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Abstract

The ways in which animals move are a complex phenomena, from small scale interactions to
larger migratory movement. Internal and external stimuli govern a variety of behavioural
patterns whose processes are vital for species survival. Analysing these movement and
behavioural processes can have significant applications for conservation and management.
Although there are many statistical tools readily available for investigating animal movement,
they are largely directed towards individual-level cases and do not consider the group
movement present in collective species such as ungulates.

This thesis aims to redress the shortcomings of statistical literature by providing a modelling
framework for collective animal movement in continuous time. Our modelling approach
builds upon general themes of group movement originally put forward by Langrock et al.
(2014), where each individual in the group is at times attracted to an unobserved leading point.
However, the behaviour of each individual can switch between ‘following the group’ and
‘moving independently’, modelled as an Ornstein Uhlenbeck process and Brownian motion
respectively. The movement of the leading point is also modelled as an Ornstein-Uhlenbeck
process or, if we forgo the leader’s drift term, as Brownian motion. An inhomogeneous
Kalman filter Markov chain Monte Carlo algorithm is used to estimate the diffusion and
switching parameters and the behavioural states of each individual at a given time point.

We assess the model’s performance in a variety of simulated settings before providing
a real world application using the location data of semi-domesticated reindeer (rangifer
tarandus). We extend this methodology by allowing switching to depend explicitly on
covariate information. We define a general auxiliary model for the inclusion of covariate
data which accounts for a wide range of environmental heterogeneity. We give a simulated
illustration where the animals switch behaviour sinusoidally depending on the time of day.
Then, we revisit the reindeer application by including covariate data on insect harassment,
which is thought to influence reindeer movement.
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Chapter 1

Introduction

The ways in which animals move are a complex phenomena, from small scale interactions
with the environment to larger migratory movement. Internal and external stimuli govern
behavioural patterns in animals which lead to individuals exhibiting a variety of movement
processes. These processes are vital for species survival. Historically, our understanding
of animal movement was by reason of observational studies which are clearly limited to
non-elusive focal species. As animal tracking technology has advanced we have been gifted
with a wealth of data from myriad species. However, the statistical tools required to analyse
such data have not evolved at the same rate. That said, there has been a drive to develop
tools that underpin movement mechanisms and give us better insight into the intricacy of the
natural world, helping us to overcome ecological challenges such as mitigating species loss.

Knowing where animals go and why can contribute to a detailed understanding of animal
ecology (Cagnacci et al., 2010). The increasing wealth of knowledge surrounding animals’
resource use, movement patterns and behavioural drivers can have significant applications
for conservation, food and disease spread (Kays et al., 2015). Existing research in animal
movement has shed light on home ranges (Merkle et al., 2017; Moorcroft et al., 1999),
territory formation (Potts and Lewis, 2014), social interactions within collective migration
(Torney et al., 2018), sites of interest (Munden et al., 2019), resource selection (Wang et al.,
2019) and group cohesion (Bode et al., 2011) as well as a multitude of other topics of interest.

At present we live in constant change where the natural world suffers the consequences
of rapid alterations in which species face extinction (Thomas et al., 2004). The climate
is changing drastically, especially around the polar regions (Pörtner et al., 2019) and both
the direct and indirect effects can force unnecessary demands on species (Pape and Löffler,
2012; Tyler et al., 2007; Vistnes et al., 2004). For example, direct consequences of climate



2 Introduction

change can be seen in Arctic ice sheet melt leading to higher sea levels and threats to coastal
habitats (Pörtner et al., 2019) and warmer winters see more rain-on-snow events where
vital forage is compacted beneath hardened ice (Forbes et al., 2016). On the other hand,
the increase in the abundance of warm weather parasitic insects such as mosquitoes is an
indirect consequence of climate change (Gunn, 2016). Additionally, in an effort to avoid
anthropogenic activities such as infrastructure development and agriculture, animals may
relocate and select alternative resources that may not be as well suited (Hall et al., 2006;
Polfus et al., 2011; Rowland et al., 2000; Skarin and Åhman, 2014; Vistnes et al., 2008).

This has motivated considerations of animal movement modelling in response to environ-
mental cues. Enriching our understanding of movement by quantifying behavioural drivers
can help to put provisions in place to mitigate biodiversity loss and promote the well-being
and conservation of species.

1.1 Animal Movement: Data and Modelling

When an interest in animal ecology first emerged, understanding animal behaviour was a
challenging task. Often, it involved laborious hours of direct field observations, clearly
limited by observer bias and visibility of the species. Later, technologies which recorded
locations of animals were used. These involved recapturing the individual to obtain the data
and only very low resolution observations could be made. However, a rapid improvement in
technology has led to an increase in accuracy, duration and taxa studied (Hooten et al., 2018).
High resolution location observations with multiple fixes per day, hour and even minutes
can now be made remotely in an unobtrusive fashion, allowing animals to behave more
naturally. This has provided the ecological community with exciting revelations such as the
circumpolar migrations of the albatross (Croxall et al., 2005) or the complex and collective
decision processes of baboons (Strandburg-Peshkin et al., 2015); discoveries that would not
have been possible using traditional methods. Thus, our understanding of animal movement
is growing in complexity and more interesting biological and ecological questions can be
answered with improved precision.

Modern animal movement data is a collection of an animal’s locations throughout time.
This data is usually collected in the form of an electronic tag. However, these devices have
changed significantly since their early use in the 1960’s (Cagnacci et al., 2010; Hebblewhite
and Haydon, 2010). In the past, very high frequency (VHF) radio transmitters were popular
tags. Early instances of their use were in studies to track Yellowstone grizzly bear winter
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den sites (Craighead and Craighead, 1972) and incidentally the respiration of a mallard duck
whilst in a flying motion (Lord et al., 1962). However, VHF telemetry devices are variable in
accuracy with precision of 200-600m (Thomas et al., 2011; Zimmerman and Powell, 1995).
Now, more commonly used telemetry devices for the collection of animal locations are the
Global Positioning System (GPS) and the Argos system, both of which have been heavily
implemented since the early 1990’s. There has been much discussion on the accuracy of these
systems but it is generally agreed upon that the location error of GPS devices are usually
smaller than that of the Argos system (Frair et al., 2010; Patterson et al., 2010), with GPS
devices providing a location accuracy of <30m (Tomkiewicz et al., 2010). Throughout this
thesis we will be concerned only with GPS movement data. However, it is worth noting that
there are many other types of movement data available such as capture-recapture and ringing
which are not discussed in this thesis.

GPS data is usually recorded in two dimensions for land-based animals. This is naturally
given as the latitude and longitudinal coordinates. For marine or aerial animals GPS data
is typically given in the two-dimensional horizontal plane with an additional recording of
depth or altitude. Location data can be used simultaneously with other bio-logging devices
such as accelerometers and heart-rate monitors which provide physiological information e.g.
energetic expenditure (Cooke et al., 2004). In recent developments, oceanographers have
used bio-logging devices attached to marine mammals to record environmental information
such as temperature, salinity and currents to create detailed profiles of the Southern Indian
ocean (Roquet et al., 2014).

In recent years GPS tracking device technology has significantly improved. The batteries
which once powered them are now lighter and in some cases can be recharged on the move
with solar power. That said, it is now possible to ethically tag animals for longer with the
possibility of increasingly higher resolutions; sampling frequencies can now be as little as
every minute for multiple years. The sampling frequency often affects the intensity of data
management and ease of computational analysis and with tracking data now entering the
realm of ‘big data’ (Kays et al., 2015) it is important that the sampling frequency is carefully
chosen by what is of interest. Taking location observations once a day will be of little use to
questions about small scale behavioural patterns, but may well help in studies of migration.

In addition, a decrease in the price of telemetry devices has made multi-individual tagging
more economically feasible. This has opened up new avenues for going beyond the conven-
tional studies of individual-level movement and exploring how individuals move in relation
to each other. This is particularly useful for investigating collective animal movement or
grouping dynamics of a species, which has generally been overlooked in favour of individual-
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level studies. However, GPS tags are still significantly more expensive than VHF devices
meaning that researchers have to make trade-offs between the accuracy of using GPS units
and the sample size in which they can afford to tag (Tomkiewicz et al., 2010).

Despite the rapid and continuing development of animal tracking equipment, the statistical
tools needed to analyse such data have not advanced as quickly (Breed et al., 2011; Jonsen
et al., 2003). Descriptions of individual-level movement are commonplace in the literature
but there has been slower progress for collective movement, which is essential for social
species whose movement is dependent on others. Inferences of group-level behaviour
necessitate the collection of location data from multiple animals which has only recently
become technologically feasible. Thus, there is a new drive for getting up to speed with
statistical methods for analysing group-level movement. Some studies have approached this
gap by providing metrics for collective movement such as statistics that quantify proximity
and co-ordination but these are usually limited to dyadic interactions (Joo et al., 2018; Long
et al., 2014). Whilst these practices can be useful, the results are unlikely to be consistent
depending on which animals are tagged within a group. As with individual-level studies,
we require an explicit and coherent model of movement but with additional properties to
account for dependency between individuals. Although the affordability of electronic tags
has enabled extensive deployment to simultaneously track multiple individuals, some species
collectives are too large to practically or affordably tag every individual. Thus, a useful and
favourable model of movement is one whose inference is invariant on who or how many
individuals are tagged.

Langrock et al. (2014) provide an explicit model of group movement where each animal
is linked indirectly via a ’leading’ point of attraction (see Section 3.1 for a more detailed
description). This offers a good foundation for modelling group movement however, their
model and inference method are limited to discrete time. This is not an uncommon practice
since location data from an electronic tag are usually obtained at discrete time points and
many models use this directly for convenience. However, many problems can arise with this
technique. Firstly, regardless of resolution, location data from electronic tags come with their
own errors and irregularities such as missing and delayed observations which can hinder
fitting models (Niu et al., 2016) and inferences on movement and behavioural patterns (Frair
et al., 2010). The inference of movement parameters in discrete-time models are also limited
to a fixed ‘grid’ of times usually determined by the sampling frequency of the observations.
The scale-dependent nature of these models means that it can be difficult to use the same
model to compare datasets with different observation sampling schemes or to analyse data
with missing/delayed observations. One avenue to combat these problems is to develop
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continuous-time models which naturally fit with the way in which animals move (Harris and
Blackwell, 2013). However, this area has been under-developed largely due to difficulty in
parameter interpretation and computational demand.

Niu et al. (2016) alleviates some of these issues by presenting novel methodology for
modelling group animal movement in continuous time using diffusion processes (see Section
2.5.1). The underlying theme echoes that of Langrock et al. (2014) insofar as each individual
of the group is attracted to a (generally unobserved) leading point, and the movement of the
leading point exhibits its own movement process with attraction to an unknown attractor.
However, this methodology restricts movement to a single underlying process. In reality,
animals display a range of behaviours and movement patterns which ought to be accounted
for. Thus, a model of group movement with the possibility of behavioural switching would
relieve this naivety.

1.2 Thesis Aims

This thesis aims to redress the shortcomings of group movement literature by providing a
statistical framework for collective animal movement in continuous time with behavioural
switching. The material extends previous work of Niu et al. (2016), by acknowledging the
diversity of animal movement we allow individuals to switch between ‘following the group’
and ‘independent movement’. In addition, we give flexibility to the model by allowing the
leader to have no attraction point. This is particularly useful if there is no tractable point of
attraction on the time scale of the data, for example if the duration is short relative to the
movement towards a particular location; this work is presented in Niu et al. (2020).

We assess whether the model can distinguish between different behavioural modes under
contrasting environmental settings. Specifically, we use the real location data of semi-
domesticated reindeer (rangifer tarandus) during two different time periods in summer, early
and peak, where we expect low or high parasitic harassment respectively.

We formalise this methodology by allowing behavioural switching to depend on covariate
information. We define a general auxiliary model for the inclusion of covariate data to
account for a wide range of environmental heterogeneity. We use this covariate model to
revisit reindeer grouping dynamics in response to insect harassment. We use weather data as
a proxy for insect presence and investigate a variety of harassment models as a covariate for
movement. We give a second illustration using a simulation experiment where the animals
switch behavioural sinusoidally depending on the time of day.
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1.3 Thesis Outline

Chapter 2: Statistical Methodology and Literature Review

This chapter initially presents the statistical methodology required for reviewing existing
literature of animal movement models. Specifically, we discuss state space models (SSM),
Kalman filters and Markov chain Monte Carlo (MCMC). Then we review current and
common approaches of modelling animal movement in both discrete and continuous time.
We give detailed descriptions of popular tools used in animal movement models such as
random walks, Hidden Markov models, Brownian motion and Ornstein-Uhlenbeck diffusion
processes. This chapter is restricted to individual-level movement models and we reserve
discussion of group-level models for Chapter 3.

Chapter 3: Modelling Collective Movement

We begin by discussing the importance of collective movement in the animal kingdom and
highlight that cohesion and coordination in some species is necessary for their survival. We
acknowledge that the statistical tools used to analyse such phenomena are largely under-
studied which motivates the need for research in modelling collective animal movement.
We review existing literature of modelling group movement with special focus on the Orn-
stein Uhlenbeck approach presented in Niu et al. (2016). We highlight the possibility of
a leading point having no attractor and demonstrate a non-stationary version of the model
in this case. Section 3.4 presents an extension to this model which allows for behavioural
switching between two modes; following the group and moving independently. Section 3.5
provides inference for the model including details of the trajectories simulation, state space
formulation and application of the inhomogeneous Kalman filter. The chapter is finalised
with several simulation experiments using data-sets with varying underlying processes.

Chapter 4: Case Study: Collective Reindeer Movement

This chapter gives an application of the movement models presented in Chapter 3 using the
real location data of reindeer (rangifer tarandus). We begin by understanding the importance
of reindeer populations and what conservation and management implications modelling their
movement may have. We provide insight into reindeer habitat, behavioural traits and the
challenges they face as a result of the direct and indirect consequences of anthropogenic
activities and climatic change. Section 4.2 gives a description of the reindeer movement data
collected by my co-supervisor, Anna Skarin. Section 4.3 applies the original non-switching
model of Niu et al. (2016). We then compare this to an application of the switching model
presented in Section 4.4 to the same location data.
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Chapter 5: Reindeer Grouping Strategies for the Relief of Insect Harassment

This chapter presents a case study of the switching model by highlighting reindeer grouping
strategies for the relief from insect harassment. We begin by introducing the concept of
insect harassment and stress the detrimental effects parasitic pressure can have on reindeer.
Section 5.1 reviews indices of insect harassment, primarily using weather variables as a
proxy for insect presence. In Section 5.3 and 5.4 we apply the switching model presented in
Section 3.4 to two datasets of reindeer locations assumed to be during contrasting levels of
insect harassment. We investigate whether the model is able to distinguish between different
behavioural patterns and give results consistent with the knowledge of reindeer movement.
We show that the model captures contrasting movement and behavioural processes during
those two time periods.

Chapter 6: A Model for Group Movement with Switching and Covariate Data

Motivated by the results of Chapter 5, we acknowledge that animal movement is often
influenced by internal or external stimuli. As a result, in this chapter we develop a framework
for explicitly including covariate information by allowing switches in behaviour to be
dependent on ancillary data. Section 6.2 provides an illustration of this covariate model
using simulated data whose switching rates depend sinusoidally on the time of day. We
conclude the chapter by revisiting the reindeer application given in Chapter 5 where we
formally include covariate data on insect harassment into the model. We compare this to
the previous application using the non-covariate model where the switching rates were not
dependent on insect harassment.

Chapter 7: Discussion and Further Work

This chapter provides a summary of the thesis and gives a discussion of the conducted
research. I conclude with a description of potential avenues for future work which include
general modifications to the modelling approach and developments specific to reindeer
applications.





Chapter 2

Statistical Methodology and Literature
Review

In this chapter we present statistical methodology which will reoccur throughout this thesis
and be useful for reviewing the existing literature of animal movement models. We begin
by introducing state-space models (SSMs); these are a popular and useful framework now
used extensively in ecology. We review the Kalman filter algorithm which allows for exact
inference on a specific group of SSMs. We also discuss other methods for fitting models to
ecological data using frequentist approaches such as maximum likelihood estimation (MLE)
and Bayesian methods such as Markov chain Monte Carlo. Then we discuss current and
common approaches to modelling animal movement, separating our overview into discrete
and continuous time models.

2.1 State-space Models (SSM)

State-space models (SSMs) are a popular modelling framework for time-series data; they can
alleviate the stumbling blocks of analysing inherently complex movement patterns coupled
with measurement errors associated with location data. This in part is because an SSMs are
structured in a way that accounts for two levels of variability (Auger-Méthé et al., 2016);
stochasticity in the underlying process is separated from that of the measurement error
(Jonsen et al., 2005, 2003; Patterson et al., 2008). For example, with location data, variation
in the animal movement is modelled separately to the variation in measurement error from
an electronic tag i.e. the difference between the observation of the tag and the animal’s true
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location. In addition, they are often used to estimate the dynamics of a phenomenon that
cannot be observed directly; this may be discrete such as an animal’s behavioural state or
continuous for example, the true location. As a result, SSMs have been a favoured approach
in movement modelling for over a decade (Breed et al., 2012; Patterson et al., 2008).

The main framework of an SSM is a hierarchy of two models; the process model and the
observation model. The process model, which in some literature may be referred to as the
transition or state equation, is given by

yyyttt = g(yyyt−1,ηt). (2.1)

This describes the process of the unobservable (or hidden) states with process stochasticity
given by ηt . Note that the equation has the Markovian property where the state of the system
at time t depends only on the immediate previous state. The observation or measurement
model given by

zzzttt = h(yyyt ,εt), (2.2)

gives the relationship between what is observed at time t, zt , and the corresponding true
hidden state, yt , with observation error parameter εt . Thus, the observations are independent
once we account for their dependence on the state. See Figure 2.1.

Fig. 2.1 The general structure of state-space models. The Zt represent observations and
the Yt represent the true but unobserved states. Horizontal arrows depict the process model
(Equation 2.1). Vertical arrows depict the observation model (Equation 2.2).
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A state-space model in its simplest form is linear and Gaussian; it is said to be linear if the
state and observation equations are linear and Gaussian if the transition density of the state
process and the observation noise are normal. However, SSMs are flexible in that they can
model linear and nonlinear processes. A simple linear Gaussian SSM is sometimes referred
to as a linear dynamical system.

State-space models have many benefits. Firstly, they account for spatio-temporal autocorrela-
tion inherent in movement data. Historically autocorrelation was often treated as a nuisance
and in an effort to deal with it resulted in sub-sampling data to reduce autocorrelation be-
tween locations (Patterson et al., 2010); however, SSMs avoid throwing away possibly useful
information by accounting for autocorrelation within their modelling framework. Secondly,
although movement data is almost always obtained at discrete intervals, models for animal
movement can be conceptualised in either discrete or continuous time. SSMs are able to
account for either representation of movement (McClintock et al., 2014). They can also be
useful for dealing with irregularly observed data (Jonsen et al., 2005).

2.2 The Kalman Filter

Filtering is an umbrella term for tools which smooth noisy data by updating knowledge of a
system based on observations (Durbin and Koopman, 2001). The Kalman filter is a specific
filtering algorithm named after Rudoph Kalman (Kalman, 1960), which allows for exact
inference in a linear dynamical system; that is, where the state of the system at time t +1
evolves linearly from some prior state at time t. It is particularly useful if the true state of the
system cannot be directly observed and instead is estimated from some measurement and
system dynamics.

At each iteration of the algorithm the Kalman filter makes a prediction of the state at
the next time point using the models of the system. This prediction is then updated by
augmentation with observed data. The augmentation is via a weighted average of the
prediction and observation known as the Kalman gain, with larger weight given to more
confident measurements. The intuition behind this is that a better estimate can be made by
the combination of knowledge from the prediction and measurements.

The Kalman filter has been applied in a multitude of engineering and computer science
concepts, with an early but highly celebrated application being its use in the Apollo navigation
system. More recent times have seen an increased use in ecological settings to estimate
trajectories from location data, incorporate location measurement error, estimate movement
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parameters and compute likelihoods (Breed et al., 2012; McClintock et al., 2012; Patterson
et al., 2010). The Kalman filter’s computational efficiency allows for speedy maximum-
likelihood estimation of system parameters (Fleming et al., 2017; Patterson et al., 2010)
where irregularly spaced data may be dealt with via continuous-time process models (Johnson
et al., 2008).

The details of the Kalman filter are as follows. Given the state yt , the system process follows
a linear dynamical system given by

yt = Ftyt−1 +Btut +wt , (2.3)

where,

• yt is the vector containing the states of the system which are of interest,

• Ft is the state transition matrix of the model,

• Bt is the control input which is applied to the control vector ut and

• wt is a noise vector assumed to be drawn from a multivariate normal wt ∼ N (0,Qt).

Also, measurements zt , of the system at time t are represented according to

zt = Htyt + vt (2.4)

where,

• Ht maps the state vector into the measurement domain and

• vt is a vector containing the measurement noise assumed to be the multivariate normal
vt ∼ N (0,Rt).

The Kalman filter then alternates iteratively between two steps, prediction and updating. The
prediciton equations are given by

• Prediction Step:

mt|t−1 = Ftmt−1|t−1 +Btut ,

Pt|t−1 = FtPt−1|t−1FT
t +Qt .

The measurement updating equations are given by
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• Updating Step:

mt|t = mt|t−1 +Kt(zt −Htmt|t−1),

Pt|t = Pt|t−1 −KtHtPt|t−1,

Kt = Pt|t−1HT
t (HtPt|t−1HT

t +Rt)
−1 (Kalman Gain).

The Kalman filter iterations output an estimate of the state yti , denoted by mti and covariance
matrix Pti for each time ti. These estimates are conditional on all previous observations.

In the case of modelling animal movement, yt may represent the true (unobservable) location
of an animal with movement model given by Ft and zero control input. Whereas, zt may
represent an measurement of that location, given by an electronic tag, with H as the identity
matrix and vt denoting any measurement error.

We can use this to calculate, as a by-product, the marginal likelihood of our observations
given the parameters. This is especially useful as it enables us to calculate the likelihood
using only what we observe. The log-likelihood for our set of observations, z = {z0, . . . ,zT}
is given as

−
T

∑
i=0

1
2
{

n log2π + log |HiPti|ti−1HT
i |

+(Zti −Himti|ti−1)
T(HiPti|ti−1HT

i )
−1(Zti −Himti|ti−1)

}
, (2.5)

where n is the dimension of the measurement vector. The equations may be simplified if we
assume no process or observational noise. For more information on the derivation of these
equations consult Särkkä (2013).

2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a
probability distribution. They are particularly useful in Bayesian statistics when evaluating
the posterior distribution of model parameters θ given observed data D,
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P(θ |D) =
P(θ)P(D|θ)∫
P(θ)P(D|θ)dθ

, (2.6)

is analytically infeasible. In light of intractable evaluations, MCMC methods can approximate
a posterior distribution by drawing samples from the distribution in question. To explain how
this works we must first introduce some theory of Markov chains.

A Markov chain is a stochastic process Xt which has a ‘lack-of-memory’ property. In other
words at each time t ≥ 0 the next state in the chain Xt+1 is only dependent on its current state,
Xt , and no further in the past i.e.

P(Xt+1|Xt ,Xt−1, . . .X0) = P(Xt+1|Xt). (2.7)

Under certain technical conditions, this process will eventually converge to a stationary
distribution independent of t and its initial value X0. As the name suggests, Markov chains
are fundamental to the theory of MCMC methods. The general idea is to construct a Markov
chain whose stationary distribution is the desired posterior distribution π(.). A popular
algorithm for constructing a chain with these properties is the Metropolis-Hastings (MH)
algorithm (Hastings, 1970; Metropolis et al., 1953).

The MH algorithm has two parts; a proposal step and an acceptance step. At each iteration of
the algorithm a random sample X ′ is made, with dependence only on the previous sample
Xt , from the proposal density q(X ′|Xt) . The new sample is then either accepted or rejected
probabilistically. The algorithm is as follows:

Initialise the algorithm by selecting a starting point, X0. Then at each iteration t, generate a
candidate point X ′ from a proposal distribution q(.|Xt). This candidate point is then accepted
with the probability

α(X ′,Xt) = min
{

1,
π(X ′)q(Xt |X ′)

π(Xt)q(X ′|Xt)

}
. (2.8)

If acceptance is successful then the point is retained and we set Xt+1 to X ′. Otherwise, the
point is rejected and we set Xt+1 to Xt .

Regardless of what form the proposal distribution q(.) takes, the stationary distribution of the
chain will still be π (see Gilks et al. (1996) for details). This has a very useful consequence
insofar as we can choose a symmetric proposal distribution where q(x|y) = q(y|x) so that the
Hastings ratio simplifies to
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α(Xt+1,Xt) = min
{

1,
π(Xt+1)

π(Xt)

}
. (2.9)

Although, the convergence rate to the stationary distribution and mixing will depend on
the relationship between the proposal distribution q(.) and the posterior π(.). Proposal
distributions with smaller steps will generally have a higher acceptance rate in the MH
algorithm so it is advised to tune proposals such that acceptance rates lie between 20−30%
(?). Throughout this thesis I make extensive use of this simplifying property by choosing
symmetric Gaussian proposal distributions.

2.4 Models for Animal Movement

Traditionally, ecologists have focussed attention toward large scale examinations such as
species population fluctuations, biodiversity and general patterns of space use (Buckland
et al., 2004; Kays et al., 2015). Early low resolution tracking technologies enabled studies of
spatial utilisation, home-range and territories using tools such as minimum convex polygons
(Holgate, 1971; Macdonald et al., 1980; Moorcroft et al., 1999; Odum and Kuenzler, 1955).
Some studies provided methods for quantifying the interaction of individuals termed either
static or dynamic; static interaction is defined as the joint-space use between individuals,
usually measured by spatial overlap of home ranges whereas dynamic interactions are con-
cerned with correlation in movement (Doncaster, 1990) or how the movement of individuals
are related, for example through attraction or avoidance behaviour (Macdonald et al., 1980).
Whilst these methods have their uses, they essentially provide summaries of location data
rather than giving a description of the animal’s trajectory or movement.

Modern tracking technologies are able to collect data at higher resolutions, thus easily
capturing short-term movement. This has motivated a more in-depth study of the different
movement processes that animals may exhibit over time e.g. (Parton et al., 2016). Recent
modelling techniques and inference methods can provide intricate details of animal movement
and specific interactions with others or their environment.

There have been many approaches to modelling the movement of animals. These models can
be classified by their formulation of time (Parton et al., 2016) namely discrete or continuous.
Continuous-time models define movement at any real and positive valued instances whereas,
discrete-time models are limited to a fixed ‘grid’ of times usually determined by the sampling
frequency of the observations. Whilst the former seems natural in its assumption of animal
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movement, parameter estimation and interpretation is often difficult; as a result discrete-time
models are the predominant approach (McClintock et al., 2012)).

The remainder of this chapter aims to give an overview of some common techniques used to
model animal movement and discuss their advantages and disadvantages where necessary.
We separate our review into models using a discrete-time framework and those using a
continuous one. Popular discrete-time methods we discuss are step and turn models and
hidden Markov models whereas, for continuous-time models we mainly consider diffusion
processes. In both cases we restrict our review to models of individual-level movement and
reserve descriptions of group movement for Chapter 3.

2.4.1 Discrete-time Models for Movement

In its simplest form, a model for animal movement can be framed as a random walk in
space. A random walk is a stochastic Markov process formed of a series of steps. Many
discrete-time models of animal movement are based on the random walk and its extensions
(Turchin, 1999). A simple example of this is a random walk in 1-dimension with equal
probability of moving left or right. Biologically we might think of this as an animal moving
along an edge where at each time increment it has moved forwards or backwards. A random
walk process can be extended to any number of dimensions. The theory of random walks
have been extended to include biased random walks (BRW), where there is some bias towards
a certain direction; in ecological terms this could be bias towards a nest site or foraging patch;
correlated random walks (CRW), where there exists a persistence in steps i.e. some tendency
to continue in the same direction, which are a particularly useful model for animal movement
patterns such as migration or exploring behaviour; finally, biased correlated random walks
(BCRW) which are a combination of both.

Siniff and Jessen (1969) and Cody (1971) provide early examples of random walk models for
movement. Both innovatively describe an animal’s trajectory as a bivariate time-series of step
lengths and turning angles. Step lengths are the distance between two consecutive locations
whilst turning angles are the directional change between three successive observations. Rather
than having fixed parameters for the step lengths and turning angles, Siniff and Jessen (1969)
explore a range of possible probability distributions which have since been popularised for
example, distributions for step lengths need to be positive and continuous e.g. Weibull and
Gamma (McClintock et al., 2013; Mckellar et al., 2015) and for turning angles some circular
distribution such as Wrapped Cauchy or Von Mises (McClintock et al., 2012; Roever et al.,
2014; Turchin, 1999).
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Whilst this methodology has laid the foundations for many publications in the area, its
simplicity assumes that an animal moves with just one movement process. In reality, animals
live in a complex world where they are constantly subjected to both internal and external
stimuli such as hunger, fatigue, predators and competition of resources which affect their
behaviour and consequently the way they move. Random walk techniques became highly
popularised after the introduction of multi-state models where at any instant an animal
is following one of a finite number of movement processes which reflect heterogeneous
behaviours (Morales and Ellner, 2002; Morales et al., 2004). In Morales et al. (2004),
the methodology is illustrated with location data of elk and movement processes defined
by mixture of CRWs to reflect behaviours such exploring and foraging. The exploratory
behaviour can typically be described with large step length and persistence in direction. In
contrast, foraging behaviour which they term ‘encamped’ may have smaller step lengths
and frequent change in direction. Others have termed similar processes as ‘travelling’ and
‘foraging’ for example, Breed et al. (2009)’s study on grey seals. As a caveat, it is worth
remembering that we have to be careful when interpreting the states as these are just names
given to a statistical processes and the actual behaviour of the animal may not reflect the
state’s name.

In a similar vein, a bivariate process of bearings (the direction of the animal) and step
lengths have been used in McClintock et al. (2012). The authors adopted the discrete-time,
continuous-space modelling approach of Morales et al. (2004) but increased flexibility to
allow for biased movement towards one or many centres of attraction as well as exploratory
movement and correlated random walks. This gave rise to a class of models which could be
combined to reflect complex behavioural states.

2.4.2 Hidden Markov Models for Animal Movement

Hidden Markov models (HMM) are time series models comprised of two components, an
observed series and an unobserved, hidden, state sequence. The state sequence in these
models are generated by a first-order Markov chain, which leads to temporal autocorrelation
in both the behavioural states and in the observed movement patterns (Langrock et al.,
2012). HMMs can be thought of as a special case of the SSM as the have they exhibit
the same dependence structure but whose number of states is finite and often observations
are regularly spaced. A HMM with m states is referred to as an m-state HMM. They
have become an extremely popular modelling approach in ecology due to their simplicity,
parameter interpretation, ease of fitting and computational tractability. They have been used
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to categorise behavioural modes in many taxa including marine, terrestrial and avian species
(Beest et al., 2016; Farhadinia et al., 2020; Langrock et al., 2012).

Multistate random walks such as those proposed in Morales et al. (2004) may be easily
framed as a HMM since the movement process of an animal is dependent on an assumed
underlying behavioural state (e.g. foraging or resting). Here, each state of the hidden
Markov process is associated with a distinct random walk behaviour and the state-dependent
distributions i.e. the observation processes are categorised by a bivariate distribution of step
lengths and turning angles.

Since HMMs focus on discrete, regularly spaced observations the fitting is a rather simple
process via a frequentist likelihood based approach. If the process is homogeneous i.e. the
transitions probabilities are invariant over time then the likelihood is easily obtained using
a computationally efficient recursive scheme called the forward algorithm (Langrock et al.,
2012). The likelihood is given by

L = δ
(1)P(z1)ΓP(z2)∗ · · · ∗ΓP(zt−1)ΓP(zt)1

′
(2.10)

where zt are the observations (for example comprising of step lengths and turning angles).
δ (1) is the initial distribution of the Markov chain; P is a diagonal matrix of conditional
density functions of zt given the state at time t; Γ is the matrix of all possible state transition
probabilities; finally, 1

′
is a column vector of ones.

