-1 diabetes is a disease that 

destroys insulin producing beta-cells of the pancreas. This produces a shortage of insulin 

which generates an increased blood and urinary glucose. A decreasing trend has been 

identified for young adults (>15 years), which suggests a shift in risk towards younger age 

groups. The nationwide study by Dahlquist considered 20,249 subjects followed from birth 

to 34 years. There are 7 categories for age at diagnosis and 5 categories for period at 

diagnosis, generating a total of 11 birth cohort groups (i.e. 7 + 5 – 1 = 11). Each age and 

period category represents a mid-point measure from an interval width of 5 years. Cohort 

groups (i.e. diagonals of the table) follow a particular generation of subjects sharing similar 

birth years. The data spans a time period of 25 years and a wide demographic area and as 

such could reflect a number of potentially important period and cohort influences.   
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8.3 Graphical Analysis 

Analysis of     data in the early 20th century began with the use of descriptive graphical 

tools to understand the trends of the data. A    surface and contour plot of the Dahlquist 

data in Table 8.2 is constructed in Figure 8.1. 

 

 

 
 

 

 

  

Figure 8.1: Diagnosis rates of males as (a) a response surface and (b) contour plot. 

Due to the nature of the    plot (and     data in general), the user is limited to 

controlling only two of the three variables. Generally, these plots have considered age and 

one of cohort or period in clinical examples. One of the reasons is that the physiological 

change is based in biology, which presents a more solid base for making forecasts than 

variables that are generally sociological concepts such as cohort and period (Fienberg and 

Mason 1982). The plots in Figure 8.1 consider age and period; this means that cohort 

effects are allowed to vary across the surface. Whilst    plots give an overview of the 

overall trends in the data, it is difficult to identify subtle changes (Holford 1992).  

 a) Male Sample 

( )  Female Sample  
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The limitations of the    surface plot can be bypassed to some extent by 

projecting the rates onto a    surface, such as a contour (or level) plot (see Figure 8.1 ). 

The cohort groups are illustrated by the grey dashed diagonal lines. For both groups the 

contour lines are generally parallel with the  -axis and so it can be observed that age-

specific risk is not changing rapidly over time. For the male sample, the incidence rate has 

peaked at around age 14 (which appears consistent across periods). The female incidence 

rate is initially similar to the males, however in later periods the rates peak at an earlier 

age (approximately 9 years). A general decrease is observed for both groups as the 

subjects enter early adulthood.  

 

 

 

 

  

Figure 8.2: Age specific plots stratified by period and cohort. 

 a) Male Sample 

( )  Female Sample  
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From the contour plots there does not appear to be a strong cohort influence with 

the contours generally cutting through the cohort groups. However, the scaling of the 

groups in these plots makes direct observation difficult. As it is a disease rate that is being 

described in this example, age is likely to play a key factor and so most clinical studies will 

report age-specific plots (see Figure 8.2). Splitting by period gives ‘cross–sectional’ age-

specific rates, whilst by cohort gives ‘longitudinal’ age-specific rates (Carstensen 2007). A 

general pattern observed in early graphical     analysis was that mortality rate at a 

younger age would demonstrate a fall at an earlier cohort than those at a later age. This 

could suggest a potential cohort effect early in the lifecourse such that the impact is only 

realised when the birth cohort reaches its later years (e.g.     ,      ). Kermack (1934) 

suggested that in some cases mortality rate of the child is dependent on the health of the 

mother, again suggesting a potential generational effect (Smith and Kuh 2001). If stratified 

cohort groups follow a parallel trend then it would suggest that neither hypothesis is likely. 

This has led some to suggest that non-parallelism of the lines in contour and age-specific 

plots demonstrates the potential for an interaction effect (Kupper et al. 1985b). 

The plots illustrated in Figure 8.2 demonstrate a greater variation when stratified by 

period although it is not clear which variable is producing the greater effect. If the plots 

were overlapped, the cohort curves would cut through period curves. For both sexes, a 

general trend is observed as an increase in incidence up until early teenage years before a 

rapid decline to age 16 years followed by a very gradual reduction beyond this point. For 

males it appears that the trajectories for the early cohorts follow a similar pattern, 

although for the more recent 1993 and 1996 birth cohorts the rates look to be increasing 

greatly. This is also illustrated in stratification by period, with the more recent periods 2000 

and 2005 demonstrating an inflated maximum at around age 12. In comparison, this 

inflation is occurring at an earlier stage in the female subjects. There is a change to an 

earlier maxima of age 7 (or the interval this mid-point represents) for periods 1995 and 

later. Dahlquist (2011) reported “a cohort effect dominating over a period effect” in this 

data and “a shift to a younger age (in incidence rate)”. From the graphical information it 

would seem difficult to justify the first claim, although it certainly does not disprove it 

either. It would seem that trajectories are relatively constant until more recent cohorts 

which demonstrate an inflated incidence rate. For females, there appears to be a shift in 

maxima to an earlier age group when stratified by period. From the descriptive analysis it 

appears that caution must still be placed on the claims made in the original paper. An 

analytical assessment of the data is needed to strengthen these observations.   
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8.4 Regression Analysis 

Early examples of     analysis would typically look at a two predictor model (usually age 

and birth cohort), with age-specific plots sufficing from a descriptive perspective. The 

graphical analysis could then be extended to a quantitative assessment of the effects using 

full rank regression methods to obtain statistical estimates free from any model 

identification problems. In the early 1980’s researchers began to place an increased 

emphasis on quantifying the additive effects of age, period and cohort predictors (Holford 

2005). From a statistical perspective it may appear to be a nonsensical task to include the 

predictors as separate additive effects. However, from a conceptual viewpoint it may be 

argued that individuals born at the same time and experiencing some common aging 

effect, not only respond to period effects, but also to an additional impact of birth cohort.  

Keyes (2010) presents one definition sourced from a “predominantly sociological” 

viewpoint regarding the role and potential importance of the birth cohort. A focus is 

placed on birth cohort as the main exposure for explaining patterns in mortality rate and 

disease incidence. They would hypothesize that it is a reflection of the cohort to which you 

are born into, such as the “conditions, barriers and resources”, that determines trend and 

incidence of health outcomes in later life. The research question becomes focussed on 

determining the risks associated with belonging to a particular birth cohort. What are seen 

as short term effects brought about by physiological processes of aging and variation of 

environmental factors are considered to be masking a generalized effect of birth cohort. 

Therefore, age and period are seen as confounding effects of this main effect.  

 
 

Age         Period 

 

          Cohort  Mortality 

 

Figure 8.3: Path diagram of the sociological interpretation. 

This definition would seem to suggest only interpreting the cohort effect when each of the 

predictors are entered as additive effects (see section 3.2.1) – similar to the lifecourse 

example. Definitions such as the epidemiological and sociological presented here are vital 

to the analysis of     data to understand what the research question is asking and the 

potential to achieve generalizable results (Fienberg and Mason 1982).  
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 Another interpretation of the     data provided by Fienberg and Mason (1982) is 

that birth cohort carries a general group effect that impacts on the individuals in the study 

(i.e. the cohort effect being multi-level in nature). However, due to the aggregate forms of 

the data, verification of such concepts is rarely achievable. Fienberg provides the example 

of a hypothesis suggesting that cohort size is an important factor at the macro level 

impacting on factors such as crime, employment and divorce rates at an individual level. 

However, to test such a theory would require these rates at a micro level and not simply 

aggregated data. The research question must depend on what is achievable with the data 

provided. Any statements made from the analysis (suggesting macro and micro effects) 

rest on the definitions of the (potentially latent) variables entered.     is by definition, a 

broad, wide-ranging concept so the ultimate goal of the analysis, with the grouped data 

provided, should perhaps in turn remain fairly broad.  

 A regression model can be considered with the effects of age and period included 

along with an interaction between the variables, 

 

                                   (7.37) 

 
In eqn(7.37),    denotes the intercept,     the   fixed effects for age,     the   fixed 

effects for period and      the    fixed effects specific to age   and period  . There are a 

total of    available degrees of freedom (  ) for the model. There is 1    required to 

estimate   ,          to estimate    ,          to estimate     and            to 

estimate    . This equates to a total of            model parameters required with 

only       available, leaving the model non-identifiable. The “zero-sum” constraints often 

used for       may be applied such that, 

 

    

 

   

     

 

   

   (7.38) 

 

    

 

   

                

    

 

   

                

(7.39) 

 
(Kupper et al. 1983) 
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Applying these constraints means that only       age and       period effects need 

estimating, reducing the necessary    both by 1, whilst the number of interaction effects 

requiring estimation are reduced by         leaving            to be estimated. For 

any constraint applied, any one of age, period or an interaction effect is naturally defined 

as the negative sum of the rest in that category (e.g.          
   
   ) – i.e. effects 

coding. For dummy coding, the mean may be subtracted from each of the categories and 

the estimated effects interpreted as a deviation from the category mean to which it 

belongs (i.e. analogous to estimates of continuous predictors after centering). This 

maintains the natural structure of the data, creating no distortion (Kupper et al. 1985b). 

However, whilst this negates perfect collinearity within the categories for main and 

interaction effects, all of the    available to the model are used estimating main and 

interaction effects, resulting in a saturated model (i.e. no    available to estimate random 

error    , giving an automatic   
   ). A further constraint would be necessary to release 

another degree of freedom. 

    models are often formulated to assume that cohort can stand alone as an 

additive effect separate of age and period (Keyes et al. 2010). The commonly used     

multiple classification model (Mason and WINSBORO.HH 1973) is a three factor      -

type model used to identify unique effects of the three predictors, 

 

                                                  (7.40) 

 

Whilst still assuming constant effects for age (for each  ) and period (for each  ) as before, 

sets of interaction effects are now assumed to be constant relating to specific cohort 

groups (i.e. the cohort  ). The zero sum constraints can once again be applied as 

demonstrated in eqn(7.38), whilst eqn(7.39) would now be replaced by the following, 

 

    

     

   

   (7.41) 

 

This is only one constraint for the interactions, which means that the number of cohort 

groups to be estimated is reduced by 1 to leave a total of      . Similar to the previous 

definition for the constraints on the additive effects of age and period, this has allowed for 

one of the effects to be defined as the negative sum of the first       cohort effects in 

the effects coding (i.e.               
     
