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ABSTRACT

Topic models are widely used in natural language processing (NLP). Ensuring that

their output is interpretable is an essential area of research with a wide range of

applications in several areas, such as the enhancement of exploratory search interfaces.

Conventionally, topics are represented by their most probable words. However, these

representations are often difficult for humans to interpret. Evaluating representations

also presents further challenges. Ideally, humans can gauge the quality of the topics,

but it is not always feasible in practical terms. This thesis addresses the limitations

related to the output of the topic model in three ways.

First, it proposes and explores a range of alternative representations of topics by

re-ranking topic words. Re-ranking adjusts the weights of the words and aims to

identify informative words in the topics. This approach is a straightforward remedy,

as topics tend to contain “noisy” words. Additionally, two approaches to evaluating

the topics are proposed: (1) an automatic approach based on a document retrieval

task; and (2) a crowdsourcing task. Both approaches demonstrate that re-ranking

words improves topic interpretability. In addition, two alternative visual forms of

the topic are explored, and a simple list of words representation shows to be more

useful than a word cloud.

Second, the thesis introduces a new approach to assigning topics with short

descriptive labels. Labelling topics is an important task that aims to improve access

to large document collections. Previous work on the automatic assignment of labels

to topics has relied on a two-stage approach: (1) retrieve candidate labels from a

large pool; and then (2) re-rank candidate labels. However, these approaches can only

assign candidate labels from a restricted set that may not include any suitable ones.

The new approach uses a sequence-to-sequence neural-based approach to generate

labels that do not have this limitation. In addition, two new synthetic datasets of

pairs of topics and labels are created to train the models.
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Third, this thesis conducts an empirical study on the proposed labelling ap-

proaches and performs quantitative and qualitative analyses of the generated labels.

The labels are evaluated with gold labels that were rated by humans, and the labels

are also evaluated with the topics themselves. The proposed approaches generate

appropriate labels that are coherent and relevant to the topics.
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1
INTRODUCTION

The amount of textual information has increased rapidly because of the continuous

advancements made in computer science. Most digital information is created in an

unstructured form, such as in web pages, emails, and social media posts. Therefore,

ways are needed to index and organise the information into an accessible form (Boyd-

Graber et al., 2017). In making online data more accessible, manual annotation mainly

involves reading and understanding documents to produce a description of each,

which is a comprehensive process that requires many resources. Therefore, automatic

methods, such as topic models, are necessary to help annotate large amounts of

data. Annotated data have various uses, including building an exploratory interface

that allows the user to directly interact with the document collection (Chaney

and Blei, 2012). The output of topic models has also been used widely in various

applications of Natural Language Processing (NLP), such as part-of-speech (POS)

(Toutanova and Johnson, 2008), sentiment analysis (or opinion mining) (Ren et al.,

2016), and summarisation (Haghighi and Vanderwende, 2009). Therefore, processing

and improving the output of a topic model is vital in enhancing exploratory tools

and in cases where annotated data produced by the topic model are used in other

1



tasks. This thesis focuses on the interpretability of the results produced by the topic

model.

The rest of this chapter is organised as follows. A brief background of the problem

of large data collection analysis and the motivation for needing automatic approaches

to the task is presented in section 1.1. In section 1.2, the scope and aim of the thesis

are stated, and the main contributions are defined in section 1.3. Section 1.4 presents

the structure of the thesis, and the author’s previously published materials are listed

in section 1.5.

1.1 Motivation

Several unsupervised methods are used to analyse unstructured data, such as those

that discover clusters and reduce dimensionality (Murphy, 2012). This thesis concerns

the management of large text data collections, where it is often useful to reduce the

dimensions and produce a lower representation of the data. Topic modelling is the

main statistical method used to analyse and summarise data collections (Blei et al.,

2003, Hofmann, 1999).

Topic modelling is based on a statistical algorithm that aims to discover patterns

in words by examining a set of documents and discovering key classes called “topics”

based on the statistics of each word. The algorithm also groups and arranges the

documents into the discovered topics. A document usually belongs to multiple topics

in different proportions. For example, Figure 1.1 shows latent topics discovered in

the sample documents by topic models. The figure also shows the occupations of

topics in the document; for example, the words shown in the document belong to

topics on accidents, transport, health, and police. These topic names (i.e., labels) are

manually created to facilitate references to the topics.

2
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M ore Pedestrians and Cyclists are Dying in 
N .Y.C. Drivers are Often to Blame.
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DocumentsTopics

Health

personal
health
aware
body
safe

healthy
monitor
protect

maintain
mental

Economics

share
holders
percent
stock
rise

company
million
sales
bank
billion

Police

police
authority
witness
report
arrest
crime
death
victim
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arrests

Accidents

accident
fee

injury
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fine

crash
parking 

automobile
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Transport
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cycling

transport
bicycle
work
ride
road
traffic
health

commute

Politics

campaign
republican

political
state
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party
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democratic

pataki
governor

Technology

company
computer
japanese
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business

technology
computers

cpu
service

use

Sports

season
team
match
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champion
tour 

football
quarterback

game

A journalist who regularly bicycled to work in 
Washington was killed when he rode headlong into the 
door of a truck as the driver opened it. I was lucky. In 
2005, I was knocked down by a car that passed me, then 
cut me off as the driver turned into a parking spot. I 
landed on one of my newly replaced knees, and was so 
concerned about it that I failed to notice a dislocated 
finger. But what scared me most was the fact that the 
driver didn't see me on the ground behind her car and 
would have backed over me if bystanders hadn't alerted 
her to the accident.

Only four drivers were arrested in 28 cyclist deaths last 
year ?  about  14 percent of those crashes, according to 
the police. Eight other  drivers received a summons for 
violations including speeding, unsafely  opening a door 
into traffic and unsafe passing.

M ore Pedestrians and Cyclists are Dying in 
N .Y.C. Drivers are Often to Blame.
By EM M A G. FITZSIM MON S      M AR. 10, 2020 

A journalist who regularly bicycled to work in 
Washington was killed when he rode headlong into the 
door of a truck as the driver opened it. I was lucky. In 
2005, I was knocked down by a car that passed me, then 
cut me off as the driver turned into a parking spot. I 
landed on one of my newly replaced knees, and was so 
concerned about it that I failed to notice a dislocated 
finger. But what scared me most was the fact that the 
driver didn't see me on the ground behind her car and 
would have backed over me if bystanders hadn't alerted 
her to the accident.

Only four drivers were arrested in 28 cyclist deaths last 
year ?  about  14 percent of those crashes, according to 
the police. Eight other  drivers received a summons for 
violations including speeding, unsafely  opening a door 
into traffic and unsafe passing.

Figure 1.1: Topic model examines a collection of documents (e.g., news articles) and
produces two outputs, topics and document classification, in the set of latent topics.
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In research on machine learning, topic modelling was developed to automatically

code the content of a collection of texts into a set of substantively meaningful topics.

During this process, human involvement is not required, so prior human annotation,

labelling, or hand-coding is not necessary to infer a model (Mohr and Bogdanov,

2013).

Classifying documents in this way is useful in many areas. For instance, the

common method used to search in general is via keywords or phrases. This approach

is useful when users know what they want to find. However, in cases where a

large collection of documents is handed to a user who has no prior knowledge of

their contents, it is useful to have a system (i.e., topic modelling) for the higher

classification of these documents into topics. Topic models have been widely used

in NLP, and they have been utilised in a range of tasks, including query expansion

(Yi and Allan, 2009), sentiment analysis (He et al., 2011), document summarisation

(Nagwani, 2015), and information retrieval (Wei and Croft, 2006). Furthermore,

topic models have been used in various fields beyond text collection organisation.

Two applications of topic models are described below:

• Medical data application Healthcare data can accumulate substantially, and

they can include diagnoses, prescribed medications, and patient demographics.

Topic models are used to discover the latent health status groups among

patients and their corresponding characteristics. The discovered latent groups

are used to develop a better clinical decision support system that provides the

following capabilities (Lu et al., 2016):

– Evaluates the likelihood of data in records, which allows the identification

of outliers and therefore improves data quality.

– Predicts diagnoses and medications based on a partial medical record.

– Identifies pairings between diagnoses and medications.

Automatic methods of data analysis provide opportunities for researchers and

practitioners to create convenient and promising analytical tools that improve
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the quality, safety, and efficiency of healthcare services (Lu et al., 2016).

• Scientific data application Expert-finding tasks, such as the peer review

process, can benefit from topic modelling. For example, conference chairs use

topic modelling to match expert reviewers to submitted papers. In such tasks,

several constraints are considered in making the final recommendation, such as

the reviewer’s expertise, conflicts of interest, the number of reviewers per paper,

and the number of papers per reviewer. Because of these aspects, the process

can be intensive and time-consuming, so finding a means of accomplishing it

automatically would relieve the burden on the conference chair. Topic models

are used to discover the latent expertise of a person. Moreover, learned latent

topics are used to match reviewers to suitable research papers (Mimno and

Mccallum, 2007).

As shown in Figure 1.1, topics are usually represented using a set of words

that are not ideal, as they tend to rely on the user’s interpretation and knowledge.

Alternative representations have been proposed, such as images or assigning topics

with textual labels, as shown in Figure 1.1. In addition, it is important to design

a useful representation of the entire document collection and its patterns. To

represent topics well, it is useful to know how the mind processes information, learns,

generalises, thinks, reasons, and makes decisions. Tufte and Schmieg (1985) stated

that graphical representations of data could be more precise and reveal more than

quantitative numbers. Moreover, representations should focus the user’s attention

on the quantitative data and not the design. To gain the maximum usage of visual

representations, the principles of graphical excellence should be followed. To consider

a representation to be graphically excellent, it should present interesting data clearly,

precisely, and efficiently to the user. In other words, as described by (Tufte and

Schmieg, 1985):

Graphical excellence is that which gives to the viewer the greatest number

of ideas in the shortest time with the least ink in the smallest space.
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Evaluating the effectiveness of a topic representation is considered a challenge.

One way to address this challenge is through the application of qualitative methods,

in which evaluating the representation involves humans by crowdsourcing the rep-

resentations and gathering ratings. Another way is to estimate the quality of the

representation according to its effectiveness in aiding the user in performing a task.

1.2 Thesis Aim and Scope

The previous section briefly introduced topic models and discussed the wide range

of their applications. In the context of using topic models to summarise document

collections and present the output to users, it is essential to address the final

representation of the topic model’s output. Therefore, the main aim of this thesis is

to improve the interpretability of automatically generated topics.

Topic interpretability is an essential area of research because of its application

in enhancing exploratory search interfaces (Aletras et al., 2014, Chaney and Blei,

2012, Smith et al., 2017) and developing interpretable machine-learning models (Paul,

2016). Topic interpretability is especially important when users interact directly

with the topics, such as in exploratory search interfaces, which differs from the case

where topics are integrated in another task (e.g., query expansion and word sense

disambiguation). To achieve the aim of this thesis, several challenges are addressed:

• Topics are probability distribution over the entire vocabulary of the document

collection; and therefore, only the top n words in the probability distribution

are selected to represent the topic. Identifying the terms that are the most

useful to appear within the top n is essential to produce interpretable topics

for the user. To demonstrate:

{even, plan, health, coverage, group, insurance, house, bill, government, reform}

In this topic, commonly used words and less informative words (e.g., even and
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group) appear before words such as health and insurance, which distracts the

user from important information and reduces interpretability of the topic.

• Another challenge is deciding the ideal cardinal number. Setting the value

of n to a small number risks missing useful words that are below this cut-

off. However, setting n as a large number affects the topics’ interpretability,

which requires longer reading time, in addition to taking up more space in

the visualisation tools. The same topic presented earlier is shown below after

informative words are brought forward. It is represented by 5, 10, and 15

words.

top 5: {health, care, coverage, clinton, proposal}

top 10: {health, care, coverage, clinton, proposal, insurance, medicare, bill,

government, reform}

top 15: {health, care, coverage, clinton, proposal, insurance, medicare, bill,

government, reform, congress, house, president, plan, bills}

In the first option of five words, the topic is compact; however, compared with

the representation with 10 words, critical words, such as medicare and reform,

are omitted. Therefore, the topic subject is not reflected properly. Ten words

per topic seems to achieve a good balance between keeping the topic compact

and delivering the required information.

• Even after improving the topics by showing informative words first, it is not

guaranteed that these words will be known by all users. Some words may

require background knowledge, which reduces the interpretability of the topics.

It has been shown that associating topics with labels reduces the cognitive

load required to interpret them (Aletras et al., 2017). Labels can be used not

only to facilitate the perception of topics but also to replace or represent topic

terms. The topic shown above can be assigned or replaced by the label {clinton

health care plan} or the label {health care plan}.

• Evaluating the improved topic representations poses a challenge, as there is no
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standard approach to follow. This thesis adopts the evaluation of each proposed

representation to accommodate the task and aim. In the first representation,

which is improved topics with informative words shown first, two evaluation

approaches are proposed: (1) automatic evaluation through an information

retrieval (IR) task; and (2) a human study evaluation approach through

crowdsourcing. In the second topic representation (i.e, textual labels), the

labels were evaluated through the combination of human rating and automatic

quality estimation.

This thesis is concerned with the outputs of topic models, and it explores ways to

improve them. In particular, this thesis aims to improve identified topics using topic

models as individual representations. Improvement in the overall representation of

the topic model is not included in the scope of this thesis, such as improving an

exploratory tool that incorporates many topics and represents documents organisation

within the topics.

The experiments conducted in this thesis perform topic modelling using Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) and are applied to English corpora.

However, the proposed representation and metrics could be extended to other topic

model implementations as well as to languages other than English.

1.3 Thesis Contributions

This section lists the contributions of this thesis by chapters:

• Chapter 3

This chapter explores various ranking metrics for the topic’s terms and

introduces a novel ranking metric that is competitive with the state of

the art. The chapter also introduces a novel approach to the task of

topic evaluation. This evaluation approach evaluates the re-ranked topics

automatically through an IR-based task.
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• Chapter 4

This chapter introduces an alternative evaluation approach to topic rep-

resentation through a human study formulated as a crowdsourcing task.

The study also explores the effects of different visual representations of

topics on human performance.

• Chapter 5

This chapter introduces a novel approach to automatically generating

labels for topics. The approach follows a Sequence-to-Sequence (Seq2Seq)

neural model architecture, and various configurations for the models are

explored.

• Chapter 6

This chapter includes an empirical study of various models in the task

of topic labelling, which were introduced in the previous chapter. It

also includes detailed descriptions of two synthetic datasets created to

train the labelling models. The chapter also introduces the novel usage

of contextual neural embeddings to evaluate the results of the proposed

models.

1.4 Thesis Overview

Each chapter is summarised as follows:

• Chapter 2: Background

This chapter provides background information about topic models in general

and the methods used to evaluate them. The chapter pays particular attention

to the visualisation of topic model outputs and includes approaches to improve

their representations. It also describes the techniques used to estimate the

interpretability of the representations. The chapter also provides background

information about neural networks.
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• Chapter 3: Re-Ranking Automatically Generated Topics

This chapter introduces ways to create alternative topic representations. The

proposed approach aims to improve the interpretability of a topic by re-ranking

its terms. The chapter also introduces an automatic approach to measuring

the quality of alternative topic representations.

• Chapter 4: Human Evaluation of Topic Interpretability

This chapter introduces an alternative approach to further evaluating the topic

representations presented in the previous chapter from a human perspective.

The approach is formulated as a crowdsourcing task, in which the effects of

interpretable topic representations on human performance are measured. The

study also examines the effects of presenting the topic to the users in different

visual forms.

• Chapter 5: A Neural Approach to Automatically Labelling Topics

This chapter presents another topic representation in which topics are assigned

labels. The labels are created through a novel approach using neural networks.

The chapter defines the labelling task and various neural labelling models.

• Chapter 6: Evaluation of Neural Approaches

Chapter 5 presents the implementation and experimental details of the label

generation models introduced in the previous chapter. This chapter describes

in detail the creation of two datasets that are used to train the models. The

testing datasets are also described in detail. The chapter discusses automatic

evaluation approaches to estimating the quality of generated labels. In addition,

a qualitative analysis is conducted to determine the coherence and relevance of

the generated labels.
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• Chapter 7: Conclusion and Future Work

The last chapter summarises this thesis and provides recommendations and

directions for future work.

1.5 Previously Published Materials

Some parts of this thesis were published in peer-reviewed conference publications:

• Areej Alokaili, Nikolaos Aletras, and Mark Stevenson. Re-ranking words to

improve interpretability of automatically generated topics. In Proceedings of

the 13th International Conference on Computational Semantics - Long Papers

(IWCS ’19), pages 43–54, Gothenburg, Sweden, 2019.

• Areej Alokaili, Nikolaos Aletras, and Mark Stevenson. Automatic generation of

topic labels. In Proceedings of the 43rd International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR ’20), pages

1965–1968, Virtual Event, China, 2020.

In addition, most of the data and codes used in this thesis were released publicly

and can be found at https://github.com/areejokaili/.
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2
BACKGROUND

Chapter 1 has briefly introduced topic models and has shown their ability to organise

and summarise large collections of unstructured data. It has also established some of

the challenges that accompany the application of topic models. Mainly, with focus

on the topic models’ interpretability and beneficial usage. Therefore, this chapter

consists of formal and detailed descriptions of the topic modelling task and details

of various approaches to perform topic modelling. It also includes the various and

diverse forms of evaluating and assessing the quality of the topic model and its

outputs. The chapter also covers the alternative representations developed for the

topics and for the model as a whole.

This chapter begins by presenting an overview of topic models in section 2.1.

The section also describes the mathematical formulation of various approaches to

topic models and present different variations that stemmed from them. Next, several

works on estimating and improving the topic model’s quality and its outputs are

presented in section 2.2. Section 2.3 shows various alternative representations for

the topics as a stand-alone element and as a part of an overall system. Section

2.4, describes recent research aimed at improving the output of topic models after
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training. Section 2.5 includes a brief description of neural networks since they are

used in later chapters. Finally, a summary of the chapter appears in section 2.6.

2.1 Data Exploration

Learning the semantics (meanings) of large collections of documents is a sophisticated

problem that has been widely investigated (Yang, 2012). Many data collections

are highly structured, but others are unstructured (or semi-structured), such as

data consisting of text. For example, a tremendous amount of data are created and

circulated on microblog sites like Twitter. Extracting information from microblogs

has become useful for discovering public opinion on different issues such as analysing

messages (i.e., tweets) over a timespan to give insight into what happened during

that time since people tend to tweet about matters in their life. Twitter has many

tweets and an enormous amount of tweets posted every second, making manual

inspection of such data an impossible task (Steinskog et al., 2017).

Topic models are a group of data mining techniques that explores a large collection

of data and can identify groups of co-occurring words that summarises the data

collection automatically. This section presents topic model techniques using the

following notation and terminology (Blei et al., 2003):

• w as a word, which is represented as a distinct token since topic models use

bag-of-words notation.

• w as a document, a sequence of N words w = w1, w2, ..., wN .

• D as a corpus, a collection of documents D = w1,w2, ...,wM .

In addition to the above terminologies and notations, additional terminologies

are defined that are commonly used in topic models and therefore will be used in

this thesis. It is important to explicitly define them as they can have other meanings

in different domains.

• Topic In a topic model, a topic refers specifically to a subject derived from a
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document collection. It usually consists of a group of words that are related

semantically and that represent a common subject.

• Terms or words These are often used interchangeably in topic models.

• Topic representation The approach used to represent the topic to the user

in a human-readable form. The topics as a raw output of the topic model are

a low dimensional representation and therefore not easily understood by users.

2.1.1 Classic Topic Models

Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) (Deerwester et al., 1990) was proposed to overcome

the problems (or shortcomings) of document retrieval using queries that perform

exact matches of words. LSA is a semantic approach that maps documents from

high dimensionality count vectors to a lower dimensional space called latent semantic

space using Singular Value Decomposition (SVD) which reflects the major associative

patterns in the data. LSA output provides information beyond the lexical level as it

provides semantic relation between documents vectors and words vectors. LSA takes

a large matrix of document-word associations where rows correspond to documents

and columns correspond to words, then LSA produces “semantic” space that places

terms and documents close to each other if they are related (i.e., if they belong to the

same concept). These new positions in the semantic space provide a new index for

the information retrieval process. For example, query terms are located in this space

and their concepts are identified, then documents that are nearby in the semantic

space (i.e., share the same concepts with the terms) are returned as a result of the

query.

The data collection D is represented as a sparse documents/words co-occurrence

matrix A. A of size M × V . The SVD theorem states that matrix A can be
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Figure 2.1: In LSA, the document-word co-occurrence matrix is decomposed into
three matrices using SVD. Figure adapted from (Steyvers and Griffiths, 2007).

decomposed into three matrices as follows:

A = U · S · V T , (2.1)

where U columns are the eigenvectors of AȦT , and S is a matrix with non-zero

entries only on the diagonal and these values are the square root of the eigenvalues of

AȦT called singular values. Singular values in S encode the strength of the concepts

and are sorted in a descending order which is useful for dimensionality reduction.

The original matrix A can be formed again by multiplying the three matrices U , S,

and V T . Figure 2.1 shows the decomposition of matrix A into three matrices U , S,

and V T using SVD.

Dimensionality reduction can be performed to represent the document collection

with fewer number of concepts by keeping the K singular values with the largest

scores. In another words, LSA approximates A by truncating K entries from the

decomposition matrix S giving A′. The approximation aims to minimize ||A−A′||F ,

where ||...|| is the Frobenius-norm defined as ||D|| := sqrt(
∑

ij D
2
ij). Therefore, A′

with the K largest singular values is given by:

A′ = UK · SK · V T
K , (2.2)

where Uk is a matrix of size M × K with rows as document vectors, SK is a

diagonal matrix of the eigenvalues of A, and V T
K is a matrix of size K × V where
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each columns represent a word vector. LSA produces this new representation for

documents where each document in UK is represented as a linear combination of the

concepts (i.e., topics). Concepts vectors CK are the product of the word vectors V T
K

and the diagonal matrix SK as follows:

CK = V T
K · SK (2.3)

The new low-dimension vector representation of concepts can be used to identify

similar documents, such that documents with similar concepts tend to be close in

the latent semantic space. Also, similar documents are identified even when they do

not share terms with each other as long they share terms with another documents.

Although LSA has been shown to identify word synonyms, it has been less

successful in identifying polysemy and yields concepts that are either incoherent or

hard to interpret (Landauer and Dumais, 1997).

2.1.2 Probabilistic Topic Modelling

Probabilistic topic models discover the hidden semantic structure of a document

collection based on a hierarchical Bayesian analysis of the original unstructured texts.

They uncover patterns between words and documents to identify the latent structure

of the text collection (Blei and Lafferty, 2009a).

Before describing the process of analysing the document collection using a prob-

abilistic topic model, there are additional notations that are used in this section.

Table 2.1 shows the notations and their description.

For example, from Figure 2.2 consider the two documents (w1 and w2) from a

collection of documents D with V possible vocabulary words. Passing the documents

to a topic model will result in the generation of two distributions: document-topic (θ)

and topic-word (φ) distributions. From the first distribution (θ), we can identify

that the first document (w1) has around 18% probability under topic 4 and from
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Table 2.1: Topic model notations used in section 2.1.2.

Notation Description
θ the multinomial distribution of documents over topics, therefore θm is

the distribution of topics for the m-th document.
φ the multinomial distribution of topics over words, therefore φt is the

distribution over the words in the vocabulary V for topic t.
α the Dirichlet prior for topics concentration in documents.
β the Dirichlet prior for words concentration in topics.
z the topic assignments for words in a document w, therefore zw,n is the

topic assignment for the n-th word in document w.

CARSON, Calif, April 3 - Nissan 
Motor Corp said it is raising the 
suggested retail price of its cars 
and trucks sold in the United 
States by 1.9 pct or an average 
212 dollars per vehicle, effective 
April 6

DETROIT, April 3 - saled of U.S. 
built new cars surged during the 
last 10 days of March to the 
second highest levels of 1987. 
Sales of imports, meanwhile, fell 
for the first time in years, 
succumbing to price hikes by 
foreign carmakers
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Topic Model
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Figure 2.2: Example inputs to a topic model and the generated outputs.

the second distribution (φ) we can identify the highest probability terms under

topic 4. So, given the two documents without any additional annotation we can get

an automatic summary of the document collection including the topics discussed

in the document collection (left output in Figure 1.1 from Chapter 1) and topic

proportion in each document (right output in Figure 1.1 from Chapter 1). Figure 2.3

shows the matrix decomposition of the probabilistic topic model.
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Figure 2.3: Topic model transforms the document-word co-occurrence matrix into
two matrices θ and φ. Figure adapted from (Steyvers and Griffiths, 2007).

