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Abstract

The wavelet approach is an efficient time-frequency analysis tool to in-

vestigate stochastic data both in terms of time and frequency. Wavelet

methods provide a decomposition of a signal using a wavelet function

which is localised in both time and frequency. This thesis focuses on

wavelet methods using the Haar wavelet function to develop a new

approach to statistical modelling and data analysis.

We apply a regression model to the wavelet coefficients to classify

the state of a gas-fraction for an engineering tomography dataset. In

the previous research of Aykroyd et al. (2016), the model based on

the wavelet coefficients, from the discrete resolution levels, classified

the tomography data well. However, the model is fitted on a limited

number of wavelet resolution levels of the Discrete Wavelet Transform

(DWT). We expand the scale set to the continuous domain via the

continuous wavelet transform (CWT) to see the effectiveness of flexi-

ble wavelet scale selection for similar tomography data analysis.

Apart from the modelling using the CWT, the locally stationary

wavelet (LSW) method is introduced in Nason et al. (2000) as a model

to investigate non-stationary process with wavelet functions. We will

give an overview of the standard discrete LSW process and suggest

an extension of the continuous LSW (CLSW) process to estimate fre-

quency features. The standard LSW process is built on discrete res-

olution levels, but we will extend the LSW process to the continuous

wavelet scales. However, due to the redundancy of the CWT, the es-

timation of the evolutionary wavelet spectrum (EWS) does not show



spectral densities matching true frequency characteristics. To cope

with the problem, we apply the idea of the orthogonal matching pur-

suit (OMP) algorithm to select the best subset of continuous wavelet

scales explaining data the most. We illustrate the modified CLSW

process using the reflected doppler data and real tomography data

and show the spectral estimate of them. Based on the improvement

of spectral estimation, we fit a classification model on the estimate

of EWS from the modified CLSW process using the real tomography

data.
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Chapter 1

Introduction

1.1 Overview

Time-frequency analysis is an established area of interest in Statistics and Physics

to understand the structure of data over both time and frequency. In particular,

since data in signal processing usually has complicated structures, formed from

various frequencies, time-frequency analysis can propose an approach to see the

data over both domains, time and frequency. For example, the Fourier transform

decomposes data over time by the combination of sine and cosine functions. The

periodogram given by the decomposition of the trigonometric functions enables

us to understand spectral properties of data. Like the Fourier transform, wavelet

analysis, the main focus of the thesis, is another time-frequency analysis tool.

The wavelet transform decomposes data using a wavelet function localised both

in time and by wavelet resolution level or scale. The details of the wavelet method

will be described in §2.2.

This thesis will develop statistical modelling based on continuous wavelet

methods. The main objective of the research is to show the necessity of contin-

uous scales in wavelet methods with applications. The discrete wavelet method

restricts the number of wavelet resolution levels by the number of observations.

Hence, the information based on the discrete wavelet transform is given by a few

discrete wavelet resolution levels, which may lose valuable frequency information

between the discrete levels. Meanwhile, the continuous wavelet transform allows

us to include continuous scales which are not restricted by the length of the data.

1



1.1 Overview

Chapters 3 and 4 consider classification modelling using a subset of scales

from the continuous wavelet transform and compare them to see how the inter-

mediate scales, between discrete wavelet resolution levels, affect the performance

of modelling. The data mainly covered here is tomography data where the aim

is to see the state of the gas fraction in a liquid. The fitted model classifies the

gas-liquid phase by the size of bubbles in liquid based on electrical conductivity

data.

Aykroyd et al. (2016) fitted a classification model based on the coefficients

from the discrete wavelet transform using the vertical flow tomography data.

Chapter 3 fits a regression model to the same vertical flow tomography data

from Aykroyd et al. (2016) and Chapter 4 is with the horizontal flow tomography

data. The fitted models, based on the discrete wavelet coefficients of the electrical

conductivity data, proposed the important levels to classify the state of gas-liquid

phase. However, as the models are fitted from the limited discrete wavelet levels,

we can consider expanding the variable domain to the continuous wavelet scales

applying this to the vertical and horizontal flow tomography data.

The continuous wavelet transform (CWT) is obtained as an integral of contin-

uous functions, but the continuous calculation is difficult to implement in prac-

tical computing. Also, most practical data are given as formations of vectors

or matrices rather than continuous functions. Accordingly, we assume that the

continuous calculation for the CWT are carried out as the discrete sum using a

fine grid.

To allow fitting models using continuous wavelet methods, the locally station-

ary wavelet (LSW) process is developed based on the continuous wavelet method.

The locally stationary wavelet process is proposed in Nason et al. (2000) as a

tool for a specific type of non-stationary process. This method enables us to

make a representation of data from the non-decimated wavelet transform and

estimate spectral properties changing over time. The standard LSW process is

based on the non-decimated discrete wavelet transform, but the intermediate lev-

els between discrete levels may have some valuable time-frequency characteristics.

Hence, we aim to expand the LSW process to the continuous wavelet method.

Chapter 5 covers the definition of the LSW process and its application with ex-

ample data and suggests a model built on the continuous wavelet scales. Since

2



1.2 Preliminaries

the CLSW process is built based on a more redundant wavelet scale set than the

existing LSW process, the estimated spectrum may not be close enough to the

true spectral density. Therefore, there are more mathematical properties which

need to be checked. To simplify this mathematical problem, we will consider

a discretised continuous wavelet transform with sampled wavelet scales from a

continuous wavelet scale set. This simpler approach can suggest a path towards

understanding the fundamental mathematical assumptions and properties needed

for our ultimate goal, the continuous LSW process. Along with the mathematical

proof, we will show its application on real data to compare how it differs from

the result of a discrete LSW process.

However, the CLSW process may have a distortion effect due to the redundant

scale set from the discretised CWT. This thesis suggests the modified CLSW

process through scale reduction by using the orthogonal matching pursuit (OMP)

algorithm in Chapter 6 with the improvement of spectra analysis using example

datasets. Based on the development of the modified CLSW process, Chapter 6

fit a classification model using the example dataset of vertical flow tomography

data.

Before moving Chapter 2, we will review some background that will be used

later in this thesis.

1.2 Preliminaries

1.2.1 Stationary Process

Stationarity is a fundamental concept in time series analysis. The stationarity

is the statistical property with some assumptions of statistical behaviours not

changing over time. For the degree to which statistical properties are assumed,

the stationarity can be defined as strictly stationary or weakly stationary

processes. First, the strictly stationary process is defined as a sequence of

random variables, {xt1 , . . . , xtn} which have identical probabilistic behaviour to

the set {xt1+k, . . . , xtn+k} for any integer k ≤ 0 and all the time points, ti for

3



1.2 Preliminaries

i > 1. This regularity for the probability in strict stationarity means

P(xt1 ≤ c1, . . . , xtn ≤ cn) = P(xt1+k ≤ c1, . . . , xtn+k ≤ cn) (1.2.1)

for any ci for i = 1, . . . , n.

However, stationarity in terms of probability is too strong to apply to practical

time series analysis. To ease this strong regularity, the weakly stationary process ,

xt for time, t, and a lag, k, is defined in terms of mean and auto-covariance such

that

(i) E(xt) = µ

(ii) Cov(xt, xt+k) = γk

where µ and γk are constants not depending on t for k ∈ Z. The conditions

mean that the first and second moments are independent with time, t and finite,

but depend on a lag, k. In Statistics, a stationary process generally means a

weakly stationary process.

1.2.2 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a criteria often used to choose

an optimal model which considers the number of parameters. The criteria is de-

fined based on a likelihood for the model with k parameters such that

BIC = k log n− 2 log(L̂) (1.2.2)

where n is the number of observations and L̂ is the maximized likelihood of the

data, {x1, . . . , xn}. The model minimising the criteria can be considered as the

best model. Also, the number of observations, n, is also considered as a penalty

to avoid overfitting.

If we assume that time series data, {x1, . . . , xn} are from a normal distribution,

we can simplify the notation of BIC as

BIC = n log
RSS

n
+ k log n (1.2.3)

4



1.2 Preliminaries

where RSS is the residual sum of squares using the same notation as in (1.2.2).

1.2.3 Fourier Transform

Fourier transform (FT) is a time-frequency analysis tool commonly used to in-

vestigate frequency characteristics. Here, we will briefly explain the definition of

the Fourier transform (FT) and its inverse function. The following explanations

are mainly from Dyke (2014).

FT decomposes data into periodic components based on trigonometric func-

tions. Assume that f(x) is an integrable function for all x ∈ R. Then, the FT is

defined by

F̂ (w) =

∫ +∞

−∞
f(x)e−2πixwdx (1.2.4)

where w is frequency. The FT, F̂ (w) can be considered as a complex-valued

function of w ∈ R,

F̂ (w) = A(w)eiψ(w). (1.2.5)

The spectral information of f(x) can be interpreted in terms of the coeffi-

cients of the FT. The squared coefficient, |F (w)|2, is called the spectral density.

This quantity suggests how the data, f(x), is decomposed into frequencies. The

total sum of the spectral density is connected to the energy of the data. The

relationship is called Parseval’s theorem.

Theorem 1.2.1. Parseval’s Theorem

If f(x) ∈ L2 (R) has the FT, F (w), then∫ +∞

−∞
|f(x)|dx =

1

2π

∫ +∞

−∞
|F̂ (w)|dw. (1.2.6)

Discrete Fourier Transform

The standard FT is defined with a continuous function, f(x), but we can perform

the FT with a discrete stochastic process or sampled data of a real function as

well. Let X = (X0, X1, . . . , Xn−1) be a finite sequence from a discrete stochastic
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1.2 Preliminaries

process. Then, the discrete Fourier Transform (DFT) of Xt is defined by

X̂j =
1√
n

n−1∑
t=0

Xte
(−2πifjt) j = 0, . . . , n− 1 (1.2.7)

where fj is the Fourier frequency, j/n.

The Inverse Fourier Transform

The FT coefficients of the standard FT and the DFT can be used to reconstruct

the original data. The inverse can be shown as

f(x) =
1

2π

∫ +∞

−∞
F̂ (w)eiwxdw (1.2.8)

for the standard FT. The process is called the inverse Fourier transform. The

discrete FT also has the inverse Fourier transform,

Xt =
1√
n

∑
j

X̂n−1
j=0 e

2πifjt (1.2.9)

for fj = j/n.

1.2.4 Inner Product

The inner product is a function of a pair of vectors. Let x = (x1, ..., xn) and

y = (y1, ..., yn) be vectors in a vector space. Then, the inner product can be

written as

< x, y >=
n∑
i=1

xiyi. (1.2.10)

1.2.5 Entropy (Shannon’s Entropy)

Entropy is the concept used in information theory to measure the amount of

uncertainty in random variables. There are various formats or definitions of the

entropy, but in general and particularly in Statistics, the entropy means Shannon’s

Entropy. Let x be a random variable from a distribution, Px. Then, the entropy
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of x is

H(x) = E (−log Px)

=
∑
x=xi

−P (xi)logPx(xi) (1.2.11)

where Px(xi) is the probability at x = xi.

1.2.6 Big O notation

Big O notation is a notation to symbolise the asymptotic characteristics of a

function, f(x) as x goes to a limit of a particular value or infinity. This describes

the rate of changes of the function, f(x) in terms of the order of g(x). We can

define the Big O notation, O(g(x)) for the function, f(x), as x→∞, if and only

if there exists a constant c and xn such that

|f(x)| ≤ c|g(x)| (1.2.12)

for all x > xn. We can denote the definition as f(x) = O(g(x)) as x→∞.
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Chapter 2

Introduction to Wavelets

2.1 Motivation

The purpose of time-frequency analysis is to investigate the structure of data over

both time and frequency simultaneously. In signal processing, various datasets

have complicated structures, both in terms of time and frequency. However,

describing a signal as a function of time is localised in time but not frequency.

Hence, this two-dimensional analysis enables us to expand our analyses of data

into these two domains, time and frequency together rather than as separate

analyses.

As mentioned earlier in §1.2.3, the Fourier transform (FT) decomposes data

in terms of trigonometric functions. The standard FT defines the representation

of data as the sum or integral of the periodic sine and cosine functions. While

these functions used in the FT are localised in frequency, they cannot make a

localised representation in time. Meanwhile, wavelet functions are known to be

relatively well localised in both time and frequency compared to the standard

trigonometric functions. Here, our main analysis tool is the wavelet transform to

see the local time-frequency structure of data.

Wavelet methods have been developed to investigate time-frequency charac-

teristics of stochastic data along wcith various analysing methods such as Fourier

transform. In our thesis, we focus on wavelet methods using wavelet functions as

basis functions rather than other methods. The wavelet transform can be divided

into discrete and continuous wavelet transformations depending on the type of
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2.2 What is a Wavelet?

data. The discrete wavelet transform is constructed over a limited number of

discrete resolution levels, which relies on the number of data points in order to

keep the relationship between levels. Meanwhile, the continuous wavelet trans-

form allows us to include more flexible wavelet frequencies from the continuous

real number domain. We keep both methods to compare the efficacy of statistical

modelling for our real tomography data. However, real data is usually recorded as

discrete sequence data instead of a continuous function, and therefore we assume

that continuous wavelet transform is also calculated by a discrete summation.

First, we will introduce the basic idea of wavelets in §2.2 with a literature

review. Various different forms of wavelet transforms can be used to decompose

the data in terms of wavelet functions. Two particular transforms are the discrete

wavelet transform (DWT) and the continuous wavelet transform (CWT), which

break the signals down in to various wavelet frequencies used in the transfor-

mations. This chapter will describe a brief explanation of the DWT and CWT,

illustrated by some example data for the development of statistical modelling for

the next step. Most of explanations covered in this chapter are mainly based on

Daubechies (1992), Nason (2010) and Vidakovic (1999).

2.2 What is a Wavelet?

The term, “wavelet” refers to the concept of a “small wave”. The basis functions

used in wavelet methods generally have small oscillations decaying to zero from

the middle. There are various wavelet functions with different shapes such as

the Haar function, the Morlet wavelet function and Shannon’s wavelet function.

The first function described in this thesis is the Haar wavelet function introduced

in Haar (1911). In wavelet analysis, the discrete wavelet transform has the two

different types of wavelet functions: mother wavelet functions and father wavelet

functions. The detail of the notations will be covered in §2.3 with the discrete

wavelet transform. The father Haar wavelet function, φ(x), and mother Haar
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wavelet function, ψ(x), are

φ(x) =

{
1 when x ∈ (0,1]

0 otherwise,
ψ(x) =


1 when x ∈ (0,1/2]

−1 when x ∈ (1/2,1]

0 otherwise.

(2.2.1)

Figure 2.2.1: Haar wavelet functions: the father wavelet function, φ(x) (top) and
the mother wavelet function, ψ(x) (bottom). The dashed lines are the default
wavelet function at the origin and the blue solid lines are the wavelet functions
shifted to +1 units to the right.

Figure 2.2.1 shows line plots of the Haar wavelet functions defined in (2.2.1).

They are square-shaped functions with discrete points and the width of non-zero
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areas depends on the wavelet levels or scales. Although these functions are not

continuous, they are advantageous for the development of modelling and compu-

tational techniques due to their simplicity. In addition to the Haar wavelet func-

tion, Daubechies wavelet functions have been highlighted in the discrete wavelet

transform. The Daubechies’ wavelet functions are compactly supported, which

gives a limited period of small oscillations.

With these wavelet functions, wavelet methods are used to investigate the

time-frequency characteristics in the domains of time and frequency simulta-

neously. The wavelet coefficients are transformed by projecting the data onto

the corresponding wavelet function, which gives the contribution of that wavelet

function to the data. The detail of wavelet transform and its application will be

described in §2.3.

2.2.1 Literature Review

As mentioned previously, wavelet methods have been developed as a useful tool

which operates simultaneously in both time and frequency domains. There are

several books and papers on the subject. Daubechies (1990) describes two time-

frequency analysis methods: the windowed Fourier transform and the wavelet

transform. In both transformations, the data can be reconstructed stably with

tight frames and this enables us to investigate local time-frequency behaviours

by basis functions well localised in time as well. Also, the paper shows that

the discrete wavelet transform with logarithmic scales can be a better way to

analyse time-dependent signals such as acoustic data than the windowed Fourier

transformation. Jawerth & Sweldens (1994) give an overview of the multiresolu-

tion analysis based on the space spanned by the discrete wavelet functions and

the fast wavelet algorithm to decompose or reconstruct data by the relationship

between levels. Daubechies (1992); Nason (2010); Vidakovic (1999) and Perci-

val & Walden (2000) all explain the basic principle of general wavelet methods

with mathematical accounts and computing techniques. Mallat (2008) also ex-

plains wavelet methods focusing on sparse representation. The book suggests the

Matching Pursuit algorithm to select a sparse representation from a redundant

set of basis functions. The algorithm has an important role for developing the
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2.3 Discrete Wavelet Transform (DWT)

continuous locally stationary wavelet process which we propose in Chapter 5, so

details will be explained in Chapter 6.

Wavelet methods have been used to explore data having time-varying compli-

cated structure. The wavelet transformation decomposes data into corresponding

wavelet functions so that the wavelet coefficients represent the contribution to the

data at the resolution level. The transformation can often efficiently compress sig-

nals into a smaller number of wavelet coefficients enabling a sparse representation

of many data sets. This characteristic of wavelet transform can be used for signal

processing. For example, complex biological data such as electroencephalographic

(EEG) and electromyographic (EMG) data has transient changes over high-time

resolution Rafiee et al., 2011. Therefore, wavelet methods, localised in both time

and frequency, can be a useful tool to estimate their frequency behaviour.

Also, since most practical data for statistical modelling and signal processing

has at least some noise present, we often need to denoise data to estimate the

true time-frequency characteristics. Wavelet methods have been used as an ef-

fective tool to handle the noise problem. Antoniadis (2007) gives an outline of

the general denoising algorithm using wavelet methods and some developments

of the idea. Distributional assumptions on the noise will propagate through the

transformation, and therefore the choice of denoising algorithm which modifies

the noise in the wavelet coefficients are usually by a given thresholding or shrink-

age rule. The denoised wavelet coefficients are used to reconstruct a denoised

estimate of the true noiseless data by applying the inverse transform. Donoho

et al. (1995) suggest the idea of curve estimation via the wavelet shrinkage and

Nason (1996) applies the idea of cross-validation to choose the threshold. Also,

the Bayesian approach has been used for wavelet shrinkage; Chipman et al. (1997)

and Johnstone & Silverman (2005) among others use mixture distributions, to

model the prior assumptions of sparsity in the wavelet coefficients.

2.3 Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) and the continuous wavelet transform

(CWT) are distinguished by the domain of wavelet resolution levels or scales used

in the transformations. First, the discrete wavelet transform is defined based on
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2.3 Discrete Wavelet Transform (DWT)

the discrete wavelet resolution levels determined by the number of observations.

Let the number of observations be N , and we assume that the length of data has

the dyadic relationship, N = 2J . The discrete wavelet resolution levels are given

as j = 0, . . . , J − 1 and let the shifting parameter be k.

In discrete wavelet methods, there are the two types of wavelet functions: the

mother wavelet functions and the father wavelet functions. Let the father wavelet

function and the mother wavelet function be φ(x) and ψ(x), respectively. The

father wavelet function notated, φ(x), explains a local averaging and the mother

wavelet function extract more detail information such as variation at the given

wavelet level.

These wavelet functions are scaled by the wavelet resolution level, j and trans-

lated by a shift, k following the definitions,

φjk(x) = 2
j
2φ(2jx− k) and ψjk(x) = 2

j
2ψ(2jx− k), (2.3.1)

for j = 0, . . . , J − 1 and k = 0, . . . , 2j − 1.

The wavelet resolution level, j, scales the wavelet function by the normalising

factor, 2
j
2 so that “energy” is conserved for wavelet functions over different levels,

j, and shifting parameters, k. We can define the father wavelet coefficient, cj,k

and the mother wavelet coefficient, dj,k of data, f(x) to be

cjk =
∑
x

f(x)φj,k(x) and djk =
∑
x

f(x)ψj,k(x). (2.3.2)

2.3.1 Multiresolution Analysis (MRA)

The discrete wavelet transform is carried out over multiple resolution levels, j =

0, . . . , J − 1. This multiscale method can be used to extract a smooth average

from a low resolution level and to add more details from finer resolution levels.

Based on this approach, Multi Resolution Analysis (MRA) provides a theoretical

concept to understand the wavelet bases from scale, j ∈ Z. Let Vj be the space

spanned by the father wavelet function, {φjk (x)}k, and Wj be the space spanned

by the mother wavelet function, {ψjk (x)}k, at the wavelet resolution level, j.
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2.3 Discrete Wavelet Transform (DWT)

Then, we can denote the spaces, Vj and Wj as

Vj ={f ∈ L2(R)| f(x) =
∑
k

ckφjk(x)} (2.3.3)

Wj ={f ∈ L2(R)| f(x) =
∑
k

dkψjk(x)} (2.3.4)

respectively (see Vidakovic, 1999, chap. 3).

The relationship of two different resolutions can be written as Vj ⊂ Vl for

j < l so that the space based on the finer level of resolution has more details than

the other. According to the relationship over multiple scales, we can write

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (2.3.5)

We assume that a wavelet function, φ(x) is a orthonormal basis for V0 so that

the space, V0, is spanned by the wavelet functions, {φ(x − k)}k. Therefore, by

the linkage relationship of (2.3.5), φ(x) can be represented as

φ(x) =
∑
k

hkφ1k(x)

=
∑
k

hk
√

2φ(2x− k), (2.3.6)

for some {hk}. That implies that the wavelet function, φj,k(x) is a orthonormal

basis function of Vj.

Meanwhile, the space, Wj is based on the detail information not explained by

the local average from φj+1,k(x). The relationship can be represented in terms of

the difference between spaces as Wj = Vj+1 	 Vj (Daubechies, 1992; Vidakovic,

1999). Here, ψj,k(x) is also an orthonormal wavelet function of Wj. This allows

us to make the representation of data as

f(x) =
∑
k

cj0,kφj0,k(x) +
∞∑
j=j0

∑
k

cj,kψj,k(x). (2.3.7)

The wavelet resolution level, j0, is often called the “primary resolution level”.

The representation consists of the local average part at the wavelet resolution
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level, j0 and the detailed information accumulated from the level, j0 to infinity.

In the same sense as φ(x), the mother wavelet function, ψj,k(x) can be written as

ψ(x) =
∑
k

gkφ1k(x)

=
∑
k

gk
√

2φ(2x− k), (2.3.8)

for some {gk} due to the linkage of spaces. The dilation is controlled by the

coefficients, {hk} and {gk}, depending on the kind of a wavelet function.

The relationships of (2.3.6) and (2.3.8) can be extened in Fourier domain.

Let m0(w) =
1√
2

∑
k hke

−ikw and m1(w) =
1√
2

∑
k gke

−ikw. Then, the Fourier

transform of φ(x) and ψ(x) become

Φ̂(w) = m0

(w
2

)
Φ
(w

2

)
and Ψ̂(w) = m1

(w
2

)
Φ
(w

2

)
(2.3.9)

where Φ̂(w) and Ψ̂(w) are the Fourier transformation of φ(x) and ψ(x). Here, the

functions, m0(w) and m1(w) can be interpreted as the characteristic functions of

hk and gk in the Fourier domain.

