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SUMMARY

The material transfer between an isolated stationary bubble and the 

surrounding liquid has been formulated mathematically and methods were 

developed to solve the relevant differential equations. Solutions were made 

dimensionless to generalize their application.

Exact solutions have long been available to describe growth of one- 

component spheres from zero size. These solutions were used to show that 

the corresponding finite difference solutions for growth from finite size 

are accurate. Exact solutions were also derived for diffusion controlled 

growth from zero size of one-component spheres with concentration dependent 

diffusivity and for growth of multi-component bubbles. This type of 

solution was also used to demonstrate the accuracy of the finite difference 

solutions of corresponding problems for growth from finite size. These 

finite difference methods were also used for dissolving bubbles where 

analytical solutions are not possible.

Several approximate solutions are discussed and quasi steady-state 

solutions were obtained for growth or dissolution with concentration 

dependent diffusivity and inclusion of surface tension. For small 

solubilities and concentrations, (low solubility parameters), the correct 

diffusion controlled solutions always converge to the corresponding quasi 

steady-state.

A large number of solutions was obtained to cover the significant 

ranges of values of the relevant parameters for gases in glass melts.

These solutions include the study of limiting regimes for very low and very 

large solubility parameters as well as the intermediate range.

Solutions for multicomponent stationary bubbles were used to discuss 

some experimental observations of bubbles in glass melts.



The effect of surface kinetics on growth or dissolution of spheres was 

investigated and solved to illustrate the transition between control by 

diffusion and control by surface kinetics.

An extensive study of the effect of surface tension was carried out.

The roles of viscosity and inertia were considered and are usually negligible.



List of Symbols

i) Main variables

a radius of the sphere. (a denotes the initial value.)o
C molar concentration of solute.

ca value of C at the interface.

Cpi equilibrium concentration of species i at pressure P.

CS molar concentration of the sphere. (Cs° denotes a uniform and 

utime invariant value.)

Cco value of C in the bulk liquid medium.

c* concentration of solute in equilibrium with the content of the 

sphere.

D diffusivity. (D denotes the diffusivity at the interface.).a

9i mole fraction of species i in a multicomponent bubble.

gi,eq equilibrium value of g^.

Ji molar flux of species i into the sphere.

K kinetic constant (Chapter VIII).

N.l number of moles of species i in the sphere.

P pressure. (P denotes the pressure in the bulk medium.)

Pg pressure inside a gas bubble.

r radial distance from the centre of the bubble.

t time

u velocity of the liquid.

V partial molar volume of sol ate.

yi volume fraction of species i in solution.

0 angle measured from the point of incidence of liquid flowing 

around a moving bub ole.

y viscosity of the fluid.
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V kinematic viscosity = y/p.

p fluid density.

O surface tension.

ii) Dimensionless variables
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D
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q =
R

s = 

S = 
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z
Z, or d

Zo

3g a /(DV) (Chapter I). o
dimenslcnless diffusivity = D/D .ci
equivalent dimensionless diffusivity.

average dimensionless diffusivity.

dimensionless radial distance = r/a .o
C*/(Cro - C*) (Chapter VIII). 

ratio of diffusivities = Dp/Dj.

dimensionless concentration = (C - Cm)/[C 0 (,1 - vCa) ] . 

except in Chapter VII where F = (C - Ca)/[C °(1 - vCa) ] .

solubility parameter = (C - C )/[C °(1 - vC )].J a °o L s a

C*/C ° (Chapter VIII). s
N j / (a 3 C °) .

1 o s
2 2

0 D / (a P ) - o “
K' a D-  ̂ (C °)n 1 (n denotes n-order surface kinetics) o s
Pg/Pra Chapter IX) .

c*/(Coo - C*) (chapter IX).

dimensionless radius = a/a .o
r/(2/Dt) = e//z

0/ (a P ) o 00

r/a
a ndimensionless time = tD/a (Z = t D /a in Chapter VII).o a o ^

dimensionless time required for compLete dissolution

(Z is a reference value). o



Z org
dimensionless time required to double tne size of a sphere

Z (Z is a reference value).Z. Z

a. = cp /c °i pi s
3 growth constant (R = 2 3 /z)

e = 1 - v C ° s
2ri dimensionless viscosity = pD/(a P )o 00

d) solubility parameter = (C - C )/[(l - v C )C °1.T ° ° a  a s
d>. = F - a. g. (Chapter VI) .i i l, eq

iii) Subscripts

i denotes species i

a denotes the value at the interface

00 denotes the value at infinite distance from the centre.
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CHAPTER I

1.1 Introduction

Refining refers to the elimination of bubbles from glass melts.

Glass melts are very viscous even at the highest temperatures used so that 

small bubbles rise to the surface only very slowly.

Glasses are usually melted from mixtures of raw materials which give off 

very large volumes of gas during their initial reactions as carbonates, 

sulphates and nitrates decompose in effect to oxides

Na2C03 + rSi02 —— Na20.a;Si02 + C02i •

Most of this gas escapes before the materials such as silica are completely 

dissolved but removing the residual bubbles (refining) can often take much 

longer than dissolving the materials. In some cases reaching a sufficiently 

good standard of refining determines the total melting time, or the maximum 

output from a continuous furnace.

Experience has shown that relatively small additions of certain compounds 

(refining agents) to the batch can considerably accelerate the disappearance 

of these bubbles. It is also clear that bubbles disappear faster than could 

be accounted for only by rise to the surface.

The most obvious ways in which removal of bubbles could be assisted 

would be either

1 ) diffusion of gas into them, making them grow and rise to the 

surface faster,

or 2) diffusion of gas out of them into the melt so that they

dissolve and rise to the surface becomes unnecessary.
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Other experiments have shown that the composition of gas found in these 

bubbles changes with time during melting, especially when refining agents 

are used.

Understanding of these phenomena is very limited so that commercial 

practice and experimental studies have until now been largely empirical.

Growth or dissolution of bubbles must be largely determined by the 

solubilities and diffusivities of gases in the glass melt as well as the 

actual dissolved concentrations.

Whatever other factors may be involved in refining, improved understanding 

of the nucleation, growth, and dissolution of multicomponent gas bubbles must 

help to understand this complex process.

The basic understanding of refining requires precise mathematical 

formulation of the chemical and physical mechanisms. Their interpretation 

requires experimental data which are scarce and not always reliable. 

Mathematical analysis may help to select the significant parameters and 

contribute to minimize the amount of experimental data required to improve 

the refining process.

During the earliest stages of melting the system undergoes complex 

reactions which make the identification of equilibria very difficult and 

lead to highly inhomogeneous media. Some electrochemical reactions involving 

metallic objects and corrosion of refractories are occasional sources of 

problems due to their effects on equilibria and their ability to provide 

sites for heterogeneous bubble nucleation. The atmosphere can also influence 

the refining behaviour.

Chemical agents are used to improve the refining of glasses. Adding 

sulphate may assist melting and refining but the process is more difficult to 

control than without sulphate. It is necessary to control the amount of
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sulphate added and the amount of reducing agents, as well as fining conditions 

and the atmosphere above the melt. Change of these conditions may cause 

foaming and reboil. Excess reduction may cause colouration of glass. Other 

disadvantages of using sulphates are the corrosion of refractories and 

atmospheric pollution.

Arsenic and antimony are also efficient refining agents but are poisonous 

and require careful handling.

Which additives are used and the optimum amounts are dependent on the 

batch constituents, glass composition and melting conditions. Improvement of 

refining relies mostly on experimental and empirical basis.

Arsenic and antimony are considered to be responsible for changes of 

bubble composition from mostly CO2 to O2, and sulphur compounds, especially 

sulphates, may cause a change from CO2 to S02 and 02. Nitrogen often seems 

to become a major constituent of bubbles late in refining but there is no 

apparent relation between nitrate additions and N2 in those bubbles.

Chemical equilibria involving the common refining agents, especially 

arsenic, antimony, and sulphur compounds change dramatically at temperatures 

somewhat lower than typical melting conditions. These thermodynamic 

characteristics may explain the ability of refining agents to promote growth 

or the dissolution of bubbles during slow cooling of glass melts.

So far even the apparently trivial analysis of the behaviour of spherical 

bubbles is poor. This will be the scope of the present work. It is impossible 

to present a clear fitting of the most significant experimental results because 

the data are scarce and not entirely reliable. Instead we concentrated our 

attention on the mathematical simulation of the main mechanisms covering both 

growth and dissolution and a wide variety of significant parameters.

Freely rising bubbles are in practice far more important than stationary

However, growth or dissolution of freely-rising bubbles are considerably
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more complex than the equivalent behaviour of stationary bubbles. A short 

account of some approximate mathematical analysis is here discussed as well 

as a criterion to analyse their applicability to experimental conditions.

1.2 Quantification of refining

Lyle (1945) measured the time required to produce bubble-free melts 

after adding some batch to glass which had been previously melted and refined. 

More commonly the changes of the number N of bubbles per unit volume of glass 

have been used to represent the refining behaviour (Bastick, 1955; Cable, 

1958a).

The refining of batch-free melts was found to follow nearly linear 

relations between log N and time t in laboratory scale (bastick, 1955; Cable, 

1958a) and in commercial scale pots (Dubrul, 1955; Cable and co-authors,

1968). The same dependence has been found with a variety of different 

refining agents, namely, arsenic (Bastick, 1955; Cable, 1958b, 1960b), 

antimony (Cable and Naqvi, 1975), sulphate (Bhuiyan and Cable, 1965) and 

halides (Higham and Cable, 1973). All these systems suggest the reduction in 

the apparent initial value N 0 (obtained by extrapolation of N to zero time), 

and the change of the slope of the relation log N versus t. A linear 

relation between log N and log t may describe better some experimental results 

(Cable and co-authors, 1968, 1975). Even more common is the decrease in the 

absolute numerical value of the slope of the relation log N versus t at low N.

Nemec (1977a) proposed the decomposition of the time required to produce 

bubble-free glass samples into two terms: the time required to produce batch- 

free melts and the time required to remove the residual bubbles by a 

combination of growth and rise to the surface.

The size distribution of bubbles during refining has been investigated 

by a few authors (Cable, 1958a). Linear relations between log N and t apply
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to narrow ranges of bubble sizes. Size distributions vary with time and 

refining agents (Cable and Naqvi, 1975) and with the composition of the glass 

(Haroon, 1967).

Linear relations between the percentage of oxygen in bubbles and log t 

were found by Cable and co-authors (1968, 1969).

Scatter of experimental measurements is often severe so that large 

numbers of experiments are required to increase the degree of certainty.

1.3 Refining agents

1.3.1 Arsenic and antimony

Arsenic and antimony are usually efficient refining agents for lead 

glasses and soda-lime-silica glasses. In the beginning of the XXth century 

it was still believed that these effects were due to volatilization of arsenic 

or antimony. Experimental evidence has shown that volatilization rarely is 

severe (Allen and Zies, 1918).

Gehlhoff et al. (1930) reported results which suggested that as little as 

0.02% As203 promoted the best refining behaviour of soda-lime-silica glasses. 

Later information showed that about 0.25-0.5% AS2O 3 are frequently the best 

additions (Cable, 1960b, Cable et al., 1969). These authors confirmed that 

too large additions can be harmful and that refining with arsenic can be 

assisted by sodium nitrate and some oxidizing agents (sodium peroxide).

Nitrate alone can be deleterious (Potts, 1941) and has no significant effect 

on bubble composition during refining. Arsenic can also interact with 

sulphate (Zschimmer et al., 1926; Bhuiyan and Cable, 1965).

Melts with arsenic may require shorter times to become batch-free, than 

melts without refining additions (Cable, 1961b). Changes of bubble composition 

from C02 to O2 ate also assisted by arsenic (Cable et al., 1969). Arsenic
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may even cause an increase of average bubble size and changes of size 

distributions of bubbles.

The effects of antimony are frequently qualitatively similar to those 

of arsenic. Zschimmer and Ernuyi (1932) noticed a progressive improvement 

of refining by increasing the antimony additions, with an optimum at about 

0.5% Sb203. Cable and Naqvi (1975) confirmed optimum additions around 0.6% 

Sb20 3. These authors also found that antimony can shorten the batch-free 

time, and decrease the concentration of bubbles at that stage, and alkali 

nitrates improve the effects of antimony.

However, it is clear that arsenic and antimony may have different 

effects (Bastick, 1955; Reth and Van Velzen, 1973). Antimony is usually 

more efficient at relatively low melting temperatures and arsenic may perform 

better at relatively higher temperatures (above about 1400°C). Oxygen rich 

bubbles can also appear earlier in glasses containing antimony than in glasses 

with arsenic (Appen and Polyakova, 1938).

The thermodynamics of arsenic and antimony in glasses (Baak, 1959; Baak 

and Hornyak 1966; Kuhl et al., 1938; Cameron, 1965) must influence the 

refining behaviour. The equilibrium is commonly written

5j0 + M3 + -- M5+ + 02- (1-D
(m) (m) (m)

where (m) denotes the glass melt and M the polyvalent element (As or Sb).

The ratio Sb3+/Sb5+ in glasses is usually greater than As3+/As5+ . If the 

temperature is sufficiently high the equilibrium is shifted towards the left 

(large As3+ or Sb3+ fractions). This change occurs at relatively higher 

temperatures (above 15O0°C) in the case of arsenic than in the case of 

antimony (Kuhl et al., 1938). It is also known that As3+/Ass'+ increases in
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reducing conditions (Baak, 1959) and decreases by adding nitrate to the batch, 

(Cable et al., 1969) and with increasing basicity of the melt (Paul and 

Lahira, 1963). From equation (1.1) one should expect the ratio As 3+/As 5+ to 

increase with increasing basicity, which demonstrates that equation (1 .1 ) is 

wrong about the effect of glass composition.

1.3.2 Sulphate

The improvement of refining by adding sulphate to the glass batch is well 

known and is widely used in industry. Gehlhoff and co-authors (1930) observed 

that the best effect was achieved by adding 0.5% Na20 as sulphate to soda-lime- 

silica batches melted at 1400°C. Either too small or excessive additions 

could impair the refining process and with 1.5% sulphate refining was improved 

by adding carbon to assist decomposition of the sulphate.

Lyle (1956) found two ranges of soda-lime-silica compositions with good 

and bad sulphase refining respectively. At 1450°C 0.3% sulphate improved 

refining in the range of compositions

%Si02 > 2.2(%Na20) + 44.3 (1.2)

Bhuiyan and Cable (1965) confirmed these findings. They also found that 

sodium peroxide assisted the process in the range of good refining and arsenic 

improved the bad refining caused by sulphate alone.

Other alkali and earth-alkali sulphates and ammonium sulphate can assist 

refining (Parkin and co-authors, 1931). Sulphates with relatively low melting 

points are usually more efficient than sulphates with high melting points 

(Guy, 1961; Gottardi et al., 1973). Some waste materials (slags) with large 

sulphate and sulphide contents have also been successfully used to improve

the refining behaviour.
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Manring and Hopkins (1958) suggested the use of oxidation-reduction 

numbers to estimate the best sulphur additions to glass batches. The role or 

sulphate during melting and refining was explained in terms of acting as <_ 

surfactant agent below about 1260°C and by sulphate decomposition and 

interfacial turbulence (surface tension driven flows) at higher temperatures 

(Conroy et al., 1966).

1.3.3 Halides

Halides are used as refining agents in borosilicates, and there is some 

evidence that they can assist common soda-lime-silica glasses (Gehlhoff et 

al., 1930; Hirayama and Camp, 1969; Higham and Cable, 1973; Van Erk et 

al., 1977).

Volatilization of halides tends to approach equilibrium concentrations 

in glass melts (Callow, 1949, 1952; Higham and Cable 1973), and it is not 

clear what role volatilization plays during refining. Halides can also effect 

a decrease of viscosity and surface tension which might assist refining 

(Gotz, 1974).

1.3.4 Other chemical agents

It was emphasized that nitrate assists the effects of arsenic and 

antimony on refining but nitrate alone does not play any significant role. 

Sodium peroxide has similar effects.

Ce02 can have some effect on the refining of lead glasses. Apak and 

Cable (1977) investigated the effects of Ce02, Cr203, Mn02 and Fe203 on the 

refining of soda-lime-silica glasses, but general conclusions cannot be

drawn.
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1.4 Other factors which incluence refining

Most work on refining has been done in isothermal conditions but these 

processes generally come faster as the temperature is raised (Bastick, 1955; 

Cable, 1960b). The improvement of refining with increasing temperature is 

usually greater than the corresponding decrease of viscosity (Lyle, 1945). 

However, a rapid fall of temperature, soon after the melt becomes batch-free, 

can be more efficient than refining at constant temperature (Zschimmer et 

al., 1926; Conroy et al., 1963). These results refer to sulphate refined 

glasses and there is no precise information about other refining agents.

Too fine or too coarse sands in soda-lime-silica batches can have 

deleterious effects on refining (Cable, 1958a, 1958b). Glass composition as 

well as batch composition can also affect the refining behaviour. The effect 

of cullet was studied by Gehlhoff et al. (1930).

Sulphate refining is affected by oxidizing or reducing atmospheres 

(Shaw and Jones, 1966; Conroy et al., 1963).

Most of the refining studies can only be carried out in laboratory scale. 

It is believed that large scale melts can behave qualitatively like small 

scale laboratory melts, but large melts require longer refining times 

(Cable et al., 1968). However, quantitative comparisons are very difficult 

to make.

1.5 Behaviour of individual bubbles

Direct observation of bubbles in glass melts is difficult and usually 

involves conditions not typical of real melting. Most of these experiments 

were designed to test diffusion mechanisms but their interpretation was 

frequently poor due to insufficient data about concentration, solubilities 

and diffusivities, as well as poor mathematical analysis or ill defined 

experimental conditions.
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The most extensive study of this kind was carried out by Greene and 

co-authors (1959a, 1959b, 1965, 1969, 1974). Glass samples contained in a 

small cylinder with a bubble in the centre were rotated during the 

experiment to keep the bubble relatively stationary. The temperatures used 

did not exceed 1300°C because of experimental difficulties.

Greene and Gaffney (1959 ) recorded the dissolution of oxygen bubbles 

in a commercial silicate glass. The radius of the bubble a was plotted 

against the square root of time /t but the relation was not strictly true.

The initial stage was slower than the intermediate stage and a final 

residual bubble remained undissolved for very long times.

Greene and Kitano (1959) compared the dissolution rates of oxygen bubbles 

in four different compositions. In three of these compositions the inter­

mediate stage of dissolution was reasonably given by linear relations between
h ha and t with slopes in the range -0.1 to -0.01 mm/min . In the fourth 

composition the dissolution was better fitted by a linear relation between a 

and t with slopes in the range -0.04,- 0.01 mm/hr. Dissolution rates were 

enhanced as the temperature was raised.

Arsenic and nitrate affect the behaviour of oxygen bubbles in soda-lime- 

silica melts (Greene and Lee, 1965). The dissolution was usually faster in 

glasses which had been melted from batch in an electric furnace than in 

glasses melted in a gas-fired furnace (table 1.1). This order was reversed 

in glasses melted from batch with additions of arsenic and nitrate. In 

glasses melted in an electric furnace with arsenic and nitrate the rate of 

dissolution reaches a maximum at about 1255°C and decreases at higher 

temperature.

In one experiment Greene and Lee stopped the dissolution by lowering the 

temperature from 1160 to 850°C. After a stage at 850°C the temperature was 

quickly raised to 1160°C and dissolution continued at about the same rate.



Table 1.1

Effects of melting conditions and refining additions on the 

rates of dissolution of oxygen bubbles in a soda-lime-silica 

melt (Greene and Lee, 1965).

furnace electric gas-fired

temperature
(°C)

additions - -^¿(mm/min15)

1065 None - 0.0029
1080 0.0047 -
1165 0.013 0.0094
1280 0.044 0.027

1080 arsenic 0.04 7 0.053
1165 - 0.089
1180 0.107 -
1265 - 0. 262
1280 0. 300 0. 273

1065 arsenic 0.044 -
1080 + - 0.052
1165 nitrate 0 . 1 2 1 0.141
1255 0.255 -
1265 - O. 318
1280 0.240 -
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It was also shown that dissolution rates are greatly enhanced by allowing 

the free rise of the bubble, which demonstrates that diffusion, not reaction 

controlled the dissolution. Finally it was suggested that the slopes of the 

relations _a versus /t can be nearly independent of the initial radius.

The dissolution of bubbles containing SO2 or SO2 + O2 mixtures in soda- 

lime-silica melts can be also enhanced by adding arsenic and nitrate to the 

glass batch (Greene and Platts, 1969). The dissolution rate of SO2 bubbles 

decreased slightly when sulphate was added to the glass batch.

Cable and Haroon (1970) blew CO2 bubbles in a soda-lime-silica 

composition at 1200°C and measured the changes of bubble radius and composition 

in samples cooled after 3 and 18 minutes treatments. Dissolution rates of CO2 

and changes of bubble composition from CO2 to O2 were assisted by adding 

0.1% arsenic to the glass batch. Similar procedure was used by Mulfinger 

(1972 ) in an alkali-barium silicate melt refined with arsenic and antimony.

O2 bubbles dissolved rapidly leaving residues of N2 and CO2 . The volume 

fraction of CO2 in these bubbles increased rapidly, peaked and dropped again 

while %N2 increased at first rapidly and then slowly. Counter-diffusion 

of N2 and CO2 was evident as oxygen was replaced. In N2 bubbles nitrogen 

remained the major component, while in CO2 bubbles the %N2 increased steadily 

as C02 dissolved.

The method of blowing gas was also used by Greene and Davies (1974) to 

form bubbles containing N2,02 or water vapour in molten boric oxide. These 

authors used the rotation of the sample to keep the bubbles effectively 

stationary. Below 800°C N2 bubbles dissolved but at higher temperatures these 

bubbles grew steadily. The volume of steam bubbles decreased rapidly by more 

than 50%, and then the residual bubbles dissolved slowly (below 800°C) or 

even grew again (above 800°C). These results suggest the counterdiffusion of 

other gases (because a decrease in solubility made the melt supersaturated
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above 800°C) while the highly soluble water vapour dissolves rapidly. The 

dissolution of oxygen bubbles in molten B203 was more complex than in 

silicate melts.

The rapid initial dissolution of water vapour bubbles in silicate glass 

was also demonstrated by Nemec (1969). Dissolution almost stopped when the 

bubble size decreased to about half the initial size.

The effects of melting schedule on subsequent behaviour of bubbles was 

demonstrated by Brown and Doremus (1976) . Dissolution rates were greater in 

molten B2O3 previously equilibrated in air at relatively higher temperatures 

(1000°C) than in melts which had been held at 550°C. These authors used a 

simplified form of the quasi-stationary approximate solution of diffusion 

controlled behaviour of one-component spheres while dealing with bubbles 

containing at least two gases (02 and N2). However, in spite of this doubtful 

mathematical analysis, these experiments showed that the dissolution times of 

bubbles containing initially 02, N2, or air were nearly proportional to the 

square initial radius.

The growth of freely-rising bubbles seems to follow linear relations 

between the radius of the bubble and time (Solinov and Pankova, 1965; Nemec, 

1974, 1977a, 1977b). Growth rates were greatly enhanced by adding arsenic 

and nitrate or sulphate to the batch. Nemec (1974) showed that the proportion 

of 0 2 in bubbles was enhanced as the additions of arsenic to the batch were 

increased up to 2%, and in glass melts with arsenic the bubbles started 

redissolving as the temperature was lowered from 1400°C to 1150°C (Nemec,

1974),

The changes of dissolution rates or changes from growth to dissolution 

which occur with decreasing temperatures demonstrate the misleading results 

that may be obtained by studying bubble behaviour at temperatures lower than 

normal melting conditions. Actual studies of dissolution cannot be
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extrapolated to higher temperatures because the solubility of some gases 

involved in may change considerably with temperature. Changes of diffusivity 

contribute only to changes in rate of dissolution or growth but cannot 

reverse the behaviour.

Bubble nucleation and its relation with efficient refining are not 

Precisely understood. Solinov and Pankova (1965) found that bubbles nucleate 

°n solid surfaces especially sand grains. For this reason nucleation rates 

mu°t decrease sharply when the melt becomes batch-free. Solinov and Pankova 

Qlo° su9gested that the size of bubbles leaving the nucleation sites and the 

WGtting angle decreased on adding refining agents.

^ ^  Composition of bubbles in glass

Slavyanski (1957) published a review of early experimental analysis of 

bubble composition, by microchemical methods. Carbon dioxide, oxygen, 

nitrogen and sulphur dioxide were the most important gases.

Decomposition of carbonates gives rise to large volumes of CO2. This 

lnitial step is rapid and later oxygen might replace CO2 in bubbles in glasses 

!th arsenic or antimony. This change occurs gradually and the average 

Percentages of oxygen in bubbles can be high in melts not yet free from 

bf-h particles (Cable et al., 1968). After long times and in the finished 

9 asses oxygen may have been replaced by nitrogen (Slavyanski, 1957). Too

cJe additions of arsenic or antimony may hinder the change C02-*02 in bubbles 

llass (Cable et al., 1969; Cable and Naqvi, 1975). Cable and Haroon 

970) ^ave shown that change CO2+O2 can also occur at relatively low 

Iting temperatures (1200°C) in dissolving bubbles, but Greene and Lee 

65) verified that aresenic usually enhances the dissolution rates of 

0>-ygen bubbles below 1300°C. Ce02, Fe20 3 and Mn02 can also assist the change
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from CO2 to O2 (Apak and Cable, 1977). Slavyanski (1957) reported some 

measurements of bubble composition which suggested a change CO2 N2 in 

glasses containing arsenic and melted below 1200°C. There is no apparent 

delation between nitrogen in bubbles and the addition of nitrate to the 

batch (Cable et al. , 1969).

S02 may be the common main component of bubbles in glass refined by

sulphate. The change CO2 SO2 occurs relatively early and the change 
s

2 - N2 is unlikely to occur in those glasses.

The water content in bubbles was usually not measured and indirect 

estimates suggest up to about 15% vol in the gas (Cable et al., 1969, 1975).

1 7 Gases dissolved in glass melts

Permeation techniques have been used to measure the permeability P of 

gases in glass

P = S.D

here s is the solubility and D the diffusivity of the gas. Obviously these 

measurements were usually performed below the softening points and cannot be 

SG|h to analyse the refining process (Scholze, 1968) . These results show 

bat the solubility increases with decreasing radius of the diffusing 

Particle but only a very small proportion of the possible structural holes 

bhe glass are occupied by dissolved gas.

bhlig (1937) derived the following relation

In K = - 4iTa2o/RT (1.3)

k  /-q ,(j aenotes die Ostwald coefficient, that is the ratio between the
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concentration of qas in the liquid and the concentration in the gas phase, 

a is the radius of the particle (atom or molecule), 0 the surface tension of 

the glass, R the Boltzmann constant, and T the absolute temperature.

Uhlig's equation has not been verified for gases in glass and it only 

suggests the qualitative dependence of the solubility on the temperature.

Relatively few measurements of solubilities and concentrations of 

gases in glass have been reported and data are not always reliable. 

Measurements at very high pressures may be easier to monitor but their 

extrapolation to 1 atmosphere is not justified because the Henry's law has 

a limited range of applicability (Faile and Roy, 1966; Weyl, 1931).

1.7.1 Solubility of inert gases

In spite of having little practical interest the solubility of inert 

gases has possibly been the most accurately measured. Mulfinger and Scholze 

(1962a) measured the solubility of helium in alkali-silicates and soda-lime- 

silica melts. Their results were in the range 0.05-0.16 cm STP/mol glass 

which are equivalent to Ostwald coefficient Ko of about 0.02. K0 increased 

slightly with increasing temperature. The solubility of those gases 

decreases with increasing radius of the dissolved atom (Mulfinger et al., 

1972) and with increasing alkali content (Mulfinger and Scholze, 1962a).

The solubility of inert gases in alkali silicates also increases in the order 

Li-Na-K, which corresponds to increasing size of the alkali ions. Thus the 

alkali ions might be responsible for the expansion of the structure of the 

glass creating new cavities.
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Mulfinger and Meyer (1963) found that nitrogen can dissolve both 

physically and chemically in glass melts. Reducing conditions enhance the 

chemical dissolution (Mulfinger, 1966a). Mulfinger and Franz (1965) found 

that nitrogen can be present in glasses as nitride and as =NH, and/or 

-NH2 groups, which suggests the following mechanisms of dissolution

la) —  Si - OH + NH3 t —  Si - NH2 + H20

I
lb) —  Si - NH2 + HO - Si —  Z —  Si - N - Si —  + H20

I I i
I I I I

lc) —  Si - N - Si —  + HO - Si —  Z —  Si - N - Si —  + H20
1 I | | I. IH 1 — Sx —

2) —  Si - 0 - Si —  + NH3 Z —  Si - NH2 + HO - Si —  .
I I

This interpretation agrees with the finding that by bubbling N2 through 

a soda-lime-silica melt the resulting equilibrium concentration will be low 

(about 4.2 x 10-1+ cm3 STP/cm3 glass at 1400°C) whilst after saturation with 

ammonia the equilibrium concentration can be as much as about 3.3 x lO4 times 

greater (Mulfinger, 1966a). That value for the saturation with N2 corresponds 

to a Ostwald coefficient of about 0.0024.

The solubility of nitrogen in oxidized alkali silicates and soda-lime- 

silica melts increases slightly with increasing temperature or decreasing 

basicity (Mulfinger and co-authors, 1972 ). Similarly the solubility of 

nitrogen in borate melts increased with decreasing alkali content (Ferrandis

1.7.2 Solubility of nitrogen
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et al., 1972) but decreased in the order Li-Na-K, while the solubility of 

nitrogen in borate melts was found in the range 0.18-0.27 g N2/1110I B2O 3, 

that is much higher than in the silicate with equivalent alkali content.

1.7.3 Solubility of carbon dioxide

Weyl (1931) and Eitel and Weyl (1932) investigated the equilibrium CO2 

content in silicate melts under very high CO2 pressures. These results did 

not follow a linear relation between equilibrium CO2 content in the glass and 

the CO2 pressure (Henry's law). The CO2 content of the glasses increased with 

increasing basicity and in the order Li-Na-K.

Pearce (1964, 1965) and Strnad (1971) confirmed the effect of basicity 

of the melt. Pearce's results suggested linear relations between the 

solubility of CO2 and the reciprocate of the absolute temperature. His 

interpretation in terms of ideal behaviour is questionable. Strnad analyzed 

the soda content of the samples to check volatilization losses and 

demonstrated that the equilibrium concentration of dissolved CO2 was 

proportional to the partial pressure of CO2 in the gas.

Kroger and Goldman (1962) melted soda-lime-silica glasses (using the 14C 

isotope to measure the concentration of dissolved C02). They found results 

in the range 4 x 10-5 to 8 x 10~ 5 wt.% CO2 , which correspond to K0 in the 

range 0.0025-0.006. Kroger and Lummerzheim (1965) used the same technique 

and in a melt with composition about 74 Si02-15 Na20-ll CaO and found 

solubilities which are equivalent to Ostwald coefficients 1.38, 0.040, 0.0083 

and 0.0085 at 900, 1200, 1300 and 1500°C respectively.
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In spite of its importance the solubility of oxygen in glass melts has 

received little attention. It is frequently assumed that oxygen participates 

in reactions of the kind

1.7.4 Solubility of oxygen

Other redox pairs may also affect the solubility of oxygen (Douglas et al., 

1965) .

Thermodynamic data suggest that below 1200°C the pentavalent arsenic or 

antimony are dominant in glass melts, but at temperatures higher than about 

1290°C the equilibrium is shifted and Sb5+/Sb3+ < 1 (Baak and Hornyak, 1966). 

As5+/As3+ < 1 may occur, but usually above 1500°C (Baak, 1959; Kuhl et al., 

1938). The fractions of As3+ or Sb3+ are also nearly unity below 500°C 

(Kuhl et al., 1938). The exact values of these ratios must depend on glass 

composition as well as temperature.

Dalton (1933) found that the amount of oxygen extracted from a soda- 

lime-silica composition which had been refined with 0.5% As203 was about 

0.47 N cm3 02/g glass whereas about 0.56 N cm3 02/g glass could be released 

by complete conversion of pentavalent to trivalent arsenic. The last quantity 

represents Ostwald coefficients of about 7 and 8 at 1200°C and 1400°C 

respectively.

Experiments on the dissolution of oxygen bubbles (Greene and co-authors, 

1959) cannot be properly analysed (Doremus, 1960) because none of the values 

of concentrations, solubility and diffusivity were known.

(1.4)

Sb3+ + j 02 t 
(m)

Sb5+ + o2" 
(m)

(1.5)
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Vacuum extraction (Tomlinson, 1956; Russell, 1957, 1958) and infra-red 

spectroscopy (Scholze, 1959, 1960) were used to determine the water content 

in glasses. Franz and Scholze (1963) found that the equilibrium water 

content increases with increasing basicity in silicates which suggests the 

following mechanism

1.7.5 Solubility of water

02~ + H00 t 20H~
melt melt

In the range of temperatures 1250-1500°C the Ostwald coefficients of water 

vapour in soda-lime-silica melts have values of about 20 (Scholze, 1962).

It is believed that water is incorporated as 0H~ groups, either free, or 

hydrogen bonded, with absorption bands at about 2.8 ym and 3.5 ym respectively. 

This interpretation was confirmed by linear relations between the equilibrium 

water content and the square root of the partial pressure of water vapour 

in the atmosphere (Scholze, 1962; Franz, 1965, 1966). Thus the Henry's 

law does not apply to glass melt-water vapour systems.

The solubility of water in alkali borate melts is usually higher than in 

silicates with equivalent alkali content. In highly acidic borate melts the 

solubility of water decreases with increasing alkali content (Franz, 1966) 

but the solubility is minimum at about 25 mol% K2O in the system K2O-B2O3 at 

9O0°C. These findings suggested the existence of two different mechanisms of 

water dissolution in highly acidic and highly basic melts respectively.

The solubility of water increases with increasing temperature in silicate 

melts (Scholze, 1962) but seems to decrease in borate melts (Franz, 1965).
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A comprehensive study of sulphur in the systems Ca0-Al20 3~Si0 2 and

Mg0-Si02 was reported by Fincham and Richardson (1954). These authors found

that the solubility of sulphur is strongly dependent on the partial pressure

of oxygen and has a minimum at about P_ = 10-5 atm. At high values of P
02 02

the solubility decreases with increasing temperatures; at very low pressures 

the solubility rises with increasing temperatures. In oxidizing conditions 

Fincham and Richardson proposed the following mechanism

1.7.6 Solubility of sulphur oxides

->■ O—
- S042

(m)

(1 .6 )

and in reducing conditions

7  S2 + 02~ t 7  02 + S2' (1.7)
(m)  ̂ (m)

In practice the activity coefficients of SO4 , S and 0 in glass 

are not known and the solubility of sulphate or sulphide cannot be estimated 

from the partial pressures of SO2 and O2 . Holmquist (1966) produced evidence 

that the solubility of SO 3 in sodium silicates depends on the product
i_p .P , in agreement with equation (1.7). He also showed that the S02 02

solubility of SO 3 increases with the reciprocal of the temperature and with 

increasing Na20 content.

Other authors encountered difficulties when trying to bring the melts 

to equilibrium with excess Na2S0i+ (Kordes et al. , 1951; Fisher, 1976) , or 

by bubbling S02-02 gas mixtures through the melts (Papadopoulos, 1973).
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Frischat and Oel (1967) found that the diffusivity of inert gases 

increases very rapidly with the radius of the gas; that is

1.7.7 Diffusivity of inert gases and nitrogen

D : D : DN2 Ne He 1:50:1000

Mulfinger and Scholze (1962b) measured the diffusivity of helium 

and found it to be in the range 10-4 - 4 x 10~2 cm2/sec at temperatures 

in the range 1200-1500°C. These results show that diffusion is an activated 

process where the diffusivity is given by

D = Dq exp(- E/RT) (1. 8)

E is the activation energy, R the constant of perfect gas, T the absolute 

temperature (K) and Do the pre-exponential factor. E usually increases 

with increasing basicity in alkali silicates.

Frischat and Oel (1965) reported measurements of He in soda-lime- 

silica melts which were consistent with

D = 0.0109 exp[- 14.37 Kcal mol-VRT] cm^ sec-"'- (1.9)

From the dissolution of neon bubbles in similar melts, Frischat and 

Oel (1967b) obtained a relation

D = 4.94 x 10- 4 exp[- 13.7 Kcal mol ^/RTj cm2 sec- 1 (1.10)

which suggests that the activation energies are similar in the case of He 

and Ne.

Measurements of diffusivity of physically dissolved nitrogen in
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16 Na2 0 -1 0 CaO-74 SiOj in the range 1000-1400°C (Meyer et al., 1977) were 

described by

DphyS = 0.43 exp [- 38 Kcal raol_1/RT] cm2 sec- " (1.11)

and in a similar composition Frischat et al., (1978) found

Dchem = 200 exp[- 58 Kcal mol-1 /RT] cm2 sec- 1 (1.12)

Their results indicate that diffusivities are equal (about 3.7 x 10-6 

cm2 s-1) at about 1365UC. Physically dissolved N2 would have the lower 

diffusivity at higher temperatures. Nitrogen has also a higher temperature 

coefficient than several other gases, including inert gases and water.

1.7.8 Diffusivity of water

Scholze and Mulfinger (1959) carried out a large number of measurements 

of diffusivity of water in alkali silicates and other melts. The activation 

energy was found to increase with increasing basicity but most values of E 

were close to 20 Kcal mol"1. At 13O0oC the diffusivity of water was always 

in the range 0.65 x 10-6 - 8.4 x 10~G cm2/sec.

Garbe (1961) estimated diffusivities of water in sodium silicates at 

900°C to be in the range 1 0 " 7 - 1 0 " 5 cm2/sec.

Near the transformation range of a soda-lime-silica composition (522— 

598°C) Cockram et al., (1969) used a tritium tracer technique and obtained

the following relation

D = 4.4 x 10 6 exp [- 17200/T] cm2//sec (1.13)

Extrapolation to higher temperatures is dubious.
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Nemec (1969) used dissolution experiments to estimate the diffusivity 

of water in soda-lime-silica melts in the range 930-1180°C, but the 

accuracy of his mathematical analysis is doubtful.

1-7.9 Diffusivity of oxygen

Measurements of self-diffusion of oxygen in glass melts (Terai and

Osihi, 1977) may not be useful to analyse the dissolution or growth of

hubbies containing oxygen, because it is not clear which species controls

the diffusion process. Alternatively Doremus (1960) analysed experimental

dissolution of oxygen bubbles to estimate both the diffusivity and a

solubility coefficient. For a soda-lime-silica composition at temperatures

ln tange 1100-1300°C the results were given by D = 42 exp(- 26.7 x 
om/s

10 /r)Ywhere T is the absolute temperature (Kelvin). However, the 

Mathematical Model used to analyse those experimental measurements may 

involve significant errors and equally good fitting can be obtained with 

different combinations of diffusivity and solubility parameter.

^•7•10 Diffusivity of carbon dioxide

Despite being one of the most important gases involved in the refining 

°f glass the diffusivity of carbon dioxide in glass melts has rarely been 

studied and the data may not be entirely reliable. Kroger and Goldmann 

(1962) estimated values in the range 10~6 - 10 -4 cm2 sec- 1 in silicates at 

HOO and 1300°C but their results were based on a very crude analysis.

1-7.11 Diffusivity of sulphur oxides

Ihere are no reliable data in what concerns the diffusivity of products 

disoolution of sulphur oxides in glass melts. Absorption or desorption 

usually rapid partly due to relatively high solubility of sulphur and
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possibly due to flow induced by surface tension gradients (Bruckner, 1961, 

1962). Mahisux (1956, 1957) showed that S0a absorbed from the atmosphere 

may concentrate in a meniscus. However, Greene and Platts (1969) reported 

dissolution data which suggest diffusion controlled processes.

1. 8 Mathematical analysis of the behaviour of freely rising bubbles

Some experimental studies may suggest that diffusion controlled 

phenomena control refining but so far its analysis has been hindered by 

very inadequate knowledge of the relevant physical parameters and by poor 

mathematical analysis, especially if two or more gases are involved.

Direct observation (Solinov and Pankova, 1965; Nemec, 1974) shows that 

bubbles in glass melts can usually be considered spherical and it is 

reasonable to assume that their motion is chiefly due to buoyancy. 

Spherical shape is also expected on theoretical grounds by taking into 

account the high surface tension of the melt and the small size of most 

bubbles (a < 2 mm) .

Free rise of bubbles in glass melts enhances concentration gradients 

around them by bringing fresh liquid close to the gas-liquid interface.

The mathematical analysis of this problem is complex and exact solutions 

have not been found. Nevertheless such a model is needed for bubbles 

present in glass melts during refining.

The actual system considered here is an infinite volume of Newtonian 

liquid surrounding a single spherical bubble. Further simplifications are 

also assumed:

the properties of the liquid are uniform and constant, 

there are no reactions in the liquid and transport is 

exclusively due to diffusion and convection,
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the system is axially symmetric about the vertical axis 

(direction of motion),

the bubble contains a single gas with constant concentration

CS'

the interfacial equilibrium is instantaneously achieved and 

the concentrations of gas in solution at the interface (Ca) 

and at infinite distance from the interface (O») are constant, 

the concentration of gas dissolved in the liquid has a 

negligible effect on its volume and the diffusivity D is 

constant,

the flow is controlled by viscosity (in glass melts the 

Reynolds number is usually much smaller than unity).

In these conditions Levich (1962) proposed solutions for small and 

medium size spherical bubbles, which should apply to Re «  1 and moderate 

Re respectively. Levich's solutions were based on quasi steady state 

approximations (the accumulation term was neglected) and it was assumed 

that the boundary layers were thin. For Re << 1

ji 1 + cos8 

/2 + cosG Ca> (1.15)

and for moderate Re

12 1 + cos6 

/2 + cos0
(C CaJ (1.16)

Where c is the concentration of gas dissolved in the liquid median,,

, • m-F the bubbleradial distance from the centre of the bubble, a the

it ■ -i flpnce of flow. The and the angle 0 is measured from the point of m e

liauid was given by thevelocity of motion of the bubble relative to e
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Rubczynski-Hadamard formula, which in the case of gas bubbles reduces 

to (Levich, 1962).

u = I 5£l (1.17)
3 V

where g is the gravitational acceleration and V the kinematic viscosity of 

the liquid medium.

The total diffusional flux is then

4ua',2 Cs £2. = 2Tra2 d/ sin6dt
13c'' dO (1.18)

and by combination of equations (1.15), (1.17) and (1.18)

.4
1 da 2 M  rĉ  "
ya dt /i8tt lv J l

(1.19)

from which it follows that

h (1 .2 0)

or in dimensionless terms

/R 1 + A
18tt 4>z ( 1 . 21)

where

R = a/ao

, (1 .^2)Z = tD/a0

<t> = (Coo -  ca)/cs
A = g ao3/(DV)

and a0 is the initial radius of the bubble.
the solutionSimilarly, from equations (1.16), (1-1 an

for moderate Re values is
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1 + (1.23)

Ruckenstein (1964) suggested a general solution

r
0.849 PU2L

l u ,
/Sh + 0.662 -  2 uo

u /Sh3 = Re Sc
-1

(1.24)

where Uq is the tangential component of the velocity at the interface for 

6 = tt/2 , and

Sh = 2a da 
<J)D dt

R« = 2 ua/v 

V/D

(1.25)

For moderate Reynolds numbers Levich (1962) proposed

Uo = 2 U (1.26)

so that equation (1.24) can be rearranged to

—  = O. 390 —  + j f— ' dZ R AR02 [dzj ¡1.27)

which, for sufficiently small cj), reduces to

Æ  = 1 + 0.2 30 (f>Æ z (1.28)

which is the same as equation (1.23).

For small Re Ruckenstein and Davis (1970) proposed
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da
dt

where the Peclet number is

(1.29)

Pe au
2D (1.30)

By combination of equations (1.29) with equation (1.17) this solution 

reduces to equation (1 .2 1).

Some experimental observations of bubbles in glass melts indicate that 

the radius is proportional to the time (Nemec, 1974). These observations 

included bubbles containing both oxygen and carbon dioxide so that a two- 

component model must be used to study these cases. However, the proportions 

°f carbon dioxide in some of those bubbles might have been small and a one- 

component model for the diffusion of oxygen might be sufficiently accurate. 

In case the evidence against equations (1.21) and (1.23) demonstrates

the difficulties in formulating sound approximations .

If the bubble is assumed to behave as a solid sphere the diffusion flux 

becomes (Levich, 1962)

and

3 3 = d 8c D(C Ca)
1.15

3u 
4Da2"

Va sint
s m 201 ̂

(1.31)

2ira2 / j ̂  sin0 d0 = 7.98 (Coo - Ca) fD2ul ^ (1.32)

if u is given by Stokes's law

2/v (1.33)
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(1-34)

Finally after integration and rearranging

kR = 1 + 0. 385 <p A Z (1.35)

which agrees qualitatively with Menec's findings (1974). Whether that 

linear relation between radius and time is valid for bubbles of variable 

composition or only for bubbles of nearly constant composition and 

containing large proportions of a major component (oxygen) is a question 

which requires further study.

1•9 Applicability of solutions for rising bubbles

From equation (1.15) the relative boundary layer thickness is

Similarly from equations (1.16) and (1.31) the equivalent boundary layer 

thicknesses are

Equations (1.36), (1.37) and (1.38) provide the means to assess

whether the assumption of a thin boundary layer is justified. If 0 = TT 

and A is finite 6 i, 62 and 6 a become infinite, so that one has to define a

(1.36)

62 = y  ÆT/Â ^2 + cos0 
1 + cos0 (1.37)

(1.38)

range 6 < 6max where 1 / 6 2 or 63 are less than a limit 6max. Thesemax
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conditions impose minimum limits on A (that is size of bubble) and, if a 

convenient set of physical variables is chosen, the reference radius a0 

must also exceed a minimum value amin. Typical conditions of glass 

melting can be represented by

diffusivity D = 10-6 cm2 sec- 1

viscosity JJl = 92 poise 

density of the melt P = 2.3 x 103 Kg nf3

g = 9.8 m sec-2

By convenient substitution equations (1.36), (1.37) and (1.38) lead 

to

a0 > amin = 0.04405 "max
L (1 + cos9max)2 J • 6max " {n™) (1.39)

f  2 + co s0  I V3
ao > amin = 0.03054 1 max

L (1 + cos9max)z J
%

max (mm) (1.40)

30 > amin = ° - 0720
sin(20max>■'max j  f^max s;‘-n0max^ (mm) •

(1.41)

Equation (1.41) has been derived for a = ao, that is R = 1.

These relations are represented in fig 1.1 where a ^ n  is plotted 

against 6max for several values of ¿max- The full lines denote equation

(1.39) , the dashed lines equation (1.41) and the dotted-dashed lines 

equation (1.40). If the boundary layer is kept less than 10% of the 

radius of the bubble (<5max - 0 .1 ), and 6max = tt/2 then conditions (1 .39),

(1.40) and (1.41) will not be fulfilled by bubbles with radius less than 

about 0.26, 0.18 and 1.1 mm respectively. The fluxes j1; j2 or j3 are
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Fig 1.1 : Minimum size of bubbles required to validate 
Levich's approximations. The full lines represent 
equation (1.39), the dashed lines equation (1.41), and 
the dashed-dotted lines equation (1.40). The figures 
show the values of the ratio 6max of the boundary 
layer thickness to the radius of the bubble.
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larger in the front of the bubble (0 < TT/2) and the accuracy of predictions 

9 > tt/2 will be less important in terms of the overall rate of growth or 

dissolution. However, those solutions for rising bubbles are not valid 

for a very important range of bubble sizes (a < 0 . 1  mm) which are common

in glass melts and can hardly be removed by rising to the surface of the
melt.

Ononato et al. (1981) described the material balances by the following 

set of equations

3c
3t + Vv 3c V0 3C r 1 3 2 3c) + 1 3 . 3c1sint) ttq l 30j3r H r 30 D _ r2 3r 9rJ r2 sin0 90

C(r,0,t) = Co ; r > ao ; t = 0 

C(a,0,t) = Ca

c(“fe,t) =
’3c)
^ 0=0

r 3c
30

o

= o

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)
J 0=7T

d
dt

4 3— fra Cs
'l
j = 2TTa2D / 3c)

.or o  ̂ ' 7T=a
sin0 d0 (1.48)

Vr = u — - 1 COS0 +
r J

a da 
lrJ dt

(1.49)

= u a_
r sin0 (1.50)

which they solved by a finite difference technique. Levich's formulation 

for Re<< i with constant interfacial concentration Ca is the
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equations (1.42) to (1.50) when the term -7—  is negligible (quasi steadyot
state) and the boundary layer is much thinner than the radius of the 

sphere. Onorato et al showed that Levich's solutions (equation (1.21)) 

differ markedly from the numerical solutions of equations (1.42) to 

(1.50) where u is given by equation (1.17) except for large A, (A > 600). 

Solutions for stationary bubbles were found to be reasonably good 

approximations for low A, (A close to unity) but become very poor for 

large A. Note that A = 1, and 103 correspond to ao = 0.034 and 0.34 mm 

respectively when D,ju, P and g assume the values indicated previously.

Finite difference solutions might be more accurate than the approximate 

solutions derived by Levich for rising bubbles, but both methods fail to 

reproduce the linear relation between radius and time suggested by some 

experimental observations (Nemec, 1974). Note that the size of bubbles 

observed by Nemec (usually above 0.5 mm) must be sufficient to make the 

Levich's approximation (equation (1.20)) reasonably accurate especially 

taking into account the growth of the bubbles which causes improvement of 

that approximation. A model based on a solid sphere (equation (1.35)) is 

apparently more suitable to describe those experimental results. The 

main reason for those differences might be a poor description of the 

components Vr and Vq of the velocity but the hypothesis of a gradual 

degasification and decrease in bulk concentration of gases dissolved in 

the melt is also plausible. Such decrease in concentration would cause 

decrease in growth rate which is in qualitative agreement with a change 

from /a a t to a a t. Finally a multicomponent method is required to 

describe the behaviour of some bubbles in glass melts. Accurate 

interpretation of bubble behaviour will not be possible without resolving

those questions.
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This discussion shows some of the limitations of the solutions 

available to describe diffusion—controlled behaviour of freely—rising 

bubbles. The solutions of the diffusion-controlled behaviour of stationary 

spheres are considerably simpler and the assumptions required to derive 

reasonably simple balances can be achieved in experimental conditions.