The next two sections describe the common techniques for probabilistic topic

models, namely Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirich-

let Allocation (LDA).

Probabilistic Latent Semantic Analysis (PLSA)

PLSA (Hofmann, 1999) is a probabilistic approach for analysing a document collection

that was derived from LSA. LSA performs linear transformation by aligning the

documents with the co-occurrence table. Then, SVD is performed to transform

documents from high-dimensional count vectors to a low dimensionality vectors.

LSA has been used in different problems and shown to be a useful data analysis

tool (Landauer, 2002). On the other hand, LSA is not a generative approach and

the alignment has to be recomputed every time additional documents are added

to the collection. It also optimises ad hoc variable and has difficulty in identifying

polysemous words (Hofmann, 2001).

In contrast, PLSA is a statistical technique based on a mixture decomposition

derived from the aspect model (Hofmann, 1999). It transforms documents to a lower

vector representations and assumes that each document is a mixture of multiple

topics. The main idea is to find a probabilistic model with the hidden topics that

can generate the original observed document collection. Each document is created by

first picking a topic from the set of topics then generating document words based on

the topic’s multinomial probability distribution. Therefore, the result from PLSA is
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Figure 2.4: PLSA graphical model

that every document is represented as mixture of topics. The plate notation1 shown

in Figure 2.4, provides a quick overview of the variable association in PLSA, in which

the topic latent variable z is associated with the observed variable w. The generative

process of PLSA can be defined in the following way:

1. Select a document w with probability p(w):

(a) For each word wn, n ∈ N in the document w:

Select a topic zn with probability p(zn|w),

Generate a word with a probability p(wn|zn).

Similarly, the generation process in a joint probability model of a document w

and a word w is as follow:

P (w, w) = P (w)P (w | w)

= P (w)
∑
z

P (w | z)P (z | w)

=
∑
z

P (w)P (w | z)P (z | w)

=
∑
z

P (w, z)P (w | z)

=
∑
z

P (w | z)P (z)P (w | z).

(2.4)

The unknown parameters to be estimated are the document distribution over topic

P (z | w) and the probability distribution of topics over words P (w | z). Parameters

1In a plate notation, nodes represent random variables, shaded nodes represent observed variables,
directed lines show possible probabilistic dependence, rectangles show repetition, and the letter in
the bottom right of the rectangle shows the repetition frequency.
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estimation are usually performed using Expectation-Maximization (EM)(Dempster

et al., 1977). EM performs estimation of parameters in two steps: the expectation

step (i.e., E-step) and maximization step (i.e., M-stop). At first, EM initializes all

unknown parameters randomly, then it performs the E-step, which computes the

expected likelihood of the complete document collection given the current parameters

and the observed documents. Then, the M-step is performed where the model

re-estimates all the parameters by maximizing the likelihood of the collection. These

steps continue to alternate until the optimization function (i.e., likelihood) converges.

Two constraints are maintained through the estimation of the latent variables.

First, the sum of all words in one topic distribution should be 1, such that

∀i ∈ [1, K],
V∑
j=1

P (wj|zi) = 1. (2.5)

Second, all topics mixtures for one document w should sum to 1:

∀d ∈ [1,M ],
K∑
i=1

P (zi|wd) = 1. (2.6)

There are a few shortcomings of PLSA. PLSA models the document as a mixture

of the topics, however, the model only learns the topic mixtures for the documents

in the training set. Therefore, PLSA has the limitation of not being a generative

model for new documents because it learns the possible topic proportions from the

data it was trained on (Hofmann, 1999). Also, the number of parameters for the

model grows linearly with the number of training documents. Linear overgrowing

suggests the possibility of overfitting. Although, overfitting has been avoided by

the generalisation of a maximum likelihood model fitting by Tempered Expectation

Maximization (TEM)(Hofmann, 2001).
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Latent Dirichlet Allocation (LDA)

LDA (Blei et al., 2003) is a generative extension of PLSA that has been developed

to address both of its shortcoming, namely its none generative capabilities and

overfitting.

The graphical model representation for LDA in a plate representation is shown

in Figure 2.5. The representations shows that LDA has three levels. First, the latent

prior α and β are corpus-based parameters and are sampled once in the process of

generating a corpus. The variable φ is a topic-level variable and it is sampled K

times, while the variable θ is a document-level variable and it is sampled once per

document. The variables z and w are word-level variables that are sampled once per

word per document.

Given the number of topics, the distribution over words φ, and distribution over

topics θ2, the LDA’s generative process is as follows:

1. For each topic tk, k ∈ K:

(a) Choose a distribution over words φ ∼ Dir(β),

2. For each document wm, m ∈M :

(a) Choose θ ∼ Dir(α),

(b) For each word wn, n ∈ N :

a. Choose a topic zn ∼ Multinomial(θ),

b. Choose a word wn from p(wn|zn, β).

2for now, lets assume that φ and θ are available, more on inferring these distributions shown
shortly.
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Similar to the above generative process, the model’s joint probability of the whole

corpus D is as follows:

P (w, z, θ, φ | α, β) =
M∏
d=1

P (θd | α)
K∏
k=1

P (φk | β)
N∏

n=1

P (zdn | θd)P (wdn | φzdn)

(2.7)

The distributions φ, θ, and z in the above equation are the variables that need

to be estimated. Inferring the exact distributions is computationally challenging.

There are various algorithms to approximate the inference of these distributions:

expectation-maximisation (EM) (Hofmann, 1999); message passing (Zeng et al., 2013);

variational inference (Blei et al., 2003); Online Variational Bayes (VB) (Hoffman

et al., 2010); and Gibbs sampling (Griffiths and Steyvers, 2004). VB is the algorithm

used to generate the topics in Chapter 3. VB is based on an online stochastic

optimization approach that does not require a full pass over the entire corpus, and

therefore can be applied to a large dataset. It can also accommodate cases where

new data streams arrive constantly. VB has been demonstrated to find good topics

comparable to those found by variational inference in less time (Hoffman et al., 2010).

There are a number of implementations of topic models such as Gensim3 which

uses online VB, Stanford topic modelling toolbox (TMT) (Ramage et al., 2009) which

uses Gibbs sampling and MALLET 4 that also uses Gibbs sampling in addition to

some open source implementations for topic modelling by David Blei’s lab5.

2.1.3 Variations of Topic Models

Going forward, this thesis will focus on LDA as the topic model of choice. LDA is

the most popular topic modelling framework and has been used in diverse domains

beyond text, such as music analysis (Hu and Saul, 2009), health record analysis (Lu

3http://radimrehurek.com/gensim/
4http://mallet.cs.umass.edu/
5https://github.com/Blei-Lab
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et al., 2016), and image annotation (Liénou et al., 2010). Different variations to LDA

have been proposed to overcome some of its drawbacks, to address specific tasks or

to use labelled data.

Address a Drawback One of the limitations of LDA is that it lacks representa-

tion for correlation between documents. For example, a document that belongs to a

“sports” topic is more likely to be similar to documents in “health” compared to docu-

ments in “business” topic. Correlated Topic Models (CTM) (Blei and Lafferty, 2006)

form a topic relation graph via a covariance matrix of logistic normal distribution

rather than Dirichlet to model the topic’s correlations, in another word to identify

correlation between documents that are related to similar topics. Similarly, the

Pachinko Allocation Model (PAM) (Li and Mccallum, 2006) captures the correlation

between topics and it models multiple topics correlations unlike CTM which only

models pairwise correlations in the topics.

Topic models methods depend upon the presumption that meanings are relational

(Saussure, 1959) which means topics are a constellation of words that tends to appear

together whenever the content is about those topics. Each document is treated as

a bag of words, and topic models capture co-occurrences regardless of these words’

syntax, narrative or location. These assumptions make sense from the point of view

of computational efficiency, but word order is essential in regards to meaning. For

example, the word “bank” can refer to a financial institution or a blood repository in

hospitals. Each of these meanings of the bank is called its word sense. Certainly,

word location aids in the process of inferring to which topic or topics a word refers

(Jurafsky and Martin, 2014, Wallach, 2006). Bigram Topic Model (BTM) (Wallach,

2006) is an extension to LDA with N-gram language representation instead of bag of

words. Consequently, BTM only generates bi-gram words.

Griffiths et al. (2007) proposed an LDA Colocation Model (LDACOL), which

extends the bi-gram model and can generate both uni-gram and bi-gram words.

However, only the first term in a bi-gram word has a topic assignment but not the
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second term. This limitation of LDACOL was resolved in the Topical N-gram Model

(TNG) (Wang et al., 2007). Jameel and Lam (2013) proposed an Unsupervised

Topic Segmentation (NTSeg) model that preserves the words’ order and document

structure. Hence, it generates n-gram words and multi-level topics, specifically,

document segment topics and word topics. We have presented a number of studies

where the word’s location is integrated into topic models and has been shown to

be useful. However, it often produces a complicated model that needs intensive,

time-consuming computations (Yandex and Loukachevitch, 2015). Several attempts

have been proposed to speed up the computations (Porteous et al., 2008, Zhu et al.,

2013a,b).

Finally, the quality of the model depends on the hyper-parameter settings, namely

vocabulary size (V ), the number of topics (K), and Dirichlet parameters (β and

α). β and α control the sparsity of the topic distributions. β represents topic-word

proportion, and therefore high β value results in topics that consist of most of

the words in the vocabulary and the other way around with smaller β value. The

same goes for α a higher value generates documents that are composed of more

topics than those generated with lower α value. The number of topics can affect the

topic’s interpretability. The choice of inferring a small numbers of topics usually

results in very generic and broad topics whereas a large number of topics will result

in topics that are uninterpretable and in which the models combine uncommon

words (Sbalchiero and Eder, 2020, Stevens et al., 2012, Steyvers and Griffiths, 2007).

Choosing the right values for topic model parameters influences the performance of

LDA models. In some cases, it is difficult to know the data structure (e.g., when

processing image data). Therefore, non-parametric Bayesian statistics have been

used to define the models and automatically find the appropriate number of topics

(Griffiths et al., 2005, Teh et al., 2006, Zhang et al., 2013).

Address a Specific Task A number of topic models have been developed

to address various tasks other than data exploration, including social network
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analysis (SNA) (Cha and Cho, 2012) where follow relationships between users are

used to identify groups based in the user interests. Author-Recipient-Topic (ART)

(Mccallum et al., 2005) a model that discovers the discussed topics in email messages

conditioned on the sender-recipient relationships. People’s roles are also identified

by measuring the similarity between their distributions. Classification tasks have

also been attempted using topic models. For example, a classification model that

distinguished between phishing and legitimate emails has been trained on semantic

features learned using topic models (Bergholz et al., 2008).

Use Labelled Data All the presented topic models so far are unsupervised

probabilistic topic models that do not require any manually annotated datasets.

They come with some drawbacks in certain applications such as not considering the

class label of the document during inference in text classification. Also, a lot of

datasets come paired with response variables such as text documents paired with

a category, user reviews paired with rating number and web pages paired with the

number of diggs6. Supervised topic models are topic models of documents and

responses, conditioned to find topics predictive of the response. Supervision of topic

models can be done in two approaches, namely, downstream supervised topic model

(DSTM) and upstream supervised topic model (USTM) (Zhang et al., 2013) .

Supervised Latent Dirichlet Allocation (sLDA) was the first attempt to supervise

topic models (Mcauliffe and Blei, 2008). The motivation behind sLDA is to solve

prediction problems such as predicting a movie rating from reviews or predicting an

essay’s grade. A downstream supervised topic model is trained by maximising the

joint likelihood of the content data and the responses (Zhu et al., 2012). The model

is built upon a corpus of documents paired with responses from which the latent

topics predictive of the responses are inferred. When a new unlabelled document is

given, the response would be predicted based on the document’s latent topic. SLDA

predictive ability outperformed regression and unsupervised LDA. Another supervised

6diggs indicates the popularity of a web page and consequently the web page gets featured in
the front page of the news aggregation platform Digg.com
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topic model for classification is a discriminative variation on LDA called DiscLDA.

DiscLDA is trained by maximising the conditional likelihood of the responses given

the contents (Lacoste-Julien et al., 2008).

Apart from employing two-stage heuristics such as DSTM and USTM, Zhu

et al. (2012) proposed maximum entropy discrimination latent Dirichlet allocation

(MedLDA) which integrates the approach behind maximum margin prediction model

(e.g., SVMs) with LDA. MedLDA adopts the discriminative max-margin principle into

the framework of supervised topic models to enhance the performance of classification

and to make more efficient use of the side information (i.e., ratings, labels associated

with documents, or images). MedLDA reported achieving state of the art performance

in latent topic discovery and prediction.

Jameel et al. (2015) presented a supervised topic model that was built upon their

previous unsupervised model (Jameel and Lam, 2013). The model preserves word

order and includes useful side-information such as class labels for text documents.

Another variation is for data that contains connected observations. For example,

a follow-graph connecting social networks accounts and hyperlinked networks of web

pages. Research has focused more on finding patterns and communities in this kind

of data. Relational topic models (Chang and Blei, 2009) are supervised topic models

that can build a model of hidden content and structure in standard and network

datasets. Supervised topic models have been successfully applied to different domains

such as image classification (Wang et al., 2009, Zhang et al., 2013). Based on sLDA,

multi-class supervised latent Dirichlet allocation (mcLDA) (Wang et al., 2009) was

proposed as a multiclass extension to sLDA that discovers the patterns in images

and predicts their class and annotations.
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2.2 Evaluation of Topic Models

In supervised tasks such as classification and regression, the predicted labels are

compared to expected labels to evaluate the quality of the classifier. Whereas in

unsupervised tasks such as topic modelling, evaluation can be challenging since we do

not have in advance the anticipated topics and there are multiple possible candidate

topics. In topic models there is a trade off between a model that represents that

data and models that generate interpretable topics. Therefore, evaluation should be

based on the intended usage of the model. For example, developing a model that

extracts topical features from the data will have a different objective to a model that

summarises a data collection in order to present the results to an end user. Therefore,

there are no explicit quantitative methods that fit all intended applications of topic

models. The evaluation directions are categorised into (1) measuring model fit, (2)

measuring topics quality.

2.2.1 Measure Model Fit

Held-out Likelihood (Intrinsic Metric) Topic models are unsupervised methods

that process a large volume of unstructured data (i.e., data without prior annotations)

and generate a lower dimension representation of observed data. Therefore, one can

measure how well the learned model represents that data through measuring the

predictive likelihood of held-out documents (i.e., perplexity). Perplexity is usually

used in language modelling, and it estimates the probability of words in held-out

documents that are not used in training (Wallach et al., 2009). Perplexity is computed

as the exponent of likelihood of unseen data (Dtest = w1,w2, . . . ,wM) as follows:

L(Dtest) =
M∑
d=1

log p (wd | φ, α) ,

Perplexity(Dtest) = exp

(
− L(Dtest)∑M

d=1Nd

)
,

(2.8)
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where Nd is the number of words in document wd. Perplexity is a decreasing

function of L and the lower the perplexity the better. A number of previous work

have used perplexity as the evaluation metric of choice, including (Blei and Lafferty,

2006, Dieng et al., 2020).

Secondary Task (Extrinsic Metric) Model fit was also measured by using

the topic model’s outputs within secondary tasks, such as document classification

(Lu et al., 2011, Xie and Xing, 2013), sentiment summarisation (Titov and Mc-

donald, 2008), and information retrieval (Wei and Croft, 2006). However, these

evaluation tasks formulate the metric based on predicting the documents’ ground

truth (e.g., classes in document classification) which is subjective. Therefore, the

next section presents evaluation methods for assessing the quality of the topics and

their interpretability.

2.2.2 Measure Topic Quality

Previous evaluation methods are useful for evaluating the predictive model but they

do not capture the interpretability of the topics for the user. It has been shown that

topic models with low perplexity (e.g., CTM) may infer less meaningful topics for

the users than other models with high perplexity (Chang et al., 2009). Therefore,

other approaches were introduced to capture the model’s topics quality.

Topic Coherence

A topic is considered coherent when its terms have high semantic similarity and

together indicate a sole subject. Consider the topic {student, college, summer,

program, degree, training, medical, career, students, dean}. All terms are from the

same subject and one can easily infer that they are related to graduate education.

On the contrary, the topic {theatre, dates, user, show, profit, firm, digital, friend,

choice, ticket} consists of terms from different domains and it is hard to interpret,

therefore less useful to the user. An additional selection of coherent and incoherent
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topics is shown in Figure 2.6, where the terms in the coherent topics together refer to

a subject. Where the topics labelled as incoherent, there is less association between

the terms and therefore would be considered less useful in indicating the topic’s

subject.

Figure 2.6: A selection of coherent and incoherent topics (Newman et al., 2010).

Automatic Coherence Metrics The first attempt to automate the evaluation

of topic coherence was to identify topics as insignificant if their probability distribution

is distributed equally over all words (AlSumait et al., 2009). Newman et al. (2010)

presented another method that captures the model’s coherence by looking at the

top 10 words in the topic and measure their relatedness using pointwise mutual

information (PMI). Mimno et al. (2011) replaced PMI with log conditional probability

to compute topic coherence. Concepts from hierarchical ontologies, such as WordNet,

were used to capture the conceptual relevance of a topic (Musat et al., 2011). However,

WordNet has been shown not to be useful in evaluating the topic’s coherence (Newman

et al., 2010). Aletras and Stevenson (2013b) proposed computing topic coherence

by constructing a distributional semantic space which locates semantically similar

words near each other. Wikipedia articles were used as reference data to extract

features and compute word frequencies. Coherence was computed as the pair-wise

cosine similarity between the topic’s terms vectors.
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Usually, the topic model is trained with optimisation on perplexity, and the

calculation of topic coherence is performed after training the topic model. However,

optimising the training of the topic model on perplexity has been shown to produce

sub-optimal topics (Chang et al., 2009). Therefore, several recent works have proposed

incorporating coherence in the topic model training and optimising coherence rather

than perplexity (Ding et al., 2018, Gui et al., 2019). Ding et al. (2018) proposed

word embedding based topic coherence (WETC), this coherence metric leverages

pre-trained word embeddings to compute coherence since word embedding carry

semantic information about words that is similar to PMI. WETC approach is highly

efficient since it does not involve extracting words’ co-occurrence frequency from a

large corpus and therefore applicable to be incorporated in training the topic model.

Human-in-the-loop Involving users in formal settings for evaluation is another

way to measure the coherence of the topic from the point view of the user. Chang

et al. (2009) proposed two tasks: (1) word intrusion and (2) topic intrusion. In a

word intrusion task, users are shown topics as a list of words where an intruder word

is added to the topic and the topic is considered coherent if users are able to find

the intruder word successfully. On the other hand, topic intrusion follows the same

idea of planting an intruder element to a set of elements but in this case it is a topic

rather than a word. For each document, a number of related topics are shown to

the user with an intruder topic and users are asked to identify the out of context

topic. Figure 2.7 shows the word intrusion task (left) and topic intrusion task (right).

Word intrusion measures the coherence of the topic’s words while topic intrusion

measures how well the documents are decomposed as a mixture of topics.

Even though involving humans in the judgement process is effective, it can be

time consuming and expensive. Therefore, an attempt to automate word intrusion

tasks was proposed by Lau et al. (2014). Their automated approach evaluated

interpretability at a near human level of accuracy. Later, Lau and Baldwin (2016)

suggested that topic coherence should be computed on several cardinality (e.g., using
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Figure 2.7: Word intrusion and task intrusion tasks to evaluate topic model quality
by adding an intrusion word or topic and then asking the user to find the word/topic
that does not belong with the others (Chang et al., 2009)

topics with top 10, top 20, . . . , top n words) settings and then aggregated over them.

Most of the work to evaluate topic models tends to focus on topic coherence and

does not assess the topic’s effectiveness in describing documents (i.e., document-level

evaluation). Bhatia et al. (2017) disagree with accepting that topic-level evaluation

as a reliable metric for the model’s quality and proposed an analysis of the allocation

of topics to documents to predict the quality of the model. They have shown that

there is a discrepancy between topic-level (i.e., topic coherence) and document-level

evaluations. Also, they presented the first automated approach to topic intrusion

task, which is more suited for large-scale model evaluation than manual evaluation.

They rank the topics for a document based on their likelihood of being an intruder

topic using support vector regression (SVR)(Joachims, 2006) and the top topic is the
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system’s predicted intruder. This approach has shown a high correlation with manual

evaluation. Later on, they also proposed an improved approach to the automatic

intruder topic identification through ranking the topics for a given document using

neural networks (Bhatia et al., 2018).

Topic Stability

Another study looked into measuring the quality of topics based on the volatility of

change in the topic distribution throughout the training. Variability of the topic’s

word distribution during training can indicate the topic consistency and therefore

quality. Xing and Paul (2018) proposed topic stability, a metric that measures the

degree to which a topic’s parameters change during training, and it showed higher

correlation with human judgements than coherence metrics.

2.3 Visualisation of Topic Models

Probabilistic topic models provide ways to index, summarise and analyse large

unlabelled documents by their hidden themes (topics). However, presenting the user

with the raw output of the topic model does not promote the user’s understanding

of the document collection. Visual representations of topics are a common way to

show the results of the topic model, which aids in the understanding of the data.

The visualisation includes representing the individual topics themselves (i.e., the top

n terms) and representing the whole model (i.e., the topics and documents).

2.3.1 Visualisation of a Topic

The most common topic visual representation is a simple list of the top n words of

the topic, ranked based on their probability (Figure 2.8). Different variations of the

list have been proposed: they can be represented vertically (Chaney and Blei, 2012,

Eisenstein et al., 2012) or horizontally (Gardner et al., 2010, Smith et al., 2015) or
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Figure 2.8: Common visual representations of topics.

using a set notation (Chaney and Blei, 2012) (Figure 2.8.f). The weighting assigned

to each term can be included in the representation through sizing the term according

to its probability for the topic (Nguyen et al., 2013)(Figure 2.8.b). Moreover, weight

has also been represented by a bar graph next to a word instead of resizing the

word (Figure 2.8.c). Using a list with the bar delivers two key pieces of information,

representing the words’ ordering according to probability and the weight associated

with the words for a specific topic (Smith et al., 2015, 2017).

Information-dense representations have also been used to represent the topics,

such as word cloud (Figure 2.8.e) and network graph (Figure 2.8.d). Word cloud (or

tag cloud) is a graphical representation of text that is usually used to summarise

keywords in text. Keywords are usually uni-grams and the importance or probability

of each keyword is shown in the form of colour or size. There are many variations in
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the layout of word clouds 7. Words can be placed randomly but sized based on their

probability (Rampage et al., 2010), the rank order of the word (Barth et al., 2014),

or based on a combination of both (Smith et al., 2017).

A network graph represents each topic as a collection of circular nodes where

each node represent a word. Links between words indicate high relevance based

on document-level co-occurrences (Smith et al., 2014b). Another variation to this

network graph is the one presented by Smith et al. (2017) where words are linked

and located close to each other, if they appear frequently together in the document

collection. The probability of the word is represented by the circle size around the

word. The network graph is created using a force-directed graph layout algorithm

that locates words closer to each other based on their co-occurrence (Fruchterman

and Reingold, 1991).

Word cloud has visual appeal, however it is difficult to make comparisons between

word clouds and they can be overwhelming and confusing. Word storms (Castella

and Sutton, 2014) were proposed to address these drawbacks. Word storms is

an approach to coordinating word clouds such that the same word appears in

approximately the same position and colour across multiple word clouds, which

should facilitate comparisons and hence increase the interpretability of topics in the

document collection. Figure 2.9 shows an example of independent word clouds (top

two) and coordinated word clouds (word storms)(bottom two).

So far, this section has surveyed various visual representations that have been

shown to be useful in aiding the interpretation of topics by users. However, choosing a

suitable representation (or set of representations) depends strongly on the application

and its potential users.

7https://github.com/amueller/word_cloud
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Figure 2.9: The top two word clouds are created independently from each other,
while the bottom two are word storms that are coordinated and show the same terms
in similar locations and colours (Castella and Sutton, 2014).

2.3.2 Visualisation of Documents Collection

All the representations shown so far in section 2.3.1 are concerned with finding effective

and informative representations for the topic without taking into consideration the

representation of the whole document collection. This section presents systems and

tools to model, summarise, and visualise the entire corpus in a user-friendly interface.