2.3.2 Non-decimated Wavelet Transform (NDWT)

Decimation

In §2.3.1, the linkage relationship between the discrete wavelet resolution levels

is explained. Equation (2.3.6) can be extended to relationship between the level,

j and j + 1 as follows,

φj,k(x) = 2j/2φ(2jx− k)

= 2j/2
∑
n

hnφ1n(2jx− k)

= 2j/2
∑
n

hn
√

2φ(2(2jx− k)− n)

= 2j+1/2
∑
n

hnφ(2j+1x− (2k + n))
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=
∑
n

hnφj+1,2k+n(x), (2.3.10)

where k is the shift parameter. By the same principle, equation (2.3.8) can be

generalised as

ψj,k(x) =
∑
n

gnφj+1,2k+n(x). (2.3.11)

Based on the generalised linkage relationship, the discrete wavelet coefficients can

be obtained as

cj,k =
∑
n

hncj+1,2k+n and dj,k =
∑
n

gncj+1,2k+n (2.3.12)

by applying (2.3.2) to (2.3.10) and (2.3.11). The above equations mean that the

wavelet coefficients at the level, j, can be given from the information at the next

finer level, j + 1, with the filter coefficients, {hn}n and {gn}. Also, the wavelet

function and coefficients, ψj,k(x), cj,k and dj,k, are derived from the wavelet values

indexed by 2k + n at the next finest resolution level, j + 1. This means that a

single shift, (k → k+1), at level, j corresponds to two shifts at level, j+1. Nason

& Silverman (1995) denote the even decimation operator, D0, as

(D0x)m = x2m. (2.3.13)

In the same spirit, the odd decimation to choose odd elements, D1, is denoted as

(D1x)m = x2m+1. (2.3.14)

We will follow these terms in this thesis with the wavelet filter operators, H and G

defined over {hn} and {gn}. Following this terminology, we can write the vectors

of the wavelet coefficients at level j, cj and dj, as

cj = D0Hcj+1 dj = D0Gcj+1 (2.3.15)
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by equation (2.3.12). Nason & Silverman (1995) wrote the standard DWT as

cj = D0H
J−jcJ dj = D0GD0H

J−j−1cJ (2.3.16)

in terms of the father wavelet coefficient vector, cJ at the finest level. Only the

standard DWT through decimation gives an orthogonal transformation, resulting

in a single basis set.

Application of the DWT to the doppler test function

Following the concept of the DWT and NDWT, we will apply the transformation

to the doppler test function. The doppler test function is a example data set

commonly used in signal processing including wavelet methods. As this data

has time-depending frequency behaviours, it is useful to test a time-frequency

analysing tool. Figure 2.3.1 shows the line plot of the doppler test function.

The doppler test function tends to get slower, but the amplitude of the wave is

increasing gradually.

Figure 2.3.1: The line plot of the doppler test function.

Figure 2.3.2 displays the plots of wavelet coefficients from the standard DWT

and non-decimated DWT using the doppler test function. Recall that the stan-

dard wavelet function depends on the origin and the number of wavelet functions

and their coefficients are different at each resolution level by dyadic decimation in

(2.3.12). As can be seen from Figure 2.3.2, the number of wavelet coefficients are

different between the transformations. Although the standard DWT is useful to

reconstruct the original data based on the coefficients, the non-decimated DWT

is easier to understand the patterns of the frequency characteristics of the doppler

function with the dense coefficients.
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2.3 Discrete Wavelet Transform (DWT)

Figure 2.3.2: The plots of the wavelet coefficients from the standard DWT and
non-decimated DWT using the doppler test function: DWT (upper) and NDWT
(below).

Non-decimated Wavelet Transform (NDWT)

The standard discrete wavelet transform is defined using the binary decimation

operator of (2.3.15). This decimation operator, D0, chooses every even wavelet

coefficients at the level, j + 1, as the origin to obtain the wavelet coefficients at

the next coarsest level, j. As the decimated wavelet transform requires to use

only one decimation operator, the other wavelet coefficients, decimated by D1,

are not considered for the standard discrete wavelet transform. Recall that a

single shift at a specific level, j, does not mean a single shift at the other levels

in the standard DWT. That implies that the decimated wavelet transform can

be different depending on an origin point.

The standard DWT has advantages in that the wavelet coefficients conserves
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the energy of original data after the transformation with the orthogonal structure

of wavelet basis functions. However, we may wish to retain all information to

get an analysis which is not sensitive to the origin point. The non-decimated

wavelet transform (NDWT) is based on this motivation. The NDWT includes

all the wavelet coefficients and does not depend on the origin of data. The

wavelet coefficients of NDWT at each resolution level keep both D0Hcj+1 and

D1Hcj+1 for the level, j. Hence, the number of wavelet coefficients of the NDWT

is always the same as the length of the data, regardless of the level of resolution.

The computation cost is more expensive than the standard DWT, but the result

of wavelet transform is translation-invariant and free from the origin of data.

However, the NDWT is not an orthogonal transformation, and hence inverting

the NDWT is more complicated than inverting the standard DWT. Also, we

assume that the NDWT has a periodic boundary in our research.

2.3.3 Wavelet Packet Transform

In (2.3.16), we described the standard discrete wavelet transform in terms of

the even decimation operator, D0 and filter operators, H and G. Although the

wavelet coefficients depend on the type of operator filters, both of them are given

by iterating H. On the other hand, the wavelet packet transform includes all

cases applying either H or G at each step.

cJ

cJ−1 dJ−1

w2w1dJ−2cJ−2

D0H

D0H
D0H

D0G

D0GD0G

...
...

...
...

Then, the wavelet packet functions are organised into the wavelet packet basis

library. We can select the “best” basis functions from the wavelet packet library
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by using cost functions such as Shannon’s entropy. In the same spirit, the set

of non-decimated wavelet functions is also considered as a wavelet basis library.

Averaging or selecting basis functions can be used for the non-decimated wavelet

transform as well, but we will not cover the details in the thesis.

Non-decimated Wavelet Packet Transform

The previously described wavelet packet functions are given by using the even

decimation operator, D0, equivalent to the standard discrete wavelet transform.

This wavelet packet functions can be generalised by using both decimation op-

erators, D0 and D1 with filters, H and G. Therefore, the non-decimated wavelet

packet transform applies the four combined operators, D0H, D0G, D1H and D1G

to each packet at the one level before. The non-decimated wavelet packet trans-

form also does not depend on origin, so are invariant to shift parameters.

2.4 Continuous Wavelet Transform

As we previously mentioned, the DWT is defined over a limited number of dis-

crete wavelet resolution levels. However, the continuous wavelet transform allows

us to choose wavelet scales more flexibly from a continuous domain. In this sec-

tion, we will give an overview of continuous wavelet transform (CWT) with some

mathematical properties which is needed in this thesis.

Wavelet functions described in § 2.3 are built based on the discrete wavelet

resolution level set, J = {0, 1, . . . , J − 1} determined by the number of observa-

tions. Meanwhile, the continuous wavelet function, ψab(x) is defined as

ψab(x) =
1√
a
ψ
(x− b

a

)
(2.4.1)

for the wavelet scale, a ∈ R+ and the shift, b ∈ [0, T ). Equivalently to the DWT,

the continuous wavelet transform (CWT) of data, f(x), is given as

CWTf (a, b) =

∫
f(x)ψab(x)dx =< f, ψab > . (2.4.2)
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Although the CWT has a similar structure to the DWT, the selection of

wavelet frequencies is more flexible and the domain of wavelet frequencies no

longer depends on the length of data. Also, the CWT does not have a local

averaging part which is represented by father wavelet functions. In general, the

wavelet transformation of CWT means the decomposition of data by ψ(x), which

is a mother wavelet function of DWT.

The wavelet function of CWT is assumed to belong to L2(R). Moreover, there

is a fundamental condition for the CWT, “admissibility condition”, required for

a continuous wavelet function. The admissibility condition is

Cψ = 2π

∫
|ψ̂(w)|2

|w|
dw <∞, (2.4.3)

where Cψ is the “resolution of identity” and ψ̂(w) is the Fourier transform of

ψ(x). The condition implies
∫
ψ(x)dx = 0.

As previously mentioned in §2.3.2, the decimated DWT can provide an orthog-

onal transformation. On the contrary, it is hard to reconstruct original data from

the wavelet coefficients of the CWT due to the redundant wavelet scale set. The

resolution of identity, Cψ, can explain the relationship between the coefficients

and data as follows

f(x) =
1

Cψ

∫ ∫
CWTf (a, b)ψa,b(x)

da db

a2
. (2.4.4)

The inverse relationship requires to satisfy the admissibility condition, (2.4.3)

first. If we can assume the data, f(x) ∈ L2(R), the squared norm of f(x) can

converges as ∫
|f(x)|2dx =

1

Cψ

∫
|CWTf (a, b)|2

da db

a2
. (2.4.5)

The CWT is calculated by an integral, and accordingly we assume that data

is continuous for the CWT. However, as practical data is generally given as a

discrete sequence of data, it is difficult to evaluate a continuous wavelet transfor-

mation using real data. The data sets used in this thesis are also given as vectors

of discrete observations, and therefore we need to get an approximation to the

wavelet coefficients of the CWT. Here, we use a fine grid from the continuous
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wavelet scale domain to get an wavelet coefficient. The approximated CWT can

be denoted as

CWTf (a, b) =
∑
x

f(x)ψab(x), (2.4.6)

for the continuous wavelet scale, a ∈ AD, where AD is the discretised continuous

wavelet scale set. To avoid confusion in terminology, although the formed CWT

of (2.4.2) is defined as an integral, the CWT in this thesis means the discretised

CWT in (2.4.6). The discretised continuous scale set, AD, can be changed de-

pending on the number of observations or a kind of wavelet function, so it will

be defined individually at each case. Although the approximation to the wavelet

coefficients of the CWT enables us to implement the transformation in practical

computing, the inverse relationship, (2.4.4), is no longer satisfied. We also assume

that the CWT is periodic in our research.

2.5 Frame

A frame is first introduced in Duffin & Schaeffer (1952) with a family of complex

exponential functions.

Definition 2.5.1. If all functions, gk(x) in a Hilbert space, H satisfy

A||f ||2 ≤
∑
k∈K

|〈f, gk〉|2 ≤ B||f ||2 (2.5.1)

for A ≤ 0 and B <∞, a family of functions, {gk}k∈K ∈ H is a frame.

A and B are frame bounds, which control the tightness of a frame. We can

apply the concept of the frame to the CWT and the discretised CWT which will

be used in this thesis. We need a few extra conditions to set a frame bound with

the CWT. Suppose that we restrict the range of the continuous wavelet scales, a

between 0 and 1 and that the fine grids of continuous wavelet scales are regularly

spaced over the range of a. Then, we have

ca
∑
a,b

|CWTf (a, b)|2 ≈
∫
|CWTf (a, b)|2da db
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2.6 Comparison to Fourier Transform (FT)

≤
∫
|CWTf (a, b)|2

da db

a2
= Cψ||f ||2, (2.5.2)

where ca is the distance between successive wavelet scales, a’s, of the discretised

CWT. Recall that the resolution of identity, Cψ, is finite due to the admissibility

condition. Then, we can re-write equation (2.5.2) as

0 ≤
∑
k

|CWTf (a, b)|2 ≤
Cψ
ca
||f ||2. (2.5.3)

Therefore, we can claim that the discretised CWT is also a frame and the bound

of the frame for the discretised CWT depends on the size of ca and the resolution

of identity, Cψ. However, at the moment, since there is no details about the lower

frame bound, we cannot guarantee how narrow the bound can be.

2.6 Comparison to Fourier Transform (FT)

2.6.1 Fourier Transform (FT)

Fourier Transform (FT) is considered as a tool of the most commonly used meth-

ods to understand the frequency characteristics of data. Although the wavelet

and Fourier transformations are both tools to understand frequency characteris-

tics of stochastic data, they are distinguished with respect to the basis functions

used for the transformations. FT decomposes data into a combination of com-

plex trigonometric functions, while the wavelet transformation decomposes data

by wavelet functions. By the assumption such as the admissibility condition of

(2.4.3), the wavelet function is localised for both time and frequency with fast

decaying waves to zero at the edges. Figure 2.6.1 shows the line plots of exam-

ple wavelet functions, the Shannon wavelet function and Mexican hat wavelet

function.
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2.6 Comparison to Fourier Transform (FT)

Figure 2.6.1: The examples of wavelet functions: Shannon’s wavelet functions
(left) and Mexican hat wavelet functions (right).

Meanwhile, the FT projects data onto the complex exponential basis func-

tions. The transformed coefficients can be considered as a series of trigonometric

functions.

The frequency of basis functions can be controlled by scale parameters for both

a wavelet transform and FT, but the basis functions of the standard FT are not

localised in time. To cope with the problem, there has been many developments

of FT such as the short-time or windowed FT, but we will not cover details of

them in our thesis. Here, we focus on wavelet methods to develop modelling and

novel method to analyse signal using basis functions localised in both time and

frequency.
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Chapter 3

Wavelet Applications on the

Vertical Tomography Data

3.1 Motivation

This chapter is about the data analysis of gas-fraction presence of liquid and

gas in a pipe. The two-phase flow of gas and liquid can influence industrial

processes, and hence, understanding the state of them has been an area of interest

in engineering. As the phenomenon is complicated with various elements involved

such as pressure, temperature and mass of liquid, a sophisticated modelling is

needed to monitor the states.

The gas-flow regime can be categorised into two or more types based on the

size or length of bubbles, which is known to rely on the velocities of gas and liquid

in a pipe. Taitel et al. (1980) and Brauner & Barnea (1986) suggested transition

curves describing how gas-flow states change based on the velocity of liquid and

air. Also, Behkish et al. (2007) investigated the association of the bubble sizes

in liquid with temperature and pressure. However, the flow map over superficial

velocities is difficult to apply to the general properties of air-flow regime, as there

are various elements affecting that (Rouhani & Sohal, 1983).

In addition to understanding the relationship between the parameters, we can

approach this phenomenon by electrical tomography process. The tomography is

used as the term to represent the cross section image of a target. Particularly,
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3.2 Data Description

electrical tomography used in our research are based on the electrical distribu-

tion or property occurring in some material. The approach is to determine the

electrical tomography from the conductivity distribution related to the presence

of bubble in liquid.

However, the image construction needs complicated algorithm and compu-

tation time for that. The main objective of our research is to classify the gas-

flow regime based on the voltage data without visualising the cross-section of

the targeted object. Prasser et al. (2002) suggests a modelling of bubble sizes

based on the assumption of the linear dependence between the conductivity and

gas-fraction distribution. The calculated gas-fraction measurement based on the

conductivity of the two-phase flow is decomposed into the distribution model of

bubble sizes.

Aykroyd et al. (2016) approached this topic from the difference of frequency

characteristics between big and small bubbles and suggested a logistic regression

model using wavelet coefficients. Goodwin et al. (2005) suggested signal process

analysis using wavelets rather than image reconstruction from given data. They

established logistic regression and discriminant analysis to classify the binary gas-

flow type in wavelet coefficients and transformed variables from the coefficients.

3.2 Data Description

The data analysed in this chapter is the same as used in Aykroyd et al. (2016),

which is simulated under the control of experiment. In this simulated data, the

“bubble” and “churn” states are controlled by the input elements such as the

inlet size and pressure. The voltage data of the simulated two-phase flow is

collected from the pipe placed vertically in which the electrodes are installed

along with the cross section by injected current. The voltage data is considered

as the conductivity distribution on that vertical gas-liquid flow, which is known

as being related with the physics of gas-fraction in liquid.

There are various of ways to measure voltage data by the design of electrode

selection. The method used in this experiment is designed with one fixed reference

electrode and electrodes for a drive and measurement flow of current in which

repeated selection is allowed. In this simulation, currents are injected to the two
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3.2 Data Description

electrodes and the difference of currents between the drive and measurement flows

is measured. Here, the simulation pipe is installed with eight electrodes and one

of them is set for the reference. Therefore, the number of possible measurement

pairs is 49 from the 7 remaining electrodes. Figure 3.2.1 shows one example of a

drive and measurement flow with the reference electrode and selected electrodes.

Figure 3.2.1: The diagram of a measurement circuit with selected electrodes
(Aykroyd et al., 2016).

In data collection, there are 8 electrodes built in a pipe to observe conductiv-

ity distributions. Along with one fixed reference electrode, a pair of remaining

electrodes are used to record the flow of voltage over time. Therefore, the to-

tal number of electrode pairs are 49 from 7 electrodes except for the reference

electrode.

They also simulated the conductivity data based on this environment by

Maxwell’s equation. The potential electrical field are given from the selected

pair of electrodes and pipe between them. The simulated conductivity value can

be calculated by a partial difference of Maxwell’s equation and the numerical

work were done by the software, EIDORS (Adler et al., 2017) in MATLAB. Here,

we focus on the simulated data from this process for modelling.

Figure 3.2.2 shows examples of bubble and churn data respectively. As can

be seen from those plots, these two data seem to consist of different bandwidths

of waveforms. For example, the bubble data tends to be relatively stationary,

while the churn data has some rapid changing points and those changed values

last long until getting recovered. It means the frequency feature of the churn
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3.2 Data Description

data is not stationary and changes over time. As described in the introduc-

tion chapter, the standard Fourier transform does not work well on data with

local frequency changes compared to wavelets. Accordingly, we can guess the

local time-frequency information encoded in the wavelet coefficients is distinct

between “bubble” and “churn”, and hence the wavelet coefficients can be used

as explanatory variables in a regression model. Figure 3.2.3 shows the image of

wavelet coefficients from continuous wavelet transform. It supports the distinc-

tion of frequency characteristics between the gas-flow regimes and the amplitude

of wavelet coefficients changes over the time. The spectral changes seem to be

associated with the increase or decrease of voltage on Figure 3.2.2. Therefore,

we can expect to investigate the relationship between the physical structure of

the two-phase gas-flow using the wavelet transform and its analysis of the voltage

data.

Figure 3.2.2: Plots of example voltage signals of bubble (top) and churn (bottom).
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Figure 3.2.3: Plots of continuous wavelet transform from “bubble” (left) and
“churn” (right).

3.3 Modelling

Here, we will establish a classification model based on the different frequency

characteristics between the two different states. Figure 3.2.2 shows that the

changes of bandwidth appear different between “bubble” and “churn” and over

time. Time-frequency analysis can be a useful tool for understanding the gas-

fraction regime with its frequency characteristics. Wavelet methods are especially

used to detect localised behaviours based on the wavelet function being localised

on both time and frequency, and thus we will fit a logistic classification model by

analysing the wavelets at each scale.

Previous work by Aykroyd et al. (2016) established a regression model based

on discrete wavelet transform (DWT) coefficients. However, wavelet levels are

determined by the number of observations and the number of them is limited

due to the dyadic structure between levels. Accordingly, the amount of informa-

tion can be restricted due to the small number of wavelet levels. To deal with

this problem, we can apply the continuous wavelet transform (CWT) to con-

sider denser scales in a continuous domain than discrete wavelet resolution levels.

McClusky et al. (2002) analysed the gas-flow data using CWT and showed how

the wavelet spectrum changes at continuous scales between the different gas-flow
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3.3 Modelling

regimes. However, the fully continuous wavelet transform is the decomposition

of data by integral over continuous scale and time. The calculation is not simple

in practice particularly where data is given by a sequence of data points in time.

Therefore, we will apply a sum over discrete values to quantify continuous wavelet

transform with the intermediate levels between discrete wavelet resolution levels.

In this chapter, we will only consider this discretised version of CWT and call

that CWT.

In our modelling, we consider one specific wavelet function, Haar wavelet

function to simplify the problem. The Haar wavelet function, Figure 2.2.1, has

piecewise constant intervals under a compactly supported domain as one particu-

lar kind of Daubechies wavelet family. In theory, the CWT allows all continuous

variables within the corresponding domain. However, the wavelet function in

CWT is also given as discrete values to compute the coefficients with discrete

data values. Accordingly, it is important to choose appropriate scales enabling

to express the shape of original wavelet function in the discrete function values

as well. The Haar wavelet is designed to have the same contributions of being

positive and negative, and hence the discrete wavelet function value on the Haar

wavelet should have the same number of positive and negative values. Here, we

distinguish the Haar wavelet scales as the number of non-zero values which is the

total number of positive and negative values.

Each simulated data consists of 256 observations from each of 49 pairs of

electrodes, and hence the number of discrete wavelet resolution levels for the

data is given as 8. Assuming that we restrict the range of wavelet scales to have

the same positive and negative contribution within data for the Haar wavelet

function, the maximum number of continuous wavelet scales is 128, the same as

the number of even numbers until the number of observations, 256.

To compare the impacts of intermediate levels, we create 3 more scale sets from

the discrete levels and full scales. In wavelet theories, it is already known few of

coarse levels does not have valuable frequency information compared to other finer

levels. Accordingly, the subset of full scales does not have any intermediate levels

between the coarsest and second coarsest discrete levels to avoid interruption of

model interpretation. In this principle, there are five sets of wavelet scales, “all”,

“sel1”, “sel2”, “sel3” and “dcr” with the different degree of density. The “dcr”
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3.3 Modelling

has the same scales as DWT and the “all”, “sel1”, “sel2” and “sel3” include

denser scales than the discrete levels. The “all” includes all possible discretised

scales and the “sel1” is the next densest set among these scale sets. Figure 3.3.1

is plotted the scales on each group as the width of corresponding haar wavelet

function.

Figure 3.3.1: The width of Haar wavelet function on the scale subsets, “all”
(128 scales), “sel1” (64 scales), “sel2” (50 scales), “sel3” (14 scales) and “dcr” (8
scales).

We can write the discretised CWT for a given fine grid of scales, a = {a1, . . . , a|An|},
where |An| is the total number of scales for this transformation. The wavelet co-

efficient of discretised CWT is defined as the discrete summation as

dai,b =
∑
x

f(x)ψai,b(x), (3.3.1)

where ai ∈ a and b, i = {1, . . . , |An|} and x ∈ {0, . . . , N − 1}. In Chapter 3, the

number of observations, N , is 256 and |An| varies from 8 to 128 depending on

groups. The main objective of this modelling is to investigate frequency charac-
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3.3 Modelling

teristics associated with a flow regime based on various wavelet scales. However,

as the voltage data is transformed separately for each pair of electrodes, the

dimension of the resulting collection of wavelet coefficients is huge with 49 |An|.
Therefore, in our research, we do not consider neighbouring structure of gas-

flow in liquid achieved by the location of electrodes and make summary measures

representing the information of each individual scale continued across all pairs of

electrodes. Zhao et al. (2018) state that data aggregation before fitting a model

can improve prediction quality. The data are aggregated by using an absolute

value and windowing variance in the same way as Aykroyd et al. (2016). We call

these aggregated values activity measure which are defined as

msai,b =
∑
s

|dai,b,s| or

msai,b =
∑
s

var(dai,(b−w+1),s, . . . , dai,b,s), (3.3.2)

where s is the index of the sensor pair and {dai,b} are the wavelet coefficients

from the CWT. In particular, the window variance provides the variation of

wavelet coefficients within the specific width of a window averaging over all pairs

of electrodes. Although the regression models are fitted with both, the absolute

values and the window variance, the model based on absolute values shows a

poorer classification result than that based on a window variance. Also, Aykroyd

et al. (2016) showed that the window variance had higher classification rates

especially with the window width, 15. Therefore, we focus on the result using the

window variance with the width, 15 for this tomography data.

The response variable, y is the type of gas-flow regimes of the data. We

assume that the variable, y is from a binary distribution classified as “bubble”

and “churn” and the state of gas-flow stay steady within each data. For the

vector, y, we established a logistic regression modelling in the activity measure

variables from (3.3.2), MS = {ms1 . . .ms|An|}.
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3.4 Result

Models were fitted to the 100 simulated datasets individually. Each dataset con-

sists of a training and test set, which are generated independently. Accordingly,

the total number of models is 100 from each of training set and each fitted model

is tested individually by the test set in the corresponding dataset. The data sets

are given from the combined sequences of voltage signals of one “bubble” and one

“churn”. In a sequence of voltage data, the “churn” voltage signals are pasted

after the “bubble” voltage signals.

For the training sets, there are two available options used for the wavelet

transform. First, the “pure” setting calculates the wavelet coefficients and the

activity measures based on the data within each of “bubble” and “churn” states

separately. Meanwhile, the “mixed” setting considers the combined sequence as a

vector for the wavelet transformation and generation of activity measures. This

means that the “pure” setting does not consider the boundary effects during

the transition between two different gas fraction states, “bubble” and “churn”,

while the “mixed” setting includes the transition for wavelet transform. Fitting a

classification model can be on these two different settings, but testing is only with

the “mixed” setting, which is close to real data, because the testing process aims

to test our fitted models for future real situations. In addition to the “mixed”

setting, the voltage data of each test set is shifted before transformation to avoid

having the same change points between “bubble” and “churn” as the training

set. The activity measures defined in (3.3.2) are calculated from the wavelet

coefficients to get a represented value of each wavelet scale at a certain time

point.

