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SUMMARY

The material transfer between an isolated stationary bubble and the
surrounding liquid has been formulated mathematically and methods were
developed to solve the relevant differential equations. Solutions were made
dimensionless to generalize their application.

Exact solutions have long been available to describe growth of one-
component spheres from zero size. These solutions were used to show that
the corresponding Ffinite difference solutions for growth from finite size
are accurate. Exact solutions were also derived for diffusion controlled
growth from zero size of one-component spheres with concentration dependent
diffusivity and for growth of multi-component bubbles. This type of
solution was also used to demonstrate the accuracy of the finite difference
solutions of corresponding problems for growth from finite size. These
finite difference methods were also used for dissolving bubbles where
analytical solutions are not possible.

Several approximate solutions are discussed and quasi steady-state
solutions were obtained for growth or dissolution with concentration
dependent diffusivity and inclusion of surface tension. For small
solubilities and concentrations, (low solubility parameters), the correct
diffusion controlled solutions always converge to the corresponding quasi
steady-state.

A large number of solutions was obtained to cover the significant
ranges of values of the relevant parameters for gases in glass melts.

These solutions include the study of limiting regimes for very low and very
large solubility parameters as well as the intermediate range.

Solutions for multicomponent stationary bubbles were used to discuss

some experimental observations of bubbles in glass melts.



The effect of surface kinetics on growth or dissolution of spheres was
investigated and solved to illustrate the transition between control by
diffusion and control by surface kinetics.

An extensive study of the effect of surface tension was carried out.

The roles of viscosity and inertia were considered and are usually negligible.



List of Symbols

i) Main variables

a

C

Co

radius of the sphere. Ga) denotes the initial value.)
molar concentration of solute.

value of C at the interface.

equilibrium concentration of species i at pressure P.

molar concentration of the sphere. (Cs® denotes a uniform and

utime invariant value.)

value of C in the bulk liquid medium.

concentration of solute in equilibrium with the content of the
sphere.

diffusivity. (Qa denotes the diffusivity at the interface.).
mole fraction of species 1 in a multicomponent bubble.
equilibrium value of g".

molar flux of species i1 into the sphere.

kinetic constant (Chapter VIII).

number of moles of species i1 in the sphere.

pressure. (P denotes the pressure in the bulk medium.)
pressure inside a gas bubble.

radial distance from the centre of the bubble.

time

velocity of the liquid.

partial molar volume of sol ate.

volume fraction of species i1 in solution.

angle measured from the point of incidence of liquid flowing
around a moving bubole.

viscosity of the fluid.



\ kinematic viscosity = y/p.
p fluid density.
0 surface tension.

ii) Dimensionless variables

3
A =g a, /(®V) (Chapter 1).

D dimenslcnless diffusivity = D/Dci'

Deq equivalent dimensionless diffusivity.
A
v average dimensionless diffusivity.

e dimensionless radial distance = r/ao.

f = C*/(Cro - C*) (Chapter VII1I1).
T ratio of diffusivities = Dp/Dj.
F dimensionless concentration = (C - Cm)/[C 01 - vCa)]-

except in Chapter VIl where F = (C - Ca)/[C °(1 - vCa)].-

Fa solubilit}j parameter = (Ca - C<b)/|;_Cs°(1 - vCa)].
FS = C*/CS° (Chapter VIII).
Gi = N{‘/(aos CS)-

h = 0 D2/(a02 P.)-

K r K" ao D-~ (CS°)n 1 (n denotes n-order surface Kkinetics)
P* — Pg/Pra Chapter IX) .

g = c*/(Cmo - C*) (chapter IX).

dimensionless radius = a/ao-

s = r/(2/Dt) = e//z

s = 0o/ (aO Pm)

X = r/a

4 dimensionless time = tD/aOa =t Da/aon in Chapter VII).

Z, or dimensionless time required for compLete dissolution

z (ZO is a reference value).



@

dimensionless time required to double tne size of a sphere
(ZZ is a reference value).
-_ o
= c&i /cS
growth constant R = 2 3 /2)
= 1-vC.r
s
dimensionless viscosity = pD/(a02 P(D)
solubility parameter = C, = g YIA - v Ca)(S: °1.
= F - a5 0y eq (Chapter VI) .
Subscripts
denotes species 1
denotes the value at the interface
denotes the value at infinite distance from the centre.



CONTENTS

Page
CHAPTER 1
Nel Introduction L
2«  Quantification of refining 4
1-3 Refining agents 5
1.3.1 Arsenic and antimony 3
1.3.2 Sulphates 3
1.3.3 Halides 8
1.3.4 Other chemical agents
Other factors which influence refining 9
~  Behaviour of individual bubbles 9
Composition of bubbles in glass 13
Gases dissolved in glass 14
1.7.1 Solubility of inert gases 12
1.7.2 Solubility of nitrogen 17
1.7.3 Solubility of carbon dioxide 18
1.7.4 Solubility of oxygen 19
1.7.5 Solubility of water
1.7.6 Solubility of sulphur oxides 20
1.7.7 Diffusivity of inert gases and nitrogen ;;
1.7.8 Diffusivity of water o3
1.7.9 Diffusivity of oxygen
1.7.10 Diffusivity of carbon dioxide 23
1.7.11 Diffusivity of sulphur oxides 23
Mathematical analysis of the behaviour of freely 24
rising bubbles
Applicability of solutions for rising bubbles 29

ChAPTER 11 - MATERIAL BALANCES

2- 1 Diffusj_on controlled material transport around 34
stationary spheres

N'2  Continuity with spherical symmetry 35
ne3 Particular cases 39
One-component spheres 39
Multicomponent bubbles 42
2.4 Typical parameters in glass melts 45
2.5 solutions for one-component spheres 46

2.6 solutions for multicomponent spheres 51



CHAPTER 111 - FINITE DIFFERENCE TECHNIQUES
3.1 Introduction
3.2 Immobi lization of the interface
3.3 Solution of concentration profiles
3.3.1 Finite difference equations
3.3.2 Non-pivoting elimination method
3.4 Solution of radius and composition of the sphere
3.5 Calculation of concentration gradients at the
interface
3.6 Variable interfacial concentrations
3.7 Starting conditions for the numerical scheme
3.7.1 Concentration profiles
3.7.2 Relation between concentration profiles and
content of the spheres
3.7.3 Starting time
3.7.4 Starting radius and composition ofthe sphere
3.8 Distribution of space mesh points
3.9 Amplitude of time intervals
3.10 Convergence of finite difference solutions
3.11 Comparison of the present method and previous

finite difference solutions

CHAPTER IV - GROWTH

4.1
4.2

4.3
4.4
4.5
4.6

4.7

4.8
4.9

4.10

Growth of one-component spheres

Analytical solutions for the growth of one-component
spheres from zero size

Concentration profiles and material conservation
Numerical solutions of growth from finite size
Concentration profiles

Comparison between analytical solutions and
approximate predictions of bubble growth

Comparison between approximate and numerical
solutions of the transient initial stage

The transient stage of growth from finite size

The role of spherical symmetry in the diffusion
controlled growth of spheres

Conclusions

Page

52

57

57
60

62
65

66
70

70
70

73
75
e
79
81

86
87

89
90
91
93

95

97
99

100



CHAPTER V - DISSOLUTION

5.1
5.2
5.3
5.4
55

5.6

5.7
5.8

Dissolution of one-component spheres
Numerical solutions

Concentration profiles

Role of spherical symmetry

Comparisons between approximate predictions and
numerical solutions

Limiting solutions for low and high solubility
parameters

Design of experiments

Discussion

CHAPTER VI - MULTICOMPONENT BUBBLES

6.1

6.2
6.3
6.4

6.5
6.6

6.7
6.8
6.9

6.10
6.11

Diffusion controlled behaviour of multicomponent
bubbles

Constant composition of multicomponent bubbles
Exact solutions for growth from zero size
Particular cases

6.4.1 Equal diffusivities
6.4.2 Limiting regime for low growth rates
6.4.3 Limiting regime for large growth rates

Analytical solutions

Comparison between numerical and analytical
solutions

Transient regimes
Transient stage of growth from finite size
Dissolution

6.9.1 Bubble containing gases with different
solubilities but the same diffusivities

6.9.2 Bubble containing gases with different
diffusivities but the same solubilities

6.9.3 Dissolution of bubbles containing gases
with equal permeabilities

6.9.4 Effect of impurities in the gas or

dissolved in the liquid

Changes from growth to dissolution

Evolution of size and composition of bubbles

towards equilibrium

6.9.7 Changes of composition indissolving bubbles

6.9.5
6.9.6

Unusual concentration profiles

Conclusions

Page

102
103
104
107
108

110

112
113

116

117
118
122

122
122
123

124
127

128
130
133
134

136
137
139

140
141
141
146
148



CHAPTER VII - CONCENTRATION DEPENDENT DIFFUSIVITY

7.1 Diffusioncontrolled behaviour of spheres with
concentration dependent diffusivity

7.2 Material balances for one-component spheres

7.3 Exact solutions for growth from zero size

7.4 Quasi steady-state approximations

7.5 Average diffusivity and its relation to
equivalent constant property solutions

7.6 Finite difference solutions for concentration
dependent diffusivity problems

7.7 Growth from zero size

7.8 Finitedifference solutions for finite initial
7.8.1 Growth
7.8.2 Transient regimeof growth from finite size
7.8.3 Dissolution

7.9 Conclusions

CHAPTER VII1 - SURFACE KINETICS

8.1
8.2
8.3

8.4

8.5

8.6

8.7

CHAPTER IX - EFFECTS OF SURFACE TENSION, VISCOSITY AND

9.1
9.2
9.3
9.4
9.5

Interfacial conditions
Quasi steady-state approximations

Growth or dissolution controlled by surface
kinetics

Numerical solutions
First order surface kinetics

8.5.1 Growth
8.5.2 Dissolution

Second order surface kinetics

8.6.1 Growth
8.6.2 Dissolution

Conclusions

Equation of motion
Rates of growth or dissolution
Solutions of material balances

Quasi steady-state approximations

Physical properties of glass melts and common

values of dimensionless parameters S, h, n

Page

150

151
152
154
156

157

159
161

161
163
164

166

168
170
172

173
176

176
177

178

178
179

179

181
182
185
186
187



9.6 Effects cf Surface tension on growth or dissolution

of bubbles
9.6.1 Dissolution
9.6.2 Effect of surface tension on concentration
profiles during dissolution
9.6.3 Growth
9.6.4 Sievert"s law
9.7 Effects of viscosity on growth or dissolution of
bubbles
9.8 Effects of inertia on growth or dissolution of
bubbles

9.9 Conclusions

CHAPTER X - DISCUSSION OF BEHAVIOUR OF BUBBLES IN GLASS

MELTS AND SUGGESTIONS FOR FURTHER WORK

10.1 Introduction

10.2 Studies of bubbles in glass melts

10.3 Changes of gas composition in bubbles during refining

10.4 Suggestions for further work

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

1
2
3
4
5
6
2
8

References

Page

189

189
191

192
197
200

203

204

206
208
209
219

221
224
227
228
230
231
235
237



CHAPTER 1

1.1 Introduction

Refining refers to the elimination of bubbles from glass melts.
Glass melts are very viscous even at the highest temperatures used so that
small bubbles rise to the surface only very slowly.

Glasses are usually melted from mixtures of raw materials which give off
very large volumes of gas during their initial reactions as carbonates,

sulphates and nitrates decompose in effect to oxides

Na2C03 + rSi02 — Na20.a;Si02 + CO2i -

Most of this gas escapes before the materials such as silica are completely
dissolved but removing the residual bubbles (refining) can often take much
longer than dissolving the materials. In some cases reaching a sufficiently
good standard of refining determines the total melting time, or the maximum
output from a continuous furnace.

Experience has shown that relatively small additions of certain compounds
(refining agents) to the batch can considerably accelerate the disappearance
of these bubbles. It is also clear that bubbles disappear faster than could
be accounted for only by rise to the surface.

The most obvious ways in which removal of bubbles could be assisted
would be either

1) diffusion of gas into them, making them grow and rise to the

surface faster,
or 2) diffusion of gas out of them into the melt so that they

dissolve and rise to the surface becomes unnecessary.



Other experiments have shown that the composition of gas found in these
bubbles changes with time during melting, especially when refining agents
are used.

Understanding of these phenomena is very limited so that commercial
practice and experimental studies have until now been largely empirical.
Growth or dissolution of bubbles must be largely determined by the
solubilities and diffusivities of gases in the glass melt as well as the
actual dissolved concentrations.

Whatever other factors may be involved in refining, improved understanding
of the nucleation, growth, and dissolution of multicomponent gas bubbles must
help to understand this complex process.

The basic understanding of refining requires precise mathematical
formulation of the chemical and physical mechanisms. Theilr interpretation
requires experimental data which are scarce and not always reliable.
Mathematical analysis may help to select the significant parameters and
contribute to minimize the amount of experimental data required to improve
the refining process.

During the earliest stages of melting the system undergoes complex
reactions which make the identification of equilibria very difficult and
lead to highly inhomogeneous media. Some electrochemical reactions involving
metallic objects and corrosion of refractories are occasional sources of
problems due to their effects on equilibria and their ability to provide
sites for heterogeneous bubble nucleation. The atmosphere can also influence
the refining behaviour.

Chemical agents are used to improve the refining of glasses. Adding
sulphate may assist melting and refining but the process is more difficult to

control than without sulphate. It is necessary to control the amount of



sulphate added and the amount of reducing agents, as well as fining conditions
and the atmosphere above the melt. Change of these conditions may cause
foaming and reboil. Excess reduction may cause colouration of glass. Other
disadvantages of using sulphates are the corrosion of refractories and
atmospheric pollution.

Arsenic and antimony are also efficient refining agents but are poisonous
and require careful handling.

Which additives are used and the optimum amounts are dependent on the
batch constituents, glass composition and melting conditions. Improvement of
refining relies mostly on experimental and empirical basis.

Arsenic and antimony are considered to be responsible for changes of
bubble composition from mostly CO2 to 02, and sulphur compounds, especially
sulphates, may cause a change from CO2 to S02 and 02. Nitrogen often seems
to become a major constituent of bubbles late in refining but there is no
apparent relation between nitrate additions and N2 in those bubbles.

Chemical equilibria involving the common refining agents, especially
arsenic, antimony, and sulphur compounds change dramatically at temperatures
somewhat lower than typical melting conditions. These thermodynamic
characteristics may explain the ability of refining agents to promote growth
or the dissolution of bubbles during slow cooling of glass melts.

So far even the apparently trivial analysis of the behaviour of spherical
bubbles is poor. This will be the scope of the present work. It is impossible
to present a clear fitting of the most significant experimental results because
the data are scarce and not entirely reliable. Instead we concentrated our
attention on the mathematical simulation of the main mechanisms covering both
growth and dissolution and a wide variety of significant parameters.

Freely rising bubbles are in practice far more important than stationary

However, growth or dissolution of freely-rising bubbles are considerably



more complex than the equivalent behaviour of stationary bubbles. A short
account of some approximate mathematical analysis is here discussed as well

as a criterion to analyse their applicability to experimental conditions.

1.2 Quantification of refining

Lyle (1945) measured the time required to produce bubble-free melts
after adding some batch to glass which had been previously melted and refined.
More commonly the changes of the number N of bubbles per unit volume of glass
have been used to represent the refining behaviour (Bastick, 1955; Cable,
1958a).

The refining of batch-free melts was found to follow nearly linear
relations between log N and time t in laboratory scale (bastick, 1955; Cable,
1958a) and in commercial scale pots (Dubrul, 1955; Cable and co-authors,
1968). The same dependence has been found with a variety of different
refining agents, namely, arsenic (Bastick, 1955; Cable, 1958b, 1960b),
antimony (Cable and Naqvi, 1975), sulphate (Bhuiyan and Cable, 1965) and
halides (Higham and Cable, 1973). All these systems suggest the reduction in
the apparent initial value NO (obtained by extrapolation of N to zero time),
and the change of the slope of the relation log N versus t. A linear
relation between log N and log t may describe better some experimental results
(Cable and co-authors, 1968, 1975). Even more common is the decrease in the
absolute numerical value of the slope of the relation log N versus t at low N.

Nemec (1977a) proposed the decomposition of the time required to produce
bubble-free glass samples into two terms: the time required to produce batch-
free melts and the time required to remove the residual bubbles by a
combination of growth and rise to the surface.

The size distribution of bubbles during refining has been investigated

by a few authors (Cable, 1958a). Linear relations between log N and t apply



to narrow ranges of bubble sizes. Size distributions vary with time and
refining agents (Cable and Naqvi, 1975) and with the composition of the glass
(Haroon, 1967).

Linear relations between the percentage of oxygen in bubbles and log t
were found by Cable and co-authors (1968, 1969).

Scatter of experimental measurements is often severe so that large

numbers of experiments are required to increase the degree of certainty.

1.3 Refining agents
1.3.1 Arsenic and antimony

Arsenic and antimony are usually efficient refining agents for lead
glasses and soda-lime-silica glasses. In the beginning of the XXth century
it was still believed that these effects were due to volatilization of arsenic
or antimony. Experimental evidence has shown that volatilization rarely is
severe (Allen and Zies, 1918).

Gehlhoff et al. (1930) reported results which suggested that as little as
0.02% As203 promoted the best refining behaviour of soda-lime-silica glasses.
Later information showed that about 0.25-0.5% AS203 are frequently the best
additions (Cable, 1960b, Cable et al., 1969). These authors confirmed that
too large additions can be harmful and that refining with arsenic can be
assisted by sodium nitrate and some oxidizing agents (sodium peroxide).
Nitrate alone can be deleterious (Potts, 1941) and has no significant effect
on bubble composition during refining. Arsenic can also interact with
sulphate (Zschimmer et al., 1926; Bhuiyan and Cable, 1965).

Melts with arsenic may require shorter times to become batch-free, than
melts without refining additions (Cable, 1961b). Changes of bubble composition

from CO2 to 02 ate also assisted by arsenic (Cable et al., 1969). Arsenic



may even cause an increase of average bubble size and changes of size
distributions of bubbles.

The effects of antimony are frequently qualitatively similar to those
of arsenic. Zschimmer and Ernuyi (1932) noticed a progressive improvement
of refining by increasing the antimony additions, with an optimum at about
0.5% Sb203. Cable and Nagvi (1975) confirmed optimum additions around 0.6%
Sb203. These authors also found that antimony can shorten the batch-free
time, and decrease the concentration of bubbles at that stage, and alkali
nitrates improve the effects of antimony.

However, it is clear that arsenic and antimony may have different
effects (Bastick, 1955; Reth and Van Velzen, 1973). Antimony is usually
more efficient at relatively low melting temperatures and arsenic may perform
better at relatively higher temperatures (@bove about 1400°C). Oxygen rich
bubbles can also appear earlier in glasses containing antimony than in glasses
with arsenic (Appen and Polyakova, 1938).

The thermodynamics of arsenic and antimony in glasses (Baak, 1959; Baak
and Hornyak 1966; Kuhl et al., 1938; Cameron, 1965) must influence the

refining behaviour. The equilibrium is commonly written

50 + M3+ — M5+ + 02- (1-D
™ ™ ™

where (M denotes the glass melt and M the polyvalent element (As or Sb).
The ratio Sb3+/Sb5+ in glasses is usually greater than As3+/Asb+ . If the
temperature is sufficiently high the equilibrium is shifted towards the left
(large As3+ or Sb3+ fractions). This change occurs at relatively higher
temperatures (@bove 1500°C) in the case of arsenic than in the case of

antimony (Kuhl et al., 1938). It is also known that As3+/Ass%* iIncreases in



reducing conditions (Baak, 1959) and decreases by adding nitrate to the batch,
(Cable et al., 1969) and with increasing basicity of the melt (Paul and

Lahira, 1963). From equation (1.1) one should expect the ratio As3+/As5+ to
increase with increasing basicity, which demonstrates that equation (€ .1) is

wrong about the effect of glass composition.

1.3.2 Sulphate

The improvement of refining by adding sulphate to the glass batch is well
known and is widely used in industry. Gehlhoff and co-authors (1930) observed
that the best effect was achieved by adding 0.5% Na20 as sulphate to soda-lime-
silica batches melted at 1400°C. Either too small or excessive additions
could impair the refining process and with 1.5% sulphate refining was improved
by adding carbon to assist decomposition of the sulphate.

Lyle (1956) found two ranges of soda-lime-silica compositions with good
and bad sulphase refining respectively. At 1450°C 0.3% sulphate improved

refining in the range of compositions

%Si02 > 2.2(%Na20) + 44.3 1.2

Bhuiyan and Cable (1965) confirmed these findings. They also found that
sodium peroxide assisted the process in the range of good refining and arsenic
improved the bad refining caused by sulphate alone.

Other alkali and earth-alkali sulphates and ammonium sulphate can assist
refining (Parkin and co-authors, 1931). Sulphates with relatively low melting
points are usually more efficient than sulphates with high melting points
(Guy, 1961; Gottardi et al., 1973). Some waste materials (slags) with large
sulphate and sulphide contents have also been successfully used to improve

the refining behaviour.



Manring and Hopkins (1958) suggested the use of oxidation-reduction
numbers to estimate the best sulphur additions to glass batches. The role or
sulphate during melting and refining was explained in terms of acting as <
surfactant agent below about 1260°C and by sulphate decomposition and
interfacial turbulence (surface tension driven flows) at higher temperatures

(Conroy et al., 1966).

1.3.3 Halides

Halides are used as refining agents in borosilicates, and there is some
evidence that they can assist common soda-lime-silica glasses (Gehlhoff et
al., 1930; Hirayama and Camp, 1969; Higham and Cable, 1973; Van Erk et
al., 1977).

Volatilization of halides tends to approach equilibrium concentrations
in glass melts (Callow, 1949, 1952; Higham and Cable 1973), and it is not
clear what role volatilization plays during refining. Halides can also effect
a decrease of viscosity and surface tension which might assist refining

(Gotz, 1974).

1.3.4 Other chemical agents

It was emphasized that nitrate assists the effects of arsenic and
antimony on refining but nitrate alone does not play any significant role.
Sodium peroxide has similar effects.

Ce02 can have some effect on the refining of lead glasses. Apak and
Cable (1977) investigated the effects of Ce02, Cr203, Mn02 and Fe203 on the

refining of soda-lime-silica glasses, but general conclusions cannot be

drawn.



1.4 Other factors which incluence refining

Most work on refining has been done in isothermal conditions but these
processes generally come faster as the temperature is raised (Bastick, 1955;
Cable, 1960b). The improvement of refining with increasing temperature is
usually greater than the corresponding decrease of viscosity (Lyle, 1945).
However, a rapid fall of temperature, soon after the melt becomes batch-free,
can be more efficient than refining at constant temperature (Zschimmer et
al., 1926; Conroy et al., 1963). These results refer to sulphate refined
glasses and there is no precise information about other refining agents.

Too fine or too coarse sands in soda-lime-silica batches can have
deleterious effects on refining (Cable, 1958a, 1958b). Glass composition as
well as batch composition can also affect the refining behaviour. The effect
of cullet was studied by Gehlhoff et al. (1930).

Sulphate refining is affected by oxidizing or reducing atmospheres
(Shaw and Jones, 1966; Conroy et al., 1963).

Most of the refining studies can only be carried out in laboratory scale.
It is believed that large scale melts can behave qualitatively like small
scale laboratory melts, but large melts require longer refining times
(Cable et al., 1968). However, quantitative comparisons are very difficult

to make.

1.5 Behaviour of individual bubbles

Direct observation of bubbles in glass melts is difficult and usually
involves conditions not typical of real melting. Most of these experiments
were designed to test diffusion mechanisms but their interpretation was
frequently poor due to insufficient data about concentration, solubilities

and diffusivities, as well as poor mathematical analysis or ill defined

experimental conditions.
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The most extensive study of this kind was carried out by Greene and
co-authors (1959a, 1959b, 1965, 1969, 1974). Glass samples contained iIn a
small cylinder with a bubble in the centre were rotated during the
experiment to keep the bubble relatively stationary. The temperatures used
did not exceed 1300°C because of experimental difficulties.

Greene and Gaffney (1959 ) recorded the dissolution of oxygen bubbles
in a commercial silicate glass. The radius of the bubble a was plotted
against the square root of time /t but the relation was not strictly true.

The initial stage was slower than the intermediate stage and a final
residual bubble remained undissolved for very long times.

Greene and Kitano (1959) compared the dissolution rates of oxygen bubbles
in four different compositions. In three of these compositions the inter-
mediate stage of dissolution was reasonably given by linear relations between
a and th with slopes in the range -0.1 to -0.01 mm/minh- In the fourth
composition the dissolution was better fitted by a linear relation between a
and t with slopes in the range -0.04,- 0.01 mm/hr. Dissolution rates were
enhanced as the temperature was raised.

Arsenic and nitrate affect the behaviour of oxygen bubbles in soda-lime-
silica melts (Greene and Lee, 1965). The dissolution was usually faster in
glasses which had been melted from batch in an electric furnace than in
glasses melted in a gas-fired furnace (table 1.1). This order was reversed
in glasses melted from batch with additions of arsenic and nitrate. In
glasses melted in an electric furnace with arsenic and nitrate the rate of
dissolution reaches a maximum at about 1255°C and decreases at higher
temperature.

In one experiment Greene and Lee stopped the dissolution by lowering the
temperature from 1160 to 850°C. After a stage at 850°C the temperature was

quickly raised to 1160°C and dissolution continued at about the same rate.



Table 1.1
Effects of melting conditions and refining additions on the
rates of dissolution of oxygen bubbles in a soda-lime-silica

melt (Greene and Lee, 1965).

furnace electric gas-fired
temperature additions - =" (mm/mink)

O

1065 None - 0.0029
1080 0.0047 -
1165 0.013 0.0094
1280 0.044 0.027
1080 arsenic 0.047 0.053
1165 - 0.089
1180 0.107 -
1265 - 0 .262
1280 0. 300 0. 273
1065 arsenic 0.044 -
1080 + - 0.052
1165 nitrate 0.121 0.141
1255 0.255 -
1265 - 0. 318

1280 0.240 -



11.

It was also shown that dissolution rates are greatly enhanced by allowing
the free rise of the bubble, which demonstrates that diffusion, not reaction
controlled the dissolution. Finally it was suggested that the slopes of the
relations _a versus /t can be nearly independent of the initial radius.

The dissolution of bubbles containing SO2 or SO02 + 02 mixtures in soda-
lime-silica melts can be also enhanced by adding arsenic and nitrate to the
glass batch (Greene and Platts, 1969). The dissolution rate of SO2 bubbles
decreased slightly when sulphate was added to the glass batch.

Cable and Haroon (1970) blew CO2 bubbles in a soda-lime-silica
composition at 1200°C and measured the changes of bubble radius and composition
in samples cooled after 3 and 18 minutes treatments. Dissolution rates of CO2
and changes of bubble composition from CO2 to 02 were assisted by adding
0.1% arsenic to the glass batch. Similar procedure was used by Mulfinger
(1972 ) in an alkali-barium silicate melt refined with arsenic and antimony.
02 bubbles dissolved rapidly leaving residues of N2 and CO2. The volume
fraction of CO2 in these bubbles increased rapidly, peaked and dropped again
while %N2 increased at first rapidly and then slowly. Counter-diffusion
of N2 and CO2 was evident as oxygen was replaced. In N2 bubbles nitrogen
remained the major component, while in CO2 bubbles the %N2 increased steadily
as CO02 dissolved.

The method of blowing gas was also used by Greene and Davies (1974) to
form bubbles containing N2 ,02 or water vapour in molten boric oxide. These
authors used the rotation of the sample to keep the bubbles effectively
stationary. Below 800°C N2 bubbles dissolved but at higher temperatures these
bubbles grew steadily. The volume of steam bubbles decreased rapidly by more
than 50%, and then the residual bubbles dissolved slowly (below 800°C) or
even grew again (above 800°C). These results suggest the counterdiffusion of

other gases (because a decrease in solubility made the melt supersaturated
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above 800°C) while the highly soluble water vapour dissolves rapidly. The
dissolution of oxygen bubbles in molten B203 was more complex than in
silicate melts.

The rapid initial dissolution of water vapour bubbles in silicate glass
was also demonstrated by Nemec (1969). Dissolution almost stopped when the
bubble size decreased to about half the initial size.

The effects of melting schedule on subsequent behaviour of bubbles was
demonstrated by Brown and Doremus (1976) . Dissolution rates were greater in
molten B203 previously equilibrated in air at relatively higher temperatures
(1000°C) than in melts which had been held at 550°C. These authors used a
simplified form of the quasi-stationary approximate solution of diffusion
controlled behaviour of one-component spheres while dealing with bubbles
containing at least two gases (02 and N2). However, in spite of this doubtful
mathematical analysis, these experiments showed that the dissolution times of
bubbles containing initially 02, N2, or air were nearly proportional to the
square initial radius.

The growth of freely-rising bubbles seems to follow linear relations
between the radius of the bubble and time (Solinov and Pankova, 1965; Nemec,
1974, 1977a, 1977b). CGrowth rates were greatly enhanced by adding arsenic
and nitrate or sulphate to the batch. Nemec (1974) showed that the proportion
of 02 in bubbles was enhanced as the additions of arsenic to the batch were
increased up to 2%, and in glass melts with arsenic the bubbles started
redissolving as the temperature was lowered from 1400°C to 1150°C (Nemec,
1974),

The changes of dissolution rates or changes from growth to dissolution
which occur with decreasing temperatures demonstrate the misleading results
that may be obtained by studying bubble behaviour at temperatures lower than

normal melting conditions. Actual studies of dissolution cannot be
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extrapolated to higher temperatures because the solubility of some gases
involved in may change considerably with temperature. Changes of diffusivity
contribute only to changes in rate of dissolution or growth but cannot
reverse the behaviour.

Bubble nucleation and its relation with efficient refining are not
Precisely understood. Solinov and Pankova (1965) found that bubbles nucleate
°n solid surfaces especially sand grains. For this reason nucleation rates
mu°t decrease sharply when the melt becomes batch-free. Solinov and Pankova
Qlo° su9gested that the size of bubbles leaving the nucleation sites and the

WGtting angle decreased on adding refining agents.

AN Composition of bubbles in glass

Slavyanski (1957) published a review of early experimental analysis of
bubble composition, by microchemical methods. Carbon dioxide, oxygen,
nitrogen and sulphur dioxide were the most important gases.
Decomposition of carbonates gives rise to large volumes of CO2. This
Initial step is rapid and later oxygen might replace CO2 in bubbles in glasses
Ith arsenic or antimony. This change occurs gradually and the average
Percentages of oxygen in bubbles can be high in melts not yet free from
bfh particles (Cable et al., 1968). After long times and in the finished
9 asses oxygen may have been replaced by nitrogen (Slavyanski, 1957). Too
de additions of arsenic or antimony may hinder the change C02-*02 in bubbles
Ilass (Cable et al., 1969; Cable and Naqvi, 1975). Cable and Haroon
970) ~ave shown that change C02+02 can also occur at relatively low
Iting temperatures (1200°C) in dissolving bubbles, but Greene and Lee
65) verified that aresenic usually enhances the dissolution rates of

0O>-ygen bubbles below 1300°C. Ce02, Fe203 and Mn02 can also assist the change
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from CO2 to 02 (Apak and Cable, 1977). Slavyanski (1957) reported some
measurements of bubble composition which suggested a change CO2 N2 in
glasses containing arsenic and melted below 1200°C. There is no apparent
delation between nitrogen in bubbles and the addition of nitrate to the
batch (Cable et al. , 1969).

S02 may be the common main component of bubbles in glass refined by
sulphate. The change CO2 S02 occurs relatively early and the change
° 2 - N2 is unlikely to occur in those glasses.

The water content in bubbles was usually not measured and indirect

estimates suggest up to about 15% vol in the gas (Cable et al., 1969, 1975).

Gases dissolved in glass melts

Permeation techniques have been used to measure the permeability P of

gases in glass

here S is the solubility and D the diffusivity of the gas. Obviously these
measurements were usually performed below the softening points and cannot be
Llh to analyse the refining process (Scholze, 1968) . These results show
bat the solubility increases with decreasing radius of the diffusing
Particle but only a very small proportion of the possible structural holes
bhe glass are occupied by dissolved gas.

bhlig (1937) derived the following relation

In K = - 4iTa20/RT 1.3

“@ Henotes die Ostwald coefficient, that is the ratio between the
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concentration of gas in the liquid and the concentration in the gas phase,

a is the radius of the particle (atom or molecule), O the surface tension of

the glass, R the Boltzmann constant, and T the absolute temperature.

uhlig®"s equation has not been verified for gases in glass and it only

suggests the qualitative dependence of the solubility on the temperature.
Relatively few measurements of solubilities and concentrations of

gases in glass have been reported and data are not always reliable.

Measurements at very high pressures may be easier to monitor but their

extrapolation to 1 atmosphere is not justified because the Henry®s law has

a limited range of applicability (Faile and Roy, 1966; Weyl, 1931).

1.7.1 Solubility of inert gases

In spite of having little practical interest the solubility of inert
gases has possibly been the most accurately measured. Mulfinger and Scholze
(1962a) measured the solubility of helium in alkali-silicates and soda-lime-
silica melts. Their results were in the range 0.05-0.16 cm STP/mol glass
which are equivalent to Ostwald coefficient Ko of about 0.02. KO increased
slightly with increasing temperature. The solubility of those gases
decreases with increasing radius of the dissolved atom (Mulfinger et al.,
1972) and with increasing alkali content (Mulfinger and Scholze, 1962a).

The solubility of inert gases in alkali silicates also increases in the order
Li-Na-K, which corresponds to increasing size of the alkali ions. Thus the
alkali ions might be responsible for the expansion of the structure of the

glass creating new cavities.
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1.7.2 Solubility of nitrogen

Mulfinger and Meyer (1963) found that nitrogen can dissolve both
physically and chemically in glass melts. Reducing conditions enhance the
chemical dissolution (Mulfinger, 1966a). Mulfinger and Franz ((1965) found
that nitrogen can be present in glasses as nitride and as =NH, and/or

-NH2 groups, which suggests the following mechanisms of dissolution

12) — Si OH + NH3 t — Si - NH2 + H20

Ib) — Si -NH2 +HO - Si — Z - Si -N-Si - +H20

Ic) - Si -N-Si — +HO-Si - Z- Si -N-Si - +H2

11 I S

2 - Si -0-Si — +NH3L - Si - NH2 + HO - Si — .
| |

This interpretation agrees with the finding that by bubbling N2 through
a soda-lime-silica melt the resulting equilibrium concentration will be low
(about 4.2 x 10-+ cm3 STP/cm3 glass at 1400°C) whilst after saturation with
ammonia the equilibrium concentration can be as much as about 3.3 x 104 times
greater (Mulfinger, 1966a). That value for the saturation with N2 corresponds
to a Ostwald coefficient of about 0.0024.

The solubility of nitrogen in oxidized alkali silicates and soda-lime-
silica melts increases slightly with increasing temperature or decreasing
basicity (Mulfinger and co-authors, 1972 ). Similarly the solubility of

nitrogen in borate melts iIncreased with decreasing alkali content (Ferrandis
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et al., 1972) but decreased in the order Li-Na-K, while the solubility of
nitrogen in borate melts was found in the range 0.18-0.27 g N2/1m0l B203,

that is much higher than in the silicate with equivalent alkali content.

1.7.3 Solubility of carbon dioxide

Weyl (1931) and Eitel and Weyl (1932) investigated the equilibrium CO2
content in silicate melts under very high CO2 pressures. These results did
not follow a linear relation between equilibrium CO2 content in the glass and
the CO2 pressure (Henry"s law). The CO2 content of the glasses increased with
increasing basicity and in the order Li-Na-K.

Pearce (1964, 1965) and Strnad (1971) confirmed the effect of basicity
of the melt. Pearce"s results suggested linear relations between the
solubility of CO2 and the reciprocate of the absolute temperature. His
interpretation in terms of ideal behaviour is questionable. Strnad analyzed
the soda content of the samples to check volatilization losses and
demonstrated that the equilibrium concentration of dissolved CO2 was
proportional to the partial pressure of CO2 in the gas.

Kroger and Goldman (1962) melted soda-lime-silica glasses (using the 14C
isotope to measure the concentration of dissolved C02). They found results
in the range 4 x 10-5 to 8 x 10~-5 wt.% CO2, which correspond to KO in the
range 0.0025-0.006. Kroger and Lummerzheim (1965) used the same technique
and in a melt with composition about 74 Si02-15 Na20-11 Ca0 and found
solubilities which are equivalent to Ostwald coefficients 1.38, 0.040, 0.0083

and 0.0085 at 900, 1200, 1300 and 1500°C respectively.
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1.7.4 Solubility of oxygen

In spite of its importance the solubility of oxygen in glass melts has
received little attention. It is frequently assumed that oxygen participates

in reactions of the kind

a»

Sb3+ + j 02 t Sh5+ + 02" (1.5)
Q) Q)

Other redox pairs may also affect the solubility of oxygen (Douglas et al.,
1965) .

Thermodynamic data suggest that below 1200°C the pentavalent arsenic or
antimony are dominant in glass melts, but at temperatures higher than about
1290°C the equilibrium is shifted and Sb5+/Sb3+ < 1 (Baak and Hornyak, 1966).
As5+/As3+ < 1 may occur, but usually above 1500°C (Baak, 1959; Kuhl et al.,
1938). The fractions of As3+ or Sb3+ are also nearly unity below 500°C
(Kuhl et al., 1938). The exact values of these ratios must depend on glass
composition as well as temperature.

Dalton (1933) found that the amount of oxygen extracted from a soda-
lime-silica composition which had been refined with 0.5% As203 was about
0.47 N cm3 02/g glass whereas about 0.56 N cm3 02/g glass could be released
by complete conversion of pentavalent to trivalent arsenic. The last quantity
represents Ostwald coefficients of about 7 and 8 at 1200°C and 1400°C
respectively.

Experiments on the dissolution of oxygen bubbles (Greene and co-authors,
1959) cannot be properly analysed (Doremus, 1960) because none of the values

of concentrations, solubility and diffusivity were known.
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1.7.5 Solubility of water

Vacuum extraction (Tomlinson, 1956; Russell, 1957, 1958) and infra-red
spectroscopy (Scholze, 1959, 1960) were used to determine the water content
in glasses. Franz and Scholze (1963) found that the equilibrium water
content increases with increasing basicity in silicates which suggests the

following mechanism

02~ + HOO t 20H~
melt melt

In the range of temperatures 1250-1500°C the Ostwald coefficients of water
vapour in soda-lime-silica melts have values of about 20 (Scholze, 1962).

It is believed that water is incorporated as OH~ groups, either free, or
hydrogen bonded, with absorption bands at about 2.8 ym and 3.5 ym respectively.
This interpretation was confirmed by linear relations between the equilibrium
water content and the square root of the partial pressure of water vapour
in the atmosphere (Scholze, 1962; Franz, 1965, 1966). Thus the Henry"s
law does not apply to glass melt-water vapour systems.

The solubility of water in alkali borate melts is usually higher than in
silicates with equivalent alkali content. |In highly acidic borate melts the
solubility of water decreases with increasing alkali content (Franz, 1966)
but the solubility is minimum at about 25 mol% K20 in the system K20-B203 at
900°C. These Tfindings suggested the existence of two different mechanisms of
water dissolution in highly acidic and highly basic melts respectively.

The solubility of water increases with increasing temperature in silicate

melts (Scholze, 1962) but seems to decrease in borate melts (Franz, 1965).
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1.7.6 Solubility of sulphur oxides

A comprehensive study of sulphur in the systems Ca0O-Al1203~Si02 and
Mgo-Si02 was reported by Fincham and Richardson (1954). These authors found
that the solubility of sulphur is strongly dependent on the partial pressure
of oxygen and has a minimum at about POZ = 10-5 atm. At high values of P02
the solubility decreases with iIncreasing temperatures; at very low pressures
the solubility rises with iIncreasing temperatures. In oxidizing conditions

Fincham and Richardson proposed the following mechanism

-m o a.6)
- S042
(m)
and in reducing conditions
7 82 + 02~ t7 02+ S2° @.n
@ ~ Q)

In practice the activity coefficients of S04 , S and O in glass
are not known and the solubility of sulphate or sulphide cannot be estimated
from the partial pressures of S02 and 02 . Holmquist (1966) produced evidence
that the solubility of SO: in sodium silicates depends on the product

p802'P02_1 in agreement with equation (1.7). He also showed that the

solubility of SOs: increases with the reciprocal of the temperature and with
increasing Na20 content.
Other authors encountered difficulties when trying to bring the melts

to equilibrium with excess Na20i+ (Kordes et al. , 1951; Fisher, 1976) , or

by bubbling S02-02 gas mixtures through the melts (Papadopoulos, 1973).
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1.7.7 Diffusivity of inert gases and nitrogen

Frischat and Oel (967) found that the diffusivity of inert gases

increases very rapidly with the radius of the gas; that is

D 1:50:1000

By2 Bre Pre

Mulfinger and Scholze (1962b) measured the diffusivity of helium
and found it to be in the range 10-4 - 4 x 10-2 cm2/sec at temperatures
in the range 1200-1500°C. These results show that diffusion is an activated

process where the diffusivity is given by

D = Dg exp( E/RT) @-8)

E is the activation energy, R the constant of perfect gas, T the absolute
temperature () and Do the pre-exponential factor. E usually increases
with increasing basicity in alkali silicates.

Frischat and Oel (1965) reported measurements of He in soda-lime-

silica melts which were consistent with

D = 0.0109 exp[- 14.37 Kcal mol-VRT] cm" sec-"= .9

From the dissolution of neon bubbles in similar melts, Frischat and

Oel (1967b) obtained a relation

D = 4.94 x 10-4 exp[- 13.7 Kcal mol ~/RTj cm2 sec-1 (1.10)

which suggests that the activation energies are similar in the case of He

and Ne.

Measurements of diffusivity of physically dissolved nitrogen in
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16 Na20-10 Ca0-74 SiOj in the range 1000-1400°C (Meyer et al., 1977) were

described by

DphyS = 0.43 exp [- 38 Kcal reol _1/RT] cm2 sec-"' (.11

and in a similar composition Frischat et al., (978) found

Dchem = 200 exp[- 58 Kcal mol-1/RT] cm2 sec-1 1.12)

Their results indicate that diffusivities are equal (about 3.7 x 10-6
cm2 s-1) at about 1365UC. Physically dissolved N2 would have the lower
diffusivity at higher temperatures. Nitrogen has also a higher temperature

coefficient than several other gases, including inert gases and water.

1.7.8 Diffusivity of water

Scholze and Mulfinger (1959) carried out a large number of measurements
of diffusivity of water in alkali silicates and other melts. The activation
energy was found to increase with increasing basicity but most values of E
were close to 20 Kcal mol™1. At 13000C the diffusivity of water was always
in the range 0.65 x 10-6 - 8.4 x 10~G cm2/sec.

Garbe (1961) estimated diffusivities of water in sodium silicates at
900°C to be in the range 10"7 - 10"5 cm2/sec.

Near the transformation range of a soda-lime-silica composition (522-
598°C) Cockram et al., (1969) used a tritium tracer technique and obtained

the following relation

D =4.4 x 10 6 exp [ 17200/T] cm24sec (1.13)

Extrapolation to higher temperatures is dubious.
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Nemec (1969) used dissolution experiments to estimate the diffusivity
of water in soda-lime-silica melts in the range 930-1180°C, but the

accuracy of his mathematical analysis is doubtful.