Some tools take it further and allow users to interact with the modelled data.

A number of exploratory systems for topic models have been developed where users

can browse through documents, topics and terms (Chaney and Blei, 2012, Gardner

et al., 2010, Snyder et al., 2013). These systems usually use simple visualisation

to represent topics such as listing their top n words. Figure 2.10 shows a topic

model visualisation engine of Wikipedia articles where the topics are shown in a set

notation of the top 3 terms. Clicking on a topic shows its top 10 terms, documents,

and related topics.

Another visualising system compactly represents topic models to allow users to
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{school, student, university}

Figure 2.10: Chaney layout (Chaney and Blei, 2012).

easily understand the topics without the need to visualise documents too. Termite

(Chuang et al., 2012) is a compact tool that visualises the topics and terms in a matrix

layout, as shown in Figure 2.11. The tool uses a saliency metric to quantify how much

information each term conveys about a topic. Saliency is computed as the product

of the term’s probability under the topic and the term’s distinctiveness. Terms that

occur under all topics are less informative, thus more highly discriminative terms are

preferred. the same authors have also proposed seriation, an algorithm that identifies

clustering patterns amongst terms and therefore, allows for comparison between

topics. Terms are ordered either alphabetically, by frequency, or using seriation. Even
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Figure 2.11: Termite layout (Chuang et al., 2012).

though Termite provides a compact representation and helps the user glance into the

data, it only shows the top-ranked terms and does not show all the terms, making it

useful for a global view of the whole topic model and not for a deep exploration.

Similarly, Sievert and Shirley (2014) proposed a web-based visualisation tool

called LDAvis that provides a broad overview of the topics in the data. In addition

to that, the tool also provides a way to show how the topics differ from each other

while allowing the user to view the terms of which each topic is composed. They

have also proposed a novel method for measuring the relevance of the term to a topic

and it can be interactively adjusted which helps in inspecting the model. LDAvis is

shown in Figure 2.12.

Smith et al. (2014b) have also proposed an interactive visualisation, Hiérarchie.

The visualisation consists of a hierarchical representation of the data collection in

the form of rings in a sunburst chart.

Engaging the user with the visualisation system makes it more useful as each

user can customise and seek different information as needed. TopicViz (Eisenstein

et al., 2012) is an interactive exploratory system that organises and summarises a

large collection of research papers. The system supports traditional keyword search

where the user query a word and related documents are returned (the left panel of
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Figure 2.12: LDAvis tool layout Sievert and Shirley (2014)

Figure 2.13: TopicViz exploratory tool interface (Eisenstein et al., 2012).

the system interface in Figure 2.13). The system also provides another visualisation

for these returned documents where they are represented with their related topics in

a directed graph. In the graph, each document is represented as a square; topics as

circles and citations as edges (edges not shown in the figure).

Other studies aim to address the limitation of representing the relationship

between topics. Blei and Lafferty (2007) proposed CTM (presented in section

2.1.3) an exploratory tool for a large collection of documents. CTM discovers the

correlation between topics in the corpus by using a more flexible topic distribution,

and it visualises the whole set of topics in the data in a graph form. In addition,

the popularity of the topic is represented by the font size of its terms. Topics are
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Figure 2.14: Topic model visualisation tool with interactive capabilities (Cai et al.,
2018)

shown as nodes with the top 5 most probable terms and the correlation between

topics is shown by the links between the topics nodes. Smith et al. (2014a) proposed

a way to lower the cost of incorporating relationship information into the model, and

proposed visualising relationships between topics and terms in an efficient manner.

They choose a network graph representation for the individual topic (Figure 2.8.d).

Topics that are more connected to each other are located at the center of the

visualisation, whereas the least connected topics are located at the borders. The

tool also supports interaction with the user where they can add/remove topic words,

link words within a topic, and separate words between different topics. Another

interactive tool that represents topic in the semantic space and which facilitates users’

understanding of the relationships between topics is suggested by Cai et al. (2018).

From Figure 2.14, the tool provides two functions: the upper panel shows how well
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the topics are clustered according to the topic model space and the lower panel

shows a visualisation of the terms within a topic that allows for topic manipulation

including the addition/removing of terms and the merging/splitting of topics.

2.3.3 Evaluation of Topic Visualisation

Evaluating the effectiveness of a visualisation tool is a challenging task. Usually,

the visualisation’s usefulness is measured by conducting a user study, where the

users’ success in performing a task indicates that visualisation’s benefit. Castella

and Sutton (2014) evaluated the usefulness of word storms (shown in Figure 2.9) by

asking the users to perform a simple task. Users were presented with six word clouds,

either generated independently or in coordinated storms, and were asked to check

the presence of a specific word or to identify the most similar/different word clouds.

The user study affirmed the usefulness of word storms over independent word clouds.

A more sophisticated task such as information retrieval has been used to evaluate

visualisations. Aletras et al. (2017) asked users to find documents presenting topics

in one of the following representations: top n words, textual phrases and images. The

effectiveness of topic representations was measured based on the number of retrieved

documents and the relevance of the retrieved documents. They found that the top n

words deliver more accurate information about a topic, enabling the retrieval of more

relevant documents. Smith et al. (2017) asked the users to give labels to topics using

four different topic visual representations. Then, to evaluate the representations,

another set of users were asked to rate those manually generated labels and how well

they described the documents.

2.4 Post-Processing of Topics

Improving the interpretability of topic models is an important area of research. A

range of approaches have been developed including computing topic coherence (Ale-
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tras and Stevenson, 2013b, Lau et al., 2014, Mimno et al., 2011, Newman et al.,

2010), determining optimal topic cardinality (Lau and Baldwin, 2016), and corpus

pre-processing (Schofield et al., 2017).

Moreover, post-processing the topics after generation is a simple approach to

improve their interpretability. Post-processing has been incorporated in interactive

tools where the user can remove/add terms in a topic (Nguyen et al., 2013, Smith

et al., 2014b), split/merge topics (Cai et al., 2018), define topic labels (Nguyen et al.,

2013, Smith et al., 2014a), change word order (Cai et al., 2018), and adjust terms’

probabilities (Cai et al., 2018). Such tools are shown in more details in section 2.3.2.

However, improving the topics before presenting them to the user is essential and

does not rely on the users’ expected alterations. Automatic improvements to the

topics include: removing stopwords (Schofield et al., 2017), assigning labels to topics

that summarise the topic’s subject, re-ranking topic terms to surface informative

and distinctive terms as part of the topic’s top n terms.

The following sections present work conducted to improve topics post inference

through re-ranking (section 2.4.1) and labelling (section 2.4.2).

2.4.1 Topic Terms Re-Ranking

Topics are multinomial distributions over a predefined vocabulary of words. The

standard approach to representing topics has been to show the top n words with the

highest probability, e.g., (Blei and Lafferty, 2009a,b). However, these words may

not be the most informative words facilitating the topic’s subject. It is anticipated

that some words relevant to a particular topic have not been assigned with a high

probability due to data sparseness or low frequency in the training corpus (Chang

et al., 2009, Lau et al., 2010). A range of approaches to re-ranking the topic’s

words have been proposed. For example, let us consider the following topic with its

default top 10 terms, 〈data, visual, information, visualisations, technique, user, based,

visualisation, large, paper〉. After re-ranking, terms such as system and analysis
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could be ranked above less informative ones such as based and paper resulting

in the following topic, 〈data, visual, information, visualisations, technique, user,

visualisations, large, system, analysis〉.

Blei and Lafferty (2009a) proposed a re-ranking method inspired by the Term

Frequency–Inverse Document Frequency (TF-IDF) word weighting which includes

two types of information: firstly, the probability of a word given a topic of interest

and, secondly, the same probability normalised by the average probability across

all topics. The intuition behind this approach is that good words for representing

a topic will be those which have both high probability for a given topic and low

probability across all topics. Blei and Lafferty (2009a) did not describe any empirical

evaluation of the effectiveness of their approach.

Other word re-ranking methods have also combined information about the overall

probability of a word and its relative probability in one topic compared to others.

Chuang et al. (2012) describe a word re-ranking method applied within a topic model

visualisation system. Their approach combines information about the word’s overall

probability within the corpus and its distinctiveness for a particular topic which is

computed as the Kullback Leibler (KL) divergence between the distribution of topics

given the word and the distribution of topics. Bischof and Airoldi (2012) developed

an approach for hierarchical topic models which balances information about the

word frequency in a topic and the exclusivity of that word to that topic relative to

a set of similar topics within the hierarchy. Similarly, Sievert and Shirley (2014)

proposed a relevance metric to rank the terms that combines information about the

term’s overall probability in the corpus and the term’s probability in the topic as

a logarithmic weighted average (similar to the information used by (Chuang et al.,

2012)).

Others have proposed approaches that only take into account the relative prob-

ability of each word in a topic compared to the others. Song et al. (2009) introduced

a word ranking method based on normalising the probability of a word in a topic
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with the sum of the probabilities of that word across all topics. They evaluated

their method against two other methods, the topic model’s default ranking and the

approach proposed by Blei and Lafferty (2009a), and found that it performed better

than either. A similar method was proposed by Taddy (2012) who used the ratio of

the probability of a word given a topic and the word’s probability across the entire

document collection.

Xing and Paul (2018) proposed using information gathered while fitting the topic

model. They made use of topic parameters from posterior samples generated during

Gibbs sampling and re-weighted words based on their variability. Words with high

uncertainty (i.e., their probabilities fluctuate relatively highly) are less likely to be

representative of the topic than those with more stable probability estimates.

Topic re-ranking has also been explored within the context of measuring topic

quality (Gollapalli and Li, 2018). A main claim of this work is that word importance

should not only depend on its probability within a topic but also on its association

with relevant neighbouring words in the corpus. This information is incorporated by

constructing topic-specific graphs capturing neighbouring words in a corpus. The

PageRank (Brin and Page, 1998) algorithm is used to assign word importance scores

based on centrality and then re-rank words based on their importance. The top n

words with the highest PageRank values are used to compute the topic’s quality.

A common characteristic of previous work on topic word re-ranking is that it has

been carried out within the context of specific applications (e.g., topic visualisation)

and approaches have been evaluated in terms of these applications, if at all. The fact

that word re-ranking methods have been considered in previous studies demonstrates

their importance. The lack of direct and systematic evaluation is addressed in this

thesis. Chapter 3 compares several word ranking methods and evaluates them using

an automatic information retrieval evaluation task, in addition to introducing a

human study for evaluating the topics in chapter 4.
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2.4.2 Topic Labelling

As previous studies have shown, topic terms can be noisy and difficult to interpret,

therefore assigning textual labels to topics could help understanding the topic’s

subject easier. For example, a topic with the following words 〈school, student,

university, college, teacher, class, education, learn, high, program〉 could be labelled

with Education.

Early approaches to labelling relied on manual assignment of appropriate labels

to topics (Mei and Zhai, 2005, 2006, Mei et al., 2006, Wang and Mccallum, 2006).

Manual labelling is usually subjective and probably affected by the user’s personal

opinions in addition to the time and cost incurred during the gathering of the labels

(Mei et al., 2007). Mei et al. (2007) proposed the first probabilistic automatic method

to generate labels for topics. They formulated the labelling task as an optimisation

problem which involves minimising KL divergence between word distribution in a

topic and between word distribution in candidate labels. Then the candidate labels

are ranked based on their relevance and the top n are chosen to represent the topic.

Following that, Magatti et al. (2009) introduced an algorithm to label topics based

on the topics’ similarity to categories from a taxonomy or a topic hierarchy tree.

Furthermore, Lau et al. (2010) proposed a novel method to select the best words

to label topics instead of representing topics with all their top n words. They used a

number of features to help identify the best word for each topic including: conditional

probabilities, PMI, WordNet hypernym relations, the word rank given by the topic

model, and a distributional similarity score.

A number of studies have defined the labelling task as a search and rank approach

where the topic terms are used to query a reference dataset (e.g., Wikipedia titles)

and the returned candidate labels are ranked to find the most appropriate label. Lau

et al. (2011) presented a method to create labels by querying the top n words from

Wikipedia automatically then ranking the candidate labels by lexical and association
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features using a supervised method, SVR. While Hulpus et al. (2013) opted to use

the structured data in DBpedia8 to label topics. Their method starts by retrieving

DBpedia concepts based on the topic words and then matching topics with the most

relevant concepts using graph centrality.

Aletras and Stevenson (2014) proposed a similar approach to those of Lau

et al. (2011). Instead of using a supervised model (i.e., SVR) to identify the most

appropriate label among the candidate labels, they created a graph from the words

returned from the query then used PageRank (Page et al., 1999) to identify candidate

labels by weighting the words in the graph. Their unsupervised graph-based approach

generated better labels than those generated by the approach of Lau et al. (2011).

Bhatia et al. (2016) also proposed a simpler and more efficient approach for

automatic generation of topic labels compared to the state-of-the-art approach of

Lau et al. (2011). Their method consists of two steps: first, they generate topic labels

using English Wikipedia then they rank the labels based on a combined word and

document embeddings created using word2vec (Mikolov et al., 2013b) and doc2vec

(Le and Mikolov, 2014), respectively.

Beyond labelling topics with words or phrases, summarisation techniques have

also been used to create labels for topics. Cano Basave et al. (2014) proposed the

first such approach to label topics created from Twitter, whereas Wan and Wang

(2016) extracted several summary sentences from documents related to topics.

Images have also been used as labels to topics instead of text phrases as they

can be understood quickly and are independent of the user’s language (Aletras and

Stevenson, 2013a). Candidate images are retrieved by querying the topic’s top n

words in a search engine. The most representative image is found by ranking the

topic’s candidate images based on their associated meta data and using a graph-

based algorithm (PageRank (Page et al., 1999)). Furthermore, Aletras et al. (2017)

proposed an improved approach to matching topics with representative images and

8http://dbpedia.org
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created a more generic approach that estimates the degree of association between

any topic-image pairing using a deep neural network. This approach has reported

better performance compared to Aletras and Stevenson (2013a) in regards to speed

and accuracy.

Most existing topic labelling approaches are performed in two steps: (1) Retrieval

where candidate labels are identified (e.g., by querying the topic’s top n words),

and (2) Ranking to identify the most related label among others in the candidate

pool. Such extractive approaches can be limited by the coverage of the pool that is

used to retrieve the candidates (e.g., Wikipedia article titles or topic terms) and the

effectiveness of the relevance ranking method. Therefore, in Chapter 5 an alternative

neural-based approach that does not suffer from this limitation is proposed. Labels

that were generated from the neural-based models were evaluated against the topics

themselves to assess their relatedness, in addition to comparing them to gold labels

that were rated for appropriateness by humans.

2.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks with multiple inputs, hidden layers

and outputs. The simplest form of ANN is a perceptron with one neuron (Mitchell,

1997). A neuron receives a set of real-valued inputs x = (x1, x2, . . . , xn) and produces

an output y by performing a linear combination operation on the inputs:

z = wx+ b (2.9)

y = a = g(z) (2.10)

where w is the weight which the input contributes to the output. For example,

wi is the weight contribution of xi to the output y. b is a scalar referred to as the

bias, and g(.) is an activation function. Figure 2.15 also shows the neuron with the

inputs, operations, and the outputs.
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activation functionweighted sum

Figure 2.15: A visual representation of a single neuron with multiple inputs, and the
associated weights. The output y is computed as the sum of a combination of the
inputs after passing through an activation function to normalise the result. In this
figure the activation function used is sigmoid (figure adapted from (Sze et al., 2017)).

Input layer Hidden layer Output layer 

Figure 2.16: A simple ANN using three neurons with three inputs.

Usually an ANN consists of multiple neurons connected together (also called

Fully Connected Neural Networks (FCs)). Figure 2.16 shows an ANN with three

inputs (also called features) and three neurons, a21, a
2
2, a

2
3 and their outputs are also

the input to the last neuron at the output layer which produces the final output y.

The input to unit i = 1 layer l = 2 is computed as:

a21 = g(w1
1,1x

1
1 + w1

2,1x
1
2 + w1

3,1x
1
3 + b2) (2.11)
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Sigmoid Tanh ReLU

Figure 2.17: Line-plot for the commonly used non-linear activation functions (Sze
et al., 2017).

Activation functions are non-linear operations to control the range of the values

in the result by adjusting the values to the required range. For example the case

of binary classification in which classes either belong to 0 or 1, the score returned

by the function g is 1 if it exceeds a certain threshold or with 0 otherwise. This

activation function is called the Step function. There are other activation functions

commonly used in ANNs such as: sigmoid, hyperbolic tangents (tanh) and rectifier

linear units (ReLU)(Nair and Hinton, 2010). The mathematical formulations for

these functions are shown below (Sze et al., 2017):

Sigmoid (z) =
1

1 + e−z
(2.12)

Tanh(z) =
(ez − e−z)
(ez + e−z)

(2.13)

ReLU(z) =

 0, z ≤ 0

z, z > 0
(2.14)

Figure 2.17 shows the activation function’s range of results. The sigmoid function

compresses the values to a range between [0, 1] where large positive values are assigned

to 1, and large negative values are assigned to zero, which results in saturated values

at 0 and 1. Tanh was proposed to address the saturation problem by extending the

range to [-1, 1], however, the saturation problem still exists at 1 and -1. ReLU results

in values with range [0, −∞] which solves the saturation problem for positive values.
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Another activation function is the softmax function, which is used to normalise a

vector of values into probabilities such that the probabilities range between [0, 1]

and their sum equals 1. Softmax is usually used as the last activation function in

a network for multi-class classification. The probabilities returned by the function

represent the probability for each class, where the one with the highest probability

is the predicted class. Given a set of real values z = (z1, z2 . . . , zK), the softmax

function is computed as follows:

Softmax(z) =
ezi∑K
j=0 e

zj
for i = 0, 1, . . . , K (2.15)

The ANN shown in Figure 2.16 represents a very simple FC model that is not used

in this thesis. There are many variations to this network that usually include a large

number of inputs, layers, neurons, and outputs, which is referred to as FC in this work.

A number of ANN variations are presented in the following sections: A convolutional

neural networks (CNNs) in section 2.5.1; recurrent neural networks (RNNs) in section

2.5.2; and an attention-based networks (Transformer) in section 2.5.3.

2.5.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) (LeCun et al., 1989) are a type of neural

networks for processing data that are usually in a grid-like shape, such as image data

represented in a 2D matrix of image elements (i.e., pixels) where each element stores

a value for its intensity, ranging from 0 to 255. CNNs have been used in a variety of

applications and across domains. CNNs have been used in commercial applications,

such as when CNNs were used to read handwriting which helped read handwritten

checks (LeCun et al., 1989). CNNs successfully detect objects and regions in images

with many advanced applications, such as in self-driving cars (Hadsell et al., 2009).

The mathematical operation performed in CNNs is a linear operation called

convolution instead of the general matrix multiplication performed in FCs. The
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convolution operation takes two functions and produces another function based on

a combination of the two functions. Suppose f(i) and w(i) are two functions, the

convolution operation9 is as follows (Goodfellow et al., 2016):

g(i) = (f ∗ w)(i) =

∫ i

0

f(i− a)w(a)da (2.16)

In CNN, the first argument (function f) in the convolution operation is referred

to as the input and the second argument (function w) as the kernel (also called

filter). The output of the operation g is referred to as the feature map. The way

a convolution operation is performed in a CNN is by sliding the filter matrix over

the input matrix spatially and performing dot products at each spatial location. The

filter slides with a specific stride, which is the number of unit steps taken over the

input matrix, and each filter will produce its own feature map. Figure 2.18 shows the

convolution steps to create the feature map given an input matrix (e.g., an image

represented as a 2D matrix) and a kernel matrix.

9∗ denotes the convolution operation.
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Figure 2.18: Steps in convolution operation between a 2D matrix and a 2D kernel
matrix with a stride of 1.
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Original image Edited image

Edge kernel

Figure 2.19: An example of convolution operation performed between an im-
age and an edge kernel (adapted from https://beckernick.github.io/_posts/

2016-09-17-convolutions).

The resulting matrix (i.e., image) can be an improved image with highlighted

or blurred edges. For example, the image in Figure 2.19 when combined with an

edge detecting kernel is transformed into another image with the edges emphasised.

These extracted properties of the image can be used as features for a secondary task

such as image classification.

Generating the feature map in a CNN starts with a kernel W of size f × f sliding

over the input matrix X. In each step, the convolution operation is performed

between W and a part of X called the receptive field (i.e., the patch of the matrix

shown in a red square in Figure 2.18). The resulting value represents a feature in

the feature map (i.e., one step from the Figure 2.18). The value of the tuple (i, j) in

the feature map for layer l , denoted as ylij, is computed as follows:

ylij = bl +

f∑
a=1

f∑
b=1

wl
abx

l−1
(i+a)(j+b) (2.17)

alij = g(ylij) (2.18)

where bl is a bias vector and g(.) is a nonlinear activation function (ReLU). ReLU

normalises the feature map by keeping features with positive values and turning all

other features to zero (Eq. 2.14).

The convolution step is usually followed by a pooling operation. The pooling
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Figure 2.20: CNN model architecture for image classification (LeCun et al., 1989).

operation down-samples the resulting feature map and therefore decreases its size.

The most used pooling techniques are max-pooling and average-pooling. Max-pooling

picks the maximum value from the feature map, where average-pooling, as the name

indicates, averages the values. For example, a feature map of size 4× 4 is reduced to

a size 2× 2 using a 2× 2 pool size (i.e., half the original feature map size).

In image classification tasks, the reduced feature map of the input matrix (e.g., an

image in this case) is then passed through a FC to connect together all the features

and produce a classification for the image (unlike in the convolution step where each

patch of the image (receptive field) contributes a feature in the feature map). The

following equation represents the FC at the end of the classification model where the

output of the previous convolution layer ali is flattened to a vector xi:

oi = g(wixi + bi) (2.19)

where wi is the corresponding trainable weight matrix; bi denotes a bias vector

and g(.) is the activation function.

Finally, a softmax function is used on the FC output to transform it to a

probability distribution:

ŷi = softmax (oi) (2.20)

Figure 2.20, shows the full process from extracting the image features to predicting

its class. Before moving on to another type of ANNs, a list of the common advantages
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Table 2.2: Advantages and Disadvantages of CNNs (Gehring et al., 2017).

Advantage Disadvantage
(1) Calculations can be performed in
parallel.

(1) Suffer from the vanishing and ex-
ploding of gradient.

(2) Capture spatial information. (2) Require a lot of data.
(3) Extract relevant features automatic-
ally from the data.

(3) Take a long time to train.

(4) Share parameters across different
parts of the input.

(4) Need deep stack of convolutional
blocks to capture long dependency.

and disadvantages of CNNs is shown in Table 2.2.

2.5.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) are variant of neural

networks that process sequential values (x1, . . . , xn). Common applications of RNNs

include machine translation (Cho et al., 2014), speech analysis (Santos et al., 2016),

and image captioning (Vinyals et al., 2015).

The network’s capability to process a sequence of values is achieved through

sharing parameters across different parts of the model (Goodfellow et al., 2016). We

can think of an RNN as a recursive FC network but with a single model sharing

parameters across all the time steps. Figure 2.21 shows the unfolded network in an

RNN that illustrates the forward flow to compute outputs and loss. First, during

the forward pass at time i, the input xi is mapped into the hidden representation hi

then to an output oi. The softmax function is used to normalise the probability of oi

and the predicted output ŷi is the one with the highest probability. The following
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unfold

Figure 2.21: RNNs computational graph (Goodfellow et al., 2016).

equations represent the process described here:

ai = b+Whi−1 + Uxi (2.21)

h(i) = tanh (ai) (2.22)

oi = c + V hi (2.23)

ŷi = softmax (oi) (2.24)

where U , W , V are the weight matrices used to parametrise the connection

between the input to hidden, hidden to hidden and hidden to output, respectively. b

and c are bias vectors.

The backward flow computes the gradients, based on the loss, to update the

weights. The backward operations start with computing the loss Li between the

predicted output ŷi and the target output yi that measures how far off is the predicted

output. Therefore, the final model loss is defined based on the loss of each time step.

Consequently, the weights in the model are updated by back propagation through

time.

A common issue with RNNs is the vanishing of gradients, which is caused by
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multiplying the hidden states many times with the weight matrix in the forward

steps and again during the back propagation steps. This leads to values escalating or

vanishing which makes it impossible to train the model. The issue has been mitigated

in newer variants of the RNN using gate units that control the flow of information,

namely Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and

Gates Recurrent Unit (GRU) (Cho et al., 2014), which are the networks used in the

proposed labelling models in this chapter.

