
 

 

 

 
Modelling and Identification of 
Interaction Effects for Stability 

Analysis in LVDC Power Networks 

 

 

A thesis submitted for the degree of Doctor of Philosophy 

Department of Electronic and Electrical Engineering 

Faculty of Engineering 

The University of Sheffield 

 

Nickolay Nesterov 

 

 

June-2020 

 

 





 

 

Abstract 

Power electronic converters play a vital role in the transition towards low voltage 

(LV)DC distributed power systems (DPSs) with the proliferation of renewables and end-

use electrification. These systems are prone to oscillations from small disturbances due to 

interactions occurring between sources and loads — power electronic converters, with their 

tight regulation, introduce a negative impedance characteristic that may destabilize poorly 

damped oscillatory modes of the network. Recent evidence of the existence of modal inter-

actions that may occur between loads gives rise to additional complexity in dynamic 

behaviour. As DPSs are subject to many inherent uncertainties and a wide range of operating 

conditions, different interaction phenomena may influence the small-signal dynamics in a 

nonlinear manner. Hence, with highly uncertain systems, extrapolating behaviour based on 

ideal and nominal models can lead to serious qualitative errors. 

The thesis focuses on the modelling and small-signal analysis of LVDC DPSs with 

uncertainties arising from parameter variability. A new automated tool, SymMIAL, is de-

veloped to help synthesise high-fidelity state-space system models based on a modular 

approach. Symbolic linearisation is performed to ensure models represent small-signal dy-

namics over all possible operating points. Probabilistic variance-based sensitivity analysis 

(VBSA) is proposed to quantify the influence of parameters and their interactions over the 

full-range of uncertainties. 

Using this novel methodology and newly developed modelling tools, the impact of 

uncertain parameters on the small-signal dynamics of LVDC DPSs can now be comprehen-

sively investigated. A test DC power system was constructed featuring two parallel filter-

converter subsystems fed from a common point through a resistive line. For the first time, 

an apparent dichotomy in the effect of source-side line resistance is revealed through small-

signal sensitivity analysis — line resistance is shown to contribute to both positive and neg-

ative damping to filter modes, depending on precise operating conditions.  

To resolve this contention, linear mode coupling theory is applied to system state-

space models. Contribution of line resistance to damping of modes is quantified and appor-

tioned to different interaction phenomena. Positive damping occurs through source-load 

interaction; negative damping occurs through modal interaction. Analytical results based on 

theoretical models are validated against measured data from experimental hardware LVDC 

DPSs and simulations. 
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Chapter 1 

Introduction 

1 Introduction 

Decarbonisation of energy systems is at the forefront in the fight against the grow-

ing threat of climate change, rising global energy demands, and emerging risks to energy 

security. To limit the use of conventional fossil fuels, modern electrical power systems 

are integrated with localised small-scale power generators based on renewable energy 

sources [1]. Likewise, more efficient energy use at the consumer-end is being achieved 

with the electrification of multiple sectors including industry, residential, and transport 

[1], [2]. These changes, made possible by the technological innovations in power elec-

tronic converters, are radically altering the composition of power networks from both the 

supply-side and load-side. As a consequence of these now highly distributed technolo-

gies, the conventional paradigm of top-down centralised power systems (CPS) is shifting 

towards one based on distributed power systems (DPS) comprising of localised genera-

tors and loads with various power electronic-based interfaces [3]. Furthermore, the use 

of low-voltage direct current (LVDC) distribution systems are gaining considerable in-

terest owing to their numerous benefits of increased efficiency, utility, and ease of control 

compared to traditional AC-based systems [4], [5]. However, the widespread adoption 

of LVDC DPSs is predicated on their reliable operation. Ensuring stability is increasingly 

challenged due to poor power network damping, complex nonlinear behaviour of power 

electronic-based interfaces, and the potential interactions that may occur between various 

power system components. This is further complicated by the wide range of operating 
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conditions and uncertainties that traditional power system modelling and analysis tech-

niques often neglect.  

This chapter introduces the research topic, provides context, and defines the scope 

of the thesis. Section 1.1 establishes the present-day transition towards power electronics 

dominated DPS and the potential for wider adoption of LVDC DPSs. Section 1.2 sets out 

the main factors impacting the stability of these systems and the challenge in modelling 

and small-signal stability analysis considering parametric uncertainties. Here, the current 

research gaps are introduced to the reader. Subsequently, Section 1.3 defines the central 

research aims and lists the central objectives of the research. Finally, Section 1.4 outlines 

the contents and original contributions of each of the chapters. 

 

1.1 Transformation of Modern Electrical Power 

Systems 

The development and operation of energy systems are increasingly required to ad-

dress challenges concerning environmental sustainability, energy demands, and security 

of the energy supply. A brief overview of this is discussed (Section 1.1.1) which explain 

subsequent developments relating to electrical power systems: the growth of renewable 

energy generation and increased electrification enabled by power electronic converters. 

The widespread adoption of these new technologies calls for more efficient and versatile 

designs for modern power networks—DPS are introduced as an alternative to conven-

tional top-down CPS (Section 1.1.2). In particular, LVDC DPS are emerging as a 

promising solution for an increasing number of applications (Section 1.1.3). 

 

1.1.1 Addressing energy sustainability in the 21st Century 

Energy systems are vital for modern society. Our ability to harness energy drives 

the development and the prosperity of societies through activities in areas such as agri-

culture, industry, transport, information technology, and the built environment. 

Ultimately, progress in these areas is directly linked to human development and 

people’s quality of life. It is projected that global energy demand from all primary sources 

will grow approximately by 27% from 2018 to 2040 (~163,000 to 207,000 TWh), with 
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demand coming primarily from population growth, urbanisation in developing nations, 

and rising incomes [6]. At present, the energy demand from domestic, industrial and ser-

vices sectors is expected to be met with traditional sources such as natural gas and coal. 

Similarly, energy demand from the transport sector will be met with liquid fuels such as 

petroleum. This, however, comes at a profound cost to the environment, placing our fu-

ture prosperity at risk.  

The adverse environmental impact of fossil fuels has been a focus of global con-

cern for many decades. Rising temperatures and sea levels with an increased frequency 

of extreme weather events are forecasted which may lead to scarcity of food and water, 

loss of housing and livelihoods, mass migration, ultimately leading to lower global stand-

ards of living. To address these climate risks, a widespread international effort has 

focused on introducing sustainable policies that limit anthropogenic greenhouse gas 

emissions, in particular carbon dioxide. Although conventional fuels have enabled past 

growth, future development must prioritise sustainability through alternative energy 

sources and improved in energy conversion, distribution, and energy use.  The modern 

concept of sustainable development was initially proposed in 1987 in the Brundtland 

Report, titled Our Common Future, as ‘development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs’ [7]. 

Following the publication of the Brundtland Report, there has been an increased 

political imperative to adopt policies for future sustainability relating to economic, social 

and the environmental factors globally [7]. International agreements to mitigate climate 

change through targeted reductions in greenhouse gas emissions have been established, 

most notably the United Nations Framework Convention on Climate Change (1992), the 

Kyoto Protocol (1997), and the Paris Agreement (2015). 

The introduction of sustainability policies has caused energy systems of today to 

have drastically different requirements compared to those of the 20th century. The evolv-

ing trade-offs between cost, greenhouse gas emissions, and energy security have an 

impact on our existing systems of production, conversion, and consumption of energy. 

Such processes are likely to be dominated by electrical systems in the future. As such, 

improvements to power generation capacity, low-carbon technologies, efficiency, and 

design of electrical power networks present opportunities towards achieving sustainabil-

ity. 
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The United Kingdom is a representative example of a developed economy that is 

actively reducing its primary energy dependence away from conventional fuels. The an-

nual energy flows of the UK (2018) are depicted in Figure 1.1, showing the primary 

energy resources directed towards different sectors for end-use. The overwhelming ma-

jority of primary energy demand is currently met by fossil fuels, mostly petroleum and 

natural gas. The transportation sector is the largest consumer of these fuels, with auto-

motive vehicles accounting for the majority, followed by aerospace and marine, while 

rail has for the most part already electrified. Within the domestic sector, fossil fuel con-

sumption is used principally for household heating. Achieving sustainability will be 

achieved in no small part from the decarbonisation of heat and transport. 

Electrification of these end-uses is a key strategy towards limiting greenhouse gas 

emissions. However, full electrification in sectors presently under-electrified will impose 

significant new pressures on existing grid infrastructure. Nevertheless, decarbonisation 

via electrification also inevitably implies that the electricity generation is likewise decar-

bonised. 

 
FIGURE 1.1 Sankey diagram of UK energy flows showing the transformation of primary 

energy resources to end-use sectors (all units in TWh). (Data from the Digest of UK 

Energy Statistics 2018 [8].) 
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1.1.2 Distributed Power Systems (DPS): a paradigm shift to-

wards decentralisation 

Conventional AC power distribution, as represented in Figure 1.2, involves gener-

ating power in large capacity power plants. Long-distance power distribution via 

networks of power lines and substations until termination at individual consumers at a 

low voltage1 level. This top-down structure is increasingly challenged by the emergence 

and proliferation of multiple localised power generators enabled by so called “distributed 

energy” technologies such as solar PV, wind turbines, energy storage devices, and vari-

ous engines. These ultimately influence how modern electrical power systems are 

designed, operated, and maintained.  

A promising type of DPS is called a microgrid, originally proposed in [9] as a 

building block for future decentralized power systems. The term microgrid has no 

 

1 Depending on context, the term low voltage (LV) can refer to different voltage levels. The IEC 

definition for LV and extra-LV is anything less than 1kV AC RMS or 1.5kV DC [123]. 

 

FIGURE 1.2 Overview of the structure of conventional large-scale centralised power 

system (CPS) with electrical grid based on interconnected transmission and 

distribution networks. 
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standardised definition and can encompass many types of power systems with their de-

sign and implementation differing based on specific local requirements. Figure 1.3 

represents possible microgrids or DPSs. In general, microgrids can be characterized by 

having many smaller local generation units and local loads (and increasingly energy stor-

age) distributed throughout the system. These modular systems must be able to operate 

independently from a centralised grid, known as standalone or islanding mode, and man-

age energy flows intelligently. Examples include power generation/delivery in remote 

areas and transportation applications (e.g., aerospace and marine). Some microgrids, 

however, are designed to be interfaced to a central grid system as shown in Figure 1.3. 

The point of interconnection between the bulk grid and microgrid services the transition 

between islanding and grid-connected modes, providing the benefits of both a centralised 

and a distributed system [10], [11]. In this regard, future DPSs need not displace the 

status quo as they can exist concurrently with existing networks. 

Microgrids can be perceived as an extension of the traditional low voltage distrib-

uted power systems seen in telecom, data centres, and transportation. With the integration 

 

FIGURE 1.3 Example of AC and DC DPS architectures and microgrids. 
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of modern and newly economically feasible technologies resulting from advanced power 

electronics converters, increased renewable generation, decentralised energy storage, and 

improved control, the grid's structure does not need to follow past conventions. Conse-

quently, great interest is shown from both the public and private sector in microgrids for 

new residential and industrial applications which account for the majority of electrical 

power consumption in the world. Major key drivers for their use are their advantage in 

efficiency, resiliency, and availability [1], [3], [4], [12]—ultimately addressing the issue 

of sustainability. 

DPSs can also be viewed in the context of power supply designs used in electronic 

equipment and embedded applications. Figure 1.4 shows two possible configurations of 

a power supply based on a CPS and DPS architecture. The centralised power supply in 

Figure 1.4(a) contains multiple conversion stages within a single unit to provide the re-

quired power/voltage levels to individual loads; while Figure 1.4(b) shows a front-end 

supply regulating the voltage of an intermediate bus that feeds multiple point-of-load 

converters. 

As is the case with microgrids, the DPS concept in power supplies offers numerous 

benefits compared to traditional CPSs. Individual power converters can be standardised 

to specific input/output voltages and power levels thereby reducing engineering effort. 

An intermediate bus enables the distribution of power to high current loads located near 

the point-of-load. This often simplifies the cable and PCB track requirements by mini-

mising system 𝐼2𝑅 losses, improving efficiency, as well as easing thermal management. 

It is possible to improve fault tolerance and reliability, for example in Figure 1.4(b) 

 

FIGURE 1.4 (a) Power supply topology as a CPS: single converter supplying multiple 

outputs to individual loads; (b) Power supply topology as a DPS: power distribution 

through an intermediate bus Vbus supplying multiple point-of-load converters. 
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multiple redundant upstream converters used in parallel to supply the same bus so that 

failure in one converter does not lead to failure of the complete power system. 

The paradigm shift towards decentralisation through the use of DPSs is underway 

in grid infrastructure and many other sectors such as transportation. This introduces nu-

merous new degrees of freedom into the design of modern power systems in terms of 

topologies and power distribution characteristics—for example, voltage levels and the 

choice between AC or DC power distribution. 

 

1.1.3 The case for Low-Voltage Direct-Current (LVDC) DPS 

The dominance of AC over DC in power distribution and transmission networks is 

largely due to historical factors of the early 20th century, with the contest often referred 

to as the “battle of the currents” [4]. DC-based power systems were constrained by the 

complexity of DC motors and the inability of DC-DC voltage conversion, whereas the 

development of asynchronous motors and the simplicity of transformers facilitated the 

spread of AC-based power systems. Nevertheless, DC continued and grew with the use 

of variable speed motor drives in rail and industrial applications. 

While legacy effects favour AC and has been adequate for the needs of the 20th 

century, modern 21st century developments provide a plethora of increasingly compelling 

arguments for future (LV)DC DPSs [4], [5], [11], [13]: 

➢ Local renewable energy generation is typically DC-based: 

▪ Photovoltaic (PV) cells generate DC output, 

▪ Wind turbines are variable speed generators that feed an intermediate DC-

link within the power electronic interfaces, 

▪ Energy storage systems are commonly DC (e.g., batteries and fuel cells). 

➢ Simplification in control due to lack of reactive and harmonic power flows, and no 

need for synchronisation efforts. 

➢ Electrification enabled by power electronics—a trend towards greater use and 

quantity of DC loads (e.g., electronics, variable speed drives, and lighting systems). 

➢ Already widely used in transportation (i.e., maritime, automotive, and aerospace). 

➢ Elimination of inverters and rectifiers to reduce cost, and increase efficiencies by 

reducing AC-DC conversion losses. 
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Today, DC systems are dominant at the very-HV range (e.g., HVDC power trans-

mission) and the extra-LV range (e.g., embedded applications). Recent years has seen a 

gradual convergence towards adoption of DC to applications between these two ex-

tremes—into the LV range—with the changing nature of electrical generation and 

ongoing electrification in end-use. LVDC can better meet energy system objectives by 

enabling modular and decentralized power architectures. As such, modern LVDC DPSs 

are becoming an increasingly important innovation towards sustainability. 

To facilitate a widespread adoption of LVDC DPS, the design of these systems 

must ensure stable operation during disturbances over a wide range of operating condi-

tions. This involves system modelling, stability analysis, and assessment of the impact 

of uncertainty—establishing the broader context for the thesis. The challenges associated 

with these issues are introduced in Section 1.2 with the research scope outlined in Section 

1.3. 

 

1.2 Challenges for LVDC Distributed Power Sys-

tems 

In many applications, the adoption of LVDC DPS with the ever-increasing prolif-

eration of power-electronic converters presents several challenges to both system design 

and operation. These power systems are subject to several conflicting objectives, includ-

ing cost, performance, reliability, while their operation must contend with tighter margins, 

harsher environments, and function for longer. Nevertheless, LVDC DPS must still en-

sure the reliable delivery of electrical power with stable operation over a wide range of 

operating conditions and multiple uncertainties. The aim of this section is to establish the 

major themes and challenges to set the stage for the main research questions and thesis 

objectives (Section 1.3).  

This section is structured as follows. Firstly, we provide an introductory overview 

on the topic of power system stability, comparing traditional AC DPS with DC DPS 

stability. LVDC DPSs are increasingly prone to small-signal oscillatory instability—

where small-signal stability is concerned, the constant power load (CPL) behaviour of 
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power electronic interfaces and the declining damping of the resonant characteristics of 

distribution networks are proving critical.  

Secondly, we introduce briefly the two distinct interaction mechanisms that may 

influence small-signal dynamics: source-load interactions and modal interactions. Both 

types of interactions occur as a result of the properties of linearised power systems and 

arise as a result of the interconnection of various power system components. Source-load 

interactions emerge from the feedback properties of cascaded power converters, whereas 

modal interactions are from the internal resonant properties of the network. While stabil-

ity is studied under small-signal conditions, the impact of the two interaction phenomena 

on small-signal dynamics can be highly nonlinear over parameter variations and uncer-

tain operating points in LVDC DPSs. 

Thirdly, power systems need to be modelled appropriately to study the effect of 

interactions between subsystems and parameters in detail. Small-signal analysis requires 

linear approximations of nonlinear power systems at various steady-state operating con-

ditions. Therefore, in order to properly account for uncertainty and changing operating 

points, nonlinear modelling suitable for symbolic linearisation is to be addressed. The 

two prevalent techniques for small-signal analysis are discussed: impedance-based fre-

quency response analysis and state-space eigenvalue analysis. 

Finally, often overlooked in literature are the inherent parametric uncertainties pre-

sent in LVDC DPSs. Deterministic approaches to small-signal stability assessment are 

often no longer appropriate due to the profound impact uncertainty has the operating 

point and thus the small-signal dynamics. Introduced here are global sensitivity analysis 

techniques that are promising for assessing the impact of parameters over the full range 

of uncertainties. 

 

1.2.1 Power system instability: a background 

A reliable supply of electrical power to loads requires the stable and predictable 

operation of power systems. Modern DC systems face many of the same challenges as 

traditional AC systems. We first begin with a brief introduction to instability phenomena 

from the AC power system perspective. Increased susceptibility to stability problems in 

these systems can be attributed to changes to the structure of the network through the 
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proliferation of power electronic interfaces and distributed generation. Here, two factors 

are of interest—instability in grid frequency due to lower inertia, and rotor angle insta-

bility from poorly damped electromechanical oscillations. While the emphasis is not on 

AC systems, the instability phenomena observed in DC systems are conceptually analo-

gous. With changing system characteristics caused by the transition towards LVDC DPSs 

dominated by power electronics, the network is becoming far more susceptible to voltage 

instability following small disturbances. Factors that impact this type of instability are 

primarily from the poor damping of the electrical networks and the negative impedance 

characteristics of the CPLs.  

The following definition is used to describe power system stability [14]: “Power  

system  stability  is  the  ability  of  an  electric  power system, for a given initial operating 

condition, to regain a state  of  operating  equilibrium  after  being  subjected  to  a 

physical disturbance, with most system variables bounded so that practically the entire 

system remains intact.” 

Power system instabilities that can occur are then further classified into three cat-

egories [14]: the nature of instability indicated by the main system variable (e.g. voltage, 

frequency, rotor angle); the magnitude of disturbance (small-signal disturbances or large-

signal disturbance); and the time frame required to observe instability (short-term or 

long-term). 

Traditional large-scale AC power systems are reliant on the combined inertia of 

interconnected synchronous generators to maintain long-term frequency stability. Syn-

chronous generators store kinetic energy within their rotating mass to deliver an inertial 

response when an imbalance occurs between mechanical and electromagnetic torque in 

the electrical grid, as represented by the well-known swing equation [15]. As generators 

are synchronously linked, any deviation in the synchronous speed of a single machine is 

opposed by the total combined inertia of the remaining generators. Sufficient power sys-

tem inertia is required to maintain an active power balance with nominal grid frequency.  

The power system inertia also supports synchronism of the rotor angle dynamics 

between multiple generators. Following grid disturbances, the significant inertia prevents 

large deviations in grid frequency which provides sufficient time for other control algo-

rithms to respond in rebalancing rotor angle swings. While excitation systems with fast 

response provide synchronising torque to improve transient rotor angle stability, an 



CHAPTER 1 

12 

insufficient damping torque is known to cause small-signal electromechanical oscilla-

tions [16], [17]. The frequency and damping characteristics associated with these 

oscillations are described in terms of power system modes [18]. These modes arise from 

the complex interactions occurring between various components of the power system, 

including mechanical characteristics of the generators, electrical characteristics of the 

network, and controller dynamics of active devices [19]. Weak coupling between differ-

ent synchronous generators from a change of network structure can cause the poor 

damping of certain modes and lead to unstable rotor oscillations. While a detailed inves-

tigation of small-signal rotor angle stability is outside of the scope of the present work, 

analysis techniques in literature are relevant here. In particular, those relating to modal 

interactions introduced later in Section 1.2.2. 

With the transition to AC DPS, lower levels of overall power system inertia and 

damping are expected as large synchronous generators are displaced by non-synchronous 

generators. These smaller, power electronics-based generators do not inherently contrib-

ute rotational inertia or damping to the system—photovoltaics have no mechanical 

inertia, and variable speed wind turbines are decoupled from the grid through an inter-

mediate DC-link. A weak grid, characterised by low inertia, increases the rate of change 

of frequency following a shift in generation-load balance. Therefore, systems with insuf-

ficient inertia may result in excessive frequency deviations after disturbances. Grid 

frequencies exceeding rated limits can lead to the poor performance of connected devices 

and may result in long-term frequency instability and failure. 

Poor damping of oscillations in AC DPS results in small-signal instability through 

the loss of generator synchronicity with the network. While in conventional power sys-

tems low-frequency oscillations are typically the result of insufficient damping torque of 

electric machines, AC DPSs are dominated by power electronic converters where no 

physical rotor exists. Here, grid synchronism is performed through embedded control 

methods, commonly based on PLLs including VSGs-based converters and synchronvert-

ers [20]. Undamped oscillations due to poorly tuned control parameters becomes a new 

concern for system stability. PLLs modify the dynamics of power converters and may 

introduce a negative damping component thus destabilising the system. Unlike the low-

frequency instability of conventional AC systems, higher frequency resonance 
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oscillations are known to occur from dynamic interactions between power filters, para-

sitic feeder capacitances, and controls systems [21]–[23], [23]. 

The principles of DC power systems are highly analogous to those based on AC. 

Instead of AC frequency as the main variable for (active) power balance, DC systems 

rely on regulating voltage to manage power variations. While instantaneous frequency 

response is provided by the stored kinetic energy in the inertia, DC grid voltage is sup-

ported by the stored electric potential energy in capacitance—both inertia and 

capacitance are used to prevent large changes in frequency and voltage following a dis-

turbance, respectively. Disturbances that cause excessive voltage deviations in DC 

networks are known to be an issue for the operation of sensitive loads [24]. Such disturb-

ances typically arise from discrete events including step changes in load demand or fault 

conditions. Weak DC network conditions—characterised by low capacitance—are espe-

cially susceptible. Source converters may have an insufficient transient response time to 

maintain a nominal voltage, and this sudden change may result in loss of output regula-

tion in downstream converters. This transient behaviour is associated with large-signal 

instabilities. 

Modern DC DPSs, much like AC DPS, are becoming increasingly vulnerable to 

instability due to undamped oscillations following small disturbances. Contributing to 

small-signal instability are the poor damping of resonant circuits in the distribution net-

work (including power lines, and input and output filters of switching converters) and 

the introduction of CPL dynamics of tightly regulated point-of-load converters. A cas-

caded system is formed when an upstream feeder is interfaced to a downstream load by 

connecting their output and input terminals, respectively. This resembles a feedback con-

nection between two subsystems where the combined closed-loop behaviour can be fully 

determined by their transfer characteristics as viewed from the interface terminals. None-

theless, small-signal stability can be more easily tested by applying the classical single-

loop Nyquist criterion where the open-loop transfer function2 is the input/output imped-

ance ratio between the subsystems. Below we provide a brief discussion on source-side 

and load-side characteristics responsible for the susceptibility of LVDC DPSs to small-

 

2 The open-loop transfer function is often referred to as the minor-loop gain when discussing cas-

caded power systems, originating from the seminal works by Middlebrook et al. [36], [37]. 



CHAPTER 1 

14 

signal instability, while the underlying mechanisms of interaction and stability analysis 

are introduced in more detail in Section 1.2.2. 

Poor damping in LVDC DPS is an unwanted side-effect of ongoing trends affect-

ing the electrical properties of these networks. In essence, a passive power distribution 

network can be described as an electrical circuit comprised of a combination of re-

sistances, capacitances, and inductances. These elements form a series of resonant 

circuits that can approximate the network characteristics in terms of the damping coeffi-

cient and frequency of one or more modes. The damping coefficient governs whether 

oscillations occur following a disturbance. The most basic configuration of a damped 

circuit is the RLC filter. We can expect far less damping in future networks by consider-

ing the relative changes to R, L, and C as systems evolve. 

Firstly, LVDC DPSs are increasingly characterised by their small system capaci-

tances. Capacitors are an essential part in applications dominated by power electronics 

and are typically located at both the output and input terminals of converters. They serve 

two main functions: energy storage and filtering. Large capacitances (provided by what 

is often referred to as bulk or reservoir capacitors) provide stabilizing energy to prevent 

sudden deviation in voltage following transients and to filter low-frequency ripple. This 

smooths the voltage locally providing enough time for converter feedback loops to ade-

quately regulate output. In contrast, filtering at higher frequency (using decoupling 

capacitors) is also required to prevent the harmonics generated by the switching converter 

from reaching power lines. Likewise, these high-frequency filters prevent any harmonics 

already present in power lines from affecting the power converter. These capacitors are 

typically paired with an inductor to form of a 2nd order filter for greater attenuation of 

unwanted frequencies with minimal DC losses.  

The design of power electronic converters in recent years has focused on reducing 

the size of passive components, including capacitors, to achieve higher power densities. 

A prime example of this is in transport applications due to limited onboard space and 

stringent payload requirements. Switching frequencies have steadily increased over the 

years thereby reducing the voltage ripple enabling a lower DC bulk capacitance and both 

input and output terminals. Additionally, harmonic filters may be designed with higher 

cut-off frequencies to minimize their footprint through smaller inductors and/or capaci-

tors. While the capacitance may be optimised for density in individual power converters, 
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this comes at an expense to the damping characteristics of the modes of the wider power 

system network. Assuming all other parameters are held constant, this results in a shift 

towards a less stable operating region leading to larger voltage overshoots and potentially 

resonance. 

Secondly, damping of oscillations is mainly governed by resistive circuits such as 

snubbers. However, resistive losses are undesirable and are typically minimised to max-

imise efficiency. This has led to a vast body of literature on the design and 

implementation of passive and active control methods to introduce damping by reshaping 

the impedances of power converters [25]–[29].  

Lastly, in real-world LVDC DPSs, sources and loads are interconnected via induc-

tive lines—a DC distribution bus that is entirely capacitive is unfeasible. Often LVDC 

networks are modular and power paths are through cables over a long distance. Together 

with reduced capacitive and resistive characteristics, inductive properties may begin to 

dominate. Due to the fact that both inductance and resistance scale linearly with cable 

length, it is possible for the power network to inherently have low damping.  

Another factor is the introduction of CPLs. An increasingly prevalent class of elec-

trical and electronic systems operate on either a fixed voltage or fixed current with power 

conversion achieved through tight regulation of switching power converters. To maintain 

conversion with high efficiency the voltage/current should vary inversely: for example, 

the converter draws less current as the source voltage increases and vice versa.  There-

fore, within the regulator bandwidth, these load converters appear to exhibit CPL 

behaviour with negative incremental resistance to the source-side network [29]–[31]. 

This effectively adds a negative damping characteristic to the system. 

In literature, much of the early work in analysing the effect of tightly-controlled 

converters have used the ideal model of a CPL and its linearised equivalent [32], [33]. 

While this typically indicates the worst-case condition, the clear disadvantage of this 

approach is that this yields overly-conservative analysis and does not show the impact of 

controller interactions [19], [31], [34]. Detailed models are required to investigate the 

impact on system behaviour.  

The proliferation of power electronic interfaces in LVDC power systems with 

stringent requirements for efficiency and power density is leading to less overall damping 

of power distribution networks. Likewise, point-of-load regulators appear as CPLs which 
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introduce negative damping. Together, these two factors increasingly challenge the sta-

bility of these networks. Of particular interest is the stability of LVDC DPS when 

subjected to continual small disturbances (such as random noise, parameter variations, 

ambient temperature, and minor load changes). Excessive oscillations are well known to 

trigger protection devices, damage components, result in overheating, and reduce system 

lifespan. 

 

1.2.2 Interactions influencing small-signal stability 

In the previous section, we introduced two critical ongoing developments in LVDC 

DPSs that will impact small-signal dynamics. First, the resonant properties of power net-

works often become poorly damped. Second, converters based on power electronics 

typically behave as CPLs, introducing negative damping. Together, these factors are well 

known to have a significant impact on the interactions between power system compo-

nents that may lead to excessive oscillations and instability. 

The focus of this thesis is on the small-disturbance stability of DC power systems. 

Here, instability is associated with a negative damping of modes such that the system 

variables associated with those modes (i.e., the voltages and currents) will begin to self-

oscillate with exponential behaviour following small-signal perturbations. Chapter 2 in-

troduces this phenomenon in more detail. 

LVDC DPSs are composed of many interconnected subsystems. The dynamic re-

sponse of the complete system is a function of the individual subsystems and the 

interactions that occur between subsystems. Here, we make a distinction between two 

types of interactions that may contribute to the combined dynamics: source-load inter-

actions and modal interactions. 
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1.2.2.1 Source-load interactions 

Any DC power system, as shown in Figure 1.5, can be divided into a cascaded 

source and a load subsystem. Dynamics of this cascaded system is a function of the in-

teraction between the source and load—through closed-loop feedback (see Section 2.3). 

Load-side dynamics can excite oscillatory modes in the source-side circuit. As such, we 

will refer to this phenomenon as source-load interaction. 

The source-side subsystem in Figure 1.5 may have natural modes of oscillation 

from its inherent circuit characteristics. Considering a simple low-pass LC filter, the volt-

age and current will oscillate when inductive reactance (XL = 𝜔𝐿 ) and capacitive 

reactance (XC = 1/𝜔𝐶) are of equal magnitude (XL = XC) at a resonant natural frequency 

(ω𝑛), with solution given in (1.1): 

 

ω𝑛 = 1/√𝐿𝐶 (1.1) 

In a practical filter, the presence of a resistive component in the circuit (e.g., in-

ductor’s parasitic DC resistance) results in harmonic oscillations decaying over time. In 

an RLC circuit, the resistance contributes to damping (𝜁) and also reduces the peak res-

onant frequency the oscillation. In the underdamped case, the dynamics of the circuit 

represented by 𝑥(𝑡) will have solution of the form shown in (1.2): 

 
𝑥(𝑡) = 𝑎1𝑒

𝜆1𝑡 + 𝑎2𝑒
𝜆2𝑡 (1.2) 

Where, 

 

𝜆1,2 = 𝜔𝑛(−𝜁 ± 𝑗√1 − 𝜁2) (1.3) 

The constants 𝑎1 and 𝑎2 are initial conditions, 𝜁 is the damping ratio, and natural 

frequency is 𝜔𝑛 as before. 

 
FIGURE 1.5 Circuit representation of a DC system with source and load subsystem. 
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The addition of a load at the output of the source-side circuit forms a cascaded 

closed-loop system. Compared to an unterminated source, the closed-loop feedback with 

the load influences the characteristics of the oscillatory modes. It has been well demon-

strated in literature that the addition of active loads, with fast controller dynamics, (i.e. 

CPLs)  present as a negative input impedance at the output of poorly damped networks 

(i.e. filters) which can form a unstable cascaded system [33], [35]–[37]. This indicates 

that the critical mode’s damping ratio has shifted—damping has become negative and 

thus the system is pushed into instability. 

With source-load interaction, the combined system dynamics are changed with the 

damping and frequency of a single (local) mode. This is in contrast to modal interactions, 

which will be introduced next, where the dynamic properties of multiple modes are cou-

pled together. 

1.2.2.2 Modal interactions 

Another type of interaction is referred to as modal interaction, in which two or 

more oscillatory modes become coupled thereby having mutually dependent properties. 

Frequency and damping characteristics are therefore no longer independent between the 

modes. 

When multiple modes at similar frequencies exist in the system, they may interact 

with each other and exchange energy. This is represented by Figure 1.6.  Subsystems 

 

FIGURE 1.6 Circuit representation of a DC system with modal coupled subsystems. A 

coupling factor σ influences energy exchange between subsystem A and B. 
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may be coupled through some parameter(s), or coupling factor σ, which can alter the 

damping properties, potentially establishing conditions for sustained oscillations. These 

modal interactions have been known cause unexpected small-signal characteristics in 

power systems over parameter variations [17], [38], [39], and potentially problematic to 

the reliable operation of future LVDC DPSs. 

 Modal interaction phenomena occur in multiple other engineering fields, including 

mechanics [40], electromagnetics [41], acoustics [42]. A vast body of literature suggests 

that modal interaction phenomena may have a significant impact on response dynamics 

and stability in sensitive systems [21], [23], [43]–[47]. Sometimes this phenomenon is 

referred to in literature as eigenvalue interaction, resonance interaction, mode coupling. 

One of the well-known examples of modal coupling phenomenon in traditional 

power system is the condition of subsynchronous resonance. The mutual exchange of 

energy below the synchronous system frequency through coupling between turbine gen-

erators and natural modes of the grid has been observed to result in unstable oscillations 

[48]. These so called ‘inter-area’ modes pose risk if poorly damped [49], [50] and have 

received increased attention in the power systems community in the past decades. 

Existing literature on LVDC DPSs has often been limited to investigating and mit-

igating instability due to only source-load interactions. Often network dynamics are 

neglected or lumped together by modifying impedance to reduce to a simplified model. 

This ignores the impact of changing the operating point on the rest of the system. In a 

realistic LVDC DPSs, there a very real possibility that coupling occurs between multiple 

modes, as indicated by  [26], [51]. These interactions are typically encountered in power 

systems as resonances, with an exchange of energy between different subsystems where 

multiple natural frequencies coalesce. 

Recent evidence suggests that the small-signal stability of LVDC DPSs can be sig-

nificantly influenced by both source-load interactions and modal interactions [26], [51]. 

The impact and the relationship between these interactions on small-signal dynamics 

must therefore to be understood and quantified. A more detailed theoretical preliminary 

on modal interactions is given in Section 2.4. 
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1.2.3 System modelling and stability analysis techniques 

Modern LVDC DPS architectures are characterized by the interconnection of mul-

tiple components across distribution lines, potentially including a wide array of different 

power electronic-based interfaces, generators, and loads. These devices have a funda-

mentally nonlinear behaviour. While all components may be designed to be individually 

stable, the interconnection between them forms a circuit with feedback. As a result, the 

combined system dynamics is determined by a nonlinear combination of the individual 

component dynamics and their interactions.  

The study of LVDC DPS stability relies on a suitable representation of the real-

world behaviour using mathematical modelling, such that system’s dynamic phenomena 

under consideration is adequately captured. Small-signal analysis assesses power sys-

tem’s dynamic behaviour around a known equilibrium point following small 

perturbations. In practice, following a disturbance the system will either converge back 

to the previous (small-signal stable) equilibrium or diverge with increasing amplitude 

(small-signal unstable). Under these conditions, a linear approximation of the system is 

sufficient, and enables the use of a wide variety of mathematical methods developed for 

linear time invariant (LTI) systems, with some shown in Figure 1.7. 

While system dynamics under small perturbations can be assessed using a linear-

ised system model, the model itself varies nonlinearly with changes to the individual 

components, their parameters, and operating conditions. As a result of interactions, the 

dynamic characteristics of the aggregate system are a nonlinear combination of the indi-

vidual components. Furthermore, modern switching converters have complex internal 

dynamics and fast controls that have been shown to interact and impact power network 

stability [19], [52], especially those DPSs consisting of multiple nodes and uncertainties 

[53], [54]. 

The dynamic behaviour under large disturbances is referred to as large-signal sta-

bility analysis. Stability can be assessed with a wide range of parameter variation and 

operating points [55]–[57]; however, this also includes stability after step changes such 

as start-up/shut down of loads and any faults conditions. While large-signal stability can 

be assessed, identification and quantification of interaction phenomena based on nonlin-

ear models can be highly demanding in terms of modelling effort and computational cost 
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[58]. Likewise, robust stability assessment based on a µ-analysis enables the inclusion of 

multiple uncertain parameters on system dynamic behaviour to determine robust stability 

margins [53], [54], [59]–[61]. These methods are based on computation of bounds on µ, 

and cannot be used to investigate interaction effects.  

Understanding how interactions contribute to nonlinear behaviour becomes funda-

mental to avoiding unstable power system oscillations. Continual effort has been made 

for methods for stability and interaction analysis, and often these benefit from the devel-

opment of nonlinear averaged models that a can used to derive the linear model at given 

operating parameters and inputs [62], [63].  

 

FIGURE 1.7 An overview of modelling and stability analysis methods used for power 

electronics-based LVDC DPSs. Those highlighted in blue are within the scope of this 

thesis. 
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As illustrated in Figure 1.7, linear stability analysis techniques for power systems 

fall into two broad categories: impedance-based frequency domain analysis and state-

space eigenvalue analysis. 

Impedance-based methods, based on the application of the Nyquist stability crite-

rion, are commonly used in literature to assess the small-signal stability of LVDC DPSs 

and to formulate design criteria that guarantee stability. Originally introduced to study 

cascaded DC-to-DC converter systems by Middlebrook et al. [36], these considered 

source-load impedance interactions at an interface. Referring to source-load system in 

Figure 1.5, the Nyquist stability criterion can be applied to the open-loop transfer func-

tion, the ratio between the output and input impedances (𝑍𝑜𝑢𝑡(𝑠)/𝑍𝑖𝑛(𝑠)); further detail 

is given in Section 2.3. To guarantee that the open-loop transfer remains stable following 

connection Middlebrook et al. proposed the sufficient condition of |𝑍𝑖𝑛(𝑠)| ≫

|𝑍𝑜𝑢𝑡(𝑠)|[37]; while many others developed less conservative design-oriented stability 

criteria [64]–[66]. Application of impedance-based analysis, however, is not prevalent 

for medium to large power systems. 

Impedances of subsystems are often determined by practical measurement. Con-

verters are considered as state-less, ‘black-box’, two-port networks [33]; without needing 

parametric modelling or detailed knowledge of internal structure of these circuits. These 

measured models can be easily combined to find stability margin or be used to define 

boundary conditions for any additional subsystem. However, parameter variations cause 

the small-signal dynamics to vary nonlinearly with operating point [20], typically requir-

ing a parameterised time-domain nonlinear model to calculate the impedances over 

possible operating points [63]. Determining parameter influence on states and small-sig-

nal interaction phenomena via impedance-based methods becomes a challenge, 

providing limited insight in practical uncertain systems. 

A state-space representation can be used to model large power systems, with the 

small-signal dynamics assessed via eigenvalue analysis. This method decomposes a com-

bined linear system of differential equations, represented by equation (1.4), into a set of 

eigenvalues. Eigenvalues denote the oscillatory modes and are calculated by solving the 

characteristic equation in (1.5).  

 
𝑑𝑥(𝑡)/dt = 𝐴𝑥(𝑡) (1.4) 
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(λI − A)𝜓 = 0 (1.5) 

Where 𝐴 is the linearised system state matrix, 𝑥 are the state variables, 𝜓 is the 

right eigenvector. The damping ratios and frequencies of each of the eigenvalue modes 

are defined previously in (1.3). 

The advantage of eigenvalue analysis is that calculations in in (1.5) are straightfor-

ward [67], provided the system has been appropriately linearised at a given operating 

point. Unlike impedance-based methods, which depends on analysis at a given interface, 

the eigenvalue-based approach finds the finds the frequency and damping factor (and 

therefore stability) of all modes in the entire system. This is particularly important for 

LVDC DPSs where critical destabilising modes are not known a priori. Furthermore, 

participation analysis may be used to identify of which states variables influence which 

modes, and vice versa. 

 The trajectory of eigenvalues movement under parameter variations may be stud-

ied, showing the changes to shape of modes [19], [68]. In power systems these parameter 

variations may represent load changes, component aging, environmental temperatures, 

and other uncertainties. If and when the locus of eigenvalues crosses into the positive 

right-half plane, then the power system is unstable under small-signal conditions. 

The challenge in applying these techniques to LVDC DPSs is the effort and com-

plexity of modelling. The full system model of a LVDC DPS is formed by the 

interconnection of many individually modelled lower-order subsystems. The subsystems, 

often power electronics based, have nonlinear dynamics over a wide range of operating 

points therefore requiring detailed (nonlinear) modelling. Conventional approaches typ-

ically linearise subsystem models prior to combining [19], [69]. However, linearisation 

requires knowing the precise operating point which can only be determined from the 

dynamics of the full, combined system. As such, stability and interaction analysis of a 

single linear model under nominal conditions becomes highly constrained when consid-

ering uncertainty. 
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1.2.4 Identification of interactions in the presence of  

uncertainties 

When analysing the stability and interaction dynamics of power systems, it is con-

venient to assume that models, regardless of their fidelity, are a precise representation of 

real behaviour. In reality, however, uncertainties are unavoidable. This is a particular 

problem for future LVDC DPSs, with highly variable system conditions, proliferation of 

intelligent power electronic converters, harsh environments, and often an evolving topol-

ogy over time. 

Today, engineers need new methods to examine a vast number of possible operat-

ing conditions to determine the likelihood of poorly damped or unstable modes due to 

increasing and complex interactions between subsystems. 

 

FIGURE 1.8 An overview of several methods used for sensitivity analysis. Methods 

that are highlighted in blue are within the scope of this thesis. 
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There are two major concepts when dealing with uncertainty. The first is uncer-

tainty quantification that aims to identify and characterise different forms of uncertainty 

in system models. These are comprised of aleatory (irreducible) uncertainties (e.g., ran-

dom variation over time due to environment, component aging effects), and epistemic 

(reducible) uncertainty (e.g., due to model simplification, inaccurate parameter data) 

[70]. Aleatory uncertainty will always be present and should be explicitly modelled, most 

commonly using probability distributions [71] or bounds [60]. Epistemic uncertainty can 

be reduced with model refinement and measurements, however, in practice this proves 

burdensome and still must be modelled with probabilities based on experimental data 

(e.g., component value tolerances). 

The second is concept is sensitivity analysis (SA). While precise quantification of 

uncertainty can be worthwhile, it is often unnecessary. Some system parameters might 

have little to no effect on the system’s dynamics over their possible values. SA aims to 

determine of the influence of different parameter values on a phenomenon of interest 

(e.g., system outputs or metrics such damping factor). Identification of the most influen-

tial parameters allows for better management of risks to stability of future LVDC DPSs. 

Figure 1.8 shows the key SA methods applied to power systems. Local SA methods 

are applied to a single (nominal) model and are based on calculating partial derivatives. 

Application of these methods to power systems are typically through participation factor 

analysis [19] and eigenvalue sensitivity analysis [72]. However, analyses of nominal 

models are not able to identify nonlinear effects and parameter interactions over a wide 

range of uncertainties. To overcome limitations of local SA, probabilistic global SA 

methods are proposed to evaluate the influence of parameters across their full (global) 

uncertain range [73].  

The method of Morris extends partial derivative calculations by a one-at-a-time 

variation of inputs to sample the system at different operating points [73]. While able to 

establish nonlinearity and interaction effects, the Morris method cannot discriminate be-

tween the two. To identify parameter interactions, variation of inputs over possible 

operating points is required, known as all-at-a-time variation. Alternative methods for 

this approach can be categorised as correlation-based, variance-based, and density-

based—as shown in Figure 1.8. A good candidate for application to LVDC DPSs is var-

iance-based sensitivity analysis (VBSA) [73]–[75], introduced in detail in Chapter 2.  



CHAPTER 1 

26 

1.3 Research Aims and Objectives 

The thesis focuses on the small-signal stability of power electronics dominated 

LVDC DPS and the analysis of interactions between system components. Compared to 

traditional power systems, DPSs are increasingly prone to small-signal instability risks 

with the introduction of fast control loop dynamics of power electronic interfaces inter-

acting with poorly damped oscillatory modes of the distribution network. These systems 

are subject to many inherent uncertainties and a wide range of operating conditions. In-

teractions occurring between components may influence the small-signal stability in a 

nonlinear manner, therefore extrapolating behaviour based on nominal models in no 

longer sufficient for highly uncertain systems. Therefore, the impact of interactions on 

stability assessment under uncertainty poses a significant challenge for analysis of LVDC 

DPS model behaviour. Identifying, quantifying, and understanding the nature of these 

interactions is an important first step towards further design, analysis, and system inte-

gration. 