   ).   
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A further constraint is still required to obtain unique estimates. This is shown in 

Kupper (1983;1985b) by collapsing the categories by component using orthogonal 

polynomials to assess the linear effects, 

 

    
   

 
         

   

 
    

   

   

 

   

   

        
   

 
    

     

   

   (7.42) 

 
Similarities can be observed with the lifecourse model examined in chapter 7. It is clear 

that the design matrix is not full rank, even after zero sum constraints have been applied. 

Kupper et al. (1985b) also highlights that these polynomials represent the linear 

component of the categories in the model, hence it is only the “slope” estimates that are 

perfectly collinear. This provides the motivation for some to study “estimable functions”. 

Some effects or combinations of effects can be labelled “estimable”, which means that 

they are invariant to the constraint applied (Holford 1992;Holford 2005;Rodgers 1982) – 

see section 8.5.1.   

For the multiple classification model in eqn(7.40),     represents some linear 

function of the incidence rate. Count data from a contingency table are often modelled 

using a generalized linear model (   ) with poisson error and a log link. This type of 

model has been widely used in fields such as demography and epidemiology (Yang et al. 

2008). They could similarly be modelled by other count models such as the negative 

binomial or the zero inflated poisson if the application suggests these to be preferable (i.e. 

the response is over dispersed or contains a large number of zeros respectively – e.g. 

modelling cases for a rare disease). By taking the anti-log of the coefficients, relative risk 

type effects are produced for age/period/cohort. It is necessary to enter the logged 

‘person years’ (i.e. the quantity in parentheses in Table 8.2) as an ‘offset’ term. The poisson 

likelihood is based on the cases    , but it is the rates     that the researcher wishes to 

model, therefore these rates are adjusted as follows in the poisson model.  

 

             
   

   
                     (7.43) 

 
The logged person years     is entered as an offset term on the right hand side of the 

model with the coefficient set to equal unity. The probability model assumed (poisson or 

otherwise) takes on a particular importance as it will impact on any interaction effect 

observed both in graphical and analytical work (Holford 1985).   
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8.4.1 Geometry of the Solutions 

A discussion of the vector space geometry for perfect collinearity was presented in section 

7.6.2. A null vector           was highlighted which defined the plane    in which the first 

two eigenvectors must lie for     (i.e. that capture all the variance in  ) (see Figure 7.5). 

The plane is fixed along with the null vector by the     (or lifecourse) intrinsic 

relationship, whilst the first two eigenvectors can vary within this plane. The null also 

defines that the normalized third eigenvector is            . O’Brien (2011) produces a 

similar illustration of the perfect collinearity problem and the solutions produced by 

various g-inverses. In this paper he uses a 3-dimensional parameter space spanned by the 

coefficient solutions to demonstrate the ideas. 

 

Figure 8.4: Solution space geometry for the Cebu lifecourse example. 

The vector geometry in Figure 8.4 shows the three solutions that were attained for the 

Metro Cebu data using the three linear constraints from section 7.6.1. The     -inverse 

constraint is in the direction orthogonal to the null vector (shown by the orthogonal 

solution plane). This dictates that the dot product of the solution and the null (i.e. the blue 

vector) will always equal zero (as noted for the     solutions). The two remaining 

solutions, representing the constraints      and      , form part of a common “line 

of solutions” with direction parallel to the null vector. This line of solutions represents least 

squares estimates from various  -inverses. 
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 The null vector is a combination of values such that when multiplied by the 

columns of   results in a column vector of zeros (O'Brien 2011). In the lifecourse example, 

this combination is indicated by the third eigenvector which captures zero variance in   (or 

more generally the final eigenvector under a single perfect dependency). Consider the 

normal equations in eqn(7.13), it is clear that the null vector in this case is      -   (or 

some scalar multiplication of this vector – e.g.               ). The existence of this 

single null vector demonstrates that the design matrix is only one fewer than full rank (i.e. 

the kernel space). Each of the solutions formed from generalized inverses are least squares 

estimates in that all minimize     under the constraint assumed. Thus the estimated 

coefficients produce the same model fit and are unbiased (under the constraint applied). 

From linear algebra the difference between any of these estimators lies in the null space 

(hence the estimators all falling on the same line of solutions). Therefore, model fit will not 

determine the appropriateness of the constraint.  

The population (or generating) set of parameters must lie at some point along this 

line of solutions, but assumptions must be made on the estimation. Following the 

definition of Mazumdar (1980), the constraint   must be orthogonal to the vector of 

coefficients to produce unbiased estimates (     ). This property is naturally translated 

to the geometry.  

 

 

Figure 8.5: Solutions planes for the linear constraints used in the Cebu example. 
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In Figure 8.5 the equal constraint vector (0, 1, -1) (shown in pink) and the zero constraint 

vector (0, 0, 1) (shown in yellow) have been projected to demonstrate the orthogonality of 

the solution plane with the null vector. The planes that are shown orthogonal to the 

constraints are labelled “solution planes”. In this sense, the     solution is no more 

guaranteed to be reflective of the population parameter than any other g-inverse. If the 

constraint does not perfectly reflect the population parameters, the resulting estimates 

will be biased. Importantly, it is noticeable from the geometry that the bias introduced to 

each parameter follows the equation of the null vector (by parallelism of the lines). Moving 

from one constrained estimate to the next is simply a movement along this line of 

solutions. For instance, consider that    is zero in the generating model, then the g-inverse 

that relates to the linear constraint (0, 0, 1) is an unbiased estimator. In contrast, the 

estimate from the     -inverse is then biased. However, the bias is only in a single 

dimension (along this line of solutions) and so there is only one indeterminate parameter 

(labelled  ) that produces the bias in the estimates, 

 

         

 

          

 

          

For example, the true population parameters would be (1.09, 1.35, 0). A transformation by 

-0.81 (1, 1, -1) would provide the   -inverse solution. The quantity 0.81 represents a type 

of bias in this sense, although the scaling is dependent on the length of the null vector 

(which can be any scalar multiple). These relationships show that if the population 

parameter of any one of age, period or cohort is known, then the analyst would 

automatically know the remaining two. It is also possible to consider linear combinations 

of the estimates. For instance summing    and    would remove the indeterminate 

parameter from the estimation and the resultant estimates         would be unbiased of 

the generating parameters (that are similarly summed). 

 This simple geometrical discussion provides the basis for many of the ‘solutions’ 

proposed in the     literature and helps to guide the understanding of the     problem. 

It is a conceptually appealing idea (if only for understanding the problem rather than 

solving it) that any solution from a generalized inverse can be found on a single line of 

solutions that is orthogonal to the plane that contains all of the data points. The 

movement from one constraint estimation to the other is given by a single scalar value and 

the null vector. To determine the bias from generating parameters in application is 

impossible as the population values are unattainable, therefore the parameter   that 

would demonstrate the bias in the estimation remains undetermined.   
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8.4.2 The Impact of a Linear Constraint 

Constraints must be made on the estimation to obtain a unique set of linear estimates 

from the     model. This is an unavoidable feature of the analysis. These constraints will 

influence the magnitude of the parameter estimates and potentially the direction of the 

trends (Holford 2005). However, infinite least squares solutions (i.e. minimizing    )  still 

exist that produce the same fitted values (Weinkam and Sterling 1991). These are found 

along the line of solutions as illustrated in Figure 8.4. In the discussion of least squares 

estimation (see section 2.2.3) the ‘quality’ of an estimator was based on the ‘accuracy’ and 

‘precision’ of the estimation with an unbiased estimator optimizing the accuracy 

(i.e.    ). However, labelling an estimator unbiased defines that the constraint imposed 

perfectly reflects that of the population model. Due to the nature of the     data, such a 

constraint could never be proven. This has led many researchers to propose a “most 

appropriate solution”. However, whether this is based on some arbitrary constraint, 

defined by the data or based on prior assumptions, we simply cannot determine optimality 

in this sense (Kupper et al. 1985b). 

Most statistical software are programmed to ‘make up’ degrees of freedom (i.e. 

being 4    less than full rank) by automatically employing some generalized inverse. For 

example,   (i.e. using the lm function in the stats library) automatically removes variables 

determined by the order in which they are entered (i.e. the variable removed when a 

singularity is identified). In terms of the linear constraint imposed on the model, those 

predictors ‘dropped’ from the model are said to have zero effect in the population (e.g. 

                 )  (i.e. a one step solution). In contrast, authors such as 

Barrett (1973, 1978), Fienberg (1978) and Mason (1973, 1979) have set two effects from 

each category to be equal (e.g.         etc.), which can then be followed by a full rank 

regression to obtain unique estimates based on these constraints. Although not 

impossible, it would seem unlikely that these assumptions would be perfectly reflected in 

the population model. Whilst some researchers have encouraged external information to 

guide assumptions, the lack of any way to definitively check them can be uncomfortable. If 

automatic assumptions are made that deviate from those naturally defined in the data, the 

constraints appear more dangerous and cast doubt on the interpretation of the results. If 

there is an effect in the generating population, but it has been constrained to zero, then an 

indeterminate parameter ( ) will produce bias as part of the estimation. 
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 Following a study by Rodgers (1982), population parameters are set for an     

model and simulated estimates attained from various constraints for the following model.  

