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Abstract

This thesis presents and discusses the results of two investigations. The first in-
volves studying wake dynamics along the span of a pivoted cylinder undergoing
vortex-induced vibrations (VIV) and its relationship with the structural response.
This experiment used planar Particle Image Velocimetry and image-based tracking
techniques to measure the wake and cylinder response at different flow velocities.
The second investigation assesses the accuracy of a two-dimensional representation
of the first experimental study using RANS models based on the k − ω turbulence
model. A prior experiment of a bottom-fixed cylinder undergoing VIV was per-
formed to analyse its variable amplitude condition in preparation for the pivoted
cylinder case.

The pivoted cylinder results showed maximum amplitudes of approximately half
and two times its diameter along and perpendicular to the flow direction, respec-
tively. Similar to the bottom-fixed cylinder, the maximum response was achieved
when the cylinder motion and vortex shedding frequencies were equal (i.e., synchro-
nised) to the natural frequency of the structure in water, and when this equivalence
was preserved along the cylinder span. At higher flow velocities, a desynchronised
region appeared at the water surface, different from the previously observed bottom-
up desynchronisation of the bottom-fixed cylinder. Wake measurements closer to
the water surface had a broader wake width, higher momentum transference, and
higher vortex strength compared to lower water depths. The local response along
the cylinder span could not fully explain these differences.

The numerical model reached amplitudes that were 40% lower than the exper-
imental results. Moreover, bistable responses were observed in the upper branch
and not in the experimental results. The tested numerical model was insufficient
to account for the three-dimensional component of the pivoted cylinder. Additional
research is needed to understand the cylinder-wake dynamics of the pivoted cylin-
der, especially related to its synchronisation-desynchronisation process, to improve
the prediction capabilities of two-dimensional numerical models.
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Chapter 1

Introduction

This section outlines the motivation of this thesis, its objectives and original contri-
butions published or presented in peer-reviewed journals and conferences.

1.1 Motivation

Fluid-Structure Interactions (FSI) is a multidisciplinary field related to body dis-
placements or deformations subjected to internal or external flows. Technological
advancements in material properties, construction techniques, and engineering de-
sign have led to slender and more flexible structures susceptible to vibrations trig-
gered by surrounding fluid flows. A commonly observed phenomenon that stands
out in these cases is Vortex-Induced Vibrations (VIV), which refers to the constant
feedback between the vortex shedding behind a body and its structural response
[111]. Under certain conditions, structures subjected to VIV experience large oscil-
lations when the vortex shedding and structural vibration frequencies coincide [10].
This phenomenon is commonly referred to as lock-in or synchronisation. VIV is an
important contributor to fatigue damage and structural stability in several engineer-
ing structures, such as marine risers, bridges, towers, masts, heat exchanger tubes,
submerged floating tunnels, to name a few. Key topics related to this classic problem
has been summarised in numerous reviews (see, for example, [4, 24, 89, 111]).

The complexity of VIV is summarised as an ”inherently non-linear, self-governed
or self-regulated, multi-degree-of-freedom” phenomenon [89]. Consequently, a sig-
nificant portion of the current research body has been built around simplified cylin-
drical models. These models involve elastically mounted cylinders forced or free
to vibrate perpendicular to the flow direction and subjected to a range of uniform
flows. Results and insights from these studies have been critical to understanding,
predicting and controlling VIV, and have been the foundation in most design codes
and commercial Software. Still, lower fatigue life of up to one order of magnitude
can be estimated when the results of these simplified models are applied to com-
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plex VIV configurations, such as marine risers [69]. In recent years, experimental
VIV studies have included complex configurations commonly found in engineering
problems, such as variable-amplitude responses, several modes of vibration, free
stream turbulence, and sheared flows. These experiments have limited applicability,
are often time-consuming, difficult to scale and require costly measurement equip-
ment. As an example, offshore structures with aspect ratios (length-to-diameter) of
O(103) are commonly subjected to turbulent ocean currents with Reynolds numbers
Re (characteristic length: structural diameter) between O(105) and O(106). Scal-
ing these conditions in an experimental setting requires specialised equipment with
inflow velocities that are difficult to achieve.

Numerical models based on the Reynolds-Averaged Navier-Stokes (RANS) equa-
tions offer an attractive alternative to experimental research. These models are usu-
ally preferred due to their lower computational costs, lower grid resolution, and less
demanding time step requirements. Nevertheless, the non-linear fluid-body interac-
tion and the hysteretic nature of VIV impose significant restrictions regarding its nu-
merical simulation. A common assumption is that the inherently three-dimensional
VIV can be represented as an equivalent two-dimensional model. Previous studies
indicated that these representations are restricted to low Reynolds numbers, where
Re < 2×102 is considered the upper threshold for two-dimensional and laminar vor-
tex shedding regime [88]. Still, recent numerical studies based on two-dimensional
RANS models successfully simulated the main features (maximum cylinder ampli-
tude, main oscillation frequency, total hydrodynamic forces, phase angle, among
others) of elastically mounted rigid cylinders undergoing VIV [35, 105, 117]. The
Reynolds number in these simulations ranged between 1 × 103 and 1 × 104, and
the structural response reached amplitudes of at least one cylinder diameter. The
adequacy of the two-dimensional representation seems to be associated with the
synchronisation between the vortex shedding and the cylinder oscillation frequency.
This phenomenon enhances two-dimensionality and seems to be strong enough to
offset the three-dimensional instabilities of the flow.

Cylinders with variable amplitude along their span and subjected to VIV are an
interesting problem on their own. In particular, the linear response variability along
the span of a pivoted cylinder promotes complex structural responses dependant on
the three-dimensional body-wake interaction. As described before, two-dimensional
numerical models have successfully extracted the main VIV features on cylinders
with high amplitude responses and above the laminar vortex shedding regime. Still,
their application is mainly restricted to rigid cylinders under uniform flow conditions,
and little consideration has been paid to their use on variable amplitude cylinders,
such as the pivoted configuration. How do changes in the wake dynamics along a piv-
oted cylinder affect its structural response? Can two-dimensional models extract the
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main features of a pivoted cylinder, considering their three-dimensional body-wake
interaction? This thesis addresses these questions by analysing the experimental
case of a pivoted cylinder subjected to VIV and its two-dimensional representation
using RANS models. Firstly, an initial experiment related to a bottom-fixed cylin-
der subjected to VIV was conducted. Its main goal was to acquire experience with
the experimental equipment, calibration system, and data analysis. Moreover, its
variable amplitude condition along the structural span provided important insights
in preparation for the pivoted cylinder case. Secondly, the structural response and
wake dynamics along the span of a pivoted cylinder undergoing VIV were analysed
across a range of open-channel flows. Lastly, a two-dimensional model was developed
based on the pivoted cylinder experimental condition. The numerical model’s limi-
tations, capabilities, and accuracy were evaluated by comparing its results with the
experimental pivoted cylinder in terms of displacements and oscillation frequencies.

1.2 Objectives

This thesis analyses the experimental case of a pivoted cylinder subjected to VIV and
its numerical representation through two-dimensional RANS models. The Reynolds
number in the experiments ranged between 2.5× 103 and 5.8× 103. The wake and
cylinder motion was measured using Particle Image Velocimetry (PIV) and image-
based tracking techniques. The wake dynamics, emphasising its variability along
the structural span, and cylinder responses were analysed across a range of open-
channel flows. A two-dimensional model was developed based on the experimental
conditions and the pivoted configuration. The numerical models’ limitations, ca-
pabilities, and accuracy were evaluated by comparing their cylinder responses and
oscillation frequencies with the experimental results. An initial experiment related
to a bottom-fixed cylinder subjected to VIV was conducted. Its main goal was to
acquire experience with the experimental equipment, calibration system, and data
analysis. Moreover, its variable amplitude condition along the structural span pro-
vided important insights in preparation for the pivoted cylinder case. In particular,
the relationship between wake dynamics and structural response as the cylinder
reaches its maximum amplitude and then desynchronises at higher flow velocities.
The main objectives of this thesis are

• Measure and characterise the body-wake interaction along the span of a bottom-
fixed cylinder subjected to VIV. Important insights were gained in preparation
for the pivoted cylinder experiment. In particular, the relationship between
wake dynamics and structural response as the cylinder reaches its maximum
amplitude and then desynchronises at higher flow velocities.



CHAPTER 1. INTRODUCTION 4

• Analyse how changes in the wake dynamics along the span of a pivoted cylin-
der subjected to VIV affect its structural response. Particular emphasis on
the body-wake interaction as the cylinder achieves its maximum response are
analysed.

• Determine the accuracy and possible limitations of two-dimensional RANS
models to simulate the response of a pivoted cylinder subjected to VIV.

1.3 Organization of this thesis

Chapter 2: Literature review
This chapter highlights the main experimental and numerical studies related to
cylinders subjected to VIV. Firstly, a summary of the vortex shedding process and
associated hydrodynamic forces of a flow around a stationary cylinder is presented.
Secondly, a description is given of the main governing parameters, results and in-
sights of simplified models undergoing VIV. These concepts are compared to VIV
studies based on complex configurations, such as variable-amplitude responses and
inflow conditions. Lastly, an overview of the latest numerical VIV studies related to
two-dimensional RANS models is presented.

Chapter 3: Experimental methods
This chapter describes the experimental setup for the bottom-fixed and pivoted
cylinders. The experimental equipment, mounting, calibration, measurement, and
data processing from raw flow images to flow velocity fields are provided. Different
verification processes are detailed to minimise and quantify the measurement error.
Additionally, a general description of the flow velocity under open-channel conditions
is given.

Chapter 4: Numerical methods
A description of the theory and numerical techniques for two-dimensional RANS
models are given in this chapter. The governing flow equations and turbulence
modelling are first introduced. Only the Shear Stress Transport k − ω model is
described due to its successful application in previous VIV studies. The spatial
and temporal discretisation techniques used in the numerical model are described
within the context of Ansys Fluent, the Computer Fluid Dynamic Software used in
this thesis. Lastly, this chapter describes the cylinder model and its fluid-structure
coupling mechanism.

Chapter 5: VIV on bottom-fixed cylinder
This chapter analyses the wake dynamics and structural response of a bottom-fixed
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cylinder subjected to a range of open-channel flows. The cylinder response was
characterised in terms of maximum amplitude and oscillation frequency. Different
statistics were used to characterise and study the spanwise wake dynamics as the
cylinder reaches its maximum amplitude and then desynchronises at higher flow
velocities.

Chapter 6: VIV on pivoted cylinder
This chapter analyses the wake dynamics and structural response of a pivoted cylin-
der subjected to a range of open-channel flows. The cylinder response was charac-
terised in terms of maximum amplitude and oscillation frequency. The wake dynam-
ics were analysed by measuring one plane along the cylinder span and two planes at
different water depths. Different statistics were calculated to characterise and study
the spanwise wake dynamics as the cylinder reaches its maximum amplitude.

Chapter 7: Numerical model. Pivoted cylinder
This chapter analyses the limitations, capabilities and accuracy of two-dimensional
RANS models to simulate the response of a pivoted cylinder subjected to VIV.
The inflow and structural characteristics of the experimental pivoted cylinder in
Chapter 6 were used as input for the numerical model. The numerical model was
first validated by simulating a low mass-damping two degree-of-freedom cylinder
[41]. Then, the influence of the inflow conditions that trigger a high-response state
was analysed. These inflow conditions were critical to ensuring a high-response
state in the simulations. Finally, the numerical model of the pivoted cylinder was
compared to its experimental counterpart in terms of displacements and oscillation
frequencies.

Chapter 8: Conclusions
This chapter summarizes the main contributions of this thesis and discusses several
gaps and recommendations for future work.

1.4 Publications and presentations

Some of the work presented in this thesis has been published in two peer-reviewed
journals and two international conferences

• Mella, D. A., Brevis W., Susmel L. ”Single cylinder subjected to vortex-
induced vibrations: estimating cyclic stresses for fatigue assessment”, 1st Vir-
tual European Conference on Fracture (2020).
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• Mella, D. A., Brevis W., Susmel L. ”Spanwise wake development of a
bottom-fixed cylinder subjected to vortex-induced vibrations”, Ocean Engi-
neering. (2020); 218: 108280.

• Mella, D. A., Brevis W., Higham J. E., Racic, V., Susmel L. ”Image-
based tracking technique assessment and application to a fluid–structure inter-
action experiment”, Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science (2019); 233: 5724 – 5734.

• Mella, D. A., Brevis W. Image-based techniques applied to a fluid-structure
interaction experiment (Uso de técnicas basadas en imágenes aplicado a un
caso de interacción fluido-estructura). XXVIII Latin american conference of
Hydraulics (2018).



Chapter 2

Literature review

2.1 Introduction

Vortex-induced vibrations (VIV) is a non-linear, self-regulated, multi-degree-of-
freedom (DOF) phenomenon [89] sustained by the constant interaction between
vortex shedding and body motion [111]. VIV is an important contributor to fa-
tigue damage and structural instability in numerous engineering applications, such
as marine risers, bridges, towers, masts, heat exchanger tubes, submerged floating
tunnels, to name a few. Thus, an extensive research body has been developed to-
wards its understanding, prediction, and control. Key topics related to this problem
have been summarised in several reviews (see, for example, [4, 24, 89, 111]).

This chapter highlights the main experimental and numerical studies related
to VIV on cylinders within the scope of this thesis. Firstly, the vortex shedding
process is introduced by analysing a stationary cylinder subjected to uniform flows.
Secondly, fundamental concepts and main governing parameters are described by
analysing cases of cylinders undergoing VIV and restricted to move perpendicular
to the flow direction (one degree-of-freedom). These results are contrasted with
cases of VIV under complex configurations, such as variable-amplitude responses,
mounting systems, and inflow conditions. Lastly, the accuracy and capabilities of
several numerical studies based on two-dimensional RANS models are highlighted.
Details related to the theory and numerical techniques used to model cylinders
undergoing VIV are described in Chapter 4.

7
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2.2 Flow around a stationary cylinder
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Figure 2.1: Fluid flow around a two-dimensional fixed cylinder. a) Temporal evolu-
tion of the wake. b) Wake development close-up

The case of a fluid flow around an obstacle and its structural influence has been
a topic of interest for several decades. Despite the rich literature related to this
case, most findings remain in the ”the empirical, descriptive real of knowledge” [87].
Figure 2.1 shows a two-dimensional cylinder placed in a uniform flow. The flow
moves from left to right along the x-axis or the streamwise direction. The y-axis
or crossflow direction is perpendicular to the flow and the cylinder axis. The z-axis
(out-of-plane in Figure 2.1a) or spanwise direction refers to the axis of the cylinder at
rest. This coordinate system is used throughout this thesis unless stated otherwise.
The flow dynamics around a cylinder are governed by the Reynolds number Re

[110]. Here, Re = UinD/ν, where Uin is the bulk inflow velocity, D is the cylinder
diameter, and ν corresponds to the kinematic viscosity. Other parameters, such as
surface roughness [34], flow turbulence [70], and aspect ratio (length-to-diameter)
[74], can also influence the flow dynamics as the ideal case shown in Figure 2.1
approximates real-world applications.

The flow dynamics around a stationary cylinder were classified several decades
ago as a function of Re [86] and are constantly being updated as more information is
gathered [113]. At Re < 5, the flow remains attached to the cylinder surface, and a
steady laminar wake is formed. The solid-fluid interface slows down the nearby flow
as a function of the fluid viscosity. The region affected by this interaction is called
the boundary layer (Figure 2.1b). At a Reynolds number between 5 < Re < 40,
the adverse pressure gradient at the cylinder rear end is strong enough to detach
the boundary layer (point B in Figure 2.1b), developing two stable counter-rotating
vortices behind the cylinder. The stability of this configuration breaks between
48 . Re . 49 [78], and a new configuration called vortex shedding is reached. This
flow is characterised by the constant formation, growth, and advection of vortices
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from each side of the body [26]. The timing or frequency of vortex shedding can be
expressed as a function of the Strouhal number, St = (fvsD)/Uin, where fvs is the
shedding frequency. The vortex shedding maintains a laminar state up to Re < 200.
At higher Reynolds numbers, a systematic transition from a laminar to a turbulent
state takes place, starting from the far wake up to the boundary layer. Firstly, a
subcritical regime between 3 × 102 < Re < 3 × 105, characterised by a turbulent
wake and a laminar boundary layer separation. Here, the Strouhal number remains
relatively constant at 0.2 [75]. The experiments of this thesis are classified within
this regime. Secondly, a critical regime between 3 × 105 < Re < 3.5 × 105, with a
turbulent boundary layer separation. Thirdly, a supercritical and upper transition
regimes between 3.5×105 < Re < 4×106, where the boundary layer transitions from
a laminar to a turbulent state at one side of the cylinder. Lastly, at Re > 4 × 106,
the flow transitions to a transcritical regime with a completely turbulent boundary
layer at both sides of the cylinder.

The process of vortex shedding generates fluctuating pressures and viscous forces
on the body. Under certain circumstances, this dynamic loading leads to structural
vibrations that change the pressure distribution around the cylinder. This feed-
back system between the wake and body motion is referred to as vortex-induced
vibrations [111]. A laminar vortex shedding regime (Re < 200) is not expected to
vary in the spanwise direction. Thus, its characterisation (wake and hydrodynamic
force) can be achieved by means of two-dimensional models (e.g., [78, 80]) or by
extrapolating a single two-dimensional measurement along the cylinder span. Flow
instabilities arise at higher Re as the wake becomes turbulent [113]. The associated
fluid forces undergo notable changes as the wake transition to a three-dimensional
state. Numerical models tend to include this variability at the expense of significant
increments in computational power. On the other hand, experimental studies use
external means (e.g., [97]) or increase the number of measurements in the span-
wise direction (e.g., [61]) to minimise or incorporate the three-dimensionality of the
flow. Independent of the wake complexity, its characterisation is often based on
the following statistical parameters: streamwise and crossflow forces, base pressure,
vortex length and strength, boundary layer separation point, and vortex shedding
frequency. Moreover, mean and fluctuating flow velocities and Reynold stresses can
be linked to the previously mentioned parameters (e.g., [118]). This research project
analyse these first and second-order statistics of the wake and its relationship to the
cylinder response. Furthermore, the resultant forces in the streamwise and crossflow
direction, commonly called drag and lift forces, are critical for the tested numerical
model. The non-dimensional form of these forces is

CD =
1

2
FDρAU

2
in (2.1)
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CL =
1

2
FLρAU

2
in (2.2)

where FD and FL are the drag and lift force, respectively, and A is the characteristic
area of the body.

The foundation of VIV is derived in part from the fundamentals behind an
incident flow on a stationary cylinder. Nevertheless, structural vibrations in VIV
significantly change the vortex shedding process compared to the stationary cylinder
case. The drag and lift forces of an elastically mounted cylinder subjected to VIV
can increase up to three and five times compared to its stationary condition [49].
Structural vibrations can occur at Re = 20 [19], which is significantly lower than
the Reynolds number associated to the onset of vortex shedding [78]. The Strouhal
relationship is no longer valid in VIV since the body motion leads the vortex shedding
(Section 2.3.1).

It is important to describe a mathematical technique frequency used in fluid
dynamics. A certain quantity can be decomposed as the sum of its expected value
and its fluctuations. The total variable ϕ is decomposed as the sum

ϕ = ϕ+ ϕ′ = ϕ+ ϕ̃+ ϕ′′ (2.3)

where ϕ is the time-averaged variable, while the fluctuating value ϕ′ is further
decomposed into a large-scale periodic component ϕ̃ and a residual random part
ϕ′′. This technique is later used to analyse the mean and fluctuating velocity of the
wake and extract large-scale coherent patterns from a highly modulated cylinder
response.

2.3 Vortex-Induced Vibrations

2.3.1 One degree-of-freedom cylinders

This section starts with an analysis of the classical VIV experiments of Feng [20]
and Khalak and Williamson [47]. Both studies analysed the response of an elasti-
cally mounted cylinder subjected to a range of low turbulence flows. Each cylinder
had similar structural damping and was restricted to move in their crossflow direc-
tion. Despite these similarities, Figure 2.2 shows significant differences in terms of
maximum crossflow amplitudes Ay and main oscillation frequencies fc. Khalak and
Williamson’s cylinder achieved a 74% higher maximum crossflow amplitude, and its
range of significant body motion was four times higher compared to Feng’s results.
The range of reduced velocities Ur, where the vortex shedding frequency fvs is equal
to fc, is commonly referred to as lock-in or synchronisation. Here, Ur = Uin/(fnwD),
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Figure 2.2: Comparison between two elastically mounted cylinders undergoing VIV.
�: [47] (m∗ = 2.4) vs 4: [20] (m∗ = 248). a) Maximum crossflow amplitude. b)
Crossflow oscillation frequency [47]. c) Crossflow oscillation frequency [20]
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where fnw is the natural frequency of the cylinder measured in still water. Through-
out the synchronisation range in Feng’s experiment, fvs and fc were equal to the
natural frequency of the cylinder measured in air fna. On the other hand, a clear de-
parture from this equivalence is observed in Khalak and Williamson’s results (Figure
2.2b vs Figure 2.2c). These differences can be explained by analysing the theoretical
case of a two-dimensional cylinder subjected to VIV. An in-depth formulation can
be found in [3]. Consider the equation of motion of a one degree-of-freedom cylinder
subjected to a time-dependent lift force

Msÿ + Cẏ +Ky = FL (2.4)

where Ms, C and K are the cylinder mass, structural damping, and stiffness, re-
spectively. In the region of high-amplitude cylinder responses, FL and y can be
approximated as a sinusoidal function

y = Ỹ sin(2πfct) (2.5)

F = F̃L sin(2πfct+ φ) (2.6)

where Ỹ and F̃ are the displacement and force amplitudes respectively, and φ is the
force-displacement phase angle. Substituting Eq. (2.5) and (2.6) into Eq. (2.4), the
oscillation frequency and maximum amplitude response in non-dimensional form are

fc

fna
=

1−( C̃L

4π2

)
cosφ

(
1

m∗

)(
Uin

fnaD

)2
(
Ỹ

D

)−1
−1/2

(2.7)

Ỹ

D
=

C̃L

8π2
sinφ

(
1

m∗ζ

)(
Uin

fnaD

)2(
fna

fc

)
(2.8)

The natural frequency in air fna is used here to keep the original formulation
[3]. The important non-dimensional parameters governing this theoretical model
are: the mass ratio m∗, equal to the ratio between the oscillating mass Ms and its
displaced fluid mass Mf; damping ratio ζ, defined as a percentage of the structural
critical damping; reduced velocity Ur; frequency ratio fc/fna; amplitude ratio Ỹ /D,
and phase angle φ. In addition, the lift coefficient is affected by the structure and all
the fluid parameters that have an influence in the vortex shedding process (Section
2.2). The phase angle plays an important role in Eq. (2.7) and (2.8). It defines the
regions of positive energy transfer between the fluid forces and cylinder motion [112].
Moreover, the cylinder oscillates at a lower frequency than fna when 0◦ ≤ φ ≤ π/2,
while fc > fna if π/2 ≤ φ ≤ π [3]. The mass-damping m∗ζ parameter has an
inverse relationship with the maximum response amplitude. As an experimental
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Figure 2.3: Vortex mode map of an elastically mounted cylinder forced to vibrate
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example, Ay ≈ 0.95D (m∗ = 2.4 [47]) and Ay ≈ 0.53D (m∗ = 248 [20]). The
relative effects between m∗ and ζ were analysed using an elastically mounted one
degree-of-freedom cylinder subjected to VIV [48]. The results showed that m∗ζ was
directly related to the maximum cylinder response, while the synchronisation range
was mainly controlled by m∗. Equation (2.7) shows that fc ≈ fvs ≈ fna for high m∗

cylinders, whereas fc ≈ fvs is not necessarily equal to fna for structures with low
m∗. This departure can be explained in terms of the added mass Ma, related to the
acceleration of all the fluid particles set in motion as the cylinder oscillates [102].
The additional inertial force given by Ma decreases the natural frequency of the
system, allowing the vortex-body synchronisation to persist over a broader range of
Ur. Still, the cylinder will eventually desynchronise as Ma decreases on-average and
the reduced velocity increases [102]. The added mass effect diminishes for higher
m∗ cylinders due to its smaller contribution relative to the structural mass. Thus,
as shown in Figure 2.2c for Feng’s cylinder, the relationship fc ≈ fvs ≈ fna persists
over the synchronisation range.

Figure 2.2a shows that the cylinders of Feng [20] and Khalak and Williamson
[47] experience different responses across their respective synchronisation ranges. In
particular, Feng’s cylinder exhibited two distinct responses called the initial and
lower branch. At the beginning of the initial branch (Ur ≤ 4.5), fvs differed from
fc and low cylinder responses were observed. As Ur increased and fvs approached
the main oscillation frequency of the cylinder, Ay rapidly grew up to a maximum
value of 0.53D at Ur ≈ 5.5. Then, the maximum amplitude decreased significantly to
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Ay ≈ 0.3D as the cylinder transitioned between the initial to the lower branch. This
transition was hysteretic, i.e. the cylinder response depended on the time history of
the incoming flow velocity [20]. Ay kept decreasing at higher Ur until a negligible
value was reached at Ur ≈ 8. Considering a Strouhal number St ≈ 0.2, then

St =
fsvD

Uin
=

fsv

Urfnw
→ fsv

fnw
≈ 1 → Ur ≈ 5 (2.9)

approximately marks the beginning of the synchronisation range.

2S 2P

P+S 2Po

Figure 2.4: Vortex modes commonly found in one degree-of-freedom cylinders un-
dergoing VIV

An additional branch called the upper branch was observed in the low m∗ cylin-
der of Khalak and Williamson (see Figure 2.2a). The initial to upper branch transi-
tion occurred when fc approached fnw and is associated with changes in the vortex
shedding timing [28]. Within the upper branch, Ay reached a maximum value of
0.95D, while fc increased with Ur due to the added mass effect. As the oscillation
frequency approached fna, the cylinder amplitude jumped to the lower branch. This
transition was associated with a drastic change in the phase angle between the fluid
force and the cylinder displacement [28]. The maximum amplitude and oscillation
frequency in the lower branch remained approximately constant at Ay ≈ 0.62D

and fc/fnw = 1.4, respectively. At higher flow velocities, the cylinder and vortex
shedding desynchronise (fc 6= fvs), and Ay rapidly decreased towards 0.1D.

The experiments in Figure 2.2 showed different structural responses and oscilla-
tion frequencies across a range of reduced velocities. Due to the intrinsic relationship
between the fluid flow and structural motion, it is expected to observe significant
changes in the vortex dynamics as well. A classical VIV experiment forced a one
degree-of-freedom cylinder to vibrate at different amplitudes and oscillation frequen-
cies [112]. The Reynolds number was maintained between 3× 102 ≤ Re ≤ 1× 103.
The vortex pattern was observed at each prescribed amplitude-frequency pair, and
a vortex map was built. The results showed four characteristic vortex patterns: 2S
(two single vortices per cycle), C(2S) (2S vortex mode but vortices coalesce down-
stream), 2P (two pairs of vortices at every oscillation), and P+S (single and a pair of
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vortices per half-cycle of body motion). Flow visualisation techniques were used to
relate each response branch with a particular vortex pattern. The vortex shedding
in the initial branch follows the 2S mode, while the 2P vortex pattern dominates
the upper and lower branch [28]. Later, a high-resolution version of the previous
vortex map found a new 2Po mode in the amplitude range associated with the upper
branch [71]. This new vortex pattern is composed of a weaker vortex in each pair of
vortices per cycle. Part of the high-resolution vortex map is reproduced in Figure
2.3 and Figure 2.4 shows a sketch of the previously described vortex patterns.

2.3.2 Two degree-of-freedom cylinders
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Figure 2.5: Response of a low mass-damping two degree-of-freedom cylinder under-
going VIV. m∗ = 2.6 and ζ = 0.0036 [41]. a) Maximum crossflow and streamwise
response. b) Crossflow oscillation frequency

Although extremely insightful in understanding the fundamentals of VIV, the
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results described in the previous section are rarely found in practical situations.
Streamwise and crossflow vibrations (two degree-of-freedom), variable amplitude
across the span of the cylinder, multiple modes of vibration, among others, are
typical conditions where VIV plays a critical role in the structural design. Moreover,
the governing parameters in VIV have an intrinsic variability that plays a role in
fatigue failure prediction [59].