The number of scales are different between the scale subsets shown as Figure

3.3.1, but the number of wavelet scales is large especially in “all” with 128 scales

and “sel1” with 64 scales. Therefore, our models still have a large number of

variables after calculating the activity measures. We can reduce that to explain

the wavelet frequency characteristics on the tomography data more clearly with

regression. There are two criteria used for model selection : correct classification

rate (CCR) and AIC (Akaike information criterion) both calculating using the

training data by
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CCR =
the number of correct predictions

the total number of observations
(3.4.1)

= 1− training error

AIC = 2p− 2l̂(θ), (3.4.2)

where l(θ) is the log likelihood function and p is the number of variables of the

fitted model. In AIC, l̂(θ) is the maximum value of the log likelihood function

for the model. Since the fitted models are exactly perfect in the training sets

for almost all samples, they are difficult to choose a model based on the training

errors. Therefore, for each case, we assess the preference of the models by the

accuracy of their prediction on a test set.

Figure 3.4.1: Boxplots of 100 classification rates from each of scale sets: “all”,
“dcr”, “sel1”, “sel2” and “sel3” over the number of variables when model selection
is done by maximising classification rates.
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The activity measures, which are the explanatory variables in our model,

represent information at the corresponding wavelet frequencies, and variable se-

lection process is to choose a set of wavelet frequencies for the classification model

with fewer variables. We choose the set of variables from full activity measures

minimising the AIC or maximising the classification rate and the selection algo-

rithm continues to add more scales to the model until the chosen criteria cannot

be improved fitting. A step-wise procedure is applied to select variables in our

modelling. As the increasing number of variables leads to more accurate mod-

elling to minimise training error, the selection algorithm would continue until all

the scales were included if allowed to do so. We set the maximum number of

variables as 10 to avoid overfitting. Figure 3.4.1 shows classification rates on the

test sets from the different groups when using the classification rate (CCR) op-

tion. These boxplots show that the classification rates tend to increase until the

three-variable model except for “dcr”, while they do not change much after then.

This means that the variable addition improves the performance of classification

models at the beginning, but the effects is minimal after 3 for our tomography

data analysis.

It indicates that the three-variable model has the best result considering both

prediction accuracy and simplicity of the model. Although the “all” group has

the worst result in terms of a classification rate, the “sel1”, “sel2” and “sel3”

results look better than the “dcr” set. These results indicate that the added

intermediate levels available in “sel1”,“sel2” and “sel3” includes useful frequency

characteristics for classification, which do not occur at discrete levels. Compared

to the improvement of classification on other subsets of continuous wavelet scales,

the “all” set has the worst classification result. The “all” group has a large number

of wavelet frequencies, and, in particular, the coarse scales of this scale set are

very dense. The models fitted from the dense scale set, “all”, are likely to include

relatively many coarse scales than the other scale sets and this may lead the poor

classification results for test sets. It seems a few of coarse intermediate scales on

the “all” set interrupt an accurate modelling.

On the contrary, a variable addition does not guarantee to enhance fitting in

terms of AIC, as it includes the penalty term about the number of variables in

3.4.2. Figure 3.4.2 shows the distribution of the number of variables chosen from
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each scale set. The majority of fitted models select two variables except for the

“all” set. This corresponds to the finding of Aykroyd et al. (2016), where the

models chosen by AIC tend to have a small number of variables.

Figure 3.4.2: Distribution of the number of variables chosen in the fitted model
using the AIC option.

Figure 3.4.3 shows the comparison of classification rates on test sets between

the three-variable models selected by CCR and the final model by AIC. For

both criteria, the “sel1”, “sel2” and “sel3” subsets get higher classification rates

compared to the “all” and “dcr” scale sets. From the aspect of prediction rate,

the “all” group, which can use the entire possible range of wavelet scales, has

the worst classification result. It seems that the redundant variables in the “all”

cannot fit well on the test data despite a low training error, while the limited

number of levels in the DWT also seems to cause a low classification rate with a

relatively wide range of the boxplot.

The classification rates on the “all” scaling subset are higher for the CCR

option than the AIC option. This is not surprising as the CCR option explicitly

aims to optimise classification performance, while the AIC aims to optimise de-

scriptive model fit based on likelihood. The medians of prediction rates on the all
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groups of scales are significantly different between these two options, and the box-

plots are generally narrower for the CCR option. In particular, the classification

rates on the “all” are significantly worse than the CCR option with decreasing

median to 0.65 from 0.75. It seems to be associated with the number of variables

chosen by AIC in Figure 3.4.2. The majority of the “all” has a single variable

in the fitted models and it risks relying on too small amount of information to

apply to a general problem.

Figure 3.4.3: Boxplots of classification rates from the three-variable model using
the CCR option and the final model using the AIC option.

This modelling is fitted based on wavelet coefficients transformed individually

from the pure flow-regime data. Although we consider the different training set

from the combined voltage sequence of “bubble” and “churn” equivalently to

the test set. However, the classification rate are generally worse than using the

training set from the pure data. The latter training set seems to misunderstand

the frequency information on the transition between different flow-regime states.

We cannot say the training set used in our research reflect a practical environment,

but it gives more valuable information to investigate the relationship between

wavelet coefficients and the flow-regime. Therefore, we will not deal with the

result here.
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3.5 Comments on the Selected Variables

Figure 3.4.1 shows the two-variable models have enough high median of classi-

fication rate for the CCR option, and Figure 3.4.2 shows that the models fitted

by the AIC option prefer to choose a small number of variables. It implies that

the information from the variables for the first few stages have a important role

on classification. Therefore, we focus on the first two selected variables on 100

training datasets and find the patterns of these selection on each scale subset.

Figure 3.5.1 displays the selection of variables using the CCR option on each

group which are coloured as “yellow”, “green” and “blue” for the “sel1”, “sel2”

and “sel3” subsets respectively. The black dotted points mean the distribution of

selected variables for the “dcr” set to compare that with the selection from the

other sets. The size of a dotted point is given from the square root of the number

of models having the corresponding scale variables. Also, the bar plots on the

sides of axes represent the number of models having the corresponding variables

on the each individual step.

As a variable increases, it means a finer scale. Hence, variables 1 and 8 corre-

spond to the coarsest and finest possible scales, and integer values are the scales

corresponding to the resolution levels available in the discrete wavelet transform.

They are generally preferred to choose the variables between 2 and 4 on the first

step of all the groups, while the finest variable selection is dominated on the

second step. It implies that the wavelet coefficients and their activity measures

from scales 2 to 4 are likely to include valuable information to classify the gas-

flow regime. However, as the most preferred variable on the second step is the

finest one, it seems to require more detailed information from the fine wavelets

to reduce the classification error.

According to the scatter plots and bar plots, there are a considerable number

of non-discrete levels chosen from these modelling. On the first step, all groups

on Figure 3.5.1 tend to choose their variables from the similar interval between 2

and 4 corresponding to the second and fourth coarsest discrete resolution levels.

The considerable number of “sel3” selects the coarsest or second coarsest level as

their first variable, which seems to be from a relatively small number of variables

on the set. This variable pattern implies that the frequency information between

38



3.5 Comments on the Selected Variables

2 and 4 have important information related with the flow-regime state. As shown

in Figure 3.2.2, the “bubble” and “churn” have different frequency behaviours.

The voltage signals from “churn” tend to have a few of long lasting wave forms.

This frequency characteristic on “churn” seems to lead to coarse scale selection as

the first variable. On the second step, majority of all groups equivalently choose

the finest level, which gives detail information for classification.

Figure 3.5.1: The best two-variable selection using CCR from ‘sel1’ (yellow),
‘sel2’ (green) and ‘sel3’ (light blue) and comparison to the ‘dcr’ (black).

Figure 3.5.2 shows scatter plots from the models fitted by AIC in the same

way as Figure 3.5.1. The mainly chosen variables are placed in the similar area

to the result done by the CCR, but the range of that is slightly widened from

scales 2 to 5. However, the second variables are selected distinctly with the CCR

models in Figure 3.5.1. About 20 − 30 % of models stop fitting on the second
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step without adding any further variables, while there are a small number of

models having the finest variable on both variable selections. The remaining 70

% of models have scales spread between 2 and 5 equivalently to the first variable

pattern. Accordingly, it indicates AIC prefers to decrease the number of variables

than adding more details.

Figure 3.5.2: The best two-variable selection using AIC from “sel1” (yellow),
“sel2” (green) and “sel3” (light blue) and comparison to the “dcr” (black).

3.6 Model Comparison on a Validation Set

The classification rates from the previously fitted model are fine, but the train-

ing set tends to be overfitted with a high classification rate, and it can lead to

overestimate the accuracy of modelling on the training set. To overcome this
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overfitting problem, we added a validation set to each of datasets. The newly

generated validation set is not involved with both training and test sets, but is

used to estimate the classification error on them to choose a model among the

models fitted from the corresponding training set.

Figure 3.6.1: The boxplots of classification rates over the number of variables
from the scale sets: ‘dcr’, ‘sel1’, ‘sel2’ and ‘sel3’ when model selection is done by
maximising classification rates after validation.

The measure activities are generated independently from 100 pure data of

“bubble” and “churn” individually in the same way as the training set. There

are two changes in the validated modelling. First, we found that the “all” option

has the worst classification rates with a wider dispersion in the previous section.

Therefore, the “all” scale set is not included in this section. Also, the two of cri-

teria, CCR and AIC, are used to select the best model in the previous modelling.

However, the AIC measures the goodness of fit based on the likelihood function
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of a model, and hence we need more consideration to derive the likelihood in a

validation set given from the fitted model by a training set. Therefore, we only

consider the CCR option in this section as the selection criteria.

Figure 3.6.1 shows the classification rate over the number of variables selected

from each scale set after using a validation. In general, the median of classification

rate changes within the range from 0.75 to 0.85 generally, while the “dcr” is shown

a slightly lower classification rate than others. Although the degree of changes

of medians is minimal on the most groups after 5, they still increase within a

narrower range of boxplots except the “dcr” option. Accordingly, the fitted model

using the validation step does not show a clear cut point of variable numbers.

The result from the “dcr” also stays constant after that time but decrease

gradually. However, we need to consider the possible number of variables on

each set. The discrete wavelet has 8 levels, and hence the accessible range of

scale is limited. Therefore, at the last few steps, the discrete wavelet modelling is

compelled to choose the remaining variables instead of choosing more informative

variables for classification.

Figure 3.6.2: The boxplots of classification rates of the three-variable model before
validation and the final model after validation on the CCR option.
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Figure 3.6.2 shows the comparison of classification rate on each scale sets

before and after the validation. Here, the fitted models without validation process

are the three-variable model, as the classification rate can be considered to be

enough stable at this step. Meanwhile, since the models determined through

validation process continue to be improved with a varying degree of changes, the

classification rates are plotted from the final models. The variable selection on

the CCR is repeated until the validation set improves a classification rate or 10.

The “dcr” set has 8 scales corresponding to the resolution levels, and hence the

maximum step of their modelling is 8.

Figure 3.6.3: The best two-variable selection using a validation set and the CCR
option from “sel1” (yellow), “sel2” (green) and “sel3” (light blue) and comparison
to the “dcr” (black).

Figure 3.6.3 shows the distribution of variables selection on the first and sec-
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ond steps. The scatter plots also support that the modelling through the val-

idation step prefer to have intermediate scales to discrete wavelet levels. The

first variables have the similar pattern to the previous modelling in that they are

generally chosen from Scale 2 to 5. However, the second variables are spread over

the entire range, while the previous modelling without the validation step has a

large number of datasets selecting the finest scale as the second variable.

3.7 Conclusion

According to the classification results and the variable selection, there are a con-

siderable number of datasets choosing the intermediate levels within a certain

range of scales and our modelling approach makes an improvement in terms of

the accuracy of classification. However, the “all” scale set, which includes all

possible Haar wavelet scales for the given tomography data, generally shows a

poorer classification result than the other intermediate scale sets and discrete

resolution level set. This result shows that the intermediate levels are helpful to

investigate the relationship between the gas-flow regimes and voltage signals, but

a very dense scale set can misinterpret the frequency information by exaggerating

the influence of coarse wavelet scales on the gas-fraction scheme. Also, the first

variable tends to be selected from some specific wavelet scales between Scale 2

and 5. This selection pattern seems to be related to the lower frequency char-

acteristics seen in “churn”. While the training error is very small near zero, the

prediction error is not satisfactory suggesting overfitting. To deal with the pos-

sible overfitting problem, we added the validation step to select the best model.

The model after the validation process has, however, a higher median classifi-

cation rates and the variation also increases. However, the criteria used in the

validation step is only the CCR, since it is complicated to apply AIC based on a

likelihood. In future research, we can apply the AIC option as well to choose a

better modelling result.
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Chapter 4

Gas-flow Regime Classification

for Horizontal Flow Data

4.1 Introduction

When exploring the gas-fraction in two-phase flow, the direction of flow can be

either horizontal or vertical. Chapter 3 established a regression model based

on electric signal data from a vertical pipe. This chapter is equivalent to the

previous data analysis in that the data modelling considers the voltage data

recorded around the pipe on which the electrodes are installed. However, the

data is collected using a totally different setting including the pipe orientation and

the design of measuring the voltage is different with the previous vertical data.

Here, the electrodes for injecting a current and measuring voltage are chosen

as different consecutive pairs, while in the previous vertical data collection the

possible pairs includes a fixed reference electrode. Also, the experiment is set up

to have the independence between the current injection and the measurement by

choosing non-overlapped electrodes for the pairs. Figure 4.1.1 shows one example

of electrode selection for a single measurement.
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4.1 Introduction

Figure 4.1.1: Cross-sectional view of the “adjacent strategy” for data collection
(Taken from www.leeds.ac.uk/olil/tomographySensors.php.)

Figure 4.1.2 shows the flow map of gas-flow regime given from the velocities

of gas and liquid in the simulation. The points marked with number means the

data we have and their id numbers. Although the previous data analysis used the

binary classification of the state between “bubble” and “churn”, the horizontal

data has the wider selection of gas-flow regime such as “bubble”, “slug”,“plug”,

“annular” and “stratified”. Along with these difference of the experiment environ-

ment, it is already known that the two-phase flow is a complicated phenomenon

influenced by various parameters such as diameter of pipe, pressure and liquid

velocities. Therefore, we need to re-build a classification model appropriate for

the new data.

Figure 4.1.2: The flow map of gas-flow regime for this simulation (Corneliussen,
2005)
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4.2 Data Description

4.2 Data Description

The analysis approach for horizontal flow of the two-phase state is equivalent to

the vertical data analysed in §3 in that the model is established based on the

voltage data and its wavelet coefficients. However, from the process of collecting

the data, we considered the independence between pairs of electrodes, which gives

statistically a more stable condition for modelling. The “adjacent” design, which

allows to choose two electrodes next to each other as a pair, restricts to assign

an electrode to either the current injection or the measuring on each step. Here,

there are 16 electrodes around the cross-sectional of pipe, accordingly the number

of measurement from the “adjacent” design is
16 · 13

2
= 104.

However, the current within a pipe tends to be weaker as the measuring elec-

trode pair are farther from the current injection pair. Also, the horizontal data

is likely to have gas-flow at the upper side of a pipe, while the vertical data can

assume the randomness of gas-fraction locations. Accordingly, the locations of

chosen electrodes can influence the measurement by the limited spatial structure

of horizontal gas-flow. The collected conductivity measurement can be unbal-

anced, and hence we need to consider a representation to characterise them from

all the electrode pairs at each time. Pradeep (2015) averaged all the voltage mea-

surement from the electrodes pairs to get a representation at each time point. In

a similar way, we will average the wavelet coefficients or some function of wavelet

coefficients over the pairs of electrodes to get the representative values.

Figure 4.1.2 shows all the types of regimes in the experiment on a graph.

However, although the velocities of liquid and gas are important parameter relat-

ing to the gas presence of the two-phase flow, the flow map cannot guarantee the

state given from the flow-map is always true. As we mentioned previously, the

two-phase flow is a complicated phenomenon relying on not only the velocities but

other various elements such as temperature and pressure. Also, the data observed

from the boundaries between two different states can be confusing to classify as

one specific type. To avoid possible confusion of labelling, we need to compare the

video data, as in Figure 4.2.1, to the flow-map. We have 21 datasets matching the

flow map, only 14 datasets have video data. Two datasets out of the remaining

14 datasets have identical voltage measurement with different labels, which seems
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to be saved over during data collection. Accordingly, we use the 12 datasets in

this chapter having both voltage measurement and video dataset. Some datasets

have the flow-map labels not matching the video data. For this case, the gas-flow

state shown from video has a priority than the flow map because video shows the

real image of flow on that time. When comparing the flow-map to the video data

sets, there are 7 datasets agreed by both the flow-map and video. We will fit a

regression model on the 7 data sets to get a more reliable classification.

Figure 4.2.1: The flow map of a gas-flow regime.

Figure 4.2.2 shows that the examples of averaged voltage data over pairs of

sensors from each gas-flow type and their wavelet coefficients given from the

discretised continuous wavelet transform. At first, the “bubble” data has a re-

markably lower amplitude than the other two types. Although we cannot say

that the “bubble” data is stationary, it looks like having low and quick changing

oscillations. In contrast, the “slug” and “plug” tend to change within wide ranges

with little long-lasting patterns after a rapid and sharp spike. Also, the voltage

data does not seem to be consistent in time except for the “bubble”. These

frequency behaviours are more clearly seen in the continuous wavelet transform

on the lower image plots. The “bubble” has widely spread oscillations. Mean-

while, the two states, “slug” and “plug”, seem to have a similar pattern in that

both have significant peaks and troughs in the wavelet oscillations at specific

time points. However, we need to consider that the changes of frequency charac-

teristics appear more frequently in the “slug” than in “plug”. Accordingly, the

“slug” data consists of more changes in the continuous wavelet coefficients than

the “plug”. Also, the wavelet coefficients presumably have significant numerical

differences between the states, “plug” and “slug”, due to very high amplitude
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spikes in the “slug” state despite the similar data structure. The wavelet coeffi-

cients from example data support that the horizontal tomography data also has

different frequency behaviours over gas-flow states and time. Therefore, in the

same spirit as the vertical tomography data analysis, wavelet methods can be

a useful tool for fitting a classification model to investigate the local frequency

structure over time from each state.

Figure 4.2.2: Examples of averaged voltage data (upper) and the corresponding
continuous wavelet transform (lower).

The wavelet coefficients in Figure 4.2.2 are plotted at the centre point of the

corresponding wavelet functions. For example, the Haar wavelet function, used

in our research, is a piecewise constant function having the centre point between

positive and negative values, and the calculated wavelet coefficients from a wavelet

function are generally plotted at the corresponding center point. However, the

modelling approach in our research is aimed at classifying the gas-flow type from

the transformed wavelet coefficients until specific time points rather than center

points. Therefore, the wavelet transform in this chapter is based on backward
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facing data and calculated the corresponding past data from each time point.

Figure 4.2.3 shows the wavelet coefficients calculated from the backward facing

approach, which is used for modelling the gas-flow state at the corresponding

time point.

Figure 4.2.3: Examples of continuous wavelet transformation plotted for mod-
elling.

4.3 Modelling of Local Frequency Characteris-

tics

The data includes the three kinds of gas-flow regimes, “slug”, “plug” and “bub-

ble”, while the previous modelling was performed using binary responses, “bub-

ble” and “churn”. There are two more types of states, “stratified” and “annular”,

but these states are not identically defined by the flow-map and video. Therefore,

the horizontal data is analysed with the remaining three-level gas-flow states for

more confident classification result.

The horizontal data model is fitted a general linear regression in the logit, log

of odds ratio between different responses. The multinomial modelling sets one of

the multinomial responses as the base line and establishes a generalised logistic

regression model individually on the ratio with others.

The seven datasets consist of three “bubble”, three “plug” and one “slug”.

In a similar way to the previous modelling, we split the data into the three

different sets as the training, validation or test set. The first 1024 observations

are sampled from each dataset for the training set and they are pasted in a row.
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Therefore, the training set has 7168 observations from seven datasets. In the

same way, remaining data from each dataset is split into the validation and test

set individually and they are pasted one after another as well. The validation

and test sets have 3228 and 3233 observations respectively. The validation step

checks the estimated model of the training set and decides a model based on the

prediction rates. The selected model through the validation step is verified by

the other dataset which is independent with the training and validation set, so it

enables models to reduce overfitting effect.

We found that the use of all available scales does not guarantee an improve-

ment in the modelling from the previous result and the computation of the con-

tinuous wavelet transform is time consuming work using a dense scale set. In

particular, a half of the continuous wavelet scales are placed between the two

coarsest discrete resolution levels. Therefore, we will use a subset of the fully

continuous wavelet scale for more efficient data analysis.

Figure 4.3.1: The scale sets used in the discretised wavelet transform. The la-
belled number means the width of non-zero area in the Haar wavelet function.

Figure 4.3.1 shows the scales used in our research. The label on the plot

means the width of non-zero wavelet function in Haar wavelets. For consistent

modelling and testing, the normalising constant on the wavelet function is set by

the width plotted on Figure 4.3.1, not depending on the number of observations.

The datasets used in the modelling are given by combining the measurement

calculated from the different conductivity data, and we can consider two different

approaches of transformation, “pure” and “mixed”. First, “pure” transform is

the transform calculated within one conductivity data, which means the activity

measurement and its wavelet signal come from the same observation without

any distortion from other observations or the change of gas-flow types. The

calculated wavelet coefficients and their activity measurements from each data

are combined as a string with the same order of original data. On the other

hand, the “mixed” transform is calculated with one string data containing all
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4.3 Modelling of Local Frequency Characteristics

the conductivity data. It means we do not consider the change of gas-flow types

or measurements. In practice, since we do not have any information about the

current states, it seems to be reasonable to apply the mixed setting without any

split for wavelet transformation or activity measurement calculation.

Figure 4.3.2: Examples of activity measures: the absolute value (upper) and
window variance function (lower).

There are the 104 pairs of electrodes and the voltage data is measured from

the pairs individually. The wavelet coefficients of the voltage data are computed

individually from each pair, and hence we need to have a representation value

over them by time points. Accordingly, the activity measures are defined as the

mean of four different kinds of functions, original value, absolute value, window

variance and window variance of absolute values,

msa,b =
∑
i

M(da,b), (4.3.1)
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where dab is the wavelet coefficients calculated from the scale, a at the time b for

a ∈ a, b = 0, 1, . . . , N − 1 and M is the activity measure generating function such

as mean. Here, the window variances are calculated from the past observations

within the corresponding window, which is equivalent to the wavelet transform of

the horizontal gas-flow data. Since the “slug” and “plug” show a similar structure

in Figure 4.2.2, we set the window width as 10 to measure more sophisticated

local variations than in the vertical tomography data analysis.

Figure 4.3.2 shows the activity measures of the example data. The absolute

values have similar patterns to the wavelet coefficients described in Figure 4.2.2,

while the window variances tend to emphasise the change in the wavelet trans-

form. The calculated activity measures using the past data until the specific time

point are fitted to classify the flow-regime responses. In the multi logistic mod-

elling, a step-wise procedure is applied to select wavelet scales in our modelling.

4.4 Results

The horizontal flow models also have perfect classification results on almost all

training sets, and therefore the classification rates on test sets are considered to

measure the performance of classification models equivalently to the vertical to-

mography modelling in §3. In general, the prediction results using a pure training

dataset is better in terms of the predicted classification rate. In particular, most

activity measures using a pure training dataset have quite high classification rates

of around 0.7 or 0.8, except for the “mean”. Here, the activity measure, “mean”,

is calculated from the original wavelet coefficients without considering the sign

of values. This causes some of the activity measures to be cancelled out through

averaging, which can lead to misinterpretation of the wavelet signal used for the

classification model.

Using mixed datasets has the advantage that all the datasets and their trans-

form are close to the practical data environment in that the wavelet transform

is performed at all the time points including transition points between different

gas-flow types. However, the prediction rate plunged to lower than 0.6 for the

window variance of both original and absolute values. Although it is clear that

the pure dataset provides better classification modelling, it is impressive that the
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absolute value appears to give a similar classification rate in the mixed training

set as well. It implies that the absolute activity measure reflects well the fre-

quency characteristics needed for classification on this horizontal data, and its

classification result is not much affected by the type of training sets.

Figure 4.4.1: The result of classification results.