 

                                            (7.44) 

 

It is not an entirely comfortable procedure to set such generating parameters arbitrarily as 

demonstrated in eqn(7.44). As the underlying structure is never actually known for these 

processes, we simply do not know whether a specific combination of values lies at the 

heart of the problem. However, the purpose of these simulations is to explore the 

statistical impact of different constraints, therefore this approach would seem acceptable 

for this purpose. Three sets of constraints are applied. The first constrains    ,     and 

    to equal zero (i.e. reflective of the population model and the constraints explored in 

the original study). The second implements the zero sum constraints (eqn(7.38) and 

eqn(7.41)) and the final constrains    ,     and     to zero (a structure not reflected by 

the generating parameters).  

 For the first simulation (identical to Rodgers example)    ,     and     are set to 

zero. This is reflected in the population model and thus adds zero bias to the estimation.  

   

Figure 8.6: Point estimates from simulation with constraint              . 

A further constraint is applied (as required to produce a non-singular design matrix) which 

sets       (shown in blue) and         (shown in red). Neither of these constraints 

are reflective of the population model, therefore a bias is introduced into the estimation. 

The predictors constrained to equal zero form the pivot point of the estimation and bias is 

introduced in the form of a rotation about these zero coefficients. The further the 

constraint from the population model parameters, the greater the bias. Notice that no 

distortion is introduced into the estimation (i.e. the shape of the curve is consistent in each 

category). Also, there is an equal bias (i.e. rotation) added to age, period and cohort. This is 

a clockwise rotation for age/cohort and anti-clockwise for period.  
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Figure 8.7: Point estimates with constraints - (a)     
 
        

 
        

     
      

and (b)              . 

In the second simulation (see Figure 8.7a) zero sum constraints are implemented on the 

design matrix. No information regarding the population model is assumed. The estimates 

represent a deviation from the category mean (i.e. rotate about a common origin). The 

additional constraints applied are consistent with the first simulation, and therefore a bias 

is introduced, once again demonstrated as a rotation about the pivot. No distortion is 

introduced and the additional bias is consistent across age, period and cohort curves in the 

same clockwise/anti-clockwise pattern, as in the first. A final simulation is illustrated with 

    now constrained to zero in place of     (see Figure 8.7 ). The original constraints are 

not reflective of the population parameters. Again a bias is introduced by the additional 

constraints (i.e. the rotation). This demonstrates the importance of each of the constraints 

to reflect the unknown population model, which will limit the bias in the estimation. 

These simulations illustrate that no distortion to the model curves is introduced 

after applying any of the single identifying constraints. The degree of bias illustrated by the 

rotation from the true slope is equal for each category and conforms to the same 

relationship of a clockwise rotation for age and cohort with an anti-clockwise rotation for 

period. This is a result of maintaining the intrinsic relationship amongst the slope 

( ) 

( ) 
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coefficients as illustrated by Kupper (1983) (see eqn(7.42)) and shown by the 

indeterminate parameter  . These final two results are labelled ‘estimable’ as they are 

consistent when any g-inverse is used to obtain estimates. Whilst it is theoretically true 

that solutions cannot be eliminated with any certainty, a range of slopes can be identified 

for which it would be biologically implausible for the estimates to lie (e.g. a positive or 

negative slope). It would then be possible to define a range of values for   that fit our a 

priori assumptions of the relationships (Holford 2005). However, the correct rotation is not 

estimable and is akin to moving along the line of solutions.  

The article by Rodgers progresses to imposing “multiple constraints” on the 

covariates. Constraining any two coefficients equates to setting anchoring points for the 

estimation, but not introducing a distortion to the curves. Therefore, the model fit remains 

consistent. The motivation to impose more constraints is borne from the fact that it would 

force some distortion into the curves and vary the model fit. For instance, removing a 

variable entirely from the analysis would produce a constraint such that all of the 

categories for that factor are zero. However, the intrinsic relationship defining the data 

must still hold and so effects for the remaining two coefficients are adjusted accordingly. 

This is in contrast to the lifecourse example and the geometry in section 8.4.1 which only 

considered the three predictors and a single identifying constraint. When the lifecourse 

was extended to seven predictors,      and       (in separate models) were constrained 

to zero with parallel plots observed as only the anchor point is changed. Setting these 

single constraints changed the magnitude of the age-specific curves (i.e. the intercept), but 

not the slope. It was shown mathematically why this relationship exists in eqn(7.36). The 

problem with the multiple constraint strategy is that forcing a distortion into the curves 

and considering model fit will not validate the curve with the best fit to the data.  

In the final part of this section data is simulated following the approach of Rodgers 

(1982) to illustrate the potential impact of sampling variation. Data are generated from the 

model in eqn(7.44) but now with a zero cohort effect. An error from a normal distribution 

with mean=0 and variance=100 is added to the response to generate 100 cases for each 

age and period combination and averaged. 

 
          

   0.90 2.60 7.91 

   2.32 4.93 5.88 

   5.11 9.07 9.20 
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Figure 8.8: The impact of sampling error when the correct constraint is employed. 

From a conceptual view, equating two single year cohorts would seem more biologically 

justifiable than equating wider cohorts (i.e. a lesser change would be expected). Similar to 

the discussion of the lifecourse example in chapter 7, when the continuous time variable 

were split into finer measurements, the collinearity amongst these categories naturally 

increased. Therefore, any deviation from the population generating model, either from a 

constraint not reflected perfectly in the generating model or from sampling variation, will 

become much inflated in the parameter estimates. Rodgers (1982) states that this 

difference is multiplied by a factor inversely proportional to the width of the cohort 

groups. Sampling error becomes a further important consideration in the     analysis. 

Rodgers (1982) suggests that it is not only the researcher without strong a priori 

assumptions that faces problems, but also those who do. No matter how strong the 

assumption (from a theoretical basis), there is no certainty of its appropriateness as there 

is no definitive way of checking. It is also very easy to underestimate the significance of the 

constraint applied as they may appear to have clear and understandable definitions. For 

instance, setting two constraints equal in each category may appear justified after looking 

at descriptive plots or the resultant fit of the data, however a seemingly simple constraint 

such as this may have substantial effects on the resultant analysis when it deviates from 

the population generating model. Even when the constraint reflects closely the population 

generating structure, sampling and measurement error can introduce a much inflated 

distortion into the estimates that has a potentially high impact on the interpretation of the 

coefficients. It must be noted that whilst the simulation approach employed by Rodgers is 

certainly of interest as a statistical exercise, there is a more fundamental issue to address 

with this approach. From an     perspective, we must consider whether the population 

generating model and in particular the interpretation of the coefficients actually makes 

sense conceptually. This interesting question will be discussed in section 8.6.   
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8.5 Selected Solutions from the Literature 

8.5.1 Curvature & Drift 

Holford (1992) describes dependence on arbitrary constraints as a limitation of     

solutions and instead sought inferences from estimable functions. Approaches were 

suggested such as restricting the range of the slopes through the input of external 

knowledge and considering functions of estimates that are unbiased of the generating 

parameters. These methods rest on the indeterminate parameter  . Holford (1992) 

suggests that our knowledge of chronic diseases (speaking in a clinical context) is in general 

too basic to generate an accurate model of the population generating parameters. Whilst 

estimable functions cannot provide the coefficient estimates that we would ordinarily seek 

from the     multiple classification model, the inferences gained from those functions can 

be made with confidence, regardless of the constraint chosen.  

First order linear effects are not interpreted as they rely heavily on the constraints 

imposed on the model (i.e. an unknown rotation of the slope from an underlying model), 

however they are still sought from the data as “slopes”. Unlike the bias added to the 

estimation of linear effects, the estimability of non-linear functions is the reason that the 

curve is not distorted when a single identifying constraint is applied. Holford proposes a 

least squares solution partitioned into a simple linear regression to provide an “overall 

slope” or trend of the effects. The deviation away from this slope is then labelled the 

curvature (i.e. the residuals from the full constraint model and a simple regression model). 

 

                 

 
(7.45) 

Eqn(7.45) demonstrates how each regression coefficient is built from a category specific 

intercept term    , an overall slope estimate    and a curvature    . The curvature can be 

defined by using linear contrasts as demonstrated in eqn(7.42), 

 

           
   

 
    (7.46) 

 

Eqn(7.46) illustrates that the curvature is defined as the regression coefficient with the 

linear trend removed. The curvature is dependent on the method by which the slope is 

estimated, however it is invariant to the constraints applied. Thus, it is possible to identify 

whether there is an increasing/decreasing or concave/convex nature to the estimates.  
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To find unbiased estimates of population parameters would appear to be a 

desirable property in any analysis. However, there are critics of Holford’s curvature 

approach and how much it can actually provide as part of an     analysis. Kupper (1985a) 

discusses that it is the linear effects (i.e. the slope) which often contribute most to the 

variation and that it is these estimates that are hidden when only considering curvature in 

isolation. If a factor demonstrates a linear effect, the curvature would indicate no change, 

but it could nevertheless still be an important effect. It is instead the curvature relative to 

the linear trend that would be of most interpretational benefit. In this sense, whilst 

statistically the estimates are unbiased, the interpretation is still very much dependent on 

the (arbitrarily) chosen method for eliminating the linear trends.  