Whilst hidden Markov models offer a flexible and computationally efficient modelling
approach with easy fitting to real movement data, they are limited by the requirement that the
data is evenly spaced with no missing values. This is not often possible with movement data.
Inference of HMMs are restricted to the sampling scheme of the observations which leads to
difficulties in comparisons between different data sets. Some work has been done to allow for
multiple time scales within HMMs. Leos-Barajas et al. (2017) use a nested structure where
the data depends on a fine scale HMM and this in turn depends on a coarse scale HMM. This
technique is capable of capturing both small and large scale movements such as foraging and
migration behaviours. However, it still suffers from the shortcomings of operating within a
discrete-time framework.

HMMs have become even more popular due to R packages made accessible to practitioners
such as moveHMM (Michelot et al., 2016) and momentumHMM (McClintock and Michelot,
2018). What’s more, estimates of the underlying state at each time point can be obtained via
the Viterbi algorithm (Zucchini et al., 2016), although I will not go in to the details of this
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here. For more a more detailed description of HMMs and other R packages see Zucchini
et al. (2016).

2.5 Continuous-time Models for Movement

So far I have discussed a wealth of movement models which are growing in sophistication.
For simplicity these models operate in a discrete time framework. In some cases this is
reasonable methodology such as Morales et al. (2004) where observations are taken daily
and within-day behaviours are not important for the purposes of the study. However, discrete-
time models such as the CRWs presented in Morales et al. (2004) confound the sampling
and movement process meaning that they are sensitive to the sampling schedule and can
produce conflicting results when the same data is sampled using different sampling schemes
(Calabrese et al., 2016). Thus, there is no guarantee that they have a meaningful interpretation
on other time scales making it difficult to compare results between different datasets (Harris
and Blackwell, 2013). In addition, often there are unwanted irregularities associated with
location data such as missing observations and uneven sampling times. These require some
form of interpolation or discretisation approximation with poorly understood error.

Continuous-time models alleviate these problems often by separating the movement and
sampling process which in turn avoids any approximations. That said, progress in developing
continuous-time models for animal movement has been slower than for their discrete-time
counterpart. These developments have typically been avoided due to difficulty in parameter
interpretation or computation but are necessary to providing statistically robust and biologi-
cally pertinent models. Moreover, real movement data emerging from animals, cells, pollen
or particles are typified by inherent autocorrelation which discrete-time models fail to capture.
Continuous-time stochastic processes such as diffusion processes are a popular modelling
approach in continuous-time for handling the inherently large autocorrelation associated
with movement data and the use of such approaches to infer relationships between animal
movement and habitat based on telemetry data is increasing (Hooten et al., 2018).

In this section we discuss a common approach to modelling movement in continuous time,
diffusion processes. We begin by describing diffusion processes in general terms before
discussing a simple diffusion process, Brownian motion. We then visit Ornstein Uhlenbeck
diffusion processes and their extensions, which become the main foundations of the research
in this thesis.
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2.5.1 Diffusion Processes

A diffusion process is the solution to a stochastic differential equations (SDE). A general
SDE has the form

dXt = µ(xt , t)dt +σ(Xt , t)dWt , (2.11)

where Xt is a stochastic process and Wt is a Wiener process. A Wiener process is a continuous
time stochastic process with the Markov property i.e. the process has independent increments.
Written in statistical notation the Wiener process is defined to be

Wt+δ −Wt ∼ N(0,δ ). (2.12)

2.5.2 Brownian Motion Diffusion Process

The most simplistic diffusion process, which lays the foundations of many other models, is a
result of setting µ(Xt , t) = 0 and letting the function σ(Xt , t) be the constant σ . This process
is known as a Brownian motion (BM) process (sometimes referred to as simply as a Wiener
process). Thus, the BM process is a solution of the SDE

dXt = σdWt . (2.13)

The Brownian motion process Xt is Normally distributed with

Xt+δ |Xt = xt ∼ N(xt ,σ
2
δ ). (2.14)

In this 1-parameter diffusion equation, σ can be thought of as controlling the speed of the
process. From the equation above we can see that Brownian motion is a Markovian process
with independent Gaussian increments. The Brownian motion process is the continuous-time
analogue or limit of a random walk.

2.5.3 Ornstein-Uhlenbeck Diffusion Processes

The Ornstein-Uhlenbeck diffusion process (Uhlenbeck and Ornstein, 1930) is a popular
continuous-time movement model in animal ecology. The model is simplistic in its nature
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but offers more flexibility than Brownian motion alone. In essence, it describes a biased
random walk with some drift or tendency towards a long term mean. As a result the process
is often referred to as ‘mean-reverting’. The process has convenient properties such as being
stationary, Gaussian and Markovian. In one dimension the OU diffusion process is the
solution to the stochastic differential equation

dXt =−β (Xt −µ)dt +σdWt . (2.15)

The process has three parameters namely β ,σ and µ . The term β is usually referred to as the
drift term and controls to speed at which the process reverts to the mean µ whilst σ scales
the Wiener process. The Ornstein Uhlenbeck process has a closed form normal distribution
with conditional distribution given by

Xt+δ |Xt = xt ∼ N
(

µ(1− e−βδ )+ xte−βδ ,
σ2

2β
(1− e−2βδ )

)
(2.16)

This may be extended to any number of dimensions. Here, we will describe the process in
d-dimensional space. Let XXX(t) be the locations in d dimensions of an individual at time t.
The conditional distribution of its location at time s+ t given its location at time t has the
multivariate normal distribution

XXX s+t |XXX t ∼ N
(

µµµ + eBs(XXX t −µµµ),Λ− eBs
ΛeB′s

)
, (2.17)

where µµµ is a d-dimensional vector and Λ, B are d × d matrices. The vector µµµ gives the
long-term mean of the process or centre of attraction whilst B controls the rate of attraction
towards µµµ with covariance Λ.

2.5.4 OU Developments

Rather than using the standard OU process to model the locations of an animal, there exists
a number of developments. Two main adaptations specific to animal movement are the
Integrated Ornstein Uhlenbeck process (IOU) (Johnson et al., 2008; Michelot and Blackwell,
2019) and the Ornstein Uhlenbeck Foraging (OUF) (Fleming et al., 2014).

The IOU introduced by Johnson et al. (2008) allows the velocity of an animal to be defined
by an OU process rather than the locations. Specifically, the locations at time, X(t), are given
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as
X(t) = X(0)+

∫ t

0
V (u)du, (2.18)

where,

dX(t) =V (t)dt, (2.19)

and V (t) is given by an OU process such that

Vt+δ |Vt = vt ∼ N
(

µv(1− e−βvδ )+ vte−βvδ ,
σ2

v
2βv

(1− e−2βvδ )

)
. (2.20)

Similar to Equation 2.16, µv can be thought of as the mean velocity or drift term while βv

and σv control the autocorrelation and variability respectively in the velocity. This suggests
that the variance of the velocity at time t +δ gets larger with δ .

The IOU is non-stationary, similar to Brownian motion but with autocorrelated velocities at
short sampling by frequencies, thus it is particularly useful for modelling movement with
duration short enough to not display any home-range.

The Ornstein Uhlenbeck Foraging (OUF) (Fleming et al., 2014) is similar to the IOU except
that it has an additional term to Equation 2.19 which make the process stationary and enables
its use in modelling home-range. Explicitly, locations of an animal are given by

dX(t) =V (t)dt −βx(Xt −µx)dt, (2.21)

where V (t) is the velocity as given in Equation 2.20, µx is the mean location and βx controls
the scale of attraction toward µx. In both Equation 2.20 and 2.21 it is common for µv, the
mean velocity parameter, to be taken as 0. In fact, in the latter it is essential to ensure the
model is stationary and reflects foraging behaviour.

2.5.5 Examples

Early examples of using diffusion processes as a model for animal movement are presented
in Dunn and Gipson (1977) where movement is assumed to follow an OU diffusion process.
The authors give biological incentive for its predictive nature suggesting that forecasting
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where an animal may be at a future time point given an observation could be useful for
locating and administering medication.

The nature of the attraction term in the OU process allows modelling of resource-driven
movement by setting the centre of the OU attraction to a preferential location such as a
foraging or nest site (Wang et al., 2019). Conversely, attraction away from particular areas
i.e. repulsions, can be used to analyse the effects of human-animal interactions such as
avoidance behaviour of human activity zones (Preisler et al., 2013). Brillinger et al. (2002)
gives an overview of the uses of SDEs as an animal movement model with application to
elk and elephant seals. In the latter case, the species dives below ice sheets thus moving in a
3-dimensional space. Here, the authors give a SDE for diffusion on a sphere. Analysis for the
elk data suggest a multi-modal behavioural process where animals follow a circadian rhythm.
Despite this, the model uses only a single movement process. A multi-modal model such as
a continuous-time version of the Morales et al. (2004) switching model may have been more
appropriate here. In Section 2.5.6 we discuss diffusion models for animal movement which
allow for behavioural switching.

2.5.6 Diffusion Models for Movement with Behavioural Switching

Parton et al. (2016) gives a continuous-time analogue of the step and turn approach presented
in Morales et al. (2004) in an effort to provide interpretable parameters and ‘bolster’ the usage
of continuous-time models. Rather than using step lengths and turning angles, they model
the bearing and speed of the animal using a Wiener process and an OU process respectively.
They extend this work in Parton and Blackwell (2017) to allow for behavioural switching
between ‘foraging’ and ‘travelling’ using a similar notion to the ‘double switch’ method
of Morales et al. (2004). The modelling approach and corresponding Bayesian inference
was demonstrated using the same elk dataset as in Morales et al. (2004). Although they
made similar conclusions from the data, they also found that residence times in a particular
state were often unsurprisingly less than the 24hour sampling frequency confirming that
their approach offers extra insight to coarsely sampled data. Here, the authors use constant
switching rates but acknowledge that spatial or temporal heterogeneity would be more
biologically relevant.

Blackwell (1997) present a class of models for animal movement in continuous time. Move-
ment is represented as a continuous-time Markov process with a diffusion component
(location) and a discrete component (behaviour) as in Berman (1994). The models have the
flexibility to incorporate certain movement processes governed by behavioural or psycho-
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logical states. Here, it is assumed that there are a finite number of behavioural states, each
coupled with an Ornstein Uhlenbeck movement process as given in Dunn and Gipson (1977).
Each OU diffusion process has a fully-specified parametric form whose parameters reflect
the behaviour in question. At any given time an individual exhibits one behavioural state
but the model allows for behavioural switching whose process is given by a continuous time
Markov chain. Presenting a model in this way enables capturing many biologically realistic
features.

Following this, Blackwell (2003) gives fully Bayesian inference methodology for the switch-
ing models presented in Blackwell (1997). The method for inference involves separately
sampling from the full conditional distributions of the switching process, the behaviour
parameters and the diffusion process parameters, in sequence, using a mixture of Gibbs and
random walk Metropolis Hastings MCMC. They assume that the location and behavioural
state of the animal is observed and regard the switching process as ‘missing data’.

Both models presented in Blackwell (1997) and Blackwell (2003) rely on the limiting
assumption of spatial homogeneity i.e. that the switching process is independent of the
animals’ location. In reality, animals will be likely to move differently depending on their
environment. In an extension, Harris and Blackwell (2013) detail a modelling framework
for animal movement in which the movement processes depend on location in terms of a
discrete set of regions and also an underlying behavioural state. Much like Blackwell (1997),
the study gives a flexible class of models with illustration of a range of movement behaviours
where the switching process is a continuous-time Markov chain; the difference here is that
there are separate generator matrices for each individual region.

Blackwell et al. (2016) give methodology for fully Bayesian inference of the models given in
Harris and Blackwell (2013) that include behavioural switching and spatial heterogeneity
as well as extending this to temporally varying movement. The switching process is given
as a thinned Poisson process which allows for exact simulation and avoids the usual time
discretisation error. The authors focus on what Harris and Blackwell (2013) term ‘separable
models’ where the transition rates between behaviours depend on the location of the animal
but the movement parameters and trajectories do not. i.e. when an animal moves to a different
environment it will change its tendency to behave in a particular way which will indirectly
change its movement process. This is dissimilar to the model for spatially heterogeneous
behaviour presented in Ovaskainen (2004) which involves an edge-mediated behaviour i.e.
movement at the boundary of distinct habitat will be bias towards a preferred habitat. A
principle component of the methodology in Harris and Blackwell (2013) is to simulate
trajectories augmented with switching times and locations conditioned on the observed data
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and use MCMC methods to accept or reject those proposed samples. Section 2.6 reviews the
algorithm for exact simulation of trajectories as discussed in Blackwell et al. (2016).

2.6 Exact Simulation of Trajectories

The main assumption of Blackwell et al. (2016) and Harris and Blackwell (2013) is the
boundedness of switching rates. As a consequence, an animal is never forced to instantly
change behaviour upon entering a new environment. This is consistent with what Harris and
Blackwell (2013) term ‘separability’. Let

λ j(t,xxx) = ∑
i̸= j

λ ji(t,xxx),

represent the switching rate out of behaviour j at time t and location xxx. Then let

κ = max
j,t,x

(
λ j(t,xxx)

)
.

We then consider the waiting time from any point to the next behavioural switch to be
bounded below by what would be the time if the rate was always κ . In other words we can
formulate a series of potential switches in time, {T1,T2, . . . ,Tk}, forming a Poisson process
of rate κ . We then decide whether the potential switch Ti is an actual switch given by the
probability

λ j(Ti,xxx(Ti))

κ
.

As an example, imagine we initialise our simulation at location xxx in behaviour j i.e. J(0) = j
and xxx(0) = xxx. We can then simulate the first potential switching time T1 and correspondingly
the location xxx(T1) by a forward simulation from the movement parameters associated with
behavioural state J(0). This potential switch is then deemed an actual switch with probability

λ j(T1)(T1,xxx(T1))

κ
.

If it is an actual switch, a new behavioural state i is sampled with probability proportional
to λ ji(T,xxx(T )). Now, with the updated location and behavioural state we can simulate the
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process forwards for as long an interval as we like. The collection of actual switches can be
thought of as a Poisson process with rate κ that has been thinned.

More generally, consider the times of the potential switches (realisations of the Poisson
process with rate κ) to be given as T1,T2,T3, . . . . Then for each Tk simulate the location xxx(Tk)

via the movement process defined by the behavioural state J(Tk−1) and decide whether the
potential switch given at Tk is an actual switch with probability

λJ(Tk)(Tk,xxx(Tk))

κ
.

If we deem this to be an actual switch, a new state j is picked with probability

λJ(Tk), j(Tk,xxx(Tk))

λJ(Tk)(Tk,xxx(Tk))
.

Note that we have described the case where behavioural switching depends on the location
of an individual however, the principle remains for simpler modelling approaches where we
do not account for this heterogeneity.

2.6.1 Inference for Exact Simulation Method

In this section we discuss the inference method given in Blackwell et al. (2016) for the exact
simulation presented in Section 2.6. The algorithm for Bayesian inference of the above
model alternates between updating the trajectory over some time interval, that is the potential
switches, locations and behavioural states, and updating the movement parameters and
switching process parameters. The inference method is formulated as a MCMC algorithm
which is used to sample from the posterior distributions of the movement parameters and
switching rates. The key to the inference is the augmentation of observed data with the
simulated potential switches and locations.

2.6.2 Trajectory Updates

To update the trajectory over some time interval [ta, tb], where 1 ≤ a < b ≤ N, conditional on
the states immediately either side of the interval J(ta) and J(tb), the movement parameters
and the switching parameters, define
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T
′

a,b = {Tc,k,k = 1, . . . ,M
′
c,c = a, . . . ,b−1},

as the collection of potential switching times between ta and tb, where M
′
c is the number of

potential switches. In other words, T
′

a,b is a realisation of a Poisson process with rate κ .

Starting with the location and behaviour at the beginning of the interval xxx(ta) and J(ta),
simulate forward a new location xxx(T

′
a,1) using the movement model defined by the behavioural

state J(ta). Then pick a new state j with the following criteria

J(T ′
a,1) =

 j, with probability
λJ(ta), j(T

′
a,1,xxx(T

′
a,1))

κ
, j ̸= J(ta),

J(ta), otherwise.

The process is then simulated forward to get the location xxx(T
′

a,k+1) using the movement
model defined by the behavioural state J(T

′
a,k) and letting the new state

J(T ′
a,k+1) =

 j, with probability
λ

J(T
′
a,k), j

(T
′

a,k+1,xxx(T
′

a,k+1))

κ
, j ̸= J(T

′
a,k)

J(T
′

a,k), otherwise.

for k = 1, . . . ,M
′
a −1. This process is repeated for each subinterval between observations

until the entire interval [ta, tb] has been sampled.

This trajectory sample may then be accepted or rejected using a Metropolis-Hastings update.
However, if the final sampled behavioural state is not consistent with the pre-existing
behaviour J(tb) the rejection is automatic. Conditioning on the observed data the Metropolis-
Hastings ratio is given as

b−1

∏
c=a

f (xxx(tc+1)|xxx(T
′

c,Mc
),J

′
c,Mc

)

f (xxx(tc+1)|xxx(Tc,Mc),Jc,Mc)
.

2.6.3 Parameter Updates

Given a trajectory of an individual, the times of switches in states are known. Thus, we
have a precise description of when the animal was following each of its different movement
processes. With this, parameter inference can be made straightforwardly using standard
random-walk Metropolis-Hastings updates.
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2.7 Conclusions

Research in animal movement is growing rapidly. In recent years, ecologists have adopted
useful techniques from other fields such as computer science and engineering, and the
widespread use of statistical tools for example state-space models and MCMC methods have
enabled more sophisticated and rigorous analysis of animal movement data.

Recent advancements in computational power have eased fitting increasingly complex move-
ment models to ecological data by providing methods for estimating likelihoods that would
otherwise be intractable. Simulation methods for parameter estimation such as MCMC are
able to approximate high dimensional integrals that cannot be solved analytically.

There are myriad approaches to modelling the movement of animals and so far no single
method is considered as the ‘gold standard’. Conceptualising movement in either a discrete or
continuous time framework both have their merits. Popular discrete time models such as step
and turn random walks allow for ease of fitting and interpretation of parameters but usually
comes at a cost of statistical robustness, whereas movement models in continuous-time can
suffer from slow fitting and difficulty in parameter interpretation. We have acknowledge the
underdevelopment of modelling animal movement in continuous time; however, despite com-
putational challenges it is often a worthwhile trade off for the inherent statistical robustness
and the modelling of movement in a more natural way.

We have discussed only models of individual-level movement. For most taxa this is an
unnatural assumption. Many species live in collectives whose movement decisions are
influenced by their neighbours, possibly of a different species. In the Chapter 3 we will
discuss methodology for modelling collective animal movement, although this is not nearly
as developed as its individual-level counterpart.

For the remainder of thesis our focus will be toward developing continuous-time models of
collective animal movement using Ornstein-Uhlenbeck diffusion processes.
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Modelling Collective Movement

As mentioned, many of the world’s taxa do not movement independently of other individuals.
For most, conspecific or heterospecific interactions influence decision making, behavioural
choices and movement (Couzin et al., 2005; Delgado et al., 2018; Merkle et al., 2016;
Schlägel et al., 2019). Many species of birds, fish, insects and ungulates demonstrate highly
cohesive and coordinated movements whose social interactions are vital for survival (Buhl
et al., 2006; Croft et al., 2015; Herbert-Read, 2016; Westley et al., 2018). In ecology, when
localised interactions amongst individuals lead to large scale patterns in movement and
behaviour we term this as collective movement (Dalziel et al., 2016; Mueller et al., 2011).

In the past, simulation models have provided useful insights into the movement and decision
making of animal groups (Aoki, 1982; Huth and Wissel, 1992). By assuming underlying laws
of interaction, these predictive models help us to understand specific ecological phenomena
such as information sharing (Couzin et al., 2005), the effect of group size in obstacle
avoidance (Croft et al., 2013), pooling uncertain estimates of the environment for improved
navigation, sometimes referred to as the ‘many wrongs principle’ (Codling et al., 2007) and
how variation among individuals impacts the overall cohesion of the group (Delgado et al.,
2018). These properties of collective movement are thought to be evolutionary adaptations
leading to an increased fitness at the population level (Dalziel et al., 2016).

Now, with a wealth of tracking technologies it is possible to analyse real data of aggregations
without relying on simulation models or laboratory experiments which have less generalisable
conclusions. However, recent studies using real data typically employ a metric based
approach to quantify aspects of collective movement such as synchronisation in acceleration
or tortuosity (Polansky and Wittemyer, 2011) and measures of proximity and sociability
(Delgado et al., 2018) rather than explicitly providing a model of movement. What’s more,
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most studies are restricted to dyadic interactions (Joo et al., 2018; Long et al., 2014; Polansky
et al., 2010). The methods of Dalziel et al. (2016) and Mueller et al. (2011) do extend
to multiple individuals, with the latter normalising their results in such a way that cross
species comparisons may be made but again, both use metrics to screen the data for collective
behavioural traits rather than parametrising a model of movement.

Some approaches do offer a stochastic model for multi-individual movement and may even
account for behavioural heterogeneity (Calabrese et al., 2018) but still operate with metric
based analysis whose behavioural transitions are dictated by the sampling scheme and whose
inference can produce different results on different time-scales. Haydon et al. (2008) uses
social structures of large groups to infer population dynamics, mortality rates and fecundity.
This is demonstrated with a unique dataset of elk where all individuals are tracked. Whilst
movement in this approach is modelled explicitly each animal’s movement is modelled
individually using a CRW and the group structure is quantified by spatial-temporal proximity
from other individuals. Nonetheless, this "socially informed" model gives enlightening
results about the population growth rate in relation to fission-fusion processes. They found
that solitary individuals (those outside of the proximity threshold) have a higher risk of
mortality than their grouped counterparts. Other work such as Strandburg-Peshkin et al.
(2015) has shown animal movement to be a result of joint decision making, specifically
highlighting that the movement of baboons is influenced by a democratic decision amongst
troop members rather than a single dominant species. This stresses the importance of forming
coherent models which capture the sophistication of collective motion and social interactions
of gregarious animals.

The work of Scharf and Buderman (2020) gives an up-to-date review of the movement
models which incorporate dependence between individuals. They suggest that modelling
approaches may be separated into two possible avenues, direct and implicit dependence.
Direct dependence is where an individual’s movement depends directly on interactions
with its neighbours via some underlying social network for example, attraction, repulsion
or alignment to proximal animals. In contrast, implicit dependence may occur through
shared behavioural patterns amongst individuals e.g. a tendency to behave in a similar
way. Here, the mechanisms that drive the movement and behaviour are constant across the
population and conditional on those the individuals are considered to move independently.
The authors further this description by partitioning the implicit dependence approaches into
three subtypes, two-stage, complete pooling and partial pooling. The two-stage approach
involves separately fitting individual-level models then undergoing some form of post ad hoc
analysis of dependence, however this approach is not statistically robust. In contrast, complete
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and partial pooling both provide a joint movement model for the individuals. In complete
pooling, behaviour parameters are constant across individuals whereas, in partial pooling the
individuals may deviate form the population level parameters. The group movement models
of Langrock et al. (2012) (Section 3.1) and Niu et al. (2016) (Section 3.2), as well as the
novel work provided in this thesis can be classified as complete pooling with the dependence
being driven by the abstract leader.

Moreover, when developing models of collective movement an important consideration to
make is the possibility of incomplete observations of the group. Some species may live in
large collectives, possibly hundreds strong and so tagging each individual within that group
may be economically or practically infeasible. Methods based on statistical summaries may
have varying results depending on who or how many animals were tagged. This lack of
robustness can lead to difficulty in inference and forecasting how individuals may respond
under different movement patterns.

Existing realistic models of movement, which typically combine continuous locations in
space with a discrete representation of behaviour, are generally limited to modelling single
individuals. However, Scharf et al. (2016) provide a mechanistic model of group movement
which employs direct dependence in movement via an underlying social network. Scharf
et al. (2018) further this work by modelling movement as a process convolution, that is,
convolving a random process (such as a Weiner process) with a smoothing function. However,
in both cases, the underlying social structure is restricted to dyadic connections, thus the
number of pairwise interaction parameters grow rapidly as the number of individuals increase,
which can lead to difficulty in computation. In contrast, the implicit dependence models of
Langrock et al. (2014) give a joint model for the movement of a group of animals explicitly,
allowing both dependent and independent behaviours, but their model and inference method
are limited to discrete time, and their ‘centroid’ mechanism to represent attraction is explicitly
tied to the time-scale of observations. Niu et al. (2016) give a continuous-time collective
movement model (see review in Section 3.2) which assumes consistent group movement at
all times, without any variation in behaviour.

This chapter builds on this modelling technique by developing novel methodology which
allows exact Bayesian statistical analysis for a class of group movement models with be-
havioural switching in continuous time, without any need for time-discretisation error. We
represent the group movement as a multivariate Ornstein Uhlenbeck process and allow the
individuals to switch behaviour, either following the group or moving independently as Brow-
nian motion. The times of changes in behaviour are represented as a thinned Poisson process,
allowing exact simulation and Markov chain Monte Carlo inference. The methodology can
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be applied to data that are regular or irregular in time, with or without missing or incomplete
observations. As well as much greater flexibility in modelling, our approach gives improved
computational efficiency by integrating out part of the group movement process using a
Kalman filter. In a set of simulation experiments, motivated in part by our analysis of data
from simultaneously tracked reindeer (rangifer tarandus), we show that our approach can
reconstruct unobserved behaviours from location data in a range of scenarios.

The structure of the remainder of this chapter is as follows. We first review the existing
modelling approach presented in Niu et al. (2016). Section 3.3 demonstrates a non-stationary
version of the model giving biological reasoning for its purposes. Section 3.4 presents an
extension to this model to allow for behavioural switching between two modes; following
the group and moving independently. Section 3.5 provides inference for the model including
details of the trajectories simulation, state space format and application of the inhomogeneous
Kalman filter. The chapter is finalised with implementation of the model with multiple
simulation data-sets whose underlying processes varied in order to investigate the models
capability of recovering parameter values under different settings.

Most of the research described in this Chapter is given in Niu et al. (2020). This work is
a collaborative effort of Mu Niu, myself, Jordan Milner, Paul Blackwell and Anna Skarin.
Mu provided a switching version of the OU model given in Niu et al. (2016) using similar
simulation methods to that of Blackwell et al. (2016) and using the Kalamn filter for inference.
Jordan gave insight into the methods needed to derive covariance terms in Section 3.3.1 -
Section 3.3.4 and also checked my calculations. Anna Skarin provided reindeer location data
and insight in to herding dynamics. The simulation experiments given in Section 3.8.3 - 3.8.2
are a result of comments made by anonymous referees at Biometrics, as are the plots used
for data visualisation for example Figure 3.8.

3.1 Discrete-time Models of Collective Movement

The models presented in Chapter 2 are all directed towards individual-level movement and
do not consider group-level movement. This can be very limiting when working with species
who are well regarded as living in and moving as a collective such as fish, birds and ungulates.
Fewer models exist that give a coherent model for group movement. In discrete time, Russell
et al. (2017) proposed a multi-state discrete-time model for the collective movement of
carpenter ants where behavioural states were influenced by covariate information such as
environmental conditions or the behavioural state(s) that their neighbour(s) exhibit. Unlike
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herd animals, ants do not have similar speed and direction to their neighbours. They often
start/stop moving due to interactions with other ants, this prompted the development of a
method that models dependent movement with interacting behavioural states. Other models
incorporating dependence amongst neighbouring individuals include Croft et al. (2015) who
model alignment in movement as an attraction or repulsion to stimulus within a certain
proximity to investigate obstacle avoidance in flocks of birds. Similar attraction/repulsion
methods are presented in Couzin et al. (2002).

Finally, Langrock et al. (2014) give a group-level model with multiple behavioural modes
where individuals within the group are at times either attracted to an abstract point referred
to as the group centroid or moving independently. The point may represent a leading animal
or the mathematical notion of the term centroid i.e. the centre of mass of the group. The
choice of this representation is crucial and should reflect the way in which the individuals
make their movement decisions for example, for gregarious animals with no defined leader
such as reindeer, the mathematical notion of a centroid may be more appropriate. In contrast,
modelling the group movement of matriarchal elephants may use the centroid as a specific
leading animal. In this approach they use a discrete time HMM modelling framework. Their
multi-state system is composed of two states; the ‘exploring’ state is given as a CRW and the
‘encamped’ state is represented as a BRW with bias towards the centroid. The likelihood of
the HMM is calculated using the forward algorithm given in Equation 2.10 where the density
fn is determined by the type of random walk assumed in state n and the state-dependent
distributions considered for step lengths and turning angles. In this case, each state i has
movement parameters modelled with

Step length ∼ Gamma(µi,σi), (3.1)

Turning angle ∼ vonMises(νi,κi). (3.2)

The transition matrix given by

Γ =

 1− x x

y 1− y

 (3.3)

This methodology provides a flexible modelling framework for grouping dynamics allowing
both dependent and independent behaviours however, their model and inference method are
limited to discrete time, and their ‘centroid’ mechanism to represent attraction is explicitly
tied to the time-scale of observations. The next section reviews Niu et al. (2016) who give
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methodology analogous to that presented in Langrock et al. (2014) by modelling movement
in continuous-time using diffusion processes.

3.2 Review of Ornstein-Uhlenbeck Approach

Niu et al. (2016) tackle some of the limitations of current collective modelling techniques
by presenting a continuous time movement model for multiple individuals using diffusion
processes. Not only does this alleviate poorly understood discretisation methods, it aligns
fundamentally with the understanding that animals move in continuous time. The basis of
the methodology is similar to the work of Langrock et al. (2014). Heuristically, Niu et al.
(2016) represent the interaction between animals as a shared attraction to an abstract point
which we refer to as the leader, L. To account for group migration to a particular location,
the leader is also allowed an attraction towards an inferred point. It is possible to allow this
leader to be an actual leading animal which may of course be observed, in which case the
model still applies but much of the calculation is greatly simplified; for ease of exposition, we
assume here that this is not the case. The observed individuals are conditionally independent,
given full information about L. Thus animals do not interact directly, but only through
their interactions with L. This formulation means that the model is robust to incomplete
observation of a group of animals, and to variation over time of the number or identity of
the observed individuals. The interpretation of the parameters of the model does not depend
on the numbers of observed or unobserved animals. This approach is therefore suitable for
cases where there may be many unobserved animals, e.g. large herds of herbivores.

The movement of the unobserved leader L is modelled as a stationary Ornstein Uhlenbeck
process. Let the random variable Ly

t represent the location of the leader at time t in the y
coordinate. A stochastic process {Ly

t : t ≥ 0} in which Ly
t is attracted to θ y is given by the

stochastic differential equation (Schach, 1971)

dLy
t =−β (Ly

t −θ
y)dt +ρdV y

t , (3.4)

where β is the attraction rate to θ y; θ y is a fixed location which may be unknown; ρ is
the coefficient for the noise; V y

t is standard Brownian motion. By applying the rotational
symmetry which is natural in practice (Blackwell, 1997), the model is identical for the x
coordinate Lx

t , with parameters β and ρ in common, and independent Brownian motions
{V x

t } and {V y
t } used for Lx

t and Ly
t .
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A similar stochastic differential equation can model the movement of each of n followers
attracted at any instant to the current location of the leader. Let the random variable Fy,k

t

represent the y coordinate of the kth follower’s location at time t. {Fy,k
t : t ≥ 0} is defined by

the following stochastic differential equation with parameters α , σ , Ly
t and Brownian motion

{W y,k
t }, where Fy,k

t is attracted to Ly
t :

dFy,k
t =−α

(
Fy,k

t −Ly
t

)
dt +σdW y,k

t ,

with α the attraction rate to Ly
t ; σ the coefficient for the noise. By rotational symmetry as

before, Fx,k
t and Fy,k

t satisfy identical equations.

