
Hybrid battery state estimation

framework and advanced algorithm

development

Yihuan Li

School of Electronic and Electrical Engineering

University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

June 2021

mailto:elyli2@leeds.ac.uk
https://eps.leeds.ac.uk/electronic-engineering
http://www.leeds.ac.uk




Declaration

The candidate confirms that the work submitted is her own, except

where work which has formed part of jointly-authored publications

has been included. The contribution of the candidate and the other

authors to this work has been explicitly indicated below. The candi-

date confirms that appropriate credit has been given within the thesis

where reference has been made to the work of others.

Details of the publications which has been used in this thesis are as

following:

In Chapter 3:

1. Yihuan Li, Kang Li and Shawn Li. ”FRA and EKF Based State

of Charge Estimation of Zinc-Nickel Single Flow Batteries.” Ad-

vances in Green Energy Systems and Smart Grid. Springer, Sin-

gapore, 2018. 183-191.

As the lead author, the candidate performed all the computa-

tional as well as simulation work and wrote the paper.

Prof. Kang Li, my supervisor, supervised the work, provided

excellent technical advice, modified and proof-read the draft of

the paper.

Dr. Shawn Li discussed the concepts of this paper with me,

reviewed the draft and provided some suggestions.



In Chapter 4:

2. Yihuan Li, Kang Li and Xuan Liu. ”Fast battery capacity esti-

mation using convolutional neural networks.” Transactions of the

Institute of Measurement and Control (2020): 0142331220966425.

As the lead author, the candidate put forward ideas, developed

methodology, performed all the computational as well as simu-

lation work and wrote the paper.

Prof. Kang Li, my supervisor, supervised the work, provided

excellent technical advice, modified and proof-read the draft of

the paper.

Mr. Xuan Liu reviewed the draft and provided some suggestions.

3. Yihuan Li, Kang Li, Xuan Liu, Yanxia Wang and Li Zhang.

”Lithium-ion battery capacity estimation—A pruned convolu-

tional neural network approach assisted with transfer learning.”

Applied Energy 285: 116410.

As the lead author, the candidate put forward ideas, developed

methodology, performed all the computational as well as simu-

lation work and wrote the paper.

Prof. Kang Li, my supervisor, supervised the work, provided

excellent technical advice, modified and proof-read the draft of

the paper.

Mr. Xuan Liu performed the experiments and discuss the data

analysis.

Dr. Yanxia Wang provided suggestions on the development of

methodology and reviewed the draft.

Mrs. Li Zhang reviewed the draft of the paper and provided



some suggestions.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published with-

out proper acknowledgement.

The right of Yihuan LI to be identified as Author of this work has

been asserted by her in accordance with the Copyright, Designs and

Patents Act 1988.

©2021 The University of Leeds and Yihuan LI



Acknowledgements

First and foremost, I would like to express my sincere gratitude to

my supervisor, Prof. Kang Li, for his continuous support, guidance,

and encouragement during my PhD study. His extremely valuable

advice and research insights and ideas have helped me build up the

research expertise and guided me to find research directions. And he

allocated much of his time to review and proofread my papers and

provide valuable and helpful comments to improve the quality of the

draft. I am extremely grateful for the support and guidance he has

given me. Without his patience and encouragement, I couldn’t have

reached this point.

I would like to thank all my colleagues who I have worked with for a

cherished time spent together. Special thanks to Dr. Yanxia Wang,

Dr. Shaojun Gan, and Mr. Xuan Liu, for their treasured sugges-

tions and experimental support which was really helpful in develop-

ing methodologies and analyzing results. I am also thankful to all my

friends for their encouragement all through my studies.

My sincere gratitude extends to the China Scholarship Council, Queen’s

University Belfast, and University of Leeds for sponsoring my research

and offering me such a great opportunity for expanding my horizon.

Last but not the least, I would like to express my deepest gratitude

to my family for their love and support. Without their tremendous

understanding and encouragement, it would be impossible for me to

reach where I am today.



I dedicated this thesis to my parents.



Abstract

Lithium-ion batteries are playing a key role in shifting our society to a

low-carbon future, they are being increasingly used in automotive and

power industries to enable the intake of more renewable energy and

to reduce greenhouse gas emissions. To ensure the safe, reliable, and

efficient operation of batteries, a battery management system (BMS)

is indispensable. Among all functionalities of the BMS, real-time bat-

tery state estimation provides important information for achieving

high-fidelity and high-performance operations. This thesis focus on

the development of novel techniques and frameworks to provide a co-

herent body of work on the estimation of battery states of interest,

that is, state of charge (SOC) and state of health (SOH).

The nonlinear variants of the Kalman filter (KF) framework have

proven to be powerful and elegant solutions for the real-time state

estimation of battery systems. As a state-space model is fundamen-

tal for using filtering algorithms and their estimation results highly

depend on the model accuracy, thus an accurate battery model that

can well capture the battery dynamics is established with suitable

model structure and parameters. Then the nonlinear version of the

KF, namely Extended Kalman Filter (EKF) and Unscented Kalman

Filter (UKF), as well as the Particle Filter (PF) are used to estimate

the battery SOC.

As it is not a trivial task to obtain a precise model that can well de-

scribe the battery degradation trend, an intelligent estimation tech-



nique is proposed based on the convolutional neural network (CNN) to

achieve fast and accurate online battery capacity estimation, which

integrates health feature extraction, parameters identification, and

capacity estimation into one framework. Taking into account the lim-

itation of CNN on small degradation datasets, the transfer learning

technique is incorporated into the CNN-based framework to improve

the estimation performance on small datasets by taking advantage of

the knowledge learned from large datasets. Further, in view of the

limited computational capability of the current BMSs, a new network

pruning technique is proposed to reduce the size and computation

cost of the final model.

Considering the intrinsic coupling relationship between SOC and SOH,

a co-estimation framework is proposed to estimate the SOC and ca-

pacity simultaneously. Due to the estimators can be mutually opti-

mized in the co-estimation framework, the estimation results of SOC

and capacity are both more accurate than the separated estimation

methods. Further, to acquire more informative measurements, the

fiber optic sensors are attached to the cell surface and their measure-

ments are utilized for battery SOC estimation to further improve the

accuracy.

Experimental data are collected from the lithium iron phosphate bat-

teries to analyze and evaluate the efficacy of the methods and frame-

works proposed in this thesis.
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Chapter 1

Introduction

The low-carbon transition is now the priority of many countries that aim at

achieving carbon neutrality by the mid of this century. One of the bridges to

a carbon neutral future is the battery energy storage systems, which capture

the energy and store it using electrochemical solutions. It plays a vital role in

the mass roll-out of electric vehicles and acceptance of significant penetration

of renewable power worldwide, and requires a battery management system to

monitor its internal states and maintain its functional performance, cycling life,

and safe and reliable operation. This chapter starts with an introduction to the

research background, it provides an overview of battery energy storage systems,

battery management systems, and state estimation techniques. Then according

to the current challenges facing battery management systems, the motivations

and objectives of the research conducted in this thesis are presented. Finally, the

outline of the thesis is provided together with a summary for each chapter.

1



1.1 Background

1.1 Background

Carbon neutrality, or net-zero carbon dioxide emissions, refers to balancing the

emissions and removal of carbon dioxide in the atmosphere. To slow down the

global climate change and to cope with energy supply shortage, the European

Union, China, and the United Kingdom, together with more than 110 other

countries, have committed to achieving net-zero emissions within the next few

decades [1]. Among actions in delivering a low-carbon future, the application of

energy storage systems, particularly battery energy storage, is the key to enabling

the integration of more renewable energy and reducing greenhouse gas emissions,

mainly because it has been widely used in electric vehicles (EVs) and the elec-

tricity grid. Based on the commitment of those countries with net-zero emission

target, by 2040, the total number of EVs that are projected to be on the road is

expected to reach 150 to 900 millions, which is two or three orders of magnitude

larger than today. In the mean time, the global installation of stationary energy

storage will increase exponentially and is projected to reach up to 1300 GWh by

2040 [2].

The transportation sector and power sector are the two main sources of green-

house gas emissions. Previous research has demonstrated that EVs are one of the

most promising solutions for the transition of energy chain to a low-carbon, safe

and competitive economy, they offer the potential to significantly reduce carbon

emissions from the transport sector and reduce the dependence on fossil fuels.

And for the power sector, battery energy storage systems (BESSs) could play

vital roles in deep decarbonization as they can provide a new, carbon-free source

of operating reserves and flexibility in the power system, as well as facilitate the

integration of variable renewable energy sources such as solar and wind energy [3].

The growing installed capacity of renewable energy and the increasing number of

EVs connected to the power grid has initiated high requirements on power bal-

2



1.1 Background

ance control and power quality, and gradually changing the structure of the power

network. A typical scenario of a grid system integrated with renewable energy

sources, energy storage systems (ESSs) and EVs is illustrated in Figure 1.1. The

renewable energy power station with solar photovoltaic panels and wind turbines

produce energy to the power grid. The ESSs have potential bidirectional power

flow capabilities, they can receive electrical energy from the grid during the excess

of production and deliver it back when consumption is higher than generation.

And similar to ESSs, the EVs with Grid-to-Vehicle (G2V) and Vehicle-to-Grid

(V2G) [4] capabilities can also receive or provide electrical energy.

Figure 1.1: A typical grid system configuration that integrates renewable energy
sources, energy storage systems and electric vehicles.

Battery energy storage systems are the key components of the future transporta-

tion sector and power grid, they are not only the power sources of EVs that de-
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termine the cruising range and carrying capacity, but also electric energy buffers

that can balance the energy production and consumption and improve the renew-

able energy integration into the power grid. In brief, BESSs can support a wide

range of services needed for the low-carbon transition, from powering electric

vehicles, to providing grid services including frequency regulation, reserve capac-

ity and black-start capability [5], and upgrading mini-grids. Therefore, battery

energy storage is regarded as an essential factor for countries with carbon neu-

trality objectives, and its deployment and commercialisation have become more

widespread. More information on BESSs will be elaborated on in the following

subsection.

1.1.1 Battery Energy Storage

Battery energy storage systems (BESSs), which are a sub-set of energy storage

systems, are mature and popular technologies developed for storing electrical en-

ergy in electrochemical form [6]. Due to their merits of modularization, flexible

installation, rapid response and decreasing prices [7], they exhibit considerable

potentials for fueling the next green revolution in transportation and power sec-

tors. By electrifying the transportation systems and balancing the intermittency

issues caused by the penetration of renewable energy [8], batteries can radically

reduce the carbon emissions in these two sectors. To promote the development

and commercial applications of batteries, enormous amount of researches have

been conducted to improve the performance of existing batteries and develop

new batteries. There are many commercially available battery types, such as

lead acid, nickel-based, sodium sulfur (NaS), Lithium-ion (Li-ion), and flow bat-

teries, among which the Li-ion batteries are the current predominant BESSs for

EVs. A brief introduction of these batteries and their applications is given in the

following:
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• The lead acid battery is the first commercially successful rechargeable bat-

tery invented by Gastom Planté in 1859 [9], it has been widely used in many

applications such as EVs and grid energy storage. In this battery, the lead

dioxide and metallic lead are treated as positive and negative electrodes,

separately, and the sulphuric acid solution is used as the electrolyte [7].

There are two typical types of lead acid batteries, including the flooded

lead acid batteries and sealed valved-regulated lead acid (VRLA) batteries,

the main difference between them is that the electrolyte in VRLA batter-

ies is immobilized [10]. The flooded lead acid battery is cheaper than the

VRLA battery, but it requires regular maintenance and refilling distilled wa-

ter due to the water loss, and needs to be performed in a more ventilation

space due to the production of flammable gasses. Furthermore, the flooded

battery must be operated in an upright posit and acid spillage is possible.

As an improved type of lead acid battery, the VRLA battery can minimize

water loss by employing an oxygen recombination technology, and it has

a safety pressure relief valve to release the excess internal pressure. The

construction of the VRLA battery means that it requires less maintenance,

can be installed in any orientation and there are virtually no leakages [11].

The lead acid batteries are large and heavy, and have low energy density and

short life cycles. Nonetheless, they are low-cost, have high reliability, and

have a high tolerance for abuse [12]. Therefore, they are ideal candidates

for those small-scale energy storage applications such as starting, lighting,

and ignition for automotive and uninterrupted power supply (UPS) [13], as

well as large-scale grid applications such as renewable energy balancing.

• The nickel-based battery employs a nickel hydroxide positive electrode, with

either a metallic anode (e.g. nickel-cadmium (NiCd)) or a hydrogen storing

negative electrode (e.g. nickel metal-hydride (NiMH)), as well as an alkaline
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electrolyte. The NiCd battery has longer life cycle and can provide excellent

performance under rigorous working conditions [14]. Since its invention in

1899, it has been widely applied for portable electronic devices until the mid-

1990s. However, due to its low energy density and the toxicity of cadmium,

the market share of NiCd battery declined rapidly. Compared to NiCd,

the NiMH battery that commercially uptook in 1990 has higher energy and

power density and is environmentally friendly. At the beginning of 2000, it

represented the most popular technology adopted by major companies (e.g.

Honda, Ford, General Motor, Toyota, etc.) for EVs and hybrid EVs [15].

However, it still suffers from several drawbacks such as high self-discharge

rate, sensitive to storing and charging conditions, limited service life, and

low specific energy [16]. Therefore, NiMH batteries will no longer serve

in next-generation EVs and hybrid EVs and will be substituted by new

technologies.

• The sodium sulfur (NaS) battery was originally developed by Ford Motor

Company in the 1960s for automotive applications [16] and was commercial-

ized in grid energy storage applications by Tokyo Electric Power Company

in collaboration with NGK insulators [17]. By using molten sodium as the

negative electrode and molten sulphur as the positive electrode, and sepa-

rating them by a solid ceramic sodium alumina electrolyte membrane, the

resultant NaS battery is characterized by high energy density, low cost of

raw materials, long cycle life, and high round-trip efficiency [10; 18]. These

attributes make it suitable for large-scale grid-level energy storage appli-

cations including load leveling, peak-shaving and integration of renewable

energy sources. However, the major drawback of this type of battery is that

it requires a high operating temperature (over 300 ◦C) to ensure that the

active materials of the two electrodes are in a molten state and thus allow
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the reactions to process. This restriction increases the application difficulty

and operational cost of NaS batteries.

• Modern Redox flow battery (RFB) was invented by the National Aeronau-

tics and Space Administration (NASA) in the 1970s [19]. Unlike traditional

solid-state batteries that store energy in electrode materials, RFBs store en-

ergy in liquid electrolytes, which are generally stored in two external tanks.

The electrolytes flowing through the cathode and anode often are different

and are referred to as the anolyte and the catholyte, respectively. As the

energy is stored in the incoming electrolytes (fuels) in the form of two dis-

solved redox pairs, and energy conversion between chemical and electrical

energy occurs at the electrodes when the electrolytes are pumped from the

tanks to cells, RFBs are sometimes referred to as regenerative fuel cells

[16; 20].

Energy capacity of the RFB is mostly scaled with the volume of the elec-

trolytes, whilst the power is related to the electrode area or the reactor area

[21]. That is, the energy and power capacity of RFB can scale over a broad

range by flexible modular design, thus making RFB suitable for a variety of

applications. Furthermore, the RFB has the advantages of excellent safety,

fast response time and long cycle life, which makes it well suited for bal-

ancing highly variable renewable energy sources. However, one of the main

drawbacks of commercial RFB is that it provides lower energy densities

than other types of batteries, such as Lithium-ion batteries.

• Lithium-ion batteries, which were commercially launched by Sony in the

early 1990s, are popular energy storage systems that have achieved signif-

icant penetration in various applications. For these batteries, the interca-

lated lithium compounds are used as the active materials of the positive

electrode, and the negative electrode is usually made of carbonaceous ma-
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terials such as graphite [10]. During the operation of Li-ion batteries, the

Li-ions migrate across the electrolyte located between the two electrodes.

In particular, the Li-ions are deintercalated from the positive electrode and

then inserted into the negative electrode when the battery is charged, while

the process is reversed during discharge [16]. The Li-ion batteries out-

perform other types of batteries (e.g. lead acid, NiCd and NiMh), the

properties of low molecular weight, high energy density, long cycle life, low

self-discharge rate and environmental friendliness make them overwhelm-

ingly attractive and thus ubiquitous in portable electronics. Furthermore,

Li-ion batteries are regarded as the systemic enabler of a major shift for

the next generation of EVs and grid energy storage applications [7; 22].

The huge application prospects of Li-ion batteries have attracted great re-

search attention, and significant research efforts have been devoted to the

development of advanced Li-ion battery technologies in recent years. Based

on the development of basic solid-state chemistry of materials, the positive

and negative electrodes and electrolytes have been improved and optimized

[23]. Several types of commercialized Li-ion batteries have been developed,

such as lithium cobalt oxide (LCO), lithium nickel manganese cobalt oxide

(NMC), lithium iron phosphate (LFP) and lithium-titanate oxide (LTO).

As their electrodes and electrolytes materials are different, they have differ-

ent chemistry and characteristics. For example, LCO battery has high spe-

cific energy and dominate the portable electronics market, NMC and LFP

batteries are becoming increasingly popular in EVs applications, while LTO

battery tends to have a growing market share in large-scale grid applications

due to its long cycle life, high power density, and well low/high-temperature

tolerance. It is noteworthy that LFP battery has the characteristics of long

cycle life, high current rating, good thermal stability, high safety level and

environmental resilience, which make it one of the most promising Li-ion
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batteries for EVs and grid energy storage applications [16; 24]. Therefore,

LFP batteries are chosen as the subjects of this work, and the later devel-

oped online state estimation frameworks are all based on the experimental

test of these batteries.

A comparison of different types of batteries is summarized in Table 1.1 [10; 16;

25; 26; 27; 28; 29; 30], the main characteristics in terms of cycle life, nominal

voltage, specific energy, specific power, round trip efficiency, daily self-discharge

rate, charging and discharging temperature of the aforementioned batteries are

listed.

As it is shown, the lithium-ion batteries are superior to other types of batteries

in many terms. Notwithstanding their desirable performance, the operation re-

liability and safety necessitate an effective and dependable battery management

system for state estimation, charge/discharge control, and planned maintenance,

etc.

1.1.2 Battery Management System

The battery management system (BMS) is a key element to ensure the safe, reli-

able, and efficient operation of the battery as well as to maximize its energy/power

delivery capabilities and prolong its lifetime. As illustrated in Figure 1.2, the core

functions of BMS generally include the following:

• Data acquisition:

This module measures and collects the battery data at proper sampling

frequency and precision, which includes current, voltage, and surface tem-

perature.

• State estimation:

Battery internal states, such as state of charge (SOC), state of power (SOP),

state of health (SOH) and internal temperature, are critical indicators of the
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battery performance and reveal the operating status of the battery. These

variables can not be measured directly, the only information available to

infer these states is generated by the measurements. However, erroneous

internal state values can greatly affect the operation of the battery, result in

abuse or waste of battery available capability, which may cause premature

failure [31]. Therefore, real-time high-accuracy state estimation is essential

for the safe, efficient and reliable operation of the battery systems.

• Charge/discharge control:

This module regulates the charge/discharge current and voltage to avoid

inappropriate operations, thereby preventing damage to the battery and

prolonging its service life.

• Cell balancing:

A battery pack usually consists of a number of cells configured in se-

ries/parallel formations to provide sufficient power and voltage for specific

applications. Small differences between cells due to production tolerances

or operating conditions tend to be magnified with battery usage, which can

significantly affect the overall pack performance [16]. Meanwhile, weaker

cells could become overstressed resulting in premature failure of the bat-

tery. To avoid this problem, cell balancing is proposed to compensate for

weaker cells by equalising the charge on all the cells in the pack and thus

extending battery life.

• Thermal management:

As the temperature can significantly affect battery characteristics, an effi-

cient thermal management module is essential to control the temperature

and confine the battery pack to operate within a proper temperature range.

• Safety protection:
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The protection module is responsible for ensuring the safety of the battery

under almost all circumstances and protecting the user from the conse-

quences of battery failures. Special circuits are designed to prevent the bat-

tery from operating beyond the tolerance conditions, i.e., to operate the bat-

tery within its predefined limits thereby avoiding overcharge/overdischarge,

overheating, overpressure, etc. Moreover, this module also offers proactive

fault detection and alarming functions.

Figure 1.2: The core functions of a typical BMS

The BMS is indispensable for integrating the battery energy storage into the

EVs and electric grid. Without efficient BMSs, the battery may be operated and

maintained inappropriately, leading to catastrophic hazards and failures.

1.1.2.1 Battery State Estimation

Although the BMS offers various sophisticated functions, the internal state esti-

mation is still one of the most critical tasks in BMS due to it is usually the basis
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for battery charge/discharge control, protection, optimization, and maintenance.

The battery states of interest are:

• State of charge (SOC) which is an indicator that reflects the real-time re-

maining capacity of the battery. The SOC is influenced by current, tem-

perature and battery aging level, and has fast time-varying dynamics.

• State of health (SOH) which is an indicator that reflects the aging or degra-

dation level of the battery. The battery aging is mostly influenced by oper-

ating conditions (i.e. load, temperature, humidity) and SOC, and has slow

time-varying dynamics.

• State of energy (SOE) which is an indicator that reflects the residual energy

of the battery.

• State of power (SOP) which reflects the amount of electrical power that

a battery can deliver for a given time interval under specified operating

conditions. The SOP is influenced by operating temperature, SOC, SOH

and time.

• Internal temperature which is different from the battery surface tempera-

ture, can directly affect the battery performance leading to degradation and

failure.

As the safety standards and regulations of batteries in automotive and grid ap-

plications become more stringent, battery state estimation is definitely a fast-

growing area of research. The two major states, SOC and SOH, have been ex-

tensively studied over the years to achieve fast and accurate online estimation.

A large number of approaches have been proposed, which can be roughly divided

into two categories: model-based approaches combined with filtering algorithms,

and model-free approaches such as machine learning-based techniques. The SOC
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and SOH estimation techniques reported in the literature will be systematically

elaborated in Chapter 2.

1.1.2.2 Fiber Optic Sensors in BMS

Most of the existing research works estimate the battery states using the ex-

ternal measured parameters such as current, voltage, and surface temperature.

These external parameters are weakly informative to represent the holistic map-

ping of the battery states thus limit the estimation accuracy, and lead to over-

conservative usage of the battery [32]. Therefore, an intuitive way to improve the

estimation performance is to gain additional information of the battery dynamic

behavior, such as internal temperature and electrode volume change. Fiber optic

sensors, which are immune to electromagnetic interference, robust to corrosive

environments, have multiplexing and small dimensions, are attractive candidates

for battery sensing applications [33]. They are capable of sensitively measuring

multiple parameters simultaneously, including strain, temperature and pressure.

