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Abstract  
 
Background: Neuromuscular diseases are a broad group of conditions that affect nerves and 
muscles. Diagnosing these disorders can be very challenging and it often requires multiple 
investigations leading to delays in treatment. Additionally, monitoring disease progression also 
poses considerable challenges particularly for clinical trials. Spontaneous Raman spectroscopy 
can provide a rapid, label-free and highly specific molecular fingerprint of tissue. The purpose of 
this study was to explore whether Raman spectroscopy of muscle can be used to detect muscle 
pathology in preclinical murine models and human muscle tissue. In addition, I aimed to assess 
the effects of in vivo Raman recordings on muscle function.  
Methods: In this study an in vivo intra-muscular fibre optic Raman technique was developed and 
tested in mouse models of two devastating human neuromuscular diseases: amyotrophic lateral 
sclerosis (SOD1G93A and TDP-43Q331K) and Duchenne muscular dystrophy (mdx). Motor function of 
the animals was assessed after the recordings using the rotarod test and gait analysis in order to 
evaluate the effects of the in vivo experimental procedure. Post-mortem MRI images were 
acquired from the hind limbs of the animals to assess potential tissue damage. Ex vivo spectra 
from human muscle, acquired from patients with various neuromuscular disorders and healthy 
volunteers, were also recorded.   
Results: The method was able to detect muscle pathology and discriminate between different 
preclinical neuromuscular disorders in vivo with high accuracy values. Additionally, the in vivo 
recordings appeared not to have affected the motor function of the mice and not to have caused 
any long-term tissue damage. The spectra acquired ex vivo from human muscle demonstrated 
similar featured to those observed in mice. Differences between healthy and diseased human 
tissue were apparent.  
Conclusions: Spontaneous Raman spectroscopy shows promise as a translational research tool.  
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during cross-validation. The mean ROC curve (black line) is also shown. The mean AUC value 
for each model (+/-) one standard deviation also displayed. 
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Figure 3.16: Mean Raman spectra for mdx and C57Bl/10 mice groups. 
The mean spectra for mdx and control mice of one and three months of age are shown with 
the dotted lines. The shaded areas represent (+/-) one standard deviation from the mean 
spectrum. The spectra have been offset for clarity. 
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Figure 3.17: Mean Raman spectra for SOD1G93A and C57Bl/6 mice groups. 
The mean spectra for SOD1G93A and C57Bl/6 mice of one and three months of age are shown 
with the dotted lines. The shaded areas represent (+/-) one standard deviation from the mean 
spectrum. The spectra have been offset for clarity. 
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Figure 3.18: Mean and difference spectra of one month old mdx and C57Bl/10 mice. 
a) Mean spectra for one and month old mdx and C57Bl/10 mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.19: Mean and difference spectra of three months old mdx and C57Bl/10 mice. 
a) Mean spectra for three months old mdx and C57Bl/10 mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs. 
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Figure 3.20: Mean and difference spectra of one and three month old mdx and C57Bl/10 
mice. 
a) Mean spectra for one and three months old mdx mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.21: Mean and difference spectra of one month old SOD1G93A and C57Bl/6 mice. 
a) Mean spectra for one month old SOD1G93A and C57Bl/6 mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.22: Mean and difference spectra of three months old SOD1G93A and C57Bl/6 mice. 
a) Mean spectra for three months old SOD1G93A and C57Bl/6 mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs. 

94 

Figure 3.23: Mean and difference spectra of one and three months old SOD1G93A mice. 
a) Mean spectra for one and three months old SOD1G93A mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.24: Mean and difference spectra of one month old mdx and SOD1G93A mice. 95 
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a) Mean spectra for one month old mdx and SOD1G93A mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  

Figure 3.25: Mean and difference spectra of three months old mdx and SOD1G93A mice. 
a) Mean spectra for three months old mdx and SOD1G93A mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs. 
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Figure 3.26: Background subtracted mean spectra of mdx and C57Bl/10 mice groups. The 
spectra have been offset for clarity and the most prominent peaks have been highlighted. 
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Figure 3.27: Background subtracted mean spectra of SOD1G93A and C57Bl/6 mice groups. 
The spectra have been offset for clarity and the most prominent peaks have been 
highlighted. 
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Figure 3.28: PC3 score histogram and loading plot for the one month old mdx and C57Bl/10 
mice. 
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Figure 3.29: LD1 score histogram and LDF plot for the one month old mdx and C57Bl/10 
mice. 
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Figure 3.30: LD1 score histogram and LDF plot for the three months old mdx and C57Bl/10 
mice. 
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Figure 3.31: Component 1 score histogram and weight plot for the three months old mdx 
and C57Bl/10 mice. 
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Figure 3.32: LD1 score histogram and LDF plot for the one and three months old mdx mice. 105 

Figure 3.33: Component 1 score histogram and weight plot for the one and three months 
old mdx mice. 
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Figure 3.34: PC2 score histogram and loading plot for the three months old SOD1G93A and 
C57Bl/6 mice. 
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Figure 3.35: LD1 score histogram and LDF plot for the three months old SOD1G93A and 
C57Bl/6 mice. 
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Figure 3.36: Component 1 score histogram and weight plot for the three months old 
SOD1G93A and C57Bl/6 mice. 
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Figure 3.37: PC1 score histogram and loading plot for the one and three months old 
SOD1G93A mice. 
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Figure 3.38: LD1 score histogram and LDF plot for the one and three months old SOD1G93A 
mice. 
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Figure 3.39: Component 1 score histogram and weight plot for the one and three months 
old SOD1G93A mice. 
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Figure 3.40: PC3 score histogram and loading plot for the one month old mdx and 
SOD1G93A mice. 
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Figure 3.41: LD1 score histogram and LDF plot for the one month old mdx and SOD1G93A 
mice.  
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Figure 3.42: Component 1 score histogram and weight plot for the one month old mdx and 
SOD1G93A mice.  
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Figure 3.43: LD1 score histogram and LDF plot for the three months old mdx and SOD1G93A 

mice. 
116 

Figure 3.44: Component 1 score histogram and weight plot for the three months old mdx 
and SOD1G93A mice. 

116 

Figure 3.45: Gastrocnemius muscle sections from one month old mdx and C57Bl/10 mice 
stained with haematoxylin/eosin. In one month old mdx mice sections necrotic fibres with 
inflammatory cells (a,b, arrows) and small myofibres with centrally placed nuclei (a, arrow 
heads) indicating early regeneration can be seen in the sections acquired from one month old 
mdx mice. Normal myofibers from control tissue can be seen in figure c. Magnification: x40, 
scale bars: 100μm. 
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Figure 3.46: Gastrocnemius muscle sections from three months old mdx and C57Bl/10 mice 
stained with haematoxylin/eosin. Larger muscle cells with centrally placed nuclei 
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(regeneration) (a,b, arrowheads and inflammation (b, arrow) can be seen in the sections 
acquired from three months old mice. Normal myofibers from control tissue can be seen in 
figure c. Magnification: x40, scale bars: 100μm. 

Figure 3.47: Gastrocnemius muscle sections from one month old SOD1G93A and C57Bl/6 
mice stained with haematoxylin/eosin. One month old SOD1G93A muscle displayed no 
evidence of pathology with normal myofibres present. No differences were observed 
between SOD1G93A (a) and C57Bl/6 (b) muscle.  Magnification: x40, scale bars: 100μm. 
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Figure 3.48: Gastrocnemius muscle sections from three months old SOD1G93A and C57Bl/6 
mice stained with haematoxylin/eosin. Three months old SOD1G93A showed signs of 
denervation in the form of grouped atrophy (a, double arrow), small angular fibres (a, 
chevrons), as well as hypertrophic fibres (b, arrow) and centrally placed nuclei (b, arrow head). 
Normal myofibers from control tissue can be seen in figure c. Magnification: x40, scale bars: 
100μm. 
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Figure 3.49: Rotarod performance for one month old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
performances within each group and time point. Mean of each group +/- standard deviation 
are also shown.  
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Figure 3.50: Rotarod performance for one month old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
performances within each group and time point. Mean of each group +/- standard deviation 
are also shown. 
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Figure 3.51: Rotarod performance for three months old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
performances within each group and time point. Mean of each group +/- standard deviation 
are also shown in graphs (a)-(c). Median and interquartile range are shown in graph (d). 
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Figure 3.52: Rotarod performance for three months old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
performances within each group and time point. Mean of each group +/- standard deviation 
are also shown in graphs (a)-(b). Median and interquartile range are shown in graphs (c)-(d). 
Asterisks indicate p < 0.01 (**). 
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Figure 3.53: Rotarod performance for 104 days old SOD1G93A mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. Mean 
and (+/) standard deviation are shown for each group. 
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Figure 3.54: Rotarod performance for one month old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. Genotype 
and type of procedure are indicated in each graph. Dots indicate individual performances 
within each group and time point. Median of each group and interquartile range are also 
shown. 
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Figure 3.55: Rotarod performance for one month old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
performances within each group and time point. Median of each group and interquartile 
range are also shown in graphs. 
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Figure 3.56: Rotarod performance for three months old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
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performances within each group and time point. Median of each group and interquartile 
range are also shown. 

Figure 3.57: Rotarod performance for three months old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. 
Genotype and type of procedure are indicated in each graph. Dots indicate individual 
performances within each group and time point. Median of each group and interquartile 
range are also shown. 
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Figure 3.58: Different sample geometries.  
MRI scan of dissected muscle (a) and axial plane image of the whole leg scan (b). Tibia and 
fibula helped orientation on the axial planes of the whole leg scans and thus identifying the 
regions of interest, shown in yellow circles. 
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Figure 3.59: Axial MRI images at three different time points after the sham Raman 
procedure. The yellow arrows indicate the hyper-intense regions that could be attributed to 
the experimental procedure. Such areas can be seen at six hours and two days but not at two 
weeks. 
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Figure 3.60: Axial MRI images at two different time points after the active Raman 
procedure. 

137 

Figure 3.61: Running wheel performance of two different groups of three months old mdx 
mice. The different groups (nsubgroup 1=15, subgroup 2 nsubgroup 2=10) had a similar average 
performance. Mean and standard deviation shown. 
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Figure 3.62: Serum CK levels in C57Bl/10 (n=10), non-exercised mdx (n=10) and exercised 
mdx (n=10) mice.  

138 

Figure 3.63: ROC curves for the cross validated classification models for the exercised and 
non-exercised mdx mice. ROC curves for all models using leave-one-spectrum-out and leave-
one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is 
also displayed.  
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Figure 3.64: ROC curves generated from repeated cross-validation of exercised and non-
exercised mdx mice. ROC curves are shown for each of the hundred repetitions during cross-
validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model 
(+/-) one standard deviation also displayed. 
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Figure 3.65: Mean Raman spectra for exercised and non-exercised mdx mice groups. 
The mean spectra for exercised and non-exercised mdx mice are shown with the dotted lines. 
The shaded areas represent (+/-) one standard deviation from the mean spectrum. The 
spectra have been offset for clarity. 
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Figure 3.66: Mean and difference spectra of the exercised and non-exercised mdx mice. 
a) Mean spectra for one and month old mdx and C57Bl/10 mice and b) difference spectrum. 
Prominent peaks are indicated in the mean spectrum.  
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Figure 3.67: Background subtracted mean spectra of exercised and non-exercised mdx 
mice groups. The spectra have been offset for clarity and the most prominent peaks have 
been highlighted. 
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Figure 3.68: PC3 and PC6 and loading plots for the exercised and non-exercised mdx mice. 147 

Figure 3.69: LD1 score histogram and LDF plot for the exercised and non-exercised mdx 
mice. 
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Figure 3.70: PLS component 1 and 2 weight plots for the exercised and non-exercised mdx 
mice. 
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Figure 3.71: ROC curves for the cross validated classification models for exercised and non-
exercised quadriceps. ROC curves for all models using leave-one-spectrum-out and leave-one-
mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 
displayed.  
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Figure 3.72: ROC curves for the cross validated PLS-DA classification models for exercised 
and non-exercised tibialis anterior. ROC curves for all models using leave-one-spectrum-out 
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and leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed.  

Figure 3.73: ROC curves for the cross validated PLS-DA classification models for exercised 
and non-exercised diaphragm. ROC curves for all models using leave-one-spectrum-out and 
leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed.  
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Figure 3.74: ROC curves for the cross validated classification models for exercised and 
non-exercised gastrocnemius. ROC curves for all models using leave-one-spectrum-out and 
leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed. 
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Figure 3.75: ROC curves for the cross validated classification models for the three months 
old TDP-43 and TDP-43Q331K mice. ROC curves for all models using leave-one-spectrum-out 
and leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed.  
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Figure 3.76: ROC curves for the cross validated classification models for the three months 
old SOD1G93A and TDP-43Q331K mice. ROC curves for all models using leave-one-spectrum-out 
and leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed. 
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Figure 3.77: ROC curves generated from repeated cross-validation of three months old TDP-
43 and TDP-43Q331K mice models. ROC curves are shown for each of the hundred repetitions 
during cross-validation. The mean ROC curve (black line) is also shown. The mean AUC value 
for each model (+/-) one standard deviation also displayed.  
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Figure 3.78: ROC curves generated from repeated cross-validation of three months old 
SODG93A and TDP-43Q331K mice. ROC curves are shown for each of the hundred repetitions 
during cross-validation. The mean ROC curve (black line) is also shown. The mean AUC value 
for each model (+/-) one standard deviation also displayed.  
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Figure 3.79: Mean Raman spectra for SOD1G93A, TDP-43 and TDP-43Q331K mice groups. 
The mean spectra for three months old SOD1G93A, TDP-43 and TDP-43Q331K mice are shown 
with the dotted lines. The shaded areas represent (+/-) one standard deviation from the mean 
spectrum. The spectra have been offset for clarity. 
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Figure 3.80: Mean and difference spectra of three months old TDP-43 and TDP-43Q331K mice. 
a) Overlaid mean spectra for three months old TDP-43 and TDP-43Q331K mice and b) difference 
spectrum. Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.81: Mean and difference spectra of three months old SOD1G93A and TDP-43Q331K 
mice. 
a) Mean spectra for three months old SOD1G93A and TDP-43Q331K mice and b) difference 
spectrum. Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.82: Background subtracted mean spectra of SOD1G93A, TDP-43 and TDP-43Q331K 
mice. The spectra have been offset for clarity and the most prominent peaks have been 
highlighted. 
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Figure 3.83: PC3 score histogram and loading plot for the three months old TDP-43 and TDP-
43Q331K mice. 

166 

Figure 3.84: LD1 score histogram and LDF plot for the three months old TDP-43 and TDP-
43Q331K mice. 
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Figure 3.85: PC1 score histogram and loading plot for the three months old SOD1G93A and 
TDP-43Q331K mice. 
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Figure 3.86: LD1 score histogram and LDF plot for the three months old SOD1G93A and TDP-
43Q331K mice. 
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Figure 3.87: Component 1 score histogram and weight plot for the three months old 
SOD1G93A and TDP-43Q331K mice. 
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Figure 3.88: ROC curves for the cross validated classification models for the one month old 
male mdx and C57Bl/10 mice. ROC curves for all models using leave-one-spectrum-out and 
leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed.  
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Figure 3.89: ROC curves for the cross validated classification models for the three months 
old male mdx and C57Bl/10 mice. ROC curves for all models using leave-one-spectrum-out 
and leave-one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed.  
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Figure 3.90: ROC curves generated from repeated cross-validation of one month old mdx 
and C57Bl/10 mice. ROC curves are shown for each of the hundred repetitions during cross-
validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model 
(+/-) one standard deviation also displayed. 
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Figure 3.91: ROC curves generated from repeated cross-validation of three months old mdx 
and C57Bl/10 mice. ROC curves are shown for each of the hundred repetitions during cross-
validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model 
(+/-) one standard deviation also displayed.  
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Figure 3.92: Mean Raman spectra for one month old male mdx and C57Bl/10 mice groups. 
The mean spectra for mdx and control mice of one month of age are shown with the dotted 
lines. The shaded areas represent (+/-) one standard deviation from the mean spectrum. The 
spectra have been offset for clarity. 
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Figure 3.93: Mean Raman spectra for three months old male mdx and C57Bl/10 mice 
groups. The mean spectra for mdx and control mice of three months of age are shown with 
the dotted lines. The shaded areas represent (+/-) one standard deviation from the mean 
spectrum. The spectra have been offset for clarity. 
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Figure 3.94: Mean and difference spectra of one month old mdx and C57Bl/10 mice. 
a) Mean spectra for one and month old mdx and C57Bl/10 mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.95: Mean and difference spectra of three months old mdx and C57Bl/10 mice. 
a) Mean spectra for three months old mdx and C57Bl/10 mice and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.96: Background subtracted mean spectra of one month old male mdx and C57Bl/10 
mice groups. The spectra have been offset for clarity and the most prominent peaks have 
been highlighted. 
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Figure 3.97: Background subtracted mean spectra of three months old male mdx and 
C57Bl/10 mice groups. The spectra have been offset for clarity and the most prominent peaks 
have been highlighted. 
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Figure 3.98: LD1 score histogram and LDF plot for the one month old mdx and C57Bl/10 
mice. 
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Figure 3.99: Component 1 score histogram and weight plot for the one month old mdx and 
C57Bl/10 mice. 
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Figure 3.100: PC1 score histogram and loading plot for the three months old male mdx 
and C57Bl/10 mice. 
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Figure 3.101: LD1 score histogram and LDF plot for the three months old male mdx and 
C57Bl/10 mice. 
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Figure 3.102: Component 1 score histogram and weight plot for the three months old 
male mdx and C57Bl/10 mice. 
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Figure 3.103: CMAP amplitudes for the SOD1G93A and C57Bl/6 mice recorded using three 
different methods. Mean and standard deviation shown. Asterisks indicate p<0.05 using 
Turkey post-test following mixed effect model repeated measures ANOVA. 
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Figure 3.104: CMAP amplitudes for the SOD1G93A and C57Bl/6 mice recorded using the 
combined probe. Mean and standard deviation shown. Asterisks indicate p<0.001 using 
student’s t-test. 
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Figure 3.105: CMAP amplitudes for the SOD1G93A and C57Bl/6 mice recorded using 
standard methods. CMAP amplitudes recorded with the ring electrodes (left) and the needle 
electrode (right). Mean and standard deviation shown. Two asterisks indicate p<0.01, four 
asterisks indicate p<0.0001 using student’s t-test. 
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Figure 3.106: Background subtracted mean Raman spectra of SOD1G93A mice acquired 
using the Raman and combined probes.  
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Figure 3.107: CMAP amplitude for SOD1G93A and C57Bl/6 mice before and after the Raman 
recordings. 
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Figure 3.108: Mean Raman spectra from muscle, bone and blood of three months old mdx 
mice. The most prominent peaks in the mean spectra of the different organs and blood are 
indicated. 
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Figure 3.109: PC1 score histogram and loading plot following PCA on the spectra measured 
from muscle and bone. 
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Figure 3.110: PC1 score histogram and loading plot following PCA on the spectra measured 
from muscle and blood. 
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Figure 3.111: ROC curves for the cross validated classification models for the ‘myopathy’ 
and ‘healthy’ samples. ROC curves for all models generated using the probe spectra using 
leave-one-spectrum-out and leave-one-sample-out CV are shown. The area under the ROC 
curve (AUC) for the different models is also displayed.  
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Figure 3.112: ROC curves for the cross validated classification models for the ‘myopathy’ 
and ‘healthy’ samples. ROC curves for the PLS-DA models generated using the microscope 
spectra using leave-one-spectrum-out and leave-one-sample-out CV are shown. The area 
under the ROC curve (AUC) for the different models is also displayed. 
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Figure 3.113: ROC curves for the cross validated classification models for the ‘mitochondrial 
disorders’ and ‘healthy’ samples. ROC curves for all probe models using leave-one-spectrum-
out and leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for the 
different models is also displayed.  
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Figure 3.114: ROC curves for the cross validated classification models for the ‘mitochondrial 
disorders’ and ‘healthy’ samples. ROC curves for all microscope models using leave-one-
spectrum-out and leave-one-sample-out CV are shown. The area under the ROC curve (AUC) 
for the different models is also displayed. 
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Figure 3.115: ROC curves for the cross validated classification models for the ‘MND’ and 
‘healthy’ samples. ROC curves for all probe models using leave-one-spectrum-out and leave-
one-sample-out CV are shown. The area under the ROC curve (AUC) for the different models 
is also displayed.  
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Figure 3.116: ROC curves for the cross validated classification models for the ‘MND’ and 
‘healthy’ samples. ROC curves for all microscope models using leave-one-spectrum-out and 
leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for the different 
models is also displayed.  
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Figure 3.117: Mean probe Raman spectra for the different muscle biopsy groups. 
The mean spectra for the different muscle biopsy groups are shown with the dotted lines. 
The shaded areas represent (+/-) one standard deviation from the mean spectrum. The 
spectra have been offset for clarity. 
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Figure 3.118: Mean microscope Raman spectra for the different muscle biopsy groups. 
The mean spectra for the different groups are shown with the dotted lines. The shaded 
areas represent (+/-) one standard deviation from the mean spectrum. The spectra have 
been offset for clarity. 
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Figure 3.119: Mean and difference probe spectra of the ‘myopathy’ and ‘healthy’ samples.  218 
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a) Mean spectra for the ‘myopathy’ and ‘healthy’ samples and b) difference spectrum. 
Prominent peaks are indicated in both graphs. 

Figure 3.120: Mean and difference probe spectra of the ‘mitochondrial disorders’ and 
‘healthy’ samples. a) Mean spectra for the ‘mitochondrial disorders’ and ‘healthy’ samples 
and b) difference spectrum. Prominent peaks are indicated in both graphs. 
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Figure 3.121: Mean and difference probe spectra of the ‘MND’ and ‘healthy’ samples. 
a) Mean spectra for the MND and healthy samples and b) difference spectrum. Prominent 
peaks are indicated on the mean spectra. 
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Figure 3.122: Mean and difference microscope spectra of the ‘myopathy’ and ‘healthy’ 
samples. 
a) Mean spectra for the myopathic and healthy samples and b) difference spectrum. 
Prominent peaks that differ between the two groups are indicated in both graphs. 
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Figure 3.123: Mean and difference microscope spectra of the ‘mitochondrial disorders’ and 
‘healthy’ samples. a) Mean spectra for the ‘mitochondrial disorders’ and ‘healthy’ samples 
and b) difference spectrum. Prominent peaks that differ between the two groups are indicated 
in both graphs. 
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Figure 3.124: Mean and difference microscope spectra of the ‘MND’ and ‘healthy’ samples. 
a) Mean spectra for the ‘MND’ and ‘healthy’ samples and b) difference spectrum. Prominent 
peaks that differ between the two groups are indicated in both graphs. 
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Figure 3.125: Background subtracted mean probe spectra of the different muscle biopsy 
groups. The spectra have been offset for clarity and the most prominent peaks have been 
highlighted. 
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Figure 3.126: Background subtracted mean microscope spectra of the different muscle 
biopsy groups. The spectra have been offset for clarity and the most prominent peaks have 
been highlighted. 
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Figure 3.127: PC1 and PC4 and loading plots for the ‘myopathy’ and ‘healthy’ samples. 226 

Figure 3.128: LD1 score histogram and LDF plot for the ‘myopathy’ and ‘healthy’ samples. 227 

Figure 3.129: PLS component 1,2,3 and 4 weights plots for the ‘myopathy’ and ‘healthy’ 
samples. 
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Figure 3.130: PLS component 1,2,3 and 4 weights plots for the ‘myopathy’ and ‘healthy’ 
samples. 
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Figure 3.131: LD1 score histogram and LDF plot for the ‘mitochondrial disorders’ and 
‘healthy’ samples. 
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Figure 3.132: PLS component 1 score histogram and weights plot for the ‘mitochondrial 
disorders’ and ‘healthy’ samples. 
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Figure 3.133: LD1 score histogram and LDF plot for the ‘mitochondrial disorders’ and 
‘healthy’ samples. 
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Figure 3.134: PLS component 1 score histogram and weights plot for the ‘mitochondrial 
disorders’ and ‘healthy’ samples. 
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Figure 3.135: LD1 score histogram and LDF plot for the ‘MND’ and ‘healthy’ samples. 234 

Figure 3.136: PLS component 1 and 2 score histograms and weights plots for the ‘MND’ and 
‘healthy’ samples. 
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Figure 3.137: PC2 score histogram and loadings plot for the ‘MND’ and ‘healthy’ samples. 236 

Figure 3.138: LD1 score histogram and LDF plot for the ‘MND’ and ‘healthy’ samples. 236 

Figure 3.139: PLS component 1 score histogram and weights plot for the ‘MND’ and 
‘healthy’ samples. 
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Figure 3.140: ROC curves for the cross validated classification models for the ‘myopathy’ 
and ‘healthy’ samples. ROC curves for all models generated using the probe spectra using 
leave-one-spectrum-out and leave-one-sample-out CV are shown. The area under the ROC 
curve (AUC) for the different models is also displayed. 
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Figure 3.141: ROC curves for the cross validated classification models for the ‘myopathy’ 
and ‘healthy’ samples. ROC curves for all models generated using the microscope spectra 
using leave-one-spectrum-out and leave-one-sample-out CV are shown. The area under the 
ROC curve (AUC) for the different models is also displayed. 
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Figure 4.1: T2 Contrast. Maximum contrast between the tissues with different T2 times is at 
TE2. Shorter echo time leads to higher signals from both tissues but worse contrast. Longer 
echo time leads to very low signals.  
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1. Introduction 

1.1 Neuromuscular Diseases 
Neuromuscular diseases are a broad group of conditions that affect nerves and muscles and cause 

substantial morbidity and mortality. Their primary symptoms are muscle weakness and 

impairment of motor function. While some neuromuscular disorders, e.g. inflammatory 

myopathies, can be managed and treated effectively, many, e.g. motor neurone disease, are at 

present incurable. Moreover, diagnosis for many of these disorders can be quite challenging and 

often requires multiple clinical examinations and ancillary tests. Two of the mainstays of the 

current diagnostic pathway are electromyography (EMG) and muscle biopsy. In EMG a needle 

electrode is inserted into muscle and the electrical signals generated by the muscle are recorded 

and analysed. EMG can effectively differentiate between neurogenic disorders and disorders 

caused by primary muscle pathology (i.e. myogenic disorders). However, one major limitation of 

this technique is that findings are not specific for any given disease.  For example, the EMG 

abnormalities seen in motor neurone disease (MND) are the same as those seen in peripheral 

neuropathies. A similar lack of specificity is also seen in myogenic disorders.   

In muscle biopsy a small sample of tissue is removed for histological analysis. Thus, muscle biopsy 

is an invasive technique. Moreover, due to the small sample size pathology can be missed (Joyce, 

Oskarsson and Jin, 2015). Further commonly used ancillary tests include blood tests and imaging 

tests such as magnetic resonance imaging (MRI).   

In addition to the diagnostic problems, monitoring disease progression has proven challenging for 

many of these disorders. Development of new biomarkers, which could be used for earlier 

diagnosis or monitoring disease progression, is therefore crucial and could aid timely clinical 

intervention and new treatment studies. A translational approach to biomarkers, linking 

laboratory and clinical studies may also improve our understanding of the pathophysiological 

mechanisms involved neuromuscular disorders. 

In the following sections amyotrophic lateral sclerosis (ALS) and Duchenne muscular dystrophy 

(DMD) will be discussed as these are the neuromuscular disorders that are studied in detail in the 

preclinical aspect of this thesis. In addition, a brief introduction to the diagnostic challenge of 

neuromuscular disorders is also presented. These sections provide the context for the respective 

preclinical and human muscle sample experiments. 

 

1.1.1 Diagnostic Challenges of Neuromuscular Disorders 

Present diagnostic strategies in neuromuscular disease often include blood, neurophysiological 

and imaging tests. Blood tests are usually the first step in the investigations for primary muscle 

disease, known as myopathy. While easy to perform, blood tests can result in erroneous 

conclusions. For example, increased levels of serum creatinine kinase (the most widely used blood 

marker for muscle pathology, and the first test used to diagnose Duchenne muscular dystrophy) 

may also be seen in asymptomatic individuals (Prelle et al., 2002) and can be poorly predictive of 

an underlying muscle disorder (Shaibani et al., 2015).  

Neurophysiological investigations are based around EMG. As already mentioned above EMG can 

effectively differentiate between diseases caused by nerve pathology and those caused by 

primary muscle disease. During the examination muscle contraction is performed and the 
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recruited motor units are recorded by the EMG needle; these are known as motor unit potentials. 

The configuration of these potentials is analysed, either qualitatively (by eye), or quantitatively, 

using specialist software. In myopathies, short duration, low amplitude, polyphasic potentials are 

present (Liguori et al., 1997). However, similar potentials can be recorded during the phase of 

early nerve regeneration and in disorders of the neuromuscular junction. Thus, the context of 

such observations is crucial. Overall, the sensitivity of EMG to detect myopathic pathology has 

been reported between 54%-83% in various studies (Fuglsang-Frederiksen, 2006); one 

retrospective study in an adult setting reported sensitivity and specificity of EMG at 74% and 67%, 

respectively (Cardy and Potter, 2007). It is important to note that these values reflect the ability 

of the test to detect muscle pathology and not identify the exact diagnosis. 

Imaging may also be of use in muscle disorders. For inflammatory myopathies magnetic 

resonance imaging (MRI) and ultrasound (USS), may be used and there are reports that suggesting 

that use of these tests can aid reaching a diagnosis by identifying muscle sites for biopsy 

(Jungbluth et al., 2004; Tomasová Studynková et al., 2007), as well as potentially identifying 

features more specific to particular diagnoses (Noto et al., 2014). USS is inexpensive and has the 

advantage of being a bedside test but is highly operator dependent (Schiffenbauer, 2014).   

As a result of the limitations of these methods, muscle biopsy remains the gold standard for 

diagnosis of myopathies as it can provide valuable information on muscle health and pathological 

features. However, there can be difficulties with muscles biopsies as well. It is an invasive and 

expensive procedure. Some muscles are difficult to biopsy and, as only small pieces of tissue are 

taken, pathology can be missed. It has been previously reported that a total of 86 biopsies were 

required to diagnose inclusion body myositis in 43 patients (Dahlbom, Lindberg and Oldfors, 

2002), while in another report histological data from 258 biopsy samples led to a specific diagnosis 

in only 43% of the cases (Lai et al., 2010). Some authors suggest simultaneous biopsy of multiple 

sites (Prayson, 2006); although decreases the possibility of missing pathology, this approach does 

expose patients to increased procedural risk (for example bleeding and infection) and discomfort. 

Neurogenic disorders may also be difficult to diagnose. A good example of a difficult neurogenic 

diagnosis can be MND. The variable presentation of MND and the lack of a specific diagnostic test 

means that the diagnosis remains a clinical judgement, reached through exclusion of other 

disorders following a multi-modal approach, including radiological and neurophysiological testing 

(Vucic, Rothstein and Kiernan, 2014). Neurophysiological testing focuses on the pattern of non-

specific EMG abnormalities  across multiple cranio-spinal regions (Krarup, 2011). These findings 

are in both the El Escorial and Awaji-Shima diagnostic criteria, although only the latter suggests 

that these findings are equally important as bedside observation (Brooks et al., 2000; de Carvalho 

et al., 2008). The specificity of the EMG data varies with the highest sensitivity and specificity 

achieved in the limbs and the cranial and thoracic regions respectively (Jenkins et al., 2016). 

Diagnosis of ALS and the challenges it entails are described in more detail in section 1.1.2. 

In addition to diagnosis, the monitoring of neuromuscular disease progression and response to 

treatments poses significant challenges. This area is under intense investigation as a sensitive 

measure of new treatment efficacy could help in detecting subtle treatments effect and reduce 

the cost of clinical trials. In primary muscle disorders examples of difficulties faced include the 

contribution of steroid treatment to weakness in patients with inflammatory muscle disease, 
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when it can be difficult to understand if the weakness is due to the disease only, or if the steroid 

treatments also contributes to it.  

1.1.2 Neuromuscular disease mouse models and translation: Differences in human and 

mouse skeletal muscle 

Mice and humans share part of their genome and have many common physiological and 

pathological features (Rosenthal and Brown, 2007). Comparative analysis of human and mouse 

genomes has provided insight into gene homologues and allowed genomic manipulation that led 

to the creation of transgenic, knock-in and knockout mice that can be used as models of human 

pathology (Perlman, 2016). Furthermore, breeding and maintaining mice is easy and much more 

inexpensive than other larger mammals (Rosenthal and Brown, 2007; Justice and Dhillon, 2016; 

Perlman, 2016). Hence, the laboratory mouse is a widely employed model organism in human 

biology and disease research (Rosenthal and Brown, 2007; Justice and Dhillon, 2016; Perlman, 

2016). 

In regard to neuromuscular disease, a wide range of mouse models of various neuromuscular 

disorders have been developed and have offered valuable insights into pathophysiological 

mechanisms and the development of new drug candidates and therapies (Gurney et al., 1994; 

Hsieh-Li et al., 2000; Burgess, Cox and Seburn, 2016). However, preclinical studies are often 

hampered by poor translation that can partially be attributed to poor experimental design and 

biological noise in the mouse model backgrounds (Scott et al., 2008; Mead et al., 2011). 

Additionally, anatomical and physiological differences between mice and humans can lead to 

erroneous conclusions in preclinical studies and to mouse models that do not fully recapitulate 

the human disease phenotype and progression and, hence, to findings that are not translatable. 

Despite well documented similarities in various internal organ systems, like the musculoskeletal, 

endocrine and cardiovascular, notable differences in, for example, ontogeny, immunology and 

pathology of mice and human have also been reported (Rosenthal and Brown, 2007; Hu et al., 

2017). In the rest of this section differences in the musculoskeletal systems of the two species, 

and in particular, the skeletal muscle, which is of particular interest for this study, are presented. 

Mice have a much smaller body mass than humans and are also quadrupedal animals. Hence, in 

order to meet their movement requirements, their muscles differ in size, architecture and 

geometry (Hu et al., 2017). In a study comparing human and mouse neuromuscular junctions 

(NMJ) Jones et al. showed that human NMJs were only half the size of the NMJs that innervate 

mouse muscle and their axons were only a third of the calibre of their mouse counterparts. They 

also showed that the muscle fibres that human NMJs innervate are up to twice the diameter of 

those in mice (Jones et al., 2017). Regarding muscle fibre length, it has been shown that the 

relative optimal fibre length, calculated as the ratio of the fibre length over the muscle belly 

length, allometrically decreases with body mass (Biewener, 1990, 2005). There is also an 

allometric increase of the muscle moment arm with the body mass (Eng et al., 2008; Hu et al., 

2017). Hence, mouse skeletal muscle fibres have smaller optimal fibre length and exhibit larger 

moment arm. Body size plays an important role also in energy metabolism (Schiaffino and 

Reggiani, 2011). Energy metabolism for unit body mass is inversely related to body size. Thus, the 

metabolic activity of skeletal muscle, which is the most abundant tissue in the body, is higher in 

muscle of small than large animals and mitochondrial volume density in muscle fibres has been 

shown to be much smaller in humans than small mammals (Schiaffino and Reggiani, 2011). 
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Differences in gait kinematics as well as muscle geometry and architecture can lead to 

biomechanical differences between human and mice limbs as shown in a study conducted by Hu 

et al. (Hu et al., 2017). In this study joint kinematics acquired from existing studies and 

musculoskeletal modelling were used to simulate muscle-tendon dynamics in order to compare 

fibre length changes of mouse hindlimb muscle and their counterparts in human lower limbs in 

walking (Hu et al., 2017). It was shown that during walking, 19 out of 25 hindlimb mouse muscles 

experience significantly smaller fibre excursions (48 ± 19%) compared to the homolog muscles in 

humans (Hu et al., 2017). It was also shown that reduced joint excursions and smaller muscle 

moment arms in mice musculoskeletal system primarily led to the smaller fibre excursions (Hu et 

al., 2017). Such biomechanical differences during everyday activities, like gait, could lead to 

differences in disease phenotypes between mouse models and patients that can then lead to non-

translatable pre-clinical findings (Hu et al., 2017). An example of such model could be the mdx 

mouse model of DMD. As discussed in various sections in this thesis, the mdx mouse exhibits a 

mild phenotype compared to DMD patients. Differences in fibre excursions, i.e. in the magnitude 

of muscle lengthening and shortening in each gait cycle, suggest that mouse limbs could work 

under different repeated biomechanical loads in walking (Hu et al., 2017). A large magnitude of 

muscle lengthening has been shown to cause more damage to muscles, particularly dystrophic 

ones (Petrof et al., 1993; Brooks, Zerba and Faulkner, 1995; Consolino and Brooks, 2004). Thus, 

the smaller fibre excursions in the mouse hindlimb may cause less muscle damage and may 

contribute, along with other mechanisms, to the milder phenotype in mdx mice muscles 

compared to patients with DMD (Hu et al., 2017).   