Clayton and Schiffers (1987a, 1987b) propose a ‘drift’ coefficient   that represents 

a quantity of variation that is common to both period and cohort (separable from age). The 

authors note that “no analysis of cancer epidemiology can ignore age”. The age variable is 

often favoured in a clinical context as it has a solid biological basis and is usually assumed 

to play an important role in the biological system or mechanism under study. This is very 

much the basis of the proposed method, with the age, age-period and age-cohort models 

of most interest. Consider that moving from an age only to an age-period model indicates a 

significant period effect. Similarly moving from an age only to an age-cohort model also 

demonstrates a significant cohort effect. The similarly high model fits would suggest that 

there is some variation that cannot be attributed uniquely to either period or cohort 

factors. This quantity is labelled the ‘drift’ component by the authors and is considered as a 

separate parameter entered alongside age.  

Curvature is unchanging under statistical constraints on the estimation, whilst the 

linear component is not. The indeterminate parameter   cannot be attributed to either 

period or cohort and so it is this that represents the ‘drift’, or instead the rotation in 

overall linear trend. For example, assume that the ‘true’ generating model is the age-

period model.  

                  (7.47) 

 
Next re-parameterize the model to be a function of age and cohort such that (as previously 

illustrated in eqn(7.2) for the lifecourse model) the true age slope is incorrect by cohort. 

 

                         

                    (7.48) 
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This enhancement by     can be replaced by a period ‘drift’ term    , the overall linear 

slope of    . It would represent an average change in the rates over time, which is 

identifiable, but cannot be partitioned to one of period or cohort. This could be a simple 

regression, as proposed by Holford, or a mean of successive differences, as suggested by 

Clayton & Schiffers (or indeed by any other appropriate estimate of trend). The latter 

approach cancels to the mean difference between the first and last groups. 

 

                                                        

                  (7.49) 

 
This process could similarly start with the age-cohort model as the true generating model 

and re-parameterise to an age-drift model with period included. The indeterminate 

parameter   would have an equal and opposite effect on the age coefficients in this case. 

 A ‘net drift’ is defined by a re-parameterisation of the full     model in a similar 

way. Once again, drift is defined by the non-estimable overall trend, 

 

                         (7.50) 

                            

                         (7.51) 

 
Net drift is defined by       (the same result is also achieved by replacing     with 

        in eqn(7.50)). The three variable model can be used to derive estimates from 

any two variable model, but not the reverse. These are sub-models of the full model 

(Osmond 1996). The approach is to test the models using deviance, or some variant of this 

measure such as the    /   , to assess the improvement in fit moving from the age only 

model to the full     multiple classification model. Age-period and age-cohort are not 

directly comparable by deviance alone (although    /    may be appropriate). The age-

cohort model has more parameters than the age-period model and so is likely to produce a 

better fit to the data. Also, model fit is invariant to the choice of constraint (as discussed 

for the simulations in section 8.4.2), therefore if one of the factors were to follow a linear 

pattern in the population, it may be seen to have zero effect (i.e. two categories within the 

factor are constrained to be equal) or a non-zero relationship dependent on the constraint 

employed. In either case model fit will be equal and moving from a two-factor model 

(assuming zero effect for the excluded variable) to the full model will produce a non-
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significant improvement in fit (Kupper et al. 1985b). Hence the two factor model would be 

chosen as optimal, whilst the factor constrained to have zero effect (perhaps falsely) could 

produce a potentially ‘serious’ bias on the resulting estimates. 

The motivation for the Clayton & Schiffers approach is to identify whether the 

effects are either attributable to period or cohort to simplify the analysis towards a two 

predictor model. Whilst this would seem a useful aim to avoid the identification problem, 

the use of model fit criteria to assess the validity of a model is not adequate. A strong 

model fit only indicates that the model produces fitted values close to the observed data. 

However, as previously noted, an infinite number of models can produce these same fitted 

values and so model fit is no indication of the appropriateness of the individual coefficients 

(i.e. any along the line of solutions). The notion of Clayton & Schiffer’s paper regarding the 

focus on age is interesting in comparison to the sociological example described earlier that 

saw birth cohort as a dominant factor. This is a reflection of the interests between clinical 

and sociological fields. A similar analysis could be performed with the focus on cohort from 

a sociological perspective, with a similar drift term defined.  

 

8.5.2 Minimal Differences 

Osmond & Gardner (1982) considered the bivariable sub-models of the full three factor 

    model to generate a solution. The motivation of the minimal differences approach is 

to partition net drift variance into either period or cohort using a penalty function based 

on the magnitude of the non-drift effects – i.e. the curvatures (Doll, 2004). The authors 

considered the estimation of the bias parameter  , such that a specified penalty function 

is minimized. This method may be considered geometrically within the framework 

previously used. The method looks at the Euclidean distance between the two and three 

predictor model estimates along the line of solutions. The three two factor solutions are 

computed by constraining the excluded variable to equal zero. To calculate the value of   

used for the three variable solution the authors propose an “intermediate value”. The 

distance between the full solution and the three two variable solutions is then inversely 

weighted by the mean residual sums of squares. The value of   is found by minimizing the 

following function, although alternative functions could also be specified (see also Decarli 

& La Vecchia (1987)), 

 

                                                  (7.52) 
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where   ,    and    are the residual mean squares from the two variable models and 

    ,      and      are the corresponding sets of estimates. This is in effect an ‘averaging’ 

of the solutions to produce a three variable solution inversely weighted by model fit. This 

remains one selection out of the infinitely many available. It would seem sensible to give 

models with a poor fit to the data a lesser weighting in the full model. However, as with 

Clayton & Schiffer’s approach, basing criteria on model fit is dangerous to identify 

parameters that we wish to interpret. Holford (2005) criticises the method in that 

curvature of the full model can only be estimated using a full three factor model. Hence, 

the two factor models do not provide the information required to produce the desired 

parameter. Minimum differences is an approach that would make the necessary leap into 

constraint based solutions and as expected leaves itself open to criticism (as any in this 

category would under perfect collinearity). The method provides a useful extension for the 

current discussion as it attempts a partition of the drift component.  

 

8.5.3 Individual Records & Natural Weights 

Robertson and Boyle (1986) suggested that the identification problem could be overcome 

by forming a three-way lexis diagram for the three factors.  

 

                                                                            

 

 

 

                                        

 

 

 

 

Figure 8.9: The Standard Structure of     data. 

Figure 8.9 demonstrates that in the ordinary structure of     data each rate belongs to 

only one cohort. This guarantees the overlap of cohort groups and can make seemingly 

simple constraints produce very complex interpretations. The viability of using overlapping 

birth cohorts to solve the identification problem has been discussed extensively in the 

literature (Clayton and Schifflers 1987;Osmond and Gardner 1989).  
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When each subject’s date of birth is known, the user can define subjects to lie 

within ‘non-overlapping’ cohort groups (i.e. as a subject ages, they will only ever belong to 

one cohort). This is achieved by splitting each cell into an upper and lower triangle. The 

first potential problem with this is that the detailed individual records must be available to 

the user (which is not the case in the Dahlquist     data). However, this theory would still 

warrant discussion if this would solve the problem. The     multiple classification model 

(see eqn(7.40)) can be re-written as follows. 

 

       
                             (7.53) 

 
When    , the rate is part of a lower triangle in each cell and when     it is a rate in an 

upper triangle (see Figure 8.10 for an example cell). On the surface, this model would seem 

to relieve the identification problem, however it masks important underlying assumptions. 

 
 

 

 

 

 

Figure 8.10: A single cell of the Lexis diagram. 

Through the process of splitting each cell to be assigned to two cohorts, two separate age 

effects (   
  and    

 ) and two separate period effects (   
  and    

 ) have been created for 

each cell. Therefore, a finer grid has been employed, however the problem still remains. It 

is clear from Figure 8.10 that    
  occurs at an earlier period (i.e.    

 ) and at a later age (i.e. 

   
 ). This is not accounted for in the model in eqn(7.53). If it were, there would be a return 

to the singularity problem presented in the original data. Equivalently neighbouring age 

and period groups could be merged to generate a broader grid and still produce non-

overlapping cohorts, but the underlying problem would remain. This is defined by the 

intrinsic relationship present in the data. 

Employing a finer grid would not overcome the underlying structure in the data 

that leads to the identification problem. However, the notion of splitting each cell, such 

that cohort groups can be interpreted on the same scale as age and period is a feature that 

should not be ignored. Weinkam and Sterling (1991) agreed in principle with this graphical 

representation of the     problem by producing a finer grid on a triangular mesh to give 
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an equal spacing to each factor. This representation can provide a useful insight into the 

problem from an interpretive view. An important feature of     data is that the time 

dependent observations have been tabulated to produce categorical factors. One of the 

limitations of tabulation in time data is that it restricts “cross-time linkages” (Fienberg and 

Mason 1982). This is perhaps the conceptual limitation of the arbitrary constraints 

employed by Robertson, in that the neighbouring categories are given the same weighting 

as belonging to the same cell. Instead, the tabulated data in the     model can be 

considered continuous, with each cell representing a “knot” on the diagram. A contour plot 

could be produced on the following grid with a potentially simpler interpretation of effects. 

 

 

 

 

 

 

 

 

Figure 8.11: Lexis table on a triangular mesh, with linear effect directions  ,  ,  . 

Lee and Lin (1996b) used this structure to identify “natural” weights (i.e. no prior 

information assumed) regarding the structure of the data. The technicalities of the original 

paper will not be repeated here as they add little to the current methodological discussion. 

However, the general aims of the exercise are worth discussing as it provides a link 

between the methods that were discussed in the literature review and a justification for 

use of the modern latent variable approaches.  

 
  
 

 

 

 

 

 

 

Figure 8.12: Cell weightings obtained directly from the lexis diagram. 
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In traditional trend surface analysis effects are separated into ‘regional’ and ‘local’ trends. 