In addition, analytical solutions (Scriven, 1959) are available for 

growth of stationary spheres from zero size and these can be used to test 

the numerical methods developed to solve other related problems.
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CHAPTER II

2-l Diffusion controlled material transport around stationary

spheres

This treatment quantifies the behaviour of spheres which are exchanging 

material with a surrounding liquid medium. The sphere is assumed to have 

uniform composition and uniform properties and to be surrounded by an 

infinite volume of liquid. The only flow in the liquid is assumed to be due 

to radial convection as the sphere grows or dissolves. The liquid is assumed 

to have uniform composition and properties at the beginning of the process. 

Material transport is diffusion controlled with instantaneous interfacial 

equilibrium and it is assumed that the system remains spherically symmetrical. 

Afferent sPecies in the liquid are assumed to diffuse independently, with 

Cjnstant diffusivities. Viscous or inertial forces, surface tension and other 

eternal forces are ignored for the present.

The required material balances are considerably simplified in spherically 

yrnmetric systems. In addition the liquid medium is assumed to be ideal,

^s' with constant partial molar volumes, so that it is possible to define 

umple relations between the velocity in the liquid and the motion of the 

terface. it is also possible to derive a simple formulation of Fick's law 

to quantify the flux of material across the interface.

Some of these assumptions are only partly fulfilled in real systems and 
tblG i 2T iwportance can be investigated by relaxing the corresponding 
£"GS tri cti n°ns. Some solutions for cases of concentration dependent 

usivifies are reported in Chapter VII. The effects of surface kinetics

growth or dissolution of spheres is discussed in Chapter VIII, and finally 
th 0 0 f f"ects of surface tension, viscous and inertial forces are analysed in 
ChaPter ix.
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2.2 Continuity with spherical symmetry

■ -i r-nn*̂ icioxGci with n independentA general n+1 component system will

, . , , Tf c. is the molarsolutes and a solvent denoted by the index • i

• ;t-q volume fraction at distance j. fromconcentration of species i and yj_ its vol

the centre of the sphere and at time t,

n+i
I Yi = 1
i=i

(2.1)

if the partial molar volume of species i is a constant v^

Y± ^ ? i 1/ • • • fH • (2.2)

The velocity u is then the sum of fractional contributions of solute^ 

ûtd the contribution of solvent

n+i n+i
u = I uiCivi = I uiYi . (2.3)

i = i i =1

t is the average volume velocity relative to the fixed coordinate system and 
can be dif-frerent from the mass average velocity or molal average velocity 

and alia, I960). In the present circumstances u is the more convenient
defi

forms
Hition of velocity because it reduces the diffusive fluxes to simple

' even with variable density. In fact, if the only mechanisms of solute 
f tansDoj-t-^ L —  ^inctuon lut̂ i ana airrusion 
Wl11 be given by

are convection (uCt) and diffusion , the velocity of species i

u.C. = uc. + j,i l  l JI (2.4)
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rnr
le equivalent relations in terms of mass average velocity or molal average 

velocity are more complex if the density is variable (Bird and alia, 1960).

Our primary interest is the transfer of individual species so that it 

is convenient to write the continuity equation for the generic species i

Sc.
—  +(V.uCi) b (V-jD ) = 0 (2.5)

or

SC±
i r  +|v-"ici> = 0 ■ (2 .6 )

With spherical symmetry equation (2.6) reduces to (see Appendix 8).

9ci 1 8 , 2  , _ „
St + r- Sr r UiCi ° (2.7)

and if the concentration is replaced by the volume fraction y i _  with 

c°notant partial molar volume,

i . 1 3+ — ^ 7s—  (r^y.u,) = 0 . r2 S r -'llSt r2 Sr (2.8)

summing the n+1 equations (2.8), the overall continuity condition 

reduces to

S ?
SF (r u) = 0

(2.9)

or
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u( r) u (a) r ^ a , (2 .10)

where _a_ denotes the radius of the sphere.

Equation (2 .1 0) was previously derived for the case of constant density
12 *^cnven, 1959) and the present formulation extends its validity to more 

general cases. Notice that constant density, p, implies that the partial 

molar volumes must be equal, this restriction being relaxed in the present

treatment.

Equation (2.4) has defined the diffusive flux relative to the velocity 

f the liquid. Similarly, and in order to maintain the conservation of 

■lc*terial the flux jo of species i into the sphere must be defined relative 

the velocity of the interface (da/dt) .

Jj_= - Co (a) Uĵ (a) - da
dt (2 .11)

and from equations (2 .2) and (2 .1 1 )

n+i n+ l

1=1 i=l
I (viJi5 = - l Yiia) ui (a) - irdt

/ \ da 
* - u(a> + « (2.12)

Als°' from equations (2 .1 0) and (2 .12)

u(r) = I- da
dt

n+i
- Ii=i

(2.13)

further simplifications result when the solvent cannot be transferred
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into the sphere (Jn4_ = 0) a condition which holds reasonably well for

gas bubbles and some crystalline phases. In such cases from equation (2.11)

un+i (a) da
dt (2.14)

and equation (2.13) becomes

u ( r) =
(a

l--CM

. rj
da
dt - I (V-jJi) 

i= 1
(2.15)

that is, the velocity is only dependent on those species being transferred 

across the interface.

From equations (2.4) and (2.15) with spherical symmetry and assuming
fBcil -I

is given by Fick's law, V  = _ DfL l o r

- D.
3C.l

i 3r = C± (a) Ji(a) " ft + (vjJj)D = 1
(2.16)

Also, from equations (2.11) and (2.16)

Ji =
n r3ciii /Cj_ (a) l  ( V j J ^ + D ^ — j !  (1 - ci (a) v±)
j = 1
j+ i

(2.17)

Finally the general material balance with spherical symmetry can be 

obtained from equations (2.5) and (2.15), with constant diffusivity ,

 ̂Ci ( 2 y . . da 1 la
8r2 + | r Di [ ivjJ jJ dt J [rfa

2 1 3ci 3ci
3F" = 3t" (2 .1 8 )
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In a uniform medium the initial condition. are

( r) - Gxu s* 3. t = 0 (2.19)

and in a infinite medium the boundary conditi

C- (°°) = O». ; t > 0
1 i

( 2 . 2 0 )

always holds. 

°f composition

The

in

concentrations at the in 

the spherical phase (gas

terface can vary 

bubble) .

due to changes

2• 2 Particular cases

a) One-component spheres

In these cases the pressure and concentration of solute in the sphere 

) can be considered constant and the molar content N of the sphere will

related to the flux J by

dN
dt 4ïïa2 4 Tfa J

(2.21)

“here the subscripts are omitted in one-component systems. From equations

(2-17) and (2.21)

dN
dt

r ]- l 3c'
4ta2 D 1 -  C(a)v M

(2.22)

and
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da
dt D Cs°(l C ( a) v)

In addition. from equations (2.18) and (2 .2 1)

8c
9t = D 32c ' 2 ^ V 2 da

8r2 + — D -r e r dt

(2.23)

(2.24)

where

E = 1 - Cs°v . (2.25)

The term (1-e ) represents the ratio of the volume occupied by a mole 

solute in the liquid medium to that in the sphere. This condition is 

Ulid whenever the partial molar volumes in the liquid are constant.

The assumption of instantaneous equilibrium at the interface leads to 

lstant boundary conditions

C (a) = Ca 

C(°°) = Cœ
t 5 o (2.26)

the initial conditions will be

C ( r ) = C c » ; r > a  ; t = 0 .  (2.27)

Equations (2.23) and (2.24) can be simplified by using dimensionless
Variables
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92F
dê + dR |3f _ 9f 

dz 3e Tz (2.28)

and

dR (9f
dz l9e, (2.29)

where

e = r /a 0 

R = a/a0 

z = t . D/a o 2 (2.30)

F = (C - Coo) / [Cs ° (1 - vCa) ]

and ao is the reference radius (ao > 0), which will denote the initial 

radius of dissolving spheres or of spheres growing from finite size.

In dimensionless form the boundary and initial conditions (2.26) and 

(2.27) lead to

F(R) = Fa = (Ca - QJ/fCg0 (1 - vCa) ] .(2.31)

F (°°) = 0 (2.32)

= O .F (e) = 0 ; e > R z (2.33)
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ri) n-Component gas bubbles

With constant temperature and constant pressure the molar concentration 

inside an ideal gas bubble can be considered constant at Cs° and therefore

dN.
— ^  = 4ti C ° —  (a3gi) = 4Tia2 J± , (2.34)dt s dt 1

where is the number of moles of species i in the bubble and g^ its volume 

fraction, which is equal to the mole fraction in an ideal gas mixture.

From equation (2.34)

(2.35)

an<̂  ai: ordinary temperatures and pressures

Jivi = cs
da a dc?i 
—  + “’i dt 3 dt

vi Cs << 1 (2.36)

and

yi (a) = vi Ci (a) «  1 ,

and equations (2.17) and (2.18) reduce to

Ji = D.
[Or

(2.37)

(2.38)

and
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a2c.
i 3r' + ri d . _ e aj 2 da

r i r  J dt
9ci V
dr at ( 2 . 3 9 )

with £ = 1 in the case of gas bubbles. 

From equations (2.34) and (2.38)

V  2 2 f 9V= 47Ta = 4Tra D.-dt 1 9r (2.40)

and

V dN;L /i 2 „ o da ) -—  = 4fra Cc —., dt s dti= i
( 2 . 4 1 )

with

I
i=i

(2.42)

Also from equations (2.40) and (2.41)

da
dt

n r D,. rac,y l 1
Ls±i n o arS a -1

and equations (2.35) and (2.40) give

V
dt

r- rsc, i
( V O h 9i

da
dt

(2.43)

(2.44)

The equilibrium at the interface may usually be assumed to be given by



44.

Henry's law so that

Cj_ (a) = H-̂  p-j (2.45)

where Hi and Pi are the Henry's law constant and the parti al pressure of 

species i. By combining Henry's law and Dalton's law for ideal gas solutions

Ci (a) Bi P gi Cp gi (2.46)

where Cp^ tlie interfacial concentration of species i in the liguid in 

equilibrium with gas at a standard pressure P (e.g. 1 atmosphere)

In dimensionless terms equations (2.39), (2.40), (2.43) and (2.44)

become

3 Fi
fi 9e2 + i*r dR

W dz
3Fi 3Fi
9e 9z (2.47)

dG.
— — = 4itR2 f. dz 1

3Fi
9e R

(2.48)

dR y 
dz A fi

3Fi
9e R J

(2.49)

and

dz
3r e f8FV dR
RL n 3e R ' 9i dz _ (2.50)

where
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z = t Di/ao2 

fi = Di/D1 

Fi  = (Ci  " cœ)/ c s °

Gi = Nj/Uo 3 Cs°)

(2.51)

Finally the initial (equation (2.19)) and boundary conditions (equations 

(2.20) and (2.46)) become

Fi  (e) OII e > R ; z = 0 (2 .52 )

Fp (°°) on N V/ O ( 2 .53 )

F± (R) = « i 9 i -  F0 ; z 5 0 (2 .54 )
i

where

ai - Cp i//Cs 

FOi = Cooj/ Cs

(2 .5 5 )

2 . 4 Typical parameters in glass melts

The present formulation of dimensionless balances show that a^, FQ , ĝ
i

and £ ■  are the essential parameters. Ostwald solubility coefficient of species 

i is identical to and from the scarce solubility data available for 

silicate melts we can expect the following ranges of ctq values to be typical. 

0.001-0.01 for nitrogen (dissolved physically) ,

0.001-0.05 for carbon dioxide, 

up to 10 for oxygen, 

around 20 for water.

It is reasonable to assume that the bulk concentration 0» must be of
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the same order of magnitude as C , so that the solubility parameter 

[ai _ F0.] will have the order of magnitude of the Ostwald coefficient.

Measurements in silicate glasses showed that the diffusivities of water 

(Scholze and Mulfinger, 1959) and nitrogen (Meyer and alia, 1977) at about 

1400°C are usually in the range 10-6-10- ' cm2 sec-1. Some estimates of the 

diffusivity of carbon dioxide in glass melts (Kroger and Goldmann, 1962) 

are based on a crude technique and seem somewhat higher than those of water 

but this seems rather unlikely. From experimental dissolution of oxygen 

bubbles in soda-lime-silica melts at temperatures in the range 1100-1300°C 

Doremus (1960) obtained the relation D = 42 exp(- 26.7 x 103/T) cm2/sec 

where T is the absolute temperature (Kelvin). Extrapolation of this relation 

to 1400°C gives a value of about 5 x lO-6 cm2/sec for the diffusivity of 

oxygen. Therefore, the relevant gases are expected to have diffusivities of 

the same order of magnitude and ratios 0 . 1 < f^ < 10 are likely to occur.

2.5 Solutions for one-component spheres

Exact solutions of the relevant partial differential equations governing 

the growth of spheres from zero size were obtained after Boltzmann 

transformations (Frank, 1950; Scriven, 1959). These solutions do not 

describe the growth from finite size and the partial differential equations 

governing dissolution cannot be cast into the required ordinary differential

equations.

Epstein and Plesset (1950) obtained quasi-stationary solutions by 

neglecting the convective transport of solute. For gas bubbles those 

approximations were
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da
dt

(C„ Ca}
/¡TDt-

and in dimensionless terms

(2.56)

dR
dz

VR /tTZ-

(2.57)

Parametric solutions of equation (2.57) were reported by Epstein and Plesset 

(1950), and Frischat and Oel (1965), and the concentration profiles which 

correspond to quasi-stationary solutions can be obtained by analogy with the 

equivalent heat conduction problem (Carslaw and Jaeger, 1959).

F (e,z) erfc e > R (2.58)

and

(2.59)

A transformed quasi-stationary solution is obtained if equation (2.59) is 

approximated by

1 + 1

/tz-
(2.60)

which upon combination with equation (2.29) leads to
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R — 1 + 2<pz + 4({)/z/7T .

On the contrary, if the interface is kept stationary

(2.61)

[3f ] i1 lì
[ 3 e I " - Fa +iRo v UzJ

(2 62)

and from equations (2.29) and (2.62)

R = 1 + <J>z + 2<p/z/n . (2.63)

Equation (2.57) was used to analyse the behaviour of bubbles in liquids 

(Krieger and alia, 1967; Frischat and Oel, 1965). Equally equation (2.61) 

was also used to analyse experimental data, (Doremus, I960) and was recovered 

as the zero order approximation of perturbation series solutions (Duda and 

Vrentas, 1969; Vrentas and Shin, 1980).

If R >> /ttz the quasi stationary solution (equation 2.57)) tends to

R = 1 + ( p / z  (2.64)

which can be derived from the one-dimensional diffusion in a semi-infinite 

medium. In dimensionless form the concentration profile is given by 

(Crank, 1975)

F(e,z) = F a erf c [ (e - R)/(2//z)] (2.65)

and
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Bf '
9e R

F //rrz a (2 .6 6 )

Thus equation (2.64) results from equations (2.29) and (2.66). As an

approximation of the spherically symmetric system equation (2.66) requires

very thin boundary layers. During dissolution the role of radial convection

prevents that condition, even if the solubility is very large.
A simple quasi steady-state solution was also used to evaluate diffusion

coefficients of gases in liquids (Liebermann, 1957; Manley, 1960). The

convective transport of solute and the time derivative were ignored in

equations (2.24) or (2.28), which reduce to

v. y e > R (2.67)

Equation (2.67) with boundary conditions (2.31), and (2.32) is readily 

integrated to give

9f
3eJ R

Fa/R = (p/R (2 .6 8 )

and

F = Fa (R/e) ; e ^ R . (2.69)

From equations (2.29) and (2.68) the quasi steady-state solution for the 

radius of the sphere is

R2 = 1 + 2<pz = 1 - 2Faz . (2.70)
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Notice that equation (2.70) is equally recovered as the limit of quasi- 

stationary approximations for /ttz >> R»

From asymptotic expansions Subramanian and Weinberg (1980) derived 
following relation

R2 1 /z" + 4Fa p F a r . 8Fa f 4 - 16 5Fa
37r 2  ̂ 7—vXTT l 3 5tt 9tt (2.71)

ls equation was found to perform generally better than the quasi steady- 

state or quasi stationary approximations (Chapter V) .

Some predictions of growth were based on the assumption that the 

boundary layers are sufficiently thin (Barlow and Langlois, 1962). That 

a-sumption is generally poor except for growth with large solubility parameters 

f°r which exact solutions are available (Scriven, 1959).

Perturbation series solutions (Duda and Vrentas, 1969; Vrentas and
qt •

n< 1980) are tedious to evaluate, except for terms of zero order, which 

Usually reduce to the transformed quasi-stationary approximation (equation 

'■"•̂ 1)). First order terms are reasonably good corrections in the range of 

°w s°lubility parameters.

N u m e r i c a l  s o l u t i o n s  w ere  a l s o  d e v e l o p e d  t o  s o l v e  e q u a t i o n s  (2.23) and

(2̂•24) after normalizing the concentration (Readey and Cooper, 1966; Cable 

3nd Evans, 1967). Other authors used transformations of the space variable 

to immobilize the interface (Duda and Vrentas, 1969; Szekely and Martins,

9^1). These techniques did not include sequential optimization of space 

nd time mesh sizes, so that either their accuracy is doubtful or the 

Pr°cedure wasteful of computing facilities.



51.

2. 6 Solutions for multicomponent bubbles

The diffuser, controlled growth or dissolution of bubbles containing 

bore than one gas has rarely been considered because variable boundary

, Tntpractions between the different conditions are usually involved. Inter

-in the case of very dilute solutions.dissolved species can usually be igno

, J . ■v.c- classification and diffusivitiesGas bubbles can usually be include m

indeoendent of concentrations. Henry's can also be considered constant and P

1 • or. describe the equilibrium gas-liquid, but diatomiciaw is usually assumed to descrioe h

a k , ehm cievert's law (linear relationshipg a s e s  a r e  s om e t im e s  b e t t e r  f i t t e d  y

, . _ cnlute in the liquid and the square root ofbetween the concentration of solu

, is widely accepted that the Sievert’s lawPartial pressure of gas). It is y

„i.oc melts (Scholze, 1962; describes the equilibrium for water vapour q

F r a n z ,  1965 and 1966).

Quasi stationary approximations were used by Kramer (1979) to analyse 

the behaviour of bubbles containing more than one gas. The limitations of 

*ho quasi stationary approximations of the behaviour of multicomponent 

bubbles are likely to be even greater than in the case of one-component 

bubbles. Quasi stationary solutions were also used to analyse the behaviou: 

f bubbles containing one diffusing gas and another inert gas (Doremus, 

Nemec, 1969; Weinberg and alia, 1980).

Finite difference techniques were occasionally used to solve the 

ehaviour of bubbles containing two gases (Griffin, 1971) or more (Weinberg 

nd ^ubramanian 1980), but the accuracy of those methods has not been 

tested.

It will be demonstrated in Chapter VI that an exact asymptotic regime 

Can be derived for bubbles containing two or more gases and growing from 

Zer° size. This regime will be used to test the general finite-difference 

echnique described in Chapter III.
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CHAPTER III

Finite difference techniques

3.1 Introduction

Analytical solutions of equations (2.47) have limited applicability 

and the accuracy of published approximate solution has not been 

systematically tested, except for a few cases usually in the range of 

moderate or low solubility parameters (p or Fa. Numerical solutions are 

an attractive alternative but very few cases have been computed. In no 

cases were the efficiency and accuracy of methods used properly

e s t a b l i s h e d .

The basic partial differential equation (2.47) is parabolic with 

known initial and boundary conditions but is non-linear due to motion of 

the interface. Fortunately the diffusion controlled growth of spheres 

from zero size can be solved analytically so that it is possible to test 

the convergence of the finite difference equations to these exact 

solutions of the partial differential equations for those cases provided 

that computations are continued to large enough sizes.

In practice the finite difference solutions start with a finite size 

of the sphere (a0 > 0) so that it is necessary to compute large increases 

of radius (R >> 1) to overcome the effects of the initial transient stage. 

However, another difficulty arises because of the large changes in the 

radius of the sphere, boundary layer thicknesses and rates of growth or 

dissolution. The same values of space and time steps cannot be both 

accurate and efficient in the early stages and much later. For instance 

if the radius increases by a factor of 1000 it might be convenient to 

increase the mesh lengths by similar factors for economy of computing.

This difficulty may be partly solved by appropriately transforming
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the independent variables (space and time), but it is still convenient to 

be able to vary the mesh lengths, especially during the transient stages 

and when the interfacial concentrations vary with time.

Variable interfacial concentrations and variable mesh lengths put an 

additional constraint on the stability of the difference equations. It 

is well established (Smith, 1978) that implicit methods with constant 6r 

and 6t (or Se and 5z) mesh lengths are stable for all positive values of 

Sz/(Se)2 when used to solve some equations of the parabolic type (Crank 

and Nicolson, 1947). On the contrary explicit methods usually require 

<W(6e)2 < 1/2.

Readey and Cooper (1966) developed finite difference solutions of 

the relevant differential equation, with Sz/(6e)" = 0.1 to guarantee the 

stability of these solutions. However, they roust have experienced the 

difficulty of having to use fairly large 6e increments to prevent the 

growth of rounding errors, but did so at the expense of the accuracy of 

the finite difference solutions, especially when the rate of the process 

is large (thin boundary layers). In addition, this method requires an 

unduly large number of time steps to compute very slow growth, growth to 

very large sizes, or very slow dissolution.

Cable and Evans (1967) used a different explicit scheme based on 

formulae using three time steps proposed by Du Fort and Frankel (1953).

The restriction 6z/(6e)2 < 1/2 could be dropped but the mesh lengths were 

not optimized, so that the convergence of finite difference equations may 

be poor, especially when the sphere dissolves and the concentration 

gradients at the interface increase with time during the final stage 

(Chapter V). Establishing that the results are insensitive to choice of 

time and space mesh intervals is not sufficient to guarantee accuracy.

Duda and Vrentas (1969, 1971) developed an implicit method and
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normalized the space variable accordingly to the following transformations:

x = 1 - exp [- a(r - a)] (3.1).

for dissolution, and

fr 1X = 1 - exp - a -  “ 1a J J

for growth. The constant a allows some flexibility of the transformation. 

However, these authors used constant fix increments throughout each run.

By varying fix and fit it was established that the difference solutions 

converged to each other and, though this is not a rigorous proof, it is a 

good indication that the finite difference equation is convergent to the 

true solution of the partial differential equation. Computations of large 

increases in radius are prohibitive in computing time if constant mesh 

sizes are used, and the convergence of their finite difference solutions 

to the exact solutions for growth from zero size was not demonstrated.

Szekely and co-authors (1971, 1973) used the transformation of space 

variable into x = e - R and allowed some adjustment of the space mesh size 

with a ratio 6z/(fix)2 kept at about 0.4 to ensure stability and economy.

A Runge-Kutta method was used to advance from a given time step to the 

next one. The stability condition was suitable to analyse rapid growth, 

but is likely to make the computations of low and moderate rates of growth 

or dissolution prohibitively slow because of the restrictions on 6z.

^•2 Immobilization of the interface

It is convenient to immobilize the interface by transforming the 

space variable. This avoids having to add new mesh points at the 

interface of dissolving spheres or the elimination of points as the



interface of a growing sphere advances. Besides, without immobilizing

the interface, the use of implicit finite difference solutions is 

inhibited.

A successful transformation is the one which, whenever possible, 

improves the convergence of the finite difference solutions. For this 

purpose it is convenient to analyse the nature of the diffusion 

phenomena involved.

Exact solutions for growth from zero size can be expressed by the 

dependence of concentrations on a single independent variable x = r/a = 

e/R (Scriven, 1959). This type of solution has now been extended to 

multi-component bubbles (see Chapter VI). It is also demonstrated in 

Chapters IV and VI that the solutions for growth from finite size evolve 

rapidly to the same type of regime. Therefore, if the space variable is 

transformed into x = r/a, the concentrations become less dependent on a 

second independent variable (time), which assists the convergence of the 

finite difference solutions.

Dissolution of spheres is essentially transient and reflects the 

effects of diffusion and convection in the radial direction (Chapter V). 

Diffusion is usually dominant but the role of radial convection is very 

important with large solubility parameters Fa .

For low Fa the actual solutions are reasonably approximated by quas 

steady-state predictions which demonstrate the effect of spherical 

symmetry, and reduce to F (x) = Fa/:c, (equation (2.69)). Thus the 

transformation of the space variable into x must be equally convenient 

for accurately computing dissolution.

If transport is controlled by radial convection the most successful 

transformation must be the use of the Lagrange coordinate (r3 - a3) or 

(e3 - R3) to replace _r or _e. By use of the Lagrange coordinate the
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convergence of finite difference solutions was found to be good for very 

large solubility parameters (Fa > 100) but it was difficult to obtain 

convergent predictions in the range Fa < 10. On the contrary, if the 

space variable is transformed into x, the solutions converge readily in 

the entire ranges investigated, 0.0001 < Fa < 1000, and 0.0001 < (f> < 1000.

Duda and Vrentas (1969) used a normalized transformed variable to 

avoid having to truncate the distance over which the computations are 

carried out. This may be convenient if constant mesh sizes fix are used 

but is not necessary if the mesh size is allowed to increase in the tail 

of the profile. Besides, it has been found in this work that with 

transformation of the space variable into x = e/R the convergence of the 

finite difference solutions was more easily achieved with moderately low 

numbers of time steps than in the case of transformation into 1 - 1/x.

Taking into account these features equations (2.47) to (2.50) were 

transformed into

3x 3z (3.3)

(3.4)

dR
dZ x=i

(3.5)

(3.6)

where

x = e/R :> 1 .
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3.3 Solution cf concentration profiles 

3.3.1 Finite difference equations

The concentrations and their derivatives are single valued, finite 

and continuous so that Taylor's expansion gives

Fi,j+1,£+1 - Fi,j,£ + fix; 9x t - { 0 x 2 )
92i
9x' (3.7)

j ,£

F,-1 ,3-l,£+l = Fi, j ,£ fix 1 rsFii9a; j ,£
+ — (fix1)

92]
9a;' j ,£

(3.8)

where

6xj = Xj -

fix2 =  .

The indices i, j and £ denote the species i, the radial mesh point xj, 

and the time step Z^.

Using a compromise between the truncation errors involved and the 

simplicity of algorithms equations (3.7) and (3.8) lead to

” '
— i. = (5xj + 6x 2 ) 1
9x . 0 1 ' i/£

(3.9)

6x 1
6x 2

fix 2 _ fix 1 _ fix 2
fix1 '6x 2 1 >3 '̂  ¿x1 hi > j' 1, £

and

i92Fi' 2 F. . , .
i ,d+i ,£ [ 1 + 1 I p 1 F±' 3 "1/

9x2 . fixx + fix2 i ,£ fix2 fix 2 fix,1 J 1, j/^ fiX!

(3.10)
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This procedure allows the use of different mesh sizes and makes it 

possible to optimize the number and distribution of mesh points. By 

substitution of equations (3.9) and (3.10) into equation (3.3)

f9Fi ' = 2[dz J j ,£ F Pl Fi,j-1,£ " (pi + P2) Fi, j ,£ + P2 Fi, j + l,£ (3.11)

where

pi = (fp/R2 - y 6 x 2 )/[&ri(6x 1 + 6 x 2)] 

p 2 = (fp/R2 + Y 6 x 1 )/[5x2 (6x 1 + 6 x 2)]

Y = fp/ (xj R2) + 1 dR 
2R dZ Xj - e Xj -2

(3.12)

(3.13)

(3.14)

It is well known that the stability of implicit methods is usually

superior to the stability of explicit methods. Let Rav be the average
(dR]radius of the sphere between time steps Z£ and Z^+p and —  the
 ̂ 'av

average time derivative so that

Y = fp Xj(R )av 1 'dR'
J  2Rav [dzj av

Xj - G Xj -2 (3.15)

where

Rav R £+l + R £ 2 ; (Rz )
R£+l2 + R£ R£+l + V

av

dR
dZ v 2

R£+l R£ 6z
av

and

62 “ Z£+l Z£ •
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Next equation (3.11) is replaced by the finite difference average

Fi,j,£+1 - Fi,j,£

- (p-L + p2)

/ 6 2 = p. FP1 Fi,j-1,£ + Fi, j-l,£+l

Fi,j,£ + Fi,j ,£+ 1 + P 2 [ r i , j +l . l  + F l j J + i , t + 1

which leads to the implicit scheme

(3.16)

bl,j Fi,j-l,£+l + b2fj Fi, j,£+! + b3fj Fi f j + !f £ + ! = b4ij (3‘17)

where

Dl-1 

h3, j 

b2 / j

b4,j = 62

6z px 

6z p2

1 + 6z(Pl + p 2) = 1 -  b l f j  -  b 3 /j

pl Fi,j-1,£ + p2 Fi,j+1,£ 1 - 6z (p̂  + p.

(3.18)

(3.19)

(3.20) 

Fi, j , £

(3.21)

By definition, Fi (°°) = 0 so that the last finite difference equati 

[3.17) becomes
on

’l ^ - l  Fi,nr 2,£+1 + b2.ni-l Fiin1-1,Jl+1 = (3.22)

where m  is the number of radial mesh points. In addition, the first 

finite difference equation will be written

b2,l Fi,1,£+1 + b3,l f 1,2,£+1 = b4,. (3.23)



and if the interfacial concentrations are constant

Fi,l,£+1 _ Fi (R)-- 4>i (3.24)

or

b2,1 1 

b3,1 = °

4,1

A more general formulation of equation (3.23) is derived in section 

3.6 for the multicomponent bubbles with a linear relation between the mole 

fraction of gas i and its equilibrium concentration in the liquid medium.

The system of equations (3.17), (3.22) and (3.23) is suitable for a

step-by-step solution, using a non-pivoting elimination method to advance 

one time step.

3.3.2 Non-pivoting elimination method

Equations (3.17), (3.22) and (3.23) are solved by Gauss's elimination

method (Smith, 1978). A back substitution procedure is currently used as 

follows: the last difference equation (3.22) is used to eliminate

p. . from the penultimate equation (j = n -2) .i,n^ ±,x,i-_L 1
the new penultimate equation is used to eliminate Fp n^-2,£+l 

from the equation of order j = n-j_-3 and so on, until Fj_ 2,1+1 Fs 

eliminated from the first equation (3.23),

the new first equation contains a single unknown  ̂ which

is calculated directly, 
the unknown Fi,2,£+l' i,3,£+l' Fifn^_i,£+i

calculated by forward substitution.

can now be

The back substitution elimination can be represented by the generic
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scheme involving the original equations of jth order and the new 

equation of (j+i)th order

bl,j Fi,j-1,^+1 + b2,j Fi,j,£+l + b3, j Fi,j+1,£+1 = b4,j <3-25)

where

>l,j+l Fi<j,£+l + b2,j+1 Fi,j+1,£+l = b4,j+1

b2,n-]_-l b2,n1-l > b^n^-l ~ b4,n1-l

(3.26)

:3.27)

Eliminating Fifj+if£+i leads to

bl,j Fi,j-1,£+l + b2,j Fi,j,£+l = b4,j (3.28)

where

b2,j - b2,j " bl,j+l

b4,j " b4, j b4, j+1

b3,j/b2,j+l

b3,j^2,j+1

:3.29)

(3. 30)

The last simultaneous equations to be modified are

2,1 Fi,1,£+l + b3,1 Fi,2,£+l “ b4,1 (3.31)

1,2 Fi,1,£+1 + b2,2 Fi,2,£+1 = b4,2 (3.32)

and the elimination of Fif2,£+1 gives

Fi,l,£+1 b4,1 - b4,2 b3, l/t>2,2 b2,1 - bi,2 b3f i/b2,2

(3.33)

by forward substitution
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bl,j Fi,j-1,£+1 /^2, j <3 = 2'3' • • • / n]_-l) •

(3.34)

This step completes the operations required to recalculate the 

concentrations at the standard mesh points. The application of this 

scheme requires an initial concentration profile which will be based on a 

quasi-stationary approximation rather than by the singularity expressed by 

equations (2.52) and (2.54).

3.4 Solution of radius and composition of the sphere

So far only the solution of equation (3.3) has been considered but

both R and dR/dZ are required to calculate the non-linear coefficients of

equation (3.3). In some cases the interfacial concentrations may vary with

the mole fractions of a multi-component bubble. Therefore the radius of

the sphere and the composition of bubbles must be solved accurately,

which requires an efficient method of solving ordinary differential
dR d9iequations to integrate —— and -r~— . In the present conditions thesecLz.j azi

derivatives are calculated through the solution of concentration profiles,

which represent the slowest part of a generic time step. Therefore multistep
dRmethods of solving —— have advantages over other methods which requireaz

several estimates of the derivative per time step (Runge-Kutta methods).

In the present case explicit multistep methods become unstable due to
dRthe complex relation between concentration gradients and R, and —  , and 

strictly implicit methods cannot be used. Alternatively an explicit- 

implicit scheme is used with some modifications to avoid having to compute 

the concentrations profiles twice per time step. Four-step formulas are 

derived in appendix 1 for variable mesh size explicit and implicit methods.
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The explicit method is used as a predictor following which the concentration
dRprofiles are solved. Finally the new derivative can be obtained and the 

implicit method is used as a corrector.

The general solution can be summarized as follows:

1. Set the initial conditions (£ = 0) .

2. Calculate the concentration gradients 

equation (3.43) ).

3. Calculate the derivatives

î3f±1
3m at time step £

m=l

dR
dZ = R 1 l
n  a

nv r , iSFi] *

l t:L 3m=1 u \ Jm=l*‘

fdCi) f8Fi]dZL "4™ £  fi 3m

Use the explicit four step formula (described in appendix 1) to 

predict R£+1-

R£+l = R £ + 62
dRl rdR̂ .(dR] dR-1

_ P1 dZ_ + P2 Z ldZJ» - 1 + 3H _ 2 + p« dZ £-3 -
(3.35)

where 6Z = Z£+g - Z£ . 

Calculate

R

V 1

dR

av

av

R£+l “ R£ / 2

^R£+ 1 1 + Ro . - Ro +
dZ' av

R£+l RZ

£+1* Z

<5z

*£

Calculate the new concentration profile at time step £+1 with the

above estimates of Rav, R
i

, and
av

dR
dZ av

7. Calculate the new gradient at the interface 

(equation (3.43)), and

ara
3m (i = 1, ..., n) ,

m=l
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n
s= I

i — 1
f.

3f ,
1 1 3a: x=l J£+l

(3.36)

8. Correct R^ by using the implicit multistep method described in 

appendix 1.

V l  - R£ + 6z o
dRÌ
[dzj £+1

+ p dR' + P dR
1H £ [dzj + P.

£-1
dR
vdZj £-2

+ p dR 
41 dZ £-3 J

(3.37)

where
dR
dZ = S/R

£+1 £+1 (3. 38)

After rearranging equation (3.37) becomes

RJU1 * ER2 + /hr + s -po 62
(R*) (3.39)

where

R* = + 5Z dR
vdZ; + P.

As g. appears in the derivative
n

dR
d Z J £-1

dgi

+ P. dR 
3Ì dZ + P

£-2
idR̂

1-
1 ̂

 
1 T3

£-3 -

dZ , and the new solution must

obey the condition  ̂ g-̂ - 1, it is preferable to integrate the
i=l

numbers of moles of the individual components of a bubble. This 

is equivalent to integrating the dimensionless variables G-̂ ;

i = 1/ .•.t n.

Gi,£+1 = Gi,£ +
dGq
[dZ ,£+1 •po +

dGi
d̂z h ' * 1 +

dG-i
VdZ J£-l‘p2

dG/
dZ £-2 •P3 + f ^ l  .P

£-3
(3.40)
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Then the mole fractions £+1 (i = 1, n) are given by

N .
gi,*+l n

Ï Nk»l K

Gi,£+I

Ji Gk'£+1
(3.41)

where represents the number of moles of species i. A

second correction of is also possible taking into account

the definition of G. „ , terms (formulas (2.51)) . Thusx,£+l

£+1
3 y —  > G.4TT .ft x,

1 V3

i=l £+1
(3.42)

If the final conditions have been reached stop; otherwise 

make £ = £+1 and return to step 3.

3.5 Calculation of concentration gradients at the interface

The accuracy of the estimates of concentration gradients is dependent 

on the space mesh size. Excessively large mesh sizes are prevented by 

periodically readjusting the mesh points and a four point Lagrange 

interpolation formula is used to improve the estimate of the concentration 

gradient. If

Ç = x  - 1

Ç . = X - 1 ; (j = 1,2,3,4)

then we can write
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p f r) - n r;
i'" ‘l ‘ Fi,l + V * > Fi(2 + P3(?} Fi,3 + P 4(i)i,4

where

p, ( 0  = n
K+j

’C

k ~ %
(j = 1, . .. , 4)

By expansion of the P_.(? ) terms and d ifferen tiation  the gradient 

the interface reduces to
at

8;r
i9Fi

«-1 ‘ "I Fi.l + d2 Fi,2 + Pi,3 + Fi.4

(3.43)

where

¿1 = “ U/C2 + 1/C3 + 1/C4) 

d2 = l/[(?2 - (1 - C2/C4)]

d3 = i/[<c|/c2 - ?3)(c3/c4 - 1)]

d4 = 1/[(CJ/C3 -  C4 )(C4/?2 -  D ]  = -  dx -  d2 -  d3 •

3.6 Variable interfacial concentrations

It can be easily recognized that a sudden perturbation of the 

interfacial concentrations may cause relatively greater errors in the next 

estimate of concentration gradients at the interface. This relation may 

cause oscillatory instabilities of the finite difference solution if the 

concentrations of the solutes at the interface vary with the composition of

n-component bubbles.
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During the initial stage the gas composition may vary rapidly and 

evolve towards equilibrium. Therefore, if changes of gas composition 

are rapid, a small perturbation will be negligible if compared with the 

correct changes of gas composition predicted by equation (3.6), and the 

errors tend to oscillate with decreasing amplitude and vanish. On the 

contrary, if the gas composition comes close to equilibrium the changes 

of gas composition may be almost exclusively due to abnormal perturbations. 

Thus a scheme which uses concentration gradients at step £ to compute the 

gas composition (equation (3.6)) and interfacial concentrations (equations 

(2.54)) at step £+1 leads to oscillatory propagation of errors with 

increasing amplitude.

To solve this type of difficulty the diffusion equation is also solved 

at the interface and this requires the introduction of a fictitious mesh 

point (which falls inside the bubble). In addition the relations between 

concentration gradients at the interface, gas composition, and interfacial 

concentrations are used to formulate a second equation required to 

eliminate the unknown concentration at the fictitious point.

Let x be space variable at the fictitious point so that x = x - fix o o 1
= ]_-&£, where x^ = l, S x = x ^ - x ^ = x ^ - l .  If the index £ is 

temporarily omitted from equations (3.9) and (3.10)

î9f±
dx

X=1

F. _ - F.1 ,2____l ,o
2ÔX

S 2Fj_
dx2 X = l

F • 0 - 2F ■ , + F.i, 2 i,l i, o
{6x) 2

(3.44)

(3.45)

In addition, as e = 1 in the case of a gas bubble, the material

balance (equation (3.3)) at the interface reduces to
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3 F. 3f -___Ì. + 2— i9x2 f.i
x = 1 (3.46)

the

The concentration gradient J, « =1 /

last computed concentration profile. Therefore,

can be calculated from

from equation (3.44)

F.l Fi,2,£ 26;r Ji,£ (3.47)

A similar relationship is needed for time step ¿+1 in order to 

eliminate the concentration at the fictitious point. On integrating 

equation (3.4) by multistep implicit formula (appendix 1)

4tt
3 X.+1 i, i'+l “ Gi,Ui

= G. , + 6zi,x, + p.
1-2

+ p
rdG.i

4 [dZ J¿-3 J

+ 02 P0 R* 3x x=lJ x+i
(3.48)

and on rearranging

3Fi
x=l Ji-tl - do + dl 9i,x+i (3.49)

where

d = o
idGi

Gi,Jo/5Z + P1 chT + P
[dG

2 dZ + P.
¿-1

dGd 
3 I dZ + P.

JJL-2 4''dZ J x,- 3-

dG,- / P Rc -, O x+1

4tt 2 /
dl " 3 R^+l/ P ÓZo



69.

From equations (3.49) and (2.54), (Fj_ (R) = -  FQ ),

f3F.

x=l
¿+1

ao + dl Fi,l,*+1 (3.50)

where

F. . = F. (R)i,l,x-+l 1

d = - d + d., Fn /ai o o 1 °J

dr  - di/ai

and from equations (3.44) and (3.50)

F. _ = F. „ - 2 (6x) d„^ - 25a: d  ̂F . , ni,0,£+l l, 2,i+l 0 1 i,l,£+l (3.51)

Finally the time derivative can be replaced by

3Fi
dZ

X=1
I^i,1,£+1 / 6z (3.52)

and on combining equations (3.44) to (3.47), and (3.50) to (3.52) one obtains

b2,l Fi,l,Jl+l + Fi,2,£+1 b4,l (3.53)

where

b2,1
(6a:) 2 (R2)

1 ----f— <5z ^  “ &c)d 'i

b = 6a: (1 - Sx)4,1
(6x) 2 (R2)av

f. 6z i,i, l F.1 2,1
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Equation (3.53) assumes the form required for the boundary conditions 

of the finite difference implicit scheme, and resolves oscillatory 

instabilities of computed interfacial concentrations. A similar formulation 

was used by Crank and Nicolson (1947) to solve diffusion phenomena with 

surface kinetics acting as a boundary condition.

3.7 Starting conditions for the numerical scheme

3.7.1 Concentration profiles

Equations (2.52) and (2.54) express a singularity so that it is

convenient to use the quasi-stationary approximation (equation (2.58)), which

holds reasonably well for relatively small initial changes of content and

radius of the sphere. For this purpose starting time ZQ and starting radius

R must be estimated and equation (2.58) is expressed by 0

V e ' zo> F. (Rl O’V erfc e ~ %  '

■

(3.54)

with e  ̂R •

3.7.2 Relation between concentration profiles and content of the 

sphere

Considering an element of volume V of liquid medium containing nr moles

of species i, the corresponding volume contribution of that species is

(m . v ) and the volume fraction (v. • C.) . (These definitions may not be exact if ' i i 1 1
the partial molar volumes (i=l, ..., n+1) are not constant.). Here (n+1)

refers to the solvent.

Taking the volume of solvent as the frame of reference

V = m . v , = VI 1 - y (v C )0 n+1 n+1 I A  i i«- i = l J
n 1

1 - y (v. C )tjL i=l i J



71.

n n
The volume fraction of solvent is y , =[l - T y l=[l - ) (v - C )1 and Vn+1 > / i J L . '■ i i J °°x=l 1=1
denotes the initial volume of the element of solution containing volume

of solvent and concentrations Cm (i=l, n+1). Due to the change of
i

concentrations from C . to C. the number of moles can vary from m to m.°°i 1 °°j_ l

so tliat

m.i V
CO V c. (3.56)

and combination of equations (3.55) and (3.56) leads to the change in 

concentration being expressed by

(3.57)

In the case of one-component spheres equation (3.57) reduces to

X1 = (C^ - C)/(l - v) (3.58)

and in the case of gas bubbles the terms (v_. • C ) (j = l, ..., n) can be neglected 

which simplifies equation (3.57) to

X± = - C. ; (i=l, ..., n) . (3.59)
i 1

The changes of solute content of the sphere can now be worked out from 

the changes on the concentration profiles, that is,from equation (3.58)

OO CD

47T f r2 X dr = 4tt j r2 - dr = —  C ° (a3 - a 3) (S.6o)J 1 ' (1 - C v) 3 s  °a a m
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where the concentration in the sphere is considered constant. Equation

(3.60) can be made dimensionless and after simplification

OO
3X { e2 F de = 1 - R3 (3.61)

R

where

x0 = (1 " ca v)/(l - Cro v) . (3.62)

Similarly from equation (3.59) the case of n-component gas bubbles 

reduces to

OO

3 J e2 F. de = g.(0) - g. R3 (3.63)i l lR

where g.(O) and g^ are the initial and actual volume fractions of species i 

in the gas mixture. (In ideal gas mixtures g is also the mole fraction of 

species i.)

In some conditions F_̂ may be a simple function of e_ so that it will be 

possible to integrate equations (3.61) or (3.63) analytically. Otherwise 

numerical solution is needed and truncation is inevitable. In these cases 

the truncation also makes it possible to restrict the integration to 

significant ranges of_e_values whilst avoiding the computing for large values 

of e where insignificant errors of F invalidate the solution of equations 

(3.61) or (3.63).

3.7.3 Starting time Zp

The dimensionless starting time must be small to reduce the errors 

involved in assuming initial quasi-stationary approximations. For this 

purpose it is sufficient to consider the simplified form (equation (2.61)) of
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the quasi-stationary solution, which holds during the initial stage. Thus 

from equation (2.61), for one-component cases,

l = 2(J)Z0 +4<j> /z /tt' (3.64)

or

[(*+ (0Rq) /<+> 1
/F

where, as - 1 and |Ro — 1| << 1

Rq - 1 = 2(R - 1) = 2(6R )

(3.65)

Similarly for a general n-component bubble taking into account the 

possibility of transport in both directions

ZO 6ro / 1
i—1

: i ,o) (3.66)

This initial stage (O < Z < Ẑ ) is not covered by the finite difference 

solution. Thus, it must be short, and its duration can be varied by varying 

6r . Accurate predictions are usually achieved with |6f̂ | < 0.025 (see 

tables 3.1 and 3.2) .

3.7.4 Starting radius and composition of the sphere

Conbination of equations (3.54) and (3.61) or (3.63) leads to

AG. = g. R. - g. (0) = - 47T X / e2 F del i o i o r
Ro

CO
l r h

= - 8tt.F.( r0'Z0) 'Ro (fi‘ Z0) ‘ J [2w.(f±. ZqK  + R0]erfc(w)dw (3.67)

where XQ = 1 in the case of gas bubbles, F ^ R ^ Z q ) - Fi (l,Zo) and
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with

w = (e - R )/ 2 (f. • 
1

and

/ w erfc(w) dw = 1/4 
O

/ erfc(w) dw = l//jf 
O

Thus, on integrating equation (3.67)

AGi = - V V V W " « ! ' ’ « +

and

G (Z ) = G.(O) + Ag . 
1 o 1  1

13.68)

¿ v v - i V .

from which it follows that

Ro i r  J .  [ q ' V 1i= l

v3
(3.69)

Also taking into account that G. represents the dimensionless number of 

moles of gas i

n
J. (Z ) - G. (Z_) / y G. (Z) . i O i 0 j o (3.70)

The interfacial concentrations can also be corrected by taking into 

account the mole fractions g^(Z^) and equation (2.54), that is

W V  ~ V  (Z ) -  F0 . (3.71)
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3.8 Distribution of space mesh points

Equally spaced distributions are commonly used in finite difference 

methods, regardless of the changes of the shape of concentration profiles 

(Readey and Cooper, 1966; Cable and Evans, 1967; Duda and Vrentas, 1969). 

Szekely and co-authors (1971, 1973) doubled the spacing of mesh points each 

time the concentration gradient at the interface had decreased by a factor 

of 0.5. (See also Martins, 1969). However constant mesh sizes were used 

at every time step. The present method uses redistribution of mesh points 

from time to time but also variable spacing at any particular time step, to 

ensure accuracy and economy and also to cover large values of the space 

variable without undue numbers of mesh points.

It is difficult to predict the evolution of concentration profiles with 

time, especially if the concentrations at the interface vary with time. A 

possible way of taking into account these changes is to allow larger space 

mesh where the concentrations vary smoothly with increasing radial distance 

from the centre.

For a convenient redistribution of existing x. ; F. . pairs, where
3  1 / 3

F = f (X ■), the following S (x) function is used i , i i 3

n F (x)
S(x) = H  / d|F (x) I ] (3.72)

i—1 F (R)

or its discrete form

S . 
3 / • • • / ni

(3.73)

and a new 6s increment

6S = S(°°)/n0 = S /n  ̂ n. 1
(3.74)
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so that the new space mesh points x' will be interpolated from previous

X .; F. where the function S (x) assumes the new discrete values 1 1 < 3

S  . '  =  S  S S  j $ 23 D-l

with = 0

and

x . ' = x (S . ) 1 1

The new x^ can be obtained by simple linear interpolation because the 

redistribution of point does not need to be rigorous. Polynomial inter­

polations were only used to recalculate the concentrations F . = F. (x .') at F i,D i :
these points.

In the tail of the profile the concentrations tend to vary smoothly and 

it is necessary to control the ratio A between the size of adjacent mesh 

units, that is

A = .x. , 
l 7+1 x ' \ < \g-11 max (3.76)

In tables 3.1 and 3.2 it is shown that accurate results are achieved with

A '< 1.5. The range 1.1 ^ A ^ 1.5 is a useful compromise between max max
accuracy and the need to cover large ranges of x values without undue numbers 

of mesh points.

Truncation of the space variable can be based on the formula

Xmax xa + q. (3.77)

where x and x a b are obtained by interpolation from existing (x . ; S .) 1 pairs,

so that
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S'(m ) = 0.975 S a nx

S'(X) = 0.95 S b nx

The factor has very little effect on the final solutions provided ^ 5 

(tables 3.1 and 3.2). This demonstrates the soundness of the truncation 

criterion.

Redistribution is not needed after every time step. Besides extra 

computing is involved in the redistribution of mesh points as well as errors 

due to interpolations. A compromise is achieved by redistributing the space 

mesh points every ten time steps. The stability of the finite difference 

method will then ensure that errors which are due to interpolations will tend 

to vanish.

3 .9  Amplitude of time intervals

The non-linear coefficients of equation (3.3) are functions of both the 

radius of the sphere and its time derivative, so that the convergence of the 

finite difference solutions may be hindered by excessive values of |5r /R[.