LSTM

The LSTM has three gates that control the flow of information: the input gate g,

forget gate f and output gate o. The LSTM produces two outputs: a memory cell c

and a hidden state h. At time step i, the gates and outputs are defined as follows:

gi = sigmoid(bg + Uxgxi +Whghi−1)

fi = sigmoid(bf + Uxfxi +Whfhi−1) (2.25)

oi = sigmoid(bo + Uxoxi +Whohi−1)

c̃i = tanh(bc + Uxcxi +Whchi−1) (2.26)

ci = fi � ci−1 + gi � c̃i (2.27)

hi = oi � tanh(ci) (2.28)

where W∗, U∗ denotes the weight matrices, b∗ refers to the bias. Each gate

produces a value between 0 and 1 to control how much of the information is to be

passed or removed. In particular, the input gate controls the information added to

the cell state c̃i, while the forget gate controls how much to remove or forget from

the previous state ci−1. Finally, the memory state ci can also be shut off by the

output gate. The output of the model at time step i is computed using the same

method as in Eq. 2.20.
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Table 2.3: Advantages and Disadvantages of RNNs (Goodfellow et al., 2016).

Advantage Disadvantage
(1) Capture sequential information in
data.

(1) Suffer from the vanishing and ex-
ploding of gradient specially with a large
number of time steps.

(2) Share parameters across time steps. (2) Computation is sequential and there-
fore cannot perform calculations in par-
allel.
(3) Less efficient in handling long se-
quences.

GRU

Unlike the LSTM, the GRU has two gates, namely, reset r and update u. The reset

controls how much of the previous hidden state contributes to the current hidden

state, while the update gate controls how much of the previous state and current

hidden state is used. Therefore, their equations are updated as follows:

ri = sigmoid (br +Wxrxi +Whrhi−1) (2.29)

ui = sigmoid (bu +Wxuxi +Whuhi−1) (2.30)

h̃i = tanh (bh +Wxhxi +Whh (ri � hi−1)) (2.31)

hi = ui � hi−1 + (1− ui)� h̃i (2.32)

The output at the ith time step can be computed by applying a softmax function

to hi as shown in Eq. 2.20.

Finally, before moving on to present and describe another family of ANNs, a

summary of the common advantages and disadvantages of RNNs is shown in table 2.3.

2.5.3 Attention-based Neural Networks

Attention-based neural networks (Transformer (Vaswani et al., 2017)) are composed

of linear layers, attention mechanisms and normalisation functions. Like the convo-

lutional networks and unlike recurrent networks, Transformers do not employ any
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Figure 2.22: An example of the weights given to the words in a sentence in relation
to the word “it” using self-attention.

recurrent flow of information. This allows the network to train in parallel and reduces

the overhead of computations. Transformers have been successfully applied to wide

range of tasks such as machine translation (Akoury et al., 2019), text representation

(Devlin et al., 2019), and object detection (Carion et al., 2020).

The transformer is composed of L transformer blocks, each comprising two

components: multi-head self-attention and feed forward (FF). The first component

in the transformer block is the multi-head self-attention layer, where it encodes the

sequence and allows the model to attend to parts of the sentence. This is where

the degree of association between the words is encoded in the Transformer. For

example, the word “it” in the sentence in Figure 2.22 is referring to “cat” and “the”

and therefore the self-attention for the word “it” gives more weight for association

with “cat” and “the” than with the word “fish”. Such relationships are encoded

using the self-attention technique. Given a sequence x = (x1, x2, . . . , xn), attention

is computed as follows:

Q = W qx, K = W kx, V = W vx (2.33)

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V (2.34)

where W ∗ are weight matrices and d is the hidden dimension. The attention is

computed h times instead of once hence the name multi-head self-attention. The

h computations of attentions are performed in parallel and their resulted weight

vectors are concatenated to form one attention vector that is ready to be passed to
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Table 2.4: Advantages and Disadvantages of Transformers (Vaswani et al., 2017).

Advantage Disadvantage
(1) Calculations can be performed in
parallel and thus shorter training time.

(1) Accept a fixed-length inputs.

(2) Capture longer dependencies further
away in a sequence.

(2) Not all attention heads are useful.

(3) Share parameters across layers. (3) Large amount of calculations needed
for attention.

the next component in the transformer block:

MultiHead(Q,K, V ) = Z = Concatenate (head1, . . . , headh)WO (2.35)

headi = Attention (Qi, Ki, Vi) (2.36)

Another variation of self-attention is masked self-attention, which is mainly used

at the decoder. This variation is similar to the attention described earlier except

that masked self-attention is only allowed to attend to previous words and not future

words.

The second component of the transformer block is a FF layer which is applied

to each position in the sequence independently. It consists of two linear layers (i.e.,

FCs) as follows:

FF(Z) = max (0, ZW1 + b1)W2 + b2 (2.37)

where W∗ are weight matrices and b∗ are bias vectors.

Residual connections (He et al., 2016) and layer normalisation (Lei Ba et al., 2016)

are applied after every component in the Transformer block. Layer normalisation

stabilises the weights in neural networks by normalising the values across the hidden

dimension. Residual connection and normalisation are performed by adding the

input to the layer to its output then normalised across the features.

Table 2.4 lists the advantages and disadvantages of using a Transformer architec-

ture.
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2.6 Summary

This chapter has presented a survey of unsupervised methods for analysing and

modelling a large collection of data using topic models. In section 2.1, a number

of topic model variants were described. Further, this section also covered several

extensions to the topic model to accommodate a specific task, or address a drawback.

A variety of evaluation approaches for the output of the topic model have been

presented in section 2.2. Communicating the output of the topic model to the

user is critical, and various types of representation were presented in section 2.3,

including individual topic representations and tools for representing a whole document

collection. Section 2.4 presented the work done on improving topics through post-

processing. Finally, section 2.5 includes a brief introduction of ANNs in addition to

the details of various ANNs including CNNs, RNNs and Transformers.
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3
RE-RANKING

AUTOMATICALLY

GENERATED TOPICS

3.1 Introduction

As shown in the previous chapter (section 2.3.1), in the standard approach to

representing topics, the top n words are shown with the highest probability based

on the topic (Blei and Lafferty, 2009a,b). However, these words may not be the ones

that are the most informative about the topic. The hypothesis is that some words

that are relevant to a particular topic have not been assigned a high probability

because of data sparseness or low frequency in the training corpus (Chang et al.,

2009, Lau et al., 2010). Therefore, the goal is to identify these words and re-rank

the list that represents the topic to make it more comprehensible.

In section 2.4.1, the literature review presented a range of approaches to re-ranking

the topic terms. In previous work on topic-word re-ranking, its effectiveness was
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evaluated in the context of the application of topic models, such as topic visualisation.

This chapter introduces a direct and systematic approach to evaluating re-ranking

methods. It compares several word ranking methods and evaluates them based on

an information retrieval (IR) task that does not rely on human judgement. The

re-ranked words are used to form a query and retrieve a set of documents from a

collection. The effectiveness of the word re-ranking is then evaluated in terms of how

well it retrieved documents in the collection in relation to the topic.

The rest of this chapter is organised into seven sections. First, section 3.2 provides

a formal definition of the word re-ranking task, followed by a definitions of multiple

approaches to word re-ranking in sections 3.3 and 3.4. The evaluation approach

employed for the re-ranked topics is described in section 3.5. Sections 3.6 and 3.7

includes the results and discussion. Finally, the conclusion of this chapter is provided

in section 3.8.

3.2 Task Definition

Topics are represented with a subset of their total probability distribution. Therefore,

this subset (i.e., the top 10 terms) is assumed to be representative. However, these

words may not be the most informative about the topic. For example, Table 3.1

shows topics that are represented by the 30 most probable words. The words

displayed in bold font are more general and less informative (e.g., word with high

document frequency), while the remaining words are more likely to represent a

coherent thematic subject. In topic two, relevant words (e.g., investment and fund)

have been assigned with lower probability compared with less informative words

(e.g., percent and million). As a result, because these words do not appear in the

top 10 words, re-ranking is used to address this issue.
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Table 3.1: Examples of topics represented by the 30 most probable words from NYT.
Less informative words are shown in bold.

Topic 1

space museum years history science earth mission could art shuttle
universe flight people theory world radar crew site pincus plane
three scientists day century pilot exhibit back anniversary landing
project

Topic 2

percent million market company stock billion sales bank shares
price business investors money share companies rates fund in-
terest rate quarter prices investment funds financial amp analysts
growth industry york banks

Topic 3
film even movie world stars man much little story good way
star best show see well seems american people love hollywood
director big ever rating though great seem production makes

Topic 4

officials agency office report department investigation govern-
ment former federal charges secret information card cia law
agents security documents case investigators official fraud intelli-
gence illegal commission service police cards enforcement attorney

Given a trained topic model over corpus D, two probability distributions are

generated:

1. Document-topic (θ) as a matrix with dimensions [M ×K], and

2. Topic-word (φ) as a matrix with dimensions [K × V ]

where K denotes the number of topics, M denotes the number of documents in

the collection, and V denotes the vocabulary size.

To re-rank the topics’ terms, the φ matrix is used to extract the topics. Each

vector in φ is a topic with an index that is equal to the number of words in the

vocabulary. Each index in the vector contains the probability of a word belonging to

a topic. Therefore, a topic t is defined as ϕ̂t = φt,∗ and the probability of a word w

given a topic t produced by a topic model, which is denoted as ϕ̂t,w.

In this thesis, LDA is the topic model approach used, but re-ranking can be

applied to any topic model that estimates probabilities of words associated with

topics.
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3.3 Re-Ranking Using Corpus Statistics

This section explores a range of methods for word re-ranking based on the main

approaches that have been applied to the problem (see section 2.4.1). The following

methods are used to re-rank topic words.

Original LDA Ranking (ROrig) The most obvious and commonly used method

for ranking words associated with a topic is to use ϕ̂w,t to score each word, i.e.,

scorew,t = ϕ̂w,t. The ranking generated by this scoring function is equivalent to

choosing the n most probable words for the topic and is referred to as ROrig.

Normalised LDA Ranking (RNorm) The first re-ranking method is a simple

extension of ROrig, which represents approaches that normalise the probability of

a word given a particular topic by the sum of probabilities of that word across all

topics (Song et al., 2009, Taddy, 2012). This measure is computed as follows:

scorew,t =
ϕ̂w,t

K∑
j=1

ϕ̂w,j

(3.1)

where K denotes the number of topics in the model. This approach scales the

importance of words based on their overall occurrence in all topics in the model and

down-weights those that occur frequently.

TF-IDF Ranking (RTFIDF) The second re-ranking method was proposed by Blei

and Lafferty (2009a) and represents methods that combine information about the

probability of a word in a single topic, including information about its probability

across all topics (Bischof and Airoldi, 2012, Chuang et al., 2012, Sievert and Shirley,

2014). Blei and Lafferty re-ranked each word as follows:
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scorew,t = ϕ̂w,t log
ϕ̂w,t(

K∏
j=1

ϕ̂w,j

) 1
K

(3.2)

Inverse Document Frequency (IDF) Ranking (RIDF) The final word re-

ranking method explored in this section is a variant on the previous method, which

considers a word’s distribution across documents rather than topics. This method

has not been explored in previous research. In this approach, each word is weighted

by the Inverse Document Frequency (IDF) score across the corpus used to train the

topic model:

scorew,t = ϕ̂w,t log
|D|
|Dw|

(3.3)

where D is the entire document collection, and Dw are the documents within D

containing the word w.

3.4 Re-Ranking Using Distributional Semantics

This section introduces word re-ranking methods in addition to those presented

earlier in section 3.3. Previously proposed ranking methods are based on statistical

information extracted from the dataset used to create the topics. Alternative

ranking methods based on distributional semantic models are proposed. A short

overview of word embeddings, dense real-valued representations of words learned

using distributional semantic models, are discussed next.

3.4.1 Embedding Space

Natural language features, such as words, letters, and digits, are discrete. Therefore,

they are not represented as real-value vectors but as a one long one-hot vector of

the entire vocabulary. For example, each word is represented by a vector of length

equal to V (V is the total number of words in the corpus). Each index in the vector
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belongs to a word from the vocabulary and only one index can be set to 1 while the

rest of the elements in the vector are set to zero. The vth word in the vocabulary

is represented by a vector where wv = 1 and wi = 0 for i 6= v. This sparse or

high-dimensional word representation does not represent relationships between the

words (Goldberg and Hirst, 2017). Instead, a dense nonlinear representation of the

words is used, in which each word is represented using a vector of dimension d that is

usually smaller than the vocabulary size. For example, the word “cat” in a one-hot

encoding representation over a vocabulary of 20,000 words will be represented as a

vector of size [1× 20, 000]. The same word can be represented as a vector of a size

[1× 128] that is embedded in a semantic space with 128 dimensions, which is also

called the embedding space.

Embedding-based representation is useful because it detects semantic relationships

between words and therefore gives them similar vectors (e.g., queen and king)

(Goldberg and Hirst, 2017). Such capabilities are useful in many applications, such as

predicting the word’s nearest neighbours, which can be used to expand search queries

for similar words. Word embeddings are popular representations that have been

used in numerous NLP tasks, such as machine translation (Mikolov et al., 2013a),

document classification (Sebastiani, 2002), and named entity recognition (Turian

et al., 2010). Because of the success of word embeddings, this section explores the

use of such word representations in re-ranking the topic’s words.

Pre-trained word embeddings are used in the re-ranking metrics. Pre-trained

word embeddings were created using large datasets that incorporated information

from a secondary source, such as Wikipedia, beyond the dataset used to generate the

topics. In this experiment, the topic’s words are re-ranked by placing semantically

similar words near each other. Three commonly used word embeddings are explored:

(1) Word2Vec (Mikolov et al., 2013b); (2) Glove (Pennington et al., 2014); and

(3) FastText (Bojanowski et al., 2016).

The Word2vec model learns the vector representation of words based on the
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continuous bag-of-words (CBOW) and skip-gram (SKIP-G) models. These models

efficiently learn quality vector representations from a large amount of unstructured

text data using a simple neural network architecture (Mikolov et al., 2013b). A

pre-trained Word2vec model was used. The model consists of three million word

embeddings with 300 dimensions, which were trained on the Google News dataset of

approximately 100 billion words.1

Glove word representations capture global corpus co-occurrence statistics using a

global log-bilinear regression model (Pennington et al., 2014). A pre-trained trained

model with 300 dimension vectors for 1.9 million words was trained on the Common

Crawl dataset of around 42 billion words.2

FastText is a fast approach to learning word representations based on skip-gram

models (Bojanowski et al., 2016). FastText can learn representations of out-of-

vocabulary (OOV) words by splitting the word into character-level n-grams and

calculating the final word embedding as the average of its n-grams. However, in this

thesis, a static pre-trained version of FastText was used, which did not accommodate

this OOV words function3. The pre-trained model consisted of 2.5 million 300-

dimension vectors trained on 600 billion words.4

3.4.2 Embedding-based Ranking Methods

Re-ranking a topic’s words starts by extracting the words’ embedding vectors from

one of the models described in section 3.4.1. Given two words, wi and wj, each is

represented by a vector (wi and wj). The cosine similarity is used to calculate the

similarity between the two words as follows:

sim(wi,wj) = w>i wj (3.4)

1code.google.com/p/Word2vec/
2https://nlp.stanford.edu/projects/Glove/
3Later in this chapter, the number of OOV words for each dataset is reported.
4https://github.com/facebookresearch/FastText/
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Two scores are computed for each word in the top N topic words, the word

similarity (pairwise sim) and the centroid similarity (centroid sim), which result in

the ranking methods RPair and RCent, respectively. The pairwise sim is the pairwise

cosine similarity between the word’s vector and the vectors of the top N words in

the topic (Eq. 3.5). The centroid sim is computed as the cosine similarity between

the word vector and the centroid vector of the top N words from the topic (Eq. 3.6).

pairwise simw,t =
1

N

N∑
j=1

sim(w,wj) (3.5)

centroid simw,t = sim(w, e) (3.6)

where e is the normalised centroid vector of N top words in the topic t. Note

that the top N words are included in the re-ranking method, and only the top n

words are selected to represent the topic. For example, the ranking method considers

the top 50 words (N = 50) in the topic. After re-ranking, the top 10 words (n = 10)

are selected to represent the topic. Multiple combinations of the product of (RPair,

RCent, ϕ̂, and IDF) are explored as term-ranking methods.

The vocabulary size included in word embedding models is limited. It consists

of the vectors for approximately 3 million, 400 thousand, and 2.5 million words in

Word2vec, Glove and FastText, respectively. Therefore, terms that are not available

in the embedding model (i.e., OOV) will remain at the default weight given by LDA.

To better understand the effects of re-ranking topic words, consider the topics

with various representations (see Table 3.2) that were a result of re-ranking. The

first row of each topic represents the baseline rank produced by the topic model

(ROrig), and the other rows show the topic after re-ranking using corpus-based

metrics in Equations 3.1, 3.2 and 3.3, respectively, in addition to ranking using

distributional semantics, as in Equations 3.5 and 3.6. The bold words included in the

original ranking (ROrig) were down-weighted and removed by at least two methods.

Underlined words were weighted higher by a re-ranking method and included in the
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Table 3.2: Examples of topic representations produced using various ranking ap-
proaches. Words in the ROrig representation that were removed by at least two
methods are shown in bold. Words that were ranked higher by the other approaches
and included in the topic representation are underlined.

Method Topic 1

C
or

p
u

s
st

at
is

ti
cs ROrig company million executive year business number chief firm group private

RNorm nardelli deductible semel fisch earmark backdating reit vornado weichert citibank
RTFIDF company million executive firm companies equity firms taxes financial broker
RIDF company million executive firm business listed number financial chief companies

D
is

tr
ib

u
ti

on
al

se
m

an
ti

cs

RPair business company investment companies financial firms corporate pay firm funds
+ϕ̂ company million business executive firm companies financial year private market
+ϕ̂+ IDF company million executive business firm companies financial firms private equity
RCent business street corporation company money office public broker chief private
+ϕ̂ company business executive year chief private firm office companies million
+ϕ̂+ IDF company business executive firm chief private broker financial companies office

Method Topic 2

C
or

p
u

s
st

at
is

ti
cs

ROrig team year first last players time football sports play back
RNorm federer nascar touchdown earnhardt mickelson nadal selig belichick henin roddick
RTFIDF team players football giants sports cup golf bowl championship manning
RIDF team players football sports giants golf cup race year woods

D
is

tr
ib

u
ti

on
al

se
m

an
ti

cs

RPair game season play playing team players teams championship player going
+ϕ̂ team players year first last football play time game season
+ϕ̂+ IDF team players football game play season win sports golf teams
RCent teams going back club never football game way team get
+ϕ̂ team year football players time back last going game first
+ϕ̂+ IDF team football players teams year game race golf sports club

topic representation.

3.5 Evaluation of Topic Interpretability via Doc-

ument Retrieval

This section presents an automatic evaluation approach to different topic representa-

tions obtained by re-ranking the topic words. The automated evaluation is based

on an IR task in which the re-ranked topic words are used to form a query and

retrieve documents that are relevant to the topic. The motivation for this approach is

that the most effective re-rankings are the ones that can retrieve documents related

to the topic, while ineffective re-rankings are not able to distinguish them from

other documents in the collection. This evaluation method does not rely on human
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judgement, therefore, it is convenient for the repetitive evaluation of ranking metrics.

3.5.1 Evaluation Process

Figure 3.1 illustrates the evaluation process. First, the evaluation approach assumes

a given document collection (step 1) in which each document is mapped to a label (or

labels) indicating its topic. For example, in Figure 3.1 the NYT annotated dataset

is used, which has manually assigned labels to its articles (step 2). These labels

are referred to as gold standard topics to distinguish them from the automatically

generated topics created by the topic model.

A set of automatically generated topics is created by running a topic model

over a document collection, such as the NYT annotated dataset. For each gold

standard topic, a set of all documents labelled with that topic is created (step 3).

The document-topic distribution created by the topic model is then used to identify

the most probable automatically generated topic within that set of documents (steps

4 and 5). This is achieved by summing the document-topic distributions and choosing

the automatically generated topic that has the highest value (steps 6, 7, and 8).

Even though the documents under the gold topic are independent of each other,

identifying the dominant topic for these documents through the described approach

can still be considered a helpful approach.

A query is then created by selecting the re-ranked top n words, using one of

the re-ranking metrics described in sections 3.3 and 3.4, from that automatically

generated topic (steps 9 and 10) and using it to retrieve a set of documents from

the collection (steps 11 and 12). The set of retrieved documents is then compared

with the set of all documents labelled with the gold standard label using trec eval5

(steps 13 and 14).

5https://github.com/usnistgov/trec_eval
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Figure 3.1: Illustration of the IR-based evaluation approach used to measure the
quality of the re-ranked topics.
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3.5.2 Datasets

The evaluation was conducted using datasets that represented documents collected

from a wide range of domains: news articles, scientific literature and online reviews.

New York Times

A subset of the New York Times (NYT) annotated dataset6 consisting of approx-

imately 39,000 articles was used in this experiment. This collection contains news

articles from the New York Times labelled with 1,746 topics which were used as gold

standard labels. These labels, which we refer to as NYT topics, belong to a controlled

set of topic categories. They have been manually verified by the production staff

of NYTimes.com. Each article has at least one NYT topic, and the articles are

organised into a topic hierarchy. Examples of NYT topics include the following:

NYT  annotated 

Technology

New York And 
Region

Features Travel Guide Destination North America United StatesTop

News

Because the hierarchy into which the topics are organised is quite deep in some

places, each topic is truncated to the top four levels of the hierarchy to control the num-

ber of topics. For example, the topic Top/Features/Travel/Guides/Destinations/North

America/United States was truncated to Top/Features/Travel/Guides. This process

produced a total of 132 truncated NYT topics. The number of articles associated

with each of the 132 NYT topics ranged from 1 to 18,489. To avoid NYT topics

that were associated with small numbers of documents, the 50 NYT topics that were

associated with the most documents were used, which resulted in NYT topics, each

of which were associated with at least 560 documents.

6https://catalog.ldc.upenn.edu/LDC2008T19
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MEDLINE

MEDLINE7 is a primary medical literature resource that includes more than 25

million records of publications in medicine and related fields from 1805 to the present.

MEDLINE uses more than 19,000 Medical Subject Headings (MeSH) to index and

catalogue publications in a hierarchical structure. Each publication is associated

with a set of MeSH codes that describe the content of the publication. A subset of

the MeSH hierarchy is shown below:

MEDLINE Body Regions [A01]Anatomy [A]

Musculockeletal System [A02]

Organisms [B]

Digestive System [A03]

Respiratory System [A04]

Biliary Tract [A03.159]

Gastrointestinal [A03.556]

Liver [A03.620]

Pancreas [A03.734]

In a subset of MEDLINE, the 50 most frequently used MeSH codes with the

greatest number publications from 2017 were extracted. This set of codes was referred

to as MeSH topics.

Amazon Product Reviews

The Amazon Product Reviews dataset (McAuley et al., 2015)8 contains reviews of

products purchased from the Amazon website. The reviews are organised into 24

top-level categories, each of which is divided into sub-categories. The number of

sub-categories ranges from 1 to approximately 1,900. A sample of the categories and

their sub-categories is shown in Figure 3.2.

7https://www.nlm.nih.gov/databases/download/pubmed_medline.html
8http://jmcauley.ucsd.edu/data/amazon
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Amazon Cell Phones & Accessories

Cases

Automotive

Basic Cases

Accessories

Cell Phones & Accessories

Replacement Parts

Exterior Accessories

Automotive

Figure 3.2: Sample categories from Amazon.

Eight main categories were selected (Cell Phones & Accessories, Electronics,

Movies & TV, Musical Instrument, Office Products, Pet Supplies, Tools & Home

Improvement, and Automotive) and from each, 10 sub-categories with the highest

number of reviews where extracted, which yielded 76 distinct sub-categories. This

set of categories were referred to as AMZ topics. Five thousands product reviews

were extracted from each main category. Each review must have belonged to at least

one category in the 50 most frequent in the AMZ topics, which resulted in 40,000

reviews.

3.5.3 Experimental Settings

Each of the datasets was indexed using Apache Lucene9. The articles were tokenised,

and stop words were removed. Words occurring in fewer than five or more than

half of the documents were also removed to control for rare and common words,

respectively. The statistics of the datasets are shown in Table 3.3.