Any effects captured by a    trend surface are considered regional, whilst any departure 

(or residuals) from this surface become local effects. Each observation in the data is a 

summation of a regional (or systematic) trend and a residual (i.e. akin to a contour plot 

defining a    surface for 3 variables). The uniqueness of the perfect collinearity problem is 

that there is no residual - all of the variation must be captured in the systematic 

component as one variable is defined by a relationship inherent in the data. It is this 

relationship that defines the    surface and allows us to explore properties of the 

estimates. Lee & Lin use reference axes that are illustrated in Figure 8.12 to produce the 

trend surface function, however any arbitrary orthogonal axes of   and   could be defined 

that span the    regression space. A principal axis transformation of  ,     onto  ,   in this 

example (see section 3.3.2) is used to define the new coordinate system for the Lexis 

diagram in Figure 8.11 as follows (       ,         ).  

 To analyze linear trends, a compromise is made in the direction that allows the 

target variable to change, whilst giving an equal weighting to the remaining predictors (e.g. 

for age this direction is marked   in Figure 8.12, period marked   and cohort  ). These are 

directions orthogonal to the contour levels of the associated predictor in Figure 8.11 to 

achieve maximal squared increment in the target variable relative to the remaining two 

covariates (Lee and Lin 1996b). As the categories are represented equally on the grid, the 

justification for the equal angles between  ,   and   can be directly observed. Any other 

weighting (representing other constraint solutions) would require justification to move 

away from that naturally defined by the design matrix. For a unit change in the direction  , 

age will increase by     , period by      and cohort decrease by      (see Figure 

8.12b). This result is the same for   and   with the target variable (i.e. period in the 

direction of   and cohort in the direction of  ) changing by     , and the remaining 

covariates equal and half of this value. The intrinsic relationship that defines the variables 

is clearly followed by these weights (although a    constant is used in the original paper to 

scale the weights to “adjusted variables”). It should be clear that to choose the surface as 

in the above figure is to select the   /   /    solution (although different arbitrary axes 

would be selected to differentiate these methods when fewer components are retained). It 

was not a feature noted by the authors in the original paper that the trend surface 

approach defines these methods, but it is nevertheless based on a similar motivation. The 

next section will look to provide a novel motivation for why these methods may be 

considered optimal in the absence of robust external evidence.  
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8.6 Latent Variable Methods in APC Analysis 

In section 8.4.1 it was demonstrated that the     solution is on the solution hyper plane 

orthogonal to the null space. This is the same constraint that is employed with the    g-

inverse (demonstrated in section 7.6.2),     and also a more recent proposal, the intrinsic 

estimator (  ). There is no external clinical or biological reasoning for choosing this 

constraint out of the infinitely many least squares solutions available, but it has been 

preferred for a few reasons. Zero variance is assigned to the null dimension and so the 

constraint is entirely data driven. In contrast, moving elsewhere along the line of solutions 

is making some prior assumption about the null and hence the nature of the relationships 

in the data. Such an assumption is not directly supported by the data. The solution is at the 

centre of the line of solutions with the shortest distance from the origin. This may 

represent an average of the g-inverse solutions (O'Brien 2011). Therefore, it could be 

suggested that in the absence of better reasoning from a priori knowledge, this would 

represent the generalized solution based objectively on the data provided.  

From a purely statistical perspective it seems sensible that the constraint is based 

on the structure of the design matrix and not the response. There are an infinite number of 

models that can produce the same fitted values of  . Therefore, to use   to determine   

would seem misguided. Kupper (1983) suggests that if “reasonably reliable” information 

can be utilized based on information external to the observed response then this should 

present a valid approach to determining the constraint employed. Also, if several 

constraints can be suggested based on external knowledge that do not differ greatly in the 

estimates produced, then this should raise confidence in the accuracy of the estimated 

effects. Caution should perhaps be placed on the rationale behind this approach. The 

discussion of perfect collinearity in chapters 7 and 8 is primarily motivated by application 

and interpretation of the coefficients to the definitions of the variables. Whilst an 

approach such as Rodgers’ simulations is certainly a useful statistical exercise, we must 

seek to understand what these simulations would signify in application. 

 

8.6.1 Justification for the Application of Latent Variable Methods 

It would appear to be the natural progression of the     discussion to reduce the number 

of components entered into the model and see if this approach brings us nearer to the 

generating model used to produce the simulations in section 8.4.2. However, the notion of 
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specifying an arbitrary set of generating parameters for the underlying model is an 

uncomfortable one. The models specified in the original Rodgers (1982) paper were 

repeated for the simulations to facilitate a statistical discussion regarding the role of error 

and the choice of constraints. As expected, the choice of a constraint that is not reflected 

in the population model provides a solution that suffers from bias of the coefficients. 

However, do these underlying models make sense as part of an     setting? Should it be 

possible to have a zero cohort effect (as defined in the second simulation) within the 

structure defined by the age and period variables (which are all intrinsically related)? This 

is an important point that is rarely discussed in the simulation literature and for this reason 

it may be considered nonsensical by some that in an     setting we are simulating from 

such a model. It is this discussion that brings us to the root of the perfect collinearity 

problem that has been discussed in this and the previous chapter.  

It is important to consider what various constraint solutions mean with regard to an 

underlying model (which may or may not be assumed to exist). Through the use of latent 

variable methods, a solution is provided that is guaranteed to follow the intrinsic structure 

of the variables. This makes a direct interpretation of the coefficients simpler. To justify 

this stance a simple example is provided. Consider that two variables are entered into a 

regression that are perfectly collinear and have equal variance. It would seem that the two 

variables are statistically equivalent and must receive the same weighting. However, if the 

variables are assumed in practice to be measuring something conceptually different than 

the data provided based on a priori knowledge, then perhaps it could be argued that one 

should receive a greater weight. From a statistical perspective this would not be reflected 

in the measured variables and so the research question is actually based on data that is 

different to what has been provided. The problem is how to interpret the coefficients from 

this weighted approach. One could argue that the concepts of age, period and cohort are 

not actually perfectly collinear and instead it is only the coarse structure of the lexis table 

and the definitions of the latent variables that defines them as such (i.e. the notion of 

micro level variables defining the actual research question not being perfectly collinear). 

Hence the Rodgers model could still be acceptable as a generating model, but it must be 

based on this specific conceptual understanding of the variables entered and adjusted for. 

This is a difficult concept to grasp as effectively the variables must be interpreted as 

something that statistically they appear not to be. 

It is the structure that was presented in the trend surface approach of Lee & Lin that 

would be ‘naturally’ defined by the data. Any other solution along the line of solutions 
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would be moving away from that directly supported by the data. Therefore, for the 

Rodgers paper the final model used to illustrate the impact of error requires more 

information about what the author assumes and what each of the solutions compared 

actually represents in application. It is this distortion in the estimation that highlights the 

questionable approach of the original paper for anything other than a statistical discussion 

of bias. If one of the variables is weighted (which are perfectly collinear and equal 

variance), what is the interpretation of the remaining variables that are adjusted for (which 

are still held by the intrinsic relationship)? If the measured variables are not reflecting the 

research question then perhaps we require variables that will. This data may not be viable 

due to practicality and monetary constraints of obtaining it, but would allow for a direct 

interpretation. Therefore, whilst the use of alternative constraints would appear supported 

by statistical exercises and theoretical discussion, the suitability of these methods in 

application would seem limited. For this reason, it would seem sensible that the 

population generating model assumes the intrinsic structure of the variables (as proposed 

by Lee and Lin, 1996) in the perfectly collinear relationship. The simulation exercise is not 

repeated using such a model in the current discussion as a comparison of the properties of 

latent methods has been demonstrated earlier in this work. However, if a simulation 

exercise were to be repeated, it would seem justified that the coefficients employed follow 

the intrinsic relationship defined by the     problem.  

 

8.6.2 Application of Latent Variable Methods 

It is not essential to once again compare properties of the    ,     and the   -inverse in 

this section as these have been previously discussed in chapter 7. The difference in this 

chapter is that the data are in aggregate form. It is clear from the dummy coding that the 

sum of each of the categories for each variable equals unity. After the constraints in 

eqn(7.38) and eqn(7.41) are applied, these categories sum to zero in each approach. An 

interesting development in the     literature is a method recently proposed by Yang et al. 

(2004). The authors recognise that the    method has very close links to the     

procedure that has been discussed throughout this work. Yang et al. (2008) states that 

“the    uses the extra step of inverse orthonormal transformation of the coefficient 

estimates of the principal components regression back to the original space of age, period 

and cohort”. As this step has already been assumed as part of the     process it is not a 

surprise that this work considers the methods fundamentally the same (see section 4.4.1). 
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For the Yang et al. paper,     is representing the uni-dimensional vector spanning 

the null space.    is a unit vector (i.e. the eigenvector associated with the zero eigenvalue 

that makes the design matrix computationally singular) and   a scalar multiple determining 

the influence of the null vector on the estimates (i.e.   in our discussion). They highlight 

that in the    case (as in    ,     etc.)     (i.e. the eigenvalue). The authors state that 

the    estimates are in fact ‘estimable functions’ (as defined by Holford). This is to say that 

the estimates in the 2-dimensional space are simply functions of the unattainable 

estimates from the full three variable model (this was demonstrated similarly in the 

lifecourse study – see eqn(7.27) and eqn(7.34)). The eigenvectors are independent of the 

response and so the null eigenvector is determined by the number of age and period 

groups in the data only.   

For the estimator to be unbiased the constraint employed must be orthogonal to     . 