Rapid changes of concentration profiles are the other cause of poor 

convergence. To overcome this difficulty it is necessary to control the 

relative changes of interfacial concentrations and the relative amount of 

material transferred per time step. The last quantity can be controlled by 

preventing large |(5r )/R|values, but this restriction is insufficient when 

different species diffuse in opposite directions, causing relatively rapid 

changes of composition in multi-component bubbles. This interdependence 

allows a second control by restricting the changes of mole fractions of gas 

per time step in n-component bubbles. Thus, the proposed controls can be

written
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R
- K uzd£ (6Z)£+1 < 61 (3.78)

dZ £ (5z)£+r < 6 2 (3.79)

<3Fi (R) 
dZ / F. (R) 1 (fe)l+l 4 6 3

(3.80)

£

The derivatives cIr ] id9i,
dZ and dz,— ' at time steP ^ can de used to estimate

the new time increment because the procedure is controlled step by step and 

those time derivatives do not vary significantly between two consecutive 

time steps.

The effect of varying 6  ̂is illustrated in tables 3.1 and 3.2 and is

discussed next. The restriction (3.79) is effective with 6  ̂ in the range

0 .002-0 .0 1. For the species having the maximum absolute numerical values of

the "driving force", F.(R) = 6 , it is convenient to use 63 in the range

0.001 - 0.005; otherwise it is sufficient to use 5^ = 0.01 and restriction

(3.80) can be dropped if |f . (R)/(j) | < 0.05.v 1 max

During the initial stage the boundary layers are thin and small 

quantities of material transferred in any direction can produce significant 

changes of shape of concentration profiles. It is then convenient to add 

an additional restriction, relating the actual changes per time step to the 

changes which have happened since the beginning of the process. This 

restriction should not be too severe and can be expressed by

W z ) m  < °-02 zt • (3.81)
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3.10 Convergence of finite difference solutions

It has been emphasized that the best way of assessing the convergence of 

finite difference solutions was to compare asymptotic regimes of growth. 

Growth from zero size has been solved analytically by assuming a unique form 

for C(s) = C(r,t) where s = r/( 2/tD (Scriven, 1959) and can be expressed by

a = 2 3 /tD

or in dimensionless terms

R = 2 3 /z

where the characteristic growth constant 3 is a function of the solubility 

parameter * = (C - C ) / [C ° (1 - v C ) ] and £ =(l - v C °) which accounts

for the changes in volume of the system (see Chapter II). This analysis was 

derived for one-component spheres, but has now been extended to multicomponent 

bubbles (Chapter VI).

The evolution of growth from finite size towards the same type of 

solution is largely illustrated in Chapters IV and VI and it was found that 

with R 5 100 the ratios 3 = R/2/z given by the (R,Z) pairs computed

numerically by finite difference solution remain constant (to at least the 

fourth significant figure).

If <j) = 0.6977 and e = 1 the analytical solution is $ = 1. The same 

values of <f> and C were chosen for solution by the finite difference method to 

obtain the numerical values 3 • Several sets of n , 5 , X and q were
f t  -L J- ITlclX 1

used as indicated to give the results included in table 3.1. In all these 

cases the accuracy of the finite difference solutions was very good taking 

into account the existence of non-linear coefficients which must be solved 

simultaneously. It is clear from table 3.1 that the ratio between adjacent



Table : 3-1

Effect of the number of space mesh points n ,

relative changes in radius (restriction (3-78)),

maximum ratio \ between the size of adjacent space max
mesh units (restriction (3-76)), and truncation factor

(restriction (3-77)) on the finite difference

predictions of growth constant for one-component bubbles

B • In all these cases e =1 and the B predictions are n n
constant for R > 100. (6R) =0.01.

0 . 0 0 1 1 1 0 0

n l 6 1
Amax q ! Bn

5 0 0 . 0 1 1 . 1 1 0 0 . 0 2 2 8 4 1 . 0 0 1 9 8 . 3 0

1 0 0 0 . 0 1 1 . 1 10 0 . 0 2 2 8 3 1 . 0 0 1 9 8 . 2 5

2 0 0 0 . 0 1 1 . 1 1 0 0 . 0 2 2 8 1 1 . 0 0 0 9 5 - 2 2

1 0 0 0 . 0 0 5 1 . 1 1 0 0 . 0 2 2 8 2 1 . 0 0 1 9 8 . 2 5

1 0 0 0 . 0 2 1 . 1 10 0 . 0 2 2 8 3 1 . 0 0 1 9 8 . 2 5

1 0 0 0 . 0 1 1 . 0 5 1 0 0 . 0 2 2 8 1 1 . 0 0 0 9 8 . 2 0

1 0 0 0 . 0 1 1 . 2 5 1 0 0 . 0 2 2 8 6 1 . 0 0 2 9 8 . 3 9

1 0 0 0 . 0 1 1 . 5 1 0 0 . 0 2 2 9 0 1 . 0 0 5 9 8 . 7 2

1 0 0 0 . 0 1 2 . 0 10 0 . 0 2 3 0 5 1 . 0 1 4 9 9 . 7 8

1 0 0 0 . 0 1 1 . 1 5 0 . 0 2 2 8 5 1 . 0 0 1 9 8 . 2 7

1 0 0 0 . 0 1 1 .1 2 0 0 . 0 2 2 8 3 1 . 0 0 1 9 8 . 2 5



Table : 3-2

Effects of r^, 61 » ̂ max , £31 » ̂ R0 (equation (3.6 5)) or. the 

finite difference predictioi.s of dimensionless time required

to decrease to half the initial size ZQ 5 (e = l ) .

Fa 0 .001 1 100

ni 61 Amax qi (6r0) Z n 0.5 F 2. za 0.5

50 0.01 1.1 10 0 .01 3 5 9 - 5 0 . 1 2 6 5 0 . 3 2 1 2

100 0.01 1 . 1 10 0 .0 1 3 6 0 . 0 0 . 1 2 6 3 0 . 3 2 0 4

200 0.01 1.1 10 0.01 3 6 0 . 2 0 . 1 2 6 3 0 . 3 2 0 4

100 0 . 0 0 5 1.1 10 0 .0 1 360 .1 0 . 1 2 6 3 0 . 3 2 0 4

100 0 . 0 2 1.1 10 0.01 3 5 9 . 8 0 . 1 2 6 3 0 . 3 2 0 4

100 0.01 1 . 0 5 10 0.01 3 6 0 . 3 0 . 1 2 6 3 0 . 3 2 0 5

100 0. 01 1 .2 5 10 0.01 3 5 9 . 4 0 . 1 2 6 2 0 . 3 2 0 3

100 0.01 1 . 5 10 0 .0 1 3 5 8 . 4 0 . 1 2 5 9 0 . 3 1 9 5

100 0. 01 2 . 0 10 0.01 3 5 5 . 2 0 . 1 2 5 0 0 . 3 1 6 6

100 0. 01 1.1 5 0 .0 1 3 5 9 . 8 0 .1261 0 . 3 1 9 8

100 0. 01 1.1 20 0 .0 1 3 6 0 . 0 0 . 1 2 6 3 0 . 3 2 0 4

100 0 .0 1 1 .1 10 0 . 0 0 5 360 .1 0 . 1 2 6 3 0 . 3 2 0 6

100 0.01 1.1 10 0 . 0 2 5 3 5 9 . 8 0 . 1 2 5 9 0 . 3 1 8 9

100 0.01 1.1 10 0 . 0 5 3 5 9 . 4 0 . 1 2 4 3 0 . 3 1 3 3
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space mesh units A is the parameter most likely to affect the convergence 

of the finite difference solutions, but the errors remain below about 0.5% 

with A up to 1.5. Changing the number of space mesh points n, does notIT13.X -L

have a significant effect on the accuracy of the finite difference solutions,

within the range used, and the same can be said of the relative change in

radius (restriction (3.78)), provided 6^ < 0.02, and truncation factor q ̂  > 5

(equation (3.77)). The solutions reported in the next three chapters were

u s u a l l y  c omput e d w i t h  A = 1 . 1 ,  n,  = 100,  6 = 0 . 0 1  and q = 10.
x max 1 1  1

Two extreme cases <J) = 0.001 and 0 = 1O0 (e = 1) are also included in

table 3.1. The finite difference solutions for the usual parameters (n =

100- 6 = 0.01; A = 1.1; and q = 10) are 3 = 0.02283 for 0 = 0.001

and 3 = 98.25 for 0 = 100. The corresponding analytical solutions for these

values of 3 in terms of 0 (3,£) are 0(0.02283,1) = 0 .0 0 10 0 2, and 0(98.25,1) =

100.1. The use of other combinations of the parameters n , 6 , A and qJ_ J. max JL

gave only trivially different solutions, all probably of greater accuracy

than the experimental determination of concentrations and solubility (0) in

any practical case. Thus, the finite difference method is accurate over

a very large range of values of solubility parameters, which covers virtually

any spherical phase in a sufficiently large volume of liquid.

The effects of the number of space mesh points n^, relative increase in

radius per time step 6 ,(restriction (3.78)), and parameters A ,(restriction

(3.76)), q , (restriction (3.77)), and 5Rq , (equation (3.65)) on the

dimensionless time ZQ  ̂required to reach half the initial size have been

investigated and are illustrated in table 3.2. If n > 50, 6  ̂< 0.02,

q > 5 , and A^^ < 1-5 the finite difference solutions do not vary

significantly by varying any of those parameters. The largest differences

occur for A ^ 2  and | 6R | ^ 0.05. u max 0

As analytical solution is impossible for a dissolving sphere it is more
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di fficult U U U  U L - ^ U l-iL'ca o_y' of numerical methods for dissolving bubbles.

The greatest problems would often occur as size approaches zero, especially

in cases when the rate of dissolution dR
dZ increases with decreasing size.

This difficulty is solved by redistribution of the space mesh points and 

control of the relative changes in radius per time step,(restriction (3.78)). 

Then the accuracy of the finite difference method is not poorer during the 

last stage than it is during the intermediate stage of dissolution.

3  ̂ Comparison of the present method and previous finite difference

solutions

It was earlier noted that Readey and Cooper's (1966) explicit method 

could require excessively large space mesh sizes to ensure stability but at 

the expense of convergence. Their solutions for the case F =0.5 (dissolution)
3.

with e = 0 and 0.5 were about ZQ = 1 and 0.93 respectively where denotes 

the time required for complete dissolution. For those cases our solutions 

are ZQ = 0.834 and 0.742 respectively. Solutions for slower dissolution were 

not reported in Readey and Cooper's work (1966) which suggests that the method 

was not suitable for slow processes due to restrictions on the time 

increments making computing times very long.

Cable and Evans (1967) reported a fairly large number of solutions but 

their results seem to be inaccurate, especially the predictions of 

dissolution. This may be due to the decrease of boundary layer thickness 

during dissolution without correspondingly decreasing the mesh size 6e.

The differences between our results and Cable and Evans predictions of 

dissolution times can be as much as 82% (table 3.3). Besides, there is 

evidence that the differences are not exclusively due to different time 

scales (figure 3.1).

Another shortcoming of Cable and Evans method is that it would be very
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Comparison between the present predictions 
and Cable and Evans' predictions of 
dimensionless dissolution time, Z0

Table 3.3

Cable and Evans Present work

£ O 1 0 1

F Za 0

0 .0 1 67.44 67.25 46.48 46.25
0 . 1 5.83 5.68 4.214 3.994
0.5 1.090 0.966 0. 834 0.644

1 0.540 0. 441 0.451 0.2828
2 0 .2 81 0.192 0.2670 0.1214
4 0. 149 0.09 3 0.1726 0.0512

inefficient to compute large increases of radius because a constant mesh 

size was used.

Duda and Vrentas (1969, 1971) used N and N to characterize the.D

behaviour of one-component spheres where is a solubility parameter

and N is related to e by the relation B

£ = 1 - n b /na •
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Comparison between the present predictions and Duda 
and Vrentas' predictions of dimensionless 

dissolution time, Z0

Table 3.4

Duda and 
Vrentas (1971)

Present work

F N £ F •2a B a O

0 . 0 1 0 .0 1 0 0.465 0.465
0 .0 1 0 . 1 -9 0.486 0.486
O. 1 0 .0 1 0.9 0.402 0. 402
0 . 1 0.1 0 0.422 0.421
0.1 1 -9 0.601 0.601

1 0.1 0.9 0.302 0.3011
1 1 0 0.451 0.451

10 1 0.9 0.271 0.2742
100 1 0.99 0.143 0.1464

1000 1 0.999 0.0726 0.0742

Figures 3.2a to 3.2d show some of the present finite difference solutions 

and the corresponding predictions by Duda and Vrentas (1969, 1971).

Comparisons of times required for complete dissolution are also shown in 

table 3.4 and the differences between the actual predictions and Duda and 

Vrentas1 results (1971) are usually less than 1% which represents a remarkable 

agreement taking into account that the techniques are quite different. The 

largest differences in times occur for large solubility parameter but are 

always less than 2.5%. Duda and Vrentas investigated the effect of varying 

the space and time mesh sizes and this might explain the accuracy of their 

predictions. They also found that accuracy of solutions and economy of 

computing can only be achieved by decreasing the amplitude of time intervals



Fig 3.1 : Comparison between the present finite difference 
solutions for the one-component case Fa = 4; £ = 1 and 
the corresponding finite difference predictions by Cable 
and Evans (1967) .



Z

Figs 3.2a to 3.2d : Comparison between the present finite 
difference solutions for one-component cases and the 
corresponding finite difference predictions by Duda and 
Vrentas (1969, 1971).





Figs 3.3a and 3.3b : Comparison between the present finite 
difference solutions for two-component cases and the 
corresponding finite difference predictions by Weinberg 
and Subramanian (1980) (shown dashed) .
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during the initial stage of dissolution and during the final stage for the 

cases when the dissolution rate increases with time (low F ). However, theycl
failed to provide a general criterion or algorithms to control the time 

intervals. In addition they did not include algorithms to readjust the space 

mesh points which may be necessary as the boundary layer thicknesses vary 

considerably during transient regimes.

Having published a comprehensive set of predictions for dissolution 

Duda and Vrentas failed to do the same for growth and did not compare finite 

difference predictions to the only class of exact solutions available for 

growth from zero size (Scriven, 1959). It has been pointed out that 

comparison is possible provided that sufficiently la-rge increases in size are 

computed by the finite difference technique, so that the effect of the initial 

transient stage becomes negligible. This requires unduly large numbers of 

time steps if sequential control of time intervals is not used.

Another limitation of Duda and Vrentas1 techniques is that they were not 

conceived for use with multicomponent bubbles, especially when rapid changes 

of interfacial concentrations are involved and when there is a need for models 

to describe unusual bubble behaviour (see Chapter VI). Weinberg and 

Subramanian (1980), used a technique similar to Duda and Vrentas's finite 

difference method to solve the behaviour of two-component stationary bubbles. 

However they reported only two examples which is clearly insufficient to 

demonstrate the performance of their method. They also failed to show 

comparison with alternative exact solutions to test their predictions of 

behaviour of multicomponent bubbles.

Figures 3.3a and 3.3b show the predictions reported by Weinberg and 

Subramanian (1980) and the corresponding actual predictions. These cases 

were computed with arbitrarily chosen solubilities, diffusivities and 

concentrations in the bulk liquid so that it is more significant to use only
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dimensionless variables instead of the real time used by Weinberg and 

Su bramanian.  These authors might have been unable to solve the f i n a l  stage 

°f Process illustrated in figure 3.3b. Also they computed only a

relatively short initial stage in the case shown in figure 3.3a, stopping 

before the direction of transfer of species 1 (which corresponded to oxygen) 

bad changed. During the initial stage species 1 diffuses into the bubble 

Whilst the interfacial concentration increases and approaches the value of 

the solute concentration in the bulk liquid medium. At g = 0.45 the
°°i 1

rnterfacial concentration exceeds C and F (R) changes from negative to
°°1 1

P0-itive. This points out that the normalized dimensionless concentration 

Cx ~ ̂ Cj_(r,t) - cra )/(C. (a,t) - )] used by those authors is not suitablei l °°i
r this type of problem because of the discontinuity which occurs when 

0 (
i Q,t) < is reversed to become O  (a,t) > or vice-versa. These

samples also show that the changes of interfacial concentrations per time
5tep must be controlled.

During the last stage of the example shown in figure 3.3b F (R) also
°hanges

Subi
sign at g^ = 0.45. Again the computations reported by Weinberg and

ramanian (1980) did not reach this stage. This supports the previous 

luments. Weinberg and Subramanian1s prediction of the R versus Z curve is 

included because the R scale is not properly shown in the original article, 

^zekely and co-authors (1971, 1973) showed good agreement between their

bte difference predictions for large (j) and the corresponding asymptotic 
regime for 

diffei
growth from zero size  (Scriven, 1959). However, that fin ite  

-rence technique was not used to compute growth with low or moderate 4>,

°r dissoluti 
was

for

Lon. The restriction on the amplitude of time intervals which 

needed to ensure stability might prevent efficient use of such methods 

abl ranges of the parameters.
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CHAPTER IV

4.1 Growth of one-component spheres

Equations (2.28) and (2.29) illustrate that one-component spheres can 

be characterized in terms of only two variables (f> and £. The solubility 

parameter accounts for concentrations of solute in both phases and e accounts 

for the partial molar volumes of the solute. It is not necessary to include 

the diffusivity, D, in the dimensionless balances, so that the dynamics of 

the process can be studied independently of D. It is therefore reasonable 

to use the terms slow and rapid growth to denote small (cj) < 0.01) and large 

(<j> > 10) values of <p respectively.

The relevant material balances (equations (2.28) and (2.29)) can be 

solved bv using the finite difference technique outlined in Chapter III.

Exact solutions cannot quantify the growth of spheres from finite (non-zero) 

size. However those analytical solutions have vital importance in testing 

the accuracy of numerical techniques.

The study of nucleation and growth of spherical phases is important in 

the science of materials, in glass technology and in many chemical engineering 

processes. In some systems analytical solutions of growth from zero size can 

be useful. Otherwise, alternative methods are required to quantify the 

growth from a nucleus with significant finite radius. The limitations of 

various approximate solutions must also be discussed.
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4.2 Analytical solutions for the growth of one-component spheres 

from zero size

Equations (2.28) and (2.29), with boundary conditions (2.31), (2.32) and 

initial conditions (2.33) were solved by Frank (1950), for the case e = 0, 

that is when u(r) = 0 and the volume of the system remains constant because 

the partial molar volumes of solute in the liquid and in the sphere are 

equal (equation (2.25)) . Frank's solutions were extended by Scriven (1959) to 

cover the general cases £ f 0. Both authors used Boltzmann transformations by 

assuming the unique variable

C (s) — C (r, t) (4.1)

with

s = r/2/Dt = e/2/z (4_2)

and
a = 26/Dt (4.3)

for growth from zero size. 3 is a characteristic constant dependent on both 

(p and E .

Accordingly to such transformation the concentration profile is given 

by

C (r/a) = Cœ - 2B2Cc (1-Cav) J e xp  I B2 [ l  + 2 c x  -  ( 1 - r )  2 j j dr (4.4)

and on introducing the boundary conditions
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M -  r  . v- = 2 3 2 / exp 1 + 2cx !i-x: -2 d r (4.5)

The transformation of the partial differential equations leads to simple 

ordinary differential equation which is easy to integrate by using

numerical methods. Fourth-order Runge-Kutta and fourth-order Runge-Kutta- 

Fehlberg (Fehlberg, 1970) techniques were used for that purpose (appendix 2).

These analytical solutions rely on the existence of unique self similar 

profiles, which can be used to confirm the material conservation, by integra­

tion of the changes of solute content in the liquid medium. This confirmation 

also serves to verify the continuity equations formulated in Chapter II and 

the velocity profile in the liquid medium (equation (2 .10)).

Analytical solutions are also the best test of comparison for general 

numerical solutions of the partial differential equations and other simple 

approximate solutions. Reliable numerical techniques must produce convergence 

of numerically predicted growth rates and concentration profiles to the 

equivalent analytical predictions for sufficiently large spheres. Computing 

algorithms which fulfil these conditions can be intended for use in more 

general conditions, when analytical solutions are not available.

4 #3 Concentration profiles and material conservation

Mass conservation after growth from zero size requires

CO p _ p
r  o  v“'o o  ^  4  Q _

4T / r i m i i )  * ' 3 * *  cs l4-6>a

and by substitution of equation (4.4) into equation (4.6) and transformation 

of variable r into w = 1 - a/r.

I = 6B‘
1 - C v'd
1 - ¿“v / (1-w) k J exp f 3"

w
1 + 2ex (1 ~x) dr dw = 1 .

(4.7)
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The integrai I was evaluated numerically (appendix 3) for wide ranges 

of 8 and e in the range 0-2. Some results are listed in table 4.1, for 

the case Ca = 0, and show that the deviations from equation (4.7) remain 

negligible. The mole fractions of solute in the bulk liquid medium,

= v Cm , are also indicated to demonstrate that deviations from equation 

(4.7) can only be detected with very large values of the factor (1 - v)~1, 

which make the numerical integration of equation (4.7) very dependent on 

apparently negligible differences of the concentration Ĉ , (obtained by 

numerical integration of equation (4.4)).

The excellent agreement between concentration profiles and the overall 

material conservation is a conclusive proof of the correctness of the 

differential balances. It also confirms that the rate of the process is 

dependent on the partial molar volume of solute, rather than on the density 

of the liquid medium.

Table 4.1

Confirmation of material conservation 

according to equation (4.7)

e 0 1

8 Yoo I Yoo I

0.01 0.0002 1.000 0 1.000

0. 1 0.0168 1.000 0 1.000

1 0.484 1.000 0 1.000

10 0.985 1.000 0 1.000

20 0.996 0.998 0 1.000
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Computations of growth of one-component spheres were carried out by 

using the technique outlined in Chapter III. Wide ranges of <j> were covered 

and different values of £, special emphasis being given to the cases £ = 1 

and £ = 0. With £ = 1 the volume of liquid medium remains constant, whilst 

if C = 0 transfer of solute across the interface between sphere and liquid 

causes no change in volume and the volume of the system remains constant.

Equation (4.3) can be written in dimensionless form

4.4 Numerical solutions of growth from finite size

and the plotting of numerically computed results in logarithmic scales 

allows a ready confirmation of the convergence of numerical solutions to 

their equivalent asymptotic regime of growth from zero size. This convergence 

is illustrated in figures 4.1, 4 . 2  and 4 . 3  for the cases e = 1, £ = 0.5 and 

e = o respectively. The dashed lines represent analytical predictions of 

growth from zero size (equation (4 . 8 ) )  for the smallest and largest (J> 

values respectively.

The convergence of numerical solutions to equation (4.8) is also 

confirmed in table 4.2. After an increase to 10 times the initial size 

(R = 10) the ratio R/2/z is already less than 1.5% greater than the final 

limiting values for R = 10J .

R = 2B/Z (4.8)

or

(4.9)



Figs 4.1, 4.2 and 4.3 : Convergence of growth from finite
size towards the asymptotic regime. The values of £ are 
shown in the figures. The dashed lines represent growth 
from zero size for the smallest and largest values of (j) 
shown in each figure. The solubility parameters are, 
from right to left,
in fig 4.1 : <f> = 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5,

10, 20, 50 and lOO respectively, 
in fig 4.2 : (p = 0.001, 0.01, 0.1, 0.2, 0.5, 1, 1.5,

1.75 and 1.9 respectively.
in fig 4.3 : <J> = 0.001, 0.01, 0.1, 0.2, 0.5, 0.75, 0.9 

and 0.95 respectively.
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Table 4.2

Evolution of growth rates towards the asymptotic 

regime for the case e = 1

0.001 0.01 0.1 1 10 100
R R/2/z

2 0.02647 0.0885 0.3330 1.745 14. 30 139.5
5 0.02333 0.0771 0.2816 1. 378 10. 78 104.1

10 0.02295 0.0758 0. 2757 1.336 10. 37 99.9

o ro 0.02280 0.0753 0.2739 1.320 10.21 98.3
103 0.02279 0.0753 0.2738 1. 320 10.20 98.2
105 0.02279 0.0753 0.2738 1.320 10.20 98.2

Computations were carried out until a =(l05. a0),(R = 105), and these 

numerical predictions were used to estimate the growth constant B. The 

numerical predictions of B values were then put into equation (4.5) to 

recover the analytically predicted values of solubility parameter <j>(B,e) 

(see table 4.3). These computed 4> values differ by less than 1% even with 

very large growth rates. Experimental methods are very unlikely to 

measure concentrations within 1% error.

4.5 Concentration profiles

Analytical solutions for growth from zero size require a unique 

concentration profile as predicted by equation (4.4). Valid numerical 

predictions of concentration profiles during growth from finite size must 

converge to those solutions of growth from zero size and provide further 

confirmation of both numerical and analytical solutions of the relevant 

partial differential equations.

In figures 4.4 to 4.8 the concentrations have been normalized and the



Table 4.3

Comparison between finite difference predictions of the asymptotic 

regime of growth from finite size and the corresponding 

analytical solutions for growth from zero size .

E O 0.5 1

3 3 <t> (B,£) 6 <p (B,e)
0.001 0.02284 0.001002 0.02283 0.001002 0.02283 0.001002

0.01 0.0756 0.01002 0.0755 0.01002 0.0753 0.01000

0.1 0.2827 0.1000 0.2779 0.1000 0.2734 0.1000

0.2 0.4541 0.2000 0.4360 0.2000 0.4206 0.2001

0.5 1.038 0.5000 0. 880 0.5000 0.783 O.5001

0.75 1.958 0.7501

0.9 3.564 0.9004

0.95 5.263 0.9502

1 - 1.819 1.000 1.320 1.001

1.5 3.654 1.500

1.75 6.003 1.750

1.9 10. 36 1.900

2 - 2.334 2.001

5 5.30 5.005

10 10.20 10.01

20 19.99 20.02

50 49.33 50.04

100 98.2 lOO. 1



Figs 4.4 to 4.7 : Finite difference predictions of
concentration profiles during growth from finite size.
The numbers show the corresponding dimensionless radius 
R. The discrete symbols (+) represent the analytical 
solutions for growth from zero size (equation (4.4)).
The relevant values of e and <j> are shown in the figures.





Fig 4.8 : Analytical solutions of concentration profiles for 
growth from zero size (equation (4.4)) for low values of 
cj) (dashed lines) . The full line represents the limiting 
quasi steady-state prediction (equation (2.69)). The 
numbers show the values of the solubility parameter (ft
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radial distance from the centre of the sphere transformed as suggested by 

the analytical solutions (equation (4.4)). The evolution of numerically 

computed profiles in these figures is illustrated at several stages of the 

transient regime, namely with R = 1.05, 1.1, 1.25, 2.5 and 10.

In figure 4.4 (cf> = 0.01 and z = 1) , the numerical predictions evolve 

rapidly towards the final asymptotic profile. The solution for R = 2.5 is 

indistinguishable from the final profile for R = 105, and is also 

indistinguished from the analytical predictions. The concentration gradient 

near the interface converges even more rapidly to the final solution than 

the tail of the profile. This must be due to the fact that very little 

material is needed to saturate the boundary layer while the tail of the 

profile requires larger times to be built up by diffusion.

The evolution of profiles with moderate and large solubility parameters 

(figures 4.5, 4.6 and 4.7) show the increasing importance of the transient 

stage. With (J) = 1 and e = 1, (figure 4.6) , or <J> = 10 and £ = 1 (figure 

4.7) the profile for R = 2.5 is still distinguishable from the final one, 

but profiles for R = 10 and R = lO5 cannot be distinguished. Again these 

final profiles are almost coincident with the equivalent analytical 

solutions of equation (4.4).

The evolution of concentration profiles shows that the transient stage 

is usually important until about R = 2.5, that is when the radius of the 

sphere is about 2.5 times the initial radius. This stage may include the 

most important part of the process, and analytical solutions cannot then 

be used.

By comparison between figures 4.4, 4.5, 4.6 and 4.7 it is evident that 

the boundary layer thicknesses increase with decreasing solubility 

parameters. Asymptotic profiles are shown in figure 4.8 in the range of 

very low (p. The actual solutions converge towards the quasi steady-state
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which is nearly indistinguishable from the solution for p = 10“6 . Growth 

rates also confirm the quasi-steady state approximation as the limit of 

actual solutions in the range of very low <J>.

4.6 Comparison between analytical solutions and approximate predictions 

of bubble growth

Gas bubbles can be characterized by only a single parameter 4>, with 

S = 1. For these cases it is possible to find precise limits of asymptotic 

regimes (Scriven, 1959) , that is for very low (j)

<j> = 262 (4.10)

and

R = (2 ĉ Z)̂  (4.11)

and for very large <p

<f> = /tj/3 £ (4.12)

or

R = 2p/3/n /z . (4.13)

For sufficiently long times the quasi-stationary equation (2.57) and 

quasi steady state equation (2.70) each leads to

R - 2 3 /£ = (2 fa)** (4.14)

which is also the limit of analytical solutions of growth from zero size, 

(equation (4.11), for very low cj>.

The other limit of quasi-stationary solutions for large (p (equation
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(2.64)) may be expected to hold better in the range of very small Z, that 

is with large 0. Therefore, for large R equation (2.64) becomes

R - 2 B /z = 2 (p/z/v (4.1!

or

<P = Æ  B . (4.16)

However, these predictions of solubility parameters are about 73% in excess 

of those given by the analytical solutions (equation (4.12))

By substitution of asymptotic dependence of R on /z, (equation (4.8)), 

into the quasi-stationary equation (2.57) one obtains for large R

R = 2 cj) —  +
120 7n,j (4.17)

and therefore the asymptotic quasi-stationary regime leads to

- s/ ( V t =Ì •'  l2B Æ j

(4.18)

In an attempt to find a generally acceptable approximation to the true 

analytical solutions equation (4.18) can be replaced by

<p = 3 / iJL + / 1\/ [20 w  ttJ (4.19)

so that its limits for very low and very large growth rates will be coincident 

with the corresponding limits of analytical solutions (equations (4.10) and 

(4.12) respectively).

The ratios <f>ap/<|> are plotted versus log 0 in figure 4.9# where . ±

the approximate prediction of solubility parameter and <J, the equivalent 

analytical solution of equation (4.5) with e = 1. Both quasi steady state



- 2 - 1  0 1 2
log 3

Fig 4.9 : Relation between the approximate values of 
solubility parameters <J)ap predicted by
1 - equation (4.10)
2 - equation (4.16)
3 - equation (4.18)
4 - equation (4.19)
and the equivalent analytical values of <J).
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(equation (4.10)) and quasi-stationary solutions (equation (4.18)) are 

reasonably good in the range of very low growth rates. Equation (4.16) is 

generally very poor even in the range of rapid growth. The failure of this 

flat slab model is possibly due to the role of boundary motion. Finally

equation (4.19) is an excellent approximation in the ranges 3 < 0.05 and 

3 > 10 where the differences are less than 1% of the analytical <f>(B) values. 

It is still generally acceptable for 0.05 < B < 10 where the differences are 

< 3%.

4,7 Comparison between approximate and numerical solutions of the 

transient initial stage

The simple form of quasi steady-state approximations suggests a useful 

representation of the relation between the square radius and time (figure

4.10) for growth from finite size. All the solutions represented in
ofigure 4.10 reproduce nearly linear relations between R and Z. These 

results also confirm the gradual convergence of actual solutions to the 

quasi steady-state limit, (dashed line in figure 4.10), for low solubility 

parameter. It has already been shown that quasi-stationary solutions 

converge to the quasi steady-state approximations for very low (f> and that 

other approximate predictions are poorer in this region.

The quasi-stationary approximation suggests a different representation 

for very large solubility parameters (equations (4.13) and (2.64)). In the 

asymptotic regime R becomes a unique function of the transformed time <J> Z. 

This unique dependence can be extended to growth from finite size (figure

4.11) , where the solutions for (p = 100 and <J) = 1000 are almost indistin­

guishable. Therefore the case (j) = 100, £ = 1 is good representation of 

growth of all bubbles with very large solubility parameters. The limiting



Fig 4.10 : Initial stage of growth from finite size for low 
and moderate solubility parameters tp. The numbers show 
the values of (f>. The dashed line represents the quasi 
steady-state approximation (equation (2.70)).

Fig 4.11 : Initial stage of growth from finite size for
moderate and large (j>. The numbers indicate the values 
of <p.
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growth from zero size (equation (4.13)) is also shown in figure 4.11 

(dashed line).

Other simple approximate solutions have been proposed in the literature 

to quantify the initial transient stage of growth from finite size.

Martins (1969) proposed the following transformation of equation (4.13) into

R = 1 + 2ct>/37if Sz . (4.20)

A different approximation was obtained by Rosner and Epstein (1972) by 

assuming a simple approximate form of concentration profiles.

-j (R2 - 1) - (1 - 1/R) = 2cp2 Z . (4.21)

Equation (4.21) leads to the asymptotic regime

R = 2<(>/z (4.22)

which is about 2.33% in excess of analytical predictions of R in the range 

of large <J> (equation (4.13)). However, equation (4.21) fails for low and 

moderate 4s *

In figure 4.12 it is shown that equation (4.21) is reasonably accurate 

for large (j> even during the initial transient stage. Spherical symmetry 

must be relatively insignificant whenever the boundary layer is very thin, 

which explains the agreement between the actual numerical solutions 

(tp = 100) and the flat-slab model (equation (2.64)) during the very early 

stage. Equations (4.13) and (4.20) are poor approximations of the initial 

stage of growth from finite size.



Figure 4.12 : Comparison between the actual finite difference 
predictions (dashed line) and approximate predictions 
for the case (p = lOO, E = 1.
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4.8 The transient stage of growth from finite size

Figure 4.10 has shown that in the range of low and moderate solubility 

parameters the actual solutions converge to quasi steady-state approximations. 

In the limit this unique solution reduces to a linear relation between the 

square radius and the transformed time c(jZ. Besides, even with moderate cf> 

values the growth from finite size is reasonably given by

R2 = 1 + 4 B2 Z , (4.23)

where B is the characteristic growth constant for the asymptotic regime.

From equation (4.8) it is possible to write for the analytical solutions 

of growth from zero size

| |  =  3 / / z  = 2 6 2 / R (4.24)

cIr!Numerical predictions of —— | for the growth from finite size R(O) = 1 are
- n

compared to 2B2/R in table 4.4. These results include a wide range of values 

of <p for the case c = 1. The values of 6 used in the table were obtained 

from numerical results for R = 105. By the time the radius of the sphere is 

twice the initial size growth rates for growth from finite size are usually 

not significantly different from the rates for the growth from zero size. 

These differences vanish before an increase of ten times the initial size of 

the sphere.

It is worth noticing that equation (4.23) is reproduced by integration 

of equation (4.24) from Z = 0; R = 1. This condition requires a very short 

transient evolution of concentration profiles towards the unique asymptotic 

dependence expressed by equation (4.4). Figure 4.4 demonstrates that low 

values of 4> satisfy that requirement.
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Table 4.4

Relation between the rates of growth from finite size, 

(dR/dZ)n, and the rates of growth from zero size for £ = 1 .

<p 0.001 0.01 0.1 1 10

R dR
- d Z .

/ n u r
/ 1 k 1n

1.1 1.052 1.118 1.428 2.634 3.759

1.25 1.02 7 1.054 1.152 1.559 1.953

1.5 1.015 1.031 L.060 1.220 1.394

2 1.010 1.018 1.021 1.073 1.128

5 1.000 1.001 1.002 1.004 1.008

10 1.000 1.000 L.000 1.000 1.000

100 1.000 1.000 L.OOO 1.000 1.000

10 5 1.000 1.000 L.OOO 1.000 1.000

This analysis of growth rates is based on the evolution of concentration
r3clprofiles that is to say the values of 9 rJ

which is more significant than

fitting R, Z data into equation (4.8). This explains why the convergence to 

asymptotic conditions is quicker in table 4.4, than in table 4.2. The 

differences are mostly due to an initial quantity Z(l) = 1/(4(3Z), that is, 

the time required for a sphere to grow from zero size to the reference size 

(r = 1); that quantity is non existent in growth from finite size. For

R >> 1, Z becomes nearly proportional to R^ and Z(l) represents a negligible

fraction of the actual dimensionless time Z.



99.

4.9 The rclc of spherical symmetry in the diffusion controlled growth 

of spheres

It was shown that in the range of very low solubility parameters, <j>, the 

actual solutions for growth converge to quasi steady-state conditions, 

(equations (2.67) and (2.68)) which lead to

(4.25)

Equation (4.25) shows that the concentration gradients are very steep 

near the interface because the area available for the spherically symmetric 

transport increases as (e/R)2.

Quasi steady-state and quasi-stationary approximations converge in the 

range of very low cp. The effect of spherical symmetry on concentration 

profiles in that range can then be easily estimated by comparing quasi- 

stationary profiles (equation (2.58)) with the flat slab model (equation

(2.65)). The contribution of spherical symmetry to the rate of the process 

can also be established by comparing the quasi steady-state (equation (2.70)) 

and flat slab approximations (equation (2.64)). The latter proves to be a 

very poor description.

With large (p the boundary layer (obtained by extrapolation of the 

concentration gradient at the interface) is thin and spherical symmetry is 

expected to become much less important than with low (p. This conclusion is 

confirmed by the fact that quasi-stationary and flat slab approximations 

converge in the range of large <{). Both approximations are based on ignoring 

the convective transport of solute and, in spite of spherical symmetry, the 

quasi-stationary solutions converge to flat slab approximations (figure 4.9).
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However the actual finite difference predictions of the time required to 

reach a generic radius R can be as little as 1/3 of the

equivalent quasi-stationary predictions. The differences are the result of 

radial convection and this is dependent on the spherical symmetry of the 

system.

In the intermediate range of <p values, (0.1 < <}> < 10), spherical symmetry 

remains very important, but its role decreases with increasing <j). On the 

contrary the radial convection can be ignored in the range of very low (j) 

but its role is gradually enhanced as <p increases and accounts for the 

differences between actual solutions and quasi-stationary approximations.

4.10 Conclusions

The analysis of diffusion controlled growth of spheres with constant

conditions at the interface was simplified by making the material balances

dimensionless. The dynamics of the process is then completely specified

by two parameters, (p, and e. The role of the diffusivity, D, is readily

obtained by recovering the real time t from the definition of the

dimensionless time Z. During the asymptotic regime the growth rate is

proportional to the square root of D, that is (da/dt) = In the

range of very low solubility parameters the growth constant (3 is nearly 
hproportional to (j) , so that similar effects can be obtained by corresponding 

changes of either diffusivity or solubility parameter. On the contrary,

B is proportional to (p for very large values of solubility parameter and the 

growth rate is then more sensitive to changes of solubility parameter than 

to changes of D. The empirical equation (4.19) provides reasonably good 

predictions for the complete range of cj) values, and illustrates the 

transition between those limiting conditions.
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Whenever e < 1 the partial molar volume of solute represents a positive 

contribution to the volume of the liquid medium by the solute. During growth 

he transfer of material from the liquid into the sphere is responsible for 

decrease of volume of the solution which opposes the expansion of the 

undary layer. Growth rates are then enhanced relative to the case when 

volume contribution of solute is negligible. With low (p that volume 

ntribution is negligible except for unrealistically large partial molar 

v°lumes of solute.

the nature of limiting regimes for very low and very large <J) was
darifi
The

ed and the limitations of some approximate solutions were investigated, 

numerical finite difference technique developed in this work was 

-cessfuliy tested by comparison with exact solutions over wide ranges of 

the relevant parameters and can therefore be expected to perform equally
v/0 2̂

with dissolution and for other more complex systems.
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CHAPTER V

5.1 Dissolution of one-component spheres

It was demonstrated in Chapter IV that growth tends to an asymptotic 

regime, which was solved analytically. This tendency assists the development 

and testing of accurate numerical techniques. However for all cases of 

growth from finite initial size transient behaviour is important at least 

until the sphere has doubled in size (volume of precipitate increased by a 

factor of 8). This at once suggests that dissolution must be considered a 

transient regime. In general the partial differential balances cannot be 

solved analytically and the accuracy of simple approximate solutions is 

rather doubtful. Numerical solutions are also susceptible to poor accuracy 

and efficiency unless the method includes algorithms to optimize the finite 

differences.

The mathematical analysis of dissolution is of interest to some problems 

of glass technology and chemical engineering. The primary objective is to 

obtain the relationship between the radius of the sphere and time, but the 

analysis of concentration profiles is essential for the interpretation of 

mechanisms. It is equally important to identify the similarities and general 

solutions especially in the ranges of very low and very large "driving- 

forces" .

It is convenient to use a positive solubility parameter F tocl
characterize the rate of dissolution. The diffusivity can be excluded from 

the basic analysis of the dynamics of one-component spheres so that 

throughout this chapter the terms slow and rapid dissolution will refer to 

small (F < 0.01) and large values of Fa (F > 10) respectively.
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5.2 Numerical solutions

The numerical technique developed in this work was described in 

Chapter III and tested in detail for growing spheres as described in 

Chapter IV. The results given here were obtained by this method.

In table 5.1 and figure 5.1 the dimensionless time required for 

complete dissolution, Z is related to the solubility parameter F . The 

curves in figure 5.1 represent the following values of parameter e = O,

0.5, 1, 1.5, 2. In the range of very low F the dissolution time converges 

to

Z = 1/(2 F ) (5.1)o a

and becomes nearly independent of the value of parameter e , except for 

unrealistically high or low £, that is £ >> 2 or £ «  O (see table 3.4).

In the case £ = 1 dissolution becomes quicker than the predictions of 

equation (5.1) and the deviations increase with F^. The parameter £ plays 

an important role in the range of moderate and large F values.
cl

From the definition of F =a C°(l - Ca v) it follows that

lira Fa = CO .

Ca-V - 1
(5.2)

As £ = 1 - Cs-v it also follows from the definition of Fa that for

£ > 1

lim Fa = l/(£ - 1 ) .

Ca + ”

This last condition is shown in figure 5.1 where ZQ decreases 

as Fa approaches 1 for £ = 2 and 2 for £ =1.5 respectively.

(5.3) 

very rapidly



Fig 5.1 : Relation between finite difference predictions of 
dimensionless time required for complete dissolution, 
Zq , and solubility parameter Fa. The figures show the 
values of £.



T a b l e  : 5-1

D i m e n s i o n l e s s  t i m e s  r e q u i r e d  f o r  c o m p l e t e  

d i s s o l u t i c i . ,  Z n.

e 0 0 . 5 1 1 .5 2

F
a

z 0

0.001 4 8 6 . 6 4 8 6 . 5 4 8 6 . 4 4 8 6 . 3 4 8 6 . 2

0.01 4 6 . 4 8 4 6 . 4 0 4 6 . 2 5 46 .11 4 5 - 9 9

0.1 4 -2 1 4 4 . 1 0 6 3 - 9 9 4 3 . 8 8 0 3 . 7 6 4

0 . 2 2 . 0 5 7 1 .9 5 3 1 .8 4 6 1 . 7 3 7 1 . 6 2 3

0 . 5 0 . 8 5 4 0 . 7 4 2 0 . 6 4 4 0 . 5 3 9 0 . 4 2 3 0

0 . 7 5 0 . 1 7 0 9

0 . 9 0 . 0 7 9 2

0 . 9 5 0 . 0 4 9 2

1 0 .451 0 . 3 7 0 7 0 . 2 8 2 8 0 . 1 8 1 5 -

1 . 5 0 . 0 7 0 7

1 . 7 5 0 . 0 3 7 6 9

1 . 9 0 .0 1  919

2 0 . 2 6 7 0 0 . 1 9 8 7 0 . 1 2 1 4 -

5 0 . 1 5 3 6 0 . 1 0 0 3 0 .0 3 8 6 1

10 0 .1111 0 . 0 6 6 9 0 . 0 1 5 9 9

20 0 . 0 8 5 5 0 . 0 4 8 3 0 . 0 0 6 5 6

50 0 .0 6 5 1 0 . 0 3 4 7 3 0 . 0 0 2 0 0 6

100 0 . 0 5 4 6 0 . 0 2 8 3 5 0 . 0 0 0 8 1 4



Figs 5.2 to 5.6 : Finite difference predictions of 
dissolution. The symbols (+) represent the quasi 
steady-state approximation (equation (2.70)). The 
values of £ are shown in these figures and the values 
of solubility parameter are, from top to bottom,
in fig 5.2 : Fa = 0.001, 

and 10
0.01, 0.1, 0.2, 0.5, 1 , 2, 5

in fig 5.3 : Fa = 0.001, 
and 10

0 .0 1, 0.1, 0.2, 0.5, 1 , 2, 5

in fig 5.4 : Fa = 0.001, 
1 0 , 2 0,

0 .0 1, 0 .1 , 0.2, 0.5, 
50, 100 and 1000.

1 , 2, 5,

in fig 5.5 : Fa = 0.001, 0.01, 0.1, 0.2, 0.5, 1 , 1.5,

in fig 5.6 : Fa
1.75 and 1.9.
0.001, 0.01, 0.1, 0.2, 0.5,
0.9 and 0.95.

0.75



F i g  5 . 4



1.0
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The computed relations between the dimensionless radius, R, and the

dimensionless time Z are shown in figures 5.2 to 5.6 for several values of

E from 0 to 2. The time was normalized in terms of Z to allow theO
simultaneous representation of a wide range of F values.

cl

For very low solubility parameters (Fa < 0.001) the actual numerical 

solutions converge to the quasi steady-state approximations (equation (2.70)), 

and become independent of E. Equation (2.70) illustrates the limiting regime 

with increasing rate of dissolution throughout the whole process. As Fa 

increases the solutions diverge progressively from that limiting case. The 

dissolution rates decrease during the early stages but increase again during 

the final stages. The point at which this inflection occurs is progressively 

shifted from relatively close to the beginning (R=l),for very low solubility 

parameters Fa,to almost complete dissolution (R=0) for high values of Fa.

Figures 5.4 demonstrate the existence of a unique limiting solution, 

(equation (2.70)), for low solubility. On the contrary, there is no such 

limiting behaviour in the range of very large Fa. In these conditions the 

last stage of the process becomes very much slower than the initial and 

intermediate stages. For example, with Fa = 1000; e = 1 the sphere 

decreases to 10% of the initial size (R=0.1) in only about 11% of the total 

dissolution time.

5 .3  Concentration profiles

Concentration profiles are illustrated in figures 5.7 to 5.9 for the 

case £ = 1  (gas bubbles) and Fa from 0.0001 to 100. This series assists 

understanding of the evolution of boundary layers and of the factors and 

mechanisms which are likely to influence their shape. In addition the cases 

Fa = 10; £ = 311(3 Fa = 0.95; e = 2 are illustrated in figures 5.10 and

5 . 1 1  respectively and serve the purpose of analysing the effects of the 

partial molar volume of solute.



Fig 5.7 : Finite difference prediction of concentration 
profiles for the case Fa = 0.0001, £ = 1 at several 
stages of dissolution which correspond, from right to 
left, to R = 0.9, 0.5, 0.25, 0.1 and 0.05. The dashed 
lines represent the quasi steady-state (equation (2.69)).
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Figs 5.8a to 5.8e : Finite difference predictions of
concentration profiles at several stages of dissolution 
corresponding (from right to left) to R = 0.9, 0.5,0.25, 
0.1 and 0.05 respectively. The values of e and Fa are 
shown in the figures.





0.0 0.5 e 1.0 1.5

F ig  5 . 8 d

0.0 0.2
Fig 5 . 0 e
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e 0.8 1.0



Fig 5.9 : Concentration profiles during dissolution. The
full lines represent the finite difference predictions 
corresponding to the dimensionless radii R = 0.25, 0.1 
and 0.05. The dashed lines represent the transformation 
from R = 0.25 to R = 0.1 and 0.05 due only to radial 
convection (equation (5.6)).



0.0 0.5 1.0 e 1.5 2.0 2.5

F ig  5 .10
Figs 5.10 and 5.11 : Finite difference predictions of

concentration profiles at several stages of dissolution 
corresponding from right to left to R = 0.9, 0.5, 0.25, 
0.1 and 0.05 respectively for the cases 
Fa = 10, £ = O in figure 5.10.
Fa = 0.95, £ = 2 in figure 5.11.

F ig  5 . 1 1
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The dashed lines in figure 5.7 represent the quasi steady state 

approximation (equation (2.69)). Near the interface the approximate and 

numerical predictions are indistinguishable. During the initial stage the 

material dissolved is insufficient to produce the concentrations predicted 

as the tail of quasi steady-state profiles. The agreement is generally 

good by the middle of the process (R=0.5) but the tail of numerically 

computed profiles contains higher concentrations than quasi steady-state 

predictions. This relation must reflect insufficient time for the diffusive 

transport to be effective throughout large distances.

The sequence of figures 5.8a to 5.8e shows that the boundary layer 

thicknesses increase during the initial stage of the process due to 

accumulation of material. However, this trend is reversed during the later 

stages of dissolution due to the effect of spherical symmetry which makes the 

volume of shell of any given thickness dr increase rapidly. That transition 

occurs relatively early with slow dissolution (figure 5.8a) but is hardly 

noticed with rapid dissolution (figure 5.8e). Inflection points shown by 

the relationships between the radius and time are a direct consequence of 

the inflection of concentration gradients at the interface.

With large dissolution rates (Fa > 5) the intermediate region of the 

concentration profiles tendsto develop inflections and the second radial 

derivative of the concentrations can become negative. These features are 

uncommon in dissolution processes except possibly if the diffusivity is 

strongly dependent on concentration (Crank, 1975). In the present 

conditions it is believed to be a consequence of the radial convection being 

very important and this effect persists throughout the range of very large 

solubility parameters (full lines in figure 5.9). The interpretation of 

the last pheneomenon has to take into consideration its development 

relatively late during dissolution (R < 0.25) when less than 2% of the
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original content of the sphere is left to dissolve. Accumulation of solute 

reduces the diffusion rate, while a relatively rapid motion of the boundary 

combined with the spherical symmetry and decreasing radius will have 

important effects on the concentration profiles.

To clarify the actual behaviour it is convenient to analyse the effect 

of pure radial convection due to contraction of the sphere. If transport 

of solute is assumed to be exclusively due to the motion of liquid, decrease 

in radius of the sphere will make the concentration F(e,R) a function of the 

Lagrangian coordinate

3 3 3 3r - a = r - a 0 O (5.4)

or
3e 3R (5.5)

A point originally at distance eQ with concentration Fq = F(eo,RQ) moves to 

due to a decrease of radius from to R so that

e(P0) - <e03 - K03 + R3) (5.6)

This relation was used to simulate the effect of pure radial convection 

on the first profile in fig. 5.9 for R = 0.25 when the radius had further 

decreased to 0.1 and 0.05; these curves are shown dashed. The actual 

concentration profiles for the finite difference solution at these same values 

of R are also shown (full lines); these differ only slightly from the effect 

of radial convection alone.