Tables 4.4.1 and 4.4.2 show the number of observations classified to each

state by the two fitted models using the absolute and window variance activity

measures from the pure training datasets. Here, we focus on the two models,

because the pure data setting generally has the better classification result and

the two models using the absolute value and the window variance show the two

highest prediction rates in Figure 4.4.1.

The tables give the comparison of prediction and true labelling by the response

types. According to the result, most observations in “bubble” data have true

prediction, while “slug” data has a considerable number of mis-classified cases

as “plug”. The high classification rate for “bubble” seems to come from the

distinct difference of amplitudes compared with the other types. Calculating

the prediction rate each state individually, the absolute model shows 0.94, 0.97

and 0.35 from the “bubble”, “plug” and “slug” respectively, while the window

variance model has 0.9, 0.8 and 0.24.
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true

bubble plug slug

pred bubble 1298 13 0

plug 77 1331 316

slug 3 24 171

Table 4.4.1: Prediction result using the absolute activity measure.

true

bubble plug slug

pred bubble 1242 118 26

plug 135 1212 344

slug 1 38 117

Table 4.4.2: Prediction result using the window variance activity measure.

4.4.1 Comments on Variable Selection

Here, the modelling is established on one common training dataset, and hence

it is difficult to see the consistency of fitting. However, we are still able to

observe the variable selection from different activity measures and compare the

preference of the intermediate scales to the discrete wavelet resolution levels.

Figure 4.4.2 shows the selected variables for the pure training dataset where the

integers of the x-axis correspond to the discrete wavelet resolution levels. In

general, the chosen scales are plotted on non-integer areas, which means that

the intermediate scales, between discrete wavelet resolution levels, are used to

classify the gas-flow regime. However, the range and pattern of those variables

are different depending on the functions used for the activity measures. While

the window variance and original value are spread from very coarse scales to fine

scales without skewness, the absolute value and absolute window variance are

fitted with a bunch of consecutive scales around a specific scale variable. From

Figure 4.4.2, it can be seen that the model of absolute values is mainly selected

around Scale 7 and the model using window variance of absolute values chooses

variables around Scale 2-3. This implies that these two models are likely to
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have the most informative frequency characteristics for classification around the

certain scales. The model with the absolute window variance, however, is based

on consecutive scales around 2, which are too coarse to react to a change between

different types of gas-flow states. The coarse variables selected lead to a worse

classification, although the chosen variables had a important role for the training

and validation steps.

Figure 4.4.2: Selected variables with the pure train set using the original values,
absolute values, window-variance and window-variance of absolute values.

Figure 4.4.3 shows the selected variables for the mixed training set. The

patterns of variable selection using the mixed training dataset seem to be very

different to the previous one using the pure training dataset. For example, the

absolute value model using the pure training dataset includes adjacent scales

within a specific range, while the equivalent model using the mixed training

dataset chooses variables spread over all scales. Also, the absolute variance model

selects rather fine scales, between scale 6-8, than Figure 4.4.2, and most variables

are placed nearly each other. Likewise, the change of the training dataset leads to

choose different wavelet scales for the classification model, as they have different

56



4.4 Results

frequency characteristics during transition between individual data especially on

coarse wavelet scales.

Figure 4.4.3: Selected variables with the mixed train set using original values,
absolute values, window-variance and window-variance of absolute values.

4.4.2 Prediction Result on Test Sets

The prediction results can be seen individually on each dataset and gas-flow

regime. Figures 4.4.4 and 4.4.5 show the change of predicted labelling with dif-

ferent colouring for the different activity measure models. Figure 4.4.4 shows the

prediction result using the pure training dataset. The absolute value and window

variance models seem to predict the result well as seen in the classification rate

from Figure 4.4.1. Also, they react relatively quickly at the change of regimes

compared to other activity measure models. In contrast, the mean model does

not have a clear separation between different data, and hardly predicted “slug”

state. This gives a poor classification result for the mean model using the pure

training dataset. However, despite the good prediction result for the absolute

value and window variance, the prediction quality for the slug dataset, which is
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coloured green, is still poor. To improve a classification result, we need to find a

way to get a better separation between “slug” and “plug”.

Figure 4.4.4: Predicted gas-flow regimes by the fitted regression model trained
on the pure train set: “bubble” (black), “plug” (blue) and “slug” (green).

Figure 4.4.5 shows the prediction results for the mixed training set. The

absolute window variance and window variance model have a poorer separation

between “bubble” and “plug” compared to the models using the pure training

dataset. In contrast, the absolute value model works well for the mixed train-

ing dataset, with clearly separated predictions except for the “slug” regime. It

supports that absolute value does not show much change in classification rate

between the pure and mixed training datasets. However, all the models using

the mixed training set hardly predict the true “slug” state, and hence we need to

consider to improve that.
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4.5 Prediction on non-labelled datasets

Figure 4.4.5: Predicted gas-flow regime by the fitted regression model trained on
the mixed train set: “bubble” (black), “plug” (blue) and “slug” (green).

4.5 Prediction on non-labelled datasets

The training and testing in §4.3 use the seven datasets which have clearly defined

labels according to both the flow map and video. Although the remaining data

is not appropriate to train a model, in that the state on the flow-map and video

data present different states, we can classify them using the model fitted on the

previous seven datasets.

We can split the remaining data into the three types: non-labelled, not

matched on the flow-map and transient data. For each, the gas-flow type is

predicted using the previously fitted model. In the previous section, We found

the pure training set, particularly with the absolute value and window variance,

provides a stable prediction result. Accordingly, we apply these two models in

this section with the three different examples. First, Dataset 198 does not have

any information of label due to a mistake during data collection and Dataset 220
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is classified as “slug” by the video, but does not match to the flow-map. Dataset

228 is a transient data on which the gas-flow regime changes over time.

Figure 4.5.1 shows the prediction result coloured by the label from the three

different examples using the absolute value and window variance models. The

coloured bar plots show which regime is predicted the most for each and how the

prediction differs between the two models. For Datasets 198 and 220, the most

classified regimes are the same as “slug” and “plug” respectively, although the

individual classification over time does not exactly match between the models.

Dataset 228 does not seem to have the equivalent result, but both absolute and

window variance models are transient between “plug” and “slug”. Here, if the

model reflects informative data characteristics well, we can classify the datasets

as the most classified types.

Figure 4.5.1: Predicted gas-flow regimes by the fitted regression model tested
for Dataset 198 (non-labelled), Dataset 220 (slug) and Dataset 228 (transient) :
“bubble” (black), “plug” (blue) and “slug” (green).

However, we need to consider the possibilities of mis-classification. First,

practical data can be a case not belonging to the given gas-flow types. The
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horizontal-flow data has two more kinds of the flow types: “stratified” and “an-

nular”, but we do not have data sets corresponding to these types. The model

from our research are built on the other three gas-flow type, and hence it cannot

predict the probabilities of the “stratified” and “annular” state. In addition, the

modelling are influenced by the data used in training and testing. Since Dataset

220 does not have the same state from the video data and the flow-map, this

non-steady state of the dataset can lead us to have a wrong classification. Last,

we found that the classification between the “plug” and “slug” is not done clearly

for Figure 4.4.4 and 4.4.5. Therefore, the mis-classification can be from the poor

classification of the “slug” type.

4.6 Modelling Using an Adjusted Scale Set

The above models are established on the unequal-sized training, validation and

test sets. The numbers of observations in the validation set and test set are almost

half of the training set. Assuming we restrict the Haar wavelet function to be

fitted within the dataset, the range of possible Haar wavelet scales are determined

by the number of observations. In other words, the possible continuous wavelet

scale set is narrower on the smaller number of observations.

In the previous modelling, we retained the fully continuous wavelet scales for

the training step. The pure validation dataset should be transformed from the

smaller number of observations than the training dataset, and hence it cannot

have an identical scale set for the training step. In this section, we will discard a

few of the coarse levels to have an identical scale set in the pure validation dataset

as in the training dataset. The adjustment of scale set is aimed to comparison

between the pure validation dataset and mixed validation dataset for classifica-

tion, and also enables us to see how the scale adjustment changes classification

result. Here, we remove the corresponding scales around the two coarsest discrete

wavelet levels from the scale set shown in Figure 4.3.1. The scale used in this

modelling are shown in Figure 4.6.1.
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Figure 4.6.1: The adjusted scale set.

The activity measures are equivalently generated by the mean of the orig-

inal wavelet coefficients, the absolute wavelet coefficients, the window variance

of wavelet coefficients and the window variance of absolute wavelet coefficients.

Also, the previous modelling showed that the pure training set leads to higher

classification rates than the mixed training dataset except for the original wavelet

coefficients. Also, it does not seem to be reasonable to apply the pure validation

dataset after fitting a model using the mix training set. Therefore, here, we

consider only the pure training dataset to simplify the problem.

4.6.1 Comments on Modelling from the Adjusted Scale

Set

The purpose of the new modelling is to justify the method of generating the

validation datasets and to compare the influence of the adjusted scale set focused

on fine scales. Therefore, we will compare the prediction rates among the models

using the pure validation dataset, the mixed validation dataset with the adjusted

scale set in Figure 4.6.1 and the mixed validation dataset with the previous scale

set in Figure 4.3.1. We define the models as Model 1, Model 2 and Model 3 for

clear explanation. All models described in this section are fitted based on the

same data.

In the same way as the previous modelling, the model variables are chosen

by minimising classification rate and the maximum number of variables is fixed

as 10. Figure 4.6.2 shows the classification rates on the test dataset from the

four different activity measure models. As shown on the line plot, the order of

accuracy is different between the models. First, the absolute value is the most

accurate prediction for the model 2 and 3 with the mixed validation dataset,

while it plunges to the worst classification rate below 0.5 on the mixed validation
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dataset. Also, the classification results using window variance and absolute win-

dow variance are slightly better on both Model 1 and Model 2 than Model 3. In

contrast, the mean model has poor result on the adjusted scale sets.

Overall, Model 2 and Model 3 show steadily good prediction results except

for the original value model, and hence the mixed validation dataset seems to be

reasonable for the classification model. Also, the adjustment of scales improves

the classification rate on Model 2. It means that some coarse levels, which are

chosen from the fully continuous wavelet scales, can explain the training dataset

well, but it does not always match other practical data. For example, if the

gas-flow regime changes within shorter time or more frequently than a training

dataset, the choice of too coarse scales cannot reflect the transition on practical

data.

Figure 4.6.2: Classification rate for Model 1 (pure validation), Model 2 (mixed
validation) and the Model 3 (mixed validation from the scale set in Figure 4.3.1).

However, since these test classification rates are calculated from only the 10-

variable model, we need to consider that the test classification result can be

different depending on the number of variables. Figure 4.6.3 shows the change of

classification rates against the number of variables in the model. On Model 1 using

the pure validation dataset, the absolute model has the highest prediction rate

amongst the other one-variable models, but the classification rate plunges below

0.5 as another variables is added. In contrast, the window variance model with

both the absolute wavelet coefficients and original wavelet coefficients fit well with

a high classification rate around 0.8 and they tend to stay steady near 0.8. Also,
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Model 2, which is fitted on the mixed validation set, seems to predict the test data

well using the absolute value, the window variance of original and absolute wavelet

coefficients. They tend to stay near 0.8 as the number of variables increases. In

particular, the absolute value has the highest prediction rate of over 0.85 for the

10-variable model with a small increase each time a variable is added. The mean

activity measure does not work well for this modelling, and the prediction rate

does not have a monotone pattern.

Figure 4.6.3: Classification rate against the number of variables: Model 1 (left)
and Model 2 (right).

Accordingly, the above result shows that the absolute activity measure with

a pure training set produces the best modelling using the mixed validation set.

The prediction rate using the adjusted scale set does not change, but increases

compared to the previously used scale set. This implies that the scale adjusting

process can be beneficial by saving computation time while maintaining a similar

level of accuracy.

Considering the change of accuracy against the number of variables, some

models tend to stay steady without much changes. Although the stationarity

means that variable addition is not very beneficial to classification, the classifica-

tion rate remains at a similar level and can be useful especially for the gas-flow

data modelling. As shown in the model results, the regression model, to classify

the gas-flow type, relies a lot on training data especially in terms of variable

selection. Also, the data modelling is fitted using only one training set, while
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the vertical data analysis was performed using the 100 replicate modelling. The

modelling on one specific training set does not give information on an ideal stop-

ping time for variable selection, and hence it is better to choose a stable activity

measure which is consistent with data or variable addition.

Figure 4.6.4: Variable selection on the adjusted scale sets. The first chosen two
variables are highlighted by blue points.

Figure 4.6.4 shows the variable selection result for each activity measure type

and validation set type. As the mean of the original value has poor classification

rate on both validation types, it is not shown in this plot. The highlighted point

with blue colour means the first two variables chosen, which is likely to have the

most important information on classification. The variable selection patterns vary

for each model. First, the absolute values prefer to choose variables between Level

6 and 8, and at least one variable out of the first two chosen variables belongs to

the range. Also, the window variance activity measures choose the second finest

variable within the first two steps on both validation processes, and therefore

this fine scale has important wavelet information for the classification modelling.

However, the window variance is calculated using the fixed width, 10, and hence

the chosen scales are meant to the local variations of wavelet coefficients at the

corresponding wavelet scales rather than the simple meaning of wavelet scales.
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4.7 Conclusion

The horizontal modelling application shows the best result when using an abso-

lute activity measure with the validation step, although it has stable result both

on validated and non-validated models. In contrast, the previous vertical data

application has the best performance on the window variance. We need to em-

phasise that the vertical data and horizontal data are observed under different

conditions, including the direction of a pipe, and hence the generated data has

different structures. According to the principle of the gas-liquid flow, the state of

gas fractions is depending on not only conductivity, but other various elements

such as a diagram of pipe, temperature and pressure. Therefore, we do not expect

to have equivalent results, and we need to consider to establish individual models

on each experiment.

It is satisfactory that the frequency characteristics are different between the

different states and models for the wavelet coefficients were fitted reflecting the

frequency information. However, the high classification rates are generally from

the “bubble” and “plug” states. In particular, “bubble” is a considerably more

easily classified variable with distinctly smaller amplitude than others. Also,

the classification rate for “slug” is close to 0.33, that is equal to the random

classification rate between three labels. Therefore, we need to consider more

sophisticated modelling to investigate the information to distinguish between the

“slug” and “plug” states. As one of the possible method, we can suggest a

penalised logistic regression model. Our data analysis has done through finding

the best subset of variables based on the validated prediction error, but penalised

regression would suggest a sparse variable selection from the dense continuous

scale set. The method is close to a shrinkage strategy than finding the best

subset.

Also, the horizontal-flow data has the seven voltage datasets: three “bubble”s,

three “plug”s and one “slug” to fit a regression model. This data has a relatively

smaller number of observations for “slug” compared to the other two states,

while the vertical-flow data has the equal number of observations from “bubble”

and “churn”. Conventional logistic regression modelling can struggle to get an

accurate prediction from unbalanced samples, and therefore we need to consider
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techniques to cope with the class imbalance. The mitigation of class imbalance

is left for future work.
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Chapter 5

Locally Stationary Wavelet

(LSW) Process

5.1 Motivation

Stationarity is a fundamental concept in time series analysis. For a process to be

stationary, we require that the mean is time-invariant and the auto-covariance is

given as a function of lag rather than time. The detail of the stationary process

was explained in §1.2.1. However, the conditions of the stationary process are

too strict for practical data analysis in many cases, and hence more sophisticated

modelling techniques are needed to analyse actual time series data. Accordingly,

there have been many studies about non-stationary process to get realistic time

series analysis. Here, we focus on the locally stationary process among the various

kinds of non-stationary process modelling.

Locally stationary process is a specific kind of non-stationary processes with

a few regularity conditions which are weaker than the stationary process. It is

controlled in terms of the spectral density changing smoothly over time, while the

stationary process has properties of the first and second moments independent

with time. Dahlhaus (1997) and Dahlhaus (2000) defined the locally stationary

process using the spectral density approach of Priestley (1965) :

Xt = µ

(
t

T

)
+

∫ +π

−π
e(iwt)A0

t,T (w) dξ (w) , (5.1.1)
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where µ is the mean function of Xt and A0
t,T (w) is the transfer function. Also,

this process is required to satisfy the following two conditions:

(i) ξ(w) is a complex-valued Gaussian process on [−π, π] with ξ(w) = ξ(−w),

E(ξ (w))=0 and E(dξj(w1) dξk(w2)) = δjk
∑

l δ (w1 + w2 + 2πl) d(w1) d(w2).

(ii) There exists a function A(t/T, w) and a constant, Ct with sup|A0
t,T (w) −

A(t/T, w)| ≤ Ct/T.

We assume that µ (t/T ) and A (t/T, w) are continuous in t/T . The second con-

dition is designed to control the smoothness of the function, A(t/T, w) approx-

imately converging to the spectral density, A0
t,T (w). Dahlhaus (2012) describes

the process as being close to a stationary process in a local sense with asymptotic

properties.

Dahlhaus (2000) proposed a generalisation of the Whittle likelihood with ap-

proximation techniques for a locally stationary process. Also, Dahlhaus (2012)

showed examples of locally stationary processes with the auto regressive (AR)

and GARCH models and their uniquely defined spectral densities.

Mallat et al. (1998) proposed a model which is similar to the locally stationary

process of Dahlhaus (1997) in that they describe a locally stationary process

based on the spectral analysis approach. However, they focus on a short time

interval by using a short-sized window function in which data are approximately

stationary process rather than restricting the spectral density itself. Based on

this approach, they establish a smooth supported function using cosine functions

which are bounded by window functions. They investigate the time varying

spectral characteristics using these windowed cosine functions, but we do not

explain the details here, because we will follow the previously mentioned approach

from Dahlhaus (1997).

Likewise, there has been a great deal of researches about the locally station-

ary process and its modelling for actual data not guaranteed to hold stationarity.

Particularly, since signal processing has complicated data structures usually vary-

ing over time, the locally stationary process has been continuously highlighted

in this field. For example, Qin et al. (2009) estimate the locally stationary spec-

trum from the modified version of the locally stationary process suggested in
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5.2 The LSW Process with NDWT

Dahlhaus (1997) and fits a functional model based on the periodogram in an

epileptic intracranial electroencephalogram (IEEG) dataset. They investigate the

relationship between seizures and the sleep state based on the estimated time-

varying spectra. Also, Birr et al. (2017) extended the locally stationary process

to copulas using quantile approach with climate and financial example data.

Unlike the research mentioned above, we can consider wavelet functions as

basis functions to construct a locally stationary process. The standard discrete

wavelet transform is evaluated at the specific time points determined by the ori-

gin point and the corresponding levels. The decimation of the standard DWT

enables us to have an orthogonal structure between discrete wavelet resolution

levels. Meanwhile, the non-decimated wavelet transform, which is used for the

discrete LSW process, allows the origin to be shifted to all possible time points

for all discrete wavelet resolution levels. This non-decimated discrete wavelet

transform has consistent results not relying on the origin of wavelet transfor-

mation, but the spaces spanned by the wavelet functions are redundant, and

hence it is no longer orthogonal between the levels. It means that the derived

wavelet coefficients cannot uniquely reconstruct the original data unlike the stan-

dard decimated DWT. Therefore, we should consider more conditions in order

to have unique spectral densities for the locally stationary process with NDWT.

The detailed definition and assumptions of that process was explained in Chapter

3.

5.2 The LSW Process with NDWT

Nason et al. (2000) introduced the locally stationary wavelet (LSW) process and

showed the estimation of spectral densities using a few simple example functions

and real ECG data. The LSW process is established using the NDWT following

the definition of the locally stationary process from Dahlhaus (1997). The LSW

process results in a spectral description of a non-stationary process using the

concept of the locally stationary process in the wavelet frequency domain. In

the same spirit as the locally stationary process, the amplitude is controlled by

an assumption of smooth variation in the wavelet domain, and the assumption

enables us to have an unique evolutionary wavelet spectrum.
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5.2.1 Literature Review of the LSW Process

There has been continued research effort aimed to develop statistical theories us-

ing the LSW process and apply the LSW process to real data analysis. Knight

et al. (2012) extend the LSW process and the estimation of its spectrum to the

case with missing values. This article imposes the assumption of locally stationar-

ity, and constructs the LSW process using the lifting scheme for irregular data or

missing data. Cho & Fryzlewicz (2015) apply the LSW process to determine the

consistency of their segmentation algorithm and suggest the model of multivari-

ate LSW process. In addition to the aforementioned works with the theoretical

progress using the LSW process, there are researches with applications to inves-

tigate the spectral characteristics for real non-stationary data assuming the LSW

process. For example, actual data is difficult to assume stationarity, therefore less

strict assumptions are needed for modelling than the stationary process. Wang

et al. (2014) estimates the periodogram of the precipitation data by the LSW

process. Wilson et al. (2019) also assumed that their acoustic data follows the

multivariate LSW process of Park et al. (2014), and proposed an online dynamic

classification model of the process to investigate irregularities.

5.2.2 The Standard Locally Stationary Wavelet (LSW)

Process

Nason et al. (2000) defines the standard LSW process with the non-decimated

discrete wavelet transform as follows.

Definition 5.2.1. The standard Locally Stationary Wavelet (LSW) pro-

cess is

Xt,T =
−1∑

j=−J

T−1∑
k=0

w0
j,k:Tψjk(t)ξj,k, (5.2.1)

where ψj,k(t) is the t-th element of the non-decimated wavelet function vector, ψjk,

shifted by k, and ξj,k is a random orthonormal sequence for t = 0, . . . , T − 1. To

fulfill the locally stationarity over the given wavelet basis functions, the following

assumptions should be satisfied in terms of w0
j,k:T and ξj,k:

(a) E (ξj,k) = 0.
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5.2 The LSW Process with NDWT

(b) Cov (ξj,k) = δjlδkm.

(c) There is a Lispchitz function, Wj(z) satisfying the following properties for z

∈ (0, 1) and a Lipschitz constant, Lj corresponding to the function, Wj(z),

such that ∑
j

|Wj(z)|2 <∞ and
∑
j

2−jLj <∞

w0
j,k:T → Wj(k/T ) as T →∞.

(5.2.2)

Here, ψ(x) is restricted to specific wavelet functions such as Daubechies’ com-

pactly supported wavelet functions. The amplitude, w0
j,k;T , cannot be given as a

unique value by itself due to the redundant basis functions. However, the con-

dition (c) in (5.2.2) assumes that there exists the Lipschitz continuous function,

Wj(k/T ) converging to the w0
j,k;T . The Lipschitz continuity controls the first

derivative of Wj (k/T ) not to change too quickly, and hence it allows to make an

unique representation based on Wj(k/T ). This is the reason that the stochastic

process, Xt;T is called the LSW process.

The Lipschitz continuous function, Wj(k/T ), is defined over the rescaled vari-

able, k/T ∈ (0, 1) instead of the time location, k. Accordingly, as more ob-

servations are added, that will improve the local structure by getting denser

information over time.

Definition 5.2.2. The Evolutionary Wavelet Spectrum (EWS) is the lo-

calised spectral density of the LSW process. It is defined by Sj(k/T ) = |Wj(k/t)|2.

As mentioned before, the LSW process has the unique EWS as a represen-

tation of spectra. A proof of that can be found in Nason et al. (2000). The

spectrum can be estimated from the wavelet coefficients of data.

Estimation of EWS

The wavelet coefficients of Xt,T can be estimated through the non-decimated

wavelet transform whose coefficients are defined as

dj,k =
∑
t

Xt,Tψj,k(t) (5.2.3)
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for the level, j and shift, k. Then, the wavelet periodogram, Ij,k, is defined as

Ij,k = |dj,k|2 (5.2.4)

in terms of the wavelet coefficient, dj,k through NDWT. However, since the esti-

mated wavelet periodogram is biased from the true EWS, Sj(k/T ), of the LSW

process, we should consider a bias correction. The correction process is performed

by the wavelet correlation function,

Ψj(τ) =
∑
k

ψjk(0)ψjk(τ) (5.2.5)

and the operator A,

Ajl =
∑
τ

Ψj(τ)Ψl(τ). (5.2.6)

Let I(z = k/T ) be the vector of wavelet periodogram, (I−1,k, . . . , I−J,k).

Then, based on the correlation between wavelet levels, the corrected wavelet

periodogram, L(z), is given as

L(z) = A−1J I(z) (5.2.7)

for z = k/T . The corrected spectrum is approximately unbiased to the EWS.