A primary concern in the development of LVDC DPS is ensuring the stable steady-

state operation under small-signal disturbances and shifts in operating point due to para-

metric uncertainties. This work proposes the application of variance-based global 

sensitivity analysis to identify the critical parameters influencing interactions between 

components over the full range of uncertainties. We aim to develop suitable modelling 

and analysis tools that enable probabilistic analysis while incorporating detailed subsys-

tem models including controller dynamics. Additionally, we aim to validate modelling 

results through numerical simulation and laboratory experiments. 

A case example where interaction phenomena critically impact stability is the 

modal coupling between parallel-connected input filters of CPLs fed by a common point 

through a non-ideal source. In this configuration, the precise nature of the effect of 

source-side characteristics on modal coupling has been so far unaddressed. A contention 

exists in the state-of-art as to the effect of resistive characteristics at the source on system 

small-signal stability—an apparent dichotomy exists, previously demonstrating that re-

sistance can contribute to both an increase in stability margin [51] and a decrease in 

stability margin [26]. Following VBSA to find the critical factors affecting small-signal 

stability, we aim to address the modal coupling phenomena systematically through modal 
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analysis to finally resolve the contention. The developed tools and methodology are ex-

pected to find further application in the study of parameter uncertainties on interaction 

phenomena in LVDC DPSs. 

The following research objectives have been established to address the knowledge 

gaps and above-mentioned aims: 

1. To investigate the underlying mechanisms leading to small-signal instability in 

LVDC systems with high penetration of tightly-regulated power electronics in-

terfaces under weak DC distribution grid conditions. In addition, to compare the 

dynamics of ideal CPLs to the input impedance characteristics of point-of-load 

converters with output regulation. 

2. To establish a methodology for the analysis of parameter interactions and to de-

velop a set of practical tools for fast and accurate probabilistic small-signal 

analysis of LVDC DPSs. This enables evaluation of the novel technique of VBSA 

to study the influence of parametric uncertainties on system dynamics. 

a. Development of a MATLAB toolbox to automate the generation of non-

linear symbolic system models based on the input-output interconnection 

of different components; to create a library of component models to accu-

rately describe the dynamics of power electronics interfaces with detailed 

circuit representation and feedback controllers. 

b. Based on the generated system models, perform probabilistic small-signal 

stability analysis through linearisation and calculation of eigenvalues over 

multiple parameter uncertainties simultaneously. 

c. Identify the most influential parameters and their interactions through the 

computation of variance-based sensitivity indices. 

3. To investigate the dichotomy in the effect of source-side resistance on small-sig-

nal stability due to modal coupling between parallel-connected input filters 

feeding CPLs. 

a. Apply linear modal coupling theory to investigate the causal relationship 

of source-side resistance characteristics on the sensitivity and location of 

eigenvalues related to the resonant modes of input filters.  
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1.4 Main Contributions and Outline of the  

Thesis  

The dynamics and stability of future electrical networks is a major concern as they 

transition towards power electronics dominated DPS. The proliferation of renewable en-

ergy sources and electrification of end-uses has given rise to an increased interest in 

LVDC DPS. However, concerns exist over the stability in these systems as interactions 

between source and load subsystems which are known to occur. Power-electronic inter-

faced loads can introduce a destabilizing effect due to their negative impedance 

characteristics at the same time as the inherent damping of networks are weaker in DPS 

compared to traditional CPS.  

This thesis focuses on the issue of modelling and small-signal stability analysis of 

LVDC power networks with the practical consideration of parametric uncertainty. Exist-

ing literature has often neglected the effects of multiple changing parameters on the 

occurrence and impact of subsystem interaction on stability and dynamic performance. 

Probabilistic small-signal studies with high-fidelity models require new computationally 

efficient tools to be developed. This enables the study of parameter interactions through 

the application of VBSA allowing identification and quantification of interactions be-

tween two or more factors. One such interaction phenomenon, understudied in the 

literature, is the modal coupling phenomena between parallel loads influenced by the 

characteristics of supply-side interfaces.  

Chapter 2 begins with an overview of the distribution structures which provide the 

functions to create more complex LVDC DPSs—paralleling, cascading, stacking, 

source-splitting, and load-splitting. Using a basic model of two cascaded subsystems, the 

theoretical basis of the instability phenomenon in LVDC DPS is introduced. The feed-

back interaction between a downstream CPL and a poorly damped upstream circuit 

causing instability is analysed using impedance-based stability analysis. Also, the current 

state-of-the-art mitigation and control methods to address this problem are reviewed. 

Chapter 2.6 presents a systematic modelling framework for the detailed dynamic 

modelling of LVDC DPS suitable for small-signal analysis. Individual sources and loads 

(including controller dynamics), as well as the power distribution network, are all mod-

elled as individual subsystems. To account for parameter uncertainties, a wide range of 
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operating points, and nonlinear dynamics of various subsystems, the subsystems are rep-

resented by nonlinear ordinary differential equations in symbolic form. To construct the 

full nonlinear dynamic model of the system, each subsystem is combined based on input-

output connections. In contrast to previous approaches in the literature, symbolic linear-

isation is performed with steady-state equilibrium values calculated based on the 

nonlinear model allowing an analytically tractable and computationally efficient model 

for small-signal analysis applicable for probabilistic studies (in Chapter 5). A new 

MATLAB toolbox, called SymMIAL (Symbolic Model Interconnection and Linearisa-

tion), was developed to automate the modelling procedure, linearisation, and small-signal 

stability assessment. 

Modelling and small-signal stability analysis using eigenvalues are demonstrated 

on several examples small-scale LVDC DPS with results verified, through both time-

domain simulation studies and laboratory experiments, validating the applicability of the 

specified procedure. Additionally, individual subsystem impedances are derived with 

this framework which is used for stability analysis through the Nyquist stability criterion. 

Further results show that tightly controlled load-side converters can have their dynamic 

modelling reduced to ideal CPLs depending on controller parameters (used in Chapter 

6). 

Chapter 4 describes the experimental system and simulations used to validate the 

applicability of the modelling procedure (Chapter 2.6) and to verify the analysis of modal 

coupling phenomenon investigated in Chapter 6. A single active load comprised of an 

input LC filter with a tightly-controlled synchronous buck converter feeding a resistive 

load is presented. The description of the hardware implementation, digital controller de-

sign, and experimental measurements are given, and comparisons between theoretical 

models and experimental data are shown to closely match. Additionally, the experimental 

setup with the parallel operation of two active loads (studied in Chapters 5 and 6) is 

presented. 

Chapter 5 outlines the foundation for VBSA as a probabilistic framework for iden-

tifying and quantifying first-order and total-order effects of parameters, including 

parameter interactions, across all possible operating conditions. This work develops a 

novel procedure for applying VBSA to practical models of LVDC DPS to assist the 



CHAPTER 1 

30 

understanding of parameter effects on the small-signal stability. Advantages over con-

ventional sensitivity analysis based on single nominal models is discussed. 

VBSA is applied to a number of different LVDC DPS models to demonstrate its 

applicability. In cascaded systems with multiple loads, the influence of parameters dif-

fered substantially between scenarios. In the first case study, VBSA was used to identify 

and select the critical subsystems with load and controller bandwidth uncertainties in a 

network of N-parallel loads. In the second case study, VBSA was performed on two sys-

tems with identical structure but with different nominal values. Results indicated that the 

effectiveness of source-side resistive damping was reduced when resonant frequencies 

of load input filters are nominally matched. Interactions are present between parallel 

loads and source-side resistances, and these results are verified against conventional de-

rivative-based sensitivity analysis and discussed. For the first time, the apparent 

dichotomy in the effect of source-side line resistance is revealed: line resistance can act 

as both a stabilizing and destabilizing element on the overall system depending on oper-

ating conditions.   

Chapter 6 contains a detailed analysis of the effect of the resonant coupling phe-

nomenon between parallel loads reported in the literature (Chapter 2). Subsequently, it 

was revealed that stability is influenced by the interaction of source-side resistance and 

active loads in Chapter 5. Linear modal coupling theory is extended to analyse this phe-

nomenon. Divergence of eigenvalue loci between the coupled-system model and the 

equivalent decoupled-system model is used to quantify the effect of the coupling phe-

nomenon, as well as predict the best and worst-case system damping. Through analysis 

of the coupled/decoupled-system models, the dichotomy presented in Chapter 5 is re-

solved: line resistance can be apportioned to both subsystem damping and contribute to 

the coupling between subsystems. Line resistance is destabilizing when the contribution 

of coupling exceeds that of the damping contribution and vice-versa.  

The trajectory of eigenvalues under parametric perturbations is also shown to ex-

hibit a mode swapping behaviour, where continuous eigenvalues exchange modal 

properties instead of diverging. To address this phenomenon, an algorithm based on par-

ticipation factor analysis has been developed to ensure the conformity of eigenvalues to 

given subsystems. 
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Small-signal stability and sensitivity analysis of the system models are validated 

through experimental results, and several scenarios are presented showing the impact of 

the modal coupling phenomenon on stability. 

This chapter also demonstrates that a resistive-based active damping controller im-

plemented alongside source-side voltage regulators can produce a destabilizing effect on 

parallel-connected active loads. This further confirms that controller dynamics can inter-

act with the overall system dynamics to impact overall system stability and must be 

modelled in detail. Simulation studies confirm behaviour. 

Chapter 7 summarises the major research outcomes of this thesis and provides rec-

ommendations for future work. 

As part of this thesis the following journal paper was published, ‘Influence of par-

ametric uncertainties and their interactions on short-signal stability: A case example of 

parallel-connected active loads in a DC microgrid’ [76] relating to the research further 

expanded upon in Chapter 5. This work was also presented at the 9th IET International 

Conference on Power Electronics, Machines and Drives (PEMD 2018). 
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Chapter 2 

Preliminaries on Interaction  

Phenomena in LVDC Distributed 

Power Systems 

2 Preliminaries on Interaction Phenomena in LVDC Distributed Power Systems 

ABSTRACT This chapter provides a background to the phenomena of dynamic in-

teractions in LVDC Distributed Power Systems (DPSs). In cascaded systems, the 

negative input impedance characteristics of a constant power loads is shown to interact 

with the output impedance of poorly damped source-side networks. With linear feedback 

analysis in the frequency-domain, it can be shown that the ratio between input and output 

impedance must satisfy the Nyquist criterion (or a derived design-oriented impedance-

based criteria) in order to guarantee stability.  

This thesis uses the linear state-space modelling approach and its subsequent modal 

decomposition to investigate small-signal stability. The advantages of state-space are 

made clear in relation to the study of modal interactions —introduced within —and the 

need for a generalised modular modelling framework to develop large system models 

(addressed in Chapter 2.6). This chapter discusses the state-of-art and contains the theo-

retical preliminaries for the remainder of the thesis. 
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2.2 Introduction 

The growing importance of LVDC power networks to future decentralized low-

carbon infrastructure is being enabled by power electronic converters, as previously dis-

cussed in Chapter 1. As such, the structure of these power networks is transitioning from 

one based on a single CPS to many DPSs. With this change, new challenges are emerging 

to the stability of DPSs and therefore is a prime concern to their implementation and 

adoption.  

The rest of the chapter is structured as follows. Section 2.3 establishes the back-

ground to the fundamental problem of source-load interactions on small-signal 

(in)stability in cascaded power systems using the well-established frequency domain ap-

proach. The dynamic characteristics and impact of both CPLs and poorly damped source-

side filters are shown using impedance-based stability criteria. As an alternative to the 

frequency domain, Section 2.4 sets out the theory for time-domain state-space system 

modelling for modal decomposition and eigenvalue analysis. Using the state-space rep-

resentation, Section 2.5 introduces the phenomenon of modal interactions (also referred 

to a modal coupling or resonant interactions) and their impact on small-signal stability; 

demonstrated by tracing the behaviour of system eigenvalues under parametric variation. 

Finally, Section 2.6 summarises the chapter. 
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2.3 Source-load Interactions 

The early 1970’s saw dramatic developments of power electronic switch-mode 

converters with the introduction of commercially available power MOSFETs. Due to 

their switching nature, unwanted signals are generated and the input and output terminals 

of these power regulator that cause electromagnetic interference (EMI) [33]. Low-pass 

differential-mode power line filters and common-mode chokes have been a typical meas-

ure ever since for limiting conducted EMI from converter inputs impacting the power 

quality of upstream distribution [77]. 

However, the addition of input filters to regulated converters was observed to cause 

unstable voltage oscillations in the filters. With the advent of fundamental research on 

the modelling and analysis of power electronic converters, such as state-space averaging 

techniques pioneered by Middlebrook and Ćuk [32], [78], it was determined that the 

feedback interaction mechanism from the cascade-connection of individually stable sub-

systems could result in a violation of the Nyquist stability criterion. Herein the 

phenomenon shall be referred to as source-load interactions. Middlebrook proposed a 

simplified criterion on the input and output impedances to ensure sufficient system sta-

bility by analysing the dynamic interaction via the open-loop transfer function, often 

referred to as the minor-loop gain. A plethora of less restrictive stability criteria have also 

been developed in the following years [64]. Ensuring stability is typically addressed by 

damping the resonant peaks of source’s output impedances. 

Today, the transition to DPS is marked by the need for greater renewable penetra-

tion and electrification of loads. Large systems of many interconnected power electronic 

converters and distribution lines are increasingly more common which ultimately results 

in many new interface points where source-load interactions may result in instability. 
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FIGURE 2.1 An example LVDC distributed power system. The source-load interfaces 

(IF-1 to IF-5) are subject to impedance interactions. 

 

Figure 2.1 shows an example of a LVDC DPS. Multiple DC-to-DC or AC-to-DC 

converters supply energy and regulate the voltage of the primary distribution bus. Shown 

explicitly are the cables between the different subsystems that are an important contrib-

utor to the network characteristics [13], [72]. Many independent filter-converters feed 

AC and/or DC loads. It is important to emphasise that these loads may also represent its 

own power network, such as those seen in intermediate bus architectures [79]. In this 

diagram it is crucial to understand that all interfaces, such as those denoted as 𝐼𝐹– 1 to 

𝐼𝐹– 5, have the potential for source-load interaction as seen from the interface. More 

broadly, any arbitrary interface between different cascaded subsystems may result insta-

bility. Dynamics of lines due to cable characteristics can also be viewed unique 

subsystem with their own input/output interfaces. 

 

–2( )inY s –1( )inY s–2( )outZ s –1( )outZ s–3( )outZ s –3( )inY s

IF-1IF-2IF-3IF-4

IF-5
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FIGURE 2.2 Cascaded two-stage power system with source-load interaction due to 

source-side output impedance ZS(s) and load-side input impedance ZL(s). 

A most basic example, as it relates to destabilisation, is when the source subsystem 

is a low-pass power line filter and the load subsystem is a regulated DC-to-DC converter. 

Referring to Figure 2.2, the combined behaviour of cascaded system can be expressed as 

the voltage-gain transfer function, ratio of 𝑉𝑏𝑢𝑠(𝑠) to 𝑉𝑖𝑛(𝑠), in (2.1): 

 𝑉𝑏𝑢𝑠(𝑠)

𝑉𝑖𝑛(𝑠)
=

𝑍𝐿(𝑠)

𝑍𝑆(𝑠) + 𝑍𝐿(𝑠)
=

1

1 + 𝑇𝑂𝐿(𝑠)
 (2.1) 

Where 𝑇𝑂𝐿(𝑠) is defined as the open-loop (OL) transfer function and often re-

ferred to as the minor loop gain [33], [37], given in (2.2): 

 
𝑇𝑂𝐿(𝑠) = 𝑍𝑆(𝑠)/𝑍𝐿(𝑠) (2.2) 

The function 1 (1 + 𝑇𝑂𝐿(𝑠))⁄  can be viewed as the source-load interaction be-

tween 𝑍𝑆(𝑠) and 𝑍𝐿(𝑠). If 𝑇𝑂𝐿(𝑠) is zero for all values of 𝑠 = 𝑗𝜔, then the source and 

load can be considered fully decoupled and no interaction will occur. Establishing sta-

bility can be achieved by analysing just 𝑇𝑂𝐿(𝑠) by its encirclements of (−1,0) in the 

clockwise direction on a Nyquist plot [80]. Each encirclement signifies that an unstable 

pole exists in the closed-loop characteristic equation. 

The next subsection 2.3.1 shows that the input impedance of an ideal CPL (as the 

downstream converter, 𝑍𝐿(𝑠)), has a negative resistance characteristic. 

 

Source Load

( )SZ s

( )busV s

( )LZ s

( )inV s ( )outI s
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2.3.1 Negative input impedance characteristic of downstream 

constant power loads (CPLs) 

 

FIGURE 2.3 The negative incremental impedance characteristic (ΔRCPL<0) of an 

ideal CPL. 

An increasingly prevalent class of electrical and electronic systems operate on ei-

ther a fixed voltage or fixed current with power conversion achieved through tightly 

regulated switching power converters as an interface. To maintain this regulation with 

high efficiency, as the source voltage increases the interfacing converter draws less cur-

rent and similarly as the source voltage decreases the converter draws more current. As 

a result, within the regulator’s bandwidth, these systems, also known as point-of-load 

converters, appear as CPLs to the source [29], [81], with equation in (2.3). 

 
𝑉𝑖𝑛(𝑡) =

𝑃𝐶𝑃𝐿
𝐼𝑖𝑛(𝑡)

 (2.3) 

 

 

FIGURE 2.4 Circuit diagrams of an (a) ideal CPL; and its (b) linearised equivalent. 
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Mathematically, the negative impedance characteristic of converters can be shown 

by considering the incremental resistance of an ideal CPL. Referring to Figure 2.3, the 

ideal CPL shows a nonlinear voltage-current relation so that at any operating point the 

linearised incremental impedance always negative. 

The incremental impedance of a CPL can be derived through linearisation at an 

operating point (𝐼𝑖𝑛) of the ideal CPL equation, 𝑉𝑖𝑛(𝑡) = 𝑓𝐶𝑃𝐿(𝐼𝑖𝑛(𝑡)) = 𝑃𝐶𝑃𝐿𝐼𝑖𝑛(𝑡), by 

first-order Taylor linearisation in (2.4). 

 
𝑓𝐶𝑃𝐿(𝐼𝑖𝑛) ≅ 𝑓𝐶𝑃𝐿(𝐼𝑖𝑛) +

𝜕𝑓(𝐼𝑖𝑛)

𝜕𝐼𝑖𝑛
|
𝐼𝑖𝑛=𝐼𝑖𝑛

(𝐼𝑖𝑛 − 𝐼𝑖𝑛) (2.4) 

 

 

𝑓𝐶𝑃𝐿(𝐼𝑖𝑛) =
𝑃𝐶𝑃𝐿

𝐼𝑖𝑛
−
𝑃𝐶𝑃𝐿

𝐼𝑖𝑛
2
(𝐼𝑖𝑛 − 𝐼𝑖𝑛) 

                  = 2
𝑃𝐶𝑃𝐿

𝐼𝑖𝑛
−
𝑃𝐶𝑃𝐿

𝐼𝑖𝑛
2
𝐼𝑖𝑛 

(2.5) 

 

Substituting equations 𝑃𝐶𝑃𝐿 = 𝐼𝑖𝑛
2 𝑅𝐶𝑃𝐿  and 𝑅𝐶𝑃𝐿 = �̂�𝑖𝑛/𝐼𝑖𝑛  into (2.5) yields the 

following equations that show the instantaneous linear relation between voltage and cur-

rent of an ideal CPL at operating point (�̂�𝑖𝑛, 𝐼𝑖𝑛) (2.6)-(2.7). 

 
𝑉𝑖𝑛(𝑡) = 2

𝑃𝐶𝑃𝐿

𝐼𝑖𝑛
− 𝑅𝐶𝑃𝐿𝐼𝑖𝑛(𝑡) (2.6) 

 

 
𝐼𝑖𝑛(𝑡) = 2

𝑃𝐶𝑃𝐿

�̂�𝑖𝑛
−

1

𝑅𝐶𝑃𝐿
𝑉𝑖𝑛(𝑡) (2.7) 

 

With equation (2.7), the linearised CPL model can therefore be represented by the 

circuit featuring a resistor and current source in parallel, in Figure 2.4(b). 
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FIGURE 2.5 Input impedance of different output regulated converters, Z in,2(s), 

Z in,3(s), Z in,4(s), and that of an ideal CPL, Z in,1(s). The region in red indicates the 

frequencies at which input has a negative incremental resistance. 

 

Ideal CPLs do not exist in practice. CPL behaviour is only exhibited within a lim-

ited closed-loop control bandwidth of a practical converter. The negative resistance 

behaviour of the frequency response is only when the phase is between −90-degree and 

−180-degree (cos(𝜃) < 0 for −𝜋 < 𝜃 < −2𝜋). This is highlighted by the red region in 

the phase plot of the Bode diagram in Figure 2.5. The input impedance curves 𝑍𝑖𝑛,2, 𝑍𝑖𝑛,3, 

𝑍𝑖𝑛,4 are examples showing the frequency responses of practical converters with a finite 

control bandwidth. At higher frequencies, practical converters have a positive impedance 

characteristic.  
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2.3.2 Output impedance characteristics of poorly damped 

resonant upstream networks 

Low damping of source-side networks mathematically corresponds to a high gain 

at the resonant frequency. To demonstrate, this section shows the frequency response 

characteristics of the output impedance 𝑍𝑜𝑢𝑡(𝑠) of a simple low-pass filter model which 

can be viewed as a second-order (damped) harmonic oscillator. 

 

 

FIGURE 2.6 Circuit diagram of an 2nd-order LC filter with DCR (RL). 

Figure 2.6 shows the circuit diagram of a typical LC filter with output impedance 

when 𝑉𝑖𝑛 is shorted given by transfer function in (2.8). 

 
𝑍𝑜𝑢𝑡(𝑠) =

𝑠𝐿 + 𝑅𝐿
𝑠2𝐿𝐶 + 𝑠𝑅𝐿𝐶 + 1

 (2.8) 

For simplicity, we can rewrite the output impedance of filter dynamics as a har-

monic oscillator with damping. The transfer function for the harmonic oscillator model 

equivalent to the  𝑍𝑜𝑢𝑡 (𝑠) of Figure 2.6 takes form (2.9): 

 

𝑍𝑜𝑢𝑡(𝑠) =
𝑉𝑜𝑢𝑡(𝑠)

𝐼𝑜𝑢𝑡(𝑠)
=

𝜅(𝑠
𝜔0
2𝜁 + 𝜔0

2)

𝑠2 + 𝑠(2𝜁𝜔0) + 𝜔0
2 

(2.9) 

Where, 𝜁 is the damping ratio, 𝜔0 is the natural frequency, and 𝜅 represents the 

DC gain (as this can be viewed as a function of 𝑅𝐿 , 𝜅 < 1 indicating a loss factor). 

And, in terms of the circuit elements, we can use the following substitutions (2.10): 

( )inV s
LR L

C ( )outV s
( )inI s ( )outI s

( )
( )

( )
out

u
o

t
t

o
u

V s
Z s

I s
=
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𝜔0 =

1

√𝐿𝐶
,   𝜁 =

𝑅𝐿𝐶𝜔0
2

 (2.10) 

As previously discussed in Section 1.2.1, it is clear that increasing capacitance and 

resistance will improve the damping ratio by examining relation in (2.10). The resonant 

frequency 𝜔𝑟 at which maximum gain |𝑍𝑜𝑢𝑡(𝑠)| occurs can be calculated by the approx-

imate relation in (2.11): 

 𝜔𝑟 = 𝜔0√1 − 2𝜁2 

|𝑍𝑜𝑢𝑡(𝑗𝜔𝑟)| = 1/(2𝜁) 
(2.11) 

Figure 2.7, below, shows the Bode plot of the output impedance of second-order 

filters with differing damping ratios but identical crossover frequency. The critically 

damped 𝑍𝑜𝑢𝑡,3  shows no peaking and therefore will not oscillate at the resonant fre-

quency. 

 

FIGURE 2.7 Output impedance of low-pass LC input filters, Zout,1(s), Zout,2(s), 

Zout,3(s), at different damping ratios, ζ = {0.01, 0.1, 0.707}  at f0 = 1kHz. 

It will be shown in the following section that 𝑍𝑜𝑢𝑡(𝑠) may cause positive feedback 

in the open-loop transfer function depending if |𝑇𝑂𝐿(𝑠)| > 1 when ∠𝑇𝑂𝐿(𝑠) = −90°. 
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2.3.3 Instability caused by interaction between a poorly 

damped source-side filter and a CPL 

 

FIGURE 2.8 Simplified circuit diagram of a cascaded system with source-side output 

impedance ZS(s) and load-side input impedance ZL(s). 

The stability of a cascaded source-load system can be analysed by the circuit shown 

in Figure 2.8. Let us consider a source-side input filter feeding an ideal CPL. Deriving 

the response of the variables at the intermediate interface subject to small perturbations 

at the inputs is used to find the small-signal stability. Here, effect of perturbation of load 

current 𝐼𝑜𝑢𝑡(𝑠) on the response of the load’s input voltage 𝑉𝑏𝑢𝑠(𝑠) is given by (2.12): 

 𝑉𝑏𝑢𝑠(𝑠)

𝐼𝑜𝑢𝑡(𝑠)
= −(𝑍𝑆(𝑠) ∥  𝑍𝐿(𝑠)) = −

𝑍𝐿(𝑠)

1 + 𝑍𝑆(𝑠)/𝑍𝐿(𝑠)
 (2.12) 

As discussed previously, this is a typical feedback loop and can be analysed by 

applying the Nyquist criterion to OL transfer function 𝑇𝑂𝐿(𝑠) = 𝑍𝑆(𝑠)/𝑍𝐿(𝑠). 

For this example, the analytical expressions for input and output impedances are 

taken from Section 2.3.1 and Section 2.3.2, and is given below in (2.13): 

 
𝑍𝑆(𝑠) =

𝑠𝐿 + 𝑅𝐿
𝑠2𝐿𝐶 + 𝑠𝑅𝐿𝐶 + 1

 , 𝑍𝐿(𝑠) = −𝑅𝐶𝑃𝐿 (2.13) 

Substituting (2.13) into (2.12) results in: 

 𝑉𝐿(𝑠)

𝐼𝑜𝑢𝑡(𝑠)
= −

𝐿𝑠 + 𝑅𝐿

𝐿𝐶𝑠2 + (𝑅𝐿𝐶 −
𝐿
𝑅𝐶𝑃𝐿

) 𝑠 + 1 − 𝑅𝐿/𝑅𝐶𝑃𝐿

 
(2.14) 

Source Load

( )SZ s ( )LZ s ( )outI s( )inV s ( )busV s
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 The denominator of the transfer function in (2.14) is the characteristic equation 

and is used to establish stability. In this analytical form, the Routh-Hurwitz criterion1 can 

be readily applied. Assuming that (1 − 𝑅𝐿 𝑅𝐶𝑃𝐿⁄ > 0), the stability condition is given by 

the following equation in (2.15): 

 
𝑅𝐿𝐶 −

𝐿

𝑅𝐶𝑃𝐿
> 0 (2.15) 

Rearranging (2.15), with following substitutions for the inductor Q-factor (𝑄𝐿 =

𝜔0𝐿/𝑅𝐿) at the resonant frequency 𝜔0 and reactance of the capacitor (𝑋𝐶 = 1/𝜔0𝐶) to 

yield the inequality: 

 
𝑅𝐶𝑃𝐿 >

𝐿

𝑅𝐿𝐶
≅
𝑄𝐿
𝜔0𝐶

= 𝑄𝐿𝑋𝐶 (2.16) 

By taking only the magnitude of the left and right-hand terms of (2.16), it can be 

reasoned that the peak of the source-side output impedance (occurring at 𝜔0) must be 

less than the peak of load-side input impedance, as given in (2.17). 

 
|𝑅𝐶𝑃𝐿| > |𝑄𝐿𝑋𝐶| ≅

1

2𝜁
 (2.17) 

Where the relationship between the magnitude of 𝑄𝐿 and damping factor is 𝑄 = 1/2𝜁. 

More generally, and over all frequencies, the condition for stability can be ex-

pressed in terms of impedance 𝑍𝑆(𝑠)  and 𝑍𝐿(𝑠) , as was originally proposed by 

Middlebrook [36]: 

 |𝑍𝐿(𝑠)| > |𝑍𝑆(𝑠)| (2.18) 

 

 

1 While the Routh-Hurwitz criterion is used here, the Nyquist stability criterion is viewed as a more 

general (numerical) approach that permits stability analysis of experimentally measured transfer functions 

that the former criterion does not. 
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FIGURE 2.9 Bode plot representation of the Middlebrook stability criterion showing 

conditions for source-side output impedance ZS(s) (input filter) and load-side input 

impedance ZL(s) (CPL).  

In Figure 2.9, the magnitude of the filter’s output impedance becomes greater than 

the input impedance of the CPL near 𝜔0 (i.e., if |𝑍𝑠(𝑗𝜔0)| > |𝑍𝐿(𝑗𝜔0)|) under two pos-

sible conditions. Firstly, if the damping of the filter decreases. Secondly, an increase in 

load demand of the CPL. Both changes would violate Middlebrook stability criterion, 

and could potentially destabilise the cascaded system.  
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2.4 Small-signal Modelling and Stability Analysis 

of LVDC DPSs 

As set out in Section 2.3, the phenomenon of source-load interaction has been iden-

tified as a major factor contributing to instability in cascaded power system components. 

Demonstrated in the frequency domain, the dynamics of a cascaded system is modified 

by the open-loop transfer function, the ratio between input and output impedances at the 

interface of two interacting components. While the individual components are stable, the 

interconnected system may not be if the closed-loop system violates Nyquist stability 

criterion. The interaction formalism using the more straightforward Middlebrook stabil-

ity criterion guarantees adherence to the more general Nyquist criterion. Any large 

system may be split into two cascaded subsystems to which frequency domain analysis 

can be applied. However, oscillations can occur not only due to the interactions between 

an input filter and a converter but also due to the possible interactions between several 

stages in cascade [82], [83]. It is therefore not possible to identify a priori at which in-

terface the destabilising interaction will occur. Therefore, a more complete system-level 

or global method for assessing small-signal stability becomes paramount.  

So far, the modelling has used the assumption of ideal model dynamics, in partic-

ular related to load-side power electronic converters. Much of the early research has 

analysed source-load interaction using an ideal model of a CPL (or its linearised equiva-

lent) [81], [84]. However, this is only a simplified model of a practical tightly regulated 

closed-loop converter which inherently feature more complex internal dynamics. Effect 

of controller parameters are neglected, therefore investigation into how controller varia-

tions influence system interactions are not possible. In particular, several methods have 

been proposed to modify controller dynamics to include active stabilisation (e.g. [51]). 

While the ideal CPL model is the worst-case from a small-signal perspective [85], unless 

the system has unique conditions (e.g. [34]), it is important to model the converter dy-

namics with high-fidelity including parasitic elements and control parameters. 

With these objectives in mind, a complete mathematical description of system dy-

namics is warranted. The sections below introduce state-space modelling technique and 

how this may be used to study small-signal dynamics. Specific model descriptions of the 

components present in typical LVDC DPSs are covered in the next chapter, Section 3.3. 
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2.4.1 Frequency domain techniques and impedance-based  

stability criteria 

This section introduces the frequency domain two-port structure that can be used 

to model sources and loads in cascade.  Tightly regulated converters can be represented 

by four terminals, irrespective of converter topology or internal control structure, as long 

as the port conditions are satisfied—that current entering a port is the same as the current 

leaving that same port. Conventional impedance-based stability analysis for source-load 

interactions can be elaborated from cascaded two-port models, and is also used to high-

light the limitations of this approach for stability and interaction analysis for larger DPSs. 

 

FIGURE 2.10 A two-port network model: (a) circuit level representation,  

(b) frequency domain block diagram. 

The two-port network model in Figure 2.10 is made up of four transfer functions 

known as the inverse hybrid (g-)parameters. This representation is used for circuits that 

are commonly viewed as voltage input/output such as DC-DC converters and line filters. 

Frequency domain equations of the two-port network model are given in (2.19): 

 
I𝑖𝑛(𝑠) = 𝑌𝑖𝑛(𝑠)𝑉𝑖𝑛(𝑠) + 𝐺𝑖(𝑠)𝐼𝑜𝑢𝑡(𝑠) 

𝑉𝑜𝑢𝑡(𝑠) = 𝐺𝑣(𝑠)𝑉𝑖𝑛(𝑠) − 𝑍𝑜𝑢𝑡(𝑠)𝐼𝑜𝑢𝑡(𝑠) 
(2.19) 

Where the internal transfer functions are defined as the following, 

Input admittance, 𝑌𝑖𝑛(𝑠) =
I̅𝑖𝑛

�̅�𝑖𝑛
|
𝐼�̅�𝑢𝑡=0

 

Reverse transfer function, 𝐺𝑖(𝑠) =
I̅𝑖𝑛

𝐼�̅�𝑢𝑡
|
�̅�𝑜𝑢𝑡=0

 

Audio susceptibility, 𝐺𝑣(𝑠) =
V̅𝑜𝑢𝑡

�̅�𝑖𝑛
|
𝐼�̅�𝑢𝑡=0

 

Output impedance, 𝑍𝑜𝑢𝑡(𝑠) =
V̅𝑜𝑢𝑡

𝐼�̅�𝑢𝑡
|
�̅�𝑜𝑢𝑡=0

 

inV

outI

inI

outV

( )inY s

( )iG s
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( )outZ s
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FIGURE 2.11 Frequency domain block diagram of cascaded two-port models. 

 

Figure 2.11 shows the block diagram of cascaded two-port models of the form 

Figure 2.10(b)—a source (denoted by subscript 1) and a load (denoted by subscript 2). 

Assuming steady-state conditions on all input variables other than 𝑉𝑖𝑛,1, the voltage trans-

fer function 𝑉𝑜𝑢𝑡,1/𝑉𝑖𝑛,1 (red highlighted feedback path in Figure 2.11) is given as (2.20):  

 
𝑉𝑜𝑢𝑡,1(𝑠)

𝑉𝑖𝑛,1(𝑠)
= 𝐺𝑣,1(𝑠) (

1

1 + 𝑌𝑖𝑛,2(𝑠)𝑍𝑜𝑢𝑡,1(𝑠)
) (2.20) 

Using the notation of source and load used in Section 2.2 previously, 𝑍𝑆(𝑠) =

1/𝑌𝑖𝑛,2(𝑠) and 𝑍𝐿(𝑠) = 𝑍𝑜𝑢𝑡,1(𝑠), the feedback has the open-loop transfer function given 

in (2.21) below. 

The condition set out in (2.18) is referred to as the Middlebrook stability criterion 

and is represented in Figure 2.12. This satisfies the more general Nyquist criterion as the 

open-loop transfer function 𝑇𝑂𝐿(𝑠) has a magnitude less that unity in (2.21) below. This 

ensures that the Nyquist contour has no encirclements of the (-1,0) point. 

 |𝑇𝑂𝐿(𝑠)| =
|𝑍𝑆(𝑠)|

|𝑍𝐿(𝑠)|
< 1 (2.21) 
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FIGURE 2.12 The Middlebrook Stability Criterion [36] represented on the complex 

plane. Valid stability region lies within the unit circle offset by a suitable gain margin 

(GM), |TOL(s) ≤ 1/GM|. 

Many alternative stability criteria have been developed in the literature based on 

frequency-domain analysis of the minor-loop gain where forbidden regions are defined 

to satisfy Nyquist. The Middlebrook criterion is based solely on the magnitudes of the 

impedances of sources and loads, and it is often modified to ensure a specific gain margin 

to avoid operation near (-1,0) thereby making it more conservative. Noting that Middle-

brook imposes an infinite phase margin, whereas other less conservative stability criteria 

take into consideration the phase margin. Comparative studies between different stability 

criteria for source-load interactions can be found in [27], [31], [64], [66], [86], [87]. 

LVDC DPSs are comprised of multiple subsystems interconnected. The applica-

tion of any of these stability criteria only considers a single interface where the open-

loop transfer function is linearised at a given operating point. Referring to the cascaded 

system in Figure 2.11, the impact of additional subsystems (e.g., another system in cas-

caded or parallel) on the linear transfer functions, 𝑍𝐿(𝑠) and 𝑍𝑆(𝑠), is not considered. As 

parameters of the system vary, the open-loop transfer function may vary with 𝑍𝐿(𝑠) and 

𝑍𝑆(𝑠) at an interface. The influence of these parameters must therefore be investigated, 

where a state-space representation becomes a more practical approach—discussed in the 

next section.  

 

 

(1, 0)j−
Re

Im

1/GM

unit circle

Forbidden 
Region
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2.4.2 State-space techniques and modal decomposition 

Interconnection of the various components that make up the complete DC power 

system—generators, power electronic-based loads, distribution lines, controllers—forms 

a complete power system which in the most broad sense can be characterized as nonlinear 

and time-variant [33]. To study the system behaviour when subject to small disturbances 

it is often appropriate to simplify the system to that of its low-frequency steady-state 

dynamics through the process of linearisation [33]. However, finding the precise steady-

state equilibrium point still requires an accurate, typically nonlinear, power system 

model. 

Power systems are modelled to study their dynamic behaviours and as such are 

described by a system of differential equations, if the form of a vector of continuous-time 

nonlinear space-space equations in (2.22) and (2.23). 

 𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋(𝑡), 𝑈(𝑡)) (2.22) 

 𝑌(𝑡) = 𝐺(𝑋(𝑡), 𝑈(𝑡)) (2.23) 

Where, 

𝑋(𝑡) = [𝑥1(𝑡), … 𝑥𝑛(𝑡)]
𝑇 is a vector of 𝑛 dynamic state variables, 

𝑌(𝑡) = [𝑦1(𝑡), … 𝑦𝑚(𝑡)]
𝑇 is a vector of 𝑚 system outputs, 

𝑈(𝑡) = [𝑢1(𝑡), … 𝑢𝑞(𝑡)]𝑇 is vector of 𝑞 system input variables, 

𝐹(… ) = [𝑓1(… ), … 𝑓𝑛(… )]
𝑇 is a vector of 𝑛 1st-order state equations, 

𝐺(… ) = [𝑔1(… ), … 𝑔𝑚(… )]
𝑇 is a vector of 𝑚 output (observation) equations. 

 

If the initial states are known 𝑋(𝑡 = 0) together with set inputs 𝑈(𝑡), then the non-

linear state-space equations in (2.22)-(2.23) uniquely define the system’s state and output 

response over time (𝑋(𝑡 → ∞), 𝑌(𝑡 → ∞)). 

When the differential state equations in (2.22) reach an equilibrium steady-state 

point (𝑋 = 𝑋0 and 𝑈 = 𝑈0), then the state dynamics no longer vary with time (2.24): 

 𝐹(𝑋0, 𝑈0) = 0 (2.24) 
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Under this steady-state condition, denoted as (𝑋0, 𝑈0), we can define a set of devi-

ation variables measuring the difference (2.25): 

 𝛿𝑥(𝑡) ∶=  𝑋(𝑡) − X0 

𝛿𝑢(𝑡) ∶=  𝑈(𝑡) − 𝑈0 
(2.25) 

In effect, this redefines the zero point of the function to (𝑋0, 𝑈0). Substituting 

(2.25) into (2.22) gives the following exact equation (2.26): 

 𝑑𝛿𝑥(𝑡)

𝑑𝑡
= 𝐹(X0 + 𝛿𝑋(𝑡), 𝑈0 + 𝛿𝑈(𝑡)) (2.26) 

Noting that derivative  𝐹(𝑋0, 𝑈0) = 0  at steady-state, using a first-order Taylor 

expansion (ignoring higher-order terms) of (2.26) yields (2.27): 

 𝑑𝛿𝑋(𝑡)

𝑑𝑡
≈
𝜕𝐹

𝜕𝑋
|
(𝑋0,𝑈0)

𝛿𝑋(𝑡) +
𝜕𝐹

𝜕𝑈
|
(𝑋0,𝑈0)

𝛿𝑈(𝑡) (2.27) 

The above is valid for small-signal conditions, i.e., the deviation variables 𝛿𝑋 and 

𝛿𝑈 are small. 

Likewise, the same linearisation procedure around point (𝑋0, 𝑈0) can be applied 

onto the output equations (2.23). Taken together, this procedure yields the LTI state-

space representation (2.28) and (2.29): 

 𝑑𝛿𝑋(𝑡)

𝑑𝑡
= 𝐴𝛿𝑋(𝑡) + 𝐵𝛿𝑈(𝑡) (2.28) 

 𝛿𝑌(𝑡) = 𝐶𝛿𝑋(𝑡) + 𝐷𝛿𝑈(𝑡) (2.29) 

Where 𝐴, 𝐵, 𝐶, and 𝐷 in (2.28)-(2.29) are the Jacobian matrices of the system, 

evaluated at the operating point, defined in (2.30): 

𝐴 =
𝜕𝐹(𝑋, 𝑈)

𝜕𝑋
|
(𝑋0,𝑈0)

=

[
 
 
 
 
 
𝜕𝑓1(𝑋, 𝑈)

𝜕𝑥1
⋯

𝜕𝑓1(𝑋, 𝑈)

𝜕𝑥𝑛

⋮ ⋱ ⋮

𝜕𝑓𝑛(𝑋, 𝑈)

𝜕𝑥1
⋯

𝜕𝑓𝑛(𝑋, 𝑈)

𝜕𝑥𝑛 ]
 
 
 
 
 

 (2.30) 
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𝐵 =
𝜕𝐹(𝑋, 𝑈)

𝜕𝑈
|
(𝑋0,𝑈0)

=

[
 
 
 
 
 
𝜕𝑓1(𝑋, 𝑈)

𝜕𝑢1
⋯

𝜕𝑓1(𝑋, 𝑈)

𝜕𝑢𝑞

⋮ ⋱ ⋮

𝜕𝑓𝑛(𝑋, 𝑈)

𝜕𝑢1
⋯

𝜕𝑓𝑛(𝑋, 𝑈)

𝜕𝑢𝑞 ]
 
 
 
 
 

 

𝐶 =
𝜕𝐺(𝑋, 𝑈)

𝜕𝑋
|
(𝑋0,𝑈0)

=

[
 
 
 
 
 
𝜕𝑔1(𝑋, 𝑈)

𝜕𝑥1
⋯

𝜕𝑔1(𝑋, 𝑈)

𝜕𝑥𝑛

⋮ ⋱ ⋮

𝜕𝑔𝑛(𝑋, 𝑈)

𝜕𝑥1
⋯

𝜕𝑔𝑛(𝑋, 𝑈)

𝜕𝑥𝑛 ]
 
 
 
 
 

 

𝐷 =
𝜕𝐺(𝑋, 𝑈)

𝜕𝑈
|
(𝑋0,𝑈0)

=

[
 
 
 
 
 
𝜕𝑔1(𝑋, 𝑈)

𝜕𝑢1
⋯

𝜕𝑔1(𝑋, 𝑈)

𝜕𝑢𝑞

⋮ ⋱ ⋮

𝜕𝑔𝑛(𝑋, 𝑈)

𝜕𝑢1
⋯

𝜕𝑔𝑛(𝑋, 𝑈)

𝜕𝑢𝑞 ]
 
 
 
 
 

 

 

Modal decomposition is a linear transformation of a LTI state-space model into a 

new coordinate system which satisfies the superposition principle in system responses. 

The total system response becomes the sum of individual modal responses. This new 

coordinate system is referred to as the modal coordinates. 

The modal decomposition (and subsequent small-signal stability analysis) of a lin-

ear system can be expressed through the scalar eigenvalues, 𝜆. These eigenvalues are 

determined by calculating all of the roots of det(𝜆𝐼 − 𝐴), such that (2.31) and (2.32) are 

satisfied: 

 𝐴𝜓𝑖 = 𝜆𝑖𝜓𝑖 (2.31) 

 𝐴𝜙𝑗 = 𝜙𝑗𝜆𝑖 (2.32) 

Where, 

𝜙𝑗 is the left eigenvector corresponding to 𝜆𝑖, 

𝜓𝑖 is the right eigenvector corresponding to 𝜆𝑖. 