In each dataset, LDA was used to generate topics, and the number of topics for

each dataset was set based on optimising for coherence, which yielded 35 in NYT,

45 in MEDLINE and 35 in Amazon. The automatically generated topics that was

the most strongly associated with each of the gold topics (i.e., 35 NYT topics, 45

9http://lucene.apache.org/
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Table 3.3: Datasets statistics.

Dataset Documents Distinct Words
NYT Annotated 39,218 60,339

MEDLINE 23,640 18,571
Amazon 40,000 24,943

MeSH topics and 35 AMZ topics) were identified by applying the process described

in section 3.5.1. The top 5, 10 and 20 words on this topic were used to form a query

that was submitted to Lucene. The BM25 retrieval model (Robertson, 2004) was used

to measure the similarity between the document and a given query. The documents

that were retrieved by applying these queries were compared with the entire set

of documents labelled with the dataset topics (i.e., NYT topic, MeSH topics, or

AMZ topics) by computing Mean Average Precision (MAP)10, which is commonly

used as a single metric to summarise IR system performance.

3.6 Results

3.6.1 Corpus-based Ranking Results

Queries were created using the top 5, 10, and 20 topic words and applying ROrig,

RNorm, RTFIDF , and RIDF re-rankings and applied to each of the three datasets

(section 3.5.2). The results are shown in Table 3.4.

Re-ranking words using RTFIDF and RIDF consistently enhanced retrieval per-

formance compared with the default ranking (ROrig). RTFIDF produced the best

results in most of the configurations, except when five words were used in the Amazon

corpus, where RIDF outperformed the other re-ranking methods. Re-ranking using

RNorm was less effective than all the other rankings, including the default rank-

ing. The relative performance of the four approaches was generally stable when

the number of words used to form the query was varied across the three datasets,

which represented the different genres of text used in this experiment. These results

10MAP is computed using the trec eval tool: http://trec.nist.gov/trec_eval/
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Table 3.4: Results of the experiment in which the top 5, 10 and 20 ranked words
were used to form a query. The words were ranked using the methods described in
section 3.3. The bold font denotes the highest score among the ranking metrics in a
particular cardinality and dataset.

Dataset New York Times MEDLINE Amazon
#Words 5 10 20 5 10 20 5 10 20

ROrig 0.095 0.116 0.126 0.142 0.152 0.150 0.023 0.020 0.026
RNorm 0.046 0.061 0.072 0.020 0.029 0.037 0.020 0.015 0.014
RTFIDF 0.136 0.142 0.139 0.174 0.161 0.166 0.021 0.024 0.028
RIDF 0.119 0.129 0.132 0.158 0.158 0.164 0.024 0.024 0.027

demonstrated that topic-word re-ranking produced words that were effective in

discriminating documents that described a particular topic from those that did not.

3.6.2 Embedding-based Ranking Results

The queries in this section were created in the same way as described in the previous

section. However, the embedding-based re-ranking methods (section 3.4) were applied.

The MAP scores achieved by each method are presented in Table 3.5.

Table 3.5 shows that re-ranking the topic words using the similarity metrics, RPair

or RCent, as an individual metric did not improve the topics. This results occurred in

all cardinalities and datasets. The similarity metrics reported a higher scores when

they were combined with the original weights given by the topic model (ϕ̂). However,

in most cases, it did not surpass the scores reported when using the original topic

model weights were used on their own. Following the addition of IDF to the ranking

metric, the produced topics outperformed the baselines ranking in most of the cases.

RPair was shown to be more useful and a better measure of similarity between the

terms compared with RCent. Table 3.5 also shows a discrepancy in the performance

of the embedding models. Topics that were re-ranked using FastText reported higher

scores than the topics re-ranked using Word2vec and Glove.
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Table 3.5: Results of the experiment in which the top 5, 10 and 20 ranked words
were used to form a query. The words were ranked using the methods described
in section 3.4. Bold font denotes the highest score in an embedding model, and
underlines denotes the highest score in a column across the metrics and embedding
models.

Dataset New York Times MEDLINE Amazon
Number of Words 5 10 20 5 10 20 5 10 20

ROrig 0.095 0.116 0.126 0.142 0.152 0.150 0.023 0.020 0.026

RPair 0.088 0.097 0.030 0.091 0.111 0.132 0.006 0.009 0.023

W
ord

2vec

RPair + ϕ̂ 0.093 0.108 0.118 0.153 0.153 0.145 0.023 0.020 0.027
RPair + ϕ̂+ IDF 0.101 0.116 0.120 0.155 0.160 0.152 0.023 0.026 0.026
RCent 0.058 0.082 0.105 0.093 0.106 0.123 0.014 0.020 0.025
RCent + ϕ̂ 0.080 0.102 0.111 0.153 0.147 0.137 0.019 0.018 0.027
RCent + ϕ̂+ IDF 0.090 0.104 0.115 0.150 0.152 0.137 0.020 0.027 0.029

RPair 0.060 0.069 0.087 0.035 0.054 0.087 0.003 0.004 0.010

G
love

RPair + ϕ̂ 0.096 0.106 0.120 0.125 0.141 0.146 0.020 0.020 0.021
RPair + ϕ̂+ IDF 0.109 0.122 0.122 0.133 0.150 0.156 0.024 0.021 0.024
RCent 0.028 0.040 0.073 0.036 0.045 0.073 0.003 0.005 0.009
RCent + ϕ̂ 0.093 0.102 0.114 0.117 0.122 0.132 0.019 0.018 0.018
RCent + ϕ̂+ IDF 0.098 0.110 0.124 0.127 0.136 0.145 0.023 0.022 0.022

RPair 0.088 0.101 0.112 0.107 0.121 0.126 0.006 0.008 0.018

F
astT

ex
t

RPair + ϕ̂ 0.097 0.114 0.125 0.153 0.155 0.155 0.021 0.023 0.029
RPair + ϕ̂+ IDF 0.107 0.123 0.127 0.160 0.161 0.161 0.023 0.023 0.026
RCent 0.074 0.096 0.108 0.088 0.112 0.125 0.004 0.010 0.020
RCent + ϕ̂ 0.096 0.110 0.123 0.157 0.153 0.147 0.022 0.019 0.025
RCent + ϕ̂+ IDF 0.101 0.120 0.124 0.161 0.160 0.152 0.021 0.025 0.026

3.7 Discussion

Over all performance of both metrics, corpus-based and embedding-based, is shown

in Figure 3.3. The figure combines the results already shown in Table 3.4 and Table

3.5, and reports the results averaged for topics with 5, 10 and 20 words. In most

cases, the embedding-based ranks improved over the original topics that were ranked

using ROrig. However, they rarely outperformed the corpus-based metrics RTFIDF

and RIDF .

Rankings that used FastText showed stable performances across the three cardin-

alities which indicated that the metric brought the most useful words to the start

of the topic. The metrics that used Word2vec and Glove fluctuated between the

cardinalities and showed fewer stable performances.
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Figure 3.3: The MAP scores for the IR system when given different queries. The
MAP scores were averaged for topics with 5, 10 and 20 words. The black bar
represents the standard deviation.
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Figure 3.4: The total number of out-of-vocabulary (OOV) words in the topics for
each of the embedding models under the three datasets. The percentage of the OOV
words to the total number of topics’ words’ are shown above each bar.

Embedding-based metrics have not performed as anticipated. The reason for this

is not clear, but it may be related to the problem of OOV. Therefore, the further

analysis of the availability of the topic words in the embedding models is presented in

Figure 3.4. The scores shown in the figure are the total number of OOV words found

within the topics’ top 50 words. Although, the Glove embedding model contained

most of the vocabulary, the performance of its vectors in the ranking metric was less

useful than those given by Word2vec and FastText. Word2vec showed the highest

count of OOV among the embeddings models.

The automatic evaluation approach using IR allowed for the exploration of various

ranking metrics and helped to identify metrics with superior performance. A human

study at the same scale would not be possible given the resources required for it,

such as the time needed to complete the human study and monetary incentives.

However, because the aim is to create interpretable topics for humans, ranking

metrics should be evaluated using an approach that measures the ranking metric that
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produces topics that humans find the most interpretable. Therefore, a human-centred

approach is introduced in Chapter 4. Only the metrics presented in section 3.3 will

be evaluated further in the next chapter because their performance was superior to

those using the embeddings approach described in section 3.4.

3.8 Conclusion

This chapter presented a study on word re-ranking methods designed to improve

topic interpretability. Ten methods were presented and assessed using an automated

evaluation approach based on a document retrieval task. Re-ranking the topic words

was found to produce words that were more useful in discriminating documents that

described a particular topic from those that did not. The most effective re-ranking

schemes were those based on information from the corpus, particularly those that

incorporated information about the importance of words, both within topics and

their relative frequency in the entire corpus.

The next chapter evaluates the interpretability of the re-ranked topics in a human

study. The study consists of a task in which performance indicates the usefulness of

the ranking metrics.

80



4
HUMAN EVALUATION OF

TOPIC INTERPRETABILITY

4.1 Introduction

The previous chapter explored several re-ranking metrics and compared them using

an IR-based approach. This chapter introduces an alternative way of evaluating

topic representations. Further analyses are conducted of the best metrics derived

in the previous chapter using an approach based on a crowdsourcing task. This

study focuses on evaluating corpus-based re-ranking metrics. It does not include

the embedding-based methods because they did not perform well in the previous

chapter; moreover, human evaluation is time-consuming and expensive. This chapter

also explored the effects of different topic visual representations, such as word list

and word cloud, which are also ranked using various methods.

This thesis aims to improve the interpretability of topics by humans. Therefore,

it evaluates topic representations that can be addressed by performing a human

study. Previous works have evaluated topics using various approaches, including a
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human study, to estimate the coherence of topics (Chang et al., 2009) and evaluate

various visual representations (Aletras et al., 2017, Castella and Sutton, 2014, Smith

et al., 2017). The study conducted in this chapter is formulated as a task that

incorporates topic representation. The participants’ success in performing the task

indicates the representation’s usefulness compared with other representations. The

study was performed through crowdsourcing the task, which allowed for reaching a

large number of participants and the fast completion of the task.

Various ways of representation have been presented in section 2.3.1, each of which

aided users in interpreting topics to a certain degree. Choosing a representation

(or a set of representations) depends strongly on the application and the potential

targeted users of the application. This study compares the standard representation

of a topic, as a list of the top n terms, with representing the topic as a word

cloud. Word clouds are appealing, and they are usually preferred in a wide range of

visualisations (e.g., websites, leaflets, and brochures). Therefore, the human study

presented in this chapter compares the effectiveness of different topic representations

(i.e., word re-rankings) and visual representations (i.e., a list and word cloud) by

asking humans to choose the correct topic for a given document. The hypothesis is

that humans are able to find the correct topic more easily when the representation

is more interpretable. Figure 4.1 shows a topic with the various representations

that are explored in this study. The exceptions are different representations through

re-ranking, which are not shown in this figure.

The rest of this chapter is organised as follows: the crowdsourcing task that was

used to evaluate the topic representations is described in section 4.2, followed by the

results of the study in section 4.3. Section 4.4, includes a discussion of evaluating

topic representations. The conclusion of this chapter is provided in section 4.5.
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List 
representation

Word cloud 
representation

Figure 4.1: A topic represented in various ways by changing the number of words
and the visual form of representation.

4.2 Crowdsourcing Task

A job was created on the Amazon Mechanical Turk (MTurk) crowdsourcing platform.

The participants were presented with a micro-tasks consisting of a brief task overview

and a text followed by six topics that were represented by either a list or a word cloud

containing the topic’s top n words, which were selected using one of the re-ranking

methods presented in section 3.3. The participants were asked to select the topic

that was the most closely associated with the text. Figure 4.2 shows an example of

the micro-task presented to the participants, in which they were asked to choose one

of the topics.
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Figure 4.2: Example of the crowdsourcing micro-task interface.

Micro-tasks were created using 48 New York Times articles that were extracted

randomly and satisfied the following criteria:

• The articles should be at least 25 words long, which produced documents that

were long enough for the workers to comprehend.

• The article should have a topic that has at probability of at least 0.8.

• The distractor topics should have a low probability of less than 0.3.

The correct answer was the topic with the highest probability given the text

and the distractor topics that had low probability. The probability of the correct

topic was at least 0.8, and the probability of the five distractor topics was lower

than 0.3. The distractor topics were picked in order, with the highest probability

topic has a probability of less than 0.3. The topics after extraction are randomly

ordered for each of the micro-tasks.1 Micro-tasks were created for each article using

1Various values for these parameters were explored but it was found that lowering the probability
of the correct answer and/or raising the probability of the distractors made the task too difficult.
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each of the four ranking methods (section 3.3) that were generated by topics created

using three cardinalities (5, 10, and 20 words) and were represented by two visual

representations (i.e., list and word cloud). Five assessments were obtained for each

micro-task; consequently, 120 judgements were obtained for each article.2

The recruiting approach was “low payment and bonus”, which is usually used

to encourage workers to submit quality work. This approach offers low payments,

but workers who maintain a high accuracy will gain bonus payments. Therefore,

$0.05 was paid per micro-task, and a bonus of $0.05 was paid for each micro-task

submitted with an accuracy of 80%.

4.2.1 Dataset and Pre-processing

Approximately 33,000 news articles were randomly sampled from the New York

Times included in the fifth edition of the English GigaWord corpus3. The same

pre-processing steps used in Chapter 3 were applied to the dataset. Articles were

tokenised and stop words were removed. Rare and common words were removed by

filtering words that occurred in fewer than five or more than half of the articles. The

size of the resulting vocabulary was approximately 52,000 words.

4.2.2 Topic Generation

Topics were generated using LDA’s implementation in Gensim4 fitted with online

variational Bayes (Hoffman et al., 2010). The most important tuning parameter in

LDA models is the number of topics. This parameter was set to 50 after experimenting

with a varying number of topics and manually examining the resulting topics combined

with a coherence analysis. To assess the quality of the resulting LDA models, topic

coherence was computed5 using the following: (1) CV (Röder et al., 2015); (2) CUCI

24 (ranking methods) × 3 (cardinalities) × 2 (visual representations) × 5 (judgements per
article)

3https://catalog.ldc.upenn.edu/LDC2011T07
4https://radimrehurek.com/gensim
5The implementations available in Gensim were used.
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Figure 4.3: Line plot showing the coherence scores for different choices of the number
of topics. Coherence was measured via three coherence metrics (CV , CUCI , and
CNPMI). Coherence was degraded when the number of topics was increased.

(Newman et al., 2010); and (3) CNPMI (Bouma, 2009). Figure 4.3 shows the coherence

scores for the models using different numbers of topics K ∈ {50, 100, 150, 200}. These

metrics measure the coherence between the words in a topic by measuring the degree

of their semantic similarity. It returns a higher score for topics with words that occur

in a similar context within a secondary data source (e.g., Wikipedia). The figure

shows that increasing the number of topics produces topics with lower coherence

between their words. The topics were also examined manually by inspecting the

topics’ words to confirm the results provided by the coherence metrics.

4.2.3 Quality Measurements of Crowdsourcing Tasks

This section describes the constraints that were used to address the risk of “bots”

when software was used to perform the task (Mason and Suri, 2012) or when “cheater

workers” found a way to finish the task quickly. MTurk provides system qualifications

that are based on the workers’ history and are task-independent. MTurk also allows

for customised qualifications that are designed by the requester and can be task-

dependent.

Requesters can set up qualifications that only allow workers who pass those

qualifications to work on the task. Below are the qualifications that were used, which
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were categorised into qualifications based on the worker’s information or history on

MTurk (A and B) and qualifications that required action by the user (C and D).

A. Location constraint Because the dataset used in this study was in English,

this constraint allowed the task to be performed by workers in countries where

English is the native language: Australia, Canada, Ireland, New Zealand, the United

Kingdom, and the United States.

B. Performance history constraint This constraint controlled access to the

task by experienced workers. For example, workers with micro-task approval rates

above 90% and had more than 100 approved micro-tasks.6

C. Worker qualification questions This is a customised qualification, and

each worker has to pass a qualification test before proceeding to perform the tasks.

Each test contained five questions that were created by randomly extracting text

that satisfied the same constraints presented in section 4.2. Workers were granted

this qualification if they answered four of five questions correctly. This qualification

test ensured that workers were familiar with the task before starting it, thereby

eliminating random answers, which increased the reliability of the study (Kazai,

2011).

D. Consent constraint Workers were provided with a detailed description of

the task as well as an information sheet about the study. They were expected to

read the provided information and then click “I agree” to give their consent, which

qualified them and allowed them to proceed to the task. A screenshot of the consent

page is shown in Figure 4.4.

A total of 477 participants were recruited through MTurk. The participants could

only participate once in any configuration to avoid being exposed to the same articles

and topics and memorising the answers. Hence, each configuration was set up as a

standalone job, and only one job was run at one time. Following the completion of a

6Submitted and approved micro-tasks are different, submitted micro-tasks become approved by
the requester after further examination of quality.
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Figure 4.4: Consent page for the study on MTurk.

job, the participants were eliminated from future jobs, which removed the potential

for redundant participants and memorised answers.

This crowdsourcing study received ethical approval from the ethics committee of

the University of Sheffield. Appendix A includes the ethics application form and the

information sheet provided to the participants.

4.3 Results and Discussion

4.3.1 Performance Accuracy

The results for ROrig, RNorm, RTFIDF and RIDF when topics were represented by

the 5, 10 and 20 highest scoring words are shown in Table 4.1. Accuracy represented

the percentage of questions in which participants were able to identify the correct

topic (i.e., topics with the highest probability given the article). Time/task was the
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Table 4.1: Results of the experiment comparing re-ranking methods using crowd-
sourcing (section 4.2). Topics are represented by with their top 5, 10 or 20 probable
words. The results are for both topics are represented as lists and word clouds. Bold
font denotes best values among the ranking metrics.

#words
Ranking Methods

ROrig RNorm RTFIDF RIDF

5
Accuracy (%) 68.125 67.5 72.083 72.708

Time/task (Minutes) 1.141 0.815 0.831 0.715
Coherence (NPMI) 0.092 0.035 0.112 0.100

10
Accuracy (%) 70.208 63.125 76.458 75.208

Time/task (Minutes) 0.988 1.03 0.79 0.813
Coherence (NPMI) 0.072 0.038 0.091 0.084

20
Accuracy (%) 72.5 65.625 78.958 75.417

Time/task (Minutes) 0.915 1.055 0.845 1.683
Coherence (NPMI) 0.050 0.029 0.071 0.062

mean amount of time required for the participants to complete a single task (Figure

4.2). Coherence was the average coherence of the topics, which was computed using

NPMI (Aletras and Stevenson, 2013b)7.

The results showed variations in performance, which indicated that re-ranking the

topics’ words affected the individual’s ability to interpret the topics. When the words

were ranked using RTFIDF and RIDF the default ranking (ROrig) was outperformed.

When the words were ranked using RNorm, the performance was considerably lower

than in words re-ranked using the other methods, in terms of both accuracy and the

amount of time taken to complete the task.

These results showed that the improvement obtained by using RTFIDF and RIDF

was consistent when the number of words in the representation was varied. The results

of using ROrig improved as the number of words increased but did not demonstrate

the same performance as the re-ranking methods (except RNorm), even when 20

words were included. These results demonstrated that choosing the most appropriate

words to represent a topic is more useful than simply increasing the number of words

7The implementation provided in https://github.com/jhlau/topic_interpretability was
used.
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shown to the user. In fact, increasing the number of words shown appears to have

slowed the time taken for a user to interpret the topic. The same increase in task

completion time was not observed in ROrig.

The RTFIDF and RIDF approaches combined information about the word’s

importance within an individual topic and across the entire document collection,

which resulted in more effective rankings than the ROrig approach achieved. In

contrast, RNorm considered only the relative importance of a word across all topics.

Hence, it would be possible for a word with a relatively low probability based on the

topic to be ranked highly if that word also had low probability across all the other

topics.

The results were in contrast to those reported by Song et al. (2009), which

concluded that RNorm was more effective in word re-ranking than ROrig and RTFIDF

(see section 2.4.1). However, in their evaluation methodology, a single annotator was

asked per-task to judge whether the words included within topic representations

were important or not. The crowdsourcing task presented in this chapter measured

the participants ability to directly interpret topic representations using multiple

annotations. The low results for RNorm suggested that the crowdworkers were simply

unable to interpret many of the topics and, in these cases, their judgements about

which words were important were not likely to be reliable.

Overall RTFIDF appeared to be the most effective among the re-ranking ap-

proaches evaluated. This method achieved the best performance with 10 and 20

words, although not as well as RIDF for 5 words.

Table 4.2 shows the results for ROrig, RNorm, RTFIDF and RIDF when the topics

were visually represented by either lists or word clouds. Table 4.2 clearly shows

that the crowdworkers were more successful in answering the questions when the

topics were in a list representation compared with when they were represented

by word clouds. Regarding the time taken to complete the task, surprisingly, the

crowdworkers who were shown questions in which topics were represented by word

90



Table 4.2: Comparison of re-ranking methods using the crowdsourcing task (section
4.2). Topics are represented with their top 5, 10 or 20 probable words in lists or
word clouds. The results were averaged across three cardinalities. Bold font denotes
the best value among the ranking metrics, and underlines denote the best score for
the list and word cloud.

Representation
Ranking Methods

ROrig RNorm RTFIDF RIDF

List
Accuracy (%) 71.94 66.67 77.5 79.03

Time/task (Minutes) 1.06 0.96 1.01 1.24

Word cloud
Accuracy (%) 68.61 64.17 74.17 69.86

Time/task (Minutes) 1.03 0.92 0.73 0.86

clouds submitted their answers in less time than those who received the topics in

the list representation, regardless of the accuracy. The ranking methods maintained

the same behaviour presented previously when crowdworkers who were shown the

re-ranked topics using RTFIDF and RIDF performed the task more successfully than

others did.

4.3.2 Inter-annotator and Annotator-model Agreement

Figure 4.5 shows the distribution of data based on the agreement between annotators

(i.e., the crowdworkers) and the model (i.e., accuracy). The box plot shows how

tightly the data were grouped and indicates any outliers. In Figure 4.5, the boxes

in the figure represent the upper quartile (3rd quartile) to the lower quartile (2nd

quartile) of the correct choice of topic. The green line in the middle of the box

represents the median of the data. The whiskers represent the start and end of the

data range, and the diamond shapes stand for outliers data points. Figure 4.5a

shows the agreement between the crowdworkers and the model when the topics were

represented by lists. The crowdworkers agreed the least with the model when they

were shown topics that were re-ranked using RNorm and on the contrast when they

where shown topics that were re-ranked using RIDF . The crowdworkers tended to

agree with the model when the RTFIDF ranking method was used compared with the
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(a) List Representation (b) Word cloud Representation

Figure 4.5: Box plot showing human agreement with the model in each of the ranking
method when the topics were represented by lists of words or word clouds.

Table 4.3: Agreement between workers and the model computed using Krippendorff’s
alpha.

Ranking Methods
Agreement Alpha
List Word Cloud

ROrig 0.669 0.661
RNorm 0.553 0.468
RTFIDF 0.735 0.692
RIDF 0.743 0.661

Overall 0.675 0.62

default ranking ROrg. Figure 4.5b shows the topics presented to the crowdworkers

using word clouds. The crowdworkers had lower agreement with the model in all

ranking methods compared with the topics represented in lists, except RNorm where

the same agreement level was maintained.

Furthermore, the agreement among crowdworkers was computed using Krip-

pendorff’s alpha (Krippendorff, 2011). Table 4.3 reports the Krippendorff’s alpha

scores computed for the two visual representations. The results showed that the

crowdworkers had higher inter-agreements in all rankings in a list representation than

when topics were represented by word clouds. The ranking methods also maintained

the same behaviour described in section 4.3.1. RIDF showed the highest agreement

among the crowdworkers.
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4.4 Evaluating Topic Representations

This chapter presented a method for evaluating topic representations using a crowd-

sourcing experiment that relied on human judgements. The previous chapter (Chapter

3), presented an automated evaluation of topics based on an IR task. Although there

were differences between results of the two methods, the relative performances of

the re-ranking methods explored in the two chapters were similar. The correlations

between the results of the crowdsourcing experiment and the IR evaluations were

statistically significant in all three datasets (Pearson’s r varied between 0.82 and 0.89,

p < 0.005). These results suggest that the automated evaluation approach presented

in the previous chapter could be a useful tool for assessing the effectiveness of word

re-ranking methods because of the advantage that results are obtained more rapidly

than in methods that require human judgements. However, human judgements

are recommended when performances are similar. Moreover, automated evaluation

should not be relied upon to make fine-grained distinctions between approaches,

which is common in some tasks (e.g., Machine Translation (Papineni et al., 2002)).