Here, AJ is the operator A for the discrete LSW process at T = 2J and A−1 is

the inverse matrix of this operator AJ .

5.3 The LSW Process with Other Wavelet Func-

tions

The standard LSW process is defined in terms of the NDWT. In addition to the

standard LSW process of §5.2.2, there are extensions of the LSW process to dif-

ferent types of wavelet functions or transformations. First, Cardinali & Nason

(2017) suggest a model to expand the LSW process with wavelet packets. This

process is defined in an equivalent way to the standard LSW process followed by

the principles and terms used in Nason et al. (2000). However, wavelet packets
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are given through all possible combinations of binary wavelet filters, while the

non-decimated and decimated discrete wavelet transforms are performed through

a selection of filters at each level. Therefore, the wavelet packet transform has

a richer wavelet function dictionary than the NDWT used in the standard LSW

process. To assess the redundancy of a locally stationary wavelet packet (LSWP)

process, they apply a basis selection with cost functions. Also, Nelson & Gibberd

(2016) extend the LSW process to the dual-tree complex wavelet function which

does not belong to the Daubechies’ wavelet family. Likewise, the principles and

assumptions of the model are equivalently applied to the dual-tree wavelet trans-

form. Although the wavelet functions are not placed in a compactly supported

domain, the discrete wavelet transform is also built based on a binary wavelet

filter, and hence the relationship between wavelet levels still can be explained by

these filters on this process. In addition to the mathematically proven structure,

the dual-tree wavelet transform includes directional information which cannot be

given from the real-valued wavelet transform.

5.4 The Continuous LSW Process

5.4.1 Definition

Although the LSW process is useful to understand time-varying spectrum, as the

number of discrete wavelet frequencies is determined by the number of observa-

tions, the spectral features given from the standard LSW process can be limited

to a few discrete resolution levels. However, as we have seen in Chapter 3 and 4,

there may exist valuable behaviour hidden between these discrete wavelet levels

and this may be reflected in the spectrum. To cope with this problem, we pro-

pose the extension of the LSW process to the continuous wavelet scales for more

flexible understanding of the spectral characteristics not limited to the discrete

resolution levels. The range and number of scales in the CWT no longer rely

on data, so we can choose any scales from the continuous domain in theory. In

practice, since we work with the discretised CWT, we are limited to n/2 scales

where n is the number of observations. We shall consider this in more detail later

in section 5.4.2.
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Definition 5.4.1. Following the concept of the standard LSW process by (Nason

et al., 2000), we define the continuous locally stationary wavelet (CLSW)

process, {Xt}t=0,...,T−1 , T > 1 as

Ct =

∫
a∈A⊂R+

∫
b⊂R

wa,b:Tψa,b(t)ξab dadb (5.4.1)

where a is the wavelet scale in the scale set, A, on positive and continuous domain

and b is the shifting parameter of the wavelet function, ψa,b(t).

We assume that

(a) E (ξab) = 0

(b) Cov (ξab, ξcd) = δabδcd.

(c) There is the Lipschitz continuous function, Wa(b/T ) satisfying the following

properties for z = b/T ∈ (0, 1) and the Lipschitz constant, La correspond-

ing to the function, Wa(b/T ). ∑
a

|Wa (b/T )|2 <∞,∑
a

aLa <∞ and

w0
a,b:T → Wa(b/T ) as T →∞

(5.4.2)

In the same spirit as the LSW process using NDWT, local stationarity is

imposed in terms of the amplitude, wa,b:T . The Lipschitz continuity constrains

the function, Wa (b/T ), converging to wa,b:T , not to change too quickly. The

CWT has a denser wavelet frequency set than the DWT, accordingly the CWT

is also non-orthogonal like the non-decimated DWT. Therefore, the smoothness

assumption, (5.4.2), is required to get an unique spectrum from the process.

Also, by the re-scaled variable, z = b/T , as the number of time points increases,

it implies that they have denser local information on the re-scaled domain, z.

Definition 5.4.2. The evolutionary wavelet spectrum (EWS) of the CLSW

process is defined as Sa(z) =

∣∣∣∣Wa

(
b

T

)∣∣∣∣2 for z = b/T .
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Estimation of the EWS of the CLSW Process

The estimation and correction of the EWS are performed following the method of

Nason et al. (2000). The coefficients given by the continuous wavelet transform

of data, f , can be written as

da,b =

∫
f(t)ψa,b(t)dt (5.4.3)

for the wavelet scale, a and the shifting parameter, b where ψa,b(t) defined in

equation (2.4.1). The EWS can be estimated by the squared coefficients for the

CLSW process as

Ia,b = |da,b|2. (5.4.4)

However, as the periodogram is also biased from the true EWS, we should

correct the periodogram to get an estimation close to the true spectrum. Fol-

lowing the property of the discrete LSW process, this biased estimator can be

corrected by the local wavelet auto-correlation,

Ψa(τ) =

∫
ψab(0)ψab(τ)db (5.4.5)

and the operator A,

Aa1,a2 =

∫
Ψa1(τ)Ψa2(τ)dτ. (5.4.6)

Here, the wavelet auto-correlation and the operator A are defined as the in-

tegrals of the product of wavelet functions. Therefore, in the strict sense, we

should consider an inverse of the operator A to correct the estimation. However,

since we wish to apply a discretised CWT to data at discrete time points, the

wavelet coefficients are evaluated as a discrete summation rather than an integral

in our research, and in turn the wavelet auto-correlation and the operator A will

be defined as

Ψa(τ) =
∑
b

ψab(0)ψab(τ) and Aa1,a2 =
∑
τ

Ψa1(τ)Ψa2(τ) (5.4.7)

using discrete summations. Accordingly, the operator A will be a square matrix

of size, Na×Na, where Na is the number of wavelet scales of the locally stationary
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wavelet process, Ct. Then, the inverse operator A is the inverse matrix of the

operator A.

Based on these definitions, the corrected wavelet periodogram, L(z), is

L(z) = A−1I(z) (5.4.8)

for z = b/T , where I(z = b/T ) = (CWT (a, b))a∈A. The corrected spectrum is an

approximately unbiased for the EWS in theory.

5.4.2 Unbiasedness of the Continuous EWS

The continuous wavelet frequency domain is denser than the discrete wavelet

frequency domain. While the relationship between discrete wavelet levels is asso-

ciated with the number of observations and the binary wavelet filter in the DWT,

each successive level containing wavelets with twice the support of the one be-

fore, there is no such thing to explain the relationship between wavelet scales in

the CWT. Also, as the fully continuous wavelet transform is calculated through

an integral over continuous time, it must be approximated when using practical

data usually given as a discrete sequence. Therefore, here we will evaluate a dis-

crete version of the continuous wavelet transform and construct the corresponding

CLSW process by discrete summation over a fine grid of continuous scales.

The Mean of the Estimated EWS

Proposition 5.4.1. E
[
Ŝak (zk)

]
=
∑

a∈A Sa(bk/T )Aa,ak +O(1/T )

Suppose that the stochastic process, Ct is the CLSW process. Then, the

process can be written as

Ct =

∫
a

∫
b

w0
a,b;Tψa,b(t)ξabdadb

≈
∑
a

∑
b

w0
a,b;Tψa,b(t)ξab (5.4.9)

by the definition of the CLSW process, (5.4.1) and its approximation using a

discrete summation. For simplicity, the approximate CLSW process denoted via a

77



5.4 The Continuous LSW Process

discrete summation is used as the formula of the CLSW process in the proof. The

EWS of the CLSW process can be estimated from the squared wavelet coefficients,

|da∗,b∗|2, and therefore, the expectation of the estimated EWS, Ŝa∗(z∗ = b∗/T ), is

E
[
Ŝa∗ (z∗)

]
= E

[
d2a∗,b∗

]
= E

[
|< C, ψa∗,b∗ >|2

]
= E

(∑
t

Ctψa∗,b∗(t)

)2


= E

 ∑
t∈[0,T )

∑
a∈A

∑
b∈[0,T )

wa,b;Tψa,b(t)ψa∗,b∗(t)ξab


2

=
∑
a∈A

∑
b∈[0,T )

(wa,b;T )2

 ∑
t∈[0,T )

ψa,b(t)ψa∗,b∗(t)


2

, (5.4.10)

because E
(
ξai,bjξak,bl

)
= 0 unless i = k and j = l.

Substituting b = c+ b∗,

E
[
Ŝa∗(z∗)

]
=
∑
a∈A

∑
c∈[−b∗,T−b∗)

(wa,c+b∗;T )2

 ∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(t)


2

(5.4.11)

By assumption, (5.4.2), there exists the Lipschitz continuous function, Wa {(c+ b∗)/T},
approximately converging to wa,c+b∗;T , and by the definition of the Lipschitz con-

tinuous function, |Wa {(c+ b∗)/T} −Wa {(b∗)/T}| = O(c/T ). Therefore,

E
[
Ŝa∗(z∗)

]
=
∑
a∈A

∑
c∈[−b∗,T−b∗)

[
Wa {(c+ b∗)/T}2 +O(1/T )

] ∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(t)


2

=
∑
a∈A

∑
c∈[−b∗,T−b∗)

{
Wa(b∗/T )2 +O(c/T )

} ∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(t)


2

+O(1/T )
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=
∑
a∈A

∑
c∈[−b∗,T−b∗)

Wa(b∗/T )2

 ∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(t)


2

+

∑
a∈A

∑
c∈[−b∗,T−b∗)

O(c/T )

 ∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(t)


2

+O(1/T ).

(5.4.12)

The Lipschitz continuous function, Wa {(c+ b∗)/T} can be replaced byWa(b∗/T )+

O(c/T ) based on the distance between these two function values. Also, since the

squared sum,
{∑

t∈[0,T ) ψa,c+b∗(t)ψa∗,b∗(t)
}2

, is finite due to the compact support

of the Haar wavelet function used in our research, the approximation term can be

summed as the O(1/T ) independently with the discrete sum in (5.4.12). There-

fore,

E
[
Ŝa∗(z∗)

]
=
∑
a∈A

∑
c∈[−b∗,T−b∗)

Wa(b∗/T )2

 ∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(t)


2

+O(1/T ).

Since the evolutionary wavelet spectrum, Sa(b∗/T ) = Wa(b∗/T )2, is indepen-

dent of c,

E
[
Ŝa∗(z∗)

]
=
∑
a∈A

Sa {(b∗)/T}

∑
c

∑
s∈[0,T )

∑
t∈[0,T )

ψa,c+b∗(t)ψa∗,b∗(s)ψa,b∗(t)ψa∗,b∗(s)

+O(1/T )

=
∑
a∈A

Sa {(b∗)/T}

 ∑
s∈[0,T )

∑
t∈[0,T )

Ψa(s− t)Ψa∗(s− t)

+O(1/T )

(5.4.13)

where Ψa(t) =
∑

b ψa,b(0)ψa,b(t) is the wavelet correlation. Finally, substituting

v = s− t, the expectation is

E
[
Ŝa∗(z∗)

]
=
∑
a∈A

Sa(b∗/T )

{∑
v

Ψa(v)Ψa∗(v)

}
+O(1/T )
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=
∑
a∈A

Sa(b∗/T )Aa,a∗ +O(1/T ). (5.4.14)

Let A−1a∗,a be the element of the inverse A between two wavelet scales, a∗ and a.

According to the proof, (6.3.11), if the operator A is invertible, the corrected

spectrum,
∑

aA
−1
a∗,aŜa∗(z∗), is approximately unbiased as the number of time

points, T , is large enough.

The Invertibility of the Operator A

Here, we focus on building the CLSW process with the Haar wavelet function

which is the simplest of Daubechies’ compactly supported wavelet functions.

The wavelet correlation can be considered as a matrix given from the dis-

cretised continuous wavelet scale set.Therefore, the operator A in (5.2.6) can be

written as a matrix calculation as A = ΨTΨ, where Ψ is a Nτ × NA wavelet

correlation matrix for the number of τ , Nτ and the dimension of scale set, NA.

The matrix A is a Gram matrix, and hence the operator A is

xTAx = xTΨTΨx = (Ψx)T (Ψx) ≥ 0, (5.4.15)

for any vector x. However, we would like the matrix to be positive definite,

(Ψx)T (Ψx) > 0 for any x 6= 0, so that the operator A is invertible. Therefore, we

can claim the existence of an inverse A by proving (Ψx)T (Ψx) 6= 0 unless x = 0.

Suppose that there is a CLSW process, Ct with the length of time series data,

T . By the definition of the wavelet correlation, Ψ(τ) =
∑

b ψ(0)ψ(τ), and the

formula of the Haar wavelet function in (2.2.1), the wavelet correlation of the

Haar wavelet function can be written as

Ψ(τ) =

{
1− 3|τ | for |τ | ∈ (0, 1/2]

|τ | − 1 for |τ | ∈ (1/2, 1].
(5.4.16)

In the CLSW process, we assume that the wavelet functions are compactly

supported and fitted within the data, (0, T ]. Also, since the Haar wavelet function

has the same width of positive and negative values (as can be seen in Figure

2.2.1), a discretised sequence of points representing the Haar wavelet function
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5.4 The Continuous LSW Process

should have an equal number of points in the positive and negative section to

keep the balanced properties of the Haar wavelet function. Accordingly, the

largest continuous wavelet scale set, a for the CLSW process is given by the

descretised the Haar wavelet functions of lengths 2, 4, . . . , T . Here, we define the

largest scale set as the fully continuous wavelet scale set.

Then, the wavelet correlation for the scale, a is

Ψa(τ) =


1− 3|τ

a
| for |τ | ∈ [0, a/2)

|τ
a
| − 1 for |τ | ∈ [a/2, a)

0 otherwise,

(5.4.17)

by the definition of a continuous wavelet function, ψab(x) =
1√
a
ψ

(
x− b
a

)
.

First, the range of possible τ is from (−∞,+∞) in general wavelet transform,

but as our CLSW process with the Haar function has a compactly supported

domain fitted in data, the range of wavelet correlation, Ψa, is also restricted

within (−T, T ). Then, we can approach the proof algebraically with the matrix,

Ψ. Define the i-th row of the wavelet correlation matrix, Ψ as Ψ[i, ]. Then, the

first row consists of correlation values at τ = T − 1, the largest possible τ . Here,

only the first element of Ψ[1, ] has non-zero value at the coarsest scale, a = T , by

(5.4.17), and hence x1 satisfying Ψ[1, ]x = 0 is 0 where x = (x1, . . . , xNA
).

Next, move to the next rows, 2, having the first non-zero value for the second

column. Then, x2 should be zero as well when Ψ[2, ]x = 0, because we already

proved that x1 = 0 and other elements are all zeroes except for the first and

second elements by (5.4.17). In the same principle, we can observe each row

by the order of columns from the coarsest to finest and Ψx = 0 only if x = 0.

Therefore, xAx ≥ 0 for any x 6= 0, and hence the operator A of the CLSW process

is invertible for the Haar wavelet function.

Apart from the Haar wavelet function, other Daubechies’ wavelet functions

can prove the invertibility of the operator A because they have compact sup-

ports. However, there are two practical difficulties of other Daubechies’ wavelet

functions. First, Daubechies’ wavelet functions are constructed by through Mal-

lat’s pyramid algorithm at discrete resolution levels, and hence the functions do
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5.5 Application of the CLSW Process

not have a closed formula except for the Haar wavelet function. To evaluate

the CWT with other functions, another technique is needed to get approximate

wavelet function between discrete wavelet resolution levels. Also, the compact

support is wider than the Haar wavelet function. Therefore, we should consider

a larger number of τ ′s for the CLSW process.

5.5 Application of the CLSW Process

In this section, we will apply the CLSW process to a few example datasets. The

aim of the applications is to estimate the EWS of the CLSW process and to

compare the result to the standard discrete LSW process.

5.5.1 Reflected Doppler Data Analysis

The first example data used in this section is the reflected doppler data con-

structed based on the doppler function. As the doppler data has the interesting

frequency characteristics changing over time, it is useful to compare the esti-

mated spectral density from our model with the true frequency information. The

reflected doppler data is created by flipping over the standard doppler function

at the centre to prevent sudden discontinuous boundary effect in the spectral

representation. Figure 5.5.1 shows the line plot of the reflected doppler data.

Figure 5.5.1: The reflected doppler data.
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5.5 Application of the CLSW Process

In our applications, we apply the Haar wavelet function to simplify the prob-

lem. Recall that the Haar wavelet function is the square shaped function with a

discontinuous changing point at the middle. As mentioned previously, given data

on a set of discrete time points, the CWT is replaced by a discrete calculation

with a fine grid, which approximates the continuous calculation. Therefore, we

need to consider which wavelet scales can perform well without distortion of their

wavelet function structure.

Figure 5.5.2: The comparison of discrete resolution levels (black dots) and fully
continuous Haar wavelet scales (blue dots) used for the reflected doppler data in
Figure 5.5.1.

Here, we use the fully continuous wavelet scale set for the CLSW process. The

reflected doppler data used in this section has 512 observations, which correspond

to the 9 discrete wavelet resolution levels and 256 continuous wavelet scales for

the Haar wavelet function. These scale sets are shown in Figure 5.5.2.

Figure 5.5.3: The comparison of wavelet coefficients from the reflected doppler
data: the discrete wavelet coefficients (left) and the continuous wavelet coefficients
(right).
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All computing process for the DWT and discrete LSW process are performed

by the R package, “wavethresh” (see Nason, 2016). Figure 5.5.3 shows the wavelet

coefficients from the reflected doppler data on DWT and CWT. Although they

are plotted in different formats, both show the equivalent patterns in that the

main activity in the wavelet spectra tends to move to the middle where the peak

point exists, as the scales get coarser.

The wavelet spectral density of the CLSW process can be estimated by the

squared wavelet coefficients, but it needs to be corrected by the operator A. In

§5.4.2, we proved that the operator A based on the Haar wavelet function is

invertible, and hence we can correct the wavelet periodogram by (5.4.8). Figure

5.5.4 shows the comparison of the corrected estimate of the EWS between the

discrete LSW process and the CLSW process. As the objective of our research is

to find frequency information which is not captured well at the discrete wavelet

resolution levels, they do not need to show equivalent results. However, it seems

to be evident that the estimate EWS from the CLSW process does not follow the

true frequency information that we expected from the data structure in Figure

5.5.1. In particular, there are some strong line effects moving to the right bottom

corner from the middle, but the trends do not show in the discrete LSW process.

Figure 5.5.4: The comparison of estimated corrected EWS from the reflected
doppler data : the discrete EWS (left) and the continuous EWS (right).

To investigate the reason of unsatisfactory results using the CLSW process,
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we compare the operator A and its inverse between the discrete LSW and CLSW

processes. Figure 5.5.5 shows the image plots of operator A’s and their inverse

matrices. The operator A created from the DWT and CWT have equivalent

structures in that the values of A get larger when closer to the diagonal elements

and at coarse scales or levels. Meanwhile, the inverse matrices show completely

different patterns in that the CLSW process has larger diagonal elements as the

scale gets coarser, in contrast to the trend of the discrete LSW process. The

different structures are likely to affect the correction process as well.

Figure 5.5.5: The comparison of the operator A and their inverse matrices for
N = 512 : the discrete wavelet operator A (top left), the continuous operator
A (top right), the inverse of discrete wavelet operator A (bottom left) and the
inverse of continuous operator A (bottom right).
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5.5.2 Applications of the CLSW Process Using the To-

mography Data

We will apply the idea of the CLSW process to the horizontal tomography data

and compare that to the standard LSW process in terms of the estimated EWS.

The horizontal tomography data is the same as the data used in §4 to establish

a classification model based on wavelet coefficients. The details of data charac-

teristics was explained at §4.

Figure 5.5.6: The plot of the horizontal tomography data.

The example data in Figure 5.5.6 shows the transition from “plug” flow, big

and long lasting bubbles, to “bubble” flow, small and short lasting bubbles. The

first half of the data has relatively wider lengths of oscillations, whereas the other

half seems to stay steady around 1. Figure 5.5.7 shows the wavelet coefficients and

the square root of the corrected estimate of the EWS from the discrete LSW and

the CLSW processes. The wavelet coefficients indicate that the discrete wavelet

levels, 2 and 3 have the highest contributions in representing the tomography

data. The continuous wavelet transform also has significant power at scales be-

tween 0.1 and 0.3 which correspond to the discrete resolution levels, 2 and 3.

When assuming they are from the LSW process, the estimated spectral densities

from DWT still has high spectra at levels between 2 and 3, but their oscillat-

ing patterns over time are adjusted after correction. Meanwhile, it is difficult to

find any frequency characteristics from the estimate of the EWS from our CLSW
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process except a few vertical lines. This implies that our CLSW process do not

generate appropriate spectral densities especially after correction.

Figure 5.5.7: Locally stationary spectral analysis of one example of tomography
data trace using the CLSW process: the discrete wavelet coefficients (top left),
the absolute continuous wavelet coefficients (top right), the square root of the
corrected estimate of the EWS from the discrete LSW process (bottom left) and
the continuous LSW process (bottom right).

5.5.3 The Simulated CLSW Process Based on the Haar

MA Process

Nason et al. (2000) used an example based on the moving average (MA) pro-

cess with the Haar wavelet functions to generate the LSW process. In the

same way, we generated a CLSW process based on the Haar MA process de-

rived from not only the discrete wavelet resolution levels but also intermedi-
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ate wavelet levels. The Haar MA process from the order, n, can be written as

xt(n) =
1√
2n

(εt + . . .+ εt−n+1 − εt−n − . . .− εt−2n+1), where ε is an i.i.d random

variable with mean, 0, and variance, 1. Note that taking n = 2j for j = 0, 1, . . .

corresponds to the Haar MA LSW process on discrete wavelet resolution levels.

We concatenated a series of the four Haar MA processes, xt(2), xt(7), xt(10)

and xt(32) with 128 observations from each process and estimate spectral densi-

ties from 100 replicates. The Haar MA process can be considered as a stationary

process when it is generated from a consistent frequency. However, here, since

we pasted four individual MA processes derived from different frequencies, the

entire stochastic process, which is a connected series of Haar MA processes, is

non-stationary. Figure 5.5.8 shows the average of concatenated series from the

Haar MA process, xt(2), xt(7), xt(10) and xt(32) with 128 observations from each

process over 100 replicates. As can be seen from the plot, the frequency charac-

teristics appear differently depending on the order of Haar MA processes.

Figure 5.5.8: The concatenated series of the Haar MA process, xt(2), xt(7), xt(10)
and xt(32) averaged over 100 replicates.

Figure 5.5.9 shows the square root of estimates of corrected EWS for the con-

catenated Haar MA process. The process has high estimated spectra on certain

coarse wavelet scales, but these strong spectral estimates seem to be affected by

the boundary effects of data rather than its original frequency features. Although

the frequency orders for Haar MA process increase over time, this characteristic

is not shown in the estimates except for the boundary effects.
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Figure 5.5.9: The averaged corrected estimate of evolutionary wavelet spectra
over 100 replicates.

5.6 Limitation of the Process

5.6.1 The Change of Structure of the Inverse of the Op-

erator A

In the DWT, the number of discrete wavelet resolution levels available, J , is given

by the base-2 logarithm of the number of observations, J = log2N . Therefore,

as the number of observations increases, elements are added to the wavelet auto-

correlation vector and the operator A next to the existing terms. The added

information does not make much difference to the general structure of the inverse

matrix, because the discrete wavelet functions are not strongly correlated between

levels. Meanwhile, the continuous wavelet scale set can be considered as adding

intermediate scales between discrete wavelet levels. As the wavelet correlation and

the operator A are individually calculated at each scale, the intermediate scales

seem to add local information between discrete wavelet levels without changing

the general structure. However, to invert the operator A includes calculation

between scales, and hence the highly correlated continuous wavelet scale set in-

fluences the structure of the inverse of the operator A. The changed structure

results in a different spectral density of the CLSW process which does not look

reasonable in §5.5.
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5.6.2 The Lack of Assumptions over Scales

The scale set of the CWT is much denser than the NDWT or NDWP and the in-

termediate scales between discrete wavelet levels are highly correlated. However,

the regularity conditions in our CLSW process do not consider the relationships

between the dense wavelet scales. Also, the expectation of the estimated EWS in

Proposition 5.4.1 is proven with the approximate error terms summed over the

scales. The dense scale set of the CLSW process affects the asymptotic calcula-

tion by changing an O(1/T ) term to O(c/T ) in the expectation of the uncorrected

spectral estimate in equation (5.4.12) when compared to the discrete LSW pro-

cess. To identify the redundant scales and spectral estimate, we may need to add

stronger assumptions over scales than the current CLSW process or to consider

another technique to decrease correlation between scales.