 

For convenience, the orthogonality of the eigenvectors are normalised to unity, 

therefore satisfy following relation in (2.33): 
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𝜓𝑗𝜙𝑖 = {

1, if 𝑖 = 𝑗
0,         if 𝑖 ≠ 𝑗

 (2.33) 

In addition, the matrix Λ is defined with all eigenvalues of 𝐴 as diagonal elements (2.34): 

 
Λ = 𝜓𝐴𝜙 = [

𝜆1   0
 ⋱  
0  𝜆𝑛

] (2.34) 

Where, 

𝜓 is a matrix formed by the columns of the right eigenvectors, 

𝜙 is a matrix formed by the rows of the left eigenvectors. 

 

Eigenvalues may be rewritten with rectangular coordinates, 𝛼 and 𝛽, or in polar 

terms of damping ratio 𝜁 and natural frequency 𝜔𝑛, given in (2.35): 

 𝜆 = 𝛼 ± 𝑗𝛽 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛√1 − 𝜁2 (2.35) 

To convert between the coordinates, the following relations are given (2.36): 

 𝜁 = −
𝛼

√𝛼2 + 𝛽2
 

𝜔𝑛 = √𝛼2 + 𝛽2 = 𝛼/𝜁 

(2.36) 

In this thesis, the numerical modal decomposition of the system state-space matrix 

𝐴 is performed with MATLAB function eig(). 

Assume that the matrix 𝐴 has 𝑛 unique eigenvalues, 𝜆1, . . . , 𝜆𝑛. The response of the 

initial condition can be written as a linear combination of the eigenvalue modes. To 

demonstrate, let the decomposition have all real eigenvalues with their associated right 

eigenvectors, 𝜓1, . . . , 𝜓𝑛. These eigenvectors are linearly independent such that the initial 

condition 𝑥(0) can be written as (2.37): 

 𝑥(0) = 𝑎1𝜓1 + 𝑎2𝜓2 +⋯+ 𝑎𝑛𝜓𝑛 (2.37) 

Where the constants 𝑎1…𝑎𝑛 are initial condition constants. 

With the linearity property, the initial condition response can be given as (2.38): 
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 𝑥(𝑡) = 𝑎1𝑒
𝜆1𝑡𝜓1 + 𝑎2𝑒

𝜆2𝑡𝜓2 +⋯+ 𝑎𝑛𝑒
𝜆𝑛𝑡𝜓𝑛 (2.38) 

 

Qualitatively, the behaviour and stability of the system is evident by the value of 

the eigenvalues 𝜆 in (2.38). The different modes grow or decay as a function of 𝑒𝜆𝑖𝑡. If 

the real part of an eigenvalue is positive, then the dynamic response of the associated 

state variables grows exponentially and is therefore unstable. Real eigenvalues with no 

complex component results in non-oscillatory behaviour. Negative real values indicate a 

decaying function. Complex-valued eigenvalue occur as conjugate pairs and will result 

in oscillatory behaviour. 
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2.5 Modal (Resonance) Interactions 

2.5.1 Nonlinear behaviour of eigenvalues 

The concept of modal interaction between subsystems was introduced in Chapter 

1 and represented by Figure 1.6. In the previous section we described how a linear system 

model may be transformed into a linear combination of eigenvalue modes (or simply 

referred to as modes). The concept of modal interaction exists when energy is exchanged 

between different modes. In essence, two or more modes are mutually excited and share 

dynamic behaviours, and must be treated as coupled modes. To ease discussion, a cou-

pling parameter σ was introduced to signify that coupling between modes arise as a 

function of some system parameter(s). Here, σ is not used in any mathematical sense for 

analysis but only as means by which to discuss the phenomena of modal interactions. 

Modal interactions are known to occur near resonance when one oscillatory mode 

coincides with another in terms of frequency and damping. As coupling occurs, eigen-

values appear to diverge on the complex eigenspace, therefore small-signal dynamics. 

Issues surrounding this phenomenon are studied extensively in several applications (e.g. 

power systems [18], [46], [48], [50], [88], antennas [41], mechanics [89]) and are some-

times referred to as curve veering or eigenvalue avoidance.  

While the scope of this thesis is LVDC DPSs, the majority of literature investigat-

ing modal interaction phenomena is within the traditional AC systems domain. Due to 

the high degree of analogy between AC and DC systems, modelling principles and anal-

ysis techniques are equivalent. For example, power systems with series-compensated 

transmission lines are prone to small-signal stability. Subsynchronous resonance arises 

from the interaction between the mechanical (torsional dynamic) mode and electrical 

damping mode and can lead to instability with sustained oscillations [16]–[18], [90], 

[91]. Similarly, mode coupling can degrade stability margins in DPSs due to the reso-

nance interaction between parallel LCL filters [21]–[23], [43], [44], [92] and 

demonstrated in [21] to be the result of coupling via circulating currents between filters. 

In DC power systems, the existence of modal interaction phenomenon is often ex-

hibited but understudied. The work in [51] implemented a source-side virtual resistance-

based compensator capable of stabilising multiple parallel filter and CPLs in cascade, 
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however it observed that the effectiveness is reduced when input filter resonant frequen-

cies were coincident. Similarly, [26] identifies similar interaction effects between parallel 

filters, but demonstrate that source impedances is the cause for coupling between modes. 

This inconsistency between [51] and [26] appears to be the reuslt of interactions that are 

strongly dependent on parameter values and operating point. 

 

2.5.2 Modelling of coupled subsystems 

A nonlinear power system model changes its linear approximation over a variation 

in parameters of the model. Therefore, the impact of parameter changes on modal inter-

actions must therefore be assessed and becomes a critical point of research in highly 

uncertain LVDC DPSs. 

Section 2.5.2.1 presents a simplified example of modal interaction of a theoretical 

2 × 2 linear system model showing the possible behaviours of eigenvalues over param-

eter changes, with a numerical example given in Section 2.5.2.2. 

2.5.2.1 Modal decomposition of a simple 2 × 2 system 

 

FIGURE 2.13 System of two uncoupled subsystems described dynamics of two inde-

pendent states, dx1/dt=A1x1 and dx2/dt=A2x2. 

Two uncoupled systems in given by block diagram in Figure 2.13. These are mod-

elled by differential equations (2.39) and (2.40), below: 

𝑑𝑥1(𝑡)

𝑑𝑡
= (𝛼1 ± 𝑗𝛽1)𝑥1(𝑡) (2.39) 

1A

1( )x t1( )x t

2A

2( )x t2( )x t

System 1 System 2
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𝑑𝑥2(𝑡)

𝑑𝑡
= (𝛼2 ± 𝑗𝛽2)𝑥2(𝑡) (2.40) 

Complex valued state dynamics have been used to simplify the modal decomposi-

tion, so that equations (2.39) and (2.40) can be rewritten directly in terms of eigenvalues 

𝜆 in (2.41) and (2.42): 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝜆1

′ 𝑥1(𝑡) (2.41) 

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝜆2

′ 𝑥2(𝑡) (2.42) 

Where the apostrophe indicates the eigenvalue of the uncoupled system, 

𝜆1
′ = 𝛼1 ± 𝑗𝛽1 

𝜆2
′ = 𝛼2 ± 𝑗𝛽2 

(2.43) 

Representing the two uncoupled systems together as one aggregate system mode, 

such that 𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡)]
𝑇, to result in the state-space representation in (2.44): 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐴𝑋(𝑡) (2.44) 

Where the state matrix 𝐴 is given as (2.45): 

𝐴 = [
𝜆1
′ 0

0 𝜆2
′ ] (2.45) 

The initial state response of 𝑥1(𝑡), 𝑥2(𝑡) in (2.44) can be given as (2.46), (2.47): 

𝑥1(𝑡) = 𝑥1(0)𝑒
𝜆1
′ 𝑡 + 𝑥1(0)𝑒

𝜆1
′̅̅̅̅ 𝑡 (2.46) 

𝑥2(𝑡) = 𝑥2(0)𝑒
𝜆2
′ 𝑡 + 𝑥2(0)𝑒

𝜆2
′̅̅̅̅ 𝑡 (2.47) 
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FIGURE 2.14 System as two coupled subsystems showing state variable dependence 

on coupling factors (σ), dx/dt=Ax+σx. 

Now let us assume that the previous uncoupled systems in Figure 2.13 have be-

come linked through coupling factors 𝜎12  and 𝜎21 , shown by Figure 2.14, thereby 

forming a coupled system. This coupled system has the dynamic equations (2.48): 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝜆1

′ 𝑥1(𝑡) + 𝜎12𝑥2(𝑡) 

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝜆2

′ 𝑥2(𝑡) + 𝜎21𝑥1(𝑡) 

(2.48) 

For simplicity, assume that the coupling parameters are equal, 𝜎12 = 𝜎21 = 𝜎. The 

state-space system matrix 𝐴 is given in (2.49): 

𝐴 = [
𝜆1
′ 𝜎12
𝜎21 𝜆2

′ ] (2.49) 

By performing modal decomposition, 𝐴𝑋 = ΛX, the aim is to find the eigenvalues 

of the coupled system denoted by 𝜆1 and 𝜆2 in (2.50): 

1A

12σ

2A

21σ

2( )x t 2( )x t

1( )x t1( )x t
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Λ = [
𝜆1 0
0 𝜆2

] (2.50) 

It is evident that due to the coupling, the eigenvalues of the coupled system is a 

function of the eigenvalues of the uncoupled system (denoted by apostrophes as before) 

and the coupling factors, represented in (2.51): 

𝜆1, 𝜆2 = 𝑓(𝜆1
′ , 𝜆2

′ , 𝜎12, 𝜎21) (2.51) 

 

As this problem has been formulated as a simple 2 × 2 form, we can express the 

eigenvalues explicitly by analytically solving using the characteristic polynomial of a 

2 × 2  matrix to get the coupled system eigenvalues. This is given in (2.52): 

𝜆1,2 =
𝜆1
′ + 𝜆2

′

2
± 
√(𝜆1

′ − 𝜆2
′ )2 + 4𝜎12𝜎21
2

 (2.52) 

The initial state response dynamics of 𝑥1(𝑡) and 𝑥2(𝑡) are now coupled depending 

on the values of the coupling factors. Noting that if 𝜎12 = 0 or 𝜎21 = 0 then the system 

is reverted back to two separate uncoupled systems. 

By studying the coupled system eigenvalues in (2.52) as a function of the uncou-

pled eigenvalues, we can draw conclusions about the impact of coupling on their location.  

Consider Case 1 when the eigenvalues of the uncoupled system are coincident or 

approach each other (i.e.,  𝜆1
′ → 𝜆2

′ ). Here, the coupling terms begin to dominate (2.53): 

4𝜎12𝜎21 ≫ (𝜆1
′ − 𝜆2

′ )2 (2.53) 

So that the coupled eigenvalues are averaged and offset by a function of coupling 

parameters in (2.54): 

𝜆1,2 =
𝜆1
′ + 𝜆2

′

2
± √𝜎12𝜎21 (2.54) 

It can be said these eigenvalues are modally interacting depending on coupling 

factors. 

 

 

 



CHAPTER 2 

60 

Consider Case 2 when the eigenvalues of the uncoupled system are very well sep-

arated (i.e. 𝜆1
′ ≠ 𝜆2

′ ) so that the coupling terms can be neglected, as given in (2.55): 

4𝜎12𝜎21 ≪ (𝜆1
′ − 𝜆2

′ )2 

4𝜎12𝜎21 → 0 

𝜆1,2 =
𝜆1
′ + 𝜆2

′

2
± 
√(𝜆1

′ − 𝜆2
′ )2

2
 

{
𝜆1 = 𝜆1

′

𝜆2 = 𝜆2
′  

(2.55) 

When the uncoupled system eigenvalues are located far away, coupling does not 

influence the location of the coupled system eigenvalues. 

It is important to note here that 𝜆1 of the combined system is defined as being re-

lated to 𝜆1
′ . This need not be the case as the ordering of 𝜆1,2 is arbitrary and can be 

swapped. Here, it is assumed that the states participating in 𝜆1 are the same as 𝜆1
′ . This 

problem of definition between state and eigenvalues are discussed further in Chapter 6. 

2.5.2.2 Numerical example 

In this example, numerical values are assigned to the coupled system equations in 

(2.48) to illustrate the phenomena of modal coupling. Let the system shown in Figure 

2.14 be defined with equations (2.56): 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝐴1

′ (𝑝1)𝑥1(𝑡) + 𝜎12𝑥2(𝑡) 

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝐴2

′ (𝑝2)𝑥2(𝑡) + 𝜎21𝑥1(𝑡) 

(2.56) 

Where variables 𝐴1
′ , 𝐴2

′ , 𝜎12, 𝜎21 are specified by: 

𝐴1
′ (𝑝1) = −1 ± 𝑗𝜌1 

𝐴2
′ (𝑝2) = −1 ± 𝑗𝜌2 

𝜎12 = 𝜎21 = 𝜎 

(2.57) 

The state matrix in (2.58), below, is therefore a function of parameters 𝑝1, 𝑝2, 𝜎: 
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𝐴(𝑝1, 𝑝2, 𝜎) = [
−1 ± 𝑗𝜌1 𝜎
𝜎 −1 ± 𝑗𝜌2

] (2.58) 

With (2.58), and assigning numeric values to parameters, the trajectories of eigen-

values can be plotted. Fixing 𝜌2 = 1 and 𝜎 = 1, while varying parameter 𝜌1 = [−5, 5]. 

 

FIGURE 2.15 Trajectory of the eigenvalues of the coupled system, as a parameter 𝜌1 

is varied from -5 to 5 in steps of +0.0005. 

Figure 2.15 illustrates the behaviour of eigenvalues of the coupled system as a sin-

gle parameter is varied. Values were selected so that the eigenvalues of (the independent 

terms) 𝐴1
′  and 𝐴2

′  cross each other at the point (-1,0). Due to the off-diagonal coupling 

term 𝜎, the eigenvalues of the combined system 𝐴 can be seen to diverge away from each 

other. Based on the solutions to the characteristic equation in (2.52), at 𝜌1 = 0, when 

matched, the eigenvalues are demonstrated to be 𝜆1,2 =
𝜆1
′+𝜆2

′

2
± 𝜎2 = −1 ± 1. Simi-

larly, at points well-away from 𝜌1 = 0, 𝜆1 ≅ 𝜆1
′  and 𝜆2 ≅ 𝜆2

′  indicating that the system 

can be approximated as two decoupled systems. However, during the transition between 

being fully-decoupled and being fully matched, the eigenvalue behaviour is not so 

straightforward—sensitivity of eigenvalues to parameter changes are drastically different 

as the systems become coupled (observing the change in behaviour at points (-1,1) and 

(-1,-1) in Figure 2.15). 

From this simplified example, the aim is for the reader to gain an appreciation to 

the complex dynamic behaviour of the eigenvalues as parameters vary. At present, the 

𝜆1 at 𝜌1 = 5 

𝜆1 at 𝜌1 = −5 

𝜆2 at 𝜌1 = −5 

𝜆2 at 𝜌1 = 5 
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phenomena of mode coupling on small-signal stability is under-studied in the literature 

for LVDC DPSs. In particular due to the high levels of uncertainty in modern LVDC 

DPSs, the possibility of mode coupling should firstly be identified, and secondly, effects 

of mode coupling should be quantified. 

 

2.6 Summary 

This chapter has established the theoretical background to the problem of small-

signal instability in DC power systems with parameter uncertainties. A summary of the 

basic problem of source-load interaction instability was presented. 

The key modelling and analysis techniques are contained in this chapter which are 

used throughout in this thesis. In contrast to frequency domain techniques, we opt for a 

time domain representation via state-space modelling. The theoretical preliminaries of 

linearisation, modal decomposition and small-signal stability (eigenvalue) analysis have 

been covered.  

Procedures for building a full system model are addressed in the next chapter. To 

emphasise here however, due to the many parameter uncertainties, the system model 

should be able to represent small-signal dynamics over all possible operating conditions. 

This is particularly important in systems that exhibit modal interactions and well as 

source-load interactions. 

The following chapters will use the basics established here to perform a thorough 

investigation into the effects of parameter uncertainties on small-signal dynamics of 

LVDC power systems. 
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Chapter 3 

Modelling Framework for Small-

Signal Stability Analysis of LVDC 

Distributed Power Systems 

3 Modelling Framework for Small-signal Stability Analysis of LVDC Distributed Power Systems 

ABSTRACT This chapter outlines a systematic approach to the development of sys-

tem models of LVDC DPSs for subsequent small-signal analysis. In many real-world 

applications, these systems often undergo changes through the addition and removal of 

different components. Constructing a new system model each time can prove to be both 

laborious and error-prone. A modular modelling approach is presented whereby the full 

system can be developed in a piecewise fashion. To account for dynamics over parameter 

uncertainties and a wide range of operating points, subsystems are modelled individually 

using symbolic nonlinear time-invariant state-space equations. These include high-fidel-

ity models of switching converters (using state-space averaging), feedback controllers, 

and passive networks. A new MATLAB toolbox, SymMIAL, has been developed here to 

automate the process for combining models to reduce formulation time. In contrast to 

earlier methods, model nonlinearity is retained to allow accurate calculation of steady-

state equilibrium values prior to small signal analysis. This is particularly important for 

the probabilistic studies in Chapter 5.  

The modelling procedure is validated on a filter-converter system using time-do-

main simulations and laboratory experiments. Further results here show that tightly 

controlled load-side converters can be simplified to ideal CPLs depending on controller 

parameters.  
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3.1 Introduction 

A complete dynamic state-space model linearised at the steady-state operating 

point is often used to investigate the small-signal behaviour of LVDC distributed power 

systems. Whether operating as an autonomous network or in conjunction with a larger 

grid, these systems consist of multiple interconnected components such as distribution 

lines, filters, controllers, and switch-mode converters. Changes to the structure of a DPS 

by adding or removing components requires an updated small-signal system model —

wherein deriving a new model can often be laborious and open to error. Moreover, the 

presence of parameter uncertainty is known to significantly influence the steady-state 

operating conditions and the small-signal characteristics (covered more comprehensively 

in Chapters 5 and 6). Therefore, any conclusions based on analysis of a single linear 

model under nominal conditions may be severely limited or invalid over the full range 

of uncertainty. 

This chapter presents a modular modelling framework in which a large complex 

power system model is developed by combining multiple lower-order subsystems. Sub-

systems are modelled using nonlinear state-space representation in symbolic form to 

represent the dynamics over all the possible operating conditions. The well-known state-

space averaging (SSA) technique, introduced in [78], is used to derive switch-mode con-

verter models valid under CCM operation. In contrast to the conventional two-port 

converter representation [33] where closed-loop control feedback dynamics are already 

embedded in the model, a more general multi-port representation is considered. 

The use of nonlinear averaged models of the converters with an open-loop structure, 

having control variables as inputs to the subsystem, enables a more modular approach to 

system model development. Controllers and power stage subsystems may be modelled 

separately prior to feedback for closed-loop regulation. The model structure is therefore 

flexible and can be extended with ease. Connections between individual subsystems are 

specified by algebraic equations linking the model inputs and outputs.  

A toolbox for MATLAB, called SymMIAL (Symbolic Model Interconnection and 

Linearisation), was developed to automate the procedure for combining subsystems. 

Symbolic manipulation based on MATLAB’s Symbolic Math Toolbox is used to rear-

range and solve model equations to generate a full system model with a nonlinear state-
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space representation. In contrast to previous modelling approaches, for example in [69], 

[93]–[95], nonlinear expressions are preserved wherever possible. By keeping the Jaco-

bian matrices in symbolic form, the linear state-space model representing all possible 

operating points is derived only once. Likewise, realizing loop transfer functions between 

any subsystem input to subsystem output becomes automatic. 

The rest of this chapter is structured as follows. Section 3.2 details the modular 

modelling approach for a large-scale DC power system by combining smaller inde-

pendently modelled subsystem components. Section 3.3 describes the individual 

subsystem dynamic models of the common elements or “building-blocks” of a larger 

system – passive networks, active power components, feedback controllers. Section 3.4 

introduces the SymMIAL toolbox that has been developed to provide an easy to use, flex-

ible and efficient tool for constructing and combining symbolic models for later use in 

small-signal analysis. To demonstrate the use of the tool for modelling and analysis, Sec-

tion 3.5 validates the modelling using detailed model simulations and experiments for 

two example test cases. Section 3.6 summarises this chapter and contributions. 

 

3.2 Modular Modelling of DC Power Systems 

This section details the basic mathematical structure of the power system as the 

interconnection of many different nonlinear state-space models. The primary objective 

of this modular modelling approach is to develop a database of individual subsystem 

models which can then be combined based on connection rules to generate a complete 

high-fidelity system model suitable for small-signal analysis. The synthesis of complete 

system model of typical DPSs, however, may prove to be a time consuming and error-

prone process if done by hand. Several authors have proposed similar techniques to alle-

viate this burden, for example [69], [94], [96]. 

 

3.2.1 Nonlinear state-space system model 

The canonical form of a nonlinear, time-invariant, state-space system model is 

given in (3.1) and represented by as a MIMO block diagram in Figure 3.1. In this form, 

the system model can be used accurately represent the dynamics, from input in 𝑈(𝑡) to 
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outputs in 𝑌(𝑡), over some parameter space, P. Here we make the following assumption 

that functions 𝐹 and 𝐺, below, are strictly continuous models. 

 𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋(𝑡), 𝑈(𝑡), 𝑃) 

𝑌(𝑡) = 𝐺(𝑋(𝑡), 𝑈(𝑡), 𝑃) 

(3.1) 

Where, 

X(t) = [x1(t), … 𝑥𝑛(𝑡)]
𝑇 is a vector of 𝑛 dynamic state variables, 

Y(t) = [y1(t), … 𝑦𝑚(𝑡)]
𝑇 is a vector of 𝑚 system outputs, 

U(t) = [u1(t), … 𝑢𝑞(𝑡)]𝑇 is vector of 𝑞 system input variables, 

𝑃 = [𝑝1, … 𝑝𝑟] is vector of 𝑟 parameters, 

𝐹(… ) = [𝑓1(… ), … 𝑓𝑛(… )]
𝑇 is a vector of 𝑛 1st-order differential state equations, 

𝐺(… ) = [𝑔1(… ), … 𝑔𝑚(… )]
𝑇 is a vector of 𝑚 output equations. 

 

If initial states 𝑋(𝑡 = 0) are known, and inputs 𝑈(𝑡) defined, the nonlinear state-

space equations in (3.1) have a unique trajectory of the outputs 𝑌(𝑡 = 0 → ∞) under 

normal/mild conditions. 

 

FIGURE 3.1 Block diagram representation of a time-invariant, MIMO nonlinear state-

space model. 

3.2.2 System as a network of subsystems 

To simplify the modelling effort, we can decompose the system on separate 

subsystems. A single arbitrary subsystem is denoted by 𝑆𝑎 where 𝑎 is an index. Each 

subsystem is symbolically represented and modelled by their governing state and output 

equations, where state and output equations can be aggregated into two separate vector 

functions, F and G. Some subsystems are linear and thus equate to a linear state-space 

model. The interfaces between subsystems, showing connection between inputs and 

( )
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( ) ( ) ( )
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t t     
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outputs, is defined solely by algebraic equations. The aim is to combine and transform 

individual subsystem models with connection rules to derive a full system model, de-

scribed as a nonlinear state-space model. 

A complete system can be formed by the interconnection of multiple subsystems 

specified by a netlist which describes how inputs and outputs of subsystems are 

connected together. The technique to combine separate subsystems is based on 

aggregating all subsystems, substituting for individual subsystem input variables based 

on the connections, and the algebraic elimination of variables that are deemed 

intermediates (i.e. those variables that are not parameters, inputs or outputs of the full 

system). Through this partitioning, it becomes natural to represent the system 

diagrammatically as shown in Figure 3.2.  

 

3.2.3 Linearising and extracting transfer functions 

Small-signal analysis can be done be linearising the above and using the nonlinear 

equation to find 𝑋0. All posible transfer functions can be derived. The representation of 

the combined system model has a form similar to that of the individual subsystems. 

 
𝐻(𝑠) =

𝑌(𝑠)

𝑈(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (3.2) 
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3.3 Subsystem Component Models 

This section describes the models of individual subsystem components used in DC 

power systems, which include the passive networks, filters, PWM DC-to-DC converters, 

and feedback controllers. To keep generality of the building blocks, parasitic elements 

and controller dynamics are included for accurate symbolic modelling over the full range 

of operating conditions and are necessary in the analysis of parameter interactions be-

tween individual components. 

As previously discussed in Sections 2.3-2.5, the timescales relevant for small-sig-

nal instability in LVDC DPSs occur well below the switching periods of the PWM 

converters. As such, the complex time-varying switch dynamics are appropriately omit-

ted through averaging techniques. Even though subsequent analysis is based on small-

signal assumptions, converter subsystem models are kept with their averaged dynamics 

using a nonlinear state-space representation. In contrast to conventional approaches, 

where models are merged using their linearised form [19], [94], our aim is to maintain 

model nonlinearity throughout the merging process wherever possible. Precise steady-

state operating points can then be determined based on the complete nonlinear power 

system model. 

 

3.3.1 Passive network components 

Figure 3.4 shows the two-port schematic representation of a DC network used to 

describe passive circuits such as power line filters and distribution cables. Both input and 

output ports are indicated by a pair of terminals as the connection interface to upstream 

and downstream circuits. As with any two-port mathematical representation (e.g. z-pa-

rameters), the dynamic relationship between the four external variables – terminal 

voltages and currents – can be fully specified as a 2 × 2 MIMO system [33]. Assuming 

a known model of a linear electrical network, if any two of these variables are inde-

pendently driven by an external source, the remaining (dependent) variables can be 

determined. 
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FIGURE 3.3 Two-port representation of a passive distribution network. 

 

 

FIGURE 3.4 Circuit representation of a passive distribution network, v in(t) and 

iout(t) selected as independent model input variables. 

The linear state-space representation in (3.2) is used to model passive network 

given in Figure 3.4. The input port voltage 𝑣𝑖𝑛(𝑡) and output current 𝑖𝑜𝑢𝑡(𝑡) are selected 

as the state-space model input variables. The output voltage 𝑣𝑜𝑢𝑡(𝑡) and input current 

𝑖𝑖𝑛(𝑡) are therefore treated as the mode output variables. In this form, the cascade con-

nection of multiple state-space models becomes straightforward. The output voltage of 

an upstream subsystem directly corresponds to the input voltage of the downstream sub-

system. Likewise, output (load) current on the upstream subsystem equals the input 

current sourced by the downstream subsystem.  

 

 𝑑𝑋(𝑡)

𝑑𝑡
= 𝐴(𝑃)𝑋(𝑡) + 𝐵(𝑃) [

𝑣𝑖𝑛(𝑡) 
𝑖𝑜𝑢𝑡(𝑡)

] 

[
𝑣𝑜𝑢𝑡(𝑡) 
𝑖𝑖𝑛(𝑡)

] = 𝐶(𝑃)𝑋(𝑡) + 𝐷(𝑃) [
𝑣𝑖𝑛(𝑡) 
𝑖𝑜𝑢𝑡(𝑡)

] 

(3.2) 

where vector 𝑃 contains all parameters of fixed value, input 𝑢(𝑡) = [𝑣𝑖𝑛(𝑡), 𝑖𝑜𝑢𝑡(𝑡)]
𝑇, 

output 𝑦(𝑡) = [𝑣𝑜𝑢𝑡(𝑡), 𝑖𝑖𝑛(𝑡)]
𝑇, and A, B, C, D are the state-space Jacobian matrices. 

 

Network subsystem blocks are assumed to be purely passive with no internal inde-

pendent sources and can be modelled using lumped-elements. The number of states is 

Passive 
Network 
Model

Input Port Output Port( )inv t

( )ini t ( )outi t

( )outv t

( )outi t

( )outv t

( )inv t

( )ini t

Passive 
Network 
Model

Input Port Output Port
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therefore determined by the number of reactive components in the model, where state 

variables are defined as only inductor currents and capacitor voltages. The number of 

elements used to model the dynamics of a real network ultimately depends on the re-

quired accuracy to measured data.  

The examples below illustrate the development of a typical network model used as 

building-block in larger DC systems. A library of such components is provided with the 

SymMIAL toolbox (Section 3.4) 

Example 3.1: Modular model of an LC filter with parasitics 

 

 

FIGURE 3.5 Circuit diagram of an LC filter with parasitic resistances. 

The equivalent circuit of a passive low-pass power filter is shown in Figure 3.5. 

Parasitic circuit resistances for the reactive components are included. Both the DCR and 

ESR values are provided in datasheets, often with a wide tolerance, and subject to sig-

nificant aging effects. In particular, the DCR of the inductor provides a series damping 

effect on the resonant peak of the filter, and provide a voltage drop for capacitor steady-

state operating voltage. These parasitics therefore have a fundamental effect on the small-

signal behaviour in source-load systems and their relative contribution to interactions 

must be assessed. 

The linear model of the above LC filter yields the following circuit equations in 

(3.3).  

 
𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
= 𝑖𝐿(𝑡) − 𝑖𝑜𝑢𝑡(𝑡) 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑣𝑖𝑛(𝑡) − 𝑣𝐶(𝑡) − (RC + RL)𝑖𝐿(𝑡) + RC𝑖𝑜𝑢𝑡(𝑡) 

(3.3) 

( )Li t ( )Cv t

CR

LR L

C
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𝑖𝑖𝑛(𝑡) = 𝑖𝐿(𝑡) 

𝑣𝑜𝑢𝑡(𝑡) = 𝑣𝐶(𝑡) − 𝑅𝐶𝑖𝑜𝑢𝑡(𝑡) + 𝑅𝐶𝑖𝐿(𝑡) 

And then rearranged into the linear state-space form of below in (3.4). 

 
𝑑𝑋(𝑡)

𝑑𝑡
= [

0
1

𝐶

−
1

𝐿
−
(RC + RL)

𝐿

]𝑋(𝑡) + [
0 −

1

𝐶
1

𝐿

𝑅𝐶
𝐿

]𝑈(𝑡) 

𝑌(𝑡) = [
1 𝑅𝐶
0 1

]𝑋(𝑡) + [
0 −𝑅𝐶
0 0

]𝑈(𝑡) 

(3.4) 

Where, 

𝑋(𝑡) = [𝑣𝐶(𝑡), 𝑖𝐿(𝑡)]
𝑇,  

𝑌(𝑡) = [𝑣𝑜𝑢𝑡(𝑡), 𝑖𝑖𝑛(𝑡)]
𝑇,  

𝑈(𝑡) = [𝑣𝑖𝑛(𝑡), 𝑖𝑜𝑢𝑡(𝑡)]
𝑇. 

Example 3.2: One-port networks (e.g., resistive load) 

 

Subsystems that do not feature an output port can be simplified to a one-port net-

work. These components can be expressly modelled as an input impedance (or 

admittance), keeping the existing convention of voltage-as-input variable: 

 𝑖𝑖𝑛(𝑠) = (1 𝑍𝑖𝑛(𝑠)⁄ )𝑣𝑖𝑛(𝑠) (3.5) 

 

 

FIGURE 3.6 Circuit diagram of a one-port subsystem in time domain and s-domain. 

Noting that we have expressed equation (3.5) is the s-domain, which must be con-

verted to a valid state-space representation. Assuming the analytic transfer function 

expression is known for 𝑍𝑖𝑛(𝑠) , a time-domain state-space model can therefore be 

( )inv t

( )ini t
1-Port 
Model

Input Port

( )ini s

time-domain

( )inv s ( ) 1/ ( )iin nZ s Y s=

s-domain



CHAPTER 3 

73 

realised using one of the so-called canonical forms [97] . With this, the number of poles 

corresponds to the number of states. 

In the case of a constant input impedance over all frequencies, i.e., no reactive 

elements with a fixed resistance, 𝑍𝑖𝑛(𝑠) = 𝑅, this trivial example becomes Ohm’s law in 

(3.6): 

 𝑖𝑖𝑛(𝑡) = (1 𝑅⁄ )𝑣𝑖𝑛(𝑡) (3.6) 

After successive power conversion stages, the end-loads in DC power distribution 

systems typically have a dominant resistive characteristic (e.g., heating elements, digital 

electronics), and can be modelled as such.  

 

3.3.2 Active components: PWM DC-to-DC power converters 

Referring back to previous discussions in Section 2.3, the complex dynamic be-

haviour of active loads has been understood to be as important factor in the small-signal 

stability of DC DPSs. While ideal CPL dynamics are often used to model active loads 

for source-load instability, in recent years it has been established a need for more detailed 

mathematical models of practical converters. Inclusion of controller dynamics and circuit 

parameters provides more insightful analysis on the impact of critical parameters influ-

encing system stability that CPLs neglect [19], [98].  

Unlike conventional approaches, where converters are modelled and combined us-

ing their linearised form [94], the modelling aim is to preserve nonlinearity ensuring 

validity for all operating points. The precise steady-state operating point of inherently 

nonlinear subsystems is dependent on other interconnected components. Therefore, 

steady-state operating points must be evaluated with respect to the complete power sys-

tem model. 

Figure 3.7 shows the two-port schematic representation of an averaged time-do-

main power stage. The DC-to-DC converter circuit is comprised of switching 

semiconductor elements (e.g., MOSFETs, IGBTs, diodes) and passive elements. The 

switches are assumed to have two states, on and off, and are controlled by periodic pulse 

waveforms 𝑞(𝑡) from a PWM modulator. In turn, the PWM modulator is driven by a 

continuous-time input signal referred to as the duty cycle 𝑑(𝑡). For simplicity we have 
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only shown a single control input variable, however this modelling may be extended to 

multiple control inputs. 

 To derive the dynamic equations for a converter, the method of state-space aver-

aging (SSA) is applied to the discrete time-varying switching dynamics. This method 

firstly splits the power stage into the equivalent (sub)circuits under each switch state. 

Effectively replacing the switches with an open or a short, each subcircuit becomes a 

time invariant linear system. Therefore, linear state-space model can be found for each 

subcircuit. These dynamic models are then averaged over the duty cycle yielding the 

average power stage model. As a result, a nonlinear relationship between circuit variables 

and control inputs arises in the average model. A more comprehensive treatment of the 

SSA method may found in [32], [33], [78], [99]. 

The general nonlinear state-space representation in (3.1) is used to represent the 

averaged converter model in Figure 3.7. 

 

FIGURE 3.7 Circuit representation of a switch-mode DC-to-DC converter with aver-

aged power stage dynamics. 

The following example demonstrates the derivation of the nonlinear average model 

of synchronous buck converter using the SSA technique. This approach is used to derive 

symbolic models for the remaining primitive DC-to-DC topologies (i.e., boost, and buck-

boost), with assumption of instantaneous synchronous switches and CCM operation, as 

part of SymMIAL toolbox component libraries. 

In practice, however, it is important to acknowledge that the internal dynamics are 

far more complex than the above continuous-time-invariant assumptions. Power 
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semiconductor switches and modulators introduce discrete behaviours with delay effects. 

For the purposes of small-signal stability analysis, where important interaction phenom-

ena occur at low frequencies, we may neglect high-frequency converter dynamics and 

time delays of modulators.  

Example 3.3: Synchronous buck converter power stage under CCM 

 

 

FIGURE 3.8 Circuit diagram of a synchronous buck converter. 

Figure 3.8 shows the circuit diagram of a step-down synchronous buck converter. 

The states variables are the capacitor voltage and inductor current. 

 𝑥(𝑡) = [𝑣𝐶(𝑡) 𝑖𝐿(𝑡)]
𝑇 (3.7) 

The input variables include the source voltage, load current and duty cycle. 

 u(t) = [𝑣𝑖𝑛(𝑡) 𝑖𝑜𝑢𝑡(𝑡) 𝑑(𝑡)]T (3.8) 

The output voltage and the input current from the source are the output variables: 

 y(t) = [vout(t) iin(t)]
T (3.9) 

The MOSFETs Q1 and Q2 are complementary and assumed to have instantaneous 

switching behaviour with no deadtime. With this, Q1 and Q2 together can be considered 

as an ideal single-pole double-throw switch controlled by a Boolean switching function 

𝑞(𝑡) = {0,1}. The converter may therefore be split into two modes of operation, with 

different subcircuit model, over a switching period: 

1) Source-connected; inductor charging; 𝑞 = 0 

2) Source-disconnect; inductor discharging; 𝑞 = 1 
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FIGURE 3.9 The two subcircuits of the synchronous buck converter at different 

switching state: (a) q(t) = 0, (b) q(t) = 1. 

In the above subcircuits, Q1 and Q2 MOSFETs have been replaced by their drain-

to-source channel on-state resistance 𝑅𝐷𝑆(𝑜𝑛). 

 

On State: 

Subcircuit in Figure 3.9(a) can be used to derive the linear equations for the on 

state, shown below: 

 𝑑𝑖𝐿(𝑡)

𝑑𝑡
|
𝑞(𝑡)=0

= −
𝑣𝑐(𝑡)

𝐿
+
𝑣𝑖𝑛(𝑡)

𝐿

𝑑𝑣𝑐(𝑡)

𝑑𝑡
|
𝑞(𝑡)=0

=
𝑖𝐿(𝑡)

𝐶
−
𝑖𝑜𝑢𝑡(𝑡)

𝐶

𝑣𝑜𝑢𝑡(𝑡)|𝑞(𝑡)=0 = 𝑣𝑐(𝑡)

𝑖𝑖𝑛(𝑡)|𝑞(𝑡)=0 = 𝑖𝐿(𝑡)

 (3.10) 

 

Off State: 

Subcircuit in Figure 3.9(b) can be used to derive the linear equations for the off 

state, shown below in: 
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 𝑑𝑖𝐿(𝑡)

𝑑𝑡
|
𝑞(𝑡)=1

= −
𝑣𝑐(𝑡)

𝐿
 

𝑑𝑣𝑐(𝑡)

𝑑𝑡
|
𝑞(𝑡)=1

=
𝑖𝐿(𝑡)

𝐶
−
𝑖𝑜𝑢𝑡(𝑡)

𝐶
 

𝑣𝑜𝑢𝑡(𝑡)|𝑞(𝑡)=1 = 𝑣𝑐(𝑡) 

𝑖𝑖𝑛(𝑡)|𝑞(𝑡)=1 = 0 

(3.11) 

Averaging: 

The buck converter exists in the 𝑞(𝑡) = 1 state for an average period of: 

 𝑡𝑜𝑛
𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓

= 𝑑(𝑡) (3.12) 

Likewise, in the system exists in the 𝑞(𝑡) = 0 state for an average period of: 

 𝑡𝑜𝑓𝑓

𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓
= 1 − 𝑑(𝑡) (3.1) 

Averaging both subcircuit models over the full switching period yields (3.13): 

 𝑑𝑣𝑐(𝑡)

𝑑𝑡
= 𝑑(𝑡)

𝑑𝑣𝑐(𝑡)

𝑑𝑡
|
𝑞(𝑡)=1

+ (1 − 𝑑(𝑡))
𝑑𝑣𝑐(𝑡)

𝑑𝑡
|
𝑞(𝑡)=0

 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑑(𝑡)

𝑑𝑖𝐿(𝑡)

𝑑𝑡
|
𝑞(𝑡)=1

+ (1 − 𝑑(𝑡))
𝑑𝑖𝐿(𝑡)

𝑑𝑡
|
𝑞(𝑡)=0

 

(3.13) 

Substituting and simplifying, the averaged (nonlinear) synchronous buck converter 

model can therefore be described by the following equations in (3.14): 

 𝑑𝑣𝑐(𝑡)

𝑑𝑡
=
𝑖𝐿(𝑡)

𝐶
−
𝑖2(𝑡)

𝐶
 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
= −

𝑣𝑐(𝑡)

𝐿
+
𝑣1(𝑡)𝑑(𝑡)

𝐿
 

𝑣2(𝑡) = 𝑣𝑐(𝑡) 

𝑖1(𝑡) = 𝑖𝐿(𝑡)𝑑(𝑡) 

(3.14) 
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3.3.3 Feedback controllers 

Linear feedback control is assumed and represented in the classic state-space form, 

below. In DPSs, primary control refers to regulation of current or voltage as well as 

power sharing in the case of parallel sources. 

 

 

FIGURE 3.10 General block representation of a linear controller in state-space form. 

 

 𝑑𝑋𝐶(𝑡)

𝑑𝑡
= AC𝑋𝐶(𝑡) + 𝐵𝐶𝑈𝐶(𝑡) 

𝑈(𝑡) = 𝐶C𝑋𝐶(𝑡) + 𝐷𝐶𝑈𝐶(𝑡) 

(3.15) 

Example 3.4: Type-III Analogue Compensator 

 

For buck converter control, a type-III compensator is often used to shape the 

closed-loop dynamics to a desired specification.  

 

FIGURE 3.11 Circuit diagram of a type-III analogue compensator. 

The type-III analogue compensator shown in Figure 3.11 is characterised by three 

poles (with one pole at the origin) and two zeroes. Controller designs of this form are 

( )
( ) ( )

( ) ( ) ( )

dX t
A X t B U t

dt

Y t C X t D U t

=  + 

=  + 
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almost always exclusively done in the frequency domain, with the open-loop power stage 

dynamics determining suitable poles and zeros locations. After, the required resistor and 

capacitor values in the compensator can be calculated directly using the procedures out-

lined in [100]. The zeros are included to damp the double pole resonance of the output 

filter.   The overall transfer function of the compensator 𝐻(𝑠) can be given by equation: 

 

𝐻(𝑠) =
𝑑(𝑠)

𝑢𝑒𝑟𝑟(𝑠)
= 𝐾𝐷𝐶

(1 +
𝑠
𝜔𝑧1
) (1 +

𝑠
𝜔𝑧2
)

𝑠 (1 +
𝑠
𝜔𝑝1

) (1 +
𝑠
𝜔𝑝2

)
 (3.16) 

Where the error signal is 𝑢𝑒𝑟𝑟(𝑠) = 𝑢𝑟𝑒𝑓(𝑠) − 𝑢𝑚(𝑠). 

𝐾𝐷𝐶 determines the gain at DC and consequently the open-loop phase crossover 

frequency (which is close the closed-loop -3dB bandwidth) 

Conversion of the transfer function (3.17) to an equivalent state-space representa-

tion can be done by finding a set of state-space matrices such that 𝐻(𝑠) =

𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷. 

A possible time domain realisation of the type III compensator is equivalent to the 

three-state system below in (3.17): 

𝑑𝑋

𝑑𝑡
= [

−(𝜔𝑝1 + 𝜔𝑝2) 1 0

−𝜔𝑝1𝜔𝑝2 0 1

0 0 0

] 𝑋 + [

𝜔𝑝1𝜔𝑝2/(𝜔𝑧1𝜔𝑧2)

𝜔𝑝1𝜔𝑝2(1/𝜔𝑧1 + 1/𝜔𝑧2)
𝜔𝑝1𝜔𝑝2

]𝑈𝑒𝑟𝑟 

𝑑(𝑡) = [𝐾𝐷𝐶 0 0]𝑋 

(3.17) 

Where, 𝑈𝑒𝑟𝑟 =(𝑢𝑟𝑒𝑓 − 𝑢𝑚) and 𝑋 = [𝑥1, 𝑥2, 𝑥3]
𝑇 are the state variables corresponding 

to stored voltage in the capacitors. 

A good approximation for a controller with a type III realisation can be expressed 

in terms of the buck converter power stage parameters, below in the s-domain: 

𝐻(𝑠) =  𝜔−3𝑑𝐵.
𝜔𝑠𝑤(𝑠√𝐿𝐶 + 1)

2

𝑠𝑉𝑖𝑛. (𝑠. 2 + 𝜔𝑠𝑤). (𝑠𝐶. 𝐸𝑆𝑅 + 1)
 (3.18) 
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3.4 SymMIAL: A MATLAB Toolbox for Sym-

bolic Model Interconnection and Linearisation 

3.4.1 Purpose and overview 

The purpose of the newly developed toolbox, SymMIAL, is to provide users with a 

convenient and efficient way to modelling large power systems within a nonlinear state-

space framework. Specifically, the easy construction and combination of arbitrary mod-

els defined in a library of common parts. 