For radial convection to be effective the motion of the boundary must be 

sufficiently rapid, and the boundary layer thickness must be sufficiently 

large for the velocity of the liquid to vary throughout that region 

(equation (2.10)). The first condition is not met for very samll F^, which
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justifies dropping the convective term from equation (2.28) so that the 

quasi-stationary and quasi steady-state approximations hold reasonably well.

On the contrary the second condition is not fulfilled during the initial 

stage of rapid and moderately rapid dissolution (fig. 5 .8e) .

Unless the dissolution rate is small and diffusion can transport the 

solute to relatively large distances, the accumulation of solute becomes 

increasingly severe. With large solubility parameters the amount of solute 

dissolved is initially accommodated in a thin layer due to the high level of 

concentrations. However the thickness of that layer increases with 

decreasing radius and becomes very important during the last stage of the 

process.

If £ < 1 the volume of liquid increases as the dissolution proceeds.

This contribution by the solute is an extra factor for expanding the boundary

layer, especially near the interface. Therefore the boundary layer thicknesses

are greater than for the case £ = 1 and the intermediate region of the
32Fconcentration profiles shows negative gradients ^ relatively early (R=0.9), 

(see fig. 5.1 0).

On the contrary if £ > 1 the partial molar volume of solute is negative 

which causes a decrease of the volume of liquid as dissolution proceeds. The 

tendency to increase boundary layer thicknesses is then somewhat restricted 

especially near the interface (see the case F& = 0.95; £ = 2 in fig. 5.11) .

5 . 4 Role of spherical symmetry

The spherical symmetry of the system affects the two competing 

mechanisms of transport of solute, namely diffusion and radial convection.

It was found that for very low solubility parameters the dissolution of 

spheres is almost exclusively dependent on the diffusion of solute in the

surrounding liquid. This class of solutions converges to quasi steady-state



108.

approximations which provide a simple understanding of the limiting role of 

spherical symmetry on the concentration profiles (equation (2.67)). The 

concentration drops relatively rapidly near the interface to compensate the 

rapid increase in the area available for diffusion and the volume available 

to store the solute. In consequence the dissolution rates increase with time 

(equation (2.70)). These features do not happen with different geometries 

or in diffusion processes involving constant or increasing radius of the 

sphere.

In practice the quasi steady-state approximation has no use in 

predicting the exact behaviour of real systems, its importance being restricted 

to the clarification of limiting conditions. A slightly better description 

is provided by quasi stationary approximations which include the accumulation 

of solute in the boundary layer around a sphere of constant radius. Equation

(2.58), (F(e , Z) = Fa (R/e) • erfc[(e-R)/ (2/z)]) , is then the illustration of the 

role of spherical symmetry on concentration profiles and can be compared to 

the one-dimensional equivalent profile, F(e,Z) = Fa-erfc [ (e-R) / (2/z) ] ,

[equation (2.65)] .

With increasing Fa the radial convection and accumulation are enhanced 

and the boundary layer thickness increases as dissolution proceeds. Radial 

convection is then accounted for by Lagrangian coordinates, (equations (5.5) 

and (5 .6 )), which demonstrate the role of spherical symmetry.

5_5 Comparisons between approximate predictions and numerical solutions

A preliminary analysis of the accuracy of several approximate solutions 

is shown in figure 5.12, where Z^ represents the dimensionless time given by 

the approximations and ZQ the equivalent numerical solution.

If the dimensionless time Z is sufficiently low the quasi-stationary

solution reduces to R = 1 - 2 Fa -JZ/lT , (equation (2.64)), and can be derived



Fig 5.12 : Comparison between finite difference predictions
of dimensionless time required for complete dissolution, 
ZD, and the corresponding approximate predictions Z<j 
given by
a - equation (2.57) (quasi-stationary solutions)
b - equation (2.61)
c - equation (2.70) (quasi steady-state)
d - equation (2.64) (flat slab model)
e - equation (2.63)



Figure 5.13 - Comparison between finite difference
predictions of dissolution (a) and the corresponding 
predictions by
(b) equation (2.64) (flat slab)
(c) equation (2.63)
The figures show the solubility parameter F .



Fig 5.14 : Finite difference predictions of dissolution for 
moderate and large values of Fa. The figures show the 
values of F . The dashed line represents the flat slab 
model (equation (2.64)).

Fig 5.15 : Finite difference predictions of dissolution for 
low and moderate values of Fa. The figures show the 
values of Fa. The dashed line represents the quasi 
steady-state (equation (2.70)).
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Figs 5.16, 5.17 and 5.18 : Comparison between finite
difference predictions of dissolution (dashed lines) 
and the corresponding predictions by
a) equation (2.57),
b) equation (2.61),
c) equation (2.70),
d) equation (2.64) ,
e) equation (2.63).
The values of e and Fa are shown in these figures.
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Figs 5.19 and 5.20 : Comparisons between finite difference
solutions (full lines) and the corresponding predictions 
given by equation (2.71), (dashed lines). The numbers 
show the values of Fa .
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from the one-dimensional diffusion (flat slab). Equation (2.64) is very 

inaccurate for both very low and very large values of the solubility 

parameter Fa because the roles of spherical symmetry and radial convection 

are not recognized. The ratio Z^/Zq predicted by equation (2.64) is unity 

at about Fa = 3.8 but complete coincidence is not verified even for that 

case (figure 5.13) because the shapes of R(Z) are somewhat different.

Figure 5.14 shows that for moderate and large values of Fa equation (2.64) 

is reasonably accurate during the first 20% of the process (R > 0.8) when 

boundary layers are relatively thin.

Equation (2.63), (r = 1 - Fa* Z - 2Fa- /Z/tt ), is also poor (figure 5.12) 

and only at about Fa = 1.8 does = Zq again without complete coincidence 

of the solutions (figure 5.13).

Quasi steady-state,(equation (2.70)), and quasi-stationary approxima­

tions, (equation (2.57)), are reasonable in the range of very low solubility 

parameters (figures 5.12 and 5.15), but are increasingly poor in a range of 

common practical interest (Fa > 0.01). Quasi steady-state approximations 

predict linear relations between the square radius and time, and these have 

been used to analyse some experimental results (Liebermann, 1957; Manley, 

1960). These authors interpreted the final deviations from linearity as the 

effect of an organic deposit at the interface. Figure 5.15 shows that actual 

diffusion controlled solutions can account for that final stage of 

dissolution.

Both quasi steady-state and quasi-stationary approximations become 

increasingly poor as Fa increases. Quasi-stationary solutions are generally 

better but predict too rapid dissolution whilst quasi steady-state solutions 

predict excessively slow dissolution.
2The transformed quasi-stationary equation (2.61),(R = 1 - 2Fa-Z -
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4Fa- /z'/TT) , is generally wnrsp than the original quasi-stationary equation 

(2.57), (dR/dZ = - Fa [1/R + l//tz]).

The illustration of approximate solutions in the ranges of very low, 

moderate and large Fa is shown in figures 5.16, 5.17 and 5.18 respectively.

The quasi-stationary equation (2.57) and the quasi steady-state equation

(2.70) perform well for low Fa . The transformed quasi-stationary equation 

(2.61) is also reasonably accurate for low Fa, whilst equation (2.63),

(R = 1 + <j)Z + 2(})/z/tF) , is reasonable during the initial stage but fails for 

R < 0.8.

Figure 5.17 shows that none of the approximations is accurate for 

moderate values of Fa. Equation (2.63) is much closer to the numerical 

predictions for R(Z) between 1 ^ R ^ 0.2 than any of the other approximations. 

However it was shown in figure 5.12 that equation (2.63) cannot be considered 

a useful general approximation because its range of application is so narrow.

Finally none of those approximations is acceptable in the range of very 

large Fa (figure 5.18).
Equation (2.71) (Subramanian and Weinberg, 1980) is more accurate than 

quasi steady-state or quasi-stationary approximations, especially during the 

initial and intermediate stages. Figures 5.19 and 5.20 show that equation

(2.71) is accurate for low and large solubility parameters Fa, and fails only 

for R < 0.3. Notice that radial convection was included in the derivation of 

equation (2.71) and its failure is only due to inclusion of insufficient 

terms of the asymptotic expansion.

5.6 Limiting solutions for low and high solubility parameters

The convergence of actual solutions to a quasi steady-state limit for 

low Fa was illustrated in figure 5.15. The time was transformed into Fa*Z 

to recover the limiting dependence suggested by equation (2.70). This
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relation is reasonably good in the range Fa < 0.001 but with Fa = 0.01 the 

quasi steady-state prediction of dissolution time is already about 8% larger 

than the equivalent finite difference solution. Figure 5.15 also demonstrates 

the progressive deviation from linearity between the square radius and time. 

With moderately low solubility parameters, Fa < 0.1, these deviations are 

chiefly due to the initial stage which is required to accumulate sufficient 

material to build up the boundary layer thickness characteristics of quasi 

steady-state profiles with spherical symmetry (equations (2.68) and (2.69)). 

That limiting thickness is equal to the radius of the sphere. For moderate 

F values the deviations from linearity in figure 5.15 are initially due to3.
d (R̂
d(FaZ)a< 0.5, whichinsufficient accumulation, but during the final stage 

reflects the excessive accumulation and larger boundary layer thicknesses 

than for quasi steady-state limits.

Equation (2.64) results from thin boundary layer assumptions and is 

expected to hold reasonably during the initial stage of dissolution with 

large Fa. For these limiting cases the time is conveniently transformed into 

(pa ,̂ z) (figure 5.14) . Actual predictions of rate jjjirj are larger than the 

solutions of equation (2.64) in the range of low and moderate solubility 

parameters (Fa < 3.8). The spherical symmetry accounts for those differences. 

For large Fa the assumption of thin boundary layers fails due to accumulation 

and radial convection. Actual dissolution times are then larger them the 

equivalent predictions given by equation (2.64).

Figure 5.14 also shows a characteristic coincidence of solutions for 

rapid dissolution of bubbles which has not been identified previously. The 

solutions for the cases Fa = 100 and Fa = 1000 are almost indistinguishable 

excepting during the last stage of dissolution (R < 0.3). With increasing 

F the solutions diverge at progressively later stages. It is unfortunate

that such large values of Fa are of little practical interest. However,
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this solution is still reasonably accurate in the range 1 ^  R >  0.7 for 

Fa > 4.

5.7 Design of experiments

In Chapter III the liquid medium surrounding the sphere is assumed to 

be infinite. In practice it must be restricted and it is usually easier to 

monitor the experiments if the size of the system is as small as possible.

Thus, it is convenient to establish an approximate criterion to select the 

minimum ratio between the size of the whole system and the size of the 

sphere, especially for dissolving spheres. For that purpose the actual shapes 

of the concentration profiles which develop under the assumption that the 

liquid medium is infinite was used to estimate at what distance rm from the 

centre the concentration of solute Cm remains sufficiently close to the bulk 

concentration. In the present conditions rm was chosen to be C(r ft) < 

fc + 0.01 (C, -  C )1. In practice by the time the radius is 5% of the initial 

size (R = 0.05) only 0.125% of the initial content is left to dissolve, so 

that there is no need to impose strict conditions during the final stage 

(r < 0.05). In addition rm increases with time as the boundary layer becomes 

thicker, except possibly for large Fa (during the intermediate stage).

Therefore all the values shown in table 5.2 refer to R = 0.05 and should 

provide approximate values for the rm/a0. In the case Fa = 10; e = l,rm/aQ 

only exceeds 1 during the initial stage but never exceeds 1.1. All the 

remaining values are the maxima for 1^ R^ 0.05.

The ratio rm/aQ was obtained by taking into account the shape of 

concentration profiles. However, radial convection might cause change in 

volume of the system. In this case the system must be sufficiently large to 

make those changes negligible; otherwise convection is not strictly radial.
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Table 5.2

Estimates of the ratio rm/aQ where aQ denotes the initial size 
of the sphere and rm the minimum size of the system required to 

justify the assumption that the liquid medium 
can be considered infinite .

£ 0 1

pa rm/ao
0.01 13.7 13.7
0.02 11.1 10.9
0.05 7.81 7. 77
0.1 6.03 5.93
0.2 4.70 4.48
0.5 3.47 3.06
1 2.86 2.28
2 2.45 1.69
5 2.11 1.14

10
.

1.95 < 1

5.8 Discussion

Dimensionless treatment minimised the number of relevant variables of

the system, which is characterised by Fa and e. The effect of diffusivity on

the actual behaviour of a particular sphere is obtained by a straight

recovery of the real time. Diffusivity affects the basic dynamics of the

system, only if the diffusivity is dependent on concentrations or time. The

solubility parameter Fa combines in a single variable the effects of

concentrations in both phases. Similarly F t^k^cy t taxes into account the effects of
partial molar volumes of solute in the sphere and in the liquid.
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The dimensionless time required for complete dissolution Zq , varies more 

rapidly than the reciprocal of the solubility parameter, whereas ZQ is 

proportional to the reciprocal of diffusivity. Therefore the rate of the 

process varies more rapidly with Fa than with D.

If the partial molar volume of solute is positive the dissolution causes 

a positive volume contribution in the liquid and consequently the boundary 

layer expands and dissolution rates decrease. Those volume changes are 

insignificant if Fa is sufficiently low and the rate of dissolution is then 

almost independent of e.

Spherical symmetry and radial convection are both extremely important 

during the diffusion controlled dissolution of stationary spheres. The role 

of radial convection is insignificant if Fa < 0.01 but is progressively 

enhanced with increasing Fa. In the range of very high solubility parameters 

(F > 10) radial convection is responsible for a very slow final stage, which 

requires most of the total time required for complete dissolution.

Accumulation causes a gradual departure from the flat slab model, even with 

extremely large Fa. It was also pointed out that accumulation of solute and 

spherical symmetry are necessary for radial convection to become dominant 

during the last stage of dissolution.

For low Fa the accumulation near the interface remains relatively low 

forcing the solute to diffuse further and the spherical symmetry is then 

responsible for nearly linear relations between the square radius and time.

In the range of moderate solubility parameters (0.1 < F& < 1) none of 

the limiting cases is appropriate, both diffusion and convection are important 

and this explains the failure of all approximate solutions.

The design of dissolution experiments must take into account the volume 

occupied by concentration profiles around the sphere, in order to satisfy the 

boundary conditions. It is convenient to minimize that volume to avoid
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natural convection and to make it easy to control the experiment. 

Numerically computed concentration profiles have been used to determine 

the minimum ratio of the size of the whole system (sphere and liquid) to 

the size of the initial sphere.
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CHAPTER VI

6.1 Diffusion controlled behaviour of multicomponent bubbles

The equations to describe behaviour of multicomponent bubbles were 

set up in Chapter II and can be solved by using the finite difference 

techniques described in Chapter III. These systems involve variable 

boundary conditions which makes the stability of the solutions somewhat 

critical. The numerical technique used for that purpose is based on the 

simultaneous solution of the discrete local balances. New concentration 

profiles are then computed step-by-step without the need for slow iterative 

schemes.

Analytical solutions for such multicomponent systems have not 

previously been available because of the complexity of the problem, especially 

difficulties due to variable interfacial concentrations. However, it will 

be demonstrated how the basic procedure used to derive analytical solutions 

for growth of one component spheres from zero size can be extended to the 

growth of multicomponent systems. The essential question involves 

verification that bubbles growing from finite size always lead to an 

asymptotic regime with an equilibrium bubble composition and a linear 

relation between the bubble radius and the square root of time. Thus, it is 

possible to test the accuracy of numerical solutions by comparison between 

their asymptotic regime and exact solutions for growth from zero size.

The behaviour of multicomponent bubbles depends on the relations between 

the diffusivities of individual species. When the diffusivities of the 

species are different their influence cannot be removed by putting the 

equations into dimensionless form. Therefore, a considerably larger number
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of parameters is needed to characterize those systems than might seem 

necessary at first sight.

The evolution of gas composition in the bubble is closely related to 

interfacial concentrations and consequently the "driving forces" may vary 

throughout the process. Uncommon types of behaviour may occur and are 

easily simulated.

It has been shown that dissolution of one-component spheres is more 

complex than growth. One must similarly expect even more complex dissolu­

tion of multicomponent bubbles whereas growth leads to an asymptotic 

regime, which is similar to the equivalent growth of one-component spheres.

6.2 Constant composition of multi-component bubbles

From equation (2.50) it can be seen that equilibrium gas composition 

requires

(6 .1)

i = 1, . .., n
that is, every mole fraction of each species i must be equal to the ratio 

of its molar flux to the overall molar flux across the interface. This 

condition can be fulfilled by a constant (time invariant) concentration 

gradient but this case is exceptionally rare; otherwise all the 

concentration gradients may vary but must do so according to equation (6.1).

Only exceptionally will equation (6.1) be valid from the beginning of 

the process. A transient stage is thus generally expected regardless of 

the eventual evolution towards equilibrium gas composition. The relation 

between the gas composition and solute interfacial concentrations imposes 

a tendency to reduce the differences between the actual mole fraction g

and its equilibrium value It* (equation (6.1)).
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If the Henry's law is valid the interfacial concentration Ch (a) is 

proportional to g. . Thus, if g. < J.*, C.(a) < Ca 0 where Ca 0 is thei i l l  I p
interfacial concentration in equilibrium when g^ = J *. During growth 

[C^ - Ch (a)] will be higher than the equilibrium "driving-force"

[C00i - Ca °]. This relation is always true provided the interfacial 

concentration Ch (a) increases with the corresponding mole fraction g^. 

In a two-component growing bubble if g^< J^* it must follow that

> J * and C (a) > Ca 0
1 2 ~2 ^ ” 2 “ 2

Therefore [Cœ - C (a)] < [cœ - Ca °], and

g2 decreases while the corresponding flux of species 2 into the bubble is 

increasing. Meanwhile is increasing and the composition of the bubble 

approaches equilibrium. In a bubble with more than three components the 

situation is slightly more complex during that transient stage, but similar 

arguments clarify why the composition of growing bubbles always converges 

to equilibrium.

Similarly, during the dissolution of two-component spheres if 

g_̂ > j^*, C^(a) > Ca_̂0 species 1 is dissolving quicker than if the gas

composition was in equilibrium, which causes a decrease of g . On the 

contrary, as < J 2* ’ g2 iS in:reas;i-n9' which shows that the composition 

of dissolving bubbles also tends to converge to the corresponding ratios 

between material fluxes (equation (6.1)). However the complex evolution of 

concentration profiles around dissolving spheres can prevent the existence 

of equilibrium ratios between those fluxes. The tendency to approach 

equilibrium gas composition is then not general.

6.3 Exact solutions for growth from zero size

It was shown in Chapter IV that the existence of analytical solutions 

is based on Boltzmann transformation of variables. This transformation 

implies that the concentration must become a unique function of a single
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variable and that the boundary conditions must be constant. These 

restrictions apply equally to multicomponent gas bubbles which, in addition 

must have constant gas composition because of the relation between the 

gas phase and interfacial solute concentrations. In these conditions we 

assume

Fi (s) = F (e , Z) ( 6 . 2 )

where s = r/(2/üt) e/(2/z) . From equation (2.47)

d2Fj + 2_ f ^ i  _ 2 g3 dFj 2s dFi
o l 2

ris" s ds s ds ds (6.3)

with E 1 in the case of gas bubbles. In addition, equation (2.49) is 
transformed into

23
n
V
L

i=l
(6.4)

where R and (3 are still related by equation (4.8), R = 2fi/z, and at the 

interface s = 3*

The boundary conditions (equations (2.53) and (2.54)) can now be 

written

F. (°°) = ol (6.5)

F. (6) a. g. i i, eq (6 .6 )

and after a first integration of equation (6.3)
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o f . r
—  = A±. S' “, exp |̂ - ( s2 + 2B3/s ) / fi

where A± is the constant of integration. After a second integration 

from s = B to infinity

<f>. = A.1 l / x 2. exp[ - (x2 + 2B3/x ) / f^ ]dr
6 (6.8)

and by convenient transformation of the independent variable, 

<J>i = / exp 3i2[ 2(1 - w) + (1 - w)~2 ] |

= A^£ 2 B* 0^2. exp(BB^2) J 4>(3j

dw

(6.9)

where

and

w = 1 - 3/x

6i - m , ’1

♦ (B±) » 2 612 / exp + 2w - (1 - "l“2 ]}- dw

(6 .10)

(6 .11)

( 6 . 12 )

Equation (6.12) is the same as the solution for growth of one-component 

spheres with £ =  1 (gas bubbles),(Seriven, 1959).

From equations (6.4) and (6.7)

1 Ai / [ 2 6 A 2. exp(3B.2) J  = (6.13)

and by combination of equations (6.9) and (6.13)
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I
i=l

4>. /<t> (B. )i i l . (6.14)

Equation (6.1) expresses the general condition required for equilibrium 

gas composition. After Boltzmann transformation equation (6.1) becomes

(6.15)

or from equations (6.4), (6.7) and (6.15)

g. = f. i,eq l r 1
11

/ 1 f[ds j ds

= Ai
1,Sq 2ß. ß. 2 »exp(3ß. 2)i i

then from equations (6.9) and (6.16)

(6.16)

g. = <t> ./4> (B.) . (6.17)i,eq i i

The final solutions show that the solubility parameters, ^, are 

functions of fictive growth constants, 3̂ . This mathematical formulation 

proves that Boltzmann transformation and analytical solutions are possible 

for bubbles growing from zero size with the equilibrium composition given by 

equation (6.1). Transient stages of growth from finite size cannot be 

solved except by numerical techniques, but these solutions must converge 

asymptotically to the analytical solutions given by equations (6.14) and 

(6.17). A method of solving these equations is described in appendix 4.
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6.4 Particular cases

6.4.1 Equal diffusivities

If all the dissolved gases have equal diffusivity

f. = 1l i 1/ • .. , n (6.18)

and we have the simplest possible case. Equations (6.14) and (6.17) now 

reduce to

<t> (3)
i=l

(6.19)

and

% , eq - v£ i, (6 .20)

The growth constant 3 is then directly obtained from data referring to 

one-component systems, where the sum of the n individual solubility 

parameters is the equivalent solubility parameter for the n-component 

system. The composition of the bubble growing from zero size is readily 

obtained from equation (6.20).

6.4.2 Limiting regime for low growth rates

For very low solubility parameters the analytical solutions for one- 

component bubbles (Scriven, 1959) tend to

<J> = 2B2 (6 .2 1)

and therefore

<P ( 3/ f . S  = 2 B2/ f  . (6 .22)
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Thus, equation (6.14) converges to

I
i = l L

2 p (6.23)

and from equations (6.17) and (6.22)

n
gi,eq ■ £i'h ' l  • I«5-2«j=l J J

If 3r is the growth constant for a sphere containing pure species i = 1, 

from equation (6.21)

(6.25)

and

e/er = f .-<e.) / 4>x (6.26)

Equation (6.26) relates the growth rate of the n-component bubble to 

the growth rate of a bubble containing exclusively the reference component

(i — 1) -

6.4.3 Limiting regime for large growth rates

According to Scriven (1959) the limit for large solubility parameters 

is

<t> = 3 f m

Therefore, from equations (6.14) and (6.17)

n
3 = /3/7F l  

i=l
-f. 

1 1

(6.27)

(6.28)

and
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g.i / eq

also from equation (6.27),

(6.29)

4̂  = Br /fr/T . (6.30)

Finally from equation (6.28) and (6.30)

3/Br
i=l

• /FT /
(6.31)

6.5 Analytical solutions

In the case of gas bubbles £ = 1 and the pairs [B.; cf>((t)] required to

satisfy equation (6.14) can be obtained from Scriven's data (1959). The 

solubility parameter <j)(B ) for one-component systems increases monotonically 

with the growth constant so that the problem reduces to the minimization

of the square deviation from equation (6.14)

£s (ß) =
n
i^ ( 4 i/4>(ß/fili)) (6.32)

and polynomial interpolations can be used to estimate the actual <J>($/f̂  ) 

values.

The Fibonacci method (see appendix 4) provides an efficient process 

for rapidly finding the correct B and g_̂ values. This method requires the 

previous knowledge of lower limit, 3-, and upper limit, B , of the growth 

constant, which in the present conditions can be

h  = ß ( V

and

(6.33)
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Pu = B(<K (6.34)

It is useful to define an initial range of B values where the correct 

solution is to be found. The growth rate will necessarily be greater than 

the growth rate of a bubble due to diffusion of a single component.

Therefore

B > B£ = B(f0;l " ax) (6.36)

or

h  ‘ ° i£ r°i < h  •

Also the actual growth rate cannot exceed the rate of growth of a one-n
tcomponent bubble with solubility parameter 4^ = ^_^(Fq )̂ and diffusivity 

equal to the maximum individual diffusivity of the n-component case. Thus

B < B =/f~_  • 3(<f>) (6.37)u v m T

where

f = max (f ; f ; .. .; f ) . m 1 2  n

The parameters describing growth of two-component bubbles from zero 

size are illustrated in figures 6.1 and 6.2. The ratio B/Br represents the 

relation between the actual growth rate and the growth rate of the 

reference one-component bubble with solubility parameter <{> = (j)̂. In table

6 .1 , 1 to 7 identify the corresponding curves in figures 6.1 and 6.2.



Fig 6.1 : Relation between growth constants for two component 
bubbles (B) and one-component solutions [ B r  (<(>,£)] for 
the case <j) = <J>i £ = 1. The figures show the case given 
in table 6.1. The dashed lines represent equation 
(6.31) and the dashed-dotted lines represent equation 
(6.26).

Fig 6.2 : Mole fractions of species 1 for two component
growing bubbles. The figures show the cases in table
6.1. The dashed lines represent equation (6.29).
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Parameters for examples shown 
in figures 6.1 and 6.2

Table 6.1

The dashed lines in figures 6.1 and 6.2 represent the lower and upper 

limits according to equations (6.24) and (6.26) for very low solubility 

parameters or equations (6.29) and (6.31) for very large solubility parameters. 

These limiting conditions for the curves 1 and 5 are equal with very low 

solubility parameter and the same occurs with equal values of the factor 

f ((p ̂/(p f) , (Cases 2 and 6, or 3 and 7) . In these cases the effects of the 

second component depend on the product f^*$2 ' which is equivalent to a 

relative permeability. With large <J) values the ratio of solubility parameters 

((j) /cp ) is more important than the ratio of diffusivities f .

If the diffusivities are equal the composition only depends on the ratio 

of solubility parameters, (cases 1, 2 and 3); otherwise (f? = 1) the 

composition varies with <f> even if the ratio (p̂ /tp remains constant.

This basic discussion of two-component systems could easily be extended 

to systems with more than two components but the details obviously become 

increasingly complex. The growth rate and gas composition are again more 

dependent on the relative values of solubility parameters than on the 

relative values of diffusivities.



Table : 6.2

C o m p a r i s o n  o f  a n a l y t i c a l  s o l u t i o n s  f o r  g r o w t h  f r o m  
z e r o  a n d  n u m e r i c a l  s o l u t i o n s  f o r  g r o w t h  f r o m  f i n i t e  s i z e  
f o r  t w o - c o m p o n e n t  b u b b l e s  w h e n  R ^  1 0 0 .

A n a l y t i c a l
s o l u t i o n s

N u m e r i c a l
s o l u t i o n s

* 1 *2 f  2 3 9 1 , e q 3 " 9 l , e q
0 . 0 0 1 0 . 0 0 1 1 0 . 0 3 2 5 2 0 . 5 0 0 0 0 . 0 3 2 6 0 0 . 5 0 0 0

0 . 0 1 0 . 0 1 1 0 . 1 0 9 3 0 . 5 0 0 0 0 . 1 0 9 5 0 . 5 0 0 0
0 . 1 0 . 1 1 0 . 4 2 0 5 0 . 5 0 0 0 0 . 4 2 1 2 0 . 5 0 0 0

1 1 0 1 2 . 3 3 3 0 . 5 0 0 0 2 . 3 4 0 0 . 5 0 0 0
1 0 10 1 1 9 - 9 7 0 . 5 0 0 0 2 0 . 0 4 0 . 5 0 0 0

1 0 0 1 0 0 1 1 9 5 - 9 0 . 5 0 0 0 1 9 6 . 6 0 . 5 0 0 0
0 . 0 0 1 0 . 0 0 0 5 1 0 . 0 2 8 0 6 0 . 6 6 6 7 0 . 0 2 8 1 1 0 . 6 6 6 7

0 . 0 1 0 . 0 0 5 1 0 . 0 9 3 6 0 . 6 6 6 7 0 . 0 9 3 7 0 . 6 6 6 7
0 . 1 0 . 0 5 1 0 . 3 5 0 5 0 . 6 6 6 7 0 . 3 5 1 0 0 . 6 6 6 7

1 0 . 5 1 1 . 8 3 1 0 . 6 6 6 7 1 . 8 3 5 0 . 6 6 6 7
1 0 5 1 1 5 . 0 9 0 . 6 6 6 7 1 5 . 1 3 0 . 6 6 6 7

1 0 0 5 0 1 1 4 7 . 0 0 . 6 6 6 7 1 4 7 . 5 0 . 6 6 6 7
0 . 0 0 1 0 . 0 0 0 2 1 0 . 0 2 5 0 0 0 . 8 3 3 3 0 . 0 2 5 0 8 0 . 8 3 3 3

0 . 0 1 0 . 0 0 2 1 0 . 0 8 3 0 0 . 8 3 3 3 0 . 0 8 3 1 0 . 8 3 3 3
0 . 1 0 . 0 2 1 0 . 3 0 5 3 0 . 8 3 3 3 0 . 3 0 5 8 0 . 8 3 3 3

1 0 . 2 1 1 . 5 2 6 0 . 8 3 3 3 1 . 5 2 9 0 . 8 3 3 3
1 0 2 1 1 2 . 1 5 0 . 8 3 3 3 1 2 . 1 9 0 . 8 3 3 3

1 0 0 2 0 1 1 1 7 . 7 0 . 8 3 3 3 1 1 8 . 1 0 . 8 3 3 3
0 . 0 0 1 0 . 0 0 0 1 1 0 . 0 2 4 0 0 0 . 9 0 9 1 0 . 0 2 4 0 1 0 . 9 0 9 1

0 . 0 1 0 . 0 0 1 1 0 . 0 7 9 2 0 . 9 0 9 1 0 . 0 7 9 3 0 . 9 0 9 1
0 . 1 0 . 0 1 1 0 . 2 8 9 6 0 . 9 0 9 1 0 . 2 9 0 0 0 . 9 0 9 1

1 0 . 1 1 1 . 4 2 3 0 . 9 0 9 1 1 . 4 2 6 0 . 9 0 9 1
1 0 1 1 1 1 . 1 7 0 . 9 0 9 1 1 1 . 2 1 0 . 9 0 9 1

1 0 0 10 1 1 0 7 . 9 0 . 9 0 9 1 1 0 8 . 3 0 . 9 0 9 1
0 . 0 0 1 0 . 0 0 1 0 . 5 0 . 0 2 8 1 2 0 . 6 6 3 0 . 0 2 8 1 6 0 . 6 6 5

0 . 0 1 0 . 0 1 0 . 5 0 . 0 9 4 6 0 . 6 5 4 0 . 0 9 4 6 0 . 6 5 6

0 . 1 0 . 1 0 . 5 0 . 3 6 2 8 0 . 6 3 1 0 . 3 6 3 2 0 . 6 3 2

1 1 0 . 5 2 . 0 0 0 0 . 6 0 0 2 . 0 0 6 0 . 6 0 0
1 0 10 0 . 5 1 7 . 0 6 0 . 5 8 8 1 7 . 1 2 0 . 5 8 8

1 0 0 1 0 0 0 . 5 1 6 7 . 2 0 . 5 8 6 1 6 7 . 8 0 . 5 8 6
0 . 0 0 1 0 . 0 0 1 0 . 2 0 . 0 2 5 1 1 0 . 8 2 7 0 . 0 2 5 1 4 0 . 8 3 0

0 . 0 1 0 . 0 1 0 . 2 0 . 0 8 4 2 0 . 8 1 1 0 . 0 8 4 4 0 . 8 1 2

0 . 1 0 . 1 0 . 2 0 . 3 1 9 8 0 . 7 7 3 0 . 3 2 0 0 0 . 7 7 5
1 1 0 . 2 1 . 7 2 4 0 . 7 1 7 1 . 7 2 8 0 . 7 1 9

10 10 0 . 2 1 4 . 5 0 0 . 6 9 4 1 4 . 5 5 0 . 6 9 5
1 0 0 1 0 0 0 . 2 1 4 1 . 7 0 . 6 9 1 1 4 2 . 3 0 . 6 9 2

0 . 0 0 1 0 . 0 0 1 0 . 1 0 . 0 2 4 0 3 0 . 9 0 3 0 . 0 2 4 0 7 0 . 9 0 5
0 . 0 1 0 . 0 1 0 . 1 0 . 0 8 0 3 0 . 8 8 7 0 . 0 8 0 4 0 . 8 8 8

0 . 1 0 . 1 0 . 1 0 .3 0 2 2 0 . 8 4 8 0 . 3 0 2 5 0 . 8 4 9
1 1 0 . 1 1 . 5 9 4 0 . 7 8 9 1 . 5 9 8 0 . 7 9 0

1 0 1 0 0 . 1 1 3 . 2 2 0 . 7 6 4 1 3 - 2 6 0 . 7 6 4
1 0 0 1 0 0 0 . 1 1 2 9 - 0 0 . 7 6 0 1 2 9 . 4 0 . 7 6 1



Table : 6.3

C o m p a r i s o n  b e t w e e n  f i n i t e  d i f f e r e n c e  s o l u t i o n s  
a n d  a n a l y t i c a l  s o l u t i o n s  o f  g r o w t h  o f  t h r e e - c o m p o n e n t  
b u b b l e s .

a )  P a r a m e t e r s  c h o s e n

c a s e 1 2 3 4

f i
1 . 0 1 . 0 1 . 0 1 . 0

f  2
1 . 0 0 . 5 0 . 5 0 . 1

f  3
1 . 0 0 . 2 0 . 2 1 0 . 0

“ l 1 . 0 1 . 0 1 . 0 1 . 0

a 2 0 . 5 1 . 0 0 . 5 1 0 . 0

“ 3
0 . 2 1 . 0 0 . 2 0 . 1

F ° 1
1 . 0 1 . 0 1 . 0 1 . 0

F ° 2
0 . 5 1 . 0 0 . 5 1 0 . 0

F ° 3
0 . 2 1 . 0 0 . 2 0 . 1

b )  R e s u l t s  f o r  R »  1 0 0 .

A n a l y t i c a l  s o l u t i o n s F i n i t e  d i f f e r e n c e  
s o l u t i o n s

c a s e
^  g i , e q  g 2 , e q ^ g i , e q  g 2 , e q

1 1 . 3 1 9  0 . 5 0 0 0  0 . 3 3 3 3 1 . 3 2 0  0 . 5 0 0 0  0 . 3 3 3 3
2 1 . 6 3 4  0 . 4 3 3 6  0 . 3 3 5 7 1 . 6 3 6  0 . 4 3 3 6  0 . 3 3 5 7

3 0 . 9 9 7  0 . 5 8 9 9  0 . 3 1 4 8 0 . 9 9 8  0 . 5 9 0 0  0 . 3 1 4 7

4 2 . 6 7 4  0 . 2 9 8 9  0 . 5 4 8 7 2 . 6 7 8  0 . 2 9 9 1  0 . 5 4 8 5
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6.6 Comparison between numerical and analytical solutions

A sphere growing from finite size always converges to asymptotic

growth rate and equilibrium gas composition. After a sufficiently large

increase of radius the effect of the initial stage must become negligible

and the asymptotes of growth from finite size must become indistinguishable

from the equivalent analytical predictions of growth from zero size. The

composition of the bubble is then given by g. and these satisfyl, eq
equation (6.1), while the interfacial concentrations, (equation (2.54)), 

become

F. (R)l eq
<J>. = a. g. - F0 i x i,eq ui

Numerically computed (z,r) pairs were inserted into equation (4.8),

(r = 2$/z) , to obtain the apparent value of 3, i.e. (3% for computations 

with R = 105 to confirm the convergence to the asymptotic regime. This 

regime was in excellent agreement with the corresponding analytical solutions, 

see table 6.2. The numerical predictions of = R/(2/z) are in fact almost 

identical for any value R ^ 100.

The set of 2-component systems reported in table 6.2 covers a very 

wide range of solubility parameters and several different ratios of 

diffusivities. The difference between the two values of 3 is always less 

than 1%, with usually slightly larger than the analytical value, 3- 

The time required for a bubble to grow from zero size to R = 1, Z = 

d/23)2] , is only a very small fraction of the time required to reach R = 

go^, £z = (105/2B)2 = 1010 , and therefore the initial transient stage

of growth from finite size might not explain the differences between 3 and 

a'. Truncation errors involved in formulating the finite difference
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equations may easily cause those differences. In many cases the analytical

and numerical predictions of the compositions g differ by less than1 f eq
0 . 1%.

For all the results reported in table 6.2 <Jt = - FQ for simplicity of 

presentation. Equally good accuracy of finite difference predictions is 

achieved with more complex systems, including bubbles which contain more 

than two different gases. Table 6.3 gives some results for three components. 

These examples are sufficiently general to exemplify the performance of the 

method independently of the combination of the parameters involved 

(concentrations, solubilities, and diffusivities) .

The asymptotic regimes described in tables 6.2 and 6.3 are independent 

of the initial composition of bubbles growing from finite size. Examples of 

the transient regimes are described in the next section.

6.7 Transient regimes

The asymptotic stage of growth was reasonably well understood and 

interpreted in the previous section. Transient regimes are much more complex 

and this makes it difficult to illustrate all the interesting trends that 

can occur. The additional complexity results from the evolution of 

concentration profiles during the initial stage of dissolution or growth from 

finite size. There is a time dependent evolution even with constant boundary 

conditions as illustrated in Chapters IV and V, but there are now changes 

strongly dependent on the changes of interfacial concentrations. Commonly 

the individual rate of diffusion of a species i will be dependent on the 

dimensionless interfacial concentration F^(R) and on the dimensionless 

diffusivity f^, but these relations cannot be easily quantified. However, 

on assuming a relation such as Henry's law, F^(R) is easily calculated from
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the composition of the bubble. Thus [f^R)^] will be occasionally designated 

as "driving-force".

On assuming that the different species diffuse independently, they may 

sometimes be transferred in opposite directions which causes rapid changes 

of gas compositions. These changes introduce "feed-back" effects on the 

interfacial concentrations (equation (2.46)) and also on the rates of 

transport, which are responsible for bringing the system closer to equilibrium. 

This interdependence between gas composition and interfacial concentrations 

explains why growth always tends to asymptotic behaviour, regardless of the 

initial composition of the bubble (except when the initial growth is a 

transient effect but leads to dissolution). During dissolution the evolution 

of gas composition may be less regular because the time dependence of 

concentration profiles affects the whole course of dissolution. For instance, 

it is believed that dissolution is generally controlled by the less soluble 

species or by the species with the lowest diffusivity and that small 

fractions of a poorly soluble gas lead the bubble to a standstill with an 

almost insoluble residue (Greene and co-authors, 1959a, 1959b; Doremus,

I960; Nemec, 1969) .

The bulk concentration of gases dissolved in the liquid medium may also

influence strongly the behaviour of bubbles. In some cases the bulk

concentration of species i may be in equilibrium with a particular value of

mole fraction gi*, so that the "driving-force" Fj_ (R) =(0̂  ĝ * - FQ J = 0 or

g * = Fq /ai* In these conditions, unless there is a maximum in the 
i i

concentration profile, the species i will dissolve if F.(R) > 0. Similarly

if Fg(R) < 0 this species will diffuse into the bubble unless there is a 

minimum in the concentration distribution. Thus, if the mole fraction 

increases from gi < gi* to the upper range > g *, the "driving-force" 

will change from F^(R) < 0 to F^(R) > 0. Species i was initially diffusing
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into the bubble but '..’ill later reverse and aid dissolution. 

From equation (2.49) if initially

Jt J
j=l

f p Fi]
j [de JR -

> 0

or

'3Fil V 1 -I
D

f f 3 F 3 l  1
I p e  J j=l j P e  u

j+i

the b^ble starts growing but the changes of the flux of species i may be 

sufficient to lead to a final condition J < 0 and the bubble will 

eventually dissolve completely.

A change from g± > g^* to g ^  g ^  causes the opposite inversion from 

dissolution of species i to its diffusion into the bubble. If, in 

addition, the total flux varies from Ĵ. < o to Ĵ_ > O, the bubble radius 

initially decreases, then reaches a minimum value and finally increases again.

6.8 Transient stage of growth from finite size

Figure 6.3 illustrates behaviour in a three component system where the 

products Fq . fj_ = 0.01, and Otj_ = Fq . The bubble composition always evolves
i i

towards equilibrium (g = 0.2288; g = 0.3026; g = 0.4686). In

case (a) the initial bubble contains pure species 1, so that F^(R) = 0 

(equation (2.54)) while (R) = and F^iR) = F0 .̂ Diffusion of gases 2

and 3 dilutes gas 1 which causes an increase of and g^ and a decrease of 

g Meanwhile the "driving-forces" of species 2 and 3 decrease and the 

"driving-force" of species 1 increases until equilibrium is reached.

Similar interpretation can be made of cases b or c, which start with pure 

2 or pure gas 3 respectively. The radius-time relations are onlygas
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Fig 6-3 : Transient growth of three-component bubbles from
finite size. The dashed lines represent the asymptotic 
regime (equations (6.14) and (6.16)). The initial 
bubbles contain 
a - pure species 1
b - pure species 2
c - pure species 3 .
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Fig 6.4 : Transient growth of two-component bubbles from 
finite size. The dashed lines represent the mole 
fractions of species 1, gi, for cases a and b. The 
dashed-dotted lines represent R and gj for case c. The 
dotted lines represent the asymptotic regime.
The initial bubbles contain 
a - pure species 1 
b - pure species 2 
c - gi = 0.3939 and qi = 0.6061.
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Fig 6.5 : Effect of the initial composition of a bubble on the 
transient regime. The dashed lines represent gi and the 
dashed-dotted lines represent the asymptotic regime.
The initial bubble contains 
a - pure species 1 
b - pure species 2.



e/R-1

Fig 6.6 : Concentration profiles for the case (a) illustrated 
in fig 6.5. The full lines represent species 1 and the 
dashed lines species 2. The figures show the 
corresponding values of the dimensionless radius R and 
are marked - during the initial decrease in radius and 
marked + during the increase in radius.



T a b l e  : 6 . 4

Summary of two component systems represented in figures

6 . 4 ,  6 • 5 y 6 • 7 ,  6 . 8 , a n d  6 . 9 ,  a n a t h e i r  a s y m p t o t i c r e g i m e s .

F i g .
f ° 2

a 2
f

2 g l
6

6 . 4 0 . 0 1 1 0 . 0 1 1 0 . 0 1 0 . 5 9 3 9 0 . 0 9 4 8

6 . 5 1 1 5 0 . 5 0 . 1 0 . 1 9 4 7 0 . 3 3 1 2

6 . 7 1 1 0 . 5 0 . 5 1 0 . 5 0 0 1 . 8 3 1

6 . 7 1 0 . 0 1 0 . 5 0 . 0 0 5 1 0 0 0 . 6 8 4 1 . 2 8 0

6 . 7 1 1 0 0 0 . 5 5 0 0 . 0 1 0 . 1 4 6 3 6 . 6 0

6 . 8 1 1 0 . 5 0 . 5 0 . 5 0 . 5 7 8 1 . 5 5 7

6 . 8 1 1 0 . 5 0 . 5 0 . 2 0 . 6 7 5 1 . 2 9 9

6 . 8 1 1 0 . 5 0 . 5 0 . 1 0 . 7 4 1 1 . 1 6 2

6 . 8 1 1 0 . 5 0 . 5 0 . 0 1 0 . 8 9 4 0 . 9 1 4

6 . 8 1 1 0 . 5 0 . 5 0 . 0 0 1 0 . 9 6 3 0 . 8 2 6

6 . 9 1 0 . 5 0 . 5 0 . 2 5 1 0 . 6 2 8 1 . 4 1 6

6 . 9 1 0 . 2 0 . 5 0 . 1 1 0 . 7 7 5 1 . 0 9 9

6 . 9 1 0 . 1 0 . 5 0 . 0 5 1 0 . 8 6 0 0 . 9 6 3

6 . 9 1 0 . 0 1 0 . 5 0 . 0 0 5 1 0 . 9 8 1 0 . 8 0 5
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slightly different during the initial stage, but converge rapidly to each 

other and gradually approach the analytical prediction of growth from zero 

size (6 = 0.1458) (dashed line).

Figure 6.4 shows a two-component system with the two extreme initial

gas compositions (a and b). In both cases the composition of gas converges

to the equilibrium g = 0.3939; g„ = 0.6061, which is representedl,eq 2,eq r

by the horizontal dotted line. In case (c) g^(0) = 0.3939 but the bubble 

composition changes during the transient stage, because of large differences 

in diffusivities, before recovering the equilibrium condition. The radius 

versus time curves gradually approach the asymptotic regime given by the 

growth constant 3 = 0.0948.

dhe changes of gas composition in case (c) are due to transient changes

of concentration profiles. A species with high diffusivity must respond

more quickly than one of low diffusivity (species 2). Thus the change in

size before the asymptotic concentration profile is achieved is smaller for

the highest diffusivity, whilst during a somewhat longer stage the

concentration profiles for the other species remain steeper than expected

for the asymptotic conditions. This explains the transient increase in g?.

A more complex transient regime is shown in figure 6.5. In case (a)

the initial bubble contains pure species 1, which is highly soluble (a = 5)

and its diffusivity is also much higher than the diffusivity of species 2.

Thus gas 1 initially dissolves relatively rapidly while the diffusion of

gas 2 into the bubble is insufficient to reverse the process. At about Z=
dR0.068, R = 0.55 and g^ = 0.39, —  is reversed, showing that the rate of 

diffusion of gas 2 begins to exceed the rate of dissolution of gas 1. At 

this point F^(R) = 0.969 and F2 (R) = - 0.697 so that the product Jjf̂  .F^ (R)j = 

0 969 is still much larger than Q- f ̂ - F2 (R)̂j = 0.0697. The products f^.F^tR)
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suggest that a significant amount of dissolved gas 1 could not diffuse away 

from the boundary layer and is hindering further dissolution.

This interpretation can be confirmed by examination of the concentration 

profiles shown in figure 6.6. Initially the interfacial concentration F (R)
32f±

decreases rapidly and v y becomes negative near the interface. After the 

minimum radius, when growth is established, the profiles (marked +) at 

r = 0.6 and R = 0.75 show that F (e) varies very smoothly in a relatively 

thick layer.

For a bubble of pure species 2 ((b) in figure 6.5) the rate of diffusion 

of species 1 into the bubble decreases rapidly as its mole fraction increases

towards equilibrium at g = 0.1947 (dashed-dotted line).1, eq
Both curves of radius versus time are distinguished from the asymptotic 

growth from zero size, (3 = 0.3312 (see table 6.4)), but by the time the 

radius has increased by a factor of 10 the differences between the times 

required for growth from zero size and growth from finite size are only about 

0.7% and 2.6% in cases (a) and (b) respectively.

Figures 6.3 and 6.4 demonstrated that if the products F0 . and the 

ratios a^/FQ. are constant the species with higher bulk concentration F0 . 

will be transferred into the bubble faster. This trend is confirmed by the 

three results shown in figure 6.7, F0  ̂= 0.01,1, and 100, where Fo^.fp = 1, 

and a.j_/F0 = 1/2- The rate of transfer of species 2 increases with

increasing F0 end is responsible for the increase of the equilibrium mole 

fraction of that species (g = 0.316, 0.500 and 0.854 for the cases

Fo„ = 0.01, 1, and 100 respectively). The enhancement of the rate of

trims f e r  o f  s p e c i e s  2 a l s o  c a u s e s  t h e  i n c r e a s e  i n  g ro w th  r a t e s  (3 = 1.280,

1.831 and 6.60 for cases FQ = 0.01, 1, and 100 respectively).

In figure 6.8 varies from 0.001 to 1 whilst 0.2 = Ctg = 0.5; Fq
y

Oi
= 1 and f = 1 in all cases. The asymptotic regimes are shown in table
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Fig 6.7 : Effect of varying the diffusivity of species 2 with 
f2 • Fq  ̂ = 1 and a2/FQ  ̂ = 1/2.
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Fig 6.8 : Effect of varying the diffusivity of species 2 with
F = F = 1 and ai = a2 = 1/2.Oi u2
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Fig. 6.9 : Effect of varying the bulk concentration of species 2 
with = D2, Fq  ̂= 1; 0^ = 0.5 and 0‘2//Fo = 1/2*

Fig 6.10 : Dissolution of a three-component bubble with equal 
initial mole fractions, equal diffusivities but 
different solubilities.
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6.4 and show that (̂ 2,eq/gi,eq^_ ̂1/gi,eq " ^  is almost proportional to 

(f2 represents the ratio of diffusivities).

Figure 6.9 shows a set of results for FQ = 0.01, 0.1, 0.2, 0.5 and 1, 

whilst Fq  ̂=1; a1 0.5; O^/F^ = 1/2 and f2 = f l = 1 ' Althou9h the

behaviour is qualitatively very like that in figure 6-8 the details are 

rather different. The rates of transfer of species 2 here drop more

rapidly as Fq  ̂decreases than in the previous cases of decreasing diffusivity 

(see table 6.4.) .

Changes in diffusivity and solubility or bulk concentration can roughly 

cancel each other but cannot be exactly equivalent because the diffusivity 

affects coefficients in the partial differential equation (2.47) whilst the 

solubility and bulk concentration affect the boundary conditions.

6.9 Dissolution

Demonstration of the behaviour of multi-component bubbles must include 

the effects of solubilities and diffusivities on the dissolution rates and 

on the composition of the gas phase. The initial concentrations of dissolved 

gases in the liquid medium may also play a significant role.
The solubilities and diffusivities of gases in glass melts may cover 

relatively large ranges of values, so that it is important to analyse the 

behaviour of bubbles containing gases with very different diffusivities or

solubilities.