Throughout this thesis, we express the idea of attraction to the leader by restricting α to be
positive. Taking α to be negative would imply repulsion from the moving point at Ly

t , which
is not a useful model of collective behaviour of the form that we are interested in, although
nonetheless interesting. A related model involving repulsion of a single animal from a fixed
centre is explored by Blackwell (1997) and Harris and Blackwell (2013).

Combining the above stochastic differential equations for the locations of leader and followers
in the y direction gives the multivariate Ornstein-Uhlenbeck process:

dYYY t = AYtdt +ΣΣΣdBy
t , (3.5)

where

YYY t =



θ y

Ly
t

Fy,1
t
...

Fy,n
t


, A =



0 0 · · · · · · 0

β −β
. . . ...

0 α −α
. . . ...

...
... . . . . . . 0

0 α 0 · · · −α


, Σ =



0 0 · · · · · · 0

0 ρ
. . . ...

... . . . σ
. . . ...

... . . . . . . 0

0 · · · · · · 0 σ


,

BBByT
t =

(
0 V y

t W y,1
t · · · W y,n

t

)
.

YYY t is a vector representing the y coordinates of the attractor, the leader and the followers. The
attractor θ y is a constant in Niu et al. (2016), but in general it could be modelled by another
diffusion process; we include it in the state vector for convenience in describing the inference
algorithm later. Note that each Fy,k

t is indirectly attracted to θ y. The matrix A is the attraction
rate matrix. We take the stochastic parts (Brownian motion) for the leader and the followers
to be uncorrelated, therefore Σ is diagonal; each diagonal element of the Σ, except the initial
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zero, represents the coefficient of the individual variance. The solution of this differential
equation can be written as

Yt = eAtY0 +
∫ t

0
ΣeA(t−s) dBs. (3.6)

Conveniently, the distribution of Yt given Y0 can be described by a multivariate normal
distribution

YYY t |YYY 0 ∼ MVN(µµµ,Ξ), (3.7)

where

µµµ
T =

(
θ y µL(L

y
0, t) µF(L

y
0,F

y,1
0 , t) · · · µF(L

y
0,F

y,n
0 , t)

)
, (3.8)

with

µL(L
y
0, t) =

(
Ly

0 −θ
y)e−β t +θ

y, (3.9)

µF(L
y
0,F

y,k
0 , t) =

(
Ly

0 −θ
y) α

α −β

(
e−β t − e−αt

)
+
(

Fy,k
0 −θ

y
)

e−αt +θ
y, (3.10)

and

Ξ =



0 · · · · · · · · · · · · 0
... ξL ξLF · · · · · · ξLF
... ξLF ξF ξFF · · · ξFF
...

... ξFF
. . . . . . ...

...
...

... . . . . . . ξFF

0 ξLF ξFF · · · ξFF ξF


with

ξL(t) =
ρ2

2β

(
1− e−2β t

)
, (3.11)

ξLF(t) =
ρ2α

2β (α +β )
− ρ2α

2β (α −β )
e−2β t +

ρ2α

α2 −β 2 e−(β+α)t , (3.12)

ξF(t) =
{

σ2

2α
+

ρ2α

2β (α +β )

}(
1− e−2αt)− ρ2α2

2β (α −β )2

(
e−β t − e−αt

)2
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− ρ2α2

β (α2 −β 2)

{
e−(α+β )t − e−2αt

}
, (3.13)

ξFF(t) =
ρ2α

2β (α +β )

(
1− e−2αt)− ρ2α2

2β (α −β )2

(
e−β t − e−αt

)2

− ρ2α2

β (α2 −β 2)

{
e−(α+β )t − e−2αt

}
. (3.14)

For details of the derivation see Niu et al. (2016). The parameter α controls the strength of
the attraction of the followers to the leader. One consequence of this is that higher values
of α will lead to the followers typically being closer to the leader, although of course their
distribution around it depends on the diffusion parameters ρ and σ too.

3.3 Non-stationary Case

In model described in above, the leader and followers jointly define a multivariate OU process
and therefore have a stationary joint distribution. However, in practice the leader may not
have a point of attraction, or at least not one that is relevant on the time scale of available data.
The most tractable way to allow for this is to simply allow the leader to undergo Brownian
motion instead of an OU process, by setting β = 0 in Equation 3.4. The stochastic process
can be described as:

dLy
t = ρdV y

t , (3.15)

dFy,k
t =−α

(
Fy,k

t −Ly
t

)
dt +σdW y,k

t .

Similar to Section 3.2, we combine the equations for the leading point and the followers
to give an SDE for (the y coordinates of) both leader and followers. The solution of this
multivariate stochastic differential equation can also be written as a multivariate normal
distribution

YYY t |YYY 0 ∼ MVN(µµµ∗,Ξ∗), (3.16)

where
µµµ
∗T

=
(

θ y Ly
0 µ∗

F(L
y
0,F

y,1
0 , t) · · · µ∗

F(L
y
0,F

y,n
0 , t)

)
, (3.17)
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with

µ
∗
F(L

y
0,F

y,k
0 , t) = Ly

0
(
1− e−αt)+Fy,k

0 e−αt .

We keep θ y in Equation 3.17 in order to be consistent with the existing model in Equation
3.8. θ y is fixed to be zero and not used in the inference. The variance matrix can be written
as

Ξ
∗ =



0 0 0 0 0 0
0 ξ ∗

L ξ ∗
LF · · · · · · ξ ∗

LF

0 ξ ∗
LF ξ ∗

F ξ ∗
FF · · · ξ ∗

FF

0
... ξ ∗

FF
. . . . . . ...

0
...

... . . . . . . ξ ∗
FF

0 ξ ∗
LF ξ ∗

FF · · · ξ ∗
FF ξ ∗

F


. (3.18)

However, obtaining the conditional distributions in this case requires additional work, as the
derivation of the result given previously in Equation 3.7 relies on stationarity. In this case the
solution is as follows.

ξ
∗
L(t) =ρ

2t, (3.19)

ξ
∗
LF(t) =ρ

2t − ρ2

α

(
1− e−αt) , (3.20)

ξ
∗
F(t) =

σ2

2α
(1− e−2αt)+

ρ2

2α
(2αt −3) (3.21)

+
2e−αtρ2

α
− e−2αtρ2

2α
,

ξ
∗
FF(t) =

ρ2

2α
(2αt −3)+

2e−αtρ2

α
− e−2αtρ2

2α
. (3.22)

To derive the solutions to the SDE in the non-stationary case, we look at the full expansions
of the exponential terms in each of Equation 3.11 to 3.14. Then, we carefully collect terms
so that it is possible to set β = 0 i.e. where β does not cause any difficulties with the
denominators. The expressions relating to the distribution mean i.e. Equation 3.9 and 3.10
are straightforward to derive. The former is derived from first principles insofar as the leader
now follows a Brownian motion process, thus its mean at any time is simply its current
location. In the latter it is straightforward to allow β = 0. However, the derivation of the
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covariance terms require more delicate work. We derive each entry in turn, starting from the
original form.

3.3.1 Leader Variance

We begin with an easy derivation. We start with

ξL(t) =
ρ2

2β

(
1− e−2β t

)
.

First, expand the exponential to give

ξL(t) =
ρ2

2β

(
1− (1−2β t +

(2β t)2

2!
− . . .)

)
,

=
ρ2

2β

(
2β t − (2β t)2

2!
+ . . .

)
,

=ρ
2
(

t − 2β t
2!

+O(β 2)

)
.

Then letting β → 0 our new variance is

ξ
∗
L = ρ

2t. (3.23)

3.3.2 Leader-Follower Covariance

Starting with the existing equation, we have

ξLF(t) =
ρ2α

2β (α +β )
− ρ2α

2β (α −β )
e−2β t +

ρ2α

α2 −β 2 e−(β+α)t ,

=
ρ2α

2β

(
1

α +β
e−2β t

)
+

ρ2α

α2 −β 2 e−(α+β )t ,

=
ρ2α

2β

(
(α −β )− (α +β )e−2β t

α2 −β 2

)
+

ρ2α

α2 −β 2 e−(α+β )t ,

=
ρ2α

2β

(
(α −β )− (1−2β t + (2β t)2

2 − . . .)(α +β )

α2 −β 2

)
+

ρ2α

α2 −β 2 e−(α+β )t ,
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=
ρ2α

2β

(
−2β −2β t(α +β )+O(β 2)

α2 −β 2

)
+

ρ2α

α2 −β 2 e−(α+β )t ,

= ρ
2
α

(
−1− (α +β )t +O(β 2)

α2 −β 2

)
+

ρ2α

α2 −β 2 e−(α+β )t

=
ρ2α

α2 −β 2

(
−1+ e−(α+β )t − (α +β )t +O(β 2)

)
.

Then letting β → 0 we have

ξ
∗
LF = ρ

2t − ρ2

α

(
1− e−αt) . (3.24)

3.3.3 Follower Variance

Starting with the equation

ξF(t) =
{

σ2

2α
+

ρ2α

2β (α +β )

}(
1− e−2αt)− ρ2α2

2β (α −β )2

(
e−β t − e−αt

)2

− ρ2α2

β (α2 −β 2)

{
e−(α+β )t − e−2αt

}
, (3.25)

rearrange and expand to write in the form

=
σ2

2α
(1− e−2α)+

2e−αtρ2

α
+

ρ2α

2β

(
1

α +β
− αe−2β t

(α −β )2

)
︸ ︷︷ ︸

1

− e−2αt

(
ρ2α

2β (α +β )
+

ρ2α2

2β (α −β )2 −
ρ2α2

β (α −β )2

)
︸ ︷︷ ︸

2

.

First, let us collect the terms in the underbrace labelled 1.

ρ2α

2β

(
1

α +β
− αe−2β t

(α −β )2

)
︸ ︷︷ ︸

1

=
ρ2α

2β

[
(α −β )2 − (α +β )αe−2β t

(α +β )(α −β )2

]
,

=
ρ2α

2β

[
α2(1− e−2β t)−αβ (2+ e−2β t)+β 2

(α2 −β 2)(α −β )

]
,
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=
ρ2α

2β

[
α2(1− (1−2β t + (2β t)2

2! − . . .))

(α2 −β 2)(α −β )

]

−

[
αβ (2+(1−2β t + (2β t)2

2! − . . .))+β 2

(α2 −β 2)(α −β )

]
,

=
ρ2α

2β

[
2α2β t −3αβ +O(β 2))

(α2 −β 2)(α −β )

]
.

Cancelling the β terms and allowing β → 0 gives

ρ2α

2

[
2α2t −3α

α3

]
=

ρ2

2α
[2αt −3] . (3.26)

Now we simplify the second underbrace labelled 2.

(
ρ2α

2β (α +β )
+

ρ2α2

2β (α −β )2 −
ρ2α2

β (α −β )2

)
︸ ︷︷ ︸

2

=
ρ2α

2β

[
1

α +β
+

α

(α −β )2 −
2α

α2 −β 2

]

=
ρ2α

2β

[
(α −β )2 +α(α +β )

(α +β )(α −β )2 − 2α

(α2 −β 2)

]
=

ρ2α

2β

[
(α2 −β 2)((α −β )2 +α(α +β ))

(α +β )(α −β )2(α2 −β 2)

]
−
[

2α((α +β )(α −β )2)

(α +β )(α −β )2(α2 −β 2)

]
=

ρ2α

2β

[
α3β −αβ 3 +α2β 2 −β 4

(α +β )(α −β )2(α2 −β 2)

]
.

Thus, allowing β → 0 we have have the following result,

ρ2

2α
. (3.27)
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Summing our above simplified expressions we obtain

ξ
∗
F =

σ2

2α
(1− e−2αt)+

ρ2

2α
(2αt −3)+

2e−αtρ2

α
− e−2αtρ2

2α
. (3.28)

3.3.4 Follower-Follower Covariance

ξFF(t) =
ρ2α

2β (α +β )

(
1− e−2αt)− ρ2α2

2β (α −β )2

(
e−β t − e−αt

)2

− ρ2α2

β (α2 −β 2)

{
e−(α+β )t − e−2αt

}
.

The derivation is similar to the above, with the exception that the first term is not present.
This gives the result

ξ
∗
FF =

ρ2

2α
(2αt −3)+

2e−αtρ2

α
− e−2αtρ2

2α
.

The derivations provided in Section 3.3.1 to 3.3.4 described the jointly Gaussian collective
movement of multiple individuals. The formulation of the collective movement model we
have presented, i.e. through a latent leader, can be seen as a model for correlated movement,
with the leader acting as a device to construct a correlated movement model.

3.4 Behavioural Switching

Whilst the methodology presented in Niu et al. (2016) provides a model for collective
movement in continuous time, it is limited by the homogeneous description of movement.
The assumption that animals move with just a single movement process is somewhat unjust.
In actuality, animals exist in a state of constant change from both internal and external
drivers such as hunger, fatigue, predators and competition of resources. Although some
behaviours cause daily shifts in behaviour such as feeding and resting, other behaviours can
be displayed seasonally such as rutting, migrating and breeding. These changes in behaviour
will indirectly change the way in which they move and the underlying movement process.
Datasets with duration long enough that focal individuals will exhibit multiple movement
patterns necessitate the inclusion of heterogeneous behaviours (Morales and Ellner, 2002).
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Developing a model for collective movement that incorporates this diverse natural world is
important for understanding the complexity of animal movement and behavioural ecology.

Motivated by this, we diversify this modelling technique by allowing the individual animals
to have two movement processes. In the alternative process, the followers may be free of
following the leader and move independently from time to time. A simple but effective way
to do this is to have the behaviour of the followers switch between following the leader and
independent Brownian motion. The Brownian motion type of movement can be modelled as

Fy,k
t |Fy,k

0 ∼ N(Fy,k
0 , tσ2

BM)

where σ2
BM is the diffusion rate of the Brownian motion of the non-following animals.

The final piece left to discuss is the framework of switching between multiple behavioural
states coupled with different movement characteristics. In mathematical terms, we can
represent this as a Markov process in continuous time with both a diffusion component,
location, and a discrete one, behaviour, as in Berman (1994). In the case of individual-level
movement, the idea of a switching diffusion process driven by a continuous-time Markov
chain was proposed in Blackwell (1997) and formalised in Blackwell (2003). In group
movement modelling, a discrete-time version was described by Langrock et al. (2014); here
we develop a multivariate Ornstein Uhlenbeck process for a group of animals, driven by
a continuous-time Markov chain on a space representing their joint behaviour. In essence
this approach conflates themes presented in Langrock et al. (2014), the exact methods from
Blackwell et al. (2016) and the multivariate OU model for group movement presented in Niu
et al. (2016).

3.4.1 Mathematical Formulation of Behavioural Switching

Let Jk
t denote the kth animal’s behavioural state at time t, taking values in {1,2}, where 1

represents the state of following the leader and 2 represents the state of independent Brownian
motion.

Let JJJt be a vector containing the behavioural states for the whole group of animals at time
t, thus taking values in {1,2}n. We take each Jk

t independently to be a continuous-time
Markov chain on {1,2} having transition rates λ1,2 and λ2,1, where λ1,2 is the switching rate
of an individual from following the leader (OU process) to Brownian motion and λ2,1 is the
switching rate of an individual switching from Brownian motion to following the leader. The
transition rates for JJJt are then implied by that structure, although it is possible to allow for
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additional structure for example via environmental covariate information as discussed in
Chapter 5.

The formulation of behavioural switching for an animal within the group is as follows. The
kth animal starts in some state Jk

0 = j and location YYY 0 = (Fx,k
0 ,Fy,k

0 ) = (x0,y0), then the
animal follows the movement process defined by behaviour j; that is, Fx,k

t |Fx,k
0 and Fy,k

t |Fy,k
0

are realisations of the jth diffusion process. If j = 2 the diffusion process is Brownian
motion; if j = 1 the animal is following the leader, so that its movement jointly with that
of the leader is multivariate Ornstein Uhlenbeck. This continues until the time of the first
switch in behaviour, at time T1, when the animal is at Fx,k

T1
,Fy,k

T1
. If the behaviour switches

to Jk
T1
= i, the next part of the location trajectory is a realisation of the ith diffusion process,

starting at Fx,k
T1

,Fy,k
T1

, and this procedure continues iteratively.

The behavioural switching allows a much wider range of observed movement patterns. For
example, if switching between behaviours is relatively slow, following individuals will tend
to be found closer to the leader, and therefore closer together, the higher the value of α ,
while non-following animals will tend to drift away. However, faster switching between
behaviours can complicate this picture, depending on the absolute and relative switching
rates. For example, short periods of non-following behaviour will lead to the animals moving
independently in the short term while generally remaining close together.

To avoid any potential identifiability and label switching issues such as those described in
Frühwirth-Schnatter (2001) we explicitly hard-wire the states into our model formulation
such that the identities of the states are distinct. In other words, the Ornstein Uhlenbeck
(state 1) group movement state is modelled distinctly from the independent state (state 2).

The times of the switches in behaviour are modelled as a Poisson process that has been
‘thinned’ details of which are given in the next section.

3.5 Inference

3.5.1 Exact Simulation

The key to Bayesian inference for the above model is the simulation of trajectories augmented
by switching times and locations, appropriately conditioned on the observed data. The
simulation is carried out exactly, rather than the typical approach of making a discrete-time
approximation as in Langrock et al. (2014) and assuming that a switch can only happen at a
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discrete observation time point. Here we want to avoid this unnatural assumption and the
poorly understood discretisation error involved.

We utilise a uniformisation approach where the times of switches in behaviour form a Poisson
process with rate κ , which has been ‘thinned’, that is each potential switching time point is
either retained or deleted probabilistically (Guttorp and Minin, 1995), in a way that depends
on the movement process. This approach is similar to Markov-modulated Poisson processes
of Fearnhead and Sherlock (2006) and the continuous-time Markov chains by Rao and Teh
(2013). In a movement context the approach was introduced by Blackwell et al. (2016) (see
Section 2.6). However, the inference method we discuss here has been extended to account
for multiple individuals so that at every potential switch an individual is randomly selected
to switch behaviour. The framework of Blackwell et al. (2016) was initially developed to
allow for spatially heterogeneous behavioural switching although, for the time being we
are dealing with spatially homogeneous transition rates and so this device is not strictly
necessary; however, it is useful to prepare ourselves for developing the model to accept
spatial covariates in the future by using a tool which readily allows them. Recall that the
rate of the Poisson process, κ needs to be an upper bound for all the actual transition rates.
Since we are only interested in two behavioural modes (OU and BM) and the switches
in behaviour are homogeneous in time and space, the transition rates are all of the form
N 1λ1,2 +(n−N 1)λ2,1, where n is number of animals or members in the group and N 1 is
the number in state 1, we take

κ = nmax(λ1,2,λ2,1).

We can then think of the waiting time from any instant until the next switch in behaviour as
being bounded below, in a probabilistic sense, by the time that would apply if the rate of
switching was always κ . Starting at some known vector of states JJJT0 for all members of the
group, we can simulate the process forward as follows. Let

T ∼ exp(κ),

be the time of the first event of a process with constant rate κ . This is the first potential time
at which a change in behaviour might occur. We can then determine whether the potential
switch at T is an actual switch, an event which has probability

P(actual switch) = λ (T )/κ,
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where
λ (T ) = N 1,T0λ1,2 +N 2,T0λ2,1,

is the actual transition rate at time T , N 1,T0 is the number of animals following the leader at
time T0, and N 2,T0 is the number of animals moving as Brownian motion at time T0. If it is
an actual switch, we switch the state of the kth animal from the group with probability

P(Animal k switches) = λ
k,T0/λ (T ),

where λ k,T0 is the switching rate of the kth animal at time T0; λ k,T0 is λ1,2 if the kth animal’s
previous state Jk

T0
is 1 or λ2,1 if the previous state Jk

T0
is 2. If it is not an actual switch, nothing

need be changed.

Knowing JJJT , we can iterate this procedure forwards. This leads to a natural way of extending
the simulation over as long interval as we desire. If we denote the events of Poisson process
by T1,T2, . . ., then for each Tj in turn, we generate location YYY Tj by forward simulation.

3.5.2 The state space form of the model

Given the behavioural states, we can transform the group dynamic with behaviour switching
model into a linear state space model, which can be expressed in the following form:

YYY ti+1 = eAi(ti+1−ti)YYY ti +qi, qi ∼ MVN(0,Ξi), (3.29)

ZZZti = HiYYY ti + ε, (3.30)

where qi ∼ MVN(0,Ξi) is the process noise, and Ai and Ξi can take different forms based on
the behavioural states. The measurement model is constructed by defining Hi through which
the model is observed at the discrete time step ti. ZZZti is the observation of the followers’
location and the leader location Lti is unobserved; in the case where the leader is observed,
this is straightforward to accommodate by modifying Hi and hence Zti. We assume there
is no observation error, and therefore we can set ε to zero. The state space form of the
model is the discrete-time version of the continuous Ornstein Uhlenbeck and Brownian
motion behavioural switching model. Here this discretisation is not an approximation; we
use all the observations (possibly irregularly spaced in time) and between observations the
individuals follow a continuous process corresponding to their current behavioural state. This
discretisation can be thought of as a mild solution to the stochastic differential equation (Da
Prato and Zabczyk, 2014).
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Formatting the model in this way also allows us to deal with frequent irregularities that are
inherent in the collection of real observation data. Missing observations can be handled by
adapting the measurement matrix Hi, for example in a system where we have three followers
and one leader, when all animals are observed our matrix will be

Hi =



0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.31)

Alternatively, if animal two does not have an observation at this time point the associated
third row is omitted and the measurement matrix will be given as

Hi =


0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 (3.32)

Given the behavioural states JJJti of the whole group at time ti, the covariance matrix Ξi and
coefficient matrix Ai need to be changed by setting the corresponding row and column to the
Ornstein Uhlenbeck or Brownian motion version of the coefficient. For example, if we have
one leader and three followers, and at time ti, the second follower is moving as Brownian
motion while the rest follow the leader, J2

ti = 2, JJJti = [1 2 1]. The corresponding Ai and Ξi

become

Ai =



0 0 0 0 0

β −β 0 0 0

0 α −α 0 0

0 0 0 0 0

0 α 0 0 −α


Ξi =



0 0 0 0 0

0 Ξ11 Ξ12 0 Ξ14

0 Ξ21 Ξ22 0 Ξ24

0 0 0 σ2
BM 0

0 Ξ41 Ξ42 0 Ξ44.


In this example, the second follower (fourth row and column) is in the Brownian motion
behavioural state. When the behavioural state changes from 1 (Ornstein Uhlenbeck) to 2
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(Brownian motion) we update the covariance matrix Ξti and Ati by setting the fourth row and
column to zero and leaving the rest unchanged. For the animal moving as Brownian motion,
its attraction rate to the leader would be 0 and its movement is independent of the rest of
group; recall that σ2

BM is the diffusion parameter of the Brownian motion. Here the first and
second row and column of Ai and Ξi correspond to the attractor θ and the leader Lti . We keep
the row for θ to be consistent with the setting in Niu et al. (2016), but since we concentrate
here on the non-stationary case, θ is fixed to be 0 and is not used in the inference.

3.5.3 Prior Structure

Throughout the thesis we use uniform priors on [0,∞) for all parameters unless stated
otherwise. In Chapter 6, the priors for the parameters are uniform however, some parameters
have alternative constraints and may be negative. In some special cases ρ is fixed (see Section
5.2.1).

The prior structure for the locations is dependent on the modelling framework, that is whether
we are using the stationary (Section 3.2) or non-stationary (Section 3.3) version of the
model. In the stationary case, the multivariate normal prior is conditional on parameter
values and given these parameter values we have a stationary distribution. The stationary
distribution is used as the prior distribution for the locations by serving as a starting point for
the Kalman filter (Section 3.6). In the non-stationary case, the prior for the locations and thus
the initialisation of the Kalman filter is less straightforward and must be treated as a separate
case which is described in Section 3.7.

Although we use uniform priors throughout this thesis we can justify the propriety of the
posterior densities using standard results. Gelman et al. (2013a) (Section 2.7) show that for a
model with known mean and unknown variance the posterior is proper, even with an improper
prior, provided that there is at least one observation. When considering the Brownian motion
parameter, σBM, we can think of this as updating a normal distribution with a known mean of
0 and unknown variance. Of course, technically it is possible that we could have a realisation
of the model where all of the animals are in the OU state for the entire time period and thus
we have no observations in the BM state however, in practice this does not occur. Similarly,
for the OU state each parameter is updated separately meaning that the other parameters
are fixed and each update can be thought of as relating to either a normal with known mean
and unknown variance, in the case of diffusion parameters, or known variance and unknown
mean mean, for the attraction parameters. Again, there would be an issue with propriety if we
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did not have a single data point, but in reality this doesn’t happen. Lastly, the switching rate
parameters are proper due to being bounded and thus lead to a proper posterior distribution.

3.6 Markov chain Monte Carlo and the inhomogeneous
Kalman filter

3.6.1 Sampling the trajectory

Based on the simulation ideas above and the state space form of the model, we can produce
an algorithm for Bayesian inference for these models combining Markov chain Monte
Carlo techniques with the inhomogeneous Kalman filter. Given data ZZZ0, . . . ,ZZZt we want to
sample from the posterior distributions for the parameters of the diffusion process and of the
switching rates. The approach involves augmenting the data with the times of all changes of
behavioural state, and associated locations. We actually sample times, locations and states
for all potential changes, that is at all times of a Poisson(κ) process. Since the true transition
rates λ1,2,λ2,1 are unknown, we take their priors to be bounded above by κ1,κ2 respectively,
and set κ = nmax{κ1,κ2}.

Let Tobserve = {t0, . . . , tN} be the set of the observation times, Tpotential = {Ti, j, i= 0, . . . ,N−
1, j = 1, . . . ,Mi} be the set of all potential switching time points, where Mi is the number of
potential switches with ti < Ti, j < ti+1 i.e. the potential switches between observation times,
and Tactual be the actual switching time, with Tactual ⊂ Tpotential . We may have zero, one or
multiple switches between two consecutive observation time points. The state of our chain
is the collection of all times T = Tobserve ∪Tpotential , plus associated locations YYY t for the
whole group at time t ∈ T , initial state JJJt0 , the states JJJt at potential switching time points,
and implied states at the times of observations JJJt1 , . . . ,JJJtN .

The key Markov chain Monte Carlo step is to sample the trajectory, that is potential switches,
locations and states, over some time interval (ta, tb) such that t0 ≤ ta < tb ≤ tN , conditional on
the trajectory outside that interval, on the states Jta , Jtb and on the movement and switching
parameters. We define T ab′

potential = {T ′
i, j, i = a, . . . ,b−1, j = 1, . . . ,mi} with ti < T ′

i, j < ti+1

and mi the number of potential switches between ti and ti+1, as the set of all proposed
potential switching times in the interval (ta, tb), a realisation of a Poisson (κ) process on (ta,
tb). Once we propose all the time points of the potential switches in the interval (ta, tb), we
can determine probabilistically whether these are actual switches and propose behavioural
states.
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Starting with JJJta , the behavioural states for the whole group at ta, the next actual switching
time T ′

a,1 and corresponding behavioural states JJJT ′
a,1

can be proposed as in Section 3.5.1,
iterating to obtain JJJT ′

a, j+1
for j = 1, . . . ,ma − 1. This proposal process is repeated on each

subinterval (ti, ti+1) for i = a, . . . ,b−1. We require for consistency that the final simulated
behavioural states JJJT ′

b,mb−1
match the existing augmentation JJJtb ; if not, rejection is automatic.

Conditioning on the proposed behavioural states, we can sample the trajectory by simulating
the diffusion process forward. The simulation and inference of the model requires the
unattainable locations of the ‘abstract’ leader so an inhomogeneous Kalman Filter is used
with the state space model formulation to integrate out the leader’s location.

3.6.2 Inhomogeneous Kalman filter

The Kalman filter can be used for computing the exact Bayesian posterior distributions of
the state in the state space form of the group movement with behaviour switching model.
In our case, the transition of the state of Kalman filter depends on the behaviour states JJJt .
Therefore, the system dynamics of the Kalman filter is not linear, giving an inhomogeneous
Kalman filter.

Unlike the inference algorithm in Niu et al. (2016) which requires imputing the unobserved
leader’s location to compute the marginal likelihood, the Kalman filter can integrate out the
leader’s location. Here, a two-step scheme is presented, which first calculates the marginal
distribution of the next step using the known system dynamics, given the behavioural states.
In the prediction step, the mean, m, and covariance matrix, P, can be derived as follows.

mti|ti−1 = eAi(ti−ti−1)mti|ti−1 ,

Pti|ti−1 = eAi(ti−ti−1)Pti|ti−1(e
Ai(ti−ti−1).)T +Ξi

Here the subscript ti|ti−1 represents the prediction at step ti conditional on the state at
ti−1. The recursive iteration is initialised by presenting the prior information in the form
YYY 0 ∼ MVN(m0,P0), where P0 is defined as in Equation 3.18 and m0 is defined as in Equation
3.17. The algorithm then uses each observation to update the distribution to match the new
information obtained by the measurement in step ti. The equations for updating the system
are given as

kti = Pti|ti−1HT
i (HiPti|ti−1HT

i )
−1,
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mti|ti = mti|ti−1 + kti(ZZZti −Himti|ti−1),

Pti|ti = Pti|ti−1 − ktiHiPti|ti−1HT
i kT

ti,

where (.)−1 denotes the matrix inverse and (.)T the matrix transpose. As a result, the filtered
forward-time posterior process in step ti is given by YYY ti ∼ MVN(mti|ti,Pti|ti). In this iterative
computation, Ai and Ξi will change according to the behavioural states JJJti . Hi will also
change according to the availability of the observations at time step ti. The updating step is
only run when ti ∈ Tobserve, whereas we need to run the prediction step at every potential
switching time and observation time.

Given the behavioural states JJJT ′
a,1
, . . . ,JJJT ′

b,mb−1
in the interval (ta, tb), the log likelihood of

trajectories in the interval (ta, tb) is

p(ZZZ|ΘΘΘ,JJJta,...,tb) =−
b

∑
i=a+1

1
2
{

n log2π + log |HiPti|ti−1HT
i | (3.33)

+(Zti −Himti|ti−1)
T(HiPti|ti−1HT

i )
−1(Zti −Himti|ti−1)

}
.

The initialisation of the Kalman filter in the non-stationary case however is not trivial; the
details of the formulation are given in the Section 3.7.

3.6.3 Inference of Diffusion Parameters

We use standard random-walk Metropolis-Hastings updates for the diffusion parameters.
For each set of parameters Θ we use the Kalmam filter (Equation 3.33) to evaluate the
likelihood. We propose new diffusion parameters ΘΘΘ

′′′ using the symmetric Gaussian proposal
distribution centered on the previous values ΘΘΘ. The new parameters are accepted with
probability min{HR,1} where HR is the Hastings ratio

p
(
ΘΘΘ

′′′|JJJ,T ,YYY ,ZZZ,λλλ
)

q(ΘΘΘ|ΘΘΘ′′′)

p(ΘΘΘ|JJJ,T ,YYY ,ZZZ,λλλ )q(ΘΘΘ′′′|ΘΘΘ)
=

p(ΘΘΘ′′′)p(ZZZ|ΘΘΘ′′′,JJJt0,...,tN )

p(ΘΘΘ)p(ZZZ|ΘΘΘ,JJJt0,...,tN )

3.7 Initialising the Kalman Filter in the Non-stationary Case

For the non-stationary case there is no exact way to initialise the Kalman Filter. The purpose
of this section is to derive a meaningful distribution at time t0, just before the first observation.
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We suppose that the system has been following the model for some long time, ∆t, and write
t−1 = t0 −∆t. The positions of the animals at t−1 are taken to be independent and completely
unknown which we can represent with an arbitrary mean µ and large variance δ . Hence, we
let the mean and the covariance matrices be

m−1 =


0
µ

µ

µ

 , P−1 =


0 0 0 0

0 δ 0 0

0 0 δ 0

0 0 0 δ

 .