SymMIAL toolbox source code is available along with documentation and numer-

ous examples files based on the studied systems contained within this thesis. See 

Appendix A for further implementation details. The toolbox was developed initially un-

der MATLAB 9.2 R2017a with revisions made up to version MATLAB 9.7 R2019b. 

 

3.4.2 Program implementation 

This section describes the step-by-step the process of combining separate 

(symbolic) subsystems to simplify the modelling process while preserving system model 

nonlinearities. Parameter vector 𝑃 are omitted in the equations for brevity. Subscript no-

tation (𝑠𝑢𝑏‐ 𝑖) herein is used to indicate the 𝑖-th subsystem. Figure 3.12 shows the flow 

diagram of the developed procedures, discussed herein: 

 

1. Concatenate all subsystems 

Vectors: 

 𝑑𝑋𝑐𝑜𝑛𝑐𝑎𝑡
𝑑𝑡

= [
𝑑𝑋𝑠𝑢𝑏‐1
𝑑𝑡

,
𝑑𝑋𝑠𝑢𝑏−2
𝑑𝑡

,… ,
𝑑𝑋𝑠𝑢𝑏−𝑛
𝑑𝑡

]
𝑇

 (3.19) 

X𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑋𝑠𝑢𝑏‐1,𝑋𝑠𝑢𝑏−2,… ,𝑋𝑠𝑢𝑏−𝑛]
𝑇 

Y𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑌𝑠𝑢𝑏‐1,𝑌𝑠𝑢𝑏−2,… ,𝑌𝑠𝑢𝑏−𝑚]
𝑇 

𝑈𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑈𝑠𝑢𝑏‐1,𝑈𝑠𝑢𝑏‐2,… ,𝑈𝑠𝑢𝑏−𝑚]
𝑇 
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Equations: Group all state and output equations together. 

 

Fconcat = [

Fsub−1(𝑋sub−1, 𝑈sub−1)

Fsub−2(𝑋sub−2, 𝑈sub−2)
⋮

Fsub−n(𝑋sub−n, 𝑈sub−n)

] (3.20) 

 

Gconcat = [

Gsub−1(𝑋sub−1, 𝑈sub−1)

Gsub−2(𝑋sub−2, 𝑈sub−2)
⋮

Gsub−n(𝑋sub−n, 𝑈sub−n)

] (3.21) 

 

2. Finding 𝑿𝒔𝒚𝒔, 𝒀𝒔𝒚𝒔 

 𝑋𝑠𝑦𝑠 = X𝑐𝑜𝑛𝑐𝑎𝑡 

𝑌𝑠𝑦𝑠 = Y𝑐𝑜𝑛𝑐𝑎𝑡 
(3.22) 

 

3.a. Finding 𝑼𝒔𝒚𝒔 

The connectivity netlist is a set of algebraic equations relating subsystem output 

connections to subsystem inputs, and is represented by matrix L in the following equation 

(3.23): 

 𝑈𝑛𝑒𝑡 = 𝐿. 𝑌𝑠𝑦𝑠 (3.23) 

 

𝑌𝑠𝑦𝑠 represents all outputs of system. Noting that not all outputs are necessary fed 

back to inputs. 

𝑈𝑛𝑒𝑡 is a vector of all input variables of different subsystems that are connected to 

outputs, thereby forming a closed-loop feedback system.  

The set difference of 𝑈𝑐𝑜𝑛𝑐𝑎𝑡 and 𝑈𝑛𝑒𝑡 is the set of elements in 𝑈𝑐𝑜𝑛𝑐𝑎𝑡  but not in 

𝑈𝑛𝑒𝑡 (3.24): 

 Usys = Uconcat\Unet = {𝑥 ∈ 𝑈𝑐𝑜𝑛𝑐𝑎𝑡 | 𝑥 ∉ 𝑈𝑛𝑒𝑡} (3.24) 

Where 𝑈𝑠𝑦𝑠 are all the inputs that are left unconnected to any outputs, i.e., left as open-

loop input, and are therefore defined as the system inputs 
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3.b. Establish required system representation / form 

The required form of the combined system is given below in (3.25): 

 𝑑𝑋𝑠𝑦𝑠

𝑑𝑡
= 𝐹𝑠𝑦𝑠(𝑋𝑠𝑦𝑠, 𝑈𝑠𝑦𝑠) 

Ysys = 𝐺𝑠𝑦𝑠(𝑋𝑠𝑦𝑠, 𝑈𝑠𝑦𝑠) 

(3.25) 

Where 𝑋𝑠𝑦𝑠, 𝑈𝑠𝑦𝑠 and 𝑌𝑠𝑦𝑠 have been previously specified in Step 1-2. 

 

The aim is to find the equations 𝐹𝑠𝑦𝑠 and 𝐺𝑠𝑦𝑠. 

3.c. Finding 𝑮𝒔𝒚𝒔 

The superscript * denotes a modification to the original function: 

subsitute for system state: 

 𝑌𝑠𝑢𝑏−𝑖 = G𝑠𝑢𝑏−𝑖
∗ (𝑋𝑠𝑦𝑠, 𝑈sub−i) (3.26) 

 

subsitute for system output: 

 𝑌𝑠𝑢𝑏−𝑖 = G𝑠𝑢𝑏−𝑖
∗ (𝑋𝑠𝑦𝑠, 𝑈sys, 𝑌𝑠𝑦𝑠) (3.27) 

 

We have replaced 𝑈sub−i  with 𝑈𝑠𝑦𝑠  and 𝑌𝑠𝑦𝑠 . Noting that if 𝐺𝑠𝑢𝑏−𝑖  contains no 

system inputs, i.e. all subsystem inputs have been connected by other subsysytem 

outputs, then 𝐺𝑠𝑢𝑏−𝑖 becomes (3.28): 

 𝑌𝑠𝑢𝑏−𝑖 = G𝑠𝑢𝑏−𝑖
∗ (𝑋𝑠𝑦𝑠, 𝑌𝑠𝑦𝑠) (3.28) 

 

In other words, the relation between a subsystem ouput 𝑌𝑠𝑢𝑏−𝑖 is dependent only 

on the state variables and the outputs of other subsystems.    

 

Replacing this to create: 

 Ysys = G𝑐𝑜𝑛𝑐𝑎𝑡
∗ (𝑋𝑠𝑦𝑠, 𝑈sys, 𝑌𝑠𝑦𝑠) (3.29) 
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4.a. If 𝒀𝒔𝒚𝒔 linear 

If 𝐺𝑐𝑜𝑛𝑐𝑎𝑡 can be written in linear w.r.t. 𝑋, 𝑈, and 𝑌, i.e. 

 Ysys = 𝐶𝑋𝑠𝑦𝑠 + D𝑈sys + 𝐸𝑌𝑠𝑦𝑠 (3.30) 

 

For some matrices 𝐶 𝐷 𝐸, (3.30) can be rearraged into the following form: 

 Ysys = 𝐶𝑋𝑠𝑦𝑠(𝐼 − 𝐸)
−1 + D𝑈sys(𝐼 − 𝐸)

−1 

= 𝐺∗(𝑋𝑠𝑦𝑠, 𝑈sys) 
(3.31) 

This shows that 𝑌𝑠𝑦𝑠 can be rearraged and uniquely solved as a function of 𝑋𝑠𝑦𝑠 

and 𝑈𝑠𝑦𝑠 

 

4.b. If 𝒀𝒔𝒚𝒔 nonlinear 

However, problems arise if function 𝐺∗ in (3.29) is nonlinear on the term 𝑌𝑠𝑦𝑠 , 

meaning it cannot be linearly transformed into the form (3.31). 

To address this, we can linearise this nonlinear 𝐺∗ in (3.29) w.r.t variables 𝑌𝑠𝑦𝑠 to 

approximate the solutions to the system of equations around some point 𝑌𝑠𝑦𝑠,0. 

Applying first-order Taylor linearisation about 𝑌𝑠𝑦𝑠,0 to (3.29), we get the follow-

ing expression (3.32) (while also omitting subscript 𝑠𝑦𝑠 for simplicity): 

 Y = 𝐺(𝑋, 𝑈, 𝑌0) + ∇𝐺(𝑋, 𝑈, 𝑌0) ∙ (𝑌 − 𝑌0) (3.32) 

 

Rearranging and solving for 𝑌 in (3.32) yeilds the following (3.33): 

 Y = (𝐺(𝑋, 𝑈, 𝑌0) − ∇𝐺(𝑋, 𝑈, 𝑌0)𝑌0)(𝐼 − ∇𝐺(𝑋, 𝑈, 𝑌0))
−1

 (3.33) 

As 𝑌0 is a constant, it can be treated as part of the parameters of function 𝐺. Noting 

that the right hand side of equation (3.33) is now a function of variables 𝑋 and 𝑈 only, 

and (3.33) can be written as simply (3.34): 

 Ysys = 𝐺𝑠𝑦𝑠(𝑋𝑠𝑦𝑠, 𝑈sys) (3.34) 
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This thereby effecivly represents all of the output equations in the valid form 

expected by the nonlinear state-space equation in (3.25). 

Later on we will discuss the problem of finding a suitable value 𝑌0 required for 

linearisation. For now, we treat 𝑌0 as an addition to the system parameters and is an a-

priori known. 

 

5. Finding 𝑭𝒔𝒚𝒔 

Similar to replace subsystem inputs with system outputs based on connections to get: 

 𝑑𝑋𝑠𝑦𝑠

𝑑𝑡
= 𝐹𝑐𝑜𝑛𝑐𝑎𝑡

∗ (𝑋𝑠𝑦𝑠, 𝑈𝑠𝑦𝑠, 𝑌𝑠𝑦𝑠) (3.35) 

As 𝑌𝑠𝑦𝑠 is known, subsitituting (3.34) into above (3.35): 

 𝑑𝑋𝑠𝑦𝑠

𝑑𝑡
= 𝐹𝑐𝑜𝑛𝑐𝑎𝑡

∗ (𝑋𝑠𝑦𝑠, 𝑈𝑠𝑦𝑠, 𝐺𝑠𝑦𝑠(𝑋𝑠𝑦𝑠, 𝑈sys)) (3.36) 

𝐹𝑐𝑜𝑛𝑐𝑎𝑡
∗  is now a function of only 𝑋𝑠𝑦𝑠 and 𝑈𝑠𝑦𝑠 , which (3.36) can be rearranged and 

simplifed to (3.37): 

 𝑑𝑋𝑠𝑦𝑠

𝑑𝑡
= 𝐹𝑠𝑦𝑠(𝑋𝑠𝑦𝑠, 𝑈𝑠𝑦𝑠) (3.37) 

Both 𝐹𝑠𝑦𝑠 and 𝐺𝑠𝑦𝑠  are now in the valid nonlinear state-space form (3.25). 

 

6. Finding linear model 

6a. symbolic linear state-space model 

The nonlinear system equations 𝐹  and 𝐺  in (3.34) and (3.37) can be linearised 

about an arbitrary equilibrium (𝑋0 and 𝑈0). Evaluated at this point, the corresponding 

linear state-space model can be represented by equations (3.38), where 𝐴, 𝐵, 𝐶, and 𝐷 

are constant Jacobian matrices. 

 𝑑𝑋

𝑑𝑡
= 𝐴𝑋 + 𝐵𝑈 

𝑌 = 𝐶𝑋 + 𝐷𝑈 

(3.38) 

Where,  
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𝐴(𝑋0, 𝑈0) =
𝜕𝐹(𝑋,𝑈)

𝜕𝑋
|
(
𝑋=𝑋0
𝑈=𝑈0

)
=

[
 
 
 
 
 
𝜕𝑓1(𝑋,𝑈)

𝜕𝑥1
⋯

𝜕𝑓1(𝑋,𝑈)

𝜕𝑥𝑛

⋮ ⋱ ⋮

𝜕𝑓𝑛(𝑋,𝑈)

𝜕𝑥1
⋯

𝜕𝑓𝑛(𝑋,𝑈)

𝜕𝑥𝑛 ]
 
 
 
 
 

  

𝐵(𝑋0, 𝑈0) =
∂F(X,U)

∂U
|
(
𝑋=𝑋0
𝑈=𝑈0

)
=

[
 
 
 
 
 
∂f1(𝑋,𝑈)

∂u1
⋯

∂f1(𝑋,𝑈)

∂un

⋮ ⋱ ⋮

∂fn(𝑋,𝑈)

∂u1
⋯

∂fn(𝑋,𝑈)

∂un ]
 
 
 
 
 

  

𝐶(𝑋0, 𝑈0) =
∂G(X,U)

∂X
|
(
𝑋=𝑋0
𝑈=𝑈0

)
=

[
 
 
 
 
 
∂g1(𝑋,𝑈)

∂x1
⋯

∂g1(𝑋,𝑈)

∂xn

⋮ ⋱ ⋮

∂gn(𝑋,𝑈)

∂x1
⋯

∂gn(𝑋,𝑈)

∂xn ]
 
 
 
 
 

  

𝐷(𝑋0, 𝑈0) =
∂G(X,U)

∂U
|
(
𝑋=𝑋0
𝑈=𝑈0

)
=

[
 
 
 
 
 
∂g1(𝑋,𝑈)

∂u1
⋯

∂g1(𝑋,𝑈)

∂un

⋮ ⋱ ⋮

∂gn(𝑋,𝑈)

∂u1
⋯

∂gn(𝑋,𝑈)

∂un ]
 
 
 
 
 

  

Above, the subscript index (𝑋 = 𝑋0, 𝑈 = 𝑈0) indicates the steady-state equilibrium as 

constant input. To satisfy this condition, this point is defined by the property (3.39): 

 𝑑𝑋𝑠𝑦𝑠

𝑑𝑡
= 0 (3.39) 

The trajectories of the states 𝑋(𝑡), after small perturbations of the steady-state 

equilibrium, can be determined by the analysing the state equation in (3.38). The eigen-

values of matrix 𝐴 can be used to assess whether the system diverge or converge to the 

equilibrium point, indicating an unstable and stable systems, respectively. 

Iterative methods are used to solve the nonlinear system of equations in (3.39) 

when all parameters and inputs are defined. The Newton-Raphson method is suitable for 

finding the equilibrium points as is commonly used in conventional load-flow problems 

[67]. 

In general, nonlinear systems may have multiple equilibrium points that can satisfy 

the steady-state condition (3.39). As is the case with power systems, typically, only one 

such point is feasible due to practical constraints in voltages and currents. To address 
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this, an estimation of the steady-state is firstly done by a detailed simulation under nom-

inal conditions. This is used as the initial guess in Newton–Raphson iteration of the 

power equations. It was shown that even though steady state values change under varying 

parameters and inputs, this initial guess was suitable for convergence to the correct so-

lution.  

 

3.5 Example: Application to a Single Active Load 

System 

An example of model development procedure using SymMIAL is demonstrated 

here on a single active load system in Figure 3.13. The equivalent control block diagram 

showing inputs, outputs and connections is given in Figure 3.13. 

 

 

FIGURE 3.13 Circuit model of a single load based on a tightly regulated buck con-

verter with an input filter and type-III compensator. 
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FIGURE 3.14 Block diagram representation of the single load system in Figure 3.13. 

 

Each subsystem block is defined using the equations presented below: 

Source Model 

 
𝑋 = [𝑣𝐶] 
𝑈 = [𝑉1 𝐼2]

𝑇 

𝑌 = [𝑉2 𝐼1]
𝑇 

�̇� = 𝐹(𝑋, 𝑈) = (𝑉1 − 𝑣𝐶)/(𝑅𝐶)  − 𝐼2/𝐶   

𝑌 = 𝐺(𝑋, 𝑈) = [
𝑣𝐶

(𝑉1  −  𝑣𝐶)/𝑅
]  

 

LC Filter Model 

 
𝑋 = [𝑣𝐶 𝑖𝐿]

𝑇 

𝑈 = [𝑉1 𝐼2]
𝑇 

𝑌 = [𝑉2 𝐼1]
𝑇 

�̇� = 𝐹(𝑋, 𝑈) = [
(𝑖𝐿 − 𝐼2) 𝐶⁄

(𝑉1 − 𝑣𝐶 − 𝑖𝐿(𝑅𝐶 + 𝑅𝐿)  + 𝐼2𝑅𝐶)/𝐿
] 

𝑌 = 𝐺(𝑋, 𝑈) = [
𝑣𝐶 − 𝐼2𝑅𝐶 + 𝑖𝐿𝑅𝐶

𝑖𝐿
]  

 

 

 

 

 

offV

Filter 1

 F1 

Buck 1

 B1 

Controller 1

 C1 

Load 1

 R1 

refV

1, 1RI2, 1BV
1, 1RV

1, 1BI

1CD

2, 1BI
1, 1BV

1BD

1, 1CV

1, 1FV
2, 1FI
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Buck Converter (Averaged Model) 

 
𝑋 = [𝑣𝐶 𝑖𝐿]

𝑇 

𝑈 = [𝑉1 𝐼2 𝐷]𝑇 

𝑌 = [𝑉2 𝐼1]
𝑇 

�̇� = 𝐹(𝑋, 𝑈)

= [
(𝑖𝐿 − 𝐼2) 𝐶⁄

−(𝑣𝐶  + 𝑉D  −  D(𝑉1 – 𝑉D)  − 𝐼2𝑅𝐶  +  𝑖𝐿(𝑅𝐶  + 𝑅𝐿 + 𝑅𝐷)  +  D𝑖𝐿(𝑅𝐷𝑆(𝑜𝑛) – 𝑅𝐷))/L
] 

𝑌 = 𝐺(𝑋, 𝑈) = [
𝑣𝐶 − 𝐼2𝑅𝐶 + 𝑖𝐿𝑅𝐶

𝐷𝑖𝐿
]  

 

Type III Compensator 

 
𝑋 = [𝑥1 𝑥2 𝑥3]𝑇 

𝑈 = [𝑉1 𝑉ref 𝑉off]
𝑇 

𝑌 = 𝐷 

�̇� = 𝐹(𝑋, 𝑈) = [

𝑥2 − 𝑥1(𝜔𝑝2  +  𝜔𝑝3)  − 𝑓𝑚𝑘(𝑉𝑜𝑓𝑓  −  𝑉𝑟𝑒𝑓)

𝑥3 − 𝑥1𝜔𝑝2𝜔𝑝3 − 𝑓𝑚𝑘(𝜔𝑧1  +  𝜔𝑧2)(𝑉𝑜𝑓𝑓  −  𝑉𝑟𝑒𝑓)

−𝑓𝑚𝑘𝜔𝑧1𝜔𝑧2(𝑉𝑜𝑓𝑓  −  𝑉𝑟𝑒𝑓)
] 

𝑌 = 𝐺(𝑋, 𝑈) = 𝑥1  −  𝑉𝑜𝑓𝑓𝑓𝑚  − 𝑉𝑟𝑒𝑓𝑓𝑚   

 

The merging procedure begins with the interconnection rules, shown by the con-

nections between subsystems: 
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Interconnection rules (Netlist) 

𝑉1,𝐵  =  𝑉2,𝐹 
𝐼2,𝐹  =  𝐼1,𝐵 
𝑉1,𝐶  =  𝑉2,𝐵 

𝐷𝐵  =  𝐷𝐶 
𝑉1,𝑅1  =  𝑉2,𝐵 
𝐼2,𝐵  =  𝐼1,𝑅1  

 

After the substitution of interconnection rules algebraic equations into both the system 

and output equations: 

System equations: 

�̇�𝐶,𝐹 = −(𝐼1,𝐵  −  𝐼𝐿,𝐹)/𝐶𝐹 

𝐼�̇�,𝐹  =  (𝑉1,𝐹   −  𝑉𝐶,𝐹  −  𝐼𝐿,𝐹(𝑅𝐶,𝐹  +  𝑅𝐿,𝐹)  + 𝐼1,𝐵𝑅𝐶,𝐹)/𝐿𝐹 

�̇�𝐵,𝐹 = −(𝐼1,𝑅  −  𝐼𝐿,𝐵)/𝐶𝐵  

𝐼�̇�,𝐵  =  −(𝑉𝐶,𝐵 + 𝑉𝑑,𝐵 − 𝐷𝐶𝑉2,𝐹 − 𝐷𝐶𝑉𝑑,𝐵 − 𝐼1,𝑅1𝑅𝐶,𝐵 + 𝐼𝐿,𝐵𝑅𝐶,𝐵 + 𝐼𝐿,𝐵𝑅𝐿,𝐵 + 𝐼𝐿,𝐵 𝑅𝑑(𝑜𝑛),𝐵
+ 𝐷𝐶𝐼𝐿,𝐵𝑅𝐷𝑆(𝑜𝑛),𝐵  − 𝐷𝐶𝐼𝐿,𝐵𝑅𝑑(𝑜𝑛),𝐵)/𝐿𝐵 

�̇�1,𝐶  =  𝑋2,𝐶  −  𝑋1,𝐶(𝑤𝑝2,𝐶  +  𝑤𝑝3,𝐶  −  𝑓𝑚,𝐶𝑘𝐶(𝑉2,𝐵  −  𝑉𝑟𝑒𝑓,𝐶) 

�̇�2,𝐶  =  𝑋3,𝐶  −  𝑋1,𝐶𝑤𝑝2,𝐶𝑤𝑝3,𝐶  −  𝑓𝑚,𝐶𝑘𝐶(𝑤𝑧1,𝐶  + 𝑤𝑧2,𝐶)(𝑉2,𝐵  −  𝑉𝑟𝑒𝑓,𝐶) 

�̇�3,𝐶 = −𝑓𝑚,𝐶𝑘𝐶𝑤𝑧1,𝐶𝑤𝑧2,𝐶(𝑉2,𝐵  −  𝑉𝑟𝑒𝑓,𝐶) 

 

Output equations: 

𝑉2,𝐹  =  𝑉𝐶,𝐹  − 𝐼1,𝐵𝑅𝐶,𝐹  +  𝐼𝐿,𝐹𝑅𝐶,𝐹 
𝐼1,𝐹  =  𝐼𝐿,𝐹 
𝑉2,𝐵  =  𝑉𝐶,𝐵 − 𝐼1,𝑅𝑅𝐶,𝐵  + 𝐼𝐿,𝐵𝑅𝐶,𝐵 
𝐼1,𝐵  =  𝐷𝐶𝐼𝐿,𝐵 
𝐷𝐶  =  𝑋1,𝐶  −  𝑉𝑜𝑓𝑓,𝐶𝑓𝑚,𝐶  −  𝑉𝑟𝑒𝑓,𝐶𝑓𝑚,𝐶  

𝐼1,𝑅  =  𝑉2,𝐵/𝑅1 

  

 

Linearly rearrange output equations so that inputs are strictly on the left-hand side, 

and then factor the coefficients of the input 𝑌 to create a matrix of coefficients 𝐾, i.e., 

𝐾𝑌 =  𝐿. 

[
 
 
 
 
 
1 0 0 𝑅𝐶,𝐹 0 0

0 1 0 0 0 0
0 0 1 0 0 𝑅𝐶,𝐵
0 0 0 1 −𝐼𝐿,𝐵 0

0 0 0 0 1 0
0 0 −1/𝑅1 0 0 1 ]

 
 
 
 
 

⏞                        
𝐾

[
 
 
 
 
 
 
𝑉2,𝐹
𝐼1,𝐹
𝑉2,𝐵
𝐼1,𝐵
𝐷𝐶
𝐼1,𝑅 ]
 
 
 
 
 
 

⏞  
𝑌

=

[
 
 
 
 
 

𝑉𝐶,𝐹   + 𝐼𝐿,𝐹𝑅𝐶,𝐹
𝐼𝐿,𝐹

𝑉𝐶,𝐵  +  𝐼𝐿,𝐵𝑅𝐶,𝐵
0

𝑋1,𝐶  − 𝑉𝑜𝑓𝑓,𝐶𝑓𝑚,𝐶  −  𝑉𝑟𝑒𝑓,𝐶𝑓𝑚,𝐶
0 ]

 
 
 
 
 

⏞                      
𝐿

 (3.40) 
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Performing Gauss-Jordan elimination on [K,L] using MATLAB’s symbolic 

toolbox, rref([K,L]), we obtain,  

[
 
 
 
 
 
 
𝑉2,𝐹
 
𝐼1,𝐹
𝑉2,𝐵
𝐼1,𝐵
𝐷𝐶
𝐼1,𝑅 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 (

𝑉𝐶,𝐹  +  𝐼𝐿,𝐹𝑅𝐶,𝐹  −  𝐼𝐿,𝐵𝑅𝐶,𝐹𝑋1,𝐶  + 

𝐼𝐿,𝐵𝑅𝐶,𝐹 𝑉𝑜𝑓𝑓,𝐶𝑓𝑚,𝐶  +  𝐼𝐿,𝐵𝑅𝐶,𝐹𝑉𝑟𝑒𝑓,𝐶𝑓𝑚,𝐶
)

𝐼𝐿,𝐹
(𝑅1𝑉𝐶,𝐵  + 𝐼𝐿,𝐵𝑅𝐶,𝐵𝑅1)/(𝑅𝐶,𝐵  +  𝑅1)

−𝐼𝐿,𝐵(𝑉𝑜𝑓𝑓,𝐶𝑓𝑚,𝐶  − 𝑋1,𝐶  +  𝑉𝑟𝑒𝑓,𝐶𝑓𝑚,𝐶)

𝑋1,𝐶  −  𝑉𝑜𝑓𝑓,𝐶𝑓𝑚,𝐶  −  𝑉𝑟𝑒𝑓,𝐶𝑓𝑚,𝐶
(𝑉𝐶,𝐵  +  𝐼𝐿,𝐵𝑅𝐶,𝐵)/(𝑅𝐶,𝐵  +  𝑅1) ]

 
 
 
 
 
 
 

 (3.41) 

 

The above matrix equation is in the state-space form. Every output equation is now 

a function of only state and input variables.  

 

 

3.6 Summary 

A systematic modelling framework for the detailed dynamic modelling of LVDC 

DPS suitable for small-signal analysis based on a modular approach has been presented 

in this chapter. A MATLAB toolbox, SymMIAL, was developed to automate the model-

ling procedure, linearisation, and small-signal stability assessment. 

In the next chapter, we will present the design and development experimental hard-

ware of a cascaded power systems featuring poorly damped input filters and voltage-

regulated buck converters with digital controls. 
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Chapter 4 

Design and Verification of Power 

System Models: Experimental 

Hardware and Simulation 

4 Design and Verification of Power System Models: Experimental Hardware and Simulation 

ABSTRACT This chapter describes the design and implementation of the experi-

mental systems used throughout this thesis. A single active load comprising of an input 

LC filter cascaded with a tightly-regulated synchronous buck converter feeding a resis-

tive load is described in detail. The synchronous buck converter operates with voltage-

mode control implemented on an external microcontroller unit. This hardware is used to 

validate system modelling of Chapter 3 and later extended with the parallel operation of 

two active loads for Chapter 5 and Chapter 6. Comparisons between the theoretical mod-

els and experimental data are shown to closely match.  
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4.1 Introduction 

The previous chapter established the theoretical modelling approach for small-sig-

nal stability analysis of LVDC DPSs. These models must be sufficiently accurate in 

predicting the dynamics of interest (e.g., point of instability) of the real system. This 

chapter focuses on verifying models through an agreement between the model outputs 

and the data collected from experimental test benches. Along with model verification, 

models are refined through the use of experimental data when specific model parameters 

cannot be determined beforehand to an acceptable accuracy. Presented in this chapter are 

the two LVDC DPS hardware test benches and test procedures used for experimental 

verification in the latter chapters (Chapter 5 and 6).  

The test-bench developed is an experimental hardware prototype of an active load 

consisting of a cascaded system of an input filter and an output-voltage-regulated syn-

chronous buck-converter feeding a resistive load. A digital controller is used for voltage 

regulation and is implemented on a TMS320F28379D microcontroller. This system is 

used to investigate the source-load interactions. A second active load, nominally identical 

to the first, is constructed for the study of modal coupling under parallel operation, for 

use in Chapter 6. 

 

4.2 Input Filter Instability with an Active Load 

based on Synchronous Buck Converter under 

Voltage-mode Control 

In this section, we present the design of the cascaded system depicted in Figure 4.1 

based on a tightly-regulated synchronous buck converter with resistive load—referred to 

as an active load—which is fed by a poorly damped input filter. We describe the practical 

hardware implemented for the synchronous buck converter and the design and realisation 

of the digital voltage-mode controller suitable for tuning closed-loop bandwidth. Model 

refinement is achieved through parameter measurement and estimation based on experi-

mental waveforms. 

Experiments carried out show a good match between analytical predictions and 

observed behaviour. In Section 4.2.4, a study on the impact of the digital controller 
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parameters on CPL dynamics of the active load is presented. Finally, source-load inter-

action induced instability is experimentally demonstrated when the active load is fed by 

a poorly damped differential-mode LC input filter. 

In Chapter 6, the phenomenon of modal coupling is investigated which relies on 

very accurate system parameter values to accurately predict dynamic behaviours. When 

modal coupling occurs, the system becomes very highly sensitive to certain parameter 

variation. Therefore, precise parameter values in analytical models become paramount 

when predicting real-world experimental behaviour.  

 

4.2.1 System overview 

The block diagram in Figure 4.1 provides an overview of the LVDC power system 

used for the experimental test bench. The rig consists of three parts: the laboratory pro-

grammable DC power supply, LC input filter, and the active load. The active load is 

comprised of a step-down buck converter with fixed load and an external microcontroller 

used to regulate the output voltage.  

The rig was constructed in the Electrical Machines and Drives (EMD) Group at the 

University of Sheffield with test and measurement facilities of the Control and Power 

Systems (CAPS) Research Group. Images of the major components of experimental rig 

are shown in Figure 4.2. The following sections detail the implementation of the hard-

ware prototype and test procedures. 

 

FIGURE 4.1 Block diagram of the experimental cascaded LVDC power system. 

 

refV

outV
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4.2.2 Description and design of experimental hardware 

Figure 4.1 and Figure 4.2 show the system block diagram and experimental rig, 

respectively, for the cascaded LVDC power system based on a single active load. The 

active load is realised using a synchronous buck converter with a tightly regulated output 

and an input LC filter. Under nominal operating conditions, each buck converter de-

signed to step-down a 48V DC input to 24V DC nominal output for a 10Ω load resistor 

(60W rated). Voltage mode control is achieved using a 3-pole 3-zero (3P3Z) compensa-

tor implemented digitally on a TMS320F28379D microcontroller with a controller 

bandwidth designed to be approximately 5kHz. The switching frequency of the PWM is 

set to a fixed 100kHz. 

The variable voltage laboratory power supply is an Aim-TTi CPX400DP. Meas-

urements are made using a Tektronix DPO2014B (100MHz) oscilloscope; TCP0030A 

current probes; and TPP0200 passive probes. 

 

 

FIGURE 4.2 Test-bench of the experimental cascaded power system. 

4.2.2.1 Input filter 

Filters are typically required with SMPS to ensure that EMI standards or system 

requirements are met [77]. By their switching nature, power electronics converters gen-

erate interference through conducted emissions at both the input (line-side) and output 

(load-side) terminals. For example, in a typical buck-type converter, the DC input current 

is discontinuous over every switching cycle. This current induces a voltage ripple across 
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the input capacitor which can be a significant noise source that can interfere with the 

operation of devices connected at the same line—the source converter(s) or adjacent con-

verter(s). Input filters must therefore be carefully designed for the given application to 

limit this conducted emission and comply with relevant standards. 

The fundamental frequency of the conducted noise is at the switching frequency of 

the SMPS. While higher-order harmonics will appear, the EMI at the fundamental typi-

cally requires attenuation with additional input filtering to meet requirements. The LC 

filter in Figure 4.6 is a single stage differential-mode filter with attenuation slope of -40 

dB/decade (i.e., one inductor and one capacitor). While the low component count often 

makes this filter cost effective, the gradual roll-off can yield a very low filter cut-off 

frequency to meet the required attenuation. As a result, the EMI input filter cut-off fre-

quency is most commonly well below both the control-loop bandwidth defined as the 

voltage-loop crossover frequency of the converter, given in Figure 4.4. 

For the experimental work, the low-pass input filter for converters is selected to 

have a -3dB cut-off frequency of approximately 850Hz based on availability of off-the-

shelf inductors and capacitors. This corresponds to an 83.96dB filter attenuation at the 

fundamental 100kHz switching frequency. For the propose of investigations on input 

filter instability, the Q-factor is deliberately very high (i.e., very poorly damped) than is 

typical for any practical application. 

The LC filter lumped parameter model used for analysis is shown as a subsystem 

in Figure 4.6. Table 4.1 provides component parameter values, with measurement pro-

cedures used for extracting precise values given in Appendix B. The filter inductor 

selected is a 1,000µH Hammond 157D 10A rated, 38mΩ, open-bracket DC filter choke. 

The filter capacitor is a 40µF KEMET C4AQLBW5400A3FK film capacitor with an 

additional 10µF TDK B32794D2106K film capacitor in parallel located at the input ter-

minals of the buck converter. 

4.2.2.2 Step-down buck converter power stage 

This section discusses the hardware setup and model description of the synchro-

nous buck converter feeding a resistor. Regulation is performed using a digital 3-pole-3-

zero (3P3Z) compensator for voltage-mode control described in the next Section 4.2.2.3. 

Together, the buck converter, controller, and resistive load form a single active load. 
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A TDHBG2500P100 half-bridge evaluation board from Transphorm is configured 

as a synchronous buck converter power stage. The board is used as a building-block; 

Figure 4.3 giving the overview of the major components and the inputs and outputs.  

Silicon Labs Si8230BB gate driver ICs are used to drive TPH3212PS 650V GaN 

MOSFETs. Deadtime is set to 120ns by external resistors to prevent shoot-through cur-

rents during synchronous switching of the high-side and low-side devices. The 

MOSFETS are in a TO220 package with 72mΩ drain-to-source on resistance 𝑅𝐷𝑆(𝑜𝑛). It 

is important to note that modelling does not consider MOSFET transient dynamics dur-

ing switching therefore switching losses are omitted in the analysis. 

The buck converter output LC filter is comprised of a 460µH inductor with 25mΩ 

DCR based on a custom wound toroid with MPP core from Mag Inc C055439A2. The 

capacitance is from a parallel combination of a single 10µF TDK B32794D2106K film 

capacitor and two generic electrolytic capacitors to total approximately 110µF. 

 
FIGURE 4.3 Synchronous buck converter power stage used for active loads. 

The state-space model of this step-down buck converter was previously introduced 

in Chapter 3, Section 3.3.2. Assuming a fixed resistive load, the model can be simplified 

into having two-inputs, duty cycle 𝐷(𝑠) and input voltage 𝑉𝑖𝑛(𝑠), and two-outputs, out-

put voltage 𝑉𝑜𝑢𝑡(𝑠) and input current 𝐼𝑖𝑛(𝑠). The control-to-output transfer function, the 

duty cycle-to-output voltage 𝐺𝑣𝑑(𝑠), is used to design the compensation network for 

closed-loop control in the next section. Component parameters of the buck converter are 

measured offline using an LCR meter and values substituted into the lumped parameter 

model to obtain the transfer function. Figure 4.4 shows the control-to-output discrete-
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time transfer function with sample time of 100kHz to match the switching frequency. 

Online frequency response characterisation using a vector network analyser to validate 

the model was not possible in this study, but is recommended for further validation. 

4.2.2.3 Voltage feedback compensation 

Shaping the closed-loop dynamics of the buck converter described above is 

achieved through a 3P3Z compensator which is the digital (discrete) implementation of 

a type-III compensator, previously introduced in Section 3.3.3. The plant model, control-

to-output transfer function, is shown in Figure 4.4 and is generated using parameters from 

Table 4.1. The target specification for the designed compensator is to have a stable loop-

transfer function with a >30-degree phase margin at approximately 5kHz. To reduce the 

frequency at which negative input impedance is exhibited by the active load, a 1kHz and 

100Hz controller is also designed.  
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 Referring to Figure 4.6, the feedback path contains a resistor divider to scale the 

output voltage to a range suitable to be sampled by the ADC. This sampled signal is then  

compared with a reference voltage that is user programmable. The difference between 

the output voltage and reference voltage (scaled and sampled) is the error voltage used 

for the feedback compensator and then the pulse-width modulator. 

 

 
FIGURE 4.4 Bode plots of buck converter plant model (duty cycle-to-output volt-

age), 5kHz compensator, and open-loop transfer function showing gain and 

phase margins. 
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The z-domain transfer function for the 3P3Z control law is given below in (4.1):  

 
𝐺𝑉(𝑧) =

𝐷(𝑧)

𝑉𝑒𝑟𝑟(𝑧)
=
𝑏𝑧3𝑧

−3 + 𝑏𝑧2𝑧
−2 + 𝑏𝑧1𝑧

−1 + 𝑏𝑧0
1 − 𝑎𝑧3𝑧−3 − 𝑎𝑧2𝑧−2 − 𝑎𝑧1𝑧−1

 (4.1) 

 

Figure 4.5 shows the 3P3Z controller implemented in MATLAB Simulink used for 

code generation. The block implements a third order control law using an IIR filter struc-

ture with programmable output saturation. This type of controller requires three delay 

lines: one for input data and one for output data, each consisting of three elements.  

The recursive nature of the IIR filter make it prone to overflows. To prevent this, 

the implementation has a negative lower bound saturation to allows for a negative state 

history in the feedback to prevent oscillations as a result of overflow. The final saturation 

block limits the output duty cycle to 10% to 90%.  

To ensure that overruns do not occur due to limited performance of the floating-

point unit of the microcontroller, the Q18-format fixed point data type was used for var-

iables. 

 

 
 

 

 

FIGURE 4.5 3P3Z control implementation as a 3rd-order digital IIR filter with 

Direct Form Type-I realization 
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4.2.3 Experimental setup and test regime 

 
 

FIGURE 4.6 Circuit diagram of the experimental LVDC power system featuring 

an input LC filter and voltage-mode controlled buck converter. 

 

The small-signal dynamics are studied similarly to that in Section 3.5. Figure 4.6 

shows the schematic of the experimental system, and Table 4.1 provides the parameters 

of the experimental system: both nominal values and precise measured values (see Ap-

pendix B for details on component parameters measurement and refinement). The 

experiment is further supported with simulations using MATLAB/Simulink. Ideally, the 

experimental and simulations results should agree and validate theoretical predictions of 

dynamic behaviours (i.e., the point at which onset of instability occurs). 

The active load acts as a CPL to induce instability in the input filter. Instability is 

evident by the sustained limit cycle oscillations in the filter’s capacitor voltage and in-

ductor current. The active load’s input power is controlled by regulating the output 

voltage to the load resistor 𝑃 = 𝑉2/𝑅. The selective low damping of the input filter en-

ables instability to be observed at very low power levels. This ensures that experiments 

can be repeated without hardware failure or overstress requiring component replacement. 
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TABLE 4.1 Parameters of the experimental system. 

Parameter Symbol Unit 

Value 

Nominal Measured Simulation 

Input voltage 𝑉𝑖𝑛 V 48 48.0 48 

Reference voltage 𝑉𝑟𝑒𝑓 V 24 - 24 

Filter inductance 𝐿𝐹1 µH 1000 879.5 900 

Filter capacitance 𝐶𝐹1 µF 50 49.7 50 

Filter DCR of 𝐿𝐹1 𝑅𝐿,𝐹1 mΩ 38 656.8 500 

Filter ESR of 𝐶𝐹1 𝑅𝐶,𝐹1 mΩ 3.6 106.0 100 

Buck inductance 𝐿𝐵1 µH 460 456.1 460 

Buck capacitance 𝐶𝐵1 µF 110 121.1 110 

Buck DCR of 𝐿𝐹1 𝑅𝐿,𝐵1 mΩ 25 330.0 25 

Buck ESR of 𝐶𝐹1 𝑅𝐶,𝐵1 mΩ 4.2 120.5 4.2 

Q1 Drain-source on  

resistance 

𝑅𝐷𝑆𝑜𝑛𝑄1,𝐵1 mΩ 72 85 100 

Q2 Drain-source on  

resistance 

𝑅𝐷𝑆𝑜𝑛𝑄1,𝐵1 mΩ 72 85 100 

Load resistance 𝑅𝐿𝑂𝐴𝐷1 Ω 10 10.0 10 

 

The experimental system’s controller parameters for the 3P3Z control law (see 

(4.1)), are given in Table 4.2:  

 

TABLE 4.2 Values of the 3P3Z controller variables at different bandwidths. 

Parameter 

Controller bandwidth (𝒇𝒔𝒘 = 100kHz) 

100-Hz 1-kHz 5-kHz 

𝑏𝑧0 0 0 0 

𝑏𝑧1 0.0395 0.3499 2.022 

𝑏𝑧2 -0.07814 - 0.6922 -4 

𝑏𝑧3 0.03872 0.343 1.982 

𝑎𝑧1 1.476 1.476 1.476 

𝑎𝑧2 -0.5266 -0.5266 -0.5266 

𝑎𝑧3 0.05021 0.05021 0.05021 

 

Small-signal stability analysis is performed using the continuous time domain 

state-space models. While the compensator is designed in the discrete domain, we ap-

proximate its implementation in the continuous domain by using the Tustin (bilinear) 

approximation. Equations (4.2) and (4.3) give the continuous time domain form as a 

transfer function and state-space, respectively, for use in small-signal predictions. 
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𝐺𝑉(𝑠) =

𝐷(𝑠)

𝑉𝑒𝑟𝑟(𝑠)
=
𝑏𝑠3𝑠

3 + 𝑏𝑠2𝑠
2 + 𝑏𝑠1𝑠 + 𝑏𝑠0

𝑎𝑠3𝑠3 + 𝑎𝑠2𝑠2 + 𝑎𝑠1𝑠
 (4.2) 

 𝑑𝑋(𝑡)

𝑑𝑡
= 𝐴𝐶𝑋(𝑡) + 𝐵𝐶𝑉𝑒𝑟𝑟(𝑡) 

𝐷(𝑡) = 𝐶𝐶𝑋(𝑡) + 𝐷𝐶𝑉𝑒𝑟𝑟(𝑡) 

(4.3) 

 

TABLE 4.3 Controller parameters in continuous-time domain form used for  

small-signal stability analysis. 

Parameter 

Controller bandwidth (continuous-time model approximation) 

100-Hz 1-kHz 5-kHz 

𝑏𝑠3 -0.05121 -0.4536 -2.621 

𝑏𝑠2 1.014e04 8.982e04 5.19e05 

𝑏𝑠1 1.945e07 1.723e08 9.953e08 

𝑏𝑠0 1.989e11 1.762e12 1.018e13 

𝑎𝑠3 1 1 1 

𝑎𝑠2 2.489e05 2.489e05 2.489e05 

𝑎𝑠1 1.503e10 1.503e10 1.503e10 

AC 
[
0 1 0
0 −1.03𝑒5 −2.59𝑒6
0 0 −1.46𝑒5

] [
0 1 0
0 −1.03𝑒5 −2.59𝑒6
0 0 −1.46𝑒5

] [
0 1 0
0 −1.03𝑒5 −2.59𝑒6
0 0 −1.46𝑒5

] 

𝐵𝐶  [0 1102 147]𝑇 [0 2203 293.9]𝑇 [0 8813 1176]𝑇 

𝐶C [−902.7 4.706 120.4] [−3998 20.85 533.4] [−5775 30.11 770.5] 

𝐷𝐶  [−0.05121] [−0.4536] [−2.621] 

 

 

The bode plot in Figure 4.7 shows the input impedance 𝑍𝑖𝑛(𝑠) of the active load 

model based on the experimental closed-loop converter with a 5kHz control-loop band-

width. 
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FIGURE 4.7 Input impedance Z in(s) of the model of the experimental closed-loop 

converter with 5kHz control loop bandwidth. 