The composition of growing bubbles always converges asymptotically to 

equilibrium and this regime was solved analytically. Concentration profiles 

around dissolving species do not evolve towards self-similar regimes, and 

vary until the dissolution is complete, under the combination of effects of 

diffusion and radial convection (Chapter V). This situation must be even 

more complex in the case of bubbles containing several gases which diffuse

independently.
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6.9.1 Bubble containing gases with different solubilities but

the same diffusivities

Figure 6.10 illustrates a 3-component system with equal diffusivities 

and solubilities given by 0,̂ = 1; a2 = !/2; a3 = l/4/ with FQ = 0;

(i=lf 2, 3). Initially the gas composition varies rapidly due to the 

differences between solubilities. Species 2 having an intermediate 

solubility undergoes smaller changes of mole fraction than either 1 or 3. 

There is no indication of equilibrium composition before the end of the 

process. The conditions required for a dissolving sphere to tend to equili­

brium gas composition will be discussed later.

Figure 6.11 shows the effects of larger ratios between solubilities

gas (species 1) decreases progressively and becomes lower than 0.01, long 

before complete dissolution of the bubble. Dissolution of the least soluble 

gas controls the total dissolution time and in the limit, (ot = 0) , a 

residual bubble is left (R = 0.794) after complete dissolution of species 1. 

In general these results confirm that equilibrium composition is rarely 

achieved in dissolving bubbles containing gases with different solubilities.

The dashed-dotted line in figure 6.11 represents the change in size 

controlled by dissolution of species 2 after instantaneous (and complete) 

dissolution of species 1. This causes instantaneous decrease of real radius 

from aQ to a^, so that only species 2 is left and

in two-component bubbles. The mole fraction of the most soluble

or

(6.38)



Fig 6.11 : Dissolution of two-component bubbles with gases of 
different solubilities but the same diffusivities. The 
dashed lines represent gj and the dashed-dotted line 
represents the dissolution of species 2 after 
instantaneous dissolution of species 1. The figures 
show the values of a2.



Fig 6.12 : Effect of the initial composition of gas on the 
dissolution of a two-component bubble containing gases 
of very different solubilities and the same 
diffusivities. The dashed lines represent the mole 
fraction of species 1, gi with initial values 0.25, 0.5, 
0.75 and 0.9 in cases a, b, c and d.
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In the case of figure 6.11 R (0) = 0.7937. The actual two component solution 

for a2 = 0.01 is already close to the limiting solution (dashed-dotted line) 

predicted by assuming that the most soluble species dissolves 

instantaneously.

From figure 6.11 it is also clear that the shape of the radius-time curves 

changes markedly as the solubility of the less soluble gas varies.

Confirmation that dissolution is controlled by the less soluble gas is 

shown in figure 6.12. The initial mole fraction of species 2 is varied 

(o2 (O) = 1» 0.75, 0.5, 0.25 and 0.1) and the times of dissolution are matched 

so that it is possible to compare the final stages. All cases show almost 

instantaneous dissolution of gas 1 (relative to the time scale) and after this 

stage the residual radii are about = 0.909, 0.794, 0.630 and 0.464. Those 

values would represent the final radius of the bubble if species 2 were 

completely inert.

That the first stage is due to the dissolution of the species 1 is shown 

by the rapid drop of its mole fraction in the gas (dashed lines).

The fact that after the initial stage the curves become similar suggests 

that the rates of dissolution are almost exclusively dependent on the actual 

size of the bubble. This type of regime is characteristic of very low 

solubility parameters (F << 1 if the notation of Chapter V is used) and 

the limit converges to quasi steady state approximations (equation (2.68)).

It must be emphasized that if o^/’a remains very low but the solubility 

of species 2 is moderate or large (a2 > 0.1) the final stages (after the 

rapid dissolution of species 1) cannot be matched. The rates of dissolution 

are then not exclusively dependent on the actual radius but also on the

residual radius, R , after the initial stage.
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6.9.2 Bubble containing gases with different diffusivities but 

the same solubilities

In the system illustrated in figure 6.13 the diffusivities follow the 

relation = l : \ - .h and the solubility is constant (ou = 1, FQ _ = 0,
i=l, 2, 3). The changes of gas composition are similar to those observed 

in figure 6.10 (due to similar differences in solubilities). However the 

dissolution time is slightly longer when the solubilities differ than when 

the diffusivities differ.

Figure 6.14 illustrates the effects of further extending the range of 

diffusivities in two component bubbles. Here the numbers on the curves are 

the values of f2• Again the species with the largest diffusivity dissolves 

almost completely before the end of the process. This is indicated by the 

decreasing values of the mole fraction g^ (dashed lines).

The dashed-dotted line in figure 6.14 represents the case when gas 1 is 

assumed to dissolve instantaneously before species 2 starts dissolving. In 

this case f„ = 0.01, F =Z a-

differ significantly from the actual two-component solution except during the

initial stage. These examples show that dissolution is also controlled by

the dissolution of the species which has the lowest diffusivity, provided

the bulk concentrations F are zero and the solubilities are equal.
°i

Figure 6.15 shows computed results for bubbles containing initial mole 

fractions of low diffusivity gas (species 2) g (0) = 0.75, 0.5, 0.25 and 0.10 

which confirm the controlling role of the species with the lowest diffusivity. 

Again the initial stage is very rapid and finishes at about Ft = 0.909;

0.794» 0.630 and 0.464 which are the sizes of bubbles expected if gas 1 

disappeared instantaneously. The unmarked curve is the result for pure

species 2.

The data represented by (+) in figure 6.15 also corresponds to the

(cx2 - F )= 1 and the radius-time curve does not' 0



Fig 6.13 : Dissolution of a three-component bubble containing 
gases with equal initial mole fractions, equal 
solubilities but different diffusivities.

Fig 6.14 : Dissolution of two-component bubbles with gases of 
different diffusivities and the same solubilities. The 
dashed lines represent gi and the dashed-dotted lines 
represent the dissolution of species 2 after 
instantaneous dissolution of species 1. The figures 
show the values of fz = D2/D1 .



Fig 6.15 : Effect of the initial composition of gas on the 
dissolution of a two-component bubble containing gases 
of very different diffusivities and the same 
solubilities. The dashed lines represent the mole 
fraction of species 1 with initial values gj = 0.25, 
0.5, 0.75 and 0.9 in cases a, b, c and d respectively. 
The symbols (+) represent the dissolution of species 2 
after instantaneous dissolution of gas 1 for the case 
gi(0) = 0.25.



Fig 6.16 : Dissolution of two-component bubbles containing 
gases with the same permeability ctifi = = 0.5 but
different solubilities.
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instantaneous dissolution of gas 1 and is obtained from one-component 

solutions of the case F = a - F0  ̂ = 1 with f = O.OOl and g (0) = 0.75.

The agreement of such curves with the actual solution is equally good with 

the other initial compositions of gas. In these cases the dissolution 

behaviour can be reasonably predicted from the solutions of a residual 

bubble containing only the gas with low diffusivity.

In both cases shown in figure 6.16 the permeability of species 2 is 

the same a2'f2= 1,/2 but in CaSS ^ ' (lower solubility of species 2), the 

dissolution is slightly quicker. This finding is not surprising by taking 

into account that the dissolution time changes more rapidly with variable 

solubility than with variable diffusivity (Chapter V).

6.9.3 Dissolution of bubbles containing gases with equal permeabilities

It lias been shown that one-component (i=l) of the gas mixture can dissolve 

almost completely making the residual bubble become almost pure species 2.

This behaviour requires zero bulk concentration of species 1 (Fq = O) and 

the solubility or the diffusivity of the rapidly dissolving species 1 must 

be much higher than the corresponding property of the other species. At 

this stage it is useful to analyse the behaviour of bubbles containing gases 

with equal permeabilities (constant a .f values) when both solubility and 

diffusivity vary.

Figure 6.17 shows four examples in which the individual properties vary 

by factors of 1000 and g (0) = (0) = 0.5; the reference component (i=l)

has the same properties in every case (a = 1 and f = 1) whilst ^2^2 = 1 

and both bulk concentrations are zero (F0  ̂= FQ  ̂ = 0), so that the bubble 

composition is not a priori restricted by equilibrium between the gas phase 

and the liquid medium. The component with high solubility and low 

diffusivity always dissolves more rapidly than the reference component in
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spite of the fact that both gases have equal permeabilities. This explains

why the bubbles with the largest values of solubility (â  and a ) dissolve 

fastest. It also explains the initial drop of the mole fraction of the 

species with larger solubility and lower diffusivity. Meanwhile the 

interfacial concentration of this component also decreases and the same 

happens to the absolute value of the concentration gradient and to the rate 

of dissolution. This leads to a temporary "equilibrium" between the 

individual dissolution rates and the gas composition. However, there are 

clear signs that the initial tendency is reversed during the final stage of 

dissolution. There is no simple explanation for this tendency except the fact

that, if dR
dZ is sufficiently large during the initial and intermediate 

stage of the process, the accumulation of solute near the interface hinders 

the final stage of dissolution and that this effect is increasingly severe 

as the diffusivity decreases. In case (a) (figure 6.17) the solubility 

is very high and the mole fraction g^ is relatively low during the 

intermediate and final stages. Therefore a small change in g^ causes a 

significant increase of the "driving-force" (R) which is sufficient to 

correct the deviations from a final quasi-equilibrium condition.

Bubbles containing equal proportions of more than two gases with equal 

permeabilities (figure 6.18) behave similarly. Initially the individual 

rates of dissolution increase with increasing solubility of the species 

which is being considered. However, because they have smaller diffusivities 

the dissolved species 1 and 2 may not diffuse to large distances from the 

interface. Accumulation of dissolved material must then be the reason for 

the final increase of mole fractions g^ and g„;.

Other important characteristics of bubbles containing two gases with 

equal permeabilities but different diffusivities are illustrated in 

figure 6.19. The dissolution rate is here significantly affected by the



Figs 6.17 and 6.18 : Dissolution of bubbles containing gases
with the same permeability but very different solubilities.



Fig 6.19 : Effect of the initial composition of gas on the 
dissolution of a bubble containing two gases with the 
same permeability but different solubilities.

Fig 6.20 : Effect of a poorly soluble impurity in the initial 
gas composition on the dissolution of a bubble. Case b 
represents dissolution of a bubble of pure species 1.



Fig 6.21a : Effect of poorly soluble impurities in the liquid 
or in the gas phase on the dissolution of bubbles.
Case c represents dissolution of a bubble containing pure 
gas 1.

Fig 6.21b : Effect of impurity of relatively low diffusivity 
on the dissolution of a bubble. Case b represents 
dissolution of a bubble containing pure gas 1.
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initial composition of the bubble and the temporary "equilibrium" composition 

varies with that composition. The final composition is also very dependent 

on the initial composition of the gas. In all cases the mole fraction of 

the least soluble species (g ) drops significantly during the last stage of 

the process.

6.9.4 Effect of impurities in the gas or dissolved in the liquid

It has already been shown that the time required for complete dissolution 

of bubbles containing two or more gases depends greatly on the species which 

has the lower diffusivity or the lower solubility. That dissolution time 

decreases with decreasing mole fractions of the less soluble gas in the 

initial bubble. However, even very small mole fractions of a relatively 

inert species (low solubility, low diffusivity or both) cause a very slow 

final stage. In figure 6.20 (case (a)) the initial bubble contains only 

0.1% of a poorly soluble gas (a = 0.001). Case (b) corresponds to the 

dissolution of a bubble containing pure gas 1 and both radius-time curves 

are almost coincident down to R = 0.1, that is, when the bubble is only 10% 

of the initial radius. By this stage the bubble (a) is only 0.1% of its 

initial volume and contains a large percentage of the inert gas, which 

requires a much longer dissolution time. If species 1 did dissolve 

completely before any dissolution of gas 2 then the residual radius would be 

r = 0.1. Times for complete dissolution can be greatly affected by low 

levels of impurity in the original gas.

Case (a) in figure 6.21a confirms the effect of minor proportions of a 

relatively inert gas in the original bubble (a = 0.01). Again this case 

leads to a slow final stage when the bubble radius is slightly greater than 

the residual radius R = 0.215. Case (c) is the solution for the bubble

containing pure species 1.
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In case (b) the initial bubble is free of impurity but the liquid is 

slightly contaminated so that species 2 can diffuse slowly into the bubble 

while gas 1 diffuses out. The "driving-force" for this process was initially 

f2 (r) = " f02 = - °-01- Rather surprisingly beyond this initial stage 

(R < 0.85) cases (a) and (b) become almost indistinguishable. Notice that 

during the final stage F (R) is similar in both cases.

So far we have been concerned with small proportions of relatively 

insoluble impurities in the gas or in the surrounding liquid. Similar effect 

can be predicted by considering that the impurity has much lower diffusivity 

than the main gas. In the case (a) shown in figure 6.21b the ratio of 

diffusivities is f^ — D^/D^ = 0.01. The main difference between this case 

and the case (a) shown in figure 6.21a is the time scale for the final stage. 

Decreasing the solubility of species 2 causes a slower final stage than 

decreasing the diffusivity.

6.9.5 Changes from growth to dissolution

The relation between the mole fractions and concentrations at the 

interface suggest that by varying the gas composition it is possible to 

reverse the direction of diffusion of a particular species. If the initial 

rate of diffusion of this component (independently of the direction) is much 

larger than the other individual rates of diffusion, then the behaviour of 

the bubble may eventually be reversed. A change from dissolution to growth 

was illustrated in figure 6.5 and the opposite type of changes is 

exemplified in figure 6.22. The solubility of species 1 is much higher than 

the solubility of species 2 but the bulk concentration Fq is also quite high 

so that species 1 will diffuse into the bubble if its initial mole fraction, 

g (o), is lower than 0.8.

The initial dissolution of species 2 further assists the rapid increase



Fig 6.22 : Complete dissolution after an initial increase in 
radius.

Fig 6.23 : Evolution of bubble behaviour towards equilibrium 
size and gas composition.
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in g^ but is insufficient to prevent the growth of the bubble. The diffusion 

rate of species 1 into the bubble inevitably decreases because of the increase 

in its interfacial concentration. Dissolution of the bubble starts when the 

dissolution rate of gas 2 exceeds the rate of diffusion of gas 1 into the 

bubble.

6.9.6 Evolution of size and composition of bubbles towards equilibrium

Figure 6.23 illustrates some cases when the size and composition of the 

bubble evolve towards equilibrium. The "driving-forces" of both components 

vanish as the bubble composition approach the point g = 0.80, g0 = 0.20.

If the initial bubble contains pure species 1 (relatively high solubility) 

the size will decrease to about R = 0.59 as g^ decreases to 0.80. On the 

contrary if the initial bubble contains species 2, of low solubility, its 

rate of dissolution is relatively small and is exceeded by the diffusion of 

species 1 into the bubble. In this case the size increases to about 1.6 

times the initial size as again approaches 0.80.

These examples demonstrate that the equilibrium gas composition is not 

dependent on the initial composition of the bubble although the radius of 

the bubble increases if g (0) < 0.8 and decreases if g^O) > 0.8. By 

varying the initial composition of the gas it is possible to reach different 

final radii Rf of the bubble, but always in the range 0.5928 < Rf < 1.609.

6.9.7 Changes of composition in dissolving bubbles

It has been shown that when the liquid is initially free of solutes 

, _ q ( 1=1 , ..., n) the bubble composition evolves continuously towards

complete dissolution of the species which has the highest solubility, the 

highest diffusivity or both. If the ratios of solubilities or diffusivities
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are sufficiently large the most inert gas may remain almost undissolved 

for a relatively long time, while the quickly diffusing species dissolves 

almost completely. Otherwise the composition of gas may still be varying 

when the bubble disappears.

If the permeabilities of the individual gases are equal but their 

diffusivities differ considerably, the mole fraction of the least soluble 

component increases during the initial stage, remains nearly constant during 

the intermediate stage and finally decreases again as seen in figure 6.17. 

Apparently the condition of quasi-equilibrium between individual material 

fluxes across the interface and the corresponding mole fractions fails 

during the final stage due to accumulation of dissolved material around the 

bubble. The accumulation of a particular species i must be increasingly 

severe as its diffusivity becomes much smaller than the diffusivity of the 

other gases.

Examples of complex evolution of gas composition are shown in figures 

6.24 and 6.25. In figure 6.24 the three gases have equal diffusivities 

but markedly different solubilities. The dissolution can then be divided 

into three stages which correspond to control by each of the gases present 

in the bubble. Logarithmic time scale was used to distinguish these stages.

In figure 6.24 species 1 dissolves almost completely before significant 

dissolution of any of the less soluble gases occurs. The mole fractions gr) 

and g^ thus increase almost identically during this first stage.

After almost complete dissolution of gas 1 the process is controlled 

by species 2 which dissolves at a much greater rate than does species 3; 

as a result the ratio 92,/g3 decreases- it then follows that the value of 

g, must reach a maximum then decrease. During the last stage g is almost 

zero and dissolution is governed by species 3.

The residual bubble containing only gas 3 (if it were inert) would have



Figs 6.24 and 6.25 : Dissolution of three component bubbles 
showing three distinct stages corresponding to each of 
those species.

2 3
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Figs 6.26 and 6.27 : Tendency to approach equilibrium gas 
composition during dissolution of two-component 
bubbles.
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Figs 6.28 and 6.29 : Effect of the solute concentration on
the tendency to approach equilibrium during dissolution 
of two-component bubbles.
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a radius R = 0.693. This radius can be taken as the beginning of the 

final stage.

In figure 6.25 the initial gas composition was chosen so that the 

composition passes through three distinct stages. Species 1 has relatively 

large solubility and large diffusivity so that its behaviour is initially 

the most important and the mole fraction decreases rapidly from an initial 

value of g^(O) = 0.79.

At first both g9 and increase as gas 1 dissolves rapidly but the 

ratio g^/g^ decreases continuously because species 2 has both larger 

diffusivity and larger solubility than species 3. Therefore g9 peaks then 

progressively gives place to large mole fractions of the least soluble species.

The final stage is very slow and the bubble disappears at dimensionless

time of about 220. The beginning of this stage is close to the point R =

r = 0.2154 where R. represents the residual bubble in the case of complete i 1
dissolution of gases 1 and 2 before gas 3 starts dissolving.

In some conditions the composition of dissolving bubbles can also evolve 

towards equilibrium. This always occurs if there is a composition at which 

all the "driving-forces", F^(R), vanish (figure 6.23). Other conditions can 

be formulated from figures 6.26 and 6.27. In both cases the bubble 

composition tends to a range where the "driving-force" of at least one of 

the gases varies rapidly with its mole fraction in the bubble. This range is 

close to the point g = F0 /a^ =0.2 where F^iR) vanishes for both these 

figures.

The time scales used to represent the changes of mole fractions (dashed 

lines) were expanded to emphasize that those changes occur relatively early.

In cases (a) in both figures species 1 initially dissolves at a much greater 

rate than species 2 causing a relatively rapid contraction of the bubble 

while the mole fraction g1 decreases. Much smaller rates of dissolution of
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gas 2 may be due to a small ratio of solubilities,
a2 âx> or a small ratio

of diffusivities, f o r  both.

FX(R) drops sharply as g1 approaches 0.2 and the product f̂ .F., (R) 

remains relatively low. Consequently the rate of bubble contraction decreases 

considerably. At Z = 2 in case (a) of figure 6.26 g - 0.2156 so that

1 (R,gi>] 1' • ' ■ ■ — —■•■■■ — — AF1 (R) dg 0.0156

Rapid changes of gas composition are then unlikely to occur because the 

"driving-force" of species 1 varies rapidly with small changes of gas 

composition and this interdependence acts as an efficient control. Thus g 

decreases slowly towards a minimum reaching g ^  0.2007 at the end of the

process. Similar arguments can be found for the remaining cases in figures 
6.26 and 6.27.

As gx (0) = 0 m  cases (b) in figures 6.26 and 6.27, F (R) < 0 and

lf1*F1 (R)l > f2F2 (R)' Thus ^  bubbles grow during a short initial stage 

while g1 is increasing and approaches the point g;L =0.2 when f (R) = o.

By the end of the process gx is slightly greater than 0.2 so that F (R) > 0

and this species can redissolve.

Generally speaking, i f  species i  has the raximum permeability among

the n-components of a bubble, and species j has the lowest permeability

with a large ratio  between perm eabilities ( a . f . / a . f ,  »  i) mole

fraction  of species i  tends r e la tiv e ly  rapidly to g *  = Fq / a . .  I f  the rati<
l i 1

of perm eabilities is  close to unity, then the rnmnnci h  -p .r / m e  composition of gas may evolve

to nearly equilibrium conditions provided the "d riv in g -fo rces" (F. (R);  i = i ,

..., n) vary rapidly m  that range of compositions. In practice this occurs

when the "equilibrium " mole fractions g are close to g * = F /a  and
n i  ui i

th is condition is verified when l g * is reasonably close to unity, (or in
i= l
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some cases greater than unity).
n

It was shown in figure 6.23 that if £ g,* = 1, (g.* = Fq /a.), the
i=l 1 1 i 1

bubble composition tends to = g_̂ * (i=l, n) and dissolution or growth

stops at that point.

In figure 6.28 g_̂ * + g^* = 0.75 and the tendency to approach a unique 

equilibrium composition is approximate but not rigorous. In this case the 

times of dissolution are matched to enhance the similarities between the 

final stages. The agreement between the different radius-time curves is 

even better than between the corresponding mole fraction-time curves.

This is related to the fact that the "driving-force" of the major component 

during the final stages is similar in all cases at the moment when the 

bubble disappears (F^(R) = 0.0945, 0.1005, 0.1035 and 0.1040 for cases (a), 

(b), (c) and (d) respectively). In case (c) the initial composition of

gas is g^ = 0.295 and its final value = 0.293 and the composition of the

bubble varies very little during dissolution.

The components of the system illustrated in figure 6.29 have equal 

permeabilities, but quite different diffusivities. It has already been 

demonstrated that, if g^* = 0 (i=l, ..., n) (figure 6.19), these systems

do not converge to "equilibrium" gas composition and significant changes of

gas composition may occur during the final stage of dissolution. In the

present case g^* + g = 0.4 so that the restrictions on the final 

composition of the gas must not be severe. However, the initial level of 

concentrations in the bulk liquid has some effect, especially on case (a), 

which does not show the usual increase of mole fraction of the less soluble 

component during the initial stage (compare figures 6.19 and 6.29).
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6.10 Unusual concentration profiles

So far it seems that the behaviour of n-component bubbles is greatly 

affected by changes of gas composition and corresponding changes of 

concentrations of gases dissolved in the liquid at the interface. However, 

this crude criterion alone cannot explain some characteristics of transient 

behaviour. For instance F^iR) > 0, (that is Ch (a) > ) , does not ensure

that species i is dissolving. Similarly species i may dissolve temporarily 

while F (R) < 0, but then reverse its direction of diffusion and there isl
no simple relation between F (R) and the magnitude of the dimensionless 

material flux.

In figure 6.30a the original bubble contains a highly soluble gas 

(i=2) which also has lower diffusivity than species 1. For the latter 

reason species 1 is transferred at greater rate into the bubble than the 

rate of dissolution of species 2. Therefore the bubble grows from the 

beginning and the gas composition changes rapidly and finally levels at 

about g^ = 0.9007. At the same time the interfacial concentrations, 

especially F^(R), change rapidly and the concentration profiles reflect 

those changes (figure 6.30b).

As the diffusivity of species 1 is much higher than that of species 2, 

this species diffuses relatively slowly which causes accumulation not far 

from the interface. The absolute numerical value of its concentration

gradient
3f .
3e at the interface decreases rapidly so that later changes

of interfacial concentration (F2(R)) are essentially due to a relatively 

rapid rate of diffusion of species 1. As toe mole fraction g2 continues to 

decrease F., (R) also decreases giving rise to a temporary local maximum in 

the curves F2 versus x = e/R (profile corresponding to R = 1.5). The

numbers which denote the curves in figure 6.30b show the relevant values of

the dimensionless radius R.
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Fig 6.30 : Growth of a two-component bubble showing rapid
changes of interfacial concentrations and local maxima 
in the concentration-distance curve for species 2 (full 
lines in fig 6.30b).



Fig 6.31 : Dissolution of a two-component bubble showing rapid 
changes of interfacial concentrations and local minima 
in the concentration-distance curve for species 2 (full 
lines in figure 6.31b). The numbers show the values of 
the dimensionless radius R.
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Later the local maximum in the curve for disappears as that species

diffuses away in both directions. If R > 10 the concentration profiles of 

both components have reached asymptotic regimes, which can also be derived 

from the analytical solutions of growth from zero size (equation (6.7)).

The example illustrated in figure 6.31a also shows unusual evolution of 

concentration profiles. Again the diffusivity of species 2 is much lower 

than that of the other species and (R) is very dependent on the gas 

composition. Initially the flux of the species 2 from the liquid into the 

bubble exceeds the dissolution rate of gas 1 which causes a rapid drop of 

and the initial increase of bubble size.

At g^ =0.5 F (R) = 0 and one might think that the start of dissolution 

of species 2 began at this stage. Actually gas 2 started dissolving 

significantly earlier as shown in figure 6.31b. The concentration profiles 

shown in figure 6.31b are equivalent to R = 0.9, 0.75, 0.5, 0.25, 0.1 and 

0.05. The full lines represent species 2 and the broken lines species 1.
'3f 2'

Local minima are developed in the curves F_ against e . —2 —  de ̂ 1 e=R
becomes negative and therefore species 2 starts dissolving 

significantly before F (R) becomes positive.

These two cases have shown the more important conditions likely to 

cause maxima or minima in the curves of concentrations versus distance.

The interfacial concentration of the species K which shows those unusual 

features is very sensitive to changes of gas composition and DK is much 

lower than the diffusivity of other major constituents of the bubble. 

Besides during an intermediate stage the changes of gas composition are due 

to a species other than species K, so that F (R) will be forced to change, 

almost independently of the actual diffusion of species K.

These extreme examples demonstrate how inaccurate quasi steady-state 

or quasi-stationary multicomponent solutions can be. It was shown in
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Chapters IV and V that those approximations have very limited applicability 

in describing the behaviour of one-component spheres. Their use with multi- 

component systems is based on assuming that the rate of transport of species 

i is directly proportional to (R) which may be completely wrong, and adds 

to the inaccuracy of those approximate one-component solutions. They will 

often give very inaccurate predictions, except possibly for low absolute 

numerical values of the "driving-forces" (R); i=l, n.

6.11 Conclusions

Analytical solutions were derived which make it possible to predict the 

growth of multi-component bubbles from zero size. These solutions are only 

slightly more complex than equivalent one-component solutions (Scriven, 1959), 

and can be computed from these previously reported results. The multi- 

component analytical solutions demonstrate the uniqueness of asymptotic 

bubble composition and growth rates and growth from finite size converges 

relatively rapidly to that regime, regardless of the initial bubble 

composition. Analytical solutions for growth of multi-component bubbles are 

especially simple in the extreme ranges of very low and very high solubility 

parameters.

The role of solute concentrations is more important than that of 

diffusivities, that is, the behaviour of the bubble reacts more rapidly to 

changes of concentrations in the bulk liquid and solubilities than it reacts 

to changes of diffusivities. This is true both for growth and for dissolution.

Changes from bubble growth to bubble dissolution or vice versa can be 

simulated by properly choosing the initial bubble composition, solubilities 

and concentrations of solutes in the liquid medium. It is also possible to 

simulate the gradual evolution of bubbles to equilibrium conditions when



149.

the bubble stops growing or dissolving as the gas composition tends to 

equilibrium and the "driving-forces" vanish. Some of those phenomena have 

been experimentally observed (Greene and Davies, 1974).

Other occasional characteristics of bubble dissolution occur when the 

process comes to a halt or the rate of dissolution decreases dramatically 

(Greene and Kitano, 1959; Nemec, 1969). It has been confirmed that these 

observations are likely to be due to a relatively inert species which has 

low solubility or relatively low diffusivity, or both.

That the finite difference method performs very well even with variable 

interfacial concentrations and simultaneous diffusion of more than one 

species was demonstrated by comparison with the above-mentioned analytical 

solutions. For very large increases of bubble size the asymptotic regime 

after growth from finite radius becomes indistinguishable from the analytically 

solved growth from zero. The same applies to the equilibrium composition of 

the bubble. The convergence of the finite difference solutions was 

demonstrated over a very large range of solubility parameters to prove that 

the method did not fail even in very extreme conditions.
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CHAPTER VII

_ ith concentration’ ‘1 Diffusion controlled b e h a vi_o^£--------
dependent diffusivity
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sia:riar solut
"ith

constant diffusivity (Chapter IV and VI). In this chapter 
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lnclUsion of 
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concentration dependent diffusivity.

nfte difference method was also used to compute more general 
L°ns (sectin _on /-6). During growth from finite (non-zero) size the
So 111 ti
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°wth from zero size. Therefore it is possible to test the 

°i the finite difference solutions by comparison with the class
solut.ions described above.
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7.3 solutions for growth from zero size

°ltzmann transformations have frequently been used to solve
- '"•> assuming s = r/(2/5a t) and F(s) =

controlled

diffusion

F U  ,0

also

= a/12»
r /(2vZl

(7 .6)

from which it follov;s

= t ;
= 2&v^

(7.7)

Therefore, equation (7.3)
rise to

1 ~ 2 <. /n - l/s
£ 1 = 2 —  \c& /IDS ) - S/D
dŝ  ds

-1 dD
- (D) dF Vds

dF (7.8)

^iso from equations (7.4) and

dZ

dF
(7.9)

or' after rearranging»
(7.10)

dFI = 2&
ds ^

^  remaining boundary conditions
tions (2.26)) become

•(co) = 4> - (C0 - c,)/ia ' c^ )Cs
(7.11^

F(£) = O •
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 ̂ clD (F)
The functions D(F) and —  may assume e x p lic it  an alytica l forms orDF

A

be defined by a se t of n discrete points (F^; D )̂ ; i = l ,  . . . ,  n. In any 

case equation (7.8) must be solved numerically by decomposition into  a system 

° f  simultaneous ordinary d iffe r e n tia l equations.

dT
ds

9 9 ̂
e3 / ( s  d) s/D -  1 /s . _ i dD 2 (D) 1 -  T2 (7 .12)

dF
ds T (7.13)

from equation (7.10)

T(3) = 26 . (7.14)

^ u s  the variable T decreases from 26 to zero at 3=°°. This range is  very 

Usefu l j_n s e i e c ti on Qf  variable mesh sizes  for numerical solution of

ecluations (7.12) and (7 .1 3 ) . Besides the condition T(°°) = 0 can be used to 

S -̂°P the integration at a sp ecified  value; that used here was

(7.15)T < 10"5. (26) ,

. final e s t i m a t e  of  ^ —  F(*®) w i th n e g l i g i b l e  e r r o r s  i n v o l v e d  in e

n a r a m e t e r  4» the a c t u a l  s y s t e m  r e d u c e s  to a O n  s p e c i f y i n g  the s o l u b i l i  y  P  .f . ,

.  rv i f  the growth constant 6 is  sp ecified  boundary value problem. On the contrary

w h i c h  is m u c h  s i m p l e r  to  solve.bbe p r o b l e m  is o f  the i n i t i a l  v a l u e  type,

used to  obtain the solutionsp°urth-order Runge-Kutta techniques

♦ I M ,  £or the required fa c t io n s  S(F) (see append!, 5 ) .



7.4 Quasi s t e a d v - s t a t e  a p p r o x i m a t ions

I t  was shown in Chapters IV  and V that dissolution  or growth with low 

U| always tends to  quasi steady-state approximations. I f  the d iffu s iv ity  

depends on ooncentration the quasi steady-state s a l i f i c a t i o n  o f equation

(7.3) is

3
3e

[ e 2.S(F>~j|] - 0 (7.16)

or

O -, . 3F _ r  ;2 - D ( F ) - - C L
(7.17)

The constant must be evaluated by 

boundary conditions

integration of equation (7.17) with

F(R) = 0

F (00) = <j> .

That is

F (e) A f l  i i
D(F) dF = c i  r e l

0

end

I   ̂D(f) dF = 4» Dav = Cl /R 

0

° m Which i t  follow s that

(7.18)

(7.19)

A

= R 4> Dav
(7.20)

D̂ v being the average d i m e n s i o n l e s s d iffu s iv ity .



From equations (7.17) and (7.20)

(7.21)
- °av */R

where, by definition, D(0) 

equations (7.18) and (7.20)

rF (e/R)

= 1 (at the interface) In addition, from

0 (F) dF = 4> Dav I1 " e
(7.22)

and the corresponding constant property
solution (D = 1 ) » is

F(e/R) ( R
dF = <t> 1 e

The rate of the process can be o. 

and (7.21) , so that

btained by combining
equations (7.4)

(7.23)
¿5. = D ,v 4>/R ' 
dZ a

and by integration from Z - °< R
(7.24)

,2 = !  + 2 Dav 4> z

and if <t> > 0 and R »  1

P = R/2/z - L4> Dav / 21
(7.25)
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Average d iffu s iv ity  and i t s  relation to equivalent constant property 

solutions

Assuming that the actual solutions are accurately predicted by 

equivalent constant property solutions with equivalent d iffu s iv ity  D
eq

z " = t-D /a  = D .Z , eq 0 eq (7.26)

where D = D /D
eq eq a ^

So that the time scale  is  affected  by a factor eq

time required for  complete dissolution is

Thus the dimensionless

= Z /D 0 eq
(7.27)

^Sre 2o ;''S the constant property solution (Chapter V) . Also i f  6Q is  the 

° nstant property value o f the growth constant (Chapter IV) and £ the actual

s° lu t io n

fD=
6 = a /2 /D eq t) =

2/Da -t Jeq )

= S/(D ) •eq

(7.28)

in the cane of quasiasilv recognised tha
„  . n  24) i t  is easily qrow t h  orFrom e q u a t i o n  I'.z w h i c h  de s c r i b e s  9

steady-state a p p r o b a t i o n s  the g e n e r a !  ^  “ and the e q u i v a l e n t
change ofResolution is only affected by j-ffusivity

_  the average d mRffusivity is exactly equal

Dav D dF (7.29)

0
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"̂ •6 Finite djffprpnre method for concentration dependent diffusivity 

problems

The coefficients D(F) and —  in equation (7.3) make the finite differenceOr
solution somewhat more complex and more likely to become unstable if the 

^iffusivity varies rapidly with concentration. Iterative schemes to correct
A /A

D(p\ . dDancl dF were found to cause instabilities even when implicit finite

difference methods were used to calculate the concentration profiles. Usually

^ ese instabilities can be avoided if the discrete values [D(F) ] 0 and 
dD
dp at time step £ are used to calculate the concentration profile at time

teP £+1 , without iterative procedure, but these solutions also fail for very
1 "r9e absolute numerical values of the derivative —  , especially near thedF. /
terface. For the general case stability is achieved by inclusion of the 

Coq f-p * • ^icient [ D ( F ) i n  the implicit scheme used to calculate step £+1.

It will be shown that the actual class of solutions with concentration

indent diffusivity are similar to the equivalent constant property 
s°luti-ions provided a suitable equivalent diffusivity is taken into account. 

ief°re the arguments found to justify the transformation x = e/R used 

aPter i n  are also valid in the present conditions and equation (7.3)

Th
ln Ch

3ecomes

D(F) '¿F ) , 2 D (F) Î3F1 2 dR*
i 2| + ----— - + [dD] + R

(3x J X 3x dFj 3x dZ

_2
(x -  ex )

Î3f1 2 3f
3x✓

= R . (7.30)

is Station is then replaced by the finite difference equation (7.31)

1 r~
2

■ £+1
+  1

X
fdF'
3x

1
+ 2

rr32F
£+lJ 3x‘

2+ —
x
3f ■ D„ + £+1

dD
dF

t r\ \3f 3f
3x £+1

+ 1
7< av

dR
(d̂ J * (x

av
- cx-2, 3f

3x i l l
_3x J £+lJ

<*2>av
3f
3Z (7.31)
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where the space and time derivatives assume the finite difference forms 

derived in Chapter III.

As the amplitude of time intervals is controlled (see Chapter III)

the changes of concentration at a space mesh point j and per time step
( j t o
l3f

factor to integrate from time step £ to step £+1, and

are relatively small so that the derivative -tt— | is used as an explicit
W £

°£+l °£ +
dD
dF F£+l F£ !7.32)

Therefore also assumes the form of a linear term which is required for

lnclusion in the implicit finite difference scheme.

This method resolves the instabilities which might develop when 

ls not included as an implicit term and provides a way of using an 

approximate average between steps £ and £+1. The accuracy of this technique 

ls again confirmed by comparing with the class of exact solutions for 

growth derived in section 7.3.

If the diffusivity is strongly dependent on the concentration of solute
the ĉoncentration profiles will be markedly affected and concentration

A

9tadients may vary rapidly with distance. This trend occurs if is

large, especially near the interface. Besides, in the present conditions
the r,concentration gradient at the interface must be estimated from discrete

P^ce mesh points close to the interface. Both trends require smaller space 
^sh

do
dD
dF
sev(

sizes than for the constant diffusivity case. However, these effects 

n°t affect most of the results reported in this chapter, and only for

100 it is necessary to use more than 150 space mesh points. The most 

ere cases included in this chapter were |<}>| = 0.001 and D =(l + 10-(F/4>))
% ere
te

dD
dF = 10 and convergence of the finite difference solutions then did

qui less than 300 space mesh points.
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7.7 Growth from zero size

A

A polynomial D(F) function was chosen to illustrate the effect of 

concentration dependent diffusivity, such that

D (F) = 1 + d1- F + d • F (7.33)

where dg and d^ are constant. All the examples reported in this chapter 

Refer to E = 1, which is the case with gas bubbles. Values of growth 

constant 3, solubility parameter, (p, and constants dg and d^ were used to 

solve equations (7.12) and (7.13) with the proper initial conditions (7.11) 

a»d (7.14).

The characteristic law R a /z which describes the asymptotic regime 
of growth is.valid regardless of the relation between the diffusivity and

concentration of solute. Only the growth constant 3 = R/(2/z) is dependent

°n the actual functional form D(F) and it is useful to relate the equivalent

dimensionless diffusivity D (equation (7.28)) to the average diffusivity 
a eq
Cav (equation (7.29)).

A lj
Figures 7.1 and 7.2 show systematic differences between (D ) = B/Bq

D̂av) i where $n represents the constant property solution (for the case
AD -  vi'• The values of 3^ obtained by numerical solution of equation (7.8) 

idle same as Scriven's solutions (1959). The differences between D andA J-
Dav increase as either dg or d^ (or both) increases.

^ summary of results is also shown in table 7.1 where 3g is the actual

OVith constant for the case (p = 1, E = 1, while 3q = 1.320 is the

°rResponding constant property solution. The differences between 
(D

Wh,

is

eq* = 3,/3 and (D ) ** can be as large as 19% of 3. /30 in case 16, that is  ̂ 1 0  av 1 O
A A

the changes of diffusivity are maximum. The agreement between D^and 

^etter when D(F) is a linear function of F than when D (F) -Ice F . This
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conclusion is easily drawn by analysis of growth constants for the set of 

cases 3, 11, 12 and 13 or the set 5, 14, 15 and 16.

Figure 7.3 illustrates the concentration profiles corresponding to 

cases 3, 11, 12 and 13 of table 7.1. The dashed line represents the constant 

property solution, and is clearly distinguished from any of the variable 

diffusivity cases which tend to show steeper profiles near the interface, 

but also lower concentration gradients in the tail of the profile where the 

diffusivity approaches a maximum. At the interface all these variable

diffusivity cases have similar concentration gradients, but every functional
/\

form D(F) gives rise to a different shape of concentration profile. These 

conclusions are confirmed in figure 7.4 which illustrates the cases 5, 14,

15 and 16 of table 7.1, but the differences between these profiles are 

greater than in figure 7.3, because the changes of diffusivity throughout 

bhe diffusion fields are greater in the cases 5, 14, 15 and 16 than in the 

°ther set of cases 3, 11, 12 and 13.

The quasi steady-state approximations have suggested that in the range
A A

°f very low solubility parameters D = D , and therefore B/3^ = (D ) .J J ^ eq av O av
'Ibis trend is confirmed in table 7.2 with a reference constant property

s°lution <J>(3;£)= (J)(0.01; 1) = 1-965 x 10~4 and a general relation D(F) =

1 + d - F. The reference growth constant is 3Q = 0.01 and the remaining

values are 3 = 3  /"d "* where d ' =[l + 1.965 x 10-4.d /2] is the average 0 av av
'liniensionless diffusivity in the range 0 ^ F ̂  1.965 x 10~^. If the

a9teement between the equivalent diffusivity D and the actual average

a;Lffusivity D , is exact then D = D = (3/B^) = D and all thea v  av eq O av
Predictions of solubility parameter <j> must be equal. These conditions are

alroost fulfilled and the actual solutions of <j> (equation (7.8)) are close
t- 2 ^c° the quasi steady-state predictions (¡)ss = 23 /D (equation (7.25)).clV



Table : 7.1

Comparison between exact solutions of growth with 

variable d iffu s iv ity  (D=1+d^F+d^F^), and constant property 

solutions with average d iffu s iv ity  (equation (7 .2 9 ))*

case d
1

d
2 V Bo

-  ij
( n  r

a v

1 0 . 5 0 1 . 4 4 9 1 . 0 9 8 1 . 1 1 8

2 1 0 1 . 5 6 5 1 . 1 8 5 1 . 2 2 5

3 2 0 1 . 7 7 1 1 . 3 4 1 1 . 4 1 4

4 5 0 2 . 2 9 8 1 . 7 4 1 1 . 8 7 1

5 1 0 0 2 . 9 5 7 2 . 2 4 0 2 . 4 4 9

6 0 0 . 5 1 . 4 0 1 1 . 0 6 1 1 . 0 8 0

7 0 1 1 . 4 7 0 1 . 1 1 3 1 . 1 5 5

8 0 2 1 . 6 0 5 1 . 2 1 6 1 . 2 9 1

9 0 5 2 . 0 5 2 1 . 5 5 4 1 . 6 3 3

1 0 0 1 0 2 . 4 2 2 CO VJ1 2 . 0 8 2

11 1 1 . 5 1 . 7 4 9 1 . 3 2 5 1 . 4 1 4

1 2 0 3 1 . 7 2 3

lr\ 
O

 
K*\ • 1 . 4 1 4

1 3 - 1 4 . 5 1 . 6 9 9 1 . 2 8 7 1 . 4 1 4

1 4 5 7 . 5 2 . 8 8 1 2 . 1 8 2 2 . 4 4 9

1 5 0 1 5 2 . 8 0 2 2 . 1 2 2 2 . 4 4 9

1 6 - 5 2 2 . 5 2 . 7 1 8 2 . 0 5 9 2 . 4 4 9

1 7 - 0 . 2 0 1 . 2 6 3 0 . 9 5 8 0 . 9 4 9

1 8 - 0 . 5 0 1 . 1 7 7 0 . 8 9 2 0 . 8 6 6



F i g s  7.1 a n d  7.2 : E f f e c t  of  c o n c e n t r a t i o n  d e p e n d e n t  d i f f u s i v i ty 
on the g r o w t h  c o n s t a n t  3* The d a s h e d  lines r e p r e s e n t

B/6o = (Dav)*5.



Table 7.2

Agreement between the average diffusivity and the 
equivalent diffusivity for low cj).

T31O •—1 102.3 = (D ) 15 eq 104.(f> (D )** eq lo4^ss

-0.25 0.8686 1.965 0. 8686 2.000
0 1 1.965 1 2.000
1 1.4080 1.969 1.409 1.998
2 1.7219 1.969 1.723 1.997
5 2.4316 1.969 2.434 1.996
10 3.2901 1.970 3.294 1.995

^•8 Finite difference solutions for finite initial size

7.8.1 Growth

The modifications of the finite difference method which are required to

s°lve diffusion controlled growth or dissolution of spheres with concentration

dependent diffusivity were described in section 7.6. This technique was used

to compute (R,Z) data which were inserted into equation (7.7) to confirm the

convergence towards the asymptotic regime. For R ^ 100 the numerical

Predictions 3 = R/(2/z) remain constant until at least the fourth significantn
f;i-9ure and computations were carried out up to R = 10 , that is when the 

tadius had increased by a factor of 105. This large increase in size clearly 

demonstrates that there is no change in the growth law for R ^ 100,

(R = 2 6 Æ  ) .n
The numerical predictions of growth constant 3r were then put into 

Nation (7.12) with the proper function D(F) to recover the equivalent 

ahalyticai" values of the solubility parameter, (j> . The agreement betweencl
finite difference predictions and the "analytical" solutions is then



Table : 7.5

C o m p a r i s o n  b e t w e e n  fin i t e  d i f f e r e n c e  p r e d i c t i o n s  f o r  R ^  100 
and the e q u i v a l e n t  e x a c t  s o l u t i o n s .  (D=1 +d' (F/(J))).

<f> 0.01 0.1 1 10 100

o' 8 6 *a 6 *a 8 *a 8 *a

- 0 . 8 0 . 0 5 9 3 0 . 0 1 0 0 0 0 . 2 1 8 6 0 . 1 0 0 2 1 .080 1 .000 8.50 10.00 8 2 . 2 100.1

-0.5 0 . 0 6 5 8 0 . 0 1 0 0 2 0 . 2 4 0 6 0.1001 1.177 1 .001 9 .1 9 10.01 88. 7 100.1

- 0.25 0 . 0 7 0 7 0.01001 0 . 2 5 7 7 0 . 1 0 0 2 1.253 1 .001 9.71 10.00 93.6 100.1

0.5 0 . 0 8 4 0 0 . 0 1 0 0 3 0.3031 0.1001 1.448 1 .001 11.12 10.02 106.7 100.0

1 0 . 0 9 1 8 0 . 0 1 0 0 3 0 . 3 3 0 4 0.1 0 0 2 1.567 1 .002 11.93 10.01 114.5 100.1

2 0 . 1 0 5 7 0 . 0 1 0 0 2 0 . 3 7 8 7 0 . 1 0 0 2 1.777 1 .002 13.41 10.01 1 28.8 100.2

5 0 . 1 3 9 3 0.01001 0 . 4 9 6 5 0.10 0 3 2.294 1 .001 1 7 . 1 0 10.01 163.4 100.1

7.5 0 . 1 6 1 9 0 . 0 1 0 0 0 0 . 5 7 8 0 . 1 0 0 0 2.650 1 .001 19-65 10.01 1 87.4 1 00.0

10 0 . 1 8 1 9 0 . 0 1 0 0 0 0 . 6 4 6 0.1001 2 .969 1 .001 21.93 10.01 209.1 100.3

0 0 . 0 7 5 3 0 . 0 1 0 0 0 0.27 3 4 0.1 0 0 0 1.320 1 .001 10.20 10.01 98.2 100.1



Table : 7.4
C o m p a r i s o n  b e t w e e n  f i n i t e  d i f f e r e n c e  p r e d i c t i o n s  for R ^ 100 and 

the e q u i v a l e n t  e x a c t  solutions, [ D  =1 +d* (F/(J))2] .

<i> 0 . 0 1 0 . 1 1 1 0 1 0 0

a " B 6 B 4>a B B
♦ a

- 0 . 8 0 . 0 6 5 5 0 . 0 1 0 0 0 0 . 2 4 0 7 0 . 1 0 0 1 • 03 Vd 1 . 0 0 0 9 . 2 7 1 0 . 0 0 8 9 - 5 1 0 0 . 0

- 0 . 5 0 . 0 6 9 3 0 . 0 1 0 0 0 0 . 2 5 3 7 0 . 1 0 0 3 1 . 2 3 7 1 . 0 0 1 9 . 6 6 1 0 . 0 3 9 3 . 2 1 0 0 . 2

- 0 . 2 5 0 . 0 7 2 4 0 . 0 1 0 0 1 0 . 2 6 3 8 0 . 1 0 0 2 1 . 2 8 1 1 . 0 0 3 9 - 9 5 1 0 . 0 3 9 5 . 7 1 0 0 . 1

0 . 5 0 . 0 8 1 0 0 . 0 1 0 0 1 0 . 2 9 2 7 0 . 1 0 0 3 1 . 4 0 0 1 . 0 0 3 1 0 . 7 1 1 0 . 0 1 1 0 3 . 0 1 0 0 . 1

1 0 . 0 8 6 4 0 . 0 1 0 0 2 0 . 3 1 0 3 0 . 1 0 0 2 1 . 4 7 1 1 . 0 0 3 1 1 . 2 1 1 0 . 0 3 1 0 7 . 7 1 0 0 . 3

2 0 . 0 9 6 2 0 . 0 1 0 0 2 0 . 3 4 3 3 0 . 1 0 0 2 1 . 6 0 5 1 . 0 0 2 1 2 . 1 0 1 0 . 0 3 1 1 5 . 9 1 0 0 . 3

5 0 . 1 2 1 1 0 . 0 1 0 0 2 0 . 4 2 7 6 0 . 1 0 0 2 1 . 9 5 1 1 . 0 0 2 1 4 - 3 8 1 0 . 0 3 1 3 7 . 1 1 0 0 . 3

7 . 5 0 . 1 3 8 6 0 . 0 1 0 0 2 0 . 4 8 7 1 0 . 1 0 0 2 2 . 1 9 8 1 . 0 0 2 1 6 . 0 1 1 0 . 0 3 1 5 2 . 3 1 0 0 . 3

1 0 0 . 1 5 4 3 0 . 0 1 0 0 3 0 . 5 4 0 0 . 1 0 0 2 2 . 4 1 7 1 . 0 0 1 1 7 . 4 5 1 0 . 0 1 1 6 5 - 6 1 0 0 . 1

0 0 . 0 7 5 3 0 . 0 1 0 0 0 0 . 2 7 3 4 0 . 1 0 0 0 1 . 3 2 0 1 . 0 0 1 1 0 . 2 0 1 0 . 0 1 9 8 . 2 1 0 0 . 1



Pigs 7.5 and 7.6 : Effect of concentration dependent diffusivity 
on the ratio of the growth constant 3 for the variable 
diffusivity problem to the corresponding constant property 
value 3o• The dashed lines represent the quasi steady-state 
approximation f3/$0 = (Dav) ̂  The numbers show the values of <f>.