1-7.9 Diffusivity of oxygen

Measurements of self-diffusion of oxygen in glass melts (Terai and
Osihi, 1977) may not be useful to analyse the dissolution or growth of
hubbies containing oxygen, because it is not clear which species controls
the diffusion process. Alternatively Doremus (1960) analysed experimental
dissolution of oxygen bubbles to estimate both the diffusivity and a
solubility coefficient. For a soda-lime-silica composition at temperatures
In Om}%?ge 1100-1300°C the results were given by D = 42 exp(- 26.7 X
10 /r)Ywhere T is the absolute temperature (Kelvin). However, the
Mathematical Model used to analyse those experimental measurements may

involve significant errors and equally good fitting can be obtained with

different combinations of diffusivity and solubility parameter.

Ne7«10 Diffusivity of carbon dioxide

Despite being one of the most important gases involved in the refining
°f glass the diffusivity of carbon dioxide in glass melts has rarely been
studied and the data may not be entirely reliable. Kroger and Goldmann
(1962) estimated values in the range 10~6 - 10-4 cm2 sec-1 1in silicates at

HOO and 1300°C but their results were based on a very crude analysis.

1-7.11 Diffusivity of sulphur oxides

lhere are no reliable data in what concerns the diffusivity of products
disoolution of sulphur oxides iIn glass melts. Absorption or desorption

usually rapid partly due to relatively high solubility of sulphur and
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possibly due to flow induced by surface tension gradients (Bruckner, 1961,
1962). Mahisux (1956, 1957) showed that SOa absorbed from the atmosphere
may concentrate in a meniscus. However, Greene and Platts (1969) reported

dissolution data which suggest diffusion controlled processes.

1.8 Mathematical analysis of the behaviour of freely rising bubbles

Some experimental studies may suggest that diffusion controlled
phenomena control refining but so far its analysis has been hindered by
very inadequate knowledge of the relevant physical parameters and by poor
mathematical analysis, especially if two or more gases are involved.
Direct observation (Solinov and Pankova, 1965; Nemec, 1974) shows that
bubbles in glass melts can usually be considered spherical and it is
reasonable to assume that their motion is chiefly due to buoyancy.
Spherical shape is also expected on theoretical grounds by taking into
account the high surface tension of the melt and the small size of most
bubbles (@ <2 mm) .

Free rise of bubbles in glass melts enhances concentration gradients
around them by bringing fresh liquid close to the gas-liquid interface.
The mathematical analysis of this problem is complex and exact solutions
have not been found. Nevertheless such a model is needed for bubbles
present in glass melts during refining.

The actual system considered here is an infinite volume of Newtonian
liquid surrounding a single spherical bubble. Further simplifications are

also assumed:

the properties of the liquid are uniform and constant,
there are no reactions in the liquid and transport is

exclusively due to diffusion and convection,
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the system is axially symmetric about the vertical axis
(direction of motion),

the bubble contains a single gas with constant concentration
cs®

the interfacial equilibrium is instantaneously achieved and
the concentrations of gas in solution at the interface (Ca)
and at infinite distance from the interface (0») are constant,
the concentration of gas dissolved in the liquid has a
negligible effect on its volume and the diffusivity D is
constant,

the flow is controlled by viscosity (in glass melts the

Reynolds number is usually much smaller than unity).

In these conditions Levich (1962) proposed solutions for small and
medium size spherical bubbles, which should apply to Re « 1 and moderate
Re respectively. Levich"s solutions were based on quasi steady state
approximations (the accumulation term was neglected) and it was assumed

that the boundary layers were thin. For Re << 1

ji 1 + cos8 (1.15)
/2 + cosG Cer ’
and for moderate Re
1 + cos6
12 C (1.16)
/2 + cos0 CaJ
Where c is the concentration of gas dissolved in the liquid median,,
radial distance from the centre of the bubble, a the ,» mF the bubble

and the angle 0 is measured from the point ofk e 4iflpnce of flow. The

velocity of motion of the bubble relative to e liauid was given by the
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Rubczynski-Hadamard formula, which in the case of gas bubbles reduces

to (Levich, 1962).
u =1 5£I1 @.1n

where g is the gravitational acceleration and V the kinematic viscosity of
the liquid medium.

The total diffusional flux is then

L3
4a?2 Cs f(?t. = 2lre2 d/ sin6 do 1.18)

and by combination of equations (1.15), (1.17) and (1.18)

A4
1 da 2 M (A 1-.19)
yadt /Zi8u |y ] |
from which i1t follows that
h
a.2o0
or In dimensionless terms
A
(1.21)
/R 1 + 184 47
where
R = a/ao
Z = tD/ao, a-”2)
+= (coo - Ca)/cCs
A =g ao3/(DV)
and a0 1s the initial radius of the bubble.
Similarly, from equations (1.16), (1-1 an the solution

for moderate Re values is
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1+ (1.23)

Ruckenstein (1964) suggested a general solution

r -1
uo -
0.849 IPlljZL /sh  + 0.662 -2 /Shs = pe sc 1-2%)

where Uq is the tangential component of the velocity at the interface for

6 = /2, and
_ 2a da
Sh = P dt
R« = 2 uatv (1.25)
V/D

For moderate Reynolds numbers Levich (1962) proposed

W =2U (1-26)

so that equation (1.24) can be rearranged to
Gz = 930 % * arod i i1-27)

which, for sufficiently small @), reduces to
E =1 +0.230 (FB£E z (1.28)

which is the same as equation (1.23).

For small Re Ruckenstein and Davis (1970) proposed
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da

dt (1.29)

where the Peclet number is

au
Pe  n (1.30)

By combination of equations (1-29) with equation (1.17) this solution
reduces to equation ( .-21).

Some experimental observations of bubbles in glass melts indicate that
the radius is proportional to the time (Nemec, 1974). These observations
included bubbles containing both oxygen and carbon dioxide so that a two-
component model must be used to study these cases. However, the proportions
°f carbon dioxide in some of those bubbles might have been small and a one-
component model for the diffusion of oxygen might be sufficiently accurate.
In case the evidence against equations (1.21) and (1.23) demonstrates
the difficulties in formulating sound approximations .

IT the bubble is assumed to behave as a solid sphere the diffusion flux

becomes (Levich, 1962)

D(C Va .
8c Ca 3u sint
33 =d 1.15 ) (1'31)
" 4Da?2’ sm 201N
and
N
2irR2 / j~sin0 d0 = 7.98 (o - Ca) fo2ul 1.32

ifu . _
IS given by Stokes"s law

2/v (1.33)
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1-34)

Finally after integration and rearranging

R=1+0.385 pAK 7 (1.35)

which agrees qualitatively with Menec"s findings (1974). Whether that

linear relation between radius and time is valid for bubbles of variable

composition or only for bubbles of nearly constant composition and

containing large proportions of a major component (oxygen) 1is a question

which requires further study.

1«9  Applicability of solutions for rising bubbles

From equation (1.15) the relative boundary layer thickness is

(1.36)

Similarly from equations (1.16) and (1.-31) the equivalent boundary layer

thicknesses are

~ N2 + coso
62 =y ET/A | | oo (1.37)

1.38)

Equations (1.-36), ((1.37) and (1.-38) provide the means to assess

whether the assumption of a thin boundary layer is justified. If 0 =T

and A is finite 61, 62 and 6a become iInfinite, so that one has to define a

1/ 62 or 63 are less than a limit 6max. These

range 6 < 6pgx where



conditions impose minimum limits on A (that is size of bubble) and, if a
convenient set of physical variables is chosen, the reference radius a0
must also exceed a minimum value amin. Typical conditions of glass

melting can be represented by

diffusivity D 10-6 cm2 sec-1

viscosity J1 = 92 poise

density of the melt P 2.3 x 103 Kg nf3

o] 9.8 m sec-2

By convenient substitution equations (1.36), (-37) and (1.38) lead

to

S *"'max

a0 > amin = 0.04405 (1 + cos9max)2 J = 6max ' {i*) (1.39)

f 2 + cosO 1 V3 y

ao > amin = 0.03054 1 max 0
L @ + cos9max)z J max @m (1-40)

_ . sin(20max>
30 > amin = °-0720 mmex J max s;omax™ (m) e

(1.41)

Equation (1.41) has been derived for a = ao, that is R = 1.

These relations are represented in fig 1.1 where a”™n is plotted
against emax for several values of ¢max- The full lines denote equation
(1.39) , the dashed lines equation (1.41) and the dotted-dashed lines
equation (1.40). If the boundary layer is kept less than 10% of the
radius of the bubble &nax - 0.1), and 6max = w/2 then conditions ( -39),
(1.40) and (1-41) will not be fulfilled by bubbles with radius less than

about 0.26, 0.18 and 1.1 mm respectively. The fluxes j1; j2 or j3 are



o/7T

Fig 1.1 : Minimum size of bubbles required to validate
Levich®"s approximations. The full lines represent
equation (1.39), the dashed lines equation (1.41), and
the dashed-dotted lines equation (1.40). The Figures
show the values of the ratio 6max of the boundary
layer thickness to the radius of the bubble.
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larger in the front of the bubble (0 < T/2) and the accuracy of predictions
9 >w/2 will be less important in terms of the overall rate of growth or
dissolution. However, those solutions for rising bubbles are not valid
for a very important range of bubble sizes (@ < 0.1 mm) which are common
in glass melts and can hardly be removed by rising to the surface of the

melt.

Ononato et al. (1981) described the material balances by the following

set of equations

3C 3c Vvo 3¢ rl 3 23+ 1 3 _ cl
3t *Waarbyr 20 D_r2oar o) r2 sin0 0 PO %8]
(1.42)
C(r,0,©) =Co ; r>a ; t=0 a.43)
C(a,0,t) = Ca 1.4%9
cC‘fe,p = (1.45)
3¢) o (1.46)
N\ O:
'gg =0 (1.47)
Jo=TT
d 4 _3 1 3c) _
— fa Csj = Z2TTazb / sin0 do (1.48)
dt AOr,
o] T=a
VF=u— -1 coso + & @ (1.49)
r J Ird dt
= u > sino (1.50)

which they solved by a finite difference technique. Levich"s formulation

for Re<< 1 with constant interfacial concentration Ca is the
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equations (1.42) to (1.50) when the term -70—t is negligible (quasi steady
state) and the boundary layer is much thinner than the radius of the
sphere. Onorato et al showed that Levich®"s solutions (equation (1.21))
differ markedly from the numerical solutions of equations (1.42) to
(1.50) where u is given by equation (1.17) except for large A, (A > 600).
Solutions for stationary bubbles were found to be reasonably good
approximations for low A, (A close to unity) but become very poor for
large A. Note that A = 1, and 103 correspond to ao = 0.034 and 0.34 mm
respectively when D,ju, P and g assume the values indicated previously.
Finite difference solutions might be more accurate than the approximate
solutions derived by Levich for rising bubbles, but both methods fail to
reproduce the linear relation between radius and time suggested by some
experimental observations (Nemec, 1974). Note that the size of bubbles
observed by Nemec (usually above 0.5 mm) must be sufficient to make the
Levich"s approximation (equation (1.20)) reasonably accurate especially
taking into account the growth of the bubbles which causes improvement of
that approximation. A model based on a solid sphere (equation (1.35)) is
apparently more suitable to describe those experimental results. The
main reason for those differences might be a poor description of the
components Vr and Vq of the velocity but the hypothesis of a gradual
degasification and decrease in bulk concentration of gases dissolved in
the melt is also plausible. Such decrease iIn concentration would cause
decrease in growth rate which is in qualitative agreement with a change
from /a a t to a a t. Finally a multicomponent method is required to
describe the behaviour of some bubbles in glass melts. Accurate
interpretation of bubble behaviour will not be possible without resolving

those questions.



This discussion shows some of the limitations of the solutions
available to describe diffusion—controlled behaviour of freely-rising
bubbles. The solutions of the diffusion-controlled behaviour of stationary
spheres are considerably simpler and the assumptions required to derive
reasonably simple balances can be achieved iIn experimental conditions.

In addition, analytical solutions (Scriven, 1959) are available for
growth of stationary spheres from zero size and these can be used to test

the numerical methods developed to solve other related problems.



CHAPTER 11

2-1 Diffusion controlled material transport around stationary
spheres

This treatment quantifies the behaviour of spheres which are exchanging
material with a surrounding liquid medium. The sphere is assumed to have
uniform composition and uniform properties and to be surrounded by an
infinite volume of liquid. The only flow in the liquid is assumed to be due
to radial convection as the sphere grows or dissolves. The liquid is assumed
to have uniform composition and properties at the beginning of the process.
Material transport is diffusion controlled with instantaneous interfacial
equilibrium and it is assumed that the system remains spherically symmetrical.
Afferent sPecies in the liquid are assumed to diffuse independently, with
Cjnstant diffusivities. Viscous or inertial forces, surface tension and other
eternal forces are ignored for the present.

The required material balances are considerably simplified in spherically
yrmmetric systems. In addition the liquid medium is assumed to be ideal,

~s* with constant partial molar volumes, so that it is possible to define
umple relations between the velocity in the liquid and the motion of the

terface. it is also possible to derive a simple formulation of Fick"s law
to quantify the flux of material across the interface.
Some of these assumptions are only partly fulfilled in real systems and

IGIT |
wportance can be investigated by relaxing the corresponding

£0GStri cti - _
Btrict Bhs. Some solutions for cases of concentration dependent

usivifies are reported in Chapter VIl. The effects of surface kinetics

growth or dissolution of spheres is discussed in Chapter VIII, and finally

tho off ) ) } ) i
ects of surface tension, viscous and inertial forces are analysed in

ChaPter iX.



2.2 Continuity with spherical symmetry
A general n+l component system wil h r—HPNiciocel with n independent
solutes and a solvent denoted by the index e TF Ci is the molar

concentration of species P and yj &g volume fraction at distance j. from

the centre of the sphere and at time t,

n+i
I Yi =1 -1
i=i
if the partial molar volume of species 1 is a constant vV
Y+ A ? i 1/eeefH - 2.2

The velocity u is then the sum of fractional contributions of solute®

0td the contribution of solvent
u= 1 uiCivi = 1 ulvYi . .3

t is
the average volume velocity relative to the fixed coordinate system and

can be dif-f , .
rerent from the mass average velocity or molal average velocity

and alia, 1960). In the present circumstances u is the more convenient

defiH-t- f
1eron o velocity because it reduces the diffusive fluxes to simple

forms
" even with variable density. |In fact, if the only mechanisms of solute

e ] ) ) ] ] ]
R L are €damettuion {UCt) and diffusion , the velocity of species i

WI11 be given by



nm
le equivalent relations iIn terms of mass average velocity or molal average

velocity are more complex if the density is variable (Bird and alia, 1960).
Our primary interest is the transfer of individual species so that it

is convenient to write the continuity equation for the generic species 1

Sc.
- +(V.uCi)b (4D )= 0 2.5
or
SC+
2.6
ir +|jv-"ici> =0 = ¢ )
With spherical symmetry equation (2.6) reduces to (see Appendix 8).
9ci 18, 2 s @.7
St + r- Sr r UiCi °
and if the concentration is replaced by the volume fraction ji_ with

c°notant partial molar volume,

st 2 & g =0 @8

summing the n+l1 equations (2.8), the overall continuity condition

reduces to

SF(r) =0 @9

or
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u(n u@ r~a, @.10)

where a denotes the radius of the sphere.

Equation (2 .10) was previously derived for the case of constant density
’\2cn\7en, 1959) and the present formulation extends its validity to more
general cases. Notice that constant density, p, implies that the partial
molar volumes must be equal, this restriction being relaxed in the present
treatment.

Equation (2.4) has defined the diffusive flux relative to the velocity
T the liquid. Similarly, and iIn order to maintain the conservation of

terial the flux jo of species i into the sphere must be defined relative

the velocity of the interface (da/dt) .

Piz-0@ W@ - g @.11)

and from equations (@ .2) and (-.11)

n+i n+ 1
I1 vidis = - _II Yiia) ui (@ - §F
= 1=
/ \ da
* - u(a> + « 2-12

Als°® from equations (.10) and (.12)

u(r) = 1- (2.13)

further simplifications result when the solvent cannot be transferred



into the sphere (UJMd_ = 0) a condition which holds reasonably well for
gas bubbles and some crystalline phases. In such cases from equation (2.11)
da
U i (€] dt .19

and equation (2.13) becomes

e
o= 2ETE g @.15)
1 -

that is, the velocity is only dependent on those species being transferred

across the interface.

From equations (2.4) and (2.15) with spherical symmetry and assuming

1
- - - . fBceil
is given by Fick"s law, LV = DF or
ke
1 _ n
" D3 @ Ji@ ft. o, D (2-16)
Also, from equations (2.11) and (2.16)
si- @@ T viar+ =0 - ci @vy @-1)
J=1
Jti

Finally the general material balance with spherical symmetry can be

obtained from equations (2.5) and (2.15), with constant diffusivity

@ .18)

A Ci (? y . daj 213ci  3ci
sr2 +| |l bi [ ividjJ dt [? 3F" = 3t"
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In a uniform medium the initial condition. 2'°
L t=o0 (2.19)
@ - Gw
and in a infinite medium the boundary conditi
(2.20)

C—("ﬁzo».i ; t>0

. __terface can vary due to changes
always holds. The concentrations at the in

- 1 .
°f composition in the spherical phase (gas bubble)

2e2 Particular cases

a) One-component spheres
In these cases the pressure and concentration of solute in the sphere

) can be considered constant and the molar content N of the sphere will

related to the flux J by

2.2
dN a2 AT J
dt

“here the subscripts are omitted iIn one-component systems. From equations

(2-17) and (2.21)

| .

r 3¢ @.22)
dN 4ta2 D 1 - C(a)v ] M

dt

and



gi D cs°l C@V) 2.23)

In addition. from equations (2.18) and (.21)

.24)

where

E

1 - Cs°v . (2.25)

The term (1-e) represents the ratio of the volume occupied by a mole
solute in the liquid medium to that in the sphere. This condition is
Ulid whenever the partial molar volumes in the liquid are constant.
The assumption of instantaneous equilibrium at the interface leads to

Istant boundary conditions

C@ = Ca
t5o0 (2.26)
CC) = Ce
the i1nitial conditions will be
C(r)=Cc»;r>a ; t=0. @.27)

Equations (2.23) and (2.24) can be simplified by using dimensionless

Variables
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92F | dR |3F _ OoF
den dz 3e Tz (2-28)
and
dr ©r
4z g, (2-29)
where
e = r/a0
R = aZa0
z = t.D/ao2 (2-30)
F=(C-G0/[Cs°@ - vCa)]

and ao is the reference radius (@ > 0), which will denote the initial
radius of dissolving spheres or of spheres growing from finite size.

In dimensionless form the boundary and initial conditions (2.26) and

.27) lead to

F(R) = Fa = (Ca - QJ/fCgo (1 - vCa)] .(2.3D)

FC) =0 (2.32)

Fe) =0 ; e>R z =0 . 2.33)
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ri) n-Component gas bubbles

With constant temperature and constant pressure the molar concentration

inside an ideal gas bubble can be considered constant at Cs® and therefore

dN.

— N =44 C ° — i) = 4Tiaz J= 2.34

gt - 80T g 0P = A -39
where is the number of moles of species i1 iIn the bubble and g™ its volume

fraction, which is equal to the mole fraction in an ideal gas mixture.

From equation (2.34)

Jivi = cs i g: 5 gté)i (2.35)
an<® ai: ordinary temperatures and pressures
vi cs <1 (2.36)
and
vi@ =viCi@ « 1, .37
and equations (2.17) and (2.18) reduce to
Ji = D. (2.38)

and



ax.
aj 2 da 9ci \Y
i 3r-° r— "] dt dr at

with £ = 1 in the case of gas bubbles.

From equations (2.34) and (2-38)

Voo 2 2 fov
_— 47Ta = 4Tra D'i or

and

dt s dt

Y Nl - Agp2 ec0 da
Zi

Also from equations (2.40) and (.41)

da nor D 'a:z
Y o

dt =P Cq ar a4
and equations (2.35) and (2.-40) give
Y " I 1 da
dt (vo h 9 gt

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2-44)

The equilibrium at the interface may usually be assumed to be given by



Henry®"s law so that

a_(a = H*pj (2.45)

where Hi and Pi are the Henry®s law constant and the parti al pressure of

species 1. By combining Henry"s law and Dalton®s law for ideal gas solutions

Ci @) Bi P gi Cp gi (2.46)

where Cp" tlie interfacial concentration of species i in the liguid in

equilibrium with gas at a standard pressure P (e.g- 1 atmosphere)

In dimensionless terms equations (2.39), (2.40), (2-43) and (.49

become
3 Fi I*r dr 3Fi 3Fi w
fi ge2 + W dz oe 97 (2-47)
dG.
s 3Fi
g = 4R2 T. o - (2.48)
dr y 3Fi
fi (2.49)
dz A % R J
and
3 dr
e
iz RLS. 3 R *9idz_ 259

where



z = t Di/ao2

fi = Di/D1 @.51)
Fi = (Ci ™ co/cs®
Gi = Nj/Uo 3 Cs®)

Finally the initial (equation (2.19)) and boundary conditions (equations

(2.20) and (2.46)) become

Fi (e) = O e >R ; z =0 (2.52)
Fp(*) = © =30 (2.53)
F£x(R) = «ig9i - FO 7z 50 (2.54)
where
ai - Cpi/fs (2.55)
FOi = Cooyf Cs

2.4 Typical parameters in glass melts

The present formulation of dimensionless balances show that a®, FQi, a
and {1 are the essential parameters. Ostwald solubility coefficient of species
i is identical to and from the scarce solubility data available for
silicate melts we can expect the following ranges of cg values to be typical.

0.001-0.01 for nitrogen (dissolved physically) ,
0.001-0.05 for carbon dioxide,

up to 10 for oxygen,

around 20 for water.

It is reasonable to assume that the bulk concentration 0» must be of



the same order of magnitude as C , so that the solubility parameter
[ai _ FO_] will have the order of magnitude of the Ostwald coefficient.
Measurements in silicate glasses showed that the diffusivities of water
(Scholze and Mulfinger, 1959) and nitrogen (Meyer and alia, 1977) at about
1400°C are usually iIn the range 10-6-10- " cm2 sec-1. Some estimates of the
diffusivity of carbon dioxide in glass melts (Kroger and Goldmann, 1962)
are based on a crude technique and seem somewhat higher than those of water
but this seems rather unlikely. From experimental dissolution of oxygen
bubbles in soda-lime-silica melts at temperatures in the range 1100-1300°C
Doremus (1960) obtained the relation D = 42 exp(- 26.7 x 103/T) cm2/sec
where T is the absolute temperature (Kelvin). Extrapolation of this relation
to 1400°C gives a value of about 5 x 10-6 cm2/sec for the diffusivity of
oxygen. Therefore, the relevant gases are expected to have diffusivities of

the same order of magnitude and ratios 0.1 < < 10 are likely to occur.

2.5 Solutions for one-component spheres

Exact solutions of the relevant partial differential equations governing
the growth of spheres from zero size were obtained after Boltzmann
transformations (Frank, 1950; Scriven, 1959). These solutions do not
describe the growth from finite size and the partial differential equations
governing dissolution cannot be cast into the required ordinary differential
equations.

Epstein and Plesset (1950) obtained quasi-stationary solutions by

neglecting the convective transport of solute. For gas bubbles those

approximations were
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da G, Ca}
dt (2-56)
/{TDt-
and in dimensionless terms
dr
dz
2.57)

VR /17—

Parametric solutions of equation (2.57) were reported by Epstein and Plesset
(1950), and Frischat and Oel (1965), and the concentration profiles which
correspond to quasi-stationary solutions can be obtained by analogy with the

equivalent heat conduction problem (Carslaw and Jaeger, 1959).

F (e,2) erfc e >R (2.58)

and

(2.59)

A transformed quasi-stationary solution is obtained iIf equation (2.59) is

approximated by

1+ (2.60)
/-

which upon combination with equation (2.29) leads to



R — 1+ Xxw + 4Q//T . .6D)

On the contrary, if the interface is kept stationary

Brl il i (2 62)
[Bel - Faire v

and from equations (2.29) and (2.62)

R=1+<z+ 2/2z/h . (2.63)

Equation (2.57) was used to analyse the behaviour of bubbles in liquids
(Krieger and alia, 1967; Frischat and Oel, 1965). Equally equation (2.61)
was also used to analyse experimental data, (Doremus, 1960) and was recovered
as the zero order approximation of perturbation series solutions (Duda and
Vrentas, 1969; Vrentas and Shin, 1980).

If R > /tz the quasi stationary solution (equation 2.57)) tends to

R=1+ (1 2-64)

which can be derived from the one-dimensional diffusion In a semi-infinite
medium. In dimensionless form the concentration profile is given by

(Crank, 1975)

F(e,z) = Fa erfc[(e - R)/(2//2)] (2.65)

and
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Bf ~
% Fa//nz @ .66)

Thus equation (2.64) results from equations (2.29) and (2.66). As an
approximation of the spherically symmetric system equation (2.66) requires
very thin boundary layers. During dissolution the role of radial convection

prevents that condition, even if the solubility is very large.

A simple quasi steady-state solution was also used to evaluate diffusion
coefficients of gases in liquids (Liebermann, 1957; Manley, 1960). The
convective transport of solute and the time derivative were ignored in

equations (2.24) or (2.28), which reduce to

e >R @.67)

Equation (2.67) with boundary conditions (2.31), and (2.32) is readily

integrated to give

of Fa/R = (@R @ .68)
% 3R

and

F=Fa(Rre) ; e”™R . (2.69)

From equations (2.29) and (2.68) the quasi steady-state solution for the

radius of the sphere is

R2 =1+ 29z =1 - 2Faz . (2.70)
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Notice that equation (2.70) is equally recovered as the limit of quasi-
stationary approximations for /tz >> R»

From asymptotic expansions Subramanian and Weinberg (1980) derived

following relation

2 16
R 1 /2" + 4Fa ~ - 8a [4 - a @.71)

Is equation was found to perform generally better than the quasi steady-
state or quasi stationary approximations (Chapter V) .

Some predictions of growth were based on the assumption that the
boundary layers are sufficiently thin (Barlow and Langlois, 1962). That
a-sumption is generally poor except for growth with large solubility parameters
f°r which exact solutions are available (Scriven, 1959).

Perturbation series solutions (Duda and Vrentas, 1969; Vrentas and
.n< 1980) are tedious to evaluate, except for terms of zero order, which
Usually reduce to the transformed quasi-stationary approximation (equation
"w'*)). First order terms are reasonably good corrections in the range of
°w s®lubility parameters.

Numerical solutions were also developed to solve equations (2.23) and
<2-24) after normalizing the concentration (Readey and Cooper, 1966; Cable
3nd Evans, 1967). Other authors used transformations of the space variable
to immobilize the interface (Duda and Vrentas, 1969; Szekely and Martins,
971). These techniques did not include sequential optimization of space

nd time mesh sizes, so that either their accuracy is doubtful or the

Precedure wasteful of computing facilities.
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2.6 Solutions for multicomponent bubbles

The diffuser, controlled growth or dissolution of bubbles containing
bore than one gas has rarely been considered because variable boundary
conditions are usually involved, Tntpractions between the different
dissolved species can usually be igno -in the case of very dilute solutions.

Gas bubbles can usually be includeJ m w.c- classification and diffusivities

can also be considered constant and indeBendent of concentrations. Henry"s

faw s usually assumedrto describe the eguilibrium gas-liquid, but diatomic
gases are sometimes better fitted ky, ehm cievert"s law (linear relationship
hetween the concentration of solute in the liquid and the square root of
Partial pressure of gas). It is widely accepted that the Sievert’s law

describes the equilibrium for water vapour (gi.oc melts (Scholze, 1962;

Franz, 1965 and 1966).

Quasi stationary approximations were used by Kramer (1979) to analyse
the behaviour of bubbles containing more than one gas. The limitations of
*ho quasi stationary approximations of the behaviour of multicomponent
bubbles are likely to be even greater than in the case of one-component
bubbles. Quasi stationary solutions were also used to analyse the behaviou:

T bubbles containing one diffusing gas and another inert gas (Doremus,
Nemec, 1969; Weinberg and alia, 1980).

Finite difference techniques were occasionally used to solve the
ehaviour of bubbles containing two gases (CGriffin, 1971) or more (Weinberg
nd “ubramanian 1980), but the accuracy of those methods has not been

tested.

It will be demonstrated in Chapter VI that an exact asymptotic regime
Can be derived for bubbles containing two or more gases and growing from

Zer® size. This regime will be used to test the general Tfinite-difference

echnique described iIn Chapter 1II.
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CHAPTER 111

Finite difference techniques

3.1 Introduction

Analytical solutions of equations (2.47) have limited applicability
and the accuracy of published approximate solution has not been
systematically tested, except for a few cases usually in the range of
moderate or low solubility parameters @ or Fa. Numerical solutions are
an attractive alternative but very few cases have been computed. In no
cases were the efficiency and accuracy of methods used properly
established.

The basic partial differential equation (2.47) is parabolic with
known initial and boundary conditions but is non-linear due to motion of
the interface. Fortunately the diffusion controlled growth of spheres
from zero size can be solved analytically so that it is possible to test
the convergence of the finite difference equations to these exact
solutions of the partial differential equations for those cases provided
that computations are continued to large enough sizes.

In practice the finite difference solutions start with a finite size
of the sphere (a0 > 0) so that it is necessary to compute large increases
of radius (R >> 1) to overcome the effects of the initial transient stage.
However, another difficulty arises because of the large changes in the
radius of the sphere, boundary layer thicknesses and rates of growth or
dissolution. The same values of space and time steps cannot be both
accurate and efficient in the early stages and much later. For instance
if the radius increases by a factor of 1000 it might be convenient to
increase the mesh lengths by similar factors for economy of computing.

This difficulty may be partly solved by appropriately transforming



the independent variables (space and time), but it is still convenient to
be able to vary the mesh lengths, especially during the transient stages
and when the interfacial concentrations vary with time.

Variable interfacial concentrations and variable mesh lengths put an
additional constraint on the stability of the difference equations. It
is well established (Smith, 1978) that implicit methods with constant 6r
and 6t (or Se and 5z) mesh lengths are stable for all positive values of
Sz/(Se)2 when used to solve some equations of the parabolic type (Crank
and Nicolson, 1947). On the contrary explicit methods usually require
<w(6e)2 < 1/2.

Readey and Cooper (1966) developed finite difference solutions of
the relevant differential equation, with Sz/(6e)" = 0.1 to guarantee the
stability of these solutions. However, they roust have experienced the
difficulty of having to use fairly large 6e increments to prevent the
growth of rounding errors, but did so at the expense of the accuracy of
the finite difference solutions, especially when the rate of the process
is large (thin boundary layers). In addition, this method requires an
unduly large number of time steps to compute very slow growth, growth to
very large sizes, or very slow dissolution.

Cable and Evans (1967) used a different explicit scheme based on
formulae using three time steps proposed by Du Fort and Frankel (1953).
The restriction 6z/(6e)2 < 1/2 could be dropped but the mesh lengths were
not optimized, so that the convergence of finite difference equations may
be poor, especially when the sphere dissolves and the concentration
gradients at the interface increase with time during the final stage
(Chapter V). Establishing that the results are insensitive to choice of
time and space mesh intervals is not sufficient to guarantee accuracy.

Duda and Vrentas (1969, 1971) developed an implicit method and



normalized the space variable accordingly to the following transformations:

1-exp[- a(r - )] G.1).

X
1

for dissolution, and

le—exp—af_g“ 1J3-

for growth. The constant a allows some flexibility of the transformation.
However, these authors used constant fix increments throughout each run.
By varying fix and fit it was established that the difference solutions
converged to each other and, though this is not a rigorous proof, it is a
good indication that the finite difference equation is convergent to the
true solution of the partial differential equation. Computations of large
increases iIn radius are prohibitive iIn computing time iIf constant mesh
sizes are used, and the convergence of their finite difference solutions
to the exact solutions for growth from zero size was not demonstrated.
Szekely and co-authors (1971, 1973) used the transformation of space
variable into x = e - R and allowed some adjustment of the space mesh size
with a ratio 6z/(fix)2 kept at about 0.4 to ensure stability and economy.
A Runge-Kutta method was used to advance from a given time step to the
next one. The stability condition was suitable to analyse rapid growth,
but is likely to make the computations of low and moderate rates of growth

or dissolution prohibitively slow because of the restrictions on 6z.

NeQ Immobilization of the interface

It is convenient to immobilize the interface by transforming the
space variable. This avoids having to add new mesh points at the

interface of dissolving spheres or the elimination of points as the



interface of a growing sphere advances. Besides, without immobilizing
the interface, the use of implicit finite difference solutions is
inhibited.

A successful transformation is the one which, whenever possible,
improves the convergence of the finite difference solutions. For this
purpose it is convenient to analyse the nature of the diffusion
phenomena involved.

Exact solutions for growth from zero size can be expressed by the
dependence of concentrations on a single independent variable x = r/a =
e/R (Scriven, 1959). This type of solution has now been extended to
multi-component bubbles (see Chapter VI). It is also demonstrated in
Chapters 1V and VI that the solutions for growth from finite size evolve
rapidly to the same type of regime. Therefore, i1f the space variable is
transformed into x = r/a, the concentrations become less dependent on a
second independent variable (time), which assists the convergence of the
finite difference solutions.

Dissolution of spheres is essentially transient and reflects the
effects of diffusion and convection in the radial direction (Chapter V).
Diffusion is usually dominant but the role of radial convection is very
important with large solubility parameters Fa.

For low Fa the actual solutions are reasonably approximated by quas
steady-state predictions which demonstrate the effect of spherical
symmetry, and reduce to F () = Fa/:c,(equation (2.69)). Thus the
transformation of the space variable iInto x must be equally convenient
for accurately computing dissolution.

IT transport is controlled by radial convection the most successful
transformation must be the use of the Lagrange coordinate (r3 - a3) or

(e3 - R3) to replace r or e. By use of the Lagrange coordinate the
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convergence of finite difference solutions was found to be good for very
large solubility parameters (Fa > 100) but it was difficult to obtain
convergent predictions in the range Fa < 10. On the contrary, if the
space variable is transformed into x, the solutions converge readily in
the entire ranges investigated, 0.0001 < Fa < 1000, and 0.0001 < < 1000.
Duda and Vrentas (1969) used a normalized transformed variable to
avoid having to truncate the distance over which the computations are
carried out. This may be convenient if constant mesh sizes fix are used
but is not necessary if the mesh size is allowed to increase in the tail
of the profile. Besides, it has been found in this work that with
transformation of the space variable into x = e/R the convergence of the
finite difference solutions was more easily achieved with moderately low
numbers of time steps than iIn the case of transformation into 1 - 1/x.
Taking into account these features equations (2.47) to (2.50) were

transformed iInto

3x 3z G-3
G-
dr
4z ) @G-5
X=1
G-6)

where

x =e/R >1 .



3.3 Solution cf concentration profiles

3.3.1 Finite difference equations

The concentrations and their derivatives are single valued,

and continuous so that Taylor®s expansion gives

Fi,j+1,£+1 - Fi,j,£ + 5 9% t -{ox2)
rsFii
Froaan,eel = Fijg g+ - (@)
J.£
where
6xj =Xj -
fix2 :

Finite
O92i a7
x Gk '
92] G.8)
G '

The indices i, J and £ denote the species i, the radial mesh point xj,

and the time step Z".

Using a compromise between the truncation errors

simplicity of algorithms equations (3.7) and (3.8)

_ = (exi + 1 6X 1 fixe  fixu
ox g &4 *ex2) 6x 2 fix  "6x2
1 "i/E

and

- . F. ., .

i192Fi 2 i ,d+i £ [ + 1 | p

9x2 £ fixx + Il e e ﬁx13

involved and

lead to

L4

the
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153"~ ¢xt hi>j* LE

1 Fx"3"V
Xt

G-9

(3.10)



This procedure allows the use of different mesh sizes and makes it
possible to optimize the number and distribution of mesh points.
substitution of equations (3.9) and (3.10) into equation (3.3)

foFi’ -

[z J; ¢~ ZFPI FiLj-1,€ " @i + P2) Fi,j.£ + P2 Fi, j+1,£ (3.11)
where

pi = (fp/R2 -y ex2)/[&riGXx: + &x2)] G.12)
p2 = (Fp/R2 + Y ex1)/[5%x2 (6x1 + 6x2)] G.13)
_ , 1 dR . .2
Y = fp/ (Xj R2) + R dZ XJ - eXj G.1%
It is well known that the stability of implicit methods is usually

superior to the stability of explicit methods.
radius of the sphere between time steps Z£ and Z™+p and

average time derivative so that

Y = fp Xj(R Dav

where

av RE+1 + RE

drR

RE+I RE
VdZZav

and

62 “ Z£+1 Zf£ -

2

6z

]

1

1 "R"

(R

av

Xj - G Xj~?

2Rav 92 ,,

(Rz) av

RE+12 + RE RE+l + V

the

Let Rav be the average

(3.15)
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Next equation (3-11) is replaced by the finite differencg average

Fi.J.£+1 - Fi,i.£ /62 = B9 Ej j-1,£ + Fi, j-1,£+

- + p2 . - -
Gt +p2) Fi,J,£ + FI.J.£+41 4+ P2[ri,j+l.1 + FljJ+i, t+1

(3.16)
which leads to the implicit scheme
bl,j Fi,j-1,£+1 + b2fj Fi ,j.£E+! + b3fj Fifj+1fE+! = bdij (1D
where
DI-1 6z px (3.18)
hs,j  62p2 (3.19)
b2/j ! + 6z(Pl +p2) = 1- blfj - b3/j (3.20)
b4,j = 62 pl Fi,j-1,£ + p2 Fi,j+L,£ L-6@E+p.  Fi,j.e
(3.21)

By definition, Fi () = 0 so that the last finite difference equati g,

[3-17) becomes
I~r-1 Fi,nr 2,£+1 + b2 .ni-1 Fiinl-1,JK1 = G.22)

where m is the number of radial mesh points. In addition, the first

finite difference equation will be written

b2,1 Fi,1,£+1 + b3,1 f1,2,£+1 = b4,. (3.23)



and i1If the interfacial concentrations are constant

Fi,l,£E+1 _ Fi (R) — &i -24)

or

b2,1 1
b3,1 = °
4,1

A more general formulation of equation (3.23) is derived In section
3.6 for the multicomponent bubbles with a linear relation between the mole
fraction of gas i1 and its equilibrium concentration in the liquid medium.

The system of equations (3.17), (3-22) and (3-23) is suitable for a
step-by-step solution, using a non-pivoting elimination method to advance

one time step.

3.3.2 Non-pivoting elimination method

Equations (3.17), (3-22) and (3.23) are solved by Gauss®s elimination
method (Smith, 1978). A back substitution procedure is currently used as
follows: the last difference equation (3.22) is used to eliminate

L from the penultimate equation ( = n1—2) -

Pi,n™ X0
the new penultimate equation is used to eliminate Fp n”™-2,£+1
from the equation of order j = n -3 and so on, until {_ 2,1+1 Fs
eliminated from the first equation (3.23),
the new first equation contains a single unknown n which

is calculated directly,

the unknown Fi,2,£+l' §.3.E+1" Fifnn i, E+i can now be

calculated by forward substitution.

The back substitution elimination can be represented by the generic



scheme involving the original equations of jth order and the new

equation of ((+i)th order

bl,j Fi,j-1,~+1 + b2,j Fi,j,£+1 + b3, Fi,j+1,£+1 = b4,j

>1,j+1 Fi<j,£+1 + b2,j+1 Fi,j+1,£+1 = b4, j+1

where

b2,n-1-1 b2,n1-1 > b~An~-1 ~ b4,nl1-1

Eliminating Fifj+ife+i leads to

bl,j Fi,j-1,£+1 + b2,j Fi,j,E+1 = b4,j
where

b2,j - b2,j "™ bl,j+1 b3,j/b2,j+I

b4, " b4,j b4, j+1 b3,j72,j+1

The last simultaneous equations to be modified are

2,1 Fi,1,£+1 + b3,1 Fi,2,£+1 “ b4,1

1,2 Fi,1,£+1 + b2,2 Fi,2,£+1 = b4,2

and the elimination of Fif2,£+1 gives

Fi,l,£+1 b4,1 - b4,2 b3,1/52,2 b2,1 - bi,2 b3fi/b2,2

by forward substitution

61.

<3-25)

(3.26)

:3.27)

(3.28)

:3.29)

G- 30

(3.3D)

(3.32)
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bl,j Fi,j—1,£+1 ’\2,j 6 = 2'3' .../ n]__l) e

-34)

This step completes the operations required to recalculate the
concentrations at the standard mesh points. The application of this
scheme requires an initial concentration profile which will be based on a
quasi-stationary approximation rather than by the singularity expressed by

equations (2.52) and (2.54).

3.4 Solution of radius and composition of the sphere

So far only the solution of equation (3.3) has been considered but
both R and dR/dZ are required to calculate the non-linear coefficients of
equation (3.3). In some cases the interfacial concentrations may vary with
the mole fractions of a multi-component bubble. Therefore the radius of
the sphere and the composition of bubbles must be solved accurately,

which requires an efficient method of solving ordinary differential

, _ drR doi .
equations to integrate aziand - In the present conditions these

derivatives are calculated through the solution of concentration profiles,
which represent the slowest part of a generic time step. Therefore multistep
methods of solving g; have advantages over other methods which require
several estimates of the derivative per time step (Runge-Kutta methods).

In the present case explicit multistep methods become unstable due to
the complex relation between concentration gradients and R, and — , and
strictly implicit methods cannot be used. Alternatively an explicit-
implicit scheme is used with some modifications to avoid having to compute
the concentrations profiles twice per time step. Four-step formulas are

derived in appendix 1 for variable mesh size explicit and implicit methods.



The explicit method is used as a predictor following which the concentration
profiles are solved. Finally the new derivative dR can be obtained and the
implicit method is used as a corrector.

The general solution can be summarized as follows:

1. Set the initial conditions (£ = 0) .

T3f+l
2. Calculate the concentration gradients am at time step £
=1
equation (3.43)).
3. Calculate the derivatives
n *
drR “R 1 ?I/ r , iSFi]
dZn . 2, u Ttl\3m R I

oy 11 _ f8Fi]
ME i gy

Use the explicit four step formula (described in appendix 1) to

predict RE+1-

dr1 R -(R] dr1

RE+l = RE + 62 _P1 dz_z + PZleJ»—1+ 3H 2 +p«dZ £3 -

(3-35)
where 6Z = Z£+g - Z£ .

Calculate

Rav RE+I “ RE /2

Vi ARE+11 tgﬂ*Rz + =g

av

dr

dz.
av

RE+I RZ <

Calculate the new concentration profile at time step £+1 with the

i
above estimates of Rav, R , and gg
av av
N i, ara ,
7. Calculate the new gradient at the interface am a=1, ..., n,
m=1

(equation (3.43)), and



n 3f,

s= | L (3.36)
i1 1B oy gea

Correct R® by using the implicit multistep method described in

appendix 1.
drl aR* dr dr
. +p + P : + P. .
VI -RE+ 6z oOfdzj,,, 1H ¢ [dzj ., vdizj
drR
+p @-37)
M dz £33
where
dr
= S/R G. B)
dz 41 £+1

After rearranging equation (3.37) becomes

RIUL * B-mr + $p0 62 (3-39)

where
: H
Re= w5z O +p. R ¥ Pgigs + P 'gz\
’ dzJ £-1 £-2 £-3 -
dgi
As g. appears iIn the derivative az , and the new solution must

n

obey the condition ~ g - 1, it is preferable to integrate the
i=1

numbers of moles of the individual components of a bubble. This

is equivalent to integrating the dimensionless variables G ;

dcq dGi >
I = i o +
Gi ,£+1 Gi,£ + [dz ,£+l‘|O Mz h=*1 + \dZ JE-12
dc/
dz £33+ 7700 P (3-40)

£-2 £-3



Then the mole fractions £+1 G =1, n) are given by
N . _
Gi,E+1 (G-41)
- |
gi, >+l n
)
k» 1 X Gk"£+1
where represents the number of moles of species 1. A
second correction of is also possible taking into account
the definition of GX oop terms (formulas (2.51)) . Thus
1v3
3
£+1 AT I_%l" G'x, £+1 (3-42)

IT the final conditions have been reached stop; otherwise

make £ = £+1 and return to step 3.