 

The experimental investigation on small-signal stability is carried by first putting 

the system into nominal steady-state operation. The input voltage is fixed and output 

voltage is regulated to the nominal reference value (24V). To push the system towards 

instability, a series of 1V step changes to the voltage command is done via the commu-

nication between the PC and microcontroller.  
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4.2.4 Stability analysis and experimental results 

In this section, the experimental results from the experimental test rig are compared 

with stability analysis using the small-signal dynamic model. This is required to validate 

the modelling methodology from the previous chapter, which is then extended in the 

following chapters.  

Three distinct small-signal models of system in Figure 4.6 are generated using pa-

rameters from Table 4.1 and from the three different controllers in Table 4.2 (differing 

bandwidths of 5KHz, 1KHz, and 100Hz). Using the small-signal model, eigenvalues are 

calculated for the case when the load demand varies by controlling the output voltage 

reference (𝑉𝑟𝑒𝑓) in the controllers. 𝑉𝑟𝑒𝑓 is varied from 24V to 33V in 1V steps (corre-

sponding to 57.6W to 72.6W power demand). 

Figure 4.8 shows the locus of the critical (right-most) eigenvalue under varying 

power of the system with 5kHz controller. Using the analytical model, the practical sys-

tem is predicted to become unstable at 𝑉𝑟𝑒𝑓 = 29𝑉. The Bode plot in Figure 4.15 uses 

the analytical model to generate load 𝑍𝑖𝑛(𝑠) and filter 𝑍𝑜𝑢𝑡(𝑠) at 𝑉𝑟𝑒𝑓 = 28𝑉 to show 

that the Middlebrook stability criterion (|𝑍𝑖𝑛(𝑠)| > |𝑍𝑜𝑢𝑡(𝑠)|) is satisfied, thus stability 

should be guaranteed. 

 

FIGURE 4.8 The critical eigenvalue plot from the system model with 5kHz band-

width, stepwise variation of Vref from 24V to 33V in 1V increments. 

Vref=24V Vref=33V Vref=29V 
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FIGURE 4.9 Measured waveforms from experimental system with a 5kHz bandwidth 

showing an onset of instability following a small step change in Vref. 

A similar procedure was used to experimentally determine point of instability of 

the experimental system. Stepwise changes to the load demand through the 𝑉𝑟𝑒𝑓 are per-

formed while measuring the input filter’s voltage and current as well as the output 

voltage. Figure 4.9 shows the experimental system waveforms under a 5kHz bandwidth. 

In Figure 4.9, voltage and current oscillations begin to occur in the input filters at 

𝑉𝑟𝑒𝑓 = 27𝑉, indicating an unstable operation. The peak-to-peak voltage and currents do 

not grow unbounded (which is the case with the small-signal dynamic model) and are 

limited due to the practical nature of the system. Measured oscillations correspond 

closely to the filter resonant frequency, shown in Figure 4.14. 

From Figure 4.8 and Figure 4.9, it can be seen that a reasonable agreement between 

the analytical model prediction and the experimental results is achieved. However, a 

source of concern is the lower measured instability 𝑉𝑟𝑒𝑓 point, corresponds to a smaller 

system stability margin, of the practical system compared to the theoretical model. The 

error corresponds to a less than 0.5W power difference between the results, and is likely 

attributable to imprecise parameter measurements and noise in the filter current and volt-

age (shown at 𝑡 = 0 in Figure 4.9).  

The same experiment is performed for the systems with the 1kHz and 100Hz band-

width. Analytical and practical measurement results are shown in Figure 4.10 and Figure 

VC,F1 

IL,F1 
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4.11 for the 1kHz controller, respectively. Likewise, Figure 4.12 and Figure 4.13 are for 

the 100Hz system.  

 

FIGURE 4.10 The critical eigenvalue plot from the system model with 1kHz band-

width, stepwise variation of Vref from 24V to 33V in 1V increments. 

 

 

FIGURE 4.11 Measured waveforms from experimental system with a 1KHz band-

width showing an onset of instability following a small step change in Vref. 

 

Vref=24V Vref=32V 
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FIGURE 4.12 The critical eigenvalue plot from the system model with 100Hz band-

width, stepwise variation of Vref from 24V to 33V in 1V increments. 

 

 

FIGURE 4.13 Measured waveforms of experimental system with a 100Hz band-

width showing no overshoot following a large step change in Vref (0 to 31V). 
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FIGURE 4.14 Experimental waveforms of the input filter voltage and current, 

showing an oscillation period of 1.56ms (641Hz). 

 

 
FIGURE 4.15 Bode plot of the input and output impedances of the experimental 

system under nominal operating conditions showing near instability 
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4.3 Summary 

In this chapter, a detailed description of the hardware setup and experimental pro-

cedures are presented. Results from the developed test systems with practical CPLs—the 

hardware prototype—validate the analytical modelling of power systems for use in 

small-signal stability and sensitivity analysis. These are subsequently used to support the 

theoretical results in the remaining chapters. 

The test-bench uses a hardware prototype of a switching POL regulator consisting 

of an output voltage-controlled synchronous buck converter feeding a resistive load. A 

digital 3P3Z compensator was implemented on a TMS320C28x series microcontroller. 

The POL regulator was demonstrated to exhibit CPL dynamics within its control loop 

bandwidth defined as frequencies below that of the open-loop crossover frequency (ap-

proximately). Frequency response measurements of passive components and 

experimental data was used to refine the model parameters. Results and waveforms meet 

design specifications and shown to match closely with the analytical models developed 

in Chapter 3. 

Source-load interaction is experimentally shown to induce instability of cascaded 

power system following the addition of an input LC filter to the POL regulator. Practical 

results validate the developed power system models based on the approach in Chapter 3 

to accurately describe system dynamics and predict the point-of-instability. Furthermore, 

reducing the detailed load models to ideal CPL characteristics is shown to be sufficiently 

accurate for small-signal studies as long as the source-side resonant characterises are well 

below the load’s closed loop bandwidth. 

This experimental system is extended later in Chapter 6. to include a second filter-

converter system operating in parallel to investigate resonant modal coupling phenom-

ena. 



 

112 

Chapter 5 

Influence of Parameter Uncertain-

ties and their Interactions on Small-

Signal Dynamics based on VBSA 

5 Influence of Parametric Uncertainties and their Interactions on Small-signal Stability based on Variance-based Sensitivity 
Analysis 

ABSTRACT Classical stability analysis techniques based on nominal models do not 

consider uncertainties in system parameters which may drastically alter the small-signal 

dynamics of practical LVDC DPSs. In this chapter, the method of variance-based sensi-

tivity analysis (VBSA) is proposed to identify the most influential parameters and their 

interactions impacting small-signal stability. Based in the probabilistic framework, the 

procedures for applying VBSA to detailed power system models are outlined. VBSA is 

applied to an example system with two parallel filter-converters fed by a resistive line. 

Results indicate that the effectiveness of source-side damping of filter modes is reduced 

when filters become coupled. This is further investigated with derivative-based sensitiv-

ity analysis to reveal that the source-side resistance can contribute to the positive 

damping or negative damping of filter modes, depending on exact operating conditions. 

These behaviours are verified using time-domain simulations and measurements from 

the experimental system presented in Chapter 4. 

This chapter is an extension of the publication, ‘Influence of Parametric Uncer-

tainties and their Interactions on Small-Signal Stability: a case example of parallel-

connected active responsibilities in a DC Microgrid’ [21]. 
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5.1 Introduction 

Classical stability analysis techniques based on nominal models do not consider 

the uncertainty of system parameters and their interactions. These interactions are known 

to drastically change the dynamics of practical highly-coupled LVDC DPSs. In contrast 

to classical methods, a probabilistic approach on the other hand considers all uncertain-

ties via multiple simulation to predict the true system behaviour more accurately over 

system inputs, parameters, and operating points.  

In this chapter, we propose a novel application of VBSA to LVDC DPS models to 

investigate the influence of uncertain parameters and their interactions on small-signal 

stability. A VBSA methodology is implemented—in combination with the symbolic 

modelling of Chapter 3—enabling a computationally efficient and practical approach to 

address a number of unknowns regarding model behaviour over uncertainty: mapping 

and ranking parameters on the considered system phenomena (eigenvalues) along with 

identifying any higher-order interactions effects between parameters. Verification of 

identified modal interaction phenomena in an example LVDC DPS is performed using 

Simulink models and experimental system introduced in Chapter 4. Advantages over 

conventional sensitivity analysis based on single nominal models is made clear. 

This chapter is structured as follows: Section 5.2 introduces the theoretical basis of 

VBSA as a probabilistic framework for identifying and quantifying first-order and total-

order effects of parameters, including parameter interactions, over all possible operating 

conditions. Section 5.3 develops a novel procedure for applying VBSA to practical mod-

els of LVDC DPSs to assist the understanding of parameter effects and their interactions 

on the small-signal stability. Section 5.4 presents a case study that investigates a LVDC 

DPSs with parallel-connected input filters feeding CPLs with uncertain distribution lines. 

Contrastive VBSA results indicated that the effectiveness of source-side resistive damp-

ing was reduced when resonant frequencies of load input filters are nominally matched. 

Interactions are present between parallel loads and source-side resistances, and these re-

sults are verified against conventional derivative-based sensitivity analysis. For the first 

time, the apparent dichotomy in the effect of source-side line resistance is revealed: line 

resistance can act as both a stabilizing and destabilizing element depending on operating 

conditions. Finally, Section 5.5 summarises this chapter and main contributions. 
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5.1.1 Background 

In small-signal modelling of conventional electrical power systems, network dy-

namics are generally neglected since their time constants are much smaller than those of 

synchronous generators and their control loops. Here, the effects of individual loads are 

insignificant (due to their small capacity) and thus loads can be aggregated and collec-

tively modelled; whereas in DPSs the individual loads play a critical role in system 

stability and have to be included in stability analysis [19], [94]. 

Classical techniques to identify dynamic interactions through the use of participa-

tion factors in power system [19], [94] are based on analysis of nominal models. The 

work reported in [19] provides important insights into the complexity of coupling phe-

nomena between the sources, the loads and the network. While these techniques are 

prevailing, they are insufficient for describing how the interactions change under possible 

variations of parameters. For example, the recent work [26] identifies a coupled reso-

nance phenomenon between multiple parallel load-side filters in a simple DC system 

with CPLs. The observed filter coupling effects depend strongly on parameter values. 

This observation highlights the necessity of modelling system uncertainties, such as the 

uncertainties in the length of lines between different nodes in practical systems. Simi-

larly, [51] identifies mutual coupling phenomena between multiple parallel load-side 

filters that must be considered at the design stage of the proposed stabilizing controller. 

And paper [45] illustrates reduction in stability margins due to coupling effects from 

between transmission line impedances and the source and multiple loads, including im-

pedance in-between loads in an AC system. Recent publication [60] quantifies effects of 

multiple simultaneous parametric uncertainties on the stability of a power electronics 

system by applying the structured singular value -based stability analysis method.  

To identify and analyse dynamic interaction phenomena, [18], [19], [68], [101] 

propose tracing eigenvalues over parametric changes to observe movement of oscillatory 

modes. This work shows that modal resonance effects in power systems, such as subsyn-

chronous resonance, can be caused by interaction between two distinct modes, i.e., 

between torsional modes and sub electrical modes, and can be viewed as precursor to 

system instability. For problems with numerous multiple uncertainties, exhaustive testing 

of all possible combinations quickly becomes computationally infeasible. As a result, 
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there is increasing interest in applying global sensitivity analysis (SA) techniques which 

aim to quantify the behaviour of an output over the entire range of uncertainties. Proba-

bilistic methods can be used to examine the scenarios from the whole range and are easily 

implemented using Monte Carlo (MC) techniques. Global SA techniques are reviewed 

in [102] and some considered for importance ranking of uncertain parameters in power 

networks in [70]. Of interest are those that can help identify different interactions be-

tween system parameters, such as VBSA [73]–[75].  

Equations (5.1)-(5.3) are used to represent the difference between the techniques 

of local SA and global SA. Representation of a nominal model evaluation at point i: 

 
𝑋𝑖  

𝑌=𝑓(𝑋)
→    𝑌𝑖 (5.1) 

Representation of local sensitivity analysis at point i 

 

[
 
 
 
𝑋𝑖 + Δ𝑋1
𝑋𝑖 + Δ𝑋2

⋮
𝑋𝑖 + Δ𝑋𝑛]

 
 
 
𝑌=𝑓(𝑋)
→    𝑌𝑖 +

[
 
 
 
Δ𝑌𝑖/ΔX1
Δ𝑌𝑖/ΔX2

⋮
Δ𝑌𝑖/ΔXn]

 
 
 

Δ𝑋 (5.2) 

Representation of global sensitivity analysis overs points i,j,…M : 

 

{𝑋𝑖, 𝑋𝑗 , … , 𝑋𝑀}
𝑌=𝑓(𝑋)
→    {𝑌𝑖, 𝑌𝑗 , … , 𝑌𝑀}

𝐴𝑁𝑂𝑉𝐴
→    

(

 
 
𝑠𝑒𝑛𝑠[𝑌|𝑋1

𝑖,𝑗,…𝑀]

𝑠𝑒𝑛𝑠[𝑌|𝑋2
𝑖,𝑗,…𝑀]

⋮
𝑠𝑒𝑛𝑠[𝑌|𝑋𝑛

𝑖,𝑗,…𝑀])

 
 

 (5.3) 

Each parameter 𝑋 is changed several times in (5.3) and the output is recorded, and 

the same is done for 𝑋2, 𝑋3 and so on. From the recorded input-output data, an analysis 

of variance (ANOVA) is performed to determine the influence of each parameter on the 

output over the complete space. The next section introduces VBSA that uses ANOVA to 

quantify the nonlinear (higher-order) interactions between each of the uncertain param-

eters. 
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5.2 Variance-based Sensitivity Analysis (VBSA) 

This section firstly describes the theoretical approach to VBSA based on the de-

composition of an arbitrary multivariate function (such as dynamic models of power 

systems) into an equivalent strictly additive model of lower-order functions. This decom-

position is then used as a basis for defining a set of sensitivity indices using ANOVA to 

quantify the effect input variations to model output(s). Two sensitivity indices, the first-

order effects and total-order effects, can be estimated using Monte Carlo integration over 

model outputs evaluated over randomly-sampled inputs [73]. Any interaction effects be-

tween variables can be accounted for by the difference between the total and first-order 

effects; in contrast to a perfunctory one-at-a-time sensitivity analysis neglects these in-

teractions. 

The next section (5.3) will detail how VBSA can be applied to LVDC DPSs for 

the purposes of small-signal sensitivity analysis with multiple system uncertainties. 

 

5.2.1 Analysis of Variance  

VBSA, also known as Sobol’s method (based on the work in [103]), is a probabil-

istic technique used to quantify the effect of varying input variables on the output 

variance of a function in terms of its main (first-order) effects and higher order effects 

over all possible scenarios. This allows for the relative ranking of the parameters over 

the whole uncertainty space, as well as providing a quantitative indication on which pa-

rameters have a nonlinear relationship to the output through their parameter interactions. 

Probabilistic sampling of the whole input space together with Monte-Carlo simulations 

provides a computationally inexpensive approach to probe the average behaviours of a 

model response under different combinations of input variables.  

This technique is often applied to investigate the response of many complex dy-

namical models—such as those including mechanics [40], electromagnetics [41], 

acoustics [42]—where treating multiple variables one-at-a-time is not appropriate due to 

nonlinearity. Different techniques for sensitivity analysis were considered for an AC dis-

tribution system by the recent works in [70], [104] to identify and rank critical 

parameters. In [70] it was identified that variance-based techniques offer the best trade-
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off between accuracy and computational practicality for large AC power system stability 

studies. 

VBSA is based on the decomposition of an arbitrary multivariate function into an 

additive series of many lower-order functions. Firstly, let us consider a function 𝑓(𝑋) 

with output Y, shown in (5.4): 

 𝑌 = 𝑓(𝑋) (5.4) 

where 𝑋 denotes a vector of 𝑛 input variables, 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑛]. 

The function 𝑓(𝑋) in (5.4) can be decomposed into a finite expansion of 2𝑛 −

1 additive components (or terms) of the following form in (5.5), known as the high-di-

mensional model representation (HDMR) [105]: 

 
𝑌 = 𝑓0 +∑ ∑ 𝑓𝑖1…𝑖𝑠(𝑋𝑖1…𝑖𝑠 , … , 𝑋𝑖𝑠)

𝑖1<⋯<𝑖𝑠

𝑛

𝑠=1

 (5.5) 

and can be equivalently represented as (5.6): 

 
𝑌 = 𝑓0 +∑𝑓𝑖(𝑋𝑖)

𝑛

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)

1≤𝑖<𝑗≤𝑛

 

+ ∑ 𝑓𝑖1𝑖2…𝑖𝑙(𝑋𝑖1 , 𝑋𝑖2 , … , 𝑋𝑖𝑙)

1≤𝑖1<⋯<𝑖𝑙≤𝑛

+⋯ 

+ 𝑓12…𝑛(𝑋1, 𝑋2, … . 𝑋𝑛) 

(5.6) 

where 𝑓0  is a constant value; and all additive component functions (i.e., 𝑓𝑖 , 𝑓𝑗 ,  𝑓𝑖𝑗 ,

… , 𝑓12…𝑛) contribute to the output 𝑌 through unique inputs variables symbolized by sub-

scripts. The first order term 𝑓𝑖(𝑋𝑖) shows the contribution by the independent variation 

of the 𝑖-th variable 𝑋𝑖; the second-order term 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) contributes to the output as a 

result of an interaction between inputs 𝑋𝑖 and 𝑋𝑗, where this contribution cannot be mod-

elled by the additive result of the individual variations of 𝑋𝑖  and 𝑋𝑗  alone. Multi-

component contributions of this kind are similarly decomposed for all higher-order 

terms. 
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To simplify the following discussion, let us assume that the input 𝑋 is defined over 

the n-dimensional unit hypercube 𝑋 ∈ [0,1]𝑛, i.e., for all 𝑋𝑖 ∈ [0,1]. In practice, all un-

certainties can be normalised to this condition. 

The HDMR decomposition in (5.5) was proven to be unique in [106] if every ad-

ditive component has zero mean, therefore each component can be considered to be 

orthogonal to all others as given by (5.7) and (5.8): 

 
∫ 𝑓𝑢(𝑋𝑢)𝑑𝑋𝑢

1

0

= 0, ∀𝑢 ∈ {𝑖𝑖… 𝑖𝑠}, 1 ≤ 𝑖 < 𝑠 ≤ 𝑛 (5.7) 

 
〈𝑓𝑢(𝑋𝑢), 𝑓𝑣(𝑋𝑣)〉 = ∫ 𝑓𝑢(𝑋𝑢)𝑓𝑣(𝑋𝑣)𝑑𝑋𝑢

1

0

= 0,

∀𝑢 ≠ 𝑣 ∈ {𝑖𝑖… 𝑖𝑠}, 1 ≤ 𝑖 < 𝑠 ≤ 𝑛 

(5.8) 

As a consequence of  (5.7) and (5.8), the component terms in (5.5) and (5.6) can 

be derived using the conditional expectation operator applied to the original function 

𝑓(𝑋) and given input variable(s) in (5.9) [74]. 

 𝑓0 = 𝐸[𝑌] 

𝑓𝑖(𝑋𝑖) =  𝐸[𝑌|𝑋𝑖] − 𝑓0 

𝑓𝑗(𝑋𝑗) =  𝐸[𝑌|𝑋𝑗] − 𝑓0 

𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) =  𝐸[𝑓(𝑋𝑖, 𝑋𝑗)] − 𝑓𝑖(𝑋𝑖) − 𝑓𝑗(𝑋𝑗) − 𝑓0 

(5.9) 

and so on for all higher order components. 

The expected value (i.e. mean) of the output 𝑌 is the integration over all variables 

in 𝑋 [74], requiring a total of 𝑛 integrations as demonstrated in (5.10):  

 
𝐸[𝑌] = ∫ …

1

0

∫ 𝑓(𝑋)𝑑𝑋
1

0

 

𝑑𝑋 =∏𝑑𝑋𝑠

𝑛

𝑠=1

= 𝑑𝑋1𝑑𝑋2…𝑑𝑋𝑛 

(5.10) 

And the conditional expectations of the output 𝑌 given random inputs are in (5.11) [74]: 



CHAPTER 5 

119 

 𝐸[𝑌|𝑋𝑖] = ∫ …
1

0

∫ 𝑓(𝑋)∏𝑑𝑋𝑠

𝑛

𝑠≠𝑖

1

0

 

𝐸[𝑌|𝑋𝑗] = ∫ …
1

0

∫ 𝑓(𝑋)∏𝑑𝑋𝑠

𝑛

𝑠≠𝑗

1

0

 

𝐸[𝑌|𝑋𝑖, 𝑋𝑗] = ∫ …
1

0

∫ 𝑓(𝑋)∏𝑑𝑋𝑠

𝑛

𝑠≠𝑖,𝑗

1

0

 

(5.11) 

and so on for higher-order conditional expectation terms. 

 

From the equations in (5.4)-(5.11), it can be reasoned that a useful measure of sen-

sitivity can be made by comparing the variation between the expected value of different 

additive components. For example, if the variation of 𝐸[𝑌|𝑋𝑖] over all 𝑋𝑖 is greater than 

the variation of 𝐸[𝑌|𝑋𝑗] over all 𝑋𝑗, it can be concluded that the first-order effects of 𝑋𝑖 

are more sensitive than the first-order effects of 𝑋𝑗 (the output varies greater over changes 

in 𝑋𝑖  compared to 𝑋𝑗 ). This type of reasoning can be formalised explicitly through 

ANOVA. 

The orthogonality property in (5.7)-(5.8) allows for the HDMR in (5.5) to be given 

in terms of variance, so that the variances of sub-functions add up to the total variance of 

the function 𝑓(𝑋) [74]. 

 
𝑉𝑎𝑟[𝑌] =∑ ∑ 𝑉𝑎𝑟[𝑓𝑖1…𝑖𝑠(𝑋𝑖1…𝑖𝑠 , … , 𝑋𝑖𝑠)]

𝑖1<⋯<𝑖𝑠

𝑛

𝑠=1

 (5.12) 

and equivalently expanding equation (5.6): 

 𝑉𝑎𝑟[𝑌] =∑𝑉𝑎𝑟[𝑓𝑖(𝑋𝑖)]

𝑖

+∑𝑉𝑎𝑟[𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)]

𝑖<𝑗

+ ∑ 𝑉𝑎𝑟[𝑓𝑖1𝑖2…𝑖𝑙(𝑋𝑖1 , 𝑋𝑖2 , … , 𝑋𝑖𝑙)]

1≤𝑖1<⋯<𝑖𝑙≤𝑛

+⋯

+ 𝑉𝑎𝑟[𝑓12…𝑛(𝑋1, 𝑋2, … . 𝑋𝑛)] 

(5.13) 

Noting that 𝑉𝑎𝑟[𝑓0] = 0 as 𝑓0 is a constant offset term. 

The total variance of 𝑓(𝑋) is defined below in (5.10)  [75]: 
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𝑉𝑎𝑟[𝑌] = 𝐸[(𝑌 − 𝐸[𝑌])2] = ∫ …

1

0

∫ (𝑓(𝑋)𝑑𝑋 − 𝑓0)
2

1

0

 (5.14) 

And the variances of the first-order components are defined using equations from (5.11) 

[75] : 

 

𝑉𝑎𝑟[𝑓𝑖(𝑋𝑖)] = 𝑉𝑎𝑟[ 𝐸[𝑌|𝑋𝑖]] = ∫ …
1

0

∫ 𝑓𝑖
2(𝑋)∏𝑑𝑋𝑠

𝑘

𝑠≠𝑖

1 

0

 

𝑉𝑎𝑟[𝑓𝑗(𝑋𝑗)] = 𝑉𝑎𝑟 [ 𝐸[𝑌|𝑋𝑗]] = ∫ …
1

0

∫ 𝑓𝑗
2(𝑋)∏𝑑𝑋𝑠

𝑘

𝑠≠𝑗

1 

0

 

(5.15) 

Where the substitutions from (5.9) have been used. 

Given that component 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) is orthogonal to both 𝑓𝑖(𝑋𝑖) and 𝑓𝑗(𝑋𝑗), vari-

ances may be expanded as (5.16): 

𝑉𝑎𝑟[𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)] = 𝑉𝑎𝑟 [ E[Y|Xj, Xj]] − 𝑉𝑎𝑟[E[Y|Xi]] − 𝑉𝑎𝑟 [E[Y|Xj]] (5.16) 

Similar expansions for all the variances for higher-order sub-functions are also per-

formed. 

5.2.2 Sensitivity Indices 

Previously, in Section 5.2.1, we have shown through the analysis of variance of the 

HDMR, each term can be expanded into terms of variances of conditional expectations. 

In the seminal work by Sobol [106], they proposed variance-based sensitivity indices by 

normalising all terms in equation (5.12) by the total variance 𝑉𝑎𝑟[𝑌] resulting in the fol-

lowing equation (5.17): 

 
1 =∑ 𝑆𝑖

𝑛

𝑖=1
+∑ 𝑆𝑖𝑗

 

𝑗>𝑖
+∑ 𝑆𝑖𝑗𝑘

 

𝑘>𝑗>𝑖
+⋯+ 𝑆12..𝑛 (5.17) 

Where each 𝑆-term (𝑆𝑖, 𝑆𝑗 , … 𝑆𝑖𝑗, … ) is a unique senstivity index. For example:  

 
𝑆𝑖 =

𝑉𝑎𝑟[𝐸[𝑌|𝑋𝑖]]

𝑉𝑎𝑟[𝑌]
 (5.18) 
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𝑆𝑖𝑗 =
𝑉𝑎𝑟 [𝐸[𝑌|𝑋𝑖, 𝑋𝑗 ]]

𝑉𝑎𝑟[𝑌]
 (5.19) 

and so on for all higher order sensitivity indices. 

𝑆𝑖 is a first-order sensitivity index for input 𝑋𝑖,; 2nd-order index 𝑆𝑖𝑗 describing in-

teractions between input variables 𝑋𝑖  and 𝑋𝑗 ; etc. These indices quantify the relative 

contribution of the corresponding parameters over their range to the output variance. 

Just as the total order of the HDMR in (5.5), a total of 2𝑛 − 1 sensitivity indices is 

presented by equation (5.17). This poses a significant computational burden if all indices 

are to be calculated when a large number of input variables are present. Motivated by 

this, Homma et al. [107] introduced the total-effect sensitivity indices 𝑆𝑇𝑖 which quanti-

fies the relative contribution of input 𝑋𝑖 including all the higher-order terms that feature 

the 𝑋𝑖 variable on the output variance (e.g. 𝑆𝑇𝑖 = 𝑆𝑖 + 𝑆𝑖𝑗 + 𝑆𝑖𝑘 + 𝑆𝑖𝑗𝑘 for a 3 input sys-

tem). They argue that, in practice, the indices 𝑆𝑖 and 𝑆𝑇𝑖 are most often sufficient for 

assessing the overall sensitivity of the model response to inputs.  

To estimate all higher order terms of variable 𝑋𝑖, all other input variables can be 

considered together as vector 𝑋𝑐𝑖 (the 𝑐𝑖 subscript denotes the complement of variable 

𝑖). Therefore, the following partition of the input vector can be as follows (5.20): 

 𝑋 = [𝑋𝑖, 𝑋𝑐𝑖] (5.20) 

This allows for the HDMR in (5.5) to be simplified as (5.21): 

 𝑓(𝑋) = 𝑓0 + 𝑓𝑖(𝑋𝑖) + 𝑓𝑐𝑖(Xci) + 𝑓𝑖,𝑐𝑖(𝑋𝑖, Xci) (5.21) 

Rearraging the above, so that all additive components containing the 𝑖-th terms are on 

the left hand side: 

 𝑓𝑖(𝑋𝑖) + 𝑓𝑖,𝑐𝑖(𝑋𝑖, Xci) = 𝑓(𝑋) − 𝑓0 − 𝑓𝑐𝑖(Xci) (5.22) 

The total effect 𝑋𝑖  on output can be denoted by 𝑓𝑖,𝑡𝑜𝑡𝑎𝑙(𝑋𝑖, Xci) =  𝑓𝑖(𝑋𝑖) +

𝑓𝑖,𝑐𝑖(𝑋𝑖, Xci). Taking the variance of the terms in (5.22): 

 𝑉𝑎𝑟[𝑓𝑖,𝑡𝑜𝑡𝑎𝑙(𝑋𝑖, Xci)] =  𝑉𝑎𝑟[𝑓(𝑋)] − 𝑉𝑎𝑟[ 𝐸[𝑓(𝑋𝑐𝑖)]] (5.23) 
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Using (5.23), the total-effect sensitivity indices 𝑆𝑇𝑖 can be calculated by dividing by the 

total variance: 

 𝑉𝑎𝑟[𝑓𝑖,𝑡𝑜𝑡𝑎𝑙(𝑋𝑖, Xci)]

 𝑉𝑎𝑟[𝑓(𝑋)]
=  1 −

𝑉𝑎𝑟[ 𝐸[𝑓(𝑋𝑐𝑖)]]

 𝑉𝑎𝑟[𝑓(𝑋)]
 (5.24) 

Where (5.24) is equivalent to (5.25): 

 
𝑆𝑇𝑖 =  1 −

𝑉𝑎𝑟[𝐸[𝑌|𝑋𝑐𝑖]]

𝑉𝑎𝑟[𝑌]
 (5.25) 

Here it becomes clear that the difference between total effect index (𝑆𝑇𝑖) and first 

order index (𝑆𝑖) accounts for all the interactions between 𝑋𝑖 and all other aggregated var-

iables. 

Interpreting the different sensitivity indices: 

▪ If 𝑆𝑖 is 1, then output 𝑌 depends on only the parameter 𝑋𝑖. 

▪ If 𝑆𝑇𝑖 − 𝑆𝑖  is zero, then no interactions exist between 𝑋𝑖  and other  

input variables. 

▪ If 𝑆𝑇𝑖  is zero, then by definition, 𝑆𝑖  is also zero, and output 𝑌  is not  

dependent on 𝑋𝑖. 

▪ The sum of the first order sensitivity indices (𝑆𝑖 , 𝑆𝑗 , … ) should equal to  

one by definition (5.17). 

 

5.2.3 Estimation of Sensitivity Indices through Probabilistic 

Sampling 

The sensitivity indices are derived based on the high dimensional integrations, 

shown in (5.10), (5.11), (5.15), where analytical integration is simply not possible due to 

no knowledge of the explicit functions in the decomposition. Probabilistic sampling with 

Monte Carlo simulation, however, can be used to estimate the sensitivity indices [103]. 

Consider a set of different inputs mapped onto their outputs through the original 

function 𝑓(𝑋) in (5.26): 
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[

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑛
𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑛
⋮ ⋮  ⋮
𝑋𝑚,1 𝑋𝑚,2 ⋯ 𝑋𝑚,𝑛

]
𝑓(𝑋)
⇒  [

𝑌1
𝑌2
⋮
𝑌𝑚

] (5.26) 

Above, each row is considered as a single sample scenario for the function 𝑓(𝑋)  

where 𝑛 is the number of variables in 𝑋. In other words, 𝑓(𝑋𝑖,1, …𝑋𝑖,𝑛) = 𝑌𝑖 is a single 

scenario based on the random sampling of input 𝑋. Every column is randomly sampled 

from the probability distribution for the given input variable. The total number of samples 

taken is 𝑚 for each scenario. The total number of Monte-Carlo simulations needed is 

therefore 𝑚.  

Several quasi-random sets have been developed to sample more evenly over the 

multidimensional (m,n) input space, often referred to the as low discrepancy sequences. 

These include Latin hypercube sampling [108] and Sobol sequences [108] that are used 

to more effectively study the effect of parameter interactions in the function with a lesser 

number of 𝑚 compared to conventional random sampling.  Efficient multidimensional 

sampling becomes critical to the fast computation of sensitivity indices in complex power 

system models. To achieve this, hypercube sampling is recommended when applying 

VBSA to the small-signal analysis of LVDC DPSs (further details are provided in Sec-

tion 5.3). 

While computing the total variance is simple, estimating the variance of condi-

tional expectations, as shown in equations (5.15) requires additional work. Conditional 

expectations can be rewritten as covariances [106] (discussed in detail on pg. 124) and a 

method for sensitivity indices estimation based on resampling input variables from two 

mutually independent Monte-Carlo sets was developed in [107]. Based on [107], the im-

plementation used in this thesis is summarised in the following paragraphs. 

Consider two mutually independent input spaces denoted by superscripts 𝐴 and 𝐵 

in (5.27): 

 𝑋𝐴𝑖,𝐴𝑐𝑖 = [X𝑖
𝐴, X𝑐𝑖

𝐴 ]          𝑋𝐵𝑖,𝐵𝑐𝑖 = [X𝑖
𝐵, X𝑐𝑖

𝐵 ] (5.27) 

where input vector 𝑋𝐴𝑖,𝐴𝑐𝑖 has the 𝑖-th variable sampled from 𝐴 and 𝑐𝑖-th vector sampled 

from set 𝐴  

With (5.27) the outputs can be denoted as the following equations: 
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 𝑌𝐴𝑖,𝐴𝑐𝑖 = 𝑓(𝑋𝐴𝑖,𝐴𝑐𝑖)     𝑌𝐵𝑖,𝐵𝑐𝑖 = 𝑓(𝑋𝐵𝑖,𝐵𝑐𝑖)      (5.28) 

Such that the following sets from each input spaces, 𝐴 and 𝐵, are sampled 𝑚-times to 

generate 𝑚-scenarios (5.29): 

 

[
 
 
 
 
𝑋1,1
𝐴 𝑋1,2

𝐴 ⋯ 𝑋1,𝑖
𝐴 ⋯ 𝑋1,𝑛

𝐴

𝑋2,1
𝐴 𝑋2,2

𝐴 ⋯ 𝑋2,𝑖
𝐴 ⋯ 𝑋2,𝑛

𝐴

⋮ ⋮  ⋮  ⋮
𝑋𝑚,1
𝐴 𝑋𝑚,2

𝐴 ⋯ 𝑋𝑚,𝑖
𝐴 ⋯ 𝑋𝑚,𝑛

𝐴 ]
 
 
 
 
𝑓(𝑋)
⇒  

[
 
 
 
 𝑌1
𝐴𝑖,𝐴𝑐𝑖

𝑌2
𝐴𝑖,𝐴𝑐𝑖

⋮

𝑌𝑚
𝐴𝑖,𝐴𝑐𝑖]

 
 
 
 

 

[
 
 
 
 
𝑋1,1
𝐵 𝑋1,2

𝐵 ⋯ 𝑋1,𝑖
𝐵 ⋯ 𝑋1,𝑛

𝐵

𝑋2,1
𝐵 𝑋2,2

𝐵 ⋯ 𝑋2,𝑖
𝐵 ⋯ 𝑋2,𝑛

𝐵

⋮ ⋮  ⋮  ⋮
𝑋𝑚,1
𝐵 𝑋𝑚,2

𝐵 ⋯ 𝑋𝑚,𝑖
𝐵 ⋯ 𝑋𝑚,𝑛

𝐵 ]
 
 
 
 
𝑓(𝑋)
⇒  

[
 
 
 
 𝑌1
𝐵𝑖,𝐵𝑐𝑖

𝑌2
𝐵𝑖,𝐵𝑐𝑖

⋮

𝑌𝑚
𝐵𝑖,𝐵𝑐𝑖]

 
 
 
 

 

(5.29) 

Samples may be taken from separate input spaces, for example the 𝑖-th variable is 

sampled from 𝐵 while 𝑐𝑖-th vector sampled from 𝐴 as shown in (5.30): 

 𝑋𝐵𝑖,𝐴𝑐𝑖 = [X𝑖
𝐵, X𝑐𝑖

𝐴 ]  (5.30) 

 𝑌𝐵𝑖,𝐴𝑐𝑖 = 𝑓(𝑋𝐵𝑖,𝐴𝑐𝑖) (5.31) 

For 𝑚-samples this becomes: 

 

[
 
 
 
 
𝑋1,1
𝐴 𝑋1,2

𝐴 ⋯ 𝑋1,𝑖
𝐵 ⋯ 𝑋1,𝑛

𝐴

𝑋2,1
𝐴 𝑋2,2

𝐴 ⋯ 𝑋2,𝑖
𝐵 ⋯ 𝑋2,𝑛

𝐴

⋮ ⋮  ⋮  ⋮
𝑋𝑚,1
𝐴 𝑋𝑚,2

𝐴 ⋯ 𝑋𝑚,𝑖
𝐵 ⋯ 𝑋𝑚,𝑛

𝐴 ]
 
 
 
 
𝑓(𝑋)
⇒  

[
 
 
 
 𝑌1
𝐵𝑖,𝐴𝑐𝑖

𝑌2
𝐵𝑖,𝐴𝑐𝑖

⋮

𝑌𝑚
𝐵𝑖,𝐴𝑐𝑖]

 
 
 
 

 (5.32) 

Covariance, 𝐶𝑜𝑣(∙), is a measure of the correlation between two sets of variances 

and can be used for the estimation of conditional variances, with the following property 

discussed in [109]. As samples 𝑋𝑐𝑖 are identical between the variable pairs, the covari-

ance calculates the variance with respect to the independent 𝑋𝑖 terms, in effect finding 

the variance when varying 𝑋𝑖: 

 𝑉𝑎𝑟(𝐸(𝑌|𝑋𝑖)) = 𝐶𝑜𝑣(𝑌
𝐴𝑖,𝐴𝑐𝑖 , 𝑌𝐵𝑖,𝐴𝑐𝑖) (5.33) 

Therefore, sensitivity indices can be estimated by calculating the covariances be-

tween differently sampled input sets. 
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𝑆𝑖 =

𝐶𝑜𝑣(𝑌𝐴𝑖,𝐴𝑐𝑖 , 𝑌𝐵𝑖,𝐴𝑐𝑖)

𝑉𝑎𝑟(𝑌)
 (5.34) 

A possible estimator implementation has been presented in [109], referred to as a 

second estimator, and is shown below in (5.35): 

 

𝑆𝑖 =

1
𝑚
∑ 𝑌𝐴𝑖,𝐴𝑐𝑖𝑌𝐵𝑖,𝐴𝑐𝑖𝑚
1 − (

1
𝑚
∑ 𝑌𝐴𝑖,𝐴𝑐𝑖𝑚
1 ) (

1
𝑚
∑ 𝑌𝐵𝑖,𝐴𝑐𝑖𝑚
1 )

1
𝑚
∑ (𝑌𝐴𝑖,𝐴𝑐𝑖)2𝑚
1 − (

1
𝑚
∑ 𝑌𝐴𝑖,𝐴𝑐𝑖𝑚
1 )

2  (5.35) 

The estimator in (5.35) has been implemented for calculating the first-order and 

total-effect sensitivity indices throughout this thesis. This method requires a total 

𝑚(𝑛 + 2) model evaluations. 

 

5.3 Application of VBSA for Small-Signal 

Analysis of LVDC DPSs 

This section presents our methodology for applying the method of VBSA to power 

system models to investigate the small-signal behaviour over all possible operating con-

ditions under uncertainty. VBSA requires the formulation of a model or function in terms 

of deterministic input-output behaviour. Here we make a distinction between the system 

model which describes the nonlinear averaged behaviour of the power system states, and 

the stability model which is the eigenvalue (modal) decomposition of the linearised av-

eraged model. The stability model can be viewed as a function which maps the 

(uncertain) input variables to the eigenvalues of the linearised system.  

The methodology proposed consists of the following steps: 

1. Treat variables (�̅�) as inputs to 𝐹(�̅�, �̅�, �̅�) = 0 where �̅� is known and �̅� is un-

known. 

2. For given inputs, numerically solve for 𝑋 in 𝐹(�̅�, �̅�, �̅�) = 0; 

3. Substitute values for �̅�, �̅�, �̅�  into the linear state-space model �̇� =

𝐴(�̅�, �̅�, �̅�)𝑋 + 𝐵(�̅�, �̅�, �̅�)𝑈; 

4. Calculate output eigenvalues by solving for 𝜆 in 𝐴𝑣 = 𝜆𝑣. 
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The stability of the system can be assessed from the real-part of the eigenvalues 

𝑅𝑒(𝜆𝑖), or damping factor 𝜁𝑖, of the linearised small-signal model. Due to the parametric 

uncertainty, the steady-state operating point (𝑥0) and system eigenvalues are also uncer-

tain. Eigenvalues must be numerically computed and are dependent on the uncertain 

input variables. This process can be considered as a model input–output mapping denoted 

by: 𝑓 ∶  𝑋 ↦  𝑌, where 𝑋 is the vector of uncertain input parameters and 𝑌 is the real-

part of the eigenvalue(s). Random sampling from the probability distributions of the un-

certain variables generates a unique scenario. For a given scenario 𝑚 , the system 

equations are represented by the simplified form: 𝑑𝑥/𝑑𝑡 = 𝑓𝑚(𝑥). Operating point 𝑥0 is 

determined when all state variables no longer vary with time, i.e., 𝑓𝑚(𝑥0) = 0, and is 

calculated using a numerical solver (fsolve in MATLAB). For each scenario, an LTI 

model in state space form is generated via Jacobian linearisation about 𝑥0: 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑚𝑥 + 𝐵𝑚𝑢 (5.36) 

where, 

 𝐴𝑚 =
𝜕𝑓𝑚(𝑥)

𝜕𝑥
|
𝑥=𝑥0 

       𝐵𝑚 =
𝜕𝑓𝑚(𝑥)

𝜕𝑢
|
𝑥=𝑥0 

 (5.37) 

Matrix A is an 𝑛 × 𝑛  matrix which has a set of 𝑛  distinct eigenvalues 

(𝜆1, 𝜆2, … , 𝜆𝑛) representing the modal response of the system, and is used to find the 

stability margin by assessing the real part of the critical eigenvalues which corresponds 

to the oscillatory modes with the least damping ratio.  

Under uncertainty, a difficulty lies when the right-most (critical) eigenvalues are 

related to different subsystems. Mode-tracking becomes a necessary step in each model 

evaluation, and is discussed in detail in Section 6.2.1. For mode-tracking, participation 

factor analysis is used to associate each eigenvalue to their most dominant state variables 

where the participation factors quantify the influence of a state variable (𝑖) on a given 

eigenvalue (𝑗) and are defined in equation (5.38).  

 𝑝𝑖𝑗 =
|𝑤𝑖𝑗||𝑣𝑗𝑖|

Σ𝑘=1
𝑁 (|𝑤𝑖𝑘||𝑣𝑘𝑖|)

 (5.38) 

This allows to reliably identify and group the eigenvalues from disparate model evalua-

tion to the same subsystem. 
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5.4 Parallel-Connected Input Filters with CPLs 

fed by an Uncertain Distribution Line: A Case 

Study 

5.4.1 Aim 

Traditional approaches focused on the study of nominal models ignore parameter 

interactions and nonlinearity, two critical characteristics of highly uncertain LVDC 

DPSs. The aim of this case study is to demonstrate the application of VBSA for small-

signal analysis outlined in Section 5.3 to a parallel-connected input filters with CPLs. 

The methodology is used to identify which parameters, over their uncertainties, exhibit 

nonlinear effects through their interactions on the small-signal stability. After identifica-

tion of interacting parameters—the line resistance and input filter resonant frequencies—

local derivative-based sensitivity analysis using two-factor-at-a-time variation is used to 

demonstrate that a drastically different effect of the sensitivity of line resistance on small-

signal dynamics depending on operating condition. 

 

5.4.2 System overview 

Figure 5.1 shows the configuration of a distribution system with two active loads 

sharing a common voltage bus. The source is modelled as an ideal voltage source with a 

finite line resistance (𝑅𝑙𝑖𝑛𝑒). Each active load is modelled as a tightly-regulated synchro-

nous buck converter with an LC low-pass input filter, as shown in Figure 5.2. The buck 

converter’s control loop is implemented as a type-III voltage compensator represented in 

state-space form (see Section 3.3.3). The state vector 𝑥𝐶𝑖(𝑡), input vector 𝑢𝐶𝑖(𝑡), and 

output vector 𝑦(𝑡) are given in (5.40): 

 𝑥𝐶𝑖(𝑡) = [𝑥1,𝐶𝑖(𝑡), 𝑥2,𝐶𝑖(𝑡), 𝑥3,𝐶𝑖(𝑡)]
𝑇
 

𝑢𝐶𝑖(𝑡) = [𝑣𝐶,𝐵𝑖(𝑡) − 𝑢𝑟𝑒𝑓,𝐶𝑖(𝑡)] 

𝑦(𝑡) = 𝐷(𝑡) 

(5.39) 

Where 𝐷(𝑡) is the buck converter duty cycle. 
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FIGURE 5.1 Studied LVDC DPS with multiple active loads fed by a non-ideal (resis-

tive) line. 