2T 2C

Figure 2.6: Vortex modes found in two degree-of-freedom cylinders

The high-resolution vortex map (Figure 2.3) predicted the maximum response
and vortex patterns of a free-vibration elastically mounted cylinder after carefully
matching the experimental conditions [71]. Nevertheless, free-vibration responses
have an intrinsic random component not reproducible in forced-vibration experi-
ments [71]. An experimental study simultaneously tested a two degree-of-freedom
bottom-fixed cylinder and a one degree-of-freedom elastically mounted rigid cylinder
[23]. Both structures had similar similar dimensions, m∗, and ζ. The bottom-fixed
cylinder exhibited a higher maximum crossflow amplitude (1.15D vs 0.9D) and a
broader synchronisation range compared to the rigid cylinder. The effects of allowing
an additional degree-of-freedom on an elastically mounted rigid cylinder have shown
to be quite significant and dependant on m∗ [41]. The additional degree-of-freedom
had a small impact in cylinders with m∗ > 6. However, at lower m∗, significant
changes in terms of maximum cylinder amplitude and vortex pattern were observed.
Figure 2.5 shows the maximum amplitude in the streamwise Ax and crossflow Ay

direction, and crossflow oscillation frequency (fc = fy) for a two degree-of-freedom
cylinder with m∗ = 2.6 [41]. Figure 2.5b only shows fy since fx = 2fy across Ur.
The wake exhibited two characteristic vortex patterns between 1.8 ≤ Ur ≤ 2.8, the
streamwise symmetric and antisymmetric vortex patterns. These modes are associ-
ated with a significant streamwise motion relative to its crossflow counterpart. As
Ur increases, the oscillation frequency jumped to fc/fvs ≈ 0.75 and the cylinder
transitioned to the initial branch. The maximum amplitude experienced a rapid
growth per Ur and a second jump to a high-amplitude region called super-upper
branch occurred. The transition between branches occurred at fc ≈ 0.9fnw, which is
10% lower compared to the initial-upper branch transition for one degree-of-freedom
cylinders [28, 47]. Within the super-upper branch, the cylinder achieved a maximum
amplitude of Ax ≈ 0.3D and Ay ≈ 1.5D. Moreover, a new vortex mode called 2T
(two triplet of vortices per body oscillation) was observed (Figure 2.6). The cylinder
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jumped from the super-upper to the lower branch as fc approaches fna. This hys-
teretic transition coincided with a jump in the phase angle between the lift force and
the crossflow displacement [41]. The lower branch had similar characteristics found
in one degree-of-freedom cylinders. The cylinder exhibited a reasonable constant
maximum amplitude and oscillation frequency from Ur ≈ 8 to Ur ≈ 12, where the
vortex-cylinder entered a desynchronised (non-lock-in) state.
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Figure 2.7: Examples of two degrees-of-freedom cylinder trajectories. a) Elliptical
[62]. b) Eight [41]. c) Crescent [41]. d) Combination between (a) and (b) [44]

One intrinsic characteristic of two degrees-of-freedom cylinders undergoing VIV
is the relationship between their streamwise and crossflow vibrations. Experiments
on cables subjected to a range of uniform and sheared flows showed a quadratic
relationship between the two response directions in their synchronised and desyn-
chronised range [100]. This quadratic relationship influenced the trajectory traced
by the cable. Two degree-of-freedom cylinders subjected to VIV also showed dis-
tinct trajectories, ranging from an elliptical-type, eight-type, or a combination of
both depending on the structural coupling between the streamwise and crossflow
motion [51, 52]. Cylinders with high structural coupling are characterised by an
equal oscillation frequency in the streamwise and crossflow direction, tracing an
elliptical-type trajectory (Figure 2.7a). On the other extreme, the streamwise vi-
bration frequency of low structural coupling cylinders is approximately double its
crossflow counterpart, and an eight-type trajectory is traced (Figure 2.7b). An inter-
mediate structural coupling is, thus, associated with a combination between eight-
and elliptical-type trajectories (see Figure 2.7d).

The incoming flow condition plays a significant role in VIV. Sheared flows, char-
acterised by a linear variation of the flow velocity along the cylinder span, incoming
turbulence intensity, and the number of potentially excited modes, are necessary
to estimate the occurrence of synchronisation on multi-modal cylinders undergo-
ing VIV [99]. Flows with high shear fraction impact the correlation length along
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the span of the cylinder, influencing its pressure distribution and enhancing flow
three-dimensionality. These changes have been shown to decrease the maximum
cylinder amplitude alongside an increment in the response modulation [40, 89]. Pre-
vious studies on the effects of free-stream turbulence on fixed square-shaped struc-
tures showed a positive relationship between peak forces and turbulent intensity
[15]. However, a negative relationship was found when a squared-shaped struc-
ture was subjected to VIV [16]. The Reynolds number is more significant than
previously thought. Using a variable magnetic eddy-current system, a series of ex-
periments controlled the structural damping while maintaining a constant Re on a
one degree-of-freedom cylinder [53]. The results showed a direct relationship be-
tween Re and the maximum cylinder response. Similarly, another study tested a
one degree-of-freedom elastically mounted cylinder under systematic changes of ζ at
5 × 102 ≤ Re ≤ 3.3 × 104 [31]. The results showed that the maximum amplitude
not only depended on m∗ζ (see [48]) but also on Re. Additionally, the researchers
successfully collapsed the maximum cylinder response of a large number of studies
against m∗ζ when the Reynolds number was taken into account. Important dif-
ferences were observed when the Reynolds number was increased above the upper
range of the subcritical regime. Experiments of an elastically mounted cylinder at
4× 104 ≤ Re ≤ 6× 106 showed maximum amplitudes of 1.9D even with high struc-
tural damping ratios and a distinct influence of Re on the synchronisation range
[82].

A group of researchers examined cylinders with nonuniform amplitudes along
their structural span to represent a more realistic engineering model. The simplest
case of nonuniform amplitude is given by a pivoted configuration, characterised by
a linear amplitude response along its span. Pivoted cylinders are generally mounted
on a small rod-shaped pin fixed to a base. The pin acts as a pivot point, allowing the
cylinder to vibrate like a pendulum in any direction perpendicular to its axis. Flow
movements towards the free surface have been observed in a one degree-of-freedom
pivoted cylinder undergoing VIV. This phenomenon is due to stronger vortices in
regions of higher response amplitudes [103]. The inertia ratio I∗, defined as the
ratio between the inertia of the solid mass around the pivot point and its displaced
fluid inertia, and the inertia-damping parameter I∗ζ have a significant influence on
the range of synchronised responses and maximum tip amplitude, respectively [21].
It is important to mention that I∗ is equivalent to m∗ when the cylinder is fully
submerged in the fluid medium. Two degree-of-freedom pivoted cylinders with high
I∗ζ have shown good agreement in terms of maximum amplitudes with one degree-
of-freedom elastically mounted cylinders ([21] vs [28]) and in terms of vortex modes
when compared to the vortex map predictions ([21] vs [71, 112]). This last result is
supported by a subsequent study on a high I∗ζ = 0.139−0.0318 pivoted cylinder un-



CHAPTER 2. LITERATURE REVIEW 19

dergoing VIV [62]. The observed 2S, 2Po, and 2P modes and associated amplitude
branches agreed well with the vortex map [71] predictions, except for the predicted
2P mode as the cylinder desynchronises with the vortex shedding. As the inertia-
damping ratio decreases, the pivoted cylinder exhibits typical initial-upper-lower
branches commonly observed in low m∗ζ elastically mounted cylinders [17]. Never-
theless, at a sufficiently low I∗ζ, two degree-of-freedom pivoted cylinders can reach
peak crossflow amplitudes of approximately 1.5D, develop a new vortex mode called
2C (two co-rotating vortices per half-cycle), and exhibit the simultaneous existence
of two vortex modes along the span [21]. Figure 2.6 shows a sketch of the 2C vortex
mode. Testing the boundaries of low structural parameters, a group of researchers
analysed a two degree-of-freedom pivoted cylinder with m∗ = 0.45 [57]. This tested
mass ratio was below its theoretical limit of m∗ = 0.5 [21], where the amplitude
responses reach a maximum value and the synchronisation range extends to infinity
[28]. The results showed an upper branch that extended up to the maximum tested
Ur with no observable lower branch. Unlike previous two degree-of-freedom experi-
ments, the cylinder achieved a significantly higher maximum streamwise amplitude
of Ax ≈ 2.5D compared to Ay ≈ 2D. Moreover, the vortex pattern in the upper
branch was the P+S mode, which is unusual for two degree-of-freedom elastically
mounted cylinders.

Similar to the uniform amplitude cylinder case, pivoted cylinders are affected
by multiple structural and flow parameters. Shear flows on one degree-of-freedom
pivoted cylinders increase the synchronisation range and promote secondary stable
responses [2]. A characteristic beating behaviour was observed in the initial, and
upper branches of a one degree-of-freedom pivoted cylinder undergoing VIV. This
behaviour was explained by a small frequency mismatch between vortex shedding
and cylinder oscillation frequencies [17, 103]. Comparison between bottom-fixed
and pivoted cylinders at low aspect ratio (length-to-diameter less than two) showed
higher amplitude responses at higher aspect ratios and the disappearance of the
lower branch at low aspect ratios [27]. Moreover, amplitude differences due to the
cylinder mounting (bottom-fixed vs pivoted) were minimised when a modal form
factor was introduced [27]. The streamwise motion of a pivoted cylinder involves
oscillations at the natural frequency and its first harmonics, whereas the crossflow
motion locks onto the natural frequency in the synchronisation region. Thus, the
pivoted cylinder can potentially exhibit elliptical-type (e.g. [62]) and eight-type
(e.g. [21]) trajectories depending on its structural coupling between streamwise and
crossflow motion [51, 52].

The majority of the research on VIV has been concerned with cylinders restricted
to move in the crossflow direction. The number of studies related to the more prac-
tical case of two degree-of-freedom cylinders is comparatively low. Within this small
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subset, the case of a pivoted cylinder has received the attention of a small number
of researchers. New vortex modes, hybrid vortices along the cylinder span, trajec-
tory patterns, among other characteristics, show that the pivoted configuration has
interesting dynamics observed in several engineering problems, such as marine piles
and articulated ocean columns. Previous studies quantified the wake topology and
structural response of a pivoted cylinder using a single two-dimensional PIV mea-
surement [57, 62]. Although their results were insightful, the wake dynamics along
the cylinder span could only be indirectly analysed. A classical study related to a
two degree-of-freedom pivoted cylinder subjected to VIV performed multiple two-
dimensional PIV measurements along the cylinder span [21]. This study focused
on vortex mode characterisation rather than quantifying their associated wake dy-
namics at different cylinder responses. This research project explores this gap by
investigating how changes in the wake dynamics along the span of a pivoted cylin-
der undergoing VIV affect its structural response. The wake and cylinder motion
was measured using Particle Image Velocimetry (PIV) and image-based tracking
techniques. The wake dynamics, emphasising its variability along the structural
span, and the cylinder response were analysed across a range of open-channel flow
velocities.

2.4 Numerical modelling of VIV
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Figure 2.8: Maximum crossflow amplitude comparison between different numerical
studies of a low mass-damping two degree-of-freedom cylinder. Experimental case,
�: [41]. Numerical simulations, #: [35], 4: [45], *: [105]

Computational Fluid Dynamics (CFD) is a design tool widely used in industry
and research to simulate physical problems in a range of disciplines, such as fluid-
structure interactions. Significant efforts are currently being made to predict the
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complex nature of VIV. Most numerical models consider three components: the
fluid flow with its range of turbulent scales, the structural properties, and the solid-
fluid interaction. The challenges of these models are mainly associated with the
computational power needed to simulate the full range of turbulent scales as the
flow interacts with the structure. This challenge dramatically increases considering
that VIV depends on the time history of the inflow conditions ([7, 20, 89]). The
numerical methods commonly used to solve the fluid flow in VIV problems are
divided into three categories: Direct Numerical Simulations (DNS), Large Eddy
Simulations (LES), and Reynolds-Average Navier Stokes (RANS) models. DNS
solves the full range of turbulent scales. LES applies different filters to separate the
small and large turbulent scales. The small scales are simulated, while the larger
ones are directly solved. RANS models solve the time-averaged equations of the fluid
motion. The turbulence scales are completely modelled using a turbulence model.
Despite DNS and LES models solving the full or partial turbulent scales, RANS
models are preferred due to their low computational costs, lower grid resolution,
and less stringent time step requirement.
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Figure 2.9: Maximum crossflow amplitude at different acceleration times. Source:
[45]

Numerical models based on the solution of the RANS equations describe the
statistical evolution of a flow in a given system. Due to a greater number of un-
knowns than equations, additional information is needed. This problem is solved by
the inclusion of turbulence models, which are a set of equations obtained through
experimentation or mathematical derivation that predict the effects of turbulence
in a flow. Several turbulence models have been developed, each with their advan-
tages, disadvantages and limitations. The accuracy of different turbulent models
was compared against two-dimensional PIV measurements of a flow around a sta-
tionary cylinder at Re = 4×104 [98]. Compared to the Spalart–Allmaras, Realisable
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k − ε and Wilcox k − ω, the Shear Stress Transport (SST) k − ω achieved higher
accuracy in terms of velocity, vorticity, and shear stresses estimation. The higher
accuracy of the SST k−ω against other popular turbulence models was also demon-
strated in cases of a flow around a stationary cylinder at Re = 2.5 × 105 [1] and
in three-dimensional models of a flow around axis turbines [63]. In the context of
VIV, several researchers successfully extracted the main features (maximum cylin-
der amplitude, main oscillation and vortex frequencies, total hydrodynamic forces,
vortex modes, phase angle, among others) in one [50, 117] and two [35, 45, 105, 106]
degree-of-freedom cylinders using the SST k − ω model. Figure 2.8 shows some of
the impressive results achieved by these numerical models. The SST k − ω [67, 68]
is a hybrid two-equation eddy-viscosity model that uses a blending function to tran-
sition between the k − ω model near solid surfaces and the k − ε model outside
the boundary layer. Despite the overall good performance and accuracy of the
SST k − ω model, several numerical studies have shown difficulties to reach the
maximum experimental responses in the upper branch of low mass-damping ratio
cylinders [25, 32, 77]. In recent years, the use of two-dimensional RANS models
on complex VIV configurations improved considerably after carefully matching the
numerical and experimental conditions. A numerical study showed the importance
of the Reynolds number Re and how this parameter must be proportional to Ur

to accurately simulate the response of a one degree-of-freedom cylinder undergoing
VIV [104]. In addition, the inflow conditions on the cylinder response have been a
critical component in the correct simulation of VIV. The cylinder response of a one
degree-of-freedom cylinder [47] was simulated under three different inflow conditions:
constant velocity and gradual increment/decrement of the inflow velocity up to the
desired value followed by a period of constant velocity [33]. The simulation captured
the beginning of the upper branch under increasing velocity conditions. Neverthe-
less, the cylinder response transitioned back to the lower branch at an earlier Ur

compared to the experimental results [33]. The same inflow scheme was tested for
a two degree-of-freedom cylinder simulation [115]. The model successfully captured
the super-upper branch under a gradual increment in the flow velocity. Specifi-
cally, the inflow velocity started at Ur = 2 and increased at a constant normalised
acceleration ac of 0.025. This parameter is defined as

ac =
Ur_end − Ur_ini

fnwta
(2.10)

where Ur_ini is the initial or starting reduced velocity, Ur_end is the final reduced
velocity, and ta is the acceleration time from Ur_ini to Ur_end.

A numerical study analysed the discrepancies of previous numerical models to
capture the high-amplitude responses observed in Jauvtis and Williamson’s cylinder
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and proposed two improvements [45]. Firstly, a modified version of the k − ω was
developed. This new turbulence model achieved a higher performance compared to
the standard SST k−ω for a fixed cylinder between 5×103 ≤ Re ≤ 1×106. Secondly,
the researchers studied the influence of ta (ac) on the cylinder response (Figure
2.9). Overall, the maximum crossflow response increased towards its experimental
value as ta (ac) increased (decreased). The researchers concluded that a minimum
acceleration time of 150 seconds was needed to trigger the maximum amplitudes
observed in the supper-upper branch. Using the modified SST k − ω turbulence
model and considering a minimum acceleration time of 150 seconds, the numerical
model achieved good agreement in oscillation frequency, maximum displacement,
lift and drag forces, phase angle, and vortex modes. Moreover, the numerical model
captured the complex 2T vortex mode characteristic of the super-upper branch.
Other researchers were able to capture most of the super-upper branch by slowly
increasing the flow velocity and maintaining a constant Re/Ur (see Figure 2.8).
These numerical studies used the SST k − ω model, indicating that most of the
improvements shown in [45] were due to imposing a proper normalised acceleration
on the inflow velocity.

This section has shown the significant progress from two-dimensional RANS
models to extract the main features of cylinders subjected to VIV. Still, their ap-
plication is mostly restricted to rigid cylinders subjected to uniform flows, and little
consideration has been paid to their use on variable amplitude cylinders, such as the
pivoted configuration. Can two-dimensional models extract the main features of a
pivoted cylinder, considering their three-dimensional body-wake interaction? This
research project aims to explore this gap by investigating the experimental case of
a pivoted cylinder subjected to VIV and its two-dimensional representation using
numerical RANS models. A two-dimensional model was developed based on the
experimental conditions and the pivoted configuration. The numerical model’s lim-
itations, capabilities, and accuracy were evaluated by comparing its results with the
experimental pivoted cylinder in terms of displacements and oscillation frequencies.



Chapter 3

Experimental methods

3.1 Introduction

This chapter introduces the experimental equipment and methods used to char-
acterise the incoming flow, wake and structural response of a cylinder subjected
to VIV. Firstly, a general description of each experimental component and their
respective setup are given. Secondly, the process of obtaining data from images
used for flow velocity fields and structural motion are detailed alongside their re-
spective measurement errors. Thirdly, several tests on the cylinder integrity and
linear-elastic behaviour were described. Lastly, the incoming open-channel flow was
broadly characterised.

3.2 Experimental equipment

3.2.1 Water channel

The recirculating water channel shown in Figure 3.1 has dimensions of 17.5 m length
and 0.5 m width. The side and bottom of the flume were covered using clear cast
acrylic sheets, leaving an effective width of 486 mm. The longitudinal slope was fixed
at 0.001 m/m by adjusting two hydraulic presses underneath the flume. The water
depth was fixed at the measurement zone by adjusting a control gate located at the
end of the flume. A remotely controlled valve regulated the incoming flow rate. A
maximum flow rate of 33.1 l/s was achieved when this valve was fully opened. The
experiments were performed at 10.5 m downstream of the inlet. Specific dimensions
of the water channel are shown in Figure 3.2.

24
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(a) (b)

Figure 3.1: Photos of the recirculating water channel. a) Outside view. b) Inside
view

10.5 m

17.5 m

0.001 m/m

Flow direction

PIV measurement zone

Incoming flow 
Valve

Control gate

Water tank

Figure 3.2: Sketch (not scaled) and dimensions of the recirculating water channel

3.2.2 Cylinder configuration

This section describes the materials and mounting process for the bottom-fixed and
pivoted cylinders.

Bottom-fixed cylinder

Figure 3.3 shows a bottom-fixed cylinder made of clear cast acrylic. This material
has a density of 1.19 g/cm3 and an elastic modulus of 3200 MPa. The cylinder had
a 5 mm diameter and 501 mm total length, reduced to an effective length of 491
mm after the mounting process. A 10 mm hole was drilled in an acrylic base of
165 mm width. The cylinder was inserted into the acrylic base, and its connection
was chemically welded to ensure a fixed end. Figure 3.3b shows the cylinder-base
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(a) (b)

Figure 3.3: Bottom-fixed cylinder. a) Rest position. b) Cylinder-base welded con-
nection

connection 24 hours after the acrylic weld was applied. The other end is free to
vibrate in the streamwise (x-axis) and crossflow (y-axis) direction. The spanwise
(z-axis) direction lies along the axis of the cylinder at rest.

Experiments related to the bottom-fixed cylinder undergoing VIV (Chapter 5)
maintained a fixed water depth of Hw = 347 mm. Thus, m∗ = 1.41. A frequency
analysis on a free decay test (Section 3.4.1) showed that the natural frequency (first
structural mode) measured in air and in water (Hw = 347 mm) were fna = 6.4 Hz
and fnw = 5.3 Hz, respectively. Moreover, a decaying exponential curve fit on the
same free decay test showed that ζ was approximately 4% in air and 7.6% in water.
These dynamic parameters were not affected by the direction of the unidimensional
displacement.

Pivoted cylinder

The pivoted configuration of Figure 3.4 is composed of a silver pin and a clear cast
acrylic tube connected through a rigid plug. The pin of 1.6 mm diameter and 160 mm
length was made from a silver-based brazing alloy (38% of silver), characterised by
a density of 9.1 g/cm3 and tensile strength of 450 MPa (specifications in compliance
with ISO 17672:2016 Ag 138). The clear cast acrylic tube had a diameter of 20 mm,
four millimetre thickness and 300 mm length. The plug was composed of a rigid
acrylic disk between two high-density rubber disks. The total height and weight of
the plug were 15 mm and 5 g, respectively. The plug was fixed on the silver pin
and fitted inside the acrylic tube. A 1.6 mm hole was drilled in an acrylic base of
165 mm width. The pin was inserted into the acrylic base, and its connection was



CHAPTER 3. EXPERIMENTAL METHODS 27

Plug

Silver Pin

Acrylic tube

3
0
0
 m

m

1
0
 m

m

16 mm

1
5
0
 m

m

7
0
 m

m

1.6 mm

(a) (b) (c)

Figure 3.4: Pivoted cylinder. a) Sketch (not scaled) and dimensions. b) Prototype.
Rest position. c) pin-base connection

chemically welded to ensure a fixed end. Figure 3.4c shows the fixed end 24 hours
after the acrylic weld was applied on the pin-base connection. The other end is free
to vibrate in the streamwise (x-axis) and crossflow (y-axis) direction. The spanwise
(z-axis) direction lies along the axis of the cylinder at rest. The distance between the
acrylic tube and the bottom of the flume was 10 mm, whereas the distance between
the plug and the bottom of the flume was 70 mm (Figure 3.4a).

Experiments related to the pivoted cylinder undergoing VIV (Chapter 6) main-
tained a fixed water depth of Hw = 255 mm. It is important to mention that, while
the cylinder was being subjected to VIV, an air-filled region inside the acrylic tube
and below the plug (Figure 3.4a) was observed throughout the experiments. This
air-filled region was maintained until the cylinder was removed from the measure-
ment zone. Under these conditions, I∗ = 1.82 and m∗ = 1.5. The small difference
between I∗ and m∗ is explained by an incomplete submerge condition (water depth
lower than the cylinder length). A frequency analysis on a free decay test (Section
3.4.1) showed that the natural frequency (first structural mode) measured in air
and in water (Hw = 347 mm) were fna = 1.88 Hz and fnw = 1.64 Hz, respectively.
Moreover, a decaying exponential curve fit on the same free decay test showed that
ζ was approximately 0.39% in air and 0.64% in water. These dynamic parameters
were not affected by the direction of the unidimensional displacement.

3.2.3 Particle Image Velocimetry

Particle Image Velocimetry is an optical and non-intrusive measurement technique
used to estimate the velocity field and other related fluid properties. Figure 3.5a
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Figure 3.5: PIV experimental setup. a) Sketch. Example of a vertical (xz-axis)
plane measurement. b) Measurement zone

shows a sketch of a typical PIV setup. The flow is seeded with particles, called trac-
ers, capable of moving with the local flow velocity. A laser-based system illuminates
the tracers while their position is captured using a recording device. The recorded
flow images are transferred into a storage unit. These raw flow images are corrected,
pre- and post-processed, to calculate their flow velocity field.

The PIV system used in this research consisted on a double-pulse 532 nm wave-
length Nd:YAG compact laser (Figure 3.6a), three MX 4M high-speed cameras (Fig-
ure 3.6b), a set of LaVision calibration plates, and a Programmable Time Unit
(Figure 3.6c) that configures the camera and laser trigger time. The company LaV-
ision provided the PIV system. Their proprietary Software Davis 8.3 was used to
configure the system and pre- and post-process the raw flow images into velocity
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(a) (b)

(c)

Figure 3.6: Components of the LaVision PIV system. a) Double-pulse Nd:YAG
compact laser. b) MX 4M cameras. c) Programmable Time Unit

fields. The laser system had a maximum power output and frequency of 100 mJ per
pulse, respectively. The light emitted from the laser box travelled inside a mobile
guiding arm and exited through a divergence lens towards the measurement region.
The laser sheet covered a wide planar zone of five millimetres thickness, from which
two-dimensional measurements were taken (Figure 3.5a). The MX 4M cameras had
a four Megabyte Pixel resolution with a maximum acquisition frequency of 100 Hz.
Each camera had a double-frame or double-exposure mode, where two images are
taken with a short delay between exposures. A summary of this double-frame mode
is given as follows. Each pixel in an image has a light-sensitive and a masked area for
the exposure, accumulation, storage, transfer and conversion of voltage into an ana-
logue video signal. The light-sensitive region receives the information and transfers
it to the masked area. This information is then sequentially converted until all the
voltage data is stored and a digital image is formed. As the information of the first
exposure is being read and stored, the light-sensitive area accumulates light from
the second exposure. Figure 3.7 shows a sketch of the synchronisation process be-
tween a double-pulse laser and a camera in a double-frame mode. dtcamera and dtlaser

are the time step between images and laser pulses, respectively. The first exposure
receives the light of the first laser pulse. As the collected voltage is being read out,
the second exposure receives the light of the second pulse. Two images separated
by dtcamera are generated at each time step. Since dtcamera is usually lower than the
acquisition frequency, velocity fields calculated using double-frame measurements
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Figure 3.7: Double-pulse laser and camera in double-frame mode timing

are significantly more accurate than their single-frame counterpart. Nevertheless,
the double-frame mode requires a higher storage and processing time due to the
greater number of images taken per second.

(a) Source: www.vestosint.com (b)

Figure 3.8: a) White Polyamide 12. b) Calibration plate LaVision 058-5

The tracers used for the measurements consisted on white Polyamide 12 (Figure
3.8a) with a mean particle size and a density of 100 µm and 1.06 g/cm3, respec-
tively. These tracers were selected due to their average spherical shape, strong light
scattering, and good buoyancy. Previous studies used Polyamide 12 for flow charac-
terisation around obstacles [5, 37]. The calibration process establishes a relationship
between Pixel to real-world coordinates and corrects the raw flow images from small
optical distortions, such as water-air light refraction and camera-object perspective
angle. Two calibration plates were used for this: model LaVision 309-15 for flow
visualisation purposes and model LaVision 058-5 for cylinder motion tracking. Both
calibration plates have dot patterns as markers with a square-shaped grid arrange-
ment (Figure 3.6b). The LaVision 309-15 model is a square-shaped plate with 309
mm width. The markers have a distance and diameter of 15 mm and three mil-
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limetres, respectively. The LaVision 058-5 model is a square-shaped plate with 58
mm width. The markers have a distance and diameter of five and one millimetres,
respectively.

(a) (b)

Figure 3.9: Laser orientation process. a) Inclined square-shaped acrylic sheet placed
in the measurement plane. b) Laser illuminates the acrylic sheet

Figure 3.10: Testing the camera position for structural motion tracking

The mounting and setup process of the PIV system is described as follows

• The position of the camera and laser were easily adjusted and fixed by sliding
and screwing them over aluminium rails (see Figures 3.6a and 3.6b). Initially,
the laser was mounted and oriented towards the desired measurement plane.
Likewise, the cameras were mounted and oriented perpendicular to the laser
plane. These initial mounting positions are corrected as the experimental
setup progresses.

• The laser orientation and thickness were adjusted by controlling its divergence
lens. For this, an inclined square-shaped acrylic sheet was mounted in the
measurement plane and used as a reference (Figure 3.9a). The water level
was raised until the acrylic structure was fully covered. The laser was turned
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on at a low-power level, and its orientation was systematically adjusted until
the light sheet completely illuminated the side of the acrylic structure (Figure
3.9b). This process ensured a straight measurement plane. The laser sheet
thickness was corrected until a convergent light of five millimetres width was
achieved. The laser sheet maintained an aperture angle of 24° throughout the
measurements, ensuring wide coverage of the wake region behind the cylinder.
The laser position was fixed after these adjustments were completed.

• A calibration plate model LaVision 309-15 was placed in the measurement
plane. A mounting system on aluminium rails ensured a proper alignment
between the calibration markers and the laser sheet. The water level was
raised until the calibration plate was fully covered. The position and lens of
the cameras were adjusted until the boundaries of the markers were clearly
defined. An external light source was evenly distributed on the calibration
plate, and 20 images were taken. The average of these images was used to
correlate the markers’ image position with their real-world location. More
details of this process are given in Section 3.3.2. The cameras were fixed to
their final position after the calibration process was completed.

• The water channel was emptied, and the cylinder was placed in the measure-
ment area. An additional MX 4M camera, synchronised with the PIV system,
was mounted above the cylinder and pointed towards its free end (Figure 3.10).
This camera was individually calibrated using the calibration plate LaVision
model 058-5.

• Before recording the cylinder motion and wake, a few tests were conducted to
configure different parameters, such as acquisition frequency, dtlaser, dtcamera,
and measurement time. More details are given in Section 3.3.3. Specific
parameters for each experiment can be found in Chapters 5 and 6.

3.3 Measurements and Verification

3.3.1 Increasing velocity conditions

It is common knowledge that cylinders subjected to VIV exhibit hysteretic behaviour
near branch transitions [73]. Specifically, different cylinder responses are observed
depending on the inflow conditions, which encloses increasing or decreasing velocity
with their respective rate of change per unit of time [89]. Increasing velocity con-
ditions generally lead to higher responses in low m∗ζ cylinders [12, 81, 92]. Thus,
this condition was used in both experiments (bottom-fixed and pivoted cylinder)
and is explained as follows. The flow rate was first initially increased up to a certain
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value. Then, a minimum of 30 minutes was permitted to elapse, ensuring that any
transient effect was dissipated. After measuring the flow and cylinder response, the
flow rate was increased to a new value, a minimum of 30 minutes elapsed, and a new
measurement was taken. This process was repeated until the maximum flow rate
of the experimental facility was reached. Throughout this process, the water depth
was fixed at the measurement zone.