During the charge and discharge processes, the cell electrode volume changes

due to Li-ions intercalation/ deintercalation processes in the electrode materials,

which manifest as changes in the strain on the cell surface. Besides, the cell

temperature also changes during the charge and discharge processes due to the

electrochemical reactions, resistive heating, and enthalpy changes. Both param-

eters can help gain deeper insight into the internal dynamics of the battery, and

are regarded as a complementary to the current and voltage measurements. Fiber

Bragg grating (FBG) sensors are sensitive to strain and temperature and thus

their applications in BMS have been increasingly investigated in recent years. To

demonstrate the potential of FBG sensors to aid state estimation in BMS, Som-

mer et al. attached a pair of FBG sensors externally to lithium-ion pouch cells

to monitor intercalation state transition points across various charge/discharge

rates [34]. Sharp and repeatable features correlated with intercalation state tran-
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sitions can be observed in the strain curves across different charge/discharge rates,

and these novel features can enable better state estimation. Nascimento et al.

presented a comparative study of surface temperature monitoring performance

between the thermocouples and fiber sensors, and demonstrated that the FBG

sensors were better choices for surface temperature monitoring under normal and

abuse operating conditions and failure detection [35]. Fortier et al. embedded

the FBG sensors inside the coin cell and monitored strain, internal and external

temperatures simultaneously, the challenges and obstacles encountered during

the integration of FBG sensors inside coin cells were discussed [36]. Similarly,

after exploring the relationship between the external FBG sensing signals and

diffusion processes [32], the team of Raghavan et al. embedded the FBG sen-

sors inside pouch cells to directly monitor the internal temperature and electrode

strain [33], the results have revealed that batteries with embedded FBG sensors

are highly comparable to those without FBG sensors in terms of seal integrity,

capacity retention and projected cycle life. Besides, this work demonstrated that

the FBG sensors were possible for embedding into large-format cells as a low-cost,

field-deployable option for direct internal state monitoring for BMSs. Peng et al.

[37; 38] designed sensitivity-enhanced FBG sensors and mounted them onto the

cell surface, the relationship between the strain and SOC/depth of discharge was

investigated.

Since increasingly encouraging results indicate that the FBG signals can be used

for battery state estimation, there is a growing interest in developing new state

estimation algorithms to incorporate the conventional measurements (i.e. cur-

rent, voltage and surface temperature) and the FBG sensor signals (i.e. strain

and internal temperature) to improve the performance. [39] is the second part of

the twofold paper [33; 39], it estimated the SOC and SOH using dynamic time

warping and Kalman filtering algorithms based on the internal strain signals ob-

tained from these FBG sensors at different temperature conditions. Similarly,
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Rente et al. [40] achieved accurate SOC estimation results using dynamic time

warping algorithm by correlating the cell surface strain data obtained from FBG

sensors with the SOC, the results indicated that installing FBG sensors on the

cell surface is a feasible, cost-effective and non-invasive approach for assisting

SOC estimation.

1.1.3 State estimation

The hidden variables, which can characterise the internal condition or status of

a system, are often extracted from indirect, inaccurate and uncertain measure-

ments. This process is called state estimation, and the hidden variables are often

named as system states. The main objective of state estimation is to minimize the

estimation error between the actual and estimated values. Due to the importance

of state estimation in monitoring, control, and fault diagnosis of engineering pro-

cesses and systems, it has been extensively researched and widely applied across

many engineering and scientific disciplines since the concept was developed in the

1960s [41].

The earliest interest in the state estimation problems can even be traced back

to 1795 in the astronomical field, where the motion of planets and comets was

studied using telescopic observations. Karl Friedrich Gauss investigated the prob-

lem of how to infer the parameters from the measurements in an optimal way to

characterise the orbits of the revolution of celestial bodies, and developed a math-

ematical approach in 1809 based on the famous least square estimation method

that he invented in 1795. The maximum likelihood estimation, which lays the

foundation of the modern state estimation theory, was introduced by Fisher in

1912. And then in the 1940s, Kolmogorov and Wiener developed estimation meth-

ods for discrete-time and continuous-time stochastic systems respectively. The

developed methods minimize the least mean-square errors, and form the basis for

the recursive estimation and stochastic filtering theory. Wiener filter designed by
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Wiener is mainly used for signal processing and communication theory, but not

for state estimation, as it only deals with stationary processes. Kalman extended

this theory for more generic non-stationary processes and developed a new theory

which was later named as the Kalman filter (KF) [42]. Then, this algorithm was

successfully employed in the Apollo’s guidance and navigation system by NASA

and was soon applied to state estimation problems as one of the most pragmatic

approaches. Sequential measurements and a linear state space model are used in

KF to provide an optimal state estimation for the system with white Gaussian

noise. Kalman and Bucy further developed a continuous version of the KF called

the Kalman-Bucy filter [43; 44; 45].

State estimation problems can be classified based on whether the system is linear

or nonlinear. The aforementioned Wiener filter and Kalman filter are optimal

linear filters. Linear state estimation deals with the estimation problems for lin-

ear systems or linear models. But in reality, almost all the practical systems are

nonlinear, and linear estimators may fail to produce satisfactory results for non-

linear systems. Though a number of methods have been proposed to solve the

problems of state estimation in nonlinear systems and processes, no single solu-

tion clearly outperforms other strategies. Two main streams of nonlinear system

state estimation methods include model-based and data-driven methods. If the

system model can be well developed based on the first principle laws, the model-

based method would be a cost effective approach for real time state estimation.

A number of model-based approaches have emerged over the past several decades

for state estimation of nonlinear systems, such as the variants of KF and sliding

mode observers. The extensions of KF formulation, such as the extended Kalman

filter (EKF) and the unscented Kalman filter (UKF), enable the framework of

KF to be applied to state estimation in nonlinear systems with Gaussian noise

hypotheses. To deal with state estimation problems for nonlinear system without

Gaussian noise hypotheses, the particle filter (PF) was proposed based on Monte
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Carlo simulation technology to estimate the states by calculating the conditional

probability of the state. Based on these basic filters, many other algorithms

are proposed according to the demand in real applications. Adaptive EKF and

Adaptive UKF can achieve higher accuracy by adaptively updating the process

and measurement noise covariance. Unscented PF was proposed to generate a

proposed distribution to obtain the posterior probability using the information of

the latest observations. And the Adaptive PF is capable of adjusting the number

of particles at each iteration. This adaptive adjustment is expected to produce

better estimation performance and reduce the computational cost when the ini-

tial number of particles is over-estimated. The Regularized PF was proposed to

overcome the sample impoverishment problem by changing the discrete approx-

imation of the posterior probability density function (PDF) to a continuous one

at the resampling stage with a re-scaled kernel procedure [46].

With the development of sensor technology and storage technology, data-driven

methods have been increasingly investigated for state estimation, which could cir-

cumvent the need to model large or complicated systems. In particular, machine

learning (ML) techniques such as support vector machine, Gaussian process re-

gression, and deep neural network, are popular data-based state estimation tech-

niques, and have become a common tool for modelling complex or even unknown

systems due to their simplicity in handling data and powerful approximation ca-

pability. These methods do not require prior knowledge of the systems, and are

not restricted by the system assumptions. The applications of both model-based

and data-based techniques in the fields of SOC and SOH estimation have been

widely studied, and a review will be given in Chapter 2.

18



1.2 Research motivations and objectives

1.2 Research motivations and objectives

Lithium-ion battery energy storage systems are complex dynamic systems with

high nonlinearity and environmental sensitivity. As aforementioned, accurate

state estimation plays a vital role in BMS for ensuring safe, efficient and reliable

battery operation. Estimation methods are consistently developed to achieve fur-

ther improvement in terms of accuracy, reliability, and practicability. And the

newly developed methods are expected to be more intelligent since a large volume

of historical experimental data is available now and various operating conditions

are taking into account. This thesis aims to expand upon the current state-of-

the-art advanced battery state estimation algorithms, by developing accurate and

reliable frameworks for SOC and SOH estimation.

For model-based SOC estimation methods, an accurate model that can well de-

scribe the system dynamics is essential. Considering the complex operating con-

ditions and the complicated electrochemical reactions inside the battery, it is a

challenging task to obtain a perfect battery model. For battery capacity estima-

tion, using data-driven methods has several advantages over other conventional

methods. Particularly, the convolutional neural network (CNN) is powerful to

automatically capture hidden information from a huge amount of historical data,

flexible to express any complex systems by adjusting the weights and layers, and

capable of retaining the same expressibility as the deep neural networks (DNN)

with fewer parameters. Thus a CNN-based framework is proposed for capacity

estimation in this work. However, the primary use of the CNN mainly lies in

high-dimensional data, like images, videos and speech recognition. To apply it

in such a temporal dimension, the structure of the CNN should be carefully de-

fined, and the input signal should be reconstructed. Besides, the performance of

CNN-based capacity estimation framework on small dataset is unsatisfactory as

a proper CNN model requires a large amount of training data. Advanced tech-

19



1.2 Research motivations and objectives

niques should be investigated to improve its performance on small target dataset.

Moreover, in view of the limited computational capability of the current BMSs,

the CNN model size need to be further compressed. And last but not least, the

SOC estimation is affected by battery aging, while the SOH estimation can also

be affected by inaccurate SOC estimates. Therefore, the intrinsic coupling rela-

tionship between SOC and SOH should be considered during their estimation.

To tackle these challenges, the main objectives of this research work can be sum-

marized as follows:

• To comprehensively review the state-of-the-art techniques on battery state

estimation, the main emphasis is given to SOC and SOH.

• To develop an effective battery model for SOC estimation, as an accurate

model is fundamental to ensure reliable state estimation.

• To develop a CNN-based SOH estimation framework, where the SOH is

represented by the capacity. This method can perform the modelling and

estimation in a single unified step as the neural network can directly map

the measurements (e.g., current, voltage and surface temperature) to the

battery capacity.

• To investigate advanced techniques that can improve the CNN performance

on small degradation dataset of batteries, e.g.,via the transfer learning tech-

nique.

• To investigate network pruning techniques to reduce the size and computa-

tional complexity of the CNN model while maintaining its performance.

• To develop a SOC and SOH joint estimation method that can synergisti-

cally optimize their respective estimation results, in order to achieve higher

estimation accuracy for both states.
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• To investigate the application of FBG measured signals in assisting battery

state estimation.

1.3 Thesis Structure

Chapter 1 introduces the research background including battery energy storage,

battery management system and state estimation techniques, and presents the

research motivations and objectives.

Chapter 2 reviews the battery modelling and state estimation techniques. Var-

ious battery modelling and identification methods are discussed, the advantages

and drawbacks of several different estimation techniques of battery SOC and SOH

are analyzed, with a view to later develop qualified state estimation frameworks.

Chapter 3 describes the model-based battery SOC estimation method proposed

in this study. The detailed algorithm used in the model construction is firstly

introduced, then the proposed model construction processes are presented. Next,

a preliminary introduction to the filtering algorithms is presented, the concepts

and formulas of the KF, EKF, UKF, and PF are introduced in detail. Finally,

different filtering algorithms are applied to estimate the SOC based on the resul-

tant model, and the results are analysed comparatively.

Chapter 4 details the CNN-based framework developed in this study to simulate

battery degradation trend. CNNs, transfer learning, and network pruning tech-

niques, which are then integrated into one framework to produce the final model,

are introduced at the beginning of this chapter. Then the detailed process for

model construction are elaborated. Finally, estimation results of the resultant

model are analyzed to verify the efficacy of the proposed framework.

Chapter 5 extends the research work presented in Chapter 3 and Chapter 4 and

a battery SOC and SOH coestimation framework based on Gaussian process re-

gression and CNN is proposed and evaluated. New signals obtained by fiber optic
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sensors are introduced and applied for SOC estimation. Experimental results are

analyzed to verify the performance of the proposed framework and the utility of

the newly involved fiber sensor data.

Finally, Chapter 6 summarizes the work that has been conducted so far, and

the scope for the future research which can be expanded on this thesis is set out.
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Chapter 2

Literature Review

As introduced in Chapter 1, lithium-ion batteries have shown superior perfor-

mance in energy density, power density, cycle life, and round-trip efficiency in

comparison with other types of batteries. Thus they are versatile and attrac-

tive battery energy storage systems, and represent the most convincing choice for

both electric vehicles and power grids in the upcoming years. In order to ensure

the operation safety, reliability and longevity of the battery, an efficient bat-

tery management system (BMS) with advanced techniques is necessary. Among

all functionalities of the BMS, battery internal state estimation is essential for

controlling, optimizing, and managing the operation of the battery. Generally

speaking, battery state estimation methods can be classified into two categories,

i.e., model-based and model-free methods. Since an accurate battery model is

an important reference for model-based estimation methods, a comprehensive re-

view of battery modelling approaches is provided at the beginning of this chapter.

Then a systematic literature review over state estimation techniques is performed,

the main emphasis is given to state of charge and state of health.
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2.1 Battery models

The battery model is a prerequisite for model-based battery internal state esti-

mation. The battery models presented in literature mainly fall into the following

three categories: physics-based electrochemical models (EM), electrical equiva-

lent circuit models (ECMs), and black-box models [47], as shown in Figure 2.1.

Figure 2.1: The classification of battery modelling methods.

Batteries are electrochemical systems, the electrochemical models can provide full

information on the battery internal electrochemical dynamics. Electrochemical

models can explain how the potential is produced and affected by the internal

electrochemical reactions of the cell using a set of coupled partial differential

equations. The electrochemical models are regarded as the most accurate among

all battery models, as they interpret key behaviours of battery cells at the mi-

croscopic scale based on the chemical reaction taking place inside the battery.

However, the electrochemical models are difficult to model because they require

detailed first principle knowledge and the computational complexity restricts their

real-time applications. For real-time calculation, it is important to strike a bal-

ance between the model accuracy and the model complexity. ECMs are one of the

most commonly used battery models because they are accurate and not as com-
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plicated as electrochemical models. The ECMs are expressed by a combination

of voltage and current sources, capacitance, and resistance, where the parame-

ters like capacitance and resistance are prescribed offline and unchanged without

adaption during operation. However, these parameters vary with the battery

working conditions and battery aging, the non-adaption of these varying param-

eters will degrade the model accuracy and may introduce errors in battery state

estimation [48]. Black-box models are empirically established from experimen-

tal data fittings to infer relationships between various battery parameters such

as the terminal voltage, throughput current, temperature and SOC. Their equa-

tions rarely describe battery properties. Compared to ECMs and electrochemical

models, though they are not physically interpretable, they are simple and easy

to implement. In this study, a black-box mathematical model is established to

describe the relationship between the terminal voltage and SOC, which is used

in combination with the coulomb counting method to form a state space model

for filter-based SOC estimation.

2.1.1 Electrochemical Model

Newman’s group has pioneered the work of the electrochemical model. In 1993,

the Pseudo Two-dimensional (P2D) model was developed for lithium-ion batter-

ies based on the porous electrode theory and the concentrated solution theory

[49; 50]. The P2D model uses a set of nonlinear and coupled partial differential

equations and algebraic equations, which including the mass and charge conserva-

tion in electrodes and electrolyte, the corresponding boundary conditions, and the

electrochemical kinetics equations, to describe the solid and electrolyte dynamics

of lithium-ion batteries. To this day, this model still remains the most popular

Li-ion battery model and has been thoroughly tested and validated. However, the

number of parameters and equations involved in the P2D model makes the model

highly computationally complex, limiting the model real-time application. To fa-
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cilitate computation simplicity, scholars have made continuous effort to develop

simplified P2D models by using various mathematical (e.g., finding the analyti-

cal or approximate solution of each partial differential equation by mathematical

method) and physical (e.g., proposing new hypotheses to eliminate part of the

electrochemical process) simplification methods.

The PP model is a porous electrode model that incorporates the parabolic ap-

proximation into the P2D model, the resultant PP model retains the complexity

of the previous P2D model, but is mathematically simpler [51; 52]. To further

reduce the computational time without compromising accuracy, the single par-

ticle (SP) model was proposed, which treats each electrode as a single spherical

particle whose surface area is equivalent to the active area of the solid porous

electrode and neglects the presence of the liquid electrolyte [53; 54; 55]. That

is, the SP model treats the transport phenomena in a simple manner and re-

move the partial differential equation of the liquid electrolyte phase [52]. It has

been confirmed that the calculation speed of this simplified model is thousands

of times faster than that of the conventional P2D model [56]. Though the SP

model adequately describes the general charge-discharge behavior of the battery,

they are not suitable for batteries with high charge/discharge current rates, thick

electrodes, and lowly conductive electrodes, which is mainly because of the ab-

sence of the electrolyte physics [57; 58].

There is little doubt that good electrochemical models are the most accurate

among all battery models, as they are capable of comprehensively describing the

battery spatiotemporal dynamics. However, the complexity and high computa-

tional requirements for solving the electrochemical model equations in comparison

to other battery models limit their real-time application. Thereby, the equivalent

circuit models, which have flexible structures, fast computational speed, and sim-

ple control design, appear to be promising for the model-based real-time battery

state estimation and have gained a lot of interest in automotive applications.
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2.1.2 Equivalent Circuit Model

To build models that are accurate enough but not as complicated as the elec-

trochemical models, the equivalent circuit modelling approaches are investigated.

The electrical equivalent circuit models provide a great trade-off between the

model accuracy and the computational complexity, which utilize the electrical

circuit elements to mimic battery dynamics without considering the physical ba-

sis of the batteries. Compared with the electrochemical models, the ECMs are

easy to understand, offer fast simulation of the system, require few computational

resources, and can be embedded in very basic (and cheap) microcontrollers [59].

As presented in Figure 2.1, the ECMs mainly include the Rint model, Thevenin

model, dual polarization (DP) model and their revisions. The circuit diagrams

of different ECMs are illustrated in Figure 2.2 [60].

(a) (b) (c)

Figure 2.2: Schematic diagram of ECMs:(a) The Rint model; (b) The Thevenin
model; and (c) The DP model [60].

Where IL is the load current, Vt is the terminal voltage, R0 refers to the battery

internal resistance, Uoc is the open circuit voltage which is a function of SOC,

R1, R2 are the equivalent polarization resistances and C1, C2 are the equivalent

polarization capacitances to model the polarization characteristic, UR, U1, U2 are

the over-potential voltages across R0, R1 and R2 respectively. The discretised

voltage equations and the parameters θ for these three models are listed below

[60]:
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Rint Model

Vt,k = Uoc(SOCk)− IL,kR0 (2.1)

θ = R0 (2.2)

Thevenin Model

U1,k+1 = U1,ke
−∆t
τ1 + IL,kR1

(
1− e

−∆t
τ1

)
(2.3)

Vt,k = Uoc(SOCk)− IL,kR0 − U1,k (2.4)

θ = [R0, R1, τ1]T (2.5)

DP Model

U1,k+1 = U1,ke
−∆t
τ1 + IL,kR1

(
1− e

−∆t
τ1

)
(2.6)

U2,k+1 = U2,ke
−∆t
τ2 + IL,kR2

(
1− e

−∆t
τ2

)
(2.7)

Vt,k = Uoc(SOCk)− IL,kR0 − U1,k − U2,k (2.8)

θ = [R0, R1, R2, τ1, τ2]T (2.9)

Where k refers to the kth sample time, ∆t is the sampling period, the time con-

stants of the two RC networks are τ1 = C1R1 and τ2 = C2R2.

As shown in Figure 2.2(a), The Rint model is the simplest ECM, which consists

of an ideal voltage source in series with a resistor. To simulate the diffusion

process and polarization effects, the parallel-connected resistor-capacitor (RC)

networks are utilized to form more complicated ECMs [61], and the number of

RC networks varies from 1 to n according to the dynamics of the load profile and

the required modelling accuracy. The model order refers to the number of RC

networks, and the first and second-order models are commonly used RC mod-

els for SOC estimation and power predictions [60]. The first-order model, also

28



2.1 Battery models

called the Thevenin model, connects a parallel RC network in series with the Rint

model (Figure 2.2(b)). The single RC network describes the transient response

during battery charging and discharging process [62]. The second-order model,

also known as the DP model, connects two parallel RC circuits in series with

the Rint model (Figure 2.2(c)), which can refine the description of the transient

response of the battery caused by transfer, diffusion and other factors [63]. The

polarization resistance R1 and the polarization capacitance C1 characterize the

electrochemical polarization, while R2 and C2 are used to simulate the concen-

tration polarization [64; 65]. Higher-order models have also been investigated, as

adding more RC networks may improve the model accuracy. However, more RC

networks involve more parameters, and thus increase the model complexity and

require more computational effort. Therefore, it is important to get a compromise

in the balance of computational effort and model accuracy [66]. The effect of the

number of RC networks on the model accuracy was systematically evaluated in

[63], which concluded that the DP model has optimal simulation performance

among the investigated battery models.

Accurate model parameters identification methods are necessary for the effi-

cient utilization of ECMs. They can be classified into two categories, tradi-

tional offline identification methods and online methods. The traditional offline

methods, such as curve fitting and recursive least squares (RLS) method, have

been extensively utilized in online SOC estimation. However, the parameters of

ECMs would change according to the operating conditions, such as temperature,

charge/discharge rate, SOC and aging level, it is injudicious to utilize the invari-

ant parameters [60; 67]. In this regard, ECM parameters need to be recalibrated

regularly to ensure their extensibility for different operating conditions. Thus,

online recursive identification algorithms are more appropriate. Plett introduced

dual estimation methods to concurrently estimate the battery state and time-

varying model parameters using extended Kalman filtering algorithm [68] and
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unscented Kalman filtering algorithm [69]. In [48], the model parameters were

adapted online using the RLS method, and the battery SOC and capacity were

estimated simultaneously with the joint EKF, which fully decoupled the model

identification and state estimation processes to eliminate the cross interference.

Considering that the battery behaviors consist of both fast dynamics (FD) and

slow dynamics (SD) and estimating all the parameters together will suffer from

numerical problems and poor accuracy, Zhang et al. [70] proposed a novel online

parameter identification method based on weighted RLS to decouple these two

dynamics, and estimate the FD and SD parameters separately. The DP model

was used in this paper and it is assumed that the time constant τ1 is less than τ2.

Herein, the parameters R0, R1, C1 are regarded as the FD part, which describe the

battery internal resistance, charge transfer, and double layer effect respectively.

While R2 and C2 are considered as the SD parameters. In [71], nine different

parameters identification methods were used and compared for nine ECMs, the

results suggested that PSO is an ideal choice for online parameters identification

of second-order RC models. And higher-order RC models are not suitable for

online parameter identification.