 

A poorly damped input filter may induce instability on the bus voltage (𝑉𝑏𝑢𝑠(𝑡)) 

due to the negative input impedance characteristics of the buck converter (see Section 

2.3). Stability analysis of each active load subsystem individually becomes inapplicable 

in the presence of other loads in parallel. 𝑅𝑙𝑖𝑛𝑒 can provide a damping effect for the sys-

tem under study [51], but also can contribute to the coupling between the loads, as 

indicated in [26]. 

 

 

 

FIGURE 5.2 Circuit diagram of a single active load 

5.4.2.1 System Model 

The modelling methodology is described in detail in Chapter 2.6. The system in 

Figure 5.1 is modelled as a nonlinear state-space system of equations. For generality in 

the system model description, an 𝑛-number of parallel-connected active loads fed by the 

same line resistance can expressed in a single model. Firstly, let the parameters of each 
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subsystem of an active load be denoted by the subscript 𝑖. Active load 𝐴𝐿𝑖, is formed by 

combining the filter 𝐹𝑖, averaged buck converter 𝐵𝑖, controller 𝐶𝑖 and load resistor 𝑅𝑖.  

By applying the circuit averaging technique and Kirchhoff laws to the dynamic 

models in Figure 5.1-Figure 5.2, each active load 𝐴𝐿𝑖 can be expressed by the set of 

differential equations in (5.40) and bus voltage in (5.41).  

𝑑𝑣𝐶,𝐹𝑖
𝑑𝑡

=
𝑖𝐿,𝐹𝑖
𝐶𝐹𝑖

−
𝑖𝐿,𝐵𝑖𝐷11,𝐶𝑖(𝑢𝑟𝑒𝑓,𝐶𝑖 − 𝑣𝐶,𝐵𝑖)

𝐶𝐹𝑖
+ 
𝑖𝐿,𝐵𝑖𝐶11,𝐶𝑖𝑥1,𝐶𝑖

𝐶𝐹𝑖

+
𝑖𝐿,𝐵𝑖𝐶12,𝐶𝑖𝑥2,𝐶𝑖

𝐶𝐹𝑖
+
𝑖𝐿,𝐵𝑖𝐶13,𝐶𝑖𝑥3,𝐶𝑖

𝐶𝐹𝑖
  

(5.40) 

𝑑𝑖𝐿,𝐹𝑖
𝑑𝑡

 = (𝑣1 − 𝑣𝐶,𝐹𝑖 − 𝑅𝑙𝑖𝑛𝑒∑𝑖𝐿,𝐹𝑖

𝑛

𝑖=1

− 𝑖𝐿,𝐹𝑖𝑅𝐿,𝐹𝑖)/𝐿𝐹𝑖 

𝑑𝑣𝐶,𝐵𝑖
𝑑𝑡

 = (𝑖𝐿,𝐵𝑖 − 𝑣𝐶,𝐵𝑖 𝑅𝑖⁄ )/𝐶𝐵𝑖 

𝑑𝑖𝐿,𝐵𝑖
𝑑𝑡

  =  − (𝑣𝐶,𝐵𝑖

− 𝑣𝐶,𝐹𝑖(𝐷11,𝐶𝑖(𝑢𝑟𝑒𝑓,𝐶𝑖  −  𝑣𝐶,𝐵𝑖) + 𝐶11,𝐶𝑖𝑥1,𝐶𝑖  +  𝐶12,𝐶𝑖𝑥2,𝐶𝑖  

+  𝐶13,𝐶𝑖𝑥3,𝐶𝑖) + 𝑖𝐿,𝐵𝑖(𝑅𝑑𝑠(𝑜𝑛)𝑄2,𝐵𝑖 + 𝑅𝐿,𝐵𝑖)

+ 𝑖𝐿,𝐵𝑖(𝑅𝑑𝑠(𝑜𝑛)𝑄1,𝐵𝑖 − 𝑅𝑑𝑠(𝑜𝑛)𝑄2,𝐵𝑖)(𝐷11,𝐶𝑖(𝑢𝑟𝑒𝑓,𝐶𝑖  −  𝑣𝐶,𝐵𝑖)

+ 𝐶11,𝐶𝑖𝑥1,𝐶𝑖  +  𝐶12,𝐶𝑖𝑥2,𝐶𝑖  +  𝐶13,𝐶𝑖𝑥3,𝐶𝑖)) /𝐿𝐵𝑖 

𝑑𝑥1,𝐶𝑖
𝑑𝑡

 =  𝐵11,𝐶𝑖(𝑢𝑟𝑒𝑓,𝐶𝑖 − 𝑣𝐶,𝐵𝑖) + 𝐴11,𝐶𝑖𝑥1,𝐶𝑖  +  𝐴12,𝐶𝑖𝑥2,𝐶𝑖  +  𝐴13,𝐶𝑖𝑥3,𝐶𝑖 

𝑑𝑥2,𝐶𝑖
𝑑𝑡

 = 𝐵21,𝐶𝑖(𝑢𝑟𝑒𝑓,𝐶𝑖 − 𝑣𝐶,𝐵𝑖) + 𝐴21,𝐶𝑖𝑥1,𝐶𝑖 + 𝐴22,𝐶𝑖𝑥2,𝐶𝑖 + 𝐴23,𝐶𝑖𝑥3,𝐶𝑖 

𝑑𝑥3,𝐶𝑖
𝑑𝑡

 =  𝐵31,𝐶𝑖(𝑢𝑟𝑒𝑓,𝐶𝑖 − 𝑣𝐶,𝐵𝑖) + 𝐴31,𝐶𝑖𝑥1,𝐶𝑖  +  𝐴32,𝐶𝑖𝑥2,𝐶𝑖  +  𝐴33,𝐶𝑖𝑥3,𝐶𝑖 
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𝑣𝑏𝑢𝑠(𝑡) = 𝑣1(𝑡) − 𝑅𝑙𝑖𝑛𝑒∑𝑖𝐿,𝐹𝑖(𝑡)

𝑛

𝑖=1

 (5.41) 

To note, equation (5.41) above shows the sharing of the common bus through the 

𝑖𝐿,𝐹𝑖(𝑡) state variable, i.e., 𝑅𝑙𝑖𝑛𝑒  contributes to a voltage drop of 𝑉𝑏𝑢𝑠(𝑡) based on the 

sum of the currents flowing into each active load. 

For the two active load system in Figure 5.1, this results in a state-space model of 

14th order with state and input vectors shown below in (5.42) and (5.43): 

 𝑥(𝑡)
= [𝑣𝐶,𝐹1(𝑡), 𝑖𝐿,𝐹1(𝑡), 𝑣𝐶,𝐵1(𝑡), 𝑖𝐿,𝐵1(𝑡), 𝑥1,𝐶1(𝑡), 𝑥2,𝐶1(𝑡), 𝑥3,𝐶1(𝑡), 

𝑣𝐶,𝐹2(𝑡), 𝑖𝐿,𝐹2(𝑡), 𝑣𝐶,𝐵2(𝑡), 𝑖𝐿,𝐵2(𝑡), 𝑥1,𝐶2(𝑡), 𝑥2,𝐶2(𝑡), 𝑥3,𝐶2(𝑡)]
𝑇 

(5.42) 

 𝑢(𝑡) = [𝑣1(𝑡), 𝑢𝑟𝑒𝑓,𝐶1(𝑡), 𝑢𝑟𝑒𝑓,𝐶2(𝑡)]𝑇 (5.43) 

 

 

5.4.2.2 System parameters and uncertainties 

Two case conditions are considered for the system in Figure 5.1. Case A has 

matched load input filters such that their nominal resonant frequencies are identical (𝑓𝑟,𝐹1 

= 114Hz, 𝑓𝑟,𝐹2 = 114Hz). Case B has well separated input filter resonant frequencies 

(𝑓𝑟,𝐹1 = 114Hz, 𝑓𝑟,𝐹2 = 60Hz). Both cases have several parameters with uncertainties that 

are modelled as continuous uniform distributions on the interval given by the percentages 

around the nominal value. Table 5.1 and Table 5.2 show the system parameters and 

corresponding uncertainties.  

TABLE 5.1 Fixed system parameters 

Input/Parameter Symbol Nominal Value Units 

Source voltage v1 380 V 

Command voltages uref,C1, uref,C2 100 V 

Output filter capacitances CB1, CB2 1200 µF 

Output filter inductances LB1, LB2 100 µH 

DCRs of LB1, LB2 RL,B1, RL,B2 10 mΩ 

High-side switch (Q1) on state resistances RDS(on)Q1,B1, RDS(on)Q1,B2 5 mΩ 

Low-side switch (Q2) on state resistances RDS(on)Q2,B1, RDS(on)Q2,B2 5 mΩ 

 

 



CHAPTER 5 

131 

TABLE 5.2 Uncertain parameters 

Parameter Symbol Nominal 

Value 

Units Uncertainty 

Line resistance Rline 100 mΩ ± 100 % 

Input filter 1 capacitance 𝐶F1 880 µF ± 30 % 

Input filter 1 inductance 𝐿F1 2.2 mH ± 30 % 

DCR of LF1 𝑅𝐿,F1 10 mΩ ± 50 % 

Load 1 resistance 𝑅1 5 Ω ± 50 % 

Load 2 resistance 𝑅2 5 Ω ± 50 % 

 

The controllers used for both synchronous buck converters, shown in Figure 5.2, 

are identical for both active loads, with parameters shown in equation (5.44). The buck 

converter has a switching frequency of 50 kHz and under nominal parameters, the regu-

lator voltage loop gain is designed to a 1 kHz crossover frequency. 

 𝐴𝐶𝑖 = [
0 −1.52𝑒4 −2.29𝑒4
0 −8.75𝑒4 −1.27𝑒5
0 0 −9.17𝑒4

]   𝐵𝐶𝑖 = [
13.08
72.7
109.5

] 

𝐶𝐶𝑖 = [−23.65 131.5 198]            𝐷𝐶𝑖 = −0.113  

(5.44) 

 

Table 5.3 gives the parameters for the input filter of active load 2 under the two studied 

system configurations (denoted as Case A and Case B). 

 

TABLE 5.3 Case A and Case B values for input filter (F2) of active load 2 

Parameter Symbol Nominal Value 

(Case A) 

Nominal Value 

(Case B) 

Units Uncertainty 

Input filter 2 capacitance 𝐶F2 880 1500 µF ± 30 % 

Input filter 2 inductance 𝐿F2 2.2 4.7 mH ± 30 % 

DCR of LF2 𝑅𝐿,F2 50 50 mΩ ± 50 % 
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5.4.3 Identification of Interaction Effects using VBSA 

5.4.3.1 Method 

The procedure used to perform VBSA for the system is outlined in the steps below: 

1. Sample the probability distribution of all uncertain parameters using 

pseudo-random sampling to generate 12,000 unique scenarios. 

2. For each scenario: 

a. Calculate steady-state operating point of each scenario. 

b. Linearise to obtain the system matrix 𝐴 and calculate eigenvalues 

and corresponding participation factors. 

c. Based on participation factors, identify the two critical eigenvalue 

pairs related to the different input filter modes.  

3. Calculating 𝑆𝑖 and 𝑆𝑇𝑖 on the real part of the eigenvalues from Step 2 using 

an implementation of the estimator from Section 5.2.3. 

The total calculation time was approximately 170 seconds to perform 12,000 

unique model evaluations using an Intel Core i7-4790 @ 3.60GHz with 16.0 GB of 

memory.  

5.4.3.2 Results and discussion 

VBSA results for the system under study are shown in Figure 5.3 and Figure 5.4. 

The first-order sensitivity indices Si indicate that in both Case A and Case B, 𝜆1,2 re-

sponds to changes in AL1 parameters (𝑅1, 𝐶𝐹1, 𝐿𝐹1, 𝑅𝐿,𝐹1) whereas 𝑅𝑒(𝜆3,4) responds 

mainly to changes in AL2 parameters (𝑅2, 𝐶𝐹2, 𝐿𝐹2, 𝑅𝐿,𝐹2). This is expected as 𝜆1,2 and 

𝜆3,4 have been classified by their dominant participation factors which associate them 

either to AL1 or AL2. The results show that the most influential parameter for both 

𝑅𝑒(𝜆1,2) and 𝑅𝑒(𝜆3,4) is Rline, meaning that reduction in the uncertainty of Rline will 

reduce the output variance the most. Comparing Case A to Case B, it can be observed 

that they differ primarily in total effect indices 𝑆𝑇𝑖 and interaction effects (𝑆𝑇𝑖-𝑆𝑖). 
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FIGURE 5.3 Estimation of VBSA sensitivity indices under Case A. 

 

FIGURE 5.4 Estimation of VBSA sensitivity indices under Case B. 

 

Under the matching filters case (Case A), the total variances of 𝑅𝑒(𝜆1,2) respond 

to changes in both AL1 and AL2 parameters indicating interactions between the 
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parameters of these two load subsystems, i.e., varying multiple parameters simultane-

ously produces a non-additive response on the movement of the eigenvalue. Of interest 

is the significant interaction effect of  𝑅𝑙𝑖𝑛𝑒 which suggests that the behaviour of 𝑅𝑙𝑖𝑛𝑒 

on 𝑅𝑒(𝜆1,2) depends on the other interacting variables. This phenomenon is investigated 

further in the next section.  

The results in Figure 5.4 show that Case B exhibits minimal interaction effects and 

no interaction between AL1 and 𝜆3,4, and AL2 and 𝜆1,2; meaning that parameters with 

zero interaction terms will have no effect on the sensitivity of any other parameter. For 

example, changes in the value of 𝐿𝐹2 in the uncertainty range will not affect 𝑅𝑒(𝜆1,2) 

associated with AL1. 

A limitation of using the total effect sensitivity measure is that it cannot identify 

which particular parameters are interacting. Modification of the adopted sampling pro-

cedure and estimator can be made to accommodate the 2nd-order and higher-order 

sensitivities [75], at the expense of increased total computation time. Additionally, it is 

important to note that VBSA indices only show the importance of particular variable(s) 

and do not quantify whether increasing or decreasing a variable will destabilize or stabi-

lize the system. 

 

5.4.4 Investigation of the effect of source-side resistance via 

modal analysis  

To further investigate the effect of 𝑅𝑙𝑖𝑛𝑒 on the stability of Case A system, the local 

sensitivity 𝜕𝑅𝑒(𝜆1,2)/𝜕𝑅𝑙𝑖𝑛𝑒 is calculated for different values of AL2 input filter reso-

nant frequency. This is achieved by adjusting parameters 𝐿𝐹2 and 𝐶𝐹2. Results presented 

in Figure 5.5 and Figure 5.6 indicate drastically different behaviours of the system under 

perturbations in 𝑅𝑙𝑖𝑛𝑒.  
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FIGURE 5.5 Effects of 30% parameter uncertainty in CF2 and LF2 on the derivative 

sensitivity of the critical eigenvalue to R l ine perturbations (for Case 1).  

All other parameters remain nominal. 

 

 

FIGURE 5.6 Critical eigenvalue sensitivity to Rline changes vs. capacitance CF2 (cross-

section of Figure 5.5 at fixed inductance value LF2 = 2.2mF)  

 

 

Region  2 

Region  1 
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The results in Figure 5.5 can be classified into 3 regions:  

Region 1: Line resistance 𝑅𝑙𝑖𝑛𝑒  is stabilizing due to equivalent series 

damping of the filters. 

Region 2: Line resistance 𝑅𝑙𝑖𝑛𝑒 is destabilizing due to increase in filter 

coupling effects.  

Region 3: Critical eigenvalue insensitivity to changes in 𝑅𝑙𝑖𝑛𝑒 when the 

two filters are matched.  

For clarity, a cross-section view of Figure 5.5 is shown in Figure 5.6 when 𝐿𝐹2 

has nominal value. From this it can be seen that for 𝑅𝑙𝑖𝑛𝑒 to have a damping effect, the 

system has to be operating in Region 1. When 𝐶𝐹2 is near its nominal value, the effect of 

positive perturbations in 𝑅𝑙𝑖𝑛𝑒 is destabilising. 

 

5.4.5 Validation of predicted behaviour using time-domain 

simulation 

The detailed switching model of the system shown in Figure 5.1 is simulated using 

Simulink/SimPowerSystems. The effects of changes in 𝑅𝑙𝑖𝑛𝑒  under different operating 

conditions, as identified in the previous section, are verified using time domain simula-

tions. To investigate the effect on the stability, the time-domain simulation models are 

configured to operate in Region 1 (𝑅𝑙𝑖𝑛𝑒 stabilizing) and Region 2 (𝑅𝑙𝑖𝑛𝑒 destabilizing). 

Table 5.4 is used to select AL2 input filter parameters. Load resistances 𝑅1 and 𝑅2 are 

also varied between cases so that the system operates near instability, as given below. 

 

TABLE 5.4 Simulation scenarios under operation in Region 1 and Region 2. 

Region 𝑪𝐅𝟐  𝑳𝐅𝟐  Operating load condition (𝑹𝟏 = 𝑹𝟐) 𝑹𝒆(𝝀𝟏,𝟐)  

2 1000 µF 2.2 mH 2 Ω -4.76 

1 1100 µF 2.2 mH 1.4 Ω -3.7 

 

Referring to the simulation results in Figure 5.7 and Figure 5.8, at 𝑡 = 0 the system 

operates in steady-state at the nominal line resistance (𝑅𝑙𝑖𝑛𝑒  =  0.1𝛺). 𝑅𝑙𝑖𝑛𝑒 is then in-

crementally varied by ±0.01Ω every 1s to observe the effect on Vbus. In Region 2, 

unstable oscillations occur when Rline is increased to 0.14Ω at t = 4 (Figure 5.7(b)), 

whereas in Region 1 Rline can be safely increased to the upper bounded value of 0.2Ω 
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without exhibiting instability (Figure 5.8(b)). These results confirm the predicted system 

behaviour in Section 4. Decreasing Rline results in the oscillatory behaviour in both Re-

gion 1 and Region 2. In Region 2, the instability occurs when Rline is decreased to 0.02Ω 

(Figure 5.7(a)) compared to Region 1 instability at 0.06Ω (Figure 5.8(a)). It can be con-

cluded that Rline has both damping and coupling effects on AL1 and AL2 and under 

certain operating condition it can destabilize the system 

In this paper a system with two active loads under parametric uncertainties is ana-

lysed. An improved analysis approach has been proposed using VBSA in order to 

identify system parameter(s) that have a significant impact on the small-signal stability. 

For the system under study source-side resistance interacts with other uncertain parame-

ters when input filter resonant frequencies of load 1 and load 2 are matched. Further 

analysis using local sensitivity analysis reveals that source-side resistance can exhibit 

different effects on the small signal stability: stabilizing (damping), destabilizing, and no 

impact (insensitivity). The predicted model behaviours are validated through time do-

main simulation. 

 

 

FIGURE 5.7 Region 2, time domain simulations showing the effect on Vbus under: (a) 

decreasing R l ine, (b) increasing R l ine. 
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FIGURE 5.8 Region 1, time domain simulations showing the effect on Vbus under: (a) 

decreasing R l ine, (b) increasing R l ine. 
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5.4.6 Conclusions from the case study 

In this case study, VBSA was performed on two systems with identical structure 

but with a different set of nominal values on input filters. Results indicated that the ef-

fectiveness of source-side resistive damping was reduced when resonant frequencies of 

input filters are nominally matched. VBSA found that interactions are present between 

parallel loads and source-side resistances, and these results are verified against conven-

tional derivative-based sensitivity analysis and discussed. For the first time, the apparent 

dichotomy in the effect of source-side line resistance is revealed: line resistance can act 

as both a stabilizing and destabilizing element on the overall system depending on oper-

ating conditions. The predicted model behaviours are validated through time domain 

simulations.  

 

5.5 Summary 

This chapter has introduced and provided the framework for the application of the 

probabilistic VBSA for identifying and quantifying first- and total-order effects of pa-

rameter, as well as their interactions, across all possible operating conditions. A novel 

procedure for applying VBSA to realistic models of LVDC DPS has been established in 

order to aid in the analysis of parameter effects on small-signal stability analysis, and as 

an effective screening tool for assessing the effect of multiple parameter uncertainties.  

The new procedure has been applied on a case example LVDC DPS with parallel-con-

nected input filters feeding CPLs. It was found that source-side resistance interacts with 

other uncertain parameters when input filter resonant frequencies of the parallel filters 

become closely matched, significantly impacting small-signal dynamics due to strong 

nonlinear interaction phenomena. The next chapter further investigates this phenomenon 

in terms of source-load interactions and mode coupling.  
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Chapter 6 

Analysis of Mode Coupling 

Between Parallel-connected Input 

Filters with Constant Power Loads 

6 Analysis of Mode Coupling Between Parallel-connected Input Filters with Constant Power Loads 

ABSTRACT This chapter investigates the resonant coupling phenomenon between 

parallel loads observed from the interaction analysis from Chapter 5. Stability and deriv-

ative sensitivity are influenced by the interaction of source-side resistance and active 

loads. Here, linear modal coupling theory is extended to analyse this phenomenon. Di-

vergence of eigenvalue loci between the coupled-system model and the equivalent 

decoupled-system model is used to quantify the effect of the coupling phenomenon, as 

well as predict the best and worst-case system damping. The apparent dichotomy in the 

effect of line resistance is finally resolved: line resistance can be apportioned to both 

subsystem damping and contribute to the coupling between subsystems.  

The trajectory of eigenvalues under parametric perturbations is also shown to ex-

hibit a mode swapping behaviour, where continuous eigenvalues exchange modal 

properties instead of diverging. To address this phenomenon, an algorithm based on par-

ticipation factor analysis has been developed to ensure the conformity of eigenvalues to 

given subsystems. 

Small-signal stability and sensitivity analysis of the system models are validated 

through experimental results, and several scenarios are presented demonstrating the prac-

tical importance of the mode coupling on small-signal dynamics.  
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6.1 Introduction 

Chapter 6 contains detailed analysis of the effect of the resonant coupling phenom-

enon between parallel loads reported in the literature (Chapters 1 and 2). Subsequently it 

was revealed that stability is critically influenced by the interaction of source-side re-

sistance and active loads in Chapter 5. Linear modal coupling theory is extended in this 

chapter to analyse resonant interaction phenomenon. We show that the difference of ei-

genvalue loci between the coupled-system model and the equivalent decoupled-system 

model can be used to quantify the effect of the coupling phenomenon, as well as predict 

the best and worst-case system damping. Through analysis of the coupled/decoupled-

system models, the dichotomy presented in Chapter 5 is resolved: source-side line re-

sistance is shown to contribute to both the damping of individual subsystems (thereby 

increasing small-signal stability) whilst simultaneously contributing to the coupling be-

tween subsystems (thereby decreasing small-signal stability). As a result, the combined 

effect of the line resistance is destabilizing when the coupling component exceeds that 

of the damping component.  

This chapter makes contributions in the following directions: Firstly, interaction 

between modes arises due to feedback coupling terms in the linearised system models. 

An analysis framework based on analysing the decoupled-system model is formulated 

and used to quantify the effect of mode coupling on stability margin.  

Secondly, through parametric sensitivity analysis we resolve the dichotomy of the 

small-signal dynamic effects of line resistance. Line resistance functions as stabilizing 

element due to equivalent series damping and can also function as a destabilizing element 

due to increasing mode coupling. This is demonstrated experimentally in a practical sys-

tem. When coupling effects begin to dominate, further increasing line resistance reduces 

stability margins. 

The structure of this chapter is as follows. In Section 6.2, the modal coupling phe-

nomenon is investigated through the effect parametric changes on eigenvalues. To cope 

with the phenomenon of mode swapping, mode tracking based on participation factor 

analysis is formulated for the first time. We introduce the concept of the decoupled state-

space model which predicts the behaviour of eigenvalues assuming no feedback coupling 

between subsystems. Section 6.3 models the two-coupled filter-load system fed by a line 
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resistance from Chapters 4 and 5 as a system with ideal CPLs. Section 6.4 analyses the 

effect of model coupling: stability margins using minimum damping ratio are studied and 

sensitivity analysis is performed at various operating conditions. This analysis quantifies 

the effect of source-side resistance: it is both stabilizing through equivalent damping and 

destabilizing through increasing coupling, and this strongly relates to the resonant fre-

quencies of the parallel-connected LC filters. Section 6.5 verifies behaviour using 

experimental measurements from the test rig. Finally, Section 6.6 summarises the chap-

ter. 

 

6.1.1 Background 

Stability may also be impacted by the dynamic interactions between different sub-

systems in power distribution networks. Papers [45], [93], [110], [111] provide important 

insights into the complexity of interactions between sources, loads, network dynamics 

and controllers.  

Through an impedance-based approach, the authors in [45] illustrate a reduction in 

stability margins due to mutual interaction occurring between parallel-connected con-

verters in the presence of a non-ideal grid. To quantify the effect of these types of 

interactions, eigenvalue sensitivity and participation factor analysis are often used to as-

sess the impact of parameter variation on stability [19].  

Mode coupling is known to occur near resonance when one oscillatory mode coin-

cides with another in terms of frequency and damping. This interaction phenomenon is 

often observed by studying the behaviour of eigenvalues of a linear system as a function 

of a parameter. As modes become coupled, they are no longer independent of each other 

and the eigenvalues appear to diverge on the complex eigenspace and is exhibited as 

energy transfer between modes and an increase in oscillatory behaviour of the system 

[112]. Issues surrounding this phenomenon are studied extensively in several applica-

tions and are sometimes referred to as mode repulsion, veering, and eigenvalue 

avoidance. 

The impact of mode coupling is an important consideration in the operation of 

power systems with series-compensated transmission line. Subsynchronous resonance 

arises from the interaction between the mechanical (torsional dynamic) mode and 



CHAPTER 6 

144 

electrical damping mode and can lead to instability with sustained oscillations [17], [18], 

[90]. Similarly, mode coupling can degrade stability margins in AC DPSs due to the 

resonance interaction between parallel LCL filters [22], [23], [43], [44] and demonstrated 

by [21] to be the result of coupling via circulating currents between filters. 

Evidence of mode coupling phenomenon is exhibited in LVDC DPSs consisting of 

multiple parallel ALs. The work in [51] implemented a source-side virtual resistance-

based compensator capable of stabilizing multiple active loads, however observed that 

the effectiveness is reduced when input filter resonant frequencies were coincident. Sim-

ilarly, [26] identifies interaction between ALs and argue that line resistance is a factor 

responsible for coupling between filters. Chapter 5 revealed that parameter interactions 

occur between line resistance and filters only when filters are closely matched. Further 

sensitivity analysis indicted that the line resistance could exhibit either a stabilizing or 

destabilizing characteristic depending on the parameters of filters.  

The behaviour of eigenvalues to parameter changes is crucial in understanding 

which parameters influence stability at to what degree. The conventional approach is to 

calculate the derivative of the eigenvalues with respect to a given parameter. Under larger 

changes in parameters, conclusions drawn from the derivative sensitivity at a single op-

erating point is no longer suitable. 

 

6.2 Mode Tracking and the Decoupled State-

space Model 

6.2.1 Mode tracking under parameter variation 

The trajectories of eigenvalues of a linear system model are known to behave in 

unexpected ways as parameters are varied. During coupling between two modes, eigen-

value loci tend to diverge or coalesce. Under some conditions, the phenomena of mode 

switching may occur as eigenvalues approach with an exchange in the modal properties 

of the eigenvalues. This creates a fundamental problem on tracking the trajectories of 

eigenvalues, what is referred to as mode tracking -- the aim is to ensure a consistent 

relationship between individual eigenvalues to the states that give rise to them. 
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Using the previous example in Section 2.5.2.1, we first show the phenomena of 

mode switching and demonstrate the problem of mode tracking. Figure 6.1 shows exam-

ples of some of the possible eigenvalue trajectories when varying a parameter. 

 

FIGURE 6.1 Possible eigenvalue (λ1, λ2) trajectories when varying a single parameter 

The matrices that give rise to each of the trajectories in Figure 6.1 are given below 

in equation (6.1). 

 
(𝒂): [

−1 + 𝑗𝜌1 0
0 −1 + 𝑗𝜌2

] 

(𝒃): [
−1 + 𝑗𝜌1 1

1 −1 + 𝑗𝜌2
] 

(6.1) 
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(𝒄): [
−1 + 𝑗𝜌1 1 + 𝑗0.01
1 + 𝑗0.01 −1 + 𝑗𝜌2

] 

(𝒅): [
−1 ± 𝑗𝜌1 1 + 𝑗0.01
1 − 𝑗0.01 −1 + 𝑗𝜌2

] 

Where varied parameter 𝜌1 = [5,−5], and fixed parameter 𝜌2 = 0. 

 

The trajectories presented in Figure 6.1 are briefly discussed. Figure 6.1(a) shows 

two independent eigenvalues that do not interact. As 𝜆1 passes 𝜆2 at point (-1,0) without 

any deviation. At this point a repeat eigenvalue exists.  

Figure 6.1(b) shows that 𝜆2 becomes attracted to 𝜆1 up to point (-1,1) where to 

begin to rapidly diverge in the real axis. Eigenvalues can be seen to couple with frequen-

cies coalescing/being pulled together. A critical point exists when 𝜌1 = 𝜌2 where 𝜆1 =

0 indicating that system dynamics have become marginal stable.  

Figure 6.1(c) shows the phenomena of mode swapping. Even though the same pa-

rameter is varied over the same range in Figures (a)(b)(d), the eigenvalue ordering does 

not hold consistently over the variation. Therefore, 1 at the start of the trajectory (p=5) 

assuming the state 𝑥1 corresponded to 𝜆1), at the end of the trajectory (p=-5) state 𝑥1 is 

now represented by 𝜆2.  

Figure 6.1(d) shows a very similar trajectory to Figure 6.1(c) but does not exhibit 

any mode swapping phenomenon. 

This mode swapping phenomenon occasionally arises in literature relating to 

power systems. Paper [91] identifies these two types of eigenvalue interactions types as 

Type A is and Type B interactions. Type A are characterized by eigenvalue crossing 

avoidance where eigenvalues transition into each other, with an exchange in mode prop-

erties, (as visually represented by Figure 6.1(c)). Type B has eigenvalues veering or 

crossing behaviour (as visually represented by Figure 6.1(d)). A more comprehensive 

analysis of this phenomenon may be found in [18]. 

An often-made assumption in dynamic studies is to order eigenvalues by their mag-

nitude. Tracking the eigenvalue with the largest real-part characterizes the most dominant 

response in the system [70], [113]. Alternatively, papers [101], [114] perform continuous 

eigenvalue tracing [68], [115] using the property that eigenvalue loci curves are contin-

uous over iterative perturbations [89], [116]. As shown in the simple example with results 
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portrayed in Figure 6.1, both approaches are not appropriate for tracking as this may 

result in inconsistent ordering over (multiple) parameter variations. 

To account for the possible occurrence of the mode swapping phenomenon, a pro-

cedure is developed in this thesis to track eigenvalues based their maximum contributing 

states. Here we make a clear distinction between eigenvalues and modes. While eigen-

values are simply the characteristic roots of a system (denoted with numeric subscripts 

𝜆1, 𝜆2, … , 𝜆𝑛), the modes shall be defined and linked to the physical interpretation or 

structure of the system (denoted with the prefix ‘𝑚’ in the subscripts 𝜆𝑚1, 𝜆𝑚2, … , 𝜆𝑚𝑛). 

To achieve consistent interpretation following eigenvalue analysis, participation 

factor analysis is used to track each of the eigenvalues to the modes defined by state 

participation. The eigenvalue calculated at each iteration must be sorted so that maximal 

participation is linked to a consistent ordering of the state variables of the system. Par-

ticipation factors can be calculated as (6.2) [67]: 

𝑝𝑘,𝑖 =
|𝑣𝑖,𝑘||𝑤𝑘,𝑖|

∑ |𝑣𝑖,𝑘||𝑤𝑘,𝑖|
𝑛
𝑘=1

 (6.2) 

Here, 𝑖𝑡ℎ eigenvalue relates to the 𝑘𝑡ℎ state variable. However, it is important to 

emphasise that 𝑖 is in no particular order. 

Representing all participation factors as a single matrix in (6.3): 

P =

 
𝜆1
 
𝜆𝑖
 
𝜆𝑛

   

𝑥1  𝑥𝑗  𝑥𝑛

[
 
 
 
 
𝑝1,1 ⋯ 𝑝1,𝑗 ⋯ 𝑝1,𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑝𝑖,1 ⋯ 𝑝𝑖,𝑗 ⋯ 𝑝𝑖,𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑝𝑛,1 ⋯ 𝑝𝑛,𝑗 ⋯ 𝑝𝑛,𝑛]

 
 
 
 
 (6.3) 

The matrix above can be rearranged so that the maximum participation factor is at 

the diagonal, as indicated in (6.4). Following this, each eigenvalue is now ordered con-

sistent manner as modes—𝜆𝑚1 corresponds to 𝑥1, 𝜆𝑚2 corresponds to 𝑥2, etc. 
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P =

 
𝜆m1
 
𝜆𝑚𝑖
 
𝜆𝑚𝑛

   

𝑥1  𝑥𝑗  𝑥𝑛

[
 
 
 
 
 
𝑝1,1 ⋯ 𝑝1,𝑗 ⋯ 𝑝1,𝑛

⋮ ⋱ ⋮ ⋱ ⋮

𝑝𝑖,1 ⋯ 𝑝𝑖,𝑗 ⋯ 𝑝𝑖,𝑛

⋮ ⋱ ⋮ ⋱ ⋮

𝑝𝑛,1 ⋯ 𝑝𝑛,𝑗 ⋯ 𝑝𝑛,𝑛 ]
 
 
 
 
 

 (6.4) 

Applying this mode tracking approach to the trajectories generated in Figure 6.1(c) 

results in the corrected graph in Figure 6.2, below. Eigenvalue movements now feature 

a discontinuity or jump in loci over a continual change in parameter. 

 

FIGURE 6.2 Eigenvalue mode tracking via participation factor analysis. 
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6.2.2 Decoupled State-Matrix Model 

Referring back to the modelling approach in Chapter 3, complete power system 

models can be viewed as the interconnection of a number of subsystem models where 

each subsystem can be modelled independently. Here, we refer to the complete power 

system model as the interconnected state-space model. Interconnection introduces feed-

back dynamics between the different subsystems. This feedback may result in modal 

coupling between subsystems that may have a significant impact the dynamics of the 

fully interconnected system. 

A new decoupled state-space model (DSSM) is defined by removing all coupling 

terms from the fully interconnected state-space model (ISSM). These coupling terms 

appear as terms in the off-diagonal of the state-matrix (𝐴) in the ISSM and can be sub-

tracted to generate the DSSM. For the purposes of small-signal stability analysis, only 

the characteristics of the state matrix A are relevant here. 

The state matrix of DSSM (𝐴𝐷𝑆𝑆𝑀) can be found by subtracting a newly defined 

matrix 𝐴𝐶  containing only coupling terms (6.5): 

[

𝑨𝟏 0 ⋯ 0
0 𝑨𝟐 0 ⋮
⋮ 0 ⋱ 0
0 ⋯ 0 𝑨𝑵

]

⏟            
𝐴𝐷𝑆𝑆𝑀

= [

𝑨𝟏 𝜎12 ⋯ 𝜎1𝑁
𝜎21 𝑨𝟐 ⋱ ⋮
⋮ ⋱ ⋱ 𝜎…
𝜎𝑁1 ⋯ 𝜎… 𝑨𝑵

]

⏟              
𝐴𝐼𝑆𝑆𝑀

− [

0 𝜎12 ⋯ 𝜎1𝑁
𝜎21 0 ⋱ ⋮
⋮ ⋱ ⋱ 𝜎…
𝜎𝑁1 ⋯ 𝜎… 0

]

⏟              
𝐴𝐶

 

𝐴𝐷𝑆𝑆𝑀 = 𝐴𝐼𝑆𝑆𝑀 − 𝐴𝐶  

(6.5) 

Where 𝐴𝐼𝑆𝑆𝑀 is the state-matrix of the ISSM that is equal to the conventional 𝐴 

matrix derived using the full-system description. 

It is important to note that the subsystem state-matrices (𝐴1, 𝐴2, … , 𝐴𝑁) are not 

necessarily identical to the state-matrices of the separately modelled subsystems (denoted 

as 𝐴𝑖
′)  and therefore should be treated as semi-interconnected subsystem models. Feed-

back terms that are not coupling factors may appear in 𝐴𝑖. Thus, in general, 𝐴𝑖
′ ≠ 𝐴𝑖. 

Considering only two subsystems, the combined system matrix 𝐴𝐼𝑆𝑆𝑀 can be sep-

arated out as the sum of uncoupled subsystems 𝐴𝐷𝑆𝑆𝑀  and coupling terms 𝐴𝐶 . The 

individual subsystems 𝐴1 and 𝐴2 are block-diagonal in 𝐴𝐷𝑆𝑆𝑀  with coupling terms 𝜎 in 
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the off-diagonal. In effect, the coupling terms are blocked in 𝐴𝐷𝑆𝑆𝑀  ( 𝐴𝐷𝑆𝑆𝑀 =

diag(𝐴1, 𝐴2)). 

This modelling methodology forms the basis of studying modal interactions by 

comparing the eigenvalues calculated between coupled and uncoupled systems. The de-

coupled system 𝐴𝐷𝑆𝑆𝑀 can be used to generate a trajectory of eigenvalues assuming no 

modal coupling. Therefore, any deviation of eigenvalues in the combined interconnected 

system is attributable only to mode coupling phenomena. 

From equation (6.5), it is interesting to note that the trace of 𝐴𝐼𝑆𝑆𝑀 is identical to 

the trace of 𝐴𝐷𝑆𝑆𝑀 (diagonal terms are identical indicating that the sum of the eigenvalues 

must also be identical between the total system and uncoupled equivalent). This suggests 

that mode coupling results in a complementary effect on different eigenvalues (as one 

eigenvalue is pushed further positive, another must be pushed leftwards). Even though 

the damping of a single mode is reduced, the sum or total damping of all modes in the 

system remains constant. 

Modal decomposition can be performed on the ISSM, given by (6.6): 

𝑊𝑇𝑉𝛬 = 𝑊𝑇𝐴𝐼𝑆𝑆𝑀𝑉 (6.6) 

Where eigenvectors are normalised 𝑊𝑇𝑉 = 𝑉𝑊𝑇 = 𝐼.  

 

Expanding 𝐴𝐼𝑆𝑆𝑀 into the sum of 𝐴𝐷𝑆𝑆𝑀 and 𝐴𝐶  is given in (6.7): 

𝑊𝑇𝐴𝐼𝑆𝑆𝑀𝑉 = 𝑊
𝑇(𝐴𝐷𝑆𝑆𝑀 + 𝐴𝐶)𝑉

                = 𝑊𝑇𝐴𝐷𝑆𝑆𝑀𝑉 +𝑊
𝑇𝐴𝐶𝑉

                = [
𝑑𝑖𝑎𝑔{𝛬1} 0

0 𝑑𝑖𝑎𝑔{𝛬2}
] +𝑊𝑇𝐴𝐶𝑉

 (6.7) 

Where 𝛬1, 𝛬2 are the diagonal matrices of eigenvalues of 𝐴1, 𝐴2. 

 

If the above transformation for the coupling matrix 𝐴𝐶  is zero, then the coupling 

effects between subsystems can be neglected. The eigenvalues of the DSSM form a tem-

plate of trajectories assuming a decoupled system, which provides both a qualitative and 

quantitatively way to investigate the effect of modal coupling phenomenon. This is 

demonstrated by the practical example in Section 6.3. 
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6.3 Mode Coupling Between Parallel-connected  

Input Filters with Constant Power Loads  

6.3.1 System Overview 

 

FIGURE 6.3 Block diagram overview of the LVDC power system with two 

parallel-connected filter-load subsystems on the same distribution bus fed 

by a resistive line 

Figure 6.3 shows a LVDC DPS with two input-filtered active loads (AL) connected 

to a common bus. Each AL is comprised of a tightly-controlled buck converter providing 

a regulated output voltage to resistive loads. ALs therefore act as CPLs at their input 

provided within the closed-loop bandwidths. The switching nature necessitates that these 

active loads must feature LC power line filters at the input to attenuate EMI. In many 

practical LVDC DPS applications, the power sources servicing loads are often located at 

a distance. Here, the distribution lines between the source and loads are assumed to be 

long cables that are primarily characterized by their resistance 𝑅𝑙𝑖𝑛𝑒, which is a valid 

assumption for when investigating low-frequency dynamic phenomena. 
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6.3.2 Detailed model description with active loads 

This section provides a brief summary the detailed model of the two input-filtered 

active load system. A single input-filtered active load system has previously been mod-

elled and experimentally verified in Chapter 4. Chapter 5 had investigated a similar 

system structure (albeit as a 380V DC system with different parameters) featuring two 

active loads, modelled as a 14th order system with a state-space representation.  

Chapter 5 had shown that the effectiveness of source-side resistive damping is re-

duced when resonant frequencies of the input filters are similar. Parameter interactions 

were shown to be present not only between the parallel loads, but also on source-side 

resistances. Evidence indicated that line resistance can act as both a stabilizing and de-

stabilizing element on the overall system dependent on operating conditions. 

The next section (Section 6.4) provides a reduced-order model based on ideal CPLs 

of the system described in Section 5.4.2.1. 

 

 

FIGURE 6.4 Comparison of the input impedance Bode diagrams of the detailed model 

(based on active loads with controller dynamics) and simplified model (based on 

ideal CPLs). 
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6.3.3 Simplified model description with ideal CPLs 

 

FIGURE 6.5 Ideal circuit model of the system in Figure 6.3. 

The system represented in Figure 6.3 may be modelled with a simplified reduced 

order 4-state system with circuit diagram given in Figure 6.5. Each AL has been simpli-

fied to an equivalent CPL model. LC filter models have omitted capacitor ESR (inductor 

DCR remans to represent the total filter damping). The distribution line is a resistive 

cable modelled as a resistor 𝑅𝑙𝑖𝑛𝑒.  

While the model equations may be generated using the framework outlined in 

Chapter 3, the circuit model is sufficiently simple for a straightforward application of 

Kirchhoff’s laws to derive the governing differential and output equations (6.8)-(6.13). 

In the equations below, the subscript 𝑖 indexes an individual parallel-connected filter-

load system where 𝑅𝑙𝑖𝑛𝑒 can be seen to couple these subsystems together in differential 

equation (6.9). 

𝑑𝑣𝐶,𝐹𝑖(𝑡)

𝑑𝑡
=
𝑖𝐿,𝐹𝑖(𝑡) − 𝑖𝐶𝑃𝐿𝑖(𝑡)

𝐶𝐹𝑖
 (6.8) 

Where 𝑖𝐶𝑃𝐿,𝑖  =  𝑃𝐶𝑃𝐿,𝑖/𝑣𝐶,𝐹𝑖. 

𝑑𝑖𝐿,𝐹𝑖(𝑡)

𝑑𝑡
=
𝑣𝑖𝑛(𝑡) − 𝑣𝐶,𝐹𝑖(𝑡) − 𝑖𝐿,𝐹𝑖(𝑡)𝑅𝐿,𝐹𝑖 − 𝑅𝑙𝑖𝑛𝑒 ∑ 𝑖𝐿,𝐹𝑗(𝑡)

𝑛
𝑗=1

𝐿𝐹𝑖
 (6.9) 

This system features two ALs, therefore 𝑛 = 2. 