3.5 Calculation of concentration gradients at the interface

The accuracy of the estimates of concentration gradients is dependent
on the space mesh size. Excessively large mesh sizes are prevented by
periodically readjusting the mesh points and a four point Lagrange
interpolation formula is used to improve the estimate of the concentration

gradient. If

then we can write
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p_ﬁj -n r;
i | Fi,I + V*> Fi@2 + P3C} Fi,3 +P4(i,4
where
C
Pco =N =1
Kej ko~ =% -9

By expansion of the P_.(?) terms and differentiation the gradient at

the interface reduces to

i19Fi
8r _ . _ _
«=1 “"1 Fi.l +d2 Fi,2 + P1,3 + Fi.4
G-
where
¢l = U/C2 + 1/C3 + 1/C4)
d2 = I/[(?2 - @ - cz2/ca)]

d3 = i/[<c|/c2 - ?3)(c3/c4 - D]

d4 = 1/[(CI/C3 - CA)(C4/?2 - D] =- dx - d2 - d3

3.6 Variable interfacial concentrations

It can be easily recognized that a sudden perturbation of the
interfacial concentrations may cause relatively greater errors in the next

estimate of concentration gradients at the interface. This relation may

cause oscillatory instabilities of the finite difference solution if the
concentrations of the solutes at the interface vary with the composition of

n-component bubbles.
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During the initial stage the gas composition may vary rapidly and
evolve towards equilibrium. Therefore, if changes of gas composition
are rapid, a small perturbation will be negligible if compared with the
correct changes of gas composition predicted by equation (3.6), and the
errors tend to oscillate with decreasing amplitude and vanish. On the
contrary, if the gas composition comes close to equilibrium the changes
of gas composition may be almost exclusively due to abnormal perturbations.
Thus a scheme which uses concentration gradients at step £ to compute the
gas composition (equation (3.6)) and interfacial concentrations (equations
(2.54)) at step £+1 leads to oscillatory propagation of errors with
increasing amplitude.

To solve this type of difficulty the diffusion equation is also solved
at the interface and this requires the introduction of a fictitious mesh
point (which falls inside the bubble). In addition the relations between
concentration gradients at the interface, gas composition, and interfacial
concentrations are used to formulate a second equation required to
eliminate the unknown concentration at the fictitious point.

Let X, be space variable at the fictitious point so that X= Xq - fix
=] -&£, where x» = I, Sx=x"-x"=x"-1. ITf the index £ is

temporarily omitted from equations (3.9) and (3.10)

T9f+ F - F

dx 1 ’gzéx ro (3-49)
X=1

s2R_ Fr9-2Fpr *F5 0

dx2 | _| {69 2 (3-45

In addition, as e = 1 in the case of a gas bubble, the material

balance (equation (3.3)) at the interface reduces to
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3 FT 23f_—
.+ 2— 1 =
g2 fi X 1 (3.46)
The concentration gradient J, « = can be calculated from

1/

the last computed concentration profile. Therefore, from equation (3.44)

F1 Fi,2,6  26r Ji £ (3-47)
A similar relationship is needed for time step ¢+1 iIn order to
eliminate the concentration at the fictitious point. On integrating
equation (3.4 by multistep implicit formula (appendix 1)
du
3 XA i, il “ Gi,Ui
rdG,
=G + O * P * Pafz
1.} 1-2 [ (-3 3
3-48)
*
+ 02 PO R 3X =1 JIx+i
and on rearranging
3Fi (3.49)
x=1 Ji-d - do + dlI 9i,x+i
where
1dGi 5 [dG dGd a,-
dy = Gi,Jo5z + PL chT 2 dz *P + P Po R&:+p
° " -1 P o 4z axea

4a 2 / P Oz
dl " 3 R™+1/ o)
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From equations (3.49) and (2.54), A_R = - FQ),
3F.
(| @ +dl Fil* (3-50)
¢tl
where
Fixr - 1 ®
do = - do + d'l FQJ/aI
dr - di/ai
and from equations (3.44) and (3.50)
- B A _ . A
Fi0.e¢r = P12, ~ 200 dg" - & d) " Fp oy By (-5
Finally the time derivative can be replaced by
3Fi /6
0z, [~i,1,641 z (3-52)

and on combining equations (3.44) to (3.47), and (3.50) to (3.52) one obtains

b2.1 Fi 1, JI+l + Fi,2,£+1 b4,l B-53)

where

@) 2(R2)
b, 1t & “ &c)d

(6x) 2 (R2) v

b4,1 =6 - £ 6z 1 Mfona
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Equation (3.53) assumes the form required for the boundary conditions

of the finite difference implicit scheme, and resolves oscillatory

instabilities of computed interfacial concentrations. A similar formulation

was used by Crank and Nicolson (1947) to solve diffusion phenomena with

surface kinetics acting as a boundary condition.

3.7 Starting conditions for the numerical scheme

3.7.1 Concentration profiles

Equations (2.52) and (2.54) express a singularity so that it is

convenient to use the quasi-stationary approximation (equation (2.58)), which

holds reasonably well for relatively small initial changes of content and

radius of the sphere. For this purpose starting time ZQ and starting radius

RO must be estimated and equation (2.58) is expressed by

3.54
V e'zoo F.I(RO,V erfc G-

with e "R =

3.7.2 Relation between concentration profiles and content of the

sphere

Considering an element of volume V of liquid medium containing nr moles

of species i, the corresponding volume contribution of that species is

(m_.v)and the volume fraction(yiogg . (These definitions may not be exact if
i1

the partial molar volumes =i,

--., nh+tl) are not constant.). Here (ntl)

refers to the solvent.

Taking the volume of solvent as the frame of reference

Vo T Merr Y TV Y- 56
« i=1 J
n 1
_ v. C )
Lt J
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n n
The volume fraction of solvent is yn+I =[1 - >T/3€ ‘IJ:ILI - l (vi—Cizl[ and V_,
x=1 1=1

denotes the initial volume of the element of solution containing volume

of solvent and concentrations Cm  (i=l, n+l). Due to the change of
i

concentrations from COOi. to C. the number of moles can vary from m_ to m
1

I
so tliat

VS v c. (3.56)

-

and combination of equations (3.55) and (3.56) leads to the change in

concentration being expressed by

@3.50)

In the case of one-component spheres equation (3.57) reduces to

X1 = -0/ - V) (3.58)

and iIn the case of gas bubbles the terms ¢.<C ) (=1, ..., n) can be neglected

which simplifies equation (3.57) to
X+ = -C. ; @@=, ..., n . G.-59)
i 1

The changes of solute content of the sphere can now be worked out from

the changes on the concentration profiles, that is,from equation (3.58)

[e]e) CD

471'; r2 Xl dr = 4ttj€.l r2 a - Cm—v) dr = 3 SC @3 - a,3) (5.60)
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where the concentration in the sphere is considered constant. Equation

(3.60) can be made dimensionless and after simplification

@®
3X { e2F de =1- R3 (3.61)
R
where
X0 = @ " cav)/(l -CovVv) . 3.62)

Similarly from equation (3.59) the case of n-component gas bubbles

reduces to

3J e2 Fi de 3 g-(O] - g- R3 (3.63)
R
where g.(0) and g™ are the initial and actual volume fractions of species i
in the gas mixture. (In ideal gas mixtures g is also the mole fraction of
species 1.)

In some conditions E™ may be a simple function of e so that it will be
possible to integrate equations (3.61) or (3.63) analytically. Otherwise
numerical solution is needed and truncation is inevitable. In these cases
the truncation also makes it possible to restrict the integration to
significant ranges of e values whilst avoiding the computing for large values

of e where insignificant errors of F 1invalidate the solution of equations

(3.61) or (3.63).

3.7.3 Starting time Zp

The dimensionless starting time must be small to reduce the errors
involved in assuming initial quasi-stationary approximations. For this

purpose it is sufficient to consider the simplified form (equation (2.61)) of
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the quasi-stationary solution, which holds during the initial stage. Thus

from equation (2.61), for one-component cases,

I = 2(0)Z0 +4<j> /z /o G649
or
Y (R T (3-65)
/F
where, as - land JRo - 1< 1

Ry -1=2R -1 = 2(6R )

Similarly for a general n-component bubble taking into account the

possibility of transport in both directions
Z 6r /ill 1,0 (3.66)

This initial stage (O < Z < 72 is not covered by the finite difference
solution. Thus, it must be short, and its duration can be varied by varying

6r . Accurate predictions are usually achieved with |6/ < 0.025 (see

tables 3.1 and 3.2) .

3.7.4 Starting radius and composition of the sphere
Conbination of equations (3.54) and (3.61) or (3.63) leads to
AGI =0, Rd— gi(O) = - 471')%/ e2Frde

Ro
©

1
= - 8w.F.( r0"Z0)"Ro (fi*Z0) - [2v.(ft.ZgK + ROJerfc(w)dw (3.67)

where XQ = 1 in the case of gas bubbles, F"R”~Zq) - Fi (1,Z0) and
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w=(€-R ) 2(f1_.

with

w erfc(w) dw = 1/4

(@2 N

and

/ erfc(w) dw = I//jF

Thus, on integrating equation (3.67)

A =-V V V W "« !l"«+ 13.68)
and
G (Zy) = G{(O) + Ag,
S vVyvVv -1V
from which it follows that
\B
Fo irJ. [q'V1 (3.69)

i=1
Also taking into account that G represents the dimensionless number of

moles of gas i

n

JE) -6 &7y (@ - (3.70)

The interfacial concentrations can also be corrected by taking into

account the mole fractions g"(Z") and equation (2.54), that jg

W \Y ~V ) - FO . (3.71)
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3.8 Distribution of space mesh points

Equally spaced distributions are commonly used in finite difference
methods, regardless of the changes of the shape of concentration profiles
(Readey and Cooper, 1966; Cable and Evans, 1967; Duda and Vrentas, 1969).
Szekely and co-authors (1971, 1973) doubled the spacing of mesh points each
time the concentration gradient at the interface had decreased by a factor
of 0.5. (See also Martins, 1969). However constant mesh sizes were used
at every time step. The present method uses redistribution of mesh points
from time to time but also variable spacing at any particular time step, to
ensure accuracy and economy and also to cover large values of the space
variable without undue numbers of mesh points.

It is difficult to predict the evolution of concentration profiles with
time, especially if the concentrations at the interface vary with time. A
possible way of taking into account these changes is to allow larger space

mesh where the concentrations vary smoothly with increasing radial distance

from the centre.

For a convenient redistribution of existing Xg ; Fi/f pairs, where
F. _ = f_ CK;D, the following S ) function is used
i,l i
n F &)
Sx) =H / diF & 1] G-72)
i-1 FQ®

or its discrete form

S - /ooo/ni (3'73)

and a new 6S increment

65 = S(°)/nQ =S /n, (3.74)
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so that the new space mesh points x* will be interpolated from previous

XI; F_1<3 where the function S () assumes the new discrete values
§ .0 =8 §9 i $2
3 D J
with =0
and
x." =x6.
1 ¢ 1 )

The new x» can be obtained by simple linear interpolation because the
redistribution of point does not need to be rigorous. Polynomial inter-

Eolations were only used to recalculate the concentrations F_ o F. .9 at
i 1

these points.

In the tail of the profile the concentrations tend to vary smoothly and

it Is necessary to control the ratio A between the size of adjacent mesh
units, that is

A= .x., X "N <\ 3.76
1 7+1 g-1 max G-70

In tables 3.1 and 3.2 it is shown that accurate results are achieved with
A W 1.5. The range 1.1 ™ A N 1.5 is a useful compromise between
max max

accuracy and the need to cover large ranges of X values without undue numbers

of mesh points.

Truncation of the space variable can be based on the formula

Xa +0- @G.71)

Xmax

where X, and Xy are obtained by interpolation from existing (X.; Si) pairs,

so that



S (ma) = 0.975 Snx
S (ﬁg = 0.95 SnX
The factor has very little effect on the final solutions provided ~N 5

(tables 3.1 and 3.2). This demonstrates the soundness of the truncation
criterion.

Redistribution is not needed after every time step. Besides extra
computing is involved in the redistribution of mesh points as well as errors
due to interpolations. A compromise is achieved by redistributing the space
mesh points every ten time steps. The stability of the finite difference

method will then ensure that errors which are due to interpolations will tend

to vanish.

3.9 Amplitude of time intervals

The non-linear coefficients of equation (3.3) are functions of both the
radius of the sphere and its time derivative, so that the convergence of the
finite difference solutions may be hindered by excessive values of |5 /R[-

Rapid changes of concentration profiles are the other cause of poor
convergence. To overcome this difficulty it is necessary to control the
relative changes of interfacial concentrations and the relative amount of
material transferred per time step. The last quantity can be controlled by
preventing large |&r)/R|values, but this restriction is insufficient when
different species diffuse in opposite directions, causing relatively rapid
changes of composition in multi-component bubbles. This interdependence
allows a second control by restricting the changes of mole fractions of gas

per time step in n-component bubbles. Thus, the proposed controls can be

written



" Kudg (GDE+L < 61 (3.78)

z . (Z)EH <s2 (3-79)

<FHE
iz “F1®  (re1+14 63
£

(3.80)

_ . ck idoi,

The derivatives gz~ and dz; " at time steP ~ can de used to estimate
the new time increment because the procedure is controlled step by step and
those time derivatives do not vary significantly between two consecutive
time steps.

The effect of varying 6”7 is illustrated in tables 3.1 and 3.2 and is
discussed next. The restriction (3.79) is effective with 67 in the range
0.002-0 .01. For the species having the maximum absolute numerical values of
the "driving force”, F.(R) =6 , It Is convenient to use 63 iIn the range
0.001 - 0.005; otherwise it is sufficient to use 5" = 0.01 and restriction
63-80) can be dropped if |f1.(R)/(i)maX| < 0.05.

During the initial stage the boundary layers are thin and small
quantities of material transferred in any direction can produce significant
changes of shape of concentration profiles. It is then convenient to add
an additional restriction, relating the actual changes per time step to the

changes which have happened since the beginning of the process. This

restriction should not be too severe and can be expressed by

Wz)m < °-02 zt - (3-81)
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3.10 Convergence of finite difference solutions

It has been emphasized that the best way of assessing the convergence of
finite difference solutions was to compare asymptotic regimes of growth.
Growth from zero size has been solved analytically by assuming a unique form

for C(s) = C(r,©) where s = r/@/tD (Scriven, 1959) and can be expressed by

2 3/tD

o))
1

or in dimensionless terms

2 3/z

P}
1

where the characteristic growth constant 3 is a function of the solubility
parameter * = (C - C )/[C° 1 -v C )]and £ =(1 - v C ©which accounts

for the changes in volume of the system (see Chapter 11). This analysis was
derived for one-component spheres, but has now been extended to multicomponent
bubbles (Chapter VI).

The evolution of growth from finite size towards the same type of
solution is largely illustrated in Chapters 1V and VI and it was found that
with R 5 100 the ratios 3 = R/2/z given by the (R,2) pairs computed
numerically by finite difference solution remain constant (to at least the
fourth significant figure).

If 9§ = 0.6977 and e = 1 the analytical solution is $ = 1. The same
values of € and C were chosen for solution by the finite difference method to
obtain the numerical values 3ﬂ- Several sets of n . 5}, XITIC|X and q were
used as indicated to give the results included in table 3.1. In all these
cases the accuracy of the finite difference solutions was very good taking

into account the existence of non-linear coefficients which must be solved

simultaneously. It is clear from table 3.1 that the ratio between adjacent



Table : 3-1
Effect of the number of space mesh points n ,

relative changes in radius (restriction (3-78)),
maximum ratio \maX between the size of adjacent space
mesh units (restriction (3-76)), and truncation factor

(restriction (3-77)) on the finite difference
predictions of growth constant for one-component bubbles
Bn- In all these cases e=1 and the Bn predictions are

constant for R > 100. (6R) =0.01.

0.001 1 100

nl 61 Amax q! Bn
50 0.01 1.1 10 0.02284 1.001 98.30
100 0.01 1.1 10 0.02283 1.001 98.25
200 0.01 1.1 10 0.02281 1.000 95-22
100 0.005 1.1 10 0.02282 1.001 98.25
100 0.02 1.1 10 0.02283 1.001 98.25
100 0.01 1.05 10 0.02281 1.000 98.20
100 0.01 1.25 10 0.02286 1.002 98.39
100 0.01 1.5 10 0.02290 1.005 98.72
100 0.01 2.0 10 0.02305 1.014 99.78
100 0.01 1.1 5 0.02285 1.001 98.27

100 0.01 1.1 20 0.02283 1.001 98.25



Table : 3-2
Effects of r*, 61 »"max ,881 »™ RO (equation (@.65)) a. the
finite difference predictioi.s of dimensionless time required

to decrease to half the initial size ZQ 5 (e =1).

Fa 0.001 1 100

ni 61 Amax ql (6ro) ZO.!I:"I I:az 405
50 0.01 1.1 10 0.01 359-5 0.1265 0.3212
100 0.01 1.1 10 0.01 360.0 0.1263 0.3204
200 0.01 1.1 10 0.01 360.2 0.1263 0.3204
100 0.005 1.1 10 0.01 360.1 0.1263 0.3204
100 0.02 1.1 10 0.01 359.8 0.1263 0.3204
100 0.01 1.05 10 0.01 360.3 0.1263 0.3205
100 0.01 1.25 10 0.01 359.4 0.1262 0.3203
100 0.01 1.5 10 0.01 358.4 0.1259 0.3195
100 0.01 2.0 10 0.01 355.2 0.1250 0.3166
100 0.01 1.1 5 0.01 359.8 0.1261 0.3198
100 0.01 1.1 20 0.01 360.0 0.1263 0.3204
100 0.01 11 10 0.005 360.1 0.1263 0.3206
100 0.01 1.1 10 0.025 359.8 0.1259 0.3189

100 0.01 1.1 10 0.05 359.4 0.1243 0.3133



space mesh units A is the parameter most likely to affect the convergence

of the finite difference solutions, but the errors remain below about 0.5%
with Alm_X up to 1.5. Changing the number of space mesh points ni_does not
have a significant effect on the accuracy of the finite difference solutions,
within the range used, and the same can be said of the relative change in
radius (restriction (3.78)), provided 6" < 0.02, and truncation factorq”™ > 5
(equation (3.77)). The solutions reported in the next three chapters were
usuall& computed with Amax =1.1, n1 = 1010, 6 = 0.01 and q1 = 10.

Two extreme cases 9 = 0.001 and O = 100 (e = 1) are also included in
table 3.1. The finite difference solutions for the usual parameters (h =
100- 6 = 0.01; A = 1.1; and g = 10) are 3 = 0.02283 for 0 = 0.001
and 3 = 98.25 for 0 = 100. The corresponding analytical solutions for these
values of 3 in terms of 0(3,£) are 0(0.02283,1) = 0.001002, and 0(98.25,1) =

100.1. The use of other combinations of the parameters n and a3

J’ 61’ Amax
gave only trivially different solutions, all probably of greater accuracy

than the experimental determination of concentrations and solubility (@) iIn
any practical case. Thus, the Tfinite difference method is accurate over

a very large range of values of solubility parameters, which covers virtually
any spherical phase in a sufficiently large volume of liquid.

The effects of the number of space mesh points n”, relative increase in
radius per time step 6 , (restriction (3.78)), and parameters A , (restriction
(3.76)), q ,(restriction (3.77)), and 5Rq ,(equation (3.65)) on the
dimensionless time ZQ ™ required to reach half the initial size have been
investigated and are illustrated in table 3.2. I1fn > 50, 6~ < 0.02,
qg > 5, and A < 1-5 the finite difference solutions do not vary
significantly by varying any of those parameters. The largest differences
gceur for AmaX N2 and |6RO| ~ 0.05.

As analytical solution is impossible for a dissolving sphere it is more
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di fficult vuuv ve-~vil'@0y OoF numerical methods for dissolving bubbles.
The greatest problems would often occur as size approaches zero, especially

in cases when the rate of dissolution g; increases with decreasing size.
This difficulty is solved by redistribution of the space mesh points and
control of the relative changes in radius per time step,(restriction (3.78)).
Then the accuracy of the finite difference method is not poorer during the

last stage than it is during the intermediate stage of dissolution.

3N Comparison of the present method and previous finite difference

solutions

It was earlier noted that Readey and Cooper®s (1966) explicit method
could require excessively large space mesh sizes to ensure stability but at
the expense of convergence. Their solutions for the case F& =0.5 (dissolution)
with e = 0 and 0.5 were about ZQ = 1 and 0.93 respectively where denotes
the time required for complete dissolution. For those cases our solutions
are ZQ = 0.834 and 0.742 respectively. Solutions for slower dissolution were
not reported in Readey and Cooper®s work (1966) which suggests that the method
was not suitable for slow processes due to restrictions on the time
increments making computing times very long.

Cable and Evans (1967) reported a fairly large number of solutions but
their results seem to be inaccurate, especially the predictions of
dissolution. This may be due to the decrease of boundary layer thickness
during dissolution without correspondingly decreasing the mesh size 6e.

The differences between our results and Cable and Evans predictions of
dissolution times can be as much as 82% (table 3.3). Besides, there is
evidence that the differences are not exclusively due to different time

scales (figure 3.1).

Another shortcoming of Cable and Evans method is that it would be very



Table 3.3

Comparison between the present predictions
and Cable and Evans® predictions of

dimensionless dissolution time, Z

0
Cable and Evans Present work
£ 0 1 0 1
F Z
a 0
0.01 67.44 67.25 46.48 46.25
0.1 5.83 5.68 4.214 3.994
0.5 1.090 0.966 0. 834 0.644
1 0.540 0. 441 0.451 0.2828
2 0.281 0.192 0.2670 0.1214
4 0.149 0.093 0.1726 0.0512

inefficient to compute large increases of radius because a constant mesh
size was used.

Duda and Vrentas (1969, 1971) used N and N_D to characterize the
behaviour of one-component spheres where is a solubility parameter

and NB is related to e by the relation



Table 3.4

Comparison between the present predictions and Duda
and Vrentas®™ predictions of dimensionless

dissolution time, Z0

Duda and Present work
Vrentas (1971)

F N £ F =2

a B a o0
0.01 0.01 0 0.465 0.465
0.01 0.1 -9 0.486 0.486
0.1 0.01 0.9 0.402 0 .402
0.1 0.1 0 0.422 0.421
0.1 1 -9 0.601 0.601
1 0.1 0.9 0.302 0.3011
1 1 0] 0.451 0.451
10 1 0.9 0.271 0.2742
100 1 0.99 0.143 0.1464
1000 1 0.999 0.0726 0.0742

Figures 3.2a to 3.2d show some of the present Ffinite difference solutions
and the corresponding predictions by Duda and Vrentas (1969, 1971).
Comparisons of times required for complete dissolution are also shown in
table 3.4 and the differences between the actual predictions and Duda and
Vrentas!l results (1971) are usually less than 1% which represents a remarkable
agreement taking into account that the techniques are quite different. The
largest differences in times occur for large solubility parameter but are
always less than 2.5%. Duda and Vrentas investigated the effect of varying
the space and time mesh sizes and this might explain the accuracy of their
predictions. They also found that accuracy of solutions and economy of

computing can only be achieved by decreasing the amplitude of time intervals



Fig 3.1 : Comparison between the present finite difference
solutions for the one-component case Fa = 4; £ = 1 and
the corresponding finite difference predictions by Cable
and Evans (1967) .



Figs 3.2a to 3.2d : Comparison between the present Tfinite
difference solutions for one-component cases and the
corresponding Ffinite difference predictions by Duda and

Vrentas (1969, 1971).






Figs 3.3a and 3.3b : Comparison between the present finite
difference solutions for two-component cases and the
corresponding finite difference predictions by Weinberg

and Subramanian (1980) (shown dashed) .



during the initial stage of dissolution and during the final stage for the
cases when the dissolution rate increases with time (low Fd)- However, they
failed to provide a general criterion or algorithms to control the time
intervals. In addition they did not include algorithms to readjust the space
mesh points which may be necessary as the boundary layer thicknesses vary
considerably during transient regimes.

Having published a comprehensive set of predictions for dissolution
Duda and Vrentas failed to do the same for growth and did not compare Tfinite
difference predictions to the only class of exact solutions available for
growth from zero size (Scriven, 1959). It has been pointed out that
comparison is possible provided that sufficiently la-rge Increases iIn size are
computed by the finite difference technique, so that the effect of the initial
transient stage becomes negligible. This requires unduly large numbers of
time steps if sequential control of time intervals is not used.

Another limitation of Duda and Vrentas! techniques is that they were not
conceived for use with multicomponent bubbles, especially when rapid changes
of interfacial concentrations are involved and when there is a need for models
to describe unusual bubble behaviour (see Chapter V1). Weinberg and
Subramanian (1980), used a technique similar to Duda and Vrentas®s finite
difference method to solve the behaviour of two-component stationary bubbles.
However they reported only two examples which is clearly insufficient to
demonstrate the performance of their method. They also failed to show
comparison with alternative exact solutions to test their predictions of
behaviour of multicomponent bubbles.

Figures 3.3a and 3.3b show the predictions reported by Weinberg and
Subramanian (1980) and the corresponding actual predictions. These cases
were computed with arbitrarily chosen solubilities, diffusivities and

concentrations in the bulk liquid so that it is more significant to use only



dimensionless variables instead of the real time used by Weinberg and
Subramanian. These authors might have been unable to solve the final stage
°F Process illustrated in figure 3.3b. Also they computed only a
relatively short initial stage in the case shown in figure 3.3a, stopping
before the direction of transfer of species 1 (which corresponded to oxygen)
bad changed. During the initial stage species 1 diffuses into the bubble
Whilst the interfacial concentration increases and approaches the value of
the solute concentration in the bulk liquid medium. At g = 0.45 the
rnterfacial concentration e>:ceeds C and F (®) changes from r%egative to
PO-itive. This points out that thea;lormalizled dimensionless concentration
Cx ~"Cj (r,© - craLl)/(C.I (@t - °°i)] used by those authors is not suitable
r this type of problem because of the discontinuity which occurs when

0
i(Q,t) < is reversed to become 0O (@,t) > or vice-versa. These

samples also show that the changes of interfacial concentrations per time

Step must be controlled.

During the last stage of the example shown in figure 3.3b F (®R) also
°hanges gsjgn at g~ = 0.45. Again the computations reported by Weinberg and
SUbiramanian (1980) did not reach this stage. This supports the previous

luments. Weinberg and Subramanianls prediction of the R versus Z curve is
included because the R scale is not properly shown in the original article,
~zekely and co-authors (1971, 1973) showed good agreement between their

bte difference predictions for large @ and the corresponding asymptotic

regime for growth from zero size (Scriven, 1959). However, that finite

Ollﬁ:e-'rence technique was not used to compute growth with low or moderate 4>

°r dissoluti 5, The restriction on the amplitude of time intervals which

was
needed to ensure stability might prevent efficient use of such methods

for
abl ranges of the parameters.



CHAPTER 1V

4.1 Growth of one-component spheres

Equations (2.28) and (2.29) illustrate that one-component spheres can
be characterized in terms of only two variables @®and £. The solubility
parameter accounts for concentrations of solute in both phases and e accounts
for the partial molar volumes of the solute. It is not necessary to include
the diffusivity, D, in the dimensionless balances, so that the dynamics of
the process can be studied independently of D. It is therefore reasonable
to use the terms slow and rapid growth to denote small @ < 0.01) and large
& > 10) values of ¢ respectively.

The relevant material balances (equations (2.28) and (2.29)) can be
solved bv using the finite difference technique outlined in Chapter I1I1I.
Exact solutions cannot quantify the growth of spheres from finite (nhon-zero)
size. However those analytical solutions have vital importance in testing
the accuracy of numerical techniques.

The study of nucleation and growth of spherical phases is important in
the science of materials, in glass technology and in many chemical engineering
processes. In some systems analytical solutions of growth from zero size can
be useful. Otherwise, alternative methods are required to quantify the
growth from a nucleus with significant finite radius. The limitations of

various approximate solutions must also be discussed.



8r7.

4.2 Analytical solutions for the growth of one-component spheres

from zero size

Equations (2.28) and (2.-29), with boundary conditions (2.31), (2.32) and
initial conditions (2.33) were solved by Frank (1950), for the case e = 0O,
that is when u(r) = 0 and the volume of the system remains constant because
the partial molar volumes of solute in the liquid and in the sphere are
equal (equation (2.25)) . Frank"s solutions were extended by Scriven (1959) to
cover the general cases £ f 0. Both authors used Boltzmann transformations by

assuming the unique variable

C(® - C((r,® “4.)

with
S = r/2/Dt = e/2/z “4.2)

and
a = 26/Dt “.3

for growth from zero size. 3 is a characteristic constant dependent on both

¢ and E.

Accordingly to such transformation the concentration profile is given

by

C(/a) = Ce - 2B2Cx: (1-Cav) J exp |BZ[| + 2¢x - (1-r1) 2jj dr “@.9

and on introducing the boundary conditions



M- 1 v =232 7 exp 1+ 2cx  li-x: 7? dr 4.5)

The transformation of the partial differential equations leads to simple
ordinary differential equation which is easy to integrate by using
numerical methods. Fourth-order Runge-Kutta and fourth-order Runge-Kutta-
Fehlberg (Fehlberg, 1970) techniques were used for that purpose (@ppendix 2).

These analytical solutions rely on the existence of unique self similar
profiles, which can be used to confirm the material conservation, by integra-
tion of the changes of solute content in the liquid medium. This confirmation
also serves to verify the continuity equations formulated in Chapter 1l and
the velocity profile in the liquid medium (equation (2 .10)).

Analytical solutions are also the best test of comparison for general
numerical solutions of the partial differential equations and other simple
approximate solutions. Reliable numerical techniques must produce convergence
of numerically predicted growth rates and concentration profiles to the
equivalent analytical predictions for sufficiently large spheres. Computing
algorithms which fulfil these conditions can be intended for use In more

general conditions, when analytical solutions are not available.

4#3 Concentration profiles and material conservation

Mass conservation after growth from zero size requires

AT é r imii) **"3*=* cs 14-6>

and by substitution of equation (4.4) into equation (4.6) and transformation
of variable r intow =1 - a/r.

1 - CdV
I = 6B / @) kJoexpF3" 14 2ex  (@x) dr dw = 1 .

1 = v
w @D



The integrai 1 was evaluated numerically (a@ppendix 3) for wide ranges
of 8 and e in the range 0-2. Some results are listed in table 4.1, for
the case Ca = 0, and show that the deviations from equation (4.7) remain
negligible. The mole fractions of solute in the bulk liquid medium,

= v Cm, are also indicated to demonstrate that deviations from equation
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(@.7) can only be detected with very large values of the factor (@ - v)~1,

which make the numerical integration of equation (4.7) very dependent on
apparently negligible differences of the concentration CY, (obtained by
numerical integration of equation (4.4)).

The excellent agreement between concentration profiles and the overall
material conservation is a conclusive proof of the correctness of the
differential balances. It also confirms that the rate of the process is
dependent on the partial molar volume of solute, rather than on the density

of the liquid medium.

Table 4.1
Confirmation of material conservation

according to equation (4.7)

0.01 0.0002 1.000 O 1.000
0.1 0.0168 1.000 O 1.000
1 0.484 1.000 O 1.000
10 0.985 1.000 O 1.000

20 0.996 0.998 O 1.000



4.4 Numerical solutions of growth from finite size

Computations of growth of one-component spheres were carried out by
using the technique outlined in Chapter Ill. Wide ranges of $were covered
and different values of £, special emphasis being given to the cases £ = 1
and £ = 0. With £ = 1 the volume of liquid medium remains constant, whilst
if C = 0 transfer of solute across the interface between sphere and liquid
causes no change in volume and the volume of the system remains constant.

Equation (4.3) can be written in dimensionless form

R = 2B/Z 4.8)

or

4.9

and the plotting of numerically computed results in logarithmic scales
allows a ready confirmation of the convergence of numerical solutions to
their equivalent asymptotic regime of growth from zero size. This convergence
is illustrated in figures 4.1, 4.2 and 4.3 for the cases e = 1, £ = 0.5 and
e = o respectively. The dashed lines represent analytical predictions of
growth from zero size (equation (4.8)) for the smallest and largest
values respectively.

The convergence of numerical solutions to equation (4.8) is also
confirmed in table 4.2. After an increase to 10 times the initial size
QR = 10) the ratio R/2/z is already less than 1.5% greater than the final

limiting values for R = 10J.



Figs 4.1, 4.2 and 4.3 : Convergence of growth from Ffinite

size towards the asymptotic regime. The values of £ are

shown in the figures. The dashed lines represent growth

from zero size for the smallest and largest values of §

shown in each Ffigure. The solubility parameters are,

from right to left,

in fig 4.1 : ¢ = 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5
10, 20, 50 and 100 respectively,

in fig 4.2 : p = 0.001, 0.01, 0.1, 0.2, 0.5, 1, 1.5,
1.75 and 1.9 respectively.

in fig 4.3 : ¢$=0.001, 0.01, 0.1, 0.2, 0.5, 0.75, 0.9
and 0.95 respectively.



Table 4.2
Evolution of growth rates towards the asymptotic

regime for the case e = 1

0.001 0.01 0.1 1 10 100
R R/2/z

2 0.02647 0.0885 0.3330 1.745 14.30 139.5
5 0.02333 0.0771 0.2816 1.378 10. 78 104.1
10 0.02295 0.0758 0.2757 1.336 10. 37 99.9
© 0.02280 0.0753 0.2739 1.320 10.21 98.3
103 0.02279 0.0753 0.2738 1.320 10.20 98.2
105 0.02279 0.0753 0.2738 1.320 10.20 98.2

Computations were carried out until a =(105.a0,(R = 105), and these
numerical predictions were used to estimate the growth constant B. The
numerical predictions of B values were then put into equation (4.5) to
recover the analytically predicted values of solubility parameter <j>B.,e)
(see table 4.3). These computed 4 values differ by less than 1% even with

very large growth rates. Experimental methods are very unlikely to

measure concentrations within 1% error.

4.5 Concentration profiles

Analytical solutions for growth from zero size require a unique

concentration profile as predicted by equation (4.4). Valid numerical

predictions of concentration profiles during growth from finite size must
converge to those solutions of growth from zero size and provide further
confirmation of both numerical and analytical solutions of the relevant
partial differential equations.

In figures 4.4 to 4.8 the concentrations have been normalized and the
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Table 4.3
Comparison between finite difference predictions of the asymptotic
regime of growth from finite size and the corresponding

analytical solutions for growth from zero size .

E 0 0.5 1

3 3 +B.£) 6 $(@B.e)
0.001 0.02284 0.001002 0.02283 0.001002 0.02283 0.001002
0.01 0.0756 0.01002 0.0755 0.01002 0.0753 0.01000
0.1 0.2827  0.1000 0.2779  0.1000 0.2734  0.1000
0.2 0.4541  0.2000 0.4360  0.2000 0.4206  0.2001
0.5 1.038 0.5000 0. 880 0.5000 0.783 0.5001
0.75 1.958 0.7501
0.9 3.564 0.9004

0.95 5.263 0.9502

1 - 1.819  1.000 1.320  1.001
1.5 3.654  1.500
1.75 6.003  1.750
1.9 10.36  1.900
5 - 2.334  2.001
5 5.30 5.005
10 10.20  10.01
20 19.99  20.02
50 49.33  50.04

100 98.2 100. 1



Figs 4.4 to 4.7 : Finite difference predictions of
concentration profiles during growth from finite size.
The numbers show the corresponding dimensionless radius
R. The discrete symbols () represent the analytical
solutions for growth from zero size (equation (4.4)).
The relevant values of e and $ are shown in the figures.






Fig 4.8 : Analytical solutions of concentration profiles for
growth from zero size (equation (4.4)) for low values of
g (dashed lines) . The full line represents the limiting
quasi steady-state prediction (equation (2.69)). The
numbers show the values of the solubility parameter @t
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radial distance from the centre of the sphere transformed as suggested by
the analytical solutions (equation (4.4)). The evolution of numerically
computed profiles in these figures is illustrated at several stages of the
transient regime, namely with R = 1.05, 1.1, 1.25, 2.5 and 10.

In figure 4.4 @ = 0.01 and z = 1) , the numerical predictions evolve
rapidly towards the final asymptotic profile. The solution for R = 2.5 is
indistinguishable from the final profile for R = 105, and is also
indistinguished from the analytical predictions. The concentration gradient
near the interface converges even more rapidly to the final solution than
the tail of the profile. This must be due to the fact that very little
material is needed to saturate the boundary layer while the tail of the
profile requires larger times to be built up by diffusion.

The evolution of profiles with moderate and large solubility parameters
(figures 4.5, 4.6 and 4.7) show the increasing importance of the transient
stage. With =1 and e = 1, (figure 4.6) , or &= 10 and £ = 1 (Figure
4.7) the profile for R = 2.5 is still distinguishable from the final one,
but profiles for R = 10 and R = 105 cannot be distinguished. Again these
final profiles are almost coincident with the equivalent analytical
solutions of equation (4.4).

The evolution of concentration profiles shows that the transient stage
is usually important until about R = 2.5, that is when the radius of the
sphere is about 2.5 times the initial radius. This stage may include the
most important part of the process, and analytical solutions cannot then
be used.

By comparison between figures 4.4, 4.5, 4.6 and 4.7 it is evident that
the boundary layer thicknesses increase with decreasing solubility
parameters. Asymptotic profiles are shown in figure 4.8 in the range of

very low @ The actual solutions converge towards the quasi steady-state
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which is nearly indistinguishable from the solution for p = 10“6. Growth
rates also confirm the quasi-steady state approximation as the limit of

actual solutions in the range of very low <

4.6 Comparison between analytical solutions and approximate predictions

of bubble growth

Gas bubbles can be characterized by only a single parameter 4, with
S = 1. For these cases it is possible to find precise limits of asymptotic

regimes (Scriven, 1959) , that is for very low ¢

$ = 262 (4.10)
and
R= Qo (4.11)
and for very large 9
$= /4/3 £ “4.12)
or
R =2p/3/n /z . (4.13)

For sufficiently long times the quasi-stationary equation (2.57) and

quasi steady state equation (2.70) each leads to

R-23/£= @ fay>* (4.14)

which is also the limit of analytical solutions of growth from zero size,

(equation (4.11), for very low g~

The other limit of quasi-stationary solutions for large @ (equation



(2.64)) may be expected to hold better in the range of very small Z, that
is with large 0. Therefore, for large R equation (2.64) becomes
R-2B/z =2 (plziv @.1
or
= £ B . (4.16)
However, these predictions of solubility parameters are about 73% in excess

of those given by the analytical solutions (equation (4.12))
By substitution of asymptotic dependence of R on /z, (equation (4.8)),

into the quasi-stationary equation (2.57) one obtains for large R

R =2 —
P50 * j (4.17)

and therefore the asymptotic quasi-stationary regime leads to

(4.18)

-4(2BV£:J].

In an attempt to find a generally acceptable approximation to the true

analytical solutions equation (4.18) can be replaced by

0o =3/ i+ L
/ [20w w (4.19)

so that its limits for very low and very large growth rates will be coincident
with the corresponding limits of analytical solutions (equations (4.10) and
(4.12) respectively).

The ratios dapAp are plotted versus log O in figure 4 _.9%# where .

the approximate prediction of solubility parameter and < the equivalent

analytical solution of equation (4.5) with e = 1. Both quasi steady state



log 3

Fig 4.9 : Relation between the approximate values of
solubility parameters <pp predicted by
1 - equation (4.10)

2 - equation (4.16)
3 - equation (4.18)
4 - equation (4.19)

and the equivalent analytical values of Q.
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(equation (4.10)) and quasi-stationary solutions (equation (4.18)) are
reasonably good in the range of very low growth rates. Equation (4.16) is
generally very poor even in the range of rapid growth. The failure of this
flat slab model is possibly due to the role of boundary motion. Finally
equation (4.19) is an excellent approximation in the ranges 3 < 0.05 and

3 > 10 where the differences are less than 1% of the analytical <@ values.
It is still generally acceptable for 0.05 < B < 10 where the differences are

< .

4,7 Comparison between approximate and numerical solutions of the

transient initial stage

The simple form of quasi steady-state approximations suggests a useful
representation of the relation between the square radius and time (Figure
4.10) for growth from finite size. All the solutions represented in
figure 4.10 reproduce nearly linear relations between RO and Z. These
results also confirm the gradual convergence of actual solutions to the
quasi steady-state limit, (dashed line in Ffigure 4.10), for low solubility
parameter. It has already been shown that quasi-stationary solutions
converge to the quasi steady-state approximations for very low ¢ and that
other approximate predictions are poorer in this region.

The quasi-stationary approximation suggests a different representation
for very large solubility parameters (equations (4.13) and (2.-64)). In the
asymptotic regime R becomes a unique function of the transformed time <& Z
This unique dependence can be extended to growth from finite size (figure
4_.11) , where the solutions for @ = 100 and 9 = 1000 are almost indistin-
guishable. Therefore the case ¢ = 100, £ = 1 is good representation of

growth of all bubbles with very large solubility parameters. The limiting



Fig 4.10 : Initial stage of growth from finite size for low
and moderate solubility parameters tp. The numbers show
the values of & The dashed line represents the quasi
steady-state approximation (equation (2.70)).

Fig 4.11 : Initial stage of growth from finite size for
moderate and large @ The numbers indicate the values
of .
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growth from zero size (equation (4.13)) is also shown in figure 4.11
(dashed line).

Other simple approximate solutions have been proposed in the literature
to quantify the initial transient stage of growth from finite size.

Martins (1969) proposed the following transformation of equation (4.13) into

R =1+ 2x6/37iF Sz . (4.20)

A different approximation was obtained by Rosner and Epstein (1972) by

assuming a simple approximate form of concentration profiles.

dJR-D - Q-WR =27 . “-21)

Equation (4.21) Ileads to the asymptotic regime

R = XGfz “.22)

which is about 2.33% in excess of analytical predictions of R in the range

of large <& (equation (4.13)). However, equation (4.21) fails for low and

moderate 4~

In figure 4.12 it is shown that equation (4.21) is reasonably accurate
for large @ even during the initial transient stage. Spherical symmetry
must be relatively insignificant whenever the boundary layer is very thin,
which explains the agreement between the actual numerical solutions
@ = 100) and the flat-slab model (equation (2.64)) during the very early
stage. Equations (4.13) and (4.20) are poor approximations of the initial

stage of growth from finite size.



Figure 4.12 : Comparison between the actual finite difference
predictions (dashed line) and approximate predictions
for the case @= 100, E = 1.



97.