2.1.3 Black-box Model

It is not trivial to establish the precise battery model using the electrochemical

model and ECM approaches due to the complicated electrochemical reactions

inside the cells and the uncertain external operating conditions. The data-driven

methods appear to be powerful tools for accurate battery model establishment

and have been extensively researched in recent years. They are easy to use and

are free of a priori knowledge of battery dynamics, and are suitable for differ-

ent battery systems and operating conditions as long as sufficient, diverse, and

comprehensive training data are available. The machine learning techniques have

merits of flexibility, reliability, strong adaptability and generalizability, and can
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approximate highly nonlinear dynamics with desired accuracy.

Diverse ML techniques have been exploited in battery modelling and state es-

timation. In [72], the practicable capacity was used as the input to a radial

basis function neural networks (RBFNN) along with terminal voltage and cur-

rent, which considering the effect of battery aging on SOC estimation. The model

can offer good robustness under varying temperatures, different loading profiles,

and different degradation levels. Hannan et al. [73] used the terminal voltage,

current and temperature as inputs to a back-propagation neural network to esti-

mate SOC. The number of neurons in the hidden layer and the learning rate of

this model were optimized by backtracking search algorithm to improve the model

accuracy and robustness. Chemali et al. [74] used a 4-layer deep neural network

to directly map the battery measurements to SOC. By using the temperature

as one of the inputs, the intrinsic behavior of the battery under different ambi-

ent temperatures can be encoded into the weights of the network such that the

trained model is capable of providing accurate and robust estimation results at

different operating temperatures. Furthermore, by forming a state space model

using the coulomb counting method and ML techniques, the closed-loop SOC

estimation can be realised using filtering algorithms or observers. Similar work

has been reported in several papers, which use machine learning techniques such

as feedforward neural network [75], RBFNN [76], least squares support vector

machine [77], and long short-term memory (LSTM) [78] to capture the nonlinear

relationship between the terminal voltage and battery SOC and estimate the SOC

using filters or observers. Since the filtering algorithms are implemented for the

state-space model, which is a discrete-time, stochastic model that consists of a

state function that describes how a state transitions in time, and a measurement

function relating the measured data to a state, the battery model is represented

in the form of state space model. Therefore, the resulting ML model was nor-

mally treated as the measurement function of a state space model for battery
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SOC estimation, while the formula of the coulomb counting method was treated

as the state function.

Though ML-based methods have benefits such as high modeling accuracy, strong

adaptability, and generalizability, the model performance can be severely affected

by the optimization methods and the quality of the data adopted. Generally, an

immense number of data are required to train a model suitable for various oper-

ating conditions.

2.2 Review of battery SOC estimation approaches

SOC is the ratio of remaining capacity (Qremaining,k) to maximum available ca-

pacity (Qmax) of the battery, as expressed in Equation (2.10).

SOCk =
Qremaining,k

Qmax

× 100% (2.10)

Where SOCk is the SOC at time k, Qremaining,k is the releasable capacity at time

k. Qmax is the maximum possible charge that can be extracted from a fully

charged battery in the current cycle, which decreases as the battery degrades.

For ease of implementation, battery nominal capacity is usually used as reference

Qmax value, however, it is not applicable for aged cells and needs to be updated

using efficient SOH estimation methods. Figure 2.3 illustrates the stored energy

status at different SOCs, where 100% and 0% represent the fully charged and

fully discharged conditions of the battery, respectively. The empty portion can

be recharged and the inactive portion reflects the permanent loss due to aging.

The approaches for battery SOC estimation can be classified into two main cate-

gories, namely direct and indirect methods. As shown in Figure 2.4, for the direct

estimation approaches, SOC is mainly calculated by open circuit voltage (OCV)

based method, which is a look-up table based method, and coulomb counting
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Figure 2.3: Battery stored energy status at different SOCs (100%, 70%, and 0%).

method. Whereas the OCV method requires a very long resting time with no

load attached to measure the OCV, the coulomb counting method suffers from

cumulative errors caused by sensor noise and offsets induced by initialization [79].

Therefore, the model-based method has been developed for online battery SOC

estimation. In the model-based estimation method, an effective battery model

is crucial for estimation accuracy. Battery models, such as equivalent circuit

model (ECM) and electrochemical model, in the form of standard state space,

are usually selected to estimate battery states. However, as introduced in Section

2.1, the complexity of batteries internal physicochemical reactions and the uncer-

tainty of external operation makes it difficult to build accurate battery models.

The machine learning-based estimation methods can be employed to model the

nonlinear relationship between the measurements and SOC without requiring any

prior knowledge of the system.

2.2.1 Coulomb counting method

The coulomb counting method, also known as Ampere-hour (Ah) integral method,

is to calculate the SOC by integrating the measured current with respect to time
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Figure 2.4: Categories of online SOC estimation methods.

while the battery is charging or discharging [80], it can be expressed as:

SOCk = SOC0 −
∫ tk
t0
ηIk−1dt

Qmax

(2.11)

where SOCk and SOC0 denote the SOC at time tk and t0 respectively. t0 is

the initial time, tk = t0 + k ×∆t, ∆t denotes the sampling interval. Ik−1 is the

current at time k− 1, η is coulombic efficiency. The maximum available capacity

Qmax usually uses the value of the nominal capacity. Conventionally, the current

direction is negative (sign(I) < 0) during charge and positive during discharge

(sign(I) > 0).

Although it is a simple and straightforward SOC estimation method, the short-

comings are apparent due to its open-loop nature [81]. The error in current

measurements will be inevitably accumulated over time due to the time integra-

tion of current, which can significantly affect the estimation accuracy. Besides,

the initial SOC is difficult to be accurately determined in real-time applications

especially when the battery is only charged/discharged within a limited range.
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Moreover, operating conditions such as aging and temperature can make the ac-

tual maximum available capacity deviate from the nominal capacity and affects

the coulombic efficiency η, leading to inaccurate SOC estimation. Therefore, the

coulomb counting method is more suitable to work in combination with other sup-

porting techniques, such as the model-based methods, to enhance the robustness

[82].

2.2.2 Open-circuit voltage method

OCV is the thermodynamic equilibrium potential of battery under no load condi-

tion [83] and its relationship with SOC can be established by step-wise measuring

OCV for different values of SOC [60]. That is, the OCV method infers the SOC

using an offline predefined OCV-SOC relationship.

This method has inherent difficulties in practical applications. The relationship

differs among batteries, even though they are fabricated from the same materials

and structures [84]. However, it is a very time-consuming process to measure the

OCV of each battery at each SOC, as reaching a satisfactory equilibrium condi-

tion to measure an OCV requires a long resting time. Besides, the OCV method

is an open-loop estimator sensitive to measurement errors and uncertain distur-

bances. Some kinds of batteries, in particular lithium iron phosphate batteries,

have a relatively flat OCV-SOC curve, which means that a small OCV measure-

ment error may lead to a large SOC deviation [85]. Therefore, a voltage sensor

with extremely high accuracy is needed. Furthermore, taking into account the

influence of operating conditions, such as temperature and aging, on the OCV-

SOC relationship, various modified OCV-SOC tables have been proposed. For

example, by adding the temperatures to the OCV-SOC table, an offline OCV-

SOC-temperature table was established in [86]. All these difficulties hinder the

practical application of the OCV method, make it more suitable for laboratory

application [82].
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2.2.3 Model-based Methods

In the model-based method, different types of battery models, which are intro-

duced in Section 2.1, are usually combined with the coulomb counting method

to form a state space model, where the SOC is a state variable that acts as a

bridge between the state equation and the measurement equation. Then based on

the state space model, various filtering algorithms or observers are employed to

estimate or infer the battery SOC. For example, in [87; 88], sliding mode observer

is used to estimate the SOC. In [68; 89; 90; 91; 92], the battery SOC is estimated

by the extended Kalman Filter (EKF) algorithm based on different battery mod-

els. And the Unscented Kalman Filter (UKF) algorithm has been investigated

to estimate the SOC in [69; 93; 94; 95]. The results show that the UKF method

is superior to the EKF method in SOC estimation. The adaptive EKF method

improves the accuracy of the EKF-based SOC estimation by adaptively updating

the noise covariance, for example, the covariance matrix of the process noise is

estimated using Maybeck’s estimator in [76], Sage-Husa adaptive filter algorithm

is used to estimate the noise covariance in [96], and in [97], the terminal voltage

and model parameters are estimated online by an adaptive EKF algorithm, where

the filter’s innovation sequence is utilized. An adaptive UKF method is presented

for lithium-ion battery SOC estimation in [98], the adaptive adjustment of the

noise covariances in the SOC estimation process is implemented by the idea of

covariance matching in the unscented Kalman filter context. Compared with

EKF, UKF and AEKF, the AUKF can estimate the SOC more accurately. Gao

et al. [99] employed particle filter (PF) for SOC estimation and the computation

time of their algorithm is six times faster than EKF. An unscented PF (UPF)

algorithm is introduced by He et al. [100] for the estimation of SOC of high-

power lithium-ion batteries. The numerical calculations show an improvement in

UPF over UKF in minimizing Root Mean Squared Error and Maximum absolute

error. H∞ filter is used to estimate the SOC of lithium-ion batteries in [101; 102].
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Adaptive H∞ filter is presented to estimate the SOC of a lithium-ion battery

in [103], and in comparison with AEKF and square-root UKF, it offers better

overall performance regarding the estimation accuracy, computational cost and

time efficiency.

Figure 2.5 is a schematic diagram of model-based SOC estimation methods. The

input for both real battery system and battery model can be the loading current

and ambient temperature. In most cases, the terminal voltage is used as the

actual measurement. The principle of the model-based SOC estimation method

is to calculate the difference between the actual measurement and the value es-

timated by the measurement equation of the state space model for generating

a measurement residual, and then feed it back to the model through a filter or

observer for updating the model parameters and states.

Figure 2.5: The schematic of model-based SOC estimation methods.

As a closed-loop estimation method, the model-based SOC estimation method

exhibits desirable advantages and is widely used. It is insensitive to the initial

SOC value, and can achieve accurate online estimation results as long as the

model is precise enough. However, to build an accurate battery model is always

time-consuming and laborious, and requires a priori knowledge of the battery sys-

tem. Therefore, the model-based method is not applicable to all types of battery

[104].
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2.2.4 Machine Learning-based Methods

With the advancement of computer technologies, machine learning techniques

have been increasingly employed to estimate the battery SOC. Techniques such

as artificial neural networks (ANN) [73; 105; 106], deep neural networks [74; 107],

recurrent neural networks [108; 109], fuzzy logic [110], and Gaussian process

regression (GPR) [111; 112] can directly map the measured signals (e.g. current,

terminal voltage, and surface temperature) to the SOC. Conventionally, the direct

measurements are usually considered as model inputs to calculate the SOC, which

is the model output. The main benefit of the ML-based methods is that a priori

knowledge of the battery dynamics is no longer required. Besides, various real-

world operating conditions can be considered during the model training process

by adding additional input to the model, and this method is suitable for all

types of batteries [60]. The main problem of the ML-based SOC estimation

methods is the high demand for the huge amount of training data. Besides, due

to the implementation of low-cost microcontrollers in BMSs, the model size and

computational complexity need to be taken into account.

2.3 Review of battery SOH estimation approaches

The SOH can be used to recognize the dynamic health status and evaluate the

aging or degradation level of the battery. It is a parameter that reflects the

present condition of the battery described in percentage, with 100% being a fresh

cell. Due to the battery degradation caused by irreversible internal chemical

reactions and physical processes, the SOH decrease with time and usage of the

battery. Battery capacity and internal resistance are the two most used SOH

indicators, which reflect the energy capability and power capability respectively

[113; 114]. According to the study of internal aging mechanisms, the capacity

fading is mainly caused by the loss of lithium inventory and loss of active material
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of the electrodes [115]. And the increase of resistance is mainly caused by solid

electrolyte interface (SEI) layer formation and growth [114]. Most studies use the

actual capacity to evaluate the SOH, and the SOH is defined as:

SOH =
Qmax

QN

× 100% (2.12)

where Qmax denotes the actual maximum available capacity that a battery can

supply from a fully charged state, and QN is the battery nominal capacity. Gen-

erally, a battery cell is regarded as being at the end of life and need to be replaced

when the actual capacity decreases to 80% of the nominal capacity [114].

Numerous SOH estimation approaches have been reported in the literature, which

can be roughly categorized into three groups: model-based, Incremental Capacity

Analysis (ICA)-based, and machine learning-based approaches. A schematic of

the available battery SOH estimation methods is illustrated in Figure 2.6.

Figure 2.6: Categories of online SOH estimation methods.

39



2.3 Review of battery SOH estimation approaches

2.3.1 Model-based Methods

In model-based battery SOH estimation approaches, physical-based electrochem-

ical models [116], empirical models [117], thermal models [118] and fusion models

[119] are often used in conjunction with observers or adaptive filtering algorithms

to achieve online capacity estimation. For example, Yu et al. [120] used the

adaptive H∞ filter to estimate the battery capacity based on the Thevenin model

with online identified parameters. Zheng et al. [121] estimated the capacity us-

ing proportional-integral observers based on an electrochemical model. Xiong et

al. [122] extracted five parameters that are strongly correlated with battery ag-

ing from the electrochemical model to estimate the capacity. Zheng et al. [123]

applied sequential extended Kalman filters to estimate capacity based on the em-

pirical model. Different types of battery models were compared and analysed in

[124]. And three widely used filtering algorithms for estimating the capacity, i.e.

extended Kalman filter, particle filter and recursive least squares, were investi-

gated in [125], and their performances are compared and analysed in terms of

accuracy and convergence speed. Furthermore, considering that the battery SOH

is a slow time-varying state, while SOC and other model parameters have fast

time-varying dynamics, multi-scale estimation frameworks have been investigated

to estimate the SOH and fast-varying parameters/states separately, such as multi-

scale EKF [126], multi-scale dual H∞ filter [127], and multi-scale dual adaptive

PF [128]. These frameworks usually use a micro-scale filter/observer/least square

method to estimate the SOC or identify the parameters, and use a macro-scale fil-

ter/observer to estimate the battery SOH. The model-based approaches have the

merits of achieving fairly accurate SOH estimation and sometimes offering clear

physical insights into the battery dynamics. Notwithstanding, their performance

highly depends on the model quality, whereas building an accurate battery model

is not an easy task as the requirement of a large amount of prior knowledge is

not always available.
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2.3.2 Incremental Capacity Analysis-based Methods

The differential analysis-based methods correlate the features extracted from the

differentiated curves of some electrical, thermal, or mechanical parameters with

battery capacity fade. For example, incremental capacity (IC) analysis and differ-

ential voltage (DV) analysis have been frequently used in recent years as effective

tools to analyze the battery behavior and fading mechanism [114; 129]. IC is

calculated as the derivative of the capacity with respect to its terminal voltage

(dQ/dV) while the battery is charged/discharged under a small and constant cur-

rent rate. The DV curves (dV/dQ) is defined as the inverse of IC. A schematic

diagram of ICA-based battery SOH estimation methods is shown in Figure 2.7.

The voltage plateaus shown in the V-Q curve can be easily identified from the

IC curves after the differential operation. The features extracted from the curves

such as IC peak position, peak magnitude, peak shape, corresponding peak volt-

age/SOC, and peak area, are analyzed to estimate the battery capacity. For

example, [130] have extracted five different features from the IC curves, the first

two are peaks and the last two are valleys, the rest is the shoulder of the IC

curves. The capacity is estimated by analyzing the position, value and associated

area changes of these features. As described in [131], the IC peak values are

tracked to estimate the capacity for single cells as well as battery packs. In [132],

three corresponding SOC positions are extracted from the SOC based IC and

DV curves for battery capacity estimation. While [133] use a regional voltage,

which is calculated by the terminal voltage corresponding to the IC peak, for fast

capacity estimation. However, the IC/DV analysis is sensitive to measurement

noise and subject to operation temperature, further, it requires very low current

rate, therefore their applications are severely constrained [134].
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Figure 2.7: The schematic diagram of ICA-based SOH estimation methods.

2.3.3 Machine Learning-based Methods

Taking into account the limitations of model-based and ICA-based methods

caused by complex internal principles and uncertain working conditions, ma-

chine learning-based battery capacity estimation methods have been extensively

studied in recent years. These methods can handle data with nonlinear rela-

tionship without requiring prior knowledge on the complex physical principles

of the battery and are easy to implement. Methods such as GPR [135], kernel

ridge regression [136], support vector machine (SVM) [137], and support vector

regression [138], just to name a few, have been successfully applied in battery

capacity estimation. Among these methods, Liu et al. [139] employed a GPR-

based framework to simultaneously predict capacity and quantify the uncertainty

of predicted values. Li et al. [140] proposed a GPR-based method to estimate
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the battery SOH using the health features extracted from partial incremental

capacity curves. The accuracy, robustness and effectiveness of this approach are

verified on four batteries from the NASA battery degradation dataset. Feng et al.

[141] developed a SVM-based online SOH estimation method. The SVM model is

first established offline using features extracted from the battery charging curves

of cells at different SOHs. Then the model is employed for online SOH estima-

tion by comparing the features of the measured charging voltage segment and the

stored models. Guo et al. [142] extracted health features from charging measure-

ments, and eight features which are most relevant to the capacity degradation are

selected as the inputs to a relevance vector machine (RVM) model. It is worth

noting that the performance of these methods heavily relies on the manually

extracted features, which requires significant manual and computational efforts,

and the resultant model is often application specific and may not be generalized.

To address this bottleneck, some other machine learning-based techniques such

as Elman neural network [143], LSTM [144], random forest [145] and Convolu-

tional Neural Network (CNN) [146] have been applied to automatically extract

features from the measurements. The Elman neural network was applied in [143]

to estimate the battery capacities of the following cycles until its end-of-life in

real-time, only using the charged capacities in the past cycles as inputs of the

network. A LSTM network was designed in [144] for capacity estimation using

direct measurable data, i.e. current and voltage, and the model’s robustness and

flexibility in dynamic environments has been extensively verified with data col-

lected from more than seventy Lithium-ion batteries cycled with more than ten

driving profiles. In [145], the charge capacity recorded in a specific voltage region

was used as the input to a random forest regression model, the trained model

can directly use online recorded data for capacity estimation. And [146] directly

used the voltage, current and charge capacity of each cycle as inputs to train a

CNN model for capacity estimation. The performance of three different neural
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network models for capacity estimation, i.e. feed-forward neural network, LSTM

and CNN, were compared in [147], and the test results revealed the difficulty

of the resultant models in dealing well with limited available battery data. It

is clear that these machine learning-based methods have shown great potentials

in battery capacity estimation, yet their performance is heavily dependent on

the size of the training dataset. Only models trained with sufficient data are

capable of achieving satisfactory accuracy. However, to collect a large battery

degradation dataset requires a substantial number of cycling tests, which is ex-

tremely time-consuming and costly. To this end, transfer learning techniques can

be incorporated into these methods to improve the estimation performance on

small dataset. In [148], the battery health was estimated by combining the ker-

nel ridge regression and transfer learning to improve the prediction accuracy. In

[149], transfer learning was applied to achieve accurate, quick and steady predic-

tion based on a LSTM model. A CNN model combining the concepts of transfer

learning and ensemble learning was used for capacity estimation in [150] with

voltage, current and charge capacity as the inputs of the network. Similar work

has been reported in [151].

The disadvantages of the ML-based methods lie in the big computation cost in-

curred during the training process [152], the requirement of large training datasets

which is time-consuming and laborious, and relatively high model complexity.

2.4 Chapter Summary

This chapter provides a systematic literature review on battery modelling and

state estimations. The states of interest in this thesis are SOC and SOH. As

model-based methods are one of the most popular state estimation methods and

accurate battery models are indispensable for these methods, this chapter starts

with an introduction to three commonly used battery models, namely electro-
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chemical models, equivalent circuit models and black-box models. Then a techni-

cal review on SOC and SOH estimation methods is presented. The model-based

methods are featured by closed-loop nature and are insensitive to initialization

error and uncertain disturbances. The machine learning-based methods have

shown great potential for battery state estimation since a huge amount of batter

test data will be available with the advent of the big data platform of batteries.

However, to implement the estimation method on BMSs with limited computa-

tional capability, the issues existing in different estimation methods still need to

be further addressed.
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Chapter 3

Battery State of Charge

Estimation

Battery state of charge (SOC) is an important parameter that provides informa-

tion about the battery real-time remaining capacity. As an unobservable quan-

tity, SOC estimation is vital for the battery management system to guarantee

the operation safety and reliability of batteries. However, the battery is often

exposed to highly dynamic load demands, it is not easy to estimate the SOC

accurately. To infer SOC from the measured signals, such as current, terminal

voltage and temperature, is still a challenging task due to the highly nonlinear and

non-stationary battery dynamics and the sophisticated battery internal chemical

reactions. During the last decades, a large number of state estimation methods

have been developed for battery SOC estimation [153], as summarized in Chap-

ter 2, these methods can be roughly classified into three groups: conventional

methods including Coulomb counting and open-circuit voltage based techniques,

model-based methods, and machine learning methods. In this chapter, an in-

tegrated approach is proposed for battery SOC estimation, which construct a

state-space model using fast recursive algorithm to correlate the SOC with ter-

minal voltages and estimate the SOC using filtering algorithms.
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3.1 Model Construction

To estimate the SOC using model-based filtering method, a state space model is

first established, while the SOC is defined as an independent state variable in the

state space model. As summarized in Chapter 2, electrochemical models (EMs),

equivalent circuit models (ECMs), and black-box models are the commonly used

battery models. The EM is capable of reflecting the electrochemical reactions

inside the battery, however, it requires in-depth knowledge of the battery and to

identify all parameters is a very complicated process. The ECMs are proposed

to strike a balance between model complexity and accuracy, and they describe

the charging and discharging processes using a combination of voltage source,

capacitances, and resistances. The parameters of the ECM change under differ-

ent operating conditions and need to be updated either by look-up tables or by

polynomial functions. Compared to the ECMs and EMs, black-box models do

not require detailed first principle knowledge of the battery and and can describe

the nonlinear relationship between the battery SOC and terminal voltage with

desired accuracy. In this chapter, the fast recursive algorithm is used to determine

the model structure and identify the model parameters.

3.1.1 Fast recursive algorithm

In the field of system identification, the linear-in-the-parameter model is a popular

model structure for approximating a large class of nonlinear systems. These

models linearly combine a set of model terms that are nonlinear functions of

the system variables. Such models have an excessive number of candidate terms

which may cause overfitting and high computational complexity, therefore, model

selection algorithms have been proposed to generate parsimonious models with a

much smaller number of terms. In particular, a fast recursive algorithm (FRA)

[154] was proposed to simultaneously select most significant model terms and
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estimate model parameters.