 

( )inv t
1( )CPLi t

lineR 1FL1FR

2FL2FR

1FC

2FC 2( )CPLi t

( )busv t
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The bus voltage 𝑣𝑏𝑢𝑠(𝑡) can be derived the terms of the state and input variables: 

𝑣𝑏𝑢𝑠(𝑡) = 𝑣𝑖𝑛(𝑡) − 𝑅𝑙𝑖𝑛𝑒∑𝑖𝐿,𝐹𝑗

𝑛

𝑗=1

(𝑡) (6.10) 

For the combined system, the vector of state variables and input variables are given 

in (6.11)-(6.13): 

𝑥(𝑡) = [𝑣𝐶,𝐹1(𝑡), 𝑖𝐿,𝐹1(𝑡), 𝑣𝐶,𝐹2(𝑡), 𝑖𝐿,𝐹2(𝑡)]𝑇 (6.11) 

𝑢(𝑡) = [𝑣𝑖𝑛(𝑡), 𝑃𝐶𝑃𝐿1(𝑡), 𝑃𝐶𝑃𝐿2(𝑡)]
𝑇 (6.12) 

𝑦(𝑡) = 𝑣𝑏𝑢𝑠(𝑡) (6.13) 

 

The linearised system model, given by state-space matrices in (6.14)-(6.17), are 

used to examine the small-signal behaviour. From the linearisation procedure, the pa-

rameters �̅�𝐶,𝐹1 and �̅�𝐶,𝐹2 have been introduced to represent the operating point of the 

input voltage of the nonlinear CPLs. Given that the resistances are small, it becomes 

reasonable to approximate CPL input voltage to that of the source voltage, i.e., 𝑣𝑖𝑛(𝑡) ≅

�̅�𝐶,𝐹1 ≅ �̅�𝐶,𝐹2. 

The symbolic linear state-space model of the system in Figure 6.5 is described fully 

by (6.14)-(6.17): 

𝐴 =

[
 
 
 
 
 
 
 
 −

1

𝐶𝐹1𝑅𝐶𝑃𝐿,1

1

𝐶𝐹1
0 0

−
1

𝐿𝐹1
−
𝑅𝐿,𝐹1 + 𝑅𝑙𝑖𝑛𝑒

𝐿𝐹1
0 −

𝑅𝑙𝑖𝑛𝑒
𝐿𝐹1

0 0
1

𝐶𝐹2𝑅𝐶𝑃𝐿,2

1

𝐶𝐹2

0 −
𝑅𝑙𝑖𝑛𝑒
𝐿𝐹2

−
1

𝐿𝐹2
−
𝑅𝐿,𝐹2 + 𝑅𝑙𝑖𝑛𝑒

𝐿𝐹2 ]
 
 
 
 
 
 
 
 

 (6.14) 
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𝐵 =

[
 
 
 
 
 
 
 0

1

𝐶𝐹1�̅�𝐶,𝐹1
0

1

𝐿𝐹1
0 0

0 0 0
1

𝐿𝐹2
0

1

𝐶𝐹2�̅�𝐶,𝐹2]
 
 
 
 
 
 
 

 (6.15) 

𝐶 = [0 −𝑅𝑙𝑖𝑛𝑒 0 −𝑅𝑙𝑖𝑛𝑒] (6.16) 

𝐷 = [1 0 0] (6.17) 

 

The nominal parameters of the model described above are shown in Table 6.1. In 

practice, the actual values differ from the nominal values due to uncertainties and will 

deviate over time due aleatoric variability. In Section 6.4, line resistance (𝑅𝑙𝑖𝑛𝑒), filter 

parameters, and load power are varied to investigate the effect of mode coupling over 

differing conditions. 

 

TABLE 6.1 System parameters of the reduced-order circuit model 

Symbol Nominal Value Unit Description 

𝑣𝑖𝑛  48 V Input voltage 

𝑅𝑙𝑖𝑛𝑒  0.25 Ω Line resistance 

𝐶𝐹1, 𝐶𝐹2 40 µF Capacitance of Filter 1 and 2  

𝐿𝐹1, 𝐿𝐹2 1000 µH Inductance of Filter 1 and 2 

𝑅𝐿,𝐹1, 𝑅𝐿,𝐹2 0.5 Ω DCR of 𝐿F1, 𝐿F2 

𝑃𝐶𝑃𝐿1, 𝑃𝐶𝑃𝐿2 50 W Power of Load 1 and 2 
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6.4 Small-signal Stability Analysis of the LVDC 

DPS Affected by Mode Coupling 

6.4.1 Effect of filter parameter changes on mode coupling and 

small-signal stability 

We begin by studying the eigenvalue modes of the model presented in the previous 

section over stepwise perturbations in the resonant frequency of a single filter (𝜔𝑛,𝐹1 =

1 √𝐶𝐹1𝐿𝐹1⁄ )) while all other system parameters are assumed to be constant as defined in 

Table 6.1. 𝐶𝐹1 and 𝐿𝐹1 are varied proportionally to ensure the damping factor of the filter 

(𝜁𝐹1 = 𝑅𝐿,𝐹1/(2√
𝐶𝐹1

𝐿𝐹1
)) remains constant. Mode tracking of eigenvalues is achieved by 

associating them to the dominant filter states using the maximum participation factors, 

as given definitions in the Table 6.2, below, based on the procedure outlined in Section 

6.2. 

 

TABLE 6.2 Mode tracking based on dominant states 
Subsystem Mode Dominant States 

(maximum participation) 

Eigenvalues 

Filter 1 (F1) ‘Mode 1’ 𝐼𝐿,𝐹1, 𝑉𝐶,𝐹1 𝜆1,2 

Filter 2 (F2) ‘Mode 2’ 𝐼𝐿,𝐹2, 𝑉𝐶,𝐹2 𝜆3,4 

 

Figure 6.6 and Figure 6.7 show the eigenvalue modes and participation factors as 

a function of changes in filter 1 resonant frequency from 3850 rad/s to 7150 rad/s while 

keeping constant filter damping ratios 𝜁𝐹1 = 𝜁𝐹2 = 0.0028 and holding filter 2 constant 

𝜔𝑛,𝐹2 = 5000 rad/s. 

The presence of other circuit elements in the network (e.g., CPLs, 𝑅𝑙𝑖𝑛𝑒) modifies 

the overall damping of the modes of the system, denoted as 𝜁𝐼𝑆𝑆𝑀,1 and 𝜁𝐼𝑆𝑆𝑀,2. Due to 

the complexity, explicit analytical expressions cannot be obtained for 𝜁𝐼𝑆𝑆𝑀,1 and 𝜁𝐼𝑆𝑆𝑀,2, 

and are calculated numerically from eigenvalues. 
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FIGURE 6.6 Trajectory of eigenvalues ‘Mode 1’ and ‘Mode 2’ over varying 

resonant frequency of filter 1 (3850 < ωn,F1 < 7150 rad/s). Filter damping ra-

tios held constant (ζF1 = ζF2 = 0.0028); Rline = 0.25Ω. 

 

 

FIGURE 6.7 Trajectory of participation factors ‘State VC,F1 to Mode 1’ and ‘State VC,F2 

to Mode 1’ over varying resonant frequency of filter 1 (3850 < ωn,F1 < 7150 rad/s). 

Filter damping ratios held constant (ζF1 = ζF2 = 0.0028); Rline = 0.25Ω. 



CHAPTER 6 

158 

Figure 6.8 depicts the trajectories of Mode 1 and Mode 2 in the system 𝐴𝐼𝑆𝑆𝑀 (solid 

lines) and the decoupled template 𝐴𝐷𝑆𝑆𝑀 (dashed line). Starting at well separated filter 

frequencies (𝜔𝑛,𝐹1 = 3850 rad/s, 𝜔𝑛,𝐹2 = 5000 rad/s) the modes of 𝐴𝐼𝑆𝑆𝑀 nearly coin-

cide with the modes of 𝐴𝐷𝑆𝑆𝑀. As 𝜔𝑛,𝐹1 is increased and approaches 𝜔𝑛,𝐹2, it is observed 

that the modes of 𝐴𝐼𝑆𝑆𝑀 rapidly change and deviate away from each other and away from 

the 𝐴𝐷𝑆𝑆𝑀 template.  

The participation factors in Figure 6.9 indicate that this occurs when filter states 

begin to couple to an extent. Minimum damping occurs when filters are matched 

(𝜔𝑛,𝐹1 = 𝜔𝑛,𝐹2) and is denoted as the critical point in the graphs. As noted in the theory 

in Section 6.3, the total sum of the damping in 𝐴𝐼𝑆𝑆𝑀 and 𝐴𝐷𝑆𝑆𝑀 are constant; however, 

during the coupling phenomenon modes appear to repel each other resulting in one of the 

modes being pushed towards the real-axis, indicating a degradation of the overall stabil-

ity margin of the system. As filter frequencies separate away from the critical point 

towards extrema, coupling reduces and the eigenvalues of 𝐴𝐼𝑆𝑆𝑀 approaches the eigen-

values of 𝐴𝐼𝑆𝑆𝑀 asymptotically. 

  



CHAPTER 6 

159 

 

FIGURE 6.8 Trajectory of eigenvalues ‘Mode 1’ and ‘Mode 2’ over varying 

resonant frequency of filter 1 (3850 < ωn,F1 < 7150 rad/s). Filter damping ratios, 

ζF1=0.0028, ζF2=0.0038; Rline = 0.25Ω. 

 

 

FIGURE 6.9 Trajectory of participation factors ‘State VC,F1 to Mode 1’ and ‘State VC,F2 

to Mode 1’ over varying resonant frequency of filter 1 (3850 < ωn,F1 < 7150 rad/s). 

Filter damping ratios, ζF1=0.0028, ζF2=0.0038; Rline = 0.25Ω. 
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The behaviours of modes during coupling do not have consistent properties. Figure 

6.6 shows that the two modes exchange location after crossing the critical point, resulting 

in a discontinuity of modes as a function of resonant frequency. This is due to an ex-

change in participation factors associated with each eigenvalue. This shows the 

behaviour of modes when filter 2 has an increased filter damping (𝑅𝐿,𝐹2 = 0.6, 𝜁𝐹2 =

0.0038) compared to filter 1. In this instance, the filter modes are not exchanged during 

coupling and remain continuous. This inconsistent behaviour of eigenvalues corroborates 

the need for mode-tracking. The proposed technique based on participation factors ad-

dresses this adequately. The total amount of deviation away the 𝐴𝐷𝑆𝑆𝑀 template during 

interaction also differs compared to between the cases. 

 

6.4.2 Effect of source-side line resistance variability on mode 

coupling and small-signal stability 

This section investigates the changes in coupling phenomena as a function of 𝑅𝑙𝑖𝑛𝑒. 

As mentioned previously, 𝑅𝑙𝑖𝑛𝑒 can interact strongly with filter parameters when filter 

resonances are similar and can exhibit drastically different effects on stability depending 

on operating conditions [26], [51], [76]. 𝑅𝑙𝑖𝑛𝑒 appears as a feedback coupling term and 

is considered as a coupling parameter, and also noting that when 𝑅𝑙𝑖𝑛𝑒 = 0 the filters will 

be completely uncoupled as the eigenvalues of 𝐴𝐼𝑆𝑆𝑀 equal the eigenvalues of 𝐴𝐷𝑆𝑆𝑀. 

In stability analysis it is often pertinent to study the response of the mode with the 

most critical stability margin irrespective of the mode participating states. To simplify, 

equations (6.18)-(6.20) are used to transform system modes into a single worst-case 

damping ratio (ζmin). 

The damping ratio corresponding to mode 𝜆𝑖 is defined as (6.18): 

𝜁𝑖 = −cos ((arctan (𝜔𝑖/𝜎𝑖)) (6.18) 

where σI and ωI are the real and imaginary components of eigenvalue 𝜆𝑖 = 𝜎𝑖 ± 𝑗𝜔𝑖. 

The minimum damping is defined as (6.19): 

𝜁𝑚𝑖𝑛 ≜ 𝑚𝑖𝑛
𝑘
{− cos (arctan (

𝜔𝑖
𝜎𝑖
))} (6.19) 



CHAPTER 6 

161 

The sensitivity of the critical damping is used to determine the effect of perturba-

tions of parameter 𝑝 on the small-signal stability of the mode. 

𝜕𝜁𝑚𝑖𝑛
𝜕𝑝

= sin (arctan (
𝜔

𝜎
))(

𝜎
𝜕𝜔
𝜕𝑝
− 𝜔

𝜕𝜎
𝜕𝑝

√𝜎2 + 𝜔2
) (6.20) 

 

The same procedure of varying the resonant frequency of a single filter, as done in 

the previous section, is performed at different values of 𝑅𝑙𝑖𝑛𝑒. depicts the changes in sys-

tem damping over filter frequency. depicts the sensitivity of damping to 𝑅𝑙𝑖𝑛𝑒 over filter 

frequency. To aid discussion, two different cases for filter 1 are highlighted below: 

Case A: (𝜔𝑛,𝐹1 = 770 Hz, 𝜔𝑛,𝐹2 = 790Hz, 𝜁𝑛,𝐹1 = 𝜁𝑛,𝐹2 = 0.0028). 

Case B: (𝜔𝑛,𝐹1 = 707 Hz, 𝜔𝑛,𝐹2 = 790Hz, 𝜁𝑛,𝐹1 = 𝜁𝑛,𝐹2 = 0.0028). 

 

 

TABLE 6.3 summarizes the values of damping and sensitivity at the different values 

of 𝑅𝑙𝑖𝑛𝑒 for Cases A and B. 

 

TABLE 6.3 Summary of damping and sensitivity under different values of Rline. 

 Case A Case B 

Rline (Ω) 𝜁𝑚𝑖𝑛 𝜕𝜁𝑚𝑖𝑛 𝜕𝑅𝑙𝑖𝑛𝑒⁄  𝜁𝑚𝑖𝑛 𝜕𝜁𝑚𝑖𝑛 𝜕𝑅𝑙𝑖𝑛𝑒⁄  

0 0.0028 0.1005 0.0028 0.1005 

0.1 0.0120 0.0753 0.0127 0.0974 

0.25 0.0090 -0.0431 0.0223 0.0935 

0.5 0.0050 -0.0045 0.0446 0.0122 

 

Plots in Figure 6.10 and Figure 6.11 give the system damping ratio and sensitivity 

over a change in resonant frequency. From this, the following observations are made: 

Two conditions result in a minimum system damping (𝜁𝑚𝑖𝑛=0.0028). Firstly, when 

𝑅𝑙𝑖𝑛𝑒 = 0 signifying absence of any additional filter damping. Secondly when both filters 

are perfectly matched (𝜔𝑛,𝐹1 = 𝜔𝑛,𝐹2) under any values of 𝑅𝑙𝑖𝑛𝑒 indicating that damping 

via 𝑅𝑙𝑖𝑛𝑒 is negligible/ineffective. 

As filter resonant frequencies become well-separated, the damping ratios approach 

the values under 𝐴𝐼𝑆𝑆𝑀  uncoupled-system template. Different behaviours of 𝑅𝑙𝑖𝑛𝑒 can be 

observed depending of filter frequency separation. Considering Case A, it is seen that at 
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beyond some value of 𝑅𝑙𝑖𝑛𝑒, the system’s minimum damping degrades. 𝑅𝑙𝑖𝑛𝑒 values of 

0.25 and 0.1 result in a wider stability margin than 𝑅𝑙𝑖𝑛𝑒 of 0.5. Case B does not suffer 

from this as the damping ratio sensitivity to 𝑅𝑙𝑖𝑛𝑒 is always positive.  

Figure 6.11 shows that 𝑅𝑙𝑖𝑛𝑒 can be both stabilizing and destabilizing depending 

on values of 𝑅𝑙𝑖𝑛𝑒 and the filter frequency separation. The frequency range between fil-

ters at which stability degrades due to coupling effects increases with 𝑅𝑙𝑖𝑛𝑒. 

Complex nonlinear relationship as a function of both 𝑅𝑙𝑖𝑛𝑒 and filter frequencies. 

As 𝑅𝑙𝑖𝑛𝑒 increases the frequencies between filter range of which 𝑅𝑙𝑖𝑛𝑒 coupling effects 

dominate increases.  

 

 

FIGURE 6.10 System minimum damping ratio (ζmin) as a function of the resonant 

frequency of filter 1 (3850 < ωn,F1 < 7150 rad/s) at different values of line resistance 

Rline = {0,0.1,0.25,0.5}. 

 

 = 0.5Ω 

 = 0.25Ω 

 = 0.1Ω 

 = 0Ω 
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FIGURE 6.11 Sensitivity of minimum damping ratio (ζmin) to Rline perturbations as a 

function of the resonant frequency of filter 1 (3850 < ωn,F1 < 7150 rad/s) at different 

values of line resistance Rline = {0,0.1,0.25,0.5}. 

 

 

FIGURE 6.12 Input impedance of the system under different Rline values. 
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Figure 6.12 shows the behaviour of the input impedance at different 𝑅𝑙𝑖𝑛𝑒 values. 

At low values of 𝑅𝑙𝑖𝑛𝑒, the system is considered uncoupled and shows 2 distinct peaks in 

the input admittance magnitude plot. These peaks can be damped by increasing 𝑅𝑙𝑖𝑛𝑒 up 

until some crossover point where a new centre-peak begins to appear when the filters 

become sufficiently coupled due to the 𝑅𝑙𝑖𝑛𝑒 increase. Further increasing 𝑅𝑙𝑖𝑛𝑒 beyond 

this point increases the magnitude of this peak which has an overall destabilizing effect.  

 

6.5 Experimental Results 

To investigate the effect of uncertain line resistance on the stability, an experi-

mental LVDC DPS consisting of two active loads operating in parallel was developed, 

presented in Chapter 4. The critical value of the power delivered to the loads at the onset 

of instability serves as an indicator of the damping in the system: 

𝑃𝑚𝑎𝑥 ∝
1

𝜁𝑚𝑖𝑛
 (6.21) 

Each active load is realized using a synchronous buck converter with a tightly reg-

ulated output and an input LC filter. Under nominal operating conditions, each buck 

converter designed to step-down a 48V DC input to 24V DC output for a 10Ω load. 

Voltage mode control is achieved using a 3-pole 3-zero compensator implemented digi-

tally on a TMS320F28379D microcontroller with a control bandwidth of approximately 

5 kHz and a switching frequency of 100 kHz.  

An active load based on tightly regulated converters is well modelled using the 

active load using an ideal CPL presented in Chapter 3. The Bode plot in Figure 6.4 show 

the comparison between the input impedance of the ideal CPL-based active load model 

and the practical active load in model. Higher order dynamics in the converter model can 

be neglected as the controller bandwidth is sufficiently higher than that of the LC filter 

resonant frequency. Similarly, sensor noise and discretization effects can be neglected. 

Matching the DC gains shows that the active load present CPL behaviour of approxi-

mately 47 W to the source interface. 

Considered are two different experimental systems that differ in the values of the 

input filters of the active loads. Experimentally measured values are provided in Table 
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6.4. System 1 has nominally matched filters (40uF, 1000uH), however it is crucial to note 

that the parametric uncertainty in practical systems will result frequency mismatch be-

tween filters (∆𝜔𝑟). System 2 has increased input filter capacitance of one of active loads 

so that ∆𝜔𝑟= 40 rad/s.  

 

TABLE 6.4 Measured filter parameters in the experimental system. 

 System 1 System 2 

Parameter Active Load 1 Active Load 2 Active Load 1 Active Load 2 

𝐶Fi (μF) 39.543 37.7 51.2 37.7 

𝐿Fi (μH) 992.67 955.11 992.67 955.11 

𝑅L,Fi (mΩ) 574 583.24 574 583.24 

 

Figure 6.13 shows the total power (𝑃𝑇  =  𝑃1 + 𝑃2) that can be delivered to both 

active loads before instability occurs over different values of 𝑅𝑙𝑖𝑛𝑒, assuming each active 

load delivers the same power (𝑃1 = 𝑃2). These plots are generated by iteratively finding 

the critical destabilizing power at different values of 𝑅𝑙𝑖𝑛𝑒 using the small-signal model. 

 

 

Figure 6.13(a) shows System 1 (coupled system) results. Considering the operating 

point 𝑃𝑇  =  60𝑊 , there exists an upper and lower limit of 𝑅𝑙𝑖𝑛𝑒  for system stability 

(𝑅𝑙𝑖𝑛𝑒 = [0.17, 0.5]). Maximum power (𝑃𝑚𝑎𝑥) occurs when 𝜕𝜁min/𝜕𝑅𝑙𝑖𝑛𝑒 = 0 at 𝑅𝑙𝑖𝑛𝑒 

= 0.3. The reduction in stability margin occurs when 𝑅𝑙𝑖𝑛𝑒 increases beyond this point 

resulting in a negative 𝜕𝜁min/𝜕𝑅𝑙𝑖𝑛𝑒 indicating that coupling effects begin to dominate. 

 

                      (a)                                                             (b)        

FIGURE 6.13 Power stability boundaries at different values of Rline values:  

(a) System 1; (b) System 2. 
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Limiting 𝑅𝑙𝑖𝑛𝑒 to 0.3 ensures that positive perturbations in 𝑅𝑙𝑖𝑛𝑒 always exhibit a stabi-

lizing effect. 

System 2 results are shown in Figure 6.13(b). 𝑅𝑙𝑖𝑛𝑒 acts as stabilizing element due 

to equivalent series damping. The stability boundary generally follows the predicted 

power of the uncoupled template, however at high values of 𝑅𝑙𝑖𝑛𝑒 some discrepancy is 

observed. This indicates a reduced effectiveness 𝑅𝑙𝑖𝑛𝑒 and is attributable to some modal 

coupling. 

The objective is now to verify the effects of mode coupling on the stability bound-

aries identified. The experimental setup of the studied LVDC DPSs is presented in Figure 

6.14. 

During operation, each active load delivers equal power, controlled by adjusting 

reference voltage while keeping load resistance constant. A rheostat is located at the 

source-side and is used to mimic the effect of an uncertain line resistance.  

The procedure used to verify the effect of 𝑅𝑙𝑖𝑛𝑒 changes on stability of both sys-

tems is as follows. By varying power level, each system is initially set to operate near 

instability (within 5W) at a nominal value of 𝑅𝑙𝑖𝑛𝑒  (0.25𝛺). Subsequently, positive in-

crements of 𝑅𝑙𝑖𝑛𝑒 was done observe the effect on stability. Similarly, the same procedure 

was performed with decrements of 𝑅𝑙𝑖𝑛𝑒. 

 

 

FIGURE 6.14 Test-bench of the experimental two-parallel connected cascaded power 

system. 
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Experimental results using System 1 - closely matched input filters. 

As shown in Figure 6.15, below, an increase in line resistance 𝑅𝑙𝑖𝑛𝑒 from 0.25 to 

0.5Ω causes instability. Voltage and current oscillations begin to occur in both of filters 

and indicate a circulating current exists between the two filters. This behaviour was pre-

dicted, and this is the effect of 𝑅𝑙𝑖𝑛𝑒 contributing to coupling between filters. 

 Participation factor analysis confirms that the eigenvalue modes have contribution 

from the states of both filters, therefore an exchange of energy occurs between filters as 

indicated by Figure 6.16. 

This is in contrast to the instability occurring when decreasing 𝑅𝑙𝑖𝑛𝑒 from 0.25 to 

0.17Ω in Figure 6.17. Mode coupling does not occur as only one of the filters (filter 1) 

becomes unstable. Some ringing occurs in filter 2 (indicating some coupling) but quickly 

dissipates to a steady-state constant values as prior to the onset of instability, albeit with 

minor noise. Only source-load interaction instability of active load 1 occurs.  

With closely matched filters, experimental results show and confirm the theory that 

instability occurs due to an increase in mode coupling and from conventional source-load 

interaction (CPL problem) without mode coupling. Caution is therefore warranted in un-

certain LVDC DPSs as instability can occur with an increasing line resistance, dependent 

 

FIGURE 6.15 Filter waveforms of active loads in parallel connected to a resistive dis-

tribution line after increasing line resistance from 0.25Ω to 0.5Ω showing unstable 

oscillations. Operation under closely matched input filters (System 1). 
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on operating conditions and filter parameters. The coupling phenomenon can be respon-

sible for a significant degradation of system stability margin. 

 

FIGURE 6.16 Zoomed snapshot of oscillations in Figure 6.15 indicating a coupling 

between filters and exchange of energy (i.e., as voltage of F1 rises, the voltage in F1 

falls). 

 

 

 

FIGURE 6.17 Filter waveforms of active loads in parallel connected to a resistive dis-

tribution line after decreasing line resistance from 0.25Ω to 0.17Ω showing unstable 

oscillations. Operation under closely matched input filters (System 1). 
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Experimental results using System 2 - well-separated input filters. 

Figure 6.18 shows a decrease in in line resistance 𝑅𝑙𝑖𝑛𝑒 from 0.25 to 0.1Ω resulting 

in instability of a single filter.  The voltage and current waveforms of filter 1 begin to 

oscillate, while the voltage and current waveforms of filter 2 are unaffected.  

As predicted by the analysis of the theoretical model in Figure 6.13(b), an increas-

ing line resistance does not destabilise the system under the well-separated filter case. 

Observations showed no change in dynamics of the filter waveforms after increasing 

𝑅𝑙𝑖𝑛𝑒 from 0.25 to 0.55Ω. Therefore the line resistance can be used to stabilise the CPL 

instability phenomena of multiple parallel active loads, as shown by Wu et al. [51]. 

 

 

FIGURE 6.18 Filter waveforms of active loads in parallel connected to a resistive dis-

tribution line after decreasing line resistance from 0.25Ω to 0.1Ω. Unstable 

oscillations only occur in a single filter. Operation under well-separated input filters 

(System 2). 
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6.6 Summary 

This chapter has investigated the resonant coupling phenomenon between parallel 

loads observed from the interaction analysis from Chapter 5. Linear modal coupling the-

ory has been used to analyse this phenomenon. Divergence of eigenvalue loci between 

the complete system, the interconnected state-matrix model (ISSM), and the newly de-

veloped decoupled state-matrix model (DSSM) are used to quantify the effect of the 

coupling phenomenon, as well as predict the best and worst-case system damping. The 

apparent dichotomy in the effect of line resistance is finally resolved for the first time: 

line resistance can be apportioned to both subsystem damping and contribute to the cou-

pling between subsystems.  

The trajectory of eigenvalues under parametric perturbations is also shown to ex-

hibit a mode swapping behaviour, where continuous eigenvalues exchange modal 

properties instead of diverging. To address this phenomenon, a mode-tracking approach 

based on participation factor analysis has been developed to ensure the conformity of 

eigenvalues to given subsystems. 

Small-signal dynamics and sensitivity analysis of the system models are validated 

through experimental results, and several scenarios are presented demonstrating the im-

pact of the mode coupling on small-signal stability boundaries. Caution is needed when 

line resistance is subject to uncertainty in systems with multiple parallel active loads. 

Finally, the dichotomy in the effect of line resistance is resolved experimentally: line 

resistance can influence both subsystem damping and contribution to coupling between 

subsystems. 
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Conclusion 

7 Conclusion 

This chapter concludes the thesis with a summary of the research and discusses the 

original contributions and other key results. Recommendations on potential future re-

search that extend this work is provided.  

 

7.1 Thesis Summary 

Power electronic converters play a vital role in the transition towards low voltage 

(LV)DC distributed power systems (DPSs) with the proliferation of renewables and end-

use electrification. These systems are prone to oscillations from small disturbances due 

to interactions occurring between sources and loads—power electronic converters, with 

their tight regulation, introduce a negative impedance characteristic that may destabilize 

poorly damped oscillatory modes of the network. Recent evidence of the existence of 

modal interactions that may occur between loads gives rise to additional complexity in 

dynamic behaviour. As DPSs are subject to many inherent uncertainties and a wide range 

of operating conditions, different interaction phenomena may influence the small-signal 

dynamics in a nonlinear manner. Hence, with highly uncertain systems, extrapolating 

behaviour based on ideal and nominal models is shown to lead to a serious qualitative 

error.  

Modelling and small-signal analysis of LVDC DPSs with uncertainties arising 

from parameter variability. A new automated tool, SymMIAL, has been developed to 

help synthesise high-fidelity state-space system models based on a modular approach. 

Symbolic linearisation is performed to ensure models represent small-signal dynamics 
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over all possible operating points. Probabilistic VBSA is presented as a useful technique 

to quantify the influence of parameters and their interactions over the full-range of un-

certainties. 

With this probabilistic sensitivity analysis technique and the newly developed 

modelling tools, the impact of uncertain parameters on the small-signal dynamics of 

LVDC DPSs has been comprehensively investigated on an example DC power system 

featuring two parallel filter-converter subsystems fed from a common point through a 

resistive line. For the first time, an apparent dichotomy in the effect of source-side line 

resistance is revealed through small-signal sensitivity analysis over multiple parameter 

variations—line resistance is shown to contribute to both positive and negative damping 

to filter modes, depending on precise operating conditions.  

To resolve this contention, linear mode coupling theory was applied to the system 

state-space models. Contribution of line resistance to damping of modes is quantified and 

apportioned to the different interaction phenomena identified. Positive damping occurs 

through source-load interaction; and negative damping occurs through modal interaction. 

Our analytical results based on the theoretical models are validated against measured data 

from built experimental hardware LVDC DPSs and simulations. 

 

7.2 Research Outcomes 

The thesis has focused on the small-signal stability of power electronics dominated 

LVDC DPS and the analysis of interactions between system components. Compared to 

traditional power systems, DPSs are increasingly prone to small-signal instability risks 

with the introduction of fast control loop dynamics of power electronic interfaces inter-

acting with poorly damped oscillatory modes of the distribution network. These systems 

are known to be subjected to many inherent uncertainties and a wide range of operating 

conditions. Interactions occurring between components may influence the small-signal 

stability in a nonlinear manner, therefore extrapolating behaviour based on nominal mod-

els in no longer sufficient for highly uncertain systems. Two types of interaction 

phenomena have been discussed in detail within the thesis: source-load interactions and 

modal interactions. Procedures to assess the impact of these interactions on stability have 
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been presented. In particular, modal coupling has been often neglected in literature, and 

this work furthers the understanding the nature of coupling in LVDC DPSs. 

 

7.2.1 Original contributions 

As part of this thesis the following journal paper was published, ‘Influence of par-

ametric uncertainties and their interactions on small-signal stability: A case example of 

parallel-connected active loads in a DC microgrid’ [76] relating to the research further 

expanded upon in Chapter 5. This work was also presented at the 9th IET International 

Conference on Power Electronics, Machines and Drives (PEMD 2018). 

The following list summarises the key original contributions of this thesis: 

1. We have established a practical methodology for the analysis of parameter 

interactions and set of practical tools (SymMIAL) for fast and accurate 

probabilistic small-signal analysis of LVDC DPSs (Chapter 3 and Chapter 

5). VBSA can now be applied to LVDC DPSs, with minimal effort in model 

development by the user, to study the influence of parametric uncertainties 

on small-signal system dynamics.  

a. The SymMIAL MATLAB toolbox was developed to automate the 

generation of nonlinear symbolic system models based on the input-

output interconnection of different components. A library of com-

ponent models was programmed to accurately describe the internal 

dynamics of power electronics interfaces with detailed circuit rep-

resentation and feedback controllers. 

b. VBSA was selected based on a detailed review of the adjacent lit-

erature. Here we have implemented computation of sensitivity 

indices as part of SymMIAL toolbox to determine the most influen-

tial parameters and their interactions over specified uncertainty 

range. 

2. We have firstly identified an apparent dichotomy in the effect of source-

side resistance on small-signal stability in DC-based parallel-filter-con-

verter systems. Source resistance has drastically different effect on small-
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signal stability depending on operating condition: it can both increase sta-

bility margin or decrease stability margin.  

3. This apparent dichotomy in the effect of line resistance is finally resolved: 

line resistance can be apportioned to both subsystem damping and contrib-

ute to the coupling between subsystems based on linear modal coupling 

theory presented in Chapter 6. Analytical results based on theoretical mod-

els have been validated against measured data from experimental hardware 

LVDC DPSs and simulations. 

4. Based on this work, it was revealed that a mode-swapping phenomenon can 

occur when varying parameters of LVDC DPSs models due to modal cou-

pling. This presented a challenge for tracking the relevant mode under 

investigation over parameter perturbation. To address this, a procedure 

based on sorting calculated eigenvalues to modes defined by participation 

factors is developed. Blindly selecting the right-most eigenvalue when cal-

culating sensitivity indices as commonly done in literature is shown to be 

inappropriate when modal coupling is known to occur. 

 

7.3 Suggestions for Future Research 

The following list is intended to guide potential future research relating to the thesis 

themes of modelling, stability analysis, and parameter interactions under uncertainty in 

LVDC distributed power systems: 

 

➢ Chapter 5 applied VBSA to power system models. Nevertheless, alternative global 

sensitivity analysis methods may provide certain advantages that have been not been 

fully considered in this thesis. 

VBSA may be inapplicable if the variances are shown not to be the most appropriate 

measure of the variability of the distribution of the input parameter. Other tech-

niques, notability distribution-based sensitivity indices (e.g. [117]) provide 

sensitivity measures on the probability distribution themselves—i.e. quantifying the 

effect of the input’s distribution on output’s distribution. Likewise, computational 

considerations are of major concern when the number of uncertainties considered is 
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large. In the recent works related to bulk AC power systems, [118] introduce game 

theoretic approaches to the identification of influential parameters, and [119] apply 

a fast Gaussian process regression to learn and analyse the critical eigenvalue be-

haviours over uncertainties. 

It is proposed that a comprehensive review and comparative evaluation of global 

sensitivity methods, as applied to highly uncertain LVDC DPSs models, is required 

to provide further justification for use of a specific technique (based on the review 

of literature we had concluded VBSA is highly suitable, however alternative 

method(s) may, in fact, be more appropriate for DC DPSs). Further emphasis could 

be made on specific metrics/criteria by which all these methods can be compared. 

 

➢ In this work, VBSA was applied directly on the real-part of calculated model eigen-

values (𝑋 ↦ 𝑅𝑒(𝜆)). In VBSA, since it is a general method for studying any input-

output relationship over uncertainty, the choice of output variable to be investigated 

is up to the user's discretion. Calculation of sensitivity indices on alternative outputs 

such as eigenvectors, participation factors, state variables, or derivative sensitivities 

is worth consideration for investigating the effects of interactions. Repeated Monte-

Carlo simulation here would not be needed as the modal decomposition has already 

been done when computing the eigenvalues in our developed approach (see: Chapter 

5). 

The focus of this work was strictly on parametric uncertainties under assumption of 

continuous uniform distributions. Firstly, parameter uncertainties may be correlated 

with each other, and more correctly characterised by other probability distribution 

functions (e.g. Gaussian) [120]. Secondly, DPSs are known to have significant input 

variability due to stochastic nature of renewables and is often increasingly studied 

in literature [113]. Further stability assessment under these types of uncertainties is 

becoming a crucial issue with the proliferation of renewables and probabilistic na-

ture of (load) demands. 

 

➢ Active damping techniques are based on implementing additional controller dynam-

ics to mitigate instability phenomena without adding extra losses. Active damping 

methods are more selective in their action, they do not produce losses, but they are 
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also more sensitive to parameter uncertainties. The best placement of controller has 

so far not been established in literature, with different implementations on the 

source-side or the load-side when considering a simple cascaded system. Future 

work can focus on optimal placement in terms of observability/controllability, ef-

fectiveness of method under uncertainty, and the development of design-oriented 

procedures. Furthermore, given the unpredictable nature of parameter sensitivities 

during mode coupling, mitigation of mode coupling phenomena should be made a 

priority. 

 

➢ Behaviour of mode coupling should be investigated in detail in the frequency do-

main to further understand complex dynamic behaviour. Parallel active loads may 

be represented as a reshaping of impedances, as shown below in Figure 7.1 with 

transfer functions in (7.1): 

𝑣2(𝑠) = 𝑣1(𝑠)/(1 + (𝑌𝑖𝑛,1(𝑠)||𝑌𝑖𝑛,2(𝑠))𝑅𝑆(𝑠)) (7.1) 

 

 

FIGURE 7.1 Frequency domain feedback with two parallel loads, Yin,1(s) and Yin,2(s), 

reshaped by source-side resistance, RS(s). 

 

➢ The developed toolbox, SymMIAL, was developed for modelling only DC DPSs 

with common DC-DC converter topologies.  In practical DPSs, more complex to-

pologies will exist, such as double-ended push-pull, half-bridge (LLC-type) and full-

bridge converters (resonant-type) [33]. These typically have elaborate control 

schemes including current-mode regulation, variable frequency, synchronous recti-

fication, additional inner loop controllers [94], etc. When the LVDC DPS requires 

bidirectional power flows, dual active bridge converters (DAB) are often imple-

mented [121] and could be studied. Tian et al. [121] investigated source-load 
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interaction of cascaded DAB with VSI under bidirectional conditions—forward and 

reverse power flow—showing that the stability margin differs between the condi-

tions due to impedance interaction. Similarly, droop controllers are required for load 

current sharing in LVDC microgrid applications. These inherently modify imped-

ances of converters which are already known to influence interaction phenomena 

[122]. 

LVDC DPSs often interface to conventional AC bulk systems or AC DPSs. One 

particular challenge is modelling these systems back to a common DC reference 

frame (i.e., dq-frame), especially when multiple system frequencies exist. A large 

proportion of active load are also DC-AC inverters for motor drives—induction or 

PMSM motor loads. This thesis could be extended by including modelling the AC-

side for interaction and stability analysis. A number of existing works provide a 

foundation towards this effort [19], [94]. 

For future work, the SymMIAL toolbox could be extended towards a more com-

prehensive and scalable library of analytical models for source, load and network 

dynamics. This would enable identification of interaction effects for stability analy-

sis using VBSA of a larger variety of future DPSs. 
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Appendix A – Source Code Blocks for the SymMIAL Toolbox 

A.1 SOURCE CODE OVERVIEW 

This Appendix provides an overview of the MATLAB implementation of the Sym-

MIAL toolbox. Code snippets are included here to describe the automated model 

generation and merging procedures.  

 

Table A.1 provides details of the publicly available repository for the source code 

and examples for the developed SymMIAL MATLAB toolbox. 