In this case, m−1 and P−1 represent the scenario with one leader and two followers; note
that this case shall be used for demonstration purposes but the principle holds for any
dimension. We can show that as δ ,∆t → ∞ the limit of the distribution conditional on the
initial observation is independent of δ and ∆t. Recall the Kalman Filter equations.

Prediction step:

mti|ti−1 = eA∆tmti|ti−1,

Pti|ti−1 = eA∆tPti|ti−1(e
A∆t)T +Ξ

∗,

Updating Step:

kti = Pti|ti−1HT
i (HiPti|ti−1HT

i )
−1,

mti|ti = mti|ti−1 + kti(ZZZti −Himti|ti−1),

Pti|ti = Pti|ti−1 − ktiHiPti|ti−1HT
i kT

ti,

Our attraction matrix A and covariance matrix Ξ∗ are

A =


0 0 0 0

0 0 0 0

0 α −α 0

0 α 0 −α

 , Ξ
∗ =


0 0 0 0

0 ξ ∗
L ξ ∗

LF ξ ∗
LF

0 ξ ∗
LF ξ ∗

F ξ ∗
FF

0 ξ ∗
LF ξ ∗

FF ξ ∗
F

 .

Using our Kalman filter equations for the prediction step we have

mt0|t−1 = eA∆tmt0|t−1
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=


1 0 0 0

0 1 0 0

0 1− e−α∆t e−α∆t 0

0 1− e−α∆t 0 e−α∆t




0
µ

µ

µ



=


0
µ

µ

µ

 .

Pt0|t−1 = eA∆tPt0|t−1(e
A∆t)T +Ξ

∗

=


1 0 0 0

0 1 0 0

0 1− e−α∆t e−α∆t 0

0 1− e−α∆t 0 e−α∆t




0 0 0 0

0 δ 0 0

0 0 δ 0

0 0 0 δ




1 0 0 0

0 1 0 0

0 1− e−α∆t e−α∆t 0

0 1− e−α∆t 0 e−α∆t



T

+Ξ
∗

=


1 0 0 0

0 1 0 0

0 1− e−α∆t e−α∆t 0

0 1− e−α∆t 0 e−α∆t




0 0 0 0

0 δ (1− e−α∆t)δ (1− e−α∆t)δ

0 0 δe−α∆t 0

0 0 0 δe−α∆t

+Ξ
∗

=


0 0 0 0

0 δ (1− e−α∆t)δ (1− e−α∆t)δ

0 (1− e−α∆t)δ (1− e−α∆t)2δ + e−2α∆tδ (1− e−α∆t)2δ

0 (1− e−α∆t)δ (1− e−α∆t)2δ (1− e−α∆t)2δ + e−2α∆tδ

+Ξ
∗.

Denote the summation of the above as

Pt0|t−1 =


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF

 ,
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where

ζL(∆t) =ρ
2
∆t +δ , (3.34)

ζLF(∆t) =ρ
2
∆t −

(
ρ2

α
−δ

)
(1− e−α∆t), (3.35)

ζF(∆t) =
ρ2(2α∆t −3)

2α
+2e−α∆t

(
ρ2

α
−δ

)
− e−2α∆t

(
ρ2

2α
−δ

)
+δ , (3.36)

ζFF(∆t) =
σ2 (1− e−2α∆t)

2α
+

ρ2(2α∆t −3)
2α

+2e−α∆t
(

ρ2

α
−δ

)
(3.37)

− e−2α∆t
(

ρ2

2α
−δ

)
+δ ,

The next step is to update our distribution conditional on the first observation. Note that it is
possible to observe any subset of the individuals. Therefore, to avoid separate derivations
for each case we consider observing only one animal and then instantaneously observe the
remaining where applicable. We present the case of updating the distribution having observed
one animal below. The transformation matrix, H, is

H =
(

0 0 1 0
)
.

We can write the Kalman gain as

kt0 = Pt0|t−1HT
t0(Ht0Pt0|t−1HT)−1

=


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF




0
0
1
0



(

0 0 1 0 0
)


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF




0
0
1
0




−1

=


0

ζLF

ζF

ζFF



(

0 0 1 0 0
)

0
ζLF

ζF

ζFF




−1



3.7 Initialising the Kalman Filter in the Non-stationary Case 55

=



0
ζLF
ζF

1
ζFF
ζF
ζFF
ζF


.

Substituting the Kalman gain into our updating steps gives the following mean, mt0 and
covariance matrix Pt0 .

mt0 = mt0|t−1 + kt0(ZZZt0 −Hmt0|t−1)

=


0
µ

µ

µ

+


0

ζLF
ζF

1
ζFF
ζF

 .

ZZZt0 −
(

0 0 1 0
)

0
µ

µ

µ


 ,

=


0
µ

µ

µ

+


0

ζLF
ζF

(ZZZt0 −µ)

(ZZZt0 −µ)
ζFF
ζF

(ZZZt0 −µ)



=


0

ζLF
ζF

(ZZZt0 −µ)+µ

ZZZt0
ζFF
ζF

(ZZZt0 −µ)+µ

 . (3.38)

Pt0 = Pt0|t−1 − kt0HPt0|t−1HTkT
t0,

=


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF



−




0

ζLF
ζF

1
ζFF
ζF


(

0 0 1 0 0
)


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF




0
0
1
0


(

0 ζLF
ζF

1 ζFF
ζF

)

,
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=


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF



−




0

ζLF
ζF

1
ζFF
ζF


(

0 0 1 0
)


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF




0 0 0 0

0 0 0 0

0 ζLF
ζF

1 ζFF
ζF

0 0 0 0




,

=


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF

−




0

ζLF
ζF

1
ζFF
ζF


(

0 0 1 0
)


0 0 0 0

0 ζLF
2

ζF
ζLF

ζLFζFF
ζF

0 ζLF ζF ζFF

0 ζLFζFF
ζF

ζFF
ζFF

2

ζF




,

=


0 0 0 0

0 ζL ζLF ζLF

0 ζLF ζF ζFF

0 ζLF ζFF ζF

−


0 0 0 0

0 ζ 2
LF

ζF
ζLF

ζLFζFF
ζF

0 ζLF ζF ζFF

0 ζLFζFF
ζF

ζFF
ζ 2

FF
ζF

 ,

=


0 0 0 0

0 ζL −
ζ 2

LF
ζF

0 ζLF − ζLFζFF
ζF

0 0 0 0

0 ζLF − ζLFζFF
ζF

0 ζF −
ζ 2

FF
ζF

 .

(3.39)

For more followers, if we only observe one animal we will always get a similar form to
this. The dimensions of the matrix would be larger with the appropriate row and column of
zeros depending on which follower was observed. We must now check that as δ ,∆t → ∞ the
distribution is finite and independent of δ and ∆t. This is not immediately obvious, so let us
first rewrite the equations (3.34) - (3.37) using Landau O notation. We choose to take the
limit in such a way that δ → ∞, but not as fast as compared with ∆t. Thus, we simplify the
equations using O(δe−α∆t), which tends to 0 as δ ,∆t → ∞.
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ζL(∆t) =ρ
2
∆t +δ ,

ζLF(∆t) =ρ
2
∆t +δ − ρ2

α
+O(δe−α∆t),

ζF(∆t) =ρ
2
∆t +δ +

σ2 −3ρ2

2α
+O(δe−α∆t),

ζFF(∆t) =ρ
2
∆t +δ − 3ρ2

2α
+O(δe−α∆t).

We calculate the limit of each equation in mt0 and Pt0 as ∆t,δ → ∞. Firstly, let

A = ρ
2
∆t +δ .

Then we calculate the limits for the mean m0 given in Equation 3.38. We can show that the
ratios of the ζ terms all go to 1 which means that every element of mt0 (except the initial 0)
will go to Zt0 .

ζLF

ζF
=

A − ρ2

α
+O(δe−α∆t)

A + σ2−3ρ2

2α
+O(δe−α∆t)

=
A −O(1)+O(δe−α∆t)

A +O(1)+O(δe−α∆t)

= 1.

ζFF

ζF
=

A − 3ρ2

2α
+O(δe−α∆t)

A + σ2−3ρ2

2α
+O(δe−α∆t)

=
A −O(1)+O(δe−α∆t)

A +O(1)+O(δe−α∆t)

= 1.

Thus, as δ and ∆t → ∞, the distribution mean is finite and independent of δ and ∆t and is

m0 =


0

Zt0

Zt0

Zt0

 .
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Now, we do the same for the covariance elements given in Equation 3.39.

ζL −
ζ 2

LF
ζF

=

(
A (A + σ2−3ρ2

2α
+O(δe−α∆t))− (A − ρ2

α
+O(δe−α∆t))2

)
A + σ2−3ρ2

2α
+O(δe−α∆t)

=
A (A +O(1)+O(δe−α∆t)− (A −O(1)+O(δe−α∆t))2)

A +O(1)+O(δe−α∆t)

=
(σ2+ρ2)A

2α

A

=
(σ2 +ρ2)

2α

ζLF −
ζLFζFF

ζF
=

(A − ρ2

α
+O(δe−α∆t))(A + σ2−3ρ2

2α
+O(δe−α∆t)−A + 3ρ2

2α
+O(δe−α∆t))

A + σ2−3ρ2

2α
+O(δe−α∆t)

=
(A − ρ2

α
)(σ2

α
+O(δe−α∆t))

A +O(1)+O(δe−α∆t)

=
A σ2

α
+O(1)+O(δe−α∆t)

A

=
σ2

α

ζFF −
ζ 2

FF
ζF

=

(
A − 3ρ2

2α
+O(δe−α∆t)

)(
A + σ2−3ρ2

2α
−A + 3ρ2

2α
+O(δe−α∆t)

)
A + σ2−3ρ2

2α
+O(δe−α∆t)

(3.40)

=

(
A − 3ρ2

2α

)(
σ2

2α

)
+O(δe−α∆t)

A +O(1)+O(δe−α∆t)

=
(σ2

2α
)A − 3ρ2σ2

(2α)2 +O(δeα∆t)

A +O(1)+O(δe−α∆t)

=
σ2

2α
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Therefore, as ∆t,δ → ∞ the limit of the matrix is

P0 =


0 0 0 0

0 ρ2+σ2

α
0 σ2

α

0 0 0 0

0 σ2

α
0 σ2

α

 .

Thus, the limits of the equations are finite and independent of δ and ∆t. These calculations
were verified using Maple (Maplesoft, 2018).

3.7.1 Parameter inference

The behavioural states, switching rates and the diffusion parameters can be estimated using
Markov chain Monte Carlo with a standard Metropolis Hastings algorithm. We propose
new switching rates λλλ

′′′ using the symmetric Gaussian proposal distribution centered on the
previous values λλλ . The acceptance probability for λλλ

′′′ depends only on JJJ, since movement is
independent of the rates given the states, and since T depends only on κ . The new switching
rates are accepted with probability min{HR,1} where HR is the Hastings ratio

p
(

λλλ
′′′|JJJ,T ,YYY ,ZZZ,ΘΘΘ

)
q(λλλ |λλλ ′′′)

p(λλλ |JJJ,T ,YYY ,ZZZ,ΘΘΘ)q(λλλ ′′′|λλλ )
=

p(λλλ ′′′)p(JJJ|λλλ ′′′)

p(λλλ )p(JJJ|λλλ )

by conditional independence and symmetry.

Given the trajectory and states, we know exactly what type of the movement processes
the group of animals were following, so the inference about the movement parameters is
straightforward. From the Markov property, the trajectory log-likelihood is calculated by
summing over terms of the form given in Equation 3.33 for the whole time interval. All
followers are considered jointly. We use uniform priors on [0,∞) for all parameters except
when otherwise stated for example, in Chapter 6 some parameters may be negative. We
use standard random-walk Metropolis-Hastings updates for all parameters in this and any
other subsequent chapters. We insist that diffusion parameters are non-negative values. The
only non-standard aspect is the calculation of the likelihood, and so other details are omitted.
Similar, lower-dimensional updates for a model of a single animal are described in detail by
Blackwell (2003).
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The code for the methodology is written in R (R Core Team, 2020) and can be found in
the GitHub repository https://github.com/FayFrost. The code provided is for the covariate
extension of the methodology discussed in Chapter 6 however, applications of this model in
Chapters 3 - Chapter 5 can be implemented as a special case of the code.

3.8 Implementation with Simulated Data

To asses the model’s performance, several simulation experiments were carried out. Specifi-
cally, we investigated the model’s ability to recover the true known parameters values even
when the algorithm is initialised with widely dispersed starting values. The first experiment
is the simplest case where the leader has no point of attraction and there is no behavioural
switching i.e. the model presented in Section 3.3; results are described in 3.8.1. In the
remaining experiments behavioural switching is accounted for; we check that the model is
able to pick up on a wide range of behavioural patterns by using simulated data with a vast
range of parameter values. In 3.8.2, the data are simulated with relatively high values for both
α and σBM, specifically α = σBM = 5. Here we can imagine the animals are tightly grouped
when in the OU state and widely separated when in the BM state, perhaps representing
individual exploring behaviour. In contrast, the data in 3.8.3 are simulated with σBM = 0.1.
This leads to movement behaviour where, when the animals are not grouped together, they
forage locally, leading to rather stationary behaviour. The final simulation experiment uses
parameter values similar to those obtained from the analysis of real data from reindeer
tracking in 4.2; results are described in 3.8.4.

3.8.1 Simulation without switching

We simulated location data of five followers and one leading point in both x and y directions
from the non-stationary intrinsic Ornstein Uhlenbeck model given in Section 3.3. The data
consisted of 50 time steps for each individual forwarded by using Equation 3.16 iteratively
and taking each generated location as the origin for the next. We used a single state version of
the MCMC algorithm presented in Section 3.5. We used the MCMC algorithm with 30,000
iterations which took approximately 30 minutes to complete. The posterior point estimates
and standard deviations are given in Table 3.1 along with the true parameter values. The
posterior densities for the model parameters are given in Figure 3.1 with the true values of
each parameter indicated by the dashed blue line.
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Parameter True Value Point estimate Standard deviation

α 1 0.99 0.11
ρ 3 3.36 0.33
σ 0.5 0.52 0.03

Table 3.1 Parameter estimates for movement and switching model with the simulated dataset
where β = 0.
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Fig. 3.1 Posterior densities for model parameters with simulation data, based on the Markov
chain Monte Carlo runs of 30,000 iterations. The dashed blue line in each case represents
the true parameter value; (a) Posterior density for α , the attraction rate of the follower to the
leading point. (b) Posterior density for ρ , the individual variance coefficient of the leading
point. (c) Posterior density for σ , the individual variance coefficient of the follower.



62 Modelling Collective Movement

The model performs exceptionally well at recovering the true parameter values with all
posterior point estimates having a difference from the true value by < 12%.

3.8.2 Simulation with high attraction and diffusion

For simulated data with a high attraction parameter and diffusion coefficients, we ran
the Markov chain Monte Carlo algorithm for 100,000 iterations after burn-in. This took
approximately 180 minutes to complete. The true parameter values are given in Table 3.2,
along with the point estimates and standard deviations of the posterior distributions for each
parameter. The posterior densities are given in Figure 3.2. The posterior states are given
in Figure 3.3. The circles (red) represent the true states of the follower. The vertical axis
represents the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion. The crosses
(black) represent the mean posterior of the estimated behaviour states.

Parameter Point estimate Standard deviation True value
α 4.59 0.49 5.0
ρ 3.17 0.23 3.0
σ 0.46 0.03 0.5
σBM 4.04 0.34 5.0
λ1,2 0.13 0.02 0.1
λ2,1 0.49 0.08 0.4

Table 3.2 Parameter estimates for the movement and switching model with simulation data
with high attraction and diffusion i.e. where α = Bσ = 5.
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Fig. 3.2 Posterior densities for model parameters with simulation data presented in Table 3.2,
based on the Markov chain Monte Carlo runs of 100,000 iterations. The dashed blue line in
each case represents the true parameter value; (a) Posterior density for α , the attraction rate
of the follower to the leading point. (b) Posterior density for ρ , the variance coefficient of the
leading point. (c) Posterior density for σ , the individual variance coefficient of the follower.
(d) Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion). (e) Posterior density for λ1,2, the switching rate of the follower
from OU to BM. (f) Posterior density of λ2,1, the switching rate of the follower from BM to
OU.
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Fig. 3.3 Posterior mean states of all followers for the data with high attraction and diffusion
i.e. where α = Bσ = 5. The circles (red) represent the true states of the follower. The vertical
axis represents the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion. The crosses
(black) represent the mean posterior of the estimated behaviour states. .
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The model performed well at retrieving the true values, even with widely dispersed initial
values.

We can visualise the movement trajectories by plotting each animal’s paths in one dimension
against time whilst simultaneously indicating the posterior state estimation at each time step.
Trajectory plots of the results are given in Figure 3.4. For completeness the trajectories
in two dimensions are presented in Figure 3.5. The point estimates of the posterior states
are marked as circles for OU and squares for BM for all five animals at each time step. In
this simulation study, we set the true value of σBM = 5 , λ1,2 = 0.1 and λ2,1 = 0.4. Since
λ2,1 > λ1,2, the animal has higher probability to switch from BM to OU.

The state estimation also confirmed animals spent most of the time in OU states. Once
they are in BM state, they will quickly switch to OU. The high value of σBM leads to large
movement steps when an animal is in the BM state, as is clear from the trajectories plotted
in Figure 3.4 and 3.5. Considering the individual trajectories, state estimation is difficult,
compared with the results in Section 3.8.3 but carrying out the estimation jointly gives good
results.
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Fig. 3.4 Time trace of locations in y-direction for each animal from the simulated data
presented in Table 3.2. At each time step the points indicate whether the individual’s
posterior state is OU or BM. The orange square points indicate an BM state whilst the purple
circular points indicate OU states.
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Fig. 3.5 Trajectories for each animal from the simulated data presented in Table 3.2. At each
time step the points indicate whether the individual’s posterior state is OU or BM. The orange
square points indicate an BM state whilst the purple circular points indicate OU states.
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3.8.3 Simulation with low diffusion

For simulated data with a low diffusion coefficient in the non-following state, we ran
the Markov chain Monte Carlo algorithm for 100,000 iterations after burn-in. This took
approximately 180 minutes to complete. The true parameter values for each data set are
given in Table 3.3, along with the point estimates and standard deviations of the posterior
distributions for each parameter. The posterior densities are given in Figure 3.6. The posterior
states are given in Figure 3.7.

Parameter Point estimate Standard deviation True value
α 5.44 0.29 5.0
ρ 3.07 0.19 3.0
σ 0.52 0.03 0.5
σBM 0.09 0.01 0.1
λ1,2 0.14 0.02 0.1
λ2,1 0.46 0.08 0.4

Table 3.3 Parameter estimates for the movement and switching model with simulation data
with low diffusion i.e. where Bσ = 0.1.
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Fig. 3.6 Posterior densities for model parameters with simulation data presented in Table 3.3,
based on the Markov chain Monte Carlo runs of 100,000 iterations. The dashed blue line in
each case represents the true parameter value; (a) Posterior density for α , the attraction rate
of the follower to the leading point. (b) Posterior density for ρ , the variance coefficient of the
leading point. (c) Posterior density for σ , the individual variance coefficient of the follower.
(d) Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion). (e) Posterior density for λ1,2, the switching rate of the follower
from OU to BM. (f) Posterior density of λ2,1, the switching rate of the follower from BM to
OU.
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Fig. 3.7 Posterior mean states of all followers for the data set presented in Table 3.3. The
circles (red) represent the true states of the follower. The vertical axis represents the states, 1
for Ornstein Uhlenbeck and 2 for Brownian motion. The crosses (black) represent the mean
posterior of the estimated behaviour states.
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For comparison with the previous example, the movement trajectories in one and two
dimensions are shown in Figure 3.8 and Figure 3.9 respectively. In this simulation study,
the true value of the BM diffusion parameter σBM = 0.1 is much smaller than Section 3.8.2.
The effects of this small BM diffusion parameter are clearly demonstrated in Figure 3.8 and
3.9, with movement in the BM state being much more localised than before. As expected,
state estimation is generally good in this case; the parameter estimation also reflects the true
values, and correctly captures the qualitative difference from the previous case.
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Fig. 3.8 Time trace of locations in y-direction for each animal from the simulated data
presented in Table 3.3. At each time step the points indicate whether the individual’s
posterior state is OU or BM. The orange square points indicate an BM state whilst the purple
circular points indicate OU states.
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Fig. 3.9 Trajectories for each animal from the simulated data presented in Table 3.3. At each
time step the points indicate whether the individual’s posterior state is OU or BM. The orange
square points indicate an BM state whilst the purple circular points indicate OU states.
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3.8.4 Reindeer-based Simulation

We simulated location data of five followers where the true diffusion parameters used in the
simulation are motivated by the results of real data analysis presented in Chapter 4. The data
consisted of 50 time steps. We ran the MCMC algorithm for 50,000 iterations after burn-in.
This took approximately 120 minutes to complete.

The posterior point estimates and standard deviations of the model parameters are shown in
Table 3.4 along with the true values used in the simulation. The posterior densities for each
parameters are given in Figure 3.10. The posterior means of the behavioural states for each
follower at every time point are plotted against the true behavioural states in Figure 3.11.

Parameter Point estimate Standard deviation True value

α 1.23 0.06 1.2
ρ 5.02 0.34 5.0
σ 0.69 0.04 0.7
σBM 1.59 0.17 2.0
λ1,2 0.14 0.02 0.1
λ2,1 0.51 0.08 0.4

Table 3.4 Parameter estimates for the movement and switching model with simulation data
motivated by real reindeer data.
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Fig. 3.10 Posterior densities for model parameters with reindeer-based simulated data, based
on the Markov chain Monte Carlo runs of 50000 iterations. The dashed blue line represents
the true parameter value. (a) Posterior density for α , the attraction rate of the follower to
the leading point. (b) Posterior density for ρ , the variance coefficient of the leading point.
(c) Posterior density for σ , the individual variance coefficient of the follower. (d) Posterior
density for σBM, the variance coefficient of follower when it is in BM. (e) Posterior density
for λ1,2, the switching rate of the follower from OU to BM. (f) Posterior density of λ2,1, the
switching rate of the follower from BM to OU.
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Fig. 3.11 Posterior mean states of all animals from the reindeer-based simulated data. The
(red) circles represent the true states of the follower. The vertical axis represents the states, 1
for Ornstein Uhlenbeck and 2 for Brownian motion. The (black) crosses represent the mean
posterior of the estimated behaviour states.

It is clear from Figure 3.11 that the model performs well at estimating the the true states.
However, in some cases it captures behaviours better than others for example, animal 2’s
true states at time point 39, and animal 1’s true states at time point 38 and 40 seem to have
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been poorly estimated. In these two cases, the animals only stay in the Brownian motion
behavioural state for very short time and then switch back to the Ornstein Uhlenbeck state
following the leader. This makes it harder for the inference algorithm to capture the switching.
On the other hand, if the animals move in certain behavioural states for longer time periods
such as animal 2 and animal 1 in time interval 1 to 10, the estimated behaviour states match
the truth very well.

3.9 Discussion

The work in this chapter has aimed to challenge areas of animal movement modelling that
have lacked in attention relative to others. We have described the formulation of a group
movement model with behaviour switching in continuous time, building on some of the
strengths of previous approaches, and an algorithm for fully Bayesian inference. Using
simulation experiments we have shown that we can successfully estimate the behavioural
states and diffusion parameters. Compared to Niu et al. (2016), we have introduced behaviour
switching in the continuous movement model and also extended the model to the non-
stationary case by defining the leader’s movement process as Brownian motion. By using
a state space format and applying the Kalman filter in this case we have also made our
calculations computationally more efficient and easily accounted for missing and irregularly
spaced data.

Behaviour switching is important in real applications to provide a realistic representation
of movement (Blackwell, 1997, 2003; Gurarie et al., 2010; Haydon et al., 2008; Langrock
et al., 2014; Morales and Ellner, 2002). Simpler single-behaviour models fail to capture the
heterogeneity of movement exhibited by animals as they respond to their environment. When
considering multiple animals, these behaviours can represent complex trade-offs between
environmental and social factors. For example, some species may exhibit grouping behaviour
as protection from predators but in doing so increase their foraging competition (Hart and
Mooring, 1992). This approach is unique in allowing this behavioural complexity for group
movement while retaining the theoretical and practical benefits of formulation in continuous
time.

Of course, if changes in behaviour are rapid compared to the time scale of the information
from observations, for example if there are frequently multiple switches between observations,
then it becomes impossible to reconstruct the sequence of behaviours, much less their precise
timing, with any certainty. That is inevitable in any model of this kind; our approach does at
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least allow properly for the different underlying possibilities, and the associated uncertainty,
rather than ignoring them as would be necessary in a discrete-time model. Our method also
introduces the use of the Kalman filter in the inference, which saves us from the need to
impute the location of the leading point as in Niu et al. (2016). By massively reducing the
dimension of the space to be explored by the Markov chain Monte Carlo algorithm, this
makes the computation feasible even in this more complex model.

In all of the cases presented in this chapter we have fixed κ = 3.5. This allows the switching
rate to be estimated at a maximum of κ /number of animals i.e. 3.5/5 = 0.7. It is possible to
fix κ at a higher value but this comes with a trade-off. Increasing κ will increase the amount
of potential switches generated and thus proportionally increase the computational time.
Since the densities of the switching rates in this chapter do not appear to be fixed around
this upper bound of 0.7, then there is no incentive to increase κ for these examples. In other
cases, where switching rates are larger, there may be a need for increasing κ . Likewise, for
lower switching rates or fewer animals we can save computational time by lowering κ .

The model does not require every individual to be observed which makes it extremely useful
for modelling the movement and behaviours of large collectives where it is practically or
economically infeasible to tag all members. This data-driven approach is built within a
framework that considers the data collectively, not just in a pairwise or summarised fashion.
A key advantage of this methodology over more metric-based approaches is its robustness to
incomplete observation of the herd, and to variation over time of the number or identity of
observed individuals within the herd. Each observed individual’s behaviour within the herd
is indirectly quantified through interactions with the leader (represented as an abstract point,
whose location is estimated through an averaging over the observed animals). Methods based
on statistical summaries may have varying results depending on who or how many animals
were tagged. This can lead to difficulty in interpreting the results and understanding how
they may respond under different movement patterns. We can think of the formulation we
present as a model for the whole herd where we only have ‘partial observations’ i.e. the
animals which are tagged, and this partial data acts as a proxy for the unobserved individuals.

As the leader is merely an abstraction it is not necessary for there to be some true biological
leading animal such as an alpha male or matriarch and so we are not concerned with tagging
that particular individual. However, in species where there exists an actual leader, analysis
would be much simpler if the leader is observed. If the leader is observed, that information
would be included through the observation matrix of the state space model, rather than being
integrated out. This is also mentioned in Section 3.5.2 when the state-space form of the
model is defined.
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This approach considers a group represented by a single ‘leader’ and animals who follow
the leader for part of the time. A model which allows switching between multiple separate
leaders, suitable for species with more complex social structures, but which relies on a more
complete tracking of individuals, is explored by Milner et al. (2020).

Since GPS tacking data usually has low observational error it is often ignored when formu-
lating models of animal movement such as those presented in this chapter. However, the
use of the Kalman filter means that it would be straightforward to allow for observation
error, taking ε to be non-zero in Equation 3.30. Another constraint is the invariability of
the switching rates; the specific models discussed in detail and applied here have switching
rates for each individual which are spatially and temporally homogeneous. However, the
method is formulated and implemented within a uniformisation approach which makes it
possible to incorporate heterogeneity in switching rates, following Blackwell et al. (2016).
This extension is discussed in Chapter 6.

The modelling technique offers some original insight in to collective movement however,
as is often the case, the inference methods are limited by their computational cost. That
said, I believe that the robust and generalisable conclusions, invariant under which animals
are tagged, which can be drawn from such a mechanistic approach far outweighs the com-
putational cost. The model allows for exact Bayesian statistical analysis for movement in
continuous time without the need for discretisation error. This flexible approach is unbounded
in the diversity of species it may be applied to since it may account for, in principle, any
number of animals and in any number of dimensions meaning that there are no restrictions
on avian or marine species if the tracking technology allows. In Chapter 4 we apply the
model to the location data of semi-domesticated reindeer (rangifer tarandus) in the Njaarke
herding district of Sweden.





Chapter 4

Case Study: Collective Reindeer
Movement

Reindeer (rangifer tarandus) or Caribou as they are referred to in North America are large
gregarious and migratory mammals. They live in a variety of habitats such as Arctic tundra,
mountain ranges and forests. In the wild they are native to circum-arctic regions such as
north-western US, Canada, Alaska, Greenland and some parts of Scandinavia e.g. Norway.
Although, they have been introduced as a semi-domesticated species in other areas such as
Iceland. Semi-domesticated (otherwise known as domesticated or tame) reindeer are herded
in a pastoral system where they roam freely but with seasonal herding for calving, slaughter
and relocation (Skarin and Åhman, 2014). The species are herbivorous, eating the available
plants and shrubs in their environment. Reindeer also have the ability to digest lichens,
unusual in large herbivores, which they rely on for winter forage (Falldorf et al., 2014) and
can often dictate their seasonal movements (Merkle et al., 2016).

In 2015, wild reindeer were classified as a vulnerable species according to the IUCN red list
after an observed population decline of 40 % over the course of 21-27 years (Gunn, 2016).
This is a dramatic change given that the species were of ‘Least Concern’ in 2008 (Henttonen
and Tikhonov, 2008). Although their domesticated relatives were not assessed in this study it
is suggested that these populations are also at risk due to shifts in traditional reindeer herding
areas due to competition of land-use (Pape and Löffler, 2012; Vistnes and Nellemann, 2001).

Most reindeer populations use ancestral grazing ranges and migration corridors. Due to this,
declines in population can be explained largely through environmental change and habitat loss
either directly e.g. as a result of human-animal conflict such as infrastructure development
(Polfus et al., 2011; Skarin and Åhman, 2014) or indirectly due to anthropogenic activities
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contributing to the warming globe and climate change. The increasing demand for natural
resources such as timber, oil, wind and hydro-power has resulted in wider exploitation and
encroachment in to historically untouched areas of the globe including arctic and subarctic
regions (Hislop, 2013; Klein, 2000; Sandström, 2015).

Despite the footprint of such industrial sites being relatively small the cumulative effect of
this and the associated roads, power-lines and cabins can result in avoidance behaviour much
larger than the resources site itself. These so called ‘zones of avoidance’ can result in reindeer
exhibiting avoidance behaviour up to 12km which leads to the use of less-suited environments
with lower quality forage and higher predation risks (Panzacchi et al., 2013; Skarin and
Åhman, 2014; Vistnes et al., 2004). In some extreme cases this can lead to the abandonment
of traditional migration corridors and fragmentation of the landscape (Vistnes et al., 2004).
Calving mothers have been found to be particularly sensitive to the psychological trauma
caused by this and may have lactation trouble and generally poorer reproductive success (Lee
et al., 2000; Vistnes and Nellemann, 2001).

Human activities, principally the burning of fossil fuels, can affect species environment
as a result of climate change (Forbes et al., 2006; Fyfe et al., 2013). The northernmost
countries and arctic regions experience the greatest impact of greenhouse gases with surface
temperatures increasing more than twice the global average (Pörtner et al., 2019). The
warming atmosphere has an adverse effect on the abundance of parasitic insects which can
spread diseases, disturb foraging opportunities and contribute towards herd loss (Ballesteros
et al., 2012; Kutz et al., 2014). Increasing temperatures can also have a negative impact on
the available forage in the winter and spring. Reindeer are known to follow the growth of
new vegetation - often regarded as green wave ‘surfing’ (Merkle et al., 2016). The amount
of accessible forage in the winter months is strongly influenced by the variation in climate.
Warm spells in winter can lead to more rain-on-snow events. As the rain turns to ice the
hardened snow-pack makes foraging lichens underneath difficult for the reindeer with heavy
energetic costs (Forbes et al., 2016; Hansen et al., 2011; Lee et al., 2000; Putkonen and Roe,
2003).