Pigs 7.3 and 7.4 : Effect of concentration dependent diffusivity 
on the concentration profiles for growth from zero size.

Fig  7 .4

0.2 0.8 1.0
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ea sily  recognized by comparing the orig in al cp values and the derived  

equivalent values o f cp (see tables 7 .3  and 7 .4 ) .cl

The relation s between the d iffu s iv ity  and concentration o f solute  

used in tables 7 .3  and 7 .4  were

a n d

D (F) = 1 + d' (F/tp) 

D(F) = 1 + d" (F/cp)2

(7 .34)

(7.35)

s°  that the average dimensionless d iffu s iv ity  is  ( l  + d /2 ) in table 7.3

and D = (l + d ^ /3 ) i n  table 7 .4 . av '

The numerical predictions shown in tables 7 .3  and 7.4  were also  

represented in figures 7 .5  and 7 .6  to investigate the relation  between the 

equivalent d if fu s iv ity , £eq -  M / . end the average d iffu s iv ity  D ^ .

These resu lts  show that £eq is  close to £qv for  very small values o f the 

so lu b ility  parameter <p but the differences increase with <J> and are greater 

when the d if fu s iv ity  increases with the square concentration F2 , than when 

the d iffu s iv ity  increases with F. In addition the ratios 3/BQ between the 

growth constants for the variable d iffu s iv ity  case, 3 , and for the constant 

Property case, are nearly proportional to the square root o f the average
/s

^niensionless d if fu s iv ity  D ^ , that is

6 /3 _ -  1 + S[(D )** -  1]0 av
(7.36)

the d iffu s iv ity  increases with increasing concentration of solute

the ^nimum value o f d iffu s iv ity  occurs at the interface where the d iffusion  

ansport is  most important. This might explain why the equivalent d iffu s iv ity  

lower than the average d iffu s iv ity  and therefore 8 / =  (D ^) ^ < (D ^)*2.
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The opposite trend occurs if D(F) decreases with increasing F because the

diffusivity at the interface is then greater than the average diffusivity.

In this case the growth rates for the variable diffusivity problem are

always greater than the growth rates for the equivalent constant property

problem with the same average diffusivity, that is 8/6 > (D J*5.O av

7.8.2 Transient regime of growth from finite size

In figures 7.7 and 7.8 the use of the equivalent dimensionless time 

z ‘Deq where Dg = (8/8Q) (equation (7.28)) makes the representation of the 

mitial stages of growth from finite size almost independent of the actual 

relation between the diffusivity and concentration of solute. In those 

■‘•-‘-gures the full lines represent the solutions for the relation D =

+ 10 - (F/<f>)] and the dashed lines D =[l - 0. 8 • (F / )]. All the remaining 

s°lutions for D =[l + d'• (F/(f))] with -0.8 < d^ < 10 lay in between the 

limiting full and dashed lines shown in figures 7.7 and 7.8, that is, they 

are nearly indistinguishable. Note that this also includes the constant 

Property case d'= 0. Therefore growth is characterized by specifying the 

6l5uivalent diffusivity and the solubility parameter and the actual solutions 

f°r the variable diffusivity cases can be worked out from constant property 

s°lutions. From the radius-time relation alone it will be impossible to 

Show whether the diffusivity is nearly constant or varies rapidly with the 

Cor*centration of solute. These conclusions apply to other functional forms 

 ̂ (̂P)., namely equation (7.35).

Unfortunately the equivalent diffusivity is not the same as the average 

diffusivity but the relations between (D ) ** and (D^)*5 are frequently nearly 

'*'near over significantly large ranges of values of Dav* Therefore, very 

w Points are needed to obtain accurate relations between (Deg) 311(5 °̂av*
■C
Qrn which all the intermediate variable diffusivity solutions may be worked

Out.



Figs 7.7 and 7.8 : Transient stage of growth from finite size with 
concentration dependent diffusivity. The numbers show the 
values of (j). The dashed-dotted line in fig 7.7 represents the 
quasi steady-state equation (7.24).
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Figure 7.7 also confirms that the solutions for variable diffusivity 

Problems with low cf> converge to the quasi steady-state approximation 

(equation (7.24)). In the range of very large <p the variable diffusivity 

solutions also converge which has been already found for constant property 

solutions (figure 4.11).

7.8.3 Dissolution

Figures 7.9 and 7.10 exemplify the diffusion controlled dissolution of 

bubbles (e = l) with variable diffusivity. These results were obtained by 

finite difference solution of equations (7.3) and (7.4). The modifications 

required for this type of equation were described in section 7.6. In 

figure 7.9 the relation between the diffusivity and solute concentration is 

described by a linear function (equation (7.34)) and in figure 7.10 it is 

fined by

D = exp[d(F/<}>) ] . (7.37)

In both cases the most important effect of varying the diffusivity is the 

cbange of dissolution time. The constant property solutions are represented 

^ bbe dashed lines.

figures 7.11 and 7.12 show normalised dissolution curves for the cases 
Of Quations (7.34) and (7.37) respectively. The full lines in figure 7.11 

tePtesent the solutions for D = [l + 10.(F/<f>)] and the dashed lines solutions



Figs 7.9 and 7.10 : Relations between R and Z for dissolution with 
concentration dependent diffusivity. The dashed lines 
represent the constant property solutions.



Figs 7.11 and 7.12 : Relations between normalized radius and 
time for dissolution with concentration dependent 
diffusivity. The numbers show the values of <f>. The dotted- 
dashed lines represent the quasi steady-state equation
(7.24).

0.8 1.0



Fig 7.13 and 7.14 : Relation between the equivalent
dimensionless diffusivity De = Z0/Z3 for dissolution 
with concentration dependent diffusivity and the 
average dimensionless diffusivity Dav. The numbers 
show the values of <j>.

3



Table : 7.5

E f f e c t  o f  c o n c e n t r a t i o n  d e p e n d e n t  a i f f u s i v i t y  o n  t h e  

d i m e n s i o n l e s s  t i m e  r e q u i r e d  f o r  c o m p l e t e  d i s s o l u t i o n  Zd .

T h e  s y m b o l  *  d e n o t e s  t h e  q u a s i  s t e a d y - s t a t e  e q u a t i o n  ( 7 . 2 4 ) .

a )  D = 1 + d (F /4 > )

<p * - 0 . 0 0 1 - 0 . 0 1 - 0 . 1 -1 - 1 0

a -4> z d

1 0 0 . 0 8 3 3 0 . 0 8 3 2 0 . 0 7 9 1 0 . 0 7 0 8 0 . 0 5 4 0 0 . 0 3 6 8 2
5 0 . 1 4 2 9 0 . 1 4 1 1 0 . 1 3 4 6 0 . 1 2 0 2 0 . 0 9 1 4 0 . 0 6 0 2
2 0 . 2 5 0 0 0 . 2 4 5 8 0 . 2 3 4 7 0 . 2 0 7 6 0 . 1 5 5 0 0 . 0 9 6 4
1 0 . 3 3 3 3 0 . 3 2 6 3 0 . 3 1 1 6 0 . 2 7 3 6 0 . 2 0 0 8 0 . 1 2 0 4

0 . 5 0 . 4 0 0 0 0 . 3 9 1 5 0 . 3 7 2 9 0 . 3 2 5 1 0 . 2 3 5 1 0 . 1 3 7 4
- 0 . 2 5 0 . 5 7 1 0 . 5 5 4 0 . 5 2 5 0 . 4 5 0 2 0 . 3 1 4 2 0 . 1 7 4 3
- 0 . 5 0 . 6 6 7 0 . 6 4 4 0 . 6 0 7 0 . 5 1 5 0 . 3 5 2 9 0 . 1 9 1 6
- 0 . 8 0 . 8 3 3 0 . 7 9 6 0 . 7 4 3 0 . 6 1 9 0 . 4 1 3 4 0 . 2 1 8 0

0 0 . 5 0 0 0 0 . 4 8 6 4 0 . 4 6 2 5 0 . 3 9 9 4 0 . 2 8 2 8 0 . 1 5 9 9

b )  D = e x p  ( a  (F/<j>) )

<t> # - 0 . 0 0 1  - 0 . 0 1  - 0 . 1  -1  - 1 0

a -<t> Z 
y  d

3 0 . 0 7 8 6 0 . 0 7 7 9  0 . 0 7 5 1  0 . 0 6 9 1  0 . 0 5 6 0  0 . 0 4 2 7 9
2 0 . 1 5 6 5 0 . 1 5 4 1  0 . 1 4 8 5  0 . 1 3 4 4  0 . 1 0 5 6  0 . 0 7 1 8
1 0 . 2 9 1 0 0 . 2 8 5 1  0 . 2 7 3 2  0 . 2 4 2 3  0 . 1 8 1 1  0 . 1 1 1 2

0 . 5 0 . 3 8 5 4 0 . 3 7 6 7  0 . 3 5 9 5  0 . 3 1 4 7  0 . 2 2 8 9  0 . 1 3 4 6
- 0 . 5 0 . 6 3 5 0 . 6 1 5  0 . 5 8 2  0 . 4 9 6  0 . 3 4 2 2  0 . 1 8 7 0

- 1 0 . 7 9 1 0 . 7 6 1  0 . 7 1 6  0 . 6 0 2  0 . 4 0 6 3  0 . 2 1 5 6
- 2 1 . 1 5 7 1 . 1 0 0  1 . 0 2 1  0 . 8 3 9  0 . 5 4 5  0 . 2 7 5 8
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for the cases D = [ l  -  0 .8  * (F/<{>)] . Sim ilarly the f u l l  lin es in figure 7.12
/v A

represent D = exp[3(F/({)) ] and the dashed lin es D = exp [-2  (F/(J>) ] . The

dotted-dashed lin es represent the quasi steady-state solutions (equation

(7 .2 4 ) ) .  These figures confirm that concentration dependent d iffu s iv ity  may

be taken into  account by changing the time sc a le , which is  the same as using
 ̂ _

an equivalent d if fu s iv ity . A ll  the solutions for D = [ l  + d(F/<}))] with 

- 0 .8  < d < IQ lay in between the extreme cases d = - 0 .8  and d = 10, and 

sim ila rly  the solutions for D = exp [d(F/(j>) ] with -2  < d < 3 lay in between 

the cases d = -2  and d = 3. With low | (p | the actual solutions converge to 

the quasi stead y-state  lim it .

I t  has been shown that the time sca les , that i s ,  dimensionless d issolution  

times Zjj, are the most useful data so that the radius-tim e relation s for the 

concentration dependent d iffu s iv ity  cases may be obtained from constant 

property so lu tio n s. D issolution times are shown in table 7.5a  for the case

of the linear relation D =[l + d(F/(|>)] and in table 7.5b for D = exp[d (F/cf>) j . 

These results are also represented in figures 7.13 and 7.14 in order to

relate  the equivalent dimensionless d iffu s iv ity  D = Zc / Zd t0 the avera9e
A

dimensionless d iffu s iv ity  D ; Z„ is  the constant property solu tion .J av 0

Figures 7.13 and 7 .14 show that there are nearly linear relation s between

D and except possib le  for 4> = -1 0  in figure 7 .1 4 . These relations  

reduce to

D -  1 + S (D -  1) • (7.38)eq av

A

°ne calculation  for  the middle o f the range o f D is  usually enough to obtainclV
accurate values o f S which may be useful for  each relation  between d iffu s iv ity  

^ d  concentration.

I t  has been shown that the equivalent d iffu s iv ity  for growing spheres is  

lower than the average d iffu s iv ity  i f  the d iffu s iv ity  is  a minimum near the
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interface and the equivalent diffusivity is higher than the average 

diffusivity if the diffusivity is a maximum at the interface. The same 

trends are valid for dissolving spheres as shown in figures 7.13 and 7.14.

The examples shown in figures 7.11 and 7.12 demonstrate that from 

experimentally measured radius-time curves it is virtually impossible to 

conclude whether the diffusivity is nearly constant or varies strongly with 

the concentration of solute. For the cases <p = -10 shown in figure 7.12 

the diffusivity in the bulk liquid medium is about 20 times the value at the 

interface (full line) or about 0.135 times this value (dashed line). Even 

these extreme cases can only be distinguished if the final stage is 

accurately measured and this would be very difficult with most experimental 

techniques. Besides, impurities might easily change the final stage of 

dissolution (see Chapter VI).

Seclusions

E x a c t  s o l u t i o n s  h a v e  b e e n  d e r i v e d  f o r  d i f f u s i o n  c o n t r o l l e d  g r o w t h  o f  

s P h e r e s  f r o m  z e r o  s i z e  w i t h  c o n c e n t r a t i o n  d e p e n d e n t  d i f f u s i v i t y .  T h e s e  

s ° l u t i o n s  w e r e  t h e n  u s e d  f o r  c o m p a r i s o n  w i t h  f i n i t e  d i f f e r e n c e  p r e d i c t i o n s  

a n d  b o t h  m e t h o d s  a g r e e  v e r y  c l o s e l y .  T h i s  d e m o n s t r a t e s  t h e  a c c u r a c y  o f  t h e

i

lnite difference method.

I t  h a s  b e e n  s h o w n  t h a t  t h e  s o l u t i o n s  f o r  g r o w t h  o r  d i s s o l u t i o n  o f  s p h e r e s

with concentration dependent diffusivity can be worked out from constant

P r o p e r t y  s o l u t i o n s  p r o v i d e d  a c c u r a t e  v a l u e s  o f  t h e  e q u i v a l e n t  d i m e n s i o n l e s s

^•ffusivity D are known. Unfortunately this equivalent diffusivity is not eq
same as the average dimensionless diffusivity Dav except for very low

s°lute numerical values of the solubility parameter <j>. However, the

6 1 a t i o n  b e t w e e n  D a n d  D i s  u s u a l l y  s i m p l e  a n d  o n l y  a  f e w  (D ; D ) 
e q  a v  a v

ts are needed to obtain all the relevant solutions for a given functional
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form D(C) relating the diffusivity and the concentration of solute. This is 

Valid both for growth and dissolution.

The use of the equivalent diffusivity makes all the solutions for growth 

with large R indistinguishable regardless of the relation between the 

âiffusivity and concentration of solute. During the initial transient stage of 

growth from finite size the variable diffusivity solutions are also almost 

indistinguishable from the constant property solution provided the dimensionless 

time is transformed into Z*D
e q

D u r i n g  d i s s o l u t i o n  t h e  e v o l u t i o n  o f  c o n c e n t r a t i o n  p r o f i l e s  i s  c o m p l e x

( C h a p t e r  V) w i t h o u t  e v o l u t i o n  t o  a s y m p t o t i c  r e g i m e  e x c e p t  f o r  v e r y  l o w  <j>.

In spite of that the equivalent diffusivity is still a very useful variable to

t a k e  i n t o  a c c o u n t  t h e  r e l a t i o n  b e t w e e n  d i f f u s i v i t y  a n d  c o n c e n t r a t i o n  o f  s o l u t e .

Representation of radius-time relations in terms of Z-D gives closeeq
Predictions for very different functional forms D(F) so that the variable 

^iffusivity solutions can be worked out from the constant property case with 

the equivalent diffusivity.

F r o m  t h e  s h a p e  o f  r a d i u s - t i m e  c u r v e s  i t  i s  t h e n  p r a c t i c a l l y  i m p o s s i b l e  t o  

c ° n c l u d e  w h e t h e r  t h e  d i f f u s i v i t y  i s  s t r o n g l y  d e p e n d e n t  o n  c o n c e n t r a t i o n  o r

hot.
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CHAPTER VIII 

Surface Kinetics

8.1 In te r fa c ia l conditions

In the previous chapters i t  has been assumed that the transport o f  

^ t e r i a l  was controlled  by d iffu sion  in the liq u id . However, i f  the d iffu sion  

were s u ffic ie n tly  rapid the rate o f transfer between the sphere and the 

liquid  medium might be controlled by surface k in e tics , or both mechanisms 

^ g h t  govern the behaviour o f the system. These phenomena are frequent in  

chemical engineering problems and the rate o f transport at the in terfa ce , J, 

(moles per unit area and per unit time) with n-th order k in etics is  usually  

described by (Rosner and Epstein, 1972)

J = K" [ (C(a)) n -  (C*)n ] = D[1 -  C(a).  v ]“ 1. f e ]  (8.1)
1 1 a

Where C(a) is  the actual concentration a t the interface, C* the equilibrium  

concentration and k '  the k in etic  constant. The present treatment is  

Restricted to one-component bubbles, so that C(a)*v -  0 and the index i 

previously used to denote the species i  can be omitted. The one-component 

case is  s u ffic ie n t  to i l lu s tr a te  the possib le  behaviour.

In these conditions equation (8.1) can be made dimensionless

K [  (F (R) + F j n -  Fsn ]  = (8.2)

ere e,  r and Z are defined as usual (Chapter II) and

= C*/Cr ; F(R) = [C(a) -  C l / C

F = C /C' F = (C -  C ) / C °00 s
-1+n -1= K .a .Co . D 0 s

(8.3)

K
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'The gas concentration C° and the diffusivity D of solute are considereds
c°nstant. c denotes the initial bulk concentration of solute so that the

°nal boundary condition and initial condition are written as usually

c (°°) = c t ^ 0
C O  '

C (r) = c
CO

r > 3
(8.4)

was shown in chapter II that for gas bubbles C = 1, so that the

etial balances (equation (2.28)) can be written

32f " 2 _ R 2 dR 1
e e dZ

9f _ Bf 
3e 3z (8.5)

ana

dR
dz

'3f' (8.6)
R

*ith boundary condition

F(°°) = 0 , (8.7)

^d lnitiai condition

F(e) = 0 ; e > R ; Z = O . (8.8)

Stations (8.2) , (8.5) and (8.6) cannot be solved analytically.

Cal solutions were reported by Szekely and co-authors (1971, 1973),
Out the
th

stability of their method required very small time increments so
at sUch solutions are not efficient to analyse growth or dissolution with
or moderate solubility parameters

^  has also been emphasized that the assumption of arbitrary functional
<orms concentration profiles used by Rosner and Epstein (1972) to derive
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thelr diffusion controlled approximations fails in the ranges of moderate 

low solubility parameters. Including surface kinetics in similar ranges
of

th.
c°ncentration is unlikely to lead to generally acceptable solutions by 

°Se Methods.

8.2 Stasi steadv-state approximations 

By integration of the quasi steady-state simplification of the material 

nce (equation (2.67)) one obtains

8f
3e = - F(R)/R (8.9)

F (e) = F (R) . (8 .10)

By combination of equations (8.2), (8.6) and (8.9) for first order
SUt£

^Ce kinetics (n=l) one obtains

dR
dZ

K <p
1 + K R ' (8.11)

com
wkich it follows that

ì  (R - 1) + j (R2 - 1) = <pZ , (8.12)

*1th R = 1 when Z = O, and (J) = (C - C*)/C°. Equation (8.12) assumes a
ssstmpie form and if the kinetic constant is sufficiently small (see 

6s 8.4 and 8.8)

R - 1 + K (f) Z (8.13)

I t Will later be shown that equation (8.13) represents the general
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°lutions of growth or dissolution controlled by first order surface kinetics

te9ardless of the actual value of the solubility parameter (j).

The equilibrium water content in glass melts is known to follow the 
S h
evert's law, that is C* a P , where P is the water vapour partial pressure.

Oth,er gas-liquid systems may follow Sievert's law and for these cases second
tider surface kinetics is expected (n=2) (Fast, 1965).

From equations (8.2), (8.6) and (8.9) with second-order surface kinetics
trie °btains

dR
dZ R 2KR

1_
R

Fs2 + F +
00 2KR-'

(8.14)

With slnitial condition Z = 0 ; R = 1

K is sufficiently low

2 2 F - F
C O  s / 1 2

F +°° 2KR «  1 (8.15)

So that

1 Ì2 f s 1+ + 2KR✓ ~

F + ---2KR_ 1 +
2 2 F - F s 00

F + —“ 2KR

(8.16)

^d equatxon (8.14) therefore tends to

dR
dZ

1_
R fr  , 2 Ì

2 „ 2 nF - F
C O  s

00 2KRJ

X  — X  1

2
f > „ 1 F

00 2KR
2

2 2 F - F• oo S
2F R + -OO K

(8.17)

ĥd on integrating

F (R2 - 1) + ----- = (F 2 - F 2)Zoo K 00 s (8.18)
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Again, if K is sufficiently small equation (8.18) tends to the following 

linear relation

R = .1 + K (F 2 - F 2)Z . (8.19)oo s

Numerical solutions of equation (8.14) were also computed by using a

°utth-order Runge-Kutta technique. These results confirmed the gradual

Mergence of solutions to equation (8.19) regardless of the values of 
<̂3 p ,s (see figures 8.10 and 8.12).

8. 3
Growth or dissolution controlled by surface kinetics

■'-f the kinetic constant K is sufficiently low,C(a) - Cœ , equations (8.2) 
(ova*°) reduce to

dR
dZ K[F nL 00

or on integrating

R = 1 + K [F n - Fsn]Z = 1 + K <pn [(1 + f)n - fn] ,

% r e

(8.20)

<b = F - FT 00 s
f = Fs/cp

(8 .21)

Ecïnations (8.13) and (8.19) are the first-order case and the second-
■or

co,tv,'er
Case of equation (8.20). Thus, the quasi steady-state 

9® to the exact limiting surface kinetics mechanism.

approximations
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Numerical solutions

As the interfacial concentration varies with the concentration gradient 

^  the interface, F(R) must be solved as one of the discrete values of 

°tcentrations calculated by the non-pivoting elimination method described 

chapter h i . Otherwise the oscillatory errors grow rapidly and the 

C1°n fails. This type of problem was considered by Crank and Nicholson 

■*■̂ 7) by assuming a fictitious point where the concentration was expressed 

linear function of the concentrations at the first two mesh points by 

^i-nation of the diffusion and first order surface kinetics equations. 

After the usual transformation of space variable equations (8.5) and 

IS-6> become

r-2 l!| + T 2 + i f £  te_ x-2) j 3F = 3F _ (8.22)
L R d z  -I 3x 3z

dR
dZ

1_
R

(8.23)

^here x = r/a = e/R .

the interface (x=l) equation (8.22) reduces to

X = 1 (8.24)

the case of first order kinetics equation (8.2) becomes

3f
9x = KRF(R) + KRcf) . (8.25)

x=l

In
it,

case of general n-order surface kinetics and, in order to advance
hiiQe step £ to the next step £+1, one may write
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(F(R)£+1 + FJ  = {F(R)£ + FoJ *(1 + 6) (8.26)

^ere 6 is  expected to remain much smaller than unity, so that

(F(R)£+1 + F j n = (F(R)£ + F j n . ( l  + nfi)

~ (F(R)£ + FJ  HF (r) £_|_i + F^ + (1 - n)-F(R)£

(8.27)

from equation (8 .2 )

3f
3x x = l

£+1
do + dl " F {R) £+1 (8.28)

Wh6:re

d0 = RK [F (R h  + FJ
n-1 F + (1 -  n) -F (R) „ -  F°o £ s

d! = nRK |f (R) £ + F j n-1

On assuming a f ic t it io u s  point at ~ X ]_ ~ ^x  where = 1 and

m _2 ~ ^  the space derivatives (equations (3 .9 ))  and (3.10) reduce to

3f
3x

F -  F _2___^0
26x (8.29)

~2 
3 F

3x 2j

F2 - 2F1 + F0
( & r )  2

(8.30)

the ti'-rme derivative is  replaced by

3f
3z a?=l= (F1,£+1 - F,,^ / 62 ' (8.31)

£ ,

enotes the time step, 6z = Z„ -  Z. ,X.+1 x-
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Fi,i = F(R)>i •

By combination o f equations (8 .2 4 ) , (8 .2 8 ) , (8 .2 9 ) , (8 .3 0 ) , and (8.31) 

0lle obtains

F2 , £+1 -  11 + “  + dl ' 5x(1 -  fa )lF l ,£ + l

-  26m(l -  6 x ) . d  + [1 + d * 6 x ( l  -  &x) -  a]F . -  FO 1 1 / 36 2 f£ '

v»h,e r e

(8.32)

a = (R2) •(&c)2/6zav

(R2)av = (r2£+1 + r2£ + V R£+1)/3

ieciuired
Equation (8.32) assumes the form of the boundary equation (3.23) 

for the application of the f in ite  difference im p lic it  method
he

ribed in Chapter I I I .  The present treatment is  based on assuming the
fiCt i t ;1QUS point (Crank and Nicolson, 1947) but extends the solutions to
IKotder surface k in e tic s .

fu order to obtain the quasi-stationary approximation of the in i t ia l  
°f i l

e the in te r fa c ia l concentration F(R) a t time step 0 can be obtained 
bv 0

it,

% °mbi

squat.
•̂Uing equations (8 .2 ) and (8 .6) with the transformed quasi-stationary  

'*‘°n (2 .6 0) so that

It the

F(R) p . a
K[(F(R) + F ) n - F n] =  - - \l + -p=-|

° s R0 L /^ZQJ

case o f f ir s t -o r d e r  k in etics (n=l) equation (8.33) leads to

(8.33)

F(R)0 1 + X/(KR.) (8.34)

«te X 1 + 1//ttz0
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and ln the case of second-order kinetics (n=2)

F(R) 0
Foo • A.

2KRO
+ F p _ _— -0° 2KR (8.35)

0

Th.

to

ki

ot

®refore the finite difference scheme described in Chapter III can be used 

solve problems which involve the contributions of diffusion and surface 

teticg. in the ranges of K values where surface kinetics controls growth 

dissolution our finite difference predictions agree very well with the
Pte(ji . ,‘-cions of equation (8.20). This demonstrates the accuracy of that
techrpique.

8.5 First-order surface kinetics

8.5.1 Growth

Figures 8.1, 8.2 and 8.3 illustrate the progressive transition from
<3iff

l0n controlled growth to growth controlled by first-order surface
ki:

ki
het.res. if K ps sufficiently low the initial stage is controlled by surface
êti

the

ObSet

*0d

Csf but at sufficiently large times the solutions always converge to 
Ĉif-Frusion controlled regime (dashed-lines). This evolution can be 
Ved -pror the largest values of the kinetic constant in figures 8.1, 8.2
8.3

th­ose fi
atd is characterized by a change of slopes from 1 towards 1/2 in 

gures. The transition for small values of K occurs at considerably
*0n,

9Sir times.

In the

tie

case (J) = 0.001; K = 0.1 the initial stage is controlled by

surfi
kinetics up to about R = 2 (dashed-dotted lines). However, if K > 1 

ace kinetics mechanism fails to describe even the initial stage of

an<d if K > 10 the surface kinetics can be neglected, 

th (j) = i surface kinetics causes significant deviations from the
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Ĉlf-Fcusion-controlled regime even in the case K = 10. Again if K < 0.1 there 
is an ■ •1 initial stage which is controlled by surface kinetics.

In the case <p = 1000 the initial stage is controlled by surface kinetics 
i f  v < 100, and even if K = 1000 the surface kinetics causes important devia- 

ns from the diffusion-controlled case at least up to R = 10.

Taking into account the linear relationship between radius and time in

tio

the

to

case of growth controlled by surface kinetics a single point (R;Z) is

lcient to characterize that regime. The dimensionless time, Z , required9
^OUbl

time (¡,2
e the size of the bubble was used for that purpose. The transformed 

was used in table 8.1 and figure 8.4 for clearer illustration of the
<IUe surface kinetics controlled regime. These results show that the actual

éti o n s are always between the quasi steady-state limit (for low 4>) , and

that

H

^°n (8.13) (growth controlled by surface kinetics). It was shown earlier 

quasi steady-state converges to equation (8.13) in the range of low
netLc instants (K < 0.01) . The quasi steady-state approximations are

s° t a b l  

V*lu,
e solutions in the range of very low <f>, (<J> < 0.001), regardless of the 

r the kinetic constant.

8.5.2 Dissolution

Co

*ahec3.

if

9tres 8.5, 8.6 and 8.6 illustrate the transition from diffusion- 

ii-ed dissolution towards dissolution controlled by surface-kinetics

hotted lines) which is given by equation (8.13). The actual solutions 

Se to this regime (equation (8.13)) if K = 0.1, especially for very

With K < 0.01 the actual solutions become almost indistinguishable 

^  Umitin

ClO;

to*
g predictions by equation (8.13). The quasi steady-state

imat.

^  to

ions are indistinguishable from the actual finite difference solutions 

°-°l and K < 0.1. Quasi steady-state predictions are also reasonably
the actual solutions if K < 0.1 with moderate or large values of

All actual solutions lay in between the predictions of equation (8.12),



Table : 8. 1

E f f e c t  o f  f i r s t  o r d e r  s u r f a c e  k i n e t i c s  o n  t h e  t i m e  r e q u i r e d  
t o  d o u b l e  t h e  s i z e  o f  b u b b l e s .  *  r e p r e s e n t s  t h e  q u a s i  s t e a d y - s t a t e  
e q u a t i o n  ( 8 . 1 2 )  a n d  *"* r e p r e s e n t s  t h e  g r o w t h  c o n t r o l l e d  b y  s u r f a c e  
k i n e t i c s  ( e q u a t i o n  ( 8 . 1 3 ) ) *

<> * 0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 1 0 0 1 0 0 0 * *

K <p.Zg
0 . 0 0 1 1 0 0 1 . 5 1 0 0 1 . 1 0 0 1 . 1 0 0 1 . 1 0 0 1 . 1 0 0 1 . 1 0 0 1 . 1 0 0 0 . 1 0 0 0

0 . 0 1 1 0 1 . 5 1 0 1 . 4 1 0 1 . 4 1 0 1 . 4 1 0 1 . 2 1 0 0 . 9 1 0 0 . 5 1 0 0 . 2 1 0 0

0 . 1 1 1 . 5 1 1 . 4 8 1 1 . 4 3 1 1 . 2 5 1 0 . 9 1 1 0 . 4 9 1 0 . 2 1 1 0 . 0 9 1 0

0 . 2 6 . 5 6 . 4 8 6 . 4 0 6 . 1 8 5 . 8 0 5 - 3 8 5 . 1 5 5 - 0 6 5

0 . 5 3 - 5 3 - 4 6 3 . 3 5 7 3 - 0 9 1 2 . 6 4 6 2 . 2 6 7 2 . 0 9 4 2 . 0 3 3 2

1 2 . 5 2 . 4 4 6 2 . 3 3 0 2 . 0 2 9 1 . 5 5 1 1 . 2 0 3 1 . 0 6 7 1 . 0 2 3 1

2 2 1 . 9 4 2 1 . 8 1 1 1 . 4 8 1 0 . 9 7 5 0 . 6 5 5 0 . 5 4 8 0 . 5 1 6 0 . 5

5 1 . 7 1 . 6 3 6 1 . 4 9 6 1 . 1 4 1 0 . 6 0 5 0 . 3 1 1 1 0 . 2 3 1 6 0 . 2 0 9 9 0 . 2

1 0 1 . 6 1 . 5 3 4 1 . 3 8 9 1 . 0 2 4 0 . 4 7 9 0 . 1 8 8 6 0 . 1 2 3 2 0 . 1 0 9 0 0 . 1

1 0 0 1 . 5 1 1 . 4 4 1 1 . 2 9 3 0 . 9 1 7 0 . 3 4 4 7 0 . 0 6 5 3 0 . 0 1 9 4 7 0 . 0 1 2 3 5 0 . 0 1

1 0 0 0 1 . 5 0 1 1 . 4 3 2 1 . 2 8 4 0 . 9 0 7 0 . 3 3 1 3 0 . 0 5 0 6 0 . 0 0 6 8 4 0 . 0 0 1 9 5 4 0 . 0 0 1

00 1 . 5 1 . 4 2 5 1 . 2 8 1 0 . 9 0 5 0 . 3 2 9 4 0 . 0 4 8 8 8 0 . 0 0 5 1 6 0 . 0 0 0 5 1 9 0



Fig 8.1
log Z

8 .1 , 8 .2  and 8 .3  : E ffect o f f i r s t  order surface 
k in etics on growth o f bubbles. The numbers show the 
k in etic  constant K. The dashed lin e represents the 
d iffu sion  controlled  growth. The dashed-dotted lin es  
represent growth controlled  by surface k in etics  
(equation ( 8 .1 3 ) ) .  The so lu b ility  parameter is  shown 
in the fig u res.



2

1

log (R -1) 

0

-1

2

1

l ° g  ( R- 1 )

0

1



log K

pig  8 .4  : E ffe c t  o f f ir s t -o r d e r  surface k in etics on the 
dimensionless time required to double the size  o f a 
bubble. The figures show the so lu b ility  parameter (p. 
The dashed lin e  represents the quasi stead y-state  
equation (8 .12) and the dotted-dashed lin e  represents 
the cases when growth is  controlled  by surface k in etics, 
(equation (8 .1 3 ) ) .



19s 8.5, 8.6 and 8.7 : Effect of first order surface
kinetics on dissolution of bubbles. The numbers show 
the kinetic constant K. The dashed lines represent 
diffusion controlled dissolution (left) or the quasi 
steady-state equation (8.12) (upper curve). The dashed- 
dotted lines represent equation (8.13). The solubility 
parameters are also shown in the figures.
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log K

Fig : E ffe c t o f f ir s t -o r d e r  surface k in etics on the
dimensionless time required for complete dissolution  of  
a bubble. The figures show the so lu b ility  parameter <j>. 
The dashed lin e  represents the quasi stead y-state  
equation (8.12) and the dotted-dashed lin e  represents 
equation (8 .1 3 ) .



Table : 8.2

E f f e c t  o f  f i r s t  o r d e r  s u r f a c e  k i n e t i c s  o n  t h e  t i m e  r e q u i r e d  f o r  
c o m p l e t e  d i s s o l u t i o n .  *  r e p r e s e n t s  t h e  q u a s i  s t e a d y - s t a t e  e q u a t i o n  
( 8 . 1 2 )  a n d  * *  r e p r e s e n t s  t h e  d i s s o l u t i o n  c o n t r o l l e d  b y  s u r f a c e  

k i n e t i c s  ( e q u a t i o n  ( 8 . 1 3 ) ) .

-<p
* 0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 1 0 0 0 * *

K
I 4» I Z

• d

0 . 0 0 1 1 0 0 0 . 5 1 0 0 0 . 1 0 0 0 . 1 0 0 0 . 1 0 0 0 . 1 0 0 0 . 1 0 0 0 . 1 0 0 0

0 . 0 1 1 0 0 . 5 1 0 0 . 4 1 0 0 . 4 1 0 0 . 5 1 0 0 . 5 1 0 0 . 4 1 0 0 . 3 1 0 0

0 . 1 1 0 . 5 1 0 . 5 0 1 0 . 4 9 1 0 . 4 7 1 0 . 4 3 1 0 . 3 5 1 0 . 2 1 1 0

0 . 2 5 - 5 5 - 5 0 5 . 4 9 5 - 4 6 5 . 4 2 5 - 3 2 5 . 1 7 5

0 . 5 2 . 5 2 . 4 9 5 2 . 4 8 7 2 . 4 5 7 2 . 3 9 1 2 . 2 6 7 2 . 1 2 5 2

1 1 . 5 1 . 4 9 5

00 1 . 4 4 5 1 . 5 6 5 1 . 2 2 4 1 . 0 9 5 1

2 1 0 . 9 9 4 0 . 9 7 8 0 . 9 3 4 0 . 8 4 0 0 . 6 9 2 0 . 5 7 4 0 . 5

5 0 . 7 0 . 6 9 2 0 . 6 7 3 0 . 6 2 2 0 . 5 1 5 0 . 3 6 0 3 0 . 2 5 2 1 0 . 2

1 0 0 . 6 0 . 5 9 1 0 . 5 6 9 0 . 5 1 3 0 . 4 0 8 4 0 . 2 4 7 5 0 . 1 4 1 1 0 . 1

1 0 0 0 . 5 2 5 0 . 5 0 0 0 . 4 6 4 0 0 . 4 0 9 0 0 . 2 9 3 7 0 . 1 6 1 8 0 . 0 4 3 6 4 0 . 0 1

CD 0 . 5 0 . 4 8 6 4 0 . 4 6 2 5 0 . 3 9 9 4 0 . 2 8 2 8 0 . 1 5 9 9 0 . 0 8 1 4 0
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luasi steady-state), and equation (8.13), (controlled by surface kinetics), 

e9ardless of the values of (j> and K.

The transformed time Ẑ * |<j)|, where Z^ is the dimensionless time required
for

beti
complete dissolution, is also a generic characterization of the transition

’Ween the extreme mechanisms (table 8.2 and figure 8.8) . Again the solutions 
^Vavs iJ -Lay in between the quasi steady-state and the surface kinetics mechanism. 
If _ ,

 ̂< 0.01 the quasi steady-state is reasonable when the dissolution is 
f fUsion-controlled and becomes excellent if the dissolution is controlled by

Urface kinetics.

¿ogond-order surface kinetics 

Growth

figure 8.9 illustrates the transition between extreme mechanisms, that is
C0Ri

fci:
Effusion controlled growth to growth controlled by second-order surface

het;ics
C°htr(

• Again the linear relation between R and Z characterizes the growth 
°lleH ku °y surface kinetics (dashed-dotted lines), and the actual solutions

Uy in
between the growth controlled by surface kinetics (equation (8.19)) and

%  qua
 ̂ Sl steady-state approximations (equation (8.14)) which are represented

^shedounes. Equations (8.14) and (8.19) converge as the kinetic constant
c*eases.

°ther, values of solubility parameter <J> and f = F /<f> have confirmed those
t̂actej..

istics of second-order surface kinetics. At large times the growth
% s

* frc
«iftu

"0m the surface kinetics controlled stage towards the limiting
si°n c°ntrolled regime, regardless of the values of f and <j>. That

^sit-■ton IS
aSe£

shifted to progressively larger times as the kinetic constant K

igure s i also illustrates the fact that the actual solutions lay in
the ^ s i  steady-state predictions (equation (8.14)) and growth



Fig 8.9 : Effect of second-order surface kinetics on growth
for the case <J) = 1, f = 1. The figures show the kinetic 
constant K. The dashed lines represent the quasi 
steady-state equation (8.14) and the dotted-dashed lines 
represent equation (8.19). The symbol (°°) denotes 
diffusion controlled growth.

k



Fig 8.10 : Effect of second-order surface kinetics on the 
dimensionless time required to double the size of a 
bubble. The figures show the solubility parameter <J>. 
The dashed line represents the quasi steady-state 
equation (8.14) and the dotted-dashed line represents 
equation (8.19).



1.0 T

8.11 : Effect of second-order surface kinetics on 
dissolution for <J> = -1, f = - 1. The figures show the 
kinetic constant K. The dashed lines represent the 
quasi steady-state equation (8.14) and the dotted-dashed 
lines represent equation (8.19). The symbol (°°) denotes 
diffusion controlled dissolution.



F^9 8.12 : E ffe c t o f  second-order surface k in etics on the 
dimensionless time required for complete d isso lu tion . 
The figures show the values o f the so lu b ility  parameter 
(p. The dashed lin e  represents the quasi stead y-state  
equation (8 .14) and the dotted-dashed lin e  represents 
equation (8 .1 9 ) .



T a b l e  : 8 . 3

E f f e c t  o f  s e c o n d  o r d e r  s u r f a c e  k i n e t i c s  o n  t h e  t i m e  

r e q u i r e d  f o r  c o m p l e t e  d i s s o l u t i o n ,  a n d  o n  t h e  t i m e  2\ 

r e q u i r e d  t o  d o u b l e  t h e  s i z e  o f  a  b u b b l e .

f 1 1 1 -1 -1 -1

<j> 0 . 0 0 1 1 1 0 0 - 0 . 0 0 1 -1 - 1 0 0

K d>. Z
g l * l - z a

0 . 0 1 3 5 . 2 5 3 4 . 7 9 3 3 - 7 4 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

0 . 0 5 8 . 4 8 7 . 7 4 6 . 8 7 2 0 . 0 2 2 0 . 0 1 2 0 . 0 0

0 . 1 5 . 1 4 4 . 2 7 1 3 . 4 8 5 1 0 . 0 3 1 0 . 0 2 1 0 . 0 1

0 . 2 3 . 3 9 4 2 . 4 5 8 1 . 7 7 7 5 . 0 6 5 . 0 4 5 . 0 1

0 . 5 2 . 2 8 9 1 . 2 9 4 0 . 7 3 9 2 . 1 4 4 2 . 0 7 9 2 . 0 0 9

1 1 . 8 8 5 0 . 8 6 6 0 . 4 1 1 9 1 . 2 3 3 1 . 1 2 4 1 . 0 2 0

2 1 . 6 7 3 0 . 6 2 8 0 . 2 0 5 0 0 . 8 2 3 0 . 6 7 5 0 . 5 1 1

5 1 . 5 3 4 0 . 4 6 5 8 0 . 0 9 2 2 0 . 6 0 9 0 . 4 3 1 7 0 . 2 1 2 9

1 0 1 . 4 8 6 0 . 4 0 4 1 0 . 0 5 2 4 0 . 5 4 6 0 . 3 5 8 2 0 . 1 1 4 2

1 0 0 1 . 4 2 7 0 . 3 3 8 5 0 . 0 1 1 6 8 0 . 4 9 0 0 . 2 9 0 4 0 . 0 4 9 2
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c°ntrolled by surface k in etics (equation (8 .1 9 )) which represents the lim its  

ln the ranges of very low and very large 4> resp ective ly .

8 .6 .2  D issolution

<U

(4

Figure 8.11 shows the progressive enhancement of surface k in etics  during 

Ss°lu tio n  as K decreases. The lim itin g  second-order surface k in etics  

ashed-dotted lin es) is  indistinguishable from the actual solutions i f

regime

K < o o
and the quasi stead y-state approximations (dahsed-lines) are a lso  good 

it
same range. D issolution is  described by 1-R ** Z i f  second-order surface

kineticcs controls the transfer o f m aterial.

'i'hese conclusions are valid  for any value o f (j> < 0 and the relation s
keb

ar6
•tŷQri ■ «1 che dimensionless time required for complete d isso lu tion  and K

e*emplified in table 8 .3  and figure 8 .1 2 . Again, the actual solutions lay
iahetween the lim itin g  equations (8 .14) and (8 .1 9 ) .

V a n

Mi,

Cas6

COtlt;

actions with fir s t -o r d e r  and second-order k in etics at the interface were 

9ated. i f  the growth or d isso lu tion  are controlled  by surface k in etics  

Us ° f  the sphere i s  proportional to time. This process may cover the 

S o lu tio n  process but is  ty p ic a lly  transient during growth in which 

actual solution s converge to the d iffu sio n  controlled  regime at large  

As the k in etic  constant decreases the i n i t ia l  stage of growth

10U  *«di

the
s.

r°Ued b y  s u r f a c e  k i n e t i c s  b e c o m e s  p r o g r e s s i v e l y  l o n g e r .  T h e s e  c o n c l u s i o n s
v6

rif j ed independently of the order o f surface k in e tic s .

Quasi
 ̂ s teady-state approximations a lso  converge to the surface k in etics
° u ed regime and become accurate for any value of so lu b ility  parameter 4b

^  x  is s u ffic ie n tly  low.
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The performance of the finite difference method was again demonstrated by

t6Ptcducing the exact limiting solutions of the surface kinetics controlled

re9im

"loo
e* Very wide ranges of solubility parameters 0.001 < (p < 1000; or 

s cj) ^ -0.001 were covered to ensure that there is no failure of the method.
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CHAPTER IX

E ffects  of surface tension, v isc o s ity  and in e rtia

'•1 Equation of motion

The changes in volume and mass due to gases dissolved in the liqu id  can 

be ignored so that changes of gas concentration do not a ffe c t  the

tsity  0 f  the liq u id . The liq u id  is  thus considered to have constant and 

density p, be incompressible and of constant v is c o s ity , y . TheUni£orm

V̂pothes is  o f constant v isc o s ity  may not be s t r ic t ly  true in  g lass m elts,
Sut that assumption is  not expected to invalidate s ig n ific a n tly  the analysis
Of the

196.

Present problem.

It  these conditions the equation of motion can be w ritten (Bird e t  a l . ,

P
Du
Dt grad P + yV u + pg (9.1)

Whete p 

ÌS ^ovn

X etry

l s  the pressure and g the gravitation al acceleration . This equation 

as the Navier-Stokes equation and in  conditions o f spherical 

reduces to

3u 3u
3t + U 37

1. 3r> 2y_ 3 u
p 3r p r, 2 (9 .2)

Mi

Mtfi 

:tff

° m equation (2 .1 5 ) , u = (r/aj" -77 / when e = 1 , (n eglig ib le  volumeüt
ibUti 

r̂ ce r _
~ a to in fin ity  giving r ise  to

j ion of so lu te ) . Thus, equation (9 .2) can be integrated from the

%% (̂OON

.2 1
P(a) -  p = ap 7  P00 2 2

dt

is  considered constant.

da
dt

4y da 
a dt

(9.3)
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In dimensionless terms equation (9.3) can be rewritten so that

P(a)/PTO = 1 + h
.2

R  ¿ A  +  2R 2 2 dZ (S) 2 ] in in
R dZ (9.4)

'"here h = p.D2/(aQ2. pj = inertia parameter 

i) = y .D/ (aQ . P^) = viscosity parameter 

^  R and Z are defined as usually.

The total gas pressure P in the bubble must be obtained by adding the 

Ur£ace tension term to the pressure P(a) in the liquid at the interface so

that

P = P(a) + 2a/ag
Or 111 dimensionless variables

. [ d 2R 3f’-'2P /P = 1 + 2S/R + h — x- + jg 00 L dz2 2
dR
dZ

4n dR 
J R dZ

(9.5)

Vh,6te 0 denotes the surface tension and the surface tension parameter is

S = 0/ (a0- Pj -

Sites^of growth or dissolution 

component gas bubbles

lf a bubble contains a single ideal gas Cg “ Pg» so that

P* = C /C ° = P /p„ s s g
d2R 3 dR) 1 4P dR

= 1 + 2S/R + h R — j  + 2 dZ R dZ
L dZ 1 J

(9.6)

i
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Where Cg and C

respectively.
°r inertia C

are the gas molar concentrations at pressures P„s g

Thus, in the absence of effects by surface tension, 

= C ° and P* = 1.

and Poo

viscosity

On

WiU  be

s s
assuming Henry's law the concentration of solute at the interface

C(R) = H P = H P p* = C* P*g oo
0 o

, , d R 3ÌdRÌ »  ̂ 4n dR
= C* 1 + 2S/R + h ( R — 2 + 2 laz 1 + 5“

L dZ v J
(9.7)

Wh,'6te p* jdenotes the solute concentration in equilibrium with gas at pressure

In dimensionless form equation (9.7) becomes

F(R) = (C(R) - C )/C ° = (C*/C °)P* - CJ C  °OO s s 0° S

-- (j) {/ '  q[2S/R + h d R t 3
R - 2  + 2 dZ

dR
dZ

]2| , in dR 1 \ 
j j H dZ J / (9.8a)

Wh■6re

<J> a
Coo ~ C*)/c ° = solubility parameter s
C*/^c0o - c*) = saturation parameter

P - (C - cJ / c

sVs
Oc

ietn
aSi°nally a law of the form C(R) “ P X is needed to describe the

9
K  ich is being considered (in the case of Sievert’s law x = 1/2).

C (R) = C*(P*)

egnati0n (9.6)
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F (R) - -<{)/l + q -  q 1 + 2S/R + h d2R 3
R - 2  + 2 • dZ

dR
dZ •?])

(9.8b)

=  ( C * / C  ° )  ( p * ) æ  -  ^s C

tho
The ratio  -  F(R)/(j) i s  a su itable measure o f the re la tiv e  e ffe c ts  of 

e non-equilibrium e ffe c ts  on the "d r iv in g -fo rc e " o f the d iffu sio n

c ° n t :

9 a s

ro l le(3 processes and p* i s  the corresponding measure o f the e ffe c ts  on 

concentration. The actual solution s are here expressed in  terms of the 

ensi°n le ss  parameters S, h, r), <t># and q.

The number o f moles of id eal gas in a bubble can be expressed by

4ïï 3 . 3 oN = —  a • C = 47Ta • C • P* 3 s s

or
dimensionless terms

4tt / 3 _ 2y - J R + 2SR + h
4 d R 3 3

R - ~ 2  + 2 R dZ (§n . 2 dR\
+ 4n’R 'az

4tt 3 .——  R •P*

(9.9)

Al s°  from equation (2.48)

dG . 2 9f— 7 = 4ïï R -tt dZ de
= 4tt R

' R

3f
3x

x = l

%

%

Æ a

S + 4 1
3 sl

e/R . Thus, from equations (9 .9 ) and (9.10) 

2+ in
3 r 2 f eIdzJ + R A

dZ2

(9.10)

1 + h [ 1 R dR 3 7 2 dR d2R . R3
J L 2 [ d z j 3 dZ

d z 2 3 dZ

= 3f j

'm=l (9.11)

X as
^^ -eq u ilib riu m  e ffe c ts  of v isc o s ity  and in ertia  become e ffe c tiv e  

^eria l  s ta rts  to be transferred between the bubble and the liqu id

T hbefore
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P*(O) = 1 + 2S . (9.12)

When  ̂- O; and R = 1. Thus, if ri | û

dR
dZ = 0 ; Z = O (9.13)

and if h =(= o

dR
dZ

d2R
dZ2

= O ,

= 0
(9.14)

For one-component bubbles £ = 1, and the general material balance
(ecïuation (2.28)) reduces to

~2 8 F
r ( 2 12 dR R
_ e dZ/ e

9f
9e

9f
9z (9.15)

9b

--•--¿Htion of material balances 

SUrf
e tension has been the most commonly studied among these factors.

2 n •
x°nary approximations were proposed by Epstein and Plesset (1950) 

a) among other authors. Some approximate solutions of bubbleCable (1961

6re drived on assuming thin boundary layers (Plesset and Zwick,
owth

°w an<3- Langlois, 1962), or on assuming arbitrary functional forms
Central-'cion profiles while satisfying the overall material conservation

RoSnet
^  Epstein, 1972). This second class of solutions was derived for

ase, while only the surface tension was included in the quasi-
h^tary aPpioximations.