4.5 Conclusion

A study was conducted on word re-ranking methods that were designed to improve

topic interpretability. Four methods were assessed through a crowdsourcing ex-

periment in which the participants were asked to associate articles with related

topics.

Re-ranking the topic words was found to improve the interpretability of the topics.

Therefore, re-ranking should be used as a post-processing step to improve topic

representation. The results indicated that a complex visual representation, such as a

word cloud, did not improve the interpretability of topics compared with a simple

representation in the form of a list.
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The next chapter addresses topic interpretability through topic labelling. Topic

labelling improves the topic’s interpretability by providing descriptive phrases that

indicate the topics’ subject.
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5
A NEURAL APPROACH TO

AUTOMATICALLY LABELLING

TOPICS

5.1 Introduction

The previous chapter presented the details of applying a number of ranking metrics

to the topic terms. It has been shown that topics tend to have less than perfect terms

within their top n terms such as the most frequent terms in a corpus (Chang et al.,

2009, Lau et al., 2010). Re-ranking the topic terms re-evaluates the importance of a

term to the topic and allows for the identification of informative words that were

ranked lower initially, thereby improving the interpretability of the topics to users.

Even after re-ranking, the user has to read all/part of the topic terms to under-

stand the topic’s idea or subject, which relies on the user’s interpretation of the topic

in addition to the user’s knowledge of the terms (Lau et al., 2011). This chapter

includes the proposition of assigning a short phrase to the topics automatically. Such
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a phrase summarises the ideas of the topic and therefore allows for fast interpreta-

tion by the users (Aletras and Mittal, 2017, Aletras and Stevenson, 2014, Aletras

et al., 2017). For example, consider a topic with the following terms 〈pain, disorder,

symptom, depression, anxiety, patient, chronic, depressive, study, psychiatric〉. The

terms belong to a psychology domain and may be more easily interpreted if they

were labelled with 〈mental health〉. More formally, the topic labelling task is the

process of assigning a latent topic, t, represented by its top n words, w∗, such that

t = {w1, w2, . . . , wn} with a phrase , l, of length m that is semantically related to

the topic and conveys the topic’s concept (i.e., a label l = {w1, w2, . . . , wm}).

Section 2.4.2 presented previous work in topic labelling, which mainly followed a

two-stage approach where: (1) candidate labels are retrieved from a large pool (e.g.,

Wikipedia article titles); and (2) ranked based on their semantic similarity to the

topic terms to identify the most suitable label (Aletras and Stevenson, 2014, Aletras

et al., 2017, Bhatia et al., 2016, Lau et al., 2011, Mei et al., 2007). A limitation of

these extractive approaches to label generation is that they are restricted to assigning

labels that are found within the set of candidates. This chapter presents the use of

a neural-based approach that does not suffer from this limitation when generating

labels. The model generates labels for topics in one step given the topics’ top n

terms, instead of retrieving and ranking. The labels are generated using generative

models conditioned on the entire source label words. Therefore, labels generated

using this approach can include novel words that do not appear in the topics.

The rest of this chapter is divided into four sections. Section 5.2 presents the

proposed approach followed by the neural labelling models employed to generate

topic labels are detailed in sections 5.3 and 5.4. Finally, a summary of the chapter is

presented in section 5.5.
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5.2 Proposed Approach

The proposed approach is based on a sequence-to-sequence model (Seq2Seq) (Cho

et al., 2014, Sutskever Google et al., 2014) that takes a sequence of words as input

and generates another sequence of words as output. For example, a model can take

a sequence of words in French and generates its translation as a sequence of words in

English.

Seq2Seq models consist of two neural networks, one of which acts as an encoder

and the other as a decoder. In general, the encoder takes as input a sequence of values

x = (x1, . . . , xn) and transforms them into hidden representations z = (z1, ..., zn)

which are passed to the decoder. The decoder generates the output one symbol at

a time with each symbol generated being conditioned by the hidden state and the

symbols generated previously, i.e., symbol yt is predicted as P (yi| {y1, · · · , yi−1} , x).

Various neural networks including convolutional, recurrent and attention-based

networks are used to create the labelling model. The neural labelling models are

described next in section 5.3.

At the start of this chapter, in section 5.1, it has been stated how the proposed

labelling method follows a different approach than those previously proposed, most

of which retrieve candidate labels and rank them to find the most appropriate one

semantically. Besides, the proposed approach differs from previous neural-based

approaches. Aletras et al. (2017) used neural networks to estimate the relevance

of a given topic and an image label. Similarly, Sorodoc et al. (2017) proposed an

approach that predicts an appropriateness score between a topic and a textual label.
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5.3 Topic Labellers

5.3.1 Convolutional-based Model

As shown in section 2.5.1, CNNs are networks that use convolution, a linear operation

between the input and a filter (i.e., kernel) to produce a feature map for the input

which is followed by a max-pooling operation to reduce the size of the feature map.

A model derived from (Gehring et al., 2017) is used where a multi-layer CNN learns

hierarchical representations over the input sequence. The model architecture is shown

in in Figure 5.1, it consists of an encoder and a decoder. At the encoder network,

a topic sequence with n terms x = (x1, . . . , xn) is passed through an embedding

layer where the sequence is embedded in distributional space as w = (w1, . . . , wn),

where wj ∈ Rd is a column in an embedding matrix M ∈ RV×d. The sequence is

also combined with a positional embedding which encodes the sequence’s order as

p = (p1, . . . , pn), where pj ∈ Rd. w and p are combined by element-wise sum to

obtain the input embedding representation with information about the token and its

position in the sequence eenc = (w1 + p1, . . . , wn + pn). Then, eenc is passed through

a linear layer and a number of convolutional blocks where the output of the lth block

is denoted as Zenc
l =

(
zlenc,1, . . . , z

l
enc,n

)
. This chapter’s embeddings were learned

with the model, unlike in section 3.4.1, where pre-trained embeddings were adopted.

Each convolutional block contains one convolutional layer with a single filter

sliding over the input embeddings within a sequence. The size of the resulting hidden

representation is twice the size of the input because a spacial activation function

called gated linear units (GLU (Dauphin et al., 2016)) is used which uses a gating

mechanism similar to those used in LSTM and GRU that controls which parts of the

convolution outputs to keep. After the GLU and before passing the block’s output

to the next block, a residual connections process is performed from the input of each

convolutional block with the output of the same block (He et al., 2016).
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Figure 5.1: Seq2Seq topic labelling model using CNNs.

At the decoder network, the label words are passed as inputs which are processed

in a similar way to that described for the encoder’s inputs. The decoder’s inputs

are transformed into an embedding and combined with positional information giving

edec = (y1 + p1, . . . , ym + pm). Padding is essential to make sure that the decoder

does not observe future information. The input is padded by filter size−1 elements

before being passes to the convolutional blocks where the output of the lth block at

the decoder is denoted as Zdec
l =
(
zldec,1, . . . , z

l
dec,m

)
.

An attention mechanism (Sukhbaatar et al., 2015) is used to allow the decoder to

learn which parts of the encoder influences the prediction at each step. The attention

context vector cli at step i for decoder layer l is computed as follows. First, the

decoder’s state summary dli is computed given the current decoder state zdec,i
l and

the embedding of the previous target word edec,i,

dli = W l
dzdec,i

l + bld + edec,i (5.1)
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The attention alij of state i and source element j in layer l is computed as the

dot-product between the resulting dli with each output of the last encoder layer

Zenc
u as shown in Eq. 5.2. The conditional input cli for the current decoder layer is

computed using Eq. 5.3 as a weighted sum between the encoder outputs and inputs.

Adding the inputs again to the encoder outputs have been found to be helpful since

considering the encoder outputs zenc represent input contexts, and the inputs eenc

provides point information about a specific input element (Gehring et al., 2017).

alij =
exp

(
dli · zenc,ju

)∑n
i=1 exp

(
dli · zenc,iu

) (5.2)

cli =
n∑

j=1

alij (zenc,j
u + eenc,j) (5.3)

Finally, Z l
dec,i, c

l
i,Wo and bo are passed through an FC with softmax activation

function to compute the distribution over the V possible target words to identify the

next word as follows:

p (yi+1 | y1, . . . , yi, x) = softmax
(
Wo(Z

l
dec,i + cli) + bo

)
(5.4)

5.3.2 Recurrent Models

The recurrent-based labelling model consists of a bidirectional RNN encoder and

an RNN decoder (two RNN labelling models were created: one with GRU and the

other one with an LSTM. The two models are separate and denoted as BiGRU and

BiLSTM, respectively). An attention mechanism (Bahdanau et al., 2015) was used

to allow the decoder to pay specific attention to parts of the encoder states at each

decoding step. In the proposed approach the encoder takes the topic terms as input

and it passes them to an embedding layer that maps them into a low-dimensional

embedding followed by a bidirectional RNN. The forward RNN reads the input in

its original order (x1, . . . , xn), whereas the backward RNN reads it in the reverse

order (xn, . . . , x1), thereby encoding information from the preceding and following
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Figure 5.2: Seq2Seq topic labelling model using RNNs.

words. The RNN’s forward output at step i, zfi, and backward output, zbi, are

concatenated giving the hidden state zenc,i of xi.

zfi = RNN(xi, zi−1)

zbi = RNN(xi, zi−1) (5.5)

zenc,i = [zft; zbi]

During decoding, labels are predicted word by word. At timestep i, the decoder

computes the hidden state zdec,i as follows

zdec,i = RNN (yi−1, zdec,i−1, ci) (5.6)

where yi−1 is the previous prediction that gets fed back to predict the next word and

zdec,i−1 is the previous hidden state. Notice here that ci is a context vector computed

for each target word. This approach is different from traditional encoder-decoder

architectures were the last hidden state of the encoder is used to compute C, a
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context vector which is used by the decoder at every time step. The context vector

ci is computed as the weighted sum over all encoder hidden states and weights αi

using an attention mechanism (Bahdanau et al., 2015):

dij = a (zdec,i−1, zenc,j)

αij =
exp (dij)∑n
k=1 exp (dik)

(5.7)

ci =
n∑

j=1

αijzenc,j

where a is a FC learned with the rest of the model. The weights αi sum to 1 and

give higher weight to a specific state, which allows the decoder to focus on this state

among others.

The decoder’s hidden state zdec,i is used to generate the output probability over

all possible vocabulary items for the labels by passing it to a FC with a softmax

activation function (similar to Eq. 5.4 ). Finally, the probability distribution resulting

from the previous step is used to choose the word with the highest probability as the

prediction yi,

yi = argmax
(
p(yi|{y1, · · · , yi−1}, x)

)
(5.8)

Figure 5.2 shows the high level architecture for the RNN-based labelling model.

5.3.3 Combined model

It has been shown in section 2.5.1 that CNNs extract features from data and therefore

they have been used as a feature extraction mechanism within another model where

the feature maps they produce are passed as input to another model. For example,

an image captioning model that takes an image as an input and extracts its feature

map, which is then used to initialise an RNN at the decoder side that generates the

image caption one word at a time (Vinyals et al., 2015). Given that the input in

the topic labelling task is a list of terms that ignores positional information, a CNN
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Figure 5.3: Seq2Seq topic labelling model using a CNN-based encoder and an
RNN-based decoder.

encoder is used. Since the output is a phrase where word order is important, an

RNN decoder is used. As in section 5.3.2, two models are created, one using a GRU

(CNN-GRU) and one using an LSTM (CNN-LSTM).

The encoder model in this architecture is the one proposed in section 5.3.1. The

output of the encoder contains the features extracted from the input sequence which

is passed in turn to the decoder. The decoder side is a recurrent network that takes

as input: the encoder’s feature map, the decoder’s previous state, and the decoder’s

input. The encoder’s extracted features are also used to compute attention in a

similar approach to the one described in section 5.3.2. A high level overview of the

model is shown in Figure 5.3.

5.3.4 Transformer-based model

As shown in section 2.5.3, a Transformer block is composed of linear layers, attention

mechanisms and normalisation processes. The transformer-based model for generating

labels consists of an encoder-decoder architecture similar to those used in earlier
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Figure 5.4: Seq2Seq topic labelling model using a transformers architecture.

models. The encoder and decoder include a stack of L transformer blocks each with

a self-attention and FC networks. The decoder has an additional layer of multi-

head attention over the output of the encoder stack and the output of the masked

self-attention layer. An overview of the architecture can be found in Figure 5.4.

First, the encoder receives a sequence x = (x1, x2, . . . , xn) which is passed through

an embedding layer to convert it to vectors of dimension d. The embedding vector

gets combined with a positional embedding to encode the order in the sequence. The

resulting embedding is a combination of tokens and positions eenc = (e1, e2, . . . , en).

The combined embedding is passed through L transformer blocks to get the output

of the encoder Zenc which in turn gets passed to the decoder.

The decoder has additional components to the encoder: masked multi-head

attention, encoder-decoder attention, linear layer, and softmax. A similar process

is applied at the decoder where a sequence is passed to an embedding layer and

combined with positional information. It must be remembered that the decoder at
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position p is not supposed to have access to future information, in other words, the

decoder only has access to words from the start of the sequence until p and the rest

is masked (i.e., set to zero temporarily).

The masked sequence is passed to the first attention component, the masked self-

attention layer, which yields the result Zdec, then it is passed to the encoder-decoder

attention layer with the outputs of the encoder Zenc. An FC network receives the

attention output and produces the final decoder output.

The predictions in a Transformer are generated in a similar fashion as in the

previous neural networks. The final hidden representations (i.e., the output of the

last Transformer block in the decoder) are passed through a linear layer to map them

to a dimension equal to the number of words in the output vocabulary V . Then, a

softmax function is used to transform it to a probability distribution and the word

associated with the index with highest probability is the prediction ŷ.

5.4 Candidate Search

The labelling model generates a probability distribution across the possible vocabulary

and at each time step the decoder chooses from this pool of vocabulary. The final

layer in the model is FC layer that uses a softmax activation function which, for

each word in the vocabulary, produces the likelihood of it being the next word. The

decoding algorithm samples the output from the probability distribution either by:

(1) a greedy approach where the word with the highest probability is predicted at

each step or (2) a beam search approach where multiple possible predictions are

maintained at each time step.

Greedy approaches are fast and effective but not optimal as picking the highest

probability word at each time step does not guarantee a final output with the highest

probability in total. For greedy decoding, an argmax function is used to select the

index with the largest value and thereby select the associated word. The models
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in this thesis use a greedy sampling approach and leave beam search sampling

for future work.

5.5 Conclusion

The start of this chapter included motivation for assigning labels to topics and a

formal definition of the topic labelling task. The proposed labelling approach was

described in section 5.2 followed by the details of the proposed models for topic

labelling in section 5.3 and the candidate search used was stated in section 5.4.

The next chapter describes the approach used to create the training datasets

and presents details of the datasets used in testing. It also covers the experimental

settings for implementing the proposed models including: hardware specification,

hyper parameters, evaluation approaches and evaluation metrics. An analysis of

the results is presented, in addition to qualitative content analysis that was used to

examine the quality of the generated labels.
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6
EVALUATION OF NEURAL

APPROACHES

6.1 Introduction

In chapter 5, a new approach to generating labels for topics was proposed. The new

approach formulates the topic labelling task as a Seq2Seq task where topic terms

are provided as input and another set of words (i.e., label) is produced as output. A

Seq2Seq model consists of two networks: an encoder and a decoder. A number of

ANN variants were proposed as encoders and decoders including: CNN, RNN, and

Transformer.

This chapter is organised as follows: the data created and used for training the

labelling models are described in section 6.2. Section 6.3 includes the experimental

details for implementing the proposed models including hardware/software specifica-

tions and the models’ hyperparameters. Section 6.4, describes and formulates the

evaluation approaches used and evaluation metrics. The results and discussion are

included in section 6.5, followed by a summary in section 6.6.
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Table 6.1: Sample topics from (Bhatia et al., 2016).

Domain Topic terms
Candidate Average
labels rating

Blogs
school, student, university, college, teacher,
class, education, learn, high, program

primary education, 2.0
graduate school, 2.25
pre-medical 0.71

Blogs
vote, house, election, poll, bill, republican,
party, voter, candidate, senate

general election, 2.43
state senator, 1.75
incumbent 0.66

6.2 Data

6.2.1 Training Data

A set of topics represented by lists of terms and their associated labels are required

to train the proposed labelling models. However, the current available datasets are

too small to train large neural networks. For example, Bhatia et al. (2016) released a

dataset that contains 228 topics with 19 labels for each topic. A sample of the topics

with their associated labels and ratings is shown in Table 6.1. Therefore, a distant

supervision (Craven and Kumlien, 1999) approach was followed which generates

training data automatically by using existing knowledge base to extract examples

for the labelling task. Using distant supervision approach, two different datasets

consisting of pairs of topics and labels were created:

• ds wiki tfidf was created by selecting pairs of titles and articles from Wiki-

pedia1. The article titles are treated as the labels, and the top 30 words from

each article ranked by TFIDF are treated as synthetic topic terms.

• ds wiki sent is a variation of ds wiki tfidf. Rather than extracting the top

30 words using TFIDF, the first 30 words from the article were used as topic

terms.

Using this approach, just over 300,000 pairs of topics and labels were collected.

1Using the dump enwiki-2019201-pages-articles1.xml-p10p30302
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Figure 6.1: Bar-plot showing the number of words distribution in Wikipedia titles
and the labels generated by Bhatia et al. (2016).

Standard pre-processing steps were applied to clean and tokenise the datasets

including the removal of numbers, special characters, rare terms and stop words2.

Titles with more than eight words or those that contained duplicate words were

filtered. Refer to the left bar-plot in Figure 6.1 that shows the frequency of words in

the titles after filtering. As illustrated, most titles consist of one or two words. Pre-

processing resulted in over 250,000 pairs of topics and labels. The pairs were divided

randomly into three sets: train, validate, and test sets consisting of 226,282, 12,424

and 11,800 pairs, respectively. The article titles (i.e., labels) in both datasets contain

13,947 unique words while the articles’ terms contain 181,793 in ds wiki tfidf and

87,446 in ds wiki sent. Table 6.2 contains samples from both datasets.

2Stop words were not removed from headlines.
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6.2.2 Test Data

Labels generated by the proposed models were evaluated by comparing them against

gold-standard labels from two datasets. The first, described by Bhatia et al. (2016)

(topics bhatia), contains 228 topics from four different domains (blogs, books,

news and PubMed) that were generated by Lau et al. (2011). Bhatia et al. (2016)

associated each topic with 19 candidate labels by matching the topic’s top 10 terms

with Wikipedia titles using neural embedding. Human ratings for those candidate

labels were collected by formulating a crowdsourcing task on MTurk. Annotators

(i.e., crowdworkers) gave ratings for the labels between 0 and 3, where 3 is the highest

rating. Only labels that received a high average rating (of 2 and above) were used for

the dataset, resulting in 219 topics and 1156 pairs (instead of 4332, i.e., 228 topics

× 19 labels). Figure 6.1 shows the length of labels in this dataset.

The second dataset, topics tfidf, is an extended version of topics bhatia that

includes 20 additional terms for each topic. These additional terms were added to

the 10 terms from topics bhatia so that each topic consists of 30 terms, matching

the encoder length. The additional terms were identified by finding documents

associated with each topic and choosing the 20 terms with the highest TFIDF scores.

Unfortunately the topic-document distributions are not available for topics bhatia.

Consequently suitable documents were identified by computing cosine similarity

between the topic terms and documents using word embedding. While the lack of

information about the topic-document distributions is far from ideal, we chose to use

topics bhatia since it provides ratings for labels and these are expensive to obtain.

Samples of topics bhatia and topics tfidf are shown in Table 6.2.

Summary of all datasets for training and testing are shown in Table 6.3.
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Table 6.2: Samples of topics and labels from the datasets described in section 6.2.
Additional terms added to the topic are shown in blue.

Dataset Topic terms/Article Label/Title

topics bhatia oil energy gas water power fuel global price plant natural biofuel

topics tfidf
oil energy gas water power fuel global price plant natural
lng regasification plants cold gasification turbine exhaust
viable floating fluid usage conventional temperature joule
acceptability argon utilisation byproducts urea cryogenic

biofuel

ds wiki tfidf
uruguay uruguayan immigration spaniards immigrants
amerindians european th argentina backbone italians
background society syrian fructuoso countries matanza
paraguayans bolivians uruguayans peruvians venezuelans
americans colonial multiethnic del amerindian brazil
people

immigration
to uruguay

ds wiki sent
immigration uruguay started arrival spanish settlers co-
lonial period known banda oriental immigration uruguay
similar towards immigration argentina throughout his-
tory uruguay known gain massive waves immigration
around world specifically european immigration

immigration
to uruguay

Table 6.3: Statistics of the datasets described in section 6.2.

Dataset Subset Size
Vocabulary Size
Input Output

topics bhatia - 1,156 1,274 1,101

topics tfidf - 1,156 6,872 1,101

ds wiki tfidf
Train 226,282

181,793 13,947Validate 12,424
Test 11,800

ds wiki sent
Train 226,282

87,446 13,947Validate 12,424
Test 11,800
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6.3 Experimental Setup

6.3.1 Hardware and Software Specifications

The models were implemented with Python and using TensorFlow and PyTorch.

Most of the model training was carried out using NVIDIA Tesla P100 GPU, while

the inference was mostly done locally using a CPU i7. The models were trained for

a maximum of 10 epochs and to avoid overfitting an early stopping option was used

to monitor the loss on the validation set.

6.3.2 Model Hyperparameters

Model hyperparameters were tuned by randomly sampling combinations including:

learning rates, layer sizes, number of layers, and filter sizes for CNNs. The combina-

tion that produced the smallest loss was used. The hyperparamters that were tested

for each model architecture are shown in Table 6.4.

6.3.3 Baselines

The labels generated by the proposed models were compared with two baselines

obtained through truncating the topics’ words to the top n with the highest probability

using the topic model’s original word ordering. The first baseline label consists of

the top two words (Top-2 label), in terms of highest marginal probabilities (ϕ̂w,t).

While the second baseline label consists of the top three words (Top-3 label). The

intuition behind these baselines is that for each topic, the highest-ranked words given

by the original ordering from the topic model account for most of the information

describing the topic’s subject and therefore they are suitable as a label for the

topic (Lau et al., 2010).
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Table 6.4: The hyperparameters explored for training the proposed models in Chapter
5. In case of multiple values, bold font denotes the value used in training the final
model.

CNN
BiGRU &
BiLSTM

CNN-GRU &
CNN-LSTM

Transformer

optimizer adam adam, rmsprop adam adam

learning
rate

1e-3 1e-3, 1e-4, 1e-5 1e-3 5e-4

embedding
dimensions

128, 256 200, 300, 400 128, 256 128, 256, 512

hidden
dimensions

256, 512 200, 300, 400 256, 512 512, 1024

encoder
layers

5, 7, 10, 20 1, 2 3, 5, 7 3, 6

decoder
layers

5, 7, 10, 20 1, 2 1 3, 6

dropout 0.2, 0.5 0.1, 0.2, 0.4 0.2 0.1, 0.2, 0.4

clip 0.1, 0.2, 0.5 - 0.1, 0.2 1

positional
encoding

without, with - without, with with

kernel 3 - 3 -

filter 512 - 1024 -

attention
heads

- - - 8
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6.4 Topic Labels Quality Estimation

6.4.1 Comparison of Generated Labels with Gold Labels

The generated labels are compared with human-rated ones. For that purpose,

the dataset by Bhatia et al. (2016) is used which contains pairs of topics and

labels together with human scores of relevance. The similarity is computed using

BERTScore (Zhang et al., 2019)3, a text generation evaluation metric that uses

contextual embeddings to match terms from the reference sentence with terms

from the candidate sentence using cosine similarity and return the overall similarity

between the two sentences. BERTScore has been shown to have high correlation

with human judgements.

The BERTScore metric starts by aligning each word in the reference sentence

with its most similar one from the candidate sentence. Alignments are based on

a pairwise cosine similarity between the words’ embeddings. The embeddings are

generated using BERT (Devlin et al., 2019) that learns word representations via a

transformer encoder network (Vaswani et al., 2017). The final similarity score is the

sum of the maximum alignment between the words. Figure 6.2 shows the process of

alignment and matching between two sentences and the final score computation.