Reindeer grazing may also play a pivotal role in mitigating the positive feedback loops
of climate warming. Arctic shrub cover is increasing with the warming climate and this
vegetation absorbs radiation which in turn leads to further warming. Studies have shown that
herbivory at higher latitudes can increase surface albedo, the proportion of light reflected, by
consuming the shrubbery that covers the land (Beest et al., 2016).
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4.1 Importance of Semi-domesticated Herds

This thesis is concerned only with reindeer which form part of the semi-domesticated
populations in the herding districts of Sweden which exist over most of the northern half of
Sweden.

Reindeer husbandry refers to the ownership, management and maintenance of reindeer herds
(Tyler et al., 2007). Husbandry in Sweden is an industry reserved for the indigenous Saami
population. The herding districts have extensive land use covering around 22.6 million ha;
approximately 55% of Swedish land cover. As of 2019, the Swedish domesticated reindeer
population was estimated to be around 241,000 with 4600 herders spread over 51 districts (for
more details visit the Saami Parliament webpage, https://www.sametinget.se/). Despite the
Reindeer Grazing Act (1886) permitting herders to graze their reindeer on all private/public
land, the districts are not used exclusively for husbandry and co-exist with other forms of
land-use, hence the continuous conflict between herders and other forms of industry such as
forestry.

As in other parts of the world, reindeer husbandry has huge economical, cultural and social
value (Lee et al., 2000). Reindeer are highly valued for nutrition, clothing, spiritual and
cultural reasons (Forbes and Kumpula, 2009). They are said to be a ‘keystone species’ whose
impact on the community and landscape is disproportionately large relative to its abundance
(Falldorf et al., 2014; Pape and Löffler, 2012; Power et al., 1996). Husbandry forms an
integral part of the Saami livelihood and these populations depend heavily on traditional
herding for cultural and physical survival (Forbes et al., 2006; Kofinas et al., 2000; Tyler
et al., 2007).

The domesticated reindeer which form the herds in the Saami districts are not isolated from
their wild relatives and suffer similar environmental challenges. Reindeer well-being in these
herds is vital, not only for their survival but also for the Saami people who depend on them.
The information gathered from modelling the movement of semi-domesticated reindeer
can be transferred to studies of wild populations and used in management decisions and
conservation, especially since the tagging of semi-domesticated reindeer is more convenient
because they are already corralled seasonally for calf marking and harvesting.

In conclusion, reindeer face a multitude of threats, especially as a result of human activities.
Their presence offers valuable resources such as food, fur and cultural worth whilst poten-
tially dampening the feedback loops of climate warming. Rigorous statistical analysis and
coherent modelling of the movement and grouping dynamics of reindeer can yield insightful



84 Case Study: Collective Reindeer Movement

knowledge about behaviour, dispersal and land-use in relation to the environment. This
information can be used to facilitate decisions about future infrastructure developments,
conservation and management of herds to mitigate avoidable physiological and physiological
trauma. This can be especially useful in reindeer husbandry which heavily relies on the
well-being of a herd as a source of income.

4.2 Njaarke Data

The recurring dataset used in this thesis concerns semi-domesticated reindeer herded in the
Jamtland province in a northern district of Sweden, Njaarke. The data is collected across
three and a half years between 14/11/2009 and 31/12/2013 (Rivrud et al., 2018). The data
consists of GPS observations of 78 reindeer where at any one time up to 40 reindeer are
observed. The reindeer belong to one of two sub herds, namely “P&D” and “JKP”. Those
reindeer which form part of the P&D herd are moved from one pasture to another (via lorry
transport) in alignment with the change from summer to winter. This is intended to maximise
the resources available to the reindeer. The observations are regularly spaced every two hours
with the exception that in August and February they are every half hour. However, often GPS
fixes do not occur exactly when expected and there can be time lags upon receiving the fix,
or in some cases no fix at all.

The tagged reindeer exist as part of a wider herd, consisting of approximately 2000 members
(Ahman et al., 2014), where the rest of the individuals are not tagged. To illustrate the models
presented so far in this thesis a sub-sample of the data has been selected. In the interest of
minimising computational time, a subset of 5 reindeer has been chosen. The specific subset
was chosen through exploratory data analysis where the reindeer have some reasonably close
proximity and whose movements may be dependent upon on another at least for some of the
time. The duration of the subset was chosen to be short enough to alleviate any computational
strain but long enough that the reindeer are likely to exhibit multiple behavioural processes.
The data consist of up to 50 observations from each individual taken every two hours from
01/12/2009 until 5/12/2009.

Whilst the observations are subject to some of the usual irregularities when dealing with real
data, i.e. missing values and observation spacing inconsistencies, the observations are almost
regular insofar as they occur up to only 2 minutes before/after the intended timing. Thus, for
the simplicity of implementation the time steps of the data were rounded to the nearest hour.
However, in principle the methodology accounts for irregular times between observations.
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Figure 4.1 shows a map of the Njaarke herding district’s location. The left map shows a map
of Norway, Sweden and Finland from left to right. Sweden is highlighted in a darker shade
of yellow. The perimeters of the herding districts of Sweden are given with black outlines
with the Njaarke herding district indicated by the purple polygon. The right hand map gives
a zoomed view of Njaarke herding district. The top left polygon denotes the area of land
utilised all year by reindeer and the bottom right indicates the winter only pasture. In the
figure we can see a vast quantity of environmental heterogeneity. The district has a range
of mountainous and boreal forest areas dispersed with water bodies and man-made features
such as roads and hydro-power dams.
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Fig. 4.1 Left: A map of Norway, Sweden and Finland from left to right. Sweden is marked
in a darker shade of yellow. The perimeters of the reindeer herding districts are indicated by
the black lines and the Njaarke herding district is highlighted by the purple polygon. Right:
A zoomed view of Njaarke herding district. The top left polygon denotes the area of land
utilised all year by reindeer and the bottom right indicates the winter only pasture.
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4.3 Application of Non-switching Models

The remainder of this chapter is dedicated to illustrating an application of the various group
movement models presented so far with the data set described in Section 4.2. We initially
apply the non-switching model presented in Niu et al. (2016) and reviewed in Section 3.2. We
then fit the model in the case where β = 0 and compare the results. The chapter is concluded
with the application of the switching model given in Chapter 3 to the same data set. The
results and discussion are given at the end of the chapter.

4.3.1 Application of Non-Switching Model where β ̸= 0

We apply the existing non-switching and stationary model presented in Niu et al. (2016) and
reviewed in Section 3.2 to the real location data described in Section 4.2. Here β is nonzero
meaning that the leader has a point of attraction given by the variable θ , which we recall
is given as a state of the system. Table 4.1 shows posterior means and standard deviations
for the parameters of the model. The posterior distribution for the model parameters are
given in the density plots in Figure 4.2. The results here are based on 100,000 iterations
of Markov chain Monte Carlo runs, with over-dispersed initial values, every tenth iteration
being recorded after 30,000 iterations of burn-in. This took approximately 120 minutes to
complete.

Parameter Point estimate Standard deviation
θ x 34.35 5.72
θ y 22.78 5.58
α 0.32 0.06
β 0.24 0.10
ρ 11.54 2.81
σ 1.55 0.11

Table 4.1 Parameter estimates and standard deviations for model of group movement where
β ̸= 0.
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Fig. 4.2 Posterior densities for model parameters with real data, based on the MCMC runs
of 100,000 iterations and 30,000 iterations of burn-in. (a) Posterior density for θ x, the x-
coordinate of the attraction point for the leader. (b) Posterior density for θ y, the y-coordinate
of the attraction point for the leader (c) Posterior density for α , the attraction rate of the
follower to the leading point. (d) Posterior density for β , the attraction rate of the leader
to the attraction point. (e) Posterior density for ρ , the individual variance coefficient of the
leading point. (f) Posterior density for σ , the individual variance coefficient of the follower.
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4.3.2 Application of Non-Switching Model where β = 0

For comparison with the previous section we apply the non-stationary model presented in
Section 3.3 where β = 0 with the same real location data given in Section 4.2. Table 4.2
shows posterior means and standard deviations for the parameters of the model. The density
plots of the posterior distribution of the model parameters are shown in Figure 4.3. The
results here are based on 25,000 iterations of Markov chain Monte Carlo runs fitting the
switching non-stationary model, with over-dispersed initial values, every tenth iteration being
recorded after 5,000 iterations of burn-in. This took approximately 60 minutes to complete.

Parameter Point estimate Standard deviation
α 0.42 0.06
ρ 7.70 1.40
σ 1.71 0.11

Table 4.2 Parameter estimates and standard deviations for model of group movement where
β = 0. Note here that since β = 0 the parameters θ x and θ y are not relevant to the model
and thus their values are absent from the table.

.
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Fig. 4.3 Posterior densities for model parameters with real data, based on the MCMC runs of
25,000 iterations after a burn-in period of 5,000 iterations. (a) Posterior density for α , the
attraction rate of the follower to the leading point. (b) Posterior density for ρ , the individual
variance coefficient of the leading point. (c) Posterior density for σ , the individual variance
coefficient of the follower.

4.3.3 Comparison of Results

The most noticeable change in the parameter estimates are with ρ , the variance coefficient
of the leader’s location. In the β ̸= 0 case the value is 11.54 whereas when β = 0 the value
of ρ is only 7.70. There is only a small change in the point estimate of σ from 1.55 in the
stationary case to 1.71 in the non-stationary case. The existing model tries to pinpoint the
leader’s attraction point θ and attraction rate to that point β , which as we discussed may not
be appropriate on the time scale of the data. Here our data duration is only a few days and
exploratory data analysis suggests that there is no strong attraction point. The consequence
of fitting the existing model in this case is that we estimate a larger variance coefficient of
the leaders location.
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As with all models, there is a trade-off between the complexity of the model and goodness of
fit. It is worth noting here that the non-stationary model required fewer iterations to fit and
thus was computationally quicker, taking roughly 50% of the time taken to fit the stationary
model. This, in part is due to having three fewer parameters to estimate. This experiment is
worth bearing in mind, especially for data where there is no assumed point of attraction for
the leader.

4.4 Application of Switching Model

This section is focussed on an application of the switching model presented in Section 3.4.
We use the same subset of real reindeer location data. We illustrate the model’s ability to
capture behavioural heterogeneity. The duration of the data is 5 days so it is expected that
the reindeer will display multiple movement processes in this time. Specifically, we expect
the reindeer to switch between following the group and a Brownian motion behaviour.

Table 4.3 shows posterior means and standard deviations for the parameters of the model.
The density plots of the posterior distribution of the model parameters are shown in Figure
4.4 whilst the posterior state estimations are shown in Figure 4.5. The results here are based
on 100,000 iterations of Markov chain Monte Carlo runs fitting the switching non-stationary
model, with over-dispersed initial values, every second iteration being recorded after 30,000
iterations of burn-in. This took approximately 4 hours to complete.

Parameter Point estimate Standard deviation
α 1.33 0.24
ρ 4.58 0.41
σ 0.64 0.07
σBM 2.49 0.39
λ1,2 0.16 0.03
λ2,1 0.63 0.05

Table 4.3 Parameter estimates for reindeer movement and switching model with real dataset.
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Fig. 4.4 Posterior densities for model parameters with real data, based on the Markov chain
Monte Carlo runs of 100,0000 iterations. (a) Posterior density for α , the attraction rate of
the follower to the leading point. (b) Posterior density for ρ , the variance coefficient of the
leading point. (c) Posterior density for σ , the individual variance coefficient of the follower.
(d) Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion). (e) Posterior density for λ1,2, the switching rate of the follower
from OU to BM. (f) Posterior density of λ2,1, the switching rate of the follower from BM to
OU.
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Fig. 4.5 Posterior mean states of all followers for the real data set. The red crosses represent
the mean posterior of the estimated behaviour states. The vertical axis represents the states, 1
for Ornstein Uhlenbeck and 2 for Brownian motion. The horizontal line is set at y = 1.5.

To visualise the grouping dynamics on a spatial scale Figure 4.6 shows the locations and
linearly interpolated trajectories of each animal with the corresponding posterior state esti-
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mations. At each location the shape and colour of points indicate whether the individual’s
posterior state is OU or BM. The orange square points indicate an BM state whilst the
purple circular points indicate OU states. The classification of the points are determined by a
threshold of 1.5 i.e. if the point estimate of the behavioural state at a particular time point is
larger than 1.5 the point is classified as Brownian motion, otherwise it is Ornstein Uhlenbeck.
Experimentation was done with a less strict threshold to account for an uncertain category
(between 1.4 and 1.6) but this had limited counts as most estimates are confident.

What’s more, trajectories may be overlaid on landscape maps to investigate grouping patterns
in response to environmental cues such as terrain. Figure 4.7 gives an example of posterior
state estimations and location data plotted on a map of the environment indexed by four land
cover types namely, anthropogenic areas, mires, forests and water bodies.

Alternatively, if the practitioner is concerned with the behaviour of the reindeer on a temporal
scale similar plots can be made by plotting the locations in 1-dimension, say the y-coordinate,
against time for each individual as in Figure 4.8.



94 Case Study: Collective Reindeer Movement

5

3 4

1 2

0 20 40

0 20 40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

x−direction

y−
di

re
ct

io
n State

BM

OU

Fig. 4.6 Trajectories for each animal in the real dataset. At each time step the points indicate
whether the individual’s posterior state is OU or BM. The orange square points indicate an
BM state whilst the purple circular points indicate OU states.
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Fig. 4.7 Trajectories for each animal in the real data set projected on to a terrain map. At
each time step the points indicate whether the individual’s posterior state is OU or BM. The
orange square points indicate an BM state whilst the purple circular points indicate OU states.
The terrain is split into four categories: anthropogenic, water body, mire and forest given in
red, blue, tan and green respectively.
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Fig. 4.8 Time trace of locations in the y-direction for each animal from the real reindeer data.
At each time step the points indicate whether the individual’s posterior state is OU or BM.
The orange square points indicate an BM state whilst the purple circular points indicate OU
states.

The posterior mean of the non-switching variance coefficient of the leader ρ is 7.7 which is
much bigger than the parameter in the switching case which is only 4.58. Similar comparison
can be seen in the attraction rate parameter α , which is 0.42 for the non-switching case
and 1.33 for the switching case. First impressions of the results may be that the switching
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model is redundant as the animals spend most of their time in grouped state. However, the
non-switching model treats the independent movement of followers as the part of the group
movement. This leads to the bigger estimated variance of the leader’s location and smaller
estimated attraction rate, while in the switching group movement model, we successfully
distinguished the group movement and independent movement of the followers using the
behavioural states. In a simulated example in Chapter 6, the necessity of switching becomes
much more apparent as the animals switch behaviour regularly with a sinusoidal pattern.

4.5 Discussion

Throughout this chapter we have highlighted the importance of modelling the movement of
reindeer, in particular those which are semi-domesticated. We have stressed the significance
of particular grouping strategies and their impact on herd survival. For example, although an
individual reindeer may reduce its grazing competition by moving away from the herd, it
then also stands a greater chance of being killed by predators or, in summer, being harassed
by insects, and therefore the choice an individual reindeer makes about how and where to
move is balanced between finding enough food for itself but also staying within the safety of
the group (Hart and Mooring, 1992). In winter reindeer usually graze in groups digging for
lichens underneath the snow. Staying with a group where several animals are digging could
be beneficial for the individual reindeer as this saves time and energy from digging. However,
this also means competition among the animals for the best lichen forage and individuals
may be pushed away and thus need to search for new places to dig (Kojola, 1989).

In Chapter 5 we apply the switching model to two datasets during times which we assume to
have contrasting environmental conditions. Specifically, we investigate reindeer grouping
strategies for the relief of harassment from mosquitoes in the summer months. We use this
application as a case study to demonstrate the model’s ability to distinguish between grouping
and dispersal behaviour. Using similar visualisation tools we are able highlight preferences
of land cover type during assumed presence of mosquitoes. This simple example promotes
the functionality of this switching model and the important applications for the conservation
and protection of the reindeer herds and the herders who rely on them for their cultural and
economic value.

By using the same collection of real reindeer location observations throughout this chapter
we are able to understand the differences in parameters estimation between the modelling
approaches presented in Chapter 3. We have acknowledged that in cases where it is not
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suitable to assume a point of attraction for the leader then the non-stationary model, where
β = 0 is more appropriate and often computationally quicker. However, unless the temporal
scale of the data is extremely short it is likely that individual’s will exhibit a variety of
behavioural modes. In these instances the switching model we have developed is highly
applicable and the data visualisation techniques we have demonstrated can be useful for
discerning behavioural patterns on a temporal or spatial scale.

Through our exploratory data analysis and literature review we believe that the modelling
approach is an appropriate fit for the collective structure in reindeer movement. Although the
true diffusion parameters and the behaviour states are unknown we can have confidence about
our inferences since the real data is thought to approximately come from the distribution
we are fitting and the model performed well at recovering the true values in the simulation
experiments with extreme behaviour given in Section 3.8.2, 3.8.3. More specifically, the
model provided a good fit when true values were based on the point estimates of the real data
in Section 3.8.4.

However, this real example highlights a limitation of having a single leader. In Figure 4.8 we
can see time periods in which multiple animals switch to the independent Brownian motion
state and move in a similar way e.g animal 4 and 5 around the 2nd December and animal
1 and 4 immediately before the 4th December. Whilst the model presented here treats the
whole group as one, at these particular instances it may have been more appropriate to model
movement with multiple leaders. However, this is beyond the scope of this thesis and to my
knowledge has not been done.

Additionally, this model does not consider intra-group interactions and assumes that the
group has no hierarchical structure. In this case, the approach to modelling movement and
attraction would be more intricate. Milner et al. (2020) demonstrate this by providing a
model of movement for a number of animals within a social hierarchy. They too build
on previous work of Niu et al. (2016), using multiple behavioural states with multivariate
Ornstein Uhlenbeck diffusion processes to model movement. The main difference of their
work is that there is no imputed leader. That is, the leading animal has to be a real, tagged
individual rather than an abstraction. As well as this, rather than having a single leader as in
our case, the authors allow for attraction between every tagged animal by modelling dyadic
interactions. Whilst this novel research is very useful, they acknowledge that this approach
is computationally expensive and is limited by the requirement that all individuals within
the group must be tagged. There are advantages and disadvantages of the work presented
in this thesis and that of Milner et al. (2020) but it is worth noting that ultimately they are
built for different purposes. The work in this thesis is designed to pick up on larger scale
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group dynamics where there are no defined leaders and which in principle is designed to be
invariant on which animals within the group are tagged, whereas Milner et al. (2020) aim to
recognise fine scale social interactions amongst known tagged animals.

Another limitation is the assumption of homogeneous switching rates. That is, the switching
rates are constant throughout time and space. In reality, grouping or dispersing behaviours are
often a result of internal or external stimuli for example, predators, mating seasons, forage
competition, hunger or fatigue may drive behavioural choices. In Chapter 5 we discuss
how the movement of reindeer may be influenced by the presences of parasitic insects such
as mosquitoes. We demonstrate this by comparing grouping behaviour for two different
time periods under contrasting levels of insects. In Chpater 6 we formalise this inclusion
of covariate information by providing a flexible framework for allowing switching rates to
vary temporally. We firstly illustrate this with a simulated example where the switching rates
depend on the time of day. Then we revisit our real data application by explicitly allowing
the switching rates to depend on covariate information about insect presence.





Chapter 5

Reindeer Grouping Strategies for the
Relief of Insect Harassment

The purpose of this chapter is to apply the switching model presented in Section 3.4 to two
datasets of reindeer locations assumed to be during contrasting environmental settings. We
investigate whether the model is able to distinguish between different behavioural patterns
and give results consistent with the knowledge of reindeer movement. Specifically, we
explore the differences in reindeer grouping strategies in response to the presence or absence
of parasitic insects such as mosquitoes and oestrid flies.

Ecosystems inhabited by reindeer are known for large concentrations of parasitic insects
such as mosquitoes (Aedes sp., Culicidae), horseflies (Tabanidae), blackflies (Simuliidae)
and oestrid flies for example, warble and nasal bot flies (Hypoderma tarandi L., Oestridae
and Cephenemyia trompe L., Oestridae respectively) (Hagemoen and Reimers, 2002; Witter
et al., 2012b).

The main parasitic species present in the Njaarke herding district described in Section 4.2 are
oestrid flies and mosquitoes, so we shall focus our attention toward these. These insects are
known to cause discomfort and annoyance to reindeer, forcing relocation and interrupting
foraging behaviour. Mosquitoes in particular bite their hosts to feed on their blood whilst both
species of oestrid flies use reindeer as hosts for reproduction. Both oestrid fly species have
similar life-cycle durations of 1 year. Warble flies leave their hosts as larvae in May-June
where they then drop to the ground to burrow and pupate. After a few weeks they emerge as
flies to mate. After, the female flies seek reindeer to oviposit on their hide, where the larvae
subsequently hatch, penetrate the skin and develop. Nasal bot flies have a similar life-cycle
but the female does not oviposit onto the reindeer. Instead she allows the eggs to hatch inside
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her then sprays the newly hatched larvae into the muzzle of the reindeer. They then crawl
into the nasal cavities of the host where they develop until they are later coughed, sneezed or
breathed out (Tryland and Kutz, 2018).

The presence of such insects are thought to be a major factor in shaping reindeer movement,
habitat selection and grouping dynamics (Downes et al., 1986; Helle and Aspi, 1983; Skarin
et al., 2008; White et al., 1975) which can severely influence reindeer activity budgets. Flying
parasites force reindeer to seek topographical relief in more exposed areas at higher altitudes
where flying conditions are poorer (Downes et al., 1986); this usually results in decreased
foraging opportunity (Morschel and Klein, 1997; Skarin et al., 2010). Not only this, insect
harassment can lead to temporary clustering and stationarity in the herd which can result in
local overgrazing. Overgrazing may decrease the quality of vegetation, possibly with long
term consequences (White et al., 1975).

The increased energy expenditure due to avoidance behaviour, decreased resting time and
poorer quality grazing can contribute to nutritional deficits (White et al., 1975). Initially,
it was hypothesized that the animals would compensate for this during hours of low insect
activity, however, Colman et al. (2003) provided evidence against this. This can be a crucial
factor impacting reindeer survival, especially during insect activity peaks around mid-June to
the end of August (Skarin et al., 2008; Witter et al., 2012a).

The summer period is a critical time for reindeer to forage and build fat reserves for the
winter; it is suggested to be of paramount importance for survival during harsh winters with
low forage opportunity (Reimers, 1997; Tryland and Kutz, 2018). The accumulation of daily
harassment can lead to decreased body weight which is thought to be strongly correlated with
reproductive success, winter survival and calf recruitment (Colman et al., 2003). Moreover,
during the summer, reindeer need to account for extra energy expenditure for the rutting
season and calving. Any constraints on foraging can have severe detrimental effects on
individual reindeer and consequently the population density (Morschel and Klein, 1997).

The behavioural shifts to alleviate parasitic pressure are not limited to small scale movements
or micro-habitat relocations. Some reindeer choose large scale migrations to alternative
summer pastures after calving to reduce levels of parasite infections. In the study of Folstad
et al. (1991), it was shown that the larval abundance of oestrids is negatively correlated with
distance between their summer pasture and calving ground suggesting that some reindeer
may elect post-calve migration as a means of insect relief.

Both the direct and indirect costs of insect harassment are thought to affect reindeer well-
being and overall fitness of the herd (Hagemoen and Reimers, 2002). In extreme cases
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reindeer populations have declined in certain regions (Vors and Boyce, 2009). It is postulated
that declines in these populations are related to insect harassment, either directly through
blood loss and infection or indirectly due to the energetic expenditure related to insect
avoidance and disturbed resting cycles (Hagemoen and Reimers, 2002; Morschel and Klein,
1997).

In alignment with the wisdom of herding communities, past observation analyses found that
distance between individuals increased with the presence of oestrids and decreased with
the presence of only mosquitoes (Morschel and Klein, 1997); group sizes increased with
mosquito activity, decreased with both mosquitoes and oestrids and then decreased again
during the absence of insects (Downes et al., 1986). Under severe mosquito harassment, the
large, tightly grouped congregations make long and rapid movements (White et al., 1975).
This suggests that large clumping behaviour can be a strategy of mosquito avoidance whereas
dispersion relieves oestrid harassment. This dispersion has been attributed to panicked
running in response to oestrids. Helle and Aspi (1983) and White et al. (1975) both give
evidence of the advantageousness of grouping behaviour during an insect activity field
experiment. They concluded that periphery insect traps were attacked less frequently than
central ones meaning that harassment was dependent on an individual’s position within herd.

It has been disputed as to which insect has the most influence over reindeer behaviour and
grouping dynamics. Witter et al. (2012a) argues that oestrid flies have the most dominance
over reindeer behaviour, although the presence of both mosquitoes and oestrids has the
greatest effect.

Whilst most studies have observed animals with spotting scopes, which can be laborious
and costly, we present an application of the switching model given in Section 3.4 to infer
grouping behaviours of reindeer in response to insect harassment using location data alone.
We will demonstrate the model’s ability to discern varying behavioural patterns between two
time periods; one where there is thought to be a high level of insect presence and another
where it is thought to be low.

5.1 Climatic Conditions for Insect Presence

Often location data of reindeer, from a GPS tag, is collected in the absence of insect activity
observations. That said, providing retrospective inference calls for the use of data which can
serve as a proxy for insect harassment. A common approach is to use climatic data, which
can usually be obtained from nearby weather stations, as a way to index insect activity.
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Many studies provide justification for using weather parameters to index insect harassment
(Morschel and Klein, 1997; Skarin et al., 2010; Witter et al., 2012b). Past studies have used
climatic data and observations of reindeer behaviour, such as foot stomping, nose dropping
and tail flicking, which is thought to represent annoyance behaviour, in order to determine
weather characteristics with the most influence on insect activity. In particular, temperature
and wind speed appear to be the dominant variables affecting insect activity (Downes et al.,
1986; Hagemoen and Reimers, 2002; Morschel and Klein, 1997; White et al., 1975). During
model selection processes using Akaike Information Criterion (AIC), it was found that
models for insect activity which included only temperature and wind speed came second only
to a full combination of other less measurable covariates such as light, vegetation, topography
(Witter et al., 2012b).

The suggested optimal weather conditions for insect activity varies between species and
amongst studies but generally warm temperature and low wind speed are preferred. Some
suggest that oestrid fly activity occurs above a temperature threshold of 7°C (Downes et al.,
1986), 10°C (Anderson et al., 1994; Mörschel, 1999), or 13°C (White et al., 1975), whilst
thresholds of wind speed are reported as less than 6-8 m/s (Anderson et al., 1994). Mosquitoes
have been reported to be active at temperatures between 6 and 18°C and wind speeds below
6 m/s (Russell et al., 1993) and to decline in activity above 16°C and 7.5 m/s (Hagemoen
and Reimers, 2002).

Past studies hypothesised that the direct effects of weather dominate reindeer behaviour
patterns as opposed to the indirect consequences of weather such as insect presence. However,
data-driven analyses, with the simultaneous recording of insect abundance and reindeer
behaviour, suggest that models of reindeer behaviour that comprised weather variables only
did not perform as well as those which also contained covariates related to insect activity,
thus suggesting that the indirect effects were larger than direct effects of weather (Hagemoen
and Reimers, 2002; Witter et al., 2012a).

5.2 Data

To investigate reindeer grouping dynamics in response to varying levels of insect harassment,
we fit the switching model described in Section 3.4 to two datasets. Specifically, we focus
on two time periods where there is thought to be either a low or high mosquito presence.
Both data sets are subsets of the data set described in Section 4.2. The first subset occurs
during a time period in early summer where we assume there is low mosquito activity. The
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other dataset has been selected in the peak summer period when we believe there are high
mosquito levels.

The time period of the datasets were selected through exploratory data analysis using the
thresholds for mosquito activity given in Skarin et al. (2010) i.e. mosquitoes are assumed to
be mainly active at temperatures between 7 and 17°C and at wind speeds below 7 m/s. The
weather data was downloaded from the Swedish Meteorological and Hydrological Institute
(http://www.smhi.se/). We chose to collect data from the weather station Korsvattnet A
in the north eastern part of the Njaarke district, the closest to the reindeer locations. The
observations of temperature and wind speed are recorded hourly and there are no missing
data.

The low mosquito activity dataset, which will now be referred to as early summer, consists
of up to 70 observations of 7 individuals, at two hour intervals between 20/06/2010 and
25/06/2010. A plot of the mosquito activity index for the duration of the early summer data
set is given in Figure 5.1. A value of 1 indicates that the wind speed and air temperature
are within the thresholds of mosquito activity that are presented in Skarin et al. (2010); a
value of 0 indicates that the wind speed and temperature are outside the thresholds and thus
mosquitoes are not expected to be present.
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Fig. 5.1 Timeline of mosquito index during the early summer period. A value of 1 indicates
that the wind speed and air temperature are within the thresholds of mosquito activity that are
presented in Skarin et al. (2010); a value of 0 indicates that the wind speed and temperature
are outside the thresholds and thus mosquitoes are not expected to be present.

Despite there being an increased frequency in expected mosquito presence after June 23rd,
we have selected a time period up until June 25th. We have done this so as to not use too
small a dataset in our analysis.

The high mosquito activity dataset, which will now be referred to as peak summer, consists
of up to 83 observations of 6 individuals, at two hour intervals between 04/07/2010 and
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10/07/2010. A plot of the mosquito activity index for the duration of the peak summer data
set is given in Figure 5.2.

0

1

Jul 05 Jul 07 Jul 09 Jul 11
Date

M
O

S
 IN

D
E

X

Fig. 5.2 Timeline of mosquito index during the peak summer period. A value of 1 indicates
that the wind speed and air temperature are within the thresholds of mosquito activity that are
presented in Skarin et al. (2010); a value of 0 indicates that the wind speed and temperature
are outside the thresholds and thus mosquitoes are not expected to be present.

Similar to the early summer dataset, we retain observations between July 4th and July 6th
despite the fluctuations in mosquito index during this time period.

As before, both datasets are subject to some of the usual irregularities when dealing with
real data, i.e. missing values and irregular sampling schedule. However, the observations are
almost regular insofar as they occur up to only 2 minutes before/after the intended timing.
Thus, for the simplicity of implementation the time steps of the data were rounded to the
nearest hour.

5.2.1 Identifiability and convergence issues with ρ

Before we discuss applying the model to the two datasets there is an important issue which
needs addressing. During trial runs of the MCMC algorithm, we encountered difficulties with
convergence for the posterior of the parameter ρ insofar as it frequently diverged to large,
unreasonable values. We experienced this issue with both the early and peak summer datasets.
The wide range of possible values that ρ may take may be considered as an identifiability
problem with the parameter. We find that it is not always possible to distinguish between
different movement scenarios e.g. a fast leader with low attraction rate (where ρ is large
and α is small) may look similar to a slow leader with high attraction (ρ small and α large).
To work around this, we fixed ρ to a value we believed to be sensible whilst allowing it to
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be large relative to the other Brownian motion parameters, essentially ‘scaling’ the leader’s
movement (for more justification, see discussion in Section 5.5). To do this we ran the
algorithm with all the parameters unfixed then chose ρ such that it was the least integer
greater than twice the maximum of the other Brownian motion parameters, σ and σBM. In
other words, after a trial run, we subsequently choose ρ such that

ρ =

⌈
2(max{σ ,σBM})

⌉
,

where ⌈x⌉ is equal to the least integer greater than or equal to x. Using this process, we set
ρ = 3 for both datasets.

5.3 Early Summer Results

We applied the switching model presented in Chapter 3 to the early summer dataset. We ran
the Markov chain Monte Carlo algorithm for 50,000 iterations. This took approximately 12
hours to complete. The posterior mean and standard deviation of model parameters are shown
in Table 5.1. Posterior state estimations are given in Figure 5.3 whilst posterior densities for
the parameters are given in Figure 5.4. For each individual, Figure 5.5 shows the locations in
the y-direction against time; Figure 5.6 gives the two-dimensional trajectories; Figures 5.7
and 5.8 project these trajectories on to a terrain map.