Skeletal muscle is a heterogeneous tissue with muscle fibres that exhibit different morphological 

and functional characteristics (Scott, Stevens and Binder-Macleod, 2001). The diversity between 

muscle fibres stems from the existence of multiple myofibrillar proteins isomers (myosin isoforms 

being the most important), different metabolic enzymes present in each fibre (predominance of 

glycolytic or mitochondrial activities) and from differences in various subcellular systems, like 

intracellular calcium signalling (Schiaffino, 2010; Schiaffino and Reggiani, 2011). Hence, muscle 

fibres can be classified into groups based on properties such as contractile speed, myosin heavy 

chain (MyHC) expression, and metabolic capacity (Bloemberg and Quadrilatero, 2012). Due to the 

central role of myosin in muscle cell physiology and the different MyHC isoforms distributed in 

various fibres, MyHC is a very commonly used marker for fiber typing (Schiaffino and Reggiani, 

2011). Muscle fibres of small mammals, like mouse and rat, contain four major MyHC isoforms, 

namely MyHCI (slow isoform) and MyHCIIa, MyHCIIx, MyHCIIb (fast isoforms) (Scott, Stevens and 

Binder-Macleod, 2001). Fibres expressing MyHCI are termed type I fibres, whereas fibres 

expressing MyHCIIa, MyHCIIx, and MyHCIIb are termed type IIA, type IIX, and type IIB fibres, 

respectively (Bloemberg and Quadrilatero, 2012). In addition, ‘hybrid’ fibres containing two MyHC 

isoforms can also be present in muscle in the following sequence: 1 ↔ 1/2A ↔ 2A ↔ 2A/2X ↔ 

2X ↔ 2X/2B ↔ 2B (Schiaffino and Reggiani, 2011). However, this is not an obligatory pattern of 

MyHC gene expression since, for example, fibres co-expressing MyHCI and MyHCIIx but not 

MyHCIIa have been previously detected (Caiozzo et al., 2003; Schiaffino and Reggiani, 2011). With 

the discovery of type 2X fibre types in rodents, it was shown that human fibres previously typed 

as 2B by ATPase staining actually contained the human orthologue of rat MyHCIIx (Smerdu et al., 

1994; Ennion et al., 1995; Pette, Peuker and Staron, 1999). Similar to other large mammals, the 
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human MyHCIIb gene is only expressed in extraocular and laryngeal muscles (Andersen et al., 

2000; Smerdu and Cvetko, 2013). Hence, the main difference between human and mouse muscle 

fibres arises from the fact that, unlike rodent muscle, human limb muscles only express three 

myosin isoforms and do not contain type 2B fibres (Pette and Staron, 1997; Hilber et al., 1999; 

Scott, Stevens and Binder-Macleod, 2001; Schiaffino, 2010; Schiaffino and Reggiani, 2011). Hybrid 

MyHC expression in different fibres allows, thus, for the following scheme in human skeletal 

muscle: 1 ↔ 1/2A ↔ 2A ↔ 2A/2X ↔ 2X (Talbot and Maves, 2016).  

Apart from the fact that human skeletal muscle fibres contain less MyHC isoforms and have thus 

less hybrids, the relative proportions and metabolic properties of muscle fibres also vary between 

humans and rodents (Schiaffino, 2010). In general, there is greater abundance of slow fibres in 

human muscle, which is, thus, primarily composed by type 1 and type 2A fibres. Type 2X fibres 

are a relatively small component in most individuals (Schiaffino, 2010). On the contrary, mouse 

muscle primarily contains type 2B and 2X fibres, with type 2A fibres being a relatively limited 

component and type 1 fibres being extremely rare and mostly confined to specific muscles (for 

example the soleus) (Schiaffino, 2010). Additionally, the maximum velocity of muscle shortening 

within each fibre type decreases with increasing body size (Rome, Sosnicki and Goble, 1990; Seow 

and Ford, 1991; Pellegrino et al., 2003; Marx, Olsson and Larsson, 2006). Hence, slow fibres in 

human skeletal muscle are slower than those in mouse muscle (Pellegrino et al., 2003). 

In regard to metabolic activity, staining for SDH activity is weaker in human compared to mouse 

muscle sections, showing that the oxidative enzyme complement is different in the two species 

and suggesting higher mitochondrial content and oxygen consumption in mice muscles 

(Schiaffino, 2010; Schiaffino and Reggiani, 2011). Additionally, whereas in human muscles the 

abundance of mitochondria and oxidative enzymes is greatest in type 1 fibres and lowest in 2X 

fibres, in mouse and rat muscles the oxidative potential is highest in 2A fibres and lowest in 2B 

fibres (Schiaffino, 2010; Schiaffino and Reggiani, 2011). 

Differences between human and mouse skeletal muscle satellite cells have also been observed, 

despite the cells sharing characteristics of morphology and surface markers (Bareja et al., 2014; 

Mierzejewski et al., 2020). For example, apart from PAX7, which is the canonical marker of 

satellite cells in both species, mouse satellite cells also synthesise other markers, like CD34, c-

MET, integrin a7 and nestin (Mierzejewski et al., 2020). Such set of markers has not been detected 

in human satellite cells. Additionally, in differentiating mouse satellite cells cultured in vitro for 

one, two and three days both PAX7 and MYOD transcription factors were present in most of the 

nuclei (Zammit et al., 2004). On the contrary, in human muscles MYOD was only found in a small 

number of satellite cells early on and only at half of the differentiating myoblasts after six days of 

in vitro culture suggesting, thus, differences in the myogenic differentiation between mice and 

humans (Bareja et al., 2014; Mierzejewski et al., 2020). Differences in satellite cells and myogenic 

differentiation can largely affect skeletal muscle growth and regeneration, and can, thus, 

potentially complicate the clinical translation of, for example, drugs validated in mouse models. 

To summarise, there are large differences between human and mouse muscle, including 

differences in muscle fibre size, architecture, type, type profile, energy metabolism and 

biomechanical properties. It is, thus, important to keep in mind these species differences when 

trying to extrapolate conclusions derived from studies on mouse muscle from models of 

neuromuscular disease and cautious interpretation of the results is required.  
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1.1.3 Amyotrophic Lateral Sclerosis  

Motor neurone disease (MND) is a progressive neurodegenerative disease that affects motor 

neurones in the brain and spinal cord. ALS is the most common form of MND and represents 75% 

of all MND cases (Hobson et al., 2016).  

Worldwide, ALS has an annual incidence rate of approximately 1-2 per 100,000 individuals, and a 

prevalence rate of approximately 5 per 100,000 people (Ferraiuolo et al., 2011; Löscher and 

Feldman, 2014). The overall lifetime risk of ALS is higher for men (1:350) than women (1:400) 

(Kiernan et al., 2011). The mean age of clinical onset of the disease is around 55-60 years, with an 

onset before the age of 40 and after the age of 80 being quite unusual (Ferraiuolo et al., 2011; 

Kiernan et al., 2011; Hobson et al., 2016). Median survival of ALS patients is approximately 2-3 

years from onset of symptoms (Couratier et al., 2016). However, both age at disease onset and 

disease duration vary considerably among different patients (Régal et al., 2006; Robberecht and 

Philips, 2013).  

In ALS both upper motor neurones (UMN) in motor cortex and lower motor neurones (LMN) in 

the brainstem and spinal cord degenerate (Robberecht and Philips, 2013). Corticospinal neurones 

are directly or indirectly connected with spinal motor neurones which innervate skeletal muscles, 

controlling thus voluntary muscle movement. In ALS, corticospinal motor neurones degenerate 

and their descending axons in the lateral spinal cord harden and appear scarred; it is this 

appearance, together with muscle wasting, that led Charcot to propose the name ALS (Taylor, 

Brown and Cleveland, 2016). In addition, spinal and brainstem motor neurones are lost, which 

leads to secondary denervation and muscle wasting (Taylor, Brown and Cleveland, 2016). The 

initial axonal retraction and denervation of the lower motor neurones or the muscles is 

compensated by re-innervation from collateral sprouts of neighbouring surviving motor axons 

(Robberecht and Philips, 2013). During the course of the disease, as more resistant neurones 

degenerate, this mechanism fails. This leads to apparent loss of motor neurones, muscle atrophy 

and fasciculations (Robberecht and Philips, 2013). Moreover, accumulating evidence suggests 

that primary muscle degeneration may also be involved in ALS pathogenesis (Shi et al., 2010; 

Moloney, de Winter and Verhaagen, 2014). ALS starts at a specific area and contiguously spreads 

to other parts of the body (Bäumer, Talbot and Turner, 2014). In many patients with ALS, 

prefrontal and temporal cortices are also affected, although the degree they are involved varies 

(Bäumer, Talbot and Turner, 2014). Deterioration of the frontal and temporal cortices results in 

executive dysfunction (up to 50% of ALS patients develop subtle dysexecutive syndrome), 

behavioural changes and for up to 15% of ALS cases to frontotemporal dementia (Bäumer, Talbot 

and Turner, 2014).  

ALS is subdivided into two groups: familial ALS (fALS), that represents approximately 10% of cases 

and sporadic ALS (sALS) that accounts for 90% of all ALS cases (Wong and Martin, 2010; 

Robberecht and Philips, 2013; Al Sultan et al., 2016). fALS is inherited with a Mendelian pattern 

and usually as an autosomal dominant trait. Currently, there are 26 known DNA loci associated 

with ALS and ALS-FTD (Al Sultan et al., 2016). The most common genetic causes of FALS are 

mutations observed in one of the following genes: C9ORF72 (40-50%), SOD1 (20%), TARDBP (5%) 

and FUS (5%) (Al Sultan et al., 2016). Mutations in these genes are also responsible for a small 

amount of SALS cases (approximately 10%). Identification of the genetic variants of ALS has aided 

the understanding of vital molecular mechanisms involved in ALS pathogenesis and progression. 
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Many molecular mechanisms have been identified and described including excitotoxicity, protein 

aggregation, oxidative stress, mitochondrial dysfunction, dysregulation of RNA processing, 

microglial activation and impaired axonal transport. There is also strong evidence that many of 

these mechanisms intersect at different points. However, for many of these mechanisms it is yet 

unclear if they are pathogenic or if they are a result of the disease. In addition to genetic and 

molecular mechanisms, several environmental factors have also been suggested to increase the 

risk of ALS and tested in several epidemiological studies. Examples of such factors are smoking, 

exercise and cyanotoxins (Al-Chalabi and Hardiman, 2013). However, there are not any definitive 

large-scale environmental risk factors identified yet. 

There is no established diagnostic test for ALS, with the clinical examination findings of signs of 

UMN and LMN dysfunction being therefore the most important part of the diagnostic procedure 

(Löscher and Feldman, 2014). Ancillary investigations including neurophysiological studies and 

neuroimaging are also used to support the clinical diagnosis and to exclude rare mimics (Brooks 

et al., 2000; de Carvalho et al., 2008; Nzwalo et al., 2014). LMN pathology can best be identified 

with electromyography (EMG) and nerve conduction studies (NCS) (Hobson et al., 2016). EMG 

signs of acute and chronic denervation in various areas of the body support the clinical diagnosis 

of ALS (Cooper-Knock, Jenkins and Shaw, 2013). Moreover, rare mimics such as inclusion body 

myositis can usually be excluded. NCS are mainly employed in order to exclude ALS-mimicking 

disorders such as multifocal motor neuropathy with conduction block (Löscher and Feldman, 

2014).  

Involvement of UMN pathology can be investigated using neuroimaging studies (Hobson et al., 

2016). Brain or cervico-thoracic spine MRI is mainly used to exclude alternative pathological 

causes, such as structural intracranial or spinal pathology/compression (Hobson et al., 2016; 

Cooper-Knock and Jenkins, 2013). Since ALS can have several varying clinical manifestations 

muscle biopsy, blood tests, genetic testing and several other types of investigations may also be 

used in certain cases in order to increase the diagnostic certainty (Cooper-Knock, Jenkins and 

Shaw, 2013).  

When there are clear signs of LMN and UMN degeneration in conjunction with absence of sensory 

system involvement, the diagnosis ALS can be clear (Kraemer, Buerger and Berlit, 2010). However, 

due to  limited, non-specific symptoms at disease onset and the necessity of multiple supportive 

investigations to decrease the likelihood of an incorrect diagnosis, there is a significant delay 

between symptom onset and confirmed diagnosis (Paganoni et al., 2014). Moreover, atypical 

disease presentations as well as varying symptoms at early disease stages can render the 

diagnosis more challenging and time consuming (Kraemer, Buerger and Berlit, 2010; Gupta et al., 

2012; Cooper-Knock, Jenkins and Shaw, 2013). This delay between symptom onset and definitive 

diagnosis usually varies between 8 and 15 months constituting a very important proportion of 

disease duration (Paganoni et al., 2014). Apart from the psychological effects that such a delay 

and uncertainty can have on patients, it also prevents them from entering clinical trials and/or 

starting treatment at an earlier disease stage, when fewer motor neurones may be been lost 

(Paganoni et al., 2014). As a result, patients may not be able to fully benefit from developing or 

existing treatments (Paganoni et al., 2014).  Additionally, since it is more likely that any potential 

treatment will be more effective at an earlier stage, earlier disease diagnosis would also facilitate 

clinical trials.  
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To date there is only one widely accepted pharmacological treatment for ALS with a limited 

survival benefit, riluzole (Bensimon, Lacomblez and Meininger, 1994; Cooper-Knock, Jenkins and 

Shaw, 2013). The response of different patients to medication with riluzole varies, but the average 

life extension is approximately 3 months (Miller et al., 2007). Additional to this drug, a new 

medication, edaverone, was developed and licenced recently (May 2017) in the USA. However, 

this drug is not yet licensed in Europe.  

Symptomatic treatments are beneficial for patients, especially in terms of improving their quality 

of life. Such treatments often require a multidisciplinary approach with neurologists, specialist 

nurses, speech and language therapists, dieticians, physiotherapists, gastroenterologist and 

respiratory therapists being involved (Bäumer, Talbot and Turner, 2014). Example interventions 

that are often considered in such cases are gastrostomy (for patients that have difficulties in 

swallowing) and non-invasive ventilation. Apart from quality of life improvement, non-invasive 

ventilation also offers a modest survival advantage (Bäumer, Talbot and Turner, 2014).  

Diagnosis only after the occurrence of significant neuronal damage and lack of efficient treatment, 

mark the need for efficient biomarkers in ALS. A biomarker is defined as “an objective 

measurement that acts as an indicator of normal biological processes, pathogenic processes or 

pharmacologic responses to therapeutic intervention” (Turner et al., 2009). In that sense a 

biomarker could, depending on its characteristics, aid early disease diagnosis or even prognosis, 

monitor disease progress, categorise patients in terms of potential beneficial treatments and 

evaluate new therapeutic approaches (Turner et al., 2013; Benatar et al., 2016; Vucic, 2016). The 

field has gained a lot of attention over the past 10 years and promising candidates include 

proteotomic studies in biofluids such as CSF and blood, neurophysiological techniques and 

neuroimaging techniques (Radionuclide imaging, MRI) (Pradat and Dib, 2009; Turner et al., 2013; 

Bame et al., 2014; Benatar et al., 2016). Despite the potential biomarkers indicated by these 

techniques there still is no validated clinically implemented biomarker in ALS (Bame et al., 2014). 

 

1.1.3.1 SOD1 Gene 

The SOD1 gene comprises 5 exons interspersed with 4 introns and encodes an anti-oxidant 

ubiquitously expressed enzyme of 153 amino acids, known as Cu, Zn superoxide dismutase (Kaur, 

McKeown and Rashid, 2016). The SOD1 protein functions as a homodimer (Cooper-Knock, Jenkins 

and Shaw, 2013). Each subunit of the protein consists of an eight-stranded beta barrel and two 

metal ions, a copper and a zinc (Rakhit and Chakrabartty, 2006). The metal atoms play an essential 

role in the anti-oxidant catalytic activity of the enzyme. SOD1 protein acts as a free radical 

scavenger, catalysing the production of hydrogen peroxide and oxygen from free radical 

superoxide (Kaur, McKeown and Rashid, 2016). Superoxide anion arises as a by-product of aerobic 

metabolism, mainly because of electron leakage from the respiratory chain that leads to the 

incomplete reduction of molecular oxygen during oxidative phosphorylation in the mitochondria 

(Pasinelli and Brown, 2006; Cooper-Knock, Jenkins and Shaw, 2013). SOD1 catalyzes the 

inactivation of superoxide through cyclical reduction and oxidation of the copper ion in its active 

sites (Pasinelli and Brown, 2006; Barber and Shaw, 2010). SOD1 activity prevents cellular damage 

from superoxide (Kaur, McKeown and Rashid, 2016).    

Mutations in the SOD1 gene were the first identified genetic cause of ALS and are thus the most 

widely studied (Rosen et al., 1993; Hilton, White and Crouch, 2015). They account for 20% of 
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familial ALS cases and 2-7% of sporadic ones and are mainly associated with limb disease onset 

(Al Sultan et al., 2016). Up to date more than 180 mutations throughout the whole gene have 

been found to be associated with the disease (Al Sultan et al., 2016). Most of the currently 

identified mutations are point mutations with some frameshift mutations resulting in truncated 

proteins also present (Hilton, White and Crouch, 2015).The main pathological feature that 

distinguishes SOD1 ALS cases from other forms of ALS is the existence of neuronal cytoplasmic 

protein aggregates of mutated SOD1 proteins instead of TDP-43 protein aggregates as is the case 

in most of the other ALS cases (Cooper-Knock, Jenkins and Shaw, 2013).   

Due to the large amount of different mutations as well as the wide range of physiological 

functions affected by the mutations, determining the cellular mechanisms involved in ALS 

pathogenesis due to SOD1 mutations has been challenging. Initially it was suspected that reduced 

dismutase activity mainly contributed to ALS pathogenesis (Hilton, White and Crouch, 2015). 

However, the fact that specific SOD1 mutants do retain their full enzymatic activity along with 

evidence that mutated SOD1 gene knockout in mice does not result in developing ALS led to 

rejection of that hypothesis (Reaume et al., 1996; Barber and Shaw, 2010; Hilton, White and 

Crouch, 2015). Thus, it is now widely accepted that SOD1 mutations cause ALS through one or 

more gained toxic functions (gain of toxic function), the detailed nature of which still remains 

undetermined (Pasinelli and Brown, 2006). Various mutually compatible pathogenic mechanisms 

have been suggested to contribute to the toxicity of mutated SOD1 proteins and some of them 

will be discussed in the following paragraphs. 

The important anti-oxidant enzymatic activity of superoxide dismutase suggests that oxidative 

stress could play a crucial role in the pathogenesis of SOD1-ALS (Bozzo, Mirra and Carrì, 2017). 

Oxidative stress results from imbalanced production and removal of reactive oxygen species (ROS) 

along with a decreased ability of the biological system to control damage induced by the elevated 

amount of ROS (Ferraiuolo et al., 2011). ROS generation increases with age and oxidative stress 

could therefore be the mechanism that, in middle or later life, starts inhibiting the ability of a 

biological system to cope with a toxic insult such as a mutation, leading thus to 

neurodegeneration (Barber and Shaw, 2010; Ferraiuolo et al., 2011). Moreover, there is strong 

evidence of oxidative damage (i.e. a role of oxidative stress in ALS) to several biomolecules (lipids, 

proteins, DNA, mRNA) in human post-mortem analysed tissue of familial and sporadic ALS 

patients as well as SOD1 mutated mouse models (Shibata et al., 2001; Chang et al., 2008; 

Ferraiuolo et al., 2011; D’Amico et al., 2013; Bozzo, Mirra and Carrì, 2017).  

Various aberrant oxidative reactions catalysed by mutated SOD1 proteins, have been proposed 

to cause oxidative stress in SOD1 induced ALS (Pasinelli and Brown, 2006). The idea behind 

oxidative stress caused by any of these aberrant chemical reactions is that altered conformation 

of the mutated protein allows various different substrates to enter the active site and react with 

any of the metal ions and is thus still based on an altered catalytic activity of the enzyme (Barber 

and Shaw, 2010; Ferraiuolo et al., 2011). However, it has been shown that mice with mutations 

that lead to a limited amount or complete lack of SOD1-bound copper and thus with a reduced or 

completely lost dismutase activity still develop motor neuron disease (Wong et al., 2000; Wang 

et al., 2003; Pasinelli and Brown, 2006). The contribution of aberrant chemistry in oxidative stress 

and ALS pathogenesis has thus come into question and new mechanisms that don’t rely on the 

enzyme’s catalytic activity have been proposed. For example, a proposed mechanism involves 
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dysregulation of transcription factor nuclear erythroid 2-related factor 2 (Nrf-2) mediated 

signaling anti-oxidant pathways due to a down-regulation of Nrf-2 (Cookson et al., 2002; Barber 

and Shaw, 2010). Increased NADPH oxidase mediated superoxide production by mutated SOD1 

proteins in microglia leading to prolonged ROS production has also been proposed (Harraz et al., 

2008). Although these mechanisms are likely to contribute to the progression of the disease, the 

degree to which they contribute to the gain of toxic function of the protein that leads to ALS 

pathogenesis still remains elusive. 

Protein instability and subsequent protein aggregation have also been proposed to play a crucial 

role in SOD1 toxicity since SOD1 inclusions have been found in motor neurons and astrocytes of 

transgenic SOD1 mice and fALS patients (Pasinelli and Brown, 2006; Ferraiuolo et al., 2011). 

Protein instability caused either by mutations that lead to misfolding or demetallation, or by the 

dissociation of wild type and mutant SOD1 dimers into monomers due to oxidative stress related 

damage has been shown to render mutated SOD1 proteins more prone to aggregation (Barber 

and Shaw, 2010). Interestingly, it has also been reported that mutations associated with a more 

aggressive phenotype of the disease in transgenic SOD1 mice produce proteins that are more 

susceptible to formation of inclusions (Lindberg et al., 2005; Sato et al., 2005; Pasinelli and Brown, 

2006). Moreover, Munch et al. suggested that SOD1 protein misfolding, once present, spreads 

through molecules and neighbouring cells in a prion-like way and SOD1 aggregates are built 

(Munch, O’Brien and Bertolotti, 2011). Suggested mechanisms by which these protein inclusions 

might contribute to SOD1 toxicity include decrease of dismutase activity due to aggregation and 

overwhelming of proteosomal activity which could lead to sequestering of specific heat shock 

proteins and subsequent impairment of their chaperone and/or anti-apoptotic function (Pasinelli 

and Brown, 2006; Kaur, McKeown and Rashid, 2016). Although protein inclusions are a hallmark 

of ALS and other neurodegenerative disorders it is still unknown if they are a cause of disease 

pathogenesis or a consequence of the disease. It is also still not clear if they are toxic or favourable 

in terms of sequestering harmful proteins (Barber and Shaw, 2010).  

Mitochondrial dysfunction is a feature of SOD1 induced ALS and various studies have focused on 

its role in disease pathogenesis. Once again though it is unknown whether it is a primary or 

secondary pathological event. Mitochondria are important cellular organelles that are involved in 

various cellular functions such as energy metabolism, calcium homeostasis as well as apoptosis 

initiation and regulation (Cozzolino and Carrì, 2012). There are numerous examples of evident 

mitochondrial morphological abnormalities and dysfunction in cell lines, mutant mice and ALS 

patients including SOD1 protein aggregates in vacuolated mitochondrial intramembrane space, 

defects in respiratory chain function, impaired calcium buffering, and altered antioxidant defense 

mechanism. In addition to externally inserted mutated proteins, it is also believed that mutant 

SOD1 could directly damage mitochondria due to SOD1 protein expression within the 

mitochondrion through various toxic mechanisms, which could lead to initiation of apoptosis, 

change in the mitochondrial proteome and/or oxidative damage (Higgins et al., 2002; Pasinelli 

and Brown, 2006; Barber and Shaw, 2010). Apart from oxidative stress, protein aggregation and 

apoptosis, there also is a possible crosstalk between mitochondrial dysfunction and other ALS 

pathogenesis related mechanisms such as excitotoxicity and ER stress.  

Disrupted axonal transport and disorganization of axonal cytoskeleton are common pathological 

features of ALS and are thought to contribute to SOD1 mediated disease pathogenesis 
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(Robberecht and Philips, 2013). The cytoskeleton is responsible for determining the cell shape 

and it also aids intracellular movement of organelles. Disorganisation of cytoskeleton in terms of 

abnormal neurofilament aggregation is observed in ALS patients and transgenic mice (Barber and 

Shaw, 2010). This could be triggered by reduced expression of neurofilament–light (NF-L), or by 

ROS induced damage to NF-L subunits due to mutant SOD1 proteins and increased oxidative stress 

respectively (Barber and Shaw, 2010). Due to the crucial role of the cytoskeleton in intracellular 

transport and in the maintenance of axonal caliber, neurofilament aggregates have been 

suggested to physically affect axonal anterograde transport (Sasaki and Iwata, 1996; Rao and 

Nixon, 2003). Motor neurones are asymmetrical cells with long axons. Axonal transport of various 

components such as proteins and organelles from the cell body to the axons and synapses 

(anterograde transport) and vice versa (retrograde transport) is therefore essential for their 

survival. Slowing of anterograde and retrograde routes was evident in SOD1 transgenic mice 

before the initiation of neurodegeneration and in also a clinical feature in ALS patients (Ferraiuolo 

et al., 2011). Moreover, it has been indicated that axonal transport is affected by mutant SOD1 in 

a cargo-specific way. Such an example is the disruption of the anterograde transport route of 

mitochondria but not the retrograde one (Kieran et al., 2005; De Vos et al., 2007; Bilsland et al., 

2010; Ferraiuolo et al., 2011). There is also potential crosstalk between disrupted axonal transport 

and several other mechanisms that are related to ALS pathogenesis and progression. Defective 

transport of mitochondria due to impaired mitochondria function (mentioned above) could lead 

to impaired axonal transport of other cargoes as well due to lack of energy, required for that 

transport (Ferraiuolo et al., 2011). Moreover, elevated levels of ROS are known to cause inhibition 

to axonal transport (Kaur, McKeown and Rashid, 2016).  

Other mechanisms such as excitotoxicity, endoplasmatic reticulum stress, impairment of 

ubiquitin–proteasome system (UPS) and other protein degradation mechanisms have also been 

implicated in SOD1 mediated ALS pathogenesis, although the degree to which they contribute to 

the toxic gain of function is still unknown. Moreover, SOD1 mutants seem to play an important 

role in function of non-neuronal cells. Mutant SOD1 protein aggregates are also found in glial cells 

(Tobisawa et al., 2003; Kaur, McKeown and Rashid, 2016). Furthermore, misfolded SOD1 proteins 

within microglia and astrocytes in conjunction with activation of these cells due to damage in 

motor neurons can lead to inflammation and a subsequent release of elevated levels of toxic 

factors (Boillée, Vande Velde and Cleveland, 2006; Kaur, McKeown and Rashid, 2016). Interaction 

of mutants with protein components of the neuroendocrine system could cause secretion of the 

mutated proteins which can then lead to microgliosis activation and neuronal cell death 

(Urushitani et al., 2006; Kaur, McKeown and Rashid, 2016). Hence, it is obvious that SOD1 can 

affect many different factors and mechanisms involved in ALS pathogenesis and progression. It is 

therefore likely that it is a combination of several different pathways that are involved in the 

toxicity of SOD1. 

 

1.1.3.2 Muscle in SOD1-mediated ALS 

Skeletal muscle is affected in all ALS patients. As the disease progresses, progressive muscle 

denervation leads to muscle atrophy and weakness, resulting in loss of limb and bulbar function 

and, ultimately, respiratory failure. ALS has traditionally been described as disease that initially 

causes degeneration of motor neurons, which in turn causes muscle atrophy (Moloney, de Winter 
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and Verhaagen, 2014). However, studies on mutant SOD1 mice have shown that non-neuronal 

cells may also participate in disease pathogenesis (Moloney, de Winter and Verhaagen, 2014; 

Pansarasa et al., 2014). With regard to skeletal muscle cells, it has been reported that 

neuromuscular junction abnormalities and muscle dysfunction occur before motor neuron 

degeneration (Dupuis and Loeffler, 2009; Musarò, 2010; Si et al., 2014). In support of this 

hypothesis, two independent studies have shown that selective overexpression of mutant SOD1 

in muscle only leads to muscle atrophy, possibly indicating muscle as a primary target of SOD1 

toxicity (Dobrowolny et al., 2008; Wong and Martin, 2010). In the study conducted by Wong et al. 

skeletal-muscle restricted expression of mutant SOD1 also led to neurodegeneration (Wong and 

Martin, 2010). Conversely, it was reported that although muscle-specific overexpression of the 

transcriptional coactivator, PGC-1a can delay muscle weakness, it does not affect survival (Da Cruz 

et al., 2012; Wei et al., 2013). Finally, it has been shown that disease progression is not affected 

by attenuation of mutant SOD1 solely in muscles (Miller et al., 2006; Si et al., 2014). Thus, further 

investigation is required in order to determine the degree to which skeletal muscle participates 

in triggering or maintaining, the disease. Despite this uncertainty, most of the pathophysiological 

mechanisms described above have also been implicated in muscle degeneration with 

mitochondrial dysfunction, protein aggregation and oxidative stress being the most investigated 

characteristics of muscle pathology.  

Mutant protein aggregates (suggestive of biochemical abnormalities), elevated levels of ROS, as 

well as structurally altered and functionally impaired mitochondria have been found in SOD1 

mouse muscle (Dobrowolny et al., 2008; Halter et al., 2010; Loeffler et al., 2016). Decreased 

amounts of muscle heat shock proteins compared to the amount of such proteins in motor 

neurones have also been observed. This could potentially increase the intrinsic susceptibility of 

malformed mutant proteins and protein accumulation in the muscle (Wei et al., 2013; Loeffler et 

al., 2016). Luo et al. demonstrated that SOD1 protein aggregates and impaired mitochondrial 

dynamics are casually linked (Luo et al., 2013). Mutant SOD1 protein aggregates formed in muscle 

mitochondria resulted in fragmentation of the mitochondrial network as well as in loss of 

mitochondrial membrane polarization (Luo et al., 2013). However, the role of muscle SOD1 

protein aggregates in protein misfolding and ROS production has come into question by Wei et 

al. (Wei et al., 2012). In this study there were no SOD1 protein aggregates detected in skeletal 

muscle of SOD1 mice (Wei et al., 2012). This was attributed to a better proteasomal activity in 

muscle (2 to 4-fold increased proteasomal activity was observed from pre-onset to symptomatic 

disease stage) (Wei et al., 2012). Moreover, they also demonstrated that although there were 

higher levels of the soluble state of mutated SOD1 proteins, these didn’t seem to directly affect 

mitochondrial release of ROS. Instead non-SOD1-containing protein fractions that undergo 

conformational changes due to mutant SOD1 toxicity seem to impair mitochondrial function and 

possibly affect mitochondrial ROS release (Wei et al., 2012). Thus, although these mechanisms 

definitely play a crucial role in ALS muscle pathology, detailed understanding of their contribution 

and their potential crosstalk still remains elusive. Proteotomic and biochemical studies have 

additionally revealed changes in expression of regulatory proteins of cytoskeletal processes, iron 

and calcium homeostasis as well as apoptosis prompting thus the role of additional mechanisms 

in muscle degeneration (Chung and Suh, 2002; Capitanio et al., 2012). 
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1.1.3.3 SOD1 Mouse Model 

Various transgenic mouse models with over-expressed mutant SOD1 have been generated and 

used as a research model of ALS for more than 20 years. Being a well characterised mouse model, 

it has proven quite useful over the years in terms of identifying and testing potential pathogenic 

disease mechanisms, novel hypotheses and potential therapies. Moreover, structural and 

functional differences between mutated and wild-type SOD1 proteins have been studied (Hilton, 

White and Crouch, 2015). The developed disease phenotype exhibits many features that are also 

seen in human ALS cases including muscle denervation, weakness, atrophy and subsequent 

paralysis, axonal degeneration and demise of motor neurones in the spinal cord as well as 

activation of glial cells (Mead et al., 2011; Robberecht and Philips, 2013). However, there are 

several limitations in the results obtained from animal-based research. Over-expression of the 

mutated gene, which is required in order to achieve the desired phenotype, is an important 

disadvantage of this mouse model as it can lead to experimental artifacts (Robberecht and Philips, 

2013). Moreover, as SOD1 is only one of several genetic ALS variants, the importance and 

applicability of the findings obtained in the mutant SOD1 model to other types of familial and 

sporadic ALS cases needs to be demonstrated (Hilton, White and Crouch, 2015). The main source 

of criticism regarding the mutant SOD1 mouse model has been its utility in preclinical trials of new 

therapeutics. This arises from the fact that numerous therapeutic approaches that produced mild 

effects when tested in the mouse model were proven unsuccessful when tested in human 

(Benatar, 2007). Possible causes for that include biological noise and poor preclinical study 

designs (Ferraiuolo et al., 2011; Mead et al., 2011). Moreover, the fact that treatment studies in 

the mouse model sometimes start at a quite early, often pre-symptomatic disease stage in 

contrast with the human trials in which treatment is tested at a much later stage (usually after 

symptom onset) might also play a crucial role (Robberecht and Philips, 2013).     

The G93A (glycine 93 changed to alanine) pseudo-wild type mutation, which does not affect the 

enzymatic activity of the protein, is a quite rare SOD1 mutation (Hilton, White and Crouch, 2015). 

However, it has been studied very thoroughly due to the fact that the SOD1-G93A transgenic 

mouse model was the first ALS animal model produced (generated in 1994) and it is up to date 

the most employed ALS model (Weydt et al., 2003; Hatzipetros et al., 2015; Browne and Abbott, 

2016; Kim et al., 2016). Multiple disease associated mechanisms and potential drug therapies 

have been tested in this mouse model despite the fact that due to the rareness of the mutation 

in human ALS cases, the applicability of the results to other types of ALS is uncertain.  

 

1.1.3.3.1 Established in vivo Biomarkers 

Due to the severe motor phenotype of the SOD1G93A mouse the main in vivo techniques employed 

to study disease onset and progression include tests that assess motor function like neurological 

scoring, rotarod running, grip strength and gait analysis (Weydt et al., 2003). The phenotype of 

the SOD1G93A mice highly depends on the number of transgene copies with relatively high copy 

number models exhibiting a disease onset between 70-100 days and an endpoint between 120-

160 days (Bame et al., 2014; Pfohl, Halicek and Mitchell, 2015; Kim et al., 2016). All of the above 

mentioned tests, or at least some of their outcome measures, have been shown to successfully 

detect changes in the motor function of transgenic (Tg) SOD1G93A mice at some point near or 

straight after disease onset (as defined in each study) and they usually remain significantly 
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different between the two groups as the disorder progresses until the endpoints (Miana-Mena et 

al., 2005; Knippenberg et al., 2010; Mancuso, Oliván, et al., 2011; Mead et al., 2011; Sun et al., 

2014; Oliván et al., 2015). There is, however, no agreement in the literature as to which one of 

these tests is more sensitive, particularly in detecting changes at an earlier stage or after an 

intervention. Some studies claim that footprint and gait analyses can detect changes earlier, while 

others show that rotarod and/or grip endurance tests are more sensitive (Miana-Mena et al., 

2005; Knippenberg et al., 2010; Mancuso, Oliván, et al., 2011; Mead et al., 2011; Sun et al., 2014; 

Oliván et al., 2015). Additionally, some of these tests have been shown to be very variable and 

require large animal numbers (rotarod, grip endurance), whereas others are time-consuming (gait 

and footprint analysis) or subjective (neurological scoring) (Knippenberg et al., 2010; Mead et al., 

2011; Hatzipetros et al., 2015). Imaging tools, like MRI, have also been shown to noninvasively 

detect changes in muscle due to disease progression (Marcuzzo et al., 2011; Mead et al., 2011; 

Caron et al., 2015). For example, Marcuzzo et al. demonstrated that muscle volume in Tg mice 

was significantly reduced from control mice at 8 weeks of age and continued decreasing until the 

endpoint (18 weeks of age) (Marcuzzo et al., 2011). It is worth mentioning that this difference 

was seen 4 weeks before a scoring system and the grip endurance test were able to detect 

significant differences between Tg and control mice (first observed at 12 weeks of age). Therefore, 

muscle atrophy and possibly biochemical changes take place in the muscle before disease onset, 

as this defined by functional tests (Marcuzzo et al., 2011). The main disadvantages of MRI, as 

discussed above, are that it is a very expensive test and requires prolonged anaesthesia, 

rendering, thus, longitudinal measurements difficult. 

Electrophysiological studies have also been shown to detect changes before functional 

assessment tests. For example, some studies document significant differences in certain 

electrophysiological parameters between Tg and control as early as 20 days of age, while 

impairment of classical parameters (scoring system, hanging wire, rotarod, gait analysis 

parameters) were not seen until after 90 days of age (Alves et al., 2011). Other studies have also 

shown the ability of electrophysiological parameters to detect changes in muscle of Tg mice and 

successfully separate them from control at an early age (Mancuso, Santos-Nogueira, et al., 2011; 

Li, Sung and Rutkove, 2013; Mancuso, Osta and Navarro, 2014). Electrophysiological recordings 

can, however, be technically challenging and require large animal numbers (Mancuso, Santos-

Nogueira, et al., 2011; Mancuso, Osta and Navarro, 2014). 

In the rest of the thesis the terms MND and ALS were used interchangeably. 

 

1.1.4 Duchenne Muscular Dystrophy  

Muscular dystrophies are a group of inherited disorders, which cause progressive muscle 

weakness without an abnormality in the central or peripheral nervous system. Although the 

disorders share certain clinical features as well as dystrophic pathological findings in muscle 

biopsies they exhibit clinical, genetic and biochemical heterogeneity, which is the basis for their 

classification (Emery, 2002). DMD, which results from a mutation in the X-linked gene that 

encodes the protein dystrophin, is the most common and most severe muscular dystrophy in 

childhood (Biggar, 2006; Mah et al., 2014). The incidence rate of DMD is approximately 1 in 3500 

to 10000 boys (Mah et al., 2014). Clinical symptoms of the disease usually appear between 2 and 

5 years of age and early signs include delayed gait or alteration in gait, difficulties in jumping, 
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running and standing up as well as toe walking (Ge et al., 2004; Ruiten, Bushby and Guglieri, 2017). 