3.3.2 Calibration process

(a) (b) (c)

Figure 3.11: Flow velocity field calibration process. Calibration plate LaVision 309-
15 model. a) Raw image. b) Marker detection. c) Corrected image

(a) (b)

Figure 3.12: Cylinder motion calibration process. Calibration plate LaVision 058-5
model. a) Raw image. b) Corrected image

The calibration process corrects the raw images from optical distortions and
establishes a correspondence between Pixel and real-world coordinates. Figure 3.11a
shows a raw image of the LaVision 309-15 calibration plate slightly tilted to the
right. This image corresponds to the average of 20 images taken at a low acquisition
frequency of 10 Hz. Thus, reducing background noise and improving marker edge
definition. These markers were automatically detected using Davis 8.3, as seen
in Figure 3.11b. Then, the image was corrected using a third-order polynomial
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function (Figure 3.11c). The parameters of the polynomial function are used to
calibrate each raw flow image before extracting their corresponding velocity field.
The same process is applied for the structural motion (Figure 3.12), in which each
raw image of the cylinder free end is corrected before tracking its corresponding
position. Davis 8.3 quantifies the correction error as the average deviation between
the corrected image and an ideal grid. The Davis 8.3 manual [56] recommends an
error lower than one Pixel for a two MegaPixel camera. Cameras with higher Pixel
resolution allow larger Pixel errors. Errors of 0.4 Pixels or lower were considered
acceptable in this thesis.

3.3.3 PIV measurements

This section discusses relevant aspects to accurately capture the flow dynamics
around a cylinder. Most of the parameters were adjusted according to the Davis 8.3
manual [56].

The density and resolution of tracers play a fundamental part in their detection
and correlation. The particle size was maintained between two and four pixels
[79]. The particle density was increased until at least one tracer per 20 pixels was
observed. The average distance travelled by the tracers between exposures was
maintained at five pixels. These parameters were adjusted through different means.
The tracer pixel resolution was changed by adjusting the camera-object distance.
The density of the tracers was increased by manually adding more seeding particles.
Finally, the tracers’ average travel distance was achieved by adjusting dtcamera. Davis
8.3 iteratively finds the optimal dtcamera until the desired travelled distance of five
pixels was achieved. This iterative process was repeated every time the flow rate
was increased.

(a) (b)

Figure 3.13: Filter effect on raw flow images. a) Raw image. b) Filtered image

A number of pre-processing techniques are available in Davis 8.3 to improve
the tracer resolution and visualisation. In this work, two filters were applied: a
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sliding background removal and an intensity normalisation object filter. The first
filter removes intensity variations in the image background without affecting the
pixel intensity of the tracers. The second filter normalises the intensity value of the
tracers within a window. Figure 3.13 shows the raw and corrected flow image after
applying a sliding background removal and an intensity normalisation window size
of 10 and eight pixels, respectively.
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Figure 3.14: Digital Image correlation applied to corrected flow images. a) Template
configuration between consecutive images. b) Correlation map. c) Resultant local
velocity vector

Davis 8.3 estimates the position between groups of tracers using an iterative
multi-pass multi-grid approach [90] based on the Digital Image Correlation (DIC)
technique. DIC uses correlation functions to quantify the similarity between a region
around a target (called interrogation window or template) and an image. Figure
3.14 summarises the systematic application of DIC to two consecutive flow images.
Each image is subdivided in templates and compared as shown in Figure 3.14a.
The correlation function is systematically calculated as the template of the first
image is shifted around the template of the second image. This process generates a
correlation map per template (Figure 3.14b). The position of the highest correlation
peak corresponds to the most probable displacement of the group of tracers within
the template. The local velocity vector is then calculated as the ratio between the
local flow displacement and the acquisition time between images. The fundamentals
of DIC can be found in Appendix A.1. The interrogation window size plays a
critical role in the tracking accuracy. The template size must be large enough to
maintain a minimum number of tracers. On the other hand, large interrogation
window sizes average out the small scale structures of the flow. An interrogation
window size that contains an average of at least ten tracers was considered [46].
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Davis 8.3 uses different techniques to improve the correlation between the template
and flow image. A multi-pass approach uses larger interrogation window sizes as an
initial guess to improve the correlation between smaller interrogation window sizes.
Subpixel accuracy was achieved by fitting a Gaussian function on the maximum
correlation and its nearby values. Thus, the final position of the template was not
restricted to an integer pixel position. Finally, the resolution of the measurements
was increased by overlapping nearby interrogation windows.
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Figure 3.15: Uncertainty of the free stream flow at the maximum tested inflow veloc-
ity (Uin = 0.29 m/s). Time-averaged (a,b) and root-mean-square (c,d) uncertainty.
Streamwise (a,c) and spanwise (b,d) uncertainty velocity components. Uncertainty
was normalised by Uin. Spatial dimensions were normalised by the pivoted cylinder
diameter D = 20 mm

Davis 8.3 uses a post-processing local uncertainty method [109] to measure the
error associated with the velocity field. Considering two consecutive flow images,
the second image is dewarped back onto the first image using the calculated velocity
field. Ideally, this comparison matches perfectly, and a symmetric correlation map
is obtained. In an experimental environment, differences between images result in
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Figure 3.16: Uncertainty of the wake behind a pivoted cylinder measured at 20.2 cm
from the flume’s bed and at the maximum tested inflow velocity (Uin = 0.29 m/s).
Time-averaged (a,b) and root-mean-square (c,d) uncertainty. Streamwise (a,c) and
crossflow (b,d) uncertainty velocity components. Uncertainty was normalised by
Uin. Spatial dimensions were normalised by the pivoted cylinder diameter D = 20
mm

a non-symmetric correlation peak. The contribution of each pixel to the cross-
correlation peak shape is used to estimate the uncertainty of the measurement. An
uncertainty analysis was performed under extreme experimental PIV conditions,
which involve high inflow velocities and high-velocity gradients. Figures 3.15 and
3.16 show the uncertainty of the velocity field under two flow conditions, free stream
flow measured at the flume’s centreline (Figure 3.15) and wake behind a pivoted
cylinder measured at 20.2 cm from the flume’s bed (Figure 3.16). The inflow velocity
on both conditions was Uin = 0.29 m/s. The coordinate system was centred around
the cylinder position at rest. A small region of outliers is observed between x ≈ 3D

and x ≈ 5D (Figure 3.15), generated by laser refraction in the measurement region.
These outliers did not influence the data analysis process since they were upstream
of the cylinder position. Overall, the uncertainty of the velocity field under free flow
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and wake conditions had an upper limit of 1% and 3.5% under free stream and wake
conditions, respectively.

3.3.4 Structural motion tracking

Measurements of the wake and cylinder response were taken in a synchronised man-
ner. The flow images were processed and converted to flow velocity fields as described
in Section 3.3.3. The recordings of the cylinder were processed independently, cal-
ibrating the raw images (Section 3.3.2) and using tracking techniques to estimate
the location of the structure across images. The MX 4M camera placed above the
cylinder free end (Figure 3.10) provided high-resolution images (2048x2048 pixels)
at acquisition frequencies of up to 100 Hz. These characteristics allowed to capture
the cylinder motion at several times the maximum oscillation frequencies of both
cylinders (6.4 Hz for the bottom-fixed cylinder and 1.88 Hz for the pivoted cylinder).
Thus, the structural motion was properly captured in both experiments and devi-
ations from the true cylinder position are expected to originate from the tracking
technique accuracy.

Experiments were conducted to analyse the accuracy and capabilities of two
commonly used tracking techniques: digital image correlation and the Lukas-Kanade
optical flow technique. An in-depth description of the experiment and results can be
found in Appendix A. A computer-controlled shaker was used as a benchmark case
to create a one-dimensional oscillatory target motion. Three target frequencies were
recorded. The measurements obtained with a low-cost digital camera were compared
to a high-precision motion tracking system. The comparison was performed under
changes in image resolution, target motion and sampling frequency. Overall, the
Lucas-Kanade technique showed superior accuracy when it is able to track the target.
Nevertheless, it has an important dependency on the relative pixel value (intensity
gradients) of the initial target point, which makes it difficult to achieve its higher
accuracy. This dependency can be minimised through the implementation of the
Forward-Backward tracking failure technique [43] without depending on additional
external measurements.

The structural motion was estimated using the Lucas-Kanade and Forward-
Backward techniques (Appendix A.3.5, code implementation can be found in Ap-
pendix D.2.1). This last method is based on the fact that the tracking of an object
from the spatial position P1 to P2 in time is equivalent to its tracking between P2 and
P1 backwards in time. In an experimental setting, P1 and the final location tracked
from P2, defined as P ′

1, will be different. The Euclidean difference between P1 and
P ′

1 is defined as FB-error and is a measure of the tracking technique accuracy. The
Forward-Backward technique has been shown to effectively find the initial target
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Figure 3.17: Motion tracking process. a) Cylinder raw image. b) Pre-
processed image with 256 initial target points. c) FB-error distribution. 1 −
FB-error/max(FB-error)
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Figure 3.18: Comparison between the Lucas-Kanade technique with the Forward-
Backward implementation (black) and a tracking result with a 99th FB-error per-
centile (grey). The mean streamwise displacement was removed to facilitate the
comparison

points that maximise the accuracy of the Lucas-Kanade technique [66]. Recordings
of the bottom-fixed cylinder subjected to three flow rates of 15, 23, and 33 l/s were
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used to quantify the error associated with the tracking technique. The oscillation
frequency of 5.3 Hz and 5 mm diameter of the bottom-fixed cylinder imposed higher
difficulties for motion tracking compared to the pivoted cylinder experiment. Each
recording was taken at 70 Hz for two minutes (additional information can be found
in Chapter 5). Figure 3.17a shows a raw image of the cylinder free end. The im-
age intensity values were adjusted to minimise background noise and increase the
intensity gradients of the target. An evenly spaced square grid of 256 initial target
points with one Pixel separation was placed on the target (Figure 3.17b). After
applying the Lucas-Kanade technique on each grid point, their associated FB-error
were calculated. Figure 3.17c summarises the accuracy of the tracking technique
per grid point, where the 95th percentile had a FB-error of approximately 0.01D.
Figure 3.18 shows the results obtained after implementing the Forward-Backward
technique and one initial tracking point associated with the 99th FB-error percentile
(lowest tracking accuracy). Significant differences in displacement are observed in
the streamwise direction, where its response is up to 19 times smaller than its cross-
flow motion. These results show that the tracking technique can track the cylinder
position with a FB-error of 0.01D.

3.4 Cylinder behaviour

3.4.1 Free decay test
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Figure 3.19: Free decay test. Cylinder response in air (dashed line) and water (black
line). a) Cylinder crossflow motion with logarithmic decay fit curves. b) Frequency
content of the crossflow response

Free decay tests are commonly used in VIV to determine a structure’s damping
ratio and natural frequency. Changes in these dynamic properties can be used to
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detect plastic deformations or losses in structural integrity. Thus, a linear-elastic
response can be assumed if these dynamic properties are maintained after subjecting
the structure to a series of displacements. In the context of this research project, a
free decay test consists of imposing a unidimensional displacement to the cylinder
free end. The structure is released while recording its response. This process was
repeated five times in the crossflow and streamwise direction each. The cylinder
response was estimated using image-based tracking techniques (Section 3.3.4). The
main oscillation frequency was calculated through a Power Spectral Analysis. The
damping ratio was obtained by fitting the following equation

A(t) = Ao exp(−Bot) (3.1)

using the peak amplitude response data. A(t) is the maximum displacement in the
streamwise or crossflow direction, Ao and Bo are the parameters of the model. As-
suming a logarithmic decay response fitted in the least square sense, ζ = Bo/2πfna,nw.
Figure 3.19 shows the pivoted cylinder response in air and still water, alongside their
oscillation frequencies and logarithmic decay responses. As expected, the motion
history in air has a higher oscillation frequency and lower damping compared to its
response in water.

3.4.2 Bottom-fixed cylinder
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Figure 3.20: Bottom-fixed cylinder deflected shape. a) Photo of the structure under
an arbitrary load applied at its free end. b) Deflected shape of (a) along the cylinder
span

The bottom-fixed cylinder in Figure 3.20 behaves as a cantilever structure with
a non-linear deflected response along its span. Assuming a linear-elastic response,
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the position of the bottom-fixed cylinder subjected to an arbitrary displacement
was modelled using the Software Ansys Structural (Release 18.1). Figure 3.20b
shows this deflected shape under a maximum experimental displacement of 2.5D
(Section 5.3.1). The associated inclination angle up to the water surface (Hw =

347 mm) was 2.1◦. The independence principle states that VIV is driven by the
flow component normal to the cylinder surface and that the perpendicular (axial)
component is negligible [9]. This principle is valid for inclination angles of less than
20◦ [9, 96, 114]. Applying the independence principle when the cylinder reaches
its maximum inclination angle, the component of the hydrodynamic force normal
to the cylinder surface is only 0.1% lower compared to its magnitude. Thus, the
maximum inclination angle is expected to have negligible effects on the wake and
cylinder response.
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Figure 3.21: Frequency content of the crossflow cylinder response before (black) and
after (dashed grey) 60 hours of high-amplitude responses

The endurance of the fixed end and the linear-elastic response condition were
tested by subjecting the bottom-fixed cylinder for long periods of VIV. Specifically,
high amplitudes of Ay ≈ 0.7D at Ur ≈ 5 (Section 5.3) were maintained in six sessions
of 10 hours each. A free decay test was conducted before and after the experiments.
Figure 3.21 shows no difference in frequency content after long periods of high-
amplitude oscillations. Thus, the fixed end did not degrade its condition over time,
and the cylinder maintained a linear-elastic response.

3.4.3 Pivoted cylinder

The response of the pivoted cylinder is given by the behaviour of its individual
components. The complex hydrodynamic forces on the acrylic tube are transferred
to the silver pin through the rigid plug. This force path implies that, while the
acrylic tube interacts with the fluid flow, the structural resistance is given entirely
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Figure 3.22: Pivoted cylinder monolithic response test. a) Raw image of the record-
ing. b) Pre-processed image for tracking c) Streamwise (up) and crossflow (down)
response of the pin (black) and plug (grey). Responses were normalised by their
maximum amplitude

by the silver pin. Thus, it is important to prevent relative displacements between
components under experimental conditions. A prototype was placed inside the flume
and subjected to VIV. An acrylic box was fixed behind the cylinder while touching
the water surface to minimise optical distortions and have a clear view of the silver
pin and plug. Markers were previously placed on the acrylic tube and pin (Figures
3.4b and 3.22b) to simultaneously track their responses. The cylinder response
was recorded at 70 Hz for 300 seconds. Figure 3.22c shows the motion history of
the pin and plug in the streamwise and crossflow direction. Each response was
normalised by their maximum position for comparison. Negligible differences are
observed near peak amplitudes, which can be attributed to the tracking technique
accuracy (Section 3.3.4). Overall, there is a clear correspondence between the pin
and plug responses, which supports the monolithic behaviour of the pivoted cylinder.

The endurance of the fixed end and the linear-elastic response condition were
tested by subjecting the pivoted cylinder for long periods of VIV. The pivoted cylin-
der was subjected to high-amplitude oscillations at Ur ≈ 7.42 (Section 6.3.1). Re-
sponses of Ay ≈ 2.1D were maintained in six sessions of 10 hours each. Relative
displacements in the plug connection were detected by observing plastic deforma-
tions of plasticine added on top and underneath the plug. Pictures taken before
and after the experiments (Figure 3.23) showed no observable deformation on the
plasticine after 60 hours of high-amplitude vibrations. Then, a free decay test was
conducted, and the results were compared to a previously performed free decay test.
Figure 3.21 shows no difference in terms of frequency content before and after the
experiment. Thus, the fixed end did not degrade its condition over time, and the
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Figure 3.23: Pivoted cylinder endurance test. a) side view. b) top view before (up)
and after (down) 60 hours of high-amplitude vibrations. c) fixed end and bottom
pin-plug connection after endurance test
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Figure 3.24: Frequency content of the crossflow cylinder response before (black) and
after (dashed grey) 60 hours of high-amplitude responses

cylinder maintained a linear-elastic response.
Similarly to the bottom-fixed cylinder (Section 3.2.2), the maximum response

of the pivoted cylinder under experimental conditions (Section 6.3.1) led to an in-
clination angle of θ = 7.8◦ regarding its rest position. Applying the independence
principle at this extreme condition, the component of the hydrodynamic force nor-
mal to the cylinder surface is only 1% lower compared to its magnitude. Thus,
the maximum inclination angle is expected to have a small effect on the cylinder
response. Overall, the tested pivoted configuration maintained a linear-elastic con-
dition with no degradation on its fixed end and between components. These char-
acteristics are critical to ensure that the experimental responses can be represented
as a spring-mass-damping model (Section 4.3.2).
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3.5 Open-channel flow considerations

The water channel described in Section 3.2.1 has been used throughout this research
project. As such, important elements related to open-channel flows must be taken
into consideration.

The theory of open-channel flows indicates that a uniform flow with a certain
boundary shear stress, flow depth and mean inflow velocity is uniquely related to
a combination of flume slope, bed sediment, and flow rate [14]. The experiments
in this research project were performed under a fixed flume slope and bed sediment
conditions while the flow rate was systematically increased. Thus, the uniform flow
condition is not met, and the experimental flow is expected to gradually vary in
terms of water depth and mean velocity along the channel length. Under a small
slope assumption, the equation for a gradually varied flow can be written as

dh

dx
=

So − Sf

1− F 2
r

(3.2)

where dh/dx is the rate of change of water depth along the channel length, So

and Sf are the flume and friction slopes respectively, and Fr is the Froude number.
This last parameter is defined as

Fr =
Uin√
gHw

(3.3)

where g is the gravitational acceleration constant and Hw is the water depth.
Equation 3.5 shows that changes in water depth (or specific energy) occur when
So 6= Sf, i.e. when there is a difference between the rates at which gravitational
forces drive the flow and friction retards it. The local friction slope can be obtained
from Manning’s equation assuming the same rate of energy loss in an equivalent
normal flow

Sf =
n2

mU
2
in

AwR
4/3
h

(3.4)

where nm is the Manning coefficient (equal to 0.011 for smooth surfaces [14]),
Aw is the cross-sectional area of the flow, Rh = Aw/Pw is the hydraulic radius, and
Pw corresponds to the wetted perimeter. Considering the maximum flow rate, flume
slope, and water depth at the measurement plane, Fr = 0.11 and Fr = 0.17 for
the bottom-fixed and pivoted cylinder experiments, respectively. Moreover, Sf is
two and nine times higher than the flume’s slope for the bottom-fixed and pivoted
cylinder experiments, respectively. Thus, the experimental flow is subcritical with
a decreasing water depth as the flow moves downstream. All the experiments were
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performed at the same location (10.5 metres downstream of the inlet), and the water
depth was fixed at the measurement zone. Thus, the cylinder is subjected to the
same inflow condition on average as long as the flow rate remains constant.

Another aspect of open-channel flows is related to their frictional resistance,
which results in a non-uniform vertical (xz-axis) velocity profile. The law of the
wall expresses a vertical velocity profile as a function of the incoming flow velocity,
water depth position, and mean shear stresses. In general, the flow velocity increases
parabolically from zero at the bottom of the water channel to a maximum value
near the surface. This characteristic vertical velocity profile is expected to have
an influence on the wake dynamics along the cylinder span and in VIV. Due to the
different tested experimental conditions, the analysis of the vertical velocity profile is
provided in Chapters 5 and 6 for the bottom-fixed and pivoted cylinder experiments,
respectively.

When a flow is confined within walls, the blockage ratio Br = Wf/D, where Wf is
the flume’s width, can have a significant impact in the vortex shedding process. It is
important to mention that the blockage ratio does not take into account the cylinder
amplitude. Thus, the blockage-amplitude ratio, defined as the maximum crossflow
amplitude Ay divided by the blockage ratio, is also considered here. Numerical
simulations of a one degree-of-freedom cylinder between 100 ≤ Re ≤ 150 observed
negligible differences in vibration responses when Br > 4 [94]. Experiments on
a one degree-of-freedom elastically mounted cylinder at Re = 4 × 103 showed a
maximum amplitude difference of 2.2% when the Br = 20 and Br = 7.5 cases were
compared [31]. Numerical simulations on a two degree-of-freedom cylinder between
1 × 103 ≤ Re ≤ 1.5 × 104 showed that the effects of walls on VIV are small when
Br ≥ 10 [116]. The amplitude-blockage ratio in all these studies imposes an upper
limit between between 11% [116] and 14.5% [94].

The cylinders tested in this research project have a blockage ratio of 97.2 and
24.3 for the bottom-fixed and pivoted cylinders, respectively. Based on these pa-
rameters, the walls of the flume were expected to have negligible influence on VIV.
Still, the maximum amplitude of the pivoted cylinder (Ay = 2.1D) and its asso-
ciated amplitude-blockage ratio of 8.6% impose a critical condition that must be
analysed independently. A compilation of previous studies related to pivoted cylin-
ders undergoing VIV (Section 6.3.1) considered a range of experimental blockage
ratios between 47.2 [51] and 10.7 [2], and amplitude-blockage ratios between 8.9%
[57] and 2.4% [51]. The tested pivoted cylinder is within the upper end in terms of
amplitude-blockage ratio, comparable with a two degree-of-freedom pivoted cylin-
der with Ay = 2D [57]. Thus, the amplitude-blockage ratio of the pivoted cylinder
indicate a slight influence of the lateral walls on VIV.



Chapter 4

Numerical methods

4.1 Introduction

This chapter describes the theory and numerical techniques used for the two-
dimensional RANS model. The governing flow equations and turbulence modelling
are first described as a general introduction to RANS models. Out of the several
turbulence models commonly used in industry and research, only the Shear Stress
Transport k − ω model is described due to its successful application in previous
VIV studies (Section 2.4). The spatial and temporal discretisation techniques used
in the numerical model are described within the context of Ansys Fluent [22], the
Computer Fluid Dynamic Software used in this thesis. Lastly, the cylinder equation
of motion and its fluid-structure coupling implementation are described.

4.2 Mathematical flow models

4.2.1 Governing equations

Given the absence of body forces and free-surface effects, the motion of a Newtonian
incompressible fluid particle can be expressed by the following set of equations

∂ui

∂xi

= 0 (4.1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

(4.2)

where i = [1, 2, 3] and j = [1, 2, 3] refer to the Cartesian components of the flow
velocity u, ρ is the fluid density, p is the fluid pressure, ν is the kinematic viscosity.
Equation 4.1 is derived from the mass conservation principle, which states that the
rate of mass within a control volume is equal to the difference between the rate of
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mass into and out of the control volume. Equation 4.2 is commonly referred to as
the Navier-Stokes or momentum equations and are the result of applying Newton’s
second law to a control volume.

4.2.2 Turbulence modelling

The solution of the Navier-Stokes equations using numerical models can be broadly
classified into three categories: Direct Numerical Simulations (DNS), Large Eddy
Simulations (LES), and Reynolds-Average Navier-Stokes (RANS) models. DNS
solves the full range of turbulent scales. LES applies different filters to separate
the small and large turbulent scales. The small scales are simulated, while the
larger ones are directly solved. RANS models solve the time-averaged Navier-Stokes
equations with complete modelling of the turbulence scales. As explained in Chapter
2, RANS models are commonly used in industry and research due to their low com-
putational costs, lower grid resolution, and a less stringent time step requirement.
The time-averaged version of Eq. 4.1 and 4.2 is expressed as

∂ui

∂xi

= 0 (4.3)

∂ui

∂t
+

∂uiuj

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂2xj

−
∂u′

iu
′
j

∂xj

(4.4)

where the velocity and pressure were decomposed in their time-averaged and fluc-
tuating components (see Section 2.2), and ρu′

iu
′
j is referred to as Reynolds stress

tensor. Given the greater number of unknowns than equations, Equation 4.3 and
4.4 are solved by means of turbulence models. One common assumption behind
these models is based on the Boussinesq eddy viscosity conjecture [91], which re-
lates the Reynolds stress tensor to the mean velocity gradients. The mathematical
expression of the Boussinesq model is

u′
iu

′
j = −νt

(∂ui

∂xj

+
∂uj

∂xi

)
+

2

3
kδij = −2νtSij −

2

3
kδij (4.5)

where νt = µt/ρ is the turbulent viscosity, k is the turbulent kinetic energy, Sij

corresponds to the mean rate of the strain tensor, and δij = 1 when i = j.
Several studies suggest the use of the SST k − ω turbulence model due to its

accuracy to capture the main features in flows around stationary cylinders [1, 63, 98]
and in one [50, 117] and two [35, 45, 105, 106] degree-of-freedom cylinders subjected
to VIV. More details can be found in Chapter 2.4. The SST k−ω [67, 68] combines
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the robustness and accuracy of the k − ω model in the inner parts of the boundary
layer (near-wall regions) and switches to the free stream independent k− ε model in
the rest of the fluid domain. This switch avoids the sensitivity problem of the k−ω

to the free stream turbulent properties [67]. It also avoids the low performance of
the k − ε model in regions with strong adverse pressure gradients and significant
flow separation [85]. The SST k − ω is based on two transport equations, one for
the turbulent kinetic energy k, and the other for the dissipation per unit of kinetic
energy ω. The transport equation for k is given by

∂ρk

∂t
+

∂

∂xj

(ρujk) = Pk − β∗ρωk +
∂

∂xj

[
(µσkµt)

∂k

∂xj

]
(4.6)

where β∗ and σk are constant of the model, and Pk = µtS
2 is the production term

for incompressible flows. The growth of turbulence in stagnating regions is limited
by P̃k = min(Pk, 10β

∗kω). The transport equation for ω is given by:

∂ρω

∂t
+

∂

∂xj

[
ρujω − (µ+ σωµt

∂ω

∂xj

)

]
= γρS2 − βρω2

+ 2(1− F1)
ρσω

ω

∂k

∂xj

∂w

∂xj

(4.7)

where β and σω are constant of the model. The blending function F1 in Eq. 4.7
allows to transition between the k − ω and k − ε models and is defined as

F1 = tanh


{

min

[
max

( √
k

β∗ωywall
,
500ν

y2wallω

)
,

4ρσω2k

CDkωy2wall

]}4
 (4.8)

where CDkω = max(2ρσω2
1
ω

∂k
∂xi

∂ω
∂xj

, 1× 10−10) and ywall is the distance to the nearest
wall. Away from a surface, F1 = 0 and the k− ε model is active. Inside a boundary
layer, F1 = 1 and the model switches to k − ω. The turbulent viscosity is defined
as:

νt =
a1k

max(a1ω, SF2)
(4.9)

where F2 is a second blending function defined by
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F2 = tanh

[max

(
2
√
k

β∗ωywall

,
500ν

y2wallω

)]2 (4.10)

The constant of this models are: β∗ = 0.09, γ = 5/9, β1 = 3/40, β2 = 0.0828,
σω1 = 0.5, σω2 = 0.856, σk1 = 0.85, σk2 = 1, and a1 = 0.31 [68].

4.2.3 Spatial discretisation

The numerical model was developed in Ansys Fluent [22], a Computer Fluid Dy-
namic Software based on the Finite Volume Method (FVM) with a cell-centred for-
mulation. The fluid domain is partitioned into subdomains or control volumes, such
as hexahedral (three-dimensional) or quadrilaterals (two-dimensional) elements. The
flow equations on each control volume are numerically integrated to construct a set
of algebraic equations for a given discrete variable, such as velocity, pressure, and
temperature. These discrete equations are written as

∂ρφ

∂t
V +

Nface∑
f

ρf~ufϕf · ~Af =

Nface∑
f

τf∇ϕf · ~Af + SϕV (4.11)

where ϕ is a scalar property within a control volume V with a face area Af and a
number of faces Nface, Sϕ is a source term of ϕ, and the face velocity ~uf and diffusion
coefficient τf are integrated over a number of facesNface. Ansys Fluent stores discrete
values ϕ at the centre of each element. Thus, different numerical schemes are used to
obtain its corresponding face values ϕf . This work used the following schemes: Body
Force Weighted, the Quadratic Upwind Interpolation for Convection (QUICK), and
the first and second-order upwind schemes. More information about each numerical
scheme can be found in [22, 101].

First-order upwind scheme

First-order interpolation technique. The face value of a scalar quantity ϕf is equal
to its cell centre value ϕ.

Second-order upwind scheme

Second-order accuracy scheme. ϕf is estimated through a Taylor series expansion
from its element-centre value,

ϕf = ϕ+∇ϕ · ~r (4.12)
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where ∇ϕ is the gradient of the cell-centre scalar quantity in the upstream element,
and ~r is the displacement vector from the centroid of the upstream element to its
corresponding face centroid.

Quadratic upwind interpolation for convection

The Quadratic Upwind Interpolation for Convection (QUICK) is based on a weighted
average of the second-order upwind and central interpolation schemes. In Ansys Flu-
ent, ϕf is given by

ϕf = λ

(
∆c

∆b +∆c

ϕB +
∆b

∆b +∆c

ϕC

)
+

(1− λ)

(
∆a + 2∆b

∆a +∆b

ϕB − ∆b

∆a +∆b

ϕA

) (4.13)

where ∆ is the element length for three consecutive cells (A, B and C), and ϕf is
the scalar value at the face between elements B and C. λ = 1 results in a central
second-order interpolation, while λ = 0 converges to a second-order upwind scheme.
The QUICK scheme is used on quadrilateral and hexahedral elements where the
upstream and downstream faces can be identified. Ansys Fluent sets λ = 1/8. On
unstructured or hybrid meshes, λ = 0 and the second-order upwind scheme is used.