Consider a nonlinear discrete-time dynamic system represented by a linear-in-

the-parameters model, which is identified by N data samples {x(i), y(i)}Ni=1

y = ΨΘ + Ξ (3.1)

Where y = [y(1), ..., y(N)]T ∈ <N denotes the system output, Ψ = [ϕ1, ..., ϕj, ..., ϕS] ∈

<N×S is the regression matrix that contains all candidate model terms, each term

ϕj ∈ <N×1, ϕj = [ϕj(x(1)), ..., ϕj(x(N))]T (j = 1, ..., S) represents a nonlinear

function of N input samples, Θ = [θ1, ..., θS]T are the unknown parameters to be

identified, and Ξ = [ε1, ..., εN ]T is the model residual vector.

Two recursive matrices, namely information matrix Mk and residual matrix Rk,

are predefined in FRA to fulfill the forward model selection procedure as:

Mk = ΨT
kΨk (3.2)

Rk = I−ΨkM
−1
k ΨT

k (3.3)

where Ψk ∈ <N×k contains the first k columns of the full regression matrix Ψ,

additionally, k = 1, ..., S, and R0 = I.

Thus, when the first k columns in Ψ are selected, the estimation of parameters

that minimizes the cost function and the associated minimal cost function can be

formulated as

Θ̂k = M−1
k ΨT

k y (3.4)

Ek = yTy − Θ̂T
kΨT

k y (3.5)
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When {ϕj, j = 1, ..., S} in Ψ are mutually linearly independent, the residual

matrix Rk will have the following distinguished properties:

Rk+1 = Rk −
Rkϕk+1ϕ

T
k+1R

T
k

ϕTk+1Rkϕk+1

, k = 0, 1, ..., (S − 1) (3.6)

RT
k = Rk, RkRk = Rk, k = 0, 1, ..., S (3.7)

RkRj = RjRk = Rk, k ≥ j; k, j = 0, 1, ..., S (3.8)

Rkϕj = 0, ∀j ∈ {1, ..., k} (3.9)

Now, Equation (3.5) can be expressed as

Ek = yTRky (3.10)

To simplify the formulas and decrease the computational complexity, three quan-

tities are consequently defined as

ϕ
(k)
j , Rkϕj, ϕ

(0)
j , R0ϕj = ϕj

ak,j ,
(
ϕ

(k−1)
k

)T
ϕ

(k−1)
j , a1,j , ϕT1 ϕj

bk ,
(
ϕ

(k−1)
k

)T
y, b1 ,

(
ϕ

(0)
1

)T
y = ϕT1 y

(3.11)

where j = 1, ..., S, and k = 0, 1, ..., S. According to the properties of Rk and the

new quantities definition, the net contribution of a new model term ϕk+1 to the
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cost function can be explicitly calculated as

∆Ek+1 =

(
yTϕ

(k)
k+1

)2((
ϕ

(k)
k+1

)T
ϕ

(k)
k+1

) =

(
bTk+1

)2

ak+1,k+1

, k = 0, 1, ..., S − 1 (3.12)

By calculating the net contribution of each term, the model terms with maximum

contributions will be selected one by one. Finally, after all important model terms

have been selected, the parameter for each selected term is calculated as

θ̂j =
bj −

∑k
i=j+1 θ̂iaj,i

aj,j
, j = k, k − 1, ..., 1 (3.13)

Note: the summation term in Equation (3.13) is zero for j = k, i.e.
∑k

i=k+1 θ̂iak,i =

0. Equations (3.12) and (3.13) constitute the main steps of the FRA, which se-

lects model terms one by one based on (3.12) and calculates the model parameters

for the resultant model based on (3.13).

3.1.2 The proposed model

In this chapter, the FRA is used to capture the nonlinear relationship among ter-

minal voltage, battery SOC and current. Figure 3.1 shows the process of building

the measurement function. Symbols I and SOC refer to discharge current and

state of charge, respectively. And the subscript k means for the k− th time step.

The procedure is summarized below:

Step 1 - Initialization. Identify model term pool, such as 1/SOC,
√
SOC,

ln(SOC), eSOC , sin(SOC) and cos(SOC), collect data and build the data matrix

(information matrix).

Step 2 - Fot the (k + 1)-th time step, the terminal voltage Vk+1 is regarded as

the model output, and the current Ik+1 and SOCk+1 are used to generate the

candidate model terms based on the identified model term pool.

50



3.1 Model Construction

Start

Initialization: identify
model term pool and

build information matrix

Input variables:
Ik+1, SOCk+1, n = 1

Generate S candidate
model terms for selection

Calculate ∆E of each
candidate model
term with FRA

Select n model terms with
highest ∆E and identify

the model parameters

Reach the desired tolerance? n = n + 1

Output selected model
terms and identified
model parameters

Measurement function

yes

no

Figure 3.1: Flowchart of building measurement function based on FRA

Step 3 - Then the contribution of each term in the candidate pool is calculated

using Equation (3.12).

Step 4 - Select the model term with highest contribution, and calculated its pa-
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rameter using Equation (3.13). With the selected model terms and the identified

parameters, the model output is obtained, denoted by V̂k+1. The root mean

square error between the measured terminal voltage Vk+1 and model output V̂k+1

over all the training samples is calculated by:

RMSE =

√√√√ 1

N

N−1∑
k=0

(
Vk+1 − V̂k+1

)2

(3.14)

Step 5 - Repeat Step 3 until the model accuracy is satisfactory. As a result, the

model structure has been determined and the parameters of the selected model

terms have been identified.

3.1.3 Battery state space model

As introduced in Chapter 2, according to Equation 2.11, the SOC at time instant

k + 1 can be calculated by:

SOCk+1 = SOCk +
η∆t

Q
Ik (3.15)

The coulombic efficiency η is set to 1. The SOC is considered as a hidden state

variable in the state-space model. This is the state function of the state space

model.

The measurement function is established according to the process described in

section 3.1.2 using the fast recursive algorithm, which is expressed as follows:

Vk+1 = Ψn(Ik+1, SOCk+1)Θn (3.16)

where Ψn(Ik+1, SOCk+1) refers to n model terms and consists of current, SOC,

and their nonlinear forms that are selected by FRA from the candidate feature

pool, and Θn = [θ1, ..., θn]T is the coefficient vector for the selected nonlinear
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terms.

3.2 Filtering Algorithms

3.2.1 Kalman Filter

Kalman filter (KF) [42] is a computationally efficient framework that provides

optimal state estimation for linear systems or systems with linear state space

model by minimizing the mean square error between the actual and estimated

data. It has been extensively studied and applied in virtually every technical or

quantitative field. Consider a dynamic discrete process represented by a linear

stochastic equation using state vector xk:

xk = Axk−1 +Buk−1 + ωk−1 (3.17)

where A is the transition matrix that associates the state of the previous moment

with the current state. And matrix B correlates the control input uk−1 with

the current state of the system. The process noise ωk−1 is assumed to be white

Gaussian noise, with zero mean and and covariance Qk−1.

The measurements zk are linearly related to the state xk:

zk = Cxk + vk (3.18)

where C is the measurement matrix, and measurement noise vk is assumed to be

white Gaussian noise with zero mean and covariance Rk. The process noise ωk is

uncorrelated with the measurement noise vk, and both of them are assumed to
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be independent of the state of the system.

E[ωkv
T
j ] = 0

E[ωkx
T
j ] = 0, E[ωkω

T
j ] = Qkδk−j, ∀k, j

E[vkx
T
j ] = 0, E[vkv

T
j ] = Rkδk−j, ∀k, j

(3.19)

where E[·] is the expectation operator, and δk−j is the Kronecker delta function,

that is δk−j = 0 if k 6= j, and δk−j = 1 if k = j.

The KF estimates the state xk based on the system dynamic model and the noisy

measurements. The measurements sequence Zj = [z1, z2, z3, ..., zj], contains all

of the measurements that up to and including jth instant. The a priori x̂−k and

a posteriori x̂k estimates of system state at time instant k are defined based on

the available measurements. If the available measurements are prior to time k,

zk is unavailable for state estimation at kth instant, it is a priori estimate, we

denote as x̂−k . If the measurements zk at time-step k are available for use in the

estimation of state xk, the estimate is a posteriori, which we denote as x̂k. x̂
−
k

and x̂k are results at the prediction (also called time update) stage and update

(also called measurement update) stage, respectively.

The a priori state x̂−k can be predicted by taking the expectation of state xk

conditioned on all measurements before kth instant. The predicted state is given

by:

x̂−k = E[xk|Zk−1]

= E[(Axk−1 +Buk−1 + ωk−1)|Zk−1]

= AE[xk−1|Zk−1] +Buk−1 + E[ωk−1|Zk−1]

= Ax̂k−1 +Buk−1

(3.20)
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Similarly, the predicted measurement can be obtained as:

ẑ−k = E[zk|Zk−1]

= E[(Cxk + vk)|Zk−1]

= CE[xk|Zk−1] + E[vk|Zk−1]

= Cx̂−k

(3.21)

The a priori error and a posteriori error between the actual state and the esti-

mated state are

e−k = xk − x̂−k (3.22)

ek = xk − x̂k (3.23)

Then the a priori covariance P−k of the state estimation error can be calculated

as

P−k = E[e−k e
−T
k ] = APk−1A

T +Qk−1 (3.24)

After predicting the state and error covariance, the next step is to update the

a priori state x̂−k and covariance P−k . The state vector is updated using the

predicted state and the new measurement zk, and the discrepancy between the

actual measurement and the predicted measurement is weighted by Kalman Gain

to minimize the a posteriori error covariance [155].

Kk = P−k C
T (CP−k C

T +R)−1 (3.25)

x̂k = x̂−k +Kk(zk − Cx̂−k ) (3.26)

Pk = E[eke
T
k ] = (I −KkC)P−k (3.27)

The Kalman gain Kk is calculated in equation (3.25) to evaluate the updated

state and covariance. The factor (zk − Cx̂−k ) in equation (3.26) is called the
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residual, which denotes the discrepancy between measurements and predicted

measurements.

The simplified diagram of Kalman filter is illustrated in Figure 3.2. The estima-

tion process of KF consists of two steps, i.e. the prediction (time update) step

and the update (measurement update) step. The prediction step in Kalman filter

obtains the priori estimates of the current states and error covariance based on

the past states of the system. The update step correct the priori estimates of the

states and obtain the updated posteriori estimates by using the new measure-

ment value, and then provides a feedback to the prediction step to implement

iterative estimation.

Figure 3.2: Simplified diagram of the KF

3.2.2 Extended Kalman Filter

The KF is an optimal linear filter, but in reality, most real-world systems are

nonlinear. Applying KF in nonlinear systems will introduce large errors and

sometimes may cause filter divergence. Considering the significance of nonlin-

ear filtering for the diverse fields in science and engineering, researchers started
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working on nonlinear filtering problems in the early 1960’s [156], and a number

of methods have been developed.

The state of a nonlinear dynamic system is governed by a nonlinear stochastic

difference equation which is denoted by a differentiable function fk(.), and the

measurements are nonlinear related to the state vector by a nonlinear function

hk(.).

xk+1 = fk(xk, uk, wk) (3.28)

zk = hk(xk, vk) (3.29)

where k is the time index, xk refers to the state, uk is the input, wk is the pro-

cess noise, zk represents the measurement, and vk is the measurement noise. The

functions fk(.) and hk(.) are time-varying nonlinear process and measurement

equations.

In KF and its variants, vector wk and vk in equations (3.28) and (3.29) are

assumed to be uncorrelated zero-mean white Gaussian noise with covariance ma-

trixes Qk and Rk respectively.

The EKF was developed to extend the application of the KF to nonlinear systems

by replacing the nonlinear function with its linear approximation. It linearizes

the estimation by calculating the Jacobian matrices of the nonlinear functions

fk(.) and hk(.). The EKF is also called the First-Order filter, because it expands

nonlinear functions using the Taylor Series and only uses the first order term.

The linearized transformation of the nonlinear functions in the EKF is the ap-

proximation of the actual functions, therefore, the estimation results calculated

by EKF is not guaranteed to be optimal estimates of the actual states of a non-

linear system.

The function f(.) and h(.) are linearized using Taylor-series expansion at each

time step, supposing that f(.) and h(.) are differentiable at all time, the elements
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of the state transition matrix are defined as:

Ak =
∂f(xk)

∂xk
|xk=x̂−k

(3.30)

Ck =
∂h(xk)

∂xk
|xk=x̂−k

(3.31)

Similar to the Kalman filter, the EKF algorithm also has two parts: prediction

and measurement update stages. As shown in equation (3.32) and (3.33), at time

instant k, the predicted state x̂−k and error covariance P−k are first calculated

without the measurement yk. Then based on the predicted P−k and the measure-

ment yk, the state x̂k and error covariance Pk are updated using the Kalman gain

Kk computed by (3.34).

x̂−k = f(x̂k−1, uk−1) (3.32)

P−k = AkPk−1A
T
k + Qk−1 (3.33)

Kk = P−k CT
k

(
CkP

−
k CT

k + Rk

)−1
(3.34)

x̂k = x̂−k + Kk

(
yk − h(x̂−k )

)
(3.35)

Pk = (I−KkCk) P−k (3.36)

3.2.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) was introduced by Julier and Uhlmann

[157; 158], which is a recursive Minimum Mean Square Error (MMSE) estimator

that addresses the limitations of the EKF caused by linear approximation and

provides more accurate, robust and efficient prediction performance and easier

implementation, while the computational cost of the algorithm is the same or-

der of magnitude as the EKF. The UKF is also called sigma-point Kalman filter

(SPKF) due to the use of sigma-point approach, which is a deterministic sam-

pling framework [159].
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The UKF is still restricted to Gaussian distributions. The core and foundation of

the UKF algorithm is unscented transformation (UT), a method for calculating

the statistics of a random variable which undergoes a nonlinear transformation

and builds on the principle that it is easier to approximate a probability distribu-

tion than an arbitrary nonlinear function or transformation[160]. The schematic

representation of the unscented transformation is shown in Figure 3.3. Firstly, a

set of sigma points {χi}2n
i=0 are deterministically sampled from the the mean x̄ and

the covariance Px of the state variables at the previous moment, n is the number

of state variables, and the weights for the mean and covariance are w
[i]
x and w

[i]
p ,

respectively. Then each sigma point is propagated through the nonlinear function

y = g(χi). Finally, the approximated mean ȳ and covariance Py are computed to

capture the prior distribution of the state variables at current moment.

Figure 3.3: Schematic diagram of the UT

The UKF is a straightforward application of the UT in the recursive Kalman filter

framework [159]. Through unscented transformation, the mean and covariance of
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y, who has a nonlinear relationship with x given as y = g(x), can be obtained.

The UT algorithm is summarized as follows:

• Choosing the sigma points

χ[0] = x̄

χ[i] = x̄ +
[
γ
√

Px

]
i
, i = 1, ..., n

χ[i] = x̄−
[
γ
√

Px

]
i
, i = n+ 1, ..., 2n

(3.37)

where
[
γ
√

Px

]
i

denotes the ith column of
[
γ
√

Px

]
, γ =

√
n+ λ is a com-

posite scaling parameter calculated by the dimension n of the state and the

scaling parameter λ.

λ = α2(n+ ε)− n (3.38)

where α (0 ≤ α ≤ 1) represents the scaling parameter that determines the

distribution of the sigma points, in general, α should be a small number. ε

is the other parameter that can adjust the spread of the points. The bigger

the α and ε are, the further the sigma points are away from the mean.

• Set the corresponding sigma point weights

w[0]
x =

λ

n+ λ

w[0]
p = w[0]

x + (1− α2 + β)

w[i]
p = w[i]

x =
1

2(n+ λ)
, i = 1, ..., 2n

(3.39)

The suggested values for α, β and ε are 0.01 or 0.001, 2 and 3− n, respec-

tively [159].

• Calculate the mean an covariance of y from the weighted and transformed
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points

ȳ =
2L∑
i=0

w[i]
x g(χ[i]) (3.40)

P−y =
2L∑
i=0

w[i]
p

(
g(χi])− ȳ

) (
g(χ[i])− ȳ

)T
(3.41)

Considering the nonlinear system model given in equation (3.28) and (3.29), the

UKF algorithm is briefed as:

• Initialization

x̂0 = E[x0], Px0 = E[(x0 − x̂0)(x0 − x̂0)T ] (3.42)

• Prediction

Calculate sigma-points at time step k − 1 (k = 1, ...,∞)

χk−1 =
[
x̂k−1 x̂k−1 + γ

√
Pk−1 x̂k−1 − γ

√
Pk−1

]
(3.43)

Propagate the sigma points through the process model from time k − 1 to

k, and predict the state and error covariance using these weight points

χ
[i]
k|k−1 = f(χ

[i]
k−1, uk−1) (3.44)

x̂−k =
2n∑
i=0

w[i]
x χ

[i]
k|k−1 (3.45)

P−xk =
2n∑
i=0

w[i]
p

(
χ

[i]
k|k−1 − x̂

−
k

)(
χ

[i]
k|k−1 − x̂

−
k

)T
(3.46)

• Measurement-update

Propagate the sigma points through the measurement model and predict

the measurement, measurement error covariance and cross-covariance at
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time instant k

Z
[i]
k|k−1 = h(χ

[i]
k|k−1, uk) (3.47)

ẑ−k =
2n∑
i=0

w[i]
x Z

[i]
k|k−1 (3.48)

Pzk =
2n∑
i=0

w[i]
p

(
Z

[i]
k|k−1 − ẑ

−
k

)(
Z

[i]
k|k−1 − ẑ

−
k

)T
(3.49)

Pxkzk =
2n∑
i=0

w[i]
p

(
χ

[i]
k|k−1 − x̂

−
k

)(
Z

[i]
k|k−1 − ẑ

−
k

)T
(3.50)

Calculate the Kalman gain and update the mean and covariance of the state

Kk = PxkzkP
−1
zk

(3.51)

x̂k = x̂−k +Kk(zk − ẑ−k ) (3.52)

Pxk = P−xk −KkPzkK
T
k (3.53)

3.2.4 Particle Filter

The above-mentioned Kalman filter and its variants have a fundamental limita-

tion that the noise in the process and measurements should be Gaussian, and

the processes with non-Gaussian noise cannot be estimated using the variants

of Kalman filters. Whereas the Particle filter(PF) does not require the Gaus-

sian hypotheses [161]. The particle filter, also including variants known as the

bootstrap filter, Sequential Importance Sampling (SIS), condensation algorithm,

interacting particle approximations, Monte Carlo filter, Sequential Monte Carlo

(SMC) filter [41; 162], has become a very popular class of numerical methods for

the optimal estimation problems in non-linear non-Gaussian scenarios since their

introduction in 1993 [163]. In comparison with standard approximation methods,

such as the popular EKF, the main advantage of PFs is that they do not rely on
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any local linearisation technique or any crude functional approximation.

Particle filtering is based on Monte Carlo simulation with sequential importance

sampling (SIS), it approximates the complete posterior state density recursively

[162; 164]. The key idea of PF is to represent the required posterior density func-

tion by a set of independent random samples (particles) with associated weights,

and to update the posterior by involving the new measurements.

The particle set is recursively located, weighted and propagated according to the

Bayesian theory, the PF is a probability-based estimator that is derived from the

Bayesian approach. For the record, the particle filter needs a Bayesian formula-

tion of the problem.

xk = f(xk−1, wk)↔ p(xk|xk−1) (3.54)

yk = h(xk, vk)↔ p(yk|xk) (3.55)

where k is the time index, wk and vk are white noises, and are not necessarily

Gaussian.

The SIS algorithm is the basis for all particle filter algorithms. The importance

function q(x0:k|y0:k) and importance weights of SIS algorithm can be evaluated

recursively:

q(x0:k|y0:k) = q(x0)
k∏
i=1

q(xi|x0:i−1, y0:i) (3.56)

w̃
(i)
k ∝ w̃

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
0:k−1, y1:k)

(3.57)

Also the weights should be normalized

w̃
(i)
k =

w̃
(i)
k∑N

i=1 w̃
(i)
k

(3.58)
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But the SIS method suffers from a serious drawback: the weight will tilt after

several updating iterations which causes substantial computational efforts being

wasted on the particles which have scarcely any contribution to the final result.

Resampling method is proposed to remove the particle that has low weight and

retains the rest. Currently, wide attentions are paid to multinomial resampling,

stratified resampling, systematic resampling and residual resampling [46].

Sampling Importance Resampling (SIR) Filter is the most classical form of par-

ticle filter and is easy to implement [165]. It can be easily derived from the SIS

algorithm by choosing appropriate importance density and the resampling step.

The advantage of SIR method is that it is easy to evaluate the importance weights

and sample the importance density.

The choice on importance function determines the performance of the method.

A simple, though not optimal, choice for the importance function is to use the

prior distribution, that is

q(xk|xk−1, yk) = p(xk|xk−1) (3.59)

The weight update equation can be simplified

w
(i)
k =

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, y0:k)

w
(i)
k−1 = p(yk|x(i)

k )w
(i)
k−1 (3.60)

3.3 Experimental Data

A cylindrical lithium iron phosphate battery cell was tested under the room tem-

perature (25◦C) using a BTS 4000 battery test system made by NEWARE, and

its parameters are summarized in Table.3.1. Thermocouples with measurement

error less than 0.1◦C are attached to measure the cell surface temperature. The

sampling frequency for all the equipment used in the test was set as 1 Hz.
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Table 3.1: Specifications of the battery.

Battery type LiFePO4

Nominal capacity 1.6 Ah

Nominal voltage 3.2 V

Min /Max Voltage 2.0V/3.6V

Initial State-of-Charge 100%

The battery was charged with a constant current (CC) of 1.6 A (1C) until the

voltage reaches the upper cutoff voltage 3.6 V, and then followed by a constant

voltage (CV) charge at 3.6 V which was terminated when current fell below the

cutoff value of 75 mA. The cell was then discharged with a 1.6 A constant current

to the lower cutoff voltage of 2.0 V. The current and voltage of this CC discharge

process measured at an ambient temperature of 25◦C are shown in Figure 3.4.

(a) (b)

Figure 3.4: The current and voltage measured during the CC discharge cycle.
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3.4 Results and Discussion

To produce an accurate estimation of the SOC based on the real-time measure-

ments of terminal voltages and currents, a battery model in the form of state

space should be established first. The overall process of the proposed model-

based SOC estimation is illustrated in Figure 3.5, which can be divided into two

steps: battery modelling and SOC estimation. The modelling step consists of

testing data collection, candidate model terms generation, optimal model terms

selection and model performance validation, which has been given in detail in

Section. 3.1.2. Then based on the built model, the SOC is estimated using suit-

able algorithm. The algorithm, such as Kalman filter family and sliding mode

observer, is selected according to the application and required accuracy. With the

battery testing experiment introduced in Section. 3.3, the data collected from the

first 5 discharging cycles are used to build the measurement function to correlate

the terminal voltage with SOC and current, and the data of the 7-th discharging

cycle are used to validate the performance of the model as well as to compare the

performance of different filtering algorithms for SOC estimation.