4.8 The transient stage of growth from finite size

Figure 4.10 has shown that in the range of low and moderate solubility
parameters the actual solutions converge to quasi steady-state approximations.
In the limit this unique solution reduces to a linear relation between the
square radius and the transformed time Z. Besides, even with moderate &

values the growth from finite size is reasonably given by
R2 =1+ 4B2 Z , “4.23)

where B is the characteristic growth constant for the asymptotic regime.
From equation (4.8) it is possible to write for the analytical solutions

of growth from zero size

|| = 3/lz = 262IR (4.24)

Numerical predictions of Et!| for the growth from finite size R(O) = 1 are
- n

compared to 2B2/R in table 4.4. These results include a wide range of values
of p for the case ¢ = 1. The values of 6 used in the table were obtained
from numerical results for R = 105. By the time the radius of the sphere is
twice the initial size growth rates for growth from finite size are usually
not significantly different from the rates for the growth from zero size.
These differences vanish before an increase of ten times the initial size of
the sphere.

It is worth noticing that equation (4.23) is reproduced by integration
of equation (4.24) from Z = 0; R = 1. This condition requires a very short
transient evolution of concentration profiles towards the unique asymptotic

dependence expressed by equation (4.4). Figure 4.4 demonstrates that low

values of 4 satisfy that requirement.



98.

Table 4.4
Relation between the rates of growth from finite size,

(drR/dZ)n, and the rates of growth from zero size for £ = 1 .

P 0.001 0.01 0.1 1 10
drR

=3
xc
==

1.1 1.052 1.118 1.428 2.634 3.759
1.25 1.027 1.054 1.152 1.559 1.953
1.5 1.015 1.031 L.0O60 1.220 1.394
2 1.010 1.018 1.021 1.073 1.128
5 1.000 1.001 1.002 1.004 1.008
10 1.000 1.000 L.OO0O 1.000 1.000
100 1.000 1.000 L.OOO 1.000 1.000

105 1.000 1.000 L.OOO 1.000 1.000

This analysis of growth rates is based on the evolution of concentration
rcl

profiles that is to say the values of orj which is more significant than
fitting R, Z data into equation (4.8). This explains why the convergence to
asymptotic conditions is quicker in table 4.4, than in table 4.2. The
differences are mostly due to an initial quantity zZ(1) = 1/(4(32), that is,
the time required for a sphere to grow from zero size to the reference size
¢ = 1); that quantity is non existent in growth from finite size. For

R >> 1, Z becomes nearly proportional to R* and Z(I) represents a negligible

fraction of the actual dimensionless time Z.



99.

4.9 The rclc of spherical symmetry in the diffusion controlled growth

of spheres

It was shown that in the range of very low solubility parameters, <4 the
actual solutions for growth converge to quasi steady-state conditions,

(equations (2.67) and (2.68)) which lead to

(4.25)

Equation (4.25) shows that the concentration gradients are very steep
near the interface because the area available for the spherically symmetric
transport increases as (e/R)2.

Quasi steady-state and quasi-stationary approximations converge in the
range of very low @ The effect of spherical symmetry on concentration
profiles in that range can then be easily estimated by comparing quasi-
stationary profiles (equation (2.58)) with the flat slab model (equation
(2.65)). The contribution of spherical symmetry to the rate of the process
can also be established by comparing the quasi steady-state (equation (2.70))
and flat slab approximations (equation (2.64)). The latter proves to be a
very poor description.

With large @ the boundary layer (obtained by extrapolation of the
concentration gradient at the interface) is thin and spherical symmetry is
expected to become much less important than with low @ This conclusion is
confirmed by the fact that quasi-stationary and flat slab approximations
converge in the range of large @ Both approximations are based on ignoring
the convective transport of solute and, in spite of spherical symmetry, the

quasi-stationary solutions converge to flat slab approximations (figure 4.9).
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However the actual finite difference predictions of the time required to
reach a generic radius R can be as little as 1/3 of the

equivalent quasi-stationary predictions. The differences are the result of
radial convection and this is dependent on the spherical symmetry of the
system.

In the intermediate range of ¢ values, (0.1 < $< 10), spherical symmetry
remains very important, but its role decreases with increasing 9. On the
contrary the radial convection can be ignored in the range of very low @
but its role is gradually enhanced as ¢ increases and accounts for the

differences between actual solutions and quasi-stationary approximations.

4.10 Conclusions

The analysis of diffusion controlled growth of spheres with constant
conditions at the interface was simplified by making the material balances
dimensionless. The dynamics of the process is then completely specified
by two parameters, (@ and e. The role of the diffusivity, D, is readily
obtained by recovering the real time t from the definition of the
dimensionless time Z. During the asymptotic regime the growth rate is
proportional to the square root of D, that is (da/dt) = In the
range of very low solubility parameters the growth constant @ is nearly
proportional to qf, so that similar effects can be obtained by corresponding
changes of either diffusivity or solubility parameter. On the contrary,

B is proportional to ¢ for very large values of solubility parameter and the
growth rate is then more sensitive to changes of solubility parameter than
to changes of D. The empirical equation (4.19) provides reasonably good
predictions for the complete range of ¢ values, and illustrates the

transition between those limiting conditions.
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Whenever e < 1 the partial molar volume of solute represents a positive
contribution to the volume of the liquid medium by the solute. During growth
he transfer of material from the liquid into the sphere is responsible for

decrease of volume of the solution which opposes the expansion of the

undary layer. Growth rates are then enhanced relative to the case when
volume contribution of solute is negligible. With low @ that volume

ntribution is negligible except for unrealistically large partial molar

v°lumes of solute.

the nature of limiting regimes for very low and very large 9 was

darlfled and the limitations of some approximate solutions were investigated,

Th - - _ - _ -
¢ numerical finite difference technique developed in this work was

-cessfuliy tested by comparison with exact solutions over wide ranges of
the relevant parameters and can therefore be expected to perform equally

vio 2
with dissolution and for other more complex systems.
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CHAPTER V

5.1 Dissolution of one-component spheres

It was demonstrated in Chapter 1V that growth tends to an asymptotic
regime, which was solved analytically. This tendency assists the development
and testing of accurate numerical techniques. However for all cases of
growth from Ffinite initial size transient behaviour is important at least
until the sphere has doubled in size (volume of precipitate increased by a
factor of 8). This at once suggests that dissolution must be considered a
transient regime. In general the partial differential balances cannot be
solved analytically and the accuracy of simple approximate solutions is
rather doubtful. Numerical solutions are also susceptible to poor accuracy
and efficiency unless the method includes algorithms to optimize the finite
differences.

The mathematical analysis of dissolution is of interest to some problems
of glass technology and chemical engineering. The primary objective is to
obtain the relationship between the radius of the sphere and time, but the
analysis of concentration profiles is essential for the interpretation of
mechanisms. It is equally important to identify the similarities and general
solutions especially in the ranges of very low and very large "driving-

forces" .

It is convenient to use a positive solubility parameter Fd to
characterize the rate of dissolution. The diffusivity can be excluded from
the basic analysis of the dynamics of one-component spheres so that

throughout this chapter the terms slow and rapid dissolution will refer to

small (F < 0.01) and large values of Fa (F > 10) respectively.
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5.2 Numerical solutions

The numerical technique developed in this work was described in
Chapter 111 and tested in detail for growing spheres as described in
Chapter IV. The results given here were obtained by this method.

In table 5.1 and figure 5.1 the dimensionless time required for
complete dissolution, Z is related to the solubility parameter F . The
curves in figure 5.1 represent the following values of parameter e = O,
0.5, 1, 1.5, 2. In the range of very low F the dissolution time converges

to

Z, =1/@F) G.D

and becomes nearly independent of the value of parameter e, except for
unrealistically high or low £, that is £ >> 2 or £ « 0 (see table 3.4).
In the case £ = 1 dissolution becomes quicker than the predictions of
equation (6.1) and the deviations increase with F*. The parameter £ plays
an important role in the range of moderate and large FCI values.

From the definition of Fa it follows that

~co(l - cawv)
lira Fa = CO .
G-2
Cav - 1

As £ = 1 - Cs-v it also follows from the definition of Fa that for

lim Fa = /(£ - 1) .
G-3)

Ca + 7

This last condition is shown in figure 5.1 where ZQ decreases very rapidly

as Fa approaches 1 for £ = 2 and 2 for £ =1.5 respectively.



Fig 5.1 : Relation between finite difference predictions of
dimensionless time required for complete dissolution,
Zq , and solubility parameter Fa. The figures show the
values of £.



Table : 5-1

Dimensionless times required

dissolutici., Zn.
e 0 0.5 1
Fa ZO
0.001 486.6 486.5 486.4
0.01 46.48 46.40 46.25
0.1 4-214 4.106 3-994
0.2 2.057 1.953 1.846
0.5 0.854 0.742 0.644
0.75
0.9
0.95
1 0.451 0.3707 0.2828
1.5
1.75
1.9
2 0.2670 0.1987 0.1214
5 0.1536 0.1003 0.03861
10 0.1111 0.0669 0.01599

20 0.0855 0.0483 0.00656
50 0.0651 0.03473 0.002006

100 0.0546 0.02835 0.000814

for complete

1.5

486.3

46.11

3.880

1.737

0.539

0.1815

0.0707

0.03769

0.01 919

486.2

45-99

3.764

1.623

0.4230

0.1709

0.0792

0.0492



Figs 5.2 to 5.6

dissolution.

of
in

fig 5.2
fig 5.3
fig 5.4
fig 5.5

fig 5.6

: Finite difference predictions of

The symbols (+) represent the quasi
steady-state approximation (equation (2.70)). The
values of £ are shown in these figures and the values
solubility parameter are, from top to bottom,

Fa

Fa

Fa

Fa

Fa

0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5
and 10

0.001, o.01, 0.1, 0.2, 0.5, 1,2, 5
and 10

0.001, o0.01, 0.1, 0.2, 0.5, 1, 2, 5,
10, 20, 50, 100 and 1000.

0.001, 0.01, 0.1, 0.2, 0.5, 1, 1.5,
1.75 and 1.9.

0.001, 0.01, 0.1, 0.2, 0.5, 0.75
0.9 and 0.95.
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The computed relations between the dimensionless radius, R, and the
dimensionless time Z are shown in figures 5.2 to 5.6 for several values of
E from O to 2. The time was normalized in terms of Zo to allow the
simultaneous representation of a wide range of Fm values.

For very low solubility parameters (Fa < 0.001) the actual numerical
solutions converge to the quasi steady-state approximations (equation (2.70)),
and become independent of E. Equation (2.70) illustrates the limiting regime
with increasing rate of dissolution throughout the whole process. As Fa
increases the solutions diverge progressively from that limiting case. The
dissolution rates decrease during the early stages but increase again during
the final stages. The point at which this inflection occurs is progressively
shifted from relatively close to the beginning (R=I),for very low solubility
parameters Fa,to almost complete dissolution (R=0) for high values of Fa.

Figures 5.4 demonstrate the existence of a unique limiting solution,
(equation (2.70)), for low solubility. On the contrary, there is no such
limiting behaviour in the range of very large Fa. In these conditions the
last stage of the process becomes very much slower than the initial and
intermediate stages. For example, with Fa = 1000; e = 1 the sphere

decreases to 10% of the initial size (R=0.1) in only about 11% of the total

dissolution time.

5.3 Concentration profiles

Concentration profiles are illustrated in figures 5.7 to 5.9 for the
case £ =1 (gas bubbles) and Fa from 0.0001 to 100. This series assists
understanding of the evolution of boundary layers and of the factors and
mechanisms which are likely to influence their shape. In addition the cases
Fa = 10; £ = 3113 Fa = 0.95; e = 2 are illustrated in figures 5.10 and
5.11 respectively and serve the purpose of analysing the effects of the

partial molar volume of solute.



Fig 5.7 : Finite difference prediction of concentration
profiles for the case Fa = 0.0001, £ = 1 at several
stages of dissolution which correspond, from right to
left, to R = 0.9, 0.5, 0.25, 0.1 and 0.05. The dashed
lines represent the quasi steady-state (equation (2.69)).



Fig 5.8a

Figs 5.8a to 5.8e : Finite difference predictions of
concentration profiles at several stages of dissolution
corresponding (from right to left) to R = 0.9, 0.5,0.25,
0.1 and 0.05 respectively. The values of e and Fa are
shown in the figures.
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Fig 5.9 : Concentration profiles during dissolution. The
full lines represent the finite difference predictions
corresponding to the dimensionless radii R = 0.25, 0.1
and 0.05. The dashed lines represent the transformation
from R = 0.25 to R = 0.1 and 0.05 due only to radial
convection (equation (5.6)).



0.0 0.5 1.0 e 15 2.0 2.5

Fig 5.10

Figs 5.10 and 5.11 : Finite difference predictions of
concentration profiles at several stages of dissolution
corresponding from right to left to R = 0.9, 0.5, 0.25,
0.1 and 0.05 respectively for the cases
Fa = 10, £ = O in figure 5.10.

Fa = 0.95, £ = 2 in figure 5.11.

Fig 5.11
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The dashed lines in figure 5.7 represent the quasi steady state
approximation (equation (2.69)). Near the interface the approximate and
numerical predictions are indistinguishable. During the initial stage the
material dissolved is insufficient to produce the concentrations predicted
as the tail of quasi steady-state profiles. The agreement is generally
good by the middle of the process (R=0.5) but the tail of numerically
computed profiles contains higher concentrations than quasi steady-state
predictions. This relation must reflect insufficient time for the diffusive
transport to be effective throughout large distances.

The sequence of figures 5.8a to 5.8e shows that the boundary layer
thicknesses increase during the initial stage of the process due to
accumulation of material. However, this trend is reversed during the later
stages of dissolution due to the effect of spherical symmetry which makes the
volume of shell of any given thickness dr increase rapidly. That transition
occurs relatively early with slow dissolution (figure 5.8a) but is hardly
noticed with rapid dissolution (Ffigure 5.8e). Inflection points shown by
the relationships between the radius and time are a direct consequence of
the inflection of concentration gradients at the interface.

With large dissolution rates (Fa > 5) the intermediate region of the
concentration profiles tendsto develop inflections and the second radial
derivative of the concentrations can become negative. These features are
uncommon in dissolution processes except possibly if the diffusivity is
strongly dependent on concentration (Crank, 1975). In the present
conditions it is believed to be a consequence of the radial convection being
very important and this effect persists throughout the range of very large
solubility parameters (full lines in figure 5.9). The interpretation of
the last pheneomenon has to take into consideration its development

relatively late during dissolution R < 0.25) when less than 2% of the
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original content of the sphere is left to dissolve. Accumulation of solute
reduces the diffusion rate, while a relatively rapid motion of the boundary
combined with the spherical symmetry and decreasing radius will have
important effects on the concentration profiles.

To clarify the actual behaviour it is convenient to analyse the effect
of pure radial convection due to contraction of the sphere. If transport
of solute is assumed to be exclusively due to the motion of liquid, decrease
in radius of the sphere will make the concentration F(e,R) a function of the

Lagrangian coordinate
r--a =r, -a G.9

or

e R G-5

A point originally at distance eQ with concentration Fq = F(eo,RQ) moves to

due to a decrease of radius from to R so that

e(PO) - <e03 - KO3 + R3) (5.6)

This relation was used to simulate the effect of pure radial convection
on the first profile in fig. 5.9 for R = 0.25 when the radius had further
decreased to 0.1 and 0.05; these curves are shown dashed. The actual
concentration profiles for the finite difference solution at these same values
of R are also shown (full lines); these differ only slightly from the effect
of radial convection alone.

For radial convection to be effective the motion of the boundary must be
sufficiently rapid, and the boundary layer thickness must be sufficiently
large for the velocity of the liquid to vary throughout that region

(equation (2.10)). The first condition is not met for very samll F, which
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jJustifies dropping the convective term from equation (2.28) so that the
quasi-stationary and quasi steady-state approximations hold reasonably well.
On the contrary the second condition is not fulfilled during the initial
stage of rapid and moderately rapid dissolution (Fig. 5 .8e) .

Unless the dissolution rate is small and diffusion can transport the
solute to relatively large distances, the accumulation of solute becomes
increasingly severe. With large solubility parameters the amount of solute
dissolved is initially accommodated in a thin layer due to the high level of
concentrations. However the thickness of that layer increases with
decreasing radius and becomes very important during the last stage of the
process.

IT £ < 1 the volume of liquid increases as the dissolution proceeds.

This contribution by the solute is an extra factor for expanding the boundary
layer, especially near the interface. Therefore the boundary layer thicknesses

are greater than for the case £ = 1 and the intermediate region of the
concentration profiles shows negative gradients 32R relatively early (R=0.9),
(see fig. 5.10).

On the contrary if £ > 1 the partial molar volume of solute iIs negative
which causes a decrease of the volume of liquid as dissolution proceeds. The
tendency to increase boundary layer thicknesses is then somewhat restricted

especially near the interface (see the case F& = 0.95; £ = 2 in fig. 5.11) .

5.4 Role of spherical symmetry

The spherical symmetry of the system affects the two competing
mechanisms of transport of solute, namely diffusion and radial convection.

It was found that for very low solubility parameters the dissolution of
spheres is almost exclusively dependent on the diffusion of solute in the

surrounding liquid. This class of solutions converges to quasi steady-state
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approximations which provide a simple understanding of the limiting role of
spherical symmetry on the concentration profiles (equation (2.67)). The
concentration drops relatively rapidly near the interface to compensate the
rapid increase in the area available for diffusion and the volume available
to store the solute. In consequence the dissolution rates increase with time
(equation (2.70)). These features do not happen with different geometries

or in diffusion processes involving constant or increasing radius of the
sphere.

In practice the quasi steady-state approximation has no use in
predicting the exact behaviour of real systems, its importance being restricted
to the clarification of limiting conditions. A slightly better description
is provided by quasi stationary approximations which include the accumulation
of solute in the boundary layer around a sphere of constant radius. Equation
(2.58), (F(e.,D = Fa®/e)e-erfc[(e-R)/ (2/2)]D , is then the illustration of the
role of spherical symmetry on concentration profiles and can be compared to
the one-dimensional equivalent profile, F(e,Z2) = Fa-erfc[(eR)/(2/2) ],
[equation (.65)] -

With increasing Fa the radial convection and accumulation are enhanced
and the boundary layer thickness increases as dissolution proceeds. Radial
convection is then accounted for by Lagrangian coordinates, (equations (5.5)

and (G -6)), which demonstrate the role of spherical symmetry.

55 Comparisons between approximate predictions and numerical solutions

A preliminary analysis of the accuracy of several approximate solutions
is shown in figure 5.12, where Z” represents the dimensionless time given by
the approximations and ZQ the equivalent numerical solution.

IT the dimensionless time Z is sufficiently low the quasi-stationary

solution reduces to R = 1 - 2 Fa -®/IT , (equation (2.64)), and can be derived



Fig 5.12 : Comparison between finite difference predictions
of dimensionless time required for complete dissolution,
ZD, and the corresponding approximate predictions Z&j
given by
a - equation (2.57) (quasi-stationary solutions)

b - equation (2.61)

c - equation (2.70) (quasi steady-state)
d - equation (2.64) (flat slab model)

e - equation (2.63)



Figure 5.13 - Comparison between finite difference
predictions of dissolution (@ and the corresponding
predictions by
® equation (2.64) (flat slab)
© equation (2.63)

The figures show the solubility parameter F .



Fig 5.14 : Finite difference predictions of dissolution for
moderate and large values of Fa. The figures show the
values of F . The dashed line represents the flat slab
model (equation (2.64)).

Fig 5.15 : Finite difference predictions of dissolution for
low and moderate values of Fa. The figures show the
values of Fa. The dashed line represents the quasi

steady-state (equation (2.70)).
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Figs 5.16, 5.17 and 5.18 : Comparison between finite
difference predictions of dissolution (dashed lines)
and the corresponding predictions by
a) equation (2.57),

b) equation (2.61),
©) equation (2.70),
d) equation (2.64) ,
e) equation (2.63).
The values of e and Fa are shown in these figures.
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Figs 5.19 and 5.20 : Comparisons between Tfinite difference
solutions (full lines) and the corresponding predictions
given by equation (2.71), (dashed lines). The numbers
show the values of Fa.
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from the one-dimensional diffusion (flat slab). Equation (2.64) is very
inaccurate for both very low and very large values of the solubility
parameter Fa because the roles of spherical symmetry and radial convection
are not recognized. The ratio Z~/Zq predicted by equation (2.64) 1is unity
at about Fa = 3.8 but complete coincidence is not verified even for that
case (figure 5.13) because the shapes of R(Z) are somewhat different.
Figure 5.14 shows that for moderate and large values of Fa equation (2.64)
is reasonably accurate during the first 20% of the process (R > 0.8) when
boundary layers are relatively thin.

Equation (2.63), (¢ = 1 - Fa*Z - 2Fa-/Z/w), is also poor (figure 5.12)
and only at about Fa = 1.8 does = Zq again without complete coincidence
of the solutions (figure 5.13).

Quasi steady-state, (equation (2.70)), and quasi-stationary approxima-
tions, (equation (2.57)), are reasonable in the range of very low solubility
parameters (figures 5.12 and 5.15), but are increasingly poor in a range of
common practical interest (Fa > 0.01). Quasi steady-state approximations
predict linear relations between the square radius and time, and these have
been used to analyse some experimental results (Liebermann, 1957; Manley,
1960). These authors interpreted the final deviations from linearity as the
effect of an organic deposit at the interface. Figure 5.15 shows that actual
diffusion controlled solutions can account for that final stage of
dissolution.

Both quasi steady-state and quasi-stationary approximations become
increasingly poor as Fa increases. Quasi-stationary solutions are generally
better but predict too rapid dissolution whilst quasi steady-state solutions
predict excessively slow dissolution.

. _ . 2
The transformed quasi-stationary equation (2.61),(R =1 - 2Fa-Z -
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4AFa-/Z°/TT) , is generally wnrsp than the original quasi-stationary equation
2.57), (@R/dZ = - Fa[l/R + 1//tz]).

The illustration of approximate solutions in the ranges of very low,
moderate and large Fa is shown in figures 5.16, 5.17 and 5.18 respectively.
The quasi-stationary equation (2.57) and the quasi steady-state equation
(2.70) perform well for low Fa. The transformed quasi-stationary equation
(2.61) is also reasonably accurate for low Fa, whilst equation (2.63),
R=1+9¢ + 2z/H, is reasonable during the initial stage but fails for
R < 0.8.

Figure 5.17 shows that none of the approximations 1is accurate for
moderate values of Fa. Equation (2.63) is much closer to the numerical
predictions for R(Z) between 1~ R ™ 0.2 than any of the other approximations.
However it was shown in figure 5.12 that equation (2.63) cannot be considered
a useful general approximation because its range of application is so narrow.

Finally none of those approximations is acceptable in the range of very
large Fa (figure 5.18).

Equation (2.71) (Subramanian and Weinberg, 1980) is more accurate than
quasi steady-state or quasi-stationary approximations, especially during the
initial and intermediate stages. Figures 5.19 and 5.20 show that equation
(2.71) is accurate for low and large solubility parameters Fa, and fails only
for R < 0.3. Notice that radial convection was included in the derivation of
equation (2.71) and its failure is only due to inclusion of insufficient

terms of the asymptotic expansion.

5.6 Limiting solutions for low and high solubility parameters

The convergence of actual solutions to a quasi steady-state limit for
low Fa was illustrated in figure 5.15. The time was transformed into Fa*Z

to recover the limiting dependence suggested by equation (2.70). This
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relation is reasonably good in the range Fa < 0.001 but with Fa = 0.01 the
quasi steady-state prediction of dissolution time is already about 8% larger
than the equivalent finite difference solution. Figure 5.15 also demonstrates
the progressive deviation from linearity between the square radius and time.
With moderately low solubility parameters, Fa < 0.1, these deviations are
chiefly due to the initial stage which is required to accumulate sufficient
material to build up the boundary layer thickness characteristics of quasi
steady-state profiles with spherical symmetry (equations (2.68) and (2.69)).
That limiting thickness is equal to the radius of the sphere. For moderate
F3 values the deviations from linearity in figure 5.15 are initially due to
insufficient accumulation, but during the final stage géE;Z)a< 0.5, which
reflects the excessive accumulation and larger boundary layer thicknesses
than for quasi steady-state limits.

Equation (2.64) results from thin boundary layer assumptions and is
expected to hold reasonably during the initial stage of dissolution with
large Fa. For these limiting cases the time is conveniently transformed into
(pan, 20 (figure 5.14) . Actual predictions of rate jjjij are larger than the
solutions of equation (2.64) in the range of low and moderate solubility
parameters (Fa < 3.8). The spherical symmetry accounts for those differences.
For large Fa the assumption of thin boundary layers fails due to accumulation
and radial convection. Actual dissolution times are then larger them the
equivalent predictions given by equation (2.64).

Figure 5.14 also shows a characteristic coincidence of solutions for
rapid dissolution of bubbles which has not been identified previously. The
solutions for the cases Fa = 100 and Fa = 1000 are almost indistinguishable
excepting during the last stage of dissolution (R < 0.3). With increasing

F the solutions diverge at progressively later stages. It is unfortunate

that such large values of Fa are of little practical interest. However,
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this solution is still reasonably accurate in the range 1~ R> 0.7 for

Fa > 4.

5.7 Design of experiments

In Chapter 111 the liquid medium surrounding the sphere is assumed to
be infinite. |In practice it must be restricted and it is usually easier to
monitor the experiments if the size of the system is as small as possible.
Thus, it is convenient to establish an approximate criterion to select the
minimum ratio between the size of the whole system and the size of the
sphere, especially for dissolving spheres. For that purpose the actual shapes
of the concentration profiles which develop under the assumption that the
liquid medium is infinite was used to estimate at what distance rm from the
centre the concentration of solute Cm remains sufficiently close to the bulk
concentration. In the present conditions rm was chosen to be C(r ft) <
fc +0.01 (C, - C)1l. In practice by the time the radius is 5% of the initial
size R = 0.05) only 0.125% of the initial content is left to dissolve, so
that there is no need to impose strict conditions during the final stage
¢ < 0.05). In addition rm increases with time as the boundary layer becomes
thicker, except possibly for large Fa (during the intermediate stage).
Therefore all the values shown in table 5.2 refer to R = 0.05 and should
provide approximate values for the rm/a0. In the case Fa = 10; e = 1,rm/aQ
only exceeds 1 during the initial stage but never exceeds 1.1. All the
remaining values are the maxima for 1~ R~ 0.05.

The ratio rm/aQ was obtained by taking into account the shape of
concentration profiles. However, radial convection might cause change in
volume of the system. In this case the system must be sufficiently large to

make those changes negligible; otherwise convection is not strictly radial.
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Table 5.2
Estimates of the ratio rmm/aQ where aQ denotes the initial size
of the sphere and rm the minimum size of the system required to
Justify the assumption that the liquid medium

can be considered infinite .

pa rm/ao

0.01 13.7 13.7
0.02 11.1 10.9
0.05 7.81 7.77
0.1 6.03 5.93
0.2 4.70  4.48
0.5 3.47 3.06

1 2.86 2.28
2 2.45  1.69
5 2.11  1.14
10 1.95 < 1

5.8 Discussion

Dimensionless treatment minimised the number of relevant variables of

the system, which is characterised by Fa and e. The effect of diffusivity on

the actual behaviour of a particular sphere is obtained by a straight

recovery of the real time. Diffusivity affects the basic dynamics of the

system, only if the diffusivity is dependent on concentrations or time. The

solubility parameter Fa combines in a single variable the effects of

concentrations in both phases. Similarly % g&gg into account the effects of

partial molar volumes of solute in the sphere and in the liquid.
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The dimensionless time required for complete dissolution Zq, varies more
rapidly than the reciprocal of the solubility parameter, whereas ZQ is
proportional to the reciprocal of diffusivity. Therefore the rate of the
process varies more rapidly with Fa than with D.

IT the partial molar volume of solute is positive the dissolution causes
a positive volume contribution in the liquid and consequently the boundary
layer expands and dissolution rates decrease. Those volume changes are
insignificant if Fa is sufficiently low and the rate of dissolution is then
almost independent of €.

Spherical symmetry and radial convection are both extremely important
during the diffusion controlled dissolution of stationary spheres. The role
of radial convection is insignificant if Fa < 0.01 but is progressively
enhanced with increasing Fa. In the range of very high solubility parameters
(¢ > 10) radial convection is responsible for a very slow final stage, which
requires most of the total time required for complete dissolution.
Accumulation causes a gradual departure from the flat slab model, even with
extremely large Fa. It was also pointed out that accumulation of solute and
spherical symmetry are necessary for radial convection to become dominant
during the last stage of dissolution.

For low Fa the accumulation near the interface remains relatively low
forcing the solute to diffuse further and the spherical symmetry is then
responsible for nearly linear relations between the square radius and time.

In the range of moderate solubility parameters (0.1 < F& < 1) none of
the limiting cases is appropriate, both diffusion and convection are important
and this explains the failure of all approximate solutions.

The design of dissolution experiments must take into account the volume
occupied by concentration profiles around the sphere, in order to satisfy the

boundary conditions. It is convenient to minimize that volume to avoid
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natural convection and to make it easy to control the experiment.
Numerically computed concentration profiles have been used to determine
the minimum ratio of the size of the whole system (sphere and liquid) to

the size of the initial sphere.
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CHAPTER VI

6.1 Diffusion controlled behaviour of multicomponent bubbles

The equations to describe behaviour of multicomponent bubbles were
set up in Chapter 1l and can be solved by using the finite difference
techniques described in Chapter Ill. These systems involve variable
boundary conditions which makes the stability of the solutions somewhat
critical. The numerical technique used for that purpose is based on the
simultaneous solution of the discrete local balances. New concentration
profiles are then computed step-by-step without the need for slow iterative
schemes.

Analytical solutions for such multicomponent systems have not
previously been available because of the complexity of the problem, especially
difficulties due to variable interfacial concentrations. However, it will
be demonstrated how the basic procedure used to derive analytical solutions
for growth of one component spheres from zero size can be extended to the
growth of multicomponent systems. The essential question involves
verification that bubbles growing from finite size always lead to an
asymptotic regime with an equilibrium bubble composition and a linear
relation between the bubble radius and the square root of time. Thus, it is
possible to test the accuracy of numerical solutions by comparison between
their asymptotic regime and exact solutions for growth from zero size.

The behaviour of multicomponent bubbles depends on the relations between
the diffusivities of individual species. When the diffusivities of the
species are different their influence cannot be removed by putting the

equations into dimensionless form. Therefore, a considerably larger number
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of parameters is needed to characterize those systems than might seem
necessary at first sight.

The evolution of gas composition in the bubble is closely related to
interfacial concentrations and consequently the "‘driving forces"™ may vary
throughout the process. Uncommon types of behaviour may occur and are
easily simulated.

It has been shown that dissolution of one-component spheres is more
complex than growth. One must similarly expect even more complex dissolu-
tion of multicomponent bubbles whereas growth leads to an asymptotic

regime, which is similar to the equivalent growth of one-component spheres.

6.2 Constant composition of multi-component bubbles

From equation (2.50) it can be seen that equilibrium gas composition

requires

6.1
1=1, ..., n
that is, every mole fraction of each species i1 must be equal to the ratio
of i1ts molar flux to the overall molar flux across the interface. This
condition can be fulfilled by a constant (time invariant) concentration
gradient but this case is exceptionally rare; otherwise all the
concentration gradients may vary but must do so according to equation (6.1).

Only exceptionally will equation (6.1) be valid from the beginning of

the process. A transient stage is thus generally expected regardless of
the eventual evolution towards equilibrium gas composition. The relation
between the gas composition and solute interfacial concentrations iImposes

a tendency to reduce the differences between the actual mole fraction g

and its equilibrium value It* (equation (6.1)).
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If the Henry"s law is valid the interfacial concentration Ch (@ is
proportional to 9; - Thus, if 95 < H_*1 C.(d < CaIO where CapO is the
interfacial concentration in equilibrium when g~ = J *. During growth
[Cr - Ch (@] will be higher than the equilibrium "driving-force"

[C@i - Ca °]. This relation is always true provided the interfacial
concentration Ch (@ increases with the corresponding mole fraction g~.

In a two-component growing bubble if g J™ it must follow that

>J*and C @ >Cao0 Therefore [Ce - C (@] < [ce - Ca °], and

1 2 ~2 A ) “2
g2 decreases while the corresponding flux of species 2 into the bubble is
increasing. Meanwhile is increasing and the composition of the bubble
approaches equilibrium. In a bubble with more than three components the
situation is slightly more complex during that transient stage, but similar
arguments clarify why the composition of growing bubbles always converges
to equilibrium.

Similarly, during the dissolution of two-component spheres if

anr> j™*, @ > Ca® species 1 is dissolving quicker than if the gas
composition was in equilibrium, which causes a decrease of g . On the
contrary, as < J2*’g2 iS inress;i-n9" which shows that the composition

of dissolving bubbles also tends to converge to the corresponding ratios
between material fluxes (equation (6.1)). However the complex evolution of
concentration profiles around dissolving spheres can prevent the existence
of equilibrium ratios between those fluxes. The tendency to approach

equilibrium gas composition is then not general.

6.3 Exact solutions for growth from zero size

It was shown in Chapter 1V that the existence of analytical solutions
is based on Boltzmann transformation of variables. This transformation

implies that the concentration must become a unique function of a single
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variable and that the boundary conditions must be constant. These

restrictions apply equally to multicomponent gas bubbles which, in addition
must have constant gas composition because of the relation between the
gas phase and interfacial solute concentrations. In these conditions we

assume

Fi®e = F (€, (6.2)

where s = r/(2/ut)  e/(2/2) - From equation (2.47)

d2Fj + 2 f ~i _ 2 g3 dFj 2s dFi
o] 1 2
ris’ s ds s ds ds ©-3
with E 1 in the case of gas bubbles. In addition, equation (2.49) is
transformed into
v
23 6.4)
i=I
where R and @ are still related by equation (4.8), R = 2fi/z, and at the
interface s = 3*
The boundary conditions (equations (2.53) and (2.54)) can now be
written
Fp® =0 (6.5)
F. ®) a- g- 6 .6)

1 71 ,eq

and after a First integration of equation (6.3)
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of . r
— = A+.S"“,exp - (s2 + 2B3/s) / Fi

where A+ is the constant of integration. After a second integration

from s = B to infinity

K = A é x 2.exp[ - (x2 + 2B34& )/  ]dr 6.8

and by convenient transformation of the independent variable,
<H = /  exp 3i2f2@Q -wW) + @ -wW-~2711 dw

ANE 2B*0"2.exp(BB~2) I 4>(3j

®.9
where
w=1- 3/ ® .10y
6i - m, 1 6 .11)
and
¢ (Bt) » 2612 / exp 2w - @ - "2 03 dw (6.12)

Equation (6.12) is the same as the solution for growth of one-component
spheres with £= 1 (gas bubbles), (Seriven, 1959).

From equations (6.4) and (6.7)

1 A/ [26A2 EXp(BBZ)J = (6.13)

and by combination of equations (6.9) and (6.13)
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| 4 e By) . (6.14)

Equation (6.1) expresses the general condition required for equilibrium

gas composition. After Boltzmann transformation equation (6.1) becomes

1

%,eq " Tr st /7 1 Tjas (.15

or from equations (6.-4), (6.7) and (6-15)

- Al (6.16)
1,Sqg 2R. 8i2>>exp(3f3.i2)
then from equations (6.9) and (6-16)
gi,eq - <l>ij4> (Bi) ) (6-17)

The final solutions show that the solubility parameters, *, are
functions of fictive growth constants, 3*. This mathematical formulation
proves that Boltzmann transformation and analytical solutions are possible
for bubbles growing from zero size with the equilibrium composition given by
equation (6.1). Transient stages of growth from finite size cannot be
solved except by numerical techniques, but these solutions must converge
asymptotically to the analytical solutions given by equations (6.14) and

(6.17). A method of solving these equations is described in appendix 4.
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6.4 Particular cases

6.4.1 Equal diffusivities

IT all the dissolved gases have equal diffusivity

=
1
=

Y/ -..,n (6.18)

and we have the simplest possible case. Equations (6.14) and (6-17) now

reduce to

€@ (6.19)

%,eq - \UﬁEE:

The growth constant 3 is then directly obtained from data referring to

and

6 .20)

one-component systems, where the sum of the n individual solubility
parameters is the equivalent solubility parameter for the n-component
system. The composition of the bubble growing from zero size is readily

obtained from equation (6.20).

6.4.2 Limiting regime for low growth rates

For very low solubility parameters the analytical solutions for one-

component bubbles (Scriven, 1959) tend to

$ = 2B2 (6.21)

and therefore

P(3/f.s = 2B/ f . 6 .22)
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Thus, equation (6-14) converges to

| 2p (6.23)
i=IL
and from equations (6.17) and (6-22)
n
gi,eq m £1"h - jI=I ;3 ® K52«

IT 3r is the growth constant for a sphere containing pure species i = 1,

from equation (6.-21)

(6.25)

and

e/er = f.<e.) / 4x (6-26)

Equation (6.26) relates the growth rate of the n-component bubble to

the growth rate of a bubble containing exclusively the reference component

@-D -

6.4.3 Limiting regime for large growth rates

According to Scriven (1959) the limit for large solubility parameters

€= 3 fm 6.27)

Therefore, from equations (6.14) and (6.-17)

-f (6.28)

and
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O3 /eq (6.29)
also from equation (6.27),
@M= B /T . (6.30)
Finally from equation (6.28) and (6.30)
(6.31)

3/Br */FT ,
i=I

6.5 Analytical solutions

In the case of gas bubbles £ = 1 and the pairs [B.; &(®] required to
satisfy equation (6.14) can be obtained from Scriven®s data (1959). The
solubility parameter <g)B ) for one-component systems increases monotonically
with the growth constant so that the problem reduces to the minimization

of the square deviation from equation (6.14)

n
B0 = jrsi/seQE/fin) (6.32)

and polynomial interpolations can be used to estimate the actual <> )
values.

The Fibonacci method (see appendix 4) provides an efficient process
for rapidly finding the correct B and g” values. This method requires the
previous knowledge of lower limit, 3-, and upper limit, B , of the growth

constant, which in the present conditions can be

h =g(v (6-33)

and
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PU = B(K (6-34)

It is useful to define an initial range of B values where the correct
solution is to be found. The growth rate will necessarily be greater than
the growth rate of a bubble due to diffusion of a single component.

Therefore

B> BE = B0} " ax) (6.36)

or
h =< I£r°i <h -

Also the actual growth rate cannot exceed the ratﬁ of growth of a one-
t
component bubble with solubility parameter 4~ = ~ ~(Fq”) and diffusivity

equal to the maximum individual diffusivity of the n-component case. Thus

B < B,=/f7, - B (6-37)
where

fm = max(fl;zf - o fn) -

The parameters describing growth of two-component bubbles from zero
size are illustrated in figures 6.1 and 6.2. The ratio B/Br represents the
relation between the actual growth rate and the growth rate of the
reference one-component bubble with solubility parameter 4 = @\ In table

6.1, 1 to 7 identify the corresponding curves in figures 6.1 and 6.2.



Fig 6.1 : Relation between growth constants for two component
bubbles (B) and one-component solutions [Br <¢&,£] for
the case 9= <H £ = 1. The TFfigures show the case given
in table 6.1. The dashed lines represent equation
(6.31) and the dashed-dotted lines represent equation
(6.26).

Fig 6.2 : Mole fractions of species 1 for two component
growing bubbles. The figures show the cases in table
6.1. The dashed lines represent equation (6.29).
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Table 6.1
Parameters for examples shown

in figures 6.1 and 6.2

The dashed lines in figures 6.1 and 6.2 represent the lower and upper
limits according to equations (6.24) and (6.-26) for very low solubility
parameters or equations (6.29) and (6.-31) for very large solubility parameters.
These limiting conditions for the curves 1 and 5 are equal with very low
solubility parameter and the same occurs with equal values of the factor
f @/pf) , (Cases 2 and 6, or 3 and 7) . In these cases the effects of the
second component depend on the product *$2 " which is equivalent to a
relative permeability. With large 9 values the ratio of solubility parameters
@ /A ) is more important than the ratio of diffusivities F .

IT the diffusivities are equal the composition only depends on the ratio
of solubility parameters, (cases 1, 2 and 3); otherwise (f? = 1) the
composition varies with € even if the ratio (Ytp remains constant.

This basic discussion of two-component systems could easily be extended
to systems with more than two components but the details obviously become
increasingly complex. The growth rate and gas composition are again more
dependent on the relative values of solubility parameters than on the

relative values of diffusivities.



Table : 6.2

Comparison of analytical solutions for growth from
zero and numerical solutions for growth from finite size
for two-component bubbles when R ~ 100.

Analytical Numerical
solutions solutions

*1 *2 f2 8 91 ,eq 3" 9l,eq
0.001 0.001 1 0.03252 0.5000 0.03260 0.5000
0.01 0.01 1 0.1093 0.5000 0.1095 0.5000
0.1 0.1 1 0.4205 0.5000 0.4212 0.5000
1 10 1 2.333 0.5000 2.340 0.5000
10 10 1 19-97 0.5000 20.04 0.5000
100 100 1 195-9 0.5000 196.6 0.5000
0.001 0.0005 1 0.02806 0.6667 0.02811 0.6667
0.01 0.005 1 0.0936 0.6667 0.0937 0.6667
0.1 0.05 1 0.3505 0.6667 0.3510 0.6667
1 0.5 1 1.831 0.6667 1.835 0.6667
10 5 1 15.09 0.6667 15.13 0.6667
100 50 1 147.0 0.6667 147.5 0.6667
0.001 0.0002 1 0.02500 0.8333 0.02508 0.8333
0.01 0.002 1 0.0830 0.8333 0.0831 0.8333
0.1 0.02 1 0.3053 0.8333 0.3058 0.8333
1 0.2 1 1.526 0.8333 1.529 0.8333
10 2 1 12.15 0.8333 12.19 0.8333
100 20 1 117.7 0.8333 118.1 0.8333
0.001 0.0001 1 0.02400 0.9091 0.02401 0.9001
0.01 0.001 1 0.0792 0.9091 0.0793 0.9091
0.1 0.01 1 0.2896 0.9091 0.2900 0.9091

1 0.1 1 1.423 0.9091 1.426 0.9091

10 1 11.17 0.9091 11.21 0.9091
100 10 1 107.9 0.9091 108.3 0.9091
0.001 0.001 0.5 0.02812 0.663 0.02816 0.665
0.01 0.01 0.5 0.0946 0.654 0.0946 0.656
0.1 0.1 0.5 0.3628 0.631 0.3632 0.632

1 1 0.5 2.000 0.600 2.006 0.600

10 10 0.5 17.06 0.588 17.12 0.588
100 100 0.5 167.2 0.586 167.8 0.586
0.001 0.001 0.2 0.02511 0.827 0.02514 0.830
0.01 0.01 0.2 0.0842 0.811 0.0844 0.812
0.1 0.1 0.2 0.3198 0.773 0.3200 0.775

1 1 0.2 1.724 0.717 1.728 0.719

10 10 0.2 14.50 0.694 14.55 0.695
100 100 0.2 141.7 0.691 142.3 0.692
0.001 0.001 0.1 0.02403 0.903 0.02407 0.905
0.01 0.01 0.1 0.0803 0.887 0.0804 0.888
0.1 0.1 0.1 0.3022 0.848 0.3025 0.849

1 1 0.1 1.594 0.789 1.598 0.790

10 10 0.1 13.22 0.764 13-26 0.764
100 100 0.1 129-0 0.760 129.4 0.761



Table : 6.3
Comparison between finite difference solutions

and analytical solutions of growth of three-component
bubbles.

a) Parameters chosen

case 1 2 3 4
. 1.0 1.0 1.0 1.0
fi
1.0
f2 0.5 0.5 0.1
1.0 0.2 0.2 10.0
f3
" 1.0 1.0 1.0 1.0
a2 0.5 1.0 0.5 10.0
. 0.2 1.0 0.2 0.1
3
1.0 1.0 1.0 1.0
Fe1l
0.5 1.0 0.5 10.0
Fe°2
0.2 1.0 0.2 0.1
F°3

b) Results for R » 100.