4.2.4 Temporal discretisation

Each term in Eq. 4.11 must be integrated over a time step ∆t for transient simula-
tions. The implicit time evolution of ϕ is given by

ϕt+∆t − ϕt

∆t
= F (ϕt+∆t) (4.14)

where F is any spatial discretisation scheme, and ϕt+∆t is the discrete scalar at a
future time step. The second-order implicit formulation for a scalar variable ϕ is
given by

3ϕt+∆t − 4ϕt + ϕt−∆t

2∆t
= F (ϕ) (4.15)

This equation is solved iteratively at each time step. The implicit formulation is
unconditionally stable regarding the time step size. Nevertheless, a Courant number
below one is maintained (i.e. distance travelled by a fluid particle is lower than the
element size) as recommended for the SST k − ω turbulence model. The Courant
number is defined in Ansys Fluent as
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CFL = max
(
u1∆t

∆x
,
u2∆t

∆y
,
u3∆t

∆z

)
(4.16)

where ∆x, ∆y, and ∆z are the element length in the (x, y, z) direction.

4.2.5 Gradients and pressure-velocity coupling

Some discretisation techniques require calculating the gradient of a scalar quantity
(∇ϕ). Here, the Green-Gauss Node-Based algorithm is used. This method is based
on the Green-Gauss theorem applied to a scalar variable at the centre of an element.
The discrete form of this method is given by

(∇ϕ)cell_centre =
1

V

Nface∑
f

ϕfAf (4.17)

where the sum is over all the faces of an element. The face value ϕf is the average
of the nodal values on the face

ϕface_nodes =
1

N

Nface_nodes∑
n

ϕn (4.18)

where Nface_nodes is the number of nodes in a particular face.
The discretisation of the momentum equation requires the interpolation of the

pressure and velocity from their cell-centre to their respective face values. The
Pressure Staggering Option (PRESTO) scheme is used to estimate the pressure
field, while a procedure similar to [83] is used for the velocity field [22]. The dis-
cretisation of the flow equations shows a pressure-velocity dependence. This rela-
tionship is addressed by ensuring a pressure field that satisfies the momentum and
mass conservation equation at each element. For this, the Semi-Implicit Method for
Pressure-Linked Equations Corrected (SIMPLEC) scheme is used. Figure 4.1 shows
a flow chart of this numerical scheme. A pressure field is guessed or estimated using
the flow values from a previous time step. The discretised momentum equations are
solved using the estimated pressure field, and an initial velocity field is obtained.
This information is used to correct the pressure field and mass fluxes at each ele-
ment’s face. The velocity field is updated to account for the new pressure field. This
process is repeated until convergence of the flow parameters is reached.
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Figure 4.1: Semi-Implicit Method for Pressure-Linked Equations flow chart
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Figure 4.2: Mass-spring-damping model of a two degree-of-freedom elastically
mounted cylinder

4.3 Structural models

4.3.1 Elastically mounted cylinder

The elastically mounted cylinder is modelled as a mass-spring-damping system (Fig-
ure 4.2). The flow moves from left to right along the x-axis or the streamwise di-
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rection. The y-axis or the crossflow direction is perpendicular to the flow and the
cylinder axis. The z-axis (out-of-plane in Figure 4.2) or spanwise direction refers to
the axis of the cylinder at rest. The corresponding two-dimensional equations are
given by

Msẍ+ Cẋ+Kx = FD (4.19)

Msÿ + Cẏ +Ky = FL (4.20)

where Ms, C, and K are the structural mass, damping and stiffness per unit of
length, respectively. FD and FL are calculated as the sum of the normal and shear
forces in the streamwise and crossflow direction, respectively. The added mass is
not included in Eq. 4.19 and 4.20 since the fluid forces (from which the added mass
effect manifest) are explicitly calculated from the flow equations [89]. The structural
properties per unit of length are given by

Ms =
1

4
m∗πD2ρ (4.21)

C = 4ζπfnaMs (4.22)

K = 4π2f 2
naMs (4.23)

These parameters are replaced in Eq. 4.19 and 4.20

Msẍ+ 4πfnaζMsẋ+ 4π2f 2
naMsx = FD (4.24)

Msÿ + 4πfnaζMsẏ + 4π2f 2
naMsy = FL (4.25)

Equation 4.24 and 4.25 are solved using the Runge-Kutta fourth-order algo-
rithm. This method has been used successfully in two degree-of-freedom cylinders
subjected to VIV [115]. Considering the crossflow response as an example, Eq. 4.25
is expressed as

dy(t)

dt
= ẏ(t) (4.26)

dẏ(t)

dt
=

FL

Ms
− 4πfnaζẏ − 4π2f 2

nay (4.27)

The Runge-Kutta fourth-order method solves Eq. 4.26 and 4.27 in a discrete
manner as
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y(tn+1) = y(tn) +
∆t

6
(HRK1 + 2HRK2 + 2HRK3 +HRK4) (4.28)

ẏ(tn+1) = ẏ(tn) +
∆t

6
(LRK1 + 2LRK2 + 2LRK3 + LRK4) (4.29)

where

HRK1 = ẏ(tn) (4.30)

HRK2 = ẏ(tn) +
∆t

2
LRK1 (4.31)

HRK3 = ẏ(tn) +
∆t

2
LRK2 (4.32)

HRK4 = ẏ(tn) + ∆tLRK3 (4.33)

LRK1 =
FL(tn)

Ms
− 4πfnaζẏ(tn)− 4π2f 2

nay(tn) (4.34)

LRK2 =
FL(tn)

Ms
− 4πfnaζ(ẏ(tn) +

∆t

2
LRK1)− 4π2f 2

na(y(tn) +
∆t

2
HRK1) (4.35)

LRK3 =
FL(tn)

Ms
− 4πfnaζ(ẏ(tn) +

∆t

2
LRK2)− 4π2f 2

na(y(tn) +
∆t

2
HRK2 (4.36)

LRK4 =
FL(tn)

Ms
− 4πfnaζ (ẏ(tn) + ∆tLRK3)− 4π2f 2

na
(
y(tn) + ∆tHRK3

)
(4.37)

HRKi
and LRKi

(i = [1, 2, 3, 4]) are the Runge-Kutta coefficients, and ∆t is the
time step size.

4.3.2 Pivoted cylinder

Figure 4.3 shows a representation of the pivoted cylinder tested in Chapter 6. This
configuration and mounting system is similar to previous pivoted cylinder studies
[103]. The structure pivots around (x, y, z) = (0, 0, 0), corresponding to the struc-
ture’s fixed end. The experimental results showed a maximum free end displacement
of 2.25D at the maximum flow velocity (Chapter 6). The associated inclination an-
gle regarding the cylinder rest position was θ = 7.8◦, from which the approximation
tan(θ) ≈ θ is valid. Moreover, the tested configuration had a high aspect ratio
(length-to-diameter) of 15.5. These characteristics allowed to linearise the equation
of motion of a pivoted cylinder by balancing the moments with respect to the pivot
point. The equation of motion for a pivoted cylinder [21] is written as

Isθ̈i(t) + ceqθ̇i(t) + keqθi(t) = Mi(t) (4.38)

where Is is the structural moment of inertia, ceq and keq are the equivalent structural
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w
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θ

g

X

Z

Figure 4.3: Model of a two degree-of-freedom pivoted cylinder. W : weight. B:
buoyancy. The flow moves from left to right along the streamwise direction (x-axis).
The crossflow direction (y-axis) is perpendicular to the flow and the cylinder axis.
The spanwise direction (z-axis) refers to the axis of the cylinder at rest

damping and stiffness respectively, and Mi is the forcing moment in the i = [x, y]

direction. The moment of inertia around the pivot point was approximated as
Is ≈ MsL

2/12 with an error of 4% compared to its equivalent model in Ansys
Structural 18.1. The equivalent stiffness is given by

keq = ks +
g

2
(MfHw −MsL) (4.39)

were ks is the structural stiffness, and g is the gravitational acceleration constant.
The second and third terms of Eq. 4.39 are the opposite weight and buoyancy mo-
ments acting on the centroid of the solid and displaced fluid mass, respectively. The
natural frequency measured in water is a function of the equivalent stiffness and the
moment of inertia. A free decay test performed under the same experimental condi-
tions can be used to calculate the natural frequency of the structure and determine
its equivalent stiffness [51]

keq = ks +
g

2
(MfHw −MsL) = 4π2f 2

nw(Is + Ia) (4.40)

ceq = 2ζ

√
ks +

g

2
(MfHw −MsL) = 4πfnwζ(Is + Ia) (4.41)

where Ia = CaIf is the added inertia. Replacing Equations 4.40 and 4.41 in Eq.
4.38, the pivoted cylinder model can be written as
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θ̈i + 4πfnwζθ̇i + 4π2f 2
nwθi =

Mi

1 + CaI∗
(4.42)

Furthermore, approximating the inclination angle to θi ≈ (x, y)/L at the cylinder
free end (tan(θ) ≈ θ as shown before), Eq. 4.42 is rearranged (e.g. in the crossflow
direction) as

ÿ + 4πfnwζẏ + 4π2f 2
nwy =

MyL

1 + CaI∗
(4.43)

Eq. 4.43 is similar to the equation of motion of an elastically mounted cylinder
(Eq. 4.25) except to the right-hand term related to the total forcing moment.

4.4 Coupling mechanism

t t+∆t t+ 2∆t

t t+∆t t+ 2∆t

Flow field

Structural
response

1 5

3 7

4 82 6

Figure 4.4: Flow chart of the coupling process across time steps [35]
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4th order Runge-Kutta

Mesh deformation Displacement, velocity
and acceleration
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Diffusion scheme

t
+
∆

t

Figure 4.5: Flow chart of the coupling process within a time step
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A staggered approach with dynamic mesh deformation was used to couple the
cylinder and fluid motion. Figure 4.4 shows the coupling process across time, while
Figure 4.5 summarises the fluid-cylinder interaction within a time step. The RANS
equations with the SST k − ω turbulence model are iteratively solved until a con-
verge criteria is achieved. Then, the cylinder’s total pressure and viscous forces are
extracted using a User Defined Function (UDF, Appendix D.2.2). Equation 4.24
and 4.25 are solved using the Runge-Kutta fourth-order method to obtain the cylin-
der displacement, velocity and acceleration. As the cylinder updates its position,
the nearby mesh adapts following a diffusion-based smoothing scheme [22, 36]. A
diffusion equation governs the mesh motion

∇(ω̃∇~u) = 0 (4.44)

where ω̃ is the diffusion coefficient, and ~u is the mesh displacement velocity. The
boundary condition in Eq. 4.44 is given by the cylinder motion within a time step.
Equation 4.44 describes how the mesh motion diffuses into the interior of the flow
domain. The parameter ω̃ controls the intensity of the diffusion, defined as

ω̃ =
1

dα
(4.45)

where d is a normalised boundary distance and α is the diffusion parameter. α = 0

(ω̃ = 1) yields a uniform diffusion throughout the mesh. α > 0 preserves regions
near the moving boundary, while regions away from the cylinder absorb the mesh
motion.



Chapter 5

VIV on bottom-fixed cylinder

5.1 Introduction

This chapter analyses the wake dynamic and structural response of a bottom-fixed
cylinder subjected to a range of open-channel flows. Its main goal was to acquire
experience with the experimental equipment, calibration system, and data analysis.
Moreover, the variable amplitude along the bottom-fixed cylinder span provides
important insights in preparation for the pivoted cylinder case of Chapter 6. In
particular, the relationship between wake dynamics and structural response as the
cylinder reaches its maximum amplitude and then desynchronises at higher flow
velocities.

5.2 Experimental setup

5.2.1 Instrumentation and measurements

The experimental setup in Figure 5.1 consists of a recirculating water channel, a
bottom-fixed cylinder made of clear cast acrylic, and the laser-based LaVision PIV

Bulk velocity (cm/s) Re Ur Water slope (m/m)

8.95 448 3.38 0.00055
10.67 534 4.03 0.00035
11.86 593 4.5 0.00012
13.7 685 5.15 0.00007
16.01 801 6.04 -0.00048
19.86 993 7.5 -0.00129

Table 5.1: Relevant hydraulic parameters of the experimental conditions. Water
depthHw = 347mm fixed at the measurement zone (10.5 m from the inlet). Flume’s
slope fixed at 0.001 m/m

59
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Figure 5.1: Experimental setup of a bottom-fixed cylinder undergoing VIV. Coor-
dinate system: streamwise (x-axis) and crossflow (y-axis) directions. The spanwise
direction (z-axis) lies along the span of the cylinder at rest. a) PIV vertical (xz-axis)
plane. b) PIV horizontal (x-axis) plane

system. Details of each equipment were described in Chapter 3. The flume main-
tained a fixed longitudinal slope of 0.001 m/m and a water depth Hw = 347 mm
throughout the experiments. The cylinder of diameter D = 5 mm and 491 mm
length was placed 10.5 m downstream from the flume’s entrance. Additional infor-
mation on the cylinder mounting process and behaviour can be found in Chapters
3.2.2 and 3.4.2. As a summary, the two degree-of-freedom cylinder had an aspect
ratio (length-to-diameter) equal to 98.2, mass ratio m∗ = 1.41, and a low blockage
ratio of 97.2 (blockage ratio effects were discussed in Chapter 3.5).

The PIV system used two MX 4M cameras to record the wake behind the cylin-
der. Simultaneously and synchronised, a third MX 4M camera recorded the cylinder
free end response. Each recording was taken at 70 Hz for two minutes. The mea-
surements were taken under increasing velocity conditions (Chapter 3.3.1), from
Ur = 3.38 up to Ur = 7.5. Other relevant hydraulic parameters are summarised in
Table 5.1. The flume and water slope differed at different flow velocities as expected
from gradually varied open-channel flows (Chapter 3.5). A positive (negative) wa-
ter slope indicates a systematic increment (decrement) of the water depth as the
flow moves downstream. Still, all the experiments were performed at the same lo-
cation (10.5 metres downstream of the inlet), and the water depth was fixed at
the measurement zone. Thus, the cylinder is subjected to the same inflow condi-
tion on average as long as the flow rate remains constant (Chapter 3.5). The wake
was characterised by measuring one vertical plane across the cylinder centreline and
four horizontal planes at (x, y, z) = (x, y, [20, 34, 52, 60]D). Figures 5.1a and 5.1b
show the experimental setup of a vertical and horizontal PIV measurement, respec-
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tively. The velocity field was calculated from the raw flow images using a multi-pass
cross-correlation approach (Chapter 3.3.3). An initial interrogation window of 64x64
pixels with two passes, followed by a 32x32 pixels window with three passes were
used. The Universal Outlier detection [108] algorithm was used to remove vectors
with small correlation values and replace them using a 5x5 pixel smoothing window.
The overlap was set to 75% between interrogation windows, leaving a maximum
spatial resolution of 0.39 mm for the horizontal PIV planes and 0.93 mm for the
vertical PIV plane. The cylinder response images were calibrated and its motion
estimated following the procedure described in Chapters 3.3.2 and 3.3.4. Details of
the image-based tracking technique can be found in Appendix A.

A free decay test (Chapter 3.4.1) was performed using a PS3 Eye Camera. The
video recordings were taken at 165 Hz with a 320x240 pixel resolution. A frequency
analysis showed that fna = 6.4 Hz and fnw = 5.3 Hz on the first structural mode. A
decaying exponential curve fit on the cylinder response showed that ζ was approx-
imately 4% in air and 7.6% in water. These dynamic parameters were not affected
by the direction of the unidimensional displacement. The free decay test was re-
peated after all the experiments were completed without degradation of the cylinder
dynamic properties. Thus, a linear-elastic response was assumed.

5.2.2 Inflow characterisation

2 4 6 8
0

20

40

60

Ur

z/
D

Figure 5.2: Time-averaged velocity profile measured at the flume’s centreline. #:
Ur = 4.03. 4: Ur = 5.15. �: Ur = 6.04. ∗: Ur = 7.5. Dashed lines: bulk velocity

A broad characterisation of open-channel flows in the context of this research
project was provided in Chapter 3.5. Figure 5.2 shows the time-averaged velocity
profile of the free stream flow. Dashed lines indicate the bulk velocity Uin (flow rate
divided by the flow cross-sectional area). The velocity profile resembles a parabolic
distribution as expected from open-channel flows. Approximately 90% of the average
incoming reduced velocity was achieved at z = 12.7D for the minimum reduced
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velocity and decreased to z = 7.2D at the maximum tested velocity. Considering
the z = 12.7D case, the flume’s frictional resistance reduces the mean velocity profile
over the lowest 18.4% water depth region. This interaction has a direct impact on
the wake dynamics of that region, as shown in Section 5.3.3. Still, a small influence
on the structural response is expected due to the low forcing moment of that region
on the cylinder fixed end. The maximum difference between the bulk velocity and
the mean velocity at the measurement zone was 4.4%. Since the mean velocity of
the vertical velocity profile varied as a function z, the bulk velocity was used as a
normalisation parameter.

5.3 Results

5.3.1 Cylinder response and modal decomposition
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Figure 5.3: Cylinder free end response at 4.5 × 102 6 Re 6 1 × 103. a) Cylinder
motion examples. b) Mean streamwise position. Maximum displacement in the (c)
crossflow and (d) streamwise direction. Error bars represent one standard deviation
around the maximum displacement

Figure 5.3 summarises the cylinder response in the streamwise and crossflow di-
rection. Figure 5.3a shows the cylinder spatio-temporal position at Ur = [3.38, 5.15, 7.5].
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Figure 5.4: Relative POD modal values of the cylinder response. a) εi, where
i = [1, 2, ..., 8]. b) ε1 + ε2

These trajectories indicate a strong periodic component alongside a random motion.
The identification and characterisation of the large-scale motion is addressed later
using the Proper Orthogonal Decomposition (POD) technique (Appendix B). The
cylinder reached a maximum streamwise position of 2.5D and inclination angle of
2.1◦ at the highest tested flow velocity. Figure 5.3d and 5.3c show the maximum
amplitude in the streamwise Ax and crossflow Ay direction, respectively. The max-
imum amplitude corresponds to the mean value of the highest 10% of the recorded
response [38]. The maximum displacement increased with Ur up to Ay = 0.74D

and Ax = 0.04D at Ur = 5.15. At further increments in the reduced velocity,
the maximum displacement decreased to Ay = 0.43D and Ax = 0.03D at Ur = 7.5.
Comparable amplitudes of Ay = 0.72D and Ax = 0.08D were observed on a bottom-
fixed cylinder subjected to VIV [76]. The comparable m∗ζ = 0.126 [76] with the
experimental m∗ζ = 0.105 partially explains the similarity in terms of maximum
amplitude. The ratio Ay/Ax ranged from eight at Ur = 3.18 up to 19 at Ur = 6.04.
Thus, the cylinder had a dominant crossflow response across Ur.

The response data were separated into vectors of equal length (i.e. snapshot) and
arranged in matrix form as described in Appendix B. The vector length selection is a
trade-off between the number of snapshots used for POD and the cylinder trajectory
within each snapshot. Snapshots of 700 data points (53 oscillations on average)
were selected to ensure the convergence of the first (average) and second (variance)
order statistics. Figure 5.4a shows the relative modal value εi (i = [1, ..., 8]) across
Ur. The first two POD modes captured an important part of the total variance at
higher responses (Ur > 5) as opposed to lower displacements (Ur < 5), from which
the energy of higher-order POD modes was also significant. Figure 5.4b shows
the energetic contribution of the first two POD modes at different flow velocities.
ε1 + ε2 increased alongside Ur, reaching a maximum value of 71% at Ur = 6.04.
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Figure 5.5: Reconstructed cylinder response from Φ1+Φ2. From top left to bottom
right: Ur = [3.38, 4.03, 4.5, 5.15, 6.04, 7.5].

Then, it decreased to 63% at the highest tested Ur. It is important to notice that
ε1 + ε2 ≈ 45% at the maximum cylinder amplitude. The higher ε1 + ε2 at greater
reduced velocities is associated with an important contribution of the first two POD
modes on the cylinder response. Since these modes are highly coherent at Ur > 5

(shown later), the cylinder response has an important coherent component. This
increment in response coherence after reaching the maximum cylinder amplitude
could be associated with a transition to the lower branch, characterised by a higher
periodic motion compared to the upper branch [49].

Figure 5.5 shows the reconstructed displacement signal obtained by adding the
two most energetic spatial POD modes, Φ1 + Φ2. Higher-order POD modes only
increased the irregularity of the trajectory for all Ur. Irregular POD mode shapes
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Axis Mode Ur

3.38 4.03 4.5 5.15 6.04 7.5
1 0.76 0.86 0.90 1.01 1.02 1.04X 2 0.76 1.68 0.90 1.01 1.02 1.03
1 0.76 0.84 0.89 1.01 1.02 1.03Y 2 0.76 0.84 0.89 1.01 1.02 1.03
fc 0.76 0.85 0.90 1.01 1.02 1.04

Table 5.2: Streamwise and crossflow normalised frequencies of the first two spatial
POD modes. Oscillation frequency normalised by fnw

were observed at Ur < 5. Conversely, clockwise elliptical-type trajectories were iden-
tified for Ur = 5.15 and Ur = 6.04. Similar elliptical-type trajectories at Ur ≥ 5 and
irregular responses at Ur < 5 were identified for a bottom-fixed cylinder subjected
to VIV [76]. The researchers indicated that non-regular cylinder oscillations at low
reduced velocities might be associated with a high dependence of the added mass
on Ur [76]. An eight- and elliptical-type combination was observed at the maximum
flow velocity. This particular trajectory can be explained by the relationship be-
tween the streamwise vibration at the natural frequency and its first harmonics to
the crossflow oscillation (Chapter 2.3.2). A power spectral density (PSD) analysis
showed an important contribution of the first frequency harmonic in the streamwise
direction. Specifically, the energetic value of the first harmonic was 83% of its main
frequency. Thus, the influence of the first harmonic contributes an eight-type tra-
jectory component to the expected elliptical-type. Despite the irregular trajectories,
the main oscillation frequency of the first two spatial POD modes was successfully
extracted across Ur. These results are summarised in Table 5.2. The dominant
streamwise frequency of the second spatial POD mode at Ur = 4.03 (fx/fnw = 1.68)
was approximately two times higher than its crossflow counterpart. This outlier
introduces an eight-type component to the overall cylinder trajectory. Still, its con-
tribution seems to be minor in comparison to the irregularity of the POD modes at
Ur = 4.03 (Figure 5.5). The main oscillation frequency of the cylinder fcy was de-
fined as the average between the main streamwise (fx) and crossflow (fy) oscillation
frequencies. Overall, fx ≈ fy throughout Ur, which is consistent with an elliptical-
type trajectory [52, 76]. fcy increased from 0.76 to 1.03 at higher Ur. The maximum
cylinder response was achieved when fcy ≈ fnw at Ur = 5.15.

5.3.2 Wake dynamics

The wake dynamics across Ur were characterised using one vertical and four horizon-
tal PIV planes at (x, y, z) = (x, y, [20, 34, 52, 60]D). The time-averaged streamwise
U and crossflow V velocity fields, as well as the root-mean-square (rms) of the fluctu-
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Figure 5.6: Velocity field at z = 60D and Ur = 7.5. Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure 5.7: Velocity deficit recovery (VDR) and wake width (WW) measured at #:
x = 5D. �: x = 8D. 4: x = 11D. a) VDR, z = 20D. b) WW, z = 20D. c)
VDR, z = 34D. d) WW, z = 34D. c) VDR, z = 52D. d) WW, z = 52D. c) VDR,
z = 60D. d) WW, z = 60D
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ating streamwise rms(u′) and crossflow rms(v′) velocities, were used to characterise
the wake behind the cylinder. As an example, the flow fields of these statistics are
shown in Figure 5.6 for Ur = 7.5 and z = 60D. The flow fields for the rest reduced
velocities and water depths are shown in Appendix C.1. Several parameters were
calculated to quantify the wake dynamics behind a bottom-fixed cylinder: recircula-
tion region (ReRe), velocity deficit recovery (VDR), wake width (WW), and vortex
strength. The recirculation region corresponds to the area of negative streamwise
velocity (U(x, 0, z) < 0) and is identified as the zero-cross point of U(x, 0, z) along
the wake centreline. The velocity deficit recovery corresponds to the percentage
between U(x, 0, z) along the wake centreline and the free-stream velocity. The wake
width is defined as the transverse distance of the wake where U reaches 90% of the
free-stream velocity. VDR and WW were calculated at x = [5, 8, 11]D. Lastly, an
indication of the vortex strength is given by the position (Lf) and magnitude (VS)
of the maximum rms(u′) along the wake centreline [3]. All these statistics were
normalised by their associated bulk velocity Uin. The results for Ur = 3.38 and
Ur = 4.03 are not presented here since they were similar to Ur = 4.5.

The recirculation region across Ur fluctuated between 1.9D and 2.5D at z = 20D.
A smaller ReRe between 0.8D and 1.9D was found at z = 34D. At a higher
water depth of z = 52D, ReRe increased up to ≈ 2.8D for Ur ≤ 4.03, and then
it could not be measured for higher flow velocities since U ≥ 0 along the wake
centreline. Likewise at z = 60D, no recirculation region could be measured across
Ur. The local linear-elastic motion along the cylinder span varies along the following
trend, Ax,y(z = 60D) ≥ ... ≥ Ax,y(z = 20D). Thus, these results suggest that
the recirculation region is affected and even disappears as the cylinder amplitude
increases above a certain threshold. The velocity deficit recovery and wake width
at different streamwise positions and water depths are shown in Figure 5.7. Figures
5.7a and 5.7b show a relatively constant WW and VDR despite the different cylinder
responses across Ur. The maximum amplitude in this region reached Ay ≈ 0.05D,
which seems to be low enough to not induce significant changes in the wake. At
higher z, VDR and WW departure from Figure 5.7a and 5.7b, showing a clear
influence of the cylinder response over the wake behaviour. VDR decreased at higher
body motions and at x = 5D compared to x = 11D. This reduction is explained by
an increment in the level of mixing (momentum transference) in the vortex region
enhanced by the higher cylinder responses. Considering the measurement region
x = 5D, VDR reached a minimum value at Ur = 5.15 (z = 34D) or Ur = 6.04

(z = [52, 60]D). This minimum occurred when the cylinder response reached the
two highest maximum crossflow amplitudes. On the other hand, the wake width
is maximal at Ur = 5.15 (z = 34D) or Ur = 6.04 (z = [52, 60]D), reaching a
value of 2.7D at z = 60D. It is interesting to notice that, at the highest water
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depth, VDR and WW reached their critical values after the cylinder achieved its
maximum response (Ur = 6.04). This particular case is related to changes in the
vortex shedding pattern and it will be explained in the next section.

5.3.3 Spanwise synchronisation region
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Figure 5.8: Normalised vortex shedding frequency at x = 4.8D

The spanwise vortex dynamics were analysed using the PIV vertical measure-
ments. The streamwise velocity was decomposed as u(x, y, z, t) = u′(x, y, z, t) +

U(x, y, z) (see Section 2.2) and a Power Spectra Density (PSD) analysis was per-
formed. The frequency of the highest PSD magnitude was extracted and filtered
through a moving median filter of size 10 data points. The results are summarised
in Figure 5.8, showing the vortex shedding frequency fsv at u′(4.8D, 0, z, t). A par-
ticular region was observed, starting from the bed surface and extending between
9D and 16D, where fsv < fcy. This region encloses the interaction between the
bed surface, the vertical velocity profile (Section 5.2.2), and the cylinder with a low
local maximum amplitude (Ay ≈ 0.05D). Measurements of the streamwise veloc-
ity in that region showed that U(4.8D, 0, z) ≈ Uin/2, which explains the observed
reduction in vortex shedding frequency. Figure 5.8a and 5.8b show that fsv ≈ fcy

at z > 16D. This result and Table 5.2 show that the maximum cylinder amplitude
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Figure 5.9: Lf and vortex strength (VS) at different water depths

is achieved when fvs ≈ fcy ≈ fnw and when this equivalence is preserved along the
cylinder span, i.e. when the spanwise synchronisation region is maximal. At higher
Ur, fsv increased between 1.2 and 1.3 at 9D 6 z 6 25D. Likewise, fsv increased
between 1.65 and 1.70 at 13D 6 z 6 59D for the maximum tested flow velocity.
As the desynchronised region extended towards the free-surface, Ay decreased 5.4%
and 39.7% for Ur = 6.04 and Ur = 7.5, respectively.