Ih-,. cal techniques were also used to solve the material balances with
^  Of a°urface tension alone (Weinberg, 1980) or simultaneous inclusion
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°f surface tension, viscosity and inertia terms (Szekely and co-authors, 1971 

1 9 7 3) . However the technique proposed by Szekely and co-authors may 

e9uire undue numbers of time steps to solve processes with low or moderate 

ates °f growth or dissolution (as discussed in Chapter III). Weinberg's

®ethod reduces basically to the finite difference method of Duda and Vrentas

which was not conceived to optimize the mesh sizes. Very few examples
Were snown in Weinberg's work so that the efficiency of that method was not 

^Qnstrated especially in extreme conditions.

Minor modifications were added to the finite difference method described

n chapter III to extend its use to the actual class of problems (see

Pperi<iix 6) €

Qnasi-steady state approximations were also derived in this work and
th,eir range of applicability was established.

^nasi steady state approximations
Ëffept ■2jL surface tension in the case of Henry's law

both viscous and inertia effects are ignored equations (9.6), (9.8a)
(9.U) reduce to

p* = 1 + 2S/R 1 (9.16)

F (R) = - <}> (1 - 2Sq/R) , (9.17)

3f] 4 S
1 + — — dR (9.18)

3e I ' 3 R dZ
1 e=R

fiy integration of the quasi steady-state simplification (equation (2.67))
3°hnaary conditions, F (°°) = 0, one obtains

= - F(R)/R ,9f
3e

(9.19)
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and upon combination of equations (9 .1 7 ) , (9.18) and (9.19)

[R + (4 /3)S]R  dR _ , 
R -  2 S q dZ (9.20)

which can be solved a n a ly tica lly  on making the transformation W = R -  2 S q.

j | " ( R - 2 S q ) 2 -  (1 -  2 S q ^ J  + 4 (R -1 )S  (q + y)

+ 2S2-q (2q  + y )ln | *  ~ =<pZ (9.21)

Thi s quasi steady state  s im p lifica tio n  suggests a unique dependence on
the

transformed time (<j>Z) . I t  w ill  be shown that such quasi steady-state  

■Nations are the lim it  of actual solutions for growth or d issolu tion
tor ^

erY low s o lu b ility  parameters | 4> | .

*•5
H^ysical properties of g lass melts and common values of the

dim

Of the

gnsionless parameters S , h, T)

e p ic a l  values of density and surface tension o f g lass melts are often

3 1° rder o f magnitude of p = 2 .3  x 10 Kg m-  ̂ and 0 -  300 dyne cm" =

• The v isc o s ity  o f the melt and the d iffu s iv ity  of gases in glass  

very dependent on the temperature and also  s ig n ific a n tly  dependent
• cpe

Composition o f the m elt, with common values in the ranges 10-1000 Kg
V  sn  ----------

f —11 ” 9 2 —1° r v isc o s ity  and 10 -  10 m s  for d if fu s iv ity . These
* v s 5 _2

re used to construct table 9 .1  with ambient pressure 10 N m .
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Common values of dimensionless parameters S, ri and h
in glass melts

Table 9.1

a0
(m)

, 10
2 '51, (m s )

y
(Kg m--*- s-'*’)

s 106 .T) I015.h

io~5 1 10 0.3 loo 2300
lcf4 1 10 0.03 1 23
io'3 1 10 0.003 0.01 0.23
lo"3 0.1 10 0.003 0.001 0.0023
lo'3 10 10 0.003 0.1 23
lo-4 10 10 0.03 10 2300
lo-3 1 1 0.003 0.001 0.23
lo-3 1 100 0.003 0.1 0.23
lo-3 1 looo 0.003 1 0.23
lo-4 10 looo 0.03 1000 2300

It WlU  be shown that with h in the range of table 9.1 inertia can
*Ys be i

(itci
ignored, even in the range of very large solubility parameters 

9 solutions up to |(J)| = ICO). The effects of viscosity are also
Y deindent on the value of <J) but can also be ignored except with very
9e

The

c0.

Si
ts6gue:

effects of surface tension are enhanced as the dissolution of 

Proceeds but decrease in the case of growing bubbles. This is a 

nce of the effect of surface tension being dependent on the bubble
3\lt n4. ot on the rate of the process. The relative effects of surface

ion On +-u5 crie rates of the processes are also much less dependent on the
^ U i t v^  y parameter than the relative effects of viscosity or inertia.

easily understood taking into account that <J> is a convenient
'V,

of
i°n of the range of rates of growth or dissolution, which affect 

viscosity and inertia but not the role of surface tension.
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g f-
"D E ffects of surface tension on growth or d isso lu tion  o f bubbles

In this section the viscous and inertial effects are ignored (r) = 0; 

 ̂~ 0) to investigate the role of surface tension on the growth or 

^solution of bubbles. Henry's law is generally assumed so that the 

r‘terfacial concentration is given by equation (9.17).

^•6.1 Case A) (J) < 0

<}> < 0, < C* and q = C*/(Coo - C*) ^ -1, and from equation (9.8a)
F(R) >

and

Sim

i*i, that is  the "driving fo rce " is  always enhanced from the beginning 

rela tiv e  to the case when the role  o f surface tension is  n e g lig ib le , 

^taneously the in i t ia l  gas pressure increases by a factor P* = 1 + 2S
( e .Suat
eff,

*lv,

ect

’ays

if Si,

the

ion (9.16)) due to surface tension. If Henry's law is valid the 

of surface tension on the interfacial concentration (equation (9.17) 

exceeds the effect on the initial gas pressure in what concerns the 

of bubble contraction. On the contrary, this situation may not occur 

evert's law applies (equation (9.8b) and this is due to the fact that
itt,,erfacial concentration increases less rapidly with decreasing radius

6,1 C(R) « p ■»

1̂ 2
V,

Th,ere is a dual effect of surface tension on the rate of contraction
° f  dissolving bubbles, the first due to a progressive increase of

aciai concentration (and consequently the increase of "driving force")
the

de

ho.

SGc°nd due to the increase of gas pressure as the bubble size

mThe e f fe c t  on the in te r fa c ia l concentration m odifies the

°f
enttafion profiles, especially near the interface, and opposes the effect
S° V e aaccumulation which was found to be severe during the last stage of
°^tion with large 14> | and negligible surface tension (Chapter V)

n was then responsible for a relatively slow final stage which

^°r most of the total dissolution time. Increasing the interfacial
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concentration as the radius decreases (due to surface tension) keeps the

c°ncentration profile steep near the interface and enhances the dissolution

tate at the stage when the dissolution rate was lower in the case of

Eligible surface tension. The effect of surface tension on pressure in

^bble increases as R tends to zero. Taken together both factors may

^Use the total dissolution time to be significantly reduced due to effects 
Of Moderate values of surface tension (S < 0.1).

bn the range of very low |(j>| the dissolution tends to quasi steady-state 

^  the dissolution rate increases continuously after a very short initial 

(Chapter V ) . Thus the effect of surface tension is enhanced duringstage

the m°st rapid stage and the total time Z^, required for complete dissolution, 

ases by a much smaller fraction than in the case of high ¡4>|.
Th,

the
ese trends are clearly shown in figures 9.1 and 9.2 where Z^ denotes

time
(S

required for complete dissolution with negligible surface tension

U:
°̂  • As |tj)| decreases the actual finite difference predictions (full

tes)

the
aPproach the quasi steady-state predictions (equation (9.21)) represented 

'bashed lines.

Sab
If Q̂ < 0.1, increasing the surface tension parameter with constant

;btatioR parameter, q =-l, has important effects on the dissolution time.

cr increases of surface tension, (especially if S > 0.2) cause much

er ^creases of dissolution time probably because the gas pressure and

c°ntent of a bubble with reference radius aQ increases and compensates 
boy

$
f *lciently for the increase of interfacial concentration with increasing

V the

'a01

bbe contrary, increasing |q| with S = 0.1 enhances the "driving-force", 

initial content of the bubble with radius aQ remains the same in all 

before the dissolution time always decreases significantly as the* Th

humerical value of the saturation parameter |q|increases.



Table : 9-2

E f f e c t  o f  s u r f a c e  t e n s i o n  o n  t h e  t i m e  r e q u i r e d  f o r

c o m p l e t e  d i s s o l u t i o n  o f  b u b b l e s ,  f o r  l o w  a n d  m o d e r a t e  | (f> \ . 

V i s c o u s  a n d  i n e r t i a l  e f f e c t s  a r e  i g n o r e d  ( q  = 0 ,  h  = 0  ) .  

T h e  s y m b o l  *  d e n o t e s  q u a s i  s t e a d y - s t a t e  a p p r o x i m a t i o n s ,  

( e q u a t i o n  ( 9 . 2 1 ) ) .

-4>
* 0 . 0 0 1 0 . 0 1 0 . 1 1

s - q w Zd

0 1 0 . 5 0 0 0 . 4 8 6 0 . 4 6 2 0 . 3 9 9 4 0 . 2 8 2 8

0 . 0 0 1 1 0 . 4 9 9 3 0 . 4 8 5 0 . 4 6 1 0 . 3 9 7 5 0 . 2 7 9 9

0 . 0 1 1 0 . 4 9 3 9 0 . 4 8 0 0 . 4 5 5 0 . 3 9 0 0 0 . 2 6 2 8

0 . 0 5 1 0 . 4 7 4 7 0 . 4 6 1 0 0 . 4 3 3 5 0 . 3 6 2 0 0 . 2 2 4 0

0 . 1 1 0 . 4 5 7 2 0 . 4 4 2 3 0 . 4 1 3 9 0 . 3 3 9 2 0 . 1 9 9 5

0 . 2 1 0 . 4 3 3 5 0 . 4 1 8 1 0 . 3 8 8 5 0 . 3 1 1 6 0 . 1 7 1 5

0 . 3 1 0 . 4 1 7 7 0 . 4 0 2 2 0 . 3 7 2 0 0 . 2 9 4 3 0 . 1 5 5 8

0 - 5 1 0 . 3 9 7 7 0 . 3 8 2 0 0 . 3 5 1 4 0 . 2 7 3 3 0 . 1 3 8 3

0 . 7 1 0 . 3 8 5 5 0 . 3 6 9 7 0 . 3 3 8 9 0 . 2 6 1 0 0 . 1 2 8 7

1 1 0 . 3 7 4 0 0 . 3 5 8 2 0 . 3 2 7 3 0 . 2 4 9 6 0 . 1 2 0 3

0 . 1
1 . 2 5 0 . 4 3 0 0 0 . 4 1 5 5 0 . 3 8 7 1 0 . 3 1 4 4 0 . 1 7 7 6

0 . 1
1 . 5 0 . 4 0 6 7 0 . 3 9 2 1 0 . 3 6 4 0 0 . 2 9 1 2 0 . 1 5 9 1

0 . 1 2 0 . 3 6 7 0 0 . 3 5 2 7 0 . 3 2 5 2 0 . 2 5 4 9 0 . 1 3 1 3

0 . 1
2 . 5 0 . 3 3 4 7 0 . 3 2 0 8 0 . 2 9 3 9 0 . 2 2 6 1 0 . 1 1 0 8

0 . 1
3 0 . 3 0 8 0 0 . 2 9 4 5 0 . 2 6 8 2 0 . 2 0 2 8 0 . 0 9 5 1

0 . 1
4 0 . 2 6 5 8 0 . 2 5 3 0 0 . 2 2 8 0 0 . 1 6 7 3 0 . 0 7 2 5

5 0 . 2 3 4 1 0 . 2 2 1 8 0 . 1 9 8 0 0 . 1 4 1 4 0 . 0 5 7 3



Table : 9*3

E f f e c t  o f  s u r f a c e  t e n s i o n  o n  t h e  t i m e  r e q u i r e d  f o r  

c o m p l e t e  d i s s o l u t i o n  o f  b u b b l e s  w i t h  m o d e r a t e  a n d  l a r g e  | 

V i s c o u s  a n d  i n e r t i a l  e f f e c t s  a r e  i g n o r e d  (f) = 0  ; h  = 0  ) .

-<J> 1 1 0 1 0 0

s - q

0 . 0 1 0 . 2 8 2 8 1 . 5 9 9 8 . 1 4

0 . 0 0 1 1 0 . 2 7 9 9 1 . 4 6 6 4 . 7 0

0 . 0 1 1 0 . 2 6 2 8 1 . 1 2 5 2 . 1 9 7

0 . 0 5 1 0 . 2 2 4 0 0 . 7 3 6 1 . 0 6 3

0 . 1 1 0 . 1 9 9 5 0 . 5 7 0 0 . 7 5 0

0 . 2 1 0 . 1 7 1 5 0 . 4 3 0 1 0 . 5 3 1

0 . 3 1 0 . 1 5 5 8 0 . 3 6 5 1 0 . 4 3 9

0 . 5 1 0 . 1 3 8 3 0 . 3 0 2 5 0 . 3 5 4 5

0 . 7 1 0 . 1 2 8 7 0 . 2 7 1 6 0 . 3 1 4 3

1 . 0 1 0 . 1 2 0 3 0 . 2 4 6 2 0 . 2 8 2 0

0 . 1 1 . 2 5 0 . 1 7 7 6 0 . 4 7 1 8 0 . 5 9 8

0 . 1 1 . 5 0 . 1 5 9 1 0 . 3 9 9 4 0 . 4 9 3

0 . 1 2 0 . 1 3 1 3 0 . 2 9 9 7 0 . 3 5 5 7

0 . 1 2 . 5 0 . 1 1 0 8 0 . 2 3 4 6 0 . 2 7 1 6

0 . 1 3 0 . 0 9 5 1 0 . 1 8 9 6 0 . 2 1 5 2

0 . 1 4 0 . 0 7 2 5 0 . 1 3 2 0 0 . 1 4 6 0

0 . 1 5 0 . 0 5 7 3 0 . 0 9 7 4 0 . 1 0 6 2



Figs 9 .1  and 9 .2  : E ffect o f surface tension on the dimensionless 
time required for complete d isso lu tion  of bubbles. The 
numbers show the values o f <j>.



. 9 .3  : E ffe c t o f surface tension during d isso lu tion  of a 
bubble with very low |<J)|. The dashed lin e represents the 
quasi stead y-state  solu tion  of equation (9.21) for the case 
S = l; q = - 1 .  The f u l l  lin e s  represent from righ t to l e f t  

S = 0 .0 0 1 , 0 .0 1 , 0 .0 5 , 0 .1 ,  0 .2 ,  0 .5  and 1.

L



and the dashed lin e  represent the case S=0. The numbers 
show the values of S in figure 9 .4a  and q in figure 9 .4 b .



Fig . 9.5 : E ffe c t o f surface tension during d isso lu tion  of a 
bubble with very large |<J>|. The symbols represent the 
case S=0. The curves represent from righ t to l e f t  S = i 
0.01, 0.05, 0.1, 0.2, 0.5 and 1.

.001,
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The quasi stead y-state  solutions (equation (9 .21)) suggest a unique 

°iution in terras of the transformed time and this was used to organise

the

low
resu lts for dissolution  times shown in table 9 .2  (in the range o f very

to moderate so lu b ility  parameters | (J) |) . That representation is  reasonable 

“ith |*| < O.Ol and low or moderate S , but becomes progressively poorer as

b°th |*|

*Uus

and 5 increase.

The enhanced e f fe c t  o f  surface tension with increasing value o f S is  

trated in figures 9 .3 ,  9 .4a  and 9 .5 .  In figure 9 .3  the dashed lin e

tepr

SU
esents the quasi stead y-state  solutions of the case S = 1; q = -1  and is

9htly poorer approximation to the real solutions than in the case of 

^ H i g i b i g

tension 
fo>

surface tension. I f  q = -1  and S < 0 .01  the e ffe c ts  o f surface 

on bubble d issolution  can be ignored with |<)>| < 0 .1  but are sig n ific a n t  

^d erate  and large | <f) | , ( -< ( )>  1) .

^ith (p = _ ]_oo values o f surface tension parameter as low as S = 0 .001  

°niy e ffe c tiv e  during the fin a l stage but are responsible for a reduction
Of about 42% o f the orig in a l dissolution  time (figure 9 . 5 ) .  These resu lts  

good illu s tr a tio n  that for  large values of 14> | the role o f surface

‘ ‘"‘ston ,

Pi
is

l s  e n h a n c e d ,  s p e e d i n g  u p  t h e  f i n a l  s t a g e .

9 u r e  9 . 4 b  s h o w s  t h a t  f o r  a  c o n s t a n t  v a l u e  o f  S  t h e  r a t e  o f  d i s s o l u t i o n

9re
atly enhanced as the absolute numerical value o f the saturation

eter|q| increases. Therefore relatively small values of surface tension 

er should not be ignored if |q| is large.*m6t(

E ffe c t o f  surface tension on the concentration p ro file s  during 

d issolu tion

Vf
The

s°lu tio n  o f the quasi steady state  approximation (equation 

erfa c ia l concentration given by equation (9.17) leads to

(2.67) )



Figs 9 . 6 ,  9 . 7  and 9 . 8  : Concentration p r o file s  in the liqu id  
medium surrounding dissolvin g bubbles. The numbers show 
the values o f R. The dashed lin e  in figure 9 .6  represents 
the quasi stead y-state  approximation, (equation (9.22)) ,  for  
the case R = 0 .0 5 .



i
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F (e/R) = -  cj) ( l - 2 q  S/R) (R/e) . (9.22)

Figure 9 .6  il lu s tr a te s  concentration p ro file s  for the case 4> = -O.OOl,
S = 0-1, and q = -1 ,  at different.stages of dissolution. The dashed line
tePresents the quasi stead y-state  prediction for the case R = 0 .05  and is

clos

°nce
e to the actual f in ite  difference prediction for the same radius. Thus, 

Wore the quasi stead y-state  solutions provide a reasonable quantification
of

Ai
sta

sha,

At:

P rofiles for very low |cj)| .

Figures 9 .7  and 9 .8  i l lu s tr a te  the e ffe c ts  o f surface tension on the 

S olu tion  with moderate and large | <p | . During the in i t ia l  and intermediate 

9os the in te r fa c ia l concentration increases r e la tiv e ly  slow ly, so that the 

° f  the concentration p r o file  is  being adjusted by d iffu sio n . However,

ln9 the fin a l stage F(R) increases very rapidly and th is change cannot be 

^ftsated by d iffu sion  throughout the intermediate region o f the concentra-
U on

int,

sta

P ro file . Therefore the concentration p r o file  becomes steep near the
■erf

ace which explains the enhancement o f d issolution  during the fin a l

9e.

9 c
*b- 3 Case B) (() > 0 

For

eots
growth to occur C(R)< or F (R) < 0 . Thus, i f  viscous and in e r tia l  

are ignored,

F (R) = -  (}) (1 -  2Sq/R) < 0 ,

th * >
°>  and q > 0 , so that the bubble sta rts  growing (R > 1) i f

9 r0,'̂ th

S.q  < 1 /2  ,

WÜ 1  continue because the e ffe c ts  o f  surface tension decrease
l9b6ss

fliss
1Vely as the size  o f the bubble increases. On the contrary,

°lution occurs if
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S>q > 1/2 ,

and in these conditions dissolution will proceed with increasing "driving-

rce" F (R) , (due to decreasing radius), until complete dissolution. If 
S —-(3 = 1/2 the bubble is in equilibrium and will not change radius because

interfacial concentration equals the bulk solute concentration. However,

^nor deviation from the equilibrium condition S.q = 1/2, (due to a small 
inCrease or decrease of bubble radius), leads to permanent growth or
Perm^ent dissolution.

These characteristics of bubble behaviour are illustrated in figures 9.9
and g In figure 9.9 the effect of increasing the surface tension parameter

with constant saturation parameter q = 1, can be achieved by changing the
init:lal radius of the bubble. This is an important illustration of the 

erent rates of growth or dissolution in a dispersion of bubbles with a
<ustribUti 
wUl

on of sizes. Bubbles of radius aQ < a^^ = 20q/Pco = 2a/[Pœ (Cœ/C* - 1) ]

dissolve and the rate of dissolution will increase with decreasing initial
^diUs
it

On the contrary if a > a . the bubbles will grow at a rate which-* r\ mi mmin
creuses

Ne
with a0

the

ft

ar the point S q = 1/2 both growth and dissolution are very slow, but 

ates are progressively enhanced as the bubble radius increases or 

aSes- In both cases |F(R)| increases as the radius of the bubble departs
Ußl

niin '

* i

P ■
9ure 9.10 demonstrates that convenient changes of saturation parameter

eUd
di

Po bubble behaviour which is qualitatively similar to that of a

lou of bubbles whose radii are distributed about the equilibrium size

C/['-&“)] However, the examples illustrated in figure 9.10

bubbles in media of different concentrations, or bubbles in different
te9ioris a larger inhomogeneous medium.



Fi g 9 . 9

Figs 9.9 and 9.10 : Effect of surface tension for <J> > O. The
dashed lines represent the case S=0. The numbers show the 
values of
a) S in figure 9.9
b) q in figure 9.10.

t



Figs 9.11 and 9.12 : Effect of surface tension on the dimensionless 
time required to double the size of bubbles. The numbers show 
the values of (p.

F ig  9.12



Table : 9-4

E f f e c t s  o f  s u r f a c e  t e n s i o n  o n  t h e  d i m e n s i o n l e s s  t i m e  Zg
r e q u i r e d  t o  d o u b l e  t h e  s i z e  o f  b u b b l e s  f o r  l o w  a n d  m o d e r a t e  

s o l u b i l i t y  p a r a m e t e r  <{> . T h e  q u a s i  s t e a d y - s t a t e  ( e q u a t i o n  

( 9 . 2 1 ) )  i s  d e n o t e d  b y  t h e  s y m b o l  *  .

* 0 . 0 0 1 0 . 0 1 0 . 1 1

s 9 d> Z
9

0 . 0 1 1 . 5 0 0 1 . 4 2 5 1 . 2 8 1 0 . 9 0 5 0 . 3 2 9 4

0 . 1 1 1 . 8 8 7 1 . 8 0 2 1 . 6 3 4 1 . 1 9 4 0 . 4 7 1 4

0 . 2 1 2 . 4 2 8 2 . 3 3 1 2 . 1 3 3 1 . 6 0 6 0 . 6 8 7

0 . 3 1 3 - 2 5 2 3 - 1 3 7 2 . 8 9 7 2 . 2 4 5 1 . 0 4 1

0 . 4 1 4 . 7 4 5 4 . 6 0 4 4 . 2 8 8 3 - 4 2 0 1 . 7 2 7

0 . 4 5 1 6 . 2 4 6 . 0 8 5 . 6 9 4 . 6 0 7 2 . 4 3 9

0 . 4 7 5 1 7 . 6 6 7 . 5 3 7 . 0 7 5 - 7 8 3 . 1 5 0

0 . 4 9 1 9 - 4 3 9 - 4 2 8 . 8 7 7 - 3 2 4 . 0 7

0 . 1 0 1 . 6 3 3 1 . 5 5 6 1 . 4 0 3 1 . 0 1 0 0 . 3 8 0 7

0 . 1 2 2 . 2 4 3 2 . 1 4 8 1 . 9 5 8 1 . 4 5 7 0 . 6 0 4

0 . 1 3 2 . 7 8 5 2 . 6 7 6 2 . 4 5 3 1 . 8 6 1 0 . 8 1 6

0 . 1 4 3 - 7 7 1 3 . 6 3 9 3 . 3 5 9 2 . 6 0 4 1 . 2 1 7

0 . 1 4 . 5 4 . 7 6 3 4 . 6 1 3 4 . 2 7 5 3 - 3 5 7 1 . 6 3 2

0 . 1 4 . 7 5 5 . 7 2 5 . 5 9 5 . 1 9 4 . 1 1 2 2 . 0 4 8

0 . 1 4 . 9 6 . 9 0 6 . 8 8 6 . 4 1 5 - 1 3 2 . 6 2 6



Table : 9*5
E ffects of surface tension on the dimensionless time 

required to double the size  of bubbles in the ranges of  

moderate to very large 4 .

<J> 1 1 0 loo 1 0 0 0

s q ^ Z g

0 . 0 1 0 . 3 2 9 4 0 . 4 8 8 8 0 . 5 1 6 1 0 . 5 1 8 6

0 . 1 1 0 . 4 7 1 4 0 . 7 4 5 0 . 7 9 6 0 . 8 0 1

0 . 2 1 0 . 6 8 7 1 . 1 6 8 1 . 2 6 6 1 . 2 7 7

0 . 3 1 1 . 0 4 1 1 . 9 3 0 2 . 1 3 6 2 . 1 6 0

0 . 4 1 1 . 7 2 7 3 - 5 6 8 4 . 0 7 1 4 . 1 3 1

0 . 4 5 1 2 . 4 3 9 5 . 4 1 6 . 3 2 6 . 4 3

0 . 4 7 5 1 3 - 1 5 0 7 . 3 1 8 . 6 9 8 . 8 6

0 . 4 9 1 4 . 0 7 9 . 8 7 1 1 . 9 0 1 2 . 2 0

0 . 1 0 0 . 3 8 0 7 0 . 5 8 0 0 . 6 1 5 0 . 6 1 9

0 . 1 2 0 . 6 0 4 0 . 9 9 8 1 . 0 7 5 1 . 0 8 4

0 . 1 3 0 . 8 1 4 1 . 4 2 4 1 . 5 5 3 1 . 5 6 8

0 . 1 4 1 . 2 1 7 2 . 2 9 0 2 . 5 4 5 2 . 5 7 4

0 . 1 4 . 5 1 . 6 3 2 3 . 2 3 2 3 - 6 4 7 3 . 6 9 5

0 . 1 4 . 7 5 2 . 0 4 8 4 . 2 0 5 4 . 8 0 4 . 8 7

0 . 1 4 . 9 2 . 6 2 6 5 . 5 8 6 . 4 4 6 . 5 4
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A number of authors (Greenwood, 1956; Wagner, 1961; Lifshitz and 

Slyozov, 1961; Thomas et al., 1979) have suggested mathematical and 

c°roputational methods to interpret the tendency for relatively large 

P^tticles to grow in a saturated solution whilst the smaller particles 

^-ssolve. Those authors used approximate relations to describe the rate of 

9rowth or dissolution. Accurate predictions require the computation of data 

the kind of results illustrated in figure 9.9 and involve the numerical 

s°lution of the partial differential equations which describe the diffusion 

lri the liquid medium surrounding the sphere. However, in the case of solid 

^articles Henry's law (C(a) 01 (20/a + 1)) is usually replaced by the Thomson- 

^dlich equation (C(a) a exp(2cr/a)) and the material balances have to be 

formulated to take into account that the concentration of solute and its 

°lume fraction in the liquid at the interface vary in time. This 

^Validates the material balances derived in Chapter II (equation (2.28)). 

study of this problem is an interesting one and modifications of the

in
®Vant partial differential equations should involve no major difficulties 

applying the finite difference method. Therefore, it may be suggested as

■‘•y useful extension of the present work.

During growth the effects of surface tension on the concentration of gas
*hçj °h the interfacial concentrations of solute decrease with increasing

115 • These effects are negligible by the time the radius of the bubble
as -••‘•hcreased by a factor of 100 even if the initial conditions were only
su 9htly above the equilibrium condition Sq = 1/2. The surface tension can
th,e*efctore be considered a transient factor and, if Z represents the

nsionless time required to double the size of the bubble and Z^ its value
^  thle case when the surface tension is ignored, Z /Z^ represents a measure 

th6 relative effects of surface tension (figures 9.11 and 9.12). The

6cts of varying S or q on Z^ are also shown in tables 9.4 and 9.5.
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Figures 9.11 and 9.12 show that the quasi steady-state, (equation (9.21)), 

ls the lower limit of actual solutions for very low solubility parameter <j>.

With very large <J> the actual solutions also converge to a unique regime; (the 

Cases (j> = ioo and <J) = 1000 are indistinguishable) . The transition between
those two limits occurs in the range 0.1 < <f) < 10. From figures 9.11 and 9.12

may also be concluded that surface tension effects are more important for 

ar9e <J) than for low cp.

The time required to double the size  o f bubbles increases rapidly as the

Product Sq approaches the value 1/2. It was earlier shown that this is due to

a 3rop 0f "driving-force" |F(R)| to zero at Sq = 1/2.

The unique representation in terms o f <pZ is  ch aracteristic  of quasi

teady state predictions (equation (9.21)) and was used to allow the

ationalization of the actual solutions for low values of (p (table 9.4). On 
the contrary it is possible to identify the upper limit for very large <j> by 

6 °f <f> Z (table 9.5) . As shown in Chapter IV <pZ and <p̂ Z are also the 

nVenient transformations of time to interpret limiting regimes in the ranges
Of

VerY low and very high <j> respectively. Therefore, the convergence of

utions in tables 9.4 and 9.5 constitutes no surprise.

The characteristic growth constant 3 for the asymptotic growth from zero

Without surface tension) tends to the limits [<p/2) for very low and 
♦ O/th’s _

' tor very high <p. Therefore the rate of the process is expected to be

sensitive to a relative decrease of "driving-force" F(R)/<J> , (equation
(9*17)), with large <j) than in the range of low cj>. This explains the relative
Po:Sitl0ns of the different curves in figures 9.11 and 9.12.

figures 9.13 and 9.14 show illustrations of the convergence of the most
So,^tant part of the transient regimes of growth from finite size with
S o ,■̂ hant contributions from surface tension. It is clear that the convergence
Of

s°lutions for <j> < 0.001 and (j> > 100 extends over the whole range of times.

i
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whiCh

The d a s h e d  lin e  i n  f i g u r e  9 . 1 4  r e p r e s e n t s  a s o l u t i o n  of  e q u a t i o n  (9.23) 

w a s  d e r i v e d  a n d  i n t e g r a t e d  fro m  the g e n e r a l  a p p r o x i m a t e  e q u a t i o n

Proposed b y  R o s n e r  a n d  E p s t e i n  (1972).

(R - l)/4 + S 

+ (1 + 2S)

q + (R - 1) + 2 , 10 , 4
2q + —  + 3 S 2. In R - 2Sq

.1 “ 2Sq

1 2 S q
(3q + 2) In 1 - 2 S q / R— ----+ 1 2S (1 - 1/R) = <p2Z . (9.23)3q

is c l e a r  t h a t  t h a t  a p p r o x i m a t i o n  is p o o r  in  q u a n t i f y i n g  the t r a n s i e n t

te9ime.

•rin
f i g u r e s  9.15 a n d  9. 1 6  i l l u s t r a t e  the e f f e c t s  of i n c r e a s i n g  e i t h e r  S or q. 

9 the i n i t i a l  stage g r o w t h  b e c o m e s  v e r y  s l o w  as S . q  a p p r o a c h e s  1/2 b u t
the cyrowth rat e  i n c r e a s e s  w i t h  i n c r e a s i n g  radius. F o r  m o d e r a t e  S v a l u e s  the

6£fe of s u r f a c e  t e n s i o n  m a y  b e  n e g l e c t e d  f r o m  R  = 10, (that is w h e n  the 

t a d i u s  r e a c h e s  t e n  t imes the i n i t i a l  s i z e ) . In  the case q  = 1; S =b̂ ble

•45 time r e q u i r e d  to r e a c h  R  = 10 and R  = lOO is a b o u t  65% and 5% in

6ss r e l a t i v e l y  to the c a s e  of n e g l i g i b l e  s u r f a c e  t e n s i o n  ( S = 0) .

tefore, o n l y  w h e n  v e r y  c l o s e  to the i n i t i a l  e q u i l i b r i u m  c o n d i t i o n  (Sq = 1/2)
wUl

ioo
Sutface t e n s i o n  a f f e c t  g r o w t h  a f t e r  an i n c r e a s e  of size b y  a f a c t o r  of

%

0th e r  e x a m p l e s  ha v e  b e e n  c o m p u t e d  for d i f f e r e n t  v a l u e s  of <p. T h e y  all  

sbnilar  c u r v e s  log R  v e r s u s  log Z, e x c e p t  for the a c t u a l  r ange o f  the

scaies.



Pigs 9.13 and 9.14 : Convergence of solutions for growth from finite 
size for low or high values of (j> including surface tension. The 
numbers show the values of <p. The dashed line in fig. 9.14 
represents equation (9.23).



Pigs 9.15 and 9.16 : Effect of surface tension on growth from finite 
size. The dashed lines represent the case S=0. The full lines 
represent S = 0.1, 0.2, 0.3, 0.4, 0.45 and 0.49 in figures 9.15, 
and q = 0,1, 2, 3, 4, 4.5 and 4.9 in figure 9.16 from left to 
right.

Fig 9.16 log Z
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9.6.4 Sievert's law 

9.6.4.1 4> > O

If Sievert's law is valid, (C (a) “ p ‘ ), and viscous and inertialg
Effects are ignored equation (9.8b) reduces to

X

F(R) = - <f> (1 + q) + <j> q (1 + 2S/R)' (9.24)

whiist the gas pressure will be given by equation (9.16) as in the case of
He:̂ y's law.

^itt,
Prom equation (9.24) the conditions required for growth to occur can be 

en <|> > O; q > 0 ; and F (R) < 0 and therefore

q (1 + 2S/R) - q < 1 (9.25)

or' as R > ]_f if q = l from condition (9.25) S < 1.5, and if S = 0.1 

q < 10.477.

Illustration of these conditions is shown in figure 9.17. These 

-fJ-es are qualitatively similar to the equivalent treatment of the 

^ s law (figure 9.9) but near the equilibrium conditions the increase of 

°f growth or dissolution (with increasing or decreasing radius

a

t&tes

the
e +• *^ v e ly )  is  le ss  rapid in the case o f S ie v e r t 's  law. This is  due to

u °ear relation between the interfacial concentration and surface
ion

Of
• F (R) = _ (J) + 2qS(J)/R, in the case of Henry's law whilst in the case

Si,6Vert's law the interfacial concentration is given by equation (9.24).

ation (9.16) describes the effect of surface tension on the gas pressure
is Valid for both laws.

i



Z

Fi 9* 9 .17  : Ef fect  o f surface tension for (J> > 0 and in te r fa c ia l
concentration of solute given by Sievert's law. The dashed line 
represents the case S=0. The figures show the values of S.
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9.6.4.2 4> < O

The effects of surface tension on the dissolution of bubbles in the 

Cases of Sievert's law (full lines) and Henry's law (dashed lines) are 

Coinpared in figure 9.18. The dissolution is always quicker in the case of 

Henry's law because the interfacial concentration is then more sensitive to 

c anges of surface tension while the dependence of gas pressure on the 

SUrface tension is the same in both cases.

T h e  e x a m p l e s  i l l u s t r a t e d  i n  f i g u r e  9 . 1 8  m a y  s e e m  u n e x p e c t e d  b e c a u s e  w i t h

a n d  l a r g e  S t h e  d i s s o l u t i o n  r a t e
dR
vdz,

d e c r e a s e s  a s  S  i n c r e a s e s .derate
n o r d e r  t o  e x p l a i n  t h a t  t r e n d  i t  i s  n e c e s s a r y  t o  t a k e  i n t o  a c c o u n t  t h a t  t h e  

n i t i a l  c o n t e n t  o f  t h e  b u b b l e s  i n c r e a s e s  m o r e  r a p i d l y  w i t h  S t h a n  t h e  

Si*ultarineous increase of the initial "driving-force" F(R) at R = 1.

In the case of the Henry's law with negligible viscous and inertial 

ects equation (9.9) reduces to

G (R) = j  TT R3. (1 + 2S/R) (9.26)

the same relation applies in the case of the Sievert's law.

ln the quasi steady-state limit the dissolution rate for Henry's law
lS 9iVien by equation (9.20) and if q = - 1,

dR
dZ

!
R

( 1  + 2 S / R )

1 + | S / R  
«

> - 4>/R , (9.27)

dZ = 4>/R if surface tension is ignored. Similarly if x = 1/2, 
(SieVert.s law), combination of equations (9.18), (9.19) and (9.24) with 

'*• leadsis to

dR 
dZ

j T ______1 + 2S/R______1
* L 1 + 8 S/R + 1 6 S 2/R2J

j y
< -  <f)/R . (9.28)
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R e l a t i o n  (9 . 28 ) shows t h a t  i n  t h e  q u a s i  s t e a d y - s t a t e  l i m i t  f o r  th e

dR
dZ d e c r e a s e s  w i t hSievert's law case with q = - 1 the dissolution rate 

lncreasing surface tension, whilst it always increases in the case of 

Herury' s law. These trends are confirmed in figure 9.20 where the dimension-
leSs dissolution time Z^ increases with increasing surface tension (or

^creasing initial radius) for cf> = - 0.001.

F o r  m o d e r a t e  o r  l a r g e (with <t> < 0) the relation between Z, and Sd
show.s a minimum. In these cases if S is low Z^ may decrease with increasing
s  b ecause of the increase of "driving-force" F(R) during the last stage of
d i Solution. This may occur in spite of the fact that at time Z = 0, (R = 1),
the " d r i v i n g - f o r c e "  i n c r e a s e s  l e s s  r a p i d l y  w i t h  i n c r e a s i n g  S t h a n  t h e  i n i t i a l

CoRtent of the bubble G (1) = y- (1 + 2 S)  . The factor (1 + 2 S )  represents the 

Native increase of initial bubble content due to surface tension and, from 

N a t i o n  ( 9 . 2 4 ) ,  the relative increase of "driving-force" |F(R)/4> | , exceeds 

^  + 2 S )  for R < q / ( 2 S / q  -  2 ) ,  where q  '< - 1. This effect for small S may 

° be related to the fact that surface tension opposes severe accumulation.
I t Was shown in Chapter V that accumulation might be responsible for a

•*-atively slow final stage.

late
oc

S f u r t h e r  i n c r e a s e s  t h e  c o n d i t i o n  jF (R) /cj) | > 1 + 2 S m ig h t  o c c u r  t o o  

( f o r  s m a l l  R) t o  a v o i d  an i n c r e a s e  i n  d i s s o l u t i o n  t im e  and t h i s  a l w a y s  

CUrs i f  S i s  s u f f i c i e n t l y  l a r g e .

Figure 9 . 1 9  show s t h a t  i n c r e a s i n g  t h e  a b s o l u t e  n u m e r i c a l  v a l u e  o f  t h e

B̂ ti'Nation parameter promotes increasingly rapid dissolution in both cases
Of He

M-

the
■he

nrY's law (dashed lines) and Sievert's law (full lines). For a given 

°f q dissolution is always quicker in the case of Henry's law than in

Case of Sievert's law. These trends occur because of the increase in
dti .

V ln g - f orces" F(R), whilst the initial content of the bubble G(l) is
tr̂ f

sUtf
thcted. The symbols (+) denote dissolution in the case of negligible 

ace tension.
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Figs. 9.18 and 9.19 : Effect of surface tension for <j> < O. The symbols 
+ represent the case S=0. The full lines represent Sievert's law 
and the dashed lines Henry's law. The numbers show the values of 
S in figure 9.18 and the values of q in figure 9.19.
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• 9.20 : Effect of surface tension on the time required for complete 
dissolution for the case of Sievert's law. The figures show the 
values of (f>.



9.7 Effects of viscosity on growth or dissolution

Unless specified, the effects of surface tension and inertia are 

ignored in this section in order to investigate the contributions of 

viscous forces during growth or dissolution of gas bubbles in a liquid. 

Figures 9.21 and 9.23 exemplify the effects of viscosity on the behaviour 

of gas bubbles and show that the greatest contributions occur during the 

final stage of dissolution and during the initial stage of growth. The 

effect of viscosity on the initial stage of dissolution may also be 

significant because of the decrease in gas pressure as the dissolution rate 

increases.

In figure 9.21a the relative gas pressure P* (equation (9.6)) is

represented by the dashed line for the case r) = 0.02 and by the dotted-

dashed line for T) = 0.05. Initially P* decreases rapidly in both cases as

the dissolution rate increases from zero. During the intermediate stage 
dR- —— decreases whilst (1/R) increases and the gas pressure may increase

when 1 dR 
R dZ decreases with increasing time. This occurs for moderate

values of the viscosity parameter, (r| < 0.02), but P* always decreases for 

f| > 0.05. During the final stage the radius decreases more rapidly than

its derivative so that 1 dR 
R dZ decreases and the gas pressure drops

approaching zero as R tends to zero. This also causes a decrease in
dR"driving-force", F(R), (equation (9.8a), and consequently —  tends to zero.ClZ

The mathematical solution predicts that the time required for complete 

dissolution will be infinite if viscosity is considered, but surface tension 

increases the gas pressure and opposes the effect of viscosity as seen in 

figure 9.22. For this reason the solutions in figures 9.21 were stopped 

for R < 0.01 that is for the last 1% decrease in size.

As dR
dZ increases with | cf> | it should be possible to define a range of

values of |4>|l) for which the effect of viscosity may be ignored. Figure 9.2



i(3s 9.21 : Effect of viscosity on the dissolution of bubbles. The 
dashed-dotted and dashed lines represent P* and the full lines 

The numbers show the values of p.

t



Fig. 9.22 : Effects of surface tension and viscosity on dissolution 
of a bubble. The dashed lines represent P*.

Fia 9-23 . Effects of viscosity and surface tension on growth of a 
bubble. The dashed line represents the case S=0; f|=0.A



T a b l e  : 9 * 6

E f f e c t  o f  v i s c o s i t y  o n  t h e  d i m e n s i o n l e s s  t i m e  r e q u i r e d

t o  d e c r e a s e  t o  1 0 %  o f  t h e  i n i t i a l  s i z e  Z , o r  t o  d o u b l e0.1
t h e  s i z e  o f  b u b b l e s  Z 2 f o r  | q |  = 1 .

k | n 0 0 . 0 0 0 1 0 . 0 0 1 0 . 0 1 0 . 1

<f> Z o . i

- 0 . 0 1 0 . 4 5 6 0 . 4 6 2 0 . 4 6 8 0 . 5 3 8 0 . 9 5 4

- 0 . 1 0 . 3 9 1 1 0 . 3 9 6 1 0 . 4 0 4 4 0 . 4 8 4 1 . 0 9 6

-1 0 . 2 6 8 0 0 . 2 7 2 4 0 . 2 8 2 6 0 . 3 7 2 0 1 . 1 6 1

- 1 0 0 . 1 2 8 0 0 . 1 3 0 7 0 . 1 3 8 2 0 . 2 0 9 4 1 . 0 3 7

- 1 0 0 0 . 0 3 3 1 9 0 . 0 3 1 6 1 0 . 0 2 7 5 8 0 . 1 1 6 7 0 . 6 9 4

• Z 2

0 . 0 1 1 . 2 8 1 1 . 2 8 4 1 . 2 8 8 1 . 3 3 5 1 . 7 6 8

0 . 1 0 . 9 0 5 0 . 9 1 0 0 . 9 1 6 0 . 9 7 0 1 . 4 3 4

1 0 . 3 2 9 4 0 . 3 3 3 7 0 . 3 4 0 9 0 . 4 0 6 7 0 . 8 9 3

1 0 0 . 0 4 8 9 0 . 0 5 0 5 0 . 0 5 8 3 0 . 1 1 8 3 0 . 5 0 7

1 0 0 0 . 0 0 5 1 6 0 . 0 0 5 1 3 0 . 0 1 2 3 3 0 . 0 5 2 9 0 . 3 5 4 2
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suggests that viscosity may be ignored for |<J) |ri < 0.001, which is also 

c°nfirmed in table 9.6 except for very large values of solubility parameters 

I'M > 10. If | <j) | > 10 viscosity should be included in the full solutions

when • P > 0.0001, which with | (f> | = lOO correspond to a relatively low

v&lue of the viscosity parameter n = 10  ̂ (see table 9.1). In the most 

c°tnmon range of solubility parameters, | <J> | < 10, viscosity may be ignored 

e*cept for small bubbles (a^ < 0.1 mm) and highly viscous melts 

^ 10 Kg m s  ̂= 10^ poise) . For |<J>| = 0.1, 1 and 10 viscosity may be

Snored -2 -3 -4
i f  f| < lo  , g < 10 and f) < 10 resp ective ly .

In figure 9.21b the radius-time curve for the case n = 1C follows
the e*pected trends during the i n i t ia l  and intermediate stages, but for  

telatj-ively small radii (R < 0.175) dissolution may become faster than in case
n =

day
0. This trend would be reversed for very small R as dR

dZ decreases and

aPproach zero but by th is time surface tension may not be ignored, so

i)iat i f 5makes no sense to extend the curve T) = 10 for R < 0.01.

Understanding o f that trend is  clearer by taking into  consideration that
+-v

e °v e r a ll  rate of transfer increases i f  r e la tiv e ly  large in te r fa c ia l

&teas are maintained for much of the process, and th is can be achieved

^  In v e n tin g  a very rapid i n i t ia l  decrease in radius without stopping

ransport o f m aterial, 

a de

Pro

di

ctease in the rate of transport makes i t  p ossib le  that a larger 

Portion of dissolved m aterial might d iffu se  to somewhat larger

stances from the centre which opposes severe accumulation near the

lnterface
th,ere is  an intermediate stage during which the gas pressure and
drlvin9-force" F(R) increase which also contributes to oppose the
doctmuiation near the interface. Note that for relatively large
Vi

di
SCosi +-roy the i n i t i a l  drop of "d r iv in g -fo rc e " i s  not reversed and

S s o w  ■
C1°n remains slower than in the case f) = 0 .
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Figure 9.22 exem plifies the simultaneous e ffe c ts  of surface tension and

viscosity on bubble dissolution. The dashed lines represent P* for the

Cases 3 and 4 and the f u l l  lin es represent R. Surface tension alone

ethances d isso lu tion  re la tiv e  to the case S = 0 ; f| = 0 when both surface

^ension and v isc o s ity  are ignored. I f  the v isc o s ity  is  too high to be ignored 

th
e gas pressure drops s ig n ific a n tly  before decrease in radius becomes

n°tic e a b le . This is  due to transfer of m aterial out of the bubble. During

this stage surface tension may be ignored except for unusually large values 
Of c

° • The ro le  of surface tension becomes important during the fin a l stage

'"hen vis c o s ity  tends to cause a progressive decrease o f gas pressure and a
de.ctease m dR

dZ which tends to zero in the case S = o . At th is  stage even 

SIna ll value of surface tension parameter (see table 9.1)  plays a 

9nific a n t role  due to a contribution 2S/R to the re la tiv e  gas pressure P* 

contribution -  2Sq4>/R, (q < -1 ), to the "d r iv in g -fo rc e " F(R),  and makes 

£°ssib le  for a bubble to d isso lve  com pletely.

T£le conditions <$>n < 0 .001  for  0 < <{> < 10 and <J>n < 0 .0001 for <{> > 10 may 

Used as a crite rio n  to decide in which conditions the role  of

Scos-; +.'Lcy may be ignored during bubble growth. Figure 9.23 shows that growth

H  be

a

It

be 

vi

Set

£̂ter

V

affected  by v isc o s ity  during the in i t ia l  stage of growth but this  

always vanishes for  s u ff ic ie n t ly  large s ize s  of bubbles. Notice that 

^ a t  in i t ia l  stage the growth rate and R  ̂ decrease with time so

bo
t*le ef f e c t  o f v isc o s ity  on the gas pressure (equation (9 .6) )  vanishes

Rapidly than the e f f e c t  o f surface tension which decreases only with R 1 .

ßoth surface tension and v isc o s ity  cause slower growth and therefore

e ffects  are additive (equation ( 9 . 6 ) ) .  Also both e ffe c ts  increase

ihcr.

% ' s

easing saturation parameter (q > 0 ) .  However, the e ffe c ts  of 

tension cause d isso lu tio n  when 4> > 0 and S .q  > 1 /2  in the case o f

(x = l)  t w hilst growth always occurs i f  4> > 0 , q > 0; S = o and
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During the initial stage the curves 1, 2 and 3 in figure 9.23 have slopes 

greater than 1, so that the radius of the bubble increases more rapidly than 

the predictions by a linear relation between radius and time. After the 

lnitial transient stage the solutions converge to the diffusion controlled 

re9ime which corresponds to a low R “ /z. Barlow and Langlois (1962) predicted 

t^t viscous relaxation was responsible for a linear relation between radius 

and time, but their analysis was based on assuming thin boundary layers which 

ls not valid except for very large solubility parameters .

».8 Effects of inertia on growth or dissolution of bubbles

!t has been shown in Chapters IV and V that during the initial stage of 

^r°Wth or dissolution the actual predictions for large 14> | are close to

actions of the flat slab model. This approximate model becomes 

h + and therefore

dR
dZ

2<j>
/Fz" 71 (R - !>

(9.29)

n <32r _ „ <J> ,-3/2 _ 4 J?
R 2 ~ ~ R « /=■ * 2 ..2 |R-1dZ 2/tT IT (R - 1)

+ 1 . (9.30)

t0t
'R-lI > 0.05, that is excluding the initial 5% change in radius,

i°ns (9.29) and (9.30) lead to

*n<a

dR
dZ < 162 f

R
,2d R
dZ

< 3.4 x 103 4>4
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Therefore, for | <f> | = 1 0 0,
i -14nJ-y for h > lO might inertia become significant (equation (9.6)). This 

ange is unlikely to be found in practice as is | c{> | > 100. Even | <J) | > 1 0  

must be rare and inertia might then be ignored for h < 10 which is 

Unrealistically high as shown in table 9.1.

9 q
Conclusions

idR] 2 r 2 'i6 d R|
(.dZj < 1.62 x 10 and R u < 3.4 x 1011 so that

Surface tension is  responsible for an increase of gas pressure inside

^ h le s  and consequently the solute concentration in the liq u id  at the

nte^face is also enhanced. Henry's law is commonly assumed and predicts

Uear relation s between equilibrium solute concentration and gas pressure.

sitive or negative deviations from Henry's law are occasionally found,

cluding lin ear re lation s between the equilibrium solute concentration and 

the S(3uare root of the gas pressure (Sievert's law) .