Analytical solutions Finite difference
solutions

case

A gi,eq g2,eq " gi,eq g2,eq
1 1.319 0.5000 0.3333 1.320 0.5000 0.3333
2 1.634 0.4336 0.3357 1.636 0.4336 0.3357
3 0.997 0.5899 0.3148 0.998 0.5900 0.3147
4 2.674 0.2989 0.5487 2.678 0.2991 0.5485
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6.6 Comparison between numerical and analytical solutions

A sphere growing from finite size always converges to asymptotic
growth rate and equilibrium gas composition. After a sufficiently large
increase of radius the effect of the initial stage must become negligible
and the asymptotes of growth from finite size must become indistinguishable
from the equivalent analytical predictions of growth from zero size. The
composition of the bubble is then given by gI,eq and these satisfy
equation (6.1), while the interfacial concentrations, (equation (2.54)),

become

Numerically computed (z,r)pairs were inserted into equation (4.8),
G = 2%/z) , to obtain the apparent value of 3, i1.e. (3% for computations
with R = 105 to confirm the convergence to the asymptotic regime. This
regime was in excellent agreement with the corresponding analytical solutions,
see table 6.2. The numerical predictions of = R/(2/z) are in fact almost
identical for any value R ™ 100.

The set of 2-component systems reported in table 6.2 covers a very
wide range of solubility parameters and several different ratios of
diffusivities. The difference between the two values of 3 is always less
than 1%, with usually slightly larger than the analytical value, 3-
The time required for a bubble to grow from zero size to R =1, Z =
d/723)2] , is only a very small fraction of the time required to reach R =
go®, £z = (105/2B)2 = 1010 , and therefore the initial transient stage
of growth from finite size might not explain the differences between 3 and

a“. Truncation errors involved in formulating the finite difference
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equations may easily cause those differences. In many cases the analytical
and numerical predictions of the compositions glfeq differ by less than
0.1%.

For all the results reported in table 6.2 <x = - FQ for simplicity of
presentation. Equally good accuracy of finite difference predictions is
achieved with more complex systems, including bubbles which contain more
than two different gases. Table 6.3 gives some results for three components.
These examples are sufficiently general to exemplify the performance of the
method independently of the combination of the parameters involved
(concentrations, solubilities, and diffusivities).

The asymptotic regimes described in tables 6.2 and 6.3 are independent
of the initial composition of bubbles growing from finite size. Examples of

the transient regimes are described in the next section.

6.7 Transient regimes

The asymptotic stage of growth was reasonably well understood and
interpreted in the previous section. Transient regimes are much more complex
and this makes it difficult to illustrate all the interesting trends that
can occur. The additional complexity results from the evolution of
concentration profiles during the initial stage of dissolution or growth from
finite size. There is a time dependent evolution even with constant boundary
conditions as illustrated in Chapters 1V and V, but there are now changes
strongly dependent on the changes of interfacial concentrations. Commonly
the individual rate of diffusion of a species i1 will be dependent on the
dimensionless interfacial concentration FA(R) and on the dimensionless
diffusivity ', but these relations cannot be easily quantified. However,

on assuming a relation such as Henry®s law, FMR) 1is easily calculated from
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the composition of the bubble. Thus [f"R)”] will be occasionally desighated
as "'driving-force".

On assuming that the different species diffuse independently, they may
sometimes be transferred iIn opposite directions which causes rapid changes
of gas compositions. These changes introduce ''feed-back™ effects on the
interfacial concentrations (equation (2.46)) and also on the rates of
transport, which are responsible for bringing the system closer to equilibrium.
This iInterdependence between gas composition and interfacial concentrations
explains why growth always tends to asymptotic behaviour, regardless of the
initial composition of the bubble (except when the initial growth is a
transient effect but leads to dissolution). During dissolution the evolution
of gas composition may be less regular because the time dependence of
concentration profiles affects the whole course of dissolution. For instance,
it is believed that dissolution is generally controlled by the less soluble
species or by the species with the lowest diffusivity and that small
fractions of a poorly soluble gas lead the bubble to a standstill with an
almost insoluble residue (Greene and co-authors, 1959a, 1959b; Doremus,

1960; Nemec, 1969) .

The bulk concentration of gases dissolved in the liquid medium may also
influence strongly the behaviour of bubbles. In some cases the bulk
concentration of species i1 may be in equilibrium with a particular value of
mole fraction gi*, so that the "driving-force™ H ® =(0" g~ - FQJ = 0 or
g * = Fg /ai* In these conditions, unless there is a maximum in the

i i
concentration profile, the species i1 will dissolve if F.(R) > 0. Similarly
if Fg(R) < 0 this species will diffuse into the bubble unless there is a
minimum in the concentration distribution. Thus, if the mole fraction
increases from gi < gi* to the upper range > g *, the "driving-force"

will change from F*(R) < 0 to m™R) > 0. Species 1 was initially diffusing
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into the bubble but ill later reverse and aid dissolution.

From equation (2.49) if initially

or

the b~ble starts growing but the changes of the flux of species i1 may be
sufficient to lead to a final condition J < 0 and the bubble will
eventually dissolve completely.

A change from g+ > g™ to g~ g~ causes the opposite inversion from
dissolution of species i1 to its diffusion into the bubble. If, iIn
addition, the total flux varies from J. < o to ® > 0, the bubble radius

initially decreases, then reaches a minimum value and finally increases again.

6.8 Transient stage of growth from finite size

Figure 6.3 illustrates behaviour iIn a three component system where the

products Fq .ff = 0.01, and @ = Fg_ . The bubble composition always evolves
i

towards equilibrium (g = 0.2288; g = 0.3026; g = 0.4686). In

case (@ the initial bubble contains pure species 1, so that *R) =0

(equation (2.54)) while ® = and F*IR) = FO~.  Diffusion of gases 2
and 3 dilutes gas 1 which causes an increase of and g™ and a decrease of
g Meanwhile the 'driving-forces"™ of species 2 and 3 decrease and the

"driving-force™ of species 1 increases until equilibrium is reached.
Similar interpretation can be made of cases b or c, which start with pure

gas 2 or pure gas 3 respectively. The radius-time relations are only



Fig 6-3 : Transient growth of three-component bubbles from

finite size. The dashed lines represent the asymptotic
regime (equations (6.14) and (6.-16)). The initial
bubbles contain

a - pure species 1

b - pure species 2

C - pure species 3.



Fig 6.4 : Transient growth of two-component bubbles from
finite size. The dashed lines represent the mole
fractions of species 1, gi, for cases a and b. The
dashed-dotted lines represent R and gj for case c. The
dotted lines represent the asymptotic regime.

The initial bubbles contain

a - pure species 1

b - pure species 2

c - Qi =0.3939 and gi = 0.6061.



Fig 6.5 : Effect of the initial composition of a bubble on the
transient regime. The dashed lines represent gi and the
dashed-dotted lines represent the asymptotic regime.

The initial bubble contains
a - pure species 1
b - pure species 2.



e/R-1

Fig 6.6 : Concentration profiles for the case (@ illustrated
in fig 6.5. The full lines represent species 1 and the
dashed lines species 2. The figures show the
corresponding values of the dimensionless radius R and
are marked - during the initial decrease iIn radius and
marked + during the iIncrease iIn radius.



Table : 6.4
Summary of two component systems represented in figures

6.4, 65y 67, 6.8, and 6.9, ana their asymptotic regimes.

Fig. fo o a2 f2 gl 6

6.4 0.01 1 0.01 1 0.01 0.5939 0.0948
6.5 1 1 5 0.5 0.1 0.1947 0.3312
6.7 1 1 0.5 0.5 1 0.500 1.831
6.7 1 0.01 0.5 0.005 100 0.684 1.280
6.7 1 100 0.5 50 0.01 0.1463 6.60

6.8 1 1 0.5 0.5 0.5 0.578 1.557
6.8 1 1 0.5 0.5 0.2 0.675 1.299
6.8 1 1 0.5 0.5 0.1 0.741 1.162
6.8 1 1 0.5 0.5 0.01 0.894 0.914
6.8 1 1 0.5 0.5 0.001 0.963 0.826
6.9 1 0.5 0.5 0.25 1 0.628 1.416
6.9 1 0.2 0.5 0.1 1 0.775 1.099
6.9 1 0.1 0.5 0.05 1 0.860 0.963

6.9 1 0.01 0.5 0.005 1 0.981 0.805
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slightly different during the initial stage, but converge rapidly to each
other and gradually approach the analytical prediction of growth from zero
size (6 = 0.1458) (dashed line).

Figure 6.4 shows a two-component system with the two extreme initial
gas compositions (@ and b). 1In both cases the composition of gas converges

to the equilibrium 9, eq = 0.3939; = 0.6061, which is rePresented

g2,eq
by the horizontal dotted line. 1In case (© g™0) = 0.3939 but the bubble
composition changes during the transient stage, because of large differences
in diffusivities, before recovering the equilibrium condition. The radius
versus time curves gradually approach the asymptotic regime given by the
growth constant 3 = 0.0948.

dhe changes of gas composition in case (¢) are due to transient changes
of concentration profiles. A species with high diffusivity must respond
more quickly than one of low diffusivity (species 2). Thus the change in
size before the asymptotic concentration profile is achieved is smaller for
the highest diffusivity, whilst during a somewhat longer stage the
concentration profiles for the other species remain steeper than expected
for the asymptotic conditions. This explains the transient increase in g?.

A more complex transient regime is shown in figure 6.5. In case @
the initial bubble contains pure species 1, which is highly soluble (@ = 5
and its diffusivity is also much higher than the diffusivity of species 2.
Thus gas 1 initially dissolves relatively rapidly while the diffusion of
gas 2 into the bubble is insufficient to reverse the process. At about Z=
0.068, R = 0.55 and g™ = 0.39, ER is reversed, showing that the rate of
diffusion of gas 2 begins to exceed the rate of dissolution of gas 1. At
this point Ff(R) = 0.969 and F2R) = - 0.697 so that the product Jf* .F* ®j =

0 969 is still much larger than Q-f"+2 ®RYy= 0.0697. The products f_.F MR)
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suggest that a significant amount of dissolved gas 1 could not diffuse away
from the boundary layer and is hindering further dissolution.

This interpretation can be confirmed by examination of the concentration
profiles shown in figure 6.6. [Initially the interfacial concentration F ®R)
decreases rapidly and 32;1 becomes negative near the interface. After the
minimum radius, when growth is established, the profiles (marked +) at
r = 0.6 and R = 0.75 show that F () varies very smoothly in a relatively
thick layer.

For a bubble of pure species 2 ((b) in figure 6.5) the rate of diffusion
of species 1 into the bubble decreases rapidly as its mole fraction increases
towards equilibrium at gl,eq = 0.1947 (dashed-dotted line).

Both curves of radius versus time are distinguished from the asymptotic
growth from zero size, (3 = 0.3312 (see table 6.4)), but by the time the
radius has increased by a factor of 10 the differences between the times
required for growth from zero size and growth from finite size are only about
0.7% and 2.6% @n cases (@ and () respectively.

Figures 6.3 and 6.4 demonstrated that if the products FO . and the
ratios a™/FQ. are constant the species with higher bulk concentration FO .
will be transferred into the bubble faster. This trend is confirmed by the
three results shown in figure 6.7, FO™ = 0.01,1, and 100, where Fo~.fp = 1,
and aj /M = 1/2- The rate of transfer of species 2 increases with

increasing FO end is responsible for the increase of the equilibrium mole

fraction of that species (g = 0.316, 0.500 and 0.854 for the cases
Fo = 0.01, 1, and 100 respectively). The enhancement of the rate of
trimsfer of species 2 also causes the increase in growth rates (3 = 1.280,

1.831 and 6.60 for cases FQ = 0.01, 1, and 100 respectively).
In figure 6.8 varies from 0.001 to 1 whilst 02 = Cig = 0.5; qu

=1 and f =1 in all cases. The asymptotic regimes are shown in table
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Fig 6.7 : Effect of varying the diffusivity of species 2 with
f2<Fg”™ = 1 and a2/FQ™ = 1/2.

Fig 6.8 : Effect of varying the diffusivity of species 2 with

FOi = Fu2 = 1 and ai = a2 = 1/2.



Fig. 6.9 : Effect of varying the bulk concentration of species 2
with =D2, Fg» = 1; O =0.5 and 02//0 = 1/2%*

Fig 6.10 : Dissolution of a three-component bubble with equal
initial mole fractions, equal diffusivities but
different solubilities.
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6.4 and show that ("2,eg/gi,eq™_"1/gi,eq " ™ is almost proportional to

(f2 represents the ratio of diffusivities).

Figure 6.9 shows a set of results for FQ = 0.01, 0.1, 0.2, 0.5 and 1,
whilst Fq~ =1; al 0.5; O~N/F~ = 1/2 and f2 =f1 =1 " Althou9h the
behaviour is qualitatively very like that in figure 6-8 the details are
rather different. The rates of transfer of species 2 here drop more
rapidly as Fg” decreases than iIn the previous cases of decreasing diffusivity
(see table 6.4.) .

Changes in diffusivity and solubility or bulk concentration can roughly
cancel each other but cannot be exactly equivalent because the diffusivity
affects coefficients in the partial differential equation (2.47) whilst the

solubility and bulk concentration affect the boundary conditions.

6.9 Dissolution

Demonstration of the behaviour of multi-component bubbles must include
the effects of solubilities and diffusivities on the dissolution rates and
on the composition of the gas phase. The initial concentrations of dissolved
gases in the liquid medium may also play a significant role.

The solubilities and diffusivities of gases in glass melts may cover
relatively large ranges of values, so that it is important to analyse the
behaviour of bubbles containing gases with very different diffusivities or
solubilities.

The composition of growing bubbles always converges asymptotically to
equilibrium and this regime was solved analytically. Concentration profiles
around dissolving species do not evolve towards self-similar regimes, and
vary until the dissolution is complete, under the combination of effects of
diffusion and radial convection (Chapter V). This situation must be even
more complex iIn the case of bubbles containing several gases which diffuse

independently.
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6.9.1 Bubble containing gases with different solubilities but

the same diffusivities

Figure 6.10 illustrates a 3-component system with equal diffusivities
and solubilities given by 0= 1; a2 = 1/2; a3 = 1I/4/ with FQ = O;
(i=If 2, 3). Initially the gas composition varies rapidly due to the
differences between solubilities. Species 2 having an intermediate
solubility undergoes smaller changes of mole fraction than either 1 or 3.
There is no indication of equilibrium composition before the end of the
process. The conditions required for a dissolving sphere to tend to equili-
brium gas composition will be discussed later.

Figure 6.11 shows the effects of larger ratios between solubilities

in two-component bubbles. The mole fraction of the most soluble

gas (species 1) decreases progressively and becomes lower than 0.01, long
before complete dissolution of the bubble. Dissolution of the least soluble
gas controls the total dissolution time and in the limit, @ =0), a
residual bubble is left (R = 0.794) after complete dissolution of species 1.
In general these results confirm that equilibrium composition is rarely
achieved in dissolving bubbles containing gases with different solubilities.

The dashed-dotted line in figure 6.11 represents the change in size
controlled by dissolution of species 2 after instantaneous (and complete)
dissolution of species 1. This causes instantaneous decrease of real radius

from aQ to a", so that only species 2 is left and

or

(6.38)



Fig 6.11 : Dissolution of two-component bubbles with gases of

different solubilities but the same diffusivities. The
dashed lines represent gj and the dashed-dotted line
represents the dissolution of species 2 after

instantaneous dissolution of species 1. The figures
show the values of aZ2.



Fig 6.12 : Effect of the initial composition of gas on the
dissolution of a two-component bubble containing gases
of very different solubilities and the same
diffusivities. The dashed lines represent the mole
fraction of species 1, gi with initial values 0.25, 0.5,
0.75 and 0.9 in cases a, b, c and d.
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In the case of figure 6.11 R (@ = 0.7937. The actual two component solution
for a2 = 0.01 is already close to the limiting solution (dashed-dotted line)
predicted by assuming that the most soluble species dissolves
instantaneously.

From figure 6.11 it is also clear that the shape of the radius-time curves
changes markedly as the solubility of the less soluble gas varies.

Confirmation that dissolution is controlled by the less soluble gas is
shown in figure 6.12. The initial mole fraction of species 2 is varied
(@ () = 1» 0.75, 0.5, 0.25 and 0.1) and the times of dissolution are matched
so that it is possible to compare the final stages. All cases show almost
instantaneous dissolution of gas 1 (relative to the time scale) and after this
stage the residual radii are about = 0.909, 0.794, 0.630 and 0.464. Those
values would represent the final radius of the bubble if species 2 were
completely inert.

That the first stage is due to the dissolution of the species 1 is shown
by the rapid drop of its mole fraction in the gas (dashed lines).

The fact that after the initial stage the curves become similar suggests
that the rates of dissolution are almost exclusively dependent on the actual
size of the bubble. This type of regime is characteristic of very low
solubility parameters (F << 1 if the notation of Chapter V is used) and
the limit converges to quasi steady state approximations (equation (2.68)).

It must be emphasized that if o®/a remains very low but the solubility
of species 2 is moderate or large (a2 > 0.1) the final stages (after the
rapid dissolution of species 1) cannot be matched. The rates of dissolution
are then not exclusively dependent on the actual radius but also on the

residual radius, R , after the initial stage.
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6.9.2 Bubble containing gases with different diffusivities but

the same solubilities

In the system illustrated in figure 6.13 the diffusivities follow the
relation = I:\-.h and the solubility is constant (wu = 1, FQ_= 0,
i=l, 2, 3). The changes of gas composition are similar to those observed
in figure 6.10 (due to similar differences in solubilities). However the
dissolution time is slightly longer when the solubilities differ than when
the diffusivities differ.

Figure 6.14 illustrates the effects of further extending the range of
diffusivities in two component bubbles. Here the numbers on the curves are
the values of f2e Again the species with the largest diffusivity dissolves
almost completely before the end of the process. This is indicated by the
decreasing values of the mole fraction g® (dashed lines).

The dashed-dotted line in figure 6.14 represents the case when gas 1 is
assumed to dissolve instantaneously before species 2 starts dissolving. In
this case f% = 0.01, F& =@©2 - EO )= 1 and the radius-time curve does not
differ significantly from the actual two-component solution except during the
initial stage. These examples show that dissolution is also controlled by
the dissolution of the species which has the lowest diffusivity, provided
the bulk concentrations F°i are zero and the solubilities are equal.

Figure 6.15 shows computed results for bubbles containing initial mole
fractions of low diffusivity gas (species 2) g (® = 0.75, 0.5, 0.25 and 0.10
which confirm the controlling role of the species with the lowest diffusivity.
Again the initial stage is very rapid and finishes at about Ft = 0.909;
0.794» 0.630 and 0.464 which are the sizes of bubbles expected if gas 1
disappeared instantaneously. The unmarked curve is the result for pure
species 2.

The data represented by () in figure 6.15 also corresponds to the



Fig 6.13 : Dissolution of a three-component bubble containing
gases with equal initial mole fractions,

equal
solubilities but different diffusivities.

Fig 6.14 : Dissolution of two-component bubbles with gases of
different diffusivities and the same solubilities. The

dashed lines represent gi and the dashed-dotted lines
represent the dissolution of species 2 after
instantaneous dissolution of species 1.

show the values of fz =

The Figures
= D2/D1.



Fig 6.15 : Effect of the initial composition of gas on the
dissolution of a two-component bubble containing gases
of very different diffusivities and the same
solubilities. The dashed lines represent the mole
fraction of species 1 with initial values gj = 0.25,
0.5, 0.75 and 0.9 in cases a, b, c and d respectively.
The symbols (*) represent the dissolution of species 2
after instantaneous dissolution of gas 1 for the case

gi© = 0.25.



Fig 6.16 : Dissolution of two-component bubbles containing
gases with the same permeability ctifi = = 0.5 but
different solubilities.
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instantaneous dissolution of gas 1 and is obtained from one-component
solutions of the case F =a - FO~ =1 with £ =0.001 and g (@ = 0.75.
The agreement of such curves with the actual solution is equally good with
the other initial compositions of gas. In these cases the dissolution
behaviour can be reasonably predicted from the solutions of a residual
bubble containing only the gas with low diffusivity.

In both cases shown in figure 6.16 the permeability of species 2 is
the same a2"f2= 1,2 but in CaSS ~ " (Aower solubility of species 2), the
dissolution is slightly quicker. This finding is not surprising by taking
into account that the dissolution time changes more rapidly with variable

solubility than with variable diffusivity (Chapter V).
6.9.3 Dissolution of bubbles containing gases with equal permeabilities

It liss been shown that one-component (i=l) of the gas mixture can dissolve
almost completely making the residual bubble become almost pure species 2.
This behaviour requires zero bulk concentration of species 1 (g = 0) and
the solubility or the diffusivity of the rapidly dissolving species 1 must
be much higher than the corresponding property of the other species. At
this stage it is useful to analyse the behaviour of bubbles containing gases
with equal permeabilities (constant a .f values) when both solubility and
diffusivity vary.

Figure 6.17 shows four examples in which the individual properties vary
by factors of 1000 and g (©) = © = 0.5; the reference component (i=l)
has the same properties in every case (@ = 1and f = 1) whilst "27~2 =1
and both bulk concentrations are zero (FO® = FQ™ = 0), so that the bubble
composition is not a priori restricted by equilibrium between the gas phase
and the liquid medium. The component with high solubility and low

diffusivity always dissolves more rapidly than the reference component in
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spite of the fact that both gases have equal permeabilities. This explains
why the bubbles with the largest values of solubility (@ and a ) dissolve
fastest. It also explains the initial drop of the mole fraction of the
species with larger solubility and lower diffusivity. Meanwhile the
interfacial concentration of this component also decreases and the same
happens to the absolute value of the concentration gradient and to the rate
of dissolution. This leads to a temporary "equilibrium” between the
individual dissolution rates and the gas composition. However, there are
clear signs that the initial tendency is reversed during the final stage of
dissolution. There is no simple explanation for this tendency except the fact
that, if gg is sufficiently large during the initial and intermediate
stage of the process, the accumulation of solute near the interface hinders
the final stage of dissolution and that this effect is increasingly severe
as the diffusivity decreases. In case (@ (figure 6.17) the solubility

is very high and the mole fraction g” is relatively low during the
intermediate and final stages. Therefore a small change in g" causes a
significant increase of the "driving-force” ® which is sufficient to
correct the deviations from a final quasi-equilibrium condition.

Bubbles containing equal proportions of more than two gases with equal
permeabilities (figure 6.18) behave similarly. [Initially the individual
rates of dissolution increase with increasing solubility of the species
which is being considered. However, because they have smaller diffusivities
the dissolved species 1 and 2 may not diffuse to large distances from the
interface. Accumulation of dissolved material must then be the reason for
the final increase of mole fractions g” and g,.;-

Other important characteristics of bubbles containing two gases with

equal permeabilities but different diffusivities are illustrated in

figure 6.19. The dissolution rate is here significantly affected by the



Figs 6.17 and 6.18 : Dissolution of bubbles containing gases
with the same permeability but very different solubilities.



Fig 6.19 : Effect of the initial composition of gas on the
dissolution of a bubble containing two gases with the
same permeability but different solubilities.

Fig 6.20 : Effect of a poorly soluble impurity in the initial
gas composition on the dissolution of a bubble. Case b
represents dissolution of a bubble of pure species 1.



Fig 6.21a : Effect of poorly soluble impurities in the liquid
or in the gas phase on the dissolution of bubbles.
Case c represents dissolution of a bubble containing pure
gas 1.

Fig 6.21b : Effect of impurity of relatively low diffusivity
on the dissolution of a bubble. Case b represents
dissolution of a bubble containing pure gas 1.
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initial composition of the bubble and the temporary *equilibrium™ composition
varies with that composition. The Tfinal composition is also very dependent
on the initial composition of the gas. |In all cases the mole fraction of

the least soluble species (g ) drops significantly during the last stage of

the process.

6.9.4 Effect of impurities in the gas or dissolved in the liquid

It has already been shown that the time required for complete dissolution
of bubbles containing two or more gases depends greatly on the species which
has the lower diffusivity or the lower solubility. That dissolution time
decreases with decreasing mole fractions of the less soluble gas in the
initial bubble. However, even very small mole fractions of a relatively
inert species (low solubility, low diffusivity or both) cause a very slow
final stage. In figure 6.20 (case (@) the initial bubble contains only
0.1% of a poorly soluble gas (@ = 0.001). Case (b) corresponds to the
dissolution of a bubble containing pure gas 1 and both radius-time curves
are almost coincident down to R = 0.1, that is, when the bubble is only 10%
of the initial radius. By this stage the bubble (@ 1is only 0.1% of its
initial volume and contains a large percentage of the inert gas, which
requires a much longer dissolution time. |If species 1 did dissolve
completely before any dissolution of gas 2 then the residual radius would be
r = 0.1. Times for complete dissolution can be greatly affected by low
levels of impurity in the original gas.

Case (@ 1in figure 6.21a confirms the effect of minor proportions of a
relatively inert gas in the original bubble (@ = 0.01). Again this case
leads to a slow final stage when the bubble radius is slightly greater than
the residual radius R = 0.215. Case (©) is the solution for the bubble

containing pure species 1.
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In case () the initial bubble is free of impurity but the liquid is
slightly contaminated so that species 2 can diffuse slowly into the bubble
while gas 1 diffuses out. The "driving-force™ for this process was initially
f2(r) =" f02 = - °-01- Rather surprisingly beyond this initial stage
R < 0.85) cases (@ and (© become almost indistinguishable. Notice that
during the final stage F (R) is similar in both cases.

So far we have been concerned with small proportions of relatively
insoluble impurities in the gas or in the surrounding liquid. Similar effect
can be predicted by considering that the impurity has much lower diffusivity
than the main gas. In the case (@ shown in figure 6.21b the ratio of
diffusivities is ™ — D/D™ = 0.01. The main difference between this case
and the case (@ shown in figure 6.21a is the time scale for the final stage.
Decreasing the solubility of species 2 causes a slower final stage than

decreasing the diffusivity.

6.9.5 Changes from growth to dissolution

The relation between the mole fractions and concentrations at the
interface suggest that by varying the gas composition it is possible to
reverse the direction of diffusion of a particular species. If the initial
rate of diffusion of this component (independently of the direction) 1is much
larger than the other individual rates of diffusion, then the behaviour of
the bubble may eventually be reversed. A change from dissolution to growth
was illustrated in figure 6.5 and the opposite type of changes is
exemplified in figure 6.22. The solubility of species 1 is much higher than
the solubility of species 2 but the bulk concentration Fq 1is also quite high
so that species 1 will diffuse into the bubble if its initial mole fraction,

g (o), is lower than 0.8.

The initial dissolution of species 2 further assists the rapid increase



Fig 6.22 : Complete dissolution after an initial iIncrease in
radius.

Fig 6.23 : Evolution of bubble behaviour towards equilibrium
size and gas composition.
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in g™ but is insufficient to prevent the growth of the bubble. The diffusion
rate of species 1 into the bubble inevitably decreases because of the increase
in its interfacial concentration. Dissolution of the bubble starts when the
dissolution rate of gas 2 exceeds the rate of diffusion of gas 1 into the

bubble.

6.9.6 Evolution of size and composition of bubbles towards equilibrium

Figure 6.23 illustrates some cases when the size and composition of the
bubble evolve towards equilibrium. The ™"driving-forces™ of both components
vanish as the bubble composition approach the point g = 0.80, g0 = 0.20.

IT the initial bubble contains pure species 1 (relatively high solubility)
the size will decrease to about R = 0.59 as g" decreases to 0.80. On the
contrary if the initial bubble contains species 2, of low solubility, its
rate of dissolution is relatively small and is exceeded by the diffusion of
species 1 into the bubble. In this case the size increases to about 1.6
times the initial size as again approaches 0.80.

These examples demonstrate that the equilibrium gas composition is not
dependent on the initial composition of the bubble although the radius of
the bubble increases if g (0) < 0.8 and decreases if g~"0) > 0.8. By
varying the initial composition of the gas it is possible to reach different

final radii Rf of the bubble, but always in the range 0.5928 < Rf < 1.609.

6.9.7 Changes of composition in dissolving bubbles

It has been shown that when the liquid is initially free of solutes
, _q(1=1, ..., n) the bubble composition evolves continuously towards
complete dissolution of the species which has the highest solubility, the

highest diffusivity or both. If the ratios of solubilities or diffusivities
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are sufficiently large the most inert gas may remain almost undissolved
for a relatively long time, while the quickly diffusing species dissolves
almost completely. Otherwise the composition of gas may still be varying
when the bubble disappears.

IT the permeabilities of the individual gases are equal but their
diffusivities differ considerably, the mole fraction of the least soluble
component increases during the initial stage, remains nearly constant during
the iIntermediate stage and finally decreases again as seen in figure 6.17.
Apparently the condition of quasi-equilibrium between individual material
fluxes across the interface and the corresponding mole fractions fails
during the final stage due to accumulation of dissolved material around the
bubble. The accumulation of a particular species i1 must be increasingly
severe as its diffusivity becomes much smaller than the diffusivity of the
other gases.

Examples of complex evolution of gas composition are shown in Ffigures
6.24 and 6.25. In figure 6.24 the three gases have equal diffusivities
but markedly different solubilities. The dissolution can then be divided
into three stages which correspond to control by each of the gases present
in the bubble. Logarithmic time scale was used to distinguish these stages.

In figure 6.24 species 1 dissolves almost completely before significant
dissolution of any of the less soluble gases occurs. The mole fractions gp
and g™ thus increase almost identically during this first stage.

After almost complete dissolution of gas 1 the process is controlled
by species 2 which dissolves at a much greater rate than does species 3;
as a result the ratio 92,/03 decreases- it then follows that the value of
g, must reach a maximum then decrease. During the last stage g 1is almost
zero and dissolution is governed by species 3.

The residual bubble containing only gas 3 (if it were inert) would have



Figs 6.24 and 6.25 : Dissolution of three component bubbles
showing three distinct stages corresponding to each of
those species.



0 1 ZinN) 2

Figs 6.26 and 6.27 : Tendency to approach equilibrium gas
composition during dissolution of two-component
bubbles.

0 1 2 Z(90) 3



Figs 6.28 and 6.29 : Effect of the solute concentration on
the tendency to approach equilibrium during dissolution
of two-component bubbles.



143.

a radius R = 0.693. This radius can be taken as the beginning of the
final stage.

In figure 6.25 the initial gas composition was chosen so that the
composition passes through three distinct stages. Species 1 has relatively
large solubility and large diffusivity so that its behaviour is initially
the most important and the mole fraction decreases rapidly from an initial
value of g™(0) = 0.79.

At first both g9 and increase as gas 1 dissolves rapidly but the
ratio g~/g” decreases continuously because species 2 has both larger
diffusivity and larger solubility than species 3. Therefore g9 peaks then
progressively gives place to large mole fractions of the least soluble species.

The final stage is very slow and the bubble disappears at dimensionless
time of about 220. The beginning of this stage is close to the point R =
ri = 0.2154 where R.1 represents the residual bubble in the case of complete
dissolution of gases 1 and 2 before gas 3 starts dissolving.

In some conditions the composition of dissolving bubbles can also evolve
towards equilibrium. This always occurs if there iIs a composition at which
all the "driving-forces"”, F*R), vanish (figure 6.23). Other conditions can
be formulated from figures 6.26 and 6.27. In both cases the bubble
composition tends to a range where the "driving-force™ of at least one of
the gases varies rapidly with its mole fraction in the bubble. This range is
close to the point g = FO /a™ =0.2 where FMiIR) vanishes for both these
figures.

The time scales used to represent the changes of mole fractions (dashed
lines) were expanded to emphasize that those changes occur relatively early.
In cases (@ in both figures species 1 initially dissolves at a much greater
rate than species 2 causing a relatively rapid contraction of the bubble

while the mole fraction gl decreases. Much smaller rates of dissolution of
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gas 2 may be due to a small ratio of solubilities, ;
a2”ax> or a small ratio

of diffusivities, f o r both.

FX@® drops sharply as gl approaches 0.2 and the product ' F., R)

remains relatively low. Consequently the rate of bubble contraction decreases

considerably. At Z = 2 in case (@ of figure 6.26 g - 0.2156 so that

1, g Roi>l _ 1
F1® dg 0.0156

Rapid changes of gas composition are then unlikely to occur because the
"driving-force" of species 1 varies rapidly with small changes of gas
composition and this interdependence acts as an efficient control. Thus g
decreases slowly towards a minimum reaching g~ 0.2007 at the end of the
process. Similar arguments can be found for the remaining cases in figures
6.26 and 6.27.

As gx@ =0 m cases () in figures 6.26 and 6.27, F R) < 0 and

If1*F1 (R)I > f2F2 (R)" Thus ~ bubbles grow during a short initial stage
while gl is increasing and approaches the point gL =0.2 when f R) = o.

By the end of the process gx is slightly greater than 0.2 so that F R) > 0
and this species can redissolve.

Generally speaking, if species i has the raximum permeability among

the n-components of a bubble, and species j has the lowest permeability

with a large ratio between permeabilities (a.f./a.f, » i) mole

fraction of species i tends relatively rapidly to gl* = Fq /a.. If the rati<
i 1

of permeabilities is close to unity, then the E'amif’ion ot gas may evolve

to nearly equilibrium conditions provided the "driving-forces" (F.(R); i=i,

-.-, ) vary rapidly m that range of compositions. In practice this occurs

when the "equilibrium" mole fractions g are close to g * = F /a and
n i ui i

this condition is verified when 1 g * is reasonably close to unity, (or iIn
i=|I
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some cases greater than unity).
n

It was shown in figure 6.23 that if £ g,* =1, (@-* = Fq /a.), the
i=l 1 1 i1
bubble composition tends to = g™~ (G=l, n) and dissolution or growth
stops at that point.

In figure 6.28 g™ + g™ = 0.75 and the tendency to approach a unique
equilibrium composition is approximate but not rigorous. In this case the
times of dissolution are matched to enhance the similarities between the
final stages. The agreement between the different radius-time curves is
even better than between the corresponding mole fraction-time curves.

This is related to the fact that the "driving-force" of the major component
during the final stages is similar in all cases at the moment when the

bubble disappears (FR) = 0.0945, 0.1005, 0.1035 and 0.1040 for cases (@,
(b)), © and (@ respectively). In case (©) the initial composition of
gas is g™ = 0.295 and its final value = 0.293 and the composition of the
bubble varies very little during dissolution.

The components of the system illustrated in figure 6.29 have equal
permeabilities, but quite different diffusivities. It has already been
demonstrated that, if g™ =0 (=1, ..., n) (figure 6.19), these systems
do not converge to "equilibrium™ gas composition and significant changesof
gas composition may occur during the final stage of dissolution. In the
present case g™ + ¢ = 0.4 so that the restrictions on the final
composition of the gas must not be severe. However, the initial level of
concentrations in the bulk liquid has some effect, especially on case (a),
which does not show the usual increase of mole fraction of the less soluble

component during the initial stage (compare figures 6.19 and 6.29).
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6.10 Unusual concentration profiles

So far it seems that the behaviour of n-component bubbles is greatly
affected by changes of gas composition and corresponding changes of
concentrations of gases dissolved in the liquid at the interface. However,
this crude criterion alone cannot explain some characteristics of transient
behaviour. For instance FAiR) > 0, (that is Ch @ > ), does not ensure
that species i is dissolving. Similarly species i1 may dissolve temporarily
while qua < 0, but then reverse its direction of diffusion and there is
no simple relation between F (®) and the magnitude of the dimensionless
material fTlux.

In figure 6.30a the original bubble contains a highly soluble gas
(i=2) which also has lower diffusivity than species 1. For the latter
reason species 1 is transferred at greater rate into the bubble than the
rate of dissolution of species 2. Therefore the bubble grows from the
beginning and the gas composition changes rapidly and finally levels at
about g™ = 0.9007. At the same time the interfacial concentrations,
especially FM(R), change rapidly and the concentration profiles reflect
those changes (figure 6.30b).

As the diffusivity of species 1 is much higher than that of species 2,
this species diffuses relatively slowly which causes accumulation not far

from the interface. The absolute numerical value of its concentration
3fF.

3% at the interface decreases rapidly so that later changes

gradient
of interfacial concentration (F2(R)) are essentially due to a relatively
rapid rate of diffusion of species 1. As toe mole fraction g2 continues to
decrease F., R) also decreases giving rise to a temporary local maximum in
the curves F2 versus x = e/R (profile corresponding to R = 1.5). The

numbers which denote the curves in figure 6.30b show the relevant values of

the dimensionless radius R.



e/R-1

Fig 6.30 : Growth of a two-component bubble showing rapid
changes of interfacial concentrations and local maxima
in the concentration-distance curve for species 2 (full
lines in Ffig 6.30b).



Fig 6.31 : Dissolution of a two-component bubble showing rapid

changes of interfacial concentrations and local minima
in the concentration-distance curve for species 2 (full
lines in Ffigure 6.31b). The numbers show

the values of
the dimensionless radius R.
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Later the local maximum in the curve for disappears as that species
diffuses away in both directions. If R > 10 the concentration profiles of
both components have reached asymptotic regimes, which can also be derived
from the analytical solutions of growth from zero size (equation (6.7)).

The example illustrated in figure 6.31a also shows unusual evolution of
concentration profiles. Again the diffusivity of species 2 is much lower
than that of the other species and ® is very dependent on the gas
composition. Initially the flux of the species 2 from the liquid into the
bubble exceeds the dissolution rate of gas 1 which causes a rapid drop of

and the initial increase of bubble size.

At g8 =0.5 F ®) = 0 and one might think that the start of dissolution
of species 2 began at this stage. Actually gas 2 started dissolving
significantly earlier as shown in figure 6.31b. The concentration profiles
shown in figure 6.31b are equivalent to R = 0.9, 0.75, 0.5, 0.25, 0.1 and

0.05. The full lines represent species 2 and the broken lines species 1.

32"
Local minima are developed in the curves F_ against e . =
2 B A 1e=R

becomes negative and therefore species 2 starts dissolving
significantly before F ([R) becomes positive.

These two cases have shown the more important conditions likely to
cause maxima or minima in the curves of concentrations versus distance.
The interfacial concentration of the species K which shows those unusual
features is very sensitive to changes of gas composition and DK is much
lower than the diffusivity of other major constituents of the bubble.
Besides during an intermediate stage the changes of gas composition are due
to a species other than species K, so that F ®) will be forced to change,
almost independently of the actual diffusion of species K.

These extreme examples demonstrate how inaccurate quasi steady-state

or quasi-stationary multicomponent solutions can be. It was shown in



148.

Chapters IV and V that those approximations have very limited applicability
in describing the behaviour of one-component spheres. Their use with multi-
component systems is based on assuming that the rate of transport of species
i is directly proportional to ® which may be completely wrong, and adds
to the inaccuracy of those approximate one-component solutions. They will
often give very inaccurate predictions, except possibly for low absolute

numerical values of the 'driving-forces" (R); i=1, n.

6.11 Conclusions

Analytical solutions were derived which make it possible to predict the
growth of multi-component bubbles from zero size. These solutions are only
slightly more complex than equivalent one-component solutions (Scriven, 1959),
and can be computed from these previously reported results. The multi-
component analytical solutions demonstrate the uniqueness of asymptotic
bubble composition and growth rates and growth from finite size converges
relatively rapidly to that regime, regardless of the initial bubble
composition. Analytical solutions for growth of multi-component bubbles are
especially simple in the extreme ranges of very low and very high solubility
parameters.

The role of solute concentrations is more important than that of
diffusivities, that is, the behaviour of the bubble reacts more rapidly to
changes of concentrations in the bulk liquid and solubilities than it reacts
to changes of diffusivities. This is true both for growth and for dissolution.

Changes from bubble growth to bubble dissolution or vice versa can be
simulated by properly choosing the initial bubble composition, solubilities
and concentrations of solutes in the liquid medium. It is also possible to

simulate the gradual evolution of bubbles to equilibrium conditions when
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the bubble stops growing or dissolving as the gas composition tends to
equilibrium and the "‘driving-forces"™ vanish. Some of those phenomena have
been experimentally observed (Greene and Davies, 1974).

Other occasional characteristics of bubble dissolution occur when the
process comes to a halt or the rate of dissolution decreases dramatically
(Greene and Kitano, 1959; Nemec, 1969). It has been confirmed that these
observations are likely to be due to a relatively inert species which has
low solubility or relatively low diffusivity, or both.

That the finite difference method performs very well even with variable
interfacial concentrations and simultaneous diffusion of more than one
species was demonstrated by comparison with the above-mentioned analytical
solutions. For very large increases of bubble size the asymptotic regime
after growth from finite radius becomes indistinguishable from the analytically
solved growth from zero. The same applies to the equilibrium composition of
the bubble. The convergence of the finite difference solutions was
demonstrated over a very large range of solubility parameters to prove that

the method did not fail even in very extreme conditions.
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CHAPTER VII

*“1  Diffusion controlled behavi oN——————— __ith concentration
dependent diffusivity
_ _ £ diffusi trolled
Crank (1975) discussed some solutlgﬂS ° ' usmn,\consg?ut?on rg}ggsses
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L°ns (sectig

luai .
B o mti
rQCi. s converge to an asymptotic regime which is the same as the

U of

Co
Wer
9%®nce o ) i ) )
Of o °1 the finite difference solutions by comparison with the class
act
solut._ _
ions described above.

n 7-6). During growth from finite (hon-zero) size the

°wth from zero size. Therefore it is possible to test the
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nen~ saberes ity
. ) one-com£® iable
-2 Material balancgs fgE. ] cless of var
VaI|d regar
Equations (2.15) and (2.17) are
CJt equation (2.5) leads to @ .1)
2 da 3C = '
d 3C\2 _ at 3r 3t
r 32C . 2 3C*\ + lac)"\3r
DIC) 1 3?2+ r ar ] (2 .23) is also
Equation )
- C onlynm
concentration
"Ere D is a function of the
;@d and can be written (7_2)
M (3C
A or
I N = °g! !
Csae="a1l" a i
concentration
_ _ olute
interfaciaE s
because the
vere D(c,) = n_ is a constant
a 1o
) in order
assumed to remain constant made dbnensro behaviour

°ns (7.1) and (7.2) can be made dime,,— nless pout tnc

" - cgnclusions a
the roaru c

7"erai e the solutions and draw

N

ese systems. Thus, (7.3)
vV w
dS(u.i5rr

(7 .4)
dB, 1
as W r
; and
sual meaning
re e, and R have the u
7.5

= D/Da
= t—Dg{aO

V) Cs]
F - C-ca/n
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- solutions for growth from zero size diffusion

°ltzmann transformations have frequently been used to solveFU ,0
- "% assuming s = r/(2/5a t) and F(s) =

controlled

also ()
r/2vzl
= a/1l>»
from which it follov;s @.n
= 2&w"
= t'
rise 10
Therefore, equation (7.3) g
o oF @-8
- ~ dF Vds
1 ~2 </n - I/s ®
£1=2- \c& /IDS ) - S/D
ds® ds
~iso from equations (7.4) and
@-9)
dF
dz
o« after rearranging»
(7.10)
daFl = 2&
ds ~
tions (2.26)) become

~  remaining boundary conditions
.1n

@ = 4- (0~ c,)/ia " c™ )Cs

FE) =0 -
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. ~ cdb@) .. .
The functions D(F) and DE— May assume explicit analytical forms or
be defined by a set of n discrete points (F",; E)’\); i=l, ..., n. In any
case equation (7.8) must be solved numerically by decomposition into a system

°f simultaneous ordinary differential equations.

dar 9 o9 i

. €3 /(s d) s/D - 1/s o 1 P13 (7.12)
dF

W T (7.13)

from equation (7.10)

T@E) = 26 . (7.14)

~us the variable T decreases from 26 to zero at 3=°°. This range is very

Useful jn seiection Qf variable mesh sizes for numerical solution of
eduations (7.12) and (7.13). Besides the condition T(°°) = 0 can be used to

S™N°P the integration at a specified value; that used here was
T < 10"5.(6) , (7.15)

with negligible errors involved in .e final estimate of ~ — F(*®)

on specifying the solubili y Barameter 4 the actual system reduces tpfg .

boundary value problem. On the contrafy if the growth constant 6 is specified

bbe problem is of the initial value type, Which is much simpler to solve.

p°urth-order Runge-Kutta techniques used to obtain the solutions

¢IM, £for the required factions S(F) (see append!, 5).