Formally, given a reference sentence y = (y1, y2, . . . , ym) and a candidate sen-

tence ŷ = (ŷ1, ŷ2, . . . , ŷn), BERTScore(y, ŷ) is computed as follows. First, generate

contextual embeddings for y and ŷ using BERT, resulting in a sequence of vectors

y = (y1,y2, . . . ,ym) and ŷ = (ŷ1, ŷ2, . . . , ŷn). Then, calculate the similarity between

the vectors via cosine similarity. For example the cosine similarity between reference

word yi and candidate word ŷj is computed as

sim(yi, ŷj) = y>i ŷj (6.1)

3Results were generated using the reference implementation: https://github.com/Tiiiger/
bert_score
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The weather is 
cold today

It is freezing 
today

Figure 6.2: The process of computing pair-wise similarity and matching words
between the reference sentence y and candidate sentence ŷ in BERTScore (Zhang
et al., 2019). In this figure, two scores are computed, recall (RBERT) and precision
(PBERT).

Finally, greedy matching between the reference vectors and candidate vectors is

performed to compute recall (RBERT), precision (PBERT) and F1 (FBERT) scores as

follows:

RBERT =
1

|y|
∑
yi∈y

max
ŷj∈ŷ

sim(yi, ŷj) (6.2)

PBERT =
1

|ŷ|
∑
ŷj∈ŷ

max
yi∈y

sim(yi, ŷj) (6.3)

FBERT = 2
PBERT ·RBERT

PBERT +RBERT

(6.4)

Since BERTScore does not rely on exact string matches between candidate and

reference labels, it is able to match appropriate label words with reference words even

if label word does not appear in the reference label. The test datasets (topics bhatia

and topics tfidf) have multiple appropriate reference labels for each topic (see Table

6.1) and therefore a pairwise BERTScore is performed. The pairwise BERTScores

for topic ti between the reference labels li = (li,1, ..., li,m) and the candidate label l̂i
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is computed as follows:

score topici = max
q=[1,...,m]

BERTScore(li,q, l̂i)

The model’s overall score is the mean score over all topics:

score model =
1

K

K∑
i=1

score topici

6.4.2 Comparison of Generated Labels with Topics

Useful labels should also meet additional criteria, such as being highly related to

the topic (Mei et al., 2007, Wan and Wang, 2016). A number of metrics are used to

further estimate the quality of the labels:

Relevance Labels are expected to be relevant to the topic. Adopted from (Mei

et al., 2007, Wan and Wang, 2016), the relevance is measured as the semantic

similarity between the generated labels and the topics using BERTScore. This is

a similar approach to the one described earlier (section 6.4.1), but instead, the

similarity is measured between the candidate label and the topic. For example, given

topic ti = (w1, . . . , wP ) and candidate label l̂i = (w1, . . . , wQ), relevance is computed

as

Relevance(ti, l̂i) = BERTScore(ti, l̂i) (6.5)

Discrimination Labels that have high relevance to multiple topics are not

useful since they make interpretability harder for the user. This metric is also

adopted from a metric proposed by (Mei et al., 2007). Discrimination is computed

by subtracting the label’s overall relevance to all topics from its relevance to its topic.

The discrimination score for l̂i given the topics T is computed as follows:

Discrimination(T, l̂i) = Relevance(ti, l̂i)−
1

K − 1

K−i∑
k=1

Relevance(tk, l̂i) (6.6)
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where K−i denotes all elements of K except i.

Coverage Labels that cover more information from their topics are considered

more useful and representative of the topic (Mei et al., 2007). The coverage of a label

is measured as the fraction of a topic’s terms that are also in the generated label:

Coverage(ti, l̂i) =

∑Q
q=1 1(l̂i,q ∈ ti)
|ti|

, (6.7)

where 1(condition) denotes 1 if the condition is true, 0 otherwise; and |.| de-

notes length.

Repetition Generative approaches tend to produce redundant terms and labels

with repetitive terms are not favoured. Repetition is computed as the mean of the

number of repeated terms in each label,

Repetition(l̂i) =

∑Q
q=1 #(l̂i,q ∈ l̂i)
|{l̂i,q}q∈{1,...,Q}|

, (6.8)

where #(.) denotes count; {} denotes a unique set of words.

The two metrics, relevance and discrimination, use BERTScore, which employs

contextualised word representation returned from BERT. Contextual word repres-

entations have different representations for the same word based on its surrounding

words. This raises the question of the appropriateness of BERTScore in measuring

the relevance and discrimination between labels and topics since topic’s constitute

words that do not have any order. A study has been performed to explore the effect

of shuffling the topic’s word on the stability of BERTScore. Appendix C includes

bar plots that show the relevance and discrimination for the models under different

configurations. Results show that the metrics maintained the relationships between

the models and delivered the same conclusion even after shuffling. This can be used

to describe BERTScore as appropriate metrics for the topics even when the order is

not considered.
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Table 6.5: BERTScore F1 measure between the generated labels and human-rated
labels. Bold numbers indicate the highest score in a column.

Train data ds wiki tfidf ds wiki sent

Test data topics bhatia topics tfidf topics bhatia topics tfidf

Baselines
Top-2 label 0.902 - - - -
Top-3 label 0.882 - - - -

Proposed models
BiGRU - 0.922 0.925 0.919 0.929
BiLSTM - 0.926 0.924 0.936 0.933
CNN - 0.916 0.927 0.903 0.927
CNN-GRU - 0.848 0.913 0.905 0.912
CNN-LSTM - 0.866 0.928 0.887 0.925
Transformer - 0.915 0.931 0.916 0.937

6.5 Results and Discussion

6.5.1 Evaluation using Gold Labels

Table 6.5 shows the BERTScore between gold labels and the labels generated by the

proposed models (see section 5.3 for the proposed models and section 6.4.1 for details

about BERTScore). Most of the proposed models’ performance was superior to the

baselines (Top-2 label and Top-3 label), except for CNN and CNN-LSTM, when the

model was trained with ds wiki tfidf and the labels generated using topics bhatia

(these topics consist of 10 terms only).

BiLSTM and Transformer are the best performing models. Performance of

BiLSTM exceeds the baselines models under all cases but it does decay when using

more words per topic (topics tfidf ). However, the Transformer model achieves the

best results when topics tfidf are used. This might be caused by the LSTM failing

to handle long sequences while the Transformer is better able to retain information

from earlier states in long sequences. In general, labels are scored higher when

generated given 30 terms (topics tfidf ) compared to limiting the topic to 10 terms

(topics bhatia). This behaviour is witnessed under all models with the exception

of BiLSTM.
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Another conclusion that can be drawn is that training models on ds wiki tfidf

does not make a substantial difference to performance, and in most cases using

the raw sequences from Wikipedia (ds wiki sent) leads to better performance. The

largest BERTScore of 0.937 was reported with the Transformer model that was

trained on ds wiki sent while using the topics with 30 terms (topics tfidf ).

6.5.2 Label Relevance to Topics

Table 6.6 reports the scores for the four metrics described in section 6.4.2 that

compare the generated labels with the topics themselves. Doing so is important since

the main aim of the labelling task is to produce informative labels that represent the

topics. It is worth noting that the baselines (Top-2 label and Top-3 label) are

not included in this evaluation given that they are extracted from the topics’ terms

and this would skew the scores in their favour.

The highest relevance for the topics is observed for the CNN-LSTM followed

by the Transformer model. The CNN model obtained the highest discrimination

score, which means its generated labels are different across the topics. It has also

produced labels that contain more topic terms than the other models (i.e., it has

better coverage). The BiGRU model generates a smaller number of repetitive

terms within the label which is to be expected as its labels tend to be short (see

Tables 6.7 and Table B.1 for samples of the labels generated by the BiGRU model).

Similarly, the Transformer labels contain minimal repetition. On the other hand, the

CNN-based models (CNN, CNN-GRU, and CNN-LSTM) demonstrated the highest

repetition within their labels. Overall, these results indicate that the Transformer

model consistently performs well under all metrics and ranks second (except under

discrimination where CNN-LSTM outperformed it by a small margin).
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Table 6.6: Metrics to assess the quality of the generated labels in relation to the
topics. † indicates scores are based on cosine similarity using BERTScore, while ‡
indicates scores are based on exact matches and only considers unigrams. An up
arrow ↑ indicates that higher values are better and down arrow ↓ that lower values
are better. Bold values denote the highest score across the models and underlined
scores denote second highest. All reported scores are statistically significant using
Wilcoxon signed-rank test with p < 0.05.

Model
Metric

Relevance † ↑ Discrimination † ↑ Coverage ‡ ↑ Repetition ‡ ↓

BiGRU 0.819 ± 0.01 0.016 ± 0.01 0.092 ± 0.05 0.011 ± 0.01
BiLSTM 0.823 ± 0.01 0.020 ± 0.01 0.112 ± 0.04 0.038 ± 0.02
CNN 0.822 ± 0.02 0.025 ± 0.01 0.144 ± 0.06 0.146 ± 0.06
CNN-GRU 0.785 ± 0.03 0.011 ± 0.01 0.077 ± 0.01 0.394 ± 0.32
CNN-LSTM 0.827 ± 0.01 0.024 ± 0.01 0.120 ± 0.05 0.117 ± 0.14
Transformer 0.824 ± 0.01 0.021 ± 0.01 0.121 ± 0.04 0.026 ± 0.02

6.5.3 Qualitative Analysis

Table 6.7 shows sample topics with their gold labels and the generated automatic

labels (Additional samples can be found in Appendix B.1). The first topic is about

sports, in particular football which is indicated by the terms {football, nfl}. The

BiGRU model generated a generic label that could be related to any sport. The

BiLSTM model produced a highly specific label {new york yankees season} which is

relatively coherent but misleading since it refers to baseball rather than football. The

labels generated by the CNN and CNN-LSTM models are related to the topic but

generic and contain repetitive terms, while the CNN-GRU model generated knight

which can be a football team name or an honour. Specific labels such as this one

require additional knowledge to make the desired association. On the other hand,

the Transformer’s label is coherent, specific and representative of the topic.

The second topic is about the 2008 Olympic games in China. BiGRU also

produced a generic label in this example, whereas the BiLSTM and Transformer

return coherent and informative labels. CNN and CNN-LSTM maintained the same

behaviour as in topic 1, where their labels have unnecessary repetitive terms. Labels

generated with (CNN, CNN-GRU and CNN-LSTM) models are from the correct
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domain, but they are less coherent when compared to the other models.

An error analysis was carried out to examine cases where the models produced

sub-optimal labels. For example, the third topic in Table 6.7 was not assigned

an appropriate label by most of the models which may be due to the topic being

incoherent and having no obvious theme. Topic four is another example where the

models failed to produce appropriate labels. The topic is from a medical domain

and contains domain-specific words which are not in the vocabulary that the models

were trained on, since Wikipedia is a general domain resource.

6.6 Conclusion

This chapter presented the implementation details for an automatic topic label

generation approach using several neural network models. The chapter also included

automatic evaluation approaches to estimate the quality of the generated labels in

addition to qualitative analysis that highlights the coherence and relevance of the

labels to the topics. The proposed labelling models have shown promising results and

the Transformer-based model stands out as being able to produce coherent labels.
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Topic 1 game team play season yard coach quarterback nfl run football

Gold labels playoffs, head coach, national football league
BiGRU season
BiLSTM new york yankees season
CNN football football team
CNN-GRU knights
CNN-LSTM football football football football game
Transformer nfl game

Topic 2 china chinese olympics gold olympic team win beijing medal sport

Gold labels olympic gold, summer olympic games, winter olympic games
BiGRU china
BiLSTM china at the summer paraympics
CNN china chinese olympics of the olympics
CNN-GRU gold at the summer olympics
CNN-LSTM china china at the asia
Transformer china at the summer olympics

Topic 3 mr mrs young lady look friend tell mother miss father

Gold labels aunt, wife
BiGRU the
BiLSTM the
CNN tell
CNN-GRU young
CNN-LSTM mr
Transformer the devil is

Topic 4 artery vascular coronary stent vein vessel carotid aortic aneurysm
arterial

Gold labels pulmonary artery, ascending aorta, aneurysm, blood vessel, aortic
stenosis, stenosis, aorta, aortic valve, aortic aneurysm

BiGRU hatun
BiLSTM gaius
CNN effects of
CNN-GRU syndrome
CNN-LSTM combodia
Transformer ma

Table 6.7: Labelling samples from the proposed models.
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7
CONCLUSIONS AND FUTURE

WORK

This thesis introduced several approaches for improving the interpretability of topics

generated automatically using topic models. This chapter presents a summary of the

findings and contributions of the thesis and proposes directions for future research.

7.1 Summary of Thesis Contributions

As stated in Chapter 1, the main aim of this thesis is to propose ways of improving the

interpretability of topics by humans. This aim was approached by addressing three

sub-problems: (1) creating alternative topic representations that are more compre-

hensible; (2) evaluating the usefulness of topic representation; and (3) summarising

the main subject of topics by assigning them short phrases.

Chapter 2 introduced topic models as a method of summarising document collec-

tions, and it presented various approaches to evaluating topic models. The chapter

also discussed several extensions to topic models to accommodate a specific task or
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address a drawback. The available approaches to evaluating the topic model’s output

were surveyed. Various ways of representing topic model outputs were presented in

addition to the approaches employed to improve representations to promote their

easier comprehension by humans.

Chapter 3 presented an approach to improving the output of topic models by

re-ranking topics’ words. The re-ranking methods were evaluated by a proposed

approach based on an IR task to retrieve relevant documents. The re-ranking methods

were found to be useful in identifying informative words and in discriminating relevant

documents from non-relevant ones. In this evaluation approach, the most useful

re-ranking methods were based on information in the corpus, which incorporated

information about the importance of words, both within topics and in their relative

frequency in the entire corpus.

Chapter 4 further evaluated the set of re-ranking metrics in the previous chapter.

Four methods were assessed through an alternative evaluation approach based on a

crowdsourcing experiment in which the participants were asked to associate articles

with related topics. The crowdsourcing study was designed to assist the usefulness

and interpretability of the topics produced by re-ranking. Re-ranking the topic

words was found to improve the interpretability of the topics by the participants.

Based on this finding, it could be used as a post-processing step to improve topic

representation. The study included an investigation of the effects of using a simple

word list representation and a word cloud representation on a topic’s interpretability.

The findings showed that word cloud representations were not advantageous to the

interpretability of the topics by humans. Therefore, using a simple representation,

such as a list of words, was found to be superior.

Chapter 5 introduced a new approach to topic labelling through neural networks.

Various neural networks were explored, such as CNNs, RNNs, and Transformers.

Labelling a topic was defined as a Seq2Seq problem, in which the topic’s terms were

applied to the model, and another set was produced as labels. The produced labels
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reflected the subject covered and contained by the topic’s terms.

Chapter 6 presented the datasets used to train and test the neural-based labelling

model proposed in the previous chapter. The training dataset was created following

a distant-supervision approach that can be used to resolve the issue of limited

availability of data. On the other hand, the used testing data was publicly released

by Bhatia et al. (2016), it contained pairs of topics and labels where the labels

appropriateness for the topics was rated by humans. It also described in detail the

implementation of the neural-based label generation approach. The generated labels

were automatically evaluated by comparing them with a set of gold labels that were

rated by humans. The generated labels were also compared with the topics’ terms to

ensure that an appropriate label was also representative of the topic. The proposed

neural-based approach showed promising results and produced appropriate labels in

most cases. The findings also showed that labels created using the transformer-based

model were more coherent than those produced by the other models.

7.2 Future Work

The methods proposed in this thesis could be extended and improved as follows:

• Topic Ranking

– The methods proposed for re-ranking the topic terms were based on in-

formation from the corpus (e.g., IDF) and semantic similarity between

the topic terms using vector neural representations (e.g., Word2vec em-

beddings). However, the embeddings employed were context-independent,

which meant that a single word had one vector representation regardless

of its meaning in the context. For example, the word “cat” in a topic

about animals refers to the species of a small carnivorous mammal, yet

the same word within a medical topic about diseases and diagnosis refers

to a diagnostic scan device called computerised axial tomography (CAT).
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In both topics, the word has the same vector representation; therefore,

misleading similarities between the topic’s words would be inferred. A

possible alternative ranking approach could make use of context-aware

word embeddings (e.g., ELMo (Peters et al., 2018) and BERT (Devlin

et al., 2019)). Such word representations were generated using large

language models and therefore learned separate vector representations of

a word depending on its surroundings.

• Topic Labelling

– In Chapter 5 and 6, the topics used in the labelling task were in the original

order given by the topic model. However, the effect of re-ranking the

topic’s words on the resulting label was not explored. Because re-ranking

has been shown to improve the topics’ interpretability, it is possible that

it would also have a positive effect on the generated labels.

– The hypothesis search in the neural labelling model followed an approach

in which the maximum probability word was chosen in each step (i.e., the

greedy approach). Following this approach, the decoder always prefers

easier words, and multiple common words are predicted more often than

rare words (Ippolito et al., 2019). However, a broader hypothetical space

for decoding can be used (i.e., the beam search approach), which has been

shown to generate better sequences (Ippolito et al., 2019). At each time

step, n possible hypotheses are considered, which allows for a wide variety

of potential sequences. Finally, the sequence with the largest product of

probability is the chosen prediction.

– The labelling model has an embedding layer that is learned word em-

beddings with the model. However, previous NLP work using neural

networks has shown that using pre-trained embeddings is effective and

provides additional useful information to the model without the extra cost

of training it (Liu et al., 2015).

126



BIBLIOGRAPHY

Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. Syntactically supervised Trans-

formers for faster neural machine translation. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics (ACL ’19), pages 1269–

1281, Florence, Italy, 2019.

Nikolaos Aletras and Arpit Mittal. Labeling topics with images using neural networks.

In Proceedings of the European Conference on Information Retrieval (ECIR ’17),

pages 500–505, Aberdeen, UK, 2017.

Nikolaos Aletras and Mark Stevenson. Representing topics using images. In Proceed-

ings of the 2013 conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (NAACL-HLT ’13),

pages 158–167, Atlanta, Georgia, 2013a.

Nikolaos Aletras and Mark Stevenson. Evaluating topic coherence using distributional

semantics. In Proceedings of the 10th international conference on Computational

Semantics (IWCS ’13), pages 13–22, , Potsdam, Germany, 2013b.

Nikolaos Aletras and Mark Stevenson. Labelling topics using unsupervised graph-

based methods. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (ACL ’14), pages 631–636, Baltimore, Maryland, 2014.

Nikolaos Aletras, Timothy Baldwin, Jey Lau, and Mark Stevenson. Representing

topics labels for exploring digital libraries. In Proceedings of the 14th ACM/IEEE-

CS Joint Conference on Digital Libraries (JCDL ’14), pages 239–248, London,

United Kingdom, 2014.

Nikolaos Aletras, Timothy Baldwin, Jey Han Lau, and Mark Stevenson. Evaluating

topic representations for exploring document collections. Journal of the Association

for Information Science and Technology, 68(1):154–167, 1 2017.

127
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Marie Liénou, Henri Mâıtre, and Mihai Datcu. Semantic annotation of satellite

images using latent dirichlet allocation. IEEE Geoscience and Remote Sensing

Letters, 7(1):28–32, 1 2010.

Pengfei Liu, Shafiq Joty, and Helen Meng. Fine-grained opinion mining with recurrent

neural networks and word embeddings. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP ’15), pages 17–21,

Lisbon, Portugal, 2015.

Hsin Lu, Chih Wei, and Fei Hsiao. Modeling healthcare data using multiple-channel

latent dirichlet allocation. Journal of biomedical informatics, 60:210–223, 2016.

Yue Lu, Qiaozhu Mei, and ChengXiang Zha. Investigating task performance of

probabilistic topicmodels: An empirical study of plsa and lda. Information

Retrieval, 14(2):178–203, 2011.

Davide Magatti, Silvia Calegari, Davide Ciucci, and Fabio Stella. Automatic labeling

of topics. In Proceedings of the 9th International Conference on Intelligent Systems

Design and Applications (ISDA ’09), pages 1227–1232, Pisa, Italy, 2009.

Winter Mason and Siddharth Suri. Conducting behavioral research on Amazon’s

Mechanical Turk. Behavior Research Methods, 44(1):1–23, 3 2012.

Julian McAuley, Christopher Targett, and Anton van den Hengel. Image-based

recommendations on styles and substitutes. In Proceedings of the 38th International

ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR ’15), pages 43–52, Shanghai, China, 2015.

Jon Mcauliffe and David Blei. Supervised topic models. Advances in neural informa-

tion processing systems, pages 121–128, 2008.

Andrew Mccallum, Andrés Corrada-Emmanuel, and Xuerui Wang. Topic and

role discovery in social networks. In Proceedings of the 19th International Joint

Conference on Artificial Intelligence (IJCAI ’05), pages 786–791, Edinburgh,

Scotland, 2005.

Qiaozhu Mei and ChengXiang Zhai. Discovering evolutionary theme patterns from

text. In Proceeding of the eleventh ACM SIGKDD international conference on

135



Knowledge discovery in data mining (KDD ’05), pages 198–207, Chicago, Illinois,

2005.

Qiaozhu Mei and ChengXiang Zhai. A mixture model for contextual text mining.

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD ’06), pages 649–655, Philadelphia, PA, 2006.

Qiaozhu Mei, Chao Liu, Hang Su, and ChengXiang Zhai. A probabilistic approach to

spatiotemporal theme pattern mining on weblogs. In Proceedings of the 15th inter-

national conference on World Wide Web (WWW ’06), pages 533–542, Edinburgh,

Scotland, 2006.

Qiaozhu Mei, Xuehua Shen, and Chengxiang Zhai. Automatic labeling of multinomial

topic models. In Proceedings of the 13th ACM SIGKDD international conference

on Knowledge discovery and data mining (KDD ’07), pages 490–499, San Jose,

California, 2007.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. In Proceesing of the 1st International Con-

ference on Learning Representations, Workshop Track (ICLR ’13), page 500–509,

Scottsdale, Arizona, 1 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-

tributed representations of words and phrases and their compositionality. In

Proceedings of the 26th Annual Conference on Neural Information Processing

Systems (NIPS 2013), pages 3111–3119, Lake Tahoe, Nevada, 2013b.

David Mimno and Andrew Mccallum. Expertise modeling for matching papers with

reviewers. In Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD ’07), San Jose, California, 2007.

David Mimno, Hanna Wallach, Edmund Talley, Miriam Leenders, and Andrew

Mccallum. Optimizing semantic coherence in topic models. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP ’11),

pages 262–272, Edinburgh, United Kingdom, 2011.

Thomas M Mitchell. Machine learning. McGraw-Hill, Inc., USA, 1 edition, 1997.

John Mohr and Petko Bogdanov. Introduction-topic models: What they are and

why they matter. Poetics, 41(6):545–569, 2013.

Kevin Murphy. Machine learning: A probabilistic perspective. MIT press, 2012.

136



Claudiu Musat, Julien Velcin, Stefan Trausan-Matu, and Marian-Andrei Rizoiu.

Improving topic evaluation using conceptual knowledge. In Proceedings of the

Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI

’11), pages 1866–1871, Barcelona, Spain, 2011.

Naresh Nagwani. Summarizing large text collection using topic modeling and

clustering based on mapreduce framework. Journal of Big Data, 2, 2015.

Vinod Nair and Geoffrey Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on Machine Learning

(ICML ’10), pages 807–814, Haifa, Israel, 2010.

David Newman, Han Lau, Karl Grieser, and Timothy Baldwin. Automatic evaluation

of topic coherence. In Proceedings of Human Language Technologies: The 11th

Annual Conference of the North American Chapter of the Association for Compu-

tational Linguistics (NAACL HLT’10), pages 100–108, Los Angeles, California,

2010.

Viet Nguyen, Yuening Hu, Jordan Boyd-Graber, and Philip Resnik. Argviz: Inter-

active visualization of topic dynamics in multi-party conversations. In Proceedings

of the 2013 Annual Conference of the North American Chapter of the Association

for Computational Linguistics (HLT-NAACL ’13), pages 36–39, Atlanta, Georgia,

2013.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank

citation ranking: Bringing order to the web. Technical report, Stanford InfoLab,

1999.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method

for automatic evaluation of machine translation. In Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics (ACL ’02), pages 311–318,

Philadelphia, Pennsylvania, 2002.