Calf hypertrophy can also be observed at an early disease stage (Emery and Muntoni, 2015). 

Subsequently, all skeletal muscles (upper limb muscles and distal lower limb muscles) are affected 

and untreated children usually became wheelchair-dependent between the ages of 8–12 (Ge et 

al., 2004; Ruiten, Bushby and Guglieri, 2017). Heart and respiratory muscles are also affected in a 

similar way at various stages of the disease and usually untreated patients die in their early 

twenties due to cardiac or respiratory failure (Ruiten, Bushby and Guglieri, 2017). Behavioural and 

cognitive problems as well as problems regarding language development are also present in some 

cases (Cyrulnik et al., 2007; Flanigan, 2014). 

Making a DMD diagnosis requires a clinical examination, blood tests, genetic testing and in some 

cases muscle biopsy. If DMD is suspected after clinical examination, a blood test is usually the first 

screening test undertaken in order to measure the concentration of serum creatine kinase (CK) 

(Ruiten, Bushby and Guglieri, 2017). CK levels are largely elevated in DMD with values in the first 

5 years of life that are 10 – 20 (often 50-200) times higher than the upper limit of normal (Yiu and 

Kornberg, 2015). Elevated CK levels, though to a lower degree, can also be seen in newborns. 

Subsequently, a genetic test is performed in order to look for mutations in the dystrophin gene. 

Finally, in cases with clear clinical features of DMD but no apparent gene mutation, a muscle 

biopsy is undertaken in order to investigate the dystrophin expression in the muscles (Ruiten, 

Bushby and Guglieri, 2017). 

Corticosteroids are currently the only pharmacological treatment effective in DMD. 

Corticosteroids do not treat DMD but they slow down disease progression in terms of prolonged 

ambulation (for up to 3 years) and decrease of cardiorepisratory function decline. (Balaban et al., 

2005; King et al., 2007; Yiu and Kornberg, 2015). In most of the cases symptomatic treatment is 

also employed and a multidisciplinary approach is necessary when it comes to DMD management 

due to the multiple systems it affects. Novel treatment strategies include new drugs, cell and gene 

therapies (Cossu and Sampaolesi, 2007). 

 

1.1.4.1 Dystrophin Gene 

The dystrophin gene is located in the short arm of the X chromosome and is the largest gene in 

the human genome comprising 79 exons (Nowak and Davies, 2004; Biggar, 2006). Mutations that 

lead to DMD can be throughout the whole length of the gene, however, most of them are located 

between exons 2 and 10, or exons 45 and 55 (Ruiten, Bushby and Guglieri, 2017). More than half 

of the different mutations associated with DMD (60-70%) are large deletions resulting in 

frameshift errors, 7% to 11% are duplications and around 20% are small (point) mutations (White 

et al., 2006; Oshima et al., 2009; Aartsma-Rus, Ginjaar and Bushby, 2016). DMD results when the 

mutation in the dystrophin gene causes absolute lack of the protein. The dystrophin protein is a 

427kDa protein and under normal circumstances it is expressed in the skeletal muscle, the brain 

and the heart. In the muscle, dystrophin is found in the inner cell membrane surface and is 

elevated at the costameres and cell-cell contact sites. Dystrophin forms dystrophin-associated 

glycoprotein complex (DAGC) at the sarcolemma by assembling several transmembrane 

(dystroglycan, sarcoglycan, sarcospan) and cytosolic (syntrophin, dystrobrevin and neuroneal 

nitric oxide synthase (nNOS)) proteins (McGreevy et al., 2015). Dystrophin connects the 

intracellular cytoskeleton to the extracellular matrix via the DAGC. This complex plays thus a 
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crucial role in the stability of the muscle membrane and aids shock absorption during muscle 

contraction (Guiraud et al., 2015). In addition to its structural function dystrophin is also believed 

to play a part in cellular signaling and gene expression (Cacchiarelli et al., 2010; Constantin, 2014; 

Carr et al., 2017).  

 

1.1.4.2. Muscle and Disease Pathophysiology 

It is known that DMD is caused due to a lack of dystrophin. However, the mechanisms that lead 

from the absence of the protein to muscle degeneration are yet to be fully clarified. Various 

histopathologic and biochemical changes occur in DMD muscle due to absence of dystrophin 

(Flanigan, 2014). Histological studies on muscle samples of DMD patients and animal models have 

revealed an ongoing process of repetitive degeneration and regeneration of myofibres (focal 

areas of regenerating and degenerating fibres and increased number of internal nuclei present) 

with progressive loss of regenerative capacity that leads to an increasing amount of necrotic 

muscle fibres infiltrated by monocytes and macrophages (Ge et al., 2004). Necrotic fibres are 

progressively replaced by fat and connective tissue (increased amount of collagen and adipose 

present) which leads to the apparent fibrosis and chronic damage (Tanabe, Esaki and Nomura, 

1986; Marshall, Williams and Goldspink, 1989; Bonilla, Tanji and Minetti, 1999; Ge et al., 2004; 

Smith and Barton, 2014; Carr et al., 2017; Ruiten, Bushby and Guglieri, 2017). Biochemical changes 

due to muscle wasting include reduction in muscle myosin, carnitine, and most glycolytic enzymes 

whereas alterations due to inflammation and invasion of fibroblasts involve an increase in 

enzymes present in fibroblasts and macrophages (such as NADP-linked dehydrogenases), 

proteases (cathepsins, lysosomal acid hydrolases, and calcium-activated proteases) and immune-

related proteins (Emery, Muntoni and Quinlivan, 2015). Moreover, increased calcium levels and 

oxidative damage in terms of higher protein carbonylation have also been observed in the skeletal 

muscle of DMD patients and mdx mice (Fong et al., 1990; Dunn and Radda, 1991; Kaczor et al., 

2007).  

As already mentioned, the main function of dystrophin is to connect the intracellular cytoskeleton 

and contractile apparatus with the extracellular matrix ensuring thus the lateral transmission of 

mechanical stress during contraction and membrane stability (Emery, Muntoni and Quinlivan, 

2015). An absence of this structural linkage can lead to membrane fragility and increased 

membrane permeability due to microlesions or other types of membrane damage induced by 

mechanical stress during muscle contractions (Consolino and Brooks, 2004; Deconinck and Dan, 

2007; Guiraud et al., 2015). Membrane damage and increased membrane permeability could lead 

to increased levels of intra-cellular calcium (and other micromolecules) and subsequently to cell 

dysfunction and death via activation of proteases (Marshall, Williams and Goldspink, 1989; 

Deconinck and Dan, 2007; Guiraud et al., 2015). Continued cell death results in the apparent 

imbalance between degeneration and regeneration of muscle which then causes an inflammatory 

response and the observed muscle fibrosis with infiltration of adipose and connective tissue 

(Marshall, Williams and Goldspink, 1989; Deconinck and Dan, 2007; Guiraud et al., 2015). This 

mechanism explains the main histological observations.  

It has also been suggested that increased influx of calcium ions could be sequestered in 

mitochondria and could thus lead to mitochondrial overload and reduction in oxidative 

phosphorylation (Emery, Muntoni and Quinlivan, 2015). In support of these mechanisms, 



 

17 
 

proteotomic studies on DMD skeletal muscle of mdx mice have revealed changes in expression of 

proteins involved in metabolism and energy production e.g. a decrease in adenylate kinase 1 (AK 

1), calcium homeostasis (for example upregulation of PP1) and cytoskeletal reorganization and 

maintenance (for example increased expression of RhoGDI-1, g-actin, and tropomyosin 1) (Ge et 

al., 2004). Moreover, an increase of stress related chaperone proteins that play an important role 

in calcium storage and changes in the expression of mitochondrial proteins have also been 

observed in mdx mice (Carr et al., 2017). Such changes could also be indicative of impaired calcium 

homeostasis and oxidative phosphorylation (Carr et al., 2017). Comprehensive understanding of 

the above-mentioned mechanisms and other observed pathophysiological and biochemical 

changes is essential for the development of an effective treatment. 

 

1.1.4.2 mdx Mouse Model 

The mdx mouse model is the most used and best characterised DMD animal model (Granchelli et 

al., 2013). The nonsense point mutation in exon 23 of the dystrophin gene that results in lack of 

dystrophin in this mouse model arose spontaneously in the early 1980s in a colony of 

C57BL/10ScSn mice (Bulfield et al., 1984a). Despite the absence of dystrophin, mdx mice develop 

a milder phenotype of DMD than humans (Nowak and Davies, 2004). This is often attributed to 

the fact that mouse muscle exhibits a better and more robust regenerative capacity (Nowak and 

Davies, 2004). Histological studies of mdx skeletal muscle show ongoing degeneration and 

regeneration of muscle fibres, starting at about three weeks and persisting throughout the whole 

life of the mouse with a peak at around 12 months (Manning and O’Malley, 2015). Moreover, 

there is evidence of inflammation and ‘pseudohypertrophy’ (Grounds et al., 2008). However, the 

lifespan of mdx is decreased by approximately 25% (whereas the decrease for DMD patients is 

approximately 75%) and fibrosis and loss of limb muscle function occur at a much more moderate 

degree (Coulton et al., 1988; Manning and O’Malley, 2015; McGreevy et al., 2015). Unlike skeletal 

and cardiac muscles which are much more mildly affected in mice, the degeneration of the 

diaphragm is similar to the pathology observed in humans (Stedman et al., 1991; Guiraud et al., 

2015). Despite these disadvantages, this model has proven very useful in understanding the 

molecular changes and pathophysiological mechanisms that occur due to dystrophin deficiency, 

as well as in testing new therapeutic approaches (Manning and O’Malley, 2015). 

 

1.1.4.2.1 Established in vivo Biomarkers 

The main in vivo techniques used to study disease onset and progression and to evaluate potential 

treatments or the results of interventions for the mouse models of DMD are tests that probe 

muscle strength, function and coordination such as whole body or forelimb grip strength, two or 

four limb wire hanging and rotarod running (Grounds et al., 2008). The main advantages of such 

tests are that they are non-invasive, inexpensive and usually not particularly time-consuming. 

Protocols and test regimes that combine these tests for the mdx mouse model have been 

established and have been shown not to affect the disease, making them suitable tests to study 

disease progression or the effect of potential therapeutic agents and rendering results from 

studies undertaken in different laboratories more comparable (Siegel et al., 2009; Carlson et al., 

2010; Van Putten et al., 2010; Sali et al., 2012; Aartsma-Rus and Van Putten, 2014; Mcdonald et 

al., 2015; Carlson, 2019; Putten, 2019). The main disadvantages of these techniques are that they 
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are confounded by animal weight, balance and behaviour. Also, due to the variability in the 

performance of the mice sometimes very large numbers of mice are required for reliable 

measurements (Grounds et al., 2008; Carlson et al., 2010; Carlson, 2019; Putten, 2019). Room 

conditions, such as room temperature, odours and noise, as well as time of the day can also affect 

the performance of the mice (Carlson, 2019; Putten, 2019). For the whole body tension and wire 

hanging tests it has also been shown that using more than one investigators for the tests 

introduces variability; thus, each longitudinal series of tests is best performed by a single 

investigator, or a high degree of standardization is needed to reduce inter-trial and inter-examiner 

variability (Carlson, 2010; Carlson et al., 2010; Putten, 2019).  

Numerous mdx studies have been published using these techniques. Various whole body tension 

parameters have been measured from one month to two years of age and shown to differ 

significantly between mdx and C57Bl/10 mice throughout the lifespan of mdx mice (Siegel et al., 

2009). Forelimb and hindlimb grip strength have also been shown to significantly vary between 

mdx and wild-type mice from 10 to 40 weeks but other outcome measures such as normalised 

duration of maintained grip has been reported to not vary significantly between the two groups 

(Spurney et al., 2009; Mcdonald et al., 2015). It has also been shown that between four and 13 

weeks of age mdx mice perform worse in the two limb hanging test than age-matched control 

mice, with the mean longest time hanging ranging between 100 and 300 seconds for the mdx 

mice at the different time points and between 300 and 500 seconds for the wild-type mice 

(Aartsma-Rus and Van Putten, 2014). Other outcome measures were shown not to differ between 

the two groups at specific timepoints (Aartsma-Rus and Van Putten, 2014). The four limb wire 

hanging performance of mdx and C57Bl/10 mice differed less and rotarod running times did not 

differ for the two groups at any time point (Aartsma-Rus and Van Putten, 2014). Other studies 

have also reported that there was no difference in the rotarod performance between mdx and 

control mice at various timepoints, with some studies reporting significant differences in latency 

to fall between three and five months of age only (Spurney et al., 2009; Mcdonald et al., 2015). 

All the above show that tests that probe function and coordination, although useful, are not 

always able to identify the mild phenotype of the mdx mouse model and monitor progression 

consistently and are therefore typically used in combination with blood marker measurements 

and post-mortem tests like muscle force studies and histological analysis. The need for these 

additional tests renders longitudinal measurements very difficult (for example CK measurements) 

or impossible (post-mortem tests).  

MRI has also been used to noninvasively detect disease activity at specific time points and 

evaluate the outcomes of therapeutic or other interventions in the mdx mouse model (Dunn and 

Zaim-Wadghiri, 1999; Amthor et al., 2004; Walter et al., 2005; Pratt et al., 2013). Moreover, 

magnetic resonance imaging and spectroscopy have been employed to successfully monitor 

disease progression longitudinally (Pratt et al., 2013; Heier et al., 2014). In both studies foci of 

hyperintensity, present in the mdx tissue, were used as a measure of tissue heterogeneity, in 

order to quantitatively monitor changes in mdx muscle pathology. Pratt et al. demonstrated that 

heterogeneity was present in mdx muscle from 5 to 80 weeks of age, peaked between 9 and 13 

and then dropped in a stable manner until 80 weeks of age (Pratt et al., 2013). This study only 

used one mdx mouse and no control mice for comparison. Heier et al. also showed that the 

percentage of hyper-intense foci within the hind limb muscle tissue differed significantly between 
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mdx and wild-type mice at 6, 8, 10 and 12 weeks of age (Heier et al., 2014). Spectroscopic 

measurements also revealed altered bioenergetics in mdx muscle compared to wild-type mice 

mainly at 6 weeks of age (Heier et al., 2014). None of these studies compare the data acquired 

from mdx mice at different time-points in order to better evaluate if the technique is sensitive 

enough to detect changes compared to previous disease stages and not between healthy and 

diseased muscle. Nonetheless, they do show the potential of MRI to monitor onset and disease 

progression of DMD at the preclinical setting. The main limitations of MRI at the preclinical setting 

include that it is a very expensive method and the long scanning often required pose difficulties 

in maintaining body temperature and recovering the animal.  
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1.2 Raman Spectroscopy 
Raman effect was discovered in 1928 by C.V. Raman, who used sunlight for excitation and a 

telescope to collect the Raman scattered light (Raman, 1928; Ferraro et al., 2002). In 1934 Cohan 

et al. using a mercury lamp as the excitation source and an exposure time of 24 hours managed 

to study the Raman spectra of amino acids, exploring thus for the first time the biological 

applicability of Raman spectroscopy (Cohn et al., 1934). In 1962, laser light sources for use with 

Raman spectroscopy were developed and facilitated Raman experimentation (Gilson et al., 1970). 

8 years later Lord et al. studied various proteins and their constituent amino acids in aqueous 

solutions using a laser-excited Raman system (Lord and Yu, 1970). Further technological 

advancements have led to Raman systems able to measure the chemical composition of various 

complex biological samples at a molecular level (Jermyn et al., 2016). The Raman spectrum of the 

sample, known as its molecular fingerprint, offers essential qualitative and quantitative 

biochemical information (Noothalapati et al., 2017). Molecular changes, that occur due the 

progression of a disease, or could cause a disease can be optically probed using Raman 

spectroscopy (Das et al., 2006; Stone and Matousek, 2008; Rehman, et al., 2012). Thus, Raman 

spectroscopy can be used for disease prognosis and diagnosis. 

In this field significant advances have been made particularly regarding cancerous pathology, with 

various applications demonstrating the ability of Raman spectroscopy to grade, diagnose and in 

some cases even prognosticate on various types of cancer using cells, tissue or biofluids (Butler et 

al., 2016). The development of fibre-optic probes led to an increase in the in vivo diagnostic 

applications of the technique with examples in lung (McGregor et al., 2016), cervical 

(Duraipandian et al., 2012), and oesophageal (Wang et al., 2015) cancer detection. Additionally 

to the wide range of cancer applications, the technique has been used to shed light on bone 

disease and, using biofluids like blood plasma and urine, on diabetes (Shafer-Peltier et al., 2003), 

asthma and malaria (Hobro et al., 2013). Moreover, recently application of Raman spectroscopy 

in monitoring and diagnosing of neurodegenerative diseases (Tian et al., 2016) and myopathies 

(Gautam et al., 2015) has started to gain attention. 

Promising in vivo results (>80 % sensitivity and specificity, often with very short acquisition times) 

in various cancer studies across several different labs along with the fact that the technique is 

non-invasive and can be used for measurements of chemical composition (with high molecular 

specificity) and imaging of biological samples at a very low cost indicate the ability of Raman 

spectroscopy to be used in the clinical environment and clinical implementation is firmly on the 

horizon (Byrne et al., 2015; Kong et al., 2015; Jermyn et al., 2016). One of the limitations regarding 

the translation of Raman spectroscopy into the clinic arises from the inherently weak Raman 

signal. This induces a limit in the speed of Raman systems, since short acquisition times can lead 

to the detection of weak signals with poor signal to noise ratios (Kong et al., 2015). However, the 

development of new techniques that enhance the Raman signal along with advancements in 

Raman instrumentation constitute essential steps toward maximizing the speed of the technique. 

Additional challenges include standardising the data analysis methods and demonstrating the 

safety of Raman devices (Pence and Mahadevan-Jansen, 2016). Thus, studies that evaluate 

biological damage caused by Raman systems have to be conducted before the adoption of Raman 

technology in healthcare. Finally, the developed technology needs to address unmet needs and 
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provide new information regarding a clinical target. Thus, input from clinicians and constant multi-

disciplinary collaborations are essential for delivery of the next steps.  

In the subsequent sections the theory of Raman effect and Raman technology will be presented. 

Furthermore, the limited applications of Raman spectroscopy in neuromuscular disorders will be 

discussed.  

1.2.1 Theory  

1.2.1.1 Quantum Theory of Raman Effect 

In quantum theory light consists of massless particles called photons. Upon interaction with 

matter photons can be transmitted through the material, absorbed or scattered by the molecules 

of the material.  

 

 
Figure 1.1: Absorption and different types of scattering.  

The arrows depict the change in the molecular state due to photon absorption (upward arrows) and 

emission (downward arrows). The colour of the arrow describes the energy (i.e. colour) of the light. 

 

Absorption occurs when the energy of the photons matches the energy gap between two 

molecular energy states. Once the molecule absorbs the photon, it gets promoted from the 

ground state to a higher (excited) energy level (Figure 1.1a). For scattering to occur, photon 

energy does not need to correspond to the energy gap between the energy levels of the molecule. 

Moreover, scattering is a two-photon process, during which photons get absorbed and re-emitted 

instantaneously.   

In scattering there is energy transfer between the molecule and the incident photons (Straughan 

and Walker, 1976). This leads to the creation of an extremely short-lived complex, formed 

between the photons and the electrons in the electron cloud of the molecule, known as a 

molecular virtual state. However, this new molecular state is unstable, and light is emitted 

instantaneously as scattered radiation. Due to the fact that virtual states arise from the 

interaction of light with electrons their energy is dependent on the energy of the incident 

radiation.   

In Rayleigh scattering the scattered photons have the same energy (i.e. the same frequency) with 

the incident photons, thus, the molecule, after being promoted to the virtual energy level, relaxes 



 

22 
 

back to its initial energy state (Fig 1.1b) (Smith and Dent, 2005). This occurs when only electron 

cloud distortion takes place during scattering and it is the dominant scattering process (Straughan 

and Walker, 1976).  

On the other hand, in Raman scattering the interaction of photons with electrons induces nuclear 

motion (Straughan and Walker, 1976). This movement causes a noticeable change in the energy 

of the molecule and thus in the energy of the scattered photons. This leads to the molecule 

relaxing to a different vibrational state and to the scattered photon having different energy from 

the incident one (Rehman et al., 2012). The change in the energy of the incident and scattered 

photon corresponds to the energy of the molecular vibration and is known as Raman shift. If a 

molecule, due to Raman scattering, undergoes a vibrational transition from the ground state to 

the first excited level, the scattered photon has less energy than the incident one (Fig.1.1c) (Smith 

and Dent, 2005). On the contrary, if the molecule undergoes a transition from a vibrationally 

excited state to the ground state, the scattered photon has more energy from the incident one 

(Fig. 1.1d). When the photon energy decreases (energy is offered to the molecular vibration), 

Raman scattering is known as Stokes scattering (Diem et al. 2008; Rehman et al., 2012). When the 

photon gains energy it is known as Anti-Stokes scattering. Raman scattering is a much weaker 

process than Rayleigh scattering. Only one in every 106 – 1010 photons are scattered inelastically 

(Conroy et al., 2005; Wachsmann-Hogiu et al., 2009; Kong et al., 2015).  

 

1.2.1.2 Molecular Vibrations and Raman Spectroscopy 

Molecules are made up of atoms, which are held together by chemical bonds. The energy of a 

molecule can be divided into translational energy, rotational energy and vibrational energy 

(Cothlup and Daly, 1975). If N is the number of atoms that make up a molecule there will be 3N 

degrees of freedom of motion for all the atoms in the molecule (each atom has 3 independent 

degrees of freedom of motion, in the x, y or z direction). Three of these degrees describe the 

translational movement of the molecule in space and three describe the rotational movement for 

non-linear molecules (two for linear molecules). Thus, there are 3N-6 vibrational degrees of 

freedom and therefore 3N-6 different vibrational modes for non-linear molecules (3N-5 for linear 

molecules) (Cothlup and Daly, 1975; Straughan and Walker, 1976, Smith and Dent, 2005).  

During a molecular vibration the shape of the surrounding electron changes due to the change in 

the configuration of the nucleus. This can lead to a change of the molecular dipole moment or a 

change in the polarizability of the molecule. In order for the vibration of a molecule to be detected 

by Raman spectroscopy (Raman active), the polarizability of the molecule needs to be altered. 

Infrared spectroscopy detects the vibrational modes of the molecules that represent a change in 

the dipole moment. 

Molecular vibrations take place when the atoms move periodically. This movement can induce a 

change in either the distance between the atoms (i.e. the bond length) or the angle between two 

bonds (Rehman et al. 2012).  Depending on the change there are two different types of vibrations, 

stretching and bending (Kumar, 2013). Symmetrical and anti-symmetrical stretching as well as 

scissoring, rocking, wagging and twisting (bending modes) can be seen in figure 1.2. Vibrational 

transitions are the origin of Raman spectra. An example Raman spectrum can be seen in Figure 

1.3. 
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Figure 1.2: Vibrational modes.  

The arrows depict the direction of blue atoms movement. Straight arrows are used when the 

movement induces change in the length of the bond (stretching) and curved arrows when the 

movement changes the angle of the bonds (bending). 

 

 
Figure 1.3: Raman spectra of different tissues.  

The Raman peaks present in the spectra are assigned to specific biomolecules. The spectra were 

acquired using an 830nm laser (Laser power=60mW, Acquisition time=40s).  

 

For a diatomic linear molecule (N=2), there is only one possible vibration. For an oxygen molecule 

this is a simple stretch of the O-O bond (Smith and Dent, 2005). This vibrational transition (from 

the ground to the first excited vibrational state) will appear as a band in the Raman spectrum of 

the molecule. In order to assign peaks of a Raman spectrum to molecular vibrations it is essential 

to understand that bonds between atoms in a molecule which are in close proximity and of similar 

energy interact with each other. The resulting Raman peak will correspond to the vibration of all 
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the atoms linked by these similar bonds. However, bonds between atoms that are well separated, 

or have a large difference in energy vibrations, can be treated separately (and will give different 

peaks in the Raman spectrum).  

In Raman Spectroscopy the sample is illuminated with laser light, which is monochromatic 

radiation usually in the visible-infrared region (Ferraro et al., 2002). The observed Rayleigh 

scattered light has the same frequency with the incident radiation, 𝑓𝑜. The Raman scattered light 

is weaker and has frequencies = 𝑓𝑜 ± 𝑓𝑚 , where 𝑓𝑚 is a vibrational energy of the molecule 

(Ferraro et al., 2002). The 𝑓𝑜 + 𝑓𝑚  are the anti- Stokes lines whereas the 𝑓𝑜 − 𝑓𝑚 are the Stokes 

lines of the spectrum. Often in spectroscopy wavenumber is used instead of the frequency of 

light. The wavenumber is given by the following expression: 

 

𝑘 =
𝑓

𝑐
=

1

𝜆
 

 

where 𝜆 is the wavelength of light (in cm), 𝑐 is the speed of light and 𝑓 is the frequency of light (in 

1/s) (Ferraro et al., 2002). 

 

1.2.2 Technology 

1.2.2.1 Raman Micro-spectroscopy 

Raman spectroscopy is most commonly performed using visible or near infrared (NIR) lasers. As a 

result, coupling of Raman spectrometers with bright-field or confocal microscopes is highly 

efficient (Delhaye and Dhamelincourt, 1975). Upon coupling with a microscope the spatial 

resolution of the recordings depends on the properties of the microscope system (Sato et al., 

2014). Thus, lateral spatial resolution is diffraction limited and is determined by the wavelength 

of the excitation laser light and the numerical aperture (NA) of the objective lens (Butler et al., 

2016). For wavelengths in the visible and NIR region and NA values ranging from 0.5 to 1.2, 

resolution values of about 0.5μm can be achieved. A conventional Raman micro-spectroscopy 

system can be seen in figure 1.4.  

 
Figure 1.4: Generalised conventional Raman micro-spectroscopy system (adopted from Butler et 

al., 2016). 

 

The key components that comprise this system are a microscope, a laser source, a Rayleigh filter 

(usually notch filter), a monochromator and a detector. As already mentioned above Raman signal 
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is inherently weak. Therefore, it can easily be masked by autofluorescence generated in the 

biological samples. However, in the wavelength region from 700 to 900 nm (i.e. the window 

between melanin and water absorption) most tissues and body fluids exhibit minimum light 

absorption and thus minimum autofluorescence (Krafft et al., 2009; Krafft, Dietzek and Popp, 

2009). Therefore, systems designed for biomedical applications largely use excitation lasers in the 

NIR region; most frequently diode lasers at 785 or 830nm are being used. (Krafft et al., 2009; 

Krafft, Dietzek and Popp, 2009). Notch filters are used to separate Rayleigh from Raman scattered 

light by blocking the elastically scattered photons. Subsequently, Raman scattered light is 

dispersed (by the monochromator) before reaching the detector, in order to separate and identify 

all the different Raman shifts in it. Usually cooled charge-coupled device (CCD) detectors are used 

to collect the dispersed Raman light.  

The Raman spectrometer can also be coupled with a confocal microscope. In this case a pinhole 

is placed in front of the detector. Raman scattered light is passed through the pinhole before 

being detected (Diem, 2015). This arrangement prevents scattered (or fluorescent) light emerging 

from out-of-focus planes from passing efficiently through the pinhole, and thus being detected.  

 

1.2.2.2 Fibre-optic Probes  

Raman spectroscopy can be performed using optical fibres to deliver the excitation light and 

collect the Raman scattered light. The main advantage of these compact and flexible probes is 

that they render in vivo measurements much easier since they can be inserted into the human 

body. However, significant levels of photoluminescence and Raman scattered light are generated 

in both the excitation and collection silica optical fibres. This can easily mask the weak Raman 

light scattered by the sample (Kong et al., 2015). Furthermore, Rayleigh scattered light must be 

prevented from entering the collection fibre (and thus again masking the Raman signal but also 

generating more photoluminescense in the collection fibre) (Motz et al., 2005). Filters and lenses 

must therefore be implemented in a very small probe. In addition, in order to do real-time in vivo 

measurements enough Raman scattered light must be collected (i.e. efficient throughput 

collection) in a short time.  

Various hand-held fibre optic probes have been previously reported. Hand-held probes of 

different configurations have used for various applications. These include:  

• a probe consisting of a 1.27cm diameter illumination arm (with single excitation optical 

fibre) and a 2.53cm diameter collection arm (with a bundle of 58 collection fibres) for skin 

measurements (Huang et al., 2001; Lui et al., 2012)  

• a pen-like probe made up of 19 illumination fibres interspersed with 38 collection fibres 

in a 3 mm ring, and 12 collection fibres placed in the center of the ring for arthroscopy of 

joint tissues (Esmonde-White et al., 2011)  

• a hand-held microprobe consisting of 7 collection fibres placed around a single excitation 

fibre for intraoperative detection of brain cancer (Desroches et al., 2015)  

Miniaturisation of fibre-optic probes allows coupling of the probes with endoscopes for real  time 

in vivo measurements in hollow organs (Stevens et al., 2016). Once again probes of various sizes 

and configurations have been reported. Huang et al. developed a 1.8mm diameter Raman probe 

comprising 32 collection fibres placed around a single excitation fibre that was coupled to a trimodal 

imaging endoscopic system for in vivo detection of gastric cancer (Huang, Teh, et al., 2010). A 600μm 



 

26 
 

diameter fibre-optic probe consisting of 8 collection fibres surrounding a single excitation fibre that 

could be coupled to an intravascular endoscope was also reported (Komachi et al., 2005).  

Further miniaturization of the Raman fibre-optic allows insertion of the probes in needles (Kong 

et al., 2015; Stevens et al., 2016). Day et al. developed a needle probe made up of an excitation 

and a single collection fibre. The Raman probe was integrated into a hypodermic syringe with a 

20ga needle. This configuration allows protection of the fibres but also access to solid organs 

such as breast, lymph nodes, or as tested in this project muscles (Day and Stone, 2013).  

As Raman signal is very weak, recording spectra in short acquisition times (1 second or less) can 

be quite challenging with miniaturized probes. Delivery of excitation light and collection of Raman 

scattered light using the same optical fibre would maximize the collection efficiency of small 

probes, since the light cones of the illumination and collection beams would overlap (Kong Chong 

et al., 1992). However, this arrangement suffers from a lot of background noise due to the Raman 

scattered light generated in the core of the optical fibre (Day and Stone, 2013). In order to avoid 

this problem different fibres are largely used for delivery and collection of light. Multiple 

collection fibres increase the collection efficiency but they also increase the size of the probe. 

Additionally, since the excitation and collection cones still don’t overlap essential amount of 

scattered light is lost. By using beveled tip collection fibres, the collection light cones can be 

angled to increase the overlap with the excitation cone (Shim et al., 1999). Another way to 

enhance the collection efficiency but also the excitation (by providing a collimated illumination 

spot), is to incorporate a ball lens at the tip of the probe (Motz et al., 2005; Mo et al., 2009).  

As previously described optical fibre based probes suffer from background signal due to 

photoluminescence and Raman scattering that take place in the core of glass fibres. Filters must 

therefore be incorporated to block the unwanted light. Band pass filters are implemented in the 

excitation fibres. Band pass filters allow only wavelengths in a certain range to pass. Therefore, 

they can block all the Raman and fluorescent light generated in the excitation fibre and allow only 

laser light to pass. In addition, long pass or notch filters are implemented in the collection fibres 

for the same reason but also to prevent Rayleigh scattered light from entering the spectrometer. 

The filters can be implemented at the tip of the probe (Hattori et al., 2007), at both ends (Huang, 

Teh, et al., 2010), or at some point in the length of the probe (Day and Stone, 2013). An alternative 

way to avoid the generation of background signal in the optical fibres is to develop probes that 

work in the high wavenumber region (2400–3800 cm−1). In this spectral region there is still 

essential biological information and Raman scattering does not take place in the core of the 

optical fibres (Koljenovic et al., 2007)). Several probes that work in the high wavenumber region 

have been reported (Koljenović et al., 2005; Mo et al., 2009; Lin et al., 2016). 

 

1.2.3 Raman Spectroscopy and Neuromuscular Disorders 

The potential for Raman spectroscopy to aid the diagnosis and monitoring of neuromuscular 

disorders has recently started to gain attention. A microscopic Raman system was used to 

differentiate between different myopathies in ex vivo Drosophilla preparations (Drosophilla 

mounted on a slide) (Gautam et al., 2015). Mutants related with nemaline-myopathies were 

distinguished from flies carrying mutations associated with cardiomyopathy. Disease progression 

was also monitored with spectra acquired from 2 days old and 12 days old flies. An overall 

increase in the levels of nucleic acids and β-sheet proteins, with a decrease in α-helix proteins 
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were observed as both types of myopathy progressed in all different types of mutants. 

Additionally, the same Raman system and classification algorithm were used to record spectra 

from a human sample with nemaline-myopathy and in the subsequent analysis the spectrum was 

grouped with the nemaline-myopathy fly spectra.  

Recently, Tien et al. used SRS microscopy to image degeneration of peripheral nerves in SOD1-

G93A mice (Tian et al., 2016). SRS imaging exhibited comparable sensitivity to electromyography 

(EMG), which is the standard examination for MND, but could additionally offer information 

about the structure of peripheral nerve. This allowed the detection of lipid ovoids, probably 

resulting from degenerating myelinated cells, before EMG could detect evidence of neuronal 

degeneration, suggesting thus that Raman spectroscopy can be used for early disease detection. 

Moreover, in this study the potential of Raman spectroscopy for evaluation of new therapeutic 

drugs was explored.  Reduction in the speed of peripheral nerve degeneration due to 

administration of minocycline could be detected in SRS images.  

Spontaneous Raman micro-spectroscopy was used to study the spinal cord of SOD1G93A and 

control mice ex vivo (Picardi et al., 2018). Spectra were acquired from grey and white matter 

sections from a small number of mice at 75 and 90 days of age (Picardi et al., 2018). Several peaks 

and regions (450-650 cm-1, 1050-1200 cm-1, 1300 cm-1, 1440 cm-1 and 1660 cm-1) were shown to 

differ markedly between diseased and control mice from 75 days of age in the spectra acquired 

from the grey matter regions (Picardi et al., 2018). The observed changes were tentatively 

associated with processes that signal the progression of ALS, like axonal demyelination and the 

structural degradation of associated lipids (Picardi et al., 2018). The spectra acquired from white 

matter areas of diseased and control mice did not exhibit considerable differences (Picardi et al., 

2018). 

A microscopic Raman system was used by Morasso et al to study plasma-derived small and large 

extracellular vesicles and blood plasma extracted from blood samples acquired from 20 sporadic 

ALS patients and 20 age- and sex-matched controls (Morasso et al., 2020). The obtained results 

demonstrated that large extracellular vesicles derived from ALS patient plasma display an altered 

biochemical profile compared to those derived from healthy controls (Morasso et al., 2020). 

Changes in the relative spectra were tentatively associated with alterations in lipids and 

phenylalanine metabolism and following PCA analysis an AUROC value of 0.84 was achieved 

(Morasso et al., 2020). Finally, plasma and sEVs were shown to be rather homogeneous between 

patients and controls (Morasso et al., 2020). Plasma surface-enhanced spectroscopy has also 

been recently used to study differences in the blood plasma of short- and long-duration ALS 

patients (Zhang et al., 2019). SERS was shown to be able to distinguish with high sensitivity and 

specificity values between the two groups (AUROC=0.97) due to changes attributed to various 

metabolic pathways (Zhang et al., 2019). 

Recently, saliva acquired from ALS patients was also studied using Raman spectroscopy by 

Carolmagno et al. In this study saliva was acquired from 19 ALS patients, 10 patients with 

Parkinson’s disease, 10 patients affected with Alzheimer’s disease and 10 healthy controls 

(Carlomagno et al., 2020). Multivariate analysis was used to study the obtained spectra and 

demonstrated a significant difference between the different groups, allowing precise 

discrimination of the spectra acquired from ALS patients’ saliva (Carlomagno et al., 2020). Spectral 

differences related to nucleic acids, glycogen and glucose and lipids were observed between the 
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‘ALS’ and ‘healthy’ groups (Carlomagno et al., 2020). Finally, Raman data (more specifically scores 

of the principal components) were shown to correlate with clinical symptom scores (Carlomagno 

et al., 2020).  

While some of these studies employed technically challenging methods, rely on ex vivo analysis, 

or are based on a limited number of samples, they demonstrate the potential of the technique 

for the study of neuromuscular disorders. Further studies are required to investigate the 

potential of in vivo Raman systems and classification models to distinguish between different 

types of neuromuscular disorders and identify biomolecules that could be used for 

differentiation. Since, for these diseases, early detection and monitoring are important it will be 

useful to further explore the potential of Raman spectroscopy to facilitate earlier diagnoses 

(perhaps even at pre-symptomatic stages) and monitoring of the disease progression.  
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1.3 Aims and Hypotheses  

1.3.1 Aims 

The aim of this work is to explore the potential of Raman spectroscopy as a biomarker for 

neuromuscular disease. This will be done using in vivo measurements in preclinical murine 

models of MND (SOD1G93A and TDP-43Q331K mice) and DMD (mdx mice) and ex vivo human muscle 

samples.  