Figure 5.9 shows the vortex formation length Lf and vortex strength (VS) along
the wake centreline. Lf reached its lowest value across z at Ur = 4.5 and Ur =

5.15. Except for Ur = 7.5, Lf decreased at higher water depths. In contrast, VS
mostly reached its highest value at Ur = 4.5 and Ur = 5.15, where the spanwise
synchronisation was maximal. These results are in line with previous experimental
studies [3], indicating that higher body amplitudes lead to a stronger and smaller
vortex formation near the cylinder with a subsequent stronger vortex shedding. At
Ur = 6.04, Lf slightly increases from z = 20D (desynchronised region) to z = 34D

(synchronised region). Then, Lf restores its previous inverse relationship with z. At
the maximum flow rate condition, where only z ≥ 59D is synchronised, Lf fluctuates
between 2.2D and 2.5D with no clear trend. In contrast at Ur = 7.5, VS slowly
increased from 0.26 to 0.28 throughout the desynchronised region and then jumps
to 0.36 at z = 60D. A significant reduction in Lf and VS was observed at z = 60D

for Ur = 4.5. The rms(u′) along the wake centreline showed a double peak in its
vortex formation region, suggesting the confluence of two vortex shedding patterns.
Additional research is needed to analyse this particular case.

The observed desynchronisation process can be broadly explained from previous
experimental studies. One and two degree-of-freedom cylinder has been shown to
agree qualitatively well in terms of maximum amplitudes and vortex patterns when
the streamwise motion is low [21, 41]. Moreover, the synchronisation range, depen-
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Figure 5.10: rms(u′)/Uin field at z = 60D. a) Ur = 5.15. b) Ur = 6.04

dent on the cylinder-fluid acceleration timing, increases with the cylinder amplitude
[112]. The bottom-fixed cylinder had a dominant crossflow response throughout
Ur, which makes it largely responsible for the range of Ur in which synchronisation
occurs. As Ur increases and the cylinder motion is significant, the synchronisation
region along the span of the cylinder is maximal, and the vortex shedding frequency
is locked-in to the cylinder oscillation frequency. This relationship is preserved up
to fcy = fnw, where the maximum cylinder amplitude is achieved. At further incre-
ments of Ur, the cylinder displacement near its fixed end cannot reach the needed
increment in acceleration to sustain a synchronised condition, and desynchronisa-
tion occurs. As a consequence, the vortex region strength along the cylinder span
decreases with a subsequent reduction in body motion. This desynchronisation pro-
cess, reduction in vortex strength and body motion, is systematically enhanced as
the desynchronised region develops towards the water surface.

Figure 5.10 shows the rms(u′) fields at z = 60D. Following the contour dis-
tribution in [29], Figure 5.10a and 5.10b correspond to a 2S and 2P vortex mode,
respectively. This change in vortex mode seems to be responsible for the maximum
values of VDR and WW observed at Ur = 6.04 and z = 60D. A dual 2S-2P vortex-
mode configuration is observed at Ur = 5.15 and Ur = 6.04, changing the contour
distribution from a 2S mode at z = [20, 34, 52]D (2S) to a 2P pattern at z = 60D

(see Appendix C.1). In-depth analysis using statistical techniques (e.g. POD) could
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uncover large-scale coherent patterns from these velocity fields [84].

5.4 Conclusions

This chapter analyses the spanwise vortex dynamics and structural response of a
bottom-fixed cylinder subjected to a range of open-channel flows. A PIV system
and three synchronised cameras were used to capture the wake region and the cylin-
der free end response. Important experiences and knowledge in the LaVision PIV
system were acquired. Firstly, the image resolution and acquisition frequency of one
MX 4M camera was high enough to capture the wake by increasing the camera-
object distance instead of adding an additional camera. Secondly, the Lucas-kanade
technique with the Forward-backward tracking failure algorithm successfully esti-
mated the cylinder position at all tested flow velocities. Thirdly, the data analysis
allowed to study the interaction between the spanwise wake dynamics and the struc-
tural response. These techniques were used in Chapter 6 for the pivoted cylinder
experiment.

The results of the bottom-fixed cylinder showed a highly modulated cylinder
response across tested flow velocities. Coherent trajectory patterns from these re-
sponses were successfully extracted using the Proper Orthogonal Decomposition
technique. Irregular trajectory patterns were observed for Ur < 5, whereas a clock-
wise elliptical-type trajectory was identified for Ur ≥ 5. A combination between
an eight-type and an elliptical-type trajectory was observed at the maximum flow
velocity. This characteristic pattern was explained by the energetic relationship be-
tween the main streamwise frequency of its second spatial POD mode and its first
harmonic. The spanwise wake dynamics showed that the maximum response was
achieved when the cylinder motion and vortex shedding frequencies coincide (i.e.
lock-in or synchronisation) to the natural frequency measured in still water, and
when this equivalence is maintained along the cylinder span. As the flow velocity
increased, the local response of the bottom-fixed cylinder near its fixed-end could not
sustain the required increment in acceleration to maintain synchronisation. Thus,
the vortex strength decreased along the cylinder span with a subsequent reduction
in the maximum amplitude. This process was enhanced as the desynchronisation
region extended towards the water surface. Changes in the wake dynamics showed
a transition from a 2S-2P dual-mode configuration at the highest cylinder response
to a predominant 2S mode at the highest tested flow velocity.



Chapter 6

VIV on pivoted cylinder

6.1 Introduction

The case of a pivoted cylinder undergoing VIV is an interesting problem on its own.
The pivoted configuration can have the same structural parameters in the streamwise
and crossflow direction. Moreover, its structural components can be easily adjusted
to increase or reduce its dynamic properties, such as natural frequency and damping
ratio. One particular characteristic of the pivoted configuration is its linear variable
amplitude along its span, which promotes structural responses dependant on the
three-dimensional body-wake interaction. This chapter analyses the wake dynamics
and structural response of a pivoted cylinder subjected to a range of open-channel
flows. The wake was analysed by measuring one vertical (xz-axis) plane across the
cylinder centreline and two horizontal (xy-axis) planes at different water depths.
Several statistics were calculated to characterise the spanwise wake dynamics as the
cylinder reaches its maximum amplitude. The experimental conditions were used as
input for the two-dimensional RANS model developed in Chapter 7.

Some of the techniques applied in this Chapter has been published in interna-
tional conferences [64].

6.2 Experimental setup

6.2.1 Instrumentation and measurements

The experimental setup in Figure 6.1 consists of a recirculating water channel, a
pivoted cylinder made of acrylic, and the laser-based LaVision PIV system. The de-
tails of each equipment were described in Chapter 3. The flume maintained a fixed
longitudinal slope of 0.001 m/m and a water depth Hw = 255 mm throughout the
experiments. The pivoted configuration of diameter D = 20 mm and length L = 310

mm was placed 10.5 m downstream from the flume’s entrance. Additional informa-

73
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Figure 6.1: Experimental setup. Coordinate system: streamwise (x-axis) and cross-
flow (y-axis) directions. The spanwise (z-axis) direction lies along the span of the
cylinder at rest. a) Side view. b) Three-dimensional view with a horizontal PIV
measurement

Bulk velocity (cm/s) Re Ur water slope (m/m)

9.68 1937 2.95 -0.00019
12.34 2469 3.76 -0.00096
14.93 2986 4.55 -0.00188
17.11 3421 5.21 -0.00279
19.69 3938 6.00 -0.00404
21.94 4390 6.69 -0.00526
24.44 4890 7.42 -0.00678
27.19 5439 8.29 -0.00863

Table 6.1: Relevant hydraulic parameters of the experimental conditions. Water
depthHw = 347mm fixed at the measurement zone (10.5 m from the inlet). Flume’s
slope fixed at 0.001 m/m

tion on the cylinder mounting process and behaviour can be found in Chapters 3.2.2
and 3.4.3. Overall, the two degree-of-freedom pivoted cylinder had an aspect ratio
(length-to-diameter) equal to 15.5, mass ratio m∗ = 1.5, inertia ratio I∗ = 1.82, and
a blockage ratio of 24.3 (blockage ratio effects were discussed in Chapter 3.5).

The PIV system used a single MX 4M camera to record the wake behind the vi-
brating cylinder. Simultaneously and synchronised, another MX 4M camera recorded
the cylinder free end response. Each recording was taken at 80 Hz for 90 seconds.
The measurements were taken under increasing velocity conditions (Chapter 3.3.1),
from Ur = 2.95 up to Ur = 8.29. Other relevant hydraulic parameters are sum-
marised in Table 6.1. The flume and water slope differed at different flow velocities
as expected from gradually varied open-channel flows (Chapter 3.5). A negative



CHAPTER 6. VIV ON PIVOTED CYLINDER 75

water slope indicates a systematic decrement of the water depth as the flow moves
downstream. Still, the experiments were performed at the same location (10.5 me-
tres downstream of the inlet) and the water depth was fixed at the measurement
zone. Thus, the cylinder is subjected to the same inflow condition on average as
long as the flow rate remains constant. The wake was characterised by measur-
ing one vertical plane across the cylinder centreline and two horizontal planes at
(x, y, z) = (x, y, [10, 60]D). The velocity field was obtained using a multi-pass cross-
correlation approach. An initial interrogation window of 64x64 pixels with two
passes, followed by a 32x32 pixels window with four passes was used. The Universal
Outlier detection [108] algorithm was used to remove vectors with small correlation
value and replace them using a 5x5 pixel smoothing window. The overlap was set
to 87.5% between interrogation windows, leaving a maximum spatial resolution of
0.54 mm for the horizontal PIV planes and 0.56 mm for the vertical PIV plane.
The cylinder response images were calibrated and its motion estimated following
the procedure described in Chapters 3.3.2 and 3.3.4. Details of the image-based
tracking technique can be found in Appendix A.

A free decay test (Chapter 3.4.1) was performed using a video camera with eight
MegaPixel image resolution and 30 Hz acquisition frequency. This new camera did
not required cables and was easier to mount compared to the one used in Chapter
5. A frequency analysis showed that fna = 1.88 Hz and fnw = 1.64 Hz on the
first structural mode. A decaying exponential curve fit on the cylinder response
showed that ζ was approximately 0.39% in air and 0.64% in water. These dynamic
parameters were not affected by the direction of the unidimensional displacement.
The free decay test was repeated after all the experiments were completed without
degradation of the cylinder dynamic properties. Thus, a linear-elastic response was
assumed.

6.2.2 Inflow characterisation

A broad characterisation of open-channel flows in the context of this research project
was provided in Chapter 3.5. Figure 5.2 shows the time-averaged velocity profile of
the free stream flow. Dashed lines indicate the bulk velocity Uin (flow rate divided by
the flow cross-sectional area). The velocity profile resembles a parabolic distribution
as expected from open-channel flows. Approximately 90% of the average incoming
reduced velocity was achieved at z = 2.2D for the minimum reduced velocity and
decreased to z = 1.8D at the maximum tested velocity. Considering the z = 2.2D

case, the flume’s frictional resistance reduced the mean velocity profile over the
lowest 16.7% water depth region. This interaction has a direct impact on the wake
dynamics of that region, as shown in Section 6.3.3. Still, a small influence on the
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Figure 6.2: Time-averaged velocity profile measured at the flume’s centreline. #:
Ur = 3.76. 4: Ur = 5.21. �: Ur = 6.69. ∗: Ur = 8.29. Dashed lines: bulk velocity

cylinder response is expected due to the low forcing moment of that region on the
cylinder fixed end. The maximum difference between the bulk velocity and the
mean velocity at the measurement zone was 3.8%. Since the mean velocity of the
vertical velocity profile varied as a function of z, the bulk velocity was used as a
normalisation parameter.

6.3 Results

6.3.1 Cylinder response

Figure 6.3 summarises the cylinder response across tested Ur. Adding the mean
streamwise displacement (Figure 6.3a) with its associated amplitude (Figure 6.3b),
the cylinder achieves a maximum streamwise position of 2.1D and an associated
inclination angle of 7.8◦. The maximum streamwise amplitude initially decreased
at higher Ur. Then, Ax rapidly grew to 0.4D at Ur = 5.21. This rapid increment
slowed down throughout 5.21 ≤ Ur ≤ 7.42, where Ax reached a maximum value
of 0.44D at Ur = 7.42. At the maximum tested flow velocity, Ax significantly
decreased from its maximum value to 0.27D. Figure 6.3c shows an increment of the
maximum crossflow amplitude alongside the reduced velocity, changing its slope at
Ur = 3.76 and Ur = 5.21, and reaching a maximum value of 2.1D at Ur = 7.42. At
the maximum tested flow velocity, Ay slightly decreased from its maximum value
to 2D. The critical mass ratio for pivoted cylinder undergoing VIV is 0.5 [30].
Since this value is lower than the experimental m∗, further reductions in oscillation
amplitudes are expected beyond the maximum tested Ur. The cylinder showed
a dominant crossflow response throughout Ur. The ratio Ay/Ax ranged between
3.7 and 4.7 within 5.21 ≤ Ur ≤ 7.42, which later will be identified as the upper
branch. Figures 6.3d and 6.3e shows the oscillation frequency associated with the
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Figure 6.3: Cylinder response at 2.5 × 103 ≤ Re ≤ 5.8 × 103. a) Mean streamwise
position. Maximum streamwise (b) and crossflow (c) amplitude. Error bars rep-
resent one standard deviation around the maximum displacement. Streamwise (d)
and crossflow (e) normalised oscillation frequency. Diagonal dashed line represents
the vortex shedding frequency of a fixed cylinder (St = 0.2)

crossflow and streamwise motion, respectively. fcx ≈ 2fcy, except at Ur = 3.76,
where fcx ≈ 1.7fcy. The crossflow oscillation frequency deviated from the vortex
shedding frequency of a fixed cylinder at Ur ≥ 4.55, indicating the beginning of the
vortex-cylinder synchronisation. fcy steadily increased from 0.73fnw (Ur = 4.55),
crossing fnw between Ur = 6.69 and Ur = 7.42, and reaching a maximum value
of 1.17fnw at the highest reduced velocity. The maximum cylinder amplitude was
achieved when fcy = 1.03fnw, which is consistent with previous low mass-damping
two degree-of-freedom cylinders [41].

Four response branches were identified in Figure 6.4 by changing the x-axis of
the maximum streamwise amplitude from Ur to U∗

r = Ur(fnw/fcy) [41]. Firstly, a
response branch at U∗

r = 5, characterised by an eight-type trajectory and a sig-
nificant streamwise amplitude equal to half its crossflow counterpart (Figure 6.5a).
Secondly, an initial branch between 5.14 ≤ U∗

r ≤ 6.35, where the cylinder amplitude
rapidly increased per Ur. Thirdly, an upper branch between 5.14 < U∗

r ≤ 7.21, with
a slow growth of the cylinder amplitude per U∗

r and an overall maximum response
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Figure 6.4: Response branch identification by changing the normalisation parameter
from Ur (a) to U∗

r = Ur(fnw/fcy) (b)

at U∗
r = 7.21. Finally, a branch transition seems to take place at U∗

r = 7.1. This
transition was marked by a significant change in the streamwise response, from a
roughly regular to a beating-like motion with a significantly lower amplitude (see
magnitude and error bars in Figure 6.3b). On the other hand, the crossflow response
maintained most of its sinusoidal nature and amplitude throughout this transition.

Figure 6.5 shows the cylinder trajectory at each tested reduced velocity. A
motion history that included at least 40 cycles of motion in the crossflow direction
(double in the streamwise direction) was plotted against its best first-order sinusoidal
fit as

x = Axsin(2πfcx + φxy) (6.1)

y = Aysin(2πfcy) (6.2)

where φxy is the phase angle between the streamwise and crossflow motion. The
shape of the trajectory depends on φxy and the frequency ratio fcx/fcy, which indi-
cates the level of structural coupling between the streamwise and crossflow motion
[51, 52]. If fcx/fcy = 2, such as the tested pivoted cylinder, the trajectory shape
vary from an eight-type at φxy = 0 to a crescent-type at φxy = 0.5π. If fcx/fcy = 1,
such as the bottom-fixed cylinder in Chapter 5, the trajectory shape will be ellipti-
cal with different inclinations. As a first approximation, Figure 6.5 shows that Eq.
6.1 and 6.2 captured the main features of the cylinder motion except at Ur = 3.76,
where the oscillations became irregular, and Ur = 8.29, where the streamwise motion
became highly modulated. The phase angle of the cylinder motion started with a
value close to zero (φxy = −0.075π) at Ur = 2.95, decreased up to −0.4π within
the initial branch, and maintained a value of −0.45π throughout the upper branch.
Finally, the best sinusoidal fit for the modulated response at Ur = 8.29 indicates an



CHAPTER 6. VIV ON PIVOTED CYLINDER 79

−0.5 0 0.5

−2

0

2

x/D

y
/D

(a) Ur = 2.95. φxy = −0.075π

−0.5 0 0.5

−2

0

2

x/D

y
/D

(b) Ur = 3.76. φxy = −

−0.5 0 0.5

−2

0

2

x/D

y
/D

(c) Ur = 4.55. φxy = −0.35π

−0.5 0 0.5

−2

0

2

x/D

y
/D

(d) Ur = 5.21. φxy = −0.4π

−0.5 0 0.5

−2

0

2

x/D

y
/D

(e) Ur = 6. φxy = −0.45π

−0.5 0 0.5

−2

0

2

x/D

y/
D

(f) Ur = 6.69. φxy = −0.45π

−0.5 0 0.5

−2

0

2

x/D

y/
D

(g) Ur = 7.42. φxy = −0.45π

−0.5 0 0.5

−2

0

2

x/D

y/
D

(h) Ur = 8.29. φxy = −0.3π
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Experiment Mounting DOF L/D I∗ξ Ur(θm) θm Ay

Balasubramanian et al. [2] top/pinned 1 10.5 0.415 5.3 0.035 0.37
Dong et al. [17] bottom/fixed 1 50.4 0.054 5.4 0.019 0.95

Flemming and Williamson [21] top/fixed 2 31 0.031 8.2 0.049 1.53
2.68 0.080 6.5 0.032 1
7.69 0.231 7.8 0.029 0.9

Voorhees et al. [103] bottom/fixed 1 55.5 0.050 5.4 0.017 0.95
Leong and Wei* [57] bottom/fixed 2 43 0.030 6.3 0.047 2
Kheirkhah et al [51] bottom/pined 2 64.6 0.501 5.9 0.018 1.15

Johnstone and Stappenbelt [42] top/pinned 1 18.6 0.004 7.8 0.042 1.55
Marble et al. [62] bottom/pinned 2 64.4 0.739 6.1 0.016 1.03

Present work bottom/fixed 2 15.5 0.007 7.4 0.135 2.1

Table 6.2: Compilation of previous pivoted cylinder studies. Top/bottom: cylinder
orientation with its tip pointing towards the ceiling (bottom) or the flume’s bed
(top). Fixed/pinned: connection with no rotation and displacement (fixed) or no
displacement (pinned). DOF: degree-of-freedom. Ur(θm): reduced velocity associ-
ated to the maximum deflection angle θ (rad). *Ax was 28% higher than Ay

increment in the phase angle to −0.3π.
Table 6.2 compared the experimental results to previous pivoted cylinder studies.

The reported maximum amplitude (Ay) and its corresponding inclination angle θ

were added to account for different structural dimensions [51]. The inclination angle
was calculated as θ ≈ tan−1(Ay/L), valid for small deflection angles. A consequence
of this approximation was the exclusion of cylinders with large inclination angles
(e.g., [27]). The Reynolds numbers from most studies was within O(103) with a
maximum Re = 2×104 [42]. There is a general inverse relationship between I∗ζ and
θ (see also [21]). This relationship is more apparent when one and two degree-of-
freedom cases are grouped separately. Another important distinction is the reduced
velocity associated with the maximum deflection angle, which occurs mostly between
5 ≤ Ur ≤ 6 for one degree-of-freedom cylinders (except [42]) and 5.9 ≤ Ur ≤
8.2 for two degree-of-freedom cylinders. The tested pivoted cylinder achieved a
maximum displacement comparable to [57], although the associated θ is significantly
higher than previous pivoted cylinders. This difference can be explained by the
lower experimental I∗ζ (specifically lower ζ) and cylinder length, where this last
parameter has a direct impact on the maximum deflection angle. The maximum
response occurs at Ur = 7.4, which is within the previously described range for
two degree-of-freedom pivoted cylinders. It is important to mention that differences
in cylinder configuration, partially or fully submerge conditions, Reynolds number,
aspect ratio, damping ratios that varied as a function of θ (e.g., [42, 62]), among
others parameters, explains the diverse range of responses compiled in Table 6.2.

Overall, the experimental results show an interesting range of high-amplitude
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responses, comparable to the case of a two degree-of-freedom pivoted cylinder with
high crossflow amplitudes of 2D [57]. Unlike the bottom-fixed cylinder of Chapter
5, the observed high streamwise amplitudes are expected to have a critical role in
the fluid-structure interaction.

6.3.2 Wake dynamics

Wake dynamics at (x, y, z = [6, 10]D) were analysed in terms of time-averaged and
root-mean-square (rms) statistics, as in Chapter 5. The flow fields of these statistics
are shown in Figure 6.6 at at z = 6D and Ur = 7.4. The flow fields for the rest
reduced velocities and water depths are shown in Appendix C.2. The wake was
characterised using four statistics (definition in Chapter 5.3.2): recirculation region
(ReRe), velocity deficit recovery (VDR), wake width (WW), and vortex length and
strength (VS). All values were normalised by their bulk velocity Uin. VDR and WW
were calculated at x = [3, 6, 8]D downstream the cylinder pivot point.

The recirculation region ranged between 0.3D and 0.5D at z = 6D. This range
increased from 1D to 2D for the higher horizontal measurement plane (z = 10D).
These results were measured for Ur ≤ 5.21. On the other hand, ReRe could not be
measured at higher flow velocities since U > 0 along the wake centreline. The signif-
icant reduction and even disappearance of the recirculation region reflects a drastic
change in the vortex shedding process as the cylinder reaches a certain amplitude
threshold. This threshold was reached when the cylinder entered the upper branch.
Previous studies have also observed the disappearance of ReRe at certain vibrating
amplitudes [39] and in the upper branch [84]. Figure 6.7 summarises the velocity
deficit recovery and wake width at different streamwise positions and water depths.
VDR decreased closer to the cylinder rest position and towards the water surface.
Considering the measurement distance x = 5D, the minimum VDR was reached at
the beginning of the upper branch, with values of 32.6% and 6.7% at z = 6D and
z = 10D, respectively. Then, VDR increased within the upper branch to 43.3%

(z = 6D) and 34.4% (z = 10.1D) at Ur = 7.89. Due to the pivoted configuration
of the vibrating structure, Ax,y(z = 6D) ≥ ... ≥ Ax,y(z = 10D). Thus, increments
in the cylinder response could be associated with higher momentum transference
(flow mixing) in the wake region. The wake width increased downstream the cylin-
der rest position as the wake loses strength and diffuses. WW increased up to a
maximum value of 3.6D (z = 6D) and 5.9D (z = 10D) when the cylinder reached
its maximum amplitude (Ur = 7.4). Under the same inflow conditions and cylinder
responses, the ratio WW(z = 10D)/WW(z = 6D) relates the wake width increment
in the spanwise direction with the linear response variation of the pivoted cylin-
der. As expected, this ratio collapsed well at different downstream measurements.
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Figure 6.6: Velocity field at z = 6D and Ur = 7.4. Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure 6.7: Velocity deficit recovery (VDR) and wake width (WW) measured at
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WW(z = 10D)/WW(z = 6D) ranged between 1.05 and 1.16 for Ur ≤ 4.55 and
significantly increased to an average value of 1.55 within the upper branch. Thus,
changes in the cylinder amplitude are not proportional to the observed spanwise
variability of the wake width.

6.3.3 Spanwise synchronisation region

Figure 6.8 shows Lf and VS at different water depths and Ur. The behaviour of the
vortex formation length was similar for both measurement planes. Lf started at a
maximum value of 1.5D (z = 6D) and 2D (z = 10D), systematically decreasing up
to the beginning of the upper branch. Then, the vortex formation length stabilised
around 0.15D (z = 6D) and 0.34D (z = 10D) at higher Ur. On the other hand,
the vortex strength maintained a relatively stable value of 0.45 at Ur ≤ 5.21 and
increased within the upper branch with a higher magnitude at z = 10D compared
to z = 6D. As explained in Chapter 5, higher cylinder motions lead to a stronger
and smaller vortex formation with a subsequent stronger vortex shedding [3]. At
the maximum Ur, VS decreased at z = 10D while it increased at z = 6D. As it will
be shown later, this result indicates a significant change in the wake dynamics near
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the z = 10D region as the cylinder goes through its branch transition.
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Figure 6.9: Normalised vortex shedding frequency measured at x = 3.5D. Dashed
lines of 1.5D length extends the last measured point to the free-surface

Changes in the vortex shedding frequency along the cylinder span were analysed
using vertical PIV measurements along the cylinder centreline. Inflow velocities
within the initial branch (Ur = 4.55), upper branch (Ur = 6 and Ur = 7.42), and
branch transition (Ur = 8.29) were considered. A PSD analysis was applied to the
fluctuating streamwise velocity at different downstream distances from the pivot
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point, u′(x = [3, 3.5, 4, 5]D, 0, z, t). The frequency of the highest PSD magnitude
was extracted and filtered through a moving median filter of size 10 data points.
Figure 6.9 shows the vortex shedding frequency at x = 3.5D, which resulted in the
most stable peak frequency results. Significant differences with the bottom-fixed
cylinder (Chapter 5) were observed across inflow velocities. One similarity is the
region near the bed surface where fvs < fcy. This region varied from 2.9D at the
beginning of the upper branch to 1.9D at the highest cylinder response and it shows
the complex interaction between the bed surface, the incoming flow velocity, and
the cylinder (see Chapter 5.3.3). At Ur = 4.55, the vortex shedding frequency varied
around the cylinder crossflow frequency throughout most of the cylinder span. Two
frequency jumps, where fvs = 2fcy = fcx, were observed at z ≈ [5.8D, 6.4D]. A
similar trend was observed at Ur = 6, with a single fvs = fcx region of 0.7D length.
When the cylinder reached its highest amplitude (Ur = 7.42), fvs was locked-in to fcy

throughout most of the cylinder length. Still, there was one fvs = fcx region of 0.57D
length that persisted at the maximum cylinder response. At the highest tested inflow
velocity, fvs deviated from its previous relationships, ranging between 1.96fcy and
2.37fcy at z ≥ 6.4D. The variability of fsv around fcy was systematically reduced
as the cylinder reached its maximum amplitude. It is not clear if the confluence
between fcx and fcy over fvs explains the observed frequency variability along the
cylinder span.

As described before, fcx seems to lead fvs in specific spanwise regions. This
influence persist even at the highest amplitudes, where fsv = fcy is maximal along
the cylinder span. These dominant streamwise frequency regions indicate a higher
energetic contribution of the streamwise response over its crossflow counterpart.
Different parameters, such as non-linear variation of the spanwise wake dynamics,
non-uniform velocity profiles and spanwise flow motions [103], enhance flow three-
dimensionality and can reduce (increase) the energetic contribution of the crossflow
(streamwise) response, triggering the observed dominant streamwise frequency re-
gions. Although it is not possible to determine the individual contribution of fcx on
the vortex shedding process, these results and the observed high streamwise ampli-
tude described in Section 6.3.1 shows the importance of the streamwise response on
the fluid-structure interaction process. Similar to the bottom-fixed cylinder in Chap-
ter 5, the pivoted cylinder achieved its maximum amplitude when fvs ≈ fcy ≈ fnw,
and when this equivalence was preserved along its span, i.e. when the spanwise
synchronisation region was maximal. Nevertheless, the desynchronisation process
seems to start at the water surface and progresses towards the bed surface, as op-
posed to the bottom-up desynchronisation of the bottom-fixed cylinder. After the
pivoted cylinder achieved its maximum amplitude, the streamwise response transi-
tioned from roughly regular to a beating-like motion with a lower amplitude. On
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Figure 6.10: rms(u′)/Uin field at z = 10D. a) Ur = 2.95. b) Ur = 6

the other hand, the crossflow response maintained most of its sinusoidal nature and
amplitude. Thus, the cylinder-wake synchronisation process seems to be affected
by an increment in streamwise response modulation. Due to the linear amplitude
variation of the pivoted cylinder, regions near the water surface (higher structural
responses) are more affected by this increment in streamwise modulation, poten-
tially triggering a desynchronised region. However, the cylinder-wake interaction
seems strong enough to overcome the irregular streamwise motion at lower water
depths (lower cylinder response), and synchronisation is maintained. Additional
information at higher flow velocities is required to analyse this particular behaviour.

Vortex pattern identification from flow field statistics, as in Section 5.3.3, was
not possible due to the observed high streamwise amplitude and its influence in
complex vortex modes, such as 2T [41] or 2C [21]. Still, regions with complex vortex
patterns can be differentiated from the commonly observed 2S mode by comparing
the contour distribution of previous experimental studies [29]. Figure 6.10a shows
a typical rms(u′) flow field of the 2S mode found at Ur = 2.95, while Figure 6.10b
shows a complex distribution at Ur = 6. The 2S mode was observed for Ur ≤ 4.55

(z = 6D) and Ur ≤ 3.76 (z = 10D), showing a longer pattern presence as the
local cylinder amplitude decreases. Moreover, these results implies the presence of
a spanwise hybrid mode at Ur = 4.5 (see Appendix C.2). Complex vortex patterns
are expected at higher Ur, from which different statistical techniques (e.g. POD)



CHAPTER 6. VIV ON PIVOTED CYLINDER 87

can be used to uncover large-scale features from their respective velocity fields.