Also, we can consider the connection between the redundancy of scales and the

frame of the discretised CWT in (2.5.3). In our research, the CWT is computed

through a discrete summation over regularly spaced fine grids and the scales

are chosen from 0 to 1 to keep the structure of the Haar wavelet function. Let

{A−1}a1,a2 be the element of the inverse A at the corresponding scales, a1 and a2.

In the CLSW process, we can write the absolute sum of corrected estimates of

EWS, ∑
a1

∑
a2,b

|{A−1}a1,a2 {CWTf (a2, b)}2| (5.6.1)

≈ 1

c2a

∫
a1,a2∈A

∫
b∈R
|{A−1}a1,a2 {CWTf (a2, b)}2|da1 da2 db (5.6.2)

where ca is the distance between a’s of fine grids of continuous wavelet scales. As

we can assume from (5.6.2), that the corrected spectrum, (5.6.1), of the discretised

CLSW process has a boundary relying on the operator function, A−1(a, b). In the

rich scale set of CWT, the range of inverse operator A is very wide, and therefore

it may have a value not close to the second norm of data, ||f 2||. This shows

that the larger scale set of CWT causes the wide frame bounds, and that may be

related to the unexpected estimation from §5.5.

90



5.7 Conclusion

5.7 Conclusion

We have suggested a method to expand the locally stationary wavelet process with

more flexible wavelet frequency. However, the applications to example datasets

showed the imprecise representation of time-dependent frequency patterns com-

pared to the standard LSW process despite the expensive computation costs.

The results indicates that the current CLSW process cannot replace the discrete

LSW process. The possible reasons of low resolution of the estimated EWS may

be linked to the excessively rich scale set of CWT. The dense set of continuous

wavelet scales can cause the limitations mentioned in §5.6; the change of struc-

ture of the inverse operator A and the lack of assumptions over scales. For these

reasons, we need to add more conditions to modify the current version of the

CLSW process, and we shall investigate one possibility in the following chapter.
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Chapter 6

The Modified CLSW Process

6.1 Motivation

The previous applications of the CLSW process in §5.5 to the real and artificial

example datasets show that our CLSW process with a fully continuous wavelet

scale set derive spectra which do not match the data structure. The conditions

assumed for the process do not fully reflect the redundancy of the high dimension

of wavelet scales in the CWT, and therefore cannot correct the periodogram

appropriately. It means that we can no longer guarantee the uniqueness of the

evolutionary wavelet spectrum and the approximate unbiasedness of its estimator.

Accordingly, we should modify the CLSW process to obtain a more appro-

priate spectral analysis. We can consider two approaches to improve our CLSW

process design. First, we can consider a decrease in the number of wavelet scales

before fitting a CLSW process. This scale selection allows us to adjust the level

of redundancy of the continuous wavelet scale set, and reduce the distortion effect

between scales which seems to happen during the correction process. Alterna-

tively, we can impose stronger assumptions on the smoothness of variation in the

amplitudes, wa,b:T and Wa(b/T ) over not only time but also wavelet scales. The

stronger regularities may adjust the smoothness of the spectral densities more

strictly, and improve the correction process.

In our research, we focus on the first approach, using scale selection to alter

the current CLSW process. This scale selection can be carried out in various ways

based on a range of criteria and treating the full set of wavelet functions, ψa,b
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as a basis dictionary from which to select the most “useful” elements. Coifman

& Wickerhauser (1992) established an entropy-based approach to select a basis

function from a waveform dictionary localised in time and frequency such as

wavelet packets. The best basis selection is based on minimising the information

cost of the given data based on Shannon’s entropy. Apart from Shannon’s entropy,

other cost functions can be considered as a measure of basis selection such as log

energy and thresholds (Wang et al., 2011). Cardinali & Nason (2017) suggest cost

functions to select the wavelet function library from the non-decimated wavelet

packets to build a locally stationary wavelet packet process with a smaller number

of basis functions.

Here, we modify the orthogonal matching pursuit algorithm to select the

“best” continuous wavelet scales adaptively chosen to explain the data structure.

We will modify the scale set for the CLSW process to get a subset of continuous

wavelet scales adaptive to the data being analysed.

6.2 Matching Pursuit (MP) Algorithm

Our aim is to use scale selection to establish a CLSW process with a smaller

subset of wavelet scales while retaining as much of the important frequency in-

formation. Therefore, although it is important to reduce the number of scales in

the CLSW process, we should choose to retain wavelet scales which are the most

strongly related to the data structure. There are various ways to investigate the

contribution of scales to data structure, but here we apply a modified Matching

Pursuit (MP) algorithm to reduce the scale dimension.

The Matching Pursuit (MP) algorithm was first introduced in Mallat & Zhang

(1993). The algorithm suggests a way to choose a subset of basis functions from an

complete and orthogonal function dictionary by minimising the l2 norm. It selects

the best subset of functions from a specific basis dictionary. The chosen functions

can be used to make a linear representation of data. A detailed description of

the MP algorithm will be given in §6.2.2.
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6.2.1 Literature Review of the MP Algorithm

Based on the standard MP algorithm introduced in Mallat & Zhang (1993), there

has been a great deal of research developing the algorithm and its applications.

The MP algorithm is helpful when we wish to understand time-frequency features

especially in signal processing data which contains various types of non-stationary

time-frequency structure. Bergeaud & Mallat (1995) applied the MP algorithm

to image data, showing that they can reconstruct images effectively from the se-

lected waveform functions. Also, the MP algorithm extracts useful time-frequency

information which is related to the contribution of the selected basis functions

to the data, and this relationship can be used to fit a statistical model. In the

application to the tomography data in Chapters 3 and 4, the variables are cho-

sen from the continuous wavelet scales on the grounds of their effectiveness in

the classification models. That variable selection process is similar in spirit to

the MP algorithm in that they are chosen in terms of contribution of data to

the state of gas-fraction. Christov et al. (2006) defined descriptors of their ECG

data based on the waveform functions chosen by the MP algorithm and fitted a

classification model to determine heartbeat states. Aharon et al. (2006) proposed

a generalised K-means clustering method called the K-SVD model based on the

MP algorithm. Based on their K-SVD model, Elad & Aharon (2006) showed

how effectively MP-based classification modelling can be applied to denoise im-

age data. Chu et al. (2009) analysed noise-like environmental sound data using

the MP algorithm to investigate the time-frequency structure of their data. Also,

the MP-based approach is used to build a HMM model in Bicego et al. (2004).

Along with various applications, there are many approaches to expanding the

standard MP algorithm to a wide range of dictionaries. First, Pati et al. (1993)

introduced the orthogonal matching pursuit (OMP) algorithm to perform the MP

algorithm outside of an orthogonal basis function dictionary. Tropp (2004) and

Tropp & Gilbert (2007) give mathematical proofs about the effective usage of the

OMP algorithm for signal recovery. We shall modify the OMP algorithm to take

an important role for scale selection process in our research. The OMP algorithm

will be described after the standard MP algorithm. Chen et al. (2001) also built

the representation of a linear combination from a subset of an over-complete
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dictionary, but it is chosen by l1 norm, while the standard MP algorithm uses the

l2 norm. Vincent & Bengio (2002) expanded the MP algorithm to a kernel-based

dictionary from general time-frequency analysis, such as a wavelet transform.

Their approach deals with the over-complete dictionary problem as well by using

a pre-fitting method.

6.2.2 Definition of the MP Algorithm

The MP algorithm finds a signal representation as a linear expansion of wave-

form functions. The algorithm selects a subset of waveform functions out of a

redundant dictionary, choosing those functions which best match the data. This

is helpful to investigate the distribution of frequency information of the data.

The standard MP algorithm assumes that the basis dictionary used for the

pursuit algorithm consists of orthogonal basis functions. Let the basis dictionary

used in the MP algorithm be denoted by D and assume that basis functions,

xi ∈ D, are orthonormal. The algorithm finds a linear decomposition of the

data, f by projecting f on to p waveform functions from D. Denote the kth

function chosen as x∗k ∈D and let Rkf be the residual at the kth step in the MP

algorithm. Then, the first step in the MP algorithm is to decompose the data, f ,

by a function, x∗1 such that

f = R1f+ < f, x∗1 > x∗1 (6.2.1)

implicitly defining the first residual, R1f . Taking norms on each side of equations

(6.2.1), we obtain

||f ||2 = ||R1f ||2 + |< f, x∗1 >|2, (6.2.2)

since x∗1 is orthogonal to the residual, R1f . Here, the first function chosen can be

considered as the function best matching to the data, f by minimising the norm

of the residual, ||R1f ||2. By (6.2.2), minimising residual is the same process as

maximising the norm of the inner product, ||< f, x1 >||2, such that
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|< f, x∗1 >| = sup
xi∈D
|< f, xi >|. (6.2.3)

In the dictionary, D, we assume that all functions are orthogonal, and hence

the l2 norm conserves energy after the decomposition so that

||f ||2 = ||Rkf ||2 +
k−1∑
i=1

|< Ri−1f, x
∗
i > x∗i |2 (6.2.4)

=
∑
x∗i∈D

|< Ri−1f, x
∗
i > x∗i |2, (6.2.5)

where we take R0f = f . Over p iterations, we can choose p waveform functions,

{x∗1, x∗2, . . . , x∗p}, maximising |< Rk−1f, xi >| at the kth step, and this subset of

D is the function set which best “matches” the data, f , as chosen by the MP

algorithm.

6.2.3 Orthogonal MP (OMP) Algorithm

The standard MP algorithm explained in §6.2.2 assumes an orthogonal and com-

plete dictionary. This means that all different waveform functions in D are

linearly independent with zero inner products and all of the data can be ex-

pressed as a linear span of the functions in the dictionary, D. Accordingly, the

p waveform functions chosen by the standard MP algorithm, {x∗1, . . . , x∗p} are or-

thogonal to the pth residual of f , Rpf . However, in practice, there are various

situations where we may wish to use non-orthogonal and over-complete function

dictionaries. Define an over-complete dictionary as Do and suppose the waveform

functions, xi ∈Do are not orthogonal for i = 1, . . . , n1 where n1 is the number of

functions in Do. Therefore, the part of f explained by waveform functions from

Do can overlap in the sense that we can no longer guarantee that the residual,

Rk−1f and the kth chosen function, xk, are orthogonal. That means that the

decomposition by the next function, < Rkf, x
∗
k+1 > may have some correlation

with the previous decompositions over the previous k steps. Accordingly, the
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sum of |< Ri−1f, x
∗
i > x∗i |2, is no longer a representation of data, f for x∗i ∈ D.

This relationship should be considered to avoid choosing highly correlated basis

functions, in which later selections do little to improve our understanding of the

data.

To deal with the limitation of the MP algorithm, which does not support a non

orthogonal function space, Pati et al. (1993) suggest the Orthogonal Matching

Pursuit (OMP) algorithm. Denote the i-th function chosen by the OMP algo-

rithm as x′i. In the OMP algorithm, the linear expansion of data can be written

as similarly to (6.2.1)

f = Rkf +
k∑
i=1

αki x
′
i, (6.2.6)

with the new residual and coefficients for the chosen i functions, {x′1, . . . , x′k} ∈
Do at the k-th step. But, the coefficient, αki , no longer simply means the inner-

product of the function, x′i, and data, f , or the i-th residual, Rif .

For k = 1, the OMP algorithm is equivalent to the standard MP algorithm

in that it chooses the function maximising the norm of the initial projection

of the data. For k ≥ 2, however, as the functions chosen through the OMP

algorithm may be linearly dependent, the coefficients, α, need to be adjusted.

These coefficients, αi’, are recalculated based on the geometry of the functions,

x′i selected over the previous k steps, and hence the term, αki , is indexed by both

i and k. Pati et al. (1993) dealt with the over-complete problem by interpreting

the function added at the i-th step, x′i in terms of the previously added functions,

{x′1, . . . , x′i−1}. Let the space, Vi be the space linearly spanned by the functions

until the ith step, Wi be the orthogonal space to Vi, and Vi(x) and Wi(x) be

projection functions on to the spaces, Vi and Wi, respectively.

Suppose that there are (k − 1) functions already chosen by OMP. Then, at

the kth step, the new variable, x′k, can be divided into two elements; the one part

explained by the previously chosen variables, {x′1, . . . , x′i−1} and the other part

not related to them. It can be written as

x′k = Vk−1(x
′
k) +Wk−1(xk)
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6.3 Scale Selections for the CLSW Process

=
k−1∑
i=1

βk−1i x′i +Wk−1(xk) (6.2.7)

by projection on to the spaces, Vk−1 and Wk−1. The transformation in (6.2.7)

adjusts the contribution of the function, x′k to the data with regard to the lin-

ear dependencies with the previously chosen functions, {x′1, . . . , x′k−1}. Here,

Wk−1(xk) can be considered as the unique characteristics of xk not explained by

the previous function, {x′1, . . . , x′k−1}. Based on the transformation of x′k, the α

in (6.2.8) is updated using

αki = αk−1i − < Rk−1f, x
′
k > βk−1i (6.2.8)

for i = 1, . . . , k − 1 and

αkk =
< Rk−1f, x

′
k >

< Wk−1(x′k), x
′
k >

. (6.2.9)

The k-th function is chosen by minimising the residual norm in equation, (6.2.6)

based on the updated coefficients.

6.3 Scale Selections for the CLSW Process

6.3.1 The Modified CLSW process

We now present a modified CLSW process. The main difference between the

modified CLSW process and the CLSW process described in Chapter 5 is that

the modified process is defined with a subset of wavelet scales, while the previous

CLSW process uses the full set of available continuous wavelet scales.

Denote the fully continuous wavelet function dictionary as Dc and let A be

the set of the scales, a of all available wavelet functions in Dc. Then, Dc =

{ψab; a ∈ A, b = 0, . . . , T − 1} The CLSW process defined in Chapter 5 is

Ct =

∫
a∈A

∫
b∈[0,T )

wab:Tψab(t)ξa,bda db, (6.3.1)

98



6.3 Scale Selections for the CLSW Process

where ξa,b is the random element for the corresponding wavelet scale and shift

parameter. The CLSW process are given from the full scale set, A, under the

same time period, T . On the contrary, the modified CLSW process reduces the

dimension of continuous wavelet scales by choosing a subset of A, and hence

simplifies the structure of the process. Here, we will choose the subset of wavelet

scales adaptively to best represent the data using the idea based on the OMP

algorithm.

The OMP algorithm selects one individual function at each step, which means

that the algorithm will suggest the best subset of individual wavelet functions

rather than conducting scale selection that we require. However, our aim is

to construct a locally stationary model which can be used to understand time-

varying spectrum for all time points. Hence we require a process, where the

activity at scale a, can be defined over all values the shift parameters, b ∈ [0, T ).

First, we could use the linear decomposition of data, f(t) in terms of the

wavelet functions chosen through the OMP algorithm given by

f(t) =
∑

(a∗,b∗)∈(AM ,BM )

αa∗,b∗;Tψa∗,b∗(t) +Rnaf (6.3.2)

at the stage, na. Here, (AM ,BM ) is the set of pairs of indices, (a∗, b∗) for the

chosen functions, ψa∗,b∗ and α is the updated contributions to the data from the

corresponding wavelet functions through (6.2.8) at the final step, na.

The function selection by the OMP algorithm is likely not to cover the full time

domain in each selected scale. Therefore, the shift parameter set, BM may be

sparse over time at each selected scale, a∗ ∈ AM , and hence the spectra given from

the sparse set are probably very rough due to the limited temporal information.

Hence, to improve temporal resolution and give more accurate analysis over time,

we will include all values of the shift parameter, b ∈ [0, T ) for each scale chosen

through the OMP algorithm, a′ ∈ AM ⊂Dc.

Definition 6.3.1. The modified CLSW process, Mt is defined as

Mt;AM
=
∑

a′∈AM

∑
b∈{0,...,T−1}

wa′b:Tψa′b(t)ξa′,b, (6.3.3)
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with the subset of scales, AM selected by the OMP algorithm.

Accordingly, the modified CLSW process has a smaller number of wavelet

scales than (6.3.1), but still allows us to include non-discrete wavelet levels chosen

to best match the data. The subset of scales relies on the data structure, therefore,

the number of scales in AM is not determined by the number of observations or

time like the standard LSW and CLSW processes.

The regularity conditions for the modified CLSW process, (6.3.3), are equiv-

alent to those for the fully CLSW process. The random elements, ξa′,b has the

following statistical properties.

(a) E(ξa′,b) = 0, Cov(ξa′1,b1 , ξa′2,b2) = δa′1,a′2δb1,b2 ,

for a′1, a
′
2 ∈ AM and b1, b2 ∈ [0, T ). From the relations, the covariance

of the modified CLSW modified process depends on elements only for the

same paired indices, (a′, b).

(b) There is a Lipschitz continuous function, Wa′(b/T ) satisfying∑
a′∈AM

|Wa′(b/T )|2 <∞∑
a′∈AM

a′ La′ <∞

wa′,b:T → wa′(b/T ) as t →∞ (6.3.4)

for b/T = z ∈ (0, 1) and the Lipschitz constant, La corresponding to the

function, Wa(b/T ). In the same way as for the LSW process, the modified

CLSW process controls the change of amplitude, wa,b:T , over time by assum-

ing the existence of the Lipschitz function, wa,b:T converging to Wa(b/T ).

The wavelet correlation, Ψa(τ), is also defined equivalently to that of the

discrete and continuous LSW process as

Ψa′ (τ) =
∑
b

ψa′b (0)ψa′b (τ) . (6.3.5)
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The correlation is the multiplication of two wavelets from the subset of full wavelet

scales chosen through modification. As the discrete sum is calculated over all time

points for the corresponding scales, the wavelet correlation can be considered as

the subset of wavelet correlation from the full continuous wavelet domain. Based

on the wavelet correlation, the operator A is also given as

Aa1′,a2′ =
∑
τ

Ψa1′(τ)Ψa2′(τ). (6.3.6)

6.3.2 Evolutionary Wavelet Spectrum (EWS) and its Es-

timation

The evolutionary wavelet spectrum (EWS) from the modified CLSW process is

defined in the same way as for the other LSW process followed by Nason et al.

(2000). The evolutionary wavelet spectrum (EWS), Sa(z), of the modified CLSW

process is defined as |Wa(b/T )|2. The spectrum can be estimated by the wavelet

periodogram, d2a,b = |< M , ψa,b >|2, by the wavelet coefficients of the data with

respect to the modified wavelet scale set, AM .

However, since the modified CLSW process, Mt;AM
of (6.3.3), also has ran-

dom elements, ξa,b, the expectation of its estimate should be considered to obtain

the statistical evidence as a useful spectral measurement. Through the proof, we

will be able to see how close the estimate is to the true spectral characteristic

of the CLSW process. The proof of the expectation of the wavelet periodogram

here follows the proof for the discrete LSW process in Nason et al. (2000).

Proposition 6.3.1. E
[
Ŝak (zk)

]
=
∑

a∈AM
Sa(bk/T )Aa,ak +O(1/T ).

Assume that the stochastic process, Mt:AM
, is the modified CLSW process

with the wavelet scale set, AM through the scale selection process. According

to the definition of the modified CLSW and process, (6.3.3), and the estimate of

its EWS, d2a,b = |< M , ψa,b >|2, the expectation of the estimated EWS for the

modified CLSW process for the given scale, ak, and shift, bk, can be written as

E
[
Ŝak (zk)

]
= E

[
d2ak,bk

]
= E

[
|<M , ψak,bk >|2

]
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= E

(∑
t

Mt;AM
ψak,bk(t)

)2


= E

 ∑
t∈[0,T )

∑
a∈AM

∑
b∈[0,T )

wa,b;Tψa,b(t)ψak,bk(t)


2

=
∑
a∈AM

∑
b∈[0,T )

(wa,b;T )2

 ∑
t∈[0,T )

ψa,b(t)ψak,bk(t)


2

. (6.3.7)

because E(ξai,bjξak,bl) = 0 unless i = k and j = l.

Substituting b = c+ bk,

E
[
Ŝak(zk)

]
=
∑
a∈AM

∑
c∈[−bk,T−bk)

(wa,c+bk;T )2

 ∑
t∈[0,T )

(ψa,c+bk(t)ψak,bk(t)


2

.

(6.3.8)

By assumption, (6.3.4), there exists a Lipschitz continuous function, Wa {(c+ bk)/T},
approximately converging to wa,c+bk;T . Then, the expectation can be written in

terms of the Lipshitz function, Wa {(c+ bk)/T} as

E
[
Ŝak(zk)

]
=
∑
a∈AM

∑
c∈[−bk,T−bk)

[
Wa {(c+ bk)/T}2 +O(1/T )

] ∑
t∈[0,T )

ψa,c+bk(t)ψak,bk(t)


2

=
∑
a∈AM

∑
c∈[−bk,T−bk)

{
Wa(bk/T )2 +O(c/T )

} ∑
t∈[0,T )

ψa,c+bk(t)ψak,bk(t)


2

+O(1/T )

=
∑
a∈AM

∑
c∈[−bk,T−bk)

Wa(bk/T )2

 ∑
t∈[0,T )

ψa,c+bk(t)ψak,bk(t)


2

∑
a∈AM

∑
c∈[−bk,T−bk)

O(c/T )

 ∑
t∈[0,T )

ψa,c+bk(t)ψak,bk(t)


2

+O(1/T ).

(6.3.9)

The function, Wa {(c+ bk)/T} can be substituted as Wa(bk/T )+O(c/T ) based

on the distance between these two function values. Also, since the squared sum,
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{∑
t∈[0,T ) ψa,c+bk(t)ψak,bk(t)

}2

, is finite due to the compact support of the Haar

wavelet function used in our research, the approximation term can be summed

as the O(1/T ) independently with the discrete sum in (6.3.9).

E
[
Ŝak(zk)

]
=
∑
a∈AM

∑
c∈[−bk,T−bk)

Wa(bk/T )2

 ∑
t∈[0,T )

ψa,c+bk(t)ψak,bk(t)


2

+O(1/T ).

Since the evolutionary wavelet spectrum, Sa(bk/T ) = Wa(bk/T )2, is indepen-

dent of c,

E
[
Ŝak(zk)

]
=
∑
a∈AM

Sa {(bk)/T}

∑
c

∑
s∈[0,T )

∑
t∈[0,T )

ψa,c+bk(t)ψak,bk(s)ψa,bk(t)ψak,bk(s)

+O(1/T )

=
∑
a∈AM

Sa {(bk)/T}

 ∑
s∈[0,T )

∑
t∈[0,T )

Ψa(s− t)Ψak(s− t)

+O(1/T )

(6.3.10)

where the wavelet correlation, Ψa(t) =
∑

b ψa,b(0)ψa,b(t). Finally, substituting

x = s− t, the expectation is

E
[
Ŝak(zk)

]
=
∑
a∈AM

Sa(bk/T )

{∑
v

Ψa(v)Ψak(v)

}
+O(1/T )

=
∑
a∈AM

Sa(bk/T )Aa,ak +O(1/T ), (6.3.11)

where the operator A, Aa1,a2 =< Ψa1 ,Ψa2 >. Supposing that we have a large

enough number of observations, T , we can ignore the terms related to the ap-

proximation, O(c/T ) and O(1/T ) in (6.3.7). However, the approximation of the

expectation is still biased from the true EWS, Sa(bk/T ) with the elements of the

operator A. Hence, the bias in the estimate can be corrected using the operator

A to give an unbiased estimate, S̃ = A−1|d2|.
Also, as the modified process, Mt,AM

is defined from the smaller scale set,

AM , the sum of these approximation terms is likely to have less variation around
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the expectation. This implies that the periodogram of Mt;AM
may converge

more stably to the unbiased EWS compared to that of the fully CLSW process,

Ct after appropriate correction.

6.4 The Applications of the Modified CLSW Pro-

cess

6.4.1 The Reflected Doppler Data

The reflected doppler test function was applied to the fully CLSW process in

§5.5.1, but the estimated spectra did not seem to reflect the frequency charac-

teristics of the data. We now compute the modified CLSW process for the same

reflected doppler test function in this section. The default scale set and the

wavelet functions are defined equivalently to the previous applications in §5.5.1.