3.4.1 Evaluation of the model

As described in Section.3.1.2, the model terms include current, SOC, and their

nonlinear forms, which are selected by fast recursive algorithm from the candidate

model terms. The statistical validation results of the trained model are shown in

Figure 3.6, as can be observed, the RMSE of the model decreases as the number

of selected model terms increases. When 9 model terms are selected (red cycle

in Figure 3.6), the RMSE is 0.0055 V, after which the RMSE does not decrease

significantly even if more terms are selected. Considering the balance between

accuracy and model complexity, the number of selected model terms are deter-

mined to be 9.
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Figure 3.5: Procedures of the proposed model-based SOC estimation

Figure 3.6: The RMSE of model with different number of model terms

The modelling results on the validation data are shown in Figure 3.7. As can be

observed, the model outputs are close to the measured data, that is, the model

built by FRA can well describe the nonlinear relationship between the SOC and

voltage. The RMSE is 5.9 mV, which is 0.18% of the battery nominal voltage.
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Figure 3.7: Modelling results

Table 3.2 summarizes the RMSE of the model on subsequent cycles, which in-

creases as the cycle increases. It can be observed that the RMSE is larger than 10

mV after 10 cycles, and the model performance further degrades after 80 cycles.

Therefore, to obtain acceptable SOC estimation results, the model parameters

should be updated regularly using newly collected cycling data. The update fre-

quency depends on the requirements for SOC estimation accuracy, for the best

results, the model should be updated every 10 cycles.

Table 3.2: Modelling results on validation cycles

cycle number 8 9 10 11 20 40 60 80 100

RMSE (mV) 7.1 7.3 7.4 10.3 11.8 12.2 12.1 15.7 16.5

68



3.4 Results and Discussion

3.4.2 SOC Estimation based on the proposed model

The battery state space model is expressed as follows:
SOCk = SOCk−1 + ∆t

Q
Ik−1

Vk = h(Ik, SOCk) = Ψ9(Ik, SOCk)Θ9

(3.61)

The selected models terms Ψ9 = [ϕ1, ϕ2, ..., ϕ9] and the corresponding parameters

Θ9 = [θ1, θ2, ..., θ9]T of the measurement function are listed in Table. 3.3. Then

the SOC is estimated based on this model using different filtering algorithms. In

this section, EKF, UKF and PF are used to estimate the SOC, and their results

are compared. The initial value of SOC is set to 0.8 in all tests, while the correct

initial value is 1, thus 20% initial error is introduced to validate the performance

of the filtering algorithms with erroneous initial state value.

Table 3.3: Model terms and parameters of the measurement function.

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

θi 0.1176 7.7379 273.9758 4.91722 21.3713 10.3254 -294.8140 -41.5292 17.3574

ϕi I
√
SOC sic(SOC) eSOC cos(SOC3) SOC2 SOC cos(SOC2) eSOC

2

According to the detailed algorithm described in Section. 3.2.2, the flowchart of

the EKF-based battery SOC estimation is illustrated in Figure 3.8.

Based on Equation.(3.61), the matrix Ak and Ck in Equation. (3.30) and (3.31)
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Figure 3.8: Flowchart of EKF-based SOC estimation

can be deduced as: 
Ak = 1

Ck = ∂h(Ik,SOCk)
∂SOCk

= ∂Ψ9(Ik,SOCk)
∂SOCk

Θ9

(3.62)

The EKF-based battery SOC estimation results are shown in Figure 3.9, where

the blue line represent the reference SOC and the red line is the SOC estimation

results using EKF. As shown in this figure, the SOC estimation results can quickly

converge to the reference value and the estimation error is close to zero after

convergence.

The flowchart of UKF-based battery SOC estimation is illustrated in Figure 3.10.

As the number of state is 1 in this test, the sigma point χk−1 generated at (k−1)-

th time step is a 1×5 vector. Figure 3.11 shows the SOC estimation results using

UKF, similar to that of the EKF-based method, a faster convergence speed can

be observed and the estimates can track the reference SOC value well.

Figure 3.12 shows the flowchart of PF-based SOC estimation. In the PF-
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Figure 3.9: EKF-based battery SOC estimation results
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Figure 3.10: Flowchart of UKF-based SOC estimation

based SOC estimation, the number of particles is set to 140 and the systematic
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Figure 3.11: UKF-based battery SOC estimation results

resampling strategy is applied. The estimation results are shown is Figure 3.13.

The estimated SOC values are quite close to the reference values, also a quick

convergence speed can be observed.

3.4.3 Summary of the results

Based on the model identified using FRA, three filtering algorithms are applied

to estimate the battery SOC, namely EKF, UKF and PF. Figure 3.9, 3.11, and

3.13 show the estimation results of these algorithms, and all of these algorithms

can generate accurate estimation results when the initial state value is inaccurate.

To clearly compare the performance of these algorithms, the estimation results

in terms of RMSE and computation time of each algorithm are summarized in

Table.3.4. The computation time is recorded by the ’tictoc’ function in matlab.

It is clear that among these three algorithms, the PF provide the most accurate

estimation results, however, its computation time is more than 100 times that

of UKF. The computation time of EKF is even longer than that of PF due to
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Figure 3.12: Flowchart of PF-based SOC estimation

the calculation of Jacobian matrix increases the computation complexity. While

the UKF neither require the linearization of the nonlinear system nor require

hundreds or thousands of particles to represent the states, thus the computation

time of SOC estimation using UKF is the shortest.

Table 3.4: Comparison of filters’ performance

RMSE (%) Computation time (s)

EKF 1.64 25.7319

UKF 1.05 0.1699

PF 0.75 21.6863
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Figure 3.13: PF-based battery SOC estimation results

Further, the comparison of their estimation errors is shown in Figure 3.14, from

which the convergence speed of PF is proven to be the fastest among the ap-

plied filters, and the UKF converges faster than EKF. Besides, the PF-based

estimation results seem to be the most stable and closest to zero. In summary,

at the cost of computational complexity, the PF-based SOC estimation method

provides the highest estimation accuracy. And the performance of UKF-based

SOC estimation method is better than EKF-based method in terms of accuracy

and computational efficiency.

The proposed method is also validated on the charging cycles. The resultant

model has 9 model terms and the RMSE of the model is 9.5mV. As shown in

Figure 3.15, the SOC estimation results of the charging process produced by dif-

ferent filtering algorithms are similar to those of the discharging process. Among

the EKF, UKF and PF, the PF produces the most accurate SOC estimation re-

sults (RMSE is 0.69%) and its calculation time (17.3639 s) is shorter than that

of the EKF-based estimation method (30.8647 s). The UKF is the fastest that
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Figure 3.14: Error of SOC estimation under different filters

only takes 0.3466 s and the RMSE is 1.04%, which is less than that of the EKF

(1.58%).

Figure 3.15: SOC estimation results on charging data using different filtering
algorithms
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3.5 Chapter Summary

Battery SOC is an important characteristic parameter for BMS, and it should be

monitored in real-time to ensure the battery operation safety. Since SOC can-

not be measured directly, many state estimation methods have been proposed

for SOC estimation based on the direct measurable variables. In this chapter,

a model-based SOC estimation method has been proposed. Due to the estima-

tion performance of the model-based methods highly depend on the model ac-

curacy, the first aim of this chapter is to establish a measurement function with

satisfactory accuracy. Therefore, a computationally efficient and stable model

identification method, i.e. fast recursive algorithm, was presented first and was

then applied to capture the nonlinear relationship between the terminal voltage

and SOC, and its performance was verified on test data. Based on the well es-

tablished battery model, three filtering algorithms, namely EKF, UKF and PF,

were successively applied to estimate the SOC. The estimation results of these

algorithms were summarized and analyzed, and the results indicate that all of

these three algorithms are capable of correcting initial SOC error and providing

accurate estimation results. Further, the comparison results suggest that the PF-

based method is the best choice among them when the estimation accuracy is of

most concern, while the UKF-based method is the best choice if the computation

time is of most concern.
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Chapter 4

Battery Capacity Estimation

Using Convolutional Neural

Networks

Accurate estimation of the battery capacity, which is one of the most popular

indicators for assessing the battery aging, is crucial to maintain the battery per-

formance and guarantee the safe and reliable operation of the battery. It is of

great importance to trace the capacity in real-time, as the capacity information

is one of the key factors affecting SOC estimation results [166] and enables detec-

tion of premature faults [167]. Due to a range of time-varying situation-dependent

internal and external factors, it is still a challenging task to estimate capacity ac-

curately. As a class of deep neural networks, the Convolutional Neural Network

(CNN) is powerful to capture hidden information from a huge amount of input

data, making it an ideal tool for battery capacity estimation. Therefore, in this

chapter a CNN based battery capacity estimation method is proposed, which can

accurately estimate the battery capacity using limited available measurements,

without resorting to other online information. And the proposed method only

requires partial charging segment of voltage, current and charge capacity curves,
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making it possible to achieve fast online health monitoring. To employ CNN

for capacity estimation using partial charging curves is however not trivial, a

comprehensive approach covering time series-to-image transformation, data seg-

mentation, and CNN configuration is presented at the beginning of this chapter.

However, the CNN proposed for capacity estimation has thousands of parame-

ters to be optimized and demand a substantial number of battery aging data for

training. These parameters require massive memory storage while collecting a

large volume of aging data is time-consuming and costly in real-world applica-

tions. To tackle these challenges, a novel framework incorporating the concepts

of transfer learning and network pruning is then proposed in this chapter to build

compact Convolutional Neural Network models on a relatively small dataset with

improved estimation performance. The resultant CNN model is capable of achiev-

ing fast online capacity estimation at any time, and its effectiveness is verified

on a target dataset collected from four Lithium iron phosphate battery cells, and

the performance is compared with other Convolutional Neural Network models.

4.1 Deep Learning Algorithms

4.1.1 Deep Neural Networks

The recent surge of interest in deep learning algorithms is primarily due to the

fact that they enable researchers to make significant improvements in many appli-

cations, as well as the advent of faster computational power and the abundance of

available training data. In this section, the Deep Neural Networks (DNNs) refers

to the fully-connected neural networks that employ deep architectures. There are

more than one hidden layers between the input and the output layer, and each

neuron in one layer is connected to all neurons in the adjacent layer, which makes

the network fully connected. Each layer consists of a linear operation followed by
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a point-wise nonlinearity (activation function) [168]. The architecture of DNN is

shown in Figure 4.1. These fully-connected architectures do not require special

assumptions about the input data, and are ’universal approximators’ capable of

representing any functions [169].

Figure 4.1: Architecture of DNN

Let x ∈ Rm×1 represent the input to a fully connected layer, yi ∈ R represent the

ith output of this layer. Each output activation is composed of a weighted sum

of all input activations. The yi can be calculated as

yi = f(w1ix1 + w2ix2 + ...+ wmixm) (4.1)

where the f(·) is a nonlinear activation function, the weights wji are learnable

parameters in the network that connect the jth input neuron to the ith output neu-

ron. For a layer of n neurons, a n-by-m matrix is defined as w = [w1, w2, ..., wm],

where wj = [wj1, wj2, ..., wjn]T , y ∈ Rn×1 can be conveniently computed as a

matrix multiplication

y = f(wx) (4.2)
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Due to the fully connected structure of a DNN, a large amount of parameters

need to be determined, which requires a significant amount of storage and entails

large computational complexity. Sparse connection and limited weights number

between the input and output neurons, which can be realized if each output is

a function of a fixed-size window of inputs, is used to make the computation

more efficient. Even further efficiency can be achieved by repeated using the

same weight values to calculate each output. Convolution neural network is then

introduced as a good example.

4.1.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is probably one of the most popu-

lar class of Artificial Neural Networks (ANNs) in recent years. Compared with

traditional DNNs with the same number of layers, the number of parameters

(weights) of a CNN that are required to maintain the accuracy is significantly re-

duced, due to the sparse connectivity, shared weights, and pooling architectures.

As illustrated in Figure 4.2, these three architectures can be described as follows:

• Sparse Connectivity

In traditional DNNs, a matrix multiplication is applied to describe the

interaction among each input neuron and each output neuron. While in

CNNs, the sparse connectivity architecture is applied, which is achieved

by making the size of filter smaller than the input, and enforcing a local

connectivity pattern among neurons of adjacent layers. In other words,

the inputs of a neuron in layer l are from a subset of neurons in layer

l − 1. Figure 4.2(b) shows how the nodes numbered 0,1,4,5 surrounded

by the red line are connected to the next node 0. It is obvious that the

direct connections in a CNN are sparse. This architecture can describe the
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(a) Simple DNN (b) Simple CNN

Figure 4.2: (a) A fully connected 3-layer feedforward neural network. (b) A con-
volutional neural network, with convolutional layer as the first layer and pooling
layer as the second layer. Here, the filter size is 2× 2 with stride (1,1), and the
pooling size is 1× 3 with stride (1,1).

complicated interactions among neurons more efficiently and also reduce the

overfitting risk due to the number of parameters are dramatically reduced.

• Shared Weights

In conventional DNNs, each weight matrix is multiplied by all the neurons

of the input layer and used only once. While in CNNs, the same weights are

used for more than one activation function, which is called shared weights.

As shown in Figure 4.2(b), a 2 × 2 weight matrix with stride being set to

(1, 1) is used across the whole visual field, every four neurons of the input

generate one output node. The shared weights architecture has endowed

the CNN with a property called equivariance, meaning that the output will

change in the same way as the input changes [170].

• Pooling

Then, the use of pooling architecture replaces the outputs of the convolu-
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tional layer with summary statistic, and this subsampling operation makes

the output insensitive to small translation of the input. In Figure 4.2(b),

the pooling size is 1× 3 with stride being set to (1, 1), thus a 3-by-3 matrix

becomes a 3-by-1 matrix after the pooling stage.

A CNN is composed of multiple layers, such as convolution layers, pooling lay-

ers, and fully connected layers, and a series of convolution, pooling and matrix

multiplication operations are performed during the calculation process. In the

convolution operation, the filter (also called weight matrix) slides over the input

space and generates a set of output nodes, and each output node is calculated by

convolving the input with the filter. The number of involved inputs for one out-

put node (or called the size of the receptive field) is decided by the filter size and

how far away the receptive fields are for neighboring output neurons are decided

by the filter stride. Figure 4.3(a) is an example of a 3× 3 filter (gray area) with

stride 1 acting on a 4× 4 input, a 2× 2 feature map (green square) is produced,

and each cell represents a neuron. Note that in this example, we do not consider

the depth of the input and the filter. All the output nodes produced by the same

filter form a feature map, which is a matrix, while the number of feature maps is

decided by the number of filters, as shown in Figure 4.3(b).

(a) (b)

Figure 4.3: Example of Convolutional layer: (a) Example of a 3 × 3 filter (gray
matrix) with stride 1 acting on a 4× 4 input. (b) The input is convolved with 3
filters, thus produces 3 two-dimensional feature maps.

In other words, all the nodes in one output feature map share the same weights.
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For the rth feature map in layer l, the node Ca,t
r,l at ath row and tth column can

be calculated by

Ca,t
r,l = f(

∑
v

ml−1∑
i=0

nl−1∑
j=0

xa·sl+i,t·dl+jv,l ωi,j
v,r,l + br,l) (4.3)

where xv,l ∈ Rp×q×v denotes the input of the lth layer, of which the number

of channels (also called depth) is v, and each channel has a size of p × q. The

inputs can be the initial input signal or the output of the preceding layer. For

the output of the preceding layer, v refers to the number of feature maps in the

(l − 1)th layer. ωv,r,l ∈ Rml×nl refers to the vth channel of the rth filter in layer

l, with size ml × nl and stride set to (sl, dl). br,l is the bias for the rth feature

map. f(.) is the activation function that endows the network with the ability to

learn complex nonlinear relationships in the data. The activation function used

in this work is Rectified Linear Unit (ReLU), which is given by

f(x) =


0 for x < 0

x for x ≥ 0

(4.4)

Pooling is a down-sampling operation which reduces the size of the feature maps

extracted in a convolution layer as well as the number of parameters introduced

to the following layers by either max pooling strategy

Pa,t
r,l+1 = max

0≤i≤m(l+1)−1,0≤j≤n(l+1)−1
{Ca·s(l+1)+i,t·d(l+1)+j

r,l } (4.5)
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or average pooling strategy

Pa,t
r,l+1 =

∑m(l+1)−1

i=0

∑n(l+1)−1

j=0 (C
a·s(l+1)+i,,t·d(l+1)+j

r,l )

m(l+1) × n(l+1)

(4.6)

where (m(l+1), n(l+1)) is the size of the pooling region, while (s(l+1), d(l+1)) is the

strides of the pooling filter in layer l + 1.

The final output of the CNN is calculated as:

O = f(
z∑
j=1

x(j)ω(j) + b) (4.7)

where x denotes the input of the output layer, ω and b are the weights and bias

that connect the x and final output, respectively.

All the weights and bias are tunable parameters (θ) which are updated by mini-

mizing the loss function J(θ) through an optimization algorithm. For prediction

problems, it is common to use MSE loss function [171], that is J(θ) = Emse. To

update the parameters, the Adam algorithm [172] is used in this work, which has

been suggested as the default optimization method for deep learning applications

[173].

gt = ∇θJt(θt−1) (4.8)

mt = β1mt−1 + (1− β1)gt (4.9)

vt = β2vt−1 + (1− β2)g2
t (4.10)

m̃t =
mt

1− βt1
(4.11)

ṽt =
vt

1− βt2
(4.12)

θt = θt−1 −
α · m̃t√
ṽt + ε

(4.13)

where gt is set to be the gradient of the loss function J(θ) at tth training iteration.
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mt and vt are the estimated first moment (the mean) and second moment (the

uncentered variance) of the gradient respectively, and m̃t and ṽt are their bias-

corrected values. β1 and β2 are exponential decay rates, while βt1 and βt2 are β1

and β2 to the power t. θt is the updated parameters.

CNNs are effective tools for extracting features from a high-dimensional data,

and have been widely used in a range of fields, such as image processing, text

classification, and speech recognition. These high-dimensional signals usually

have high spatial or temporal correlations in adjacent variables, which can be

effectively extracted through the convolution operations. Due to the fact that

time series data is ubiquitous and is constantly generated in many engineering

processes and in our daily life, there are imperative needs to develop efficient

techniques to extract useful information from time series data. Considering the

merits of CNNs in terms of automatic feature extraction and low overfitting risk,

their applications in dealing with large amount of time series signals have also

been investigated. For example, some reports have confirmed the potential of

CNNs in extracting the representative features from time series data. In [174], a

CNN is used for solving a human activity recognition problem where the inputs

of the network are multichannel time series signals collected from inertial sensors,

and the outputs are related human activities. In this application, the filters in the

CNN move along the temporal dimension for each sensor (each sensor corresponds

to a row in the 2-dimensional input). In [175], a multi-scale CNN is used for time

series data classification problems. The CNN architecture has multiple branches

in its first layer that can extract features of different frequency and time scales.

Further, CNNs have also been used for time series forecasting and estimation,

and fault diagnosis.
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4.2 Related Works

This section presents the concepts of transfer learning and network pruning, which

are the key elements of the proposed battery capacity estimation method.

4.2.1 Transfer Learning

Most machine learning technologies are developed under the assumption that

the data used for training and testing should be drawn from the same feature

space and have the same distribution [176]. In other words, the statistical model

trained on a dataset can not be directly applied to another dataset with different

distribution, and the model has to be reconstructed and retrained from scratch on

the new dataset. However, collecting enough data to retrain a new model is often

time-consuming and costly in real-world applications, and on the other hand,

the training process often takes a long time. Transfer learning was proposed to

handle such cases, aiming to reduce the need and effort for data recollection and

model re-training while leveraging the knowledge learned from a source task to a

different but related task though the data of these two tasks may have different

distributions [177]. Based on the transfer learning, the latter task requires much

less data to retrain the model.

Generally speaking, the transfer learning can be achieved in two ways for neural

network models: one is to utilize the original pre-trained network except for its

last fully-connected (FC) layer as a fixed feature extractor for the new task, and

the other approach is to fine-tune the parameters of the pre-trained network

using data of the new task. Choosing the suitable transfer learning technique

mainly depends on the size and similarity of the target dataset to the original

one used in pre-training [177]. It is widely accepted that the first several layers

of a network are used to extract low-level features while the following few layers

are used to extract high-level features [178], the FC layers are used to learn
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non-linear combinations of these features. Therefore, the first transfer learning

technique is suitable for cases when the target dataset is quite similar to the

source dataset. On the other hand, fine-tuning the pre-trained network is more

suitable for a target dataset which has different distribution statistics from the

original dataset.

When the CNN is applied for battery capacity estimation, it is obvious that the

model trained on one battery degradation dataset can not be directly applied to

another type of batteries with different specifications and charging/discharging

policies. When the battery specification changes or the operation condition varies

significantly, the CNN model needs to be retrained or even rebuilt from scratch on

the new battery degradation data, which is quite time-consuming and requires a

huge amount of training data. Considering that different batteries have different

local degradation patterns under different operating conditions but have similar

overall degradation trends [179], and the transfer learning technique does not

require the test data to have the same statistical distribution as the source data

[180], an effective solution to overcome the limitations of CNN-based capacity

estimation method is to introduce the concept of transfer learning. To this end,

this chapter combines the CNN with transfer learning, aiming to eliminate the

need to recollect a complete battery cycling data and build a completely new

CNN model.

4.2.2 Network Pruning

When CNNs are used for battery capacity estimation, the deep and complex net-

work structure and a large number of parameters to tune demand huge memory

storage and high computational cost, which hinder its implementation in embed-

ded devices [181]. To acquire a smaller and much more compact model, network

pruning, which can remove redundant network connections based on a predefined

criteria, has proven to be an effective approach. After pruning, the model will
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have much fewer parameters with little or no impact on performance, while the

computational complexity and storage space can be significantly reduced. Ac-

cording to the granularity level, the pruning can be applied at four levels, namely

weight-level, filter-level, channel-level and layer-level [182]. Though a number of

methods have been proposed so far for network pruning at different granularity

level, they are all based on the similar framework, that is, to evaluate the impor-

tance of each weight/ kernel/ channel/ layer and remove those insignificant ones.