 

1.3.2 Hypotheses 

i)In vivo intra-muscular Raman spectroscopy can distinguish between neurogenic and myopathic 

disorders.  

ii) In vivo intra-muscular Raman spectroscopy can detect changes over time in murine models of 

neuromuscular disease. 

iii)In vivo intra-muscular Raman spectroscopy will not cause significant muscle injury and impair 

motor performance in mice. 

iv)Raman spectroscopy of ex vivo human muscle samples can detect muscle pathology and 

distinguish between neuromuscular diseases. 
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2. Methods  

2.1 Animal Experiments 
The ethics statement for the animal experiments is presented in section 2.1.1. The animals used 

in each of the in vivo studies along with the study protocols are summarised in section 2.1.2. 

Finally, the experimental procedures performed as part of the animal studies are described in 

sections 2.1.4-2.17. 

2.1.1 Ethics Statement 

All mouse experiments were carried out in accord with the Animals (Scientific Procedures) Act 

1986 under UK Home Office project license number 70/8587. The project methodology was 

reviewed and approved by the Ethical Review Committee Project Applications and Amendments 

Sub-Committee of the Sheffield University Ethical Review Committee and by the Animal 

Procedures Committee (London, UK). Animals were housed and cared for according to the Home 

Office Code of Practice for the Housing and Care of Animals Used in Scientific Procedures.  

 

2.1.2 Animals and Study Protocols  

All animals used in this study with the exception of C57BL/10ScSnOlaHsd mice were from in-house 

colonies. The SOD1G93A mice were transgenic mice (the human gene has been transferred to wild-

type C57Bl/6 mice) that express a G93A mutant form of the human SOD1 gene. Male SOD1G93A 

were bred with female wild-type C57Bl/6 mice in an in-house colony. Thus, the SODG93A colony 

consisted of both SOD1G93A (transgenic) and C57Bl/6 (non-transgenic/wild-type) mice. The non-

transgenic C57Bl/6 littermates were used as control mice for the SOD1G93A mice. 

The mdx mutation of the DMD gene is a spontaneously arisen mutation. Hence, the mdx mice are 

not transgenic mice. In the mdx in-house colony female homozygous and male hemizygous mice 

for the Dmdmdx allele were bred. Thus, the mdx colony only consisted of mice with the mdx 

mutation in the DMD gene. Wild-type C57BL/10ScSnOlaHsd (C57Bl/10) mice were used as control 

mice for the mdx colony and were bought from Envigo.  

The TDP-43 mice are transgenic mice. The in-house colony TDP-43 colony consisted of TDP-43 

(mice with the human TARDBP gene but without any mutation in the gene) and TDP-43Q331K (mice 

with the human TARDBP gene and a Q331K mutation). The TDP-43 mice were used as control 

mice for the TDP-43Q331K. The C57Bl/6, C57Bl/10 and TDP-43 mice will be referred to as control 

mice in the next chapters.  

 

Study 1: Neurogenic/Myopathic Neuromuscular Disorders 

The aim of this study was to evaluate the potential of in vivo Raman spectroscopy of muscle to 

detect muscle pathology and to explore the potential of the technique to distinguish between 

muscle pathology induced by a neurogenic and a myopathic neuromuscular disorder. The 

SOD1G93A mouse model of MND and the mdx mouse model of DMD along with their control mice 

were used for this study. Additionally, potential tissue damage caused by the in vivo recordings 

was also investigated. 

A total of 227 one and three months old mice were used in this study. Age and strain/genotype 

clustered the mice in the different groups. In each group some of the mice underwent the active 
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Raman procedure and some underwent the ‘sham’ procedure (see section 2.1.3.2). The groups 

with the number of mice used per group are shown in table 2.1.  

 

Table 2.1: Number of mice used in each group in Study 1. Age and strain/genotype clustered the mice 

in each group. Procedure clustered the mice in one of two subgroups.  

Group Procedure Number of animals 

One month old 

SOD1G93A 

Raman 16 

Sham 10 

One month old 

C57Bl/6 

Raman 16 

Sham 6 

One month old mdx Raman 16 

Sham 16 

One month old 

C57Bl/10 

Raman 16 

Sham 16 

Three months old 

SOD1G93A 

Raman 16 

Sham 16 

Three months old 

C57Bl/6 

Raman 16 

Sham 16 

Three months old 

mdx 

Raman 16 

Sham 16 

Three months old 

C57Bl/10 

Raman 16 

Sham 3 

 

In order to assess the potential tissue damage caused by the technique the rotarod test and gait 

analysis (Catwalk) (see section 2.1.4) were performed on all the mice one week before and one 

day after the experimental procedure (for both active and ‘sham’ protocols) and on half of the 

cohort two weeks post-experiment. The protocol for this study along with the total animal 

number used in each step can be seen in figure 2.1. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2.1: Study 1 Protocol.   
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Nine additional one month old C57Bl/6 mice that underwent the active experimental procedure 

were used for post-mortem MRI either six hours (n=3), two days (n=3) or two weeks (n=3) post-

experiment (see section 2.1.5). Four, one month old C57Bl/6 mice that underwent the ‘sham’ 

experimental procedure were used for post-mortem MRI either six hours (n=2) or two days (n=2) 

post-injury. 

 

Study 2: Intervention Study in mdx 

The aim of this study was to explore the potential of the technique to detect more subtle changes 

in muscle pathology after an intervention. A total of 60 three months old female mdx and control 

mice were used for this study (table 2.2). Voluntary exercise using running wheels was used to 

exacerbate the muscle pathology of the mdx mice and the ability of in vivo Raman spectroscopy 

to detect the change in the muscle pathology was investigated. Both exercised and non-exercised 

mdx mice had the active Raman procedure (see section 2.1.3.2). Serum Creatine Kinase activity 

was measured as a broad indicator of muscle damage (see section 2.1.6.2). The protocol for this 

study along with the total animal number used in each step can be seen in figure 2.2. 

 

Table 2.2: Number of mice used in each group in Study 2. Voluntary exercise clustered the mice in 

each group. Procedure clustered the mice in subgroups. 

Group Procedure Number of animals 

Exercised three 

months old mdx 

mice 

Raman spectroscopy 

(Subgroup 1) 

15 

Creatine Kinase 

Measurements 

(Subgroup 2) 

10 

Non-exercised three 

months old mdx 

mice 

Raman spectroscopy 

(Subgroup 3) 

15 

Creatine Kinase 

Measurements 

(Subgroup 4) 

10 

Non-exercised three 

months old C57Bl/10 

mice 

Creatine Kinase 

Measurements 

(Subgroup 5) 

10 
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Figure 2.2: Study 2 Protocol. 

 

Study 3: Preclinical MND Study 

The aim of this study was to explore the potential of the technique to detect differences in muscle 

pathology between two mouse models of the same disorder. A total of 24 female three months 

old SOD1G93A, TDP-43 and TDP-43Q331K mice was used for this study (table 2.3). All mice underwent 

the active Raman procedure (see section 2.1.3.2).  

Table 2.3: Number of mice used in each group in Study 3. 

Group Number of animals 

Three months old 

SOD1G93A 

8 

One month old  

TDP-43 

8 

Three months old 

TDP-43Q331K 

8 

 

Study 4: Male mdx Mice Study 

This study aimed to investigate the performance of the models generated using Raman spectra 

acquired in vivo from male mdx mice and compare it with the performance of female mdx mice 

(used in Study 1). A total of 32 male mdx and control mice were used for this study (table 2.4). All 

mice underwent the active Raman procedure (see section 2.1.3.2). 

Table 2.4: Number of mice used in each group in Study 4. 

Group Number of animals 

One month old male 

mdx 

8 

One month old male 

C57Bl/10 

8 

Three months old 

male mdx 

8 

Three months old 

male C57Bl/10 

7 

2 Days 

Before 

Day 0 

Beginning of 

running wheel 

exercise 

n=25  

 

Raman 

Recordings  

n=30 

Creatine Kinase 

Measurements 

n=30 

Mice culled for tissue collection 

n=60 
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Study 5: Combined Probe Study 

The aim of this study was to test an in-house built combined probe, that can acquire both Raman 

and electrophysiological data. Moreover, this study aimed to compare the electrophysiological 

recordings acquired with the combined probe with standard EMG and NCS methods (ring 

electrodes, needle electrode). Raman spectra and compound muscle action potentials (CMAPs) 

and were recorded in vivo from 16 SOD1G93A and control mice (table 2.5). 

Table 2.5: Number of mice used in each group in Study 5. 

 

  

 

 

 

2.1.3 Raman Spectroscopy Experiments  

2.1.3.1 Anaesthesia 

Inhalational anesthesia was induced and maintained with Isoflurane. Mice were placed in the 

induction chamber of the anaesthetic machine until anaesthetised (5% isoflurane vapour, oxygen 

flow rate 4.0L/min). Consequently, animals were placed on a heating pad and anaesthesia 

maintained throughout the whole experimental procedure with inhalation of the anaesthetic 

agent through a nose cone (2% isoflurane vapour, oxygen flow 2.0L/min). Post-procedure they 

were placed in an incubator for approximately 15 minutes at 30˚C while recovering from 

anaesthesia. Once the mice were fully mobile and feeding, they were returned to their home 

cage. 

2.1.3.2 Raman spectroscopy 

A fibre-optic Raman needle probe system was used for the experimental procedure (Day and 

Stone, 2013). A schematic of the probe-spectrometer interface can be seen in figure 2.3. An 830 

nm semiconductor laser (Innovative Photonics Solutions) is fiber coupled to an inline filter unit, 

which collimates the light through a laser line bandpass filter (Semrock, Inc.) to remove Raman 

and fluorescence generated in the fiber and refocuses the filtered light into a short length (15cm) 

of low-OH fiber with 105m core and 0.22NA (Thor Labs, Inc.) to the distal end of the needle. An 

identical second fibre was used to collect scattered light at the sample and transmit it to the 

spectrometer via a similar inline filter unit containing a long pass filter that rejects the elastically 

scattered laser light. The excitation and collection fibres were sheathed in a stainless-steel tube 

with a 0.5 mm outer diameter which was then inserted into a 21G needle attached to a syringe. 

The spectrometer used was a Raman Explorer spectrograph (Headwall Photonics, Inc.), and iDus 

420BR-DD CCD camera (Andor Technology, Ltd.) cooled to -70oC. Acquisition time was 4 seconds 

for each spectrum and 10 spectra were acquired at each site (total acquisition time at each site 

40 seconds).  

Group Number of animals 

Three months old 

SOD1G93A mice 

8 

Three months old 

C57Bl/6 mice 

8 
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Figure 2.3: Raman system schematic. 

Prior to the initiation of each set of experiments the system was calibrated in order to ensure the 

reproducibility of the CCD read-out so that recordings obtained on different days could be 

compared. Laser power output was measured and adjusted to 60 mW at the tip of the probe. 

Power output measurements were repeated often during the experiments to ensure the power 

remained consistent (at 60mW) throughout all the spectral recordings. Spectra from PTFE were 

acquired for wavelength calibration. Following the correction of PTFE offset an air background 

signal was also acquired in order to check visual consistency with previous measurements.  

The in vivo experimental setup can be seen in figure 2.4. Hind-limbs of the anaesthetized animals 

were shaved prior to the experimental procedure. Active and sham procedures were performed 

with each animal having only one type of recording. For both procedures the needle was inserted 

in both the medial and lateral heads of both gastrocnemius muscles of each animal (4 

sites/mouse) and the fibre-optic Raman probe was deployed through the tip of the needle by 

gently pushing the syringe. For the active Raman procedure, the laser was switched on, laser light 

shined into the muscle and the Raman spectra were acquired from the sites of interest. For the 

sham recordings the procedure was the same, but the laser was not switched on. 
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Figure 2.4: In vivo Raman experimental setup. 

The probe is inserted in a 21G needle and the needle is inserted in the gastrocnemius muscle of 

the anaesthetised mouse 

 

The fibre-optic Raman system described above was also used for the ex vivo recordings in mice 

muscle samples. The samples were stored at -80oC and were left in room temperature to thaw 

prior the recordings. Power output of the laser was initially measured and adjusted to maximum 

power at the probe tip. For the recordings the samples were placed on white paper roll as shown 

in figure 2.5. Spectra were acquired at multiple sites of each sample (2-6 sites depending on the 

size of the sample). The probe was placed on the surface of the sample and ten spectra 

(acquisition time: 4s/spectrum) were acquired from each site. The ten spectra were then 

averaged prior data analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Ex vivo Raman experimental setup. 

The sample was placed on white paper roll (animal tissue) and the spectra were recorded by placing 

the probe on the surface of the sample. 
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2.1.3.3 Combined electrophysiological and Raman recordings 

Prior to the electrophysiological recordings the fur of both hindlimbs of the anaesthetised mice 

was shaved and the remaining fur was removed using depilatory cream to facilitate better 

contact. 

All electrophysiological recordings were made using a Dantec Keypoint Focus EMG System 

(Optima, UK). To record the CMAP, twisted pair subdermal electrodes were used to apply 

supramaximal stimuli subcutaneously at the sciatic notch. Three different methods of recording 

the CMAPs were used whenever possible and compared: ring electrodes (standard method 1), 

needle electrode (standard method 2) and combined probe (new method). For the ring electrodes 

recordings, a standard ‘belly-tendon’ approach was used with one electrode placed over the 

muscles and another at the base of the ankle. A grounding electrode was placed in the base of 

the tail. For the recordings using the concentric needle electrode, the grounding electrode was 

again placed on the base of the tail and the needle electrode was placed in the gastrocnemius 

muscle. Similarly, when the combined probe was used to acquire the CMAPs, the grounding 

electrode was placed on the base of the tail and the probe was inserted in the gastrocnemius 

muscle. Two electrophysiological recordings were obtained when the combined probe was used 

with a recording of a Raman spectrum (acquisition time: 40s) in between (see section 2.1.3.2 for 

the Raman recording method). Whenever possible CMAPs were acquired from both hindlimbs of 

each mouse using all three methods in each hindlimb. When that was not feasible CMAP 

recordings were undertaken using one of the two standard methods and the combined probe. 

A single, square wave electrical impulse of 0.1ms duration was applied to the sciatic notch in order 

to record the CMAPs. The stimulation intensity was increased until no further increase in the 

CMAP amplitude was observed (that is, a supramaximal response was obtained). 

 

2.1.4 Post-experiment Motor Function Assessment 

Motor function testing was carried out on all the animals in Study 1 in order to evaluate the impact 

of the in vivo Raman recordings on muscle function (see section 2.1.2 for time points and group 

sizes). 

2.1.4.1 Accelerating Rotarod Test 

All mice were trained on the rotarod test for three consecutive days prior the first set of 

performance recordings. For the performance recordings mice were placed on the rotarod for up 

to 300s. The rotarod (Ugo Basile 7650) was set to accelerate from 3 to 37 rpm in 270 seconds. 

Latency to fall was recorded in seconds for each mouse. Each mouse was allowed two runs and 

the best performance used for the data analysis. The rotarod apparatus can be seen in figure 2.6. 
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Figure 2.6: The rotarod apparatus. 

 

2.1.4.2 Catwalk Gait Analysis  

The CatWalk gait analysis system version 7.1 (figure 2.7) was used for gait analysis. The Catwalk 

system consists of an enclosed runway with a glass plate and two plastic panels perpendicular to 

the glass plate, an encased fluorescent tube that emits light inside the glass plate and a high speed 

colour camera positioned underneath the runway (Parvathy and Masocha, 2013a). Normally, the 

light emitted by the fluorescent lamp gets internally reflected and is therefore restricted to the 

glass surface plate. When the air in contact with the surface plate is replaced by a different 

medium, for example, when the animal’s paw touches the glass floor, the light exits the glass and 

illuminates the contact area. As such, during an animal’s run across the glass plate only the places 

of contact of the animal’s paws with the glass floor light up (Deumens et al., 2007). The run of the 

animal is recorded by the video camera underneath the runway (Deumens et al., 2007). Data are 

acquired, stored, analysed and quantified by the CatWalk software 7.1 program. 
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Figure 2.7: The Catwalk 7.1 system.  

 

In this study mice were familiarised with the Catwalk runway and trained to cross it one day before 

the first recording. Motor performance of all the mice was then recorded before and after the 

Raman experimental procedure. Animals were placed on the catwalk apparatus in complete 

darkness and left to walk freely on the glass plate. Whenever possible six runs were acquired for 

each mouse and three were selected for analysis. Catwalk software was used to manually identify 

the footprints in each run (RF=Right Front, RH=Right Hind, LF=Left Front, LH= Left Hind) in the 

walkway panel, as can be seen in figure 2.8. After the footprint labelling, paw prints were 

displayed in the print view. The time-based gait diagram (i.e. duration of contact of the paws with 

the glass floor for all the step cycles in each run) was displayed in the timing view. Subsequently, 

the associated gait parameters were automatically calculated by the software. The data were then 

exported and collected using Excel. 

 

Enclosed 

Runway 

Camera 
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Figure 2.8: Catwalk 7.1 gait analysis software. Each paw (digitised print) is manually labelled in every 

sequence in the walkway panel. Different colours are associated with the different paws in the print 

and timing panels. Paw prints are displayed in the print view. The bars in the timing view represent the 

stand for each paw and each step cycle.  

The gait parameters calculated by the Catwalk software were grouped in the following five 

categories a) Run characterization, b) Temporal parameters, c) Spatial parameters, d) Kinetic 

parameters, e) Interlimb coordination parameters (Caballero-Garrido et al., 2017). The temporal, 

spatial and kinetic parameters as well as stride length are calculated for each paw separately. A 

full description of the parameters from each category that were analysed in this study is given in 

table 2.6. A graphical representation of some example parameters is given in figure 2.9.  

 

Table 2.6: Full list and definitions of gait parameters. Adjusted from (Caballero-Garrido et al., 2017). 

Parameter Definition 

Run Characterisation   

Duration (s) The duration of the entire run. 

  

Temporal Parameters  

Stand or Stance Phase (s)  The duration of contact of a paw with the glass floor during a step 

cycle (fig. 2.9). 

Print 

view 

Timing 

view 

Walkway 

view 
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Swing (s) The duration that a paw is not in contact with the glass floor 

during a step cycle (fig. 2.9). 

Duty Cycle (%) Stance phase duration as a percentage of the duration of the 

step cycle (fig. 2.9). 

Initial Contact (s) The time in seconds since the start of the run at which a paw 

makes contact with the glass floor (fig. 2.9). 

Max Contact (s) The time in seconds since the start of the run at which the largest 

part of a paw is in contact with the glass plate (fig. 2.9). 

  

Spatial Parameters  

Print Length (mm) The length of the complete print (fig. 2.9). The complete print 

consists of the sum of all contacts of a paw with the glass plate. 

Print Width (mm) The width of the complete print (fig. 2.9). 

Print Area (mm2) The surface area of the complete print (fig. 2.9).  

Max Area (mm2) Maximum area of a paw that contacts the glass. (Print area at Max 

Contact). 

Intensity (a.u) The mean brightness of all pixels of the print at Max contact. The 

intensity is dependent on contact of the paw with glass plate and 

rises with increasing pressure. Thus, Intensity is a measure of 

weight support of each paw. 

  

Kinematic Parameters  

Swing Speed (m/s) The speed of the paw during swing (fig. 2.9) 

Stand Index Measure for the speed at which the paw loses contact with the 

glass floor. 

  

Interlimb Coordination  

Base of Support (BOS) 

(mm) 

The average distance between either the front paws or the hind 

paws (fig. 2.9). 

Stride length (mm) The distance between successive placements of the same paw 

(fig. 2.9). 
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Print positions (mm) The distance between the position of placement of the hind paw 

and the position of placement of previously front paw on the 

same side of the body during one step cycle. 

Step Sequence Order in which the paws are placed on the glass floor. 

Step Sequence: Number 

of Patterns 

Number of patterns used through the entire run. 

Step Sequence: Ca (%) Cruciate step pattern (RF-LF-RH-LH). 

Step Sequence: Cb (%) Cruciate step pattern (LF-RF-LH-RH). 

Step Sequence: Aa (%) Alternate step pattern (RF-RH-LF-LH). 

Step Sequence: Ab (%) Alternate step pattern (LF-RH-RF-LH). 

Step Sequence:  Regularity 

Index (%) 

The number of normal step sequence patterns (as described 

above) relative to the total number of all the paw placements in 

the run (fig. 2.9). 

Support (%) Percentage of a run when the animal is supported by zero, one, 

two three or four paws simultaneously on the glass plate in each 

Step Cycle. 

Support: Zero (%) Zero paws in contact with the glass plate 

Support: Single (%) One paw in contact with the glass plate. 

Support: Diagonal (%) Two paws in contact with the glass plate (LF-RH or RF-LH) 

Support: Girdle (%) Two paws in contact with the glass plate (LF-RF or RH-LH) 

Support: Lateral (%) Two paws in contact with the glass plate (LF-LH or RF-RH) 

Support: Three (%) Three paws in contact with the glass plate 

Support: Four (%) Four paws in contact with the glass plate 
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Figure 2.9: Graphical representation of gait parameters. A) Stride lengths (in mm) for left and right 

hind paws (white arrows) and hindlimb base of support (in mm) (yellow arrow) shown in the print view 

panel. B) Print width (in mm), print length (in mm) and print area (mm2) (shadowed area). C) Stand (in 

seconds), swing (in seconds), step cycle (in seconds), example of initial contact (in seconds) (orange 

dashed line) and max contact (in seconds) (black dashed line) of the second placement of the right hind 

paw shown in the time view panel. Formulas for the calculation of the duty cycle and swing speed 

displayed. 

 

2.1.5 Post-experiment Tissue Damage Assessment 

Post-mortem MRI was used in a small cohort of animals from study 1 in order to assess the tissue 

damage induced by the in vivo Raman recordings (See section 2.1.2 for time points and group 

sizes). 

 

2.1.5.1 Post-mortem Magnetic Resonance Imaging 

The gastrocnemius muscles of both legs of the mice were imaged post-mortem, after the Raman 

recordings in order to assess potential muscle injury from the Raman recordings. Mice were culled 

either six hours (n=3), two days (n=3) or two weeks (n=3) post-experiment, the hind limbs were 

cut, placed into saline solution and transferred into the MRI unit, where they were scanned 

immediately. Each mouse leg was placed in a separate eppendorf tube filled with oil. The two 

eppendorfs were subsequently placed in a 50 ml falcon tube on a layer of oil soaked cotton, which 

was inserted in the scanner.  

A 7 Tesla magnet (Bruker BioSpecAVANCE, 310 mm bore, MRI system B/C 70/30), with pre-

installed 12 channel RT-shim system (B-S30) and fitted with an actively shielded, 116 mm inner 

diameter, water cooled, 3 coil gradient system (Bruker BioSpin MRI GmbH B-GA12. 400 mT/m 

maximum strength per axis with 80 ms ramps) was used for imaging. A 1H birdcage volume 

resonator (Bruker, 300 MHz, 1 kWmax, outer diameter 114 mm/inner diameter 72 mm), placed 
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at the isocentre of the magnet was used for both radiofrequency (RF) transmission and reception. 

A workstation configured for use with ParaVisionTM 4.0 software operated the spectrometer. 

Following field shimming, off-resonance correction and RF gain setting a tri-plane FLASH sequence 

(Repetition time (TR) = 100 ms, Echo time (TE) = 6 ms, Flip angle = 30u, Number of Averages = 1, 

Field of view (FOV) = 80mm*80mm, slice thickness = 2mm, Matrix = 128*128, spatial resolution = 

0.625mm*0.625mm) was used to localize the subject. Subsequently, fast rapid acquisition with 

refocused echo (RARE) sequences allowed low signal-to-noise ratio (SNR) visualisation of the area 

of interest and thus planning of axial high SNR RARE images (TR = 5500 ms - 6700ms, TE= 56 ms, 

Number of Averages=45-100 , FOV=20 mm*20 mm, Slice thickness = 0.3 mm, Matrix = 256*256) 

covering the entire region of interest. Fat suppression was used to prevent high intensity fat signal 

from obscuring the signal of interest (i.e. bright areas in the muscle due to injury). 

 

2.1.6 Running wheel induced damage 

Running wheel exercise was carried out on some of the animals in Study 2. Serum was collected 

from some of the animals in the same study (see section 2.1.2 for group sizes and study protocol). 

 

2.1.6.1 Running Wheel Exercise 

For the running wheel activity mice were caged individually. The running wheel consisted of a 

37.8cm circumference plastic Fast Trac wheel attached on a 4 cm post fixed on the floor of the 

cage and it was placed in the corner of each cage. A magnet was glued to the underside of each 

wheel and a bicycle computer with reed switch was attached to the side of the cage.  Mice were 

exercised voluntarily on the running wheel for 48 hours and the distance run by each individual 

mouse was measured and recorded daily. Food and water were administered ad libitum.  

 

2.1.6.2 Serum CK Activity Measurements 

The blood collection and CK measurements were done according to the treat-nmd neuromuscular 

network protocol (Carlson, 2014). Briefly, mice were anesthetised with an intraperitoneal 

injection of pentobarbital (100 μl) and blood was collected via cardiac puncture. Blood was 

allowed to clot for approximately four hours in room temperature. Clotted blood was 

subsequently centrifuged at 10,000 rpm for 10 minutes at 4°C and serum was collected. Serum 

was stored at -80°C.  

Serum CK activity measurements were done using the Pointe Scientific Creatine Kinase (CK10) 

reagent. The reagent was prepared according to the manufacturer’s instructions. The working 

reagent and serum were mixed in 96-well cell culture plates. Two aliquots of each serum sample 

were prepared. 100 μl of working reagent were added in each one of the used wells and the plate 

was pre-warmed at 37°C for 4 minutes. 2.5 μl of serum was then added to the wells and the 

absorbance was measured at 37°C every minute for three minutes at 340 nm using a microplate 

reader (PHERAstar). The absorbance of the two aliquots was averaged for each measurement. 

The differences in absorbance per minute (𝛥𝛢
𝑚𝑖𝑛⁄ ) were calculated and averaged. To express 

the creatine kinase activity in units per litre (𝑈 𝐿⁄ ) the following calculations were done: 
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𝑈

𝐿
= (

𝛥𝛢
𝑚𝑖𝑛⁄

0.00622
) ×

Total volume

Sample volume
 

 
𝑈

𝐿
= 𝛥𝛢

𝑚𝑖𝑛⁄ × 6592 

 
 

2.1.7 Histology 

2.1.7.1 Tissue Collection 

Mice were sacrificed by cervical dislocation. After removing the skin, gastrocnemius muscles of 

both hind limbs were dissected from all the mice in Study 1. The quadriceps and tibialis anterior 

muscles of both hind limbs as well as the diaphragm muscle of all the mice in Study 2 were also 

dissected. Isopentane was used for tissue freezing. The isopentane was poured in a metal canister 

and the canister was placed in liquid nitrogen. After dissection, the muscles were embedded in 

optimal cutting temperature (OCT) compound, and immediately snap frozen in isopentane. The 

frozen samples were then stored at -80˚C.     

 

2.1.7.2 Sectioning, H&E Staining and Imaging 

Histological analysis was performed on gastrocnemius muscle acquired from one and three 

months old mdx, SOD1G93A, C57Bl/6 and C57Bl/10 mice (n=3 samples/group). For sectioning, the 

muscle samples were acclimatised at -20˚C for an hour. 8 μm tissue sections were obtained using 

a cryostat (cryostat chamber and object temperature -20˚C) and mounted on uncoated, charged 

slides. Five sections were mounted per slide. Whenever possible twenty slides were acquired per 

sample with 80 μm intervals between every four slides. Slides were then stored at -20 ˚C. 

Prior to staining, slides were left in room temperature to thaw for 30 minutes. The slides were 

then placed in 95% alcohol for 5 minutes and the cleared in tap water. Subsequently, the tissue 

sections were stained in Harris haematoxylin for 2 minutes and then washed in tap water. After 

being washed in Scott’s tap water for a minute, the slides were stained in eosin for 5 minutes. 

Subsequently the tissue sections were washed in tap water and then quickly dehydrated in 

alcohols (75%, 90%, 100%, 100%). The sections were then cleared in xylene and mounted in DPX. 

The slides were imaged using a digital slide scanner (Nanozoomer series, Hamamatsu). The 

histological images were acquired using the NDP.view2 Viewing software (Hamamatsu). 
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2.2 Human Tissue 

2.2.1 Ethics Statement and Tissue Collection 

The collection and use of human tissue were approved by an NHS Research Ethics committee 

(reference 16/YH/0261).  

Post-mortem human muscle from patients with a diagnosis of MND were obtained from Sheffield 

Brain Tissue Bank. Muscle collected with a core needle biopsy from patients with a diagnosis of 

mitochondrial disease, was obtained from Newcastle Mitochondrial Tissue Biobank. Healthy 

muscle tissue, collected during knee surgery from subjects with no known neuromuscular 

conditions, was also obtained from Newcastle Mitochondrial Tissue Biobank. Finally, open muscle 

biopsies were collected prospectively from patients undergoing investigation for possible 

neuromuscular disease at the Royal Hallamshire Hospital (Sheffield Teaching Hospitals NHS 

Foundation Trust). 

2.2.2 Study protocol 

The aims of this study were to: 

• test if the fibre-optic Raman probe can record Raman spectra ex vivo from human muscle 

• explore the potential of the technique to detect muscle pathology distinguish between 

healthy and diseased muscle 

• to investigate at which stage of the diagnostic pathway Raman spectroscopy could be 

useful  

• to compare the performance of the fibre-optic probe with that of a Raman microscope 

system 

 

All the samples described in section 2.2.1 were used in this study. The number of samples in each 

group can be seen in table 2.7. 

Table 2.7: Summary of the human muscle samples used in the study.  

Group Number of samples 

MND tissue  

(Sheffield Brain Tissue Bank) 

14 

Mitochondrial disease  

(Newcastle Mitochondrial Tissue Biobank) 

14 

Tissue from healthy volunteers  

(Newcastle Mitochondrial Tissue Biobank) 

10 

Prospective muscle biopsies 

(Sheffield Teaching Hospitals) 

39 

 

The tissue samples were transferred to the Biophotonics Research Unit in Gloucester 

(Gloucestershire Hospitals NHS Foundation trust), where all the Raman recordings took place.  
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The samples were stored at -80oC and were left in room temperature to thaw prior the Raman 

recordings. Ex vivo Raman recordings were acquired with the fibre-optic Raman probe and with a 

Raman microscope system (see section 2.2.3) from all the samples except for four MND samples. 

Raman spectra from these samples were collected using the fibre-optic probe only. 

2.2.3 Raman Spectroscopy 

2.2.3.1 Optical Fibre Probe 

The fibre-optic Raman system described in section 2.1.3.2 was also used for the ex vivo recordings 

in human samples. Power output of the laser was initially measured and adjusted to maximum 

power at the probe tip. The samples were placed on a Calcium Fluoride slide (figure 2.10). Spectra 

were acquired at multiple sites of each sample (2-6 sites depending on the size of the sample). 

The probe was placed on the surface of the sample and ten spectra (acquisition time: 

4s/spectrum) were acquired from each site. The ten spectra were then averaged prior data 

analysis. 

 

 

 

 

 

 

 

 

 

Figure 2.10: Ex vivo Raman experimental setup. 

The sample was placed on a glass slide (human tissue) and the spectra were recorded by placing the 

probe on the surface of the sample. 

 

2.2.3.2 Microscope 

Following the recordings with the fibre-optic probe Raman spectra were also acquired using 

830nm excitation wavelength with an acquisition time of 40s (in each site) using a Renishaw 

Raman spectrometer system 1000 (Renishaw Plc. Wotton-under-Edge, UK). Spectra were 

acquired using a x50 objective from multiple sites in each sample (2-6 sites depending on the size 

of the sample. The power at the objective was 30mW. 
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2.3 Combined Probe Construction 
A fibre-optic Raman probe like the one used for the rest of the experiments (see section) was 

constructed. To build the combined probe the metal bore containing the two optical fibres was 

inserted in a heat shrink (Wall size: 0.00035’’, ID: 0.020) and was heated using a hot air gun. 

Approximately 1 mm was left without insulation at both ends of the metal bore to allow for 

electrical contact (figure 2.11). The standard connectors from the EMG machine were then looped 

around the needle and the uninsulated end of the probe (contact site-figure 2.11) to make the 

contacts.  

 

 

Figure 2.11: Combined Raman/EMG probe schematic. 
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2.4 Data Analysis 

2.4.1 Spectral Analysis 

Spectral analysis was done in Matlab environment (Matlab R2019b The MathWorks, Inc.,Natick, 

MA). Raw spectra were interpolated to integer wavenumber spacings between 900 and 1800 cm-

1, normalised using standard normal variate normalisation (SNV) and mean-centred (Barnes, 

Dhanoa and Lister, 1989). Spectra were windowed between 900 cm-1 and 1800 cm-1 as outside 

this region the spectra were dominated by background related to silica Raman signal generated 

in the optical fibres (before 900 cm-1) or consisted of uninformative noise (after 1800 cm-1). More 

specifically, there is a peak located around 800cm-1 that has been previously shown to be related 

to fused silica (Saavedra et al., 2014). Since, this peak was very prominent in the Raman spectra 

acquired with the fibre-optic probe the spectra region up to 900cm-1 was excluded from the 

analysis in order to avoid the artefact of the probe fibres affecting the data analysis and being 

used for classification. 

Principal component fed linear discriminant analysis (PCA-LDA), principal component fed 

quadratic discriminant analysis (PCA-QDA) and partial least squares discriminant analysis (PLS-DA) 

classification models were built for all the datasets. PCA was used to process the spectra and the 

most appropriate principal components (largest difference between the groups of interest) were 

selected using student’s t-test  (comparison between two groups) or analysis of variance (ANOVA) 

(comparison between three or more groups) applied to the PCs followed by false discovery rate 

(fdr) correction (Q=0.05). PCs up to PC12 were examined as components above that were found 

not to contain discriminatory information. In PLS-DA selection of the optimal number was done 

by increasing the number of components included to build the classification model until the ability 

of the algorithm to accurately predict the spectra no longer increased.  

The classification performance of the different models was validated using leave-one-spectrum-

out (LOO), leave-one-mouse/sample-out (LOMO/LOSO) and repeated leave-some-mice 

(RLSMOCV) out cross-validation (CV). As can be seen in figure 2.12 in the leave-out-cross 

validation the dataset is split into a training and test set. The classification model is built using the 

training set data. The test set is then projected on the model to evaluate its performance. The 

process is repeated until each spectrum has been left out once and its label (group) has been 

predicted by the model. In order to ensure that there is no prior information of the test dataset 

in the training set model, components to include were selected for each training dataset (without 

including the spectra of the given test set). In the case of the repeated leave-some-out cross-

validation the entire cross-validation process was repeated 100 times using different, randomly 

selected combination of left out mice.   
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Figure 2.12: Leave-out cross-validation.  

The data set is split into training and test sets. The model is generated using the spectra in the training 

set and validated using the label predictions from the data in the test set. The cycle is repeated until 

each spectrum is left out once. For repeated leave-some-mice/samples out the whole process was 

repeated 100 times. 

 

For the in vivo animal work each animal group consisted of the same number of mice (see 

methods section 2.1.2 for animal numbers). For models generated from mice groups consisting 

of 16 mice each, the repeated leave-two-mice/group cross-validation was performed. For 

example, in the case that two groups were used to build the model, four mice (two from each 

group) were left out in each step of the cross-validation. This was done to avoid biasing the model 

by leaving out 4 mice of the same group in any step. For models generated from mice groups 

consisting of 8 mice leave-one-mouse/group cross-validation was performed. The human samples 

(ex vivo work) were not split in equally sized groups and this cross-validation was not possible. 

Background subtraction was performed for clarity but not as a pre-processing step (Lieber and 

Mahadevan-Jansen, 2003).  

PCA, LDA and PLS-DA techniques are presented in the following sections. 

 

2.4.1.1 Principal Components Analysis  

Principal Component Analysis is a method for exploratory data analysis (unsupervised learning) 

and a dimensionality reduction technique. The main aim of dimensionality reduction techniques 

is to simplify the data (describe a given data set with a reduced number of variables) while 

preserving as much of the variation in the original data set as possible. PCA computes a new set 

of uncorrelated latent variables that are linear combinations of the original variables. These new 
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variables or coordinates (Principal Components) are defined by the directions that maximise the 

variance in the dataset and the most important information present in the data can usually be 

described using the first few PCs. A new orthogonal coordinate system can, thus, be formed using 

only the most informative dimensions (only the PCs of interest) (figure 2.13). Each Raman 

spectrum can be accurately fitted to a linear combination of these PCs. 

 

Figure 2.13: Illustration of principal component analysis for example data set with two original 

variables. a) Example spectrum with two wavenumbers. b) The spectrum represented as a data point 

in the spectral space (space with as many dimensions as the original variables). c) More spectra (red 

dots) in the spectral space. The two principal components (directions of maximum variance) are also 

illustrated (blue arrows). d) The spectra are projected on the direction of the principal components 

(green and yellow dots) and the score of each spectrum for each PC (t1 for PC1 and t2 for PC2) can be 

computed by projecting the data in the direction of the PCs (dashed lines). 

 

Mathematically, the eigenvectors of the covariance matrix of the original variables represent the 

directions of the axes where there is most variance. The eigenvalues associated with each 

eigenvector give the amount of variance present in this direction (in this PC). Thus, if eigenvectors 

are ranked in order of decreasing eigenvalues, the principal components are ranked in order of 

significance (Varmuza and Filzmoser, 2009). 