Michael Paul. Interpretable machine learning: Lessons from topic modeling. In Pro-

ceedings of Human-Computer Interaction Workshop on Human-Centered Machine

Learning (CHI HCML ’16), San Jose, California, 2016.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP ’14), pages 1532–1543, Doha,

Qatar, 2014.

137



Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.

In Proceedings of the 16th North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies (NAACL-HLT ’18), pages

2227–2237, New Orleans, Louisiana, 2 2018.

Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,

and Max Welling. Fast collapsed gibbs sampling for latent dirichlet allocation. In

Proceedings of the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD ’08), pages 569–577, Las Vegas, Nevada, 2008.

Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher Manning. Labeled

LDA: A supervised topic model for credit attribution in multi-labeled corpora.

In Proceedings of the 2009 conference on empirical methods in natural language

processing (EMNLP ’09), pages 248–256, Suntec, Singapore, 2009.

Daniel Rampage, Susan Dumais, and Daniel Liebling. Characterizing microblogs

with topic models. In Proceedings of the Fourth International AAAI Conference on

Weblogs and Social Media (ICWSM ’10), pages 338–349, Washington, DC, 2010.

Yafeng Ren, Ruimin Wang, and Donghong Ji. A topic-enhanced word embedding

for Twitter sentiment classification. Information Sciences, 369:188–198, 11 2016.

Stephen Robertson. Understanding inverse document frequency: on theoretical

arguments for IDF. Journal of Documentation, 60(5):503–520, 10 2004.
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Tweet aggregation. In Proceedings of the 21st Nordic Conference on Computational

Linguistics (NACL ’17), pages 77–86, Gothenburg, Sweden, 2017.

Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. Exploring

topic coherence over many models and many topics. Empirical Methods in Natural

Language Processing, 20:952–961, 2012.

Mark Steyvers and Tom Griffiths. Probabilistic topic models. 2007.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end

memory networks. In Proceedings of the 28th Internation Conference on Neural

Information Processing Systems (NIPS ’15), pages 2440–2448, Montreal, Canada,

2015.

Ilya Sutskever Google, Oriol Vinyals Google, and Quoc V Le Google. Sequence to

sequence learning with neural networks. In Proceedings of the 27th International

Conference on Neural Information Processing Systems (NIPS ’14), pages 3104–

3112, Montreal, Canada, 2014.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing of

deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):

2295–2329, 2017.

Matthew Taddy. On estimation and selection for topic models. In Proceedings of the

15th International Conference on Artificial Intelligence and Statistics (AISTATS

’12), page 1184–1193, La Palma, Canary Islands, 2012.

Yee Teh, Michael Jordan, Matthew Beal, and David Blei. Hierarchical dirichlet

processes. Journal of the American Statistical Association, 101(476):566–1581,

2006.

140



Ivan Titov and Ryan Mcdonald. A joint model of text and aspect ratings for sentiment

summarization. In Preceedings of 46th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies (ACL-HLT ’08), pages

308–316, Columbus, Ohio, 2008.

Kristina Toutanova and Mark Johnson. A bayesian LDA-based model for semi-

supervised part-of-speech tagging. In Proceedings of the 22nd International Con-

ference on Neural Information Processing Systems (NIPS ’08), pages 1521–1528,

Vancouver, Canada, 2008.

Edward Tufte and Glenn Schmieg. The visual display of quantitative information.

American Association of Physics Teachers, 1985.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple

and general method for semi-supervised learning. In Proceedings of the 48th Annual

Meeting of the Association for Computational Linguistics (ACL ’10), pages 11–16,

Uppsala, Sweden, 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention as all you need. In

Preceedings of the 31st International Conference on Neural Information Processing

Systems (NIPS ’17), pages 5998–6008, Long Beach, CA, 2017.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: A neural image caption generator. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR ’15), pages 3156–3164, Boston,

MA, 2015.

Hanna Wallach. Topic modeling: Beyond bag-of-words. In Proceedings of the

23rd international conference on Machine learning (ICML ’06), pages 977–984,

Pittsburgh, Pennsylvania, 2006.

Hanna Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation

methods for topic models. In Proceedings of the 26th Annual International Con-

ference on Machine Learning (ICML ’09), pages 1105–1112, Montreal, Canada,

2009.

Xiaojun Wan and Tianming Wang. Automatic labeling of topic models using text

summaries. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (ACL ’16), pages 2297–2305, Berlin, Germany, 2016.

141



Chong Wang, David Blei, and Li Fei-Fei. Simultaneous image classification and

annotation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR ’09), pages 1903–1910, Miami, FL, 2009.

Xuerui Wang and Andrew Mccallum. Topics over time: A non-markov continuous-

time model of topical trends. In Proceedings of the 12th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD ’06), pages

424–433, Philadelphia, PA, 2006.

Xuerui Wang, Andrew Mccallum, and Xing Wei. Topical n-grams: Phrase and

topic discovery, with an application to information retrieval. In Proceedings of the

7th IEEE International Conference on Data Mining (ICDM ’07), pages 697–702,

Omaha, NE, 2007.

Xing Wei and W Bruce Croft. Lda-based document models for ad-hoc retrieval.

Technical report, 2006.

Pengtao Xie and Eric P. Xing. Integrating document clustering and topic modeling.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence

(UAI ’13), pages 694–703, Bellevue, Washington, 9 2013.

Linzi Xing and Michael J Paul. Diagnosing and improving topic models by analyzing

posterior variability. In Proceedings of the Advancement of Artificial Intelligence

(AAAI ’18), pages 6005–6012, New Orleans, Louisiana, 2018.

Michael Yandex and Natalia Loukachevitch. A method of accounting bigrams in topic

models. In Proceedings of the 2015 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT ’15), pages 1–9, Denver, Colorado, 2015.

Hui Yang. Constructing task-specific taxonomies for document collection browsing.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-

CoNLL ’12), pages 1278–1289, Jeju Island, Korea, 2012.

Xing Yi and James Allan. A comparative study of utilizing topic models for in-

formation retrieval. In Proceedings of 31th European Conference on Information

Retrieval (ECIR ’09), pages 29–41, Toulouse, France, 2009.

Jia Zeng, William K. Cheung, and Jiming Liu. Learning topic models by belief

propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35(5):1121–1134, 2013.

142



Cheng Zhang, Carl Ek, Xavi Gratal, Florian Pokorny, and Hedvig Kjellstrom.

Supervised hierarchical dirichlet processes with variational inference. In Proceedings

of the IEEE International Conference on Computer Vision Workshops (ICCVW

’13), pages 254–261, Sydney, Australia, 2013.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Weinberger, and Yoav Artzi.

BERTScore: Evaluating text generation with BERT. In Proceedings of the 8th Inter-

national Conference on Learning Representations (ICLR ’20), volume abs/1904.0,

Addis Ababa, Ethiopia, 4 2019.

Jun Zhu, Amr Ahmed, and Eric Xing. MedldA: Maximum margin supervised topic

models. Journal of Machine Learning Research, 13:2237–2278, 2012.

Jun Zhu, Xun Zheng, and Bo Zhang. Improved Bayesian logistic supervised topic

models with data augmentation. In Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (ACL ’13), pages 187–195, Sofia,

Bulgaria, 2013a.

Jun Zhu, Xun Zheng, Li Zhou, and Bo Zhang. Scalable inference in max-margin

topic models. In Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data mining (KDD ’13), pages 964–972, Chicago,

Illinois, 2013b.

143



A
ETHICAL APPROVAL

144



 

  
 
 

����������	
��
���

������	
��
�������	�
�������

����
����������	
��������

���
��
�����
����
��
�����

�����
	����

�����
������
�

����
	����

��������

������

����� ������!�"�##���� �� $�

%��&�����
	����

%"�'(���$���
���

)��$��
	����

�'�

����
$�������

��'��'���*

��������	��

(���$���
����	��

����+�	&
���

%���&���$���
�������"

,������"
�������
������

-��$��
,������	�����	�
�#
���$��	��

.��
+�$�
�������"
�������
$	���&�	�
��������
��/��01
�	
�������	��
0��"
�"�
�����������
�������2

��

�������
����������	��

3
	��
�	�����
3

������	
4�
4����
�	#�������	

�$���/����

���� �����

)���
���/�	��	 ���� ���/�	��	!�"�##���� �� $�

%�������
�������
�$�����	


�
%������
����
50"���
�������6��7

�����
����
5�#
����
���������	7�

8$�
�9
:$�+
����

�	���������
�	�
����
5�#
�������7

���
9
��6�$��+
����

%������
����

3
	��
�	�����
3

�$���6����+

;	��������
�#
����

8����
�����
�$�����
<=2

��

;	/��/��
�.�2

��

.����"
�	�'��
������
����
"$��	3�	���/�	���	��
��$�+2

��

��,(
#$	���2

��

�����+
��
����
��
�$6�������	
�	
�
����3��/��0��
��$�	��2

>��

���
6+
�	��"��
<=
�	����$���	2

��

;	/��/��
"$��	
����$�2

��

(��	����
�����
��
�
�������
��/���
��$�+2

��

;	/��/��
������
����
���/����
���/����
6+
�
�����
�$�"����+2

��

;	/��/��
��$���
0"�
����
�"�
�������+
��
��	��	�2

��

;	/��/��
�������"
�	
&��$��
�"��
���
�	
�"�
.���
?##���
����
�#
@%������6��
���������
&��$��
��
��&�	������	�2

3
	��
�	�����
3

;	/��/��
����	�����+
/$�	���6��
���������	��2

��

;	/��/��
����	�����+
"�&"�+
��	����/�
������2

��

������	
(�
�$����+
�#
�������"

� 
����
A
?6�����/��

8"�
�������
����
��
������
�	�
�������
�"�
$��#$�	���
�#
�
��	&�
�#
/��$��
�������	�����	�
#��
���$��	��
5��
����
�#

���$��	��7 
�
0���
��	&�
�#
�$�"
�������	�����	�
"��
6��	
��/������
�	�
$���
0��"�	
���$��	�
6��0��	&
�	���#����1

�B������
�	��$��
0���
���$��
�	�
�����
�#
��+
����� 
.�0�/��1
�"�+
"�/�
	��
6��	
�+�����������+
��������
�	�

�/��$���� 
)�	+
�#
�"���
�������	�����	�
"�/�
6��	
&�	������
#��
�"�
�$��$�
�#
�����
������1
�����������
��&����"��
�"��

���
��
���	��#+
�"�
$	����+�	&
�"����
#���
�
���������	
�#
���$��	�� 
8"�
���
�#
�"�
��$�+
��
��
�/��$���
�������	�����	�

#��
�����
������
6+
�������	�	&
0"��"��
�	��/��$���
��	
���	��#+
�"�
�	�
�"��
��
����
�����������
#��
�
������$���

���$��	� 


� 
)��"�����&+

��
0���
������
�
��6
�	
�
���	����
���0���$���	&
����#���
5(��0����0��7
�	
0"��"
���������	��
���
�����	���
0��"
�

���$��	�
�	�
�������	�����	�
#��
�
�����
	$�6��
�#
������ 
%��������	��
0���
6�
�����
��
������
�"�
�����
�"��
��
����

�$���6��
#��
�"��
���$��	�
5�	
�B�����
��	
6�
���	
�	
��&$��
�
�	
�"�
(�	��	�
#���
���$��	�7 


8�����
0���
6�
�������
#���
�
���	����
���$���
��	&$�&�
%�������	&
����$�
5� & 
��
��0�&��$��1
,�$����
(���$�
��
�

���������
�$��7
�	�
��	$���+
�"�����
��
�	�$��
�"��
	�	�
��	���	
����	�����+
�##�	��/�
��	��	� 
C$�����	�
0���
�"�	
6�

�$����������+
&�	������
6+
��	����+
�������	&
�
���$��	�
#���
�"�
����$�
�	�
���	��#+�	&
�	�
�����
�"��
��
������+

����������
0��"
�"�
���$��	�
5$��	&
�"�
�����
�����D�
���$��	�3�����
���6�6����+
������6$���	7
�	�
�"���
�"��
���
	�� 

8"���
E$�����	�
0���
����
6�
��	$���+
�"����� 


A
.1

E
th

ics
A

p
p
lica

tio
n

145



 

  


 
%����	��
��#��+

.�/�
+�$
���������
+�$�
��������	���
����
��������	�
������$���1
�#
�����������2

3
	��
�	�����
3

,�����
�����	��
��#��+
���$��2

��

3
	��
�	�����
3

������	
��
�6�$�
�"�
���������	��

� 
%���	����
%��������	��

8"�
���	
��$��
#��
��������	&
���������	��
0���
6�
�"��$&"
�"�
(��0����0��
���0���$���	&
0�6���� 
��
0�$��
����
����
��

����
���	
�"�
�����	
�#
$��	&
�"�
<	�/�����+
�#
�"�##����
/��$	�����
���� 

� 
,���$���	&
%���	����
%��������	��

8"�
���������	��
0���
6�
�������"��
�"��$&"
(��0����0��@�
����#��� 

� � 
��/������	&
���"���

����
�"�
��$�+
6�
��/�������
$��	&
�"�
/��$	����
�����
#��
���##
��
��$��	��
���	���	��
6+
(�(�2
>��

��
0���
�	������+
�##��
�����
/��
(��0����0��D�
�	���#���
0��"�$�
��/������	&
�	
�"�
/��$	����@�
���� 
��
0�$��
����
��
�����	

�"�
�����	
��
������6$��
��
�	
�"�
����
��
�������
�������	��
���������	��
�#
��E$����1
���"�$&"
0�
��+
	��
	���
��
��
�� 


 
(�	��	�

����
�	#�����
��	��	�
6�
�6���	��
#���
�"�
���������	��2
5� � 
�"�
��������
�������7
>��

���"
$���
0���
6�
�"�0	
�
��	��	�
#���
�	�
0���
6�
$	�6��
��
�����
�"�
����
$	���
�"�+
"�/�
�	�������
�"��
�"�+
"�/�
����

��
�	�
�&���
0��"
���
��	��	�� 

� 
%�+��	�

����
#�	�	����'�	
��	�
��+��	��
6�
�##����
��
���������	��2
>��

�
�����
��+��	�
0���
6�
�##����
��
�����	����
/��$	�����
#��
�"���
���� 
8"��
0���
�	�$��
�"��
���$���
��	
6�
&��"����

E$����+ 
8"�
��+��	�
0���
6�
����
�"��$&"
�"�
(��0����0��
����#��� 


��
�	��������
�����	����	&
/��$	�����
��
<�
��	��
���
��&�
�#
#�/�
�$�&��	��
5(��0����0��D�
�$&&�����
��+��	�7 
��

��+
/��+
�"��
���$	�
��
��	����
�"�
	$�6��
�#
�		�������
�"�
����
��������1
6$�
	��
6+
�
�$6���	����
���$	� 

9 
%���	����
.���
��
%��������	��

�"��
��
�"�
����	����
#��
�"+�����
�	�'��
��+�"���&����
"���'��������
��
�"�
���������	��2

��
����	����
#��
"���
��
���������	��
��
�	��������� 
-��$	�����
���
�	�+
�����
��
��������
�	
�	��	�
�$�/�+
��	�����	&
�#

�
	$�6��
�#
�����
����� 
8"�
E$�����	�
0���
6�
��	$���+
�"�����
��
�	�$��
�"��
	�
���$��	��
��
������
0��"
����	����
��

��$��
��������
���
�	��$��� 

.�0
0���
�"��
6�
��	�&��
��
�	�$��
�����������
���������	
�	�
0���36��	&
�#
�"�
���������	��2

%��������	��
�$��
����/��+
/��$	����
��
�����������
�	
�"�
��$�+
�	�
���
#���
��
0��"���0
��
�	+
���	� 
(��0�#��0��D�

�����
�	�
��	�����	�
�����
�"��
$����
�#
�"�
����
�$��
6�
��
�����
�F
+����
�#
�&� 

������	
��
�6�$�
�"�
����

� 
����
(�	#���	������+
)���$���

8"�
�	�+
�	#�������	
�"��
0���
6�
������
0���
6�
�"�
�	�	+��G��
�����	���
��
����� 
���
�����	���
���
�	�	+��G��
�	
�"�

��	��
�"��
0�
0���
�	�+
�����/�
#���
(��0����0��
�"�
���������	�@�
�	�0���
��
�"�
E$�����	�
������
0��"
�"���
;��
�	�
0�

"�/�
	�
�6����+
��
$��
�"���
;��
��
�����	���+
���	��#+
���������	�� 
��
��"��
�����	��
�	#�������	
0���
6�
������ 
8"�

(��0�#��0��
����#���
��������
�����	��
�	#�������	1
6$�
�"��
��
	��
�/����6��
��
$� 

� 
����
�����&�

8"�
%�����+
�	��+���
0���
����
�����
�	
�����
��������D�
����$��� 
����
�������	��
�	��+���
��+
����
����
�����
�	
)���

���/�	��	D�
����$���� 
��
�	��+����	
0���
6�
$���
&�/�	
�"�
	��$��
�#
�"�
���� 


��
�B����
�"�
����
��
6�
����
�/����6��
#��
#$�$��
�������"
��������
�	�
0���
�����	
������ 
;#
�"�
����
���/��
��
6�

�	�������	&
�	�
$��#$�
�	�$&"
0�
��+
����
��
�/����6��
��
��"��
�������"���
5� & 
/��
�
<,�
�$6���"��
�	
�
�������"

�����7 

������	
��
�$������	&
���$��	�����	

;	#�������	
A
(�	��	�

���
/�����	�

���
/�����	�

%��������	�
�	#�������	
�"����
����/�	�
��
�������2

>��

���$��	�
��
�9*�
5-�����	
�7

���$��	�
���HH�H
5-�����	
�7

���
/�����	�

(�	��	�
#����
����/�	�
��
�������2

>��

���$��	�
��
�9*�
5-�����	
�7

���
/�����	�

�������	��
���$��	�����	

���$��	�
���*�9�
5-�����	
�7

����
��"���
,�/��0��
���	���	�
�����/��

�B���	��
���$��	�����	

3
	��
�	�����
3

������	
I�
����������	

��&	��
6+�

�����
��������

����
��&	���

���
��
:$�+
����
��
����*

?##����
	����

�������	��
�	#�
�"���
$�������
��'�H'���F


@�	#��"����#���)�+ ���B 
�	
��	�
0��"
I�%, 


333333333333333333333333333333333333333333333333333333333333333333333333333

���	���	�
��'��'���*


��@��
���		�	&
��
��/�
�"�
�B������	��
�������
�$�
$	���
�"��
��"���


�����/��
#���
�"�
(��0�#��0��
����#���
��
���G�	
)��"�	����
8$�� 
��@��


����	�����+
6�
�$��
��/�	&
��
�
��##���	�
���0�
��$��	&
����#���
�	�
�"�


�"�	&�
"��
6��	
�##����/��+
#�����
�	
$�
��
�$�
��
�
�"�	&�
�	


(��0�#��0��@�
6$��	���
����� 

�����/��
6+
����
��/��0��
��'��'�*
0��"
�	�+
�����	�
��
�"���
�"��
�"�
����
��
$������'���/����
�	
�"�
I�%,

�������	�
�	#�
�"��� 


146



  

                                                                         20/06/2018 

      Participant Information Sheet 
  
This study forms part of a research project. The aim of this information sheet is to allow you 
to understand the purpose of the project, its aims and your role in it.  
 
New data protection legislation comes into effect across the EU, including the UK on 25 May 
2018; this means that we need to provide you with some further information relating to how 
your personal information will be used and managed within this research project. This is in 
addition to the details provided within the information sheet that has already been given to 
you. 
 
The University of Sheffield will act as the Data Controller for this study. This means that the 
University is responsible for looking after your information and using it properly.  
 
In order to collect and use your personal information as part of this research project, we must 
have a basis in laZ to do so. The basis that Ze are using is that the research is µa task in the 
public interest¶.   
 
Further information, including details about how and why the University processes your 
personal information, how we keep your information secure, and your legal rights (including 
how to complain if you feel that your personal information has not been handled correctly), 
can be found in the Universit\¶s Privac\ Notice https://www.sheffield.ac.uk/govern/data-
protection/privacy/general 
 
Research Project: 
The project assesses and compares visual representations of documents. These 
representations are created from the output of a computer algorithm (called a topic model) 
which automatically analyses collections of documents to identify the underlying themes 
contained within them. The aim of the project is to determine which representations provide 
users with the most information about the contents of document collections.  
  
This project is carried out at the University of Sheffield by Areej Alokaili 
(areej.okaili@sheffield.ac.uk) under the supervision of Dr Mark Stevenson 
(mark.stevenson@sheffield.ac.uk). This experiment has been approved by the University of 
Sheffield¶s Ethics Committee.  
  
Voluntary Participation: 
You will be asked to read and acknowledge a consent form to start the experiment. You can 
withdraw at any point by simply exiting the task.  
  
Data Confidentiality and Storage: 
Your responses are anonymised and will not be personally linked to you. The Primary 
analysis will take place on Areej Alokaili¶s computer. Some additional analysis may also take 
place on Mark Stevenson¶s computers. No encryption will be used given the nature of the 

data. We expect the data to be made available for future research projects and will retain 
copies and we may make it available to others.  
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Table B.1: Additional labelling samples to those presented in Table 6.7.

Topic 6 church cathedral century english bishop england chapel style abbey
early

Gold labels cathedral, church architecture, gothic architecture, romanesque archi-
tecture, hereford cathedral, priory church

BiGRU cathedral of the apostle cathedral
BiLSTM holy trinity church
CNN cathedral of english church
CNN-GRU church of st mary
CNN-LSTM holy trinity church
Transformer holy trinity church

Topic 7 party campaign candidate political mccain election vote republican
democratic voter

Gold labels election, primary election, political party, presidential nominee, inde-
pendent democrat, candidate, state senator, democratic party (united
states), voter turnout, general election

BiGRU∗ party
BiLSTM party
CNN united republican election
CNN-GRU party presidential election
CNN-LSTM iberal party party party
Transformer united states presidential election in the united states

Topic 8 stock fund market investor share trading firm investment exchange
bond

Gold labels financial services, investment fund, stock exchange, investment company,
investor, capital market, stock market, investment

BiGRU∗ inc
BiLSTM international stock exchange
CNN stock market investment fund
CNN-GRU deposit
CNN-LSTM investment investment
Transformer uk

Topic 9 san los california city angeles arizona mile mexico valley land

Gold labels los angeles, southern california, san fernando valley, baja california
BiGRU∗ history of the city
BiLSTM san francisco
CNN los angeles california los angeles
CNN-GRU city san
CNN-LSTM los angeles san los angeles
Transformer san francisco
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Table B.1: (Continue) Additional labelling samples to those presented in Table 6.7.

Topic 10 kosovo war nato milosevic albanian serb india refugee yugoslavia force

Gold labels kosovo liberation army, yugoslav wars, kosovo serbs, breakup of
yugoslavia, kosovo albanians, kosovo, kosovo war

BiGRU∗ russian brazilians
BiLSTM movement
CNN kosovo
CNN-GRU indians india
CNN-LSTM war war war
Transformer national war of

Topic 11 government political country leader president power party minister
democracy protest

Gold labels national unity government , democratic party (united states) , political
party, prime minister, politics, government, social democracy, head of
state

BiGRU∗ people party
BiLSTM people
CNN political government of presidential party
CNN-GRU party
CNN-LSTM ministry of the
Transformer democratic party of the united states

Topic 12 god church jesus christian faith lord christ catholic give prayer

Gold labels son of god, catholicism, holy spirit (christianity), baptism, faith, chris-
tian theology, sacrament, god the father, christian church, christianity

BiGRU∗ of the of the of the of the of the
BiLSTM church of our lady of god
CNN church of church of church
CNN-GRU church of christ
CNN-LSTM christian christian christian christians christian church
Transformer god of jesus

Topic 13 baseball league game player season team home hit play fan

Gold labels game
BiGRU∗ baseball league game
BiLSTM baseball league
CNN baseball league game player season
CNN-GRU league
CNN-LSTM baseball league
Transformer baseball
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Figure C.1: Bar-plots show the effect of changing the topics’ words order on
BERTScore, which is used in computing the relevance metric. The relevance metric
is described in section 6.4.2.
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Figure C.2: Bar-plots show the effect of changing the topics’ words order on
BERTScore, which is used in computing the discrimination metric. The discrimina-
tion metric is described in section 6.4.2.
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