The core of these methods is to choose a suitable importance indicator that de-

termines which element should be removed. Different criteria have been proposed

in the literature, for example, the absolute values of weights were directly used as

the importance indicator in [183], the second order derivatives of a layer-wise loss

with respect to the corresponding weights were used to identify the importance

of each weight in [184], while [185] calculated the percentage of zero activation of

a neuron after the ReLU mapping to determine which neuron should be removed,

based on the assumptions that neurons with higher percentage values provide less

power to the results.

Considering that the CNN structure used in capacity estimation often has less

number of filters and layers, weight-level and channel-level pruning are more suit-

able. Further, neuron pruning simplifies the network structure and also reduces

the number of weights, therefore it is often more effective than the weight prun-

ing approach only [186]. As a consequence, a channel-level pruning method is

proposed in this chapter to remove unimportant neurons, where each neuron is

viewed as one channel. Considering that the FC layers are less sensitive to prun-

ing than the convolutional layers [183], and the FC layers have the most number

of parameters, we choose the FC layers as the pruning object. In this way, more

parameters can be pruned with minimal impact on the output. The final com-

pressed model will use much less memory and require less calculations, which

makes it possible to implement the resultant model in the on-board BMS. The
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detailed pruning method will be elaborated in the following sections.

4.3 The Proposed Methodology

In traditional capacity estimation methods, the estimated performance relies on

the number of health features extracted from the measurement data and the way

they are combined [187]. However, it is not easy to manually extract features

from the raw data effectively and efficiently. Therefore, a CNN-based capacity

estimation framework is proposed in this chapter due to the CNNs are capable

of making full use of the large volume of historical measurements and extracting

features automatically. In this section, the proposed framework is described in

detail. First, the input generation method including data normalization, segmen-

tation and time series-to-image conversion is introduced, and the target output

of the model is clarified. Then the construction of the proposed CNN model is

described step by step, which incorporates both the concepts of transfer learning

and network pruning.

4.3.1 Input Generation and Model Output

The input variables used for battery capacity estimation in this chapter are cur-

rent, terminal voltage and charge capacity, where the charge capacity is calculated

by integrating the current with respect to time for a partial charging segment.

These variables are highly correlated, embedding lots of information. To make

the most of the embedded information in these measurements and to automati-

cally extract features, a CNN model is built and a time series-to-image conversion

method is proposed to convert the measured time series signals to 3-dimensional

(3-D) images, as the CNN usually takes images as the input and the resultant

3-D images embed the spatially and temporally correlated information among

these variables. Generally, with the same number of weights (e.g. a 2 × 2 × 3
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filter for 3-D image input and a 3× 4 filter for 2-D temporal input both have 12

parameters), more information can be extracted from the converted 3-D images

than from the temporal signals, since the converted 3-D input can link both adja-

cent signals and signals after a period of time together in single visual field of the

filter. Given that there is little chance to fully charge/discharge a battery from

a fixed initial state in practical applications [141], partial charging curves based

capacity estimation methods are more practical. Therefore, data segmentation

is performed before the conversion stage to generate partial charging curves with

flexible start/end point.

Figure 4.4 illustrates the steps of the proposed input generation method. Note

that the raw data, i.e. current, voltage and charge capacity, have different scales,

therefore directly converting these variables to 3D inputs will slow the training

process and significantly degrade the model performance. Thus, data normaliza-

tion is applied first. In this work, the min-max normalization strategy is adopted,

which retains the original distribution of data and all transformed data fall into

the range of [-1,1], reflecting both the charging and discharging phases. Then M

data chunks are segmented from one charge cycle, as illustrated in the sub-picture

in the lower right corner of Figure 4.4, each data chunk is a n × 3 matrix that

represents a partial charging segment, where 3 is the number of involved vari-

ables, and n denotes n continuous data points for each variable. Two adjacent

data chunks have c overlapping data points. That is, n continuous data points

of the three variables with the same starting point are extracted for M times in

one cycle, and each time the starting point moves down n − c points. Finally,

each partial charging segment is converted into a 3 dimensional image with the

size of
√
n ×
√
n × 3. In this transformation stage, the number of data chunks

M generated in a cycle contains L data points in total, is determined by the

segmentation length n and the overlap size c between two adjacent data chunks,

M = floor(L−n
n−c ) + 1. The function floor(.) gives the greatest integer less than or
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equal to the input parameter.

Figure 4.4: Input generation steps: data normalization, charging curves segmen-
tation, and time series-to-image conversion

This input generation method can increase the number of samples used for CNN

training, and allow fast online capacity estimation only using flexible partial

charging curves, moreover, it is an enabling block to apply the CNNs for time

series signals. Each input sample is associated with an output sample, which is

the full discharge capacity that is calculated by integrating the discharge current

over time for the entire full discharge cycle which immediately follows the charge

cycle that generated the input sample.
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4.3.2 Network Construction

As shown in Figure 4.5, the CNN model proposed in this chapter is constructed

in three consecutive steps. Firstly, a CNN architecture is designed based on a

classical and effective CNN structure named LeNet-5 [188], and the CNN model

is pre-trained using the source dataset. Secondly, the knowledge learned from

the source dataset is transferred to a new task, and the trainable parameters

are fine-tuned using the target dataset to produce the target model. Finally, a

pruned CNN model is constructed by pruning insignificant neurons of the target

model using the proposed pruning algorithm. The detailed process of each stage

will be further elaborated below.

Figure 4.5: Model construction stages: (1) pre-training, (2) transfer learned pa-
rameters and fine-tuning, (3) pruning
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Figure 4.6: Model structure of the pre-trained CNN model

4.3.2.1 Pre-training

The designed CNN architecture is graphically illustrated in Figure 4.6 and the

output size and number of parameters for each layer are summarized in Table

4.1. It has 4 convolutional layers, 2 max pooling layers, a flatten layer and 2

fully-connected layers. The zero-padding method [189] is used in the last two

convolutional layers to control the size of the feature maps. As aforementioned,

the inputs are
√
n×
√
n×3 matrices, their weight and height dimensions both are

√
n, which are determined by the length n of the data chunk, and 3 is the depth

of the input, which is determined by the number of variables. In this work, n is

set to be 225, thus the size of the input is 15× 15× 3. The output size w× h× c

refers to the size of the feature maps, where w, h, c denote the weight, height and

channel, respectively. For each convolutional layer, N@k×m×d denotes the filter

design, which implies that N filters with the size of k×m× d are convolved with

the input of this layer, where the depth of the input is d, and the depth/channel

of the output feature maps must be N . The model pre-trained on the source

dataset is denoted as CNN(S), and there are totally 12693 parameters in this

model, which are trained using the source dataset.

The source dataset was split into three sets: training, validation and testing. The

CNN model is trained from scratch using the training and validation sets, and

then tested on the testing set. All the 12693 parameters are trained and then

used in the following steps.
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Table 4.1: Layer configurations and number of parameters of the pre-trained
CNN model

Layer Layer name Stride Output size Parameters

L1 Conv 1(16@2× 2× 3) (1,1) (14× 14× 16) 208

L2 Maxpool 1(2× 2) (2,2) (7× 7× 16) 0

L3 Conv 2(32@2× 2× 16) (1,1) (6× 6× 32) 2080

L4 Maxpool 2(2× 2) (2,2) (3× 3× 32) 0

L5 Conv 3(16@2× 2× 32) (1,1) (3× 3× 16) 2064

L6 Conv 4(16@2× 2× 16) (1,1) (3× 3× 16) 1040

L7 Flatten - 144 0

L8 FC1 - 50 7250

L9 FC2 - 1 51

4.3.2.2 Transfer Learning and Fine-tuning

In real-life applications, it is not a trivial task to collect and annotate battery

long-term cycling data. While the CNN architectures used for battery capacity

estimation usually contain tens of thousands of free parameters to train, requiring

a large number of labeled training data and long training time. To circumvent

this problem for practical applications, transfer learning is adopted to transfer

the knowledge learned from the source dataset to a new task with a much smaller

dataset. In this work, transfer learning is achieved through the following two

steps (Stage 2.1 and Stage 2.2 in Fig. 4.5): first, the structure and parameters

of the CNN model pre-trained on the source dataset are transferred to the target

dataset, then specific layers are fine-tuned using the target dataset. The resultant
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CNN model after the transfer learning is denoted as CNN(S)-TL in the remainder

of this chapter.

4.3.2.3 Pruning

As aforementioned, the CNN(S)-TL model used for capacity estimation fine-tuned

using the target dataset has 4 convolutional layers, 2 max pooling layers, a flatten

layer and 2 fully-connected layers with a total of 12693 parameters. In real-world

applications, such a CNN model will require large computation and memory re-

sources, which limits its implementation in on-board BMS. An intuitive way to

solve this problem is to reduce the model complexity and the number of pa-

rameters. Inspired by the work presented in [190] that selects the best hidden

neurons and avoids redundant structure, a FRA-based network pruning method

is proposed in this work to remove all redundant neurons based on measuring

the contributions of all neurons to the outputs. Compared with other pruning

methods, the proposed method identifies and preserves the most important neu-

rons of networks and re-assign weights to the retained neurons. In other words,

the important features are retained, which may help to improve the accuracy of

capacity estimation for the CNN model refined on a rather small task dataset.

Further, the ability of the proposed method to simultaneously update weights

and select neurons implies that there is no need to fine-tune the network after

pruning. As shown in Table 4.1, more than half of the total parameters of the

CNN model are from the last two fully-connected layers, the proposed method

is therefore deployed to these two layers. The redundant neurons and all the

incoming and outgoing connections associated with these neurons are removed,

leading to significantly reduced memory usage and computational complexity for

online capacity estimation.

Supposing X ∈ <N×(L+1) is the input matrix to the first fully-connected (FC1)

layer, where N is the number of samples and L is the length of the vector formed
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in the flatten layer and inputted to the FC1 layer, and the input matrix X in-

cludes a bias vector with all elements being set to 1. Y ∈ <N×1 is the output of

the second fully-connected (FC2) layer, i.e. the output of the CNN(S)-TL model,

which can be written as

Y = f(XΘ)W + Ξ (4.14)

where Θ ∈ <(L+1)×S1 represents the parameter matrix of the FC1 layer, which

consists of the L× S1 weight matrix and 1× S1 bias vector. S1 is the number of

neurons inputted to the FC2 layer, namely, the number of latent features obtained

by the CNN-TL model to estimate capacity. W denotes the parameter matrix of

weights and bias of the FC2 layer, and Ξ is the residual vector.

To remove redundant neurons in FC1 and FC2 layers without sacrificing the

overall performance of the network, the detailed procedure is illustrated in Figure

4.7, and the neuron selection process is elaborated as follows.

Take the FC1 as an example, the pruning procedure consists of 3 steps:

Step 1 - Calculate the contribution of each neuron in the FC1 layer. Let Yf =

f(XΘ), Yf = [yf1 ,y
f
2 , ...,y

f
N ]T ∈ <N×S1 is the output of the FC1 layer. According

to Equation (3.12), the net contribution of each neuron in this layer can be

calculated as

∆Ek+1 =

((
Yf
)T
x

(k)
k+1

)2((
x

(k)
k+1

)T
x

(k)
k+1

) , k = 0, 1, ..., L− 1 (4.15)

Step 2 - Rank the neurons based on their contributions, and then select the

highest ranked neuron. With the selected neurons, a new output of the FC1 layer

is obtained, denoted by Ŷf . The root mean square error between Yf and Ŷf
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CNN-TL model

Input N data
samples{xi,yi}Ni=1,

k = n = 1

Calculate ∆EL of
each neuron in FC1

layer with FRA

Select k neurons
with highest ∆E

and re-assign weights

Reach the de-
sired tolerance?

Calculate ∆ES1 of
each neuron in FC2

layer with FRA

k = k + 1

Select n neurons
with highest ∆E

and re-assign weights

Reach the de-
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n = n + 1

Output Ŷ, k, n

PCNN-TL model

yes

no

no

yes

Figure 4.7: Flowchart of the FRA-based neuron pruning process

over all the training samples is given as

rmsef =

√√√√ 1

N

N∑
i=1

(
(ŷfi − yfi )(ŷfi − yfi )T

)
=

1√
N

∥∥∥Ŷf −Yf
∥∥∥
F

(4.16)

where ‖·‖F is the Euclidean norm.

Step 3 - Repeat Step 2 until the maximum number of neurons in the FC1 layer is

reached or the rmsef is smaller than the predefined error bound. The parameters

97



4.4 Experimental data

for the selected terms are calculated by

θ̂j =

(
x

(j−1)
j

)T
Yf −

∑k
i=j+1 θ̂i

(
x

(j−1)
j

)T
x

(j−1)
i(

x
(j−1)
j

)T
x

(j−1)
j

(4.17)

where j = k, k − 1, ..., 1, and k is the total number of the selected terms.

The neuron pruning process for FC2 is the same as for the FC1 layer. Repeat step

1-3, and until the equivalent or even better result with fewer neurons is achieved.

The proposed method using FRA for neuron pruning can simultaneously reduce

the model size and re-tune the weights, which eliminates the need to fine-tune the

network after neuron pruning, and reduces the number of computing operations

without sacrificing the accuracy. After pruning, the new network is more com-

pact than the original CNN(S)-TL model in terms of the model size, and hence

the computational complexity is significantly reduced. The resultant model is

denoted as pruned CNN(S)-TL (PCNN(S)-TL) in the rest of this chapter.

4.4 Experimental data

The detailed information of the source battery degradation dataset used to pre-

train the CNN model and the target dataset used to validate the performance of

the proposed PCNN(S)-TL model are summarized in Table 4.2. These include

one large-scale test dataset for 16 cells and one small-scale dataset for 4 cells, and

each cell in the first dataset has roughly gone through 1000 charging/discharging

cycles, while cells in the small dataset were only tested for 30 reference cycles.

Therefore, the large-scale dataset is employed as the source dataset to pre-train

the CNN model, and then the learned knowledge will be transferred to the small-

scale dataset. Note that these two sets of cells are all the same type, but have

different specifications and are tested under different cycling scenarios.
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Table 4.2: Summary of the two battery degradation datasets

Source dataset Target dataset

Available cycles for each cell
roughly 1000 charge
/discharge cycles

30 reference charge
/discharge cycles

Number of cells 16 4

Nominal capacity 1.1 Ah 1.6 Ah

Nominal voltage 3.3 V 3.2 V

Battery type LiFePO4 LiFePO4

4.4.1 Source dataset

The source dataset is collected from 124 commercial lithium iron phosphate

(LFP)/graphite batteries that are manufactured by A123 System (APR18650M1A),

with a nominal voltage of 3.3 V and nominal capacity of 1.1 Ah [191]. They are

cycled to failure under fast-charging policy at a constant temperature of 30◦C.

Under the fast-charging experimental procedure, denoted as ”C1(Q1)-C2”, the

cell is first charged from 0% to Q1 state of charge (SOC) at a constant current

(CC) C1, then charged from Q1 to 80% SOC at constant current C2. After

reaching 80% SOC, all cells are charged at 1C until the voltage reaches its upper

cutoff potential 3.6 V. A 1C rate represents that the charge/discharge current

will charge/discharge the entire battery in 1 hour [192]. For these batteries with

a nominal capacity of 1.1 Ah, 1C equals to a charge/discharge current of 1.1 A.

Finally a constant voltage (CV) mode continues until the charge current falls to

22 mA. The whole charging policy is illustrated in Figure 4.8. All cells are dis-

charged under a CC-CV protocol, discharging at CC of 4C until the cell voltage

falls to 2.0 V with a current cutoff of 22 mA. And the sampling frequency was

0.5Hz.
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Figure 4.8: Charging policy of the source dataset

The first 16 cells in dataset ’batch3’ are used in this work and they are charged

with different policies. These 16 cells are divided into 2 groups, where the first

group consists of 12 cells and is used to train the network, while the second group

consists of the remaining 4 cells and is used as the testing set. The detailed

policies applied to charge these 16 cells from 0% to 80% SOC are summarized

in Table 4.3, and the groups used for training and testing are also given in the

table. During the pre-training process, samples generated from the Group 1 are

first shuffled and randomly split into a training set and a validation set with the

ratio of 7:3, which are then used to pre-train the CNN model. The Group 2 is

then used to test the performance of the trained CNN model.

4.4.2 Target dataset

To validate the proposed PCNN(S)-TL based capacity estimation algorithm, data

of 4 commercial cylindrical LFP cells with nominal voltage of 3.2 V and nominal

capacity of 1.6 Ah are used as target dataset in this work. These cells used in

the target dataset are different from the cells used in the source dataset as shown

in Table 2, and they are tested in parallel using a BTS 4000 battery test system
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Table 4.3: Summary of the policies for charging the cells from 0% to 80% SOC

Battery Charging policies Cycles

Group 1

(Training set)

1 ’5C(67%)-4C’ 1008

2 ’5.3C(54%)-4C’ 1062

3 ’5.6C(19%)-4.6C’ 1266

4 ’5.6C(36%)-4.3C’ 1114

5 ’5.6C(19%)-4.6C’ 1047

6 ’5.6C(36%)-4.3C’ 827

7 ’3.7C(31%)-5.9C’ 666

8 ’4.8C(80%)-4.8C’ 1835

9 ’5C(67%)-4C’ 827

10 ’5.3C(54%)-4C’ 1038

11 ’4.8C(80%)-4.8C’ 1077

12 ’5.6C(19%)-4.6C’ 816

Group 2

(Testing Set)

13 ’5.6C(36%)-4.3C’ 931

14 ’5.6C(19%)-4.6C’ 815

15 ’5.6C(36%)-4.3C’ 857

16 ’5.9C(15%)-4.6C’ 875

made by NEWARE. Thermocouples with measurement error less than 0.1 ◦C are

attached to measure the cell surface temperature.

High charging current rates are used to accelerate the aging speed of these cells,
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and a reference cycle is tested under the temperature of 25 ◦C every 30 cycles.

The protocol of the reference cycle recommended by the manufacturer includes a

CC-CV charging and a CC discharging process. As shown in Figure 4.9(a), under

the CC-CV charging policy, the cells were charged at a uniform CC of 1 A until

the voltage reaches the upper cutoff voltage 3.6 V, and then charged with 3.6V

CV to a current cutoff of 75mA. All cells were subsequently discharged with a

1 A CC to the lower cutoff voltage of 2.0 V. The sampling frequency for all the

equipment used in this experiment was set as 1Hz. The resting time between the

charge and discharge process was set to 1 hour.

The CNN(S)-TL model is fine-tuned using the data collected from the reference

cycles of the 3 cells, while the data from the remaining cell is used for testing.

The capacity degradation trends for these 4 cells are shown in Figure 4.9(b).

4.5 Implementation Details

4.5.1 Input structure

Training samples generation process is illustrated in Figure 4.10, and Mi partial

charging segments with the length of 225 consecutive data points were extracted

from the i th charging cycle, i = 1, 2, ..., Nt, where Nt is the total number of

charging cycles involved in the training dataset. After a series of trial-and-error

tests, it is found that the length of 225 data points is the best trade-off between

the number of generated training samples and the information embedded in each

sample. Each segment was formulated to a 15 × 15 × 3 matrix. This leads to∑Nt
i=1Mi data segments fed into the network to train the model. For a given over-

lap size c, the number of samples generated from the i th charge cycle containing
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(a) CC-CV charging strategy

(b) Capacity degradation trends for cell 1 - cell 4

Figure 4.9: Charging strategy (a) and actual capacity degradation (b) of the four
cells in target dataset

Li data points in total is calculated as follows

Mi = floor(
Li − 225

225− c
) + 1 (4.18)

where the function floor(·) gives the largest integer less than or equal to the

input value. The overlap size was set as c = floor(225× 0.8) in this work.

For the test dataset, only one partial charging segment was extracted per cycle,

and this segment has a fixed length of 225 data points and a random starting

point. The training data of the source and target datasets are used to pre-train
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the CNN(S) and fine-tune the CNN(S)-TL model, respectively, and they are

also used to prune the input neurons of the fully-connected layers. The testing

data from the source dataset is used to verify the effectiveness of the CNN-based

capacity estimation method on cells with different charging policies, while the

testing data of the target dataset is used to verify the effectiveness of the transfer

learning strategy. Further, the testing data of the target dataset are also used to

validate the performance of the pruned model.

Figure 4.10: Illustration of training samples generation. Mi samples are seg-
mented from one charge cycle, each sample refers to a partial charge cycle with
a length of 225 data points. Three variables, i.e. voltage, current and cumu-
lative charge capacity, of each partial charge segment are then together form a
15×15×3 input matrix. Note that the charge capacity is calculated by integrating
the current with respect to time for a partial charging segment.

4.5.2 Training Protocols

Important hyperparameters are pre-defined before training and fine-tuning the

model to maximize the performance of the model. When the CNN model is

trained from scratch, all the kernels are initialized based on Xavier uniform ini-
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tializer and the bias are initialized to zero [193]. The maximum training epochs

are set to 80 with the mini-batch size of 128 samples. To avoid overfitting prob-

lem, early stopping method with patience set to 5 is applied to stop training

once the model performance has not improved for 5 consecutive epochs on the

validation dataset. The Adam algorithm with learning rate of 0.001 is used to

update the parameters.

The CNN(S)-TL model is fine-tuned from the pre-trained CNN(S) model on the

target dataset. First, all layers of the pre-trained CNN(S) are copied to the

CNN(S)-TL model. Considering that the target dataset is much smaller than the

source dataset, and the features extracted from the first few layers are universal,

the parameters of layers prior to the third convolutional layers are retained un-

changed. Then the subsequent layers are fine-tuned to learn the specific features

on target dataset with a learning rate of 0.0001, which is ten times smaller than

the one used in the scratch training.

In the pruning stage, all the layers copied from the CNN(S)-TL model are fixed

except for the last two fully-connected layers. When the desired performance of

the model is achieved with the minimum number of neurons using the proposed

FRA-based network pruning method, it eliminates the necessity of fine-tuning

the network after removing redundant neurons, due to that new weights have

already been assigned to remaining neurons using the proposed algorithm.

4.5.3 Evaluation Criteria

In the experiment, the total mean absolute error (MAE), root mean-square error

(RMSE) and normalized estimation error (NEE) are used to assess the model

performance. They are effective measures to assess the deviations in distances

between the estimated capacities Ŷ and the reference values Y. The formulas

are defined as follows:
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Emae =
1

N

∥∥∥Ŷ −Y
∥∥∥

1
(4.19)

Ermse =
1√
N

∥∥∥Ŷ −Y
∥∥∥
F

(4.20)

Enee =
1√
NQ

∥∥∥Ŷ −Y
∥∥∥
F
× 100% (4.21)

where N is the sample size of test data, Q is the nominal capacity. ‖·‖1 and

‖·‖F are the L1 norm and Euclidean norm, respectively. Y =
[
{yi}Ni=1

]T
and

Ŷ =
[
{ŷi}Ni=1

]T ∈ <N×1, yi is the reference capacity for the i th sample, while ŷi

is the corresponding estimated value.