7.4 Quasi

steadv-state approximations

1t was shown in Chapters

1v and v that dissolution or growth with low

U] always tends to quasi steady-state approximations. If the diffusivity

depends on ooncentration the quasi steady-state salification of equation

(7.3) is
3 0 (7-16)
[e2.S(F>~]1]1 -
3e
or
0 -, - 3F _ T @-17)
2-D(F)-=-2¢CL
integration of equation (7.17) with
The constant must be evaluated by
boundary conditions
FR) =0
FO = %.
That jg
Fe) A fl il (7-18)
D(F) dF = ci r el
0
end

(7.19)
| AD(f) dF = 4 Dav = CI/R

0

°mWhich it follows that

A (7.20)
= R 4 Dav

D~ . th i _ diffusivity.
Vv being e average dimensionless



From equations (7.17) and (7-20)

(7.21)

- “av */R

- In addition, from
- 1 (at the interface)

where, by definition, D(0)
equations (7.18) and (7-20)

(7.22)

TER) 4@ dF = 4Dpav 11" e

solution (D = 1)» is

and the corresponding constant property

F(e/R) " ( R

equations (7.4
btained by combining

The rate of the process can be a

and (7.21) , so that

7.23)
(5. = D,v 4R
a
and by integration from Z - °< R
(7.24)
2 =1 + 2 Dav &z
and if£>0and R » 1
7.25)

/21
P = R/2/z - |4 Dav
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Average diffusivity and its relation to equivalent constant property

solutions

Assuming that the actual solutions are accurately predicted by
equivalent constant property solutions with equivalent diffusivity D
e

z" = t_Deq/aO = Deq'z’ (7.26)

where D =D /D
eq eq a
So that the time scale is affected by a factor eq Thus the dimensionless

time required for complete dissolution is
= Z ID (7.27)
0 " eq

~Sre 20 'S the constant property solution (Chapter V). Also if 6Q is the
°nstant property value of the growth constant (Chapter IV) and £ the actual

s°lution

D=
6 = al/2/Deq t) = 2/Da-t %q)
a- a (7.28)
= $/(Dgg) =
~asilv recognised tha in the cane of quasi
From equation P 24 it is easily which describes §rowth Or
steady-state approbations the generar ™ and the equivalent
Resolution is only affected by change of j-ffusivity
Rffusivity is exactly equal _ the average d m
Dav D dF (7-29)
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6  Finite djffprpnre method for concentration dependent diffusivity

problems

The coefficients D(F) and or in equation (7.3) make the finite difference
solution somewhat more complex and more likely to become unstable if the
Niffusivity varies rapidly with concentration. Iterative schemes to correct
D(p\ _ dD N o i . _L

acl dF were found to cause instabilities even when implicit Ffinite
difference methods were used to calculate the concentration profiles. Usually
N ese instabilities can be avoided if the discrete values [D(F,. and

db

dp at time step £ are used to calculate the concentration profile at time

teP £+ , without iterative procedure, but these solutions also fail for very
1 ) ) ) " )
r9e absolute numerical values of the derivative a): , especially near the
terface. For the general case stability is achieved by inclusion of the
Coq Fp* = n i, , -
icient [D(F) in the implicit scheme used to calculate step £+1.
It will be shown that the actual class of solutions with concentration
indent diffusivity are similar to the equivalent constant property
s?lutiljyng provided a suitable equivalent diffusivity is taken into account.

ief°re the arguments found to justify the transformation X = e/R used

In ChaPter in are also valid in the present conditions and equation (7.3)

3ecomes
DO "¢» 209 LR ) B2 g
3% X 3x 3x dz X
is

Station is then replaced by the finite difference equation (7.31)

1 rF
2 foF ieF 2% o, o ¥
"X v 2 . X 41 T dF X
£+1 X £+1J 3x £+1
¢ av @I > (x - ox =2 X '3!< £+1] 2>y X (7-3)

av
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where the space and time derivatives assume the finite difference forms
derived in Chapter 1II.

As the amplitude of time intervals is controlled (see Chapter II11)
the changes of concentration at a space mesh point j and per time step
are relatively small so that the derivative éggl is used as an explicit

£

factor to integrate from time step £ to step £+1, and

ddb
°E+1 °£ + dF FE+] = 17.32)
Therefore also assumes the form of a linear term which is required for

Inclusion in the implicit finite difference scheme.

This method resolves the instabilities which might develop when
Is not included as an implicit term and provides a way of using an
approximate average between steps £ and £+1. The accuracy of this technique
Is again confirmed by comparing with the class of exact solutions for
growth derived in section 7.3.

IT the diffusivity is strongly dependent on the concentration of solute

the Soncentration profiles will be markedly affected and concentration

A

9tadients may vary rapidly with distance. This trend occurs if is

large, especially near the interface. Besides, in the present conditions

the Goncentration gradient at the interface must be estimated from discrete

P~ce mesh points close to the interface. Both trends require smaller space

N
sh sizes than for the constant diffusivity case. However, these effects

do
n°t affect most of the results reported in this chapter, and only for
dD
dr 100 it is necessary to use more than 150 space mesh points. The most

S
ewére cases included in this chapter were KB = 0.001 and D =1 + 10-(F/4>))

% ere dD

dE = 10 and convergence of the finite difference solutions then did

Equi _
less than 300 space mesh points.
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7.7 Growth from zero size

A polynomial D(F) function was chosen to illustrate the effect of

concentration dependent diffusivity, such that

DE = 1+ di-F + d <F (7.33)

where dg and d™ are constant. All the examples reported in this chapter
Refer to E = 1, which is the case with gas bubbles. Values of growth
constant 3, solubility parameter, (@ and constants dg and d" were used to
solve equations (7.12) and (7.13) with the proper initial conditions (7.11)
a»d (7.14).

The characteristic law R a /z which describes the asymptotic regime
of growth is.valid regardless of the relation between the diffusivity and
concentration of solute. Only the growth constant 3 = R/(2/z) is dependent
°n the actual functional form D(F) and it is useful to relate the equivalent
dimensionless diffusivity Deq (equation (7.28)) to the average diffusivity
a
Cav (equation (7.29)).

A B

Figures 7.1 and 7.2 show systematic differences between (O ) = B/Bqg

Mav) 1 where $n represents the constant property solution (for the case

o>

i“e The values of 3" obtained by numerical solution of equation (7.8)

A idle same as Scriven®s solutions (1959). The differences between D }and

av increase as either dg or d* (or both) increases.

N summary of results is also shown in table 7.1 where 3g is the actual
ofith constant for the case = 1, E = 1, while 3g = 1.320 is the
°rResponding constant property solution. The differences between

(Deg(" = 31/% and (Dav)"* can be as large as 19% of 3.1/38 in case 16, that is
W]y

A

the changes of diffusivity are maximum. The agreement between D”and

S -
retter when D(F) is a linear function of F than when D (®-leF . This
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conclusion is easily drawn by analysis of growth constants for the set of
cases 3, 11, 12 and 13 or the set 5, 14, 15 and 16.

Figure 7.3 illustrates the concentration profiles corresponding to
cases 3, 11, 12 and 13 of table 7.1. The dashed line represents the constant
property solution, and is clearly distinguished from any of the variable
diffusivity cases which tend to show steeper profiles near the interface,
but also lower concentration gradients in the tail of the profile where the
diffusivity approaches a maximum. At the interface all these variable
diffusivity cases have similar concentration gradients, but every functional
form SkF) gives rise to a different shape of concentration profile. These
conclusions are confirmed in figure 7.4 which illustrates the cases 5, 14,
15 and 16 of table 7.1, but the differences between these profiles are
greater than in figure 7.3, because the changes of diffusivity throughout
bhe diffusion fields are greater in the cases 5, 14, 15 and 16 than in the
°ther set of cases 3, 11, 12 and 13.

The quasi steady-state approximations have suggested that in the range

A

o H H —_ “ A\ —

1 very low SOlubIlItX Rarameters Deq = Dav’ and therefore B/3O = G%N)
"Ibis trend is confirmed in table 7.2 with a reference constant property
s°lution <3>(3;E)= @0.01; 1) = 1-965 x 10~4 and a general relation D(F) =
1+ d-F. The reference growth constant is 3Q = 0.01 and the remaining
values are 3=3 /"d™ where d° =[I + 1.965 x 10-4.d /2] is the average

0 av av

"liniensionless diffusivity in the range 0 ~ F~ 1.965 x 10~~. If the
a9teement between the equivalent diffusivity D and the actual average
gLffusivity D , IS exact then D =D = (3ﬂy8 =D and all the

Ay av eq av
Predictions of solubility parameter $must be equal. These conditions are

alroost fulfilled and the actual solutions of ¢ (equation (7.8)) are close

N
E? the quasi steady-state predictions @gs = 232/DdN (equation (7.25)).



Table : 7.1
Comparison between exact solutions of growth with
variable diffusivity (D=1+d"F+d™F”"), and constant property

solutions with average diffusivity (equation (7.29))*

case dl d2 v Bo (navr
1 0.5 0 1.449 1.098 1.118
2 1 0 1.565 1.185 1.225
3 2 0 1.771 1.341 1.414
4 5 0 2.298 1.741 1.871
5 10 0 2.957 2.240 2.449
6 0 0.5 1.401 1.061 1.080
7 0 1 1.470 1.113 1.155
8 0 2 1.605 1.216 1.291
9 0 5 2.052 1.554 1.633
10 0 10 2.422 88 2.082
1 1 1.5 1.749 1.325 1.414
12 0 3 1.723 302 1.414
13 -1 4.5 1.699 1.287 1.414
14 5 7 5 2.881 2.182 2.449
15 0 15 2.802 2.122 2.449
16 -5 22.5 2.718 2.059 2.449
17 -0.2 0 1.263 0.958 0.949

18 -0.5 0 1.177 0.892 0.866



Figs 7.1 and 7.2 : Effect of concentration dependent diffusivity

on the growth constant 3* The dashed lines represent

B/6o = (Dav)*5.



Table 7.2

Agreement between the average diffusivity and the

equivalent diffusivity for low g

LS 102.3= Q)5 1046 QO )™ joanss

-0.25 0.8686 1.965 0. 8686 2.000
0] 1 1.965 1 2.000

1 1.4080 1.969 1.409 1.998

2 1.7219 1.969 1.723 1.997

5 2.4316 1.969 2.434 1.996
10 3.2901 1.970 3.294 1.995

Ne8 Finite difference solutions for finite initial size

7.8.1 Growth

The modifications of the finite difference method which are required to
s°lve diffusion controlled growth or dissolution of spheres with concentration
dependent diffusivity were described in section 7.6. This technique was used
to compute (R,Z2) data which were inserted into equation (7.7) to confirm the
convergence towards the asymptotic regime. For R ©~ 100 the numerical
Predictions 3n = R/(2/2) remain constant until at least the fourth significant
f9ure and computations were carried out up to R = 10 , that is when the
tadius had increased by a factor of 105. This large increase in size clearly
demonstrates that there is no change in the growth law for R ~ 100,

R=267F ).

The numerical predictions of growth constant 3r were then put into
Nation (7.12) with the proper function D(F) to recover the equivalent

ahalyticai” values of the solubility parameter, ja- The agreement between

finite difference predictions and the "analytical" solutions is then



10

0

Comparison

and the

0.01

8
0.0593 0.01000
0.0658 0.01002
0.0707 0.01001
0.0840 0.01003
0.0918 0.01003
0.1057 0.01002
0.1393 0.01001
0.1619 0.01000
0.1819 0.01000
0.0753 0.01000

equivalent

between

0.2186

0.2406

0.2577

0.3031

0.3304

0.3787

0.4965

0.578

0.646

0.2734

Table

*a

0.1002

0.1001

0.1002

0.1001

0.1002

0.1002

0.1003

0.1000

0.1001

0.1000

7.5

finite difference
exact solutions.

1.080

1.177

1.253

1.448

1.567

1.777

2.294

2.650

2.969

1.320

predictions for

(D=1 +d* (F/(3)))-

*a

1.000

1.001

1.001

1.001

1.002

1.002

1.001

1.001

1.001

1.001

10

8.50

9.19

9.71

11.12

11.93

13.41

17.10

19-65

21.93

10.20

R N

10.00

10.01

10.00

10.02

10.01

10.01

10.01

10.01

10.01

10.01

100

100

*a

82.2 100.1

88.7 100.1

93.6 100.1

106.7 100.0

114.5 100.1

128.8 100.2

163.4 100.1

187.4 100.0

209.1 100.3

98.2 100.1
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Comparison between

finite difference predictions

Table

- 7.4

the equivalent exact solutions,[D=1+d*(H(D)ﬂ.

0.0655

0.0693

0.0724

0.0810

0.0864

0.0962

0.1211

0.1386

0.1543

0.0753

.01

0.01000 0
0.01000 0
0.01001 0
0.01001 0
0.01002 0
0.01002 0
0.01002 0
0.01002 0
0.01003 0
0.01000 0

.2407

.2537

.2638

.2927

.3103

.3433

L4276

.4871

.540

.2734

0.1001

0.1003

0.1002

0.1003

0.1002

0.1002

0.1002

0.1002

0.1002

0.1000

1.237

1.281

1.471

1.605

1.000

1.001

1.003

1.003

1.002

1.001

1.001

for R

10

11.21

12.10

14-38

16.01

17.45

10.20

N

10

10

10

10.

10.

10

10

10

10.

10.

100

.00

.03

.03

01

03

.03

.03

.03

01

01

and

89-5

93.2

95.7

103.0

107.7

115.9

137.1

152.3

165-6

98.2

¢a

100.0

100.2

100.1

100.1

100.3

100.3

100.3

100.3

100.1

100.1



Pigs 7.5 and 7.6 : Effect of concentration dependent diffusivity
on the ratio of the growth constant 3 for the variable
diffusivity problem to the corresponding constant property
value 30« The dashed lines represent the quasi steady-state
approximation T340 = (@av)” The numbers show the values of <%



Pigs 7.3 and 7.4 : Effect of concentration dependent diffusivity
on the concentration profiles for growth from zero size.

0.2 0.8 10

Fig 7.4
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easily recognized by comparing the original @ values and the derived

equivalent values of qod (see tables 7.3 and 7.4).

The relations between the diffusivity and concentration of solute

used in tables 7.3 and 7.4 were

D(F) =1 +d° Hp (7.34)
and

D(F) = 1+ d" (F/p)2 (7.35)
s° that the average dimensionless diffusivity is (I + d/2)in table 7.3

and Dav =(l + d~/3)in table 7.4.
The numerical predictions shown in tables 7.3 and 7.4 were also

represented in figures 7.5 and 7.6 to investigate the relation between the

equivalent diffusivity, feq - M / end the average diffusivity D~.

These results show that feq is close to £qv for very small values of the

solubility parameter ¢ but the differences increase with <& and are greater

increases with the square concentration F2, than when

when the diffusivity

the diffusivity increases with F. In addition the ratios 3/BQ between the

growth constants for the variable diffusivity case, 3, and for the constant

Property case, are nearly proportional to the square root of the average

5
~“niensionless diffusivity D”, that is

6/35- 1 + S[(D, )™ - 1] (7.36)

the diffusivity increases with increasing concentration of solute

the . . . . . .
~nimum value of diffusivity occurs at the interface where the diffusion

ansport is most important. This might explain why the equivalent diffusivity

lower than the average diffusivity and therefore 8 /= (DM N < (DM)*2
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The opposite trend occurs if D(F) decreases with increasing F because the
diffusivity at the interface is then greater than the average diffusivity.

In this case the growth rates for the variable diffusivity problem are
always greater than the growth rates for the equivalent constant property

problem with the same average diffusivity, that is 8/6O > Q:)aVJ*S.

7.8.2 Transient regime of growth from finite size

In figures 7.7 and 7.8 the use of the equivalent dimensionless time
z Deq where Dg = (8/8Q) (equation (7.28)) makes the representation of the
mitial stages of growth from finite size almost independent of the actual
relation between the diffusivity and concentration of solute. In those
#-gures the Tfull lines represent the solutions for the relation D =
+ 10 -<P)] and the dashed lines D =[1 - 0.8<F /7 )]- All the remaining
s®lutions for D =[1 + d"=H®)] with -0.8 < d* < 10 lay in between the
limiting full and dashed lines shown in figures 7.7 and 7.8, that 1is, they
are nearly indistinguishable. Note that this also includes the constant
Property case d"= 0. Therefore growth is characterized by specifying the
ebuivalent diffusivity and the solubility parameter and the actual solutions
f°r the variable diffusivity cases can be worked out from constant property
s°lutions. From the radius-time relation alone it will be impossible to
Show whether the diffusivity is nearly constant or varies rapidly with the
Cor*centration of solute. These conclusions apply to other functional forms
N NP)., namely equation (7.35).
Unfortunately the equivalent diffusivity is not the same as the average

diffusivity but the relations between (O )* and (D™)*5 are frequently nearly
"hear over significantly large ranges of values of Dav* Therefore, very

w Points are needed to obtain accurate relations between @eg) 3UG "*av*

[ )
Qn which all the intermediate variable diffusivity solutions may be worked

Out.



Figs 7.7 and 7.8 : Transient stage of growth from finite size with
concentration dependent diffusivity. The numbers show the
values of (. The dashed-dotted line in fig 7.7 represents the

quasi steady-state equation (7.24).
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Figure 7.7 also confirms that the solutions for variable diffusivity
Problems with low & converge to the quasi steady-state approximation
(equation (7.-24)). In the range of very large ¢ the variable diffusivity

solutions also converge which has been already found for constant property

solutions (Ffigure 4.11).

7.8.3 Dissolution

Figures 7.9 and 7.10 exemplify the diffusion controlled dissolution of
bubbles (e = I) with variable diffusivity. These results were obtained by
finite difference solution of equations (7.3) and (7-4). The modifications
required for this type of equation were described in section 7.6. In
figure 7.9 the relation between the diffusivity and solute concentration is
described by a linear function (equation (7.34)) and in figure 7.10 it is

fined by

D = exp[d(F/<}») ] - (7.37)

In both cases the most important effect of varying the diffusivity is the
cbange of dissolution time. The constant property solutions are represented

~ bbe dashed lines.
figures 7.11 and 7.12 show normalised dissolution curves for the cases
Quations (7.34) and (7.37) respectively. The full lines in figure 7.11

tePtesent the solutions for D =[1 + 10.(F/<Ff>)] and the dashed lines solutions



Figs 7.9 and 7.10 : Relations between R and Z for dissolution with
concentration dependent diffusivity. The dashed lines
represent the constant property solutions.



Figs 7.11 and 7.12 : Relations between normalized radius and

time for dissolution with concentration dependent
diffusivity. The numbers show the values of < The dotted-

dashed lines represent the quasi steady-state equation
(7.24).

0.8 1.0



Fig 7.13 and 7.14 : Relation between the equivalent
dimensionless diffusivity De = Z0/Z3 for dissolution
with concentration dependent diffusivity and the
average dimensionless diffusivity Dav. The numbers

show the values of ¢



Table : 7.5
Effect of concentration dependent aiffusivity on the
dimensionless time required for complete dissolution Zd .

The symbol * denotes the quasi steady-state equation (7.24).

a) D=1+ d (F/4>)

D -0.001 -0.01 -0.1 -1 -10
a 4> z d
10 0.0833 0.0832 0.0791 0.0708 0.0540 0.03682
0.1429 0.1411 0.1346 0.1202 0.0914 0.0602
0.2500 0.2458 0.2347 0.2076 0.1550 0.0964
0.3333 0.3263 0.3116 0.2736 0.2008 0.1204
0.5 0.4000 0.3915 0.3729 0.3251 0.2351 0.1374
-0.25 0.571 0.554 0.525 0.4502 0.3142 0.1743
-0.5 0.667 0.644 0.607 0.515 0.3529 0.1916
-0.8 0.833 0.796 0.743 0.619 0.4134 0.2180
0 0.5000 0.4864 0.4625 0.3994 0.2828 0.1599

b) D= exp ( a (FI<j>) )

© # -0.001 -0.01 -0.1 -1 -10
a <> Z
y d
0.0786 0.0779 0.0751 0.0691 0.0560 0.04279
0 1565 0.1541 0.1485 0.1344 0.1056 0.0718
1 0.2910 0.2851 0.2732 0.2423 0.1811 0.1112
0.5 0.3854 0.3767 0.3595 0.3147 0.2289 0.1346
-0.5 0.635 0.615 0.582 0.496 0.3422 0.1870
-1 0.791 0.761 0.716 0.602 0.4063 0.2156
-2 1157 1.100 1.021 0.839 0.545 0.2758
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for the cases D =[l - 0.8 *(H<{®]. Similarly the full lines in figure 7.12
represent g: exp[3(F/({)) ] and the dashed lines /E) = exp[-2 (H3]. The
dotted-dashed lines represent the quasi steady-state solutions (equation
(7.24)). These figures confirm that concentration dependent diffusivity may
be taken into account by changing the time scale, which is the same as using
an equivalent diffusivity. AIll the solutions for /[\)=fl + d(F/<}))] with

-0.8 < d < IQ lay in between the extreme cases d = -0.8 and d = 10, and
similarly the solutions for D = exp [d(F/(j>) ] with -2 < d < 3 lay in between
the cases d = -2 and d = 3. With low |@] the actual solutions converge to
the quasi steady-state limit.

It has been shown that the time scales, that is, dimensionless dissolution
times Zjj, are the most useful data so that the radius-time relations for the
concentration dependent diffusivity cases may be obtained from constant
property solutions. Dissolution times are shown in table 7.5a for the case
of the linear relation D =[l1 + d(F/(]>)] and in table 7.5b for D = exp[d (Fcf) j.
These results are also represented in figures 7.13 and 7.14 in order to
relate the equivalent dimensionless diffusivity D = Zc/zZd t0O the avera9e

dimensionless diffusivit¥] Dav; Z, is the constant property solution.

0
Figures 7.13 and 7.14 show that there are nearly linear relations between

D and except possible for 4 = -10 in figure 7.14. These relations

reduce to

Dy = 1+ SO, - D - (7.38)

°ne calculation for the middle of the range of de is usually enough to obtain
accurate values of S which may be useful for each relation between diffusivity
~d concentration.

It has been shown that the equivalent diffusivity for growing spheres is

lower than the average diffusivity if the diffusivity is a minimum near the
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interface and the equivalent diffusivity is higher than the average
diffusivity if the diffusivity is a maximum at the interface. The same
trends are valid for dissolving spheres as shown in figures 7.13 and 7.14.
The examples shown in figures 7.11 and 7.12 demonstrate that from
experimentally measured radius-time curves it is virtually impossible to
conclude whether the diffusivity is nearly constant or varies strongly with
the concentration of solute. For the cases ¢ = -10 shown in figure 7.12
the diffusivity in the bulk liquid medium is about 20 times the value at the
interface (full line) or about 0.135 times this value (dashed line). Even
these extreme cases can only be distinguished if the final stage is
accurately measured and this would be very difficult with most experimental

techniques. Besides, impurities might easily change the final stage of

dissolution (see Chapter VI1).

Seclusions

Exact solutions have been derived for diffusion controlled growth of
sPheres from zero size with concentration dependent diffusivity. These
s®lutions were then used for comparison with finite difference predictions

and both methods agree very closely. This demonstrates the accuracy of the

;nite difference method.

It has been shown that the solutions for growth or dissolution of spheres
with concentration dependent diffusivity can be worked out from constant
Property solutions provided accurate values of the equivalent dimensionless
Neffusivity Deq are known. Unfortunately this equivalent diffusivity is not

same as the average dimensionless diffusivity Dav except for very low
s®lute numerical values of the solubility parameter > However, the
6lation between D and D is usually simple and only a few (O ; D )
av

eq av

ts are needed to obtain all the relevant solutions for a given functional
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form D(C) relating the diffusivity and the concentration of solute. This is

Valid both for growth and dissolution.

The use of the equivalent diffusivity makes all the solutions for growth
with large R indistinguishable regardless of the relation between the
aiffusivity and concentration of solute. During the initial transient stage of
growth from finite size the variable diffusivity solutions are also almost
indistinguishable from the constant property solution provided the dimensionless
time is transformed into Z*Deq

During dissolution the evolution of concentration profiles is complex
(Chapter V) without evolution to asymptotic regime except for very low 9=
In spite of that the equivalent diffusivity is still a very useful variable to
take into account the relation between diffusivity and concentration of solute.
Representation of radius-time relations in terms of Z-Deq gives close
Predictions for very different functional forms D(F) so that the variable
Niffusivity solutions can be worked out from the constant property case with
the equivalent diffusivity.

From the shape of radius-time curves it is then practically impossible to

c°nclude whether the diffusivity is strongly dependent on concentration or

hot.
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CHAPTER VIII

Surface Kinetics

8.1 Interfacial conditions

In the previous chapters it has been assumed that the transport of
~terial was controlled by diffusion in the liquid. However, if the diffusion
were sufficiently rapid the rate of transfer between the sphere and the
liguid medium might be controlled by surface kinetics, or both mechanisms
~ght govern the behaviour of the system. These phenomena are frequent in
chemical engineering problems and the rate of transport at the interface, J,
(moles per unit area and per unit time) with n-th order kinetics is usually

described by (Rosner and Epstein, 1972)

J=K'[ C@)n- (C*)n] = D[1 - C(a). v]“1. fe] (8.1)
1 1la
Where C(a) is the actual concentration at the interface, C* the equilibrium
concentration and k' the kinetic constant. The present treatment is
Restricted to one-component bubbles, so that C(a)*v - 0 and the index i
previously used to denote the species i can be omitted. The one-component
case is sufficient to illustrate the possible behaviour.

In these conditions equation (8.1) can be made dimensionless

KI[(F(R) + Fjn - Fsn] = (8.2)

ere e, r and Z are defined as usual (Chapter 11) and

= C*¥Cr ; FR) = [Ca) - CIlIC

F =cI/C F=(C- Cpl/Csg 8.3

K=K .a .c6".p?
0 s
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"The gas concentration C; and the diffusivity D of solute are considered
CprE;tomt. C denotes the initial bulk concentration of solute so that the

°nal boundary condition and initial condition are written as usually

c®»=c  t~o
8.4
CM =cC r >3

was shown in chapter Il that for gas bubbles C = 1, so that the

etial balances (equation (2.28)) can be written

32¢ "2 _ R2dR 1 9F _ Bf
e e dz ke X (8-5)

drR "3f"
dz (8.6)

*1th o
boundary condition

) =0, (CH)

~d
Initiai condition

Fe) =0 ; e>R ; Z=0 . B.8)

Stations (8.2) , (8.5 and (8.6) cannot be solved analytically.

Cal solutions were reported by Szekely and co-authors (1971, 1973),
Qm'ﬂm
that
sUch solutions are not efficient to analyse growth or dissolution with

stability of their method required very small time increments so

r
moderate solubility parameters

N has also been emphasized that the assumption of arbitrary functional

4]’”5

concentration profiles used by Rosner and Epstein (1972) to derive
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meIr diffusion controlled approximations fails iIn the ranges of moderate

low solubility parameters. |Including surface kinetics in similar ranges

c°ncentration is unlikely to lead to generally acceptable solutions by

1h'°Se Methods.

2 . _ _
8 Stasi steadv-state approximations

By integration of the quasi steady-state simplification of the material

nce (equation (2.67)) one obtains

8f
% - F(R)/R 8.9

F® FQ® - 8.10)

By combination of equations (8.2), (8.6) and (8.9) for first order

SULE ) ) )
~Ce kinetics (n=1) one obtains

dr K 9
dz 1+KR * @-11
am
wkich 1t follows that
i R-D+j R-D =42, (8.12)
*1
th g -

1when Zz =0, and Q= (C - C*)/C°. Equation (8.12) assumes a
ﬁmpie form and if the kinetic constant is sufficiently small (see

6s 8.4 and 8.8)

R-1+K @2 (8.13)

It Will later be shown that equation (8.13) represents the general
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°lutions of growth or dissolution controlled by first order surface Kkinetics
teQardless of the actual value of the solubility parameter @

The equilibrium water content in glass melts is known to follow the

S h
evert’s law, that is C* a P , where P is the water vapour partial pressure.

ah%r gas-liquid systems may follow Sievert®s law and for these cases second

tlder surface kinetics is expected (n=2) (Fast, 1965).

From equations (8.2), (8.6) and (8.9) with second-order surface kinetics

T® opiains
drR 1 Fs2 + F_ + (8.14)
dz R 2KR R KR
WIth?nitial condition Z=0 ; R =1
K is sufficiently low
12
2 2
F.” - F / Feo * okR « 1 (8.15
o)
that
2 2
L S -
112 A Fs ~Fo (8.16)
+ 2KR 2KR
F.+
“ 2KR

N

2 2 n 2 2
dr F. - F o - F
& Lt , 21—, . @® S (8.17)
RO 2R, ' 172 2FgR +
2 F ® K
® 2KR

integrating

Fp®R2 - D + -—p--= Fgp - F 2)Z (8.18)
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Again, 1f K is sufficiently small equation (8.18) tends to the following

linear relation
R= 1+ K(F(DZ - FSZ)Z . (B8.19)

Numerical solutions of equation (8.14) were also computed by using a
°eutth-order Runge-Kutta technique. These results confirmed the gradual
Mergence of solutions to equation (8.19) regardless of the values of

3 Ps (see figures 8.10 and 8.12).

8.3
Growth or dissolution controlled by surface kinetics

wf the kinetic constant K is sufficiently low,C(a) - Ce, equations (8.2)

0
\ga*") reduce to

z o
o on integrating
R=1+K[Fn-Fsn]z=1+Km [Q + HH)n - ] , 8.20)
%re
P=Fp- Fs @.21)
f = Fs/p

Einations (8.13) and (8.19) are the first-order case and the second-

Case of equation (8.20). Thus, the quasi steady-state approximations
Oy

9® to the exact limiting surface kinetics mechanism.
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Numerical solutions

As the interfacial concentration varies with the concentration gradient
~ the interface, F(R) must be solved as one of the discrete values of
°tcentrations calculated by the non-pivoting elimination method described
chapter h i . Otherwise the oscillatory errors grow rapidly and the
Cl°n fails. This type of problem was considered by Crank and Nicholson
wwY7) by assuming a Fictitious point where the concentration was expressed
linear function of the concentrations at the first two mesh points by
~i-nation of the diffusion and first order surface kinetics equations.
After the usual transformation of space variable equations (8.5 and

1S-6> become

r=211] + T 2 +iff te_x-2 j 3F = 3F _ 8.22)
L R dz 1 3X 3z
dR 1 (8.23)
dz R

~here x = r/a = e/R .

the interface (=I) equation (8.22) reduces to

x =1 8-24)

the case of first order kinetics equation (8.2) becomes

3f

oOx %=1

= KRF(R) + IRP . (8.25)

In _ _ _
case of general n-order surface kinetics and, in order to advance

hiiQe step £ to the next step £+1, one may write



(FR)E+L + FJ = {FR)E + FOI*( + 6) (8.26)

~ere 6 is expected to remain much smaller than unity, so that

(F(R)E+1 + F jn = (F(R)E + F jn.(l + nfi)

(8.27)
~ (F(RE + FJ HFEL + F~ + @ - n)-F(R)E
from equation (8.2)
3F
3x = do + dI"F{R) £+1 (8.28)
E+1
WhGye
n-1
d0 = RK [F(Rh + FJ Fot @ - WF®R, - F
. n-1
dl = nRKF R E + Fj
On assuming a fictitious point at ~ X1 ~ ~ where = 1 and
m2=" the space derivatives (equations (3.9)) and (3.10) reduce to
2 Ko (8.29)
3x 26X '
3°F F2 - 2F1 + FO
(8.30)
3 2j (&r) 2
the 1

i . . .
-rme derivative is replaced by

3f
8.31
3z _ =(F1,£+1 - F,,~ / 62 " ( )
a?=l
£ .
enotes the time step, 6z = Z - Z

X+ *x'
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Fi,i = FR)S -

By combination of equations (8.24), (8.28), (8.29), (8.30), and (8.31)

Olle obtains

F2,£+41 - 11 + “ + dl'5x(1 - fa)lFIl,£+1

- 26m(l - 6x).d~ + [1 + d *ex(l - &x) - a] (8.32)

0 1 Fi/5 Foge -

o)}
1

R2)_ = (&c)2/62

(RDav = (r2e+1 + r2£ + V. RE+1)/3

Equation (8.32) assumes the form of the boundary equation (3.23)

feciuired for the application of the finite difference implicit method

he
ribed in Chapter I1l. The present treatment is based on assuming the

.
CtltII_QUS point (Crank and Nicolson, 1947) but extends the solutions to
K

otder surface kinetics.

fu order to obtain the quasi-stationary approximation of the initial
ot _ _ _ _ .

e the interfacial concentration F(R) at time step 0 can be obtained
B 0

omb,‘oUing equations (8.2) and (8.6) with the transformed quasi-stationary

n @ .60) so that

FR) p . a
KI(F(R) +F)n -Fnl= - - \l + -p=- (8.33)
LCFC )° ) s ] RO L /F’)\ZQ!J
It
case of first-order kinetics (n=l) equation (8.33) leads to
F(R)O 1 + X/(KR)) (8.34)
«t

1+ 1//
st
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and In the case of second-order kinetics (n=2)

Foo
FR) +F P (8.35)

®refore the finite difference scheme described in Chapter 111 can be used

solve problems which involve the contributions of diffusion and surface

teticg. in the ranges of K values where surface kinetics controls growth

dissolution our finite difference predictions agree very well with the

i ., _ _
=cions of equation (8.20). This demonstrates the accuracy of that

e que.
8.5 ) _ _
First-order surface Kinetics

8-5.1 Growth

Figures 8.1, 8.2 and 8.3 illustrate the progressive transition from
<Siff
10n controlled growth to growth controlled by first-order surface

I<i-
het'res_ if K ps sufficiently low the initial stage is controlled by surface
Kineti . _ _
CsT but at sufficiently large times the solutions always converge to
te .

'|r:usion controlled regime (dashed-lines). This evolution can be

Sety/eq . . . _
for the largest values of the kinetic constant in figures 8.1, 8.2

*d
8.3 atd is characterized by a change of slopes from 1 towards 1/2 in
th
ose fi o _
gures. The transition for small values of K occurs at considerably
*,
Bir times.
In the case Q= 0.001; K = 0.1 the initial stage is controlled by
) kinetics up to about R = 2 (dashed-dotted lines). However, if K > 1
e

surfi
ace kinetics mechanism fails to describe even the initial stage of

axd if K > 10 the surface kinetics can be neglected,

th =1 surface kinetics causes significant deviations from the
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'gusion-controlled regime even iIn the case K = 10. Again if K < 0.1 there
IS anl Ini.tial stage which is controlled by surface kinetics.

In the case ¢ = 1000 the initial stage is controlled by surface kinetics

if v <
100, and even if K = 1000 the surface kinetics causes important devia-

tIOns from the diffusion-controlled case at least up to R = 10.
Taking into account the linear relationship between radius and time in
case of growth controlled by surface kinetics a single point (R;2) is

Icient to characterize that regime. The dimensionless time, Zg’ required

Lo}
"O0Ublg the size of the bubble was used for that purpose. The transformed

time G2 was used in table 8.1 and figure 8.4 for clearer illustration of the

A& gyrface kinetics controlled regime. These results show that the actual

étions gare always between the quasi steady-state limit (for low 4), and

~°n (8.13) (growth controlled by surface kinetics). It was shown earlier
that ) ) )
quasi steady-state converges to equation (8.13) in the range of low

netL.c instants (K < 0.01) . The quasi steady-state approximations are

s“tablg solutions in the range of very low < @< 0.001), regardless of the

V*lu, ) )
r the kinetic constant.

8.5.2 Dissolution

9tres 8.5, 8.6 and 8.6 illustrate the transition from diffusion-

€]
iled dissolution towards dissolution controlled by surface-kinetics
*ahec3 - - - - - -
“hotted lines) which is given by equation (8.13). The actual solutions
CI0; _ _ _ . -
Se to this regime (equation (8.13)) if K = 0.1, especially for very
With K < 0.01 the actual solutions become almost indistinguishable
N Umiting predictions by equation (8.13). The quasi steady-state
to*.
if Mations are indistinguishable from the actual finite difference solutions
°-°l and K < 0.1. Quasi steady-state predictions are also reasonably
N to
the actual solutions if K < 0.1 with moderate or large values of
All

actual solutions lay in between the predictions of equation (8.12),



Table : 8.1

Effect of first order surface kinetics on the time required
to double the size of bubbles. * represents the quasi steady-state
equation (8.12) and *'* represents the growth controlled by surface
kinetics (equation (8.13))*

> * 0.001 0.01 0.1 1 10 100 1000 r
K <p.Zg

0.001 1001.5 1001. 1001. 1001. 1001. 1001. 1001. 1000. 1000

0.01 101.5 101.4 101.4 101.4 101.2 100.9 100.5 100.2 100

0.1 11.5 11.48 11.43 11.25 10.91 10.49 10.21 10.09 10

0.2 6.5 6.48 6.40 6.18 5.80 5-38 5.15 5-06 5

0.5 3-5 3-46 3.357 3-091 2.646 2.267 2.094 2.033 2

1 2.5 2.446 2.330 2.029 1.551 1.203 1.067 1.023 1

2 2 1.942 1.811 1.481 0.975 0.655 0.548 0.516 0.5

5 1.7 1.636 1.496 1.141 0.605 0.3111 0.2316 0.2099 0.2

10 1.6 1.534 1.389 1.024 0.479 0.1886 0.1232 0.1090 0.1

100 1.51 1.441 1.293 0.917 0.3447 0.0653 0.01947 0.01235 0.01

1000 1.501 1.432 1.284 0.907 0.3313 0.0506 0.00684 0.001954 0.001

00 1.5 1.425 1.281 0.905 0.3294 0.04888 0.00516 0.000519 0



Fig 8.1

8.1, 8.2 and 8.3 : Effect of first order surface
kinetics on growth of bubbles. The numbers show the
kinetic constant K. The dashed line represents the
diffusion controlled growth. The dashed-dotted lines
represent growth controlled by surface kinetics
(equation (8.13)). The solubility parameter is shown
in the figures.
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log K

pig 8.4 : Effect of first-order surface kinetics on the
dimensionless time required to double the size of a
bubble. The figures show the solubility parameter (p
The dashed line represents the quasi steady-state
equation (8.12) and the dotted-dashed line represents
the cases when growth is controlled by surface kinetics,

(equation (8.13)).



19s 8.5, 8.6 and 8.7 : Effect of first order surface
kinetics on dissolution of bubbles. The numbers show
the kinetic constant K. The dashed lines represent
diffusion controlled dissolution (left) or the quasi

steady-state equation (8.12) (upper curve). The dashed-
dotted lines represent equation (8.13). The solubility

parameters are also shown in the figures.
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Fig

log K

Effect of first-order surface kinetics on the
dimensionless time required for complete dissolution of
a bubble. The figures show the solubility parameter <=
The dashed line represents the quasi steady-state
equation (8.12) and the dotted-dashed line represents

equation (8.13).



E f
complete
(8.12) a
kinetics

-<p

0.001

10

100

CD

fect of first orde
dissolution. *
nd * represents
(equation (8.13))
* 0.001
1000.5 1000.
100.5 100.4
10.5 10.50
5-5 5-50
2.5 2.495
1.5 1.495
1 0.994
0.7 0.692
0.6 0.591
0.525 0.500
0.5 0.4864

Table : 8.2

r surface kinetics

represents the quasi

the

1000.

100.4

10.49

2.487

0.4640

0.4625

dissolution

2.457

1.445

0.934

0.622

0.4090

0.3994

on the

time required for

steady-state

controlled by

100.5

10.43

5.42

2.391

1.565

0.840

0.4084

0.2937

0.2828

10

2.267

1.224

0.692

0.3603

0.2475

0.1618

0.1599

equation
surface

1000

1000.

100.3

10.21

2.125

1.095

0.574

0.2521

0.1411

0.04364 0

0.0814

* *

1000

100

10

0.2

.01
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luasi steady-state), and equation (8.13), (controlled by surface kinetics),
e9ardless of the values of ¢ and K.
The transformed time 2 )|, where Z~ is the dimensionless time required
complete dissolution, is also a generic characterization of the transition
bety . . _ _
a%ben the extreme mechanisms (table 8.2 and figure 8.8) . Again the solutions
A _
Van lay in between the quasi steady-state and the surface kinetics mechanism.

F_,
N < 0.01 the quasi steady-state is reasonable when the dissolution is

f
Usion-controlled and becomes excellent if the dissolution is controlled by

Urface kinetics.

¢ogond-order surface kinetics
Growth

figure 8.9 illustrates the transition between extreme mechanisms, that is

(€2
Effusion controlled growth to growth controlled by second-order surface
ﬁh&t}-
ics - - , )
e Again the linear relation between R and Z characterizes the growth
CNUrgy ey o _ ]
u °y surface kinetics (dashed-dotted lines), and the actual solutions
Uy in

between the growth controlled by surface kinetics (equation (8.19)) and
% qua

n Sl steady-state approximations (equation (8.14)) which are represented

~shedo . . .
S unes. Equations (8.14) and (8.19) converge as the kinetic constant

£
¢ eases.

, ther values of solubility parameter <Jand f = F /¥ have confirmed those

~actej - .
istics of second-order surface kinetics. At large times the growth
%
’ * fnb _ _ L
- m the surface kinetics controlled stage towards the limiting
«1
tusi°n c _ _
°ntrolled regime, regardless of the values of f and ¢» That

IS

Nsit-
shifted to progressively larger times as the Kkinetic constant K
aSef

igure s i i _ -
d also illustrates the fact that the actual solutions lay in

the
Ns i steady-state predictions (equation (8.14)) and growth



Fig 8.9 : Effect of second-order surface kinetics on growth
for the case 9= 1, f = 1. The Tfigures show the kinetic
constant K. The dashed lines represent the quasi
steady-state equation (8.14) and the dotted-dashed lines
represent equation (8.19). The symbol () denotes
diffusion controlled growth.