Parameter Point estimate Standard deviation

α 0.047 0.01
ρ 3 0
σ 1.25 0.077
σBM 0.22 0.02
λ1,2 0.63 0.057
λ2,1 0.19 0.033

Table 5.1 Parameter estimates of the switching model for the early summer dataset where
mosquito activity is assumed to be low.
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Fig. 5.3 Posterior mean states of all followers for the early summer dataset where mosquito
activity is assumed to be low. The vertical axis represents the states, 1 for Ornstein Uhlenbeck
and 2 for Brownian motion. The crosses (red) represent the mean posterior of the estimated
behaviour states.
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Fig. 5.4 Posterior densities for model parameters for the early summer dataset, based on
the Markov chain Monte Carlo runs of 50,000 iterations. (a) Posterior density for α , the
attraction rate of the follower to the leading point. (b) Approximate density for ρ , the variance
coefficient of the leading point, which is fixed at 3. (c) Posterior density for σ , the individual
variance coefficient of the follower. (d) Posterior density for σBM, the variance coefficient of
follower when it doesn’t follow the leader (Brownian motion). (e) Posterior density for λ1,2,
the switching rate of the follower from OU to BM. (f) Posterior density of λ2,1, the switching
rate of the follower from BM to OU.
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Fig. 5.5 Time trace of locations in the y-direction for each animal from the early summer
dataset. At each time step the points indicate whether the individual’s posterior state is OU or
BM. The orange squares indicate a BM state whilst the purple circles indicate an OU state.
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Fig. 5.6 Trajectories for each animal from the early summer dataset. At each time step the
points indicate whether the individual’s posterior state is OU or BM. The orange squares
indicate the BM state whilst the purple circles indicate OU states.
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Fig. 5.7 Trajectories for animals 1, 2 and 3 in the early summer data set projected on to a
terrain map. At each time step the points indicate whether the individual’s posterior state is
OU or BM. The orange squares indicate a BM state whilst the purple circles indicate OU
states. The terrain is split into six types: mountain birch forest, mountain above tree line,
open land, mire, forest and water given in light green, grey, dark tan, tan, green and blue
respectively.
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Fig. 5.8 Trajectories for animals 4, 5, 6 and 7 in the early summer data set projected on to a
terrain map. At each time step the points indicate whether the individual’s posterior state is
OU or BM. The orange squares indicate a BM state whilst the purple circles indicate OU
states. The terrain is split into six types: mountain birch forest, mountain above tree line,
open land, mire, forest and water given in light green, grey, dark tan, tan, green and blue
respectively.
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5.4 Peak Summer Results

We applied the switching model presented in Chapter 3 to the peak summer dataset. We ran
the Markov chain Monte Carlo algorithm for 50,000 iterations. This took approximately 12
hours to complete. The posterior mean and standard deviation of model parameters are shown
in Table 5.2. Posterior state estimations are given in Figure 5.9 whilst posterior densities for
the parameters are given in Figure 5.10. For each individual, Figure 5.11 shows the locations
in the y-direction against time; Figure 5.12 gives the two-dimensional trajectories; Figures
5.13 and 5.14 project these trajectories on to a terrain map.

Parameter Point estimate Standard deviation

α 0.198 0.01
ρ 3 0
σ 0.63 0.025
σBM 0.61 0.05
λ1,2 0.08 0.017
λ2,1 0.23 0.055

Table 5.2 Parameter estimates of the switching model for the peak summer dataset where
mosquito activity is assumed to be high.
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Fig. 5.9 Posterior mean states of all followers for the peak summer dataset where mosquito
activity is assumed to be high. The vertical axis represents the states, 1 for Ornstein Uhlenbeck
and 2 for Brownian motion. The crosses (red) represent the mean posterior of the estimated
behaviour states.
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Fig. 5.10 Posterior densities for model parameters for the data set where mosquito activity is
high, based on the Markov chain Monte Carlo runs of 50,000 iterations. (a) Posterior density
for α , the attraction rate of the follower to the leading point. (b) Approximate density for ρ ,
the variance coefficient of the leading point, which is fixed at 3. (c) Posterior density for σ ,
the individual variance coefficient of the follower. (d) Posterior density for σBM, the variance
coefficient of follower when it doesn’t follow the leader (Brownian motion). (e) Posterior
density for λ1,2, the switching rate of the follower from Ornstein Uhlenbeck to Brownian
motion. (f) Posterior density of λ2,1, the switching rate of the follower from Brownian motion
to Ornstein Uhlenbeck.
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Fig. 5.11 Time trace of locations in the y-direction for each animal from peak summer dataset.
At each time step the points indicate whether the individual’s posterior state is OU or BM.
The orange squares indicate the BM state whilst the purple circles indicate OU states.
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Fig. 5.12 Trajectories for each animal from the peak summer dataset. At each time step the
points indicate whether the individual’s posterior state is OU or BM. The orange squares
indicate the BM state whilst the purple circles indicate OU states.
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Fig. 5.13 Trajectories for animals 1, 2 and 3 in the peak summer data set projected on to a
terrain map. At each time step the points indicate whether the individual’s posterior state is
OU or BM. The orange squares indicate a BM state whilst the purple circles indicate OU
states. The terrain is split into six types: mountain birch forest, mountain above tree line,
open land, mire, forest and water given in light green, grey, dark tan, tan, green and blue
respectively.
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Fig. 5.14 Trajectories for animals 4, 5 and 6 in the peak summer data set projected on to a
terrain map. At each time step the points indicate whether the individual’s posterior state is
OU or BM. The orange squares indicate a BM state whilst the purple circles indicate OU
states. The terrain is split into six types: mountain birch forest, mountain above tree line,
open land, mire, forest and water given in light green, grey, dark tan, tan, green and blue
respectively.
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5.5 Discussion

Throughout this chapter we have stressed the significance that parasitic harassment can
have on the behavioural patterns and grouping dynamics of reindeer. By reviewing past
observational studies, we have discussed a variety of reported weather conditions which
are optimal for insect activity. Using local weather data as a proxy for insect presence we
are able to select two time periods where we would expect contrasting reindeer movement.
After applying the switching model to both datasets we found that the parameter values
were starkly different between cases. Not only this, the results appear to be consistent with
observational studies of reindeer movement in the presence of mosquitoes. That is, we expect
less grouping behaviour in early summer due to the lack of mosquitoes and in the peak
summer period, when mosquitoes are present, we expect reindeer to be in the OU state most
of the time after 06/07/2010 i.e. after the first 20 observations.

The parameter point estimate for α , the attraction to the leader, in the early summer case is
relatively small, 0.047, in comparison with that of peak summer, 0.198, suggesting that even
when the animals are in the OU state it is a very weak attraction. The proportion of time that
the animals spend in each state is greatly different between time periods, which is evident
from the point estimates of the switching rates. In early summer, the estimates are (0.63,
0.19) for (λ1,2,λ2,1), meaning that the proportion of time they spend in state 1 and 2 can be
calculated as 23% and 77% respectively whereas, for peak summer the switching rates are
(0.085, 0.27) thus, the proportion is calculated as 76% and 24% respectively.

During the early summer period the noise parameter in the OU state, σ , is larger (1.25) than
that of the peak summer period (0.63) suggesting that there is more variation in the group
movement state in the early summer than the peak summer case.

In addition, the parameter controlling the scale of Brownian motion σBM, is larger in peak
summer than early summer (0.61, 0.22 respectively). One possible biological reason could
be that in early summer, when the reindeer move independently, for example, to forage, they
may do so without the disruption from insects whereas during peak summer, the reindeer
display insect avoidance behaviour whilst attempting to forage independently. Thus, foraging
during times of harassment may cause quicker relocation.

The precision of posterior point estimates for the states varies between the datasets. In the
early summer dataset there are far more instances where the posterior mean estimates for
observations are uncertain, lying somewhere around the 1.5 mark. It is possible that this
can be attributed to the switching rates being homogenous in time. Within the early summer
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time period there are strong fluctuations in the mosquito index. The switching parameters of
the model try to give an overall depiction of the proportion of time spent in a state without
describing any underlying mechanics. Hence, they may not actually describe the data and
state switches successfully. This issue may alleviated by allowing the switching rates to
depend on ancillary data such as mosquito indices, which we will discuss in Chapter 6.

Despite uncertainty in some of the state estimates, when visualising the trajectories the
observations are still classified (crudely) as either OU or BM depending on whether they are
below or above the 1.5 threshold. This is worth acknowledging before interpreting any of the
plots. That said, we are still able to conclude that in the early summer cases (Figure 5.5 and
5.6) the reindeer generally move in the BM state without much directional change relative to
the sharp erratic and grouped movement the reindeer exhibit in peak summer (Figure 5.11
and 5.12). This is in line with observational studies of reindeer movement and grouping
dynamics in the presence of mosquitoes (Morschel and Klein, 1997; White et al., 1975).

In addition, overlaying trajectories on landscape maps offer great insight into space utilisation
and preference during mosquito presence. By comparing Figures 5.7 and 5.8 to Figures 5.13
and 5.14 we can see contrasting resource selection between the two time periods. During
early summer, when we expect low mosquito presence, the reindeer move around lower
elevations sometimes in forests or open land whereas in peak summer, the reindeer tend to
move into a tight group in higher elevation mountain areas, possibly to seek topographical
relief.

For these applications, difficulties in parameter estimation meant that it was necessary to
fix ρ , the parameter controlling the variability of the leader’s location. The value of ρ was
chosen to be the least integer greater than twice that of the other Brownian motion parameters,
σ and σBM. This seems like a sensible approach given that the leading point is a mathematical
abstraction which we expect to behave as if it were a real animal. In essence, by fixing this
parameter we are insisting that the leading point moves in a localised fashion making the
model more identifiable and interpretable.

Whilst applying the model to the two datasets we experimented with different values of κ (see
Section 3.5 for the definition of κ). Increasing κ comes at a trade-off for computational time
since increasing the value of κ leads to more potential switches. However, by increasing κ we
allow the switching rates to reach higher values. In some applications this may be necessary
if the proportion of time spent in a particular state is relatively high. This was the case for
the early summer dataset. Here, the point estimate for the switching rate λ1,2 is 0.63, shown
in Table 5.1. This required setting κ = 5. That way the maximum value that either switching
rate may take is given by max{λ1,2,λ2,1}= κ/n; in this case, max{λ1,2,λ2,1}= 5/7 ≈ 0.71.
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Of course, so far we have focussed our attention to the presence of mosquitoes but this is not
mutually exclusive with the presence of other flying insects such as oestrid flies. Figure 5.15
and 5.16 indicate the presence (or absence) of oestrids and mosquitoes during the early and
peak summer datasets respectively. Here, we assume that oestrid activity occurs when wind
speed is below 9 m/s and the temperature was above 11°C, motivated by the thresholds for
oestrid activity presented in Skarin et al. (2010).
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Fig. 5.15 Timeline of insect index during the early summer period. Presence of a particular
insect are based on the wind speed and air temperature thresholds for activity as presented in
Skarin et al. (2010).
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Fig. 5.16 Timeline of insect index during the peak summer period. Presence of a particular
insect are based on the wind speed and air temperature thresholds for activity as presented in
Skarin et al. (2010).

In Figure 5.15 we see that after 23/06/2010 insects begin to be consistently active, firstly
with mosquitoes only and then after 24/06/2010 oestrids begin to appear. At this time the
1-dimensional trajectory plots in Figure 5.5 show the individuals beginning to make relatively
large deviations in movement. In some cases the herd move whilst grouped together in an
OU state, this could be a characteristic of the presence of mosquitoes; at other times the herd
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moves in a BM state which may be attributed to the presence of oestrids. These results are
consistent with observational findings of grouping patterns (Helle and Aspi, 1983; White
et al., 1975).

During the first 20-30 observations of the peak summer dataset (up to around 06/07/2010), the
posterior state estimations given in Figure 5.9 appear to be strongly in a BM state. However,
during this time the mosquito index given in Figure 5.16 is not exclusively mosquito free.
Therefore, the dispersing of the reindeer may be attributed to other covariates at this time.
Figure 5.16 indicates that during the period of time in question the climatic conditions were
favourable for oestrid flies and in some cases both mosquitoes and oestrids. Later in the time
period there are more occasions where only mosquitoes are assumed to be present which may
explain the grouping behaviours at this time. The uncertainty surrounding the posterior mean
state estimations may be down to the sporadic and infrequent instances when only oestrids
are present.

In the current literature, there has been much discussion about which insects have the largest
effect on reindeer movement. At times, the harassment from a particular species of insect
may dominate another and this is difficult to deduce from climatic data alone. However, it is
possible that by analysing reindeer movement in this way we could gain more insight into
parasitic harassment.

We have demonstrated that the model successfully captures different behavioural modes
between multiple datasets. Using weather data as a proxy for insect activity, we are able to
provide general features of movement and grouping behaviours of reindeer in response to
insect presence. By overlaying trajectories with state estimates onto landscape maps we can
establish the utilisation of particular habitats in the presence or absence of parasitic pressures.
This illustration highlights the possible merits of such techniques for example, their use
within conservation and management.

It is clear from this informal comparison that the presence of insects are a major factor in
shaping the behaviour of reindeer. However, currently the switching rates within the model
are homogenous in time and space which can lead to poorly estimated parameters and states.
A more appropriate model would allow the switching rates to depend explicitly on insect
levels. In the next chapter, we present a framework to formally include these covariates by
allowing the switching rates to be governed by mosquito indices.



Chapter 6

A Model for Group Movement with
Switching and Covariate Data

An individual’s movement and behavioural choices are rarely random; often there exist
stimuli and drivers underlying their movement processes. These choices may exist as
responses to internal signals or physiological motives such as hunger or fatigue which can
lead to behaviour such as foraging or resting. Other movement patterns may be reactions
to external stimuli for example, weather, time of day, forage opportunity or distance to
human activities. Motivations for group-level movement amongst collective species are not
dissimilar to their solitary counterparts. Their movements and grouping dynamics are often
actuated by particular needs and the relative cost and benefits of aggregations (Delgado
et al., 2018). Grouping or dispersing behaviours may come as responses to predators, mating
seasons, forage competition and parasite harassment as discussed in Chapter 5, as well other
stimuli.

As a result, pitfalls exist when inferring behaviour based on trajectory data alone and we
run the risk of mischaracterising behavioural modes. Utilising covariate information such as
weather data or satellite imagery may improve our ability to distinguish behavioural states.
In more recent technological advancements, a wealth of biotelemetry ancillary data has been
used to extract more out of location data. For instance, McClintock et al. (2013) used salinity
and depth sensors to measure dive data of grey harbour seals to differentiate between foraging
and travelling behaviour whilst Shepard et al. (2008) used accelerometers to enhance the
identification of behaviours from body motion.

Some work has been done to incorporate environmental information into movement mod-
els. One popular class of models are step selection functions (SSF). Essentially, these are
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resource selection functions (RSF), tools used for estimating the utilisation distribution of an
environment, but with added constraints of movement via models such as step and turn. To
do this, an animal’s observed steps are compared with random steps drawn from a probability
distribution given by the movement model to calculate the proportionality of a habitat’s
utilisation with its availability. Whilst these techniques have proved useful, they have a
number of drawbacks; the user must have a priori considerations such as the number of
random steps and the scale of movement to be used. The article by Thurfjell et al. (2014)
provides a good overview of SSF and their limitations.

Other approaches have chosen to allow the transition probabilities of state switching models
to be given explicitly as functions of environmental covariates. The influential work of
Morales et al. (2004) gave a flexible suite of models for movement where switches between
multiple behavioural modes have the possibility of being influenced by external factors.
Their switching with covariates model presented here allowed the switching probabilities
between two behavioural states to be modelled as a function of distance to habitat type. In
a similar vein, McClintock et al. (2012) allowed movement to be modelled as correlated
random walks and switching between multiple states were modelled as functions of distance
to centres of attractions. In this case, the centres were haul-out sites and foraging areas for
grey seals. They found that bias towards centres of attractions gave a better explanation of
movement than CRW alone. Further to this, McClintock et al. (2013) used the results of
movement models coupled with ancillary dive data from multiple seals to investigate activity
budgets at the regional population level. Whilst these studies gave insight into modelling
movement with respects to covariate information, all the literature above explained movement
using a discrete-time framework, whose switching times are restricted to the same sampling
frequency of the observation.

In contrast, Ovaskainen (2004) approximate their correlated random walk models with diffu-
sion processes for individual-level movement in heterogeneous space. Unlike Morales et al.
(2004) and McClintock et al. (2012), the study area is categorised into several distinct habitat
types and movement in each habitat has its own associated processes. A similar approach
is taken in Harris and Blackwell (2013), although they give a more flexible framework by
allowing their diffusion equation to have drift and relaxing assumptions about movement
around the boundary of regions (for a more detailed comparison see Harris and Blackwell
(2013)). Methodology of Bayesian inference for this modelling technique is given in Black-
well et al. (2016) and illustrated with a case study using the real location data of an individual
fisher (Martes pennanti). The implementation of temporal covariates are also explored in
this research. The authors allow switching rates between numerous behavioural states and
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bias towards centres of attraction to be modelled as a function of the time of day. To give
biological perspective they use this framework with the real location data of wild boar whose
switch from ‘resting at a nest site’ to ‘foraging’ is assumed to take place at a similar but not
identical time each day.

To my knowledge there exists a gap in the literature for explicitly modelling the movement
of a group of animals which operates in a continuous-time framework and has the possibility
of including covariate information. The following section provides a flexible structure
for implementing covariate information. Although most taxa are mobile beings whose
behavioural processes will be influenced by spatial heterogeneity, this chapter restricts our
focus to the inclusion of temporal covariates such as time of day or weather, as these are
simpler to implement than spatial covariates. We demonstrate this methodology in Section
6.2 by introducing a covariate model for group-level movement which exhibits a sinusoidal
behavioural processes, where the animals may switch between following the group and
moving independently. This could represent diurnal grouping or dispersing behaviour which
is based on the time of day. In Section 6.3 we revisit the grouping dynamics of reindeer in
response to insect harassment by formally including insect presence as a covariate. That is,
we allow the switching rates between states to be dependent on insect harassment data.

6.1 Implementing Covariates

Following a similar approach to the wild boar application in Blackwell et al. (2016), we allow
the switching rate parameters λ1,2 and λ2,1 to be modelled as a function of temporal covariate
information Zt , the covariate at time t. To recap, without the inclusion of covariates the
probability that a potential switch is an actual switch depends only on the current behaviours
i.e. it is given as

P(actual switch) =
n1λ12 +n2λ21

κ
, (6.1)

where
κ ≥ nmax{λ12,λ21} (6.2)

and n1,n2 are the number of animals currently in state 1 and 2 respectively; n is the total
number of animals and λ12,λ21 are the switching rates from state 1 to 2 and 2 to 1 respectively.
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Now, for some covariate Zt , we allow each switching rate from state i to j to be given as
some function of the covariate i.e.

λi j(t) = fi j(Zt). (6.3)

Our choice for fi j will depend on our model formulation for the covariate, but the general
principle remains the same. Subsequently, we must alter Equation 6.2 to account for these
dynamic switching rates in the following way

κ ≥ nmax{λ
max
12 ,λ max

21 }. (6.4)

In its flexibility, this methodology allows for the inclusion of a variety of additional covariate
information. We begin by exploring a simulated yet biologically realistic example where
behavioural patterns depend on the time of day.

6.1.1 Inference and Code Modification

The parameters of the switching rates will vary depending on the scenario we are interested
in modelling for example, four parameters are used to define the sinusoidal behaviour in
Section 6.2. To implement such covariate information we must adapt our inference method.
In short, we must now make inference on the underlying parameters which determine the
switching rates i.e. the parameters of the function in Equation 6.3 as opposed to using a
standard MCMC for λ1,2 and λ2,1 themselves. For all switching rate parameters, we use a
uniform prior on the appropriate interval of the real line e.g. for the sinusoidal example it is
required that two of the parameters are between 0 and 24 as these represent the time of day
in hours.

Not only this, the switching rates now vary temporally so the times of switches are crucial.
This amounts to keeping track of time in more detail and inputing the switching probabilities
for each potential switch at those specific times. From a coding perspective this was not
completely trivial, however, we have now developed such a system that, in principle, may
employ any form of temporal covariate model. From now on, unless stated otherwise, we will
be referring to this updated version of the inference method when mentioning the MCMC
algorithm.

The code for the methodology is written in R (R Core Team, 2020) and can be found in the
GitHub repository https://github.com/FayFrost.
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6.2 Modelling Sinusoidal Grouping Patterns

This section aims to model sinusoidal behaviour that can occur in some diurnal animals.
We explore a general model for grouping behaviour in which each individual may switch
between Ornstein Uhlenbeck and Brownian motion, where the switching rates are modelled
using a cosine function of the time of day. Possible real world instances of this behavioural
pattern could be night time grouping for warmth or safety from predators and then separating
during the day for individual foraging; for nocturnal animals this could model independent
exploring behaviour during the night then grouping at a nest site throughout the day. To
imitate this behaviour the switching rates are given as a function of the time of day in hours,
t, as follows.

λ1,2 =
hou

2
(1+ cos((t − tou)(2π/24))) ,

λ2,1 =
hbm

2
(1+ cos((t − tbm)(2π/24))) .

(6.5)

where hou and hbm determine the rate of switching from OU to BM and BM to OU respec-
tively. The most likely times of switching away from OU and BM are given by tou and tbm

respectively. As an example, we fix tou = 20, tbm = 8 and hou = hbm = 0.5. Thus, the animals
are most likely to switch into Brownian motion behaviour in the evening and group during
the day. Figure 6.1 shows the rate of switching in either direction over a period of 50 hours,
where 0 hours represents midnight. We can see that the switching rates undergo two full
daily cycles within this time period.
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Fig. 6.1 Timeline of switching rates over the course of 50 hours whilst undergoing sinusoidal
behavioural patterns. The purple double dashed line represents the switching parameter λ1,2
whereas the orange dotted line gives the switching parameter λ2,1.

6.2.1 Simulation of two daily cycles

To illustrate the model we simulate location data of 5 individuals using the switching rate
functions given in Equation 6.5. The simulated data consists of 48 hourly observations
for each individual generated by using Equation 3.16 iteratively and taking each generated
location as the origin for the next.

We ran the Markov chain Monte Carlo algorithm (with the updates as discussed in Section
6.1.1) for 20,000 iterations with the initial 70% counting towards a burn-in period. This
took approximately 12 hours to complete. The true parameter values for each data set are
given in Table 6.1, along with the point estimates and standard deviations of the posterior
distributions for each parameter. The posterior states are given in Figure 6.2. The circles (red)
represent the true states of the follower. The vertical axis represents the states, 1 for Ornstein
Uhlenbeck and 2 for Brownian motion. The crosses (black) represent the mean posterior
of the estimated behaviour states. The posterior densities for the diffusion parameters and
switching parameters are given in Figure 6.3 and 6.4 respectively.
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Parameter Point estimate Standard deviation True value

α 0.47 0.08 0.5
ρ 2.76 0.48 3
σ 1.03 0.06 1.0
σBM 0.44 0.03 0.5
hou 0.40 0.09 0.5
hbm 0.43 0.09 0.5
tou 15.01 0.45 20
tbm 7.34 1.19 8

Table 6.1 Parameter estimates for the sinusoidal model using simulated hourly data with 48
observations.
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Fig. 6.2 Posterior mean states of all followers for the simulated sinusoidal data with 48
observations. The circles (red) represent the true states of the follower. The vertical axis
represents the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion. The crosses
(black) represent the mean posterior of the estimated behaviour states.
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Fig. 6.3 Posterior densities of diffusion parameters for the simulated sinusoidal data with 48
observations, based on the Markov chain Monte Carlo runs of 20,000 iterations. The dashed
blue line in each case represents the true parameter value; (a) Posterior density for α , the
attraction rate of the follower to the leading point. (b) Posterior density for ρ , the variance
coefficient of the leading point. (c) Posterior density for σ , the individual variance coefficient
of the follower. (d) Posterior density for σBM, the variance coefficient of follower when it
doesn’t follow the leader (Brownian motion).



134 A Model for Group Movement with Switching and Covariate Data

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a) Posterior for hOU

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b) Posterior for hBM

D
en

si
ty

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(c) Posterior for tOU

D
en

si
ty

0 5 10 15 20

0.
00

0.
10

0.
20

0.
30

(d) Posterior for tBM

D
en

si
ty

Fig. 6.4 Posterior densities for model’s switching parameters for the simulated sinusoidal
data with 48 observations, based on the Markov chain Monte Carlo runs of 20,000 iterations.
The dashed blue line in each case represents the true parameter value; (a) Posterior density for
hou, the rate of switching from OU to BM. (b) Posterior density for hbm, the rate of switching
from BM to OU. (c) Posterior density for tou, the most likely time of switch out of OU. (d)
Posterior density for tbm, the most likely time of switch out of BM.

On the whole, the model performs reasonably well at detecting the pattern of movement and
behaviour. Although there are at times uncertainty in the state estimations, the general cyclic
nature of the behaviour is picked up on. The diffusion parameters are estimated very well
with all of the posterior point estimates being close the true value.

However, from Figure 6.4 we see that the switching parameters are less well estimated. This
is especially evident with the parameter tou. Not only is the point estimate of tou far from the
true value (15.01 and 20 respectively), the standard deviation is quite small suggesting that
the model is confident in its estimation. Since we have the benefit here of knowing what the
true value is, we can say that it is likely that this is not the true posterior of this parameter.
It appears that the MCMC has not successfully explored the parameter space and become
localised at another maximum. In Section 6.2.2 and 6.2.3 we pay particular attention to this
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parameter and the improvements we make in its posterior estimation. That said, the point
estimates of hou and hbm do perform well in comparison to tou and the standard deviations of
the h parameters are reasonably small.

Poor estimation, in part, may be down to the small number of actual switches that take place
in the duration of two daily cycles. Since this number is likely to be on the order of four (two
daily switches for each day) the model lacks enough information to accurately discern the
parameters tou and tbm which represent the most likely time of day that switching occurs.

The duration of this simulation was chosen to be computationally quick. In reality, modern
location data is rarely as short as two days and if it is, the sampling scheme may have a much
higher resolution. In an effort to test the limitations of this model we investigate whether
data of longer duration or higher resolution improves parameter estimation.

6.2.2 Simulation with longer duration

Using the same true parameter values as in 6.2.1, we simulate the hourly location data of 5
individuals over the course of three days, that is 72 observations in total.

We ran the covariate Markov chain Monte Carlo algorithm for 20,000 iterations with the
initial 70% counting towards a burn-in period. This took approximately 24 hours to complete.
The true parameter values for each data set are given in Table 6.2, along with the point
estimates and standard deviations of the posterior distributions for each parameter. The
posterior states are given in Figure 6.5. Finally, the posterior densities for the diffusion
parameters and switching parameters are given in Figure 6.6 and 6.7 respectively.

Parameter Point estimate Standard deviation True value

α 0.54 0.06 0.5
ρ 2.49 0.32 3
σ 1.04 0.05 1.0
σBM 0.43 0.03 0.5
hou 0.43 0.10 0.5
hbm 0.44 0.08 0.5
tou 16.17 2.61 20
tbm 6.95 1.30 8

Table 6.2 Parameter estimates for the sinusoidal model using simulated hourly data with 72
observations.
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Fig. 6.5 Posterior mean states of all followers for the simulated sinusoidal data with 72
observations. The circles (red) represent the true states of the follower. The vertical axis
represents the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion. The crosses
(black) represent the mean posterior of the estimated behaviour states.
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Fig. 6.6 Posterior densities of the diffusion parameters for the simulated sinusoidal data with
72 observations, based on the Markov chain Monte Carlo runs of 20,000 iterations. The
dashed blue line in each case represents the true parameter value; (a) Posterior density for
α , the attraction rate of the follower to the leading point. (b) Posterior density for ρ , the
variance coefficient of the leading point. (c) Posterior density for σ , the individual variance
coefficient of the follower. (d) Posterior density for σBM, the variance coefficient of follower
when it doesn’t follow the leader (Brownian motion).
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Fig. 6.7 Posterior densities of the switching parameters for the simulated sinusoidal data
with 72 observations, based on the Markov chain Monte Carlo runs of 20,000 iterations. The
dashed blue line in each case represents the true parameter value; (a) Posterior density for
hou, the rate of switching from OU to BM. (b) Posterior density for hbm, the rate of switching
from BM to OU. (c) Posterior density for tou, the most likely time of switch out of OU. (d)
Posterior density for tbm, the most likely time of switch out of BM.

By simulating three days of data we notice that the switching parameter estimates have
experienced some improvement. Specifically, the posterior density for tou given in Figure
6.7 gives more weight towards values closer to the true value than the corresponding plot in
Figure 6.4 where only two days of data are used. However, in the same vein as in Section
6.2.1, this does not appear to be the true posterior and there may be underlying issues with
the MCMC, which may be as a result of using poorly estimated states in the likelihood
calculations.

This may be alleviated by using higher resolution data. In general, data with more frequent
observations leads to a more precise idea of the animals’ movement. This ought to improve
the estimation of the movement parameters and the states. Thus, pinning down the timings
of state transitions more accurately.
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It is also possible that the reason for some uncertainty lies with instances where only a single
animal is in the OU state. Biologically, this is not meaningful as a solo animal may not
follow a ‘group’ that only they are part of. Hence, when all animals are in the BM state,
an initial switch in state to OU may be overlooked and treated as though it is still moving
independently. That said, estimations of the states and model parameters may improve when
these events occur proportionally less often. Section 6.2.3 investigates whether increasing
the frequency of observations and decreasing instances of solo OU state movement improves
parameter estimation.

6.2.3 Simulation with more frequent observations

Using the same true parameter values as in Section 6.2.1 and 6.2.2 , we simulate the location
data of 5 individuals over the course of three days with sampling frequency every half hour,
that is 144 observations in total. Figure 6.8 displays the proportion of the number of animals
in the BM state at each observation for this dataset and the one with hourly observations
presented in Section 6.2.2. We can see that the dataset with more frequent observations, plot
(b), has proportionally fewer times where all the animals are in the BM state.
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Fig. 6.8 Overall proportion of the number of animals in the BM state at each observation. (a)
Proportion of the number of individuals in BM state for data with hourly observations. (b)
Proportion of the number of individuals in BM state for data with 30 minute observations.

The difference in proportions in this case is somewhat marginal. So it is likely that any
improvements in inference are a result of increased resolution of the data rather than the
decrease in the proportion of times that all animals are in the BM state. It is also worth
noting that whilst doing this experiment multiple times, we noticed that the distribution of
the proportions can vary widely between simulations with different seeds. This adds to our
conclusions that although the proportion of times that all the animals are in BM is a factor
affecting the quality of estimation, it is likely to be negligible relative to the improvement
that comes from higher resolution data alone.

Using the higher resolution data, we ran the covariate Markov chain Monte Carlo algorithm
for 20,000 iterations with the initial 70% counting towards a burn-in period. This took
approximately 72 hours to complete. The true parameter values for each data set are given in
Table 6.3, along with the point estimates and standard deviations of the posterior distributions
for each parameter. The posterior states are given in Figure 6.9. Finally, the posterior
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densities for the diffusion parameters and switching parameters are given in Figure 6.10 and
6.11 respectively.

Parameter Point estimate Standard deviation True value

α 0.47 0.03 0.5
ρ 3.32 0.31 3
σ 0.96 0.03 1.0
σBM 0.32 0.01 0.5
hou 0.53 0.05 0.5
hbm 0.54 0.05 0.5
tou 19.27 0.96 20
tbm 6.85 1.27 8

Table 6.3 Parameter estimates for the sinusoidal model using simulated data with 144
observations and 30 minute sampling frequency.
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Fig. 6.9 Posterior mean states of all followers for the simulated sinusoidal data with 144
observations. The circles (red) represent the true states of the follower. The vertical axis
represents the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion. The crosses
(black) represent the mean posterior of the estimated behaviour states.