6.4 Conclusions

This chapter analyses the spanwise wake dynamics and structural response of a piv-
oted cylinder subjected to a range of open-channel flows. Planar PIV measurements
and two synchronised cameras were used to capture the wake region and the cylin-
der free end response. The maximum cylinder amplitude at different flow velocities
showed three characteristic regions: a high streamwise, initial, and upper branch.
Only a transition to, what seems to be, the lower branch could be captured due to
limitations on the maximum flow velocity. The cylinder achieved a maximum re-
sponse within the upper branch of 0.44D and 2.1D in the streamwise and crossflow
direction, respectively. A first-order sinusoidal function with a phase angle between
directions can approximate the main features of the cylinder motion. The trajectory
shape varied from an eight-type at the minimum tested flow velocity to a crescent-
type at higher Ur. The wake dynamics at z = 10D had a bigger recirculation region,
higher momentum transference, broader wake width, and higher vortex strength in
the upper branch compared to z = 6D. Moreover, the rms(u′) flow fields showed
changes in vortex patterns along cylinder span and throughout different flow veloci-
ties. These differences in the spanwise wake dynamics can not be fully explained by
the linear variability of the cylinder response along its span. Other influential fac-
tors, such as spanwise vortex correlation, free-surface effects, among others, could
play a significant role in the wake dynamics between z = 6D and z = 10D. An
analysis of the vortex shedding frequency along the cylinder span showed a complex
behaviour with significant differences from the bottom-fixed cylinder in Chapter 5.
The streamwise oscillation frequency dominated the vortex shedding frequency in
specific spanwise regions throughout the upper branch. Moreover, the desynchro-
nisation process started at the water surface and seemed to progress towards the
flume’s bed. Nevertheless, similar to the bottom-fixed cylinder case, the maximum
response was achieved when the cylinder motion and vortex shedding frequencies
are equal (i.e. lock-in or synchronisation) to the natural frequency measured in still
water, and when this equivalence is maintained along the cylinder span.

The maximal spanwise synchronisation at the highest cylinder response supports
the use of two-dimensional RANS models, from which a complete spanwise synchro-
nisation is assumed. Nevertheless, there are important variations in the spanwise
wake dynamics that are not uniquely explained by the difference in local motion
of the pivoted configuration. These differences can not be directly reproduced by
a two-dimensional model, complicating its predicting capabilities at high-amplitude
responses. Moreover, it is not clear if the two-dimensional model can capture the
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cylinder’s motion variability beyond a first-order sinusoidal fit. These hypothesis
are tested in Chapter 7, where a two-dimensional RANS model is built using the
structural characteristics of the pivoted configuration.



Chapter 7

Numerical model: Pivoted
cylinder

7.1 Introduction

Vortex-induced vibration is a complex phenomenon that imposes significant chal-
lenges to its numerical simulation. An attractive alternative commonly used in
research and industry are two-dimensional numerical representations of the inher-
ently three-dimensional VIV. Recent numerical studies based on two-dimensional
RANS models have successfully extracted the main features of cylinders undergoing
VIV with high-amplitude responses and above the laminar vortex shedding regime.
These results encourage using these numerical models on complex configurations,
such as pivoted cylinders, characterised by its linear amplitude variation along its
span. This chapter analyses the capabilities and accuracy of two-dimensional RANS
models to simulate the response of a pivoted cylinder subjected to VIV. The inflow
and structural characteristics of the experimental pivoted cylinder in Chapter 6 were
used as input for the numerical model. The SST k − ω turbulence model with the
Runge-Kutta fourth-order algorithm were implemented in Ansys Fluent, alongside
a User Defined Function to account for the fluid-structure coupling mechanism. The
numerical model was first validated by simulating a low mass-damping two degree-
of-freedom cylinder [41]. Then, the influence of the inflow conditions that trigger
the experimental upper branch was analysed. These inflow conditions were critical
to ensuring a high-response state in the simulations. Finally, the numerical model
of the pivoted cylinder was compared to its experimental counterpart in terms of
displacements and oscillation frequencies.

89
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7.2 Numerical model

7.2.1 Numerical set-up

The RANS equations were solved with the SST k − ω turbulence model. The
numerical model used the following spatial and time discretisation schemes: Second-
order implicit for temporal discretisation, Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) for pressure and velocity coupling, Body Force Weighted for
pressure, Quadratic Upwind Interpolation for Convection (QUICK) for momentum,
first upwind scheme for the dissipation rate, and second upwind scheme for kinetic
energy. Convergence was achieved when the residuals of all flow parameters reached
1× 10−5. These parameters were selected based on previous studies [35, 45, 105].

A staggered approach with dynamic mesh deformation was used for the coupling
mechanism (Section 4.4). The RANS equations with the SST k−ω turbulence model
were iteratively solved until converge was achieved. Then, the total pressure and
viscous forces on the cylinder were extracted using a User Defined Function. The
equation of motion of an elastically mounted or pivoted cylinder was solved using
the Runge-Kutta fourth-order method. As the cylinder updates its position, the
nearby mesh adapts accordingly, following a diffusion-based smoothing scheme.

7.2.2 Computational domain and mesh
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Figure 7.1: Computational domain of the numerical model. Flow velocity from left
to right

Figure 7.1 show the mesh domain of 40D width and 70D length. The chosen
width had negligible effects on the cylinder response [116]. The origin of the coor-
dinate system was located at the cylinder centreline. The flow enters from the inlet
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(a) (b)

Figure 7.2: Mesh configuration scheme. a) Mesh domain. b) Mesh around the
cylinder

at 20D upstream the cylinder and exits from the outlet located at 70D downstream
the origin. The mesh domain was divided into three regions, as shown in Figure
7.2. Firstly, a dense O-grid around the cylinder extending 4D from the origin. This
region moves with the cylinder preserving its shape. Secondly, a square-shaped grid
of quadrilateral elements. This region absorbs the cylinder motion by deforming its
mesh elements. Thirdly, a stationary region. The upper and lower walls were set
to free-slip boundaries, while the no-slip condition was used at the cylinder surface.
The inflow had a time-dependent streamwise velocity. The outflow boundary had a
reference pressure equal to zero.

7.3 Preparation and validation

This section analyses the simulation of a low mass-damping two degree-of-freedom
cylinder using the numerical parameters described previously and the equations of
motion described in Section 4.3.1. Several reasons are given for the modelling of Jau-
vtis and Williamson’s cylinder [41]. Firstly, the experimental study shares several
similarities with the tested pivoted cylinder of Chapter 6, such as low mass-damping
ratio, two degree-of-freedom, streamwise amplitudes of 0.3D, and maximum cross-
flow amplitude of 1.5D. Secondly, the performance and accuracy of the numerical
model can be compared against previous state-of-the-art studies. Thirdly, as de-
scribed in Section 2.4, high-responses in low mass-damping cylinders are triggered
under specific inflow conditions. Thus, it is critical to determine these conditions to
ensure that the numerical model reaches high-amplitude responses.
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7.3.1 Experimental parameters

A two degree-of-freedom elastically mounted cylinder was subjected to a range of
Reynolds number between 1.4×103 ≤ Re ≤ 1×104. The main structural parameters
are: D = 38.1 mm, fnw = 0.4 Hz, m∗ = 2.6, and ξ = 0.00361 [41].

7.3.2 Mesh independence

Case Ne Nc NL gr Hy+ CD rms(CD) rms(CL) Ax Ay fc/fnw

M1 16704 120 56 1.11 0.00067D 2.57 1.10 1.85 0.18 1.02 0.90
M2 25953 160 62 1.1 0.00053D 2.42 1.16 1.80 0.19 1.01 0.92
M3 39100 200 70 1.1 0.00053D 2.27 1.10 1.77 0.18 1.00 0.92
M4 57324 240 92 1.07 0.00039D 2.34 1.09 1.72 0.18 1.01. 0.92

Num. (1) 226800 160 - - - 1.91 1.52 1.2 0.17 1.07 0.87
Num. (2) 42761 200 - - 0.003D 2.42 1.14 1.71 0.15 1.14 0.93

Exp. - - - - - 2.53 1.07 2.18 0.21 1.07 0.9

Table 7.1: Mesh independence analysis. Num. (1): [35], Num. (2): [105]. Exp: [41]

A mesh independence analysis was performed at Ur = 6, which is a stable region
within the experimental upper branch [45]. The mesh resolution was controlled by
the total number of mesh elements Ne, the number of elements around the cylinder
Nc, the number of layers NL and growth rate gr in the radial direction within the
O-grid zone, and the height of the first element around the cylinder Hy+ . The time
step was ∆t = 0.0015 s, ensuring a CFL number of less than one. The inflow velocity
started at Ur = 2 and was slowly increased for 50 seconds until Ur = 6 was reached.
The simulation continued until at least 20 cycles of stable oscillations were obtained.
The following statistics were used for comparison: mean drag coefficient CD, root-
mean-square of the drag rms(CD) and lift rms(CL) coefficient, maximum amplitude
in the streamwise Ax and crossflow Ay direction, and oscillation frequency in the
crossflow direction. The results are summarised in Table 7.1. Previous numerical re-
sults are also added for comparison [35, 105]. The highest variability between tested
cases was observed in the force coefficient statistics with a difference of 13.2%, 6.4%,
and 7.6% for CD, rms(CD), and rms(CL), respectively. Despite these differences, the
cylinder amplitude and oscillation frequency had an excellent agreement across sim-
ulations. The streamwise amplitude was 10.5% lower than the experimental results
despite having an excellent agreement in terms of their associated force statistics.
Likewise, the crossflow amplitude was 7% lower than the experimental Ay. The
numerical model had a similar or superior accuracy compared to previous studies
[35, 105] in all calculated statistics except for Ay.

The M3 mesh was used in subsequent sections since a higher mesh density did not
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significantly improve the model’s accuracy. This mesh was also tested under different
integration algorithms for the mass-spring-damping model and spatial discretisation
schemes for the momentum flow equations (Appendix D.1). These results showed
no significant differences with the parameters selected in Section 7.2.1.

7.3.3 Response across Ur
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Figure 7.3: Maximum response and oscillation frequency of a low mass-damping
two degree-of-freedom cylinder. Error bars represent one standard deviation around
the maximum displacement. 4: Numerical model. #: Experimental result [41]. �:
Numerical study [35]

Figure 7.3 shows the results of the numerical model in terms of maximum ampli-
tudes and oscillation frequencies. The transitions between branches were properly
captured as jumps in the crossflow oscillation frequency (Figure 7.3c). The initial
branch ranged between 4 ≤ Ur < 5, marked by an steady increment in the maxi-
mum amplitude and oscillation frequency. The cylinder transitioned to the upper
branch at Ur ≈ 5. The amplitude response increased within the upper branch up
to a maximum value of Ax = 0.28D and Ay = 1.41D, which were 9.5% and 6%
lower than the experimental results, respectively. fcy increased with Ur within the
upper branch, crossing fnw and reaching a maximum value of 1.03fnw at Ur = 8.3.
At higher flow velocities, the transition to the lower branch was characterised by a
jump in the maximum amplitude and oscillation frequency. These values remained
fairly constant within the lower branch until the cylinder entered its desynchronised
phase at Ur ≈ 11. This desychronisation occurred at an earlier Ur than the ex-
perimental result, which has been attributed to the SST k − ω turbulence model
[45].

Figure 7.4 shows the cylinder trajectory and associated instantaneous vorticity
contours at Ur = [3, 8.3, 9]. A classic 2S vortex mode was observed at Ur = 3.
The characteristic 2T pattern was captured within the upper branch (Ur = 8.3).
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Figure 7.4: Cylinder trajectories (a) and instantaneous vorticity contours (b-d) at
Ur = [3, 8.3, 9]

Lastly, the 2P vortex mode was observed at Ur = 9. These results are consistent
with the experiment being modelled [41] and previous numerical simulations (see,
for example, [35, 105]).

7.3.4 Inflow velocity conditions

It is well documented that the inflow conditions influence the response of cylin-
ders subjected to VIV. Depending on the time history of the inflow velocity, which
encloses increasing or decreasing conditions with their respective acceleration mag-
nitude, the cylinder could exhibit a high- or low-amplitude response. The inflow
conditions that trigger these responses are often not reported in VIV experiments
[89] and vary widely between the few numerical studies that implicitly describe
them. One reason for this lack of information is that measurements in physical
experiments are usually taken between small flow velocity increments, fulfilling the
inflow acceleration requirements to trigger high-amplitude responses. On the other
hand, different numerical studies have shown difficulties to simulate the experimental
high-amplitude responses due to inadequate considerations of the inflow conditions
(see recent examples, [25, 32]). The only numerical study that this researcher could
find indicated that by slowly increasing the inflow velocity below a certain acceler-
ation, the simulation reached the experimental maximum amplitude [45]. Recent
numerical studies have achieved similar results using significantly higher inflow ac-
celerations ([35, 105]). This discrepancy is analysed here by testing different initial
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conditions under systematic increments of the inflow acceleration until the cylinder
reached the experimental high-response state.

Initial phase Development phase Stable phase

x,y
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x,y

t(s)

x,y

t(s)

t(s)tini tend

Ur_end

U(m/s)

Ur_ini Ur_end

Ur_ini

Figure 7.5: Time-history of the inflow under increasing velocity condition

The time history of the inflow velocity was divided into three phases (Figure
7.5), as in [115]. Firstly, the initial phase, where the cylinder is fixed and subjected
to Ur_ini for an initial time tini. Secondly, the development phase, where the cylinder
is free to move while the inflow velocity slowly increases under a constant normalised
acceleration ac for an acceleration time ta. Thirdly, the stable phase, where the inflow
velocity reaches Ur_end and is maintained until at least 20 stable oscillations. tini = 0

s implies that the cylinder is free to move since the beginning of the simulation.
Likewise, ta = 0 s indicates a constant inflow velocity condition throughout the
simulation. The normalised acceleration is defined as

ac =
Ur_end − Ur_ini

tafnw
(7.1)

where ta = tend − tini.
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Figure 7.6: a) Total drag and lift coefficient around a fixed cylinder at Re = 1.2×103



CHAPTER 7. NUMERICAL MODEL: PIVOTED CYLINDER 96

0 50 100 150 200 250
−1

−0.5

0

0.5

1

t(s)

y
/D

0 50 100 150 200 250
0

2

4

6

t(s)

U
r

0 1 2 3 4 5 6
0

0.5

1

fcy/fnw

PS
D

(a)

0 50 100 150 200 250
−1

−0.5

0

0.5

1

t(s)
y
/D

0 50 100 150 200 250
0

2

4

6

t(s)

U
r

0 1 2 3 4 5 6
0

0.5

1

fcy/fnw

PS
D

(b)

Figure 7.7: Increasing velocity condition (up), cylinder crossflow motion (middle)
and PSD (down) at (a) ta = 20 s and (b) ta = 30 s for the tini = 60 s case

Figure 7.6 shows the time history of CD and CL within the initial phase (sta-
tionary cylinder condition, Re = 1.2× 103). Both force coefficients reached a steady
oscillatory state after 110 seconds. Thus, different responses are expected as a func-
tion of the simulation time spent on the initial phase. This hypothesis was tested by
simulating three initial time conditions, tini = 0 s (cylinder is free to move from the
start of the simulation), tini = 60 s (cylinder is released while the lift and drag forces
are developing), and tini = 150 s (cylinder is releaser after the fluid forces around
the body reached an oscillatory steady state). Each case started at Ur_ini = 2 and
was systematically increased to Ur_ini = 6 under different acceleration times. As an
example, Figure 7.7 shows the results of two simulations at different acceleration
times. When the acceleration time increased from 20 to 30 seconds, Ay and fcy/fnw

reached values comparable to the experimental results.
The maximum amplitudes and main peak frequencies of each tested initial time

(tini = [0, 60, 150] s) and at different acceleration times are summarised in Figure 7.8.
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Figure 7.8: tini influence on the maximum cylinder response (a) and oscillation
frequency (b). �: tini = 0 s, #: tini = 60 s, 4: tini = 150 s

A bistable response is identified. A low-amplitude response at low ta, where Ay =

0.56D and fcy/fnw = 1.3, and a high-response state at high ta, where Ay = 0.97D

and fcy/fnw = 0.92. The cylinder response and oscillation frequency within states
were not affected by ta or tini. The minimum acceleration time required to trigger
a high-response state decreased up to four times when the initial time increased to
tini = 150 s. These acceleration times are significantly lower than the ones reported
in previous numerical studies [45, 115]. Moreover, the transition between response
states occurred suddenly as opposed to the smooth increments reported in [45] (see
Figure 2.9).
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Figure 7.9: Ur_ini influence on the maximum cylinder response at (a) tini = 0 s and
(b) tini = 150 s. �: Ur_ini = 0, #: Ur_ini = 1, 4: Ur_ini = 2

The results in Figure 7.8 were obtained considering Ur_ini = 2, as in [115]. Next,
the effects of the initial inflow velocity on the cylinder response were analysed.
Figure 7.9 shows the maximum crossflow amplitude at three initial reduced velocities
Ur_ini = [0, 1, 2], each at tini = 0 s (Figure 7.9a) and tini = 150 s (Figure 7.9b). The
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Ur_ini = 0 case at tini = 150 s was not considered for obvious reasons. The Ur_ini = 0

case did not trigger a high-response state at all tested ta. Higher acceleration times
could not be analysed due to the prohibitive computational time required to reach
the stable phase. Simulations that do not impose an initial flow velocity (Ur_ini = 0)
require extremely high acceleration times to build up the fluid forces required to
trigger a high-response state. This condition partially explains the significantly
higher ta reported in previous numerical studies [45]. There is an inverse non-linear
relationship between the minimum acceleration time required to trigger a high-
response state and Ur_ini. This relationship is secondary compared to tini (Figure
7.8).

Figures 7.8 and 7.9 show the importance of the inflow conditions on the cylinder
response and oscillation frequency. A high-response state can be achieved at sig-
nificantly lower acceleration times when the initial phase considered a small initial
flow velocity and when the lift and drag forces in the initial phase were allowed to
develop and reach an oscillatory steady state.

7.4 Results

The pivoted cylinder model considered the mesh resolution, time step, and inflow
conditions from previous sections. The M3 mesh case was used (Table 7.1), main-
taining proportionality as a function of the cylinder’s diameter. A time step value
that ensures a CFL number lower than one was enforced, reaching a minimum value
of ∆t = 0.0002 seconds at the highest tested Ur. An initial phase of 90 seconds
with Ur_ini = 1 was used to speed up the total simulation time required to reach its
stable phase. Moreover, the acceleration time was systematically increased up to 30
seconds to ensure a high-response state.

7.4.1 Preliminary considerations

As described in Chapter 4.3.2, the equations of motion for the two-dimensional
representation of a pivoted cylinder are

ẍ+ 4πfnwζẋ+ 4π2f 2
nwx =

MxL

1 + CaI∗
(7.2)

ÿ + 4πfnwζẏ + 4π2f 2
nwy =

MyL

1 + CaI∗
(7.3)

The total forcing moment in Equations 7.2 and 7.3 correspond to the sum of
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Figure 7.10: Unstable response example. Exponential increment of the cylinder
displacement between time steps until the mesh was not able to accommodate the
new cylinder position

hydrodynamic forces in a given direction multiplied by its corresponding lever arm.
Several considerations are given for the forcing moment. The independence principle
states that VIV is driven by the flow component normal to the cylinder surface and
that the perpendicular (axial) component is negligible [9]. This principle is valid for
inclination angles of less than 20◦ [9, 96, 114], which is a higher threshold than the
one given by the maximum response of the tested pivoted cylinder. Moreover, the
axial component of the hydrodynamic force corresponds to 1% of its magnitude at
the maximum inclination angle. Thus, this axial component is considered negligible
in the numerical simulation. Since the spatio temporal position of the lever arm is
unknown in two-dimensional models, a fixed position is commonly assumed. As an
example, previous studies have used the projected span length for curved cylinders
[96] or considered a linear variation of the total force for pivoted cylinders [51]. Both
approaches were applied to Equations 7.2 and 7.3 with the structural parameters
of the pivoted cylinder. The resultant numerical model led to non-convergent si-
nusoidal responses with increasing amplitudes (Figure 7.10). The cylinder response
exponentially increased its displacement between time steps, eventually triggering
numerical errors due to the mesh inability to deform with the cylinder new position.
This unstable response is one of the five possible responses observed in second-order
linear systems and can be explained by the combined effect of the damping ratio and
the self-excited hydrodynamic forces. The wake-cylinder energy transfer mechanism
is commonly portrayed as a negative-damping-type instability [55]. The self-excited
hydrodynamic forces introduce an aerodynamic damping component that opposes
the structural damping ratio. Under certain conditions, the energy transfer to the
cylinder is transformed into gradual increments in structural oscillations until the
total damping ratio is zero and the wake-cylinder interaction reaches (on average)
equilibrium under self-limited VIV conditions [107]. When the aerodynamic-to-
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structural damping ratio is significantly high, unrealistic cylinder responses (and
associated velocities and accelerations) are needed to reach a zero damping system.
This criterion is easier to meet in low damping systems, such as the tested pivoted
cylinder, where the energy required to reach self-limiting VIV is low [54]. Later it
will be shown that the mass-spring-damping model with the structural parameters
of the pivoted cylinder led to self-limiting VIV amplitudes when the hydrodynamic
forces were directly applied. Thus, depending on the selected lever arm, the system
could become unstable (Figure 7.10) or even over damped.

Based on the previously described relationship between the lever arm and the
hydrodynamic force, the forcing moment was considered equal to the total hydrody-
namic force multiplied by a constant three-dimensional force correction factor CF.
A similar approach was used to simulate VIV experiments with incomplete spanwise
synchronisation [18]. The researchers scaled the lift force at different constant values
to account for three-dimensional flow effects. This parameter was tested over the
complete range of stable responses to determine which case led to the highest accu-
racy compared to the experimental results and estimate the threshold of unstable
responses. Equations 7.2 and 7.3 are rewritten in terms of CF as

ẍ+ 4πfnwζẋ+ 4π2f 2
nwx =

CFFxL

1 + CaI∗
(7.4)

ẍ+ 4πfnwζẋ+ 4π2f 2
nwx =

CFFyL

1 + CaI∗
(7.5)

It is important to consider that the case CF = 1 equals to the direct application
of the hydrodynamic forces on the cylinder model.
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7.4.2 Cylinder response across Ur
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Figure 7.11: Maximum amplitude and oscillation frequency at 2.5 × 103 ≤ Re ≤
5.8 × 103. a) Maximum streamwise response. b) Maximum crossflow response. c)
Crossflow oscillation frequency. Black line: experimental data. �: CF = 0.6. 4:
CF = 0.8. #: CF = 1. �: CF = 1.2. +: CF = 1.4

Figure 7.11 summarises the numerical model results in terms of maximum ampli-
tudes and crossflow oscillation frequencies. The streamwise oscillation frequency
was not included since fcx ≈ 2fcy throughout Ur. Only the simulations associated
to CF = [0.6, 0.8, 1, 1.2, 1.4] were considered since they showed the most interesting
results. Higher values of CF led to unstable responses (Figure 7.10). Within the
initial branch (Ur ≤ 4.55), the numerical model achieved good agreement in terms of
Ay. On the other hand, Ax showed a high dependency on CF with values that ranged
between its experimental counterpart (CF = 0.6) to twice its value (CF = 1.4). At
Ur = 4.55, the amplitudes associated to CF < 1 were significantly lower than the
experimental results, whereas the amplitudes for CF ≥ 1 reached a similar (cross-
flow) and double (streamwise) values compared to their experimental counterparts.
As the cylinder entered the upper branch (Ur = 5.21), the numerical model was
not able to keep the experimental upward trend in the crossflow direction, reaching
maximum amplitudes between Ay ≈ 0.8D and Ay ≈ 1.1D for all tested CF. The
streamwise amplitude agreed with its experimental counterpart except at CF = 0.6

and CF = 1.4, were Ax ≈ 0.1D (under-prediction) and Ax ≈ 0.6D (over-prediction),
respectively. Within the upper branch, the response amplitude associated to CF < 1

significantly decreased and stabilised around a low amplitude value. The results as-
sociated to CF ≥ 1 showed a similar upward trend in the crossflow direction at a
significantly lower amplitude compared to the experimental results. When the cylin-
der achieved its maximum response (Ur = 7.42), the CF = 1 and CF = 1.2 cases
drastically decreased their simulation responses, stabilising around values compara-
ble to CF ≤ 1. Only the CF = 1.4 case kept a maximum amplitude of Ax = 0.48D

and Ay = 1.22D, this last value being 41.5% lower compared to the experimen-
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tal amplitude in the crossflow direction. At the maximum tested flow velocity, the
CF = 1.4 case maintained its previous maximum amplitude even though the pivoted
cylinder entered its transition phase, characterised by an important decrement in
the streamwise motion.

Figure 7.11c shows the main oscillation frequency in the crossflow direction.
In general, important deviations in terms of maximum amplitudes are accompanied
with significantly higher oscillation frequencies compared to their experimental coun-
terpart. This relationship is illustrated for the CF < 1 cases. The main oscillation
frequency associated to CF ≥ 1 showed good agreement with the experimental re-
sults in the initial and part of the upper branch. At Ur ≥ 7.42, only the CF = 1.4 case
maintained good accuracy while the main frequency of the CF = [1, 1.2] cases jumped
to match the CF < 1 results. Considering the best performing case (CF = 1.4),
the difference between the numerical and experimental main oscillation frequency
reached a maximum of 17.5% (Ur = 3.76), with an average of 2.2% across Ur. This
maximum difference at Ur = 3.76 can be explained by its experimental fcx/fcy ≈ 1.7

ratio, which introduces a coupling component between the streamwise and crossflow
motion not included in the numerical model.

Unexpected transitions between a high- to a low-response state were observed
within the upper branch. Figure 7.12 exemplifies this phenomenon by comparing
the motion history of the CF = [1.2, 1.4] cases at Ur = 6.69. The results associated
to CF = 1.4 maintained its high-response state throughout the simulation (Figure
7.12a). This stable response was characterised by an equal main frequency peak
in its crossflow motion (Figure 7.12b) and lift force (Figure 7.12c), which ensures
a stable synchronised state. On the other hand, Figure 7.12d shows a two-state
response for the CF = 1.2 case. The high-response state was characterised by a
multi-frequency lift force around the main oscillation frequency and between its
first and second harmonics. These additional frequencies, besides the one equal to
fcy, seems to interfere with the cylinder-flow synchronisation and trigger its eventual
transition to a low-response state. Then, the crossflow oscillation (Figure 7.12e) and
lift force (Figure 7.12f) spectra were characterised by an equal main frequency peak,
as in the CF = 1.4 case. The transition time between states was partially dependant
on the initial flow conditions, specially the acceleration time. Still, the cylinder
eventually transitioned to a low-response state in all tested acceleration times and
no clear trend between inflow conditions and transition time could be observed. The
experimental pivoted cylinder showed a stable response within the upper branch.
Thus, the numerical model is susceptible to unexpected transitions to a low-response
in cases of multi-frequency lift forces.

Figures 7.13 to 7.16 show the response trajectories of the numerical model across
Ur. Only the responses associated to CF = [1, 1.2, 1.4] were considered since they
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Figure 7.12: Example of an unexpected high- to low-response transition. CF = 1.4
(a,b,c) and CF = 1.2 (d,e,f) at Ur = 6.69. Crosflow motion history (a,d). Crossflow
frequency spectra (b,e). Lift force spectra (c,f). Dashed lines in e) and f) correspond
to the low-response state
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Figure 7.13: Numerical (red) and experimental (black) trajectories at Ur = 2.95

showed best performance in terms of amplitudes and oscillation frequencies. The
rest of the cylinder trajectories alongside relevant statistics can be found in Ap-
pendix D.1.3. Figure 7.13 shows that, at the lowest inflow velocity, the CF = 1

case had the highest accuracy in terms of trajectory shape compared to higher CF

cases. A similar frequency content was observed across CF. Thus, differences in
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Figure 7.14: Initial branch. Numerical (red) and experimental (black) trajectories.
Ur = 3.76 (a,b,c). Ur = 4.55 (d,e,f)

the trajectory shape are attributed to changes in the response amplitude (specially
in the streamwise direction) as CF increased. The highly modulated experimental
response at Ur = 3.76 was partially captured by the CF = 1 case. At higher CF, the
cylinder trajectory became highly regular with a streamwise amplitude more than
two times its experimental counterpart. At the end of the initial branch (Ur = 4.55),
the modulation of the streamwise motion increased alongside CF. Still, good agree-
ment in terms of main trajectory motion was achieved, specially for the CF = 1 and
CF = 1.2 cases. Within the upper branch at Ur = 5.21 and Ur = 6, the cylinder
trajectory followed the experimental response with a higher streamwise modulation
as CF increased. This streamwise variability is associated with the presence of a
low-frequency response (≈ 0.17fnw) across the simulation time. At the maximum
experimental cylinder response (Ur = 7.42), there are significant differences in terms
of the trajectory shape for all CF. The high-response trajectory of the CF = 1.4

case deviates from the first-order sinusoidal function (Section 6.3.1) used to fit the
experimental data. At the maximum tested flow velocity, the CF = 1.4 case main-
tained its trajectory shape even though the pivoted cylinder entered its transition
phase, characterised by an important decrement in the streamwise motion.
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Figure 7.15: Upper branch. Numerical (red) and experimental (black) trajectories.
Ur = 5.21 (a,b,c). Ur = 6 (d,e,f). Ur = 6.69 (g,h,i). Ur = 7.42 (j,k,l)
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Figure 7.16: Transition. Numerical (red) and experimental (black) trajectories at
Ur = 8.29

7.5 Conclusions

This chapter analyses the capabilities and accuracy of two-dimensional RANS mod-
els to simulate the response of a pivoted cylinder subjected to VIV. The experimental
conditions of the pivoted cylinder in Chapter 6 were used as input for the numerical
model. The SST k − ω turbulence model with the Runge-Kutta fourth order was
implemented in Ansys Fluent, alongside a User Defined Function to account for the
fluid-structure coupling mechanism. The numerical model’s prediction capabilities
were first assessed by simulating a low mass-damping two degree-of-freedom cylin-
der [41], achieving good accuracy across tested flow velocities. Then, the numerical
model was used to study the influence of the inflow conditions on the cylinder motion.
The cylinder response varied between a low- and high-response state depending on
the initial inflow conditions. The transition between states depended on the acceler-
ation time, while the conditions of the initial phase (velocity and time) significantly
influenced the minimum acceleration time needed to trigger a high-response state.
Specifically, the acceleration time was reduced up to four times when the initial
phase allowed the forces around the cylinder to reach an oscillatory steady state.