Fig 8.10 : Effect of second-order surface kinetics on the
dimensionless time required to double the size of a
bubble. The figures show the solubility parameter <
The dashed line represents the quasi steady-state
equation (8.14) and the dotted-dashed line represents

equation (8.19).



1.0 ;

8.11 : Effect of second-order surface kinetics on
dissolution for &= -1, f = - 1. The figures show the
kinetic constant K. The dashed lines represent the
quasi steady-state equation (8.14) and the dotted-dashed
lines represent equation (8.19). The symbol () denotes
diffusion controlled dissolution.



F9 8.12 : Effect of second-order surface kinetics on the
dimensionless time required for complete dissolution.
The figures show the values of the solubility parameter
(p. The dashed line represents the quasi steady-state
equation (8.14) and the dotted-dashed line represents

equation (8.19).



Table : 8.3

Effect of second order surface kinetics on the time

required for complete dissolution, and on the time 2

required to double the size of a bubble.

f 1 1 1 -1 -1 -1
$ 0.001 1 100 -0.001 -1 -100
K d>. z
g I*1-za
.01 35.25 34.79 33-74 100.0 100.0 100.0
.05 8.48 7.74 6.87 20.02 20.01 20.00
0.1 5.14 4.271 3.485 10.03 10.02 10.01
0.2 3.394 2.458 1.777 5.06 5.04 5.01
0.5 2.289 1.294 0.739 2.144 2.079 2.009
1 1.885 0.866 0.4119 1.233 1.124 1.020
2 1.673 0.628 0.2050 0.823 0.675 0.511
5 1.534 0.4658 0.0922 0.609 0.4317 0.2129
10 1.486 0.4041 0.0524 0.546 0.3582 0.1142
100 1.427 0.3385 0.01168 0.490 0.2904 0.0492
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c’ntrolled by surface kinetics (equation (8.19)) which represents the limits

In the ranges of very low and very large 4 respectively.
8.6.2 Dissolution

Figure 8.11 shows the progressive enhancement of surface kinetics during

Ss’lution as K decreases. The limiting second-order surface kinetics regime
ashed-dotted lines) is indistinguishable from the actual solutions if

K<oo . . . .

and the quasi steady-state approximations (dahsed-lines) are also good

it
same range. Dissolution is described by 1-R * Z if second-order surface

kinetic .
cs controls the transfer of material.

i'hese conclusions are valid for any value of (< 0 and the relations

kebDayqri me : : : . .
1 che dimensionless time required for complete dissolution and K

eremplified 5 tapble 8.3 and figure 8.12. Again, the actual solutions lay

etween the limiting equations (8.14) and (8.19).

actions with first-order and second-order kinetics at the
Van

interface were

9ated. if the growth or dissolution are controlled by surface kinetics
i Us °f the sphere is proportional to time. This process may cover the
0)
Solution process but is typically transient during growth in which
Cas6b
actual solutions converge to the diffusion controlled regime at large
S.
As the kinetic constant decreases the initial stage of growth
reUed by surface kinetics becomes progressively longer. These conclusions
6 .
M eq independently of the order of surface kinetics.
Quasi . . . .
n steady-state approximations also converge to the surface kinetics
‘ue . -
regime and become accurate for any value of solubility parameter 4b
A x 1S

sufficiently low.
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The performance of the finite difference method was again demonstrated by
tGPthucing the exact limiting solutions of the surface kinetics controlled
redimg « Very wide ranges of solubility parameters 0.001 < @< 1000; or

oo s g~ -0.001 were covered to ensure that there is no failure of the method.
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CHAPTER IX

Effects of surface tension, viscosity and inertia

Equation of motion

The changes in volume and mass due to gases dissolved in the liquid can
be ignored so that changes of gas concentration do not affect the
tsity Of the liquid. The liquid is thus considered to have constant and
UNI£OM gensity p, be incompressible and of constant viscosity, y. The
Npoth_ _ . . . . .
esis of constant viscosity may not be strictly true in glass melts,

that assumption is not expected to invalidate significantly the analysis
OF

Present problem.

It these conditions the equation of motion can be written (Bird et al.,
1%,

P g: grad P + YW u + pg (9.1)

Is the pressure and g the gravitational acceleration. This equation
IS ~“ovn . . . L i
s the Navier-Stokes equation and in conditions of spherical

X etry

reduces to

3u 3u 13> 2y 3u (9.2)
3t + U 37 p3r p r2
Mi
°m equation (2.15), u = (r/aj" =/ / when e = 1, (negligible volume
_ ut
Mtﬁ_bUt_
on of solute). Thus, equation (9.2) can be integrated from the
Thhce r _ o . _
~ a to infinity giving rise to
-2 1 da 4y da
- = 9.3
P@ - pp=a 5 5Py a dt -9
dt
oy

QN
is considered constant.
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In dimensionless terms equation (9.3) can be rewritten so that

2 ) )
P(@/PD=1+h K<’ %5 ' W ©-9
dz
“"here h = p.D2/(aQ2. pj = inertia parameter
D=y.D/@Q -PY) = viscosity parameter

N R and Z are defined as usually.

The total gas pressure P in the bubble must be obtained by adding the

Urface tension term to the pressure P(a) in the liquid at the

that

interface so

P =P + 2a/a
g

1M dimensionless variables

. [d2R 3fdR"2 4n drR ©-5
Pg/PQ): 1+ 2S/R + hL— )e+é az J R dz

B6te 0 denotes the surface tension and the surface tension parameter is

S = 0/ (@-Pj -

Sites™of growth or dissolution
component gas bubbles

If a bubble contains a single ideal gas Cg “ Pg» so that

P = C /C ° =P _/p,
s s g

d2R 3 dR) 1 4P dR 9.6)
1+2SIR+h R—j +2 dz R dz

L dz 1 J
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Where Cg and CS are the gas molar concentrations at pressures P, and P

g

respectively. Thus, in the absence of effects by surface tension, viscosity

°r inertia C =(C ° and P* = 1.
s s

On assuming Henry®s law the concentration of solute at the interface

WiU be

C(R):HPg:HP p* = C* P*
0
4R 3IdRI » ~ 4n dR
=C* 1+ 2S/R + h(R —2+ 2laz 1 + 5¢ (CAp)
L dz v J

Mg te
P denotes the solute concentration in equilibrium with gas at pressure

In dimensionless form equation (9.7) becomes

F® = ® - cp/cg® = (CH/C )P* - CRC °

- dR t3dR]2] ,in dR 1\ o.8a
qust’hRaf+2dej H dz )/ ©-8)

Wgre
< a
Co ~ C*)/CS° = solubility parameter
C*/~c - c*) = saturation parameter
P -
C -
¢ clJ/c
Oc
aSi°nally a law of the form C(R) “ P X is needed to describe the
K ich is being considered (in the case of Sievert’s law x = 1/2).

C® = ¢

egnation (9.6)
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FR - <D/1 +q- q 1+ 25R + h 92R 3R

R a£ + 2 dz "
(9.8b)
= (C*/CS") (p*)e - c
The ratio - F(R)/(j) is a suitable measure of the relative effects of

e non-equilibrium effects on the "driving-force" of the diffusion
Cont:rolle(3 processes and p* is the corresponding measure of the effects on
9as ) A B

concentration. The actual solutions are here expressed in terms of the

ensi’nless parameters S, h, r), <# and q.

The number of moles of ideal gas in a bubble can be expressed by

N = 2T Bec = armadec Cepr
3 S
or
dimensionless terms
4w / 3 2 4 dR 3 3 : 2 dR\ 4w 3 _.
VIR + 2R+ h g2+ 2R +4anRraz R °F
d
-9
Al .
s® from equation (2.48)
3f 9.10
9? = 4 R2 % = 4u R ( )
d 3x
|R :I
%
E a .
e/R. Thus, from equations (9.9) and (9.10)
% 2
S+4 1 .
2 +in rztij . A 1+h: RSR_s ; 2g§d2R. R3
3 dz2 L2 [d2) dz2 3 dz
= 3f]j
. (9.11)
m=1
X An-equilibrium effects of viscosity and inertia become effective

~erial starts to be transferred between the bubble and the liquid

Thpefore
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P*(0) =1+ 25 . 9.12)
e A_0; andR=1. Thus, ifri| @
drR i _
dz =0 ; Z2=0 ©.13)
ad e h €o
drR o
dz — ’
.19
d2RrR
=0
dz2
For one-component bubbles £ = 1, and the general material balance
Suati
@ Ion (2.28)) reduces to

- r
82F 2 dr (R219f or

e dz, e % 9z ©-15

—e—Hton of material balances
SUrf
e tension has been the most commonly studied among these factors.

2n -
X°nary approximations were proposed by Epstein and Plesset (1950)

Cable (1961a9 among other authors. Some approximate solutions of bubble
QQMmh
6re drived on assuming thin boundary layers (Plesset and Zwick,

°w ans Langlois, 1962), or on assuming arbitrary functional forms

Central_cion profiles while satisfying the overall material conservation
RoSnet
n Epstein, 1972). This second class of solutions was derived for

ase, while only the surface tension was included in the quasi-
h~tary a
Ppioximations.
I, cal techniques were also used to solve the material balances with
n Oof a

urface tension alone (Weinberg, 1980) or simultaneous inclusion
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°f surface tension, viscosity and inertia terms (Szekely and co-authors, 1971
1973) . However the technique proposed by Szekely and co-authors may
eQuire undue numbers of time steps to solve processes with low or moderate

ates °f growth or dissolution (as discussed in Chapter I111). Weinberg-"s
®thod requces basically to the finite difference method of Duda and Vrentas
which was not conceived to optimize the mesh sizes. Very few examples
tere snown in Weinberg®"s work so that the efficiency of that method was not
~Qnstrated especially in extreme conditions.

Minor modifications were added to the finite difference method described
n chapter jj1I to extend its use to the actual class of problems (see
Pperiiix 6)€

Qnasi-steady state approximations were also derived in this work and

range of applicability was established.

“nasi steady state approximations
Eff pp
wjL surface tension in the case of Henry"s law

both viscous and inertia effects are ignored equations (9.6), (9.-8a)

(CT)

reduce to

p* = 1 + 25/R 1 (9-16)
FR = -3 @A - 2Sq/R) , ©-179)
3] 45S dr 9.18
el " T3R & ©-18)

le=R

-ﬁ/integration of the quasi steady-state simplification (equation (2.67))

3Ohnaary conditions, F (®)

0, one obtains

- F(R)/R (9-19)

or
3e
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and upon combination of equations (9.17), (9.18) and (9.19)
[R + (4/3)S]IR drR _
R- 2Sq dz (9.20)
which o be solved analytically on making the transformation W= R - 2Sq.
jl"(R-2Sqg)2- (1 - 2Sg”™d +4R-1)S(q +vV)
+ 2S52-q(2g + y)In]* ~ =<pZ (9.21)
Thig quasi steady state simplification suggests a unique dependence on
the

transformed time (2. It will be shown that such quasi steady-state

mNations are the limit of actual solutions for growth or dissolution
tor
erY low solubility parameters [4].

*e5
H~ysical properties of glass melts and common values of the
dimgnsionless parameters S, h, T
epical values of density and surface tension of glass melts are often
Of
. 1
°rder of magnitude of p = 2.3 x 103 Kg m”~ and 0 - 300 dyne cm" =
e The viscosity of the melt and the diffusivity of gases in glass
very dependent on the temperature and also significantly dependent
e Qe
Composition of the melt, with common values in the ranges 10-1000 Kg
V m s qa A 1 . TTmTmmmmT T T
f°r viscosity and 10_11 - 10 9 mzs_l for diffusivity. These
*vs 5 2

re used to construct table 9.1 with ambient pressure 10 N m
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Table 9.1

Common values of dimensionless parameters S, n and h

in glass melts

a, y S 106 D 1015.h
® M2 s51) (Kg m-%s-%)
io~5 1 10 0.3 loo 2300
Icf4 1 10 0.03 1 23
io"3 1 10 0.003 0.01 0.23
103 0.1 10 0.003 0.001 0.0023
10"3 10 10 0.003 0.1 23
lo-4 10 10 0.03 10 2300
10-3 1 1 0.003 0.001 0.23
10-3 1 100 0.003 0.1 0.23
10-3 1 looo 0.003 1 0.23
lo-4 10 looo 0.03 1000 2300

It WIU be shown that with h in the range of table 9.1 inertia can
*Ys be i

Ctci

gnored, even in the range of very large solubility parameters

9 solutions up to Q] = ICO). The effects of viscosity are also

Y de
indent on the value of 9 but can also be ignhored except with very

%

The - - -
effects of surface tension are enhanced as the dissolution of

Proceeds but decrease in the case of growing bubbles. This is a
gue:nce of the effect of surface tension being dependent on the bubble

"ot on the rate of the process. The relative effects of surface

ion
On &He rates of the processes are also much less dependent on the
N U ity
n y parameter than the relative effects of viscosity or inertia.
easily understood taking into account that <& is a convenient
v,

i°n of the range of rates of growth or dissolution, which affect

of viscosity and inertia but not the role of surface tension.
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gF
"D Effects of surface tension on growth or dissolution of bubbles

In this section the viscous and inertial effects are ignored ) = O;
N~ 0) to investigate the role of surface tension on the growth or

Nsolution of bubbles. Henry"s law is generally assumed so that the

rterfacial concentration is given by equation (9.17).

ne6.1 Case A) Q<0

< 0, <C*and q = C*/(C - C) ~ -1, and from equation (9.8a)
FR >

i*i, that is the "driving force" is always enhanced from the beginning

relative to the case when the role of surface tension is negligible,

Sim
~taneously the initial gas pressure increases by a factor P* = 1 + 2S
(e.
Suation (9.16)) due to surface tension. |If Henry®"s law is valid the
eff.ect
of surface tension on the interfacial concentration (equation (9.17)
v,

YS exceeds the effect on the initial gas pressure in what concerns the

of bubble contraction. On the contrary, this situation may not occur
if o
Si, , _ .
evert™s law applies (equation (9.8b) and this is due to the fact that
the

itt, . - _ . . . .
,erfacial concentration increases less rapidly with decreasing radius

6,1CR) « p ®»

Th _ . _
ere Is a dual effect of surface tension on the rate of contraction
Y2 ¢ gj
v,

ssolving bubbles, the first due to a progressive increase of
aciai concentration (and consequently the increase of "driving force')
SGe°nd due to the increase of gas pressure as the bubble size

qlhe effect on the interfacial concentration modifies the

entt afi
Of
S° Ve

on profiles, especially near the interface, and opposes the effect
a i, _ i,

accumulation which was found to be severe during the last stage of
°ention - .

with large ¥>] and negligible surface tension (Chapter V)

n was then responsible for a relatively slow final stage which

~°r most of the total dissolution time. Increasing the interfacial
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concentration as the radius decreases (due to surface tension) keeps the

c°ncentration profile steep near the interface and enhances the dissolution

tate at the stage when the dissolution rate was lower in the case of
Eligible surface tension. The effect of surface tension on pressure in
~bble increases as R tends to zero. Taken together both factors may

se the total dissolution time to be significantly reduced due to effects

Moderate values of surface tension (S < 0.1).

bn the range of very low || the dissolution tends to quasi steady-state

N  the dissolution rate increases continuously after a very short initial

stage

(Chapter V). Thus the effect of surface tension is enhanced during
the
m°st rapid stage and the total time Z», required for complete dissolution,

ases by a much smaller fraction than in the case of high 4.
These trends are clearly shown in figures 9.1 and 9.2 where Z» denotes

time required for complete dissolution with negligible surface tension

&

ON o

As || decreases the actual finite difference predictions (full
U :-t%) ) ) ) }
aPproach the quasi steady-state predictions (equation (9.21)) represented
"bashed lines.
It Q

SatlDtat

ioR parameter, g =-1, has important effects on the dissolution time.

< 0.1, increasing the surface tension parameter with constant

cr increases of surface tension, (especially if S > 0.2) cause much
er ~"creases of dissolution time probably because the gas pressure and

c°ntent of a bubble with reference radius aQ increases and compensates

*

$ Iciently for the increase of interfacial concentration with increasing
y bbe contrary, increasing |q] with S = 0.1 enhances the "driving-force",
the
initial content of the bubble with radius aQ remains the same in all
* TI—\D _ _ _ _ _ _
efore the dissolution time always decreases significantly as the
a0l

humerical value of the saturation parameter |q|increases.



Table : 9-2

Effect of surface tension on the time required for

complete dissolution of bubbles, for low and moderate |®\.

Viscous and inertial effects are ignored (g = 0, h =0 ).

The symbol * denotes quasi steady-state approximations,

(equation (9.21)).

4> 0.001 0.01 0.1 1
S
0 1 0.500 0.486 0.462 0.3994 0.2828
0.001 1 0.4993 0.485 0.461 0.3975 0.2799
0.01 1 0.4939 0.480 0.455 0.3900 0.2628
0.05 1 0.4747 0.4610 0.4335 0.3620 0.2240
0.1 1 0.4572 0.4423 0.4139 0.3392 0.1995
0.2 1 0.4335 0.4181 0.3885 0.3116 0.1715
0.3 1 0.4177 0.4022 0.3720 0.2943 0.1558
0-5 1 0.3977 0.3820 0.3514 0.2733 0.1383
0.7 1 0.3855 0.3697 0.3389 0.2610 0.1287
1

1 0.3740 0.3582 0.3273 0.2496 0.1203
0.1 1.25 0.4300 0.4155 0.3871 0.3144 0.1776
0.1

1.5 0.4067 0.3921 0.3640 0.2912 0.1591
0.1

2 0.3670 0.3527 0.3252 0.2549 0.1313
0.1

2.5 0.3347 0.3208 0.2939 0.2261 0.1108
0.1

3 0.3080 0.2945 0.2682 0.2028 0.0951
0.1

4 0.2658 0.2530 0.2280 0.1673 0.0725

5 0.2341 0.2218 0.1980 0.1414 0.0573



Table : 9*3
Effect of surface tension on the time required for

complete dissolution of bubbles with moderate and large |

Viscous and inertial effects are ignored (f) = 0 ; h = 0 ).
< 1 10 100
s -q
0.0 1 0.2828 1.599 8.14
0.001 1 0.2799 1.466 4.70
0.01 1 0.2628 1.125 2.197
0.05 1 0.2240 0.736 1.063
0.1 1 0.1995 0.570 0.750
0.2 1 0.1715 0.4301 0.531
0.3 1 0.1558 0.3651 0.439
0.5 1 0.1383 0.3025 0.3545
0.7 1 0.1287 0.2716 0.3143
1.0 1 0.1203 0.2462 0.2820
0.1 1.25 0.1776 0.4718 0.598
0.1 1.5 0.1591 0.3994 0.493
0.1 2 0.1313 0.2997 0.3557
0.1 2.5 0.1108 0.2346 0.2716
0.1 3 0.0951 0.1896 0.2152
0.1 4 0.0725 0.1320 0.1460

0.1 5 0.0573 0.0974 0.1062



Figs 9.1 and 9.2 : Effect of surface tension on the dimensionless
time required for complete dissolution of bubbles. The
numbers show the values of <=



9.3 : Effect of surface tension during dissolution of a
bubble with very low [|<)]. The dashed line represents the
qguasi steady-state solution of equation (9.21) for the case
SE q =-1. The full lines represent from right to left

S =0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.



and the dashed line represent the case S=0. The numbers
show the values of S in figure 9.4a and q in figure 9.4b.



9.5 : Effect of surface tension during dissolution of a
bubble with very large [|». The symbols represent the

case S=0. The curves represent from right to left S =i .001,
0.01, 0.05, 0.1, 0.2, 0.5 and 1.

Fig.
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The quasi steady-state solutions (equation (9.21)) suggest a unique
°jution in terras of the transformed time and this was used to organise

results for dissolution times shown in table 9.2 (in the range of very

low - . .
to moderate solubility parameters |J]). That representation is reasonable

13 |
ith Pl < 0.0l and low or moderate S, but becomes progressively poorer as

b°th Il and 5 increase.

The enhanced effect of surface tension with increasing value of S is
*Uustrated in figures 9.3, 9.4a and 9.5. In figure 9.3 the dashed line
tepresents the quasi steady-state solutions of the case S=1; q = -1 and is

9htly poorer approximation to the real solutions than in the case of

"HIGIbIO grface tension. If g = -1 and S < 0.01 the effects of surface
tension
o>

on bubble dissolution can be ignored with Bq < 0.1 but are significant
~derate and large 9], (-<(O)> 1).
~Nith (p = _ ].oo values of surface tension parameter as low as S = 0.001
°niy effective during the final stage but are responsible for a reduction
Ofabo

ut 42% of the original dissolution time (figure 9.5). These results

good illustration that for large values of K] the role of surface

ston Ps enhanced, speeding up the final stage.
PI9ure 9.4b shows that for a constant value of S the rate of dissolution
is
9re . )
atly enhanced as the absolute numerical value of the saturation
eterfdincreases. Therefore relatively small values of surface tension
er should not be ignored if |gl is large.
Effect of surface tension on the concentration profiles during
dissolution
The . . . . . -
VF s°lution of the quasi steady state approximation (equation (2.67))

erfacial concentration given by equation (9.17) leads to



Figs 9.6, 9.7 and 9.8 : Concentration profiles in the liquid
medium surrounding dissolving bubbles. The numbers show
the values of R. The dashed line in figure 9.6 represents
the quasi steady-state approximation, (equation (9.22)), for
the case R = 0.05.
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F(e/R) = - ¢ (1-2q S/IR) (Rle) . (9.22)

Figure 9.6 illustrates concentration profiles for the case 4 = -0.00l,

- 0-1, and g = -1, at different.stages of dissolution. The dashed line

tePrésents the quasi steady-state prediction for the case R = 0.05 and is

CIOSe to the actual finite difference prediction for the same radius. Thus,

o

Wore the quasi steady-state solutions provide a reasonable quantification

Profiles for very low [g].

Figures 9.7 and 9.8 illustrate the effects of surface tension on the

Solution with moderate and large |Jp|. During the initial and intermediate
90s the interfacial concentration increases relatively slowly, so that the
f the concentration profile is being adjusted by diffusion. However,

In9 the final stage F(R) increases very rapidly and this change cannot be

~ftsated by diffusion throughout the intermediate region of the concentra-

U
Profile. Therefore the concentration profile becomes steep near the
i
ace which explains the enhancement of dissolution during the final
stage
9 c
*b-3 Case B) () > 0
For growth to occur C(R)< or FR) < 0. Thus, if viscous and inertial
eots .
are ignored,
FR =- @0 (1 - 259gR) <0 ,
th . o
°> and q > 0, so that the bubble starts growing (R > 1) if
S.q < 1/2
9r0.,\m B
WU 1 continue because the effects of surface tension decrease
Pbsss
i 1Vely as the size of the bubble increases. On the contrary,
SS

°lut;
ron occurs if
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Sq > 1/2

and in these conditions dissolution will proceed with increasing "driving-

rce”” F R , (due to decreasing radius), until complete dissolution. If

S
¥el

1/2 the bubble is in equilibrium and will not change radius because
interfacial concentration equals the bulk solute concentration. However,

~nor deviation from the equilibrium condition S.q = 1/2, (due to a small

n .
Crease or decrease of bubble radius), leads to permanent growth or

Perm . .
~ent dissolution.

These characteristics of bubble behaviour are illustrated in figures 9.9

and
g In figure 9.9 the effect of increasing the surface tension parameter

WIth constant saturation parameter q = 1, can be achieved by changing the
init ) S _ _ -

lal radius of the bubble. This is an important illustration of the
erent rates of growth or dissolution in a dispersion of bubbles with a

stribUti g, of sizes. Bubbles of radius aQ < a™” = 20g/Pwm = 2a/[Pe (Ce/C* - 1]

wl
dissolve and the rate of dissolution will increase with decreasing initial

~di

Us On the contrary if ap > kT the bubbles will grow at a rate which
i
tcreuses with ay

N

€ar the point Sq = 1/2 both growth and dissolution are very slow, but
the

ates are progressively enhanced as the bubble radius increases or

aSes- In both cases |FQ®)] increases as the radius of the bubble departs

fiy
niin *
Pm
9ure 9.10 demonstrates that convenient changes of saturation parameter

G Po bubble behaviour which is qualitatively similar to that of a
i

lou of bubbles whose radii are distributed about the equilibrium size

C 4
m_& However, the examples illustrated in figure 9.10

bubbles media of different concentrations, or bubbles in different

te9ia,is _ _
a larger inhomogeneous medium.



Figs

Fig 9.9

9.9 and 9.10

dashed lines represent the case S=0.

values of

: Effect of surface tension for ¢ > 0. The
The numbers show the

a S in figure 9.9
b) g in figure 9.10.



Figs 9.11 and 9.12 : Effect of surface tension on the dimensionless
time required to double the size of bubbles. The numbers show
the values of (.

Fig 9.12



Table : 9-4
Effects of surface tension on the dimensionless time Z
required to double the size of bubbles for low and moderate
solubility parameter <. The quasi steady-state (equation

(9.21)) is denoted by the symbol *

0.001 0.01 0.1 1
S 9 &z
9
0.0 1 1.500 1.425 1.281 0.905 0.3294
0.1 1 1.887 1.802 1.634 1.194 0.4714
0.2 1 2.428 2.331 2.133 1.606 0.687
0.3 1 3-252 3-137 2.897 2.245 1.041
0.4 1 4.745 4.604 4.288 3-420 1.727
0.45 1 6.24 6.08 5.69 4.607 2.439
0.475 1 7.66 7.53 7.07 5-78 3.150
0.49 1 9-43 9-42 8.87 7-32 4.07
0.1 0 1.633 1.556 1.403 1.010 0.3807
0.1 2 2.243 2.148 1.958 1.457 0.604
0.1 3 2.785 2.676 2.453 1.861 0.816
0.1 4 3-771 3.639 3.359 2.604 1.217
0.1 4.5 4.763 4.613 4.275 3-357 1.632
0.1 4.75 5.72 5.59 5.19 4.112 2.048

0.1 4.9 6.90 6.88 6.41 5-13 2.626



Table : 95

Effects of surface tension on the dimensionless time

required to double the size of bubbles in the ranges of

moderate to very large 4.

&> 1 10 loo 1000
s q ANZ g
0.0 1 0.3294 0.4888 0.5161 0.5186
0.1 1 0.4714 0.745 0.796 0.801
0.2 1 0.687 1.168 1.266 1.277
0.3 1 1.041 1.930 2.136 2.160
0.4 1 1.727 3-568 4.071 4.131
0.45 1 2.439 5.41 6.32 6.43
0.475 1 3-150 7.31 8.69 8.86
0.49 1 4.07 9.87 11.90 12.20
0.1 0 0.3807 0.580 0.615 0.619
0.1 2 0.604 0.998 1.075 1.084
0.1 3 0.814 1.424 1.553 1.568
0.1 4 1.217 2.290 2.545 2.574
0.1 4.5 1.632 3.232 3-647 3.695
0.1 4.75 2.048 4.205 4.80 4.87

0.1 4.9 2.626 5.58 6.44 6.54



194.

A number of authors (Greenwood, 1956; Wagner, 1961; Lifshitz and
Slyozov, 1961; Thomas et al., 1979) have suggested mathematical and
c°roputational methods to interpret the tendency for relatively large
P tticles to grow in a saturated solution whilst the smaller particles
N-ssolve. Those authors used approximate relations to describe the rate of
9rowth or dissolution. Accurate predictions require the computation of data

the kind of results illustrated in figure 9.9 and involve the numerical
s®lution of the partial differential equations which describe the diffusion
In the liquid medium surrounding the sphere. However, in the case of solid
Marticles Henry"s law (C(& @ (20/a + 1)) 1is usually replaced by the Thomson-
~Ndlich equation (C(@ a exp(2cr/a)) and the material balances have to be
formulated to take into account that the concentration of solute and its
°lume fraction in the liquid at the interface vary in time. This
“Validates the material balances derived in Chapter 1l (equation (2.28)).
study of this problem is an interesting one and modifications of the
®vVant partial differential equations should involve no major difficulties
applying the finite difference method. Therefore, it may be suggested as

#y useful extension of the present work.

During growth the effects of surface tension on the concentration of gas
g °h the interfacial concentrations of solute decrease with increasing
5« These effects are negligible by the time the radius of the bubble
& zhcreased by a factor of 100 even if the initial conditions were only
= 9ht|y above the equilibrium condition Sq = 1/2. The surface tension can
1h’e*ef.‘f)re be considered a transient factor and, if Z represents the
nsionless time required to double the size of the bubble and z» its value
’ thIe case when the surface tension is ignored, Z /Z™ represents a measure

ﬂ16 relative effects of surface tension (figures 9.11 and 9.12). The

6cts of varying S or q on Z» are also shown in tables 9.4 and 9.5.
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Figures 9.11 and 9.12 show that the quasi steady-state, (equation (9.21)),
Is the lower limit of actual solutions for very low solubility parameter <
With very large <& the actual solutions also converge to a unique regime; (the
Cases = 100 and 9 = 1000 are indistinguishable) . The transition between
those two Iimits occurs in the range 0.1 < 9 < 10. From Figures 9.11 and 9.12

may also be concluded that surface tension effects are more important for
ar9e 9 than for low @

The time required to double the size of bubbles increases rapidly as the
Product Sq approaches the value 1/2. It was earlier shown that this is due to
a 3rop OF "driving-force” |F(R)|] to zero at Sq = 1/2.

The unique representation in terms of ¥ is characteristic of quasi
teady state predictions (equation (9.21)) and was used to allow the
ationalization of the actual solutions for low values of @ (table 9.4). On

contrary it is possible to identify the upper limit for very large $ by

6 °f 7 (table 9.5) . As shown in Chapter IV q¥ and Z are also the
nVenient transformations of time to interpret limiting regimes iIn the ranges

Oi:VerY low and very high ¢ respectively. Therefore, the convergence of
utions in tables 9.4 and 9.5 constitutes no surprise.

The characteristic growth constant 3 for the asymptotic growth from zero
Without surface tension) tends to the limits [g/2) for very low and
$0/ths tor very high ¢ Therefore the rate of the process is expected to be
sensitive to a relative decrease of *driving-force” FQR)/<> , (equation
S _ _ ] _ _ _
*17)). with large 9 than in the range of low g~ This explains the relative

Rosit _ I

I0ns of the different curves in figures 9.11 and 9.12.

figures 9.13 and 9.14 show illustrations of the convergence of the most
SO ntant part of the transient regimes of growth from finite size with
So’l’\hant contributions from surface tension. It is clear that the convergence

of
s°lutjons for 4 < 0.001 and ¢ > 100 extends over the whole range of times.
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The dashed line in figure 9.14 represents a solution of equation (9.23)

whiCh

was derived and integrated from the general approximate equation
Proposed by Rosner and Epstein (1972).

R - 1)/74 + S q+ R-D + 2q2_'31.0+,34 SZ_Ian:‘;;q
- q

a2 (3g + 2) In 5 }R 2s @ - 1/R) = JRZ . (9.23)
12sq q 3q

is clear that that approximation is poor in quantifying the transient

te9ime.

figures 9.15 and 9.16 illustrate the effects of increasing either S or q.

flng the initial stage growth becomes very slow as S.g approaches 1/2 but
the ¢
yrowth rate increases with increasing radius. For moderate S values the
6£fe 3 i
of surface tension may be neglected from R = 10, (that is when the
b*ble tadius reaches ten times the initial size). In the case q = 1; S =
time required to reach R = 10 and R = 100 is about 65% and 5% 1in

6ss relatively to the case of negligible surface tension (S = 0)

tefore, only when very close to the initial equilibrium condition (Sq = 1/2)
wJl
Sutface tension affect growth after an increase of size by a factor of

100

Other examples have been computed for different values of < They all

%
sbnilar curves 1log R versus log Z, except for the actual range of the

scal gg _



Pigs 9.13 and 9.14 : Convergence of solutions for growth from finite
size for low or high values of @ including surface tension. The
numbers show the values of {p. The dashed line in fig. 9.14
represents equation (9.23).



Pigs 9.15 and 9.16 : Effect of surface tension on growth from Ffinite
size. The dashed lines represent the case S=0. The full

represent S = 0.1, 0.2, 0.3, 0.4, 0.45 and 0.49
and q = 0,1,
right.

lines

in figures 9.15,
2, 3, 4, 4.5 and 4.9 in figure 9.16 from left to

Fig 9.16 log Z
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9.6.4 Sievert"s law

9.6.4.1 4>0

If Sievert®s law is valid, C@® *“ pg)é ), and viscous and inertial

Effects are ignored equation (9.8b) reduces to

FR) = -6 @+ +$qg @+ 25/7R)" (9-24)

V\h"st the gas pressure will be given by equation (9.16) as in the case of
I-t:"-’\y's law.

Prom equation (9.24) the conditions required for growth to occur can be

Nite, - -
en $>0; g >0 ; and FR® < 0 and therefore

qg @ +28/R) -q<1 (9.25)

or
"as R > ]Ff if g = 1 from condition (9.25) S < 1.5, and if S=0.1

q < 10.477.

Illustration of these conditions is shown in figure 9.17. These

-f}es are qualitatively similar to the equivalent treatment of the
a
N s law (figure 9.9) but near the equilibrium conditions the increase of

tites - - _ . _ - -
°f growth or dissolution (with increasing or decreasing radius

Jo* . . . . . .
e’\vely) is less rapid in the case of Sievert's law. This is due to

te

U cear relation between the interfacial concentration and surface

M. ER = Q+ 25/, in the case of Henry"s law whilst in the case
6Vert"s law the interfacial concentration is given by equation (9.24).
ation (g.16) describes the effect of surface tension on the gas pressure

1S Valid for both laws.



i

9* 9.17 : Effect of surface tension for &> 0 and interfacial
concentration of solute given by Sievert®s law. The dashed line
represents the case S=0. The figures show the values of S.
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9.6.4.2 <0
The effects of surface tension on the dissolution of bubbles in the
Cases of Sievert®"s law (full lines) and Henry®s law (dashed lines) are
@inpared in figure 9.18. The dissolution is always quicker in the case of
Henry"s law because the interfacial concentration is then more sensitive to

c anges of surface tension while the dependence of gas pressure on the

SUrface tension is the same In both cases.

The examples illustrated in figure 9.18 may seem unexpected because with
derate and large S the dissolution rate decreases as S increases.
Wz,
n order to explain that trend it is necessary to take into account that the

nitial content of the bubbles increases more rapidly with S than the
Sultgheous increase of the initial "driving-force” F(R) at R = 1.

In the case of the Henry®s law with negligible viscous and inertial

ects equation (9.9) reduces to

G® =j TR3.( + 25/R) (9.26)

the same relation applies in the case of the Sievert"s law.

In the quasi steady-state limit the dissolution rate for Henry"s law

15 QMen by equation (9.20) and if q = - 1,
((jji !R (1 + 2S/R) > - R, (g_zn
1 + |S/R

«

dz = 4R if surface tension is ignored. Similarly if x = 1/2,

Gievert s law), combination of equations (9.18), (9.19) and (9.24) with

% leadis to
dr j T 1+ ZS/R—l < - <HR . (9.28)
dz *L1+ 8S/R + 16S2/R2J

i y
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Relation (9.28) shows that in the quasi steady-state limit for the
Sievert®s law case with q = - 1 the dissolution rate 35 decreases with
Increasing surface tension, whilst it always increases in the case of

Herury"s law. These trends are confirmed in figure 9.20 where the dimension-

'eSs dissolution time Z” increases with increasing surface tension (or

~creasing initial radius) for &= - 0.001.

For moderate or large (with &< 0) the relation between Zd and S
SON.s g minimum. In these cases if S is low Z/ may decrease with increasing
s b

ecause of the increase of "driving-force” F(R) during the last stage of

Ysolution. This may occur in spite of the fact that at time Z = 0, QR = 1),

the "driving-force" increases less rapidly with increasing S than the initial

CoRtent of the bubble G(@) =y- (@ + 2s) . The factor (@ + 2s) represents the
Native increase of initial bubble content due to surface tension and, from
Nation (9.24), the relative increase of "driving-force"” |F(R)/4>|, exceeds
~ + 25) for R < q/(2s/q - 2), where g < - 1. This effect for small s may

° be related to the fact that surface tension opposes severe accumulation.

I _ _ . .
‘ Was shown in Chapter V that accumulation might be responsible for a

datively slow final stage.

S further increases the condition jF® /@] > 1 + 2S might occur too
late . - . . . . .
(for small R) to avoid an increase in dissolution time and this always
oc
CUrs if S is sufficiently large.

Figure 9.19 shows that increasing the absolute numerical value of the
"Nation parameter promotes increasingly rapid dissolution in both cases

of
HenrY's law (dashed lines) and Sievert"s law (full lines). For a given
M-me - - - - - . -
°f g dissolution is always quicker in the case of Henry®s law than in

Case of Sievert"s law. These trends occur because of the increase Iin
da .
Ving -forces" F(R), whilst the initial content of the bubble G(I) is

thcted. The symbols (+) denote dissolution in the case of negligible
Utk
ace tension.



1.0

Fig 9.18

Figs. 9.18 and 9.19 : Effect of surface tension for < 0. The symbols
+ represent the case S=0. The full lines represent Sievert"s law
and the dashed lines Henry®s law. The numbers show the values of
S in figure 9.18 and the values of g in figure 9.19.



« 9.20 : Effect of surface tension on the time required for complete
dissolution for the case of Sievert"s law. The figures show the
values of &



9.7 Effects of viscosity on growth or dissolution

Unless specified, the effects of surface tension and inertia are
ignored in this section in order to investigate the contributions of
viscous forces during growth or dissolution of gas bubbles in a liquid.
Figures 9.21 and 9.23 exemplify the effects of viscosity on the behaviour
of gas bubbles and show that the greatest contributions occur during the
final stage of dissolution and during the initial stage of growth. The
effect of viscosity on the initial stage of dissolution may also be
significant because of the decrease in gas pressure as the dissolution rate
increases.

In figure 9.21a the relative gas pressure P* (equation (9.6)) Iis
represented by the dashed line for the case ) = 0.02 and by the dotted-
dashed line for T) = 0.05. Initially P* decreases rapidly in both cases as
the dissolution rate increases from zero. During the intermediate stage
A decreases whilst (I/R) increases and the gas pressure may Increase
when ; SS decreases with increasing time. This occurs for moderate
values of the viscosity parameter, @ < 0.02), but P* always decreases for
fl > 0.05. During the final stage the radius decreases more rapidly than
its derivative so that é gg decreases and the gas pressure drops
approaching zero as R tends to zero. This also causes a decrease In
“driving-force"”, F(R), (equation (9.8a), and consequently géztends to zero.
The mathematical solution predicts that the time required for complete
dissolution will be infinite if viscosity is considered, but surface tension
increases the gas pressure and opposes the effect of viscosity as seen in
figure 9.22. For this reason the solutions in figures 9.21 were stopped
for R < 0.01 that is for the last 1% decrease iIn size.

drR

As a7 increases with |&] it should be possible to define a range of

values of D) for which the effect of viscosity may be ignored. Figure 9.2



i3s 9.21 : Effect of viscosity on the dissolution of bubbles. The
dashed-dotted and dashed lines represent P* and the full lines
The numbers show the values of p.



Fig. 9.22 : Effects of surface tension and viscosity on dissolution
of a bubble. The dashed lines represent P*.

Fia 9-23 . Effects of viscosity and surface tension on growth of a
bubble. The dashed line represents the case S=0; fJ-O.
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suggests that viscosity may be ignored for R)Jn < 0.001, which is also
c°nfirmed In table 9.6 except for very large values of solubility parameters
I'M > 10. If |9] > 10 viscosity should be included in the full solutions
when < > 0.0001, which with |€] = 100 correspond to a relatively low
v&lue of the viscosity parameter n = 10 N (see table 9.1). In the most
c°tmon range of solubility parameters, [&] < 10, viscosity may be ignored
e*cept for small bubbles (@ < 0.1 mm) and highly viscous melts
n 10 Kg m s N~ = 10" poise) . For K = 0.1, 1 and 10 viscosity may be
Snored jf f < lo _2, g < 10_3 and f) < 10_4 respectively.
In figure 9.21b the radius-time curve for the case n = 1C follows
e*pected trends during the initial and intermediate stages, but for

telatijyely small radii R < 0.175) dissolution may become faster than in case

n=
0. This trend would be reversed for very small R as 3; decreases and
day

aPproach zero but by this time surface tension may not be ignored, so
Diat 1f 5
Diat 1 makes no sense to extend the curve ) = 10 for R < 0.01.

Understanding of that trend is clearer by taking into consideration that

+
e °verall rate of transfer increases if relatively large interfacial

&teas are maintained for much of the process, and this can be achieved
N Inventing a very rapid initial decrease in radius without stopping

ransport of material,

a dectease in the rate of transport makes it possible that a larger

IDI‘oPortion of dissolved material might diffuse to somewhat larger

di i }
stances from the centre which opposes severe accumulation near the

Interface

th
ere is an intermediate stage during which the gas pressure and

r
lvin9-force” F(R) increase which also contributes to oppose the

CtWUI 5tjon near the interface. Note that for relatively large

Viseosi + o e .
roy the initial drop of "driving-force" is not reversed and
di

Ssow_m . .
Cl°n remains slower than in the case f) = 0.
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Figure 9.22 exemplifies the simultaneous effects of surface tension and
viscosity on bubble dissolution. The dashed lines represent P* for the
Cases 3 and 4 and the full lines represent R. Surface tension alone
ethances dissolution relative to the case S = 0; fl = 0 when both surface
~ension and viscosity are ignored. |If the viscosity is too high to be ignored
e gas pressure drops significantly before decrease in radius becomes
nticeable. This is due to transfer of material out of the bubble. During

this stage surface tension may be ignored except for unusually large values

o

e The role of surface tension becomes important during the final stage

n viscosity tends to cause a progressive decrease of gas pressure and a

ck. dr
Ctease m 4z which tends to zero in the case S= o. At this stage even

dmall value of surface tension parameter (see table 9.1) plays a
9nificant role due to a contribution 2S/R to the relative gas pressure P*

& contribution - 2504>/R, (g < -1), to the "driving-force" F(R), and makes

It
£°ssible for a bubble to dissolve completely.

TEle conditions $n < 0.001 for 0 < £ < 10 and <Jn < 0.0001 for <$ > 10 may

Used as a criterion to decide in which conditions the role of

Vigg--
'I_Ey may be ignored during bubble growth. Figure 9.23 shows that growth

H © affected by viscosity during the initial stage of growth but this

Set always vanishes for sufficiently large sizes of bubbles. Notice that

~Eter
Nat initial stage the growth rate and R ~ decrease with time so

\%

tie effect of viscosity on the gas pressure (equation (9.6)) vanishes
bo

Rapidly than the effect of surface tension which decreases only with R 1.