6.2 Modelling Sinusoidal Grouping Patterns 143

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

(a) Posterior for α

D
en

si
ty

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(b) Posterior for ρ

D
en

si
ty

0 1 2 3 4

0
2

4
6

8
10

(c) Posterior for σ

D
en

si
ty

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

(d) Posterior for σBM
D

en
si

ty

Fig. 6.10 Posterior densities for model parameters for the simulated sinusoidal data with 144
observations, based on the Markov chain Monte Carlo runs of 20,000 iterations. The dashed
blue line in each case represents the true parameter value; (a) Posterior density for α , the
attraction rate of the follower to the leading point. (b) Posterior density for ρ , the variance
coefficient of the leading point. (c) Posterior density for σ , the individual variance coefficient
of the follower. (d) Posterior density for σBM, the variance coefficient of follower when it
doesn’t follow the leader (Brownian motion).
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Fig. 6.11 Posterior densities for model’s switching parameters for the simulated sinusoidal
data with 144 observations, based on the Markov chain Monte Carlo runs of 20,000 iterations.
The dashed blue line in each case represents the true parameter value; (a) Posterior density for
hou, the rate of switching from OU to BM. (b) Posterior density for hbm, the rate of switching
from BM to OU. (c) Posterior density for tou, the most likely time of switch out of OU. (d)
Posterior density for tbm, the most likely time of switch out of BM.

We find that a higher sampling frequency does greatly improve the parameter estimation.
From Table 6.3 we can see that all of the parameter point estimates are close to their true
values with a reasonably small amount of uncertainty. There is a significant improvement in
the posterior estimate of tou, shown in Figure 6.11, whose point estimate, 19.27, is very close
to the true value of 20. There are still exist instances where the model fails to capture the
correct behavioural state with strong certainty but largely the model performs well.

The main purpose of including ancillary data is to learn about the effects that covariates have
on movement. However, including covariate information in the model may also improve
inference, especially in the light of dynamic switching and seasonality which may be difficult
to estimate using the standard non-covariate model given in Chapter 3. Section 6.2.4 gives
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a comparison between the performance of the covariate model presented here and the non-
covariate model of Chapter 3.

6.2.4 Comparison with non-covariate Model

To investigate how the covariate model performs relative to the non-covariate switching
model given in Chapter 3, we fit the non-covariate model to the same simulated data of
Section 6.2.3. We compare the density of state estimations faceted by the true state. In other
words, we plot the posterior densities for the states separated by whether the true state was
either 1 or 2 (OU or BM). Figure 6.12 shows the density of the state estimation faceted by the
true state when the non-covariate switching model was used. Similar plots for the covariate
switching model are give in Figure 6.13.
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Fig. 6.12 Posterior densities for the state estimates of the simulated sinusoidal data using the
non-covariate switching model. (a) Shows the posterior densities for the state estimations
when the true state is 1. (b) Shows the posterior densities for the state estimations when the
true state is 2. The dashed blue line signifies the mean of the posterior density.
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Fig. 6.13 Posterior densities for the state estimates of the simulated sinusoidal data using the
covariate switching model. (a) Shows the posterior densities for the state estimations when
the true state is 1. (b) Shows the posterior densities for the state estimations when the true
state is 2. The dashed blue line signifies the mean of the posterior density.

By comparing the density plots in Figure 6.12 and Figure 6.13 we can see that the covariate
model outperforms the non-covariate model. In the covariate case, the density is higher
around the true value with less weight around other values. The posterior mean for each state
is also closer to the true value in the the covariate case.

However, the original non-covariate model still does rather well. The model successfully
estimates the movement parameters whose point estimates and standard deviations are given
in Table 6.4. The table also displays the estimated switching rates. Note that the data was
simulated using the covariate model given in Equation 6.5 and so the ‘true values’ in this
case are not meaningful.



6.2 Modelling Sinusoidal Grouping Patterns 147

Parameter Point estimate Standard deviation True value

α 0.48 0.03 0.5
ρ 3.46 0.36 3
σ 0.95 0.03 1.0
σBM 0.29 0.01 0.5
λ1,2 0.36 0.05
λ2,1 0.42 0.06

Table 6.4 Parameter estimates for the movement and switching model with simulated covari-
ate dataset.

If your data is plentiful, as in this example with frequent observations over long durations,
then it is possible that the non-covariate model will do a good job at estimating the states and
model parameters. However, this is useful if you are only interested in fitting a model to the
data rather than understanding the mechanisms driving movement, in this case the time of
day. To illustrate this we simulate data from the point estimates of Table 6.4 and Table 6.3.

Figure 6.14 shows the states of three days worth of 30 minute observations by way of forward
simulation using the point estimates of the covariate model whilst Figure 6.15 shows a similar
plot for the non-covariate model.



148 A Model for Group Movement with Switching and Covariate Data

0 20 40 60 80 100 120 140

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

animal 1

times index

st
at

e

0 20 40 60 80 100 120 140

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

animal 2

times index

st
at

e

0 20 40 60 80 100 120 140

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

animal 3

times index

st
at

e

0 20 40 60 80 100 120 140

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

animal 4

times index

st
at

e

0 20 40 60 80 100 120 140

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

animal 5

times index

st
at

e

Fig. 6.14 Simulated states using point estimates from the sinusoidal covariate model (Table
6.3). The circles (red) represent the true states of the follower. The vertical axis represents
the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion.
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Fig. 6.15 Simulated states using point estimates from the non-covariate switching model
(Table 6.4). The circles (red) represent the true states of the follower. The vertical axis
represents the states, 1 for Ornstein Uhlenbeck and 2 for Brownian motion.
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In Figure 6.14 we can see that simulation via the covariate model and its parameter estimates
produce strong daily cycles which drive the switching between states. In comparison, Figure
6.15 illustrates that whilst the non-covariate model is able to estimate the overall proportion
of time spent in each state, it assumes that the switching rates are static. Thus, it fails to
capture the daily patterns and over estimates the amount of switching.

6.2.5 Conclusions

So far in this chapter we have highlighted the importance of including covariate information
in movement models. We have discussed that an animal’s behavioural choices are often
governed by stimuli such as weather, terrain, time of day and proximity to human activity.
As a consequence, the rate in which animals change behaviour can be a dynamic process,
possibly exhibiting patterns or seasonality.

Here we have focussed on developing a model where the rate of switching varies depending
on the time of day. This has realistic ecological application since we can imagine the possible
scenarios of collective movement such as animals grouping during the night for safety then
foraging individually in daylight.

We have explored a variety of simulation experiments to assess the limitations of our model.
As expected, the main conclusions are that the model performs better if there are more
observations, that is, either longer in duration or more frequent. This can probably be said of
any model, that the more information it has the better it can estimate the model parameters.

The functionality of the covariate model was promoted by a comparison between model
fitting in the covariate and non-covariate case. Whilst the non-covariate model performed
surprisingly well in estimating the movement parameters and states, it failed to capture the
true daily cycles which were present in the data. By using the non-covariate model we limit
ourselves to accurate model fitting only when the switching rates are static which in many
scenarios is not realistic. By allowing the switching rates to vary depending on external
information we potentially expand our understanding to the mechanisms driving movement.

However, implementing covariate information is not without computational cost. We found
that inference with the covariate model of the data in Section 6.2.3 took around twice the
time as that of the covariate model with the same data. In this case the additional time is
not too extreme but we foresee this becoming a limitation of the model in the light of much
larger datasets. One possible solution for this is to initially estimate the states by fitting the
non-covariate model to the data, then use those estimated states as fixed in the covariate
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model to estimate the switching parameters. By not updating the trajectory again we are able
to gain estimates of the switching parameters whilst saving on time. Although, for obvious
reasons this is should be avoided if possible since by doing this we lose out on the benefits of
the covariate model to estimate the states.

We have presented general methodology for implementing temporal covariate information. As
with most models, accurate estimations of parameters are more difficult when data is limited
but we have shown that with just a couple of additional days of data the estimations improve
greatly. Although the model fitting process is slower than without covariate information we
feel that the extra knowledge and understanding gained is worth the additional computational
effort.

The method is very flexible and in principle allows for many different biological applications.
In this section we demonstrated its use in modelling seasonality and cyclic behaviour but we
will show its applications to weather and insect harassment covariates in the next section.
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6.3 Revisiting Reindeer Grouping Strategies for Insect Ha-
rassment

In this section we revisit the real reindeer location data given in Section 5.2. The aim of
this section is to illustrate the implementation of real covariate data, specifically mosquito
harassment. Following the method of Section 6.1, we explicitly allow the switching rates
to be modelled as functions of mosquito harassment indices, which we derive from proxy
weather data described in Section 5.2. We supplement this research by comparing two
different models of mosquito harassment, one discrete and one continuous. The discrete case
uses weather thresholds described in Skarin et al. (2010) and explored in Chapter 5 whilst
the continuous model is proposed from observational findings in Russell et al. (1993).

6.3.1 Discrete Model of Mosquito Harassment Covariate

As a discrete model of mosquito harassment at time t, we allow the covariate Zt to take a
binary value in {0,1} based on the weather data thresholds presented in Skarin et al. (2010)
and Chapter 5. A value of 0 would indicate that the weather factors are outside of the
thresholds and we assume there is negligible mosquito harassment, whereas, a value of 1
would indicate likely mosquito presence and thus harassment. Mathematically, we can write
the covariate Zt as the indicator function

Zt =

 1, if 7 < T < 17, W < 7,

0, otherwise,

where T is the ambient temperature given in degrees Celsius ◦C and W is the wind speed
measured in metres per second, ms−1.

Then, to implement this covariate we parametrise the switching rates as follows.

λ12(t) =

 λ P
12, if Zt = 1,

λ A
12, if Zt = 0,

λ21(t) =

 λ P
21, if Zt = 1,

λ A
21, if Zt = 0,
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where the probability of an actual switch is given as

P(actual switch) =
n1λ12(t)+n2λ21(t)

κ
,

and
κ ≥ nmax{λ

P,max
12 ,λ A,max

12 ,λ P,max
21 ,λ A,max

21 }.

Heuristically, we consider the parameters λ P
i, j and λ A

i, j as the switching rate from state i to j
in the presence and absence of mosquitoes respectively.

6.4 Discrete Covariate Results

In a similar vein to Chapter 5, we will apply the covariate model described in Section 6.3.1
to two data sets, peak summer and early summer, described in Section 5.2. The mosquito
harassment covariate for each potential switch is calculated using the indicator function
given Section 6.3.1. The temperature and wind speed data are downloaded from the Swedish
Meteorological and Hydrological Institute (http://www.smhi.se/), collected from the closest
weather station to the study site, Korsvattnet A. Since the observations of temperature and
wind speed are recorded hourly, it is unlikely that the timing of each potential switch will be
at the exact time of the weather observations. That said, for every potential switching time
we estimate the weather variables, temperature and wind speed, by linearly interpolating
between the observations immediately before and after the potential switch time.

6.4.1 Early summer results with discrete covariate

We apply the discrete covariate model described in Section 6.3.1 to the early summer data set.
We use the covariate MCMC algorithm (discussed in Section 6.1.1) with 50,000 iterations
and the initial 70% counting as burn-in. This took approximately 72 hours to complete. The
posterior point estimates and standard deviations of the model parameters are shown in Table
6.5. The posterior mean of the behavioural states are plotted in Figure 6.16. The posterior
densities for each of the diffusion parameters are given in Figure 6.17 whilst the posterior
densities for the switching rates are given in Figure 6.18.
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Parameter Point estimate Standard deviation

α 0.05 0.01
ρ 3 0
σ 1.15 0.08
σBM 0.27 0.02
λ P

1,2 0.368 0.063
λ A

1,2 0.414 0.055
λ P

2,1 0.134 0.026
λ A

2,1 0.129 0.023
Table 6.5 Parameter estimates for the movement and switching in the early summer data set
using the discrete covariate switching model.
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Fig. 6.16 Posterior mean states of all followers for the early summer data set using the
discrete covariate switching model. The vertical axis represents the states, 1 for Ornstein
Uhlenbeck and 2 for Brownian motion. The crosses (red) represent the mean posterior of the
estimated behaviour states.
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Fig. 6.17 Posterior densities of the model parameters for the early summer data set using
the discrete covariate switching model, based on the Markov chain Monte Carlo runs of
50,000 iterations. (a) Posterior density for α , the attraction rate of the follower to the leading
point. (b) Approximate density for ρ , the variance coefficient of the leading point, which
is fixed at 3. (c) Posterior density for σ , the individual variance coefficient of the follower.
(d) Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion).
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Fig. 6.18 Posterior densities of the switching parameters for the early summer data set using
the discrete covariate switching model, based on the Markov chain Monte Carlo runs of
50,000 iterations. (a) Posterior density for λ P

1,2, the switching rate of the follower from OU to
BM in the presence of insects. (b) Posterior density of λ A

1,2, the switching rate of the follower
from OU to BM in the absence of insects. (c) Posterior density for λ P

2,1, the switching rate of
the follower from OU to BM. in the presence of insects. (d) Posterior density of λ A

2,1, the
switching rate of the follower from BM to OU in the absence of insects.

6.4.2 Peak summer results with discrete covariate

Here, we apply the discrete covariate model described in Section 6.3.1 to the peak summer
data set. We use the covariate MCMC algorithm with 50,000 iterations and the initial 70%
counting as burn-in. This took approximately 72 hours to complete. The posterior point
estimates and standard deviations of the model parameters are shown in Table 6.6. The
posterior means of the behavioural states are plotted in Figure 6.19. The posterior densities
for each of the diffusion parameters are given in Figure 6.20 whilst the posterior densities for
the switching rates are given in Figure 6.21.
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Parameter Point estimate Standard deviation

α 0.195 0.01
ρ 3 0
σ 0.604 0.025
σBM 0.645 0.066
λ P

1,2 0.087 0.017
λ A

1,2 0.119 0.038
λ P

2,1 0.237 0.042
λ A

2,1 0.204 0.063
Table 6.6 Parameter estimates for the movement and switching rates in the peak summer data
using the discrete covariate switching model.
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Fig. 6.19 Posterior mean states of all followers for the peak summer data using the discrete
covariate switching model. The vertical axis represents the states, 1 for Ornstein Uhlenbeck
and 2 for Brownian motion. The crosses (red) represent the mean posterior of the estimated
behaviour states.
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Fig. 6.20 Posterior densities of the model parameters for the peak summer data using the
discrete covariate switching model, based on the Markov chain Monte Carlo runs of 50,000
iterations. (a) Posterior density for α , the attraction rate of the follower to the leading point.
(b) Approximate density for ρ , the variance coefficient of the leading point, which is fixed
at 3. (c) Posterior density for σ , the individual variance coefficient of the follower. (d)
Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion).



6.4 Discrete Covariate Results 161

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

(a) Posterior for λ1,2
P

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

(b) Posterior for λ1,2
A

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

(c) Posterior for λ2,1
P

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

(d) Posterior for λ2,1
A

D
en

si
ty

Fig. 6.21 Posterior densities of the switching parameters for the peak summer data using the
discrete covariate switching model, based on the Markov chain Monte Carlo runs of 50,000
iterations. (a) Posterior density for λ P

1,2, the switching rate of the follower from OU to BM
in the presence of insects. (b) Posterior density of λ A

1,2, the switching rate of the follower
from OU to BM in the absence of insects. (c) Posterior density for λ P

2,1, the switching rate of
the follower from OU to BM. in the presence of insects. (d) Posterior density of λ A

2,1, the
switching rate of the follower from BM to OU in the absence of insects.

6.4.3 Discussion of Discrete Covariate Results

Looking at Table 6.5, we can see that the parameter estimates of λ P
1,2 and λ A

1,2, the switching
rates from Brownian motion to Ornstein Uhlenbeck are typically larger (0.368 and 0.414
respectively) than that of the opposing parameters, λ P

2,1 and λ A
2,1 (0.134 and 0.129). This

is consistent with the notion that in the early summer period, the reindeer are less grouped
due to low parasitic pressures. However, it is surprising that there is little variation between
parameter estimates within each switching direction. Given that we expect the presence
of mosquitoes to promote the grouping behaviour of reindeer, we would anticipate more
contrasting estimates; within the same switching direction we would expect λ P

1,2 < λ A
1,2

and λ A
2,1 < λ P

2,1 whereas, between switching directions we would expect λ P
1,2 < λ P

2,1 and
λ A

2,1 < λ A
1,2. Whilst most of these conditions do hold, the differences between parameters are

quite often relatively small.
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A similar conclusion can be drawn from the peak summer results. In Table 6.6 , we can see
that the parameters of the switching rates from grouped behaviour to moving independently,
λ P

2,1 and λ A
2,1, are estimated to be 0.237 and 0.204 respectively, whereas parameters for

switching in the other direction, λ P
1,2 and λ A

1,2, are estimated to be 0.087 and 0.119 respectively.
In addition, the estimates of all the movement parameters for both datasets are similar to the
corresponding results when the non-covariate model was applied in Chapter 5.

Arguably, by using a discrete, binary model of mosquito presence, we lose information about
the severity of harassment. Around the thresholds for mosquito activity there may be little or
no harassment as the conditions for flying insects are sub-optimal. Alternatively, by using a
continuous model we can give a more detailed estimate of the harassment levels using proxy
climate data, which can reflect intermediate levels of severity rather than just the extreme
values. In the next section we review the use of a continuous model of mosquito harassment
which may take any real value between 0 and 1.

6.5 Continuous Model of Mosquito Harassment Covariate

In order to alleviate the issues caused by discretely modelling mosquito harassment, it seems
natural to investigate adopting a continuous approach. In this section we will use the model
of mosquito index presented in Russell et al. (1993). In this case, the mosquito index is
formulated as the product of a temperature index, ti, and wind speed index, wi. These
are both continuous, linear interpolations between the values 0 and 1 and are based upon
observational findings. Specifically,

ti =


0 T < 6,

1-((18-T)/13) 6 ≤ T ≤ 18, (6.6)

1 T > 18,

wi =
{0 W > 6,

(6-W)/6, W ≤ 6, (6.7)

where T is the ambient temperature given in degrees Celsius ◦C and W is the wind speed
measured in metres per second, ms−1. Then, the mosquito index is given as
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MI = ti∗wi. (6.8)

In comparison to the thresholds of activity presented in Skarin et al. (2010), these constraints
are less restrictive. They do not consider an upper temperature bound for mosquito presence;
on the contrary, they suggest that higher temperatures in fact promote the presence of
mosquitoes. In addition, this continuous modelling approach is able to distinguish between
the severity of harassment during optimal and suboptimal conditions whereas Skarin et al.
(2010) does not. In other words, using the discrete model, weather data around threshold
values such as 7◦C will take the same covariate value as that of 15◦C, even though it is likely
that harassment will be much higher during the latter. Figure 6.22 illustrates differences
between the discrete mosquito harassment index presented in Skarin et al. (2010) and the
continuous indexing given in Russell et al. (1993). The contour plot represents the mosquito
harassment in the continuous case, which may take any real value from 0 (no harassment)
to 1 (high harassment). The area contained within the dashed black rectangle indicates the
region where the discrete index is taken to be 1 and is 0 elsewhere.

0.0

0.2

0.4

0.6

0.8

1.0

6 8 10 12 14 16 18 20

0

2

4

6

8

Temp (°C)

W
in

d 
sp

ee
d 

(m
s−1

)

Fig. 6.22 Contour plot of the continuous mosquito harassment index (Russell et al., 1993), a
product of temperature and wind speed indices, which may take any real value from 0 (no
harassment) to 1 (high harassment). The area contained within the dashed black rectangle
indicates the region where the discrete index (Skarin et al., 2010) is taken to be 1 and is 0
elsewhere.
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NB: We feel that the denominator in the temperature index (Equation 6.6) should be 12 rather
than 13 to avoid discontinuities and allow the index ti to be a linear interpolation from 0 to 1
for the temperature values between 6◦C and 18◦C. However, for this thesis we will keep to
the literature and use the model presented in Russell et al. (1993) i.e. leaving the denominator
as 13. It is worth stressing that we do not expect this to make a huge difference to values of
ti. In fact, we found that the maximum difference between ti values, when applied to both
the early and peak summer data, was 0.08 (to 2 d.p.).

To implement this covariate of mosquito harassment into our framework, we allow the
switching rates to be given as a linear function of the covariate at time t as follows:

λ12 = λ
P
12zt +λ

A
12(1− zt),

λ21 = λ
P
21zt +λ

A
21(1− zt),

where zt is given as the mosquito index at time t, MI, calculated using Equation 6.6 - 6.8 and
where the probability of an actual switch is given as

P(actual switch) =
n1λ12(t)+n2λ21(t)

κ
,

where
κ ≥ nmax{λ

P,max
12 ,λ A,max

12 ,λ P,max
21 ,λ A,max

21 }.

Here, the parameters can be assumed to have a consistent interpretation to that discussed in
Section 6.3.1.

6.6 Continuous Covariate Results

As with Section 6.3.1, we apply the continuous covariate model described in Section 6.5 to
the two data sets, peak summer and early summer, described in Chapter 5. The mosquito
harassment covariate for each potential switch is calculated as a linear interpolation between
the climatic observations immediately before and after the potential switch time.
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6.6.1 Early Summer Results

We apply the continuous covariate model described in Section 6.6 to the early summer
data set. We use the covariate MCMC algorithm (discussed in Section 6.1.1) with 20,000
iterations with the initial 70% counting as burn-in. This took approximately 72 hours to
complete. The posterior point estimates and standard deviations of the model parameters
are shown in Table 6.7. For this particular application, we choose not to show the posterior
densities but instead give trace plots for each parameter in the MCMC algorithm. Trace plots
for the MCMC samples of the diffusion and switching parameters are given in Figures 6.23
and 6.24 respectively.

Parameter Point estimate Standard deviation

α 0.04 0.008
ρ 3 0
σ 1.25 0.07
σBM 0.23 0.01
λ P

1,2 0.321 0.193
λ A

1,2 0.583 0.085
λ P

2,1 0.249 0.102
λ A

2,1 0.159 0.018
Table 6.7 Parameter estimates for the movement and switching in the early summer data set
using the continuous covariate switching model.
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Fig. 6.23 Trace plots for movement parameters of the early summer data using the continuous
covariate switching model, based on the MCMC runs of 20,000 iterations. (a) Trace plot for
α , the attraction rate of the follower to the leading point. (b) Trace plot for ρ , the individual
variance coefficient of the leading point. This parameter is fixed at 3. (c) Trace plot for σBM,
the variance coefficient of follower when it doesn’t follow the leader (Brownian motion). (d)
Trace plot for σ , the individual variance coefficient of the follower.
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Fig. 6.24 Trace plots for switching parameters of the early summer data using the continuous
covariate switching model, based on the MCMC runs of 20,000 iterations. (a) Trace plot
for λ P

1,2, the switching rate of the follower from Ornstein Uhlenbeck to Brownian motion
in the presence of insects. (b) Trace plot of λ A

1,2, the switching rate of the follower from
Ornstein Uhlenbeck to Brownian motion in the absence of insects. (c) Trace plot for λ P

2,1, the
switching rate of the follower from Brownian motion to Ornstein Uhlenbeck in the presence
of insects. (d) Trace plot of λ A

2,1, the switching rate of the follower from Brownian motion to
Ornstein Uhlenbeck in the absence of insects.

After experimenting with different proposal standard deviations and initialisations over a
number of trial runs of the MCMC algorithm, we found the convergence of some parameters
to be quite poor. This is especially evident in the switching parameters given in Figure 6.24.
To investigate this further, we carried out a series of convergence diagnostics. A summary
table for the autocorrelation function (acf) at time lag 1, 5, 10 and 50, along with the effective
sample size (ESS) for each parameter is given in Table 6.8. Plots of the acf for each of the
movement and switching parameters are given in Figures 6.25 and 6.25 respectively. Note
that the acf for ρ is not given since the parameter is fixed (see Section 5.2.1). Finally, a
running mean plot of the switching parameters is given in Figure 6.27. The interpretation of
these figures are discussed in Section 6.6.3.
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acf lag
Parameter 1 5 10 50 ESS

α 0.46 0.11 0.09 0.07 307
σ 0.61 0.33 0.29 0.14 90
σBM 0.92 0.73 0.63 0.43 32
λ P

1,2 0.91 0.65 0.42 -0.10 132
λ A

1,2 0.91 0.74 0.65 0.44 23
λ P

2,1 0.78 0.42 0.31 0.17 136
λ A

2,1 0.90 0.66 0.48 0.16 117

Table 6.8 Autocorrelation at lag 1, 5, 10 and 50 and the effective sample size for each
parameter in the early summer dataset using the continuous covariate switching model.
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Fig. 6.25 Autocorrelation plots for movement parameters of the early summer data using
the continuous covariate switching model, based on the MCMC runs of 20,000 iterations.
(a) Autocorrelation plot for α , the attraction rate of the follower to the leading point. (b)
Autocorrelation plot for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion). (c) Autocorrelation plot for σ , the individual variance coefficient
of the follower.
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Fig. 6.26 Autocorrelation plots for switching parameters of the early summer data, based on
the MCMC runs of 20,000 iterations. (a) Autocorrelation plot for λ P

1,2, the switching rate of
the follower from Ornstein Uhlenbeck to Brownian motion in the presence of insects. (b)
Autocorrelation plot of λ A

1,2, the switching rate of the follower from Brownian motion to
Ornstein Uhlenbeck in the absence of insects. (c) Autocorrelation plot for λ P

2,1, the switching
rate of the follower from Brownian motion to Ornstein Uhlenbeckin the presence of insects.
(d) Autocorrelation plot of λ A

2,1, the switching rate of the follower from Brownian motion to
Ornstein Uhlenbeck in the absence of insects.
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Fig. 6.27 Running mean for the switching parameters of the early summer data using the
continuous covariate switching model. The red (solid) line gives the running mean of λ P

1,2.
The green (dashed) line gives the running mean of λ A

1,2. The blue (dotted) line gives the
running mean of λ P

2,1. Finally, the purple (dot-dash) line gives the running mean of λ A
2,1.

6.6.2 Peak Summer Results

We applied the continuous covariate model described in Section 6.6 to the peak summer
data set. We used the covariate MCMC algorithm with 20,000 iterations and the initial 70%
counting as burn-in. This took approximately 72 hours to complete. The posterior point
estimates and standard deviations of the model parameters are shown in Table 6.9. Trace
plots for the MCMC samples of the diffusion and switching parameters are given in Figures
6.28 and 6.29 respectively.



6.6 Continuous Covariate Results 171

Parameter Point estimate Standard deviation

α 0.19 0.01
ρ 3 0
σ 0.60 0.02
σBM 0.67 0.08
λ P

1,2 0.136 0.056
λ A

1,2 0.089 0.025
λ P

2,1 0.179 0.124
λ A

2,1 0.303 0.075
Table 6.9 Parameter estimates for the movement and switching rates in the peak summer data
using the continuous covariate switching model.
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Fig. 6.28 Trace plots for movement parameters of the peak summer data using the continuous
covariate switching mode, based on the MCMC runs of 20,000 iterations. (a) Trace plot for
α , the attraction rate of the follower to the leading point. (b) Trace plot for ρ , the individual
variance coefficient of the leading point. This parameter is fixed at 3. (c) Trace plot for σBM,
the variance coefficient of follower when it doesn’t follow the leader (Brownian motion). (d)
Trace plot for σ , the individual variance coefficient of the follower.
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Fig. 6.29 Trace plots for switching parameters of the peak summer data, based on the MCMC
runs of 20,000 iterations. (a) Trace plots for λ P

1,2, the switching rate of the follower from
Ornstein Uhlenbeck to Brownian motionin the presence of insects. (b) Trace plot of λ A

1,2, the
switching rate of the follower from Ornstein Uhlenbeck to Brownian motion in the absence
of insects. (c) Trace plot for λ P

2,1, the switching rate of the follower from Brownian motion to
Ornstein Uhlenbeck in the presence of insects. (d) Trace plot of λ A

2,1, the switching rate of
the follower from Brownian motion to Ornstein Uhlenbeck in the absence of insects.

Similar to Section 6.6.1, after a number of trial runs of the MCMC algorithm, we found
the convergence of some parameters to be quite poor. In this particular instance, the trace
plot for σBM shows some movement towards the very end of the chain which indicates that
the MCMC may need additional computing time. A summary table for the autocorrelation
function (acf) at time lag 1, 5, 10 and 50, along with the effective sample size (ESS) for each
parameter is given in Table 6.10. Plots of the acf for each of the movement and switching
parameters are given in Figures 6.30 and 6.31 respectively. Finally, a running mean plot of
the switching parameters is given in Figure 6.32.
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acf lag
Parameter 1 5 10 50 ESS

α 0.53 0.21 0.16 0.14 149
σ 0.81 0.44 0.31 0.20 61
σBM 0.91 0.80 0.77 0.65 13
λ P

1,2 0.92 0.70 0.50 0.09 101
λ A

1,2 0.85 0.52 0.38 0.18 119
λ P

2,1 0.91 0.64 0.47 0.20 146
λ A

2,1 0.93 0.73 0.59 0.30 71

Table 6.10 Autocorrelation at lag 1, 5, 10 and 50 and the effective sample size for each
parameter in the peak summer dataset using the continuous covariate switching model.
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(c) acf plot for  σ

Fig. 6.30 Autocorrelation plots for movement parameters of the peak summer data using
the continuous covariate switching model, based on the MCMC runs of 20,000 iterations.
(a) Autocorrelation plot for α , the attraction rate of the follower to the leading point. (b)
Autocorrelation plot for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion). (c) Autocorrelation plot for σ , the individual variance coefficient
of the follower.
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Fig. 6.31 Autocorrelation plots for switching parameters of the peak summer data using the
continuous covariate switching model, based on the MCMC runs of 20,000 iterations. (a)
Autocorrelation plot for λ P

1,2, the switching rate of the follower from Ornstein Uhlenbeck to
Brownian motion in the presence of insects. (b) Autocorrelation plot of λ A

1,2, the switching
rate of the follower from Ornstein Uhlenbeck to Brownian motion in the absence of insects.
(c) Autocorrelation plot for λ P

2,1, the switching rate of the follower from Brownian motion to
Ornstein Uhlenbeckin the presence of insects. (d) Autocorrelation plot of λ A

2,1, the switching
rate of the follower from Brownian motion to Ornstein Uhlenbeck in the absence of insects.
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Fig. 6.32 Running mean for the switching parameters of the peak summer data using the
continuous covariate switching model. The red (solid) line gives the running mean of λ P

1,2.
The green (dashed) line gives the running mean of λ A

1,2. The blue (dotted) line gives the
running mean of λ P

2,1. Finally, the purple (dot-dash) line gives the running mean of λ A
2,1.

6.6.3 Discussion

Whilst the use of continuous indexing was a natural progression of the model, its results still
did not meet expectations. The estimates of the movement and switching parameters in both
cases were similar to that of the discrete model. However, one main difference was the larger
variation of the switching rate estimates for the early summer dataset in comparison with
those of the discrete case; in the discrete case the estimates were (0.368, 0.414, 0.134, 0.129)
and by comparison the continuous are (0.321, 0.583, 0.249, 0.159). Although, this difference
is not as substantial as we anticipated.

What’s more, we found the mixing of the MCMC to be rather slow and thus convergence of
some parameters to be poor. For the early summer data, we can seen from Table 6.10 where
slow mixing is most evident. Here, λ A

1,2, takes the smallest ESS (23) and largest acf at lag 50
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(0.44); the reason for poor convergence of this parameter may be due to the lack of switches
that occur from state 1 to 2, since the animals spend most of their time in state 2. This is
closely followed by the σBM, whose ESS is 32 and acf at lag 50 is 0.43.

For the peak summer data, we see a similar situation. However, σBM has the smallest ESS of
13 and largest acf at lag 50 of 0.65. In the switching rates, the poorest performance occurs in
the estimation of λ A

2,1; by a similar intuition, this may be attributed to the animals spending
the majority of their time in state 1, with infrequent occurrences of switching from state 2 to
1 in the absence of mosquitoes.