After considering the initial inflow conditions, time step, and mesh resolution,
the numerical model simulated the pivoted cylinder’s experimental conditions de-
scribed in Chapter 6. The most significant results were obtained by considering
CF ≥ 1. Before the pivoted cylinder reached its maximum response, the numerical
model properly captured the main oscillation frequency while it overestimated the
maximum streamwise amplitude. The model showed good agreement in terms of
maximum crossflow amplitude within the initial branch. At higher reduced veloc-
ities, the numerical model could not sustain the upward trend of the experimental
crossflow amplitude, reaching maximum values that were on average 40% lower than
its experimental counterpart. After the pivoted cylinder achieved its maximum re-
sponse, only the CF = 1.4 case maintained its high-amplitude response with a
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significantly different trajectory shape compared to the experimental crescent-shape
motion. This different trajectory was maintained at the maximum tested flow veloc-
ity even though the pivoted cylinder entered its transition phase, characterised by an
important decrement in the streamwise motion. The main oscillation frequency for
the CF = 1.4 case was the only parameter that was properly captured throughout the
tested flow velocities. These results showed that, despite its good agreement with low
mass-damping cylinders [41], the numerical model with the three-dimensional factor
was insufficient to account for the characteristic spanwise variability of the pivoted
cylinder. Moreover, the numerical model was susceptible to unexpected transitions
from a high- to a low-response state in cases of multi-frequency lift forces. These
transitions were not observed in the experimental results, indicating an inherent
instability of the numerical model. Additional research is needed to understand the
spanwise cylinder-wake dynamics of the pivoted cylinder, especially related to its
synchronisation-desynchronisation process, to improve the prediction capabilities
of two-dimensional models. As an alternative, three-dimensional models directly
account for the spanwise dynamics and may reduce the stability issues if a multi-
frequency lift force diminishes its dominance along the cylinder span. Still, there
are important limitations in terms of the computational power required to simulate
the full three-dimensional fluid-structure interactions in engineering applications.



Chapter 8

Conclusions and
Recommendations

8.1 Conclusions

This thesis analyses the experimental case of a pivoted cylinder subjected to VIV
and its numerical representation using two-dimensional RANS models. The wake
and cylinder motion were measured using Particle Image Velocimetry (PIV) and
image-based tracking techniques. The wake dynamics, emphasising its variability
along the structural span, and the cylinder response were analysed across a range
of open-channel flow velocities. A two-dimensional model was developed based on
the experimental conditions and the pivoted configuration. The numerical model’s
limitations, capabilities, and accuracy were evaluated by comparing its cylinder re-
sponses and oscillation frequencies with the experimental results. An initial experi-
ment related to a bottom-fixed cylinder subjected to VIV was conducted. Its main
goal was to acquire experience with the experimental equipment, calibration system,
and data analysis. Moreover, the variable amplitude along the bottom-fixed cylinder
span provided important insights in preparation for the pivoted cylinder case. The
nature of this research project led to significant results that, although not directly
related to the main objective of this thesis, are included due to their novelty and
importance to VIV. The main conclusions are presented in the same order as the
body of this thesis.

The experimental case of a bottom-fixed cylinder subjected to a range of flow
velocities shed light on the motion and spanwise dynamics of a complex VIV configu-
ration, characterised by a multi-degree-of-freedom and variable-amplitude response.
The results showed a highly modulated motion, from which the Proper Orthog-
onal Decomposition successfully uncovered dominant elliptical-type trajectories at
the maximum cylinder response. This trajectory shape maintained its dominance

108
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at higher flow velocities except at its maximum recorded value, where a combina-
tion between an eight-type and an elliptical-type was observed. This characteristic
pattern was explained by the energetic relationship between the main streamwise
frequency of its second spatial mode and its first harmonic. The wake analysis along
the span of the cylinder showed that the maximum response is achieved when the
cylinder motion and vortex shedding frequencies are equal (i.e. synchronised) to the
natural frequency of the structure measured in still water, and when this equiva-
lence is preserved along the span of the cylinder. As the flow velocity increases, the
cylinder displacement near its fixed end cannot reach the needed increment in ac-
celeration to sustain a synchronised condition, and desynchronisation occurs. This
process is followed by a reduction in the spanwise vortex strength and a decrement in
the maximum cylinder amplitude. As the desynchronised region develops, the span-
wise vortex strength further decreases alongside the maximum amplitude. Changes
in the wake dynamics showed a transition from a 2S-2P dual-mode configuration at
the highest cylinder response to a predominant 2S mode at the highest tested flow
velocity.

The experimental case of a pivoted cylinder subjected to a range of flow ve-
locities had a characteristic high streamwise amplitude, observed in previous low
mass-damping two-degree-of-freedom cylinders [21, 41]. The maximum crossflow
amplitude showed three response regions across tested flow velocities: a stream-
wise dominant, initial, and upper branch. Only the transition to an apparent lower
branch could be captured due to limitations on the maximum tested flow veloc-
ity. The cylinder trajectory varied from an eight-type at the lowest inflow velocity
to a crescent-type at the initial and upper branch. Wake measurements closer to
the water surface had a bigger recirculation region, higher momentum transference,
broader wake width, and higher vortex strength in the upper branch compared to
regions at lower water depths. These differences can not be fully explained by the
linear variability of the cylinder response along its span. Other influential factors,
such as spanwise vortex correlation and free-surface effects, could play a significant
role in the spanwise wake dynamics. An analysis of the vortex shedding frequency
along the cylinder span showed a complex behaviour with significant differences
from the bottom-fixed cylinder case. The streamwise motion was strong enough to
dominate the vortex shedding frequency in specific spanwise regions throughout the
upper branch. Moreover, the desynchronisation process started at the water surface
and seemed to progress towards the flume bed. Still, similar to the bottom-fixed
cylinder case, the maximum response is achieved when the cylinder motion and vor-
tex shedding frequencies are equal (i.e. synchronised) to the natural frequency of
the structure measured in still water, and when this equivalence is preserved along
the span of the cylinder.
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The two-dimensional RANS model was developed based on the experimental
conditions of the pivoted cylinder. Before analysing its accuracy and applicability,
the model was first validated by simulating an experimental low mass-damping two-
degree-of-freedom cylinder [41]. A novel result from this process was the systematic
study of the inflow velocity conditions on the cylinder response and oscillation fre-
quency. The cylinder response varied between a low- and high-response state, closer
to the experimental results. The transition between states depended on the accel-
eration time, while the conditions of the initial phase (inflow velocity and time)
significantly influenced the minimum acceleration time needed to trigger a high-
response state. These results were used for the pivoted cylinder model to ensure
high responses and significantly reduce the total numerical time per simulation.
The pivoted configuration was modelled using the experimental characteristics of
Chapter 6 and by using a three-dimensional factor (0.6 ≤ CF ≤ 1.4) that accounts
for the three-dimensional effects of the fluid force on the pivoted cylinder. The
highest accuracy of the numerical model was achieved by considering CF ≥ 1. Nev-
ertheless, the simulations could not fully predict the upper and lower branch associ-
ated with the highest experimental responses. Moreover, the numerical model was
susceptible to unexpected transitions from a high- to a low-response state not ob-
served in the experiments. Despite its good agreement with low mass-damping two
degree-of-freedom cylinders [41], the numerical model with the three-dimensional
force correction factor was insufficient to account for the characteristic spanwise
variability of the pivoted cylinder. Additional research is needed to understand the
spanwise cylinder-wake dynamics of the pivoted cylinder, especially related to its
synchronisation-desynchronisation process, to improve the prediction capabilities of
two-dimensional numerical models.

8.2 Recommendations for future work

The author identified several gaps and recommendations for future work.

• The author measured the wake region at different two-dimensional planes us-
ing Particle Image Velocimetry. Three-dimensional measurements seem to be
a logical step towards the complete capture of the spanwise cylinder-wake
dynamics. This information can be used to gain insight into the physical un-
derstanding of VIV, which, in turn, can be used to compare or calibrate future
numerical models.

• The experiments were performed at low Reynolds numbers (4.5× 102 6 Re 6

1 × 103 for the bottom-fixed and 2.5 × 103 ≤ Re ≤ 5.8 × 103 for the piv-
oted cylinder, respectively). Experiments or numerical simulations at high
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Reynolds numbers could provide practical information to a diverse range of
engineering problems.

• Parameters extracted from time-averaged and root-mean-square statistics were
used to characterise the wake behind a cylinder subjected to VIV. Other char-
acterisations based on coherent vortex patterns extracted through the Proper
Orthogonal Decomposition could provide important insights into reduced-
order modelling.

• The current two-dimensional representation of the pivoted cylinder case can
be further improved as more knowledge is gained. Improvements in the equa-
tions of motion (e.g. three-dimensional force correction dependent on the
reduced velocity) can be developed as the cylinder’s spanwise wake dynamics
are better understood. Still, there is the possibility that these two-dimensional
representations could never reach an acceptable level of prediction. As an al-
ternative, three-dimensional models can simulate the spanwise wake dynamics
(to an unknown degree of accuracy) with the potential to capture the main
features of VIV. Further research needs to be conducted to determine the ac-
curacy of three-dimensional models. The current limitations are due to the
computational power needed to simulate complex VIV cases in engineering
applications.



Appendix A

Image-based measurements

The remote and non-contact nature of image-based measurement techniques offer an
attractive alternative to traditional methods, such as accelerometers, strain gauges,
and Laser Doppler vibrometers. Their main advantage is evidenced in structures
with difficult access or when simultaneous multi-point or full-field measurements are
required. In the context of engineering, image-based techniques have been used to
measure structural vibrations, damage detection, crack growth monitoring, fluid-
structure interactions, among others [66]. This thesis employs different image-based
tracking techniques to extract velocity fields and structural motions from images.
Two tracking techniques are presented in this section, digital image correlation (DIC)
via Fourier transform and a solution of the optical flow equations by means of the
Lucas-Kanade method. Both techniques are compared against a high-precision mo-
tion tracking system under changes in image resolution, target motion and sampling
frequency. The results showed that the Lucas-Kanade technique achieved a higher
accuracy when it is able to track the target. Nevertheless, it has an important
dependency on the relative pixel value (intensity gradients) of the initial target
point, which difficult the achievement of its higher accuracy. This dependency was
minimised through the implementation of the Forward-Backward tracking failure
technique [43] without depending on additional external measurements.

A.1 Digital Image Correlation

Digital Image Correlation (DIC) uses correlation functions to measure the similarity
between a region around a target (called interrogation window or template) and an
image. A correlation map is built by calculating the correlation function as the
template shifts around the image. The position that corresponds to the maximum
value of the correlation map is used to locate the template on the image. Consider
two consecutive images with intensity values I(x) and J(x), respectively. Given an
initial target position u and a template size w = [wx, wy]

T around u, the discrete

112
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correlation function is given by

r(d) =

x=u+w/2∑
x=u−w/2

(I(x)J(x + d)) (A.1)

where d = [dx, dy]
T is a vector of pixel displacement between frames. Eq. A.1

is applied at every d within a region W , resulting in a correlation map R(d). An
efficient approach to calculate the correlation function is through the Fast Fourier
transform, where the Fourier transform of I and J are defined as F(I) and F(J),
respectively. Under this approach, the correlation map is expressed as

R(d) = F−1(F(I(x))F∗(J(x+ d))) (A.2)

where F∗ is the complex conjugate of its Fourier transform, and F−1 is the in-
verse Fourier transform. The integer pixel position of the maximum correlation map
corresponds to the most probable displacement of the template. The accuracy of
this result can be improved through subpixel registration, where the information
around the maximum correlation value is used to find its true maxima. The Gaus-
sian subpixel method has been shown to obtain satisfactory results in PIV [58] and
structural tracking motion [66]. This technique fits the spatial distribution of corre-
lations around the peak using a Gaussian function. The target position corresponds
to the subpixel location of the Gaussian function maximum value.

Davis 8.3 uses DIC with the Gaussian subpixel method to estimate the flow
velocity field from raw flow images (Chapter 3.2.3). Consider two consecutive flow
images with high-density tracers. Each image is subdivided into templates. The
templates of the first image are correlated with their corresponding templates of
the second image. A correlation map per template is built. The position of the
correlation map maximum value corresponds to the most probable displacement of
the tracers between images. This position is improved using the Gaussian subpixel
method. The velocity field is then calculated as the ratio between the local flow
displacement and the acquisition time between images.

A.2 Lucas-Kanade technique

The Lucas-Kanade technique [60] estimates the position of a target using the in-
tensity differences between two consecutive images. An in-depth description can be
found in [8]. Consider two consecutive images with intensity values I(x) and J(x),
respectively. Considering an initial target located at u = [x0, y0]

T , the goal is to
estimate its location in the second image [u+d]T , such as its intensity values around
u = [x0, y0]

T reaches a minimum difference. This procedure assumes small displace-
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ments and minor variations of the target intensity values between frames. Moreover,
the implementation of the Lucas-Kanade technique accounts for the following affine
transformation of the target intensity values

A =

(
1 + dxx dxy

dyx 1 + dyy

)
(A.3)

where dxx, dxy, dyx and dyy characterise the affine deformation of the interrogation
window W of size w = [2wx + 1, 2wy + 1] around u. Approximating the target
displacement by a first order Taylor series and assuming small variations of the target
intensity values between frames, the displacement d and matrix A are obtained by
minimising the following function

ε(d,A) =

u+w/2∑
u−w/2

(I(x)− J(Ax+ d))2 (A.4)

Equation A.4 is minimised following a Newton-Rapson iteration approach. The
pixel target position is improved using a bilinear subpixel interpolation. Moreover, a
pyramidal scheme is implemented to overcome large displacements between frames.
The original image is reduced 2N times, where N is the pyramid level previously
selected (a value of four is recommended [8]). The Lucas-Kanade technique is applied
at the lowest pyramid level (lowest image resolution) and the results are used as an
initial guess to estimate the target position at a superior pyramid level.

A.3 DIC vs Lucas-Kanade

This section compares the accuracy and capabilities of the DIC-based and Lucas-
Kanade technique against a high-precision motion tracking system. The comparison
was performed under changes in image resolution, target motion and sampling fre-
quency.

A.3.1 Experimental setup

A shaker model APS 400 Electro-Seis was setup to produce a one-dimensional oscil-
latory motion of constant amplitude. Two systems were used to capture the shaker
motion: a high-resolution CODA CX1 system, used as a benchmark, and a PS3 Eye
camera. The CODA system had two self-calibrated infra-red LED scanners capable
of tracking a marker at 800 Hz and at a three-metre distance with 0.05 mm accu-
racy. On the other hand, the PS3 Eye camera recorded 8-bit uncompressed images
with a resolution of 640x480 pixels and an acquisition frequency of 75 Hz. Figure
A.1 shows the experimental setup. The CODA system was located two meters from
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(a)

CODA CODA

CAMERA

SHAKER

(b)

Figure A.1: Experimental setup of a shaker recorded at three oscillatory frequencies

the shaker, whereas the PS3 Eye camera was placed at 0.5 meters. A 1% distortion
was expected from the PS3 Eye camera, considering a field-of-view of 75 and a focal
length of 2.1.

The shaker movement was recorded at three different frequencies: 1 Hz, 3 Hz
and 4 Hz. The amplitude associated with these frequencies were 120.2 mm, 45.6 mm
and 25.4 mm, respectively. The CODA system tracked the shaker motion at 200
Hz. Simultaneously but unsynchronised, recordings using the PS3 Eye camera were
taken at 75 Hz for 40 seconds. A calibration process was applied to the PS3 Eye
camera measurements to establish a correspondence between Pixel and real-world
coordinates. Details of this process can be found in Chapter 3.3.2. Differences
between recording systems were addressed by normalising the signals of the CODA
system. Firstly, a spline cubic interpolation was used to sub-sample the CODA signal
and match the sampling frequency of the PS3 Eye camera. Secondly, the minimum
root-mean-square (RMS) between the CODA signal and both tracking systems was
used to align their corresponding initial recording time. Finally, all signals are
normalised by their corresponding mean amplitude, followed by the subtraction
of their mean position. The RMS of the normalised signals between a tracking
technique and CODA system was used as an error measurement throughout this
experiment.

A.3.2 Sensitivity Analysis

DIC: Template size and subpixel method

The effects of the interrogation window size on the tracking technique accuracy were
analysed using different square-shape templates with width of 30 to 100 pixels and
10-pixel increment. The influence of the centroid, parabolic and Gaussian subpixel
techniques at each tested template size were also investigated. As described in Sec-
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Figure A.2: DIC-based technique sensitivity analysis. a) Subpixel method. b)
Interrogation window size

tion A.1, subpixel accuracy is reached when the information around the maximum
correlation value is used to find its true maxima. These methods commonly use
the correlation values of nearby pixels to calculate the centroid (centroid method),
fit a parabolic function (parabolic method) or fit a Gaussian function (Gaussian
method). Figure A.2a shows the RMS for the 4 Hz shaker frequency as a function
of the interrogation window size. The centroid method has the highest RMS across
interrogation window sizes. On the other hand, there are no significant differences
between the parabolic and Gaussian methods. Figure A.2b shows the RMS as a
percentage of its maximum value at different shaker frequencies. A maximum 10%
RMS difference was observed across tested cases, showing the stability of the DIC
technique under changes in shaker frequency (i.e., target velocity). Still, there is a
clear region of interrogation window sizes that maximise the technique accuracy.

Lucas-Kanade: Template size and initial point selection
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Figure A.3: Lucas-Kanade technique sensitivity analysis. a) Interrogation window
size. b) Initial point selection
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A square grid of 121 initial target points with one-pixel separation was placed
on the shaker. The Lucas-Kanade technique was applied to each grid point us-
ing square templates with width from five to 40 pixels. Figure A.3a shows their
corresponding RMS values grouped in their 30th, 60th, and 90th percentiles. At
least 30% of initial target points reached the smallest RMS value of all grid points
when a 20-pixel interrogation window size was used. The RMS values related to
the 90th percentile shows that the tracking technique accuracy is maximised with
an interrogation window size of 10 pixels. Smaller interrogation window sizes rely
on a small amount of information to accurately track the movement of the shaker,
which makes the tracking technique more sensitive. On the other hand, larger in-
terrogation windows sizes produce excessive smoothing in the motion estimation,
and the error increases [8]. Figure A.3b shows all RMS values from the 121 initial
grid points at two shaker frequencies. A suboptimal template of 30 pixels was used
to better illustrate the differences. A low RMS region was observed between grid
points 25 to 65, characterised for its high intensity gradient values. Except for a
few grid points, the RMS decreases with the shaker frequency, explained by the re-
lationship between the camera exposure time and the target displacement between
frames. Considering a constant exposure time, higher target displacements reduce
the image intensity gradients and, as a consequence, lower the tracking technique
accuracy. Overall, Figure A.3b shows that the Lucas-Kanade technique is highly
dependent on the initial target point selection.

A.3.3 Changes in acquisition frequency

Changes in the camera acquisition frequency were simulated by resampling the orig-
inal image dataset. The new acquisition frequencies f ′

camera of these sets were equal
to the PS3 Eye camera acquisition frequency (75 Hz) divided by integer factor. Af-
ter a series of tests above the Nyquist criteria, a lower f ′

camera limit for the shaker
motion at 1 Hz, 3 Hz and 4 Hz were 12.5 Hz, 15 Hz, and 18.75 Hz, respectively. The
CODA signal was also resampled to match f ′

camera.
Figures A.4a, A.4b and A.4c shows the RMS value of the DIC-based and Lucas-

Kanade technique at different sampling frequencies. A general increment in RMS
at lower sampling frequencies can be explained by a reduction of the image in-
tensity gradients as the target displacement increases between consecutive images.
The maximum increment in RMS across f ′

camera was 7.9% and 12.3% for the Lucas-
Kanade and DIC-based technique, respectively. The Lucas-Kanade technique showed
a higher accuracy of 5.6% over the DIC-based algorithm at the highest shaker fre-
quency. Figure A.4 shows the difference in RMS between two Lucas-Kanade grid
point signals sampled at 75 Hz and 18.75 Hz. This comparison was repeated for
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Figure A.4: Camera acquisition frequency vs tracking accuracy. #: DIC-based. �:
Lucas-Kanade. a) 1 Hz. b) 3 Hz. c) 4 Hz. d) Difference in RMS between two
Lucas-Kanade grid point signals sampled at 75 Hz and 18.75 Hz

121 points arranged in a square grid as in Section A.3.2. Except for two outliers,
decrements in f ′

camera do not increase the Lucas-Kanade dependency on the initial
target point selection.

A.3.4 Changes in image resolution

The original dimensions of the shaker images (640x480 pixels) were reduced up to
10 times using four different interpolation techniques: nearest (the nearest pixel
from the original image is used directly), bilinear (2x2 pixel window), bicubic (4x4
pixel window) and Lanczos (downsampling filter, https://pillow.readthedocs.
io). Then, these low-resolution images were scaled back up to the original image
dimensions using the nearest interpolation technique, which preserves their image
intensity gradients. Figure A.5a shows the RMS of both tracking techniques at
different image resolutions. Overall, the interpolation technique does not have a
significant impact on RMS. A decrement in image resolution affects the tracking
techniques differently. The DIC-based technique shows an almost linear relationship

https://pillow.readthedocs.io
https://pillow.readthedocs.io
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Figure A.5: Image resolution effect. 4 Hz shaker frequency. a) Downscaling factor
at different interpolation techniques. Black: Lucas-Kanade. Gray: DIC-based. b)
Difference in RMS between two Lucas-Kanade grid point signals obtained from the
original dataset and from images downscaled five times in resolution

across the analysed range of image resolutions. In contrast, the LK technique does
not show a clear pattern up to a downscaling of five. Then, there is a sudden
increment in RMS for a downscaling factor of six. It seems that there are higher
restrictions in terms of image intensity gradients, from which the Lucas-Kanade
technique relies on, compared to the target intensity pattern used in the DIC-based
technique. Analogous to Section A.3.4, Figure A.5b shows the difference in RMS
between two Lucas-Kanade grid point signals obtained from the original dataset
and from images downscaled five times in resolution. As expected, changes in image
resolution have a significant influence on the location of the best initial target point
selection.

A.3.5 Improvement to the Lucas-Kanade technique
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Figure A.6: Forward-Backward tracking technique sketch

As shown in previous sections, the Lucas-Kanade technique achieves an overall
higher accuracy with a strong dependency on the initial target point. This last limi-
tation was minimised through the implementation of the Forward-Backward tracking
failure technique [43] without depending on additional external measurements. The
Forward-Backward method is based on the fact that the tracking of an object from
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the spatial position P1 to P2 in time is equivalent to its tracking between P2 and
P1. In an experimental setting, P1 and the final location tracked from P2, defined as
P ′

1, will be different. The Euclidean difference is defined as FB-error and is used to
quantify the tracking accuracy. If a cloud of points around a target is considered, it
is possible to select the signals whose FB-error are in the lowest 5th percentile. The
mean displacement of the selected signals is subtracted to make them coordinate
independent. At each time step, the cylinder location is calculated as the median
value of the selected signals.
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Figure A.7: Testing the Forward-Backward algorithm. Up: 1 Hz. Middle: 3 Hz.
Down: 4 Hz. #: min(RMS). �: Lucas-Kanade with Forward-Backward method

Figure A.7 compares the RMS values between the Lucas-Kanade technique using
the Forward-Backward tracking algorithm and the most accurate case from Section
A.3.2. The highest RMS difference across all shaker frequencies is 7.5%, showing
that the Forward-Backward algorithm effectively finds the initial target points that
maximise the Lucas-Kanade technique’s accuracy.

The structural motion tracking performed in Chapters 5 and 6 was estimated
using the Lucas-Kanade and Forward-Backward techniques. A detailed application
to the experimental case of a bottom-fixed cylinder subjected to VIV can be found
in Chapter 3.3.4.



Appendix B

Proper Orthogonal Decomposition

The POD is a statistical technique based on the decomposition of spatio-temporal
data into a linear combination of orthonormal basis functions or POD modes (Φ)
and their corresponding orthogonal temporal coefficients (α). The POD was applied
to the bottom-fixed cylinder motion to uncover large-scale coherent trajectories from
the modulated response (Chapter 5.3.1). A review of this technique can be found
in [6, 13]. Here, a brief description of the snapshot POD method ([93]) is given in
the context of cylinder displacement data [65].

The spatiotemporal cylinder position can be expressed as xc(td) = (x(td), y(td)),
where (td) = [1, 2, ..., N ] and N is the number of data points. The fluctuating part
of the cylinder displacement x′

c is separated in k vectors of equal size L(KL = N)

and arranged in matrix form as

X =

[
x′
1 x′

2 ... x′
N

y′1 y′2 ... y′N

]
(B.1)

Each column in Eq. B.1 is considered a snapshot and represents the trajectory
traced by the cylinder over K data points. The dimensions of the assembled matrix
are 2LMxN .

As explained before, POD decomposes the fluctuating part of the cylinder dis-
placement into an orthonormal subspace of spatial POD modes Φn and their time-
dependent coefficients αn

x
′

c(td) =
N∑

n=1

αn(t)Φn (B.2)

where N is the number of snapshots. POD is based on a two-point correlation tensor
that finds the pairs of Φn and αn that best fit X in a least-square sense∥∥∥∥∥X −

N∑
n=1

αnΦn

∥∥∥∥∥ (B.3)
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where ‖·‖ is the L2-norm. Eq. B.3 is solved through the solution of the following
eigenvalue problem

CΦn = λnΦn (B.4)

where C = XTX is the autocovariance matrix, and λn are the eigenvalues.
Then, the temporal coefficients can be obtained as

αn = ΦT
nXn (B.5)

The eigenvalues of the POD modes represent the contribution of mode n to the
total variance of X. The POD modes are arranged in descending order based on
their corresponding λn to identify dominant patterns in the data. The relative of
the i-th POD modal value is defined as

εi =
λi∑N

n=1 λn

(B.6)

Considering Eq. B.2, X can be approximated to a desired degree of accuracy by
using POD modes with the highest relative energy εi, where i < N . This low-order
representation is commonly used to discover large-scale coherent patterns from a
particular dataset (e.g., [11]).



Appendix C

Time-averaged flow velocity fields

The wake dynamics behind a vibrating cylinder were characterised using one vertical
PIV plane across the cylinder centre and different horizontal PIV planes measured
along the structural span. The time-averaged streamwise U and crossflow V velocity
fields, as well as the root-mean-square (rms) of the fluctuating streamwise rms(u′)

and crossflow rms(v′) velocities, were used to calculate several statistics, such as
wake width, recirculation region, and vortex strength. Details of the experimental
conditions and results can be found in Chapters 5 and 6 for the bottom-fixed and
pivoted cylinders, respectively.
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C.1 Bottom-fixed cylinder
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Figure C.1: Velocity field at z = 20D and Ur = 4.5. Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.2: Velocity field at z = 20D and Ur = 5.15. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.3: Velocity field at z = 20D and Ur = 6.04. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.4: Velocity field at z = 20D and Ur = 7.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.5: Velocity field at z = 34D and Ur = 4.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.6: Velocity field at z = 34D and Ur = 5.15. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.7: Velocity field at z = 34D and Ur = 6.04. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.8: Velocity field at z = 34D and Ur = 7.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.9: Velocity field at z = 52D and Ur = 4.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.10: Velocity field at z = 52D and Ur = 5.15. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.11: Velocity field at z = 52D and Ur = 6.04. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.12: Velocity field at z = 52D and Ur = 7.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.13: Velocity field at z = 60D and Ur = 4.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.14: Velocity field at z = 60D and Ur = 5.15. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.15: Velocity field at z = 60D and Ur = 6.04. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.16: Velocity field at z = 60D and Ur = 7.5. a) Time-averaged streamwise
(a) and crossflow (b) velocity. Root-mean-square streamwise (c) and crossflow (d)
velocity
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Figure C.17: Velocity field at z = 6D and Ur = 3. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.18: Velocity field at z = 6D and Ur = 3.8. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.19: Velocity field at z = 6D and Ur = 4.5. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.20: Velocity field at z = 6D and Ur = 5.2. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.21: Velocity field at z = 6D and Ur = 6. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.22: Velocity field at z = 6D and Ur = 6.7. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.23: Velocity field at z = 6D and Ur = 7.4. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.24: Velocity field at z = 6D and Ur = 8.3. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.25: Velocity field at z = 10D and Ur = 3. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.26: Velocity field at z = 10D and Ur = 3.8. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.27: Velocity field at z = 10D and Ur = 4.5. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.28: Velocity field at z = 10D and Ur = 5.2. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.29: Velocity field at z = 10D and Ur = 6. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.30: Velocity field at z = 10D and Ur = 6.7. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.31: Velocity field at z = 10D and Ur = 7.4. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)
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Figure C.32: Velocity field at z = 10D and Ur = 8.3. a) Time-averaged streamwise
velocity U . a) Time-averaged streamwise velocity U . c) rms(u′). d) rms(v′)



Appendix D

Numerical model: testing and
results

D.1 Sensitivity analysis

The numerical VIV model described in Chapter 7.2.2 was tested under changes in
mesh resolution and compared with an experimental low m∗ζ two degree-of-freedom
cylinder [41]. The mass-spring-damping model was solved using the Runge-Kutta
fourth-order algorithm, whereas the solution of the flow equations was performed
using different spatial discretisation schemes. These parameters were selected based
on previous numerical studies [45, 35, 105]. This section analyses the effects of
different integration schemes on the cylinder response.