In the Yang et al. paper they state that the estimator is unbiased, however this is 

conditional on the estimator lying in the space orthogonal to the null vector. Therefore, 

the unbiased property is still dependent on the constraint imposed. The null vector is not 

dependent on the response and therefore becomes an estimable function of the 

generating parameters. A further important property is the variance (or efficiency) of the 

estimator compared with other constrained estimators. The   -inverse (which is 

equivalent to these latent variable solutions with maximal components retained) has been 

shown to have the minimum variance as only non-zero eigenvalues and the associated 

eigevectors form part of the regression (Kupper et al. 1983).  

An important feature of the    script is that effect coding is adopted. One fewer 

than the maximal number of covariates is entered for each category with the final group 

(i.e. the reference) coded as minus one. The coefficient for this covariate is defined as the 

negative summation of the other effects. When a singularity is identified, the latent 

variable is removed, which in the standard case results in the final cohort category. 

However, if the procedure were repeated, but a different cohort category removed, a 

different set of coefficients would be obtained (due to unbalanced groups). In comparison, 

    uses standard dummy coding to directly extract all of the estimates. A category mean 

is subtracted from each group and therefore removing any category would produce the 

same coefficient estimates. This is a minor discrepancy between the methods. It is not 

clear which approach is correct and the result is unlikely to drastically change the 

interpretation, however for the interests of consistency in application    /    coding 

should be encouraged in favour of the more recent    proposal.  



Chapter 8 Perfect Collinearity in the APC model 251 

 

 

8.7 Regression Study 

The intention of chapter 7 was to consider the mathematics behind a    /    analysis 

applied to perfectly collinear data. Chapter 8 has focussed more on the interpretation of 

applying these methods and where they may be placed as part of the vast literature of 

statistical techniques in the     problem. This section focuses on the data from Dahlquist 

et al. (2011) and considers the results attained from the application of selected methods 

discussed in this chapter. Holford (1985;1992;2005) and Clayton & Schiffers (1987) both 

proposed methods based on estimable functions that provide complete confidence in the 

measures but do not attempt to identify linear effects of the factors. These methods are 

applied in this section. It is also considered what additional insight can be gained from the 

application of    /    to the same data.  

The study considers incidence of childhood onset type-1 diabetes and so this 

analysis (in agreement with the authors) assumes age to be a dominant factor in the 

analysis (Robertson et al. 1999). Age-specific descriptive plots were illustrated in section 

8.3 to continue this idea. A descriptive simplification of age specific rates is to produce age-

standardized rates by collapsing the period columns and choosing a reference period. 

However, these statistics are intended only as a summary as they assume a constant age 

trend consistent in each period group (Osmond and Hardy 2004). This study begins with 

the two factor models of age entered along with period or cohort (see Table 8.3-Table 8.6). 

Following the approach of Osmond & Hardy (2004), the age coefficients are presented 

analogous to the age-specific incidence rates presented in section 8.3.  

 

Age     (95% CI) Period     (95% CI) 

2 22.32 (21.29 to 23.40) 1985 0.91 (0.87 to 0.94) 

7 34.64 (33.30 to 36.03) 1990 0.92 (0.88 to 0.95) 

12 41.74 (40.26 to 43.28) 1995 0.93 (0.90 to 0.97) 

17 19.84 (18.91 to 20.82) 2000 1.08 (1.04 to 1.11) 

22 16.88 (16.04 to 17.77) 2005 1.20 (1.16 to 1.24) 

27 15.78 (14.98 to 16.62)   

32 12.65 (11.96 to 13.38)   

 Deviance=196.61 

Table 8.3: Coefficients from an Age + Period regression of the male subjects. 
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Age     (95% CI) Period     (95% CI) 

2 20.58 (19.53 to 21.69) 1985 0.91 (0.87 to 0.95) 

7 36.80 (35.27 to 37.98)  1990 0.86 (0.82 to 0.90) 

12 36.42 (34.92 to 37.98) 1995 0.98 (0.94 to 1.03) 

17 12.09 (11.35 to 12.88) 2000 1.08 (1.03 to 1.12) 

22 10.17 (9.51 to 10.88) 2005 1.21 (1.16 to 1.26) 

27 8.12 (7.55 to 8.73)   

32 6.20 (5.72 to 6.73)   

Deviance=27.37 

Table 8.4: Coefficients from an Age + Period regression of the female subjects. 

As part of the coding, the zero sum constraints have been applied only to the period and 

cohort categories. The anti-log of these coefficients can then be viewed similar to relative 

risk for the associated period/cohort. These rates were obtained using the constrained 

regression function in       (Version 12). The intercept is collapsed into the age effects to 

obtain coefficients that can be interpreted similar to age-specific rates. This would appear 

beneficial as the primary interest is in interpreting the importance of period and cohort in 

the clinical example. 

 

Age     (95% CI) Cohort     (95% CI) 

2 18.63 (17.46 to 19.87) 1953 1.04 (0.91 to 1.20) 

7 32.57 (30.96 to 34.26) 1958 0.91 (0.82 to 1.01) 

12 44.83 (42.94 to 46.81) 1963 0.92 (0.85 to 1.00) 

17 23.80 (22.61 to 25.06) 1968 0.79 (0.74 to 0.85) 

22 20.12 (19.03 to 21.28) 1973 0.77 (0.73 to 0.82) 

27 18.74 (17.62 to 19.93) 1978 0.82 (0.78 to 0.87) 

32 14.37 (13.32 to 15.51) 1983 0.89 (0.84 to 0.94) 

  1993 0.92 (0.87 to 0.98) 

  1998 1.27 (1.20 to 1.34) 

  2003 1.44 (1.34 to 1.56) 

Deviance=130.69 

Table 8.5: Coefficients from an Age + Cohort regression of the male subjects.  
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Age     (95% CI) Cohort     (95% CI) 

2 17.84 (16.59 to 19.18) 1953 1.01 (0.82 to 1.25) 

7 35.54 (33.55 to 37.65) 1958 1.03 (0.89 to 1.18) 

12 39.73 (37.73 to 41.83) 1963 0.83 (0.74 to 0.92) 

17 13.99 (13.09 to 14.96) 1968 0.9 (0.83 to 0.99) 

22 12.06 (11.21 to 12.96) 1973 0.81 (0.75 to 0.86) 

27 9.26 (8.51 to 10.08) 1978 0.84 (0.79 to 0.9) 

32 6.82 (6.14 to 7.58) 1983 0.95 (0.89 to 1.01) 

  1993 1.17 (1.09 to 1.25) 

  1998 1.45 (1.34 to 1.58) 

  2003 1.40 (1.23 to 1.59) 

Deviance=27.99 

Table 8.6: Coefficients from an Age + Cohort regression of the female subjects. 

The drift   in the model is 0.015 (        1.02), which represents the linear component 

that can be equally attributed to either period or cohort. Both models demonstrate an 

increasing incidence with each period/cohort until age 12 before a decline later in the 

lifecourse. Model fit statistics of the nested models can be studied as suggested in Clayton 

& Schiffers (1987). Dahlquist et al. (2011) utilized the drift approach of Clayton & Schiffers 

(1987) to assess whether there was a period or cohort effect in operation. The authors use 

    to adjust for the difference in parameters between period and cohort models. They 

conclude that there is a predominant cohort effect due to the minimal     for the model 

and a significant improvement in model fit moving from the     to the full     model.  

 

  Male Female 

Model    Deviance      Deviance      

Age 28 338.68 617.08 258.29 522.41 

Age + Drift 27 214.98 495.38 145.84 411.96 

Age + Period 24 196.61 483.01 130.69 402.81 

Age + Cohort 18 27.37 325.76 27.99 312.11 

Age + Period + Cohort 15 24.25 328.64 22.85 313.97 

Table 8.7: Deviance and     statistics from nested     models. 
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The curvature estimates are next considered based on the approaches of Holford 

and Clayton & Schiffers to consider estimates from the full     model. The ‘default 

constraints’ that are listed in Table 8.8 are those applied by   using lm in the stats library 

in which the last category of age and period are constrained to zero whilst the final two 

categories of cohort are similarly constrained to zero (i.e. applied whenever the program 

identifies a singularity amongst the columns). The curvature components have been 

obtained by fitting least squares and mean difference trends (as described in section 

8.5.1). The least squares curvatures were found by fitting a simple linear slope to the data 

(similar to the drift) and extracting the residuals from this model. The mean differences 

approach is applied by including linear age and cohort terms in the model and constraining 

the first and last categories to equal zero. The anti-logs of the curvature trends are 

demonstrated in Figure 8.13 for males and Figure 8.14 for female groups. Despite many 

papers discussing this approach, few seem to have made meaningful insight into the data 

using curvature estimates only. Observations can be made regarding the shape of the 

trends (e.g. concave upwards or downwards). For instance, birth cohort for both groups 

demonstrates a ‘U’ shape. From this, a decelerating trend can be described from 1953 to 

1973 cohorts for males, before remaining relatively stationary to around 1988, followed by 

an accelerating trend to more recent birth cohorts. The female curve is similar, but starts 

from a lesser risk and with a downward trend in the most recent cohort.  