For a data set 𝑋 consisting of 𝑛 observations (spectra) and 𝑚 original variables the direction with 

the most variance is the first principal component and is defined by a loading vector:  

𝒑𝟏 = (𝑝1 … . . 𝑝𝑚) 

The scores of each component, which are orthogonal projection coordinates on the direction of 

the respective loading vector, are linear combinations of the original variables and the respective 
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loadings (Varmuza and Filzmoser, 2009). For observation 𝑖, defined by the vector 𝒙𝒊 with elements  

𝑥𝑖1 … 𝑥𝑖𝑚  the score 𝑡𝑖1 for PC1 is: 

𝑡𝑖1 = 𝑥𝑖1 𝑝1 + ⋯ + 𝑥𝑖𝑚 𝑝𝑚        𝑖 = 1 … . 𝑛     

And so, for all 𝑛 observations arranged as rows in a matrix 𝑿 the score vector, 𝒕𝟏, of PC1 is 
obtained by:  

𝒕𝟏 = 𝑿 ∙ 𝒑𝟏 
 

The second principal component (PC2) is defined as an orthogonal direction to PC1 and possessing 

the largest residual variance of the scores (Varmuza and Filzmoser, 2009). PCs up to the number 

of the original variables can be calculated and each PC is orthogonal to all the previously 

computed ones. Due to the fact that the amount of explained variance decreases in every next 

PC, the variances of the later PCs are often very small or zero (Varmuza and Filzmoser, 2009). 

These PCs represent noise in the dataset and can be removed from subsequent analysis 

(dimensionality reduction).  

If all the loading vectors are collected as columns in the loading matrix, 𝑷, and all score vectors 

are collected in the score matrix, 𝑻, (figure 2.14) the PCA scores are computed by the following 

equation: 

𝑻 = 𝑿 ∙ 𝑷 
 
The loading vectors are orthogonal to each other and their lengths are normalised to 1: 
 

𝒑𝒋
𝑻 ∙ 𝒑𝒋 = 1        𝑗 = 1 … . 𝑚 

𝒑𝒋
𝑻 ∙ 𝒑𝒌 = 0        𝑗, 𝑘 = 1 … . 𝑚 𝑎𝑛𝑑 𝑗 ≠ 𝑘  

 
The PCA scores are also orthogonal to each other and uncorrelated (Varmuza and Filzmoser, 
2009). 
 



 

53 
 

 
 
Figure 2.14: Graphical representation of PCA matrices.  
Since PCA is used for dimensionality reduction the number of components used (a) is usually smaller 

than the number of original variables (m). Adjusted from (Varmuza and Filzmoser, 2009). 
 
The PCA scores can be used to reconstruct the original dataset (𝑋-matrix) (Varmuza and Filzmoser, 

2009). To do that, usually, only the PCs that preserve the most important information are 

employed. Thus, an approximated 𝑋-matrix (𝑋𝑎) with reduced noise can be constructed. If all 

possible PCs were used, the error (residual) matrix 𝐸𝑟𝑒𝑠 would be zero but that would lead to 

overparameterisation of the spectra and would defeat the purpose of using PCA for 

dimensionality reduction (Varmuza and Filzmoser, 2009). 

 

𝑿𝒂 = 𝑻 ∙ 𝑷𝑻                     𝑿 = 𝑻 ∙ 𝑷𝑻 + 𝑬𝒓𝒆𝒔                    𝑬𝒓𝒆𝒔 = 𝑿 −  𝑿𝒂      
 
  
As already mentioned above PCA is an unsupervised method, which means that there is no 

knowledge of the different groups present in the dataset (e.g. diseased/healthy spectra). Thus, 

PCA identifies the directions in the spectral space that maximise variation in the data 

independently of the sample groups and is in many cases not ideal for spectral discrimination and 

classification (Notingher et al., 2004). PC’s that are diagnostically significant (variance in the data 

is due to differences between healthy and diseased tissues) are therefore often used for further 

analysis with ‘supervised’ techniques like multiple regression or discriminant analysis.  

 

2.4.1.2 Linear Discriminant Analysis 

Linear discriminant analysis is a supervised method that is often used as a classification technique. 

It can be described using two different approaches, the Bayesian and the Fisher approach. The 
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non-Bayesian approach will be used in this chapter. LDA finds the directions in the spectral space 

(or PC’s space if used after PCA) that maximise the separability of the different classes. These 

directions, also known as Linear Discriminant Functions (LDs), are linear combinations of the 

original variables. Utilising the Fisher’s criterion, LDs are defined by the directions that maximise 

the inter-group variance, while minimising the intra-group variability of specified groups  (Conrad 

and Bonello, 2016)(Conrad and Bonello, 2016). For a data set 𝑋 with 𝑛 observations belonging in 

two different groups and 𝑚 original variables the linear discriminant function is: 

 

𝑦 = 𝑏1𝑥1 + ⋯ + 𝑏𝑚𝑥𝑚 

 

The coefficients 𝑏1 … 𝑏𝑚 form a decision vector 𝑏 and projecting the observations on an axis 

defined by the decision vector give the discriminant scores of the observations 𝑦𝑖 (Varmuza and 

Filzmoser, 2009). A natural measure of class separation between the projected points is the 

difference between their means. In order to have good class separation and hence good 

classification performance in a given direction, the separation of the means needs to be as large 

as possible in that direction relative to some measure of dispersion of the observations within 

each class (that needs to be minimised).   

If 𝑦1 is the arithmetic mean of the discriminant scores of the observations belonging in the first 

group and 𝑦2is the arithmetic mean of the discriminant scores for the second group, the LD is 

defined by the vector 𝑏𝑓𝑖𝑠ℎ𝑒𝑟  that maximises the function: 

 

𝐽(𝑏) =
|𝑦1 − 𝑦2|

𝑆𝑦

 

 

Where 𝑆𝑦 is the square root of the pooled variance, which is a weighted sum of the variances of 

𝑆1
2 and 𝑆2

2 of 𝑦 for the two groups (i.e. measure of the dispersion of the observations within each 

class) (Varmuza and Filzmoser, 2009). 

 

Using 𝑏𝑓𝑖𝑠ℎ𝑒𝑟  and if 𝒙𝟏 and 𝒙𝟐 are the arithmetic mean vectors of the data from groups 1 and 2 

respectively the classification threshold is given by the following equation: 

 

𝑦0 =
𝒃𝒇𝒊𝒔𝒉𝒆𝒓

𝑻 𝒙𝟏 + 𝒃𝒇𝒊𝒔𝒉𝒆𝒓
𝑻 𝒙𝟐

2
 

 

Which is the mean of the scores obtained by projecting the group means on the discrimination 

direction (Fig. 2.15).  

 

The LDA classification model built using the original data set can then be used as a predictive 

model of group membership for new observations. The discriminant score 𝑦𝑖 of a new observation 

𝒙𝒊 is: 

 

𝑦𝑖 = 𝒃𝒇𝒊𝒔𝒉𝒆𝒓
𝑻 𝒙𝒊 
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The new observation is classified to one of the two groups by comparing 𝑦𝑖 to 𝑦0 (Varmuza and 

Filzmoser, 2009). 

 

 

 

 
 

Figure 2.15: Fisher discriminant rule in a 2-D PC’s space.  

Score scatter plot of PC1 and PC2 scores with observations shown as dots. A discriminant variable y is 

computed, and the group assignment is done by comparing the discriminant score of an observation yi 

to a threshold value y0 (average of the projected group means y1m and y2m - dashed line). The diamonds 

represent the group means and they are projected (using the dashed-dotted line) on the discriminant 

variable y. The dashed line is the separator of the two classes in the 2-D space. For n-dimensional data 

(i.e. in an n-dimensional space) the separation line becomes a hyperplane. Adjusted from (Varmuza 

and Filzmoser, 2009). 

 

For two classes there is only one linear discriminant function (shown in figure 6). LDA can be used 

to build a classification model when there are more than two groups. For 𝑛 classes there are (𝑛 −

1) LDs. Once the classification model is developed using a given dataset, the membership of 

unknown samples to one of the defined classes can be predicted (predictive model) (Ballabio and 

Consonni, 2013). A limitation of LDA is that the number of original variables is required to be 

smaller than the number of observations (Notingher et al., 2004). If there are more variables than 

samples PCA can be performed as the first step of the multivariate analysis and LDA is then 

performed on PC scores of relevant PCs. LDA requires an assumption of equal covariance matrices 

between the input variables of the different classes. This means it does not take into account any 
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differences in the variance structures of each group (Brereton and Lloyd, 2014).  Unlike LDA, QDA 

allows for different variance structures for each group (Brereton and Lloyd, 2014). In QDA the 

separator (boundary that separates the classes) is no longer linear; it becomes quadratic. 

Classifying spectra that have been used to generate the classification model in order to assess the 

predictive performance of the PCA-LDA model can lead to over-optimistic results. ‘Overfitting’ 

can be avoided by using some of the spectra of the original dataset to build the model and some 

other to assess its performance. However, this solution leads to less spectra being used to build 

the model. Instead leave-out cross-validation can be used.   

 

2.4.1.3 Partial Least Squares-Discriminant Analysis (PLS-DA)  

PLS was initially introduced as a regression method. And as such it was proposed to handle 

continuous response variables (Lee, Liong and Jemain, 2018). In order to use it as a discriminant 

analysis tool the response variable must contain the group information and is therefore 

categorical (replaced by dummy variables describing the different categories) (Lee, Liong and 

Jemain, 2018). PLS-DA is a dimensionality reduction and classification method that has been used 

extensively in chemometrics for prediction model construction. PLS-DA computes new latent 

variables (LVs-PLS components) that are linear combinations of the original variables to model 

the relevant sources of data variability (Ballabio and Consonni, 2013). The LVs are defined by the 

directions that have a maximum covariance between the data and the class variable. This criterion 

ensures maximum variance of the data in the spectral space and high correlation with the 

interesting property (the group label) (Varmuza and Filzmoser, 2009). Like in PCA, a new 

coordinate system can thus be formed using only the most informative dimensions 

(dimensionality reduction). Similarly, the scores are the coordinates of the observations in the 

direction of the LVs and the loadings are the coefficients of the original variables in the linear 

combinations which determine the LVs and as such they can be interpreted as the influence of 

each original variable on each LV (Ballabio and Consonni, 2013). The description of PLS-DA as a 

supervised PCA needs to happen with caution though since the actual score and loading matrices 

computed by the two different methods differ in some of their properties. For example, in PLS-

DA, unlike in PCA, the loadings are not orthogonal (Brereton and Lloyd, 2014). The fundamental 

PLS-DA equations for a matrix 𝑋 (original dataset) consisting of 𝑛 observations belonging in two 

different groups are:  

 

𝑿 = 𝑻 ∙ 𝑷𝑻 + 𝑬 

 

𝒄 = 𝑻 ∙ 𝒒𝑻 + 𝒇 

 

Where 𝑇 and 𝑃 and 𝑞 are score and loading matrices respectively. 𝐸 and 𝑓 are residuals (Brereton 

and Lloyd, 2014). 

After the classification model is built prediction of group membership for new or training dataset 

observations can be achieved by calculating the 𝑐𝑖 value (class value) and comparing it with a 

threshold value (usually the value between the two class labels). 
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Thus, PLS-DA is a supervised method that combines dimensionality reduction and discriminant 

analysis into one algorithm. Unlike LDA the number of observations does not need to be larger 

than the number of variables and it does not assume equal covariance matrices between the two 

groups (Lee, Liong and Jemain, 2018). PLS-DA can also be extended to the case where the dataset 

is split into more than two groups. Similar to LDA, PLS-DA is also susceptible to overfitting. Thus, 

cross-validation is an important step when building a PLS-DA classifier (Ruiz-Perez et al., 2018). 

2.4.1.4 Measures of Predictive Models 

Three very common measures of the ability of a statistical model to correctly predict the class of 

the observations of a given data set are the sensitivity, specificity and accuracy. The confusion 

matrix is often used to describe the performance of a classifier. Figure 2.8 shows the confusion 

matrix of a data set with two classes. 

 

Table 2.8: Confusion matrix of a two-group model. 

 Predicted Class 

1 2 

True Class 
1 True Positive (TP) False Negative (FN) 

2 False Positive (FP) True Negative (TN) 

 

 

Using class 1 as the positive class the sensitivity, specificity and accuracy are defined as follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 

 

Thus, the sensitivity is the proportion of the positive class observations that were correctly 

classified by the model. Specificity is the proportion of the negative class observations that were 

classified as negatives by the model. Finally, accuracy is the percentage of all the observations 

that were correctly classified. A perfectly accurate model would have zero false positives and false 

negatives and would result in sensitivity, specificity and accuracy values of 100%. 

Receiver Operating Characteristic (ROC) curves are plots of the true positive rate (sensitivity) 

against the false positive rate (1-specificity) and illustrate the ability of a classifier to separate 

between classes as the discrimination threshold is varied. Thus, the area under an ROC curve is 

also a measure of how well the model can distinguish between the two classes. A model with AUC 

near to one is well able to separate the two classes. A model with AUC close to 0.5 approaches a 

random coin toss. Sensitivity, specificity, accuracy and AUC are often used in medicine to describe 

the ability of a diagnostic test to correctly predict the presence or absence of a medical condition. 

In that case the diseased group is considered to be the positive class. Hence, the sensitivity of a 
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diagnostic test is defined as the ability of the test to correctly identify the individuals with the 

disease and the specificity of the test is its ability to correctly classify the individuals without the 

disease.   

In the case of assigning a sensitivity, specificity and accuracy to the two-group models used in this 

study the medical approach was used when one of the two groups consisted of spectra acquired 

from diseased tissue and the other one from healthy. In these cases, the diseased group was 

considered as the positive class and the sensitivity demonstrated the ability of the model to 

correctly identify the diseased spectra. When this was not the case one of the two groups was 

chosen as the positive class and this will be stated in the results section. For the multi-group 

models the performance indices for each group were calculated by using each one group as the 

positive class and the rest of the groups as the negative class (one-versus-all approach).  

 

2.4.2 Rotarod and Catwalk Data Analysis 

GraphPad Prism version 8 was used for statistical analysis of rotarod data (GraphPad, San Diego, 

CA, USA). The rotarod performance data were not normally distributed for all the different sub-

groups and time points. All rotarod recordings at two time points were analysed using paired 

sample t-test for normally distributed data and Wilcoxon matched-pairs signed rank test for non-

normally distributed data. For the analysis of rotarod performance at three time points repeated 

measures one-way ANOVA with Turkey’s correction for multiple comparisons (when ANOVA was 

significant) was used for normally distributed data and the Friedman test for non-parametric data. 

Mean and standard deviation are shown in the graphs that display normally distributed data. 

Median and interquartile range are shown in the graphs that display non-normally distributed 

rotarod data.  

Matlab (Matlab R2019b The MathWorks, Inc.,Natick, MA) was used for statistical analysis of the 

Catwalk gait parameters. Multiple paired sample t-tests (one for each parameter) were 

performed  between two time points (one week before vs one day after-data collected from the 

full cohort in Study 1 and one week before vs two weeks after – data collected from half the 

cohort, which had the third recording) followed by Benjamini & Hochberg/Yekutieli false 

discovery rate control. The adjusted p-values (q-values) were also calculated and shown when 

significant. 

 

2.4.3 Running Wheel Distance, CK Levels and EMG performance Data 

GraphPad Prism version 8 was used for statistical analysis of creatine kinase levels and EMG 

performance in studies 2 and 5 respectively (GraphPad, San Diego, CA, USA). In study 2 student’s 

t-test and one-way ANOVA were used in order to compare the distance run by two different mice 

groups and the CK levels of the different mice groups (exercised mdx, non-exercised mdx and 

C57Bl/10 mice) respectively. In study 5, mixed-effect model repeated measures ANOVA was with 

Turkey post-test was used to compare the CMAP amplitudes acquired from the same mice with 

the different techniques. Student’s t-test was used to compare the CMAP amplitude of SOD1G93A 

with that of control mice. Paired t-test was used to compare CMAP amplitude from 

electrophysiological recordings acquired with the combined probe from the same mice before 

and after the Raman recordings. 
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3. Results 

3.1 Animal Experiments 

3.1.1 Summary of experiments 

3.1.1.2 In vivo 

A total of 8640 spectra were recorded from gastrocnemius muscles of mice in vivo. A summary of 

the spectra acquired for each of the studies can be seen in Table 3.1. As already described in the 

methods (see section 2.1.3.2) for each mouse the probe was inserted in both medial and lateral 

heads of both gastrocnemius muscles (4 sites/mouse). Acquisition time was 4 seconds for each 

spectrum and 10 spectra were acquired at each site (total acquisition time at each site 40 

seconds). The ten spectra acquired in each site were averaged prior the multivariate analysis 

resulting in four spectra per mouse.  

Table 3.1: Summary table of in vivo experiments. 

Study Mice Groups Number of 

mice/group 

Number of averaged 

spectra 

Study 1 

Neurogenic/Myopathic 

Neuromuscular 

Disorders 

One month old mdx  

Three months old mdx 

One month old SOD1G93A  

Three months old SOD1G93A 

One month old C57Bl/6 

Three months old C57Bl/6 

One month old C57Bl/10 

Three months old C57Bl/10 

16 512 

Study 2  

Intervention Study 

Three months old exercised 

mdx  

Three months old non-

exercised mdx 

16 128 

Study 3   

MND Study 

Three months old SOD1G93A 

Three months old TDP-43 

Three months old TDP-43q331k 

8 96 

Study 4 

Male mdx mice 

One month old male mdx  

Three months old male mdx  

One month old male 

C57Bl/10  

One months old male 

C57Bl/10 

8 

8 

8 

 

7 

124 
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The first study aimed to explore the ability of the technique to distinguish between healthy and 

diseased muscle, to detect muscle pathology at different disease stages and to discriminate 

between neuromuscular disorders of different origin. The second and third studies aimed to 

investigate the potential of detecting more subtle pathological changes or differences in the 

muscle, as could be the case after an intervention (Intervention study), or between different 

animal models of the same disorder (MND study). The fourth study aimed to assess the 

performance of the models generated with male mdx mice and compare it to that of the models 

generated using female mdx mice. Finally, the fifth study aimed to test the combined probe, that 

can acquire both Raman and electrophysiological data.  

3.1.1.3 Ex vivo 

A total of 3000 spectra were recorded from gastrocnemius, tibialis anterior, quadriceps and 

diaphragm muscles of exercised and non-exercised mdx mice ex vivo. A summary of the ex vivo 

spectra acquired for study 2 can be seen in Table 3.2. As already described in the methods (see 

section 2.1.3.2) for each sample the probe was inserted in multiple sites. Acquisition time was 4 

seconds for each spectrum and 10 spectra were acquired at each site (total acquisition time at 

each site 40 seconds). The ten spectra acquired in each site were averaged prior the multivariate 

analysis.  

Table 3.2: Summary table of ex vivo recordings. 

 

Ex vivo measurements were undertaken in order to explore if the various muscles were affected 

differently by the running wheel exercise. Moreover, the ability of the technique to distinguish 

between different muscles was also assessed. 

Study 5 

Combined Probe Study 

Three months old SOD1G93A 

Three months old C57Bl/6 

8  

Muscle Group Number of 

samples 

Total number of averaged spectra 

Gastrocnemius Exercised mdx mice 

Non-exercised mdx mice 

3 

4 

18 

24 

Tibialis Anterior Exercised mdx mice 

Non-exercised mdx mice 

11 

12 

44 

48 

Quadriceps Exercised mdx mice 

Non-exercised mdx mice 

8 

10 

48 

60 

Diaphragm Exercised mdx mice 

Non-exercised mdx mice 

8 

9 

32 

36 
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3.1.2 Study 1: Neurogenic/Myopathic Neuromuscular Disorders 

The work presented in the following sections as Study 1 has been published in ACS Chemical 

Neuroscience (Plesia et al., 2021). 

3.1.2.1 Classification Models Performance 

PCA-LDA, PCA-QDA and PLS-DA were used to generate classification models. The performance of 

the models was validated using leave-one-spectrum out (LOOCV), leave-one-mouse-out 

(LOMOCV) and repeated leave-some-mice-out (RLSMOCV) cross-validation (CV). The results for 

the different two group models cross-validated using LOOCV and LOMOCV are presented in 

section 3.1.2.1.1. Repeated cross-validation is presented in section 3.1.2.1.2.  

3.1.2.1.1 Two Group Models 

a) One month old mdx vs. C57Bl/10 mice 

This is a very early disease stage for the mdx mice. Thus, the model generated using the spectra 

from one month old mdx and control mice aimed to explore the ability of the technique to detect 

muscle pathology at an early stage. The predictive capability of the models using different analysis 

and CV methods for the one month old mdx mice can be seen in table 3.3. The ROC curves, 

comparing the three different approaches for LOOCV and LOMOCV can be seen in figure 3.1.  

 
 
Table 3.3: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 

using different CV methods for the one month old mdx and C57Bl/10 mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

73.4% 65.5% 70.0% 

Leave-one-mouse-

out CV 

70.3% 

 

62.1% 

 

66.4% 

 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

81.3% 63.8% 72.9% 

Leave-one-mouse-

out CV 

79.7% 

 

62.1% 

 

71.3% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

84.4% 82.8% 83.6% 

Leave-one-mouse-

out CV 

84.4% 75.9% 80.3% 
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Using LOMOCV the ability to correctly classify spectra decreased for PCA-LDA and PLS-DA models. 
The sensitivity of the PCA-QDA model also decreased when LOMOCV was used. However, the 
specificity of the model slightly increased leading thus to a smaller drop in the accuracy. The area 
under the ROC curves also decreased for LOMOCV. However, the AUC values did not fall below 
0.7. In general, the models attained better sensitivity than specificity values with most sensitivity 
values (for different methods and CVs) being above 70%.   
For both CV approaches the PLS-DA model performed better than the PCA related models. The 

LOMO cross-validated PLS-DA model demonstrated a good performance for the early disease 

stage achieving an accuracy of 80.3% and an AUC of 0.89.  

 

 

 

 

 

 

 

 

 

Figure 3.1: ROC curves for the cross validated classification models for the one month old mdx and 

C57Bl/10 mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out CV 

are shown. The area under the ROC curve (AUC) for the different models is also displayed.  

 

b) Three months old mdx vs. C57Bl/10 mice 

This is a more established disease stage. Thus, the model generated using the spectra from three 

months old mdx and control mice aimed to explore the ability of the technique to detect muscle 

pathology at a later stage. The predictive capability of the models generated using different 

techniques and CV methods for the three months old mdx mice can be seen in table 3.4.  

The classification performance of the models was better for the three months old mdx mice 

compared to one month old mice. The different cross-validation approaches did not have a big 

impact on the models, with PLS-DA achieving same classification performance with both CV 

methods and PCA-QDA achieving very similar ones. Only the PCA-LDA model demonstrated a 

slightly decreased accuracy, mainly due to a drop in specificity, when using LOMOCV. The PLS-DA 

model demonstrated the best classification performance, attaining a sensitivity of 93.8% and 

specificity of 92.2%.  
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Table 3.4: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 

using different CV methods for the three months old mdx and C57Bl/10 mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

90.6% 75% 82.8% 

Leave-one-mouse-

out CV 

89.1% 
 

72% 
 

80.5% 

 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

87.5% 75% 81.3% 

Leave-one-mouse-

out CV 

85.9% 76.6% 81.3% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

93.8% 92.2% 92.9% 

Leave-one-mouse-

out CV 

93.8% 92.2% 92.9% 

 

The ROC curves for the different techniques and CV methods can be seen in figure 3.2. The AUROC 

was equal or above 0.85 for all the models generated using PCA and it was above 0.96 for both 

PLS-DA models. 

 

 

 

 

 

 

 

 

Figure 3.2: ROC curves for the cross validated classification models for the three months old mdx and 

C57Bl/10 mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out CV 

are shown. The area under the ROC curve (AUC) for the different models is also displayed. 
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c) One vs. Three months old mdx mice 

The model built using the spectra of diseased mice at different ages aimed to investigate the 

ability of the technique to detect the changes in the muscle tissue as the disorder progresses from 

an early stage to a more established one. The predictive capability of the models using different 

analysis techniques and CV methods can be seen in table 3.5. All the models yielded better 

sensitivity than specificity values when distinguishing between one and three months old mdx 

mice. This indicates that the models were able to identify more accurately the three months old 

mdx mice compared to the one month old. Using LOMOCV only the specificity of the PCA-LDA 

model decreased considerably. The PCA-QDA model demonstrated a very similar performance 

with the different CV methods, yielding sensitivity, specificity and accuracy values above 80%. 

LOMOCV slightly increased the performance of the PLS-DA model compared to LOOCV. The PCA-

LDA models achieved the best sensitivity values. However, the PLS-DA LOMO cross-validated 

model had the highest accuracy and more balanced sensitivity and specificity values and was 

therefore considered to have demonstrated the best performance.  

Table 3.5: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 

using different CV methods for the one and three months old mdx mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

98.4% 76.6% 88.7% 

Leave-one-mouse-

out CV 

96.8% 69.0% 82.8% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

90.6% 80% 85.2% 

Leave-one-mouse-

out CV 

89% 

 

80% 

 

84.4% 

 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

95.3% 84.4% 89.8% 

Leave-one-mouse-

out CV 

95.3% 87.5% 91.4% 

 

The ROC curves for the different techniques and CV methods can be seen in figure 3.3. The AUROC 

0.90 or above for all the models generated using PCA. Both PLS-DA models yielded an AUC of 0.96. 
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Figure 3.3: ROC curves for the cross validated classification models for the one and three months old 

mdx mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out CV are 

shown. The area under the ROC curve (AUC) for the different models is also displayed.  

 

d) One month old SOD1G93A vs. C57Bl/6 mice 

This is a pre-symptomatic disease stage for the SOD1G93A mice. Therefore, this model investigated 

the ability of the technique to detect very subtle changes that might take place in the muscle 

before the appearance of any symptoms. There were no PC scores significantly different between 

one month old SOD1G93A and C57Bl/6 mice. Hence, LDA and QDA could not be performed. The 

predictive capability of the PLS-DA model using different CV methods can be seen in table 3.6 and 

the respective ROC curves can be seen in figure 3.4.  

As can be seen from the accuracy values achieved with both CV methods and from the ROC curves 

the PLS-DA models were not able to discriminate between one month old SOD1G93A and C57Bl/6 

mice. Using LOMOCV the sensitivity, specificity and accuracy values dropped below 50% indicating 

that the technique was not able to detect differences in the muscle that would allow it to correctly 

classify spectra in the different groups. 

 

Table 3.6: Two group PLS-DA classification model performance evaluated using different CV 

methods for the one month old SOD1G93A and C57Bl/6 mice. 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

53.3% 56.1% 54.7% 

Leave-one-mouse-

out CV 

41.7% 47.1% 44.4% 
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Figure 3.4: ROC curves for the cross validated classification PLS-DA model for the one month old 

SOD1G93A and C57Bl/6 mice. ROC curves for leave-one-spectrum-out and leave-one-mouse-out CV are 

shown. The area under the ROC curve (AUC) is also displayed.  

 

 

e) Three months old SOD1G93A vs. C57Bl/6 mice 

This is an established disease stage for the SOD1G93A mice. Thus, the model generated using the 
spectra from three months old SOD1G93A and C57Bl/6 mice aimed to explore the ability of the 
technique to detect muscle pathology resulting from a neurogenic disorder at an established 
disease stage. The predictive capability of the models using different analysis and CV methods for 
the three months old SOD1G93A mice can be seen in table 3.7 The ROC curves, comparing the three 
different approaches for LOOCV and LOMOCV can be seen in figure 3.5.  
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Table 3.7: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 
using different CV methods for the three months old SOD1G93A and C57Bl/6 mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

83.9% 85% 84.4% 

Leave-one-mouse-

out CV 

82.3% 75% 78.7% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

79% 83.3% 81.1% 

Leave-one-mouse-

out CV 

79% 75% 77% 

 

 

 
 

Using LOMOCV the ability to correctly classify spectra decreased for PCA-LDA and QDA models. 
For both models this was primarily due to a decrease in specificity. For the PLS-DA model the 
specificity remained unchanged and the sensitivity increased when LOMOCV was implemented, 
leading to an increased accuracy. The PCA-LDA model achieved the best performance, with a 
sensitivity above 80% for both cross-validation methods. The area under the ROC curves also 
decreased for LOMOCV for the PCA-LDA and QDA models and increased for the PLS-DA model. 
AUC values remained above 0.8 for all models and CV approaches. PCA-LDA demonstrated the 
demonstrated an AUC of 0.86 for the leave-one-mouse-out CV and had the highest AUC for both 
CV methods. 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

77.4% 70% 73.8% 

Leave-one-mouse-

out CV 

79.3% 70% 74.6 
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Figure 3.5: ROC curves for the cross validated classification models for the three months old 

SOD1G93A and C57Bl/6 mice. ROC curves for all models using leave-one-spectrum-out and leave-one-

mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 

displayed. 

 

f) One vs. Three months old SOD1G93A mice 

The model built using the spectra of SOD1G93A mice at different ages aimed to investigate the 

ability of the technique to monitor disease progression in terms of detecting the changes in the 

muscle tissue as the disorder progresses from a pre-symptomatic stage to a more established 

one. The predictive capability of the models using different analysis techniques and CV methods 

can be seen in table 3.8. The sensitivity and specificity values were very balanced for all the 

models and CV techniques. Using LOMOCV there was a very small decrease in the ability of all the 

models to correctly classify spectra. Specificity, sensitivity and accuracy above 85% were achieved 

using PCA-LDA with both CV techniques. The PCA-QDA model demonstrated a very similar 

performance when using LOSOCV and slightly decreased one when using LOMOCV, still yielding 

sensitivity, specificity and accuracy values above 80% though. The PLS-DA model achieved the 

best performance with all accuracy values being above 95%.  
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Table 3.8: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 

using different CV methods for the one and three months old SOD1G93A mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

87.1% 88.3% 87.17% 

Leave-one-mouse-

out CV 

85.5% 86.7% 86.1% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

85.5% 86.7% 86.1% 

Leave-one-mouse-

out CV 

82.3% 85% 83.6% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

95.2% 98.3% 96.7% 

Leave-one-mouse-

out CV 

93.5% 98.3% 95.9% 

 

The ROC curves for the different techniques and CV methods can be seen in figure 3.6. The AUROC 

was 0.90 or above for all the models. Both PLS-DA models yielded an AUC of 0.99. 

 

Figure 3.6: ROC curves for the cross validated classification models for the one and three months 

old SOD1G93A mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-

out CV are shown. The area under the ROC curve (AUC) for the different models is also displayed. 
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g) One month old mdx vs. SOD1G93A mice 

This is a very early disease stage for both mdx and SOD1G93A mice. Thus, the model generated 

using the spectra from one month old diseased mice aimed to explore the ability of the technique 

to detect muscle pathology for disorders of different origin at an early (mdx) and pre-symptomatic 

(SOD1G93A) disease stage. The predictive capability of the models using different analysis and CV 

methods for the one month old mdx and SOD1G93A mice can be seen in table 3.9. The ROC curves, 

comparing the three different approaches for LOSOCV and LOMOCV can be seen in figure 3.7.  

 
Table 3.9: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 
using different CV methods for the one month old mdx and SOD1G93A mice. 
PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

92.2% 96.7% 94.5% 

Leave-one-mouse-

out CV 

90.6% 98.3% 94.4% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

92.2% 96.7% 94.4% 

Leave-one-mouse-

out CV 

89.1% 95% 91.9% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

93.8% 98.3% 95.7% 

Leave-one-mouse-

out CV 

93.8% 98.3% 95.7% 
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Figure 3.7: ROC curves for the cross validated classification models for the one month old SOD1G93A 

and mdx mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out CV 

are shown. The area under the ROC curve (AUC) for the different models is also displayed. 

 

Using LOMOCV the ability to correctly classify spectra slightly decreased for PCA-LDA and QDA 

models whereas the performance of the PLS-DA model remained unchanged. Except for the 

LOMO cross-validated PCA-QDA sensitivity all other performance indices were above 90% for all 

models and CV methods. The area under the ROC curves also decreased slightly for PCA-LDA and 

QDA models for LOMOCV.  

For both CV approaches the PLS-DA model performed better than the PCA related models. The 

LOMO cross-validated PLS-DA model demonstrated a very good performance for distinguishing 

between SOD1G93A and mdx mice at an early disease stage achieving an accuracy of 95.7% and an 

AUC of 0.99. 

 

h) Three months old mdx vs. SOD1G93A mice 

This is a more established disease stage for both mouse models. Thus, the model generated using 

the spectra from three months diseased mice aimed to explore the ability of the technique to 

distinguish between more established muscle pathology of the two different neuromuscular 

disorders. The predictive capability of the models generated using different techniques and CV 

methods for the three months old mdx mice can be seen in table 3.10.  

The different cross-validation approaches did not have a big impact on the PCA related models, 

with only the sensitivity values of both models slightly decreasing when using LOMOCV. Both 

models achieved accuracy above 80% for both CV methods. Both models (and for both CV 

methods) demonstrated a better ability to correctly classify mdx mice (higher sensitivity than 

specificity values). Using LOMOCV both sensitivity and specificity of the PLS-DA model decreased.  

However, the PLS-DA demonstrated the most balanced sensitivity and specificity values for both 

CV methods with higher (for LOOCV) and very similar (LOMOCV) accuracy values and so it was 

considered to have achieved the best performance. 

 

 

 

 



 

72 
 

Table 3.10: Two group PCA-LDA, PCA-QDA and PLS-DA classification models performance evaluated 

using different CV methods for the three months old mdx and SOD1G93A mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

95.4% 74.2% 84.9% 

Leave-one-mouse-

out CV 

93.8% 74.2% 84.1% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

90.6% 77.4% 84.1% 

Leave-one-mouse-

out CV 

87.5% 77.4% 82.5% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

93.8% 85.5% 89.7% 

Leave-one-mouse-

out CV 

87.5% 80.0% 83.4% 

 

The ROC curves for the different techniques and CV methods can be seen in figure 3.8. The AUROC 

was equal or above 0.89 for all the models.  The PLS-DA model generated the ROC curve with the 

highest AUC for both CV methods, yielding an AUC of 0.96 and 0.93 for LOSOCV and LOMOCV 

respectively. 
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Figure 3.8: ROC curves for the cross validated classification models for the three months old 

SOD1G93A and mdx mice. ROC curves for all models using leave-one-spectrum-out and leave-one-

mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 

displayed. 

 

3.1.2.1.2 Repeated Leave-Some-Mice-out Cross-Validation (RLSMOCV) 

Repeated cross validation, has been employed in order to validate the classification performance 

of the models more robustly and to evaluate how much it can vary for the same data set (Lloyd 

et al., 2012, 2013). In this case cross validation has been performed by randomly selecting two 

mice from each mouse group (four in total) to ‘leave out’ and use in the test set.  

a) mdx mice 

Table 3.11 displays the classification performance of the cross-validated PCA-LDA, PCA-QDA and 

PLS-DA models for the one month old mdx mice. The mean sensitivity, specificity and accuracy 

values (+/-) one standard deviation and the coefficients of variability (CoV) are shown. The PLS-

DA model achieved the best performance with an accuracy of 76.3%. The coefficients of variability 

were similar for the different models with the sensitivity being the most variable parameter in all 

three. For all three approaches RLSMOCV yielded a similar performance with LOMOCV.  
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Table 3.11: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for one 

month old mdx and C57Bl/10 mice. The mean sensitivity, specificity and accuracy values from the 100 

repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

One month old mdx/ 

C57B/10 mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA  71.3% 

(+/-3.1%, CoV: 4.3%) 

 65.7% 

(+/-2.6%, CoV:4.0%) 

 68.6% 

(+/-2.0%, CoV:3.0%) 

PCA-QDA 76.7% 

(+/-3.1%, CoV:4.0%) 

63.1% 

(+/-1.8%, CoV:2.9%) 

70.4% 

(+/-1.9%, CoV:2.7%) 

PLS-DA 80.5%  

(+/-4.0%, CoV:5%) 

71.6%  

(+/-3.4%, CoV:4.7%) 

76.3% 

 (+/-3.1%, CoV:4.1%) 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model can 

be seen in figure 3.9. The mean AUC value for each model (+/-) one standard deviation is also 

shown. The PCA-LDA and QDA ROC curves had mean AUCs of 0.76 and 0.74 respectively whereas 

the PLS-DA ROC curve had a mean AUC of 0.85. 
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Figure 3.9: ROC curves generated from repeated cross-validation of one month old mdx and 

C57Bl/10 mice models. ROC curves are shown for each of the hundred repetitions during cross-

validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) 

one standard deviation also displayed.  

 

Table 3.12 displays the classification performance of the cross-validated PCA-LDA, PCA-QDA and 

PLS-DA models for the three months old mdx mice. The performance of all models is improved 

compared to the performance of the models for the one month old mice and the coefficients of 

variability decreased for all the classification indices and models. The PCA-LDA and QDA models 

attained similar accuracy values, with the LDA model having a better sensitivity. The PLS-DA model 

achieved the best performance with a sensitivity of 94.2%, a specificity of 88.7% and an accuracy 

of 91.3%. The coefficients of variability were similar for the different models.  The specificity was 

the most variable parameter in all three models.  
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Table 3.12: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

months old mdx and C57Bl/10 mice. The mean sensitivity, specificity and accuracy values from the 

100 repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

Three months old 

mdx / C57B/10 mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 91.6%  

(+/-2.2, CoV: 2.4%) 

76.4%  

(+/-3.0, CoV: 3.8%) 

84.1%  

(+/-1.7, CoV: 2.0%) 

PCA-QDA 88.6% 

(+/-1.8, CoV: 2.0%) 

78.4% 

(+/-2.0, CoV: 2.6%) 

83.5% 

(+/-1.2, CoV: 1.4%) 

PLS-DA 94.2% 

(+/-2.3, CoV: 2.4%) 

88.7%  

(+/-2.9, CoV: 3.3%) 

91.3% 

(+/-1.8, CoV: 2.0%) 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model for 

the three months old mdx mice can be seen in figure 3.10. The PCA-LDA and QDA ROC curves had 

a mean AUC of 0.90 and 0.91 respectively whereas the PLS-DA curves demonstrated a mean AUC 

of 0.96. 
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Figure 3.10: ROC curves generated from repeated cross-validation of three months old 

mdx/C57Bl/10 mice models. ROC curves are shown for each of the hundred repetitions during cross-

validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) 

one standard deviation also displayed.  