The case study selected for the sensitivity analysis followed the parameters de-
scribed in Chapter 7.3. As a summary, the numerical model consists on a two
degree-of-freedom elastically mounted cylinder with D = 38.1 mm, fnw = 0.4 Hz,
m∗ = 2.6, and ξ = 0.00361 [41]. The cylinder was tested under increasing velocity
conditions (Chapter 3.3.1). The inflow velocity started at Ur = 2 and was slowly
increased for 50 seconds until Ur = 6. The time step was ∆t = 0.0015 s, ensuring a
CFL number of less than one.
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D.1.1 Equation of motion
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Figure D.1: Effect of the integration scheme on the streamwise (up) and crossflow
(down) cylinder response. a,c) NB14 (black) vs NB16 (dashed grey). b,d) RK4
(black) vs RK5 (dashed grey)

The mass-spring-damping model was solved using the Runge-Kutta fourth-order
algorithm (Chapter 4.3). Previous studies considered alternative integration schemes
to solve the equation of motion and estimate the cylinder displacement, velocity
and acceleration at each numerical time step (e.g., [32, 105]). The mass-spring-
stiffness model was solved using four integration schemes: Newmark-Beta constant
acceleration (NB14) [72], Newmark-Beta linear acceleration (NB16) [72], Runge-
Kutta fourth-order (RK4, Chapter 4.3), and Runge-Kutta fifth-order (RK5) [95].
Figure D.1 compares the streamwise and crossflow motion under the previously
described integration schemes. The results show an excellent agreement between
cylinder responses. The use of RK5 scheme leads to a slightly higher modulation in
the streamwise response and a 1.5% lower crossflow oscillation frequency than the
other integration schemes. Overall, these results show that the algorithm used to
solve the mass-spring-damping model plays a minimal role in the cylinder response
as long as the numerical time step is sufficiently low.
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D.1.2 Pressure-velocity coupling
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Figure D.2: Effect of the pressure-velocity coupling scheme on the streamwise (up)
and crossflow (down) cylinder response. a,c) SIMPLE (black) vs SIMPLEC (dashed
grey). b,d) PISO (black) vs Coupled (dashed grey)

The discretisation of the momentum equation requires the interpolation of the
pressure and velocity from their cell-centre to their respective face values. Four
discretisation schemes available in Fluent [22] were tested: SIMPLE, SIMPLEC,
PISO, and Coupled. The Runge-Kutta fourth-order algorithm was used to solve
the mass-spring-damping model. Figure D.2. The Coupled scheme led to slight
instabilities near the peak of the oscillatory motion, especially in the streamwise
direction. Still, the results show an excellent agreement across cylinder responses
independent of the pressure-velocity coupling scheme used.

D.1.3 Numerical vs experimental results

The cylinder trajectory and time-history displacement of the numerical model (Chap-
ter 7) are presented in this section. The tested three-dimensional force correction
factor was CF = [0.6, 0.8, 1, 1.2, 1.4]. The experimental results are also plotted for
comparison purposes.
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Figure D.3: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 2.95.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude
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Figure D.4: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 3.74.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude



APPENDIX D. NUMERICAL MODEL: TESTING AND RESULTS 162

−0.4 0 0.4

−1

0

1

x/D

y
/D

(a) CF = 0.6

0 10 20 30
−0.4
−0.2

0
0.2
0.4

tfnw

x
/D

0 10 20 30
−1

−0.5
0

0.5
1

tfnw

y
/D

(b) CF = 0.6

−0.4 0 0.4

−1

0

1

x/D

y
/D

(c) CF = 0.8

0 10 20 30
−0.4
−0.2

0
0.2
0.4

tfnw

x
/D

0 10 20 30
−1

−0.5
0

0.5
1

tfnw

y
/D

(d) CF = 0.8

−0.5 0 0.5

−1

0

1

x/D

y
/D

(e) CF = 1

0 10 20 30
−0.5

0
0.5
1

tfnw

x
/D

0 10 20 30
−2
−1
0
1
2

tfnw

y
/D

(f) CF = 1

−0.5 0 0.5

−1

0

1

x/D

y
/D

(g) CF = 1.2

0 10 20 30
−1

−0.5
0

0.5
1

tfnw

x
/D

0 10 20 30
−2
−1
0
1
2

tfnw

y
/D

(h) CF = 1.2

−0.5 0 0.5

−1

0

1

x/D

y
/D

(i) CF = 1.4

0 10 20 30
−1

−0.5
0

0.5
1

tfnw

x
/D

0 10 20 30
−2
−1
0
1
2

tfnw

y
/D

(j) CF = 1.4

Figure D.5: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 4.55.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude
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Figure D.6: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 5.21.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude
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Figure D.7: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 6.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude
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Figure D.8: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 6.69.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude
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Figure D.9: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 7.42.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude
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Figure D.10: Cylinder trajectory (a,c,e,g,i) and time-history (b,d,f,h,j) at Ur = 8.29.
Red: Numerical results. Horizontal black line: experimental maximum crossflow
and streamwise amplitude

D.2 Self-developed codes

D.2.1 Structural motion tracking

The Lucas-Kanade and Forward-Backward techniques for structural motion tracking
were implemented in Python 3. The first code of this section is the Lucas-Kanade
function and is called by the second code, the Forward-Backward tracking technique.
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Lucas-Kanade function

import cv2
import numpy as np
import matp lo t l i b . pylab as p l t
import s c ipy . i o as s i o
from i t e r t o o l s import product

global start_draw
global x0
global y0
x0 = 0
y0 = 0

def parameters ( n in i t , nend , step , window , intwx , intwy , des , i n i p o i n t ) :

#Input
## Name images
F i r s t=True
nameroot=’B ’
ext=’ .bmp ’

p0=i n i p o i n t

## Lucas−Kanade parameters
lk_params = dict ( winSize = ( intwx , intwy ) , maxLevel = 4 , c r i t e r i a = (

cv2 .TERM_CRITERIA_EPS | cv2 .TERM_CRITERIA_COUNT, 10 , 0 . 03 ) )

pf =[ ]
e r r o r =[ ]

def getxy ( event , x , y , f l a g s , param) :

global start_draw
global x0
global y0

i f ( event == cv2 .EVENT_LBUTTONDOWN) :
start_draw = True
x0 , y0 = x , y
print ( ”Centroid ␣ po s i t i o n ␣ (x , y ) : ”+str ( x0 )+” , ”+str ( y0 ) )

e l i f ( event==cv2 .EVENT_LBUTTONUP) :
start_draw = False

cv2 . c i r c l e ( ima1 , ( x0 , y0 ) , 1 , (0 , 255 , 0) , −1)
cv2 . r e c t ang l e ( ima1 , ( x0−window , y0−window) , ( x0+window , y0+

window) , ( 0 , 0 , 255 ) ,1 )
cv2 . imshow ( ’ image ’ , ima1 )
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for i in range ( n in i t , nend+1−step , s tep ) :

#Load images
nameima1 = ”%s%s%s ” % ( nameroot , format ( i , ”d” ) , ext )
print ( nameima1 )
nameima2 = ”%s%s%s ” % ( nameroot , format ( i+step , ”d” ) , ext )
ima1 = cv2 . imread (nameima1 )
ima2 = cv2 . imread (nameima2 )
ima1bw = cv2 . cvtColor ( ima1 , cv2 .COLOR_BGR2GRAY)
ima2bw = cv2 . cvtColor ( ima2 , cv2 .COLOR_BGR2GRAY)

s i z e=ima1 . shape

#Open f i r s t image and s e l e c t i n i t i a l t a r g e t
i f i==n i n i t and des==0:

over lay=ima1 . copy ( )
cv2 . namedWindow( ’ image ’ )
cv2 . setMouseCallback ( ’ image ’ , getxy )

cv2 . imshow ( ’ image ’ , ima1 )
cv2 . waitKey (0)
cv2 . destroyWindow ( ’ image ’ )
xv=np . l i n s p a c e ( x0−window , x0+window , window+1)
yv=np . l i n s p a c e ( y0−window , y0+window , window+1)
p0=np . f l o a t 3 2 ( l i s t ( product (xv , yv ) ) )

#Execut ing the o p t i c a l f l ow c a l c u l a t i o n s us ing opencv
p1 , st , e r r = cv2 . calcOpticalFlowPyrLK ( ima1bw , ima2bw , p0 , None

, ∗∗ lk_params )

i f F i r s t :
pin=p0
pf . append ( pin )
pf . append ( p1 )
e r r o r . append ( e r r )
F i r s t=Fal se

else :
p f . append ( p1 )
e r r o r . append ( e r r )

p0=p1

return pf

Forward-Backward implementation

import cv2
import numpy as np
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import matp lo t l i b . pylab as p l t
import s c ipy . i o as s i o
import s c ipy . ndimage
from i t e r t o o l s import product
import os
import l k_o r i g i n a l

#Input
## Folder
flowname=[ ’ fo ldername ’ ]
expname=[ ’ expname ’ ]
i n i d i r=os . getcwd ( )

#I n i t i a l and f i n a l frame
n i n i t=1
nend=1100

##Tracking parameters
s tep=1 #Skip frames ?
window=15 #I n t e r r o g a t i o n window s i z e
intwx=10 #I n t e r r o g a t i o n window s i z e
intwy=10 #I n t e r r o g a t i o n window s i z e
p e r c e n t i l e =[5 ,95 ] #Lowest FB−error p e r c e n t i l e

for f l ow in range ( 0 , 1 ) :
for exp in range ( 0 , 1 ) :

d i f f =[ ]
BF=[ ]

#Open f o l d e r wi th f i l e s
Folder=flowname [ f low ]+expname [ exp ]
r e s u l tFo l d e r=’ re su l t_ ’+Folder
os . chd i r ( Folder )

#Ca lcu l a t e LK forward
des=0
forward=lk_o r i g i n a l . parameters ( n in i t , nend , step , window , intwx ,

intwy , des , [ ] )

#Ca lcu l a t e LK backwards
p0=forward [ −1]
des=1
step=−1
backward=lk_o r i g i n a l . parameters ( nend , n in i t −2, step , window , intwx ,

intwy , des , p0 )
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s tep=1

#Ca lcu l a t e the d i f f e r e n c e between the forward and backward
c a l c u l a t i o n s

for nframes in range ( n in i t −1,nend , s tep ) :
d i f f . append ( forward [ nframes ]−backward [ nend−nframes −1])
BF. append ( backward[−nframes ] )

#Separate the d i f f e r e n c e in X and Y components .
dim=np . shape ( backward )
d i f f x=np . z e ro s ( [ dim [ 0 ] , dim [ 1 ] ] )
d i f f y=np . z e ro s ( [ dim [ 0 ] , dim [ 1 ] ] )
xfd=np . z e r o s (dim [ 0 ] )
yfd=np . z e r o s (dim [ 0 ] )

for pointpos in range (0 , dim [ 1 ] ) :
for nframes in range (0 , dim [ 0 ] ) :

d i f f x [ nframes , po intpos ]= d i f f [ nframes ] [ po intpos
] [ 0 ]

d i f f y [ nframes , po intpos ]= d i f f [ nframes ] [ po intpos
] [ 1 ]

#Ca lcu l a t e FB−error and s e l e c t the i n i t i a l po in t s us ing a
p e r c e n t i l e c r i t e r i a

f i r s t d i f f=np . sq r t ( ( d i f f x [ 0 ] ) ∗∗2+( d i f f y [ 0 ] ) ∗∗2)
l im i t=np . p e r c e n t i l e ( f i r s t d i f f , [ p e r c e n t i l e [ 0 ] , p e r c e n t i l e [ 1 ] ] )
pos=np . where ( f i r s t d i f f <l im i t [ 0 ] )

#Separate the s e l e c t e d s i g n a l s in t h e i r corresponding X and Y
components .

fx=np . z e ro s ( [ dim [ 0 ] , np . shape ( pos [ 0 ] ) [ 0 ] ] )
fy=np . z e ro s ( [ dim [ 0 ] , np . shape ( pos [ 0 ] ) [ 0 ] ] )

for nframes in range (0 , dim [ 0 ] ) :
for s e l e c t i o n in range (0 , np . shape ( pos [ 0 ] ) [ 0 ] ) :

fx [ nframes , : ]= forward [ nframes ] [ pos ] [ : , 0 ]
fy [ nframes , : ]= forward [ nframes ] [ pos ] [ : , 1 ]

#Mean s i g n a l removal
fx=fx−np .mean( fx , 0 )
fy=fy−np .mean( fy , 0 )

#Estimate the r e s u l t i n g t r a c k i n g motion as the median o f the
s e l e c t e d s i g n a l s .

for nframes in range (0 , dim [ 0 ] ) :
xfd [ nframes ]=np . median ( fx [ nframes , : ] )
yfd [ nframes ]=np . median ( fy [ nframes , : ] )
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#Save data
s i o . savemat ( Folder+’_raw ’+’ . mat ’ ,{ ’ x ’ : xfd , ’ y ’ : yfd })
s i o . savemat ( Folder+’_data_Lk .mat ’ ,{ ’ pos ’ : pos , ’ forward ’ : forward ,

’ backward ’ : backward , ’ f i r s t d i f f ’ : f i r s t d i f f })
s i o . savemat ( Folder+’_data_NCC.mat ’ ,{ ’max_val ’ : max_val , ’posNCC ’ :

posNCC})

D.2.2 User Defined Function

A User Defined Function (UDF) is a function that can be dynamically loaded into
Ansys Fluent to enhance its capabilities. The code is written in C and must be
compiled in Fluent for its use.

Cylinder model

#include ” udf . h”
#include ”mem. h”
#include ”para . h”
#include ”math . h”

/∗ Cyl inder zone ID∗/
#define zoneID_cyl inder 16

FILE ∗outNB ,∗outRK ,∗ fp ;
stat ic f loat x ;
stat ic f loat xRK;
stat ic f loat vx ;
stat ic f loat vxRK;
stat ic f loat ax ;

stat ic f loat y ;
stat ic f loat yRK;
stat ic f loat vy ;
stat ic f loat vyRK;
stat ic f loat ay ;

stat ic f loat fx_prev ;
stat ic f loat fy_prev ;
stat ic f loat delta_x ;
stat ic f loat delta_y ;
stat ic f loat delta_xRK ;
stat ic f loat delta_yRK ;

stat ic f loat vxRK_prev ;
stat ic f loat vyRK_prev ;
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/∗Read data from . cas . gz f i l e ∗/
DEFINE_RW_FILE(reader_RK4_NB14 , fp )
{
#i f !RP_NODE
f s c a n f ( fp , ”%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ␣%f ” , &x ,

&vx , &ax , &y , &vy , &ay , &xRK, &vxRK, &yRK, &vyRK, &fx_prev , &
fy_prev , &delta_x , &delta_y , &delta_xRK , &delta_yRK , &vxRK_prev , &
vyRK_prev) ;

Message ( ”READER: ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣
%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f \n” ,x , vx , ax ,
y , vy , ay , xRK, vxRK, yRK, vyRK, fx_prev , fy_prev , delta_x ,

delta_y , delta_xRK , delta_yRK , vxRK_prev , vyRK_prev) ;
#endif

host_to_node_float_6 (x , vx , ax , y , vy , ay ) ;
host_to_node_float_4 (xRK,vxRK,yRK,vyRK) ;
host_to_node_float_2 ( fx_prev , fy_prev ) ;
host_to_node_float_6 ( delta_x , delta_y , delta_xRK , delta_yRK , vxRK_prev ,

vyRK_prev) ;

}

/∗ Execute func t i on at the end o f each t imes t ep ∗/
DEFINE_EXECUTE_AT_END( grid_update_position_RK4_NB14 )
{

/∗ Cyl inder v a r i a b l e s ∗/
r e a l diameter = 0 . 0381 ;
r e a l fna = RP_Get_Real( ” fna ” ) ;
r e a l fnw = RP_Get_Real( ” fnw” ) ;
r e a l dens i ty = RP_Get_Real( ” dens i ty ” ) ;
r e a l l ength = 0 . 3 8 1 ;
r e a l water_depth = 0 . 3 8 1 ;
r e a l f_corr = water_depth/ length ;
r e a l mass_ratio = RP_Get_Real( ”mass_ratio ” ) ;
r e a l damping_ratio = RP_Get_Real( ” damping_ratio ” ) ;

r e a l f luid_mass = 0.25∗M_PI∗pow( ( diameter ) ,2 ) ∗ dens i ty ;
r e a l sol id_mass = 0.25∗M_PI∗pow( ( diameter ) ,2 ) ∗ dens i ty ∗mass_ratio ;
r e a l total_mass = RP_Get_Real( ” total_mass ” ) ;
r e a l k = 4∗pow( (M_PI∗ fna ) ,2 ) ∗( total_mass ) ;
r e a l c = 4∗damping_ratio∗M_PI∗ fna ∗( total_mass ) ;

/∗ Force c a l c u l a t i o n . Force = F_pressure + F_viscous ∗/
r e a l fy = 0 . 0 ;
r e a l fvy = 0 . 0 ;
r e a l fx = 0 . 0 ;
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r e a l fvx = 0 . 0 ;

#i f !RP_HOST
Thread ∗ thread ;
Domain ∗d = Get_Domain (1 ) ;
thread = Lookup_Thread (d , zoneID_cyl inder ) ;
face_t f ;
r e a l NV_VEC(A) ;

begin_f_loop ( f , thread )
{
i f (PRINCIPAL_FACE_P( f , thread ) )
{

fvy = F_STORAGE_R_N3V( f , thread ,SV_WALL_SHEAR) [1 ]∗ −1;
fvx = F_STORAGE_R_N3V( f , thread ,SV_WALL_SHEAR) [0 ]∗ −1;
F_AREA(A, f , thread ) ;

/∗ Force c a l c u l a t i o n wi th a depth o f 1m∗/
fx += F_P( f , thread ) ∗A[ 0 ] + fvx ;
fy += F_P( f , thread ) ∗A[ 1 ] + fvy ;
}

}
end_f_loop ( f , thread )

fx = PRF_GRSUM1( fx ) ;
fy = PRF_GRSUM1( fy ) ;

#endif

node_to_host_real_2 ( fx , fy ) ;

/∗ Numerical methods ∗/
/∗Numark−be ta ∗/
r e a l beta = 1/4 .0 f ;
r e a l gamma = 0 . 5 ;
r e a l term0 = (1/( beta ∗dtime∗dtime ) ) ∗( total_mass ) + (gamma/( beta ∗dtime ) )

∗c ;
r e a l term1 = (1/( beta ∗dtime ) ) ∗( total_mass ) + ( (gamma/beta )−1)∗c ;
r e a l term2 = ((1/(2∗ beta ) )−1)∗( total_mass ) + dtime ∗( (gamma/(2∗ beta ) )−1)

∗c ;

r e a l Kef fx = k + term0 ;
r e a l Ref fx = fx ∗ f_corr + term0∗x + term1∗vx + term2∗ax ;
r e a l Keffy = k + term0 ;
r e a l Ref fy = fy ∗ f_corr + term0∗y + term1∗vy + term2∗ay ;

r e a l dx = Ref fx /Keffx − x ;
r e a l dy = Ref fy /Keffy − y ;
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r e a l vprev_x = vx ;
r e a l aprev_x = ax ;
vx = (gamma/( beta ∗dtime ) ) ∗dx + (1−(gamma/beta ) ) ∗vx + dtime∗(1−(gamma

/(2∗ beta ) ) ) ∗ax ;
ax = (1/( beta ∗dtime∗dtime ) ) ∗dx − (1/( beta ∗dtime ) ) ∗vprev_x − ((1/(2∗ beta

) )−1)∗ax ;
x = x + dtime∗vprev_x + dtime∗dtime ∗0.5∗((1 −2∗ beta ) ∗aprev_x + 2∗ beta ∗ax

) ;
delta_x = dtime∗vprev_x + dtime∗dtime ∗0.5∗((1 −2∗ beta ) ∗aprev_x + 2∗ beta ∗

ax ) ;

r e a l vprev_y = vy ;
r e a l aprev_y = ay ;
vy = (gamma/( beta ∗dtime ) ) ∗dy + (1−(gamma/beta ) ) ∗vy + dtime∗(1−(gamma

/(2∗ beta ) ) ) ∗ay ;
ay = (1/( beta ∗dtime∗dtime ) ) ∗dy − (1/( beta ∗dtime ) ) ∗vprev_y − ((1/(2∗ beta

) )−1)∗ay ;
y = y + dtime∗vprev_y + dtime∗dtime ∗0.5∗((1 −2∗ beta ) ∗aprev_y + 2∗ beta ∗ay

) ;
delta_y = dtime∗vprev_y + dtime∗dtime ∗0.5∗((1 −2∗ beta ) ∗aprev_y + 2∗ beta ∗

ay ) ;

/∗Runge−ku t t a 4 th order ∗/
vxRK_prev = vxRK;
vyRK_prev = vyRK;
r e a l funcx1 = vxRK;
r e a l funcx2 = ( fx_prev∗ f_corr − c∗vxRK − k∗xRK) / total_mass ;
r e a l Kx0 = funcx1 ;
r e a l Mx0 = funcx2 ;
r e a l Kx1 = ( funcx1 + dtime∗Mx0∗0 . 5 ) ;
r e a l Mx1 = ( funcx2 − ( c/ total_mass ) ∗0 .5∗ dtime∗Mx0 − (k/ total_mass ) ∗0 .5∗

dtime∗Kx0) ;
r e a l Kx2 = ( funcx1 + dtime∗Mx1∗0 . 5 ) ;
r e a l Mx2 = ( funcx2 − ( c/ total_mass ) ∗0 .5∗ dtime∗Mx1 − (k/ total_mass ) ∗0 .5∗

dtime∗Kx1) ;
r e a l Kx3 = ( funcx1 + dtime∗Mx2) ;
r e a l Mx3 = ( funcx2 − ( c/ total_mass ) ∗dtime∗Mx2 − (k/ total_mass ) ∗dtime∗

Kx2) ;

xRK = xRK + dtime ∗(Kx0 + 2∗Kx1 + 2∗Kx2 + Kx3) /6 .0 f ;
vxRK = vxRK + dtime ∗(Mx0 + 2∗Mx1 + 2∗Mx2 + Mx3) /6 .0 f ;

r e a l funcy1 = vyRK;
r e a l funcy2 = ( fy_prev∗ f_corr − c∗vyRK − k∗yRK) / total_mass ;
r e a l Ky0 = funcy1 ;
r e a l My0 = funcy2 ;
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r e a l Ky1 = ( funcy1 + dtime∗My0∗0 . 5 ) ;
r e a l My1 = ( funcy2 − ( c/ total_mass ) ∗0 .5∗ dtime∗My0 − (k/ total_mass ) ∗0 .5∗

dtime∗Ky0) ;
r e a l Ky2 = ( funcy1 + dtime∗My1∗0 . 5 ) ;
r e a l My2 = ( funcy2 − ( c/ total_mass ) ∗0 .5∗ dtime∗My1 − (k/ total_mass ) ∗0 .5∗

dtime∗Ky1) ;
r e a l Ky3 = ( funcy1 + dtime∗My2) ;
r e a l My3 = ( funcy2 − ( c/ total_mass ) ∗dtime∗My2 − (k/ total_mass ) ∗dtime∗

Ky2) ;

yRK = yRK + dtime ∗(Ky0 + 2∗Ky1 + 2∗Ky2 + Ky3) /6 .0 f ;
vyRK = vyRK + dtime ∗(My0 + 2∗My1 + 2∗My2 + My3) /6 .0 f ;

delta_xRK = dtime ∗(Kx0 + 2∗Kx1 + 2∗Kx2 + Kx3) /6 .0 f ;
delta_yRK = dtime ∗(Ky0 + 2∗Ky1 + 2∗Ky2 + Ky3) /6 .0 f ;
fx_prev = fx ;
fy_prev = fy ;
}

/∗Impose c y l i n d e r d i sp lacement ∗/
DEFINE_GRID_MOTION( grid_motion_cylinder_RK4_NB14 , domain , dt , time ,

dtime2 )
{
/∗ Transfer r e s u l t to the dynamic mesh∗/
r e a l NTsel = RP_Get_Real( ”rk4_or_nb14” ) ; /∗RK4 = 1; NB14 = 2∗/
r e a l dof = RP_Get_Real( ” dof ” ) ; /∗one dof = 1; two dof = 2∗/

#i f !RP_HOST
Thread ∗ t ;
t = DT_THREAD( dt ) ;
face_t fm ;
Node ∗Ncyl inder ;
int n ;

SET_DEFORMING_THREAD_FLAG(THREAD_T0( t ) ) ;

begin_f_loop ( fm , t )
{
f_node_loop ( fm , t , n )
{
Ncyl inder = F_NODE(fm , t , n ) ;

i f (NODE_POS_NEED_UPDATE( Ncyl inder ) )
{

i f ( NTsel == 1)
{
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i f ( dof == 1)
{
NODE_Y( Ncyl inder ) += delta_yRK ;
}
i f ( dof == 2)
{
NODE_X( Ncyl inder ) += delta_xRK ;
NODE_Y( Ncyl inder ) += delta_yRK ;
}
}

i f ( NTsel == 2)
{
i f ( dof == 1)
{
NODE_Y( Ncyl inder ) += delta_y ;
}
i f ( dof == 2)
{
NODE_X( Ncyl inder ) += delta_x ;
NODE_Y( Ncyl inder ) += delta_y ;
}
}
NODE_POS_UPDATED( Ncyl inder ) ;
}
}
}
end_f_loop ( fm , t )
#endif
}

/∗Impose c y l i n d e r d i sp lacement ∗/
DEFINE_GRID_MOTION(grid_motion_oring_RK4_NB14 , domain3 , dt3 , time3 ,

dtime3 )
{
/∗ Transfer r e s u l t to the dynamic mesh∗/
r e a l NTsel = RP_Get_Real( ”rk4_or_nb14” ) ; /∗RK4 = 1; NB14 = 2∗/
r e a l dof = RP_Get_Real( ” dof ” ) ; /∗one dof = 1; two dof = 2∗/

#i f RP_NODE
Thread ∗ t3 ;
t3 = DT_THREAD( dt3 ) ;
face_t fm3 ;
Node ∗Ncyl inder3 ;
int n3 ;

SET_DEFORMING_THREAD_FLAG(THREAD_T1( t3 ) ) ;
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begin_f_loop ( fm3 , t3 )
{
f_node_loop ( fm3 , t3 , n3 )
{
Ncyl inder3 = F_NODE( fm3 , t3 , n3 ) ;

i f (NODE_POS_NEED_UPDATE( Ncyl inder3 ) )
{
i f ( NTsel == 1)
{
i f ( dof == 1)
{
NODE_Y( Ncyl inder3 ) += delta_yRK ;
}
i f ( dof == 2)
{
NODE_X( Ncyl inder3 ) += delta_xRK ;
NODE_Y( Ncyl inder3 ) += delta_yRK ;
}
}

i f ( NTsel == 2)
{
i f ( dof == 1)
{
NODE_Y( Ncyl inder3 ) += delta_y ;
}
i f ( dof == 2)
{
NODE_X( Ncyl inder3 ) += delta_x ;
NODE_Y( Ncyl inder3 ) += delta_y ;
}
}
NODE_POS_UPDATED( Ncyl inder3 ) ;
}
}
}
end_f_loop ( fm3 , t3 )
#endif
}

/∗ Save data from . cas . gz f i l e ∗/
DEFINE_RW_FILE(writer_RK4_NB14 , fp )
{
#i f !RP_NODE
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f p r i n t f ( fp , ”%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f
␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ” , x , vx , ax , y , vy
, ay , xRK, vxRK, yRK, vyRK, fx_prev , fy_prev , delta_x , delta_y ,
delta_xRK , delta_yRK , vxRK_prev , vyRK_prev) ;

Message ( ”WRITER: ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣
%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f ␣%.12 f \n” ,x , vx , ax ,
y , vy , ay , xRK, vxRK, yRK, vyRK, fx_prev , fy_prev , delta_x ,

delta_y , delta_xRK , delta_yRK , vxRK_prev , vyRK_prev) ;
#endif
}
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