The modified scale set is chosen by using the OMP algorithm from the fully con-

tinuous wavelet scale set in Figure 5.5.2 with the Haar wavelet functions. The

OMP algorithm is computed using the R package, “Rfast” (Papadakis et al.,

2020).

The OMP algorithm allows us to choose the basis functions which best match

a given dataset, and the scale used in the CLSW process is determined from the

wavelet functions selected by the OMP algorithm. Therefore, the scale set used in

the modified CLSW process is considered as being adaptive to the data structure.

In the “Rfast” package, there are two options of criteria to optimise in the

OMP algorithm, SSE and BIC. The number of iterations is controlled by a tol-

erance value. The criteria, BIC, is explained in §1.2.2. Here, the tolerance value

means the minimum difference value between two successive steps for the algo-

rithm to continue. In our research, we will apply both criteria to compare which

one gives a better representation of the spectral characteristics.

We present three different models defined by the choice of optimisation criteria

and tolerance values to compare the performance. The first model is the BIC

model with the tolerance value of 2, and the second and third models are chosen

by SSE and BIC respectively with the tolerance value, 0. The SSE model with

the tolerance value, 2 is not shown as in that case no function were chosen for
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6.4 The Applications of the Modified CLSW Process

the reflected doppler test function. Figure 6.4.1 shows the scale-location wavelet

functions chosen by the OMP algorithm for the reflected doppler test function.

Figure 6.4.1: The scale-location pairs chosen by the OMP algorithm for the
reflected doppler test function.

First, the SSE model tends to choose the functions mainly from very fine

scales and they are spread over the entire time. On the contrary, the BIC-based

models seem to select the functions in the time coordinates where the signal has

the corresponding frequency characteristic. However, as the number of the chosen

wavelet functions is different in each model, we cannot compare the patterns only

by the function locations. The SSE-based model chooses 510 functions, while the

Model BIC2 and BIC0 have 89 and 114 functions respectively, which are relatively

sparse compared to Model SSE. This implies that the SSE-based model is more

inclined to add functions than the BIC-based models and that leads to include a

wider range of time particularly on fine scales. The BIC-based models generally

tend to be more sensitive to the data structure with a smaller number of functions.

For example, the reflected doppler test function has high-frequency oscillations

at the beginning and end of data, and this data structure seems to affect the

BIC-based scale selection at the fine scales. Based on the individual function

selection using the OMP algorithm, the modified scale sets, which includes all

the time points for the corresponding wavelet scales, are shown in Figure 6.4.2.
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Figure 6.4.2: The scale chosen by the OMP algorithm from the reflected doppler
test function.

The numbers of scales are 21, 31 and 23 respectively for Model BIC2, SSE

and BIC0. The scale set on the bottom in Figure 6.4.2 is the discrete wavelet

resolution levels to compare the scale selection for our modified CLSW models.

The SSE-based model has a wider range of scales than the BIC-based models

with the coarsest scale. The difference between Model BIC2 and BIC0 is the

size of tolerance values for the stopping time of the OMP algorithm, and hence

it is logical to have very similar scale sets in these two models. Although there

are little differences between the three models, the modified scales sets include

intermediate scales for the CLSW process.

Figure 6.4.3 shows the corrected estimate of the EWS for the reflected doppler

test function. The plotted periodograms are transformed as the square root of

the absolute estimate of the EWS to see the image plot more clearly. In this

thesis, we plot the EWS estimates on the same colour scale where comparison

across multiple LSW processes is drawn. The estimated EWS is not as smooth as

the continuous wavelet coefficients in Figure 5.5.3, but the oscillations shown in

the estimated spectra are matched to the doppler test function structure better

than the fully CLSW process. In general, the corrected spectral estimates tend

to get stronger when closer to the centre, as the scale gets coarser. In particular,
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the models have distinctly high spectral estimates between the scale, 2.5 and 3.5,

which corresponds to the low-frequency components in the middle.
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Figure 6.4.3: The image plot for the corrected estimate of the EWS from the
modified CLSW process for the reflected doppler test function. They are plotted
as the squared root of corrected periodogram.

The image plots are helpful to see the general patterns of the corrected esti-

mate of the EWS visually, but it is hard to see subtle changes without inspecting.

To see more detailed patterns of spectral estimates, Figure 6.4.4 and 6.4.5 show

line plots of the corrected estimate of the EWS on each scale from one example

model. Model BIC2 has relatively smooth spectral densities with a small number

of wavelet scales, so this model will be used for the line plots. The corrected

estimates of the EWS are plotted by different scaling. Figure 6.4.4 is the spectral

estimate standardised by the one scale factor chosen over the entire scales, while

Figure 6.4.5 shows the spectral estimate standardised by the scale factor chosen

from each scale. Equivalently to the pattern seen from Figure 6.4.3, the over-

all spectral densities tend to be stronger, when closer to the center and coarser

scales.

The notable scales on the lines plots are Scale 56, 64 and 70 with very high

spectral densities. Meanwhile, the fine scales from 2 to 12 are densely chosen

for Model BIC2, but the relative power of these scales are weak compared to the

other scales. Also, the spectral estimates on the first three coarsest scales, Scale

110, 160 and 196, are not that strong, but it can be considered as a spectral

representation from the low frequency characteristics in the middle.
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Figure 6.4.4: The global-scaled line plots for the corrected estimate of the EWS
from the modified CLSW process for the reflected doppler test function using the
BIC2 model.

The plots, standardised by each scale in Figure 6.4.5, shows how the estimated

spectra change within each scale. The fine scales between Scale 2 and 6 have

relatively low spectral densities compared to the other scales in Figure 6.4.4 due

to the low amplitudes, but show rapid oscillations of the estimated spectrum in

Figure 6.4.5. There are some unexpected patterns in the middle on those fine

scales, but the absolute values are relatively small compared to the spectra of

Scale 110 and 160.
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Figure 6.4.5: The level-scaled line plots for the corrected estimate of the EWS
from the modified CLSW process for the reflected doppler test function using the
BIC2 model.

6.4.2 Limiting the Number of Scales

The modified scale set of the CLSW process in (6.3.3), AM , seems to resolve a

part of distortion effects within the dense and redundant default scale set during

the correction process. Based on the improvement from the modified scale set for

the CLSW process, we can consider the size of a modified scale set as another

option. In the applications of the modified CLSW process in §6.4, the number

of scales is determined by the different criteria options and tolerance values in

the OMP algorithm. However, the CLSW process includes a correction process

to get an approximately unbiased estimator of the EWS. The operator A used
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for the correction is calculated based on the relationship between two scales, and

therefore the complexity and dimension of the operator A is related to the number

of scales in AM .

The operator A of the modified CLSW process is the subset of the default

operator A from the CLSW process, but the inverse matrix changes depending

on the choice of scales. As the number of scales increases, the structural changes

in the inverse of the operator A can cause to have more complicated correction

process with distortion effect between scales. Also, it may affect the asymptotic

elements in the expectation of the periodogram in equation (6.3.7) equivalently

to the fully CLSW process. Therefore, we limit the number of scales using the

same data in §6.4 and compare the estimated spectral densities.
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Figure 6.4.6: The image plots for the corrected estimate of the EWS from the
modified CLSW process (with 20, 18, 15, 12 and 10 wavelet scales) and the
discrete LSW process for the reflected doppler test function.

Here, the five different models are fitted for the reflected doppler test function:
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20, 18, 15, 12 and 10-scale models. We do not consider the kind of criteria for this

modelling, as the scales are added by the same order until 20-scale model using

the SSE and BIC. Figure 6.4.6 shows the image plots from these five models and

the discrete LSW process. As could be seen from the plots, the modified CLSW

processes show high spectral estimates between Scale 3 and 6 in all the scale set.

In particular, they tend to have very strong power of spectra in the middle near

Scale 3, which are coloured as yellow and red. Also, as we decrease the scale

dimension for the modified CLSW process, the reflected doppler test function

tends to retain spectral power at the wavelet scales near Scale 3 and excludes very

fine scales from the modified process. The estimates from the modified CLSW

processes show the different time-varying frequency characteristics at each scale

and their patterns seem to match the data structure of reflected doppler data

and the discrete EWS. However, compared to the modified CLSW process, the

discrete wavelet resolution levels have lower power of spectral estimates. Also,

since a small number of wavelet scales makes the modified CLSW process simpler,

the dimension reduction allows us to have the smoother spectral estimate.

In the similar way to the earlier analysis, we will see the line plots of the

corrected estimate of the EWS to investigate more detailed pattern in each scale.

The 18-scale model seems to have the smooth spectral estimates without much

loss of information in Figure 6.4.6. Therefore, we will use the model as a example.

Figure 6.4.7 show the line plots of the corrected estimate of the EWS scaled by

the entire values from all chosen scales. These plots are similar to the results

of Model BIC2 in Figure 6.4.4, but there is a little difference after controlling

the number of scales. The Scale 20 and 26 have slightly increased spectra than

Model BIC2, which seems to be due to the absence of the Scale 22 and 160 in the

modified 18-scale CLSW process. On the contrary, the Scale 110 has the lower

spectral estimates than before.
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Figure 6.4.7: The global-scaled line plots for the corrected estimate of the EWS
from the modified CLSW process for the reflected doppler test function using the
18-scale model.

The line plots of Figure 6.4.8 shows the spectral estimate standardised by

the scale factor from each scale to compare with Figure 6.4.5. They show more

sophisticated change within each scale after excluding the Scale 22, 28 and 160

from Model BIC2. As there is no change of fine scales at the first column, the

estimates look similar to the result of Model BIC2. However, on the second and

third column, there are some shrunk spectra especially in the middle in the middle

on Scale 20, 26, 32 and 56. Scale 110 showed the decreasing spectral estimates

in Figure 6.4.7, but the changed estimate centered in the middle seems to match

better the structure of the reflected doppler test function. These changes allow

us to have the better resolution in the image and line plots.
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Figure 6.4.8: The level-scaled line plots for the corrected estimate of the EWS
from the modified CLSW process for the reflected doppler test function using the
18-scale model.

6.4.3 The Application to the Real Tomography Data

In §5.5.2, we investigated the spectral characteristics using the real tomography

data modelled by our CLSW process. We will use the same example data to com-

pare the spectral estimates from the modified CLSW process with the previous

result. The example data consists of the segments of two different flow types,

“plug” flow and “bubble” flow, which was shown in Figure 5.5.6. In theory, the

tomography data has significantly different frequency characteristics between the

two states, but the estimated EWS of the fully CLSW process in Figure 5.5.7

does not display the frequency properties we expect from the continuous wavelet
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coefficients.

Here, we modify the scale set for the CLSW process to use a smaller number

of wavelet scales. As described in §6.3, the scales of the modified CLSW process

are chosen adaptively to the structure of the tomography dataset by using the

OMP algorithm. The criteria for scale selection are the same as the previous

reflected doppler test function analysis and the models are labelled equivalently

to them as well. Figure 6.4.9 shows the functions selected by the OMP algorithm.

Figure 6.4.9: The wavelet function selection of the tomography data by the OMP
algorithm

Model BIC has the smallest the number of functions due to the lower tolerance

value, 2 than the other models. In general, the chosen functions are gathered at

fine scales smaller than 50. Model BIC tends to have a denser group on the

first half compared to the other models. The “plug” data from the first half

has relatively wide fluctuations with a few spikes, while the “bubble” data from

the other half has many fine oscillations but does not change much. Therefore,

the “plug” data needs a wider range of wavelet scales to explain the frequency

characteristics than the “bubble” data. Meanwhile, the SSE and BIC0 models

choose wavelet functions spread over the two different states.
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Figure 6.4.10: The scale selections from the BIC, BIC0 and SSE models with a
comparison to the discrete wavelet resolution levels.

Based on the function selection, we can retain the scales for which at least one

function is selected by the OMP algorithm. Figure 6.4.10 shows the scale selection

and compares them to the discrete wavelet resolution levels. Model BIC2 has 27

scales and Model BIC0 and SSE have the identical 31 scales. Therefore, we will

refer to the BIC model as Model 1, and the BIC0 and SSE models as Model 2 to

simplify the interpretation.

(a) Model 1 (b) Model 2

Figure 6.4.11: The corrected estimate of EWS from the modified CLSW process
of the example tomography data

Figure 6.4.11 is the image plots of the corrected estimate of the EWS from

Model 1 and 2 using the example tomography data. These plots show distinct
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characteristics between the “plug” and “bubble” states. There are four short

intervals having sparse and high spectra on the “plug” state, which seem to match

the four spikes seen in the original data. Generally, Model 1 and 2 have similar

patterns of the spectral estimates, but the denser scale set between Scale 2-4 of

Model 2 suggests more detailed frequency characteristics about which scales are

related to the corresponding spikes.

The modified CLSW process can be adjusted by the number of scales as pro-

posed in §6.4.2. Figure 6.4.12 shows the estimate of the corrected EWS from the

modified CLSW process with the various scale numbers including the discrete

model. The modified CLSW processes tend to have high spectra between Scales

2 and 4. The 27-scale model has significantly high spectral estimates at the spikes

around Scale 4, the square roots of which are about 50. The 20-scale model in

Figure 6.4.12 retains the high spectral densities at Scale 3 and 5 equivalently

near the spikes, but the square roots of them are about 25. In the same spirit,

as the number of scales decreases, the range of EWS estimates tends to be nar-

rower. Since the image plots are scaled by the same colour scales to compare the

estimated EWS across the different scale sets, the 15-scaled and discrete mod-

els seem to have very low spectra due to the extremely high values in the other

denser models. However, they still have clear separations between two different

states, “bubble” and “plug”, and the very high spectra near the spikes, which

are shown in the 27-scale model, seem to spread to the neighbourhood. This

allows us to investigate frequency characteristics in a wide range of scales for the

spikes. In addition, the dimension reduction seems to control the smoothness of

corrected spectrum. In the modified CLSW process, the smaller the scale set is,

the smoother the corrected spectrum is given.
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Figure 6.4.12: The comparison of the corrected estimate of EWS from the 27-
scaled, 25-scaled, 20-scaled, 18-scaled, 15-scaled, 12-scaled and discrete models.

In comparison to the other above models, the 20-scaled model seems to explain

the frequency characteristics of the “plug” states without much loss of informa-

tion. Here, we will see the detailed trends in spectra within each scale by line

plots. The sparse and high spikes are mainly shown between Scale 4 and 5, and

the area between spikes are explained by the spectrum around Scale 3. Here, the

Scale 3 show some spectra between the spikes, which seems to be related to the

wide waveforms of the “plug” state in Figure 5.5.6. Also, the scale chosen for

the 20-scaled modified CLSW process is fitted with the 15 intermediate wavelet

scales and 5 discrete wavelet resolution levels.

Hence, we can conclude that there are useful spectral information from the

intermediate wavelet scales to explain the frequency characteristics of the real

tomography data. Also, limiting the number of wavelet scales can result in the

better resolution of spectra for the real tomography data.
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Figure 6.4.13: The line plots of the corrected estimate of EWS from the 18-scaled
CLSW process of example tomography data. The red coloured lines are the
estimate from the scale corresponding to the discrete wavelet resolution levels.

6.4.4 The Simulation of modified CLSW Process Based

on the Haar MA process

In §5.5.3, 100 replicates of the concatenated Haar MA processes were used to

estimate the EWS from the CLSW process. However, the corrected estimate of

EWS in Figure 5.5.9 did not show a clear frequency feature. We updated the
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wavelet scale set of the CLSW process following the definition of the modified

CLSW process in §5.4.1 and estimated the EWS from the modified process. Fig-

ure 6.4.14 is the collection of image plots of the square root of corrected estimates

of EWS from various numbers of wavelet scales.

Figure 6.4.14: The averaged corrected estimate of evolutionary wavelet spectra
from the modified CLSW processes over 100 replicates.

The orders of Haar MA processes, 2, 7, 10 and 32, correspond to the wavelet

resolution levels, 2, 3.8, 4.32 and 6, on the y-axis. All the estimated spectral

densities in Figure 6.4.14 were plotted under the same rainbow colour scale to

compare the estimates across the image plots.

There are some high spectral estimates coloured as bright green or red at both

edges of some coarse wavelet scales between 4 and 6. These high spectra seem

to be from the cone-shaped boundary effects, which are seen in other wavelet

transformations as well. In addition to the boundary effect, the image plots show

some useful frequency information not presented in Figure 5.5.9. For example,
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the first interval corresponding to the Haar MA process, x2(t), has relatively

high spectral estimates near Scale 2 compared to other wavelet scales and the

high spectra tend to be long lasting within the interval. In the same manner, the

scale, which has the steadily active and high spectral power at each interval, seems

to be near the wavelet scale corresponding to the order of the Haar MA process.

Also, although the number of wavelet scale set does not affect significantly the

main spectral feature within each process, the boundary effects tend to be weaker

in a smaller number of wavelet scales.

However, the wavelet frequency information depicted from the image plot

does not perfectly match the order of each process. For example, in the second

interval with the Haar MA process, x7(t), although the wavelet scales near 3.8

show relatively high spectral estimates, it is not easy to investigate the true order

of this Haar MA process from the image plot of the estimated EWS alone.

Also, the entire spectral power tends to decrease as the number of wavelet

scales for the modified CLSW process gets smaller. Our CLSW process and

modified CLSW process are constructed from the idea to create a representation

of data as a summation of wavelet signals. However, the continuous wavelet

transform is computed independently in each scale, and therefore, the total sum

of squared wavelet coefficients increases as more scales are added to the modified

wavelet scale set. Also, since the operator A has more elements in a denser scale

set, constructing its inverse is more complicated and the range of elements in the

inverse of the operator A is wider. The dependence of spectral energy on the

number of wavelet scales needs to be considered for future work.

6.5 Smoothing Wavelet Spectra

Nason et al. (2000) and von Sachs et al. (1997) demonstrate that the periodogram

of the LSW process is not a consistent estimator of EWS. To get a good estimate,

they applied two types of correction, using the inverse of the operator A and

smoothing to be consistent. In the same principle as the discrete LSW process,

the continuous LSW process is also not consistent as the asymptotic variance of

wavelet periodogram does not vanish. Hence, the wavelet periodogram of the

CLSW process also needs to be smoothed.

120



6.5 Smoothing Wavelet Spectra

In general wavelet methods, various smoothing techniques have been devel-

oped to cope with noisy data. The most commonly used and simplest thresholding

technique is the universal threshold introduced by Donoho & Johnstone (1994).

The threshold, λ, is defined by σ
√

2log n where σ is the noise level and n is the

length of data. The noise level, σ can be estimated by the median absolute devi-

ation of the wavelet coefficients from the finest wavelet scale. To shrink a wavelet

coefficient, d, based on the universal threshold, λ, soft and hard thresholding

functions are defined as

d∗hard = dI(d ≤ λ) (6.5.1)

d∗soft = sgn(d)(|d| − λ)I(d ≤ λ) (6.5.2)

by Donoho & Johnstone (1994). Under the assumption of gaussian process for

the error, it is known that the universal threshold can denoise the error with high

probability (Vidakovic, 1999).

In addition to the universal threshold, we can consider the use of Bayesian

methods. Johnstone & Silverman (2005) introduced the empirical Bayes selection

of wavelet threshold implemented in their R package, “Ebayesthresh” (Silverman

& Johnstone, 2005).

The smoothing for the modified CLSW process will be applied to the reflected

doppler test function and the real tomography data in §6.4. Since the fully CLSW

process does not generate meaningful spectral characteristic due to the distortion

effects from the redundant scale set, we only consider smoothing wavelet peri-

odogram for the modified CLSW process with the scale set chosen adaptively to

the data structure. The wavelet periodogram is smoothed first to denoise, and

we then correct the smoothed wavelet periodogram by the inverse of the operator

A to get the approximately unbiased EWS.

The reflected doppler test function in Figure 5.5.1 is generated from the

doppler function without any noise. But, to smooth the wavelet periodogram,

we add Gaussian noise to the reflected doppler test function and average the es-

timated EWS over 50 iterations. Figure 6.5.1 shows the mean of the smoothed

spectral estimate of EWS from the modified CLSW process over 50 iterations.

In each process, the scale set modified by using the OMP algorithm is different
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depending on noise of individual data. Hence, the mean of spectral densities at

each scale can be associated to how many datasets include the corresponding

scale. However, the change of spectra over time are independent with averaging

within each scale, and therefore we can still compare the mean of the smoothed

estimate of corrected EWS to the average of spectral characteristics for the data.

Figure 6.5.1: The mean of the corrected estimate of EWS from the modified
CLSW process over 50 iterations.

Figure 6.5.2 shows the smoothed estimate of the corrected EWS from the

20-scaled modified CLSW process using the real tomography data. Since the

tomography data is real data with noise, we do not consider to add more noise,

while the reflected doppler data added some Gaussian noise before smoothing

the wavelet spectra. The wavelet periodogram is smoothed by the universal and

Ebayes thresholds equivalently to the previous smoothing example.

As can be seen from the plots, it is difficult to find significant difference be-

tween these different threshold techniques. Here, we retain the hard universal

threshold and Ebayes threshold to see whether there are any more subtle differ-

ence revealed by the line plots in Figure 6.5.3. They still do not have any clearly

different patterns between the universal and Ebayes thresholds. Also, compared

to the estimate before smoothing in Figure 6.4.13, the smoothing does not make

a significant change in the wavelet periodogram for the real tomography data.

This could be because the noise level of the real tomography data is quite small,

so the noise may not have much influence on the wavelet periodogram.
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(a) Soft universal (b) Hard universal

(c) Ebayes

Figure 6.5.2: The image plots of the corrected estimate of EWS from the 20-scaled
CLSW process.

Although we only applied the universal threshold and Ebayes threshold for

the modified CLSW process, Nason et al. (2000) suggests using the translation

invariant denoising by the LSuniversal threshold explained in von Sachs et al.

(1997). The non-linear threshold of the discrete wavelet method enables the

discrete LSW process to estimate more statistically stable wavelet periodogram

with approximately vanishing variance, but we need to verify that the theories can

be applied to the dense continuous scale set. Also, Fryzlewicz & Nason (2006);

Fryzlewicz (2003) and Nason (2010) advocate using the idea of using wavelet Fisz

transform for smoothing the wavelet periodogram of the LSW process. We can

also consider investigating smoothing with the wavelet Fisz transform as future

research.
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(a) Hard universal threshold

(b) Ebayes threshold

Figure 6.5.3: The line plots of the corrected estimate of EWS from the 20-scaled
CLSW process.
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6.6 Conclusion

The modified CLSW process is aimed to decrease distortion effect between scales

through selection of a subset of scales from the fully continuous wavelet scale

set. The scale reduction in the modified scale set has a smaller number of ap-

proximation terms in the discrete sum over scales, by which we can expect to

narrow the boundary of approximation for the expected value of estimated EWS.

Applications of the modified CLSW process on the reflected doppler test function

and real tomography data show the improvement in the spectral estimation after

correction and limiting the number of scales can also revise the spectrum.

The estimated spectrum is not as smooth as that of the discrete LSW process,

but true spectrum is not always smooth or simple. Hence, if data has more

noisy spectral characteristics from various scales in between the discrete wavelet

resolution levels, the modified CLSW process can suggest more sophisticated

spectral analysis with the scale selection adaptive to data structure.

In our research, we considered the two tolerance value options, 0 and 2, for the

BIC option in the OMP algorithm. According to the BIC interpretation scheme

in Raftery (1995), an alternative model has a positive evidence to improve per-

formance compared to a null model when the BIC difference is larger than 2.

On the other hand, the BIC difference under 2 implies a weak evidence for an

alternative model and the alternative model is not worth to mention. However,

in our research, the tolerance value, 0, was also used to choose all wavelet func-

tions which have any small contribution to explaining data. In §6.4, Model BIC0

showed the very similar or identical wavelet scale sets to Model BIC2. There-

fore, based on the conventional BIC interpretation scheme and our application in

the modified CLSW process, the tolerance value, 2, may derive an appropriate

number of wavelet scales matching the structure of data, and we can consider

this tolerance value option as the default option to construct the modified CLSW

process. One possible direction for future work would be to investigate the effect

of using other tolerance values.