 

The classification performance of the RLSMOCV PCA-LDA, PCA-QDA and PLS-DA models for 

distinguishing between one and three months old mdx mice can be seen in table 3.13. The ROC 

curves generated in each of the repetitions and the mean ROC curve for each model can be seen 

in figure 3.11. The PCA-LDA and PLS-DA models attained similar sensitivities, both around 95.5%, 

but the PLS-DA model achieved much better specificity, having thus, a better overall performance 

(Accuracy 88% and mean AUC 0.96). The coefficients of variability were similar for the different 

models, remaining below 5% for all the indices. The PCA-QDA model had the most balanced 

sensitivity and specificity values but the lowest accuracy and mean AUC values. 
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Table 3.13: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for one 

and three months old mdx mice. The mean sensitivity, specificity and accuracy values from the 100 

repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

One/Three months 

old mdx mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard  

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 95.6% 

(+/-1.8, CoV: 1.9%) 

71.6% 

(+/-3.4, CoV: 4.7%) 

83.6%  

(+/-2.0, CoV: 2.4%) 

PCA-QDA 89.1% 

(+/-1.5, CoV: 1.7%) 

77.6% 

(+/-2.5, CoV: 3.2%) 

83.4% 

(+/-1.5, CoV: 1.8%) 

PLS-DA 95.4 % 

(+/-1.6, CoV: 1.9%) 

80.6%  

(+/-3.2, CoV: 4.0%) 

88% 

(+/-2.0, CoV: 2.3%) 
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Figure 3.11: ROC curves generated from repeated cross-validation of one and three months old mdx 

mice models. ROC curves are shown for each of the hundred repetitions during cross-validation. The 

mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard 

deviation also displayed.  

 

An additional three group model was built using the spectra of the one and three months old mdx 
mice as well as the spectra of the three months old C57Bl/10 mice to investigate the ability of the 
technique to simultaneously separate diseased from healthy tissue and the different disease 
stages. This model could be more useful in a clinical setting, where the diseased group will be 
more heterogeneous since it will most probably include patients at different disease stages. The 
model was validated using RLSMOCV and the results for the different models are displayed below. 
Two mice from each group were left out in each CV step. Thus, each test set consisted of six mice 
in total. All models showed high sensitivity and specificity for the three months old mdx mice, 
with all the values being above 85%. The PCA-LDA model achieved the best performance for this 
group. However, it demonstrated the lowest sensitivity for the healthy mice. In general, all the 
models achieved good accuracy for one month old mdx mice and three months old C57Bl/10 mice 
though with much higher specificities than sensitivities. 
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Table 3.14: Repeated cross-validated PCA-LDA, PCA-QDA and PLS-DA three group model 

classification performance for mdx and C57Bl/10 mice. The mean sensitivity, specificity and accuracy 

values from the 100 repetitions are shown. Standard deviation and coefficients of variability are also 

displayed. CoV: Coefficient of Variability 

PCA-LDA Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

3 months old mdx 95.6%  

(+/-1.6, CoV: 2.4%) 

87.4%  

(+/-1.3, CoV: 3.8%) 

90.2%  

(+/-1.1, CoV: 2.0%) 

1 month old mdx 70.2% 

(+/-3.2, CoV: 2.0%) 

84.0% 

(+/-1.5, CoV: 2.6%) 

79.4% 

(+/-1.5, CoV: 1.4%) 

3 months old 

C57Bl/10 

58.4% 

(+/-3, CoV: 2.4%) 

90.6%  

(+/-1.9, CoV: 3.3%) 

79.9% 

(+/-1.6, CoV: 2.0%) 

 

PCA-QDA Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

3 months old mdx 86.3%  

(+/-3.0, CoV: 3.5%) 

89.4%  

(+/-1.4, CoV: 1.5%) 

88.4%  

(+/-1.2, CoV: 1.4%) 

1 month old mdx 67.3% 

(+/-3.3, CoV: 4.9%) 

87.2% 

(+/-1.5, CoV: 1.7%) 

80.6% 

(+/-1.6, CoV: 2.0%) 

3 months old 

C57Bl/10 

69.9% 

(+/-2.9, CoV: 2.9%) 

85.2%  

(+/-2.0, CoV: 2.3%) 

80.1% 

(+/-1.8, CoV: 2.2%) 

 

PLS-DA Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

3 months old mdx 92.7%  

(+/-1.9, CoV: 2.0%) 

88.3%  

(+/-2.0, CoV: 2.3%) 

89.8%  

(+/-1.4, CoV: 1.6%) 

1 month old mdx 66.7% 

(+/-3.4, CoV: 5.1%) 

86.6% 

(+/-2.0, CoV: 2.2%) 

80.0% 

(+/-1.5, CoV: 1.9%) 
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3 months old 

C57Bl/10 

68% 

(+/-5.6, CoV: 8.2%) 

88.9%  

(+/-1.9, CoV: 2.1%) 

81.9% 

(+/-2.1, CoV: 2.6%) 

 

b) SOD1G93A mice 

The classification performance of the RLSMOCV PCA-LDA, PCA-QDA and PLS-DA models for 

distinguishing between three months old SOD1G93A and C57Bl/6 mice can be seen in table 3.15. 

The PCA-LDA model demonstrated the best performance with sensitivity, specificity and accuracy 

values of 82.5%, 76% and 79.3% respectively. The coefficients of variability were similar for the 

different models, with the specificity being the most variable index. 

Table 3.15: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

months old SOD1G93A and C57Bl/6 mice. The mean sensitivity, specificity and accuracy values from the 

100 repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

Three months old 

SOD1G93A/C57Bl/6 

mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard  

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 82.5% 

(+/-2.0, CoV: 2.4%) 

76% 

(+/-3.1, CoV: 4.0%) 

79.3%  

(+/-2.3, CoV: 2.9%) 

PCA-QDA 78.8% 

(+/-2.8, CoV: 3.6%) 

72.6% 

(+/-3.4, CoV: 4.6%) 

75.8% 

(+/-2.2, CoV: 2.9%) 

PLS-DA 80.0 % 

(+/-2.7, CoV: 3.4%) 

74.8%  

(+/-4.2, CoV: 5.6%) 

77.4% 

(+/-2.6, CoV: 3.4%) 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model for 

the three months old SOD1G93A mice can be seen in figure 3.12. The PCA-LDA and QDA ROC curves 

had a mean AUC of 0.86 and 0.81 respectively whereas the PLS-DA curves demonstrated a mean 

AUC of 0.85. 
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Figure 3.12: ROC curves generated from repeated cross-validation of three months old SOD1G93A and 

C57Bl/6 mice models. ROC curves are shown for each of the hundred repetitions during cross-

validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) 

one standard deviation also displayed. 

 

The classification performance of the RLSMOCV PCA-LDA, PCA-QDA and PLS-DA models for 

distinguishing between one and three months old SOD1G93A can be seen in Table 3.16. The ROC 

curves generated in each of the repetitions and the mean ROC curve for each model can be seen 

in figure 3.13. The PCA-LDA and PCA-QDA models had a similar performance with both models 

achieving an accuracy value around 85% and mean AUC around 0.90. The PLS-DA model achieved 

much better sensitivity and specificity, both around 95%, and a mean AUC of 0.99. The coefficients 

of variability remained below 5% for all the indices and models.  
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Table 3.16: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for one 

and three months old SOD1G93A mice. The mean sensitivity, specificity and accuracy values from the 

100 repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

 

One/Three months 

old SOD1G93A mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 85.5%  

(+/-3.8, CoV: 4.4%) 

86.6%  

(+/-2.5, CoV: 2.9%) 

85.9%  

(+/-2.3, CoV: 2.7%) 

PCA-QDA 83.9% 

(+/-3.5, CoV: 4.1%) 

86.6% 

(+/-2.7, CoV: 3.1%) 

85.2% 

(+/-2.2, CoV: 2.6%) 

PLS-DA 94.3% 

(+/-1.8, CoV: 1.9%) 

96.9%  

(+/-2.0, CoV: 2.1%) 

95.6% 

(+/-1.5, CoV: 2.0%) 
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Figure 3.13: ROC curves generated from repeated cross-validation of one and three months old 

SOD1G93A mice models. ROC curves are shown for each of the hundred repetitions during cross-

validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) 

one standard deviation also displayed.  

An additional three group model was built using the spectra of the one and three months old 
SOD1G93A mice as well as the spectra of the three months old C57Bl/6 mice to investigate the 
ability of the technique to simultaneously separate diseased from healthy tissue and the different 
disease stages. The model was validated using RLSMOCV and the results for the different models 
are displayed below. Two mice from each group were left out in each CV step. Thus, each test set 
consisted of six mice in total.  
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Table 3.17: Repeated CV PCA-LDA three group model classification performance for mdx and 

C57Bl/10 mice. The mean sensitivity, specificity and accuracy values from the 100 repetitions are 

shown. Standard deviation and coefficients of variability are also displayed. CoV: Coefficient of 

Variability. 

PCA-LDA Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

3 months old SODG93A 78.7%  

(+/-1.8, CoV: 2.3%) 

88.6%  

(+/-1.8, CoV: 2.0%) 

85.2%  

(+/-1.4, CoV: 1.6%) 

1 month old SODG93A 94.1% 

(+/-1.4, CoV: 1.5%) 

95.7% 

(+/-1, CoV: 1.0%) 

95.2% 

(+/-0.8, CoV: 0.8%) 

3 months old C57Bl/6 74% 

(+/-3.7, CoV: 5.0%) 

88.9%  

(+/-1.9, CoV: 2.4%) 

84.0% 

(+/-1.5, CoV: 1.2%) 

 

PCA-QDA Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

3 months old SODG93A 76.5%  

(+/-2.8, CoV: 3.6%) 

87.4%  

(+/-2.3, CoV: 2.6%) 

83.8%  

(+/-2.0, CoV: 2.4%) 

1 month old SODG93A 89.3% 

(+/-1.5, CoV: 1.7%) 

94.2% 

(+/-1.1, CoV: 1.2%) 

92.6% 

(+/-0.8, CoV: 0.9%) 

3 months old C57Bl/6 70.5% 

(+/-4.5, CoV: 6.4%) 

86.5%  

(+/-1.6, CoV: 1.9%) 

81.2% 

(+/-1.9, CoV: 2.3%) 

 

PLS-DA Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

3 months old SODG93A 80.7%  

(+/-2.6, CoV: 3.2%) 

89.2%  

(+/-1.3, CoV: 1.4%) 

86.3%  

(+/-1.3, CoV: 1.6%) 

1 month old SODG93A 95.0% 

(+/-3.4, CoV: 3.5%) 

98.1% 

(+/-2.0, CoV: 2.1%) 

97.1% 

(+/-0.9, CoV: 0.9%) 

3 months old C57Bl/6 80.5% 90.7%  87.3% 
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(+/-2.8, CoV: 3.5%) (+/-1.5, CoV: 1.7%) (+/-1.4, CoV: 1.6%) 

 

 

 

c) mdx vs. SOD1G93A mice 

Table 3.18 displays the classification performance of the cross-validated PCA-LDA, PCA-QDA and 

PLS-DA models for the one month old mdx and SOD1G93A mice. The ROC curves generated in each 

of the repetitions and the mean ROC curve for each model can be seen in figure 3.14. The PCA-

LDA and QDA models attained similar accuracy values, with the LDA model having slightly better 

sensitivity and specificity. The PLS-DA model demonstrated the best performance mainly due to 

higher sensitivity. The coefficients of variability were similar for the different models and 

remained below 2.5% for all the indices. The PCA-LDA and QDA ROC curves had a mean AUC of 

0.97 and 0.96 respectively whereas the PLS-DA curves demonstrated a mean AUC of 0.98. 

Table 3.18: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for one 

month old mdx and SOD1G93A mice. The mean sensitivity, specificity and accuracy values from the 100 

repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

 

One month old 

mdx/SOD1G93A mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 89.9%  

(+/-1.8, CoV: 2.0%) 

97.1%  

(+/-1.9, CoV: 2.0%) 

93.4%  

(+/-1.4, CoV: 1.5%) 

PCA-QDA 89.3% 

(+/-2.1, CoV: 2.4%) 

95.3% 

(+/-1.8, CoV: 1.9%) 

92.2% 

(+/-1.5, CoV: 1.4%) 

PLS-DA 93.4% 

(+/-0.8, CoV: 0.9%) 

97.3%  

(+/-1.3, CoV: 1.3%) 

95.3% 

(+/-1, CoV: 1.0%) 
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Figure 3.14: ROC curves generated from repeated cross-validation of one months old SOD1G93A and 

mdx mice models. ROC curves are shown for each of the hundred repetitions during cross-validation. 

The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard 

deviation also displayed.  

 

The classification performance of the RLSMOCV PCA-LDA, PCA-QDA and PLS-DA models for 

distinguishing between three months old mdx and SOD1G93A mice can be seen in Table 3.19. The 

ROC curves generated in each of the repetitions and the mean ROC curve for each model can be 

seen in figure 3.15. The different models attained similar accuracies, all around 83%. The PCA-LDA 

model yielded the highest sensitivity but the lowest specificity. Hence, the PLS-DA model was 

considered to have achieved the best performance due to the highest accuracy and mean AUC 

and more balanced sensitivity and specificity values. The PCA-LDA and QDA ROC curves had a 

mean AUC of 0.89 whereas the PLS-DA curves demonstrated a mean AUC of 0.92. 
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Table 3.19: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

month old mdx and SOD1G93A mice. The mean sensitivity, specificity and accuracy values from the 100 

repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

 

Three months old 

mdx/SOD1G93A mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 93.5%  

(+/-2.6, CoV: 2.8%) 

73.3%  

(+/-1.7, CoV: 2.3%) 

83.5%  

(+/-1.6, CoV: 1.9%) 

PCA-QDA 87.4% 

(+/-2.8, CoV: 3.2%) 

78.5% 

(+/-2.1, CoV: 2.7%) 

83.0% 

(+/-1.6, CoV: 1.4%)) 

PLS-DA 88.2% 

(+/-3.8, CoV: 4.3%) 

78.2% 

(+/-4.8, CoV: 6.1%) 

83.2% 

(+/-3.0, CoV: 3.6%)) 
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Figure 3.15: ROC curves generated from repeated cross-validation of three months old SOD1G93A and 

mdx mice models. ROC curves are shown for each of the hundred repetitions during cross-validation. 

The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard 

deviation also displayed. 
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3.1.2.2 Understanding the Basis of Classification  

3.1.2.2.1 Mean and Difference Spectra  

The mean and difference spectra of the different mice groups were plotted to visually examine 

the most prominent peaks and to identify the major differences between the groups of each 

model. In figures 3.16 and 3.17 the mean spectra of each group (+/-) standard deviation are 

shown.  

 

 

Figure 3.16: Mean Raman spectra for mdx and C57Bl/10 mice groups. 

The mean spectra for mdx and control mice of one and three months of age are shown with the dotted 

lines. The shaded areas represent (+/-) one standard deviation from the mean spectrum. The spectra 

have been offset for clarity. 
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Figure 3.17: Mean Raman spectra for SOD1G93A and C57Bl/6 mice groups. 

The mean spectra for SOD1G93A and C57Bl/6 mice of one and three months of age are shown with the 

dotted lines. The shaded areas represent (+/-) one standard deviation from the mean spectrum. The 

spectra have been offset for clarity. 

 

Figures 3.18-3.25 show the mean and difference spectra of the combinations of groups used to 

build the two group models. The mean spectra of the different groups are very similar, with the 

same prominent peaks being present in all of them. Despite the signal to noise ratio of the spectra 

acquired with the probe being limited by the fluorescent background, biochemically reliable peaks 

could be seen in the mean and difference spectra.  

 

Figure 3.18: Mean and difference spectra of one month old mdx and C57Bl/10 mice. 

a) Mean spectra for one and month old mdx and C57Bl/10 mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.19: Mean and difference spectra of three months old mdx and C57Bl/10 mice. 

a) Mean spectra for three months old mdx and C57Bl/10 mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  

 

 

Figure 3.20: Mean and difference spectra of one and three month old mdx and C57Bl/10 mice. 

a) Mean spectra for one and three months old mdx mice and b) difference spectrum. Prominent peaks 

that differ between the two groups are indicated in both graphs.  

 

A decrease in the prominent peaks located around 935cm-1, 1000 cm-1, 1044 cm-1, 1300 cm-1, 1330 

cm-1, 1445 cm-1, 1655 cm-1 as the disorder progresses can be seen in the difference spectra of the 

mdx and C57Bl/10 mice and one and three months old mdx mice. Tentative peak assignments for 

these peaks can be seen in table 3.20. A more detailed table with the references for each 

assignment found in this and all the following tables can be found in Appendix A. 
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Table 3.20: Prominent Raman peaks in mean and difference spectra of the mdx and C57Bl/10 mice 

and tentative peak assignments. A decrease in these peaks was observed as the disorder progressed 

for the mdx mice. 

Wavenumber (cm-1) Vibrational  

Modes 

Major Assignments 

935 C-C stretching Proteins 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1300  CH2 twisting Lipids, Amide III (proteins) 

1335 CH3CH2 wagging Proteins, Nucleic Acids 

1444 CH2 bending Proteins, Lipids 

1654 C=O stretching, C=C stretch Amide I (proteins), Lipids 

 

Figure 3.21: Mean and difference spectra of one month old SOD1G93A and C57Bl/6 mice. 
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a) Mean spectra for one month old SOD1G93A and C57Bl/6 mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  

Figure 3.22: Mean and difference spectra of three months old SOD1G93A and C57Bl/6 mice. 

a) Mean spectra for three months old SOD1G93A and C57Bl/6 mice and b) difference spectrum. 

Prominent peaks that differ between the two groups are indicated in both graphs.  

 

Figure 3.23: Mean and difference spectra of one and three months old SOD1G93A mice. 

a) Mean spectra for one and three months old SOD1G93A mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  

 

The differences observed in the intensity of the most prominent peaks in the mean and difference 

spectra of the one month old SOD1G93A when compared to the C57Bl/6 mice were very subtle. 

Larger differences were observed in the intensity of the peaks when comparing spectra acquired 

from three months old SOD1G93A to C57Bl/6 and one month old SOD1G93A mice. Similar to the mdx 

mice, the most prominent peaks present in the spectra also decreased as the disorder progressed 

for the SOD1G93A mice. Table 3.21 summarises these peaks and their tentative assignments.  
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Table 3.21: Prominent Raman peaks in mean and difference spectra of the SOD1G93A and C57Bl/6 

mice and tentative peak assignments. A decrease in these peaks was observed as the disorder 

progressed for the SOD1G93A mice. 
Wavenumber (cm-1) Vibrational  

Modes 

Assignment 

935 C-C stretching Proteins 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging Proteins, Nucleic Acids 

1445-1450 CH2 bending, CH2CH3 bending Proteins, Lipids 

1654 C=O stretching, C=C stretch Amide I (proteins), Lipids 

 

 

 

 

 

 

Figure 3.24: Mean and difference spectra of one month old mdx and SOD1G93A mice. 

a) Mean spectra for one month old mdx and SOD1G93A mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  
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Figure 3.25: Mean and difference spectra of three months old mdx and SOD1G93A mice. 

a) Mean spectra for three months old mdx and SOD1G93A mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs. 

 

Similar differences were observed in the mean and difference spectra of mdx and SOD1G93A mice 

at different ages. The difference in the intensity in the bands located around 1000 cm-1, 1044 cm-

1 and 1653 cm-1 appeared to have decreased in the spectra acquired from the older mice. Table 

3.22 summarises these peaks and their tentative assignments.  

 

 

 

Table 3.22: Prominent Raman peaks in mean and difference spectra of the SOD1G93A and mdx mice 

and tentative peak assignments.  

Wavenumber (cm-1) Vibrational  

Mode s 

Assignment 

935 C-C stretching Proteins 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging Proteins, Nucleic Acids 

1445-1450 CH2 bending, CH2CH3 bending Proteins, Lipids 

1654 C=O stretching, C=C stretch Amide I (proteins), Lipids 

 

Background subtraction was used to aid identification of more spectral features present in the 

spectra. The background subtracted mean spectra of the different groups can be seen in figures 

3.26 and 3.27. A larger number of peaks were identifiable in these mean spectra.  
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Figure 3.26: Background subtracted mean spectra of mdx and C57Bl/10 mice groups. The spectra 

have been offset for clarity and the most prominent peaks have been highlighted. 

 

Figure 3.27: Background subtracted mean spectra of SOD1G93A and C57Bl/6 mice groups. The 

spectra have been offset for clarity and the most prominent peaks have been highlighted. 
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Additional shoulder peaks can be seen around 975 cm-1, 1030 cm-1, 1550 cm-1, 1575 cm-1  and 

1615 cm-1. Tentative peak assignments for the peaks present in the background subtracted mean 

spectra are presented in table 3.23.  

Table 3.23: Prominent Raman peaks in background subtracted spectra and tentative peak 

assignments. Amino acids are specified when the peaks are largely associated with them in the 

literature. 

Wavenumber (cm-1) Example Vibrational  

Mode  

Assignment 

935 C-C stretching Proteins 

950  Proteins (Valine, Proline, 

Phenylalanine) 

975 CH2 deformation Proteins, Nucleic Acids 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1030 C-H bending Proteins (Phenylalanine, 

Proline) 

1044  Proteins  

1076 C-C stretching, C-O stretching Proteins (Tryptophan), 

Lipids, Nucleic Acids 

1121 C-C stretching, C-N stretching Proteins, Lipid 

1170 C-H bending Proteins (Tyrosine, 

Phenylalanine) 

1205 v(C-C6H5) Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 

1260 C-N stretching Amide III (proteins), Lipids 

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging  Proteins, Nucleic Acids 

1444 CH2 bending Proteins, Lipids 

1550 ν(C-C) Proteins (Tryptohan) 

1570 Ring breathing modes of the 

DNA/RNA bases 

Nucleic Acids 

1615 C=C stretching Proteins (Tyrosine) 

1654 C=O stretching, C=C stretching Amide I (proteins), Lipids 

 

 
Table 3.24 compares the peaks present in the spectra of the main muscle constituents and of 

skeletal muscle found in the literature with the peaks present in the subtracted mean spectra. A 
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more detailed list of peaks of muscle related components with the references can be found in 

Appendix B. 

 

Table 3.24: Prominent Raman peaks in background subtracted spectra compared with peaks of 

major muscle components and skeletal muscle found in the literature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in table 3.24 the peaks identified in the Raman muscle spectra were consistent 

with previously reported peaks from skeletal muscle. As expected, most of these peaks are 

associated with proteins probably due to the high protein content in the muscle and many of 

them can be found in the spectra of myosin, actin, tropomyosin and collagen (Table 3.24). The 

Raman spectrum of skeletal muscle is complex due to several overlapping bands (different protein 

bands as well as protein and lipid overlap). Band overlapping often leads to broadening of the 

Raman peaks, as is often the case with the peaks in the Amide I region (and can be seen in the 

mean spectra). Thus, identification of individual constituents from Raman spectra acquired from 

muscle tissue is quite complex.   

 

Wavenumber 

(cm-1) 

Myosin Tropomyosin Actin Type I 

Collagen 

Muscle 

Fibre 

Skeletal  

Muscle 

935       

950       

975       

1000       

1030       

1044       

1076       

1121       

1170       

1205       

1260       

1300       

1335       

1444       

1550       

1580       

1610       

1654       
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3.1.2.2.2 Multivariate Analysis 

As can be seen in the mean and difference figures in the previous section the most prominent 

peaks were present in the mean spectra of all the different groups. Despite differences in the 

intensity of these peaks clear visual differences were not easily apparent. Hence, multivariate 

techniques were employed in order to utilise and further elucidate the biochemical features 

present in the spectra. The PCA loadings and the linear discriminant function (LDF) as well as the 

PLS weights were plotted in order to illustrate the important peaks for spectral classification. PLS 

weights were used instead of loadings because the weight matrix is orthogonal whereas the 

loadings matrix is not. Thus, the weights for each component can be interpreted independently 

of the weights for the other components.  

Assigning specific peaks to one of the two groups used in each model was not trivial since the two 

groups were not always clearly separated around zero in the corresponding score histograms or 

score plots. Additionally, the peaks in the loadings or weight plots were most often not centred 

around zero probably due to the presence of background in the spectra. Hence, a combination of 

the information found in the difference spectra and the loading/weight plots was used in an 

attempt to better understand the differences present in the spectra from the different groups. 

The score histograms and loading/weight plots in which the separation of the spectra from the 

different groups was best for each model are shown in the following sections. The loading/weight 

plots for the rest of the PCs and components used to build each model are shown in Appendix C. 

Tables 3.25-3.31 summarise and compare the most prominent peaks found in all the 

loading/weight plots (from all the components used for each model) and the ones found in the 

difference spectra of each two-group model.   

 

a) One month old mdx vs. C57Bl/10 mice 

Using Student’s t-tests followed by fdr correction PC2 and PC3 scores were found to be 

significantly different between the one month old mdx and C57Bl/10 mice. PC3 scores were found 

to have the largest difference between the healthy and diseased mice (qPC2: 1.8e-04, qPC3: 6.7e-

05). The score histogram and loading plot of PC3 can be seen in figure 3.28. The loading plot of 

PC2 can be seen in Appendix C. 

 

 

 Figure 3.28: PC3 score histogram and loading plot for the one month old mdx and C57Bl/10 mice. 
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The results of the LDA analysis using PC2 and PC3 as input variables can be seen in figure 3.29.  

Figure 3.29: LD1 score histogram and LDF plot for the one month old mdx and C57Bl/10 mice. 

The prominent bands found in PC and LDA loading plots were very similar with the bands 

discussed in the previous section (section 3.1.2.2.2) demonstrating that changes in muscle’s 

biochemical composition are important for discrimination. Even though there was some overlap 

it can be seen from the histogram of the LD scores (figure 3.29) that positive LD1 values have a 

larger contribution from spectra acquired from the mdx mice whereas negative values from the 

spectra acquired from C57Bl/10 mice. Similarly, by looking at the histogram of PC3 scores (figure 

3.28) spectra from C57Bl/10 mice have a larger contribution to the positive values whereas those 

from mdx mice have a larger contribution to the negative ones (peaks are upside down in PC3 and 

LD loading plots). This indicates that the peaks located around 936 cm-1, 1000 cm-1, 1044 cm-1, 

1336 cm-1, 1445 cm-1 and 1655 cm-1 were decreased in the spectra of the mdx mice. Smaller peaks 

around 980 cm-1, 1076 cm-1, 1376 cm-1 and 1433 cm-1 were found to be more prominent in the 

mdx spectra. The peaks around 1076 cm-1 and 1433 cm-1 have shown to have both protein and 

lipid contribution. Fat droplets exist in the muscle and so the lipid peaks might result from spectra 

acquired closer to muscle fat. 

In the PLS-DA analysis the model generated using the first 4 components demonstrated the 

highest accuracy value. The spectra were not clearly separated around zero in any of the score 

histograms. Similar peaks as the ones from the PCA-LDA analysis were found in the PLS weight 

plots (Appendix C, Table 1) demonstrating that discrimination between the different groups using 

the different models was done on a similar biomolecular basis. The most prominent peaks in the 

loading/weight plots for all the PCs and PLS components and in the difference spectra and their 

tentative peak assignments are summarised in table 3.25. 
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Table 3.25: Summary table of the peaks associated with the one month old mdx and C57Bl/10 mice 

and tentative peak assignments. In the group column, the group that the peaks were more prominent 

is displayed. 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins     C57Bl/10 

985 Proteins, Nucleic Acids     mdx 

1000 Proteins (Phenylalanine)     C57Bl/10 

1045 Proteins (Phenylalanine, 

Proline) 
    

C57Bl/10 

1075/1080 Lipids, Phospholipids     mdx 

1124 Proteins      

1170 Proteins (Tyrosine)      

1200 Proteins      

1265 Amide III (proteins), Lipids      

1300 Amide III (proteins), Lipids      

1335 Proteins, Nucleic Acids     C57Bl/10 

1376 Proteins, Nucleic Acids      

1433 Lipids     mdx 

1445 Proteins, Lipids     C57Bl/10 

1655 Amide I (proteins), Lipids     C57Bl/10 
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b) Three months old mdx vs. C57Bl/10 mice 

Only PC2 was found to be significantly different between three months old mdx and C57Bl/10 
mice (qPC2=8.2e-20). A sensitivity of 93.8% and a specificity of 76.6% was achieved prior cross-
validation using PC2 as an input to the LDA. Since only PC2 was imported to LDA the PCA and LDA 
score and loading plots were identical and can be seen in figure 3.30.  

Figure 3.30: LD1 score histogram and LDF plot for the three months old mdx and C57Bl/10 mice. 

In the PLS-DA analysis using the first five components generated the model with the highest 

accuracy value. The score and weight plot of the first component can be seen in figure 3.31. The 

weight plots of the rest of the components can be seen in Appendix C. 

 
Figure 3.31: PLS Component 1 score histogram and weight plot for the three months old mdx and 

C57Bl/10 mice. 

It can be seen in the score histograms in figures 3.29 and 3.30 that a better separation is achieved 

for the spectra acquired from three months old mice compared to the one month old mice. The 

LDA score histogram plot (figure 3.30) shows that positive values correspond to the spectra of the 

C57Bl/10 mice whereas negative values correspond to the spectra of the mdx mice whereas in 

the score histogram of the first pls component (figure 3.31) the spectra of the mdx mice were 

mostly accumulated in the positive values and the spectra of the C57Bl/10 mice in the negative 
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ones. The LDF and (component one) weight plots (figures 3.30 and 3.31 respectively) consisted of 

very similar peaks (in opposite directions) located around 935 cm-1, 1000 cm-1, 1044 cm-1, 1304 

cm-1, 1336 cm-1, 1445 cm-1 and 1650 cm-1. In both plots these peaks were not centred around 

zero, rendering associating them with one group more difficult. However, the direction of the 

peaks was in both cases the same as the direction that the contribution of the spectra from the 

C57Bl/10 mice was larger. This could indicate that these peaks decreased in the spectra of the 

mdx mice. This was consistent with the findings from the difference spectrum since most of these 

peaks were also present in that spectrum and were shown to have decreased for the mdx mice. 

Thus, similarly to the one month old mice, most of the major peaks (peaks around 935 cm-1, 1002 

cm-1, 1046 cm-1, 1336 cm-1, 1445 cm-1 and 1655 cm-1) seemed to have been reduced in the spectra 

of the three months old mdx mice when compared to the C57Bl/10 mice indicating that the 

changes found in the early disease stage are also seen in the more established one. The most 

prominent peaks in the loading/weight plots of the models and in the difference spectra and their 

tentative peak assignments are summarised in table 3.26. 

Table 3.26: Summary table of the peaks associated with the three months old mdx and C57Bl/10 
mice and tentative peak assignments. In the group column, the group that the peaks were more 
prominent is displayed. 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins     C57Bl/10 

1000 Proteins (Phenylalanine)     C57Bl/10 

1045 Proteins (Phenylalanine, 

Proline) 
    

C57Bl/10 

1075/1080 Lipids, Phospholipids      

1124 Proteins     mdx 

1265 Amide III (proteins), Lipids      

1300 Amide III (proteins), Lipids     C57Bl/10 

1335 Proteins, Nucleic Acids     C57Bl/10 

1445 Proteins, Lipids     C57Bl/10 

1653 Amide I (Proteins), Lipids     C57Bl/10 

 

 

c) One vs. Three months old mdx mice 

PCs 1 to 3 were found to be significantly different between one and three months old mdx mice. 
PC2 demonstrated the largest difference between the different groups followed by PC3. These 
PCs had a much smaller q-value than PC1 (qPC2: 2.8e-14, qPC3: 4.8e-04, qPC1: 0.02). The loading plots 
of these PCs can be seen in Appendix C. The LD score histogram and LDF using PCs 1 to 3 can be 
seen in figure 3.32. 



 

105 
 

 

Figure 3.32: LD1 score histogram and LDF plot for the one and three months old mdx mice. 
 

The PLS-DA model was built using the first three PLS components. The PLS score histogram and 
weights plot for component 1 can be seen in figure 3.33. The PLS weight plots for the rest of the 
components be found in Appendix C.  

 

Figure 3.33: PLS Component 1 score histogram and weight plot for the one and three months old 
mdx mice. 
 
 

As can be seen from the histogram of the LDA scores and of the scores from the first PLS 

component most of the spectra of the three months old mice have positive score values whereas 

the spectra of the one month old mice have negative score values (for both models). The 

respective loading plots show negative peaks around 935 cm-1, 1002 cm-1, 1046 cm-1, 1305 cm-1, 

1336 cm-1, 1445 cm-1 and 1655 cm-1. The most prominent peaks in the loading/weight plots of the 

models and in the difference spectra and their tentative peak assignments are summarised in 

table 3.27. 
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Table 3.27: Summary table of the peaks associated with the one and three months old mdx mice and 
tentative peak assignments. In the group column, the group that the peaks were more prominent is 
displayed. 

 

d) Three months old SOD1G93A vs.C57Bl/6 mice 

Using Student’s t-tests followed by fdr correction PC2, PC3 PC6 and PC7 scores were found to be 

significantly different between the three months old SOD1G93A and C57Bl/6 mice. PC2 

demonstrated the largest difference between the different groups followed by PC3 and PC7 and 

then PC6. These PCs had a much smaller q-value than PC2 (qPC2: 1.3e-08, qPC3: 0.006, qPC7: 0.006, 

qPC7: 0.02). The score histogram and loading plot of PC2 can be seen in figure 3.34, whereas the 

loading plots of PCs 3,6 and 7 can be seen in Appendix C.  

 

 

 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

930 Proteins      

1000 Proteins (Phenylalanine) 
    

One month 

old mdx 

1016       

1045 Proteins (Phenylalanine, 

Proline) 
    

One month 

old mdx 

1080 Lipids, Phospholipids      

1121 Proteins      

1265 Amide III (Proteins), Lipids      

1300 Amide III (proteins), Lipids 
    

One month 

old mdx 

1335 Proteins, Nucleic Acids 
    

One month 

old mdx 

1375 Proteins, Nucleic Acids      

1435 Lipids      

1445/1450 Proteins, Lipids 
    

One month 

old mdx 

1655 Amide I (Proteins), Lipids 
    

One month 

old mdx 
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Figure 3.34: PC2 score histogram and loading plot for the three months old SOD1G93A and C57Bl/6 
mice. 

 

The LDF and the LD score histogram calculated using the significant PCs, can be seen in figure 

3.35. Using all significant PCs the sensitivity, specificity and accuracy of the PCA-LDA model prior 

cross-validation were 85.5%, 86.7%, 86.1%.  

 
Figure 3.35: LD1 score histogram and LDF plot for the three months old SOD1G93A and C57Bl/6 mice. 
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In the PLS-DA analysis the model generated using the first 3 components demonstrated the 

highest accuracy value. The PLS-DA score and weight plot of the first component can be seen in 

figure 3.36. The weight plots of the second and third components can be seen in Appendix C.  

Figure 3.36: PLS Component 1 score histogram and weight plot for the three months old SOD1G93A 
and C57Bl/6 mice. 

 

The PCA and PLS weight plots for PC2 and component 1 were very similar (just in opposite 

directions) demonstrating that discrimination between three months old SOD1 and C57Bl/6 mice 

was due to similar peaks for both models.  Despite some overlap, it can be seen in the score 

histogram of PC2 that in this PC negative values largely correspond to spectra from the SOD1G93A 

mice whereas positive values have a larger contribution from C57Bl/6 mice. In the score histogram 

of component one spectra from SOD1G93A have a larger contribution in the positive values 

whereas spectra from C57Bl/6 mice have a larger contribution in the negative values. The main 

peaks in the loading and weight plots were located around 935 cm-1, 1000 cm-1, 1044 cm-1, 1304 

cm-1, 1336 cm-1, 1445 cm-1 and 1650 cm-1 and were all in the same direction as the direction that 

the contribution of the spectra from the C57Bl/6 mice was larger, possibly indicating that these 

peaks could have been decreased in the spectra of the SOD1G93A mice. This was consistent with 

the findings from the difference spectrum since most of these peaks were also present in the 

spectrum and were shown to have decreased for the SOD1G93A mice.  

Most of these peaks were also found in the linear discriminant function. In the histogram of the 

LD scores positive LD1 values had a larger contribution from spectra acquired from the C57Bl/6 

mice whereas negative values from the spectra acquired from SOD1G93A mice. Positive peaks were 

located around 935 cm-1, 1044 cm-1, 1300 cm-1, 1336 cm-1, 1445 cm-1 and 1650 cm-1. Negative 

peaks were located around 1266 cm-1, 1370 cm-1, 1462 cm-1 and 1555 cm-1. The most prominent 

peaks in the loading/weight plots of the models and in the difference spectra and their tentative 

peak assignments are summarised in table 3.28. 
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Table 3.28: Summary table of the peaks associated with the three months old SOD1G93A and C57Bl/6 
mice and tentative peak assignments. In the group column, the group that the peaks were more 
prominent is displayed. 