The estimates gained from the full     model are considered next. To attain these 

estimates, the constrained linear regression function is once again used with constraint (1, 

1, -1) to follow the intrinsic structure of the covariates. This is equivalent to a    /    

analysis with maximal components retained (19 for this example).  In this analysis the drift 

component is partitioned to be attributed to either period or cohort effects. The age 

curves for males and females both demonstrate a peak at age 12 (the 10-14 years interval), 

although the maxima is better differentiated for males. The age-specific plots (see Figure 

8.2) indicated a shift to an earlier age in peak incidence for later periods in the female 

group. It is clear for both groups that period at diagnosis contributes to a lesser degree 

than birth cohort. Period values for males are positive and maximised at year 2000 (1.04 

(1.00 to 1.08)), whilst two peaks are seen for females at the earlier years of 1985 (1.04 

(0.99 to 1.09)) and 1995 (1.04 (1.00 to 1.09)) following a negative trend. Cohort values for 

both groups peak at more recent years, with males at 2003 (1.40 (1.28 to 1.54)) and 

females 1998 (1.57 (1.47 to 1.68)). The female cohort trend then demonstrates a small 

decrease in the 2003 birth cohort (1.55 (1.39 to 1.72)).   
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MALES  Default Curvatures 

  Constraints Least Squares Mean Change 

 Intercept -8.78 -39.28 -22.63 

Period 1985 -0.22 0.00 0 

 1990 -0.15 0.01 0.02 

 1995 -0.13 -0.02 -0.02 

 2000 -0.03 0.02 0.03 

 2005 0 -0.01 0 

Cohort 1953 0.20 0.28 0 

 1958 0.00 0.09 -0.18 

 1963 -0.04 0.06 -0.20 

 1968 -0.25 -0.14 -0.39 

 1973 -0.33 -0.21 -0.45 

 1978 -0.33 -0.20 -0.43 

 1983 -0.31 -0.16 -0.39 

 1988 -0.33 -0.18 -0.39 

 1993 -0.07 0.10 -0.11 

 1998 0 0.18 -0.02 

 2003 0 0.19 0 

 Deviance 24.25 24.25 24.25 

Table 8.8: Default constraints along with least squares and mean difference curvatures. 

  

Figure 8.13: Anti-log least squares curvature estimates for males in the study. 
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FEMALES  Default Curvatures 

  Constraints Least Squares Mean Change 

 Intercept -9.08 -42.95 -20.26 

Period 1985 0.14 0.01 0 

 1990 0.06 -0.04 -0.04 

 1995 0.11 0.04 0.04 

 2000 0.05 0.01 0.01 

 2005 0 -0.01 0 

Cohort 1953 -0.64 0.20 0 

 1958 -0.57 0.19 0.00 

 1963 -0.78 -0.08 -0.27 

 1968 -0.66 -0.03 -0.21 

 1973 -0.70 -0.14 -0.32 

 1978 -0.71 -0.21 -0.39 

 1983 -0.65 -0.22 -0.39 

 1988 -0.50 -0.14 -0.31 

 1993 -0.26 0.04 -0.13 

 1998 0 0.23 0.06 

 2003 0 0.16 0 

 Deviance 22.85 22.85 22.85 

Table 8.9: Default constraints along with least squares and mean difference curvatures. 

  

Figure 8.14: Anti-log least squares curvature estimates for females in the study.  
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Age + Period + Cohort 

Age      (95% CI) Period      (95% CI) Cohort     (95% CI) 

2 19.56 (18.62 to 20.55) 1985 0.96 (0.93 to 1.00) 1953 1.14 (1.01 to 1.27) 

7 33.66 (32.26 to 35.12) 1990 1.00 (0.96 to 1.04) 1958 0.97 (0.89 to 1.05) 

12 45.62 (43.81 to 47.50) 1995 0.98 (0.94 to 1.01) 1963 0.97 (0.90 to 1.04) 

17 23.83 (22.62 to 25.10) 2000 1.04 (1.00 to 1.08) 1968 0.82 (0.77 to 0.88) 

22 19.79 (18.73 to 20.91) 2005 1.02 (0.99 to 1.06) 1973 0.78 (0.74 to 0.83) 

27 18.15 (17.18 to 19.17)   1978 0.82 (0.78 to 0.87) 

32 13.69 (12.93 to 14.50)   1983 0.88 (0.83 to 0.92) 

    1988 0.89 (0.84 to 0.94) 

    1993 1.21 (1.15 to 1.27) 

    1998 1.35 (1.26 to 1.43) 

    2003 1.40 (1.28 to 1.54) 

Table 8.10:     Coefficients from a maximum components model for Males. 

 
 

Age + Period + Cohort 

Age      (95% CI) Period      (95% CI) Cohort     (95% CI) 

2 16.90 (15.99 to 17.87) 1985 1.04 (0.99 to 1.09) 1953 0.92 (0.78 to 1.09) 

7 34.38 (32.83 to 36.00) 1990 0.98 (0.93 to 1.03) 1958 0.97 (0.86 to 1.10) 

12 39.29 (37.48 to 41.18) 1995 1.04 (1.00 to 1.09) 1963 0.78 (0.71 to 0.87) 

17 14.07 (13.15 to 15.06) 2000 0.99 (0.95 to 1.03) 1968 0.87 (0.79 to 0.95) 

22 12.31 (11.45 to 13.23) 2005 0.95 (0.91 to 1.00) 1973 0.82 (0.77 to 0.89) 

27 9.55 (8.84 to 10.32)    1978 0.81 (0.76 to 0.87) 

32 7.19 (6.63 to 7.79)    1983 0.85 (0.80 to 0.91) 

      1988 0.97 (0.92 to 1.03) 

      1993 1.22 (1.16 to 1.29) 

      1998 1.57 (1.47 to 1.68) 

      2003 1.55 (1.39 to 1.72) 

Table 8.11:     Coefficients from a maximum components model for Females.  



Chapter 8 Perfect Collinearity in the APC model 258 

 

Male Female 

 

 

 

 
 

 

 

 
 

 

 

 

Figure 8.15: Coefficients from a full component     regression analysis. 
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Dahlquist et al. suggest birth cohort as the dominant factor (in comparison to 

period) based on a drift analysis and this is supported in the    /    results. The 

coefficients from the    /    regression are a rotation of the curvature components to 

incorporate a general trend that partitions the drift component. It would be possible to 

reduce the number of components retained in either estimation method. A demonstration 

of the benefits of this process has been previously illustrated in the lifecourse example. It is 

also important to note that the same intrinsic relationship would be retained regardless of 

the number of components entered into the regression. The results of this study would 

appear to suggest that birth cohort is playing an important role in dictating the onset of 

type-1 diabetes. This would seem to highlight the importance of exposures early in the 

lifecourse (whether at a prenatal or postnatal stage) to later life effects. The cohort risk 

begins high in the early years of the study, before a relatively low stable risk in the middle 

years followed by an increased risk in the later most recent cohorts. The authors put 

forward an explanation for the moderately high risk in the early years. They suggest that 

rather than biological significance, the result is most likely due to classification error, with 

different criteria of diagnosis and validation methods introduced in later years. 

A final comment should be made with regard to those researchers who are 

interested in forecasting from     models. For instance, actuaries will typically be 

interested in forecasting health care needs and the potential impact of health care 

proposals (Holford 1992). It appears dangerous to assume that what has happened in the 

past will be reflective of the future. This caution is perhaps only heightened by the sheer 

generality of the measurements made from the     model. Early papers by Kermack et al. 

(1934) and Derrick (1927) attempted predictions for mortality rates in later years in 

England and Wales that it is now possible to test. These predictions were not close to what 

was actually observed. One of the main reasons is that diseases prominent at the time of 

the observed data were very much influenced by period effects specific to that time. 

Davey-Smith & Kuh (2001) reports that    accounted for more than 30% of deaths for 

subjects aged 15-44 years and 15% for 45-64 years. Considering this, it is not surprising 

that the estimates were not accurate for data observed at a later date when    was far 

less prominent. Prediction becomes yet another difficult part of     work in trying to 

analyze macro effects based on environmentally changing variables such as period. This 

opens a new range of methodology such as the Lee-Carter model (Lee and Carter 1992;Li 

et al. 2009), the mixed model (O'Brien et al. 2008;Yang and Land 2008) and the 

autoregressive approach (Lee and Lin 1996a) which are beyond the scope of this work. 
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8.8 Conclusions 

This chapter has looked to provide a framework of prominent approaches in the     

literature (although many more exist than it would be possible to cover). The running 

theme in the work on perfect collinearity, and perhaps the primary source of confusion 

regarding the problem, is that the population ‘truth’ is unavailable. Even if complete data 

were available and free from error it would still not be possible to identify three unique 

estimates and so it is necessary to understand exactly what solution it is that we are 

striving for. Whilst it may seem statistically nonsensical to attain estimates of the linearly 

dependent parameters, the underlying concepts that these macro level variables are said 

to represent are not necessarily confounded. Therefore, it may be considered that the 

aggregated data that are utilized is at the heart of the statistical problem. 

 
“We must either limit our analysis to effects that are estimable, or else devise means 

whereby external information about the disease can be brought to bear”  

(Holford 1992) 

Data may be generated based on some population model and this model will represent the 

parameters that we are striving for. However, a statistically equivalent set of data can be 

produced by an infinite number of alternative models. These solutions each lie on a 

common ‘line of solutions’ in the geometry (when there is only one perfect dependency). 

Therefore, without a priori knowledge we are choosing a constraint that reflects one of an 

infinite number of statistically equivalent models (based on   
 ).  

 Any deviation from the population coefficient will introduce a bias and we can have 

no certainty regarding the degree of bias added with each constraint. Estimable functions 

remain the only method that can provide complete confidence. It may be argued that 

when robust external information is not available, a     regression analysis would appear 

the most beneficial of the constraint based approaches. Perhaps the most informative 

feature is that the coefficients reflect the intrinsic structure of the data leading to a simpler 

interpretation. To assume any other structure would require a more complex 

interpretation of the underlying model. Also, a near identifiable model is likely to still 

suffer from the effects of collinearity and so the flexibility of these methods to retain fewer 

components can be of great benefit to the interpretation and variance shrinkage. 