In addition, the floating point operations (FLOPs) are considered to measure the

computational cost in this study. As the pruning algorithm is applied to the fully-

connected layers in this study, only the number of FLOPs for a fully-connected

layer is considered, which is calculated as FLOPsfc = (2× I)×O, where I and

O are the number of input and output neurons, respectively.

4.6 Results and Discussion

In this section, the datasets introduced in section 4.4 are used to validate the

performance of the proposed method. The capacity estimation results of the

proposed method on different cells are given. The performance of the proposed

model is compared with the CNN model, CNN with network pruning, and CNN

with transfer learning. The performance improvements of the proposed frame-

work in terms of accuracy and model size are analysed. Moreover, the effect of

the number of layers fine-tuned during the transfer learning stage is investigated

to explain the reasons why we choose to fine-tune 4 layers.
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4.6.1 Capacity estimation results

The capacity estimation results of the proposed PCNN(S)-TL model on target

dataset are shown in Figure 4.11 and Figure 4.12. As shown in Table 4.2 and

presented in Section 4.4.2, each cell in the target dataset has 30 reference cycles,

and a reference cycle is conducted for every 30 cycles. The red lines in Figure 4.11

and 4.12 show the degradation trend of each cell under 900 cycles. It should be

noted that only the reference cycles (the 30-th, 60-th,..., 900-th cycle) are used

for capacity estimation and have actual reference/estimated values. It can be

observed from Figure 4.11 that the proposed model can produce accurate estima-

tion on the test cells, and the estimated capacity can well track the degradation

trend. Here the four-fold cross validation approach is used, when one cell is used

for testing, data of the other three cells are used to generate the training samples

according to the input generation method introduced in Section 4.3.1 to fine-

tune and prune the pre-trained CNN model. The average NEE for the 4 cells is

0.84%. Similar estimation results are obtained when using discharging segments

to estimate the capacity, and the average NEE for the 4 cells is 0.83%. However,

in practical electric vehicle applications, CC charging process is possible while

the discharging process is usually highly dynamic, hence limiting the application

of using discharging data to estimate the capacity. Therefore, this work mainly

considers using charging data to estimate capacity to provide stable and reliable

estimation results. The experimental results have revealed that the parameters

of the developed model can be updated using the data from one cell, and then

the resultant model can be directly applied to other cells who have the same

specifications and similar charging policies. Figure 4.12 illustrates that updat-

ing the proposed model parameters using the data of the first several cycles, the

degradation trend for the following cycles can be well captured. Here data of the

first 2/3 cycles of all cells in the target dataset are used to fine-tune and prune

the model pre-trained on the source dataset, and the remaining 1/3 cycles are
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(a) Cell 1 (b) Cell 2

(c) Cell 3 (d) Cell 4

Figure 4.11: Capacity estimation results produced by the PCNN(S)-TL model
for the four cells in target dataset. For testing the performance on each cell, data
of other three cells are used to generate training samples and fine-tune and prune
the model.

used for testing. Both figures demonstrate the performance of the PCNN(S)-TL

model for battery capacity estimation.

4.6.2 Algorithm verification

The proposed battery capacity estimation method has been further verified in

this section. The CNN model directly trained using the target dataset is denoted

as CNN(T), while CNN(S) refers to the model trained using the source dataset.

The models acquired using network pruning, transfer learning and both of them

are denoted as PCNN(T), CNN(S)-TL and PCNN(S)-TL, respectively. During

the knowledge transfer stage, the first 4 layers (2 convolutional layers and 2 max

pooling layers) are fixed, and the remainder layers are fine-tuned. The values
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(a) Cell 1 (b) Cell 2

(c) Cell 3 (d) Cell 4

Figure 4.12: Capacity estimation results produced by the PCNN(S)-TL model for
the four cells in target dataset. For testing the performance on each cell, the first
2/3 cycles of all cells in the target dataset are used to generate training samples
and fine-tune and prune the model, the remaining 1/3 cycles of each cell are used
for testing.

of the aforementioned evaluation criteria for these models are averaged based on

100 repetitions of the experiments, and the test results of 4 cells are summarized

in Table 4.4 in terms of MAE, RMSE and NEE. Further, the values of the model

size, total number of parameters (of the entire model), and pruned FLOPs (of

the last two fully-connected layers) of the CNN(T), PCNN(T), CNN(S)-TL and

PCNN(S)-TL models are averaged for the 4 cells, which are listed in Table 4.5.

The results presented in these tables confirm the effectiveness of the proposed

capacity estimation methods.

Table 4.4 reveals that, firstly, the proposed network pruning method does not

degrade the estimation accuracy. The average NEE of PCNN(T) is 1.00%, which

is 9.91% smaller than that of the CNN(T) model. The NEE of PCNN(S)-TL is
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Table 4.4: Capacity estimation results produced by CNN(T), PCNN(T), CNN(S)-
TL, and PCNN(S)-TL on target dataset

Cell No. Assess CNN(T) PCNN(T) CNN(S)-TL PCNN(S)-TL

Cell1

MAE (Ah) 0.0137 0.0122 0.0112 0.0109

RMSE (Ah) 0.0170 0.0152 0.0135 0.0132

NEE (%) 1.06 0.95 0.84 0.83

Cell2

MAE (Ah) 0.0127 0.0111 0.0114 0.0104

RMSE (Ah) 0.0164 0.0145 0.0141 0.0130

NEE (%) 1.03 0.91 0.88 0.81

Cell3

MAE(Ah) 0.0129 0.0130 0.0114 0.0112

RMSE (Ah) 0.0175 0.0174 0.0139 0.0135

NEE (%) 1.09 1.09 0.87 0.84

Cell4

MAE (Ah) 0.0170 0.0133 0.0113 0.0111

RMSE (Ah) 0.0199 0.0167 0.0138 0.0137

NEE (%) 1.24 1.04 0.86 0.86

Average

MAE (Ah) 0.0137 0.0120 0.0113 0.0109

RMSE (Ah) 0.0177 0.0160 0.0138 0.0134

NEE (%) 1.11 1.00 0.86 0.84

Table 4.5: The model size, total parameters and FLOPs of the CNN(T), CNN(S)-
TL, PCNN(T) and PCNN(S)-TL models.

Model Model size (KB) Reduced size (%) Parameter numbers Parameters pruned (%) Pruned FLOPs (%)

CNN(T)/CNN(S)-TL 199 - 12693 - -

PCNN(T) 55 72.36 5711 55.01 95.70

PCNN(S)-TL 63 68.34 6793 46.48 80.97

2.33% smaller than that of the non-pruned CNN(S)-TL model. Secondly, due to

the transfer learning technique, the estimation performance of CNN(S)-TL is bet-

ter than CNN(T), and the NEE is decreased by 22.52% (from 1.11% to 0.86%).

Thirdly, the PCNN(S)-TL model achieves the best result, of which the NEE is
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24.32% smaller than the CNN(T) model directly trained on the target dataset.

More statistics are listed in Table 4.5. Compared with the non-pruned network,

the model size of the PCNN(T) and PCNN(S)-TL are dramatically reduced, being

only 27.64% and 31.66% of the original model size, leading to the size reduction

of 72.36% and 68.34% respectively. By removing the redundant neurons in the

fully-connected layers, almost 50% of the parameters of the entire network are

removed and more than 80% of the FLOPs in the last two fully-connected layers

are reduced, which makes the network more compact and reduces the computa-

tional cost. Comparing the PCNN(T) with the PCNN(S)-TL model, it can be

found that the model size and the number of parameters of the PCNN(S)-TL

model are slightly higher than that of the PCNN(T) model. Since the CNN(S)-

TL model was trained on a larger dataset, the specific features extracted in the

fully-connected layers for the capacity estimation are expected to be much richer

than that of the CNN(T) model. That is to say, the CNN(S)-TL model requires

to retain more neurons to capture these features during the network pruning

process. Consequently, the PCNN(S)-TL model will be slightly bigger than the

PCNN(T) model.

In summary, the CNN model with transfer learning and network pruning tech-

niques can achieve more accurate estimation results with much less neurons than

a model trained on the target dataset from scratch.

4.6.3 Factors affecting the model performance

To investigate the influence of the number of layers fine-tuned during the transfer

learning stage, the identical training and testing datasets were utilized for all

tests. In each test, the entire structure and parameters of the CNN(S) model

were copied first, and the last n layers were fine-tuned on the target sets while

the first 6 − n layers were fixed. It should be noted that, the whole CNN has

9 layers in total, the two max pooling layers added after the first two convolu-

111



4.6 Results and Discussion

tional layers and the flatten layer after the last convolutional layer do not have

parameters, therefore, maximally six layers can be fine-tuned. Thus, n refers to

the number of tunable layers, and was selected from 1 to 6, where 1 implies that

all layers except for the last FC layer are fixed, and 6 implies that the entire

network needs to be fine-tuned. A complete fine-tuning and testing procedure

was executed 100 times for each selected n, and the averaged max error (MaxE),

MAE, RMSE, NEE of 100 runs are summarized in Table 4.6, where FC stands for

the fully-connected layer, 2FC refers to the last two fully-connected layers, Conv

represents the convolutional layer, and the number prefixing to Conv stands for

the number of convolutional layers involved in fine-tuning from back to front.

As shown in Table 4.6, the estimation error decreases as the number of fine-tuned

layers increases. When only fully-connected layers are fine-tuned, the NEEs are

all greater than 1.3%, while if one or more convolutional layers are fine-tuned,

the NEE are decreased by at least 30.88% (decreasing from1.36% to 0.94%). This

improvement implies that for batteries with different specifications and subject

to different charge/discharge policies, they have different high-level specific fea-

tures projected at the last few convolution layers. The specific high-level features

learned from the source dataset can not precisely describe the target dataset, thus

they need to be learned using the target dataset.

Further, Figure 4.13 shows the number of neurons selected in FC1 and FC2

layer of the PCNN(S)-TL model during the network pruning process for differ-

ent number of fine-tuned layers n. Two observations can be concluded from this

bar chart. Firstly, the number of neurons selected in FC2 layer almost does not

change with n. Secondly, for the FC1 layer, as the number of fine-tuned layers

increases, the number of selected neurons first increases until it reaches the maxi-

mum value at n = 3, and then gradually converges. Only relatively fewer neurons

are selected in FC1 layer when only fine-tune the last one or two layers (n = 1, 2),

while the maximum number of neurons is selected when the last convolutional
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Table 4.6: Comparison of the model performance on battery capacity estimation
with different number of fine-tuned layers.

Assess
Fine-tuned layers

(from back to front)

FC

n=1

2FC

n=2

2FC + Conv

n=3

2FC + 2Conv

n=4

2FC + 3Conv

n=5

2FC + 4Conv

n=6

MaxE (Ah) fine-tune 0.0644 0.0475 0.0377 0.0292 0.0277 0.0275

fine-tune & pruning 0.0578 0.0478 0.0395 0.0294 0.0273 0.0265

MAE (Ah) fine-tune 0.0271 0.0177 0.0120 0.0112 0.0112 0.0113

fine-tune & pruning 0.0262 0.0182 0.0121 0.0109 0.0113 0.0109

RMSE (Ah) fine-tune 0.0321 0.0218 0.0151 0.0135 0.0132 0.0135

fine-tune & pruning 0.0307 0.0223 0.0154 0.0132 0.0132 0.0129

NEE (%) fine-tune 2.01 1.36 0.94 0.84 0.83 0.84

fine-tune & pruning 1.92 1.39 0.96 0.83 0.83 0.81

layer is fine-tuned together with the fully-connected layers (n = 3). Then the

number of selected neurons decreases as the number of fine-tuned convolutional

layers increases. This again implies that the last few convolutional layers can ex-

tract more specific features. When n = 1, 2, the number of useful specific features

for interpreting the target data is insufficient, as a consequence, only a limited

neurons in FC1 are needed which can contribute to the final specific features

captured in FC2, and the estimation performance can not be maintained (Table

4.6). When n increases from 1 to 3, the increase of the number of selected neurons

and the decrease of the estimation error reveals that as the number of fine-tuned

layers increases, the number of useful extracted features increases and the number

of redundant neurons decreases. However, when n is further increased from 3 to

6, the features extracted from the data have already been fully exploited through

the fine-tuning of the convolutional layers proceeding to FC1 and FC2, therefore

the number of selected neurons in FC1 and FC2 can be reduced. This is observ-

able from Fig. 6 that as n increases from 3 to 6, the number of selected neurons

in FC1 and FC2 is slightly decreased. The aforementioned analysis reveals that

there is a trade-off in the transfer learning between the number of layers required

to be fine-tuned, the model complexity, and associated computational effort.
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Figure 4.13: The number of neurons selected in the last two fully-connected layers
of the PCNN(S)-TL model versus the number of fine-tuned layers

In summary, according to Table 4.6 and Figure 4.13, fine-tuning 4 layers (2 fully-

connected layers and 2 convolutional layers) are the best trade-off among estima-

tion performance, model complexity, fine-tuning effort and computational cost.

4.6.4 Discussions

By incorporating the concepts of transfer learning and network pruning, the final

model updated offline using the small target dataset can produce more accurate

online capacity estimation results with a more compact structure and lower com-

putation cost. With real-time recorded signals (i.e. current, voltage and charge

capacity) of a partial charging curve, the proposed model can quickly estimate

the capacity online. These distinctive features open up a great potential for

implementing the model in embedded systems for industrial applications. Note

that the datasets used in this study only include one testing temperature, while

in practice, the battery operating temperature varies. This can be tackled by

adding the temperature as an additional input variable to the model. This study

has also demonstrated that our proposed method is sufficiently robust to vary-

ing operating temperatures and different charging policies, as the batteries used

to generate the source dataset and the target dataset were tested at different
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temperatures and charging/discharging policies. Further, we have demonstrated

the effectiveness of our proposed method on battery capacity estimation on the

similar type of batteries, though their specifications and testing profiles are differ-

ent. However, whether the transfer learning can be applicable to different battery

types is still an open question. Moreover, the input data used in this experiment

has a high time resolution, and it can yield a model with good estimation results,

however the redundant information may lead to a high computational cost. While

data with a low time resolution may contain insufficient information or even lose

important features, the resultant model may have poor estimation performance.

Therefore, it is of great significance to investigate the impact of the time resolu-

tion of input data on the estimation accuracy, which will provide guidelines for

selecting a proper time resolution.

Finally, in this work, we first build the CNN model offline using both source data

and target data, and then use the developed model for online capacity estimation.

A potential limitation for this method is that the parameters may drift as the

battery cycling life increases, and the estimation error may increase and eventu-

ally exceed tolerable limit. This problem however can be overcome by updating

the model parameters regularly using cycling test data which could be collected

when the battery systems are under maintenance, or in other occasions where

managed charging and discharging tests can be conducted. Given the operation

safety is a paramount requirement for battery powered systems, regular mainte-

nance is a necessity, and we strongly recommend including cycling test as one of

the key battery maintenance procedures.

4.7 Chapter Summary

In this chapter, a CNN-based battery capacity estimation framework is proposed

to achieve fast online capacity estimation only using partial charging segment
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with flexible starting point and a fixed length of 225 consecutive points, and

the feature extraction and capacity estimation are automatically executed in one

framework. The input generation method is introduced at the beginning of the

framework, which can increase the number of the samples used for CNN training

and it is an enabling block to apply the CNNs for capacity estimation using

partial charging segment. Then the designed CNN architecture that incorporate

the transfer learning and network pruning techniques is described in detail. In the

experiment, a large battery degradation dataset is used as the source dataset to

build the CNN model which is then transferred to a small degradation dataset of

target batteries with different specifications tested under different cycling profiles.

Then the resultant model is obtained by pruning the neurons of the transferred

model using the proposed contribution-based method. By comparing the CNN

model directly trained on the target dataset and separately pruned/transferred

models with the resultant model, it can be revealed that both the model size

and computational cost of the proposed model are significantly reduced, that is

the resultant CNN model is more compact and can achieve higher estimation

accuracy on small degradation datasets with lower computational cost.

116



Chapter 5

Battery SOC and capacity

Co-estimation

This chapter is an extension of the research work presented in Chapter 3 and

Chapter 4 and a battery SOC and capacity co-estimation framework is proposed

based on the fusion of a Convolutional Neural Network model and a Gaussian

Process Regression model. As aforementioned, battery SOC and SOH are im-

portant indicators that can quantitatively evaluate the remaining capacity and

degradation degree of the battery, respectively. Accurate SOC and SOH esti-

mation is critical to ensure safe and reliable operation of battery systems. In

Chapter 3, the SOC is estimated using the nominal capacity as the maximum

available capacity, however, the capacity fades as the battery degrades, inaccu-

rate maximum available capacity information will influence the accuracy of the

SOC estimation. Therefore, battery aging should be taken into account and the

capacity should be updated regularly to improve the performance of the SOC es-

timation. Considering the intrinsic coupling relationship between SOC and SOH,

a joint estimation method of SOC and SOH is more favorable, as it can synergisti-

cally optimize their respective estimation results. In this chapter, the CNN-based

battery capacity estimation method presented in Chapter 4 along with the Gaus-
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sian Process Regression method are leveraged to achieve more accurate capacity

and SOC estimation.

Moreover, a new set of signals measured by the Fiber Bragg gratings (FBG) sen-

sors is introduced in this chapter and utilized for SOC estimation. The newly

measured signals contain both the strain and temperature information, since

the measured Bragg wavelength variations are subject to both strain and tem-

perature changes. The lattice expands and contracts during the lithium inter-

calation/deintercalation process, leading to the changes in strains and volume.

The stability and safety of the battery can be affected by these induced strains,

which are among the main reasons leading to potential material failure and other

forms of performance degradation if the strains exceed certain level of thresholds

[194]. Besides, temperature is often monitored to provide early warning of poten-

tial thermal hazards, which generally manifest as the thermal runaway and may

cause irreversible damage to battery cells. Therefore, strain and temperature

are crucial parameters to monitor during the electrochemical processes of battery

charging/discharging to ensure safe operation of batteries. The FBG sensors in-

troduced in this chapter have been proven to be a suitable solution to perform

strain and temperature measurements for batteries.

5.1 Experimental Setup

Cells used in this section are those used in the experiments presented in Section

4.4.2, where 4 commercial cylindrical LFP cells with a nominal voltage of 3.2

V and a nominal capacity of 1.6 Ah are used in the experiment. All cells are

tested under a constant temperature of 25 ◦C, and the battery current, voltage

and surface temperature are recorded during the CC-CV charging and CC dis-

charging process. Besides, fiber-optic sensors, which are a promising new sensing

option for battery cell monitoring, are used in this experiment to provide more
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informative measurements to improve the SOC estimation accuracy. As shown

in Figure 5.1, three Fiber Bragg gratings (FBG)-based fiber-optic sensors are

directly attached to the surface of each cell without affecting its packaging and

integrity. This non-invasive installation approach does not cause potential safety

issues and the FBG sensors can be easily mounted on the battery cells.

Figure 5.1: Cells with FBG sensor integrated.

The FBG sensors are sensitive to strain and temperature variations. These two

significant parameters are directly related to the complex processes inside the

cells, and the temperature increase and mechanical stress will cause capacity loss

and potential risk of batteries. When the battery surface temperature or strain

changes, the reflected wavelength changes from the base wavelength λ to λs, thus

the wavelength shift ∆λ is related to both strain and temperature variations
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[33; 194]. As the three FBG sensors are co-located within a small footprint but

have a slightly different orientation, the radial strain signal can be decoupled from

the temperature measurement [40]. In this section, the wavelengths that contain

both strain and temperature information are directly used for SOC estimation.

The average wavelength shift of the three FBG sensors and the voltage of a cell

subject to the CC-CV charging and CC discharging mode is presented in Figure

5.2. In Figure 5.2, step (1) corresponds to the charging phase with a constant

current of 1 A, and step (2) is the 3.6 V constant voltage charging phase, while

the final step (3) corresponds to the discharging phase with a constant current of

1 A.

Figure 5.2: Wavelength shift of a CC-CV charging and CC discharging cycle

Since simple functions cannot describe the relationship between SOC and wave-

length shift appropriately, therefore, the Gaussian Process Regression algorithm

is used to estimate the SOC using this new set of signals.
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5.2 Methodology

In this section, the detailed battery SOC and capacity co-estimation framework

is presented. Firstly, the proposed framework of the co-estimation method is

introduced. Secondly, a brief overview of the Gaussian Process Regression (GPR)

theory is introduced and the implementation procedure of GPR-based battery

SOC estimation method is presented. Further, the CNN-based battery capacity

estimation method, which is described in detail in Chapter 4, is briefly introduced.

5.2.1 The Co-estimation Framework

Figure 5.3 shows the flowchart of the proposed battery capacity and SOC co-

estimation framework. The main steps of this framework are introduced as fol-

lows: at each time instant, firstly, battery current, voltage, and FBG signals

are sampled in real-time, then the current, voltage and the charge capacity are

normalized and transformed to a three-dimensional (3-D) image with the size of

15× 15× 3 and inputted to the PCNN-TL model trained in Chapter 4 for online

estimation of the battery capacity. Subsequently, the estimated capacity is used

in the GPR model to correct the imprecise capacity estimation value, and the

updated capacity along with other normalized measurements are used to esti-

mate the SOC online. Finally, the charge capacity calculated by integrating the

current with respect to time is replaced by the charge capacity calculated using

the estimated SOC, and the new 3-D input generated with the updated charge

capacity is fed into the PCNN-TL model to estimate the capacity.

The co-estimation framework is more practical and provide more accurate esti-

mates than the traditional state estimation methods since it utilizes the coupling

relationships between the capacity and SOC. By online updating the capacity

value in SOC estimation, the impact of battery degradation is taken into ac-

count. Therefore the performance of SOC estimation for aged batteries can be
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Figure 5.3: The flowchart of the proposed battery capacity and SOC co-estimation
framework
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improved.

5.2.2 SOC estimation

5.2.2.1 Gaussian Process Regression

Different from Chapter 3, GPR, which is a probabilistic and non-parametric ma-

chine learning method, is used for battery SOC estimation in this chapter. The

GPR method is capable of quantifying the uncertainty of the estimation rather

than just provide a point estimate of the SOC, and hence providing more informa-

tive outputs than the KF algorithm. In essence, based on the GPR method, the

estimation result of SOC is given in the form of probability distribution, which

consists of the mean of the estimation value and confidence intervals.

Let D = {(xi,yi)}Ni=1 denote a labelled training dataset with N samples, where

xi ∈ <D is a D - dimensional input vector, and yi ∈ < is the corresponding

output. Suppose that there exists a latent function f(.), to map inputs xi to

outputs yi:

yi = f(xi) + εi (5.1)

where εi ∼ N(0, σ2) is an independent and identically distributed noise contribu-

tion.