 
 
 
 
 
 

 

 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins     C57Bl/6 

955 Proteins, Hydroxyapatite      

1000 Proteins (Phenylalanine)     C57Bl/6 

1045 Proteins (Proline)     C57Bl/6 

1080 Lipids, Phospholipids      

1121 Proteins      

1151 Proteins, Carotenoids      

1200 Proteins      

1269 Amide III (Proteins), 

Lipids 
    

SOD1G93A 

1300 Amide III (proteins), 

Lipids 
    

 

1335 Proteins, Nucleic Acids     C57Bl/6 

1370 Proteins, Nucleic Acids     SOD1G93A 

1434 Lipids      

1445 Proteins, Lipids     C57Bl/6 

1462 Nucleic Acids, Proteins, 

Palmitic Acid 
    

SOD1G93A 

1550 Proteins (Tryptophan)     SOD1G93A 

1615 Proteins (Tryptophan, 

Tyrosine) 
    

 

1655 Amide I (proteins), Lipids     C57Bl/6 
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e) One vs. Three months old SOD1G93A mice 

Scores from PCs 1,3,6 and 7 were found to be significantly different between one and three 

months old SOD1G93A mice. When using all significant PCs, the PCA-LDA model demonstrated a 

sensitivity of 95.2%, specificity of 96.7% and accuracy of 95.9% prior cross-validation. PC1 (figure 

3.37) was the most significant followed by PC7, PC3 and PC6. The latter PCs demonstrated a much 

smaller q-value thanPC1 (qPC1: 1.2e-22, qPC7: 0.02, qPC3: 0.04, qPC6: 0.04). The LD score histogram 

and the LDF generated using all the significant PCs are shown in figure 3.38. The loading plots of 

PCs 3,6 and 7 can be found in Appendix C. 

Figure 3.37: PC1 score histogram and loading plot for the one and three months old SOD1G93A mice. 

Figure 3.38: LD1 score histogram and LDF plot for the one and three months old SOD1G93A mice. 

 

The PLS-DA model was generated using the first four components. The score histogram and the 

weight plot of the first component can be seen in figure 3.39. The weight plots of components 2 

to 4 can be found in Appendix C. 
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Figure 3.39: PLS Component 1 score histogram and weight plot for the one and three months old 

SOD1G93A mice. 

 

The loading and weight plots of PC1 and PLS component one were very similar with the most 

prominent peaks being in the direction where the contribution of the spectra acquired from 

younger SOD1G93A mice was larger (positive score values for PC1 and negative score values for 

component 1). This was also observed in the respective difference spectrum. Thus, the bands 

located around 935 cm-1, 1000 cm-1, 1044 cm-1, 1336 cm-1, 1445 cm-1 and 1650 cm-1 appeared to 

decrease as the disorder progressed. The LDF contained more noise. Hence, the identification of 

the Raman peaks responsible for the discrimination between the two groups was more difficult. 

The peaks around 933 cm-1, 1000 cm-1, 1336 cm-1, 1445 cm-1 and 1650 cm-1 were also identified 

in the LDF. These were found to be increased in the spectra of the one month old SOD1G93A mice 

(positive values in the LD score and loading plots). Additional peaks around 955 cm-1 and 1226 cm-

1 were also found to be increased in these spectra. Negative peaks were located around 1125 cm-

1, 1269 cm-1, 1426 cm-1 and 1516 cm-1 and were associated with the spectra acquired from the 

three months old SOD1 G93A mice (negative values in the LD score plot). The most prominent peaks 

in the loading/weight plots of the models and in the difference spectra and their tentative peak 

assignments are summarised in table 3.29. 
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Table 3.29: Summary table of the peaks associated with the one/three months old SOD1G93Amice 

and tentative peak assignments. In the group column, the group that the peaks were more 

prominent is displayed. 

 
 

 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins 
    

One month 

old SOD1G93A 

950 Proteins, Hydroxyapatite      

1000 Proteins (Phenylalanine) 
    

One month 

old SOD1G93A 

1045 Proteins (Proline) 
    

One month 

old SOD1G93A 

1080 Lipids, Phospholipids      

1121 Proteins 
    

Three months 

old SOD1G93A 

1151 Proteins, Carotenoids      

1200 Proteins      

1269 Amide III (Proteins), 

Lipids 
    

Three months 

old SOD1G93A 

1300 Amide III (proteins), 

Lipids 
    

 

1335 Proteins, Nucleic Acids 
    

One month 

old SOD1G93A 

1370 Proteins, Nucleic Acids      

1400 Proteins, Nucleic Acids      

1430 Lipids 
    

Three months 

old SOD1G93A 

1445/1450 Proteins, Lipids 
    

One month 

old SOD1G93A 

1655 Amide I (proteins), Lipids 
    

One month 

old SOD1G93A 
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f) One month old mdx vs. SOD1G93A mice 

PCs 1,2,3,5,6,7 and 9 were found to be significantly different between one month old mdx and 

SOD1G93A mice. PCs 3 and 6 were found to be the most significant PCs (qPC3: 1.2e-05, qPC6: 7.6e-

05) and demonstrated much smaller q-values than the rest of the PC scores. The score histogram 

and loading plot for PC3 can be seen in figure 3.40. The LD score histogram and the linear 

discriminant function generated using all the significant PCs are shown in figure 3.41.  

 

Figure 3.40: PC3 score histogram and loading plot for the one month old mdx and SOD1G93A mice. 

 
 

Figure 3.41: LD1 score histogram and LDF plot for the one month old mdx and SOD1G93A mice.  
 

The PLS-DA model was generated using the first four components. The score histogram and the 

weight plot of the first component can be seen in figure 3.42. The weight plots of components 2 

to 4 can be found in Appendix C. 
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Figure 3.42: PLS Component 1 score histogram and weight plot for the one month old mdx and 
SOD1G93A mice.  
 

Despite some overlap in the score histogram of PC3, positive score values seemed to have a larger 

contribution from spectra acquired from one month old mdx mice whereas negative score values 

had a larger contribution from the spectra of the one month old SOD1G93A.  The negative peaks in 

the PC3 loading plot were located around 933 cm-1, 1000 cm-1, 1048 cm-1, 1338 cm-1 and 1645 cm-

1 and the positive peaks were around 963 cm-1, 1019 cm-1, 1073 cm-1, 1267 cm-1, 1300 cm-1, 1432 

cm-1 and 1510 cm-1. Similar peaks were found in the weight plot of the first components from the 

PLS-DA analysis. The weight plot also contained some background. However, the peaks around 

933 cm-1, 1000 cm-1, 1048 cm-1, 1338 cm-1 and 1645 cm-1 were also in the direction that the 

contribution of the SOD1G93A spectra were more prominent. Additionally, in the weight plot the 

peak around 1450 cm-1 also appeared and seemed to be increased in these spectra. Positive peaks 

were located around 965 cm-1, 1267 cm-1, 1300 cm-1 and 1506 cm-1.  

In the histogram of the LD scores the spectra of the different groups were very well separated 

around zero and positive LD1 values had a larger contribution from spectra acquired from the 

mdx mice whereas negative values from the spectra acquired from SOD1G93A mice.  Hence, the 

peaks in the associated LDF can be more robustly assigned to each group. Positive peaks were 

located around 995 cm-1, 1020 cm-1, 1260 cm-1, 1297 cm-1 and 1506 cm-1. Negative peaks were 

found around 940 cm-1, 1003 cm-1, 1048 cm-1 , 1338 cm-1, 1452 cm-1 and 1645 cm-1. Table 3.30 

summarises the most prominent peaks in the loading/weight plots of the models and in the 

difference spectra and their tentative peak assignments. 
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Table 3.30: Summary table of the peaks associated with the one month old mdx/SOD1G93Amice and 

tentative peak assignments. In the group column, the group that the peaks were more prominent is 

displayed. 

 

g) Three months old mdx vs. SOD1G93A mice 

PCs 2 and 4 were found to be significantly different between one month old mdx and SOD1G93A 

mice (qPC2: 1.2e-07, qPC4: 1.0e-08). The loading plots for PC2 and PC4 can be in Appendix C. The LD 

score histogram and the linear discriminant function generated using PCs 2 and 4 can be seen in 

figure 3.43. In the LDF negative peaks were located around 1000 cm-1, 1267 cm-1, 1300 cm-1, 1445 

cm-1 and 1645 cm-1. Since, the spectra of the SOD1G93A mice were more prominent in the negative 

values of the LD histogram, these peaks seemed to be increased in the spectra of these mice. 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins     SOD1G93A 

960 Proteins, Hydroxyapatite      

995 Uracil, Proline     mdx 

1003 Proteins (Phenylalanine)     SOD1G93A 

1035 Proteins (Proline, Valine, 

Phenylalanine) 
    

mdx 

1045 Proteins (Proline)     SOD1G93A 

1075 Lipids, Phospholipids      

1125 Proteins      

1265 Amide III (Proteins), 

Lipids 
    

mdx 

1300 Amide III (proteins), 

Lipids 
    

mdx 

1335 Proteins, Nucleic Acids     SOD1G93A 

1400 Proteins, Nucleic Acids      

1432 Lipids      

1445/1450 Proteins, Lipids     SOD1G93A 

1465 Nucleic Acids, Proteins, 

Palmitic Acid 
    

 

1512 Nucleotide Bases     mdx 

1655 Amide I (proteins), Lipids     SOD1G93A 
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Spectra from both mdx and SOD1G93A mice both contributed in the positive values of the LD 

histogram. However, the contribution of the mdx spectra appeared to be larger.  

 

Figure 3.43: LD1 score histogram and LDF plot for the three months old mdx and SOD1G93A mice. 

 

The PLS-DA model was generated using the first five components. The score histogram and the 

weight plot of the first component can be seen in figure 3.44. The weight plots of components 

two to five can be found in Appendix C.  

 

Figure 3.44: PLS Component 1 score histogram and weight plot for the three months old mdx and 

SOD1G93A mice. 

The peaks in the weight plot for component 1 were similar with the ones of the LDF plot. Negative 

peaks were located around 1000 cm-1, 1267 cm-1, 1304 cm-1, 1443 cm-1 and 1650 cm-1 whereas 

positive peaks were located around 931 cm-1, 1121 cm-1, 1330 cm-1, and 1512 cm-1. Table 3.31 

summarises the most prominent peaks in the loading/weight plots of the models and in the 

difference spectra and their tentative peak assignments.  
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Table 3.31: Summary table of the peaks associated with the three months old mdx and 

SOD1G93Amice and tentative peak assignments. In the group column, the group that the peaks were 

more prominent is displayed. 

 

3.1.2.3 Histology 

Histological analysis was performed on muscle tissue sections of mdx, SOD1G93A, C57Bl/6 and 

C57Bl/10 mice of both ages in order to investigate the morphological changes in muscle as the 

two neuromuscular disorders progress. H&E sections of one and three months old mdx and 

control muscles can be seen in figures 1 and 2 respectively. Sections of one and three months old 

SOD1G93A and control mice can be seen in figures 3 and 4. 

The histological assessment revealed that healthy muscle consisted of polygonal fibres, with 

peripherally located nuclei (figures 1c, 2c, 3c, 4c). Necrotic fibres with inflammatory cells and a 

small amount of early regeneration, indicated by small myofibres with centrall nuclei could be 

seen in the muscle sections of the dystrophic mice at one month of age (figures 1a and 1b). As the 

disorder progressed, the main histological findings were larger cells with centrally placed nuclei 

indicating active regeneration (figures 2a and 2b). Areas of inflammation were also present (figure 

2b). There were no signs of pathology displayed in the tissue sections of the one month old 

SOD1G93A mice (figure 3a). At three months of age the SOD1G93A muscle showed signs of 

denervation in the form of grouped atrophy (figure 4a, b). Small angular, as well as hypertrophic, 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins     mdx 

955 Proteins, Hydroxyapatite      

1000 Proteins (Phenylalanine)     SOD1G93A 

1045 Proteins (Proline)      

1075 Lipids, Phospholipids      

1125 Proteins     mdx 

1267 Amide III (Proteins), Lipids     SOD1G93A 

1300 Amide III (proteins), Lipids     SOD1G93A 

1335 Proteins, Nucleic Acids      

1400 Proteins, Nucleic Acids      

1440/1455 Proteins, Lipids     SOD1G93A 

1465 Nucleic Acids, Proteins, 

Palmitic Acid 
    

mdx 

1512 Nucleotide Bases     mdx 

1655 Amide I (proteins), Lipids     SOD1G93A 
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fibres were present in the muscle. Finally, a small number of fibres with central nuclei indicated 

limited regeneration. 

 

 

Figure 3.45: Gastrocnemius muscle sections from one month old mdx and C57Bl/10 mice stained 

with haematoxylin/eosin. In one month old mdx mice sections necrotic fibres with inflammatory cells 

(a,b, arrows) and small myofibres with centrally placed nuclei (a, arrow heads) indicating early 

regeneration can be seen in the sections acquired from one month old mdx mice. Normal myofibers 

from control tissue can be seen in figure c. Magnification: x40, scale bars: 100μm. 

 

a b 

c 
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Figure 3.46: Gastrocnemius muscle sections from three months old mdx and C57Bl/10 mice stained 

with haematoxylin/eosin. Larger muscle cells with centrally placed nuclei (regeneration) (a,b, 

arrowheads and inflammation (b, arrow) can be seen in the sections acquired from three months old 

mice. Normal myofibers from control tissue can be seen in figure c. Magnification: x40, scale bars: 

100μm. 

 

 

Figure 3.47: Gastrocnemius muscle sections from one month old SOD1G93A and C57Bl/6 mice 

stained with haematoxylin/eosin. One month old SOD1G93A muscle displayed no evidence of 

pathology with normal myofibres present. No differences were observed between SOD1G93A (a) and 

C57Bl/6 (b) muscle.  Magnification: x40, scale bars: 100μm. 

 

a b 

a b 

c 
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Figure 3.48: Gastrocnemius muscle sections from three months old SOD1G93A and C57Bl/6 mice 

stained with haematoxylin/eosin. Three months old SOD1G93A showed signs of denervation in the form 

of grouped atrophy (a, double arrow), small angular fibres (a, chevrons), as well as hypertrophic fibres 

(b, arrow) and centrally placed nuclei (b, arrow head). Normal myofibers from control tissue can be 

seen in figure c. Magnification: x40, scale bars: 100μm. 

 

3.1.2.4 Post-experiment Motor Function Assessment 

3.1.2.4.1 Rotarod test 

Rotarod performance one week before (baseline recording) and one day after the experimental 

procedure was recorded for all mice in study 1 (see methods section 2.2.1) and can be seen in 

figures 3.49, 3.51, 3.54 and 3.56 for the different groups. Half of the mice were additionally tested 

two weeks post-experiment. Changes in the performance of these mice with the additional time 

point can be seen in graphs 3.50, 3.52, 3.55 and 3.57.  

a) One month old SOD1G93A and C57Bl/6 mice 

The performance of one month old SOD1G93A and control mice before and one day after they have 

undergone either the active or ‘sham’ types of recording can be seen in figure 3.49. There was no 

significant change in the rotarod performance of any of the groups. Baseline measurements for 

all four groups were mostly between 200 and 300s and were variable. After the experimental 

procedure the SOD1G93A animals that had undergone both the active procedure and the ‘sham’ 

one performed slightly better the day after the recordings (insignificant difference). C57Bl/6 mice 

that had the active type of recording performed slightly worse one day after the experiment 

whereas the mice that had the ‘sham’ procedure performed slightly better. Thus, there was no 

consistent change in the performance of the mice or the variability of the performance across the 

four different groups.  

 

a b 

c 
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Figure 3.49: Rotarod performance for one month old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. Genotype and 

type of procedure are indicated in each graph. Dots indicate individual performances within each 

group and time point. Mean of each group +/- standard deviation are also shown.  

Similarly, the mice underwent recordings at three time-points did not exhibit any significant 

change in their rotarod performance (figure 3.50). The performance of SOD1G93A mice that had 

undergone the ‘sham’ procedure improved with time whereas that of the mice that had 

undergone the active recordings declined at the measurements taken two weeks after the 

recording. The control mice performed slightly better two weeks post-experiment from the 

previous time points. 



 

122 
 

 

Figure 3.50: Rotarod performance for one month old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. Genotype and 

type of procedure are indicated in each graph. Dots indicate individual performances within each 

group and time point. Mean of each group +/- standard deviation are also shown. 

 

b) Three months old SOD1G93A and C57Bl/6 mice  

Rotarod performance of all different sub-groups of three months old SOD1G93A and C57Bl/6 mice 

at two time points is shown in figure 3.51. Baseline measurements for SOD1G93A mice were mostly 

between 100s and 200s, for C57Bl/6 mice measurements were between 200s and 300s. The 

performance of C57Bl/6 animals before and one day after any of the experimental procedures 

remained almost unchanged, with most of the mice remaining on the rotarod for the whole five 

minute interval at both time points. Baseline measurements for SOD1G93A animals were worse 

compared to C57Bl/6 mice as expected due to the disease stage. Like the control animals, the 

experimental procedure did not affect significantly the SOD1G93A mice performance. However, the 

dispersion of the individual performances in both baseline and post-experiment recordings was 

much larger for SOD1G93A animals than for NTg littermate controls.  
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Figure 3.51: Rotarod performance for three months old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. Genotype and 

type of procedure are indicated in each graph. Dots indicate individual performances within each 

group and time point. Mean of each group +/- standard deviation are also shown in graphs (a)-(c). 

Median and interquartile range are shown in graph (d). 

C57Bl/6 animals, whose rotarod performance was recorded at three time points (figure 3.52), 

exhibited a very similar behaviour before and after the experiment, with most of the mice staying 

on the rotarod for more than 280s at all three time points and both procedures. By contrast, 

performance of the SOD1G93A mice exhibited a gradual decline after both experimental 

procedures, which was statistically significant in the active Raman group. 
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Figure 3.52: Rotarod performance for three months old SOD1G93A and C57Bl/6 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. Genotype and 

type of procedure are indicated in each graph. Dots indicate individual performances within each group 

and time point. Mean of each group +/- standard deviation are also shown in graphs (a)-(b). Median 

and interquartile range are shown in graphs (c)-(d). Asterisks indicate p < 0.01 (**). 

Since the drop in the performance was not as significant in the SOD1G93A that underwent the 

‘sham’ procedure we attempted to get a better understanding of how these two procedures 

affect motor function at this late disease stage and how much of the observed change was due to 

disease progression by recording the rotarod performance of mice at 104 days of age (n=8) that 

did not have any procedure (figure 3.53).  
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Figure 3.53: Rotarod performance for 104 days old SOD1G93A mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. Mean and (+/) 
standard deviation are shown for each group. 

Ordinary one-way ANOVA did not identify a significant difference between the performances of 

the mice that had undergone any of the two procedures and the ‘control’ mice. 

c) One month old mdx and C57Bl/10 mice.  

Rotarod recordings of mdx and control one month old mice before and one day after they have 

undergone either the active or ‘sham’ type of recording are shown in figure 3.54. There was no 

significant change in the rotarod performance of any of the groups. With the exception of two 

control and six mdx mice, all animals were able to run the rotarod for five minutes before the 

experimental procedure. After the ‘sham’ procedure more animals were able to complete the 

rotarod test. Similarly, the mice that underwent the active type of Raman measurements perform 

either in the same way or even better after the experiment.  
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Figure 3.54: Rotarod performance for one month old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. Genotype and 
type of procedure are indicated in each graph. Dots indicate individual performances within each group 
and time point. Median of each group and interquartile range are also shown. 

 
The mice that underwent the additional rotarod assessment at two weeks after the experiment 

did not exhibit any significant impairment in their rotarod performance that could be attributed 

to the experimental procedure (figure 3.55). Most of the mice were able to stay on the rotarod 

for 300s at the third time point. Performance of mdx mice was more variable compared to control 

animals. 
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Figure 3.55: Rotarod performance for one month old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. Genotype and 
type of procedure are indicated in each graph. Dots indicate individual performances within each 
group and time point. Median of each group and interquartile range are also shown in graphs. 
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d) Three months old mdx and C57Bl/10 mice 

Rotarod performance of 3 months old mdx and C57Bl/10 mice are shown in figures 3.56 and 3.57. 

Almost all control animals were able to complete the rotarod test before and after the 

experimental procedure (both post-experiment time points) with only one mouse performing 

worse one day after the active Raman recording (fig. 12(c)). Thus, there was no significant change 

or variability in the rotarod performance of the control mice. Baseline rotarod recordings of mdx 

mice were more inconsistent, with the median value, however, being close to 300s for all different 

groups. After both types of procedure there was no significant or consistent impairment in the 

ability of the mice to perform the rotarod test with more mice being able to complete the test. 

For all mdx mice the consistency of the rotarod recordings increased at the second post-

experiment time point. 

 
 

 
Figure 3.56: Rotarod performance for three months old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at two time points. Genotype and 
type of procedure are indicated in each graph. Dots indicate individual performances within each 
group and time point. Median of each group and interquartile range are also shown. 
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Figure 3.57: Rotarod performance for three months old mdx and C57Bl/10 mice.  
Rotarod performance measured as time to fall in seconds (y axis) at three time points. Genotype and 
type of procedure are indicated in each graph. Dots indicate individual performances within each 
group and time point. Median of each group and interquartile range are also shown. 
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3.1.2.4.1 Catwalk 

The Catwalk system was used to study the locomotor performance of all the mice in Study 1 (see 

methodology chapter 2.1.2). In order to assess if the injury caused by the Raman (active and 

‘sham’) procedure led to any particular gait changes, all mice underwent the catwalk test a week 

before (baseline recording) and one day after the experimental procedure. A third recording, two 

weeks post-experiment, was acquired from half of the mice.  

All statistics are displayed in tables 3.32-3.35. Only adjusted P-values (q-values) from the 

comparisons that yielded a significant result are shown in the tables. Results from the statistical 

tests between the baseline recordings and one day post-experiment recordings are shown in 

tables 3.32 and 3.33 for the Raman and ‘sham’ procedures respectively. Results between the 

baseline recordings and recordings acquired two weeks post-experiment are shown in tables 3.34 

(Raman procedure) and 3.35 (‘sham’ procedure). Overall, there were no consistent gait changes 

observed across the different mice groups at any time point and for any procedure. Changes in a 

small number of gait parameters (either one day or two weeks after the procedure) were 

significant in some of the groups that underwent the active Raman procedure. There was no 

significant difference in locomotor performance for any of the groups that underwent the ‘sham’ 

procedure. 

One month old mdx mice that underwent the Raman experimental procedure exhibited a smaller 

forelimb base of support and a decrease in the duty cycle of the LF/RH paw ratio a day after the 

experimental procedure compared to the baseline recording. The observed ratio difference could 

be due to a decrease in the duty cycle of the left front paw is on the floor, due to an increase in 

the time duty cycle of the right hind paw, or both. These parameters returned to pre-injury levels 

two weeks post-experiment and no other parameters changed significantly at this time point for 

this group.   

The percentage of time spent walking with a diagonal step pattern increased significantly in three 

months old C57Bl/10 mice post-experiment at both time points (one day and two weeks) when 

compared to the baseline recordings.  

Three months old mdx mice spent less time being supported on three paws two weeks post-

experiment.  
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Table 3.32: Comparison between gait parameters determined a week before and a day after the 

Raman experimental procedure using the Catwalk system. Adjusted P-values (q-values) following FDR 

correction (Q=0.05) shown when significant (q<0.05). (d): decreased with time, (i): increased with time. 

 1 month 
old 
SOD1G93A 

1 month 
old 
C57Bl/6 

1 month     
old  
mdx 

1 month 
old 
C57Bl/10 

3 months 
old 
SOD1G93A 

3 months 
old 
C57Bl/6 

3 months 
old  
mdx 

3 months 
old 
C57Bl/10 

Duration 
 

NS NS NS NS NS NS NS NS 

Step pattern # NS NS NS NS NS NS NS NS 

Step pattern Ca NS NS NS NS NS NS NS NS 

Step pattern Cb NS NS NS NS NS NS NS NS 

Step pattern Aa NS NS NS NS NS NS NS NS 

Step pattern Ab NS NS NS NS NS NS NS NS 

Regularity index NS NS NS NS NS NS NS NS 

BOS - front NS NS 0.02 (d) NS NS NS NS NS 

BOS - hind NS NS NS NS NS NS NS NS 

Print position - right NS NS NS NS NS NS NS NS 

Print position - left NS NS NS NS NS NS NS NS 

Support - zero NS NS NS NS NS NS NS NS 

Support - single NS NS NS NS NS NS NS NS 

Support - diagonal NS NS NS NS NS NS NS 0.005(i) 

Support - lateral NS NS NS NS NS NS NS NS 

Support - gridle NS NS NS NS NS NS NS NS 

Support - three NS NS NS NS NS NS NS NS 

Support - four NS NS NS NS NS NS NS NS 

Initial contact - RF/LH NS NS NS NS NS NS NS NS 

Initial contact - LF/RH NS NS NS NS NS NS NS NS 

Max contact - RF/LH NS NS NS NS NS NS NS NS 

Max contact - LF/RH NS NS NS NS NS NS NS NS 

Max area - RF/LH NS NS NS NS NS NS NS NS 

Max area - LF/RH NS NS NS NS NS NS NS NS 

Intensity - RF/LH NS NS NS NS NS NS NS NS 

Intensity - LF/RH NS NS NS NS NS NS NS NS 

Print width - RF/LH NS NS NS NS NS NS NS NS 

Print width - LF/RH NS NS NS NS NS NS NS NS 

Print length - RF/LH NS NS NS NS NS NS NS NS 

Print length - LF/RH NS NS NS NS NS NS NS NS 

Print area - RF/LH NS NS NS NS NS NS NS NS 

Print area - LF/RH NS NS NS NS NS NS NS NS 

Stand time - RF/LH NS NS NS NS NS NS NS NS 

Stand time - LF/RH NS NS NS NS NS NS NS NS 

Swing - RF/LH NS NS NS NS NS NS NS NS 

Swing - LF/RH NS NS NS NS NS NS NS NS 

Stride length - RF/LH NS NS NS NS NS NS NS NS 

Stride length - LF/RH NS NS NS NS NS NS NS NS 

Duty cycle - RF/LH NS NS NS NS NS NS NS NS 

Duty cycle - LF/RH NS NS 0.02 (d) NS NS NS NS NS 

Swing speed - RF/LH NS NS NS NS NS NS NS NS 

Swing speed - LF/RH NS NS NS NS NS NS NS NS 

Stand index - RF/LH NS NS NS NS NS NS NS NS 



 

132 
 

 
Table 3.33: Comparison between gait parameters determined a week before and a day after the 
‘sham’ experimental procedure using the Catwalk system. The t-tests were not carried out for one 
group due to small number of animals. 

Stand index - LF/RH NS NS NS NS NS NS NS NS 

 1 month 
old 
SOD1G93A 

 

1 month 
old 
C57Bl/6 
 

1 month     
old  
mdx 

1 month 
old 
C57Bl/10 

3 months 
old 
SOD1G93A 

3 months 
old 
C57Bl/6 

3 months 
old  
mdx 

3 months 
old 
C57Bl/10 
 

Duration 
 

NS NS NS NS NS NS NS  

Step pattern Ca NS NS NS NS NS NS NS  

Step pattern Cb NS NS NS NS NS NS NS  

Step pattern Aa NS NS NS NS NS NS NS  

Step pattern Ab NS NS NS NS NS NS NS  

Regularity index NS NS NS NS NS NS NS  

BOS - front NS NS NS NS NS NS NS  

BOS - hind NS NS NS NS NS NS NS  

Print position - right NS NS NS NS NS NS NS  

Print position - left NS NS NS NS NS NS NS  

Support - zero NS NS NS NS NS NS NS  

Support - single NS NS NS NS NS NS NS  

Support - diagonal NS NS NS NS NS NS NS  

Support - lateral NS NS NS NS NS NS NS  

Support - gridle NS NS NS NS NS NS NS  

Support - three NS NS NS NS NS NS NS  

Support - four NS NS NS NS NS NS NS  

Initial contact - RF/LH NS NS NS NS NS NS NS  

Initial contact - LF/RH NS NS NS NS NS NS NS  

Max contact - RF/LH NS NS NS NS NS NS NS  

Max contact - LF/RH NS NS NS NS NS NS NS  

Max area - RF/LH NS NS NS NS NS NS NS  

Max area - LF/RH NS NS NS NS NS NS NS  

Intensity - RF/LH NS NS NS NS NS NS NS  

Intensity - LF/RH NS NS NS NS NS NS NS  

Print width - RF/LH NS NS NS NS NS NS NS  

Print width - LF/RH NS NS NS NS NS NS NS  

Print length - RF/LH NS NS NS NS NS NS NS  

Print length - LF/RH NS NS NS NS NS NS NS  

Print area - RF/LH NS NS NS NS NS NS NS  

Print area - LF/RH NS NS NS NS NS NS NS  

Stand time - RF/LH NS NS NS NS NS NS NS  

Stand time - LF/RH NS NS NS NS NS NS NS  

Swing - RF/LH NS NS NS NS NS NS NS  

Swing - LF/RH NS NS NS NS NS NS NS  

Stride length - RF/LH NS NS NS NS NS NS NS  

Stride length - LF/RH NS NS NS NS NS NS NS  

Duty cycle - RF/LH NS NS NS NS NS NS NS  

Duty cycle - LF/RH NS NS NS NS NS NS NS  

Swing speed - RF/LH NS NS NS NS NS NS NS  

Swing speed - LF/RH NS NS NS NS NS NS NS  
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Table 3.34: Comparison between gait parameters determined a week before and two weeks after 
the Raman experimental procedure using the Catwalk system. Adjusted P-values (q-values) 
following FDR correction (Q=0.05) shown when significant (q<0.05). (d): decreased with time, (i): 
increased with time. 

Stand index - RF/LH NS NS NS NS NS NS NS  

Stand index - LF/RH NS NS NS NS NS NS NS  

 
 

1 month 
old 
SOD1G93A 

1 month 
old 
C57Bl/6 

1 month     
old  
mdx 

1 month 
old 
C57Bl/10 

3 months 
old 
SOD1G93A 

3 months 
old 
C57Bl/6 

3 months 
old  
mdx 

3 months 
old 
C57Bl/10 

Duration 
 

NS NS NS NS NS NS NS NS 

Step pattern Ca NS NS NS NS NS NS NS NS 

Step pattern Cb NS NS NS NS NS NS NS NS 

Step pattern Aa NS NS NS NS NS NS NS NS 

Step pattern Ab NS NS NS NS NS NS NS NS 

Regularity index NS NS NS NS NS NS NS NS 

BOS - front NS NS NS NS NS NS NS NS 

BOS - hind NS NS NS NS NS NS NS NS 

Print position - right NS NS NS NS NS NS NS NS 

Print position - left NS NS NS NS NS NS NS NS 

Support - zero NS NS NS NS NS NS NS NS 

Support - single NS NS NS NS NS NS NS NS 

Support - diagonal NS NS NS NS NS NS NS 0.021 (i) 

Support - lateral NS NS NS NS NS NS NS NS 

Support - gridle NS NS NS NS NS NS NS NS 

Support - three NS NS NS NS NS NS 0.004 (d)  NS 

Support - four NS NS NS NS NS NS NS NS 

Initial contact - RF/LH NS NS NS NS NS NS NS NS 

Initial contact - LF/RH NS NS NS NS NS NS NS NS 

Max contact - RF/LH NS NS NS NS NS NS NS NS 

Max contact - LF/RH NS NS NS NS NS NS NS NS 

Max area - RF/LH NS NS NS NS NS NS NS NS 

Max area - LF/RH NS NS NS NS NS NS NS NS 

Intensity - RF/LH NS NS NS NS NS NS NS NS 

Intensity - LF/RH NS NS NS NS NS NS NS NS 

Print width - RF/LH NS NS NS NS NS NS NS NS 

Print width - LF/RH NS NS NS NS NS NS NS NS 

Print length - RF/LH NS NS NS NS NS NS NS NS 

Print length - LF/RH NS NS NS NS NS NS NS NS 

Print area - RF/LH NS NS NS NS NS NS NS NS 

Print area - LF/RH NS NS NS NS NS NS NS NS 

Stand time - RF/LH NS NS NS NS NS NS NS NS 

Stand time - LF/RH NS NS NS NS NS NS NS NS 

Swing - RF/LH NS NS NS NS NS NS NS NS 

Swing - LF/RH NS NS NS NS NS NS NS NS 

Stride length - RF/LH NS NS NS NS NS NS NS NS 

Stride length - LF/RH NS NS NS NS NS NS NS NS 

Duty cycle - RF/LH NS NS NS NS NS NS NS NS 

Duty cycle - LF/RH NS NS NS NS NS NS NS NS 

Swing speed - RF/LH NS NS NS NS NS NS NS NS 
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Table 3.35: Comparison between gait parameters determined a week before and two weeks after 
the ‘sham’ experimental procedure using the Catwalk system. Adjusted P-values (q-values) 
following FDR correction (Q=0.05) shown when significant (q<0.05). 

Swing speed - LF/RH NS NS NS NS NS NS NS NS 

Stand index - RF/LH NS NS NS NS NS NS NS NS 

Stand index - LF/RH NS NS NS NS NS NS NS NS 

 1 month 
old 
SOD1G93A 

 

1 month 
old 
C57Bl/6 

1 month     
old  
mdx 

1 month 
old 
C57Bl/10 

3 months 
old 
SOD1G93A 

3 months 
old 
C57Bl/6 

3 months 
old  
mdx 

3 months 
old 
C57Bl/10 

Duration 
 

  NS NS NS NS NS  

Step pattern Ca   NS NS NS NS NS  

Step pattern Cb   NS NS NS NS NS  

Step pattern Aa   NS NS NS NS NS  

Step pattern Ab   NS NS NS NS NS  

Regularity index   NS NS NS NS NS  

BOS - front   NS NS NS NS NS  

BOS - hind   NS NS NS NS NS  

Print position - right   NS NS NS NS NS  

Print position - left   NS NS NS NS NS  

Support - zero   NS NS NS NS NS  

Support - single   NS NS NS NS NS  

Support - diagonal   NS NS NS NS NS  

Support - lateral   NS NS NS NS NS  

Support - gridle   NS NS NS NS NS  

Support - three   NS NS NS NS NS  

Support - four   NS NS NS NS NS  

Initial contact - RF/LH   NS NS NS NS NS  

Initial contact - LF/RH   NS NS NS NS NS  

Max contact - RF/LH   NS NS NS NS NS  

Max contact - LF/RH   NS NS NS NS NS  

Max area - RF/LH   NS NS NS NS NS  

Max area - LF/RH   NS NS NS NS NS  

Intensity - RF/LH   NS NS NS NS NS  

Intensity - LF/RH   NS NS NS NS NS  

Print width - RF/LH   NS NS NS NS NS  

Print width - LF/RH   NS NS NS NS NS  

Print length - RF/LH   NS NS NS NS NS  

Print length - LF/RH   NS NS NS NS NS  

Print area - RF/LH   NS NS NS NS NS  

Print area - LF/RH   NS NS NS NS NS  

Stand time - RF/LH   NS NS NS NS NS  

Stand time - LF/RH   NS NS NS NS NS  

Swing - RF/LH   NS NS NS NS NS  

Swing - LF/RH   NS NS NS NS NS  

Stride length - RF/LH   NS NS NS NS NS  

Stride length - LF/RH   NS NS NS NS NS  

Duty cycle - RF/LH   NS NS NS NS NS  

Duty cycle - LF/RH   NS NS NS NS NS  
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3.1.2.5 Post-experiment Tissue Damage Assessment 

In order to assess potential tissue damage caused by the in vivo Raman measurements the legs of 

a small number of mice were scanned after the experimental procedure. Optimisation of the 

geometry of the sample and the scanning parameters was necessary in order to be able to 

understand if hyper-intense regions detected in the MRI images could be attributed to the 

experimental procedure and differentiate them from artefacts.  

 

3.1.2.5.1 Optimisation of the Sample Geometry  

Testing scans were initially performed on dissected gastrocnemius muscles after the experimental 

procedure (figure 3.58 (a)). However, it was difficult to orientate the muscle and thus understand 

where the potential damage could be. To try and overcome this problem we next scanned whole 

legs. As shown in figure 3.58 (b) the anatomy of the legs in these scans was easier to understand 

in the axial MRI images and therefore identification of the region of interest was possible (region 

of potential insertion and thus muscle injury). Moreover, by removing the skin from the leg, the 

muscle looked much clearer (particularly in the axial planes) and the localisation of the area of 

interest was further facilitated (data not shown).  

 

 
Figure 3.58: Different sample geometries.  

MRI scan of dissected muscle (a) and axial plane image of the whole leg scan (b). Tibia and fibula 

helped orientation on the axial planes of the whole leg scans and thus identifying the regions of 

interest, shown in yellow circles. 