Although the modification of CLSW process showed the improved spectral

estimates in the example data analysis, there are still some points to be investi-

gated further. First, the modified CLSW process is given by the modified scale
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set, AM which we obtained from the OMP algorithm. In addition, the number

of scale set in the modified CLSW process can influence on the correction by the

operator A and we compared the spectral estimates over the different models in

§6.4.2. But, it is difficult to indicate which model shows spectral density more

clearly. Therefore, we need to find a way to choose the most appropriate number

of scales to use in representing a given data set. Also, there is still some noise in

the unexpected area especially on fine scales. The wavelet functions on fine scales

are easily included to explain details of data through the OMP algorithm, but the

dense set of fine scales still has risk to change the shape of spectral estimation.
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Chapter 7

Classification Model with the

CLSW process

7.1 Introduction

Chapter 3 and 4 built classification model based on the wavelet coefficients of the

DWT and CWT. They show that measurements derived from the wavelet coef-

ficients can support a classification to investigate the state of gas-fraction in the

air-liquid phase and the flexible scale selection of the CWT also enables us to im-

prove the accuracy of the modelling. Along with the result, Chapter 6 suggested

the locally stationary wavelet process on the CWT modifying via the matching

pursuit algorithm. Section 6.4 shows that the application on the modified CLSW

process gives better spectral resolution from intermediate frequencies between

discrete resolution levels. Here, we will apply the modified CLSW process to the

classification modelling problem, using an example of the vertical tomography

data. The main objective of this chapter is to to give an example of modelling

using the CLSW process. Therefore, we will fit a model using the spectrum on

one example of vertical tomography data rather than doing a complete modelling

over entire datasets.
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7.2 Modelling on the Vertical Tomography Data

7.2.1 Variables

The scale is chosen through the adapted OMP algorithm described in §6.3. We

denote the subset of scales chosen by our algorithm from the fully continuous

domain as AM . The basic principle of the modelling is equivalent to that used in

the modelling in Chapter 3. Recall that the objective of modelling is to classify

the current state of gas-fraction based on the past conductivity data from the

sensors. Therefore, the information available for modelling at time t consists of

all the data up to that time. First, denote the wavelet coefficients used for the

modelling as

diab =
∑
t∈[0,T )

fi(t)ψab(t) (7.2.1)

for the corresponding scale, a and shift, b where i is the id of a pair of sensors.

In our research, we restrict the wavelet function for modelling and construction

of the CLSW process to the Haar wavelet function with a compact support.

Therefore, the edge of the Haar basis function is set to be at t = b so that the

wavelet function, ψab(t) (7.2.1) targets the data before the time, t = b.

For simplicity, the mean of the absolute values of the wavelet coefficients is

used as an activity measure for the classification modelling. The activity measure

can be written as

xa(b) =
∑
i

|diab|
NI

, (7.2.2)

where NI is the total number of pairs of sensors for the experiment.

7.2.2 Models

To see the efficiency of the CLSW process and our scale selection approach for

modelling, we can compare the models fitted from different wavelet signals and

subsets of scales. With the simplest model of the discrete wavelet coefficients, the

estimated spectra of the discrete LSW process and modified CLSW process are

fitted for the example tomography data. Also, for the modified CLSW process,

§6.4.2 shows that using different cut-off thresholds during scale selection can
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present better resolution for the estimated EWS. Therefore, different numbers of

scales will be considered for the model comparison. Models are defined as follows:

• Model 1 : Wavelet coefficients of DWT

• Model 2 : Estimated EWS of the discrete LSW process

• Model 3 : Estimated EWS of the modified CLSW process (32 scales)

• Model 4 : Estimated EWS of the modified CLSW process (20 scales)

• Model 5 : Estimated EWS of the modified CLSW process (15 scales).

Model 3 has 32 scales, which is the maximum number of scales chosen through

the orthogonal matching pursuit algorithm.

Figure 7.2.1 shows the data trace of one sensor pair from the example dataset

used for this chapter. In the same spirit as the modelling in Chapter 3, the

first 256 observations are recorded from the “bubble” state and the other half is

from the “churn” state. The example used for plotting and the following data

exploration is the mean value of conductivity data over the 49 pairs of sensors,

but modelling will be done through an individual wavelet transformation of data

from each pair of sensors.

Figure 7.2.1: The vertical tomography dataset for a train set.

Based on the structure of this example data and continuous wavelet functions,

the scale set for the CLSW process is modified by using the OMP algorithm.

Figure 7.2.2 shows which wavelet frequencies are chosen in each model.
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Figure 7.2.2: The scale selection for Models 1-5.

Figure 7.2.3 is the image plot of the absolute wavelet coefficients from discrete

wavelet resolution levels. As we could guess from a few of rapid changes of Figure

7.2.1, there are some significantly high wavelet coefficients between t = 400 and

500.

Figure 7.2.3: The image of the absolute wavelet coefficients used for Model 1.

Following the discrete wavelet coefficients, Figure 7.2.4 shows the image plots

of the corrected estimate of the EWS based on the discrete LSW and modified

CLSW processes. These image plots were not scaled over the models due to very

small values of the estimated EWS in Model 2. The estimated spectrum from
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the discrete LSW process looks similar to the standard DWT, but the spectrum

estimated from the LSW process shows more active spectral features at the finer

wavelet levels compared to the wavelet coefficients. Meanwhile, the spectra based

on the modified CLSW processes, particularly at Model 3, have the dominant

spectral features around Scale 6. However, as the number of scales decreases, the

spectral density is prone to spread over the scales.

(a) Model 2 (b) Model 3

(c) Model 4 (d) Model 5

Figure 7.2.4: The image of the square root of the estimated EWS for Models 2-5.

7.3 Result

Logistic classification models were fitted to the wavelet coefficients from Model

1 and the corrected estimate of the EWS from the other models. We fitted each

model to the activity measures from the training set and tested that by using

the test set in one example dataset. Validation process is not considered in this

modelling due to the complexity of data generation in the LSW processes. The
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wavelet signals for activity measures were transformed individually from each

sensor pair and then averaged. Figure 7.3.1 shows the classification rates over

all fitted models. As can be seen, Model 1, which is fitted with the absolute

wavelet coefficients, has the highest accuracy among the five models. Also, more

variables give better results in general except for the sixth step. Here, as one

specific example dataset was used to see the efficiency of LSW processes in the

tomography data analysis, the fitted models might struggle to find a general

pattern of classification rates. However, based on the rapid fall of the classification

rate at the sixth step in Model 1, the variable added at this step seems to have

different characteristics relating to the gas-fraction states between the training

and test set. Meanwhile, the others fitted using the LSW process show poor

classification rates below 0.5. Model 2 has slightly better results than others

after the fifth step, but the classification rates are still very low and they seem

not to be improved by the addition of variables.

Figure 7.3.1: The comparison of classification rates on the test set.

The results mean that the discrete and modified continuous LSW process,
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do not seem to fit well for the example tomography data. The simple wavelet

coefficients from DWT predict the state of gas-fraction better compared to the

estimated EWS. The poor result may be caused from the structure of tomogra-

phy data. The data has different frequency features at the “bubble” and “churn”

states with a few large spikes. So, the frequency characteristic can be considered

as a time-changing factor depending on the state of gas-fraction. However, in

particular, the “churn” state is likely to have a few large spike period of rapidly

changing within a short time like Figure 7.2.1. In this case, the activity of the

estimated EWS tends to be concentrated into the spikes. This can be useful to

investigate the changing point of frequency features or the time points and scales

related to the spikes, but does not work with the classification of the vertical

tomography data. Also, Aykroyd et al. (2016) mentioned that the existing classi-

fication models are often based on an entire data set Krzemieniewska et al. (2014)

and Fryzlewicz & Ombao (2009) rather than a segment of data, and therefore it

can be not appropriate to classify the state at the specific time point for the

tomography data.

7.4 Conclusion

This chapter fitted logistic classification models to the vertical tomography data

using different estimated evolutionary wavelet spectra as explanatory variables.

As the modelling is only carried out for one specific example dataset, it is difficult

to get a general conclusion of regression with the CLSW process. However, we

can have a glimpse of the modelling and its limitation.

The classification models were built over various choices of the scales and the

kinds of wavelet signal. We compared the classification result from the wavelet

coefficients to those from the estimated EWS. In general, the models with the

LSW process are not as good as the models with the discrete wavelet coefficients.

These poor classification rates imply that the LSW process does not seem to pro-

vide good explanatory variables for use in a regression model for the tomography

data.

With the low accuracy of prediction, there are a few of limitations of modelling

with the CLSW process. Since the standard CLSW process has a very redundant

133



7.4 Conclusion

set of wavelet functions, we decided to alter the set of scales by using the adapted

OMP algorithm. The scale reduction can be considered as a variable selection

step, but the modelling requires another variable selection step. The objectives of

these two steps are different in that the first is to find the best subset of wavelet

scales matching to the stochastic data and the other is to find the best variables

to explain the relationship between the stochastic data and responses. However,

the processes can be considered as duplicated work. One possibility for future

work would be to investigate a single variable selection step which attempts to

satisfy both criteria.

The computational cost is also another problem. The modified CLSW process

reduces the scale dimension by the OMP algorithm, whose computational cost

is related to the number of basis functions. The tomography example dataset

is relatively small having 512 observations giving 128 scales, so the computa-

tional effort is not very expensive. However, the horizontal tomography data in

Chapter 7 has a long sequence of data, over 3000 observation giving 1024 scales.

Accordingly, the number of scales needed to check for the OMP algorithm is over

3,000,000, which is very computationally expensive with a big memory usage.

The current R package is not ideal for such a big data problem, so we should

devise more advanced computing techniques to save the cost and to expand the

process into bigger data.

In conclusion, although the modelling with the CLSW process did not give

a satisfactory result on this tomography data, the result shows that the choice

of wavelet signal can be important depending on the structure of data and the

objective of modelling. Also, the limitation found in the modelling will enable us

to consider the future direction of the research with the computation costs.

134



Chapter 8

Conclusion

8.1 Summary

The thesis focused on the application of the continuous wavelet methods and the

development of statistical modelling tool using the wavelets.

In Chapter 3 and 4, we fitted a logistic regression model to the tomography

data based on wavelet methods. Time-frequency methods have been used in

the signal processing field to understand frequency characteristics that change

over time or are non-stationary (Papandreou-Suppappola, 2018) and the wavelet

method is one useful example of time-frequency methods due to the localised

natural wavelet functions. The frequency properties of tomographic conductivity

data changes over time depending on the state of the gas-fraction, so we expected

that the wavelet methods would be suitable to investigate the time-changing

frequency features of signals. Aykroyd et al. (2016) had shown that a classification

model based on the discrete wavelet transform (DWT) generated meaningful

results. Although the data used in Chapter 3 is the same as Aykroyd et al. (2016),

we expanded the scale set to the continuous domain to consider the benefit of non-

discrete wavelet levels for analysing the tomography data. We created the five

different sets of wavelet scales in varying degrees of denseness and compared the

classification rates to see the impact of different initial scale-selection processes

before subsequently choosing scales by variable selection when fitting a model. In

general, the models fitted using the discrete wavelet levels and fully continuous
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wavelet scales tended to produce lower classification rates than other scale sets

with initial scale selection.

The classification model selected scale variables by the given criteria, “BIC”

and “CCR”. In particular, the first two variables chosen from the scale set are

considered to play a significant role for classifying the gas-flow states by the largest

change of the criteria. The scatter plots of the first two variables showed that

a considerable number of variables represent the activity at non-discrete scales.

That means that the continuous wavelet scales can give better understanding of

the tomography data than using just the discrete wavelet resolution levels. Also,

the use of an initial scale-selection process can improve the classification model

using a smaller number of scales.

Chapter 4 fitted a classification model to the vertical flow tomography data.

In the tomography data, the direction of the pipe and liquid flow can affect the

mechanism of bubble formation. To supplement the previous modelling using

the vertical tomography data analysis, we considered models based on the DWT

and CWT. The modelling method and variable selection process used for the

horizontal data are equivalent to the vertical tomography data modelling, but the

pre-selected scale set was used for fitting according to the result in Chapter 3. The

horizontal tomography data modelling also showed that the choice of intermediate

variables, between the discrete wavelet resolution levels, which implied that the

non-discrete wavelet frequencies, can be helpful to describe the frequency features

of the horizontal tomography data. However, the low accuracy of classification

in the “slug” regime needs to be improved in the future research.

This study aimed to extend the locally stationary wavelet (LSW) process with

the continuous wavelet transform (CWT) in order to see the spectral features of

data from intermediate levels between discrete wavelet resolution levels. The

continuous LSW (CLSW) process designed in Chapter 5 was built on the fully

continuous wavelet scale set. In the same spirit as the standard LSW process

(Nason et al., 2000), we imposed the Lipschitz continuity assumption to require

the spectral characteristics of data not to change too quickly over time. In theory,

the estimated evolutionary wavelet spectrum (EWS) can be corrected to be an

approximately unbiased statistic by the operator A calculated from the wavelet

correlation, but the application in §5.5 showed that the calculated result was
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different to the true spectrum that we expected. A possible reason of poor reso-

lution of the estimated EWS may be the different structure of the inverse A and

the increasing sum of asymptotic terms due to the dense and highly correlated

scale set.

Therefore, Chapter 6 suggested the selection of a subset of scales to modify

the CLSW process using the idea of the orthogonal matching pursuit (OMP)

algorithm. The principle of the matching pursuit (MP) algorithm is to choose

the combination of basis functions matching the data structure. While the MP

algorithm is for an orthogonal basis function space, the OMP algorithm enables

the use of the algorithm to work for non-orthogonal function spaces. This ex-

tension can be applied to the continuous wavelet functions as well. We modified

the CLSW process so that they were defined over the scale set chosen from the

OMP algorithm. In the application with the example datasets in §6.4 and §6.4.3,

the reduced scale set showed a clearer estimation of spectral density than the de-

fault CLSW process from the fully continuous scale set. The performance of the

estimation of the EWS can be adjusted by the number and the choice of scales

included in the modified CLSW process, but there is no definitive criteria yet to

determine an optimal cut-off threshold of the number of scales to retain.

Based on the good performance of classification modelling in Chapters 3 and

4, and the improvement of spectral estimation in the modified CLSW process, we

fitted the classification models using the explanatory variables based on the mod-

ified CLSW process. Chapter 7 showed that the model using the CLSW-derived

variables from an example dataset of the vertical tomography data had a lower

classification rate compared to the DWT based the models already investigated.

As the tomography data seems to be non-stationary with a few large spikes within

short intervals, we speculate that this characteristics may not be well explained

by the CLSW process. As in many modelling context, we need to assess which

method is better for data we have.
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8.2 Future Work for the Tomography Data Anal-

ysis

Our logistic regression modelling for the vertical and horizontal tomography data

showed the necessity of continuous wavelet scales to understand the frequency

structure of the tomography data. In this section, we will suggest some ideas as

future work for the tomography classification modelling.

The ultimate goal of the tomography modelling is to predict the state of a gas-

fraction in real time. In our modelling, the backward facing option was used for

the wavelet transformation to investigate the relationship between the frequency

features and gas-fraction states from the data until specific time points. With

the backward facing data, we can consider an algorithm for online inference for

the future research.

Also, the horizontal tomography data used in §4 has different portions of

gas-flow states, “bubble”, “slug” and “plug”. The unbalance of data between

classes can derive a biased classification result. King & Zeng (2001) showed that

the maximum likelihood estimate is biased in the logistic regression of unbalanced

data. To cope with this problem, they suggested the correction methods based on

the prior information in a population and the proportion of each class in samples.

These correction methods can be considered in our modelling to mitigate the

influence of class imbalance on the accuracy of classification.

In our research, we assume that the tomography data is independent over

time. However, in practice, the voltage data seems to be correlated over time

and the gas-fraction state at a certain time point is likely to be affected by the

neighbouring data. To handle the correlation issue, we can consider to incorporate

appropriate dependence of time points to the future model.

8.3 Future Work for the CLSW process

The modified CLSW process has the improvement of resolution in spectral esti-

mation, but there are still some limitations. Here are a few ideas for future work

to develop the results of this thesis.
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8.3.1 The Assumption between Scales

The CWT has more redundant information than the non-decimated DWT, and

therefore the CLSW process requires extra work to cope with this problem. This

thesis has suggested dimension reduction imposing the OMP algorithm in Chapter

6 as a remedy for the redundancy. Since the redundancy comes from the more

dense scale set of the CWT, we could consider more strict assumptions over scales.

A correction process, considering how quickly activity can change over both time

and scale, may improve spectral resolution for the EWS.

8.3.2 Theoretical Foundation for the CLSW Process

Chapter 6 suggested the modifed CLSW process with the scale set updated by

using the OMP algorithm. The modification reduces the dimension of wavelet

scales for the CLSW process, and the estimated spectra seem to be more rea-

sonable than the estimates from the standard CLSW process in that the spectral

power is shown near where it is expected to be based on the frequency structure

of data.

However, statistical theories for the CLSW and modified CLSW processes are

not established to justify the use of EWS for spectral analysis. For example, in

the discrete LSW process, the motivation of estimating spectral characteristics

through the EWS is based on the relationship between the EWS, Sj(k/T ), and

the auto-covariance, Cov(Xt, Xt+k), proved in Nason et al., 2000. However, in

this thesis, we did not consider the auto-covariance of the CLSW process.

Therefore, an important direction for future work is to consider theoretical

arguments for the future research including the relationship between the auto-

covariance and EWS to get a justification to estimate spectral characteristics

through the EWS, Sa(b/T ). However, the theoretical foundation of the discrete

and continuous LSW processes are based on the asymptotic behaviours derived

from the assumption of Lipschitz continuity of Wj(k/T ) and Wa(b/T ). As pre-

viously mentioned in §5.6, the dimension expansion of wavelet scales and their

high correlations in the CLSW process may affect the asymptotic computation,

and therefore we may need stronger assumptions.
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8.3.3 Faster Computing Technique

Calculations of the modified CLSW process are in R. In particular, selecting a

scale set is done via the package, “Rfast”, Papadakis et al. (2020) in R. This R

package efficiently chooses the basis functions adaptively to data that we have,

but as the number of functions increases, so does the computational load. The

horizontal tomography data in Chapter 4 has 3072 observations with 1024 possible

Haar wavelet scales for classification modelling. For this case, the total number

of basis functions is 3,145,728, so the “Rfast” package cannot work with the

high dimensional matrix of basis functions. To speed up the computing process

and enable analysis of larger data sets, we could consider implementation in

fast complied languages such as C++. Otherwise, it may be possible to develop

improved algorithms that work faster for scale selection.

8.3.4 The Applications of Different Wavelet Functions

In this thesis, only the Haar wavelet function has been used for the construction

of the CLSW process. The Haar wavelet function is the simplest wavelet func-

tion and is advantageous in terms of easy interpretation. However, as the Haar

wavelet function has discontinuity, the CWT with the Haar wavelet function may

not work very well depending on the wavelet scale set that we use. Therefore,

we can consider other wavelet functions for the CLSW process. There are var-

ious of wavelet functions available to use in the DWT and CWT. For example,

Mexican Hat wavelet and Daubechies’ other wavelet functions can be considered

for the real-valued wavelet transform. However, our CLSW process assumes that

a wavelet function is compactly supported, especially for the invertible operator

A. Therefore, we should select a wavelet function to have a compact support.

The first approach that we can consider is the approximation of compactly

supported wavelet function used in the DWT. Daubechies (1988) constructed or-

thonormal and compactly supported basis functions with strict regularity condi-

tions. However, they are based on the multi-resolution analysis using the concept

of filters. In the CWT, as there no longer exists a relationship between scales

such as the multi-resolution analysis, the Daubechies’ wavelet function is difficult

to generate with continuous scales. Instead, we can get an approximate function
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for non-discrete wavelet scales by a linear interpolation. This allows us to esti-

mate the wavelet function values from intermediate wavelet levels based on the

given discrete wavelet function values. Suppose that we use the Daubechies 4 tap

wavelet function for the CLSW process. Figure 8.3.1 shows the Daubechies tap 4

wavelet function with the length of 16 at the level, j = 2. Then, we can use the

linear interpolation values as approximations at the intermediate x points.

Figure 8.3.1: The example of linear interpolation with the Daubechies 4 tap
wavelet function: given values (black dots) and approximations (red dots).

But, we need to re-consider the scaling constant for the generation of a wavelet

function because of the relationship of the continuous wavelet functions,

ψa,b(x) =

√
1

a

(
1

a
(x− b)

)
. (8.3.1)

The scaling constant can be determined depend on the model function used for

approximation. Figure 8.3.2 shows the example of approximation of a wavelet

function to the intermediate wavelet levels. The model function on the left is the

wavelet function at the level, j = 2 with 1024 observations. The discrete wavelet

resolution level corresponds to the continuous level, a = 256/1024. By a linear

interpolation, the line plot on the right shows the approximate wavelet function

at j = 1.415 or a = 384/1024 considering a scaling constant.
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Figure 8.3.2: The Daubechies 4 tap wavelet function.

The second approach is to truncate a wavelet function to have a compact

support. For example, the Mexican Hat wavelet function is the second derivative

of the Gaussian function. This function is known to be useful for sensitive signal

data such as seismic data. The wavelet function does not have a compact support,

and therefore we cannot guarantee the existence of the invertible operator A for

the correction of bias. To overcome the limitation, we can store a portion of the

true wavelet function that we want and truncate the rest to zero. However, the

conditions for the CWT, such as admissibility, are no longer valid for those two

cases. However, in actual data analysis, if we are careful to keep the original

structure of a wavelet function as much as we can, it may not make much effect

on results.

142



References

Adler, A., Boyle, A., Braun, F., Crabb, M.G., Grychtol, B., Lion-

heart, W.R., Tregidgo, H.F. & Yerworth, R. (2017). EIDORS Version

3.9. ELECTRICAL IMPEDANCE TOMOGRAPHY , 21, 63. 27

Aharon, M., Elad, M. & Bruckstein, A. (2006). K-SVD: An algorithm for

designing overcomplete dictionaries for sparse representation. IEEE Transac-

tions on Signal Processing , 54, 4311–4322. 94

Antoniadis, A. (2007). Wavelet Methods in statistics: some recent develop-

ments and their applications. Statistics Surveys , 1, 16–55. 12

Aykroyd, R.G., Barber, S. & Miller, L.R. (2016). Classification of multi-

ple time signals using localized frequency characteristics applied to industrial

process monitoring. Computational Statistics & Data Analysis , 94, 351–362.

ii, 2, 26, 27, 29, 32, 36, 133, 135

Behkish, A., Lemoine, R., Sehabiague, L., Oukaci, R. & Morsi, B.I.

(2007). Gas holdup and bubble size behavior in a large-scale slurry bubble

column reactor operating with an organic liquid under elevated pressures and

temperatures. Chemical Engineering Journal , 128, 69–84. 25

Bergeaud, F. & Mallat, S. (1995). Matching pursuit of images. In Proceed-

ings., International Conference on Image Processing , vol. 1, 53–56, IEEE. 94

Bicego, M., Murino, V. & Figueiredo, M.A. (2004). Similarity-based clas-

sification of sequences using hidden markov models. Pattern Recognition, 37,

2281–2291. 94

143



REFERENCES

Birr, S., Volgushev, S., Kley, T., Dette, H. & Hallin, M. (2017).

Quantile spectral analysis for locally stationary time series. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 79, 1619–1643. 70

Brauner, N. & Barnea, D. (1986). Slug/churn transition in upward gas-liquid

flow. Chemical Engineering Science, 41, 159–163. 25

Cardinali, A. & Nason, G.P. (2017). Locally stationary wavelet packet pro-

cesses: basis selection and model fitting. Journal of Time Series Analysis , 38,

151–174. 73, 93

Chen, S.S., Donoho, D.L. & Saunders, M.A. (2001). Atomic decomposition

by basis pursuit. SIAM review , 43, 129–159. 94

Chipman, H.A., Kolaczyk, E.D. & McCulloch, R.E. (1997). Adaptive

Bayesian wavelet shrinkage. Journal of the American Statistical Association,

92, 1413–1421. 12

Cho, H. & Fryzlewicz, P. (2015). Multiple-change-point detection for high

dimensional time series via sparsified binary segmentation. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 77, 475–507. 71
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