In conclusion, from a statistical analysis perspective the use of a continuous model seems
natural and echoes the overall concern of the this thesis. However, its downfall is that in
practice the continuous model seems to give little improvement and leads to slow mixing,
especially with the switching parameters as seen in the running means plots in Figures 6.27
and 6.32. This may be alleviated by an alternative parametrisation the model.

In essence, we are aiming to estimate the linear relationship between mosquito harassment
and the switching rates. In theory, there may be many ways to parametrise this. However,
some may be easier to estimate numerically than others. When using the parametrisation
given in Section 6.5, a problem arises. When MI takes one of the extreme values, some
parameters fail to be estimated. For example, when MI = 0, the parametrisation simplifies to

λ12 = λ
A
12,

λ21 = λ
A
21.

In both the datasets this occurs frequently hence, can explain why we may have difficulty
estimating particular parameters.

6.7 Alternative Parametrisation of the Covariate Model

In an effort to combat this issue, we can re-parametrise the model such that the range of
values the mosquito index may take is [−1,1] rather than [0,1]. Now, let

λ12 = a1 +b1mi, a1 ≥ 0,b1 >−a1,b1 < a1,

λ21 = a2 +b2mi, a2 ≥ 0,b2 >−a2,b2 < a2,
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with

κ ≥ nmax{amax
1 ,amax

2 ,amax
1 +bmax

1 ,amax
2 +bmax

2 ,amax
1 −bmax

1 ,amax
2 −bmax

2 }.

Finally, we take the covariate, mi, as the transformation

mi = 2(MI)−1, (6.9)

where MI is the mosquito index as calculated in Russell et al. (1993) (Equation 6.6 - 6.8).

With this new parametrisation, we can think of the a parameters as measuring an average
level of transition in each direction, since when mi = 0 the switching rates are simply equal
to a. The b parameters measure the effect that mi has on the transition rate. In addition, in
the event that the mosquito index has very little effect i.e. b = 0, then it possible to still get
an estimate of a. Parametrising the model in this way essentially standardises the covariate
around 0, which may help to stabilise the estimates.

6.7.1 Early Summer Results

We applied the alternative parametrisation model described in Section 6.7 to the early summer
data set given in Section 5.2. We use the covariate MCMC algorithm with 20,000 iterations
and the initial 70% counting as burn-in. This took approximately 72 hours to complete.
The posterior point estimates and standard deviations of the model parameters are shown in
Table 6.11. The posterior mean of the behavioural states (red crosses) for each individual at
every time point are plotted in Figure 6.33. The posterior densities for each of the diffusion
parameters are given in Figure 6.34 whilst the posterior densities for the switching rates are
given in Figure 6.35.
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Parameter Point estimate Standard deviation

α 0.08 0.015
ρ 3 0
σ 1.134 0.07
σBM 0.287 0.017
a1 0.41 0.082
b1 -0.137 0.102
a2 0.157 0.037
b2 0.038 0.042

Table 6.11 Parameter estimates for the movement and switching in the early summer data
using the re-parametrised continuous covariate switching model.
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Fig. 6.33 Posterior mean states of all followers for the early summer data using the alternative
parametrisation. The vertical axis represents the states, 1 for Ornstein Uhlenbeck and 2 for
Brownian motion. The crosses (red) represent the mean posterior of the estimated behaviour
states.
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Fig. 6.34 Posterior densities of movement parameters for the early summer data using the
alternative parametrisation, based on the Markov chain Monte Carlo runs of 20,000 iterations.
(a) Posterior density for α , the attraction rate of the follower to the leading point. (b)
Approximate density for ρ , the variance coefficient of the leading point, which is fixed
at 3. (c) Posterior density for σ , the individual variance coefficient of the follower. (d)
Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion).
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Fig. 6.35 Posterior densities of switching parameters for the early summer data using the
alternative parametrisation, based on the Markov chain Monte Carlo runs of 20,000 iterations.
(a) Posterior density for a1, the average switching rate of the follower from OU to BM. (b)
Posterior density of b1, the relationship between mosquito harassment and the switching rate
of the follower from OU to BM. (c) Posterior density for a2, the average switching rate of
the follower from BM to OU. (d) Posterior density of b2, the relationship between mosquito
harassment and the switching rate of the follower from BM to OU in the absence of insects.
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acf lag
Parameter 1 5 10 50 ESS

α 0.76 0.37 0.27 0.17 93
σ 0.81 0.42 0.29 0.16 127
σBM 0.93 0.78 0.72 0.52 24
a1 0.93 0.75 0.59 0.01 80
b1 0.95 0.81 0.67 0.25 62
a2 0.96 0.83 0.74 0.25 39
b2 0.96 0.84 0.73 0.30 53

Table 6.12 Autocorrelation at lag 1, 5, 10 and 50 and the effective sample size for each
parameter in the early summer dataset using the alternative parametrisation model.
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Fig. 6.36 Autocorrelation plots of the movement parameters for the early summer data, using
the alternative parametrisation model. (a) Autocorrelation plot for α , the attraction rate of
the follower to the leading point. (b) Autocorrelation plot for σBM, the variance coefficient
of follower when it doesn’t follow the leader (Brownian motion). (c) Autocorrelation plot for
σ , the individual variance coefficient of the follower.
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Fig. 6.37 Autocorrelation plots of the switching parameters for the early summer data, using
the alternative parametrisation model. (a) Autocorrelation plot for a1, the average switching
rate of the follower from Ornstein Uhlenbeck to Brownian motion. (b) Autocorrelation
plot of b1, the relationship between mosquito harassment and the switching rate of the
follower from Ornstein Uhlenbeck to Brownian motion. (c) Autocorrelation plot for a2, the
average switching rate of the follower from Brownian motion to Ornstein Uhlenbeck. (d)
Autocorrelation plot of b2, the relationship between mosquito harassment and the switching
rate of the follower from Brownian motion to Ornstein Uhlenbeck in the absence of insects.
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Fig. 6.38 Running mean for the switching parameters of the early summer data, using the
alternative parametrisation model. The red (solid) line gives the running mean of a1. The
green (dashed) line gives the running mean of b1. The blue (dotted) line gives the running
mean of a2. Finally, the purple (dot-dash) line gives the running mean of b2.

6.7.2 Peak Summer Results

We applied the alternative parametrisation model described in Section 6.7 to the peak summer
data set given in Section 5.2. We use the covariate MCMC algorithm with 20,000 iterations
after burn-in. This took approximately 72 hours to complete. The posterior point estimates
and standard deviations of the model parameters are shown in Table 6.13. The posterior mean
of the behavioural states (red crosses) for each individual at every time point are plotted in
Figure 6.39. The posterior densities for each of the diffusion parameters are given in Figure
6.40 whilst the posterior densities for the switching rates are given in Figure 6.41.
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Parameter Point estimate Standard deviation

α 0.26 0.02
ρ 3 0
σ 0.50 0.02
σBM 0.77 0.06
a1 0.122 0.025
b1 0.0499 0.028
a2 0.212 0.056
b2 -0.059 0.085

Table 6.13 Parameter estimates for the movement and switching in the peak summer data
using the alternative parametrisation continuous covariate switching model.
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Fig. 6.39 Posterior mean states of all followers for the peak summer data, using the alternative
parametrisation model. The vertical axis represents the states, 1 for Ornstein Uhlenbeck
and 2 for Brownian motion. The crosses (red) represent the mean posterior of the estimated
behaviour states.
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Fig. 6.40 Posterior densities of the movement parameters for the peak summer data using the
alternative parametrisation model, based on the Markov chain Monte Carlo runs of 20,000
iterations. (a) Posterior density for α , the attraction rate of the follower to the leading point.
(b) Approximate density for ρ , the variance coefficient of the leading point, which is fixed
at 3. (c) Posterior density for σ , the individual variance coefficient of the follower. (d)
Posterior density for σBM, the variance coefficient of follower when it doesn’t follow the
leader (Brownian motion).
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Fig. 6.41 Posterior densities of switching parameters for the peak summer data using the
alternative parametrisation model, based on the Markov chain Monte Carlo runs of 20,000
iterations. (a) Posterior density for a1, the average switching rate of the follower from OU
to BM. (b) Posterior density of b1, the relationship between mosquito harassment and the
switching rate of the follower from OU to BM. (c) Posterior density for a2, the average
switching rate of the follower from BM to OU. (d) Posterior density of b2, the relationship
between mosquito harassment and the switching rate of the follower from BM to OU in the
absence of insects.
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acf lag
Parameter 1 5 10 50 ESS

α 0.59 0.21 0.14 0.05 343
σ 0.67 0.30 0.24 0.16 188
σBM 0.78 0.52 0.47 0.26 80
a1 0.93 0.74 0.58 0.14 83
b1 0.95 0.80 0.64 0.18 72
a2 0.91 0.69 0.51 0.17 101
b2 0.92 0.69 0.49 0.07 99

Table 6.14 Autocorrelation at lag 1, 5, 10 and 50 and the effective sample size for each
parameter in the peak summer dataset using the alternative parametrisation model.
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Fig. 6.42 Autocorrelation plots of the movement parameters for the peak summer data, using
the alternative parametrisation model. (a) Autocorrelation plot for α , the attraction rate of
the follower to the leading point. (b) Autocorrelation plot for σBM, the variance coefficient
of follower when it doesn’t follow the leader (Brownian motion). (c) Autocorrelation plot for
σ , the individual variance coefficient of the follower.
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Fig. 6.43 Autocorrelation plots of the switching parameters for the peak summer data, using
the alternative parametrisation model. (a) Autocorrelation plot for a1, the average switching
rate of the follower from Ornstein Uhlenbeck to Brownian motion. (b) Autocorrelation
plot of b1, the relationship between mosquito harassment and the switching rate of the
follower from Ornstein Uhlenbeck to Brownian motion. (c) Autocorrelation plot for a2, the
average switching rate of the follower from Brownian motion to Ornstein Uhlenbeck. (d)
Autocorrelation plot of b2, the relationship between mosquito harassment and the switching
rate of the follower from Brownian motion to Ornstein Uhlenbeck in the absence of insects.
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Fig. 6.44 Running mean for the switching parameters of the peak summer data, using the
alternative parametrisation model. The red (solid) line gives the running mean of a1. The
green (dashed) line gives the running mean of b1. The blue (dotted) line gives the running
mean of a2. Finally, the purple (dot-dash) line gives the running mean of b2.

6.8 Discussion

The consistent estimates of the movement parameters give us confidence in our modelling
approach; however, the improvement in MCMC mixing using the alternative parametrisation
varies. For the early summer dataset, the ESS of most parameters given in Table 6.12 are
smaller than those previously (Table 6.8). Although, the smallest ESS of the switching
parameters is that of a2 which is 39 and its acf at lag 50 is 0.25, an improvement on before.
In contrast, for the peak summer data, the mixing is much better using the alternative
parametrisation (Table 6.14); the ESS of all the movement parameters are significantly larger
and the acf of switching rates smaller than previously (Table 6.10).
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By contrasting the running mean plots for the old parametrisation (Figures 6.27 and 6.32)
with the alternative parametrisation (Figures 6.38 and 6.44) we can see that in both cases the
latter gives more stable estimations of the switching rates.

From Table 6.11 we can see that posterior point estimates of the diffusion parameters are
similar to those of the discrete covariate model and the original continuous parametrisation
given in Table 6.5 and 6.7 respectively. The estimates of the switching parameters suggest
that the level of transitions from state 1 to state 2 declines with an increase of mosquito
presence whereas transitions from state 2 to state 1 have a small but positive increase
(b1 =−0.137,b2 = 0.038). Moreover, the average level of transition from state 1 to state 2,
a1, is estimated to be 0.41, more than twice that from state 2 to state 1, a2 = 0.157.

Similarly, from Table 6.13 we can see that posterior point estimates of the diffusion pa-
rameters are similar to those of the discrete covariate model and the original continuous
parametrisation given in Table 6.6 and 6.9 respectively. In contrast to the early summer
data given in Table 6.11, as the presence of mosquitoes increases there is a small, positive
(b1 = 0.0499) gradient for the switching rates from state 1 to 2 but a negative (b2 =−0.059)
gradient from state 2 to state 1. Although this may contradict certain literature regarding the
grouping of reindeer, it is worth appreciating that the point estimates of b1 and b2 are quite
close to zero suggesting a negligible correlation between mosquito levels and the behavioural
states of the reindeer. What is more illuminating is the average amount of transition from
state 2 to state 1, a2 = 0.212 is almost twice that from state 1 to state 2 a1 = 0.122.

Although one might expect the absolute values of the estimates b1 and b2 to be greater if the
mosquitoes truly have a strong effect on the reindeer movement, in practice the model we
have used for mosquito harassment may not be a good predictor of movement. Whilst the
Russell et al. (1993) model for harassment is continuous, it is a rather crude product of linearly
interpolated temperature and wind indices. What’s more, we feel that the denominator in the
temperature index (Equation 6.6) should be 12 rather than 13 to avoid discontinuities. There
is much dispute in the literature over models of mosquito harassment and using weather data
as a proxy rather than direct observations of mosquito presence is likely to contribute to poor
predictability.

To aid our interpretation of the switching parameter estimates, we compare ratios of the
posterior λ1,2/λ2,1 when the mosquito harassment is at its extreme values, -1 and 1. Table
6.15 and 6.16 provide a summary of the densities given in Figures 6.45 and 6.46, the ratios
during the early summer and peak summer dataset respectively.
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It is worth noting that the maximum value of posterior ratio is rather large when mi = 1,
1848.8, 638.9 respectively; this can be attributed to small estimates of λ2,1 which are close to
0. However, in these cases 95% of the data lies well under the values 4.38, 12.65 respectively.
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Ratio Min. 5%. 1st Qu. 3rd Qu. 95% Max.

λ1,2 / λ2,1, when mi =−1 2.57 3.34 4.09 5.15 6.02 8.38
λ1,2 / λ2,1, when mi = 1 0.0002 0.15 0.69 2.19 4.38 1848.8

Table 6.15 Summary statistics for the densities of posterior switching rate ratios in the early
summer data. The first row gives the summary where mi = −1 whereas the second row
summarises the density where mi = 1.
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Fig. 6.45 Posterior densities of the switching rate ratio λ1,2/λ2,1 in the early summer dataset.
(a.) Posterior density for λ1,2/λ2,1 when mi =−1. (b.) Posterior density for λ1,2/λ2,1 when
mi = 1.
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Ratio Min. 5% 1st Qu. 3rd Qu. 95% Max.

λ1,2 / λ2,1, when mi =−1 0.02 0.12 0.21 0.34 0.50 1.07
λ1,2 / λ2,1, when mi = 1 0.01 0.38 0.73 2.91 12.65 638.9

Table 6.16 Summary statistics for the densities of posterior switching rate ratios in the peak
summer data. The first row gives the summary where mi = −1 whereas the second row
summarises the density where mi = 1.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

(a) Posterior for λ1,2 λ2,1 , mi=−1

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

(b) Posterior for λ1,2 λ2,1 , mi=1

D
en

si
ty

Fig. 6.46 Posterior densities of the switching rate ratio λ1,2/λ2,1 in the peak summer dataset.
(a.) Posterior density for λ1,2/λ2,1 when mi =−1. (b.) Posterior density for λ1,2/λ2,1 when
mi = 1.

Although we cannot establish precisely how mosquitoes affect the reindeer, using these ratios
we are able to notice clear differences in the proportion of transitions between high and low
mosquito presence. In both cases, we can see that the ratios of switching rates are closer
to 1 when mi = 1. That is, the level of transition in each direction is more similar when
the mosquito harassment is high rather than low. Moreover, between datasets we can see
from plot (a) in both figures, that in early summer there is a dominance of Brownian motion
behaviour but a dominance of Ornstein Uhlenbeck in peak summer when mi =−1. This is
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not entirely consistent with what we expect; we anticipate that when mi =−1 the proportion
of time spent in Brownian motion will be greater. One possible reason for inconsistency is
that in our analysis we are comparing a separate model fitting for each dataset. The posterior
estimates for the movement parameters are starkly different between datasets meaning that
the distinction of states between datasets is different. Ideally, this could be combatted by
fitting the model to one large dataset which encompassed both time periods but this not
currently computationally feasible.



Chapter 7

Discussion and Further Work

Despite the rapid growth in tracking technologies and the tools used to analyse such tracks,
models of collective animal movement have been under-represented. Instead, practitioners
have preferred single animal models due to their ease of fitting, computational efficiency
and since historically ecologists were not practically or financially able to mass tag species.
Similarly, a lack in progress can be seen in the development of continuous-time models,
which in part is due to their inherently complex nature, computational strain and difficulty in
parameter interpretation.

In Chapter 3 we provided a continuous-time group movement model which allows for
behavioural state switching. This novel and flexible framework hopes to break down the
barriers associated with modelling movement collectively or in continuous-time. In essence,
the model combines the continuous and collective movement model of Niu et al. (2016)
with the exact simulation methods of Blackwell et al. (2016). The underlying notion of the
methodology is similar to the work of Langrock et al. (2014), where the interaction between
animals are a shared attraction to an abstract leader (which has its own point of attraction)
and where the animals may switch between following this leader and moving independently
with Brownian motion. The model can be applied to data which may be irregular in time or
have incomplete observations, thus the model is not restricted to a particular time scale and
may be used to compare datasets with different sampling schedules. Moreover, the approach
gives an improvement on the computational efficiency of fitting by use of the Kalman filter.

The applicability of the model is demonstrated by a series of simulation experiments in
Section 3.8. Here we applied the non-stationary model discussed in Section 3.3, where the
leader does not have a point of attraction, to a variety of simulated movement processes
emulating real biological possibilities. In each case the model successfully recovered the
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true parameter values. This gives confidence in our results when the model is applied to real
data where the true parameter values are unknown as in Chapter 4.

It is common for ecologists to be interested in the movement processes of animals in response
to environmental factors and how this affects habitat section. Animals often exhibit trade-offs
between a range of demands such as foraging quality, guarding territory, caring for young
and being safe from predators. These demands will influence the behaviours the animals
exhibit and the habitat they select (Roever et al., 2014). In Chapter 5 we undertook some
preliminary work to investigate whether the model can pick up on different behavioural
patterns consistent with known responses to insect harassment. We compared two datasets
where we expected contrasting levels of insects, which were implied by proxy weather data.
Generally the model performed well, resulting in estimates of behavioural and movement
processes which were congruous with observational studies.

By overlaying each animal’s trajectory and estimated states on a terrain map we were able to
see distinct differences in habitat selection. During times of low harassment, the reindeer
seemed to spend the majority of their time moving independently in lower elevations or in
woodland. In contrast, during high harassment, the reindeer appeared to move up into higher
elevation mountainous regions where forage is scarce, possibly to seek topographical relief
from the insects. From this case study, we envision direct applications for conservation and
wildlife management.

However, as highlighted in Section 5.5, by using homogenous switching parameters the
model attempts to give an overall depiction of the proportion of time spent in each state,
without describing any underlying mechanics. Since the movement and thus state transitions
are thought to be affected by insect harassment, this ought to be included explicitly in the
model as we explore in Chapter 6.

In Chapter 6, we follow similar methodology to others by allowing the transition probabilities
of our SSM to be given as functions of environmental covariates (Harris and Blackwell, 2013;
McClintock et al., 2012, 2013). We discuss a flexible framework for incorporating a range of
temporal covariates into the state switching model, then investigate its limitations through
a series of simulation studies where movement is influenced by the time of day, as seen in
some diurnal species. Unsurprisingly, we find that the model performs better with richer data
that is, with more frequent or larger quantities of observations.

In Section 6.3, we revisit the reindeer case study of Chapter 5 by explicitly including covariate
information of mosquito presence into the model. Initially, we used a discrete model of
mosquito presence; however, we found little variation in the parameter estimates λ P

i, j and λ A
i, j
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for each switching direction. That is, the switching rates did not seem to be influenced greatly
by the presence of mosquitoes. Naturally, we instead used a continuous model although,
this only gave a marginal improvement and lead to slow mixing of the MCMC for certain
parameters.

Due to difficulties in convergence, we discussed an alternative parametrisation. However, the
improvement in convergence from this parametrisation varied between datasets. There was
little change in the convergence performance of the early summer dataset but an improvement
for the peak summer data. Overall, the model seems to perform well in simulated settings
so poor convergence in this case may be attributed to mosquito harassment alone being an
inadequate predictor of reindeer movement, or that the model for insect harassment has scope
for improvement. In any case, we feel that the methodology presented in this thesis is a step
in the right direction in facilitating the use of continuous-time collective movement models.

7.1 Further Work

7.1.1 Model selection and convergence diagnostics

We acknowledge the lack of formal model selection within our work. For comparison
between the non-covariate model of Chapter 5 and the covariate models of Section 6.3.1,
6.5 and 6.7, it would be interesting to calculate information criteria such as the Deviance
information criterion (DIC) (Spiegelhalter et al., 2002) or more recently the Watanabe–Akaike
information criterion (WAIC) (Gelman et al., 2013b; Watanabe, 2010) to assess the relative
quality of each model. Similarly, we could do this to rank the covariate circadian model in
Section 6.2.3 and the standard switching approach in Section 6.2.4 . However, the nature of
such criteria require the likelihood of the data, given each parameter, to be recorded at every
iteration of the MCMC algorithm, which can be computationally costly (see Appendix 1 for
an explicit formulation of WAIC). Instead, we offer an anecdotal comparison by simulating
forward from point estimates of the parameter values for both cases (shown in Figure 6.14
and 6.15). From this we see that the non-covariate model fails to imitate the true underlying
mechanics of switching, which gives justification to our preference of the covariate model.

In addition to this, we limit our assessment of convergence to single-run tools such as acf
and ESS. However, other convergence diagnostic tools would supplement our investigations.
With multiple MCMC sequences, initialised at overdispersed values, it would be possible to
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use tools such as the Gelman-Rubin statistic (Brooks and Gelman, 1997; Gelman and Rubin,
1992) to analyse convergence.

7.1.2 Model variants

With our flexible modelling approach it is possible to experiment with a range of temporal
covariates using both simulated and real data. One encouraged direction of further work
would be to investigate the performance of oestrid fly indices as a predictor of movement.
For this, Mörschel (1999) provides a continuous logistic function for predicting the presence
of oestrid flies based on the climatic variables, temperature and wind speed. This is given as

y =
f (T,W )

1+ f (T,W )
,

where

f (T,W ) = exp(−2.9646+0.166T −0.1951W )

and where T is the ambient temperature given in degrees Celsius ◦C and W is the wind speed
measured in metres per second, ms−1.

However, as touched upon in the discussion of Chapter 5, a better approach would simultane-
ously model the effect that mosquitoes and oestrids have on reindeer behaviour, since they
do not occur exclusively. In fact, observational findings of Witter et al. (2012a) suggested
that such a combined model would significantly improve predictive ability. In their study,
they used AIC to compare a range of models involving biotic and abiotic variables as pre-
dictors of reindeer behaviour. The found that out of the two best models, which had nearly
identical AIC scores, the variables included black fly or mosquitoes counts plus all of the
other following variables: oestrids, time, easting, northing, growing degree days (gdd), year
and group size.

Here, the variables black fly, mosquito and oestrid are abundance levels of that insect; time
represents the time of day; easting and northing are the Cartesian coordinates of the study
site; gdd is the growing degree day, a measure of seasonality relevant to the development of
new green vegetation; year is the year of study which considers any annual variations and
finally, group size is a count estimate for the number of adult reindeer in the group. For a
more detailed description of the variables, see Witter et al. (2012a).
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Most of these covariates are temporal variables and would be straightforward to implement
into the current model, with the exclusion of the spatial variables, northing and easting, which
require additional model development (see Section 7.1.5). However, this would need highly
sampled observations of mosquito and oestrid levels. Since this may not be readily available,
some proxy for the abundance of both species of insect would still be required and to our
knowledge they only exist as separate models for each species.

There are multiple avenues for adapting the movement model itself. Firstly, we have only
considered the case where there exists one leader but there are immediate and obvious
biological reasons for having multiple leaders. For this framework, each individual has the
possibility of switching between following any of the n leaders, forming many sub-herds,
or moving with Brownian motion. To provide insight into the set-up of this model we
will give the corresponding form of the attraction matrix, A, as given in Equation 3.5, for
multiple leaders. In the case of multiple leaders, the attraction matrix will have an additional
n columns and rows, one for each leader. We will present the case for two leaders and three
followers, where the first and third animal are following leader 1 and the second animal is
following leader 2; A takes the format as follows.

0 0 0 0 0 0
β −β 0 0 0 0
0 0 −β 0 0 0
0 α 0 −α 0 0
0 0 α 0 −α 0
0 α 0 0 0 −α




Attraction to specific leader

Leaders

Followers

Leaders Followers

Another possibility is to allow the location of the leader(s) to affect not only the movement
of the followers but also their switching probabilities. Ecologically, it is easy to imagine a
scenario whereby the followers are more inclined to switch behaviour from Brownian motion
to following the group if the leader becomes too far away. In contrast, if the leader becomes
too close some individuals may choose to move independently in order to avoid any foraging
competition. This covariate information could be implemented into the existing model by
allowing the switching rate for an individual to be given as a function of their location relative
to the leaders. Following on from this, in the spatially heterogeneous case we may choose to
let the switching probabilities be influenced by the absolute location of the leader rather than
its relation to the followers. For example, we could allow the switching rates to be dependent
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on the the specific habitat that the leader occupies. However, as mentioned previously, the
inclusion of spatial variables involves some development of the model (see Section 7.1.5).

7.1.3 Computational improvement

Ideally, we would be able to provide inference on collective movement over long time periods
of multiple weeks but in reality we are limited by the computational strain of the model.
In Chapter 6, data consisting of five days of observations sampled every two hours for six
individuals took around 72 hours to complete 20,000 iterations. Thus, with only a couple of
additional animals or weeks of data we can foresee issues with computational feasibility.

Obvious approaches to relieve these issues are to recode parts of the algorithm in faster
compiled languages such as C/C++ (ISO, 2020). Of course, some profiling may first be done
in R to establish where this would be most useful.

Another approach would be to use some approximation to the model. Rather than allowing
an exact continuous simulation of the trajectories described in Section 3.5, we could insist
that switches occur only at a fixed, pre-determined sampling schedule but that the animals
still move with a continuous Ornstein Uhlenbeck or Brownian motion process. The sampling
schedule may be chosen as fine as we like and it may even be possible to accommodate
irregular observations. Although this may make the algorithm faster, this discretisation goes
against the philosophy of the thesis.

7.1.4 Spatial Covariates and NDVI

In this thesis we have focussed only on the inclusion of temporal covariates. However,
there exist many spatial attributes which may affect the way in which animals move. For
example, the infrastructure needed for gas exploitation and wind turbines can create avoidance
behaviour in reindeer up to 5km away, much larger than the structure itself (Hall et al., 2006;
Skarin and Åhman, 2014). Moreover, animals may alter their behaviour as a function of
proximity to particular factors such as nests sites, nearby neighbours or predator territories
(Broom et al., 2019; Harris and Blackwell, 2013; Potts and Lewis, 2014; Russell et al., 2017).
Specific to reindeer movement, Witter et al. (2012b) suggested the use of spatial variables
such as topography and vegetation could be used in indices of insect harassment.

An increasingly explored environmental attribute affecting reindeer behaviour and patch
selection is the quality and quantity of nutritional forage. From winter into spring, reindeer
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are said to follow a ‘green-wave’, the melting of snow and the growth of new forage (Merkle
et al., 2016).

The use of satellite imagery has been popularised in ecology as a means to quantify the level
of nutritional forage. Satellites such as MODIS (MODerate resolution imaging spectrora-
diometer) regularly take images of the reflectance of red, near-infrared, and blue wavebands
of the Earth’s surface; these can be used to calculate the normalised difference vegetation
index (NDVI), a crude estimate of the quality of green vegetation and forage.

The NDVI of surface can range from -1 to 1 and is calculated as (NIR - Red)/(NIR + Red),
where NIR and Red denote the spectral reflectance in the near-infrared and red (visible)
regions respectively. Live green vegetation has a positive NDVI, with healthier plants taking
values closer to 1, this is because the chlorophyll in plants absorb visible light but their
leaf structures strongly reflect near-infrared light (Pettorelli et al., 2005b). By contrast,
infrastructure, soil and snow have NDVI close to 0.

In conservation and management, NDVI has been used to detect droughts, flooding, wild
fires and degradation in the landscape (Pettorelli et al., 2011). In ungulate research, it has
been shown to be a strong predictor in movement, biomass and well-being (Mueller et al.,
2011; Pettorelli et al., 2005a,c). More specifically, Bartlam-Brooks et al. (2013) highlight
NDVI as a crucial predictor for the onset of migration in zebra.

7.1.5 Implementing Spatio-temporal Covariates

The inclusion of spatial covariates such as habitat type or indeed spatio-temporal information
such as NDVI require more care than time-varying covariates alone. As the model stands,
when using the Kalman filter to evaluate the likelihood we integrate out the leader’s locations
and also average over the follower’s locations outside of observations. For time-varying
covariates this is not a problem since we need not know specifically where each animal is at
every switching time.

However, for spatial covariates the location of each animal at the time of every switch is
essential and we must obtain this by sampling from the movement model of the animal’s
current state. When we know the respective locations, only then can we determine the
switching probabilities from spatial covariates. Whilst this methodology is straightforward in
principle, the algorithm requires more sophistication and in practice the additional sampling
of locations will inevitably lead to a more computationally intensive algorithm.
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To simplify the matter, rather than using a single point process which captures all switches,
we could use a separate one for each of the n individuals. In this case, the rate of each
process, κ , does not need to be as large as in the original formulation as it only tries to
capture switches from a single animal i.e. for each process we only require

κ ≥ max(λ1,2,λ2,1)

i.e. n times smaller than in original algorithm. We then sample from all n processes
simultaneously and order the switching times to be evaluated. Since each switching time is
specific to a single individual we only have to sample their location. By avoiding the need to
sample every individual’s locations the computational time should be quicker.

Models of movement and behaviour which take into consideration spatio-temporal land-
scape dynamics provide a more realistic perspective on species–habitat relationships. From
this, conservation and management initiatives are able to better tailor their actions towards
specific goals (Roever et al., 2014). Continuous models of collective movement which
include complex covariate information will offer rich applications and as the technology
and computational power improves research should be driven towards these ‘gold standard’
approaches.
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Appendix A

Watanabe–Akaike information criterion
(WAIC)

Here we discuss the Watanabe–Akaike information criterion (WAIC) (Watanabe, 2010) as
formulated in the text by Gelman et al. (2013b). The WAIC is an information criterion
used in Bayesian model selection. Heuristically, we can think of this as comprising of two
components; the first, a measure of fit given by the log pointwise posterior predictive density
and secondly, a penalisation for the effective number of parameters to adjust for overfitting.

For practical purposes we will give the computed formulations of WAIC as given in Gelman
et al. (2013b), that is what can be computed from draws of MCMC simulations as we have in
this thesis. Given data y1, . . .yn which are modelled with parameters θθθ , WAIC is calculated
using draws from the posterior p(θθθ), θθθ

s, where s = 1, . . . ,S i.e. each of the accepted samples
of the MCMC. The WAIC is computed as

−2(l ppd − pwaic), (A.1)

where l ppd, the log pointwise predictive density, is given as

l ppd =
n

∑
i=1

log

(
1
S

S

∑
s=1

p(yi|θθθ s)

)
, (A.2)

and pwaic, the adjust for overfitting, can be given in two forms. The first, pwaic1 , uses averages
over the S posterior draws and is computed as
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pwaic1 = 2
n

∑
i=1

(
log

(
1
S

S

∑
s=1

p(yi|θθθ s)

)
− 1

S

S

∑
s=1

log(p(yi|θθθ s)

)
. (A.3)

The second, pwaic2 , uses the posterior variance of the log predictive density for each yi and is
calculated as

pwaic2 =
n

∑
i=1

V S
s=1(log p(yi|θθθ s)), (A.4)

where, V S
s=1 represents the sample variance.
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