However, the fact remains that with the study of     data our hands remain somewhat 

tied by the perfect collinearity inherent in the data.  
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9. Conclusions and Future Developments 

This thesis has considered three diverse problems linked by collinearity; (1) the ‘diagnosis’ 

of collinearity; (2) the formation of a dependency structure; and (3) the analysis of 

perfectly collinear predictors. Links between methods have developed through chapters 

studying what appear to be very different problems. A new technique is formed in the  -

index and the matroid approach has been developed from first principles to be applied to a 

real epidemiological problem. The use of certain statistical methods has been critically 

assessed for particular applications and alternative techniques considered in their place. 

This section reviews the development process of the work and outlines some of the 

findings from the chapters. Possible extensions are suggested that were beyond the 

current scope and time limitations of this work.  

The motivation for a new collinearity index was to move away from a ‘traditional’ 

measure of collinearity and instead focus on the impact of collinearity on the modelling 

process. The use of vector geometry to assess the role of model environment and the 

motivation of     to maximize the covariance on rotated axes provided a starting point for 

the development of an alternative index. From this idea, a ‘global’ measure was developed 

to identify whether a near dependency is present and geometrical angles (converted to 

correlations) used to determine the involvement of predictors in the dependencies. This 

method was developed from the bivariable model and extended to a general case 

independent of the visible geometry.  

One of the interesting challenges with developing this index was finding existing 

methods to compare the results to. The     itself is not a ‘global’ measure, although it is 

easy to mistake it as one when only analyzing a bivariable model. Belsley (1991) highlights 

two major limitations of the    . Firstly, it will not identify the number of near 

dependencies (or the variables involved) and secondly it is based on some arbitrary cut-

point to determine what should be considered “severe” collinearity. An arbitrary cut-point 

should be employed with extreme caution. Chapter 3 demonstrated that this can be 
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particularly dangerous as the     ignores important features of the data, such as the role 

of the response. Therefore, an extension was proposed for the     by multiplying it by the 

   . An arbitrary cut-point would then appear to have more foundation, although 

important issues associated with this practice cannot be avoided. The chosen threshold 

would preferably be application specific and make use of external knowledge of biological 

or clinical relationships. A threshold that may be considered suitable for one field is not 

likely to be transferable to all. As an alternative to the    , eigenvalues present a type of 

‘global’ index to identify the number of near dependencies in the data. Due to limitations 

associated with eigenvectors, Belsley suggests the use of variance decomposition 

proportions (   ) to determine covariate involvement in those dependencies. 

 All-subsets regression provides a different perspective with all rearrangements of 

predictors analyzed to identify how many dependencies exist and which covariates are 

involved. However, typically  -values and  -values are used to identify dependencies, 

which are themselves affected by collinearity. Utilizing the     was instead considered 

within an all-subsets framework. However, some global measure would be required to 

determine the strength of the dependency and an additional measure to indicate which 

covariates are involved (similar to what could be achieved by the    and    ). This is 

where a method such as the matroids would fit into the collinearity diagnosis section. In 

this method, all relationships are analyzed (for the example provided using a     criteria) 

and the ‘essential flats’ extracted to identify near dependencies present. The threshold 

value would then represent a type of ‘global’ collinearity measure. It would seem that this 

method provides the best comparison to achieving the benefits of the  -index.  

To use the  -index as part of the matroid structure would provide an interesting 

challenge for the future. The power of the  -index is incorporating the information of the 

response into the analysis of the impact of collinearity. This did not fit with the      

example in chapter 7. Although the methods have very close links it would still appear a 

challenge to see how this might work. The  -index would naturally replace the minimum 

    criteria in the process, however it would seem difficult to incorporate the information 

from the angles/correlations. The matroid approach could identify the number of 

dependencies using the ‘global’ index. The angles/correlations of the  -index can then be 

used to demonstrate covariate involvement in the relationships utilized as an additional fit 

measure (replacing the   
  attached to each variable in our development of the matroid 

approach). Further work into the confidence intervals of the index is also required to 

extend to the general case and incorporate into a matroid structure. 
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The use of matroids as a collinearity diagnosis tool for the  -index was not the 

original motivation for developing the method. It was intended as a technique for 

identifying near dependencies in data (making use of existing collinearity indices). The 

matroid methodology remains at an early stage of development in comparison to     

and        . The Shen (2003) and Maison (1973) studies have demonstrated the 

potential of such a technique; however some key areas must be improved before it can be 

considered a viable option for      study. Greene (1990) suggests that the portion of 

subsets that change from ‘independent’ to ‘dependent’ to adhere to the matroid axioms 

would indicate the “consistency” of the analysis. Consistency appears to be important 

measure in this approach, which wouldn’t be required for other methods in the field. It is 

one indicator of the suitability of the diagnostic measure entered into the framework. The 

use of Greene’s consistency in the project seemed unreliable and so was left out of the 

analysis presented in this thesis. Whilst at some thresholds a greater number of flats 

changed status from independent to dependent, it didn’t necessarily change the resulting 

structure in the    . Therefore, this measure would often appear overly pessimistic 

regarding the consistency of the structure. A bootstrap approach may be a viable option to 

measure overall consistency of the thresholds, however due to the computational costs 

attached in generating the matroid flats, a faster algorithm would need developing.  

An   
  statistic was introduced into the matroid diagram to demonstrate the fit of 

the variable to the flat in which it is assigned. This feature was motivated by the study of 

the         methodology. The         also has a measure based on the 2nd eigenvalue 

in the     of the subset that is used to determine when the next cluster would be split. 

Eigenvalues may be used to depict the fit of the variables to a subspace of the flat's 

dimensionality in the matroid technique. However, this particular option was not 

implemented in the matroid work as the simplicity of the analysis was the primary 

concern. The method was developed principally as a tool for all researchers, not only 

statisticians. Eigenvalues,    s and   
  values could have complicated the interpretation 

from the analysis. It would also be useful to test the results of the matroid,         and 

    directly using    . One of the benefits of the matroid and         procedures is 

that the non-overlapping flats and cluster components respectively arrange in a structure 

primed for such an analysis. The results of a range of     for the different thresholds could 

also be added to the matroid diagram to demonstrate the strengths of the relations 

between flats. Model fit statistics would aid with the decision of which threshold to choose 

and subsequently how many flats are required to best describe the structure.  
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Finally, the problem of analysing perfectly collinear covariates in the lifecourse and 

    analyses was considered. In chapter 7 a lifecourse example was used to demonstrate 

statistical results associated with latent variable methods and an     example in chapter 8 

to see where the methods would fit within the existing literature of methods. In particular 

the focus was on highlighting the links between a ‘modern’ method such as     to 

established mathematical results such as    , the    g-inverse, the    and 

curvature/drift. The continuous predictors of the lifecourse example provided an ideal 

starting point for the perfect collinearity work with one exact dependency preventing the 

estimation of the regression parameters. An important distinction was made between the 

arbitrary constraints associated with the infinite g-inverses that exist and the   -inverse. 

In the former, the constraint is imposed on the estimation and in the latter it is maintained 

from the natural relationship in the data. The flexibility of these methods to reduce the 

dimensionality of the data provided a useful extension to the analysis of the problem to 

reduce the persistent effects associated with collinear data. Methods such as the  -index 

could provide a useful guide in the future as to the selection of these components based 

on interpretive rather than predictive measures (such as       and   ). 

The work in this thesis has been intended to explore novel ideas in the field of 

biostatistics and epidemiology. In these chapters only a starting point or an extension to 

current work in collinearity has been provided which leaves many areas unexplored. It 

would be interesting to view the results of the  -index as part of the matroid framework. 

The features of the index, such as the angles and components, would appear ideally suited 

to this method, which does require additional descriptive statistics. This challenge would 

certainly be one worth exploring once both approaches have been exposed in the public 

domain. The latent variable methods of     and     have been discussed throughout the 

work. It was not surprising to find links between     and the  -index with the goals to 

maximize and measure covariance with the response respectively. The use of the  -index 

to identify an ‘optimal’ number of components to enter would help to change the focus of 

component selection from a predictive to interpretive guide. This would also look to be a 

promising extension to the current work. Finally, the application of     to perfect 

collinearity problems is interesting. However, there is only so much information the 

tabulated data can provide. A comparison of approaches and analysing what assumptions 

are made with each would appear most beneficial to this field. This was the purpose of the 

final two chapters of the thesis. Searching for some optimal estimation procedure for 

lifecourse and     would appear to be an impossible aim.  
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Abbreviations 

 
 
 
        National Cholesterol Education     Moore-Penrose 

 Adult Treatment Panel         Normally and Independently  

     Best Linear Unbiased Estimator  Distributed 

    Body Mass Index        Non-linear Iterative     

   Birth Weight     Ordinary Least Squares  

   Chronic Disease     Principal Axis Factoring 

    Confirmatory Factor Analysis     Principal Components Analysis 

   Condition Index        Post-challenge Insulin 

    Cardiovascular Disease     Principal Components Regression 

   Current Weight    Path Diagram 

    Directed Acyclic Graph     Partial Least Squares Regression 

    Diastolic Blood Pressure     Randomized Controlled Trial 

      Developmental Origins of Health      Systolic Blood Pressure 

 and Disease     Structural Equation Model 

    Exploratory Factor Analysis     Social Economic Status 

   Factor Analysis     Smoking Status 

     Foetal Origins of Adult Disease     Sum of Squared Residuals 

    Glucose     Singular Value Decomposition 

    High Density Lipoprotein      Triglycerides 

    Insulin       Type-2 Diabetes 

    International Diabetes Federation    Variance-covariance 

   Intrinsic Estimator     Variance Deflation Factor 

    Web of Knowledge     Variance Decomposition  

    Mean Dispersion Error  Proportions 

     Metabolic Syndrome     Variance Inflation Factor 

     Minimum Variance Unbiased     Weight Change 

 Estimator     Waist/Hip Ratio 

   Maximum Likelihood     World Health Organization 
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