Both syrface tension and viscosity cause slower growth and therefore

effects are additive (equation (9.6)). Also both effects increase
IhClF'easing saturation parameter (q > 0). However, the effects of
tension cause dissolution when 4 > 0 and S.q > 1/2 in the case of

% " s
(X = I) t whilst growth always occurs if 4> 0, g >0, s = o and
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During the initial stage the curves 1, 2 and 3 in figure 9.23 have slopes
greater than 1, so that the radius of the bubble increases more rapidly than
the predictions by a linear relation between radius and time. After the
Initial transient stage the solutions converge to the diffusion controlled
re9ime which corresponds to a low R “ /z. Barlow and Langlois (1962) predicted
t~t viscous relaxation was responsible for a linear relation between radius
and time, but their analysis was based on assuming thin boundary layers which
Is not valid except for very large solubility parameters

»8  Effects of inertia on growth or dissolution of bubbles

It has been shown in Chapters 1V and V that during the initial stage of
~rewth or dissolution the actual predictions for large ¥| are close to

actions of the flat slab model. This approximate model becomes

h + and therefore
dR 2p (9.29)
dz /FZ7 LR - >
n<r _ , < ,-3/2 _ 4 J? + 1 . (9.30)
~ ~ * -
Rdzz Rﬁ/ftf I12(R—1)2 |R-1
ot
R-11 > 0.05, that is excluding the initial 5% change in radius,
i°ns (9.29) and (9.30) lead to
dR
< 162 f
dz
ra
2
R IR < 3.4 x 103 44

dz
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- 2 K2 10
Therefore, for |€¥] = 100’22 < 1.62 x 106 and R UI < 3.4 x 1011 so that
niy for h > IO_14 might inertia become significant (equation (9.6)). This
ange is unlikely to be found in practice as is |¢] > 100. Even |9] >10

must be rare and inertia might then be ignored for h < 10 which is

Unrealistically high as shown in table 9.1.

9q .
Conclusions

Surface tension is responsible for an increase of gas pressure inside
~“hles and consequently the solute concentration in the liquid at the
nte"face is also enhanced. Henry®s law is commonly assumed and predicts
Uear relations between equilibrium solute concentration and gas pressure.
sitive or negative deviations from Henry®"s law are occasionally found,
cluding linear relations between the equilibrium solute concentration and

S@Buare root of the gas pressure (Sievert"s law) .

The effects of surface tension are dependent on the physical property
and °n the size of the sphere. Other non-equilibrium effects are also
ent on the size of the bubble but only act in dynamic conditions,

is due to notion of the interface. These differences are important

ClaHy during dissolution when surface tension is responsible for the

dement of rates of material transfer whilst the effects of viscosity
ad _

INertis hinder dissolution.

Viscosity may usually be ignored but whenever dissolution or growth
tates o i i i

are sufficiently large for viscosity to have an effect it causes a

aase pressure and rates of transfer during dissolution or an increase

SsUre and decrease in rates of transfer during growth. [Inertia is

~likely to play a significant role during either dissolution and
vth.

hurin9 growth the combined effects of surface tension and viscosity
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~Necrease as the radius of the bubble increases. Therefore those effects

®ay be considered transient and the actual solutions converge to the

Effusion controlled regime for large radii. As the surface tension acts

In3ependently of motion, a bubble may dissolve in a saturated solution

Provided its radius is smaller than a critical value. This critical

tadius is not only dependent on the value of the surface tension but also

°n the degree of oversaturation.

Surface tension is the most important among the present factors which

Catse deviations from a simple diffusion controlled behaviour. Its effects

N Ne important over the entire range of solubility parameters () likely

be found in practice. Viscosity and inertia may be neglected because

Y become effective only for very large rates
M . i )
Is for very large |9]. The present study includes a large number of

Slhu'I__attions

of growth or dissolution,

of bubble behaviour over a very large range of @ values which

delude all the cases of practical interest. Large values of surface

ston parameter were also included to investigate even the most extreme

ions and draw attention to the more important trends of bubble growth

S .
solution.
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CHAPTER X

Discussion of behaviour of bubbles in glass melts

and suggestions for further work

10.1 Introduction
Several authors have studied growth or dissolution of individual bubbles
n the hope that the results would help to understand refining. This type of

APAiment suggests that bubble behaviour is diffusion controlled but precise

nalysis of those experiments has been poor especially because of inadequate
°retical models and poor knowledge of solubilities and diffusivities.
"’ttunately these data are scarce and not completely reliable. As the

te®peratures used for such determinations were often significantly lower

than typical melting temperatures those experiments might be of little use

when they are accurately designed and interpreted. In fact solubilities
al-ﬁ:tsivities of gases in glass melts usually vary rapidly with
tehper . . . .
ature. This property might promote dissolution of some bubbles as the
9lasg

melt is cooled to working temperatures and the solubility of some
9aSes

Boati

Ve temperature coefficients of solubility.

~specially CO and 0 ) increases. Not all gases necessarily have

The @ogst commonly used methods of studying refining have been the
utemi . . . . .
ents of number N of bubbles per unit volume, bubble size distribution
ra
CornPositiogn of individual bubbles after different founding times.
_ Studles might be useful to follow the process but do not provide
idf,
g
Ourtion about the behaviour of individual bubbles when several mechanisms
9ases may be involved. Efficient control of refining requires
th Anerstanding and description of individual bubbles. The assumption
ht

in<iiyj . . . .
\A<3ual bubbles can be treated as isolated ones in uniform surroundings
hot

wUstified. Slow degasification might occur during refining which



207.

~kes the interpretation of changes in number, size distribution and
imposition of bubbles more difficult.
A sensible way of studying refining would include direct observation
individual bubbles in glass melts. Unfortunately this method involves
Serious experimental difficulties and has rarely been used. Besides it
°nly provides information about velocity and change in size of bubbles but
lict about bubble composition. Bubble nucléation might also be observed.
It has been pointed out that the mathematical solution of the behaviour
moving bubbles is complex due to difficulties In equating accurate
erial balances and solving the relevant partial differential equations.

<L
6Se difficulties exist even in the axially symmetric case (free rise

Aser g

tsively due to buoyancy).

There is experimental evidence that the rate of transport around a

9 bubble is greater than around a stationary bubble (Greene and Lee,
1965) *
" thus diffusion seems to be the most likely controlling mechanism in

beth . _ . e
Cases. Therefore solubilities, bulk concentrations and diffusivities

be the essential parameters in both cases and bubble motion is dependent

m
the viscosity of the melt and size of the bubble. The main difference
Ftw ) o ) o
een behaviour of rising and stationary bubbles must be a significant
(o]
In time scale. Solutions for multi-component stationary bubbles are
s
this chapter to discuss some possible interpretations of phenomena
I<r1ich « i . i,
fnvolve bubbles in motion. Such solutions must not be taken as
htitat..

1Mve predictions of the behaviour of bubbles in those cases.



-

208.

n Studies of bubbles in glass melts

Greene and co-authors (1959, 1965, 1969, 1974), measured radius-time
CUrves for bubbles held almost stationary by rotating the sample. Most of

experiments used one-component bubbles but the glass samples may have
c°ttained several dissolved gases. Nevertheless they used a one-component
N e°retical model. Doremus (1960) used a transformed quasi stationary one-
c°Oponent model (equation (2.61)) to analyse some of those results and
°ktain estimates of the diffusivity D and solubility parameter F~/. Brown
an3 Doremus (1976) used the same model to analyse the behaviour of bubbles
c°ntaining oxygen, nitrogen or air. However, oxygen may diffuse into a
nitv.0

iUyen bubble or vice-versa, and air bubbles need a model for two-component

~“bles. Therefore, Brown and Doremus®s analysis might not be justified.

There are also several reasons to question the method used by Brown and

re’dB (o obtain estimates of D and F :
a

°ften the initial size may not be measured accurately,
tfe initial stage often deviates from the expected shape of
Effusion controlled dissolution (Greene and co-authors, 1959),
6 final stage is usually slower than expected which might be
~tsed by impurities present in the initial gas bubbles or
fusing from the melt into the bubble (see Chapter V1),
transformed quasi-stationary model gives inaccurate predictions
~ both dissolution time and shape of radius-time curve except for
Ve
n low values of |<¥f]. Inaccurate prediction of radius-time curves
Serious if both the diffusivity and solubility parameter are to
estimated from the experimental dissolution curve. Therefore
estimates of diffusivity and solubility parameters obtained by

Do,

etnus (1960) for oxygen bubbles in glass melts might involve

Signii

cant errors.



209.

It has been said that change in diffusivity causes a change iIn time
Scale only. Besides, if < 0.1 the shape of normalized radius-time curves
Varies little on changing F3 after taking into account the change in time
Scale. in this range of low F3 the time scale is nearly proportional to D ©
Fa s° that quite different combinations of diffusivity and solubility
Patameter may fit the experimental results equally well. This trend is
ObviOusly more serious when the initial radius is not accurately measured
the resolution of the initial and final stages is poor. [In this case it
Is difficult to obtain accurate estimates of both D and F* even in the ranges
“ooerate and large solubility parameters (F3 > 0.1). Unfortunately those
m"Citations are common in the case of bubbles in glass melts.
Somewhat better predictions are expected if the solubility parameter is
~d the problem reduces to finding the value of the diffusivity,
(Prischae and oel, 1965 and 1967b; Nemec, 1969). In this case the most
lous errors result from the use of poor mathematical analysis (Nemec, 1969)
HOl\/ev - - n
®Yer» this case requires accurate measurements of concentrations and
So™ u itiges which are available for water and possibly inert gases but are
<hce ot non-existent for the most important components of gas bubbles during

teblm'n9 (carbon dioxide, oxygen and physically dissolved nitrogen).

o}

Changes of gas composition in bubbles during refining

There js some direct experimental evidence that individual bubbles can

(hAge imposition in glass melts (Cable and Haroon, 1970; Mulfinger, 1972) .
these observations were made in melts at temperatures significantly
ot typical melting and refining conditions and assuming similar
Yes at these higher temperatures might not be justified. A change in
S.

Ure could reverse the flux of a gas into or out of a bubble simply

°b the change in solubility with temperature. Analysis of gas bubbles
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In glass samples after different founding times also show changes of gas
composition (Slavyanski, 1957; Cable et al., 1969; Cable and Nagvi, 1975;
Mulfinger, 1976), but there is no direct evidence that all the observed

changes represent what typically happens in one particular bubble. Growth

and tise to the surface as well as nucleation of new bubbles might cause

change jn bubble population present in the melts especially if the founding
tme g sufficiently long. The typical sequence of changes is from CO™ to

2 a3 then to N .

The change from CO™ to occurs relatively early whilst the change

ft - o
M o5 to N2 seems generally to occur only in the last stages of refining

Is usually observed after long founding times. After the change CO®

th
u2 e bubble density (\) decreases markedly and there often is a linear

la+ -
ﬂwnbetween log N and t. At low N this law changes and further

he

Ctease jn N is much slower which suggests change in controlling mechanisms,

It ;
'S hot understood whether growth of the bubbles present at the time when
te

md t becomes batch-free and elimination by rise to the surface might

6\kpldln the linear relation between log N and t, or if other mechanisms play

IrPortant role. The velocity of rising bubbles is usually proportional
o
6 square of the radius (@2) (Solinov and Pankova, 1965), so that the
u:
Squired for a bubble to rise from a depth h to the surface of the melt

ases rapidly with decreasing radius. Growth (or dissolution) and
thai

iOn of new bubbles also affect the rate of disappearance of bubbles.

tate of pucleation seems to decrease rapidly when the melt becomes batch-

ﬁ@e(SO

Iass

unov and Pankova, 1965) and bubbles often grow during refining of

Therefore, many bubbles are likely to be eliminated by growth and

% to surface. In such cases the rate of disappearance must decrease
the

average size decreases and understanding the relation between N and t

tes information about the size distribution at batch-free time, growth
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rates and their changes with bubbles size (especially for small bubble
Slzes) and time. The velocity of rise u due to buoyancy can be worked out
~r°m the size of the bubble (U “ a”). The role of bubble rise in the
elimination of bubbles is also demonstrated by some experimental evidence
which shows that bubble count in quenched samples can decrease more rapidly
In the bottom layers than in those near the free surface of the melt

(Von peth and Van Velzen, 1973)

Melts without any refining agent tend only to contain CO™ bubbles.
change CO™ - 0 might not be complete at batch-free time but the proportion
QfOZIs then often considerably above 50% unless insufficient additive

tsenic or antimony) 1is used. In small crucible melts the change -* N,?

may
n°t be observed because most of the bubbles may disappear before this

happen.

Assuming that both changes CO"™ and occur in the same bubbles
" should be three different stages controlled by each of the components
x hubbies in turn coZ, 02 and N . The evidence is insufficient to know
Wether

these bubbles are growing or dissolving. Both possibilities need to

twined. The initial component (@2) is replaced relatively rapidly by

2 Dur:ng the iIntermediate stage the proportion of 0 1is high &0 > 80%)

*x 1
OIq‘teven reach close to 100%. This stage is often long and the %2

te:
to

St 43
In9 to decrease slowly being replaced by nitrogen. Meanwhile N decreases

edly.

remain at a nearly constant value for relatively long times before

Pi . . .
'AUre 6.25 showed one example of a three-component stationary dissolving
“"bie
WIth three distinct stages. Replacement of the first component by the
c°nd
°nPonent requires very different diffusivities or solubilities.
nearly complete dissolution of the first and second components

that the ratios F Y/a,1 and Fo_lag should be very small, that is the
«
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solute concentrations in the bulk liquid must be negligible. However,
relatively rapid dissolution of the first component of bubbles in glass melts
OPPoses what is usually assumed. Also the ratios Fg /a™ for CO™ and

*0 ™2 ~or oxY9en are likely to be greater than unity and these species are

likely to diffuse into the bubbles. In fact, some of the few observations
bubbles during refining showed that bubbles usually grow as their
imposition changes from COM to (Nemec, 1974) . Some of these observations

Were for additions of refining agent (arsenic) much larger than usually

o effective,

It has been demonstrated that the case shown in figure 6.25 is very
aiff

erent from the conditions which are likely to occur during refining.
s
i .
ohre 10.i and 10.2 also show the type of conditions required for a bubble
v

ve three clearly distinguished stages. These show that the bubble starts

9row as the second change iIn composition occurs. This would be equivalent

to
a bubble which shrinks as CO™ dissolves but then starts growing as oxygen

is
tePlaced by nitrogen. It seems impossible for a bubble to show an increase

In
the O)0le fraction of the second component g™ followed by a decrease in g"

vith
out mitial decrease in size.

The relative duration of each of the three stages shows some differences

6en the behaviour shown in figures 6.25, 10.1 and 10.2 and the expected
di”n’ges
In bubbles in glass melts. During refining the second stage (bubbles
V*th
~ar9e proportions of oxygen) is usually well defined and relatively long

QdPared
u with the time for the CCk -* 0, change, but this is not general

T 1975). Besides the changes in composition in bubbles during refining

ei*iently be represented against the real time whilst in the simulated

N ies a . . .. .
a square root time scale is usually needed to distinguish the second

St and . . .
a the proportion of the second component does not remain at its

for 5 significant time.
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Fig9s l0.1 and 10.2 : Illustrations of behaviour of three-component
stationary bubbles with three distinct stages and growth after
the transient stage.
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Carbonates decompose rapidly by reacting with silica and giving rise to
large volumes of CO and relatively basic melts. These reactions are very
rapid even at temperatures significantly lower than typical melting
temperatures and large proportions of C0? available from batch must be lost
relatively early. Meanwhile the initial basic melts are in good contact
WIth those large volumes of CO™ being released and the concentration of COM
In those phases might be close to saturation. Further dissolution of silica
Ocreases the acidity and decreases the solubility of CO* in the melt which

"“ght cause oversaturation and diffusion of CO™ into bubbles present in the

1t L = - - -
e or nucléation of new bubbles. Investigation of these hypotheses might

be useful .

It is well known that the change in gas composition from CON to OM is
ro: - - - =
~oted by adding arsenic or antimony to the batch. This does not occur at

°ut 1200°C or less (Nemec, 1974) and there is evidence that arsenic and

mt’Im°ny are converted to the pentavalent state as the temperature of the

N\
tch increases. Cable (1961b) found that if a mixture of arsenic and Na2033

is
leated above 360°C the proportion of arsenate will be high. Oxygen might

be -
dISSolved during the change from trivalent to pentavalent state as the
L =3

rature of the batch increases and it has been suggested that nitrate acts
&

°xigizing agent. The proportion in the pentavalent state which was

Tyng
In glass was often slightly increased by adding nitrate to the batch
Crpie ] ) ]
et al., 1969; Cable and Naqvi, 1975) but these differences might also
**Lated to the tendency to change in valency at higher temperatures from
P=
ent to trivalent arsenic or antimony (Kuhl et al._.f 1938; Baak, 1959;

Hornyak, 1966). This change supports the view that oxygen also
%US’\ *
t Unto bubbles when refining is improved by arsenic or antimony, but
NS

St .
is

no direct evidence that the partial pressure of oxygen at which the

6@uilit)rated exceeds 1 atm.
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An example of the behaviour of a two-component stationary bubble is
showp, figure 10.3 where species 1 corresponds to oxygen and species 2
C°rresPonds to CO®. The constant was chosen from the typical range of
Ostwald solubility coefficients for CO" in soda-lime-silica melts above
1300 ¢ (Kroger and Goldmann, 1962). The concentration of CO* in the bulk
1mitis assumed to be 2, 10 and 100 times greater than the solubility (in

ases 1, 3 and 4 respectively). The solubility of oxygen was also chosen

fr(nvalues corresponding to about 0.5 wt.% arsenic (equation (1.4 )), and

N

G

0~ 2an = 8). Figure 10.3 shows that in those conditions the change in

bulk concentration of oxygen is assumed to be twice its solubility

composition is relatively quick and close to completion during the time

9hired to double the size of the bubbles. This occurs even if the
Girfy
USivity of CO2 is 100 times greater than that of oxygen (case 2) or if

the
relative oversaturation with CO™ is high (case 4).
biffusion of both oxygen and carbon dioxide into growing bubbles, and
tise
the surface would lead to progressive degasification. Investigating
oy, £

r this process could proceed during refining might provide useful

“tnatgen, but involves difficult measurements of the "effective"
‘on
entrations of CO™ and 02 dissolved in glass. Measurements of proportions

tri
VEbLent and pentavalent arsenic (or antimony) at different founding

U
bes
~ght give useful information but the iInvestigation should be extended
UMk considerably longer than usually used in laboratory melting (Cable
«t *
1.

" 1969).

Ex . . . I - _
cessive arsenic or antimony makes refining worse, especially if

“Tbgte < )
Is not added to the batch (Cable et al., 1969; Cable and Naqvi, 1975)
This

Su9gests some relation between good refining and efficient degasification.
In fact a ) ) )
large proportion of arsenic and antimony converts to the pentavalent

batch is heated and the amount of oxygen which must be given off



Fig 10.3 : Changes in composition of bubbles containing gases which
diffuse into the bubbles at very different rates.
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ky the melt for the degasification to be efficient may increase with
increasing additions of arsenic or antimony. Nemec (1974) also found that
during refining the rates of bubble growth increased with increasing arsenic
additijgns up to 2 As™O”. However, this value is a large excess relative to
Values which are usually considered optimum in refining (Cable et al.,
~69), and excessive arsenic (or antimony) also involves less rapid
placement of CC™ by in the bubbles during the earliest stages of refining
(Cable et al., 1969; Cable and Naqvi, 1975). Decrease in rate of diffusion
°xygen into growing bubbles whilst keeping to the flux of CO™ constant
Weuld cause an increase in the proportion of CO" but also decrease rates of

AObb'e growth. On the contrary, increase in both the proportion of CO™ and

n
tates of bubble growth might be due to increase in the rate of diffusion

°f CQZ especially during the earliest stages of refining. This also suggests
that

Of
92 which was dissolved in the initial basic liquid phases formed by

atsenic (or antimony) might be responsible for increasing the concentration

action of carbonates with silica. Studying the effect of reducing conditions

N th
solubility of COo or CO in glass melts might clarify whether or not

that Process is related to the changes in valency of arsenic or antimony.
~egasification of the melt might occur by diffusion from the surface of
*elt to the atmosphére and by nucléation, growth and rise of large

ers of bubbles. Diffusion from the surface is unlikely to play a

SI9nI1:icant role when the melt becomes almost quiescent, that is when

iVGCtion does not promote replacement of the top layers of the melt.

ci
eation of new bubbles, followed by their growth and rise to the surface

Hi
lre assisted by the presence of undissolved solid particles (Solinov

ancova, 1965) . Therefore, a rapid dissolution of the most refractory
°nents of the batch might be a disadvantage. Some facts agree with this

’esis, namely the evidence that too fine sand dissolves quickly and



216.

Causes decrease in batch-free time but makes refining worse (Cable, 1958),

and the role of nitrate which assists refining but also causes an increase

In batch-free time (Cable et al., 1969). In this second case residual sand

stains might provide sites for heterogeneous nucleation whilst in the first

case the rate of homogeneous bubble nucleation might be too low even with
oversaturations preventing efficient degasification. Finally, assuming

N at the bulk solute concentration is constant might be a poor approximation.
Understanding why nitrogen replaces oxygen in bubbles is also difficult.

The change occurs only after long melting times especially in glass melted

N industrial pot or tank furnace (Slavyanski, 1957; Mulfinger, 1976) and

1S unlikely to occur in glasses melted in a small crucible. Long founding

bini g might allow nitrogen to diffuse from the atmosphere and diffuse later
1llo bubbles when bubbles were dissolving (Mulfinger, 1972) . However,

"rease in the proportion of nitrogen in growing bubbles is very unlikely

ePt after very efficient degasification (especially losses of oxygen).

n Edition a dramatic change in solubility of oxygen might cause dissolution

°xygen, decrease in size of the bubble, and increase in proportion of

~tr°gen in the residual bubble.

In fact, Slavyanski (1957) reported some results which show that
°gen rich bubbles are more likely to occur in glass samples collected from

furnace during the cooling to working temperatures, especially below

*25 " i,
c* However, such changes also occurred in melts held at constant

~Perature (about 1400°C) throughout refining. During that decrease in

PPerature the equilibrium for arsenic is shifted towards large proportions

in
the pentavalent state (Baak, 1959), which might cause a significant

ihctds
euse in solubility of oxygen. Nemec (1974) also showed that bubbles in a

c°ntaining 2% As™O” and 1% Na2° suPPli-eth as nitrate in the batch
hec
ased in size as the temperature dropped from 1400 to 1150 C, whilst a
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SImilar drop in temperature caused little or no decrease in size of bubbles in
a melt without refining agents.

The differences in solubility of oxygen and nitrogen in glass melts at
temperatures below about 1300°C might explain why bubbles with small
Proportions of nitrogen become rich in this species. Figures 10.4 and 10.5
tPlustrate that type of behaviour. The solubilities were chosen in the
tanges suggested in Chapters 1 and 1l. The bulk concentration of nitrogen
~Pecies 2) is assumed to be 80% of its solubility ¢ = 0.8 a ). The
@IPOSitiOn of the bubbles is very dependent on the bu2Ik concentration of
°*ygen (fq 1is the dimensionless equivalent variable). This suggests a
Str’'ng relation to degasification. Increase in the proportions of species 2
43 enhanced if the equilibrium for species 1 is given by Sievert®s law,
Instead of Henry"s law. In the case of Sievert®s law the interfacial

Oricentration is expressed by

Fo®

& shown iIn appendix 7 . Note that Sievert’s law iIs suggested by equation
but this equation is wrong in what concerns the effect of the basicity
melt. Sievert"s law does hold for dissolution of water.

Mulfinger (1976) found bubbles rich in nitrogen and @2 in glass samples
ColliScted from the hottest zone of a tank furnace, which is in apparent
Offtt:adiction to the previously formulated hypothesis. In this case
Solution of oxygen should be rapid during the time required to collect the
S*Ples and cool them to room temperatures. This is not unrealistic if

JEient decrease in concentration of oxygen is achieved at those high

cing temperatures (close to 1600 C) . 1In case () shown in figure 10.5

mole fraction of the most soluble gas decreases to 0.5 at Z = 0.029, so



Table 10.1 : Relevant parameters for the examples shown in figs. 10.

amd 10.5.
a) b)

i 1 2 4- fbi

fi 1 1 a 75

X 8 0.001 b 7

Foi 4~ 0.0008 C 6

g (0) 0,99 0.01 d u
G 2

Pig. 10.4 : Dissolution of stationary bubbles containing two gases
of very different solubilities. The relevant dimensionless
parameters are given in table 10.1. Henry's law is assumed

for both species.



0.0 0.2 04 {l 06 0.8 1.0

Fig. 10.5 : Dissolution of stationary bubbles containing two gases of
The relevant parameters are given

very different solubilities.
in table 10.1. The Henry®"s law is assumed for species 2

FCR) = ~ N kut s?evert"s law *s assumed to describe the
equilibrium at the”interface for species 1 (F ) = OvWVg™-Fq ) .-
The full lines represent the radius of the bubble and the dashed

lines the mole fraction of species 1.
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if the initial bubble size is aQ = 1 mm and the diffusivity =
In" 6 cmzfsec, the time equivalent to Z = 0.029 is 290 sec. In the case of
a rising bubble the time scale may be much shorter than in the case of a
stationary bubble (Greene and Zee, 1965) and 1 min could be enough to
Promote that decrease in proportion of O™ in the bubble.

The study carried out by Mulfinger (1976) also suggests that the average
st2e of bubble decreases when oxygen had been replaced by nitrogen or carbon
a.°xide. However, increase in temperature causes decrease iIn viscosity and
Increase of the velocity of bubbles, which might have also contributed to
~6ctease in average size of bubbles collected from the hottest zone of the
~Jrnace.

Much shorter melting times are used in small scale experiments and drop
ft’()nmelting temperatures to annealing temperatures is usually rapid, which
~“ht explain why nitrogen is rare and its proportions are small in bubbles

mfysed in glass samples obtained in this way.

Assuming that nitrogen diffuses from the atmosphere before diffusing

bubbles suggests that the proportion of nitrogen in residual bubbles

9ht be greater in glass samples collected from near the surface of the melt
than < samples collected from the bulk melt.

The thermodynamics of arsenic differs somewhat from that of antimony.

in

°th cases lowering the temperature of the melt favours formation of the
Penta . . i

Valent form and thus an increase in 2 solubility. However, at the
Sine

temperature arsenic is usually more oxidized than antimony. Therefore,
tbe case of antimony the degasification might be more efficient and the

nf:tease in solubility of oxygen is expected to occur at lower melting

! Peratures than for glasses containing arsenic. During cooling to working

bperatures the dissolution of oxygen might start later when its diffusivity

uiso decreased further and the proportion of oxygen in bubbles in glasses
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containing antimony might remain higher than in glass with arsenic. However,

this interpretation must take iInto account the effective bulk concentration

°f oxygen which depends on how efficient the degasification is. Figures

to.4 and 10.5 have clearly shown that the mole fractions of oxygen in

hubbies decrease with decreasing bulk concentration of that species.
Experimental study of the effects of a drop in temperature on the

c°mposition of bubbles might be a convenient test for the hypotheses

formulated here.

0.4 guggestions for further work

The state of understanding of refining shows that measurements of
s’lubilities, diffusivities and bulk concentrations of gases dissolved in
9lass melts are essential. Understanding of these processes might be
I™proved by studying the changes of bulk concentrations of gases dissolved in
the melts. Description of the phenomena requires measurement of solubilities
Niffusivities and their changes with temperature; C O ~ , N2 anch S°2
lethe the most important gases. Nitrogen might be less important in spite

rts frequent occurrence in bubbles in finished glass samples because it
low solubility and low diffusivity.

Different techniques are likely to be needed for efficient analysis of

otent gases. Vacuum extraction has often been used in the past but it
"ﬁklves serious difficulties especially due to condensation of alkali
dj.Ibounds in the coldest parts of the apparatus. An alternative technique
°lves decomposition of powdered glass with HF and analysis of gases
N eteby released (Simhan, 1973). So far results obtained by this technique
inconclusive and further investigation should be carried out.

Accurate mathematical analysis of the behaviour of freely-rising bubbles
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Is also required, involving multicomponent systems (simultaneous diffusion of
m°te than one gas). The effect of varying the concentration of gases dissolved
#n the bulk melt must be investigated.

Observations of bubbles in glass melts make it possible to measure sizes,
rtes of growth and velocity of bubbles in glass melts. These observations
should be extended for longer times, especially at low concentrations of
bubbles (N). Measurements have usually shown highly scattered growth rates
(Nemec, 1974) which shows that the assumption of uniform bulk concentrations
InBht not be completely justified. Analysis of bubble composition also show
significant scattering but this seems to decrease with increasing time
(Cable et al ., 1969). Scatter of growth rates is also expected to decrease

the homogeneity of the melt improves. Scattering might be due to the
-esence of bubbles of different ages formed in rather different conditions.
Finally, adding fine sand during refining to previously batch-free melts
~ight give some insight into the role of bubble nucleation in the evolution
m"ectining and possibly on the role of degasification. It would be
uteresting to solve the question of how far solid particles can promote the
6terogeneous nucleation of bubbles in melts which had been freed from
bubbles .
Much work, both experimental and theoretical remains to be done before

refining of glass melts will be properly understood.
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APPENDIX 1

Multistep formulas

Multistep integration is frequently used to integrate ordinary differential
Stations and is discussed in textbooks (Burden et al., 1981).
liable mesh methods are discussed by Van Wyk (1968). If f(Z,y) = az ”
dependent variable y is solved on integrating the following interpolation
£°lynomial, P(2).

VE = yE-l + P@) dz CLA)

JE-1
~ere p(Z) is the Lagrange interpolation polynomial,

P = pn' 1:£-n n-1 £-n+l )

with
£
Z~2z2kK) 1 1i=0,1,2,3,4,.. =>n
..... ZE-i- Vi
Kej=£Ai
6~ ; K= £-n, £-n+l, £) points must be distinct and the derivatives

e
K™ fQ@ , y ) must be known, so that there is a unique polynomial, P(2).
In order to derive a four-step formula (n=4) the p~ terms must be
ticluded in equation (1A) and the handling of that polynomial is simplified

r the following transformation of independent variable
C= @q - Zys/6 Z

619 SZ = Z£ - Z£-1
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&lso discrete (1=0,1,2,3,4) are defined as follows
h - «Vi Z -yQ

where £ = o0, and C =-1.
After expanding P(£), rearranging, and integrating it one obtains the

implicit formula

yE  yE-l + 0Z¥0'f£ + PI'f£-1 + P2*FE-2 + P3*FE-3 + PA*FE-4" * (3A)

IT the step size is constant £ = 1, = 2, and = 3, the coefficients
&
i are easily obtained and equation ( 3A ) reduces to
_ &z
= **_1 + 720 [351ft + 646Fi-1 - 264fi-2 + 106f£-3 - 19f£-41 [ Vi
Hnich is the Adams-Moulton four-step formula.
Otherwise

[1/20 + (G2 + C3)/12 + @ C3/6]
P4= CA4(A-¢3)<£,-Co> 4+ D

[1/20 + (C2 + C4)/12 + G2 (C4/6]
P3 43<e3-C.2) <64 -«3> <C3 + 11

[1/20 + </3 + ;4)/12 + ¢3 C4/6]

\Y ¢c2(G3-¢2m ;4-;2mc¢c2 + D
1 1720 + (¢ + C + C4)/12 -
p = -+ —————— — S — + _]_l 1 1
1 2 S2 C3 C4 6 C2 G3 (0%}
P =i P - - - P
0 -1 E P 4

If f is not known then the interpolation polynomial must become



P(z) = pn'fE€-n + V i’ fE-,+I + " ¢ + p2'f£-2 + pl‘fE£-I CEA)

where

£-1
Z -7
K

Pi = Zpr - %k
K n
K i

i = 1,2,3,4

£-
£-

=h Il

In these conditions the solution of equation (1A) leads to

YE-1 + 6z[pi *FE-1 + P2 "f£-2 + P3 “f£-3 + P4 *F£-40 (GQ))
2(2 + 3G2)(C3 + C2) + 3(1 - 2C2 )
1274 (4 - G2)(C3 " C4

2 + 302 - 6C4(C4 - W
6C3E3  C2)
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If the step size is constant C = 1, = 2 and = 3 and equation (BA)

e3uces to the Adams-Bashforth four-step formula

6z
yE = yE£-1 + 24[55f£-1 - 59f£-2 + 37f£-3 ' 9ff£-4]

If £ < 4 these four-point formulas may not be used so that in these

o
|

*o
w

|

©
N

1l

o



Appendix 2

Runge-Kutta-Fehlberg method

Error estimates are sometimes used to control the step size of Runge-
*Utta techniques. A popular fourth-order Runge-Kutta-Fehlberg solution

(Burden et al., 1981) uses a Runge-Kutta method with truncation errors of

°rder five

6656 28561 9w 42 a5
yE+l = y£ 12825 K3 + 56430 K4 50 '5 55 6

to estimate the most significant part of the truncation error of a Runge-

~tta method of order four,

25 ,, ,1408 ,, , 2197 v

Y£+I YE + 216 K1 2565 K3 4104 K4 5 K5

We f= %¥ , Z is the independent variable and
62 = zewm1 ze
\' = 6z.f(Z£,y£E)
K2 = Sz.f(ZE + 6z/4, y£ + K /4)
Ki =621 20 | g6z ye + 32 kK1 + 32 K2
« = o 1932 7200 7296
T iz-E(zi +if 6z'yi t2197 1 2197 2 2197 3
) 439 3680 845
K. = 6z.flzZA+ &, y£ + 216 KL “ 8K2 + 513" K3 " 4104 K4
3544 1859 1K
- N N - 4
= SZ.ffz™ + Sz/2, yz - fy + 2K, - Seee K3 2104 K4 7 40 Ks

224.
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The most important part of the local truncation error of yA/TX is then

£+1 yE+I " yE£ / Sz

ad as ef£+1 is of order 0(6z4), a constant K exists such that

eE+l (62) ~ (6z2) K

Let us replace the step size 6z by q6z where q > 0 and q is bounded above

2eto, so that

ef+l (q.6z2) K'(q.<Sz)4 = g4.K(6z2)4

q <*4+1 " *4> | 6z

af the local errors are bounded by e

'eE+l {q-6Z)1 * 6max

or

c’nunon choice is to use a safety factor of about 2 so that

r 6z-emax n

2 WE+H] < yE

next step size will be ZM2 - ZMN = g* < .
~his method has clear advantages over a common Runge-Kutta technique when
% dom: ; ; ; ; ;
Qin of the function is large and variable step size is needed. It also

esents economy of computing relatively to the use of arbitrary methods of



226.

order four and five used together to obtain the difference, Y™+~ ~ Y£» which

require ten evaluations of the derivative T per step.
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Appendix 3

The solution of the double integral in equation (4.7) can be divided

into two steps; namely the solution of the integral

rw
aglw) = exp™N32[1 + 2ex - (1 - xX) 2]J dx (¢[9))

and then the solution of

W
1L@ = | Ff@)dw , )
Whee 0 < w < 1, and
f@ = A -w? O - oWl . (20)
& that
1-Cyv
1=63" Cav ifd) (30

Equation (1C) was solved by using the fourth-order Runge-Kutta-Fehlberg

Chnique outlined in appendix 2 and the integration carried out until w = 1
Nith

Of
alues was then used to integration equation (20.

storage of the n discrete pairs w; TW"); (£=1; n). This set
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Appendix 4

Estimating analytical solutions of growth of n-component bubbles from

one-component solutions

Given the dimensionless data a , Fq and f.; 1i=l, n, and a set

i
°f m pairs BT; <~@)) with E = 1 (Scriven, 1959) the multi-component

s®°lution is obtained by minimizing the error

1 &/4@.)) - i o)
es ©® =i 1
Whe re
B. = B/f.I "
TR - Gireg @
gi,eg (3.) } 1 1/ ee=/ n
From equations (ID) and (D)
9 ., =, / [y - ¢ @] @)
- % (D)
= FO. oh + <& (Bi) J
So .
*+at eguation (ID) becomes
rn FO. a.
vV 6) 1_a-+@(B,) D

function @ @B (ith £ = 1) was solved by Scriven (1959) for a

set of discrete values of B. Four-point polynomial interpolations

Used to obtain the reguired @ (B.) predictions from a set of m discrete
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C
Pairs SJ.; ¢ (SJ): (a=r..._. m) . All the values of 3. i: S/if. are obtained

the independent variable 3 and the objective function £ () was
°Ptimized by using sequential selection of 3 values according to the modified
Fibonacci method (Beveridge and Schechter, 1970). The lower and upper limits

3 were chosen as described in Chapter VI.
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Appendix 5

Variable mesh size Runge-Kutta technique to solve growth from zero size

with concentration dependent diffusivity (Chapter 7, Section 7.3)

Equations (7.12) and (7-13) with initial conditions F($) = 0 and
T® = 26 must be solved for s ™ 6# after inclusion of the functional form
of D(F) -

A standard Runge-Kutta technique with constant mesh size is not
suitable for a large range of values of s. Concentration profiles are
Usually steep near the interface (s = 6) but concentration varies slowly
Wﬁih distance for large s. The derivativezy- is a function of T and
a S
D(@) so that truncation errors may be kept small by adding restrictions to

changes in T and D(F) per computing step. It was shown that T drops

r’m 26 at s = 6 to O at infinity. Therefore the increment 6s required to

Advance from step £ to step £+1 is controlled by

6s <2 6 / ne dt
[dsi
<id
IldD
6s < D(FE / n.T£ dF R

ere n Is an estimate of the number of steps.
For small T the previous restrictions do not prevent large (6s)/s values

that an additional restriction is used

6s < s/n .

AU three of these criteria are used to optimize the solutions.
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Appendix 6

Inclusion of viscous effects in finite difference predictions

of growth or dissolution (Chapter IX)

The effect of surface tension is dependent on the radius of the bubble
ktt is independent of time derivatives of the radius. Therefore the finite
difference solutions do not involve additional difficulties if T = 0 and
N = 0, that is, iIf viscous and inertial effects are negligible. However,

1 { O the solution of equations (9.8) and (9.11) requires estimates of

H and - Alternatively the method can be based on using an

dz
e*Plicit-implicit multistep scheme to calculate the dimensionless content
the bubble G amd advance from time step £ to step ¢+1.

Let RE+1 be the estimate of R obtained by an explicit multistep formula

appendix 1). From the implicit multistep formula the following relation

~N also be derived.

dr

I
92 £ do + dI REFI an

*he
re RN Is the correct value of R at the new step £+1 and

\ = I/(P0-52)

mpoirt. wp RO Lp o = /P

0*~V di - |taz_|E N . A
£+l - Z£

Station of equations (9.9) and (IF) with h — 0 leads to

fn -4 @

rL i + 2s-rL i + 4r,-ao-RL 1 + 4n-ai-Ri+i

in
dditiorv the relative changes in radius per time step are kept small and

*|sO
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R»+; = RO r <! + 6>

where 6 « 1. Therefore

" f. )2 r

£+1 RE+Hj "REFD ™ 2 REHL €/
2

RE+] ~ 2RE+i » rE+i REL1 P

ad from equations () , (BF), and (4F) RMN can be estimated.
The overall scheme can be summarized as follows:

D Calculate by explicit multistep formula,

2) use the time derivatives at previous time steps to obtain
equations (IF) and (2F),

3 combine equations (2F), (3F), and (4F) to obtain

P establish a relation between the concentration gradient at the
interface and the interface solute concentration to include the
local balance in the implicit finite difference scheme described
in Chapter 111,
calculate the concentration profile at step £+1,

Recalculate the concentration gradient at the interface and obtain

the corrected value of by implicit multistep formula,

Recalculate by combining equations (2F), (3F), and (4F),
) dr _

Calculate 4z from equation (IF),

£+1

9 _

start g new time step or stop.

Tbe relation between interface concentration and concentration gradient
(€ ¢

4 is required to avoid instabilities which would result from the
in ;
CI* ion OF WdZ in the calculations of F(R), (equation (9.8a)). From

I0n (9.8a) and taking into account the definitions of q and <&
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FG)E+i =5 bp*- U +qg) P (5F)

~d from equation (9.9)

Giti * T p* - (6F)
Also from equation (9.10)
- - 7F
T o> = 1+i = 61 + (B>RE+i- |5 oy (7F)
£+1
finally, combination of equations (5F), (6F) and (7F) leads to
of Ly i FR® (8F)
£ = co ci el
£+1
Where and are obtained from the values of q, & G, R, and —

In order to obtain equation (3.23) (at the interface), the concentration

lent can be approximated by

= - N (QF)
‘%o (F2 F /
=1
h te and F2 are the dimensionless concentrations at the two first radial
~sh Positions and <& is the mesh size. As F1 = F(R), from equations (8F)
(9F)
(10F)
- F1,H+1[1 + Cl (fa)l + F2.«+l ' (M<fa) =
Which . . . . . .
is equivalent to equation (3.23). Alternatively a fictitious point
be used (Crank and Nicolson, 1947) to solve the diffusion equation at
interface. This method has been described in Chapter VIII involving a

Elation similar to equation (8F). A fully implicit formula was also
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Used to avoid instabilities. The space derivatives (equations (8.29) and

(8.30)) are replaced by their values at step £+1 only, instead of the

average used in Chapter VIIlI (section 8.4). Therefore, from equations

(8.24), (8.29), (8.30), (8.31) and (8F) one obtains

F2,1+1 - U +a +q- («*).(1- <a*>].Flil+l

(11F)
= (fix)=(1 - 6x)*Cq - OotFl £

vhere

a =% (R2)_, (6x)2/(62)

~°te that inclusion of either equation (10F) or equation (11F) in the

~mhite difference scheme described in Chapter 11l leads to indistinguishable

tesults. This can only be achieved if proper redistribution of space mesh

~°ints is used. Otherwise the first space interval might become excessively

5r% causing equation (10F) to be less accurate.
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Appendix 7

Interfacial concentrations for multicomponent bubbles

Equation (3.50) describes the boundary conditions for multicomponent
bubbles when Henry's law is assumed. In more general conditions the

Iriterfacial concentration Cf (a) is given by

Ci(a) :H.i p.r’\b : i=1,..., n, 16)

~bich includes both positive and negative deviations from Henry's law.

i Is a characteristic constant and p” is the partial pressure of gas i

In the bubble. In dimensionless terms equation (1G) becomes
F.® =cf.-g."1 - F61 )
Whe e
Fo. =C I/c's
“j = HpeP~/CQ
is

the total gas pressure and C° the concentration of gas in the bubble.
As the numerical solution advances from time step £ to step £+1 FMR)

change by a relatively small fraction so that one might write

F. (R +FO. = . ... @+ 6 (3G)
[ _1E41 = (Fi'R,h + F°ij
Trom equation (2G)
1/x+
9i ,£+1 (R £+1 + FOj> /ai]
I/ xL
- (1 N
[lb GQ) O+F0i> /al] ( +&/X)
4G
~~ho + hl FI(R) (“6)

Efl
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where
b, =3¢ ( Fi<R) ,, + FO. ) 7/ °i
11

- 4 1/x+ -
0~ .(FiR?U! +F0. )/ai -h B®

Equation (4G) assumes the form of a linear relation between F.X ®
1+l
a3 91f$»X which is required to include the boundary conditions in

implicit finite difference scheme described in Chapter 1I1.
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Appendix 8

Operators used in Chapter 11

Given a vector u the operator V.u in rectangular coordinates is

9iven by

3u 3u 3u
A X
V.u = Y 2

= +
3m 3y <3z

in spherical coordinates (Bird et al., 1960)

3 3u

19 (r2ur)+——}'
2 3r r*” " r sin0 30 u™ + r siné )

n
v-u =

It the system is spherically symmetrical

0u-= —33%?' & ud -

Spherical coordinates. The ranges of the variables are 0 < r < @OF

0<6<TT;0<4)< 2TT.



In isotropic media the diffusion flux j is usually written

1D = D grad C

Where
_ 3c
grad C = 3zk
therefore
_ 3. scl K¢ p 3€
Vb 2 T a3y 3z

In spherical coordinates

3G X 1 9. _
~o =2 ar T Py tsind @ O sin0)
r

D 2
sin™B c
It the system is spherically symmetrical

1 3
2 3r
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