The e ffe c ts  o f surface tension are dependent on the physical property

and °n the size of the sphere. Other non-equilibrium effects are also 

ent on the size of the bubble but only act in dynamic conditions,

is due to notion of the interface. These differences are important

6hh

and

ClaH y during d isso lu tion  when surface tension is  responsible for the 

d em en t o f rates o f m aterial transfer w hilst the e ffe c ts  of v isc o sity

inertia  hinder d isso lu tio n .

tat,■es
Viscosity may usually be ignored but whenever dissolution or growth

are sufficiently large for viscosity to have an effect it causes a 
aase •ln pressure and rates of transfer during dissolution or an increase 

SsUre and decrease in rates of transfer during growth. Inertia is 

^likely to play a significant role during either dissolution and
°vth. 

hurin9 growth the combined e f f e c t s  of surface tension and v isc o sity
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^ecrease as the radius of the bubble increases. Therefore those e ffe c ts  

®ay be considered transient and the actual solutions converge to the 

E ffu sio n  controlled  regime for large r a d ii. As the surface tension acts 

ln3ependently o f motion, a bubble may d issolve in a saturated solution  

Provided i t s  radius is  smaller than a c r i t ic a l  value. This c r i t ic a l  

tadius i s  not only dependent on the value of the surface tension but also  

° n the degree of oversaturation.

S u r f a c e  t e n s i o n  i s  t h e  m o s t  i m p o r t a n t  a m o n g  t h e  p r e s e n t  f a c t o r s  w h i c h  

Cat s e  d e v i a t i o n s  f r o m  a  s i m p l e  d i f f u s i o n  c o n t r o l l e d  b e h a v i o u r .  I t s  e f f e c t s  

^  ^ e  i m p o r t a n t  o v e r  t h e  e n t i r e  r a n g e  o f  s o l u b i l i t y  p a r a m e t e r s  (cf>) l i k e l y

b e  

the'
found in  p ra c tic e . V isco sity  and in ertia  may be neglected because

Y b e c o m e  e f f e c t i v e  o n l y  f o r  v e r y  l a r g e  r a t e s  o f  g r o w t h  o r  d i s s o l u t i o n ,

Lfl ̂ r. . i
ls  for  very large | <j) | . The present study includes a large number of 

sihui-Lations of bubble behaviour over a very large range of cp values which 

delude a l l  the cases o f p ra ctica l in te r e st . Large values of surface 

ston parameter were a lso  included to investigate even the most extreme 

ions and draw attention  to the more important trends of bubble growth
ot ^issolution .
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CHAPTER X

Discussion of behaviour o f bubbles in glass melts 

and suggestions for further work

10.1 I n t r o d u c t i o n

S e v e r a l  a u t h o r s  h a v e  s t u d i e d  g r o w t h  o r  d i s s o l u t i o n  o f  i n d i v i d u a l  b u b b l e s  

n  t h e  h o p e  t h a t  t h e  r e s u l t s  w o u l d  h e l p  t o  u n d e r s t a n d  r e f i n i n g .  T h i s  t y p e  o f  

^ P ^ i m e n t  s u g g e s t s  t h a t  b u b b l e  b e h a v i o u r  i s  d i f f u s i o n  c o n t r o l l e d  b u t  p r e c i s e  

n a l y s i s  o f  t h o s e  e x p e r i m e n t s  h a s  b e e n  p o o r  e s p e c i a l l y  b e c a u s e  o f  i n a d e q u a t e

° ret ic a l  models and poor knowledge of s o lu b ili t ie s  and d i f f u s iv i t ie s . 

°ttunately these data are scarce and not completely r e lia b le . As the

the

t>nf,

te®peratures used for such determinations were often s ig n ific a n tly  lower 

than typ ic a l melting temperatures those experiments might be o f l i t t l e  use

when they are accurately designed and interpreted. In fa ct s o lu b ilit ie s

âifft s i v i t i e s  o f  g a s e s  i n  g l a s s  m e l t s  u s u a l l y  v a r y  r a p i d l y  w i t h
tehper

91aSs
9aSes

tie

ature. This property might promote d issolution  o f some bubbles as the 

mel t  is  cooled to working temperatures and the s o lu b ility  o f some 

^ s p e c ia lly  CO and 0 ) increases. Not a l l  gases necessarily  have
9ati

Ve t e m p e r a t u r e  c o e f f i c i e n t s  o f  s o l u b i l i t y .

he,as
The

utemi
n̂<a

® °st commonly used methods o f studying refin in g have been the 

ents o f number N of bubbles per unit volume, bubble size  d istribu tion

CornP o s i t i o n  o f  i n d i v i d u a l  b u b b l e s  a f t e r  d i f f e r e n t  f o u n d i n g  t i m e s .

Otn*tion
itlf,

studi
e s  m i g h t  b e  u s e f u l  t o  f o l l o w  t h e  p r o c e s s  b u t  d o  n o t  p r o v i d e  

a b o u t  t h e  b e h a v i o u r  o f  i n d i v i d u a l  b u b b l e s  w h e n  s e v e r a l  m e c h a n i s m s

th

hav
ht

9ases may be involved. E ffic ie n t  control of refin in g requires 

^^erstanding and description o f individual bubbles. The assumption

in<iiviVl<3ual bubbles can be treated as iso la te d  ones in uniform surroundings
hot be

■̂Ust i f ie d . Slow d egasification  might occur during refining which
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^kes the interpretation of changes in number, size distribution and 

imposition of bubbles more difficult.

A sensible way of studying refining would include direct observation 

individual bubbles in glass melts. Unfortunately this method involves 

Serious experimental difficulties and has rarely been used. Besides it 

°nly provides information about velocity and change in size of bubbles but 

Ilot about bubble composition. Bubble nucléation might also be observed.

It has been pointed out that the mathematical solution of the behaviour
of moving bubbles is complex due to difficulties in equating accurate 

erial balances and solving the relevant partial differential equations.
•JlL
6Se difficulties exist even in the axially symmetric case (free rise

^ x> * -I

tsively due to buoyancy).

There is experimental evidence that the rate of transport around a
fcisj

9 bubble is greater than around a stationary bubble (Greene and Lee,
1965) *' thus diffusion seems to be the most likely controlling mechanism in
b ° t h Cases. Therefore solubilities, bulk concentrations and diffusivities
htst be the essential parameters in both cases and bubble motion is dependent
on the viscosity of the melt and size of the bubble. The main difference
3etw

ch
een behaviour of rising and stationary bubbles must be a significant

ln time scale. Solutions for multi-component stationary bubbles are
ts

kh
this chapter to discuss some possible interpretations of phenomena

ich «fnvolve bubbles in motion. Such solutions must not be taken as 
htita+..111 ve predictions of the behaviour of bubbles in those cases.
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^ S t u d i e s  of b u b b l e s  in glass m e l t s

Greene and co-authors (1959, 1965, 1969, 1974), measured radius-time

CUrves for b u b b l e s  h e l d  a l m o s t  s t a t i o n a r y  b y  r o t a t i n g  the sample. M o s t  of

e x p e r i m e n t s  u s e d  o n e - c o m p o n e n t  b u b b l e s  b u t  the g lass s a m p l e s  m a y  h a v e

c°ttained s e v e r a l  d i s s o l v e d  gases. N e v e r t h e l e s s  they u s e d  a o n e - c o m p o n e n t

^ e°reti c a l  model. D o r e m u s  (1960) u s e d  a t r a n s f o r m e d  q u a s i  s t a t i o n a r y  one-

c°©ponent m o d e l  (equation (2.61)) to a n a l y s e  s o m e  of those re s u l t s  a n d

°ktain e s t i m a t e s  o f  the d i f f u s i v i t y  D a n d  s o l u b i l i t y  p a r a m e t e r  F^. B r o w n

an3 Doremus (1976) used the same model to analyse the behaviour of bubbles

c°ntaining oxygen, n i t r o g e n  or air. Howe v e r ,  o x y g e n  may d i f f u s e  in t o  a 
nitv.0

iUyen b u b b l e  or v i c e - v e r s a ,  a n d  a i r  b u b b l e s  n e e d  a m o d e l  for t w o - c o m p o n e n t  

^ b l e s .  T h e r e f o r e ,  B r o w n  a n d  D o r e m u s 's a n a l y s i s  m i g h t  n o t  b e  justified.

There are also several reasons to question the method used by Brown and
t>ore*QUS to o b t a i n  e s t i m a t e s  of  D a n d  F :a

°ften the i n i t i a l  size m a y  n o t  be  m e a s u r e d  accurately,

t*le i n i t i a l  s t a g e  o f t e n  d e v i a t e s  f r o m  the e x p e c t e d  s h a p e  of

E f f u s i o n  c o n t r o l l e d  d i s s o l u t i o n  (Greene a n d  co-authors, 1959),

6 f inal s t a g e  is u s u a l l y  s l o w e r  than e x p e c t e d  w h i c h  m i g h t  be  

^ t s e d  b y  i m p u r i t i e s  p r e s e n t  in the i n i t i a l  gas b u b b l e s  or 

fus i n g  from the m e l t  i n t o  the b u b b l e  (see C h a p t e r  V I ) , 

t r a n s f o r m e d  q u a s i - s t a t i o n a r y  m o d e l  gives i n a c c u r a t e  p r e d i c t i o n s  

^ bo t h  d i s s o l u t i o n  time a n d  s h a p e  o f  r a d i u s - t i m e  c u r v e  e x c e p t  for

Ve

is
^  low v a l u e s  of  | <f> | . I n a c c u r a t e  p r e d i c t i o n  of r a d i u s - t i m e  c u r v e s  

S e rious if b o t h  the d i f f u s i v i t y  a n d  s o l u b i l i t y  p a r a m e t e r  are to

the

Do,

e s t i m a t e d  f r o m  the e x p e r i m e n t a l  d i s s o l u t i o n  curve. T h e r e f o r e  

e s t i m a t e s  o f  d i f f u s i v i t y  a n d  s o l u b i l i t y  p a r a m e t e r s  o b t a i n e d  b y  

etnus (I960) for o x y g e n  b u b b l e s  in glass m e l t s  m i g h t  i nvolve
Si9nific a n t  errors.

.i
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It has been said that change in diffusivity causes a change in time 

Scale only. Besides, if < 0.1 the shape of normalized radius-time curves 

Varies little on changing F after taking into account the change in time3
Scale. in this range of low F the time scale is nearly proportional to D ^3

Fa s° that quite different combinations of diffusivity and solubility

Patameter may fit the experimental results equally well. This trend is

0bviOusly more serious when the initial radius is not accurately measured

the resolution of the initial and final stages is poor. In this case it

ls difficult to obtain accurate estimates of both D and F^ even in the ranges 
of

“ooerate and large solubility parameters (F > 0.1). Unfortunately those3
■’■'Citations are common in the case of bubbles in glass melts.

Somewhat better predictions are expected if the solubility parameter is

^ d  the problem reduces to finding the value of the diffusivity,

(Prischat and Oel, 1965 and 1967b; Nemec, 1969). In this case the most

lous errors result from the use of poor mathematical analysis (Nemec, 1969)
Ho,

lV,e v êer» this case requires accurate measurements of concentrations and

Sô u itie

Sĉ c e

tebini.

Les which are available for water and possibly inert gases but are 

ot non-existent for the most important components of gas bubbles during 

n9 (carbon dioxide, oxygen and physically dissolved nitrogen).

lo.
Changes of gas composition in bubbles during refining

There
«h

is some direct experimental evidence that individual bubbles can
^9e

et

imposition in glass melts (Cable and Haroon, 1970; Mulfinger, 1972) . 

these observations were made in melts at temperatures significantly 

typical melting and refining conditions and assuming similar
9es

s .
at these higher temperatures might not be justified. A change in 

Ure could reverse the flux of a gas into or out of a bubble simply

° b the change in so lu b ility  with temperature. Analysis o f gas bubbles
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ln glass samples after different founding times also show changes of gas 

composition (Slavyanski, 1957; Cable et al., 1969; Cable and Naqvi, 1975; 

Mulfinger, 1976), but there is no direct evidence that all the observed 

changes represent what typically happens in one particular bubble. Growth
and

chan

time

tise to the surface as well as nucleation of new bubbles might cause 

9e in bubble population present in the melts especially if the founding 

is sufficiently long. The typical sequence of changes is from CO^ to

2 an<3 then to N .

ftom

and

The change from CO^ to occurs relatively early whilst the change 

°2 to N2 seems generally to occur only in the last stages of refining 

ls usually observed after long founding times. After the change CO^
u th2 e bubble density (N) decreases markedly and there often is a line 
la +- ■ion between log N and t. At low N this law changes and further 

he

ar

cteas
It is

e in N is much slower which suggests change in controlling mechanisms, 

not understood whether growth of the bubbles present at the time when
the

6*P1

to

U:

md t  becomes batch-free and elimination by rise to the surface might 

dln the linear relation between log N and t, or if other mechanisms play 

lrnPortant role. The velocity of rising bubbles is usually proportional 

6 square of the radius (a2) (Solinov and Pankova, 1965), so that the

tUiici

Squired for a bubble to rise from a depth _h to the surface of the melt 

ases rapidly with decreasing radius. Growth (or dissolution) and
i

l0n of new bubbles also affect the rate of disappearance of bubbles.
tate

ft,®e (So
91

°f nucleation seems to decrease rapidly when the melt becomes batch- 

ünov and Pankova, 1965) and bubbles often grow during refining of
ass

Therefore, many bubbles are likely to be eliminated by growth and
se to

9s the
surface. In such cases the rate of disappearance must decrease 

average size decreases and understanding the relation between N and t
tes information about the size distribution at batch-free time, growth
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rates and their changes with bubbles size (especially for small bubble 

Slzes) and time. The velocity of rise u_ due to buoyancy can be worked out 

r̂°m the size of the bubble (u “ a^). The role of bubble rise in the 

elimination of bubbles is also demonstrated by some experimental evidence 

which shows that bubble count in quenched samples can decrease more rapidly 

ln the bottom layers than in those near the free surface of the melt
(Von Reth and Van Velzen, 1973)

The

°f 0

Melts without any refin in g agent tend only to contain CÔ  bubbles. 

change CÔ  -*■ 0 might not be complete a t batch -free time but the proportion  

2 ls  then often considerably above 50% unless in su ffic ie n t  additive

tsenic or antimony) is used. In small crucible melts the change -* N,? 
may

n°t be observed because most of the bubbles may disappear before this

happen.

th

Of

Assuming that both changes CO^ and occur in the same bubbles

should be three different stages controlled by each of the components 

hubbies in turn CO , 0 and N . The evidence is insufficient to know
Vh 2 ' 2
®ther these bubbles are growing or dissolving. Both possibilities need to

twined. The initial component (CC>2) is replaced relatively rapidly by
2* DUr.-'-n9 the intermediate stage the proportion of 0 is high (%0 > 80%)

** ®ight
te:

t o

St

even reach close to 100%. This stage is often long and the %C>2 

remain at a nearly constant value for relatively long times before
¿Urtiln9 to decrease slowly being replaced by nitrogen. Meanwhile N decreases
edly.

P i

^ b i e
s6c°nd

^Ure 6 .25  showed one example o f a three-component stationary d issolvin g  

Wl.th three d is t in c t  sta g es. Replacement o f  the f i r s t  component by the 

° mPonent requires very d iffe re n t d i f fu s iv itie s  or s o lu b i li t ie s .

nearly complete dissolution of the first and second components

that the ratios F /a, and F /an should be very small, that is the «Y 1 O '  2
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solute concentrations in the bulk liq u id  must be n e g lig ib le . However, 

rela tiv e ly  rapid d issolu tion  o f the f i r s t  component o f bubbles in glass melts 

0PPoses what is  usually assumed. Also the ratios Fq /a^  for CÔ  and 

*0 ^*2 ^or oxY9en are lik e ly  to be greater than unity and these species are 

likely to d iffu se  into the bubbles. In fa c t , some o f the few observations 

bubbles during refin in g  showed that bubbles usually grow as their  

imposition changes from CO^ to (Nemec, 1974) . Some o f these observations 

Were for additions o f refin in g agent (arsenic) much larger than usually

fo e ffe c tiv e ,

I t  has been demonstrated that the case shown in figure 6 .25  is  very
aiff

erent from the conditions which are lik e ly  to occur during refin in g .
î9hre lo . i  and 10.2 also show the type of conditions required for a bubble 
to v

ve three c learly  distinguished stages. These show that the bubble sta rts

9row as the second change in composition occurs. This would be equivalent 
to

is

In

a bubble which shrinks as CÔ  dissolves but then sta rts  growing as oxygen 

tePlaced by nitrogen. I t  seems impossible for a bubble to show an increase

the

vith
0)0le fraction  o f the second component g^ followed by a decrease in g^

out

The

m i t i a l  decrease in s iz e .

re la tiv e  duration o f each o f the three stages shows some d ifferences
Detw

6en the behaviour shown in figures 6 .2 5 , 10 .1  and 10.2 and the expected
chinn,9es
V*th

ln bubbles in glass m elts. During refin in g the second stage (bubbles

^ar9e proportions o f  oxygen) is  usually w ell defined and re la tiv e ly  long 

0QltlParedu with  the time for the CCk -* 0„ change, but th is is  not general
V ,

' 1975). Besides the changes in composition in bubbles during refin in g  

ei*iently be represented against the real time w h ilst in the simulated

N i e s  aa square root time scale  is  usually needed to distinguish  the second

S t  anda the proportion o f the second component does not remain at i t s

for a s ig n ific a n t time.
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Fi9s lo .1 and 10.2 : Illustrations of behaviour of three-component 
stationary bubbles with three distinct stages and growth after 
the transient stage.
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Carbonates decompose rapidly by reacting with silica and giving rise to

large volumes of CO and relatively basic melts. These reactions are very

rapid even at temperatures significantly lower than typical melting 

temperatures and large proportions of C0? available from batch must be lost 

relatively early. Meanwhile the initial basic melts are in good contact 

Wlth those large volumes of CO^ being released and the concentration of CO^ 

ln those phases might be close to saturation. Further dissolution of silica

Ocreas es the acidity and decreases the solubility of CO^ in the melt which

^ght

toeit
cause oversaturation and diffusion of CO^ into bubbles present in the 

or nucléation of new bubbles. Investigation of these hypotheses might
be useful.

Pro:

!t is well known that the change in gas composition from CO^ to 0^ is 

^oted by adding arsenic or antimony to the batch. This does not occur at
3b.

ant;
°ut 1200°C or less (Nemec, 1974) and there is evidence that arsenic and 

lm°ny are converted to the pentavalent state as the temperature of the
^tch
is

be

increases. Cable (1961b) found that if a mixture of arsenic and Na2CC>3 

leated above 360°C the proportion of arsenate will be high. Oxygen might
disSolved during the change from trivalent to pentavalent state as the

te;

as

fo

(c,

rature of the batch increases and it has been suggested that nitrate acts 

°xigizing agent. The proportion in the pentavalent state which was
Und

*bie

**1,
Ps:

*h,

ln glass was often slightly increased by adding nitrate to the batch

et al., 1969; Cable and Naqvi, 1975) but these differences might also

ated to the tendency to change in valency at higher temperatures from

ent to trivalent arsenic or antimony (Kuhl et al.f 1938; Baak, 1959;

Hornyak, 1966). This change supports the view that oxygen also 
 ̂2 *Unto bubbles when refining is improved by arsenic or antimony, but

% Us

^ i s
S t

no direct evidence that the partial pressure of oxygen at which the
is

6(3uilit)rated exceeds 1 atm.
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An example of the behaviour of a two-component stationary bubble is
shown in figure 10.3 where species 1 corresponds to oxygen and species 2 

C°rresPonds to CO^. The constant was chosen from the typical range of 

0stwald solubility coefficients for CO^ in soda-lime-silica melts above

l3oo'

tneit
C (Kroger and Goldmann, 1962). The concentration of CO^ in the bulk

is assumed to be 2, 10 and 100 times greater than the solubility (in 

ases 1, 3 and 4 respectively). The solubility of oxygen was also chosen 

values corresponding to about 0.5 wt.% arsenic (equation (1.4 )), and 

concentration of oxygen is assumed to be twice its solubility

fr0lQ

^  bulk
(P0̂  2a^ = 8). Figure 10.3 shows that in those conditions the change in
9as composition is relatively quick and close to completion during the time 

9hired to double the size of the bubbles. This occurs even if the
Ciifj

USivity of C02 is 100 times greater than that of oxygen (case 2) or if
the

tise

hoy,

relative oversaturation with CO^ is high (case 4). 

biffusion of both oxygen and carbon dioxide into growing bubbles, and 

the surface would lead to progressive degasification. Investigating
£
r this process could proceed during refining might provide useful

°tmat.a°n, but involves difficult measurements of the "effective"
°on

tri
entrations of CO^ and 02 dissolved in glass. Measurements of proportions

U
V£bLent and pentavalent arsenic (or antimony) at different founding

bes ^ght give useful information but the investigation should be extended
timi

«t
ies considerably longer than usually used in laboratory melting (Cable

*1. ' 1969).
Ex

“it
cessive arsenic or antimony makes refining worse, especially if

*ate <
ïh.

In

ls not added to the batch (Cable et al., 1969; Cable and Naqvi, 1975)
is

Su9 g e s ts some relation between good refining and efficient degasification.
fact a

large proportion of arsenic and antimony converts to the pentavalent
as batch is heated and the amount of oxygen which must be given off

L
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Fig 10.3 : Changes in composition of bubbles containing gases which 
diffuse into the bubbles at very different rates.
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ky the melt for the d egasification  to be e ff ic ie n t  may increase with 

increasing additions of arsenic or antimony. Nemec (1974) a lso  found that

during refining the rates o f bubble growth increased with increasing arsenic

ions up to 2% As^O^. However, th is value is  a large excess re la tiv e  toaddit 
the

Values which are usually considered optimum in refining (Cable e t  a l . ,  

^ 6 9 ), and excessive arsenic (or antimony) a lso  involves le ss  rapid 

placement of CĈ  by in the bubbles during the e a r lie s t  stages of refining

(Cable
of

et a l . ,  1969; Cable and Naqvi, 1975). Decrease in rate of d iffu sion  

°xygen into growing bubbles w hilst keeping to the flu x  of CÔ  constant

w°uid

Ôbbi
cause an increase in the proportion of CÔ  but also decrease rates of 

e growth. On the contrary, increase in both the proportion of CÔ  and
in

tates of bubble growth might be due to increase in the rate of d iffu sion  

°f CO

that
J2 esp ecia lly  during the e a r lie s t  stages o f re fin in g . This also  suggests 

atsenic (or antimony) might be responsible for increasing the concentration
Of On°2 which was dissolved in the in i t ia l  basic liquid  phases formed by

action of carbonates with s i l i c a .  Studying the e ffe c t  of reducing conditions 
T̂l th

so lu b ility  of C0o or CO in glass melts might c la r ify  whether or not

that nProcess is related to the changes in valency of arsenic or antimony.

the
^egasification  o f the melt might occur by d iffu sion  from the surface of 

* el t  to the atmosphère and by nucléation, growth and r ise  of large

%b,ers of bubbles. D iffusion from the surface i s  unlikely to play a

Si9nificant role  when the melt becomes almost quiescent, that i s  when

iV6ction does not promote replacement of the top layers of the melt.
ci

Hi
eation of new bubbles, followed by their growth and r ise  to the surface 

h>e assisted  by the presence of undissolved so lid  p a rtic les  (Solinov 

ancova, 1965) . Therefore, a rapid d isso lu tion  of the most refractory

° nents of the batch might be a disadvantage. Some fa cts  agree with th is

vPoth,es is ,  namely the evidence that too fin e  sand dissolves quickly and

k
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Causes decrease in batch-free time but makes refining worse (Cable, 1958), 

and the role of nitrate which assists refining but also causes an increase 

ln batch-free time (Cable et al., 1969). In this second case residual sand 

stains might provide sites for heterogeneous nucleation whilst in the first 

case the rate of homogeneous bubble nucleation might be too low even with

oversaturations preventing efficient degasification. Finally, assuming 

^ at the bulk solute concentration is constant might be a poor approximation. 

Understanding why nitrogen replaces oxygen in bubbles is also difficult.
The

in

is

bini

change occurs only after long melting times especially in glass melted 

industrial pot or tank furnace (Slavyanski, 1957; Mulfinger, 1976) and 

unlikely to occur in glasses melted in a small crucible. Long founding 

es might allow nitrogen to diffuse from the atmosphere and diffuse later

1Ilto bubbles when bubbles were dissolving (Mulfinger, 1972) . However,
iniCrease in the proportion of nitrogen in growing bubbles is very unlikely

I n

Of

ePt after very efficient degasification (especially losses of oxygen). 

Edition a dramatic change in solubility of oxygen might cause dissolution 

°xygen, decrease in size of the bubble, and increase in proportion of

t̂r°gen in the residual bubble.

In fact, Slavyanski (1957) reported some results which show that

the

*25o'

°gen rich bubbles are more likely to occur in glass samples collected from 

furnace during the cooling to working temperatures, especially below 

c * However, such changes also occurred in melts held at constant

^Perature (about 1400°C) throughout refining. During that decrease in
5Pper
in the

ature the equilibrium for arsenic is shifted towards large proportions 

pentavalent state (Baak, 1959), which might cause a significant
ihctfseuse in solubility of oxygen. Nemec (1974) also showed that bubbles in a

hec
c°ntaining 2% As^O^ and 1% Na2° suPPli-e(h as nitrate in the batch

ased in size as the temperature dropped from 1400 to 1150 C, whilst a
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Slmilar drop in temperature caused l i t t l e  or no decrease in size  of bubbles in 

a melt without refin in g agents.

The differences in so lu b ility  of oxygen and nitrogen in glass melts at  

temperatures below about 1300°C might explain why bubbles with small 

Proportions of nitrogen become rich in th is sp ecies. Figures 10.4 and 10.5  

tPlustrate that type of behaviour. The s o lu b ilit ie s  were chosen in the 

tanges suggested in Chapters I and II. The bulk concentration of nitrogen

^Pecies 2) is assumed to be 80% of its solubility (F = 0.8 a ). The
°2

C0lnPOSitiOn of the bubbles is very dependent on the bulk concentration of 

°*ygen (fq is the dimensionless equivalent variable). This suggests a 

Str°ng relation to degasification. Increase in the proportions of species 2 

4-3 enhanced if the equilibrium for species 1 is given by Sievert's law, 

lnstead of Henry's law. In the case of Sievert's law the interfacial 

Oricentration is expressed by

F  (R)

&s shown in appendix 7 . Note that Sievert’s law is suggested by equation

but this equation is wrong in what concerns the effect of the basicity
Of ... melt. Sievert's law does hold for dissolution of water.

Mulfinger (1976) found bubbles rich in nitrogen and CC>2 in glass samples
c°ll-‘-Scted from the hottest zone of a tank furnace, which is in apparent 

Ofltt:adiction to the previously formulated hypothesis. In this case 

Solution of oxygen should be rapid during the time required to collect the 

Ŝ Ples and cool them to room temperatures. This is not unrealistic if 

J-Cient decrease in concentration of oxygen is achieved at those high 

cing temperatures (close to 1600 C). In case (e) shown in figure 10.5 

mole fraction of the most soluble gas decreases to 0.5 at Z = 0.029, so



Table 10.1 : Relevant parameters for the examples shown in figs. lO. 
amd 10.5.

a)

i 1 2

fi 1 1
CXj 8 0.001

Foi 4~ 0 .0 0 0 8
g (0 ) 0„99 0.01

b)

4- fbi

a 7.5
b 7
c 6
d U
G 2

Pig. 10.4 : D issolution of stationary bubbles containing two gases 
of very d iffe re n t s o lu b i li t ie s . The relevant dimensionless 
parameters are given in table 1 0 .1 . Henry's law is  assumed 
for both sp ecies.



0.0 0.2 0.4 {l 0 .6 0 .8  1.0

Fig. 10.5 : Dissolution of stationary bubbles containing two gases of 
very different solubilities. The relevant parameters are given 
in table 10.1. The Henry's law is assumed for species 2 
(F^CR) = ~  ̂ kut s -̂evert's law :*-s assumed to describe the
equilibrium at the^interface for species 1 (F (R) = Ot^/g^-Fq ) . 
The full lines represent the radius of the bubble and the dashed 
lines the mole fraction of species 1.

L
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if the initial bubble size is aQ = 1 mm and the diffusivity =
I n ' 6 2 /cm /sec, the time equivalent to Z = 0.029 is 290 sec. In the case of 

a rising bubble the time scale may be much shorter than in the case of a 

stationary bubble (Greene and Zee, 1965) and 1 min could be enough to 

Promote that decrease in proportion of O^ in the bubble.

The study carried out by Mulfinger (1976) also suggests that the average 

st2e of bubble decreases when oxygen had been replaced by nitrogen or carbon
a •
°xide. However, increase in temperature causes decrease in viscosity and 

lncrease of the velocity of bubbles, which might have also contributed to 

6̂ctease in average size of bubbles collected from the hottest zone of the 

Ûrnace.

Much shorter melting times are used in small scale experiments and drop
ft,0tn melting temperatures to annealing temperatures is  usually rapid, which

^ h t explain why nitrogen is  rare and i t s  proportions are small in bubbles

■fysed in g lass samples obtained in th is way.

Assuming that nitrogen d iffu ses  from the atmosphere before d iffu sin g

bubbles suggests that the proportion of nitrogen in residual bubbles

9ht be greater in g lass samples co llected  from near the surface o f the melt 
than <

samples co llected  from the bulk m elt.

The thermodynamics o f arsenic d iffe r s  somewhat from that o f antimony.
in h

°th  cases lowering the temperature o f the melt favours formation of the 

Penta

SiJme
Valent form and thus an increase in O2 s o lu b ility . However, a t the 

temperature arsenic is  usually more oxidized than antimony. Therefore,

tbe case o f antimony the d egasification  might be more e f f ic ie n t  and the 

ctease in s o lu b ility  o f oxygen is  expected to occur at lower melting
in<
W

Peratures than for glasses containing arsenic. During cooling to working 

bperatures the dissolution of oxygen might start later when its diffusivity
has uiso decreased further and the proportion of oxygen in bubbles in glasses
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containing antimony might remain higher than in glass with arsenic. However, 

this interpretation must take into account the effective bulk concentration 

°f oxygen which depends on how efficient the degasification is. Figures 

to.4 and 10.5 have clearly shown that the mole fractions of oxygen in 

hubbies decrease with decreasing bulk concentration of that species.

Experimental study of the effects of a drop in temperature on the 

c°mposition of bubbles might be a convenient test for the hypotheses 

formulated here.

to. 4 Suggestions for further work

in

The state of understanding of refining shows that measurements of 

s°lubilities, diffusivities and bulk concentrations of gases dissolved 

9lass melts are essential. Understanding of these processes might be 

1 ̂proved by studying the changes of bulk concentrations of gases dissolved 

melts. Description of the phenomena requires measurement of solubilities

in
the

>ÛUst
^if fusivities and their changes with temperature; C O ^ , N2 anĉ  S°2 

he the most important gases. Nitrogen might be less important in spite
Of rts frequent occurrence in bubbles in finished glass samples because it 

low solubility and low diffusivity.

Different techniques are likely to be needed for efficient analysis of

otent gases. Vacuum extraction has often been used in the past but it 

°lves serious difficulties especially due to condensation of alkali 

‘Pounds in the coldest parts of the apparatus. An alternative technique 

°lves decomposition of powdered glass with HF and analysis of gases

Iffy

c0in

^ eteby released (Simhan, 1973). So far results obtained by this technique 

inconclusive and further investigation should be carried out.

Accurate mathematical analysis o f the behaviour o f fr e e ly -r is in g  bubbles

I
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ls also required, involving multicomponent systems (simultaneous diffusion of 

m°te than one gas). The effect of varying the concentration of gases dissolved 

■Ln the bulk melt must be investigated.

Observations of bubbles in glass melts make it possible to measure sizes, 

r̂ tes of growth and velocity of bubbles in glass melts. These observations 

should be extended for longer times, especially at low concentrations of 

bubbles (N). Measurements have usually shown highly scattered growth rates 

(Nemec, 1974) which shows that the assumption of uniform bulk concentrations 

Ini9ht not be completely justified. Analysis of bubble composition also show 

significant scattering but this seems to decrease with increasing time 

(Cable et al., 1969). Scatter of growth rates is also expected to decrease

the homogeneity of the melt improves. Scattering might be due to the 
tiv*esence of bubbles of different ages formed in rather different conditions.

Finally, adding fine sand during refining to previously batch-free melts

^ight give some insight into the role of bubble nucleation in the evolution 
Of .■'•etining and possibly on the role of degasification. It would be 

uteresting to solve the question of how far solid particles can promote the 

6terogeneous nucleation of bubbles in melts which had been freed from
bubbles.

the
Much w o rk ,  

refining of

both experimental and theoretical remains to be done before 

glass melts will be properly understood.

4
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APPENDIX 1 

Multistep formulas

Multistep integration is frequently used to integrate ordinary differential

Stations and is discussed in textbooks (Burden et al., 1981).

liable mesh methods are discussed by Van Wyk (1968). If f(Z,y) = ,az
dependent variable y is solved on integrating the following interpolation 

£°lynomial, P(Z).

y£ = y£-l + P(Z) dz
J£-l

CLA)

^ere p(Z) is the Lagrange interpolation polynomial,

P(Z) = p . f.n £-n • n-1 £-n+l

with

£

(Z ~ ZK) 1 i=0,1,2,3,4,.. . > n
..... (Z£-i- V i
K=j=£-i

(2a )

6 ^  ; (K = £-n, £-n+l, £) points must be distinct and the derivatives
e _
K " f(2 , y ) must be known, so that there is a unique polynomial, P(Z).

In order to derive a four-step formula (n=4) the p^ terms must be 

ticluded in equation (1A) and the handling of that polynomial is simplified 

r the following transformation of independent variable

Ç = (Z£-1

619 SZ = Z£ - Z£-l

- z )/6  z
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&lso discrete (i=0,1,2,3,4) are defined as follows

h  -  « V i - z. .)/<Sz

where £ = o, and C =-l.

After expanding P(£), rearranging, and integrating it one obtains the 

implicit formula

y£ y£ - l  + 0Z P̂o ' f £ + Pl ‘ f £-1 + P2*f£-2 + P3*f£-3 + P4*f£-4^ * (3A)

If the step size is constant £ = 1, = 2, and = 3, the coefficients
£>i are easily obtained and equation ( 3A ) reduces to

= 6z
= **-1 + 72Ô [351ft + 646fi-l - 264fi-2 + 106f£-3 - 19f£-4l l4J'>

tahich is the Adams-Moulton four-step formula.
Otherwise

[1/20 + (Ç2 + C3)/12 + C2 Ç3/6]

P4= C4 (ç4 -ç3) <£„ -C0> + D’2 4

[ 1 / 2 0  + (Ç2 + C4 ) / 1 2  + Ç2 Ç4/ 6 ]  

P3 '  43 <e3 -Ç.2) <54 - «3 >  <Ç3 + 11

[1/20 + </3 + ; 4 ) /12 + Ç3 C4/6 ]

V  ç2 (;3 - ç2m ;4 -;2m ç 2 + 1)

1 1/20 + (Ç + Ç + C4)/12 .
p = — + --------- -— — — -----  + — 1
1 2 S2 Ç3 Ç4 6

1 1 1
Ç2 Ç3 Ç4

P = i _ P - p - p - Po 1 2 3 4

If f^ is not known then the interpolation polynomial must become
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P ( Z )  =  p n ' f £ - n  +  V i ’ f £ - „ + l  +  ” • +  p 2 ' f £ - 2  +  p l ‘ f £ - l (5A)

where

P i  =

£-1n
K = £-n 
K f £-i

Z - ZK
Zn . - Z £-1 K-1

i  =  1 , 2 , 3 , 4

In these conditions the solution of equation (1A) leads to

Y£-l + 6z[pi ’f£-1 + P2 "f£-2 + P3 ‘ f£-3 + P4 *f£-4^ (6A)

2(2 + 3Ç2)(Ç3 + Ç2) + 3(1 - 2Ç2 ) 

12^4(Ç4 - Ç2)(Ç3 " Ç4>

2 + 3Ç2 - 6Ç4 (Ç4 - W

P2 = - y

6Ç3(i=3 Ç2)

—  + T . p + r . p 2 ^4 4 ^3 3

P. = 1 - P -P. - P.'1 2 3 4

I f  t h e  s t e p  s i z e  i s  c o n s t a n t  Ç =  1 ,  =  2 a n d  =  3 a n d  e q u a t i o n  (6A)

e3uces to the Adams-Bashforth four-step formula

6z
y £  =  y £ - l  + 2 4 [ 5 5 f £ - l  -  5 9 f £ - 2  +  3 7 f £ - 3  '  9 f £ - 4 ]

ihit
I f  £  < 4  t h e s e  f o u r - p o i n t  f o r m u l a s  m a y  n o t  b e  u s e d  s o  t h a t  i n  t h e s e  

i a l  c a s e s

V  - v  - v  - 0

V - 1

P = p = p = o  
4 *3  2

p, = P = 0.5 .1 0
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Runge-Kutta-Fehlberg method

Appendix 2

Error estimates are sometimes used to control the step size of Runge- 

*Utta techniques. A popular fourth-order Runge-Kutta-Fehlberg solution 

(Burden et al., 1981) uses a Runge-Kutta method with truncation errors of 

°rder five

y£+l = y£
6656 28561
12825 K3 + 56430 K4

9 2—  K + —50 5 55 6 (IB)

to estimate the most significant part of the truncation error of a Runge- 

^tta method of order four,

25 „ , 1408 „ , 2197 v 1 v
Y£+l Y£ + 216 K1 2565 K3 4104 K4 5 K5 (2B)

WW e  f = ¿y
dr , Z is the independent variable and

6z = Z£+l Z£

\  =  6 z . f ( Z £ , y£)

K2 = S z . f ( Z £ + 6z / 4, y £ + K /4)

K, = 6 z .f Z£ + 8 6Z' y£ + 32 K1 + 32 K2

K , = i z -£(zi  + i f  6 z ’ y i  +
1932 _ 7200 7296
2197 1 2197 2 2197 3

439 3680 845
K. = 6 z . f |zÄ + Sz, y £ + 216 K1 “ 8K2 + 513“  K3 " 4104 K4

= S Z .f f z ^  + Sz/2, y z  -  f y  ^  + 2K., -
3544 K 1859
2565 3 4104 4K . -

I! K
40 K5
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The most important part of the lo ca l truncation error of y i s  thenA/T X

£+1 y£+l "  y£ / Sz

and as e£+1 i s  of order 0 ( 6z4 ) ,  a constant K e x ists  such that

e£+l (6Z) ~ (6z) K ’

Let us replace the step size 6z by q6z where q >  0 and q i s  bounded above

2eto• so that

e£+1 (q.6z) = K'(q.<Sz)4 = q4 .K(6z)4

= q <*4+1 "  *4> /  6z

•’■f the loca l errors are bounded by emax

' e£+l {q- 6 Z ) l * 6max

or

q <
6z.< max

' y£+l '  y£l

c°nunon choice is  to use a safety  factor o f about 2 so that

r 6 z - emax ^

2ly£+l “ y£

next step size  w i l l  be Z^+2 -  Z^+  ̂ = q* <$Z .

^his method has clear advantages over a common Runge-Kutta technique when
% dom,Qin o f the function is  large and variable step size  is  needed. I t  also

esents economy of computing re la tiv e ly  to the use of arbitrary methods of
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order four and five used together to obtain the difference, Y^ + ̂ ~ Y£» which 

require ten evaluations of the derivative f per step.



227

The solution of the double integral in equation (4.7) can be divided 

into two steps; namely the solution of the integral

r w
g(w) = exp ̂  32 [1 + 2ex - (1 - x) 2]J dx (1C)

0

and then the solution of

Appendix 3

w
I1(w) = | f(w)dw , (2C)

whete O < w < 1, and

-4f(w) = (l - w) [g(D - g(w)] , (2C)

Sq that

1 = 6 3 "
1 - C v

a

C v ifd) (30

Equation (1C) was solved by using the fourth-order Runge-Kutta-Fehlberg

Chnique outlined in appendix 2 and the integration carried out until w = 1 
îth storage of the n discrete pairs w^; f(w^); (£=1; n). This set
Of

alues was then used to integration equation (20.
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Estimating analytical solutions of growth of n-component bubbles from

one-component solutions

Appendix 4

Given the dimensionless data a , Fq and f. ; i=l, n, and a set
i

°f m pairs BT; <f>(Bj) with E = 1 (Scriven, 1959) the multi-component

s°lution is obtained by minimizing the error

es (6) l (<J>. /4>(3. ) ) - i
i=i 1

(ID)

Where

B. = B/f. 'l
<{h = F,n - g.°i i ifeg (2D)

gi1, eg ( 3 . ) } i 1/ •••/ n

From equations (ID) and (2D)

g. = Fn / [a. - (J> (B. ) ] i , eg Di l l ( 3D)

= F0. 1 -
a.i

oh + <J> (Bi) J
(4D)

So *-hat eguation (ID) becomes

V 6 )

r n F0. a.
1 - a. + (p (B. )i i

(5D)

function (j) (B) (with £ = 1) was solved by Scriven (1959) for a
l

set of discrete values of B. Four-point polynomial interpolations 

Used to obtain the reguired (p (B.) predictions from a set of m discrete
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C
P a i r s  3 . ;  <t> (3 . ) :  (i=l.....m) . All t h e  v a l u e s  o f  3 . = 3 / f .  a r e  o b t a i n e d

J J i i
the independent variable 3 and the objective function £ (3) was 

°Ptimized by using sequential selection of 3 values according to the modified 

Fibonacci method (Beveridge and Schechter, 1970). The lower and upper limits 

3 were chosen as described in Chapter VI.
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Variable mesh size Runge-Kutta technique to solve growth from zero size 

with concentration dependent diffusivity (Chapter 7, Section 7.3)

Appendix 5

Equations (7.12) and (7.13) with initial conditions F($) = 0 and 

T(B) = 26 must be solved for s ^ 6# after inclusion of the functional form 

of D(F) .

A standard Runge-Kutta technique with constant mesh size is not

suitable for a large range of values of s. Concentration profiles are

Usually steep near the interface (s = 6) but concentration varies slowly 
to * ciTW1th distance for large s. The derivative —  is a function of T and 
a ds
D(p) so that truncation errors may be kept small by adding restrictions to 

changes in T and D(F) per computing step. It was shown that T drops
■C
r°m 26 at s = 6 to 0 at infinity. Therefore the increment 6s required to 

Advance from step £ to step £+1 is controlled by

<Uid

6s < 2 6 / dTn •[dsj £

6s < D(F)£ / n.T£
"dD
dF a

So

ere n is an estimate of the number of steps.

For small T the previous restrictions do not prevent large 

that an additional restriction is used

(6s)/s values

AU

6s < s/n .

three of these criteria are used to optimize the solutions.
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Inclusion of viscous effects in finite difference predictions 

of growth or dissolution (Chapter IX)

The effect of surface tension is dependent on the radius of the bubble 

ktt is independent of time derivatives of the radius. Therefore the finite 

difference solutions do not involve additional difficulties if T] = 0 and 

^ = 0, that is, if viscous and inertial effects are negligible. However,

'l { O the solution of equations (9.8) and (9.11) requires estimates of

Appendix 6

H  and
dZ

. Alternatively the method can be based on using an

e * P l i c i t - i m p l i c i t  m u l t i s t e p  s c h e m e  t o  c a l c u l a t e  t h e  d i m e n s i o n l e s s  c o n t e n t  

t h e  b u b b l e  G a m d  a d v a n c e  f r o m  t i m e  s t e p  £  t o  s t e p  ¿ + 1 .

Let R£+1 be the estimate of R obtained by an explicit multistep formula 

appendix 1). From the implicit multistep formula the following relation 

^  also be derived.

dR
dZ £+1 d0 + dl R£+l (IF)

*here R^+  ̂is the correct value of R at the new step £+1 and

\  = l/ ( P 0 -5z)

0 * ~ V  di - ■p i * * + p 'dR + P i-1 4 'dR
i(azj£ 2 dz £-1 3 H , . 2 4 dZ £-3 -

/ P,

-£+l - Z£

Station of equations (9.9) and (IF) with h — 0 leads to

£n  -

in

4tt
r L i + 2s -rL i + 4r,-ao-RL i + 4n-ai-Ri+i (2F)

dditiorv the relative changes in radius per time step are kept small and
*ls0

4
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R» +; = Rû r  <! + 6>

where 6 «  1. Therefore

R£+1
f „ )2 r '
(R£+lj 'R£+l " 2 R£+!_ (3F)

R£ + l ~ 2R£ + i  • r£+ i
'. I2
Rr£+1 (4F)

arid from equations (2F) , (3F), and (4F) R^+  ̂ can be estimated.

1)

2 )

3)

4)

5)

6)

?)

8)

9)

(st(

in

The overall scheme can be summarized as follows:

Calculate by explicit multistep formula,

use the time derivatives at previous time steps to obtain

equations (IF) and (2F),

combine equations (2F), (3F), and (4F) to obtain 

establish a relation between the concentration gradient at the 

interface and the interface solute concentration to include the 

local balance in the implicit finite difference scheme described 

in Chapter III,

calculate the concentration profile at step £+1,

Recalculate the concentration gradient at the interface and obtain

the corrected value of by implicit multistep formula,

Recalculate by combining equations (2F), (3F), and (4F),

Calculate dR
dZ £+1

from equation (IF),

s t a r t a new time step or stop.

Tbe relation between interface concentration and concentration gradient 

4) is required to avoid instabilities which would result from the

Cl^ ion 0f w
dZ in the calculations of F(R), (equation (9.8a)). From

lQn (9.8a) and taking into account the definitions of q and <J>

I
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f (r )£+i = 5 4» p * -  U  + q) <P (5F)

^ d  from equation (9 .9)

Gi.+i * T  p* • (6F)

Also from equation (9.10)

T-rL  p* = Gl+i = Gl + (6z»-Rt+i- |-5 57=1
£+1

fin a lly , combination of equations (5F ), (6F) and (7F) leads to

(7F)

9f

£=1
£+1

= co + ci F(R)
- *  £+1

whe

(8F)

dG
re and are obtained from the values o f q , 4>r G, R, and —  .

In order to obtain equation (3 .23) (at the in te r fa c e ) , the concentration

9tacäle nt can be approximated by

3F
"See æ=l

= (F2 - F ^  / (9F)

*h, te and F2 are the dimensionless concentrations at the two first radial 

Positions and <5x is the mesh size. As F1 = F(R) , from equations (8F)^sh

(9F)

( 10F)

Which

be

thç

U:he

-  F1,H+1 [1 + Cl (fa)1 + F2 .« + l  '  C0 <fa) ■

is  equivalent to equation (3 .2 3 ) . A ltern atively  a f ic t it io u s  point 

used (Crank and N icolson, 1947) to solve the d iffu sion  equation at 

interfa ce . This method has been described in Chapter VIII involving a 

E la t io n  sim ilar to equation (8F) . A fu lly  im p lic it formula was also

i
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Used to avoid in s t a b i l i t ie s .  The space derivatives (equations (8.29) and 

(8 .30)) are replaced by their values at step £+1 only, instead of the 

average used in Chapter V III (section  8 . 4 ) .  Therefore, from equations

(8.24) ,  ( 8 . 29) ,  ( 8 . 30) ,  (8.31) and (8F) one obtains

F2,l+1 - U  + a + q. («*).(!- <a*>].Flil+1

= ( fix) • (1 -  6x )*Cq -  ot.F1 £
(11F)

where

a = ^  (R2) (6x ) 2/ ( 6 z ) .2 av

^°te that inclusion of either equation (10F) or equation (11F) in the 

^■hite d ifference scheme described in Chapter I I I  leads to indistinguishable  

tesu lts . This can only be achieved i f  proper redistribu tion  of space mesh 

^°ints i s  used. Otherwise the f i r s t  space in terva l might become excessively  

5r9e causing equation (10F) to be le ss  accurate.

i
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In te rfa c ia l concentrations for multicomponent bubbles

Equation (3.50) describes the boundary conditions for multicomponent 

bubbles when Henry's law is  assumed. In more general conditions the 

lriterfa c ia l concentration Cf (a) i s  given by

Appendix 7

C.(a) = H .  p.^b ; i = l , . . . ,  n, i i r (1G)

^bich includes both p o sitiv e  and negative deviations from Henry's law.

Hi l s  a ch aracteristic  constant and p^ is  the p a rtia l pressure of gas i  

ln the bubble. In dimensionless terms equation (1G) becomes

F. (R) = ct.-g.^1 - F(l i 0.l
(2g )

Where

F0 . = C /c'sl

“ i = H  - • P ^ / C  0 1 i  s

is the to ta l gas pressure and C° the concentration of gas in the bubble. 

As the numerical solution  advances from time step £ to step £+1 F^(R) 

change by a r e la tiv e ly  small fraction  so that one might write

F. (R)i + F0_. =
-1 £+1 (Fi ' R , h  + F° i j (1 +  6)

from equation (2G)

(3G)

9i,£+1

[ l b

(R) £+1 + F 0

(R) o + Fo

i> / a i ]  

i >  /ai]

l/x±

l / x L

.(1 + &/x^)

~ ~ h o  +  h l
F. (R)l £+1

(4G)
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where

b = ----1 a .x.i i
( Fi<R) „ + F0. ) / °i

1 (1/Xi-l)

- -1 l/x± -
b = 0 . ( Fi R ! + F0. ) / ai - h F. (R) 1

Equation (4G) assumes the form of a linear relation between

ari(3 9. which is required to include the boundary conditions in1 f 36 » X
implicit finite difference scheme described in Chapter III.

F. (R) x
l+l
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Operators used in Chapter II

Appendix 8

Given a vector u the operator V.u in rectangular coordinates is 

9iven by

3u 3u 3u „  -*■  x  y z V.u = --- + +3m 3y • 3z

in spherical coordinates (Bird et al., 1960)

n 1 9 2 1 3v -u = — (r ur) + --- :
3u

2 3r r' ' r sin0 30 UQ̂  + r sin6 3<J)

I f the system is spherically symmetrical

n - 1 3 . 2  .V .u = —- tt—  (r u ) . 2 3r rr

'9. pi
Spherical coordinates. The ranges of the variables are 0 < r < 00 f

0 < 6 < T T ; 0 < 4 ) <  2TT.
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In isotropic media the diffusion flux j is usually written

1D = D grad C

Where

grad C = 3c
3z k

therefore

V . - L  =
3_
3a: D 3cl

'dx 3y
3c D 3C

3z

ln spherical coordinates

^ 0  = ^2 r
3
3r

( ^
2 3cr D 3—l 9rJ

D 2
sin^B c

1 9+ -.--a áa" (DC sin0) sino dO

If the system is spherically symmetrical

V. _1_ 3_ 
2 3r
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