 

TABLE A.1 SymMIAL code repository summary 

Title Symbolic Model Interconnection and  

Linearisation 

Code version SymMIAL v0.8 

License MIT 

Repository link  https://github.com/nestn-shf/SymMIAL 

Software code languages Verified under version MATLAB 9.7 R2019b 

Requirements & dependencies MATLAB, Symbolic Math Toolbox, Control System 

Toolbox, System Identification Toolbox 

Developer documentation https://github.com/nestn-shf/SymMIAL/wiki  

 

 

 

https://github.com/nestn-shf/SymMIAL
https://github.com/nestn-shf/SymMIAL/wiki
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A.2 DEFINING SYMBOLIC SUBSYSTEM MODELS 

 

 

subsystem_SynchronousBuck.m 

function newSynchronousBuck = subsystem_SynchronousBuck(index) 

  

%% Generate identifiers: 

% identifiers 

s.ident.base = 'SBUCK'; 

s.ident.index = index; 

s.ident.name = sprintf('%s_%d', s.ident.base, s.ident.index); 

  

% Helper fields 

s.numberof.states = 2; 

s.numberof.inputs = 3; 

s.numberof.outputs = 2; 

s.numberof.elements = 6; 

  

%% Generate symbolic identifiers for states inputs outputs elements 

  

% states: 

s.ident.state{1,1} = sprintf('VC_%s', s.ident.name); 

s.ident.state{1,2} = 'real'; 

s.ident.state{2,1} = sprintf('IL_%s', s.ident.name); 

s.ident.state{2,2} = 'real'; 

  

s.ident.diffstate{1,1} = sprintf('diffVC_%s', s.ident.name); 

s.ident.diffstate{1,2} = 'real'; 

s.ident.diffstate{2,1} = sprintf('diffIL_%s', s.ident.name); 

s.ident.diffstate{2,2} = 'real'; 

  

% inputs: 

s.ident.input{1,1} = sprintf('V1_%s', s.ident.name); 

s.ident.input{1,2} = 'real'; 

s.ident.input{2,1} = sprintf('I2_%s', s.ident.name); 

s.ident.input{2,2} = 'real'; 

s.ident.input{3,1} = sprintf('D_%s', s.ident.name); 

s.ident.input{3,2} = 'positive'; 

  

% output: 

s.ident.output{1,1} = sprintf('V2_%s', s.ident.name); 

s.ident.output{1,2} = 'real'; 

s.ident.output{2,1} = sprintf('I1_%s', s.ident.name); 

s.ident.output{2,2} = 'real'; 

  

% elements: 

s.ident.element{1,1} = sprintf('C_%s', s.ident.name); 

s.ident.element{2,1} = sprintf('L_%s', s.ident.name); 

s.ident.element{3,1} = sprintf('RL_%s', s.ident.name); 

s.ident.element{4,1} = sprintf('RC_%s', s.ident.name); 

s.ident.element{5,1} = sprintf('RDSONQ1_%s', s.ident.name); 

s.ident.element{6,1} = sprintf('RDSONQ2_%s', s.ident.name); 

  

for i = 1:(s.numberof.elements) 

    s.ident.element{i,2} = 'positive'; 

     

end 
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%% Generate symbolic workspace variables 

for i = 1:(s.numberof.states) 

    eval(sprintf('syms %s %s', s.ident.state{i,1}, s.ident.state{i,2}));     

    eval(sprintf('syms %s %s', s.ident.diffstate{i,1}, s.ident.diffstate{i,2})); 

end 

  

for i = 1:(s.numberof.inputs) 

    eval(sprintf('syms %s %s', s.ident.input{i,1}, s.ident.input{i,2})); 

end 

  

for i = 1:(s.numberof.outputs) 

    eval(sprintf('syms %s %s', s.ident.output{i,1}, s.ident.output{i,2})); 

end 

  

for i = 1:(s.numberof.elements) 

    eval(sprintf('syms %s %s', s.ident.element{i,1}, s.ident.element{i,2})); 

end 

  

%% Symbolic vectors 

s.vector.state{1,1} = eval(sprintf(s.ident.state{1,1})); 

s.vector.state{2,1} = eval(sprintf(s.ident.state{2,1})); 

  

s.vector.diffstate{1,1} = eval(sprintf(s.ident.diffstate{1,1})); 

s.vector.diffstate{2,1} = eval(sprintf(s.ident.diffstate{2,1})); 

  

s.vector.input{1,1} = eval(sprintf(s.ident.input{1,1})); 

s.vector.input{2,1} = eval(sprintf(s.ident.input{2,1})); 

s.vector.input{3,1} = eval(sprintf(s.ident.input{3,1})); 

  

s.vector.output{1,1} = eval(sprintf(s.ident.output{1,1})); 

s.vector.output{2,1} = eval(sprintf(s.ident.output{2,1})); 

  

for i = 1:(s.numberof.elements) 

    s.vector.elements{i,1} = eval(sprintf(s.ident.element{i,1})); 

end 

  

%% Governing Equations: 

    %% Differential Equation 1: 

str = sprintf('%s == (%s - %s)/(%s)', ... 

              s.ident.diffstate{1,1}, ... 

              s.ident.state{2,1}, ... 

              s.ident.input{2,1}, ... 

              s.ident.element{1,1}); 

           

s.equation.differential{1,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system differential equation 1:   %s\n', s.ident.name, char(s.equation.differential{1,1})); 

end 

  

    %% Differential Equation 2: 

str = sprintf('%s == (-%s - %s*(%s+%s+%s) + %s*%s + %s*%s + %s*%s*(%s-%s))/(%s)', ... 

              s.ident.diffstate{2,1}, ... 

              s.ident.state{1,1}, ... 

              s.ident.state{2,1}, ... 

                s.ident.element{6,1}, ... 

                s.ident.element{3,1}, ... 

                s.ident.element{4,1}, ... 

              s.ident.input{1,1}, ... 

                s.ident.input{3,1}, ... 

              s.ident.input{2,1}, ... 

                s.ident.element{4,1}, ... 

              s.ident.state{2,1}, ... 
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                s.ident.input{3,1}, ... 

                s.ident.element{6,1}, ... 

                s.ident.element{5,1}, ... 

              s.ident.element{2,1}); 

           

s.equation.differential{2,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system differential equation 2:   %s\n', s.ident.name, char(s.equation.differential{2,1})); 

end 

  

    %% Output Equation 1: 

str = sprintf('%s == (%s + %s*%s - %s*%s)', ... 

              s.ident.output{1,1}, ... 

              s.ident.state{1,1}, ... 

              s.ident.state{2,1}, ... 

                s.ident.element{4,1}, ... 

              s.ident.input{2,1}, ... 

                s.ident.element{4,1}); 

           

s.equation.output{1,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system output equation 1:   %s\n', s.ident.name, char(s.equation.output{1,1})); 

end 

  

    %% Output Equation 2: 

str = sprintf('%s == %s*%s', ... 

              s.ident.output{2,1}, ... 

              s.ident.state{2,1}, ... 

              s.ident.input{3,1}); 

           

s.equation.output{2,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system output equation 2:   %s\n', s.ident.name, char(s.equation.output{2,1})); 

end 

  

%% Return structure containing new subsystem 

newSynchronousBuck = s; 

 

subsystem_3StateController.m 

function new3StateControl = subsystem_3StateController(index) 

  

%% Generate identifiers: 

% identifiers 

s.ident.base = 'BUCKCTRL'; 

s.ident.index = index; 

s.ident.name = sprintf('%s_%d', s.ident.base, s.ident.index); 

  

% Helper fields 

s.numberof.states = 3; 

s.numberof.inputs = 2; 

s.numberof.outputs = 1; 

s.numberof.elements = 16; 

  

%% Generate symbolic identifiers for states inputs outputs elements 

  

% states: 

s.ident.state{1,1} = sprintf('X1_%s', s.ident.name); 

s.ident.state{1,2} = 'real'; 
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s.ident.state{2,1} = sprintf('X2_%s', s.ident.name); 

s.ident.state{2,2} = 'real'; 

s.ident.state{3,1} = sprintf('X3_%s', s.ident.name); 

s.ident.state{3,2} = 'real'; 

  

s.ident.diffstate{1,1} = sprintf('diffX1_%s', s.ident.name); 

s.ident.diffstate{1,2} = 'real'; 

s.ident.diffstate{2,1} = sprintf('diffX2_%s', s.ident.name); 

s.ident.diffstate{2,2} = 'real'; 

s.ident.diffstate{3,1} = sprintf('diffX3_%s', s.ident.name); 

s.ident.diffstate{3,2} = 'real'; 

  

% inputs: 

s.ident.input{1,1} = sprintf('Um_%s', s.ident.name); 

s.ident.input{1,2} = 'real'; 

s.ident.input{2,1} = sprintf('Uref_%s', s.ident.name); 

s.ident.input{2,2} = 'real'; 

  

% output: 

s.ident.output{1,1} = sprintf('Y_%s', s.ident.name); 

s.ident.output{1,2} = 'real'; 

  

% elements: 

s.ident.element{1,1} = sprintf('A11_%s', s.ident.name); 

s.ident.element{2,1} = sprintf('A12_%s', s.ident.name); 

s.ident.element{3,1} = sprintf('A13_%s', s.ident.name); 

s.ident.element{4,1} = sprintf('A21_%s', s.ident.name); 

s.ident.element{5,1} = sprintf('A22_%s', s.ident.name); 

s.ident.element{6,1} = sprintf('A23_%s', s.ident.name); 

s.ident.element{7,1} = sprintf('A31_%s', s.ident.name); 

s.ident.element{8,1} = sprintf('A32_%s', s.ident.name); 

s.ident.element{9,1} = sprintf('A33_%s', s.ident.name); 

  

s.ident.element{10,1} = sprintf('B11_%s', s.ident.name); 

s.ident.element{11,1} = sprintf('B21_%s', s.ident.name); 

s.ident.element{12,1} = sprintf('B31_%s', s.ident.name); 

  

s.ident.element{13,1} = sprintf('C11_%s', s.ident.name); 

s.ident.element{14,1} = sprintf('C12_%s', s.ident.name); 

s.ident.element{15,1} = sprintf('C13_%s', s.ident.name); 

  

s.ident.element{16,1} = sprintf('D11_%s', s.ident.name); 

  

for i = 1:(s.numberof.elements) 

    s.ident.element{i,2} = 'positive'; 

end 

  

%% Generate symbolic workspace variables 

for i = 1:(s.numberof.states) 

    eval(sprintf('syms %s %s', s.ident.state{i,1}, s.ident.state{i,2}));     

    eval(sprintf('syms %s %s', s.ident.diffstate{i,1}, s.ident.diffstate{i,2})); 

end 

  

for i = 1:(s.numberof.inputs) 

    eval(sprintf('syms %s %s', s.ident.input{i,1}, s.ident.input{i,2})); 

end 

  

for i = 1:(s.numberof.outputs) 

    eval(sprintf('syms %s %s', s.ident.output{i,1}, s.ident.output{i,2})); 

end 

  

for i = 1:(s.numberof.elements) 

    eval(sprintf('syms %s %s', s.ident.element{i,1}, s.ident.element{i,2})); 
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end 

  

%% Symbolic vectors 

s.vector.state{1,1} = eval(sprintf(s.ident.state{1,1})); 

s.vector.state{2,1} = eval(sprintf(s.ident.state{2,1})); 

s.vector.state{3,1} = eval(sprintf(s.ident.state{3,1})); 

  

s.vector.diffstate{1,1} = eval(sprintf(s.ident.diffstate{1,1})); 

s.vector.diffstate{2,1} = eval(sprintf(s.ident.diffstate{2,1})); 

s.vector.diffstate{3,1} = eval(sprintf(s.ident.diffstate{3,1})); 

  

s.vector.input{1,1} = eval(sprintf(s.ident.input{1,1})); 

s.vector.input{2,1} = eval(sprintf(s.ident.input{2,1})); 

  

s.vector.output{1,1} = eval(sprintf(s.ident.output{1,1})); 

  

for i = 1:(s.numberof.elements) 

    s.vector.elements{i,1} = eval(sprintf(s.ident.element{i,1})); 

end 

  

%% Governing Equations: 

    %% Differential Equation 1: 

str = sprintf('%s == %s*%s + %s*%s + %s*%s + %s*(-%s+%s)', ... 

              s.ident.diffstate{1,1}, ... 

              s.ident.element{1,1}, ... 

              s.ident.state{1,1}, ... 

              s.ident.element{2,1}, ... 

              s.ident.state{2,1}, ... 

              s.ident.element{3,1}, ... 

              s.ident.state{3,1}, ... 

              s.ident.element{10,1}, ... 

              s.ident.input{1,1}, ... 

              s.ident.input{2,1}); 

           

s.equation.differential{1,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system differential equation 1:   %s\n', s.ident.name, char(s.equation.differential{1,1})); 

end 

  

    %% Differential Equation 2: 

str = sprintf('%s == %s*%s + %s*%s + %s*%s + %s*(-%s+%s)', ... 

              s.ident.diffstate{2,1}, ... 

              s.ident.element{4,1}, ... 

              s.ident.state{1,1}, ... 

              s.ident.element{5,1}, ... 

              s.ident.state{2,1}, ... 

              s.ident.element{6,1}, ... 

              s.ident.state{3,1}, ... 

              s.ident.element{11,1}, ... 

              s.ident.input{1,1}, ... 

              s.ident.input{2,1}); 

           

s.equation.differential{2,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system differential equation 2:   %s\n', s.ident.name, char(s.equation.differential{2,1})); 

end 

  

    %% Differential Equation 3: 

str = sprintf('%s == %s*%s + %s*%s + %s*%s + %s*(-%s+%s)', ... 

              s.ident.diffstate{3,1}, ... 

              s.ident.element{7,1}, ... 
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              s.ident.state{1,1}, ... 

              s.ident.element{8,1}, ... 

              s.ident.state{2,1}, ... 

              s.ident.element{9,1}, ... 

              s.ident.state{3,1}, ... 

              s.ident.element{12,1}, ... 

              s.ident.input{1,1}, ... 

              s.ident.input{2,1}); 

           

s.equation.differential{3,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system differential equation 3:   %s\n', s.ident.name, char(s.equation.differential{3,1})); 

end 

  

    %% Output Equation 1: 

str = sprintf('%s == %s*%s + %s*%s + %s*%s + %s*(-%s+%s)', ... 

              s.ident.output{1,1}, ... 

              s.ident.element{13,1}, ... 

              s.ident.state{1,1}, ... 

              s.ident.element{14,1}, ... 

              s.ident.state{2,1}, ... 

              s.ident.element{15,1}, ... 

              s.ident.state{3,1}, ... 

              s.ident.element{16,1}, ... 

              s.ident.input{1,1}, ... 

              s.ident.input{2,1}); 

               

s.equation.output{1,1} = eval(str); 

  

if((exist('debug','var') == 1) && (debug == true)) 

    fprintf('%s system output equation 1:   %s\n', s.ident.name, char(s.equation.output{1,1})); 

end 

  

%% Return structure containing new subsystem 

new3StateControl = s; 
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A.3 SYSTEM MODEL DEFINITION FROM 

 INTERCONNECTED SUBSYSTEMS 

 

 

system_Line_2LC_CLBuck.m 

function [subsystems, netlist, input] = system_Line_2LC_CLBuck() 

  

%% Generate subsystems: 

RLINE = subsystem_Resistor(1); 

subsystems(1) = RLINE; 

  

LC1 = subsystem_LCFilter(1); 

subsystems(2) = LC1; 

BUCK1 = subsystem_SynchronousBuck(1); 

subsystems(3) = BUCK1; 

CTRL1 = subsystem_3StateController(1); 

subsystems(4) = CTRL1; 

R1 = subsystem_ResistorLoad(1); 

subsystems(5) = R1; 

  

LC2 = subsystem_LCFilter(2); 

subsystems(6) = LC2; 

BUCK2 = subsystem_SynchronousBuck(2); 

subsystems(7) = BUCK2; 

CTRL2 = subsystem_3StateController(2); 

subsystems(8) = CTRL2; 

R2 = subsystem_ResistorLoad(2); 

subsystems(9) = R2; 

  

%% Generate netlist 

  

netlist{1,1} = ( RLINE.vector.input{2,1} == ... 

                  (LC1.vector.output{2,1} + ... 

                   LC2.vector.output{2,1})); 

            

netlist{2,1} = (LC1.vector.input{1,1} == RLINE.vector.output{1,1}); 

netlist{3,1} = (LC2.vector.input{1,1} == RLINE.vector.output{1,1}); 

  

netlist{4,1} = (BUCK1.vector.input{1,1} == LC1.vector.output{1,1}); 

netlist{5,1} = (LC1.vector.input{2,1} == BUCK1.vector.output{2,1}); 

netlist{6,1} = (CTRL1.vector.input{1,1} == BUCK1.vector.output{1,1}); 

netlist{7,1} = (BUCK1.vector.input{3,1} == CTRL1.vector.output{1,1}); 

netlist{8,1} = (R1.vector.input{1,1} == BUCK1.vector.output{1,1}); 

netlist{9,1} = (BUCK1.vector.input{2,1} == R1.vector.output{1,1}); 

  

netlist{10,1} = (BUCK2.vector.input{1,1} == LC2.vector.output{1,1}); 

netlist{11,1} = (LC2.vector.input{2,1} == BUCK2.vector.output{2,1}); 

netlist{12,1} = (CTRL2.vector.input{1,1} == BUCK2.vector.output{1,1}); 

netlist{13,1} = (BUCK2.vector.input{3,1} == CTRL2.vector.output{1,1}); 

netlist{14,1} = (R2.vector.input{1,1} == BUCK2.vector.output{1,1}); 

netlist{15,1} = (BUCK2.vector.input{2,1} == R2.vector.output{1,1}); 

  

%% Specify the inputs 

  

input{1,1} = RLINE.vector.input{1,1}; 
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input{2,1} = CTRL1.vector.input{2,1}; 

input{3,1} = CTRL2.vector.input{2,1}; 

  

end 

 

 

generateSystems.m 

function system = generateSystems(strName) 

  

   %% Define subsystems and connections 

   eval(sprintf('[akk, bkk, ckk] = %s();', strName)); 

    

   subsystems = akk; 

   netlist = bkk;  

   input = ckk; 

  

   %% Combine subsystems with netlist rules 

   system = combineSymbolically(subsystems, netlist, input); 

   clear subsystems netlist input; 

  

   %% 

   system = createSystemSteadyStateAnonFunctions(system); 

   system = createOutputAnonFunctions(system); 

  

   %% Find Analytic expressions for steady-state 

   %{ 

   system = findSteadyStateAnalytically(system); 

   system = createSteadyStateAnalyticFunction(system); 

  

   system = findSteadyStateOutputsAnalytically(system); 

   system = createSteadyStateOutputAnalyticFunction(system); 

   %} 

  

   %% Linearize via first-order partial derivatives 

   system = addJacobian(system); 

   system = createJacobianMatrixFunctions(system); 

  

   %% Evaluate transfer functions 

   %{ 

   syms s; 

   system = addTransferFunctions(system); 

   clear s; 

   %} 

  

   %% 

   %syms s; 

   %lengthOfA = size(system.statespace.A,1); 

   %mI = eye(lengthOfA); 

  

   %ans = inv(s*mI-system.statespace.A); 

  

   %% Add partial derivatives in symbolic and function form 
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   for ii = 1:length(system.vector.elements) 

      pd_matA_sym = diff(system.statespace.A, system.vector.elements{ii}); 

      system.pd.pd_matA_sym{ii} = pd_matA_sym; 

      system.pd.pd_matA_function{ii} = matlabFunction(pd_matA_sym, 'Optimize',false, 'Vars',[system.vector.systemIn-

put{:,1},system.vector.elements{:,1},system.vector.state{:,1}]); 

   end 

  

end 

 

 

A.4 DEFINE SYSTEM PARAMETERS AND INPUT 

DATA 

 

 

data_Line_2LC_CLBuck_SAME.m 

function param = data_Line_2LC_CLBuck_SAME() 

  

var_frac = 0.2; 

  

          V1_R_1 = 380;  

 Uref_BUCKCTRL_1 = 100; 

 Uref_BUCKCTRL_2 = 100; 

  

       VC_LC_1 = 0; 

       IL_LC_1 = 0; 

    VC_SBUCK_1 = 0; 

    IL_SBUCK_1 = 0; 

 X1_BUCKCTRL_1 = 0; 

 X2_BUCKCTRL_1 = 0; 

 X3_BUCKCTRL_1 = 0; 

       VC_LC_2 = 0; 

       IL_LC_2 = 0; 

    VC_SBUCK_2 = 0; 

    IL_SBUCK_2 = 0; 

 X1_BUCKCTRL_2 = 0; 

 X2_BUCKCTRL_2 = 0; 

 X3_BUCKCTRL_2 = 0; 

  

       VC_LC_1_guess = 380; 

       IL_LC_1_guess = 2; 

    VC_SBUCK_1_guess = 100; 

    IL_SBUCK_1_guess = 50; 

 X1_BUCKCTRL_1_guess = 0; 

 X2_BUCKCTRL_1_guess = 0; 

 X3_BUCKCTRL_1_guess = 0; 

       VC_LC_2_guess = 380; 

       IL_LC_2_guess = 2; 

    VC_SBUCK_2_guess = 100; 

    IL_SBUCK_2_guess = 50; 

 X1_BUCKCTRL_2_guess = 0; 

 X2_BUCKCTRL_2_guess = 0; 

 X3_BUCKCTRL_2_guess = 0; 
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             R_1 = 0.1; 

              

          C_LC_1 = 880e-6; 

          L_LC_1 = 2.2e-3; 

         RL_LC_1 = 50e-3; 

         RC_LC_1 = 1e-9;   

       C_SBUCK_1 = 1200e-6; 

       L_SBUCK_1 = 100e-6; 

      RL_SBUCK_1 = 10e-3; 

      RC_SBUCK_1 = 1e-9;   

 RDSONQ1_SBUCK_1 = 5e-3; 

 RDSONQ2_SBUCK_1 = 5e-3; 

 A11_BUCKCTRL_1 = 0; 

 A12_BUCKCTRL_1 = -1.521e+04; 

 A13_BUCKCTRL_1 = -2.29e+04; 

 A21_BUCKCTRL_1 = 0; 

 A22_BUCKCTRL_1 = -8.749e+04; 

 A23_BUCKCTRL_1 = -1.273e+05; 

 A31_BUCKCTRL_1 = 0; 

 A32_BUCKCTRL_1 = 0; 

 A33_BUCKCTRL_1 = -9.172e+04; 

 B11_BUCKCTRL_1 = 13.08; 

 B21_BUCKCTRL_1 = 72.7; 

 B31_BUCKCTRL_1 = 109.5; 

 C11_BUCKCTRL_1 = -23.65; 

 C12_BUCKCTRL_1 = 131.5; 

 C13_BUCKCTRL_1 = 198; 

 D11_BUCKCTRL_1 = -0.113; 

      R_RLOAD_1 = 5; 

       

          C_LC_2 = 880e-6; 

          L_LC_2 = 2.2e-3; 

         RL_LC_2 = 50e-3; 

         RC_LC_2 = 1e-9;   

       C_SBUCK_2 = 1200e-6; 

       L_SBUCK_2 = 100e-6; 

      RL_SBUCK_2 = 10e-3; 

      RC_SBUCK_2 = 1e-9; 

 RDSONQ1_SBUCK_2 = 5e-3; 

 RDSONQ2_SBUCK_2 = 5e-3; 

 A11_BUCKCTRL_2 = 0; 

 A12_BUCKCTRL_2 = -1.521e+04; 

 A13_BUCKCTRL_2 = -2.29e+04; 

 A21_BUCKCTRL_2 = 0; 

 A22_BUCKCTRL_2 = -8.749e+04; 

 A23_BUCKCTRL_2 = -1.273e+05; 

 A31_BUCKCTRL_2 = 0; 

 A32_BUCKCTRL_2 = 0; 

 A33_BUCKCTRL_2 = -9.172e+04; 

 B11_BUCKCTRL_2 = 13.08; 

 B21_BUCKCTRL_2 = 72.7; 

 B31_BUCKCTRL_2 = 109.5; 

 C11_BUCKCTRL_2 = -23.65; 

 C12_BUCKCTRL_2 = 131.5; 

 C13_BUCKCTRL_2 = 198; 

 D11_BUCKCTRL_2 = -0.113; 

      R_RLOAD_2 = 5; 

 

 

index = 1; 

param.u(index).name = getName(V1_R_1); 
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param.u(index).val = V1_R_1; 

param.u(index).lowerbound = (1-var_frac)*param.u(index).val; 

param.u(index).upperbound = (1+var_frac)*param.u(index).val; 

param.u(index).pdf = makedist('Uniform', 'lower', param.u(index).lowerbound, 'upper', param.u(index).upperbound); 

 

………………………………………… 

 

index = 3; 

param.u(index).name = getName(Uref_BUCKCTRL_2); 

param.u(index).val = Uref_BUCKCTRL_2; 

param.u(index).lowerbound = (1-var_frac)*param.u(index).val; 

param.u(index).upperbound = (1+var_frac)*param.u(index).val; 

param.u(index).pdf = makedist('Uniform', 'lower', param.u(index).lowerbound, 'upper', param.u(index).upperbound); 

 

index = 1; 

param.el(index).name = getName(R_1); 

param.el(index).val = R_1; 

param.el(index).lowerbound = 1e-9;%(1-var_frac)*param.el(index).val; 

param.el(index).upperbound = (1+1)*param.el(index).val; 

param.el(index).pdf = makedist('Uniform', 'lower', param.el(index).lowerbound, 'upper', param.el(index).upperbound); 

 

………………………………………… 

 

index = 55; 

param.el(index).name = getName(R_RLOAD_2); 

param.el(index).val = R_RLOAD_2; 

param.el(index).lowerbound = (1-0.5)*param.el(index).val; 

param.el(index).upperbound = (1+0.5)*param.el(index).val; 

param.el(index).pdf = makedist('Uniform', 'lower', param.el(index).lowerbound, 'upper', param.el(index).upperbound); 

 

index = 1; 

param.x(index).name = getName(VC_LC_1); 

param.x(index).val = 0; 

param.x(index).guess = VC_LC_1_guess; 

 

………………………………………… 

 

index = 14; 

param.x(index).name = getName(X3_BUCKCTRL_2); 

param.x(index).val = 0; 

param.x(index).guess = X3_BUCKCTRL_2_guess; 

 

end 

 

 

A.5 COMBINING SYMBOLIC SUBSYSTEM MODELS 

 

MAIN.m (1) 

%% Generate/load system model -------------------------------------------- 

system_name = 'system_Line_2LC_CLBuck'; 

  

currentFolder = pwd; 

pathname = strcat(currentFolder,'\data'); 

dotmat = '.mat'; 

s = strcat(system_name,dotmat); 

systemfile = fullfile(pathname, s); 

if (~exist(systemfile)) 
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   eval(sprintf('%s = generateSystems(system_name);', system_name)); 

   save(systemfile,system_name); 

else 

   load(systemfile); 

end 

clear systemfile pathname currentFolder dotmat s system_name; 

  

%% Generate/load system parameters --------------------------------------- 

data_name = 'data_Line_2LC_CLBuck_SEP'; 

  

currentFolder = pwd; 

pathname = strcat(currentFolder,'\data'); 

dotmat = '.mat'; 

s = strcat(data_name ,dotmat); 

paramfile = fullfile(pathname, s); 

if (~exist(paramfile)) 

   eval(sprintf('%s = %s();', data_name , data_name )); 

   save(paramfile,data_name); 

else 

   load(paramfile); 

end 

clear paramfile pathname currentFolder dotmat s data_name; 

  

  

%% set to working data --------------------------------------------------- 

  

system = system_Line_2LC_CLBuck; 

param = data_Line_2LC_CLBuck_SEP; 

  

%[system.vector.systemInput{:,1}]' 

%[system.vector.state{:,1}]' 

%[system.vector.elements{:,1}]' 

  

[1:length(system.vector.systemInput); [system.vector.systemInput{:,1}]; vpa([param.u(:).val])]' 

[1:length(system.vector.state); [system.vector.state{:,1}]]' 

[1:length(system.vector.elements); [system.vector.elements{:,1}]; vpa([param.el(:).val])]' 

  

%% check nominal stability ----------------------------------------------- 

  

systemFunction = system.equation.anonDifferential; 

matrixAFunction = system.equation.analyticMatrixA; 

options = optimoptions('fsolve','Display','none'); 

reducedFunction = @(y) systemFunction(y, [param.u(:).val], [param.el(:).val]); 

  

[x_ss,~,exitflag,~] = fsolve(reducedFunction, [param.x.guess], options); 

if (exitflag < 1) 

   disp('!!!!! no solution !!!!!!!!'); 

end 

x_ss = x_ss'; 

outputFunction = system.equation.anonOutput; 

y_ss = outputFunction(x_ss, [param.u(:).val], [param.el(:).val]); 

  

C = num2cell([[param.u(:).val]'; [param.el(:).val]'; x_ss]); 

matA = matrixAFunction(C{:}); 

eigenvals = sort(eig(matA)); 

ii = find(real(eigenvals)>=0); 

eigenvals2 = sort(eigenvals); 

isUnstable = any(real(eigenvals2(:)) > 0); 
 

%----continued---- 
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A.6 VBSA 

 

MAIN.m (2) 

%% Specify Unknown Variables for SA -------------------------------------- 

  

elements_to_test = [1,2,3,4,28,29,30,31,55]; 

inputs_to_test = []; 

  

  

%% Setup for VBSA -------------------------------------------------------- 

paths.currentFolder = pwd; 

paths.sRscript = 'C:/Tools/R/R-3.6.2/bin/Rscript.exe'; 

  

N = 10000; 

  

[X1, X2, X] = generateSetForVBSA(elements_to_test, inputs_to_test, N, paths); 

  

num_scenarios = length(X) 

  

X_val_mc = mappingUnitToReal(X, elements_to_test, inputs_to_test, param); 

  

%% Run MC simulations ---------------------------------------------------- 

tic 

   monteScenario = runMonteCarloWithPD(system, param, X_val_mc, inputs_to_test, elements_to_test); 

toc 

  

%% SORT EIGENVALUE BY CRITERIA (BELOW) ----------------------------------- 

%% select most critical eigenvalue, right-most --------------------------- 

clear y_crit y_real y_imag; 

y_crit = zeros(num_scenarios,1); 

y_real = zeros(num_scenarios,1); 

y_imag = zeros(num_scenarios,1); 

  

for ii = 1:num_scenarios 

   eigenvalues = monteScenario.eigs(ii,:); 

   [~, ind] = max(real(eigenvalues)); 

   y_crit(ii,1) = eigenvalues(ind); 

   y_real(ii,1) = real(eigenvalues(ind)); 

   y_imag(ii,1) = imag(eigenvalues(ind)); 

end 

y_avg = mean(y_real)+1i*mean(y_imag); 

clear ii ind 

  

%% select by X/Y-axis region, rectangle ---------------------------------- 

newEigenset1 = selectWindowEigenvalues(monteScenario.eigs, -60, 40, 200, 500); 

newEigenset2 = selectWindowEigenvalues(monteScenario.eigs, -80, 40, 500, 1000); 

  

scatter(real(newEigenset2(:,1)),imag(newEigenset2(:,1))) 

  

%% select by participation ----------------------------------------------- 

  

modifiedMonteScenario = selectByParticipation(monteScenario,1,1); 

  

  

%% 

%{ 

figure(1) 

hold on; 

scatter(real(modifiedMonteScenario.eigs(:,14)), imag(modifiedMonteScenario.eigs(:,14)),'.r') 
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scatter(real(modifiedMonteScenario.eigs(:,12)), imag(modifiedMonteScenario.eigs(:,12)),'.b') 

%scatter(real(y_crit(:,1)),imag(y_crit(:,1))) 

%} 

  

%% Run VBSA -------------------------------------------------------------- 

  

Y = real(modifiedMonteScenario.eigs(:,14)); 

[S1, T1, V1] = runVBSA(X1, X2, Y, elements_to_test, paths); 

  

Y2 = real(modifiedMonteScenario.eigs(:,12)); 

[S2, T2, V2] = runVBSA(X1, X2, Y2, elements_to_test, paths); 

 

%----continued---- 

 

 

selectByParticipation.m 
function modifiedMonteScenario = selectByParticipation(monteScenario, whichStates, whichEigs) 

    

%% 

whichEigs = [11,12,13,14]; 

whichStates = [1,2,8,9]; 

  

modifiedMonteScenario = monteScenario; 

  

for ii = 1:length(monteScenario.scn_u) 

%%    

   currentOrder = 1:1:14; 

    

   currEigs = monteScenario.eigs(ii,:); 

   currP = monteScenario.P(ii).participation; 

    

   %if(p2 < p4) 

   if( (currP(1,whichEigs(2)) + currP(2,whichEigs(2))) < (currP(8,whichEigs(2)) + currP(9,whichEigs(2))) ) 

      temp1 = currentOrder(14); 

      temp2 = currentOrder(13); 

       

      currentOrder(14) = currentOrder(12); 

      currentOrder(13) = currentOrder(11); 

       

      currentOrder(12) = temp1;       

      currentOrder(11) = temp2; 

   else 

      % do nothing 

   end 

   

    

   for nn = 1:length(currentOrder) 

      newIndex = currentOrder(nn); 

      newEigs(nn) = currEigs(newIndex); 

      newParticipation(:,nn) = currP(:,newIndex); 

   end 

   modifiedMonteScenario.eigs(ii,:) = newEigs; 

   modifiedMonteScenario.P(ii).participation = newParticipation;   

%%    

end 

%% 

  

end 

 



APPENDIX A 

206 

generateSetForVBSA.m 

function [X1, X2, X] = generateSetForVBSA(elements_to_test, ... 

                         inputs_to_test, N, paths) 

  

variables = length(elements_to_test); 

  

set = sobolset(2*variables); 

totaldata_unit = net(set,N); 

  

X1 = totaldata_unit(:,1:variables); 

X2 = totaldata_unit(:,(variables+1):(2*variables)); 

  

currentFolder = paths.currentFolder; 

subfolder_data = 'r_data'; 

subfolder_function = 'r_functions'; 

sRscript = paths.sRscript; 

  

file = 'X.csv'; 

sx = sprintf('%s\\%s\\%s', currentFolder, subfolder_data, file); 

file = 'X1.csv'; 

sx1 = sprintf('%s\\%s\\%s', currentFolder, subfolder_data, file); 

csvwrite(sx1,X1); 

file = 'X2.csv'; 

sx2 = sprintf('%s\\%s\\%s', currentFolder, subfolder_data, file); 

csvwrite(sx2,X2); 

  

file = 'generateScenariosA.R'; 

data_location = sprintf('%s\\%s', currentFolder, subfolder_data); 

data_location = strrep(data_location,'\','/'); 

  

toeval = sprintf('!"%s" "%s\\%s\\%s" "%s"',sRscript, currentFolder, ... 

           subfolder_function, file, data_location); 

eval(toeval); 

  

fileID = fopen('X.csv','r'); 

formatSpec = '%f'; 

X = fscanf(fileID, formatSpec, [variables,inf])'; 

fclose('all'); 

  

delete(sx1); 

delete(sx2); 

delete(sx); 

  

end 
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mappingUnitToReal.m 

function X_actual = mappingUnitToReal(X, elements_to_test, ... 

                      inputs_to_test, param) 

  

% map values [0,1] to required range 

   variables = length(elements_to_test); 

   num_scenarios = length(X); 

    

   tt = 1e-6; 

   y_val = (0: tt: 1-tt); 

   X_actual = zeros(num_scenarios, variables); 

   for kk = 1:variables 

     whichEl = elements_to_test(kk); 

     currcdf = icdf(param.el(whichEl).pdf , y_val)'; 

     for ii = 1:num_scenarios 

        index = floor((X(ii,kk)/tt))+1; 

        X_actual(ii, kk) = currcdf(index); 

        if (X_actual(ii, kk) == 0) 

           X_actual(ii, kk) = 1e-9; 

        end 

     end 

   end 

  

end 

 

 

runVBSA.m 

 

function [S, T, V] = runVBSA(X1, X2, Y, elements_to_test, paths) 

  

variables = length(elements_to_test); 

  

currentFolder = paths.currentFolder; 

subfolder_data = 'r_data'; 

subfolder_function = 'r_functions'; 

sRscript = paths.sRscript; 

  

file = 'X1.csv'; 

sx1 = sprintf('%s\\%s\\%s', currentFolder, subfolder_data, file); 

csvwrite(sx1,X1); 

  

file = 'X2.csv'; 

sx2 = sprintf('%s\\%s\\%s', currentFolder, subfolder_data, file); 

csvwrite(sx2,X2); 

  

file = 'Y.csv'; 

sy = sprintf('%s\\%s\\%s', currentFolder, subfolder_data, file); 

csvwrite(sy,Y); 

  

file = 'sobolSaltA.R'; 

data_location = sprintf('%s\\%s', currentFolder, subfolder_data); 

data_location = strrep(data_location,'\','/'); 

  

toeval = sprintf('!"%s" "%s\\%s\\%s" "%s"', sRscript, currentFolder, ... 

                   subfolder_function, file, data_location); 

eval(toeval); 

  

fileID = fopen('S.csv','r'); 

formatSpec = '%f'; 
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S = fscanf(fileID, formatSpec, [variables,inf])'; 

fileID = fopen('T.csv','r'); 

formatSpec = '%f'; 

T = fscanf(fileID, formatSpec, [variables,inf])'; 

fileID = fopen('V.csv','r'); 

formatSpec = '%f'; 

V = fscanf(fileID, formatSpec, [variables,inf])'; 

fclose('all'); 

  

end 
 

 

 

sobolSaltA.R 

options(echo=TRUE) 

args <- commandArgs(trailingOnly = TRUE) 

print(args) 

name <- args[1] 

print(name) 

 

setwd(name) 

library(sensitivity) 

library(boot) 

 

X1 <- read.csv('X1.csv',header=FALSE) 

X2 <- read.csv('X2.csv',header=FALSE) 

 

X1 <- data.frame(X1) 

X2 <- data.frame(X2) 

 

x <- sobolSalt(model = NULL, X1, X2, scheme="A", nboot = 0) 

 

y <- read.csv('y.csv',header=FALSE) 

y <- as.numeric(unlist(data.frame(y))) 

tell(x,y) 

 

write.table(getElement(x, "V"), file = "V.csv", append = FALSE, quote = TRUE,  

 sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE,  

 col.names = FALSE, qmethod = c("escape", "double"), fileEncoding = "") 

  

write.table(getElement(x, "S"), file = "S.csv", append = FALSE, quote = TRUE,  

 sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE,  

 col.names = FALSE, qmethod = c("escape", "double"), fileEncoding = "") 

  

write.table(getElement(x, "T"), file = "T.csv", append = FALSE, quote = TRUE,  

 sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE,  

 col.names = FALSE, qmethod = c("escape", "double"), fileEncoding = "") 

  

print("VBSA SUCCESS!") 

 

generateScenariosA.R 

options(echo=TRUE) 

args <- commandArgs(trailingOnly = TRUE) 

print(args) 

name <- args[1] 

print(name) 

 

setwd(name) 

library(sensitivity) 

library(boot) 

 

X1 <- read.csv('X1.csv',header=FALSE) 

X2 <- read.csv('X2.csv',header=FALSE) 

 

X1 <- data.frame(X1) 
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X2 <- data.frame(X2) 

 

x <- sobolSalt(model = NULL, X1, X2, order = 1, nboot = 0) 

 

data <- getElement(x, "X") 

 

write.table(getElement(x, "X"), file = "X.csv", append = FALSE, quote = TRUE,  

 sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE,  

 col.names = FALSE, qmethod = c("escape", "double"), fileEncoding = "") 

 

print("GENERATED SAMPLES SUCCESS!") 
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Appendix B – Component 

Parameter Measurement 

and Estimation 

Appendix B – Component Parameter Measurement and Estimation 

B.1 INPUT LC FILTERS 

Frequency response analysis is used for the characterisation of the low-pass input 

filters. The filter models used in theoretical analysis must match the output impedance 

characteristics derived from experimental measurements. The filters used in test-bench 

setup are comprised of different discrete capacitors and inductors connected together. 

The frequency response of each component (𝑍𝑥(𝑗𝜔)) is first measured in order to obtain 

the combined output impedance of the filter (𝑍𝑜𝑢𝑡(𝑗𝜔)), as illustrated in Figure B.1. 

Practical components are subject to wide tolerances and changes over their lifetime, 

therefore individually measured components enable different connection configurations 

to ensure that the filter-under-test meets the required characteristics (i.e., to resonant fre-

quency and magnitude). Furthermore, frequency response measurements are used to 

confirm that the lumped parameter model with parasitic elements is sufficient to accu-

rately represent the filter’s response for the purposes of small-signal stability analysis. 

An LCR meter (Hioki IM3533-01) with automatic frequency sweep functionality 

was used to measure the frequency response of each component. 
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FIGURE B.1 (a) Output impedance Zout low-pass filter design using frequency re-

sponse data of individual elements ZL, ZC1, ZC2, (b) Representation of the combined 

frequency response for Zout (where source input V in replaced by a short circuit). 

 

 Zout = (ZL
−1 + Z𝐶1

−1 + Z𝐶2
−1)−1 (B.1) 

𝑍𝐿1 is the impedance of the external LC filter inductor. 

𝑍𝐶1 is the impedance of the external LC filter capacitor. 

𝑍𝐶2 is the impedance of the input capacitor of the buck converter. 

The TDHBG2500P100 converter prototype has between the input terminals a 10µF film 

capacitor (TDK B32794D2106K) for decoupling and, being in parallel, is considered as 

part of the input filter. 

 

 

FIGURE B.2 Frequency sweep measurement settings, LCR Meter Hioki IM3533-01 

 

ω

+
 

+
 

ω ω
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FIGURE B.3 Output impedance Zout of input filter 1 based on parameter  

measurements. 

 

 

FIGURE B.4 Output impedance Zout of input filter 2 based on parameter  

measurements. 



APPENDIX B 

214 

 

In order to get an experimentally based model, the MATLAB system identification 

was used to fit the experimentally measured frequency response data (FRD) to grey box 

model using the MATLAB command ‘greyest’. 

The second order model for the input filter in Figure B.5 was fitted to the FRD. 

The equations in (B.3) shows the parametric state-space model of the filter in Figure B.5 

used for parameter estimation. Equivalent transfer function model is presented in (B.2). 

This is measured from the output terminals of the filter with the voltage source replaced 

by a short circuit to ground. 

 

 

FIGURE B.5 Filter model used to fit experimental FRD (impedance data) for  

parameter estimation. 

 

 
Zout(s) =

(sCR𝐶 + 1)(sL + RL)

s2LC + sC(RC + RL) + 1
 (B.2) 

 

 
d

dt
[
𝐼𝐿
𝑉𝐶
] =

[
 
 
 −
𝑅𝐿
𝐿

0

0 −
1

𝐶𝑅𝐶]
 
 
 
[
𝐼𝐿
𝑉𝐶
] +

[
 
 
 
1

𝐿
1

𝐶𝑅𝐶]
 
 
 
𝑉𝑜𝑢𝑡 

𝐼𝑜𝑢𝑡 = [1 −
1

𝑅𝐶
] [
𝐼𝐿
𝑉𝐶
] + (

1

𝑅𝐶
)𝑉𝑜𝑢𝑡 

(B.3) 

 

A passband weighting prefilter on frequencies above 300Hz was applied during 

grey box model estimation to better match the impedance data at the resonant frequency. 

This was done in order to ensure the fitted filter model closely represents the behaviour 

of the real filter connected with a CPL, where the minor loop gain frequencies are closest 

to the boundary of instability.  

RL

L C

RC

I out ( s)

Vout ( s) Zout ( s) =
Vout ( s)

I out ( s)
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This fitted model has minor discrepancies near DC and low frequencies. This is 

likely due to the non-ideal (nonlinear) behaviour of the inductors and capacitors that is 

not accounted for in the lumped element model. The use of a more detailed filter model 

that includes parasitic elements was not required to the overall study. The 2nd order model 

matches the measured data around the resonant peak and is therefore able to predict 

small-signal instability with sufficient accuracy. 

TABLE B.1 Parameters for different filter designs 

Filter Nominal values Refined values Derived measures 

Induct-

ance 

(µH) 

Capacit-

ance (µF) 

Inductance 

(µH) 

Capacit-

ance (µF) 

DCR 

(mΩ) 

ESR 

(mΩ) 

Natural 

frequency, fn 

(Hz) 

Damp-

ing 

ratio, ζ 
F1 1000 40 879.46 39.72 656.8 106.0 851.5 0.0811 

F2 1000 40 853.66 39.92 614.4 154.3 862.1 0.0831 

F1-II 1000 42.5 879.58 42.18 657.0 94.0 826.3 0.0822 

F1-III 1000 45 879.69 44.61 657.2 84.0 803.4 0.0835 

F1-IV 1000 47.5 879.78 47.04 657.4 75.6 782.3 0.0847 

F1-V 1000 50 879.84 49.58 657.5 68.1 762.0 0.0861 

F1-VI 1000 55 880.00 54.48 657.8 56.4 726.9 0.0889 

F1-VII 1000 60 879.69 59.17 657.0 48.0 697.6 0.0914 

F1-VIII 1000 190 909.84 188.02 282.8 38.4 384.8 0.0730 

 

TABLE B.2 Filter designs (F1-II to F1-VIII) by auxiliary capacitor(s) selection 

Filter Auxiliary capacitance Auxiliary capacitor parallel combination 

F1-II +2.5 µF CAUX1 

F1-III +5 µF CAUX1, CAUX3 

F1-IV +7.5 µF CAUX1, CAUX2, CAUX3 

F1-V +10 µF CAUX5 

F1-VI +15 µF CAUX1, CAUX3, CAUX5 

F1-VII +20 µF CAUX6 

F1-VIII +150 µF CAUX8 + CAUX10 

 

TABLE B.3 Auxiliary capacitor values and part numbers 

Auxiliary 

Capacitor 

Value Description Manufacturer Manufacturer Part 

Number 

CAUX1 2.5 µF 2.5µF Film Capacitor 400V  

Polypropylene (PP), Metallized Radial 

KEMET  C4AF3BU4250A12K 

CAUX2 2.5 µF 2.5µF Film Capacitor 400V  

Polypropylene (PP), Metallized Radial 

KEMET  C4AF3BU4250A12K 

CAUX3 2.5 µF 2.5µF Film Capacitor 400V  

Polypropylene (PP), Metallized Radial 

KEMET  C4AF3BU4250A12K 

CAUX5 10 µF 10µF Film Capacitor  1100V (1.1kV) 

Polypropylene (PP), Metallized Radial - 

4 Leads 

WIMA DCP4P051007GD4KSC9 

CAUX6 20 µF 20µF Film Capacitor  1100V (1.1kV) 

Polypropylene (PP), Metallized Radial 

WIMA DCP4P052007ID2JSSD 

CAUX8 50 µF 50µF Film Capacitor  600V 

Polypropylene (PP), Metallized Radial - 

4 Leads 

WIMA DCP4I055007JD4KSSD 

CAUX10 100 µF 100µF Film Capacitor  500V 

Polypropylene (PP), Metallized Radial - 

4 Leads 

Vishay BC 

Components 

MKP1848C71050JY5 
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FIGURE B.6 Example process for parameter estimation by fitting to a greybox plant 

model using experimentally measured FRD 
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B.2 RESISTOR AS LVDC DISTRIBUTION LINE 

In a practical system, cables are used to connect generators to loads often over a 

long distance and in environments with varying temperature. Therefore, the characteris-

tics of the distribution lines are subject to uncertainty. A purely resistive model was used 

to emulate the characteristics of long cables in the lab. Resistance is dominant at the low 

frequencies relevant for small-signal stability therefore omitting reactance is justified. 

Equation (B.4), below, shows how line resistance 𝑅𝑙𝑖𝑛𝑒 can be calculated as a function 

of length and temperature. 

 
𝑅𝑙𝑖𝑛𝑒(Ω) =

𝜌0(1 + 𝛼(𝑇 − 𝑇0))𝐿

𝑆
  (B.4) 

Where,  

𝜌0 (Ω.𝑚𝑚
2/𝑚) is the resistivity of the material (𝜌0,𝐴𝑙 = 0.0294, 𝜌0,𝐶𝑢 = 0.0171), 

𝑆 (𝑚𝑚2) is the nominal cross-sectional area of the conductor in 𝑚𝑚2 

𝐿 (𝑚) is the cable length 

𝛼 (𝐾−1) is the temperature coefficient of resistance referenced to initial temperature 𝑇0 

(𝛼𝐴𝑙 = 0.00429, 𝛼𝐶𝑢  0.00386) 

𝑇 (℃) conductor temperature  

𝑇0 (℃) initial temperature reference (typically 20℃) 

 

 

FIGURE B.7 Variable resistor model used in test-bench experiments with  

parameter values given in Table B.4. 

 

The use of a large cross-sectional area for conductors can be used to minimise 

resistive losses (𝐼2𝑅) at the expense of weight and cost. However, a trade-off between 
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these factors often results in cross-section being compromised, therefore yielding a 

higher resistance per unit length. Assuming a copper cable of 2.5mm2 (14 AWG) with a 

cable length up to 100m in an operating environment between −40 °C to 50 °C results in 

a resistance (𝑅𝑙𝑖𝑛𝑒) value ranging from 0 to 700mΩ. 

To vary resistance during experiments, a high current rheostat was used to emulate 

a LVDC distribution line. A rotary wire wound rheostat (Ohmite RJSR50E, 0.5Ohm 

50W) was used with resistance measured at marked positions enabling precise changes 

during experimentation. 

 

TABLE B.4 Rheostat (Ohmite RJSR50E) resistance–position values, 

 experimentally measured. 

Notch 

Position 

Incremental 

Resistance, Rpos 

(mΩ) 

Terminal 

Resistance, Rrheo 

(mΩ) 

Notch 

Position 

Incremental 

Resistance, Rpos 

(mΩ) 

Terminal 

Resistance, Rrheo 

(mΩ) 

0 17.2 17.2 6 45.5 303.5 

1 43 60.2 7 64 367.5 

2 45.3 105.5 8 38.5 406 

3 44 149.5 9 54 460 

4 46.7 196.2 10 50 510 

5 61.8 258 11 40 550 

 