In the GPR, the function f(x) is assumed to follow a multivariate Gaussian

distribution, and can be described as:

f(x) ∼ GP(m(x), K(x,x)) (5.2)

where GP denotes a Gaussian process. The mean function m(x) and covariance

function K(x,x), which can fully describe the function f(x), are denoted by:

m(x) = E(f(x)) (5.3)
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K(x,x) = E[(f(x)−m(x))(f(x′)−m(x′))]

=



κ(x1,x1) κ(x1,x2) ... κ(x1,xN)

κ(x2,x1) κ(x2,x2) ... κ(x2,xN)

... ... ... ...

κ(xN ,x1) κ(xN ,x2) ... κ(xN ,xN)


(5.4)

The mean function reflects the expected function value at input x, and the prior

mean function is often set to zero in order to avoid expensive posterior compu-

tations and hence only the covariance function is inferred [195]. The covariance

function K(x,x), also called the kernel of the Gaussian process, reflects the de-

pendence between the function values at different input points xi and xj. All the

assumptions on the properties of the function to be modelled, such as smoothness

and periodicity, are reflected in the covariance function. The squared exponential

(SE) kernel is commonly used and has become the de-facto default kernel for

Gaussian processes, it is defined as:

κ(xi,xi) == σ2
fexp

(
−‖xi − xi‖2

2λ2

)
(5.5)

where σ2
f denotes the signal variance that quantifies the variation of the latent

function from its mean, and λ is the characteristic length scale that determines

the relative importance of the input variables in estimating the target output.

Based on Equation (5.1) and (5.2), the joint distribution of the training output

y can be expressed as:

y ∼ N(0, K(x,x) + σ2I) (5.6)
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where I is a N ×N unit matrix. Generally, the unknown hyperparameters Θ =

(σ2, σ2
f , λ) of the covariance function need to be optimized in the training process

by maximizing the log of the marginal likelihood function of output y. The log

marginal likelihood is given by:

logp(y|x,Θ) = −1

2
yT [K(x,x) + σ2I]−1y − 1

2
log
∣∣K(x,x) + σ2I

∣∣− N

2
log2π

(5.7)

After obtaining the optimal hyperparameters using gradient-based method, and

giving a testing dataset D∗ = {(x∗i,y∗i)}N∗i=1, the joint multivariate Gaussian

distribution of the training output y and the testing output y∗ can be written

as:  y

y∗

 ∼ N

0,

K(x,x) + σ2I K(x,x∗)

K(x∗,x) K(x∗,x∗)


 (5.8)

where K(x,x∗) is the covariance matrix between the testing inputs and the train-

ing inputs and K(x,x∗)
T = K(x∗,x), and K(x∗,x∗) is the covariance matrix of

testing inputs x∗. Then the predictive posterior distribution is derived for the

estimation on the new/testing inputs x∗, which can be completely specified by

the mean and covariance:

y∗|x∗,x,y ∼ N(ȳ∗, K∗) (5.9)

where the mean ȳ∗ of the predictive distribution, which gives the point estimate

of the testing output, is given by:

ȳ∗ = K(x∗,x)
[
K(x,x) + σ2I

]−1
y (5.10)
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Figure 5.4: GPR-based battery SOC estimation

and the covariance matrix K∗ provides a measure of the uncertainty in the esti-

mate of the test output [196], and it is given by:

K∗ = K(x∗,x∗)−K(x∗,x)
[
K(x,x) + σ2I

]−1
K(x,x∗) (5.11)

5.2.2.2 GPR-based SOC estimation

In this chapter, the GPR is used to estimate the battery SOC for given measure-

ment inputs. As shown in Figure 5.4, the input variables to the GPR model are

current I(k), voltage V (k) and wavelength data FBG(k) at time k, and the ca-

pacity information of the corresponding cycle is updated by the estimation output

of the PCNN-TL model (as trained in Chapter 4) to improve the SOC estimation

results. Here the wavelength data is obtained from the fiber optic sensors, and

two important parameters (i.e. battery surface strain and temperature) can be

decoded and extracted from the wavelength for the characterization of the lithi-

ation/delithiation process. The model output is the estimated SOC at time k,

denoted by SOC(k).

The GPR-based SOC estimation method mainly consists of two parts, offline

training of the model and online estimation of SOC using the trained model.

The steps for training a GPR model and then performing SOC estimation are

illustrated in Figure 5.5, where the blue part on the left represents the offline

training process, and the orange part on the right refers to the testing process.
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The detailed steps can be described as follows:

Training process:

Step 1 - Determine and normalize the training dataset, D = {(xi,yi)}Ni=1, where x

contains current, voltage and wavelength measurements as well as the estimated

capacity of the corresponding cycle, and y is the reference value of SOC.

Step 2 - Select a kernel function that can well represent the underlying target

function.

Step 3 - Set the initial values for the hyperparameters in the specified kernel

function as well as the noise variance.

Step 4 - Optimize the hyperparameters with training data by maximizing Equa-

tion (5.7), the log marginal likelihood function.

Testing process:

Step 5 - With the optimal hyperparameters, the GPR model is referred to as

the ’trained’ model. Then in the testing process, the normalized testing inputs

are fed into the trained GPR model, and the target SOC is outputted in form of

mean and covariance, which provides both the SOC estimation results and the

uncertainty measurements.

5.2.3 CNN-based capacity estimation

As mentioned in Chapter 4, the battery aging during its utilization will lead to

capacity degradation, which will impact the accuracy of SOC estimation. Con-

sidering the importance of timely maintenance and replacement of aged batteries,

and the requirement for improved SOC estimation performance, it is meaningful

to update the actual capacity in real-time.

In this section, the same CNN model described in Chapter 4 is used to perform

the battery capacity estimation. The estimated capacity is then used as an in-

put to the GPR model introduced in Section 5.2.2.2, along with battery current,

voltage and wavelength data to update the SOC estimation.
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Figure 5.5: Flowchart of the GPR-based battery SOC estimation
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5.3 Estimation Results and Discussions

The performance of the proposed SOC and capacity co-estimation framework is

verified on the aforementioned dataset. The RMSE is used to evaluate the esti-

mation accuracy and the standard deviation is used to characterize the estimation

uncertainty.

The SOC estimation results of cell 1 over discharge profiles of reference cycle

10 are shown in Figure 5.6. It is evident that the estimated SOC with updated

capacity information are much closer to the reference SOC. As illustrated in Fig-

ure 5.6(c), though the errors shown in both figures converge to zero, the error

of SOC estimation with updated capacity is within 2%, while the error of SOC

estimation without updating the capacity is within 6%. Further, the RMSE of

the SOC estimation with and without the updated capacity value are 0.62% and

3.59%, respectively. This has clearly shown that accurate capacity estimation is

important for SOC estimation. While estimating the SOC, battery capacity is

simultaneously estimated using the well-trained CNN model, and the estimation

results are shown in Figure 5.7. The blue and red solid lines represent reference

and estimated capacity value of cycle 10, respectively. As shown in Figure 5.7, the

estimated capacity is close to the reference value, while its fluctuation is similar

to that of the SOC estimation error (red line in Figure 5.6(c)), when the error of

SOC estimation converges to zero, the estimated capacity also converges to the

reference value.

To investigate the effect of using FBG wavelength signals as model input for the

SOC estimation, the data collected from cell 1 was utilized for testing. Two dif-

ferent GPR models were built for SOC estimation, one took current, voltage and

capacity as the model input, and the other used current, voltage, FBG wavelength

signal, and capacity as the model input. The estimation results on cycle 10 of cell

1 are shown in Figure 5.8, and from the enlarged view of Figure 5.8(a) and 5.8(c),
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(a) (b)

(c) (d)

Figure 5.6: SOC estimation results of cell 1: (a) SOC estimation results without
updated capacity information. (b) SOC estimation results with updated capacity
information. (c) SOC estimation error. (d) SOC estimation results with/without
updated capacity.

it is evident that the the shaded blue area is wider when the FBG signal is not

fully utilized, which means the estimation uncertainty is higher. Further, Figures

5.8(b) and 5.8(d) confirm that the SOC estimation is more accurate when the

FBG signal is utilized as an input to the estimation model. Quantitatively, when

using the updated capacity information, the RMSE of the SOC estimation with

and without using the FBG signals as input are 0.62% and 1.48%, respectively,

and the mean standard deviation of the estimation with and without FBG signals

are 1.02% and 1.78%, respectively.
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Figure 5.7: The estimation results of battery capacity for reference cycle 10 of
cell 1

The RMSE and standard deviation of SOC estimation under different input con-

ditions are summarized in Table 5.1. Two observations can be concluded from

Table 5.1. Firstly, the use of updated capacity can greatly improve the SOC

estimation accuracy (reduces the RMSE from 4.3% to 1.48%, or from 3.59% to

0.62%), but do not affect the estimation uncertainty. Secondly, using FBG sig-

nals as input to estimate the SOC can not only reduce the estimation RMSE (the

RMSE decrease from 4.3% to 3.59% and from 1.48% to 0.62% achieved 16.51%

and 58.11% reductions, respectively), but also reduce the estimation uncertainty

(achieving 42.7% reduction on the estimation standard deviation from 1.78% to

1.02%).

The SOC estimation results of the GPR-based method are then compared with

those of model-based methods proposed in Chapter 3. As summarized in Chapter

3, among EKF, UKF and PF algorithms, UKF is the fastest yet gives medium

SOC estimation performance in this case. Considering that the GPR method

can also quickly produce estimation results, the UKF-based method is used for
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(a) (b)

(c) (d)

Figure 5.8: SOC estimation results of cell 1: (a) SOC estimation results using
FBG signals. (b) Error of SOC estimation using FBG signals. (c) SOC estimation
results without FBG signals. (d) Error os SOC estimation without FBG signals

Table 5.1: SOC estimation results with/without updated capacity and
with/without FBG measurements.

Without FBG signals With FBG signals

Assess
Without
updated Q

With
updated Q

Without
updated Q

With
updated Q

RMSE 4.3% 1.48% 3.59% 0.62%

Mean Standard Deviation 1.77% 1.78% 1.02% 1.02%

comparison. In this test, when considering the FBG measurements, the correla-

tions among the terminal voltage and current, SOC, maximum available capacity,
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and FBG measurements is identified first by the FRA method. Then the SOC is

estimated by the UKF method, and the RMSE of the SOC estimation with and

without the updated capacity value are 3.29% and 4.25%, respectively. When

the FBG measurements are not used, the terminal voltage is correlated only with

the current, SOC, and maximum available capacity. And based on this model,

the RMSE of the UKF-based SOC estimation with and without the updated ca-

pacity value are 4.62% and 5%, respectively. The results again validate that with

the updated capacity, the SOC can be estimated more accurately, and the use

of FBG measurements can further improve the estimation accuracy. However,

these results are not as accurate as the GPR method. One reason might be that

the non-linear forms of the inputs (current, SOC, capacity, FBG signals) in the

manually constructed feature pool are not sufficiently rich enough to capture the

effects of aging and fully utilize the useful information embedded in the FBG

measurements. Therefore, our co-estimation framework uses GPR method rather

than model-based method to estimate the SOC.

To validate the generalization ability of the proposed method, the model trained

on cell 1 is directly applied to estimate the SOC of cell 2, and satisfactory SOC

estimation results are also achieved. Taking reference cycle 10 of cell 2 as an

example, as shown in Figure 5.9, the estimation results can still well track the

reference values, though the max error is around 5%, it converges to zero at the

end of the cycle. Similar trend can be observed from the capacity estimation

results shown in Figure 5.10, when the SOC estimation error is large, the capac-

ity estimation error is large, while the estimated SOC converged to the reference

SOC, the estimated capacity also converged to the reference value. Further, the

RMSEs for the discharge profiles of the first ten reference cycles of cell 2 are sum-

marized in Figure 5.11. As shown in Figure 5.11, the RMSE of SOC estimation

is always lower when the capacity is estimated and updated in SOC estimation,

which is less than than 2% for these ten reference cycles, while the RMSE of the
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model prediction without using the updated capacity is within 5%, the results

again confirm that the proposed co-estimation framework can estimate the SOC

more accurately by updating the capacity value.

(a) (b)

Figure 5.9: SOC estimation results over discharge profile of reference cycle 10 of
cell 2 using model trained on cell 1: (a) SOC estimation results with updated
capacity information. (b) SOC estimation error.

In summary, the proposed co-estimation framework has shown to significantly

improve the SOC estimation accuracy by updating the imprecise battery capac-

ity in time, and accurate SOC estimation can in turn improve the accuracy of

capacity estimation, while traditional SOC estimation methods without capacity

calibration cannot eliminate the influence of the erroneous capacity value. Fur-

thermore, the FBG measurements can provide more information on the battery

dynamics, therefore, using FBG measurements to assist SOC estimation, the es-

timation uncertainty can be decreased and estimation accuracy can be improved.

5.4 Chapter Summary

The battery capacity and SOC are two important parameters for BMS to ensure

safe and reliable operations. To improve the estimation performance of these two

parameters, this chapter has proposed a CNN-GPR based capacity and SOC co-
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(a) (b)

Figure 5.10: Capacity estimation results for reference cycle 10 of cell 2
(a)Capacity estimation results using online estimated SOC. (b) The relative error
between estimated and reference capacity.

Figure 5.11: Bar chart of the SOC estimation RMSE for the discharge profiles of
ten reference cycles. The performance of the model trained on cell 1 is evaluated
on the data recorded from cell 2.
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estimation framework, which uses CNN to achieve fast capacity estimation online

and uses GPR to estimate SOC and quantify estimation uncertainty simultane-

ously. The capacity is first estimated using CNN and then the estimated capacity

is used in the GPR to update the imprecise capacity and to estimate SOC online.

Meanwhile, the estimated SOC is in turn used to update the capacity value. With

the updated capacity, the SOC can be estimated more accurately, and in turn the

accurate SOC estimation can further improve the accuracy of the estimated ca-

pacity. Further, new sensing measurements are utilized in SOC estimation, which

is collected by FBG sensors, and the results showed that this measurement can

improve the SOC estimation result and lower the estimation uncertainty, with

up to 58.11% reduction on the RMSE and 42.7% reduction on the estimation

standard deviation. The test results undeniably verify the performance of the

proposed co-estimation framework and that the use of FBG signal is beneficial to

SOC estimation. These results confirm that the capacity estimation is vital for

accurate SOC estimation, and the newly involved FBG signal can further improve

the SOC estimation accuracy.

136



Chapter 6

Conclusion and future work

6.1 Summary of work and main contributions

Li-ion batteries have been increasingly used as important energy storage devices

in both grid and automotive applications on the global journey to achieve net zero

by the mid of this century. Battery state estimation is one of the most important

functions of BMSs to ensure safe, reliable and efficient utilization of batteries as

it provides critical information for battery control, protection, optimization and

maintenance. To tackle the challenges in current battery internal state estimation

approaches, this thesis focuses on the development of novel frameworks and asso-

ciated techniques for battery state estimation to achieve accurate and fast online

estimation. The main work and contributions of this thesis are summarized as

follows:

• In Chapter 1, the research background and motivations for the work car-

ried out in this thesis are introduced. To begin with, various battery en-

ergy storage systems are reviewed, and a comparative survey of different

types of batteries is presented. Then, the main functions of battery man-

agement systems are summarized, where the emphasis is given to battery

internal state estimation and the potential of utilizing fiber optic sensors

to acquire additional information to improve the estimation results is dis-
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cussed. Thereafter, the development of state estimation techniques is re-

viewed. Considering the importance and difficulties of accurate battery

state estimation, the motivations of this study are to develop accurate and

reliable frameworks and techniques for battery state of charge (SOC) and

state of health (SOH) estimation.

• To provide technical background used in each subsequent chapters, a sys-

tematic review of battery models and estimation techniques of SOC and

SOH is presented in Chapter 2. The commonly used battery models includ-

ing electrochemical models, equivalent circuit models, and black-box models

are introduced, and various model-based and model-free state estimation

techniques are comprehensively reviewed. It is worthwhile to systemically

review these models and techniques to guide the selection of appropriate

techniques according to practical requirements.

• For online battery SOC estimation, the model-based methods offer several

advantages, such as closed-loop correction, insensitive to initial SOC error,

capable of coping with uncertainties and disturbances, but require accu-

rate battery models. To this end, a novel black-box model is established

in Chapter 3 to capture the battery dynamics with satisfactory accuracy

and computational efficiency, the model structure selection and parameters

identification are achieved simultaneously by the fast recursive algorithm.

Then the established model is combined with the coulomb counting method

to form a state space model, therein, the SOC is regarded as the state vari-

able, which is described by the state equation according to the coulomb

counting method. While the established model is the measurement equa-

tion that relates the measured terminal voltage to the SOC. Subsequently,

as the state space model is usually used in conjunction with filters to achieve

state estimation, an introduction to the filtering algorithms including their
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detailed mechanism and major formulas is presented. Thereafter, based

on the formed state space model, battery SOC is estimated using differ-

ent filtering algorithms, namely extended Kalman filter, unscented Kalman

filter, and particle filter. The estimation results are compared in terms of

accuracy and computational complexity.

• An intelligent battery capacity estimation framework is proposed in Chapter

4 to achieve fast online capacity estimation using flexible partial charging

curves with a fixed length. To take full advantage of the huge amount

of battery aging data, a convolutional neural network (CNN) is used in

this chapter to automatically extract features and estimate capacity in one

framework. Compared with conventional capacity estimation methods, the

CNN-based methods are free of a priori knowledge about the battery, ex-

empt from manually extracting health features, and have strong represen-

tational power and expressibility. This chapter starts with an introduction

to the structure of CNN to illustrate its characteristics. In view of the poor

performance of CNN on small datasets and the limited computing power of

BMS, a preliminary introduction to transfer learning and network pruning

techniques is carried out, and they are later combined to the CNN-based

framework to improve the estimation results on small degradation datasets

and remove redundant model structures, respectively. Afterward, detailed

construction processes of the proposed estimation framework are presented

step by step, including the input generation that enables the application

of CNNs and network construction that integrates the transfer learning

and pruning techniques into a CNN-based modelling framework. Finally,

with the given implementation details and given two battery degradation

datasets, the efficacy of the proposed capacity estimation framework is ver-

ified by the experimental results.
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• Chapter 5 proposes a novel framework to estimate the battery SOC and ca-

pacity simultaneously based on the Gaussian process regression model and

the modified CNN model. Since there exists intrinsic coupling relationships

between SOC and capacity, the estimation results of SOC and capacity can

be improved mutually through the joint estimation framework. Besides,

fiber optic sensors are attached to the cell surface to obtain more infor-

mation, and the newly involved measurement is used for SOC estimation

to further improve the estimation accuracy. The experimental results have

confirmed that the proposed joint estimation framework along with the uti-

lization of the new sensing measurement provides more accurate estimation

results and lower estimation uncertainty.

Collectively, the models and estimation methods developed in this thesis aim

to allow for better utilization of lithium-ion batteries by monitoring their SOC

and SOH accurately and timely, while requiring less or no laborious and time-

consuming aging tests and characterization tests. Thus dispense with the invest-

ment of time and energy to identify parameters and manually extract features,

making them promising methods to provide valuable insight to the investigations

of other types of batteries with different chemistries under different application

scenarios.

6.2 Future work

Although the work presented herein offers benefits over the conventional methods,

there are potential extensions of this thesis that worth further investigations. The

scope for future work which can lead on from this thesis are summarized below:

• The developed CNN-based estimation framework is pruned and compressed

in Chapter 4, however, whether it can be implemented in the onboard BMSs

with limited computational capabilities has not been verified. A practical
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low-cost microcontroller-based BMS can be used for realization of the pro-

posed algorithm. Besides, to make good use of massive data from the

achieved battery datasets, the cloud-based BMSs with sufficient resources

will be investigated to process the heavy computing task, which can remove

the restrictions on computation power and memory sources for local pro-

cessors. Therein, battery data is streamed to a cloud computer, and the

model weights can be updated in real-time.

• The application of the newly introduced temperature and tension measure-

ments acquired by the fiber optic sensors is still very limited. Considering

its potential in improving the battery state estimation, the information

embedded in this sensor measurement will be further mined, and the way

to utilize it with various estimation techniques will be carefully studied to

improve the estimation performance.

• The developed methods focus on a single battery cell. It is meaningful to

extend the proposed methods to a battery pack with series and/or parallel

connected cells, as battery packs are usually employed in electric vehicles

and grid applications to provide sufficient power and energy.

• As set out in Section 1.1.2, apart from the battery state estimation, other

functions such as charge/discharge control, cell balancing, thermal manage-

ment, and safety protection are also important in a BMS to realize better

utilization of the battery. Therefore, these aspects can be researched to-

gether with the proposed framework and methods in this thesis. To design

optimal battery charging/discharging strategies to prevent battery from

damage and prolong its cycle life, factors such as charging/discharging time

and temperature rises need to be taken into account. To mitigate the incon-

sistencies among battery cells, cell balancing is indispensable to compensate

for weaker cells, thereby improving the capacity of the battery pack and
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prolonging its service life. And to operate the battery within a desirable

temperature range, an efficient thermal management system is essential.

Further, fault diagnosis methods will be studied to detect the premature

failure of battery, such as short circuit, over-voltage and under-voltage, to

prevent the battery from permanent and even catastrophic damages.

142



References

[1] “The race to zero emissions, and why the world depends on it, un news,”

Dec 2020. 2

[2] I. Tsiropoulos, D. Tarvydas, and N. Lebedeva, “Li-ion batteries for mobility

and stationary storage applications scenarios for costs and market growth,”

Publications Office of the European Union: Luxembourg, p. 72, 2018. 2

[3] F. J. De Sisternes, J. D. Jenkins, and A. Botterud, “The value of energy

storage in decarbonizing the electricity sector,” Applied Energy, vol. 175,

pp. 368–379, 2016. 2
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“Deep convolutional neural networks for detection of rail surface defects.,”

in IJCNN, pp. 2584–2589, 2016.

[210] A. Onat, P. Voltr, and M. Lata, “An unscented kalman filter-based rolling

radius estimation methodology for railway vehicles with traction,” Proceed-

ings of the Institution of Mechanical Engineers, Part F: Journal of Rail and

Rapid Transit, vol. 232, no. 6, pp. 1686–1702, 2018.

[211] L. Kou, Y. Qin, X. Zhao, and Y. Fu, “Integrating synthetic minority over-

sampling and gradient boosting decision tree for bogie fault diagnosis in

rail vehicles,” Proceedings of the Institution of Mechanical Engineers, Part

F: Journal of Rail and Rapid Transit, p. 0954409718795089, 2018.
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