 

3.1.2.5.2 Optimisation of Scanning Parameters  

Since it was not clear if the procedure caused tissue damage and how significant it might be, 

multiple scans were required in order to optimise the scanning parameters and establish a 

Swing speed - RF/LH   NS NS NS NS NS  

Swing speed - LF/RH   NS NS NS NS NS  

Stand index - RF/LH   NS NS NS NS NS  

Stand index - LF/RH   NS NS NS NS NS  
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protocol. Legs from 5 mice were scanned after the Raman or ‘sham’ experimental procedure using 

T2 weighted spin echo based imaging techniques in order to establish the protocol. Multi-slice 

multi-echo (MSME) and RARE pulse sequences with multiple echo and repetition times were 

tested. Moreover, experimentation with resolution, matrix size and field of view was also 

required. Echo times of the multiple trial scans ranged from 6ms to 240ms whereas repetition 

times ranged from 1000ms to 14500ms. Field of view, spatial resolution and slice thickness varied 

between 2cm*2cm - 3cm*3cm, 0.3mm*0.3mm - 0.078mm*0.078mm, and 1mm-0.3mm 

respectively. Matrix sizes of 128*128 and 256*256 were tried. The legs were also scanned with 

and without fat suppression.  

After the trial scans the protocol comprised an initial tri-plane FLASH sequence low-resolution 

scan for subject localisation, a fast RARE sequence scan for low signal to noise ratio (SNR) 

visualisation of the region of interest and planning of axial high resolution fast spin echo images 

(RARE sequence) and the final high resolution RARE scans. Fat suppression was used in order to 

avoid the intense fat signal. The final protocols are described in the methods section 2.1.5.1 in 

more detail.  

 

3.1.2.3.3 MRI Scans  

Post-mortem MRI scans were performed on gastrocnemius muscles (both legs) of nine mice that 

had undergone the active procedure and 4 mice that had undergone the ‘sham’ procedure for 

tissue damage assessment with the established protocol. To understand and assess the potential 

muscle injury and its evolution, mouse legs were scanned six hours, two days and two weeks post-

experiment.  

In figure 3.59 axial planes of the MRI scans at the three different time points from the mice that 

had undergone the active procedure are shown. In these images, hyper-intense (i.e. bright) 

regions that could be attributed to an inflammatory response caused by the recording can be seen 

in all three scans at six hours, in one scan two days after the experiment but not at two weeks 

(figure 3.59, yellow arrows).  Inflammatory response after the muscle injury causes oedema in the 

tissue. This increases the T2 relaxation time of this tissue area, which therefore would look 

brighter in T2 weighted images than the surrounding tissue. The sites of the hyper-intense regions 

(about 2 mm distance from the edges) and the fact that in some cases they can be seen in both 

heads of the gastrocnemius muscle suggest that they could be attributed to muscle injury from 

the recordings. The area indicated by the yellow arrow in the third six-hours-post-injury scan 

could be a low signal lesion caused by the needle insertion and identified as an air bubble. Air has 

a very short T2 time and thus appears black in T2 images. Around the area with the dark signal 

(‘air bubble’) there is a hyper-intense region that could be due to oedema formation around the 

insertion site. 

Axial planes of the MRI scans from the mice that had undergone the ‘sham’ procedure can be 

seen in figure 3.60 for two post-experiment time points (six hours and two days). There were no 

areas that could be attributed to oedema formation in any of the four scans. 
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Figure 3.59: Axial MRI images at three different time points after the active Raman procedure. 

The yellow arrows indicate the hyper-intense regions that could be attributed to the experimental 

procedure. Such areas can be seen at six hours and two days but not at two weeks. 

 

 
 

Figure 3.60: Axial MRI images at two different time points after the sham Raman procedure. 
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3.1.3 Study 2: Intervention Study in mdx mice  

3.1.3.1 Running Wheel Performance and Creatine Kinase (CK) Measurements 

A single 48-hour epoch of voluntary running exercise was used to exacerbate muscle pathology 

in mdx mice. Two groups of three months old female mdx mice underwent the running wheel 

exercise (see methods section). As can be seen in figure 3.61 the two subgroups had a very similar 

overall performance, with animals in both groups running an average of 6.5km. However, the 

performance of subgroup 1 was more variable than that of subgroup 2. Total distance run by 

different animals in subgroup 1 ranged from 0.4 to 21.2 km, whereas in subgroup 2 ranged from 

2.1 to 10.3. 

Figure 3.61: Running wheel performance of two different groups of three months old mdx mice. The 

different groups (nsubgroup 1=15, subgroup 2 nsubgroup 2=10) had a similar average performance. Mean and 

standard deviation shown. 

 

After the running exercise serum CK activity was measured from mice in subgroup 2 (exercised 

mice) and a group of non-exercised mdx mice as a broad assessment of muscle damage. Creatine 

kinase levels of a group of C57Bl/10 mice was also measured for comparison. The results can be 

seen in figure 3.62. 

Figure 3.62: Serum CK levels in C57Bl/10 (n=10), non-exercised mdx (n=10) and exercised mdx 

(n=10) mice.  

C57Bl/10 mdx exercised mdx
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CK levels were variable for all different groups. As expected C57Bl/10 mice had lower serum CK 

levels from mdx mice and exercised mdx mice had the highest levels. However, CK levels of 

different groups were not significantly different. 

There was no correlation between the distance run and measured CK levels of the exercised mice 

(data not shown). 

 

3.1.3.2 In vivo recordings 

PCA-LDA, PCA-QDA and PLS-DA were used to generate classification models. The performance of 

the models was validated using leave-one-spectrum out (LOOCV), leave-one-mouse-out 

(LOMOCV) and repeated leave-some-mice-out (RLSMOCV) cross-validation (CV). The results for 

the two group models cross-validated using LOSOCV and LOMOCV are presented in section 

3.1.3.2.1. Repeated cross-validation is presented in section 3.1.3.2.2.  

 

3.1.3.2.1 Two group model 

a) Exercised vs. Non-exercised mdx mice 

The model built using the spectra of three months old exercised and non-exercised mdx mice 

aimed to investigate the ability of the technique to monitor more subtle changes in muscle 

pathology as are those induced in mdx muscle by exercising. The predictive capability of the 

models using different analysis techniques and CV methods can be seen in Table 3.36. The PCA 

related models yielded much better specificity than sensitivity values when distinguishing 

exercised and non-exercised three months old mdx mice. This indicates that the models were able 

to identify more accurately the non-exercised mdx mice. The PLS-DA model achieved more 

balanced sensitivity and specificity values. Using LOMOCV all the indices of the PCA related 

models decreased considerably. The PLS-DA models achieved similar accuracy with the different 

CV methods, with an increased sensitivity and decreased specificity when LOMOCV was used. The 

PLS-DA models were considered to have demonstrated the best performance due to the more 

balanced sensitivity and specificity indices and the smallest change when different CV methods 

were used. 

The ROC curves for the different techniques and CV methods can be seen in figure 3.63. The 

AUROC were 0.70 or above for all the models generated using PCA when LOSOCV was used but 

dropped to 0.66 (LDA) and 0.62 (QDA) for LOMOCV. Both PLS-DA models yielded higher AUC 

values for both CV methods. 
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Table 3.36: Two group PCA-LDA model classification model performance evaluated using different 

CV methods for the exercised and non-exercised mdx mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

61.4% 81.4% 71.6% 

Leave-one-mouse-

out CV 

57.8% 72.9% 65.5% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

61.4% 77.9% 69.8% 

Leave-one-mouse-

out CV 

54.4% 72.2% 62.9% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

71.9% 71.2% 71.6% 

Leave-one-mouse-

out CV 

73.7% 66.1% 69.9 

 

 

 

Figure 3.63: ROC curves for the cross validated classification models for the exercised and non-

exercised mdx mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-

out CV are shown. The area under the ROC curve (AUC) for the different models is also displayed.  
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3.1.3.2.2 Repeated cross-validation 

a) Exercised vs. Non-exercised mdx mice 

The classification performance of the RLSMOCV PCA-LDA, PCA-QDA and PLS-DA models for 

distinguishing between three months exercised and non-exercised mice can be seen in Table 3.37. 

The PLS-DA model demonstrated the highest sensitivity and accuracy values and was therefore 

considered to have achieved the best performance.  

Table 3.37: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

months old exercised and non-exercised mice. The mean sensitivity, specificity and accuracy values 

from the 100 repetitions are shown. Standard deviation and coefficients of variability are also 

displayed. CoV: Coefficient of Variability. 

Exercised/Non 

exercised mdx  

mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard  

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 60.1% 

(+/-2.8, CoV: 4.7%) 

65.8% 

(+/-3.4, CoV: 5.2%) 

62.5%  

(+/-2.0, CoV: 3.2%) 

PCA-QDA 55.5% 

(+/-3.1, CoV: 5.6%) 

72.0% 

(+/-2.9, CoV: 4.0%) 

63.9% 

(+/-2.1, CoV: 3.3%) 

PLS-DA 71.3 % 

(+/-2.0, CoV: 2.8%) 

64.8%  

(+/-3.3, CoV: 5.1%) 

68.4% 

(+/-1.8, CoV: 2.6%) 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model for 

the three months old mdx mice can be seen in figure 3.64. The PCA-LDA and QDA ROC curves had 

a mean AUC of 0.7 and 0.67 respectively whereas the PLS-DA curves demonstrated a mean AUC 

of 0.71. 
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Figure 3.64: ROC curves generated from repeated cross-validation of exercised and non-exercised 

mdx mice. ROC curves are shown for each of the hundred repetitions during cross-validation. The mean 

ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard deviation 

also displayed. 
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3.1.3.2.2 Basis of classification 

3.1.3.2.2.1 Mean and Difference spectra  

The mean and difference spectra of the exercised and non-exercised mdx mice were plotted to 

visually examine the most prominent peaks present in the spectra of the different groups. In 

figure 3.65  the mean spectra of each group (+/-) one standard deviation are shown.  

Figure 3.65: Mean Raman spectra for exercised and non-exercised mdx mice groups. 

The mean spectra for exercised and non-exercised mdx mice are shown with the dotted lines. The 

shaded areas represent (+/-) one standard deviation from the mean spectrum. The spectra have been 

offset for clarity. 

 

Figure 3.66 shows the mean and difference spectra of the two groups. The mean spectra of the 

different groups were very similar, with the same prominent peaks being present in the spectra 

of both groups. A small number of biochemically reliable peaks could be identified in the mean 

spectra and are summarised in table 3.38.  
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Figure 3.66: Mean and difference spectra of the exercised and non-exercised mdx mice. 

a) Mean spectra for one and month old mdx and C57Bl/10 mice and b) difference spectrum. Prominent 

peaks are indicated in the mean spectrum.  

 

Table 3.38: Prominent Raman peaks in mean spectra of the exercised and non-exercised mdx mice 

and tentative peak assignments. 

Wavenumber (cm-1) Vibrational  

Modes 

Assignment 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1444 CH2 bending Proteins, Lipids 

1654 C=O stretching, C=C stretch Amide I (proteins), Lipids 

 

 

Background subtraction was used to aid identification of more spectral features present in the 

spectra. The background subtracted mean spectra of the different groups can be seen in figure 

3.67. A larger number of peaks were identifiable in these mean spectra.  
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Figure 3.67: Background subtracted mean spectra of exercised and non-exercised mdx mice 

groups. The spectra have been offset for clarity and the most prominent peaks have been 

highlighted. 

Additional shoulder peaks can be seed around 950 cm-1, 970 cm-1, 1030 cm-1, 1550 cm-1, 1575 cm-

1 and 1610 cm-1. Tentative peak assignments for the peaks present in the background subtracted 

mean spectra are presented in table 3.39.  
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Table 3.39: Prominent Raman peaks in background subtracted spectra and tentative peak 

assignments. Amino acids are specified when the peaks are largely associated with them in the 

literature. 

Wavenumber (cm-1) Vibrational  

Modes 

Assignment 

935 C-C stretching Proteins 

950  Proteins (Valine, Proline, 

Phenylalanine) 

975 CH2 deformation Proteins, Nucleic Acids 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1030 C-H bending Proteins (Phenylalanine, 

Proline) 

1044  Proteins  

1125 C-C stretching, C-N stretching Proteins, Lipid 

1170 C-H bending Proteins (Tyrosine, 

Phenylalanine) 

1205 v(C-C6H5) Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 

1260 C-N stretching Amide III (proteins), Lipids 

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging  Proteins, Nucleic Acids 

1444 CH2 bending Proteins, Lipids 

1550 ν(C-C) Proteins (Tryptohan) 

1570 Ring breathing modes of the 

DNA/RNA bases 

Nucleic Acids 

1615 C=C stretching Proteins (Tyrosine) 

1654 C=O stretching, C=C stretching Amide I (proteins), Lipids 

 

3.1.3.2.2.2 Multivariate Analysis 

As can be seen in the mean and difference figures in the previous section the most prominent 

peaks were present in the mean spectra of all the different groups and clear visual differences 

were not easily apparent. Hence, multivariate techniques were employed in order to utilise and 

further elucidate the biochemical features present in the spectra. The PCA loadings and the linear 

discriminant function (LDF), as well as the PLS weights, were plotted in order to illustrate the 

important peaks for spectral classification.  
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a) Exercised vs. Non-exercised mdx mice 

Using Student’s t-tests followed by fdr correction PC3 and PC6 and PC9 scores were found to be 

significantly different between the exercised and non-exercised mice. PC3 and PC6 scores were 

found to have the largest difference between the exercised and non-exercised mice (qPC3:0.004 

qPC6: 0.004 and qPC9: 0.02). PC3 and PC6 loading plots can be seen in figure 3.68. The spectra of 

the two groups were not clearly separated around zero in any of the score histograms. Thus, only 

the PCA loading plots are shown in this section.  

 

Figure 3.68: PC3 and PC6 and loading plots for the exercised and non-exercised mdx mice. 

The LDA histogram and LDF plot using PC3, PC6 and PC9 as input variables can be seen in figure 

3.69.  

Figure 3.69: LD1 score histogram and LDF plot for the exercised and non-exercised mdx mice. 

In the PLS-DA analysis the model generated using the first 2 components demonstrated the 

highest accuracy value. The spectra were not clearly separated around zero in any of the score 

histograms. The weight plots of the first two components can be seen in figure 3.70. 
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Figure 3.70: PLS component 1 and 2 weight plots for the exercised and non-exercised mdx mice. 

 
Despite the noise present in the loading plots, biochemically relevant peaks could be identified. 

These peaks are summarised in table 3.40.  

Table 3.40: Summary table of the peaks associated with the exercised and non-exercised mdx mice 

and tentative peak assignments.  

 

 

 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

935/940 Proteins     

970 Proteins, Nucleic Acids     

1000 Proteins (Phenylalanine)     

1045 Proteins (Phenylalanine, 

Proline) 
    

1130 Proteins, Lipids     

1200 Proteins     

1300 Amide III (proteins), Lipids     

1335 Proteins, Nucleic Acids     

1378 Proteins, Nucleic Acids     

1445 Proteins, Lipids     

1514 Nucleic Acids     

1655 Amide I (proteins), Lipids     
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3.1.3.3 Ex vivo recordings 

Similar to the in vivo recordings, PCA-LDA, PCA-QDA and PLS-DA were used to build classification 

models using the spectra recorded from different muscles (quadriceps, tibialis anterior, 

gastrocnemius, diaphragm) ex vivo. Leave one-spectrum-out and leave one-mouse-out cross-

validations were employed to assess the performance of the models. The results are presented in 

the following sections. 

3.1.3.3.1 Two group models 

a) Quadriceps 

The predictive capability of all the models generated using spectra acquired from quadriceps of 

exercised and non-exercised mice can be seen in table 3.41 and the respective ROC curves can be 

seen in figure 3.71.  

Using LOOCV all models achieved much higher specificity than sensitivity, indicating that spectra 

acquired from non-exercised quadriceps were classified correctly more easily. Using LOMOCV, 

there was a big drop in specificity for all models leading thus to much lower accuracy values. PCA-

LDA achieved the highest accuracy for LOOCV and PCA-QDA for LOMOCV. The AUROC was above 

0.7 for all model when LOMOCV was employed but dropped significantly when LOOCV was used. 

Table 3.41: Two group PCA-LDA model classification model performance evaluated using different 

CV methods for exercised and non-exercised quadriceps. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

53.3% 85.7% 71.3% 

Leave-one-mouse-

out CV 

48.9% 64.3% 57.4% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

46.7% 87.5% 69.3% 

Leave-one-mouse-

out CV 

51.1% 69.6% 61.4% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

51.1% 73.2% 63.4% 

Leave-one-mouse-

out CV 

48.9% 48.2% 48.5% 
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Figure 3.71: ROC curves for the cross validated classification models for exercised and non-exercised 

quadriceps. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out CV are 

shown. The area under the ROC curve (AUC) for the different models is also displayed.  

 

b) Tibialis Anterior (TA) 

There were no PC scores significantly different between spectra acquired from TAs of exercised 

and non-exercised mice. Hence, LDA and QDA could not be performed. The predictive capability 

of the of the PLS-DA model using different CV methods can be seen in table 3.42 and the 

respective ROC curves can be seen in figure 3.72.  

As can be seen from the accuracy values achieved with both CV methods and from the ROC curves 

the PLS-DA models were not able to discriminate between exercised and non-exercised mice 

using spectra acquired from TA. Using LOMOCV the sensitivity, specificity and accuracy values 

dropped significantly indicating that the technique did not detect differences in TA muscle that 

would allow it to correctly classify spectra in the different groups. 

Table 3.42: Two group PLS-DA model classification model performance evaluated using different CV 

methods for exercised and non-exercised tibialis anterior. 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

29.3% 40.9% 35.3% 

Leave-one-mouse-

out CV 

17.1% 31.8% 24.7% 
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Figure 3.72: ROC curves for the cross validated PLS-DA classification models for exercised and non-

exercised tibialis anterior. ROC curves for all models using leave-one-spectrum-out and leave-one-

mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 

displayed.  

 

c) Diaphragm 

Similarly, when using spectra acquired from the diaphragm of exercised and non-exercised mice 

there were no PC scores significantly different between the two groups. Hence, LDA and QDA 

could not be performed. The predictive capability of the of the PLS-DA model using different CV 

methods can be seen in table 3.43 and the respective ROC curves can be seen in figure 3.73.  

The sensitivity, specificity and accuracy values were better compared to those achieved when 

using TA spectra. The AUROC remained unchanged and the accuracy of the model slightly 

increased when LOMOCV was used. However, the performance achieved with both CV 

approaches did not allow for discrimination between exercised and non-exercised muscle. 

Table 3.43: Two group PLS-DA model classification model performance evaluated using different CV 

methods for exercised and non-exercised diaphragm. 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

44.8% 51.6% 48.3% 

Leave-one-mouse-

out CV 

48.3% 54.8% 51.7% 
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Figure 3.73: ROC curves for the cross validated PLS-DA classification models for exercised and non-

exercised diaphragm. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-

out CV are shown. The area under the ROC curve (AUC) for the different models is also displayed.  

 

d) Gastrocnemius 

The reliability of this classification performance is limited by the small numbers of samples in each 

group. The predictive capability of the models using different analysis techniques and CV methods 

can be seen in table 3.44 and the ROC curves can be seen in figure 3.74. Using LOMOCV the 

performance of the PCA-LDA model remained unchanged and there was a small drop in the 

sensitivity of the PCA-QDA model, with the accuracy of all models and CV approaches remaining 

above 80% and the AUROC being above 0.85. The ability of the PLS-DA model to correctly classify 

spectra was compromised considerably when LOMOCV was employed, as indicated by the big 

drop in accuracy and AUROC. The PCA-QDA model was demonstrated the best performance for 

LOMOCV.  
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Table 3.44: Two group PCA-LDA model classification model performance evaluated using different 

CV methods for exercised and non-exercised gastrocnemius. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

68.4% 95.5% 82.9% 

Leave-one-mouse-

out CV 

68.4% 95.5% 82.9% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

78.9% 95.5% 87.8% 

Leave-one-mouse-

out CV 

73.7% 95.5% 85.4% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

100% 86.4% 92.7% 

Leave-one-mouse-

out CV 

68.4% 50% 58.5% 

 

 

 

Figure 3.74: ROC curves for the cross validated classification models for exercised and non-exercised 

gastrocnemius. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out CV 

are shown. The area under the ROC curve (AUC) for the different models is also displayed.  
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3.1.3.3.2 Different muscles comparison 

a) Limb muscles vs. Diaphragm 

The spectra acquired ex vivo from quadriceps, TA and gastrocnemius muscles were placed 

together in the limb muscles group. As can be seen in table 3.45, using LOMOCV decreased the 

ability of all models to correctly classify spectra due to a drop in sensitivity in the PCA related 

models and due to a drop in specificity in the PLS-DA model. The PLS-DA models yielded better 

sensitivity than specificity values. Using LOMOCV the PCA-LDA model was considered to have 

achieved the best performance as it achieved high accuracy value (93.5%) with the most balanced 

sensitivity and specificity values (both above 80%).   

Table 3.45: Two group PCA-LDA model classification performance evaluated using different CV 

methods for limb muscles and diaphragm. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

100% 97.5% 98.1% 

Leave-one-mouse-

out CV 

80.6% 96.7% 93.5% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

93.5% 99.2% 98% 

Leave-one-mouse-

out CV 

77.4% 97.5% 93.5% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

100% 83.6% 86.9% 

Leave-one-mouse-

out CV 

100% 74.6% 79.7% 
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3.1.4 Study 3: Preclinical MND Study 

3.1.4.1 Classification Models Performance 

PCA-LDA, PCA-QDA and PLS-DA were used to generate classification models. The performance of 

the models was validated using leave-one-spectrum out (LOOCV), leave-one-mouse-out 

(LOMOCV) and repeated leave-some-mice-out (RLSMOCV) cross-validation (CV). The results for 

the different two group models cross-validated using LOSOCV and LOMOCV are presented in 

section 3.6.1.1. Repeated cross-validation is presented in section 3.6.1.2.  

3.1.4.1.1 Two Group Models 

a) Three months old TDP-43 vs. TDP-43Q331K mice 

The model generated using the spectra from three months old TDP-43 and TDP-43Q331K aimed to 

explore the ability of the technique to detect muscle pathology induced by the Q331K mutation 

in the TDP-43 gene at an established stage. The predictive capability of the models using different 

analysis and CV methods for the three months old TDP-43 mice can be seen in Table 3.46. The 

ROC curves, comparing the three different approaches for LOOCV and LOMOCV can be seen in 

figure 3.75.  

 

Table 3.46: Two group PCA-LDA, PCA-QDA and PLS-DA model classification performance evaluated 
using different CV methods for the three months old TDP-43 and TDP-43Q331K mice. 
PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

84.4% 75% 79.9% 

Leave-one-mouse-

out CV 

84.4% 71.2% 78.1% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

81.3% 75% 78.2% 

Leave-one-mouse-

out CV 

78.1% 71.1% 75% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

93.8% 81.3% 87.5% 

Leave-one-mouse-

out CV 

81.3% 78.1% 79.7% 

 



 

156 
 

Using LOMOCV the ability to correctly classify spectra decreased considerably for the PLS-DA 

model and moderately for the PCA-QDA model. The specificity of the PCA-LDA model also 

decreased when LOMOCV was used leading to a small drop in the accuracy. The area under the 

ROC curves also decreased for LOMOCV. However, the AUC values did not fall below 0.89. In 

general, the models attained better sensitivity than specificity values with most sensitivity values 

(for different methods and CVs) being above 80%.   

Despite better sensitivity values achieved with the PCA related models when LOMO cross-

validation was used, the PLS-DA model achieved more balanced sensitivity and specificity values 

and higher accuracy. Hence, for both CV approaches the PLS-DA model performed better than 

the PCA related models.  

 

 

Figure 3.75: ROC curves for the cross validated classification models for the three months old TDP-

43 and TDP-43Q331K mice. ROC curves for all models using leave-one-spectrum-out and leave-one-

mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 

displayed.  

 

b) Three months old SOD1G93A vs. TDP-43Q331K mice 

The model generated using the spectra from three months old SOD1G93A and TDP-43Q331K mice 

aimed to explore the ability of the technique to detect MND related muscle pathology induced by 

mutations in different genes at a time when both models are manifesting a motor phenotype. The 

predictive capability of the models generated using different techniques and CV methods for the 

three months old mdx mice can be seen in Table 3.47.  

Using LOMOCV the ability of both PCA related models to correctly classify spectra decreased. For 

both models there a drop in both sensitivity and specificity values was observed. The PLS-DA 

model demonstrated a slightly increased accuracy, due to an increase in specificity and a decrease 

in sensitivity, when using LOMOCV. The PCA-LDA model had the most balanced sensitivity and 

specificity values and the highest accuracy when LOOCV was used. PLS-DA demonstrated the 

highest accuracy for LOMOCV, with a much higher sensitivity than specificity. 
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Table 3.47: Two group PCA-LDA, PCA-QDA and PLS-DA model classification performance evaluated 

using different CV methods for the three months old SOD1G93A and TDP-43Q331K mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

79.3% 81.3% 80.3% 

Leave-one-mouse-

out CV 

75.9% 75.0% 75.4% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

75.9% 81.3% 78.7% 

Leave-one-mouse-

out CV 

72.4% 75.0% 73.8% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

96.6% 62.5% 78.7% 

Leave-one-mouse-

out CV 

89.7% 70.0% 79.8% 

 

The ROC curves for the different techniques and CV methods can be seen in figure 3.76. The 

AUROC was equal or above 0.77 for all the models generated using PCA. The PLS-DA model 

demonstrated the highest AUROC for both CV methods. 

 

Figure 3.76: ROC curves for the cross validated classification models for the three months old 

SOD1G93A and TDP-43Q331K mice. ROC curves for all models using leave-one-spectrum-out and leave-

one-mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 

displayed. 
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3.1.4.1.2 Repeated Cross-Validation  

a) TDP-43 vs. TDP-43Q331K mice 

Table 3.48 displays the classification performance of the cross-validated PCA-LDA, PCA-QDA and 

PLS-DA models for the three months old TDP-43 mice. The mean sensitivity, specificity and 

accuracy values (+/-) one standard deviation and the coefficients of variability (CoV) are shown. 

The PCA-QDA model achieved the best performance with an accuracy of 76.3%. The PLS-DA model 

had the larger coefficients of variability for all three indices and the PCA-LDA model had the 

smallest ones. For all three approaches RLSMOCV yielded a similar performance with LOMOCV.  

 

Table 3.48: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

months old TDP-43 and TDP-43Q331K mice. The mean sensitivity, specificity and accuracy values from 

the 100 repetitions are shown. Standard deviation and coefficients of variability are also displayed. 

CoV: Coefficient of Variability. 

Three months old 

TDP-43/TDP-43Q331K 

mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 84.9% 

(+/- 2.2, CoV:2.6%) 

73.4% 

(+/- 1.7, CoV:2.3%) 

79.2% 

(+/- 1.5, CoV:1.9%) 

PCA-QDA 82.4% 

(+/- 2.1, CoV:2.5%) 

76.1% 

(+/- 3.5, CoV:4.6%) 

79.3% 

(+/- 2.1, CoV:2.6%) 

PLS-DA 80.8% 

(+/- 5.4, CoV:6.7%) 

76.8% 

(+/- 3.8, CoV:4.9%) 

79.0% 

(+/- 3.4, CoV:4.3%) 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model can 

be seen in figure 3.77. The mean AUC value for each model (+/-) one standard deviation is also 

shown. The PCA-LDA and QDA ROC curves had mean AUCs of 0.92 and 0.91 respectively whereas 

the PLS-DA ROC curve had a mean AUC of 0.9. 
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Figure 3.77: ROC curves generated from repeated cross-validation of three months old TDP-43 and 

TDP-43Q331K mice models. ROC curves are shown for each of the hundred repetitions during cross-

validation. The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) 

one standard deviation also displayed.  

b) SOD1G93A  vs. TDP-43Q331K mice 

Table 3.49 displays the classification performance of the cross-validated PCA-LDA, PCA-QDA and 

PLS-DA models for the three months old SOD1G93A and TDP-43Q331Kmice. All the models attained 

similar accuracy values, with the LDA model having a more balanced sensitivity and specificity. 

Hence, the PCA-LDA model was considered to have demonstrated the best performance. 
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Table 3.49: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

months old SODG93A and TDP-43Q331K mice. The mean sensitivity, specificity and accuracy values from 

the 100 repetitions are shown. Standard deviation and coefficients of variability are also displayed. 

CoV: Coefficient of Variability. 

Three months old 

SOD1G93A/ TDP-

43Q331K mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 77.7% 

(+/-3.5, CoV:4.5%) 

77.2%  

(+/-3.7, CoV:4.8%) 

77.5% 

 (+/-2.7, CoV:3.5%) 

PCA-QDA 76.2% 

 (+/-3.3, CoV:6.5%) 

76.6% 

(+/-2.7, CoV:4.9%) 

76.4% 

(+/-1.9, CoV:4.2%) 

PLS-DA 92.3% 

(+/-3.1, CoV:3.4%) 

67.3%  

(+/-2.6, CoV:3.9%) 

78.1% 

(+/-1.8, CoV:2.3%) 

 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model for 

the three months old SOD1G93A and TDP-43Q331K mice can be seen in figure 3.78. The PCA-LDA and 

QDA ROC curves had a mean AUC of 0.84 and 0.83 respectively whereas the PLS-DA curves 

demonstrated a mean AUC of 0.89. 
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Figure 3.78: ROC curves generated from repeated cross-validation of three months old SODG93A and 

TDP-43Q331K mice. ROC curves are shown for each of the hundred repetitions during cross-validation. 

The mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard 

deviation also displayed.  
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3.1.4.2 Basis of classification 

3.1.4.2.1 Mean and difference spectra 

The mean and difference spectra of the different mice groups were plotted to visually examine 

the most prominent peaks and to identify the major differences between the groups of each 

model. In figure 3.79 the mean spectra of each group (+/-) one standard deviation are shown.  

 

 

Figure 3.79: Mean Raman spectra for SOD1G93A, TDP-43 and TDP-43Q331K mice groups. 

The mean spectra for three months old SOD1G93A, TDP-43 and TDP-43Q331K mice are shown with the 

dotted lines. The shaded areas represent (+/-) one standard deviation from the mean spectrum. The 

spectra have been offset for clarity. 

 

 

Figures 3.80 and 3.81 show the overlaid mean and difference spectra of the combinations of 

groups used to build the two group models for this study. The mean spectra of the different 

groups are very similar, with the same prominent peaks being present in all of them. 

Biochemically reliable peaks could be identified despite the fluorescent background present in 

the spectra.  
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Figure 3.80: Mean and difference spectra of three months old TDP-43 and TDP-43Q331K mice. 

a) Overlaid mean spectra for three months old TDP-43 and TDP-43Q331K mice and b) difference 

spectrum. Prominent peaks that differ between the two groups are indicated in both graphs.  

 

As can be seen in the difference spectrum above the peaks located around 1000 cm-1, 1045 cm-1 

and 1446 cm-1 were found to be increased in the spectra acquired from the diseased group. 

 

 

Figure 3.81: Mean and difference spectra of three months old SOD1G93A and TDP-43Q331K mice. 

a) Mean spectra for three months old SOD1G93A and TDP-43Q331K mice and b) difference spectrum. 

Prominent peaks that differ between the two groups are indicated in both graphs.  

 

The peaks located around 1000 cm-1, 1335 cm-1, 1445 cm-1, 1655 cm-1 were increased in the 

spectra of the TDP-43Q331K when compared to the spectra of the SOD1G93A mice.  

 

The peaks that were identified in the mean and difference spectra of the mice groups used in this 

study and their tentative peak assignments are summarised in Table 3.50. 
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Table 3.50: Prominent Raman peaks in mean and difference spectra of the TDP-43, TDP-43Q331k and 

SOD1G93A mice and tentative peak assignments.  

Wavenumber (cm-1) Vibrational  

Modes 

Assignment 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1045  Proteins  

1338 C-N stretching Proteins, Nucleic Acids 

1446 CH2 bending, CH2CH3 bending Proteins, Lipids 

1655 C=O stretching, C=C stretch Amide I (proteins), Lipids 

 

 

Background subtraction was used to visually explore the spectral features present in the spectra 

further. The background subtracted mean spectra of the different groups can be seen in figure 

3.82. A larger number of biochemically relevant peaks were identifiable in these mean spectra.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.82: Background subtracted mean spectra of SOD1G93A, TDP-43 and TDP-43Q331K mice. The 

spectra have been offset for clarity and the most prominent peaks have been highlighted. 

Additional shoulder peaks can be seed around 975 cm-1 and 1550 cm-1. The spectral features of 

the mean spectra varied in the spectral region between 1230 cm-1 and 1340 cm-1, with the three 

peaks that were previously identified in this region (studies 1 and 2) being more clearly discernible 

in spectra of the TDP-43 mice. Tentative peak assignments for the peaks present in the 

background subtracted mean spectra are presented in table 3.51.  
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Table 3.51: Prominent Raman peaks in background subtracted spectra and tentative peak 

assignments. Amino acids are specified when the peaks are largely associated with them in the 

literature. 

Wavenumber (cm-1) Vibrational  

Modes 

Assignment 

935 C-C stretching Proteins 

975 CH2 deformation Proteins, Nucleic Acids 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1074 C-C stretching, C-O stretching Proteins (Tryptophan), Lipids 

1121 C-C stretching, C-N stretching Proteins, Lipid 

1170 C-H bending Proteins (Tyrosine, 

Phenylalanine) 

1205 v(C-C6H5) Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 

1267 C-N stretching Amide III (proteins), Lipids 

1305 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging  Proteins, Nucleic Acids 

1446 CH2 bending, CH2CH3 bending Proteins, Lipids 

1550 ν(C-C) Proteins (Tryptohan) 

1654 C=O stretching, C=C stretching Amide I (proteins), Lipids 

 

 

3.1.4.2.2 Multivariate Analysis 

Multivariate techniques were employed in order to utilise and further elucidate the biochemical 

features present in the spectra. The PCA loadings and the linear discriminant function (LDF) as 

well as the PLS weights were plotted in order to illustrate the important peaks for spectral 

classification.  

Assigning specific peaks to one of the two groups used in each model was not trivial since the two 

groups were not always clearly separated around zero in the corresponding score histograms or 

score plots. Additionally, the peaks in the loadings or weight plots were most often not centred 

around zero probably due to the presence of background in the spectra. Hence, a combination of 

the information found in the difference spectra and the loading/weight plots was used in an 

attempt to better understand the differences present in the spectra from the different groups. 

The score histograms and loading/weight plots in which the separation of the spectra from the 

different groups was best for each model are shown in the following sections. The score 
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histograms and loading/weight plots for the rest of the PCs and components used to build each 

model are shown in Appendix C. Tables 3.52 and 3.53 summarise and compare the most 

prominent peaks found in all the loading/weight plots (from all the components used for each 

model) and the ones found in the difference spectra of each two-group model.   

 

a) Three months old TDP-43 vs. TDP-43Q331K mice 

Using Student’s t-tests followed by fdr correction PC3 and PC6 scores were found to be 

significantly different between the three months old TDP-43/TDP-43Q331K mice. PC1 scores were 

found to have the largest difference between the two groups (qPC3= 9.7e-07 , qPC6=0.004). The score 

histogram and loading plot of PC3 can be seen in figure 3.83. The histogram and loading plot of 

PC6 can be seen in Appendix C. 

Figure 3.83: PC3 score histogram and loading plot for the three months old TDP-43 and TDP-43Q331K 

mice. 

  

The results of the LDA analysis using PC3 and PC6 as input variables can be seen in figure 3.84.  

 

Figure 3.84: LD1 score histogram and LDF plot for the three months old TDP-43 and TDP-43Q331K mice. 
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The most prominent bands that were identified in the previous section could also be seen in PC 

and LDA loading plots demonstrating that differences in muscle’s biochemical composition were 

important for discrimination. There was an overlap in the score of the different groups in both PC 

and LDA score histograms, which made associating the prominent peaks present in the respective 

loading plots with one of the two groups more difficult. In both loading plots the spectra of the 

TDP-43Q331K mice seemed to have a larger contribution in the negative scores. Thus, the negative 

peaks (1000 cm-1, 1045 cm-1, 1076 cm-1, 1200 cm-1, 1446 cm-1) were considered to be increased in 

the spectra of the diseased mice whereas the positive peaks located around 970 cm-1, 1300 cm-1, 

1335 cm-1  and 1376 cm-1 were considered to be increased in the spectra of the TDP-43 mice. 

In the PLS-DA analysis the model generated using the first 4 components demonstrated the 

highest accuracy value. The spectra were not clearly separated around zero in any of the score 

histograms. Similar peaks as the ones from the PCA-LDA analysis were found in the PLS weight 

plots (Appendix C, Table 3) demonstrating that discrimination between the different groups using 

the different models was done on a similar biomolecular basis.  

The most prominent biochemically relevant peaks found in the loading/weight plots for all the 

PCs and PLS components and in the difference spectra and their tentative peak assignments are 

summarised in table 3.52. 

Table 3.52: Summary table of the peaks associated with the three months old TDP-43/TDP-43Q331K 

mice and tentative peak assignments.  

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

920 Proteins (Proline)     

970 Proteins, Nucleic Acids     

1000 Proteins (Phenylalanine)     

1045 Proteins (Phenylalanine, 

Proline) 
    

1076 Lipids, Phospholipids     

1200 Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 
    

1300 Amide III (proteins), Lipids     

1335 Proteins, Nucleic Acids     

1376 Proteins, Nucleic Acids     

1445 Proteins, Lipids     

1655 Amide I (proteins), Lipids     
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b) Three months old SOD1G93A vs. TDP-43Q331K mice 

PC1, PC2 and PC5 scores were found to be significantly different between three months old 

SOD1G93A and TDP-43Q331K. PC1 scores were found to have the largest difference between the two 

groups (qPC1= 4.4e-06, qPC2=0.04, qPC5=0.04). The score histogram and loading plot of PC1 can be 

seen in figure 3.85. The loading plot of PC2 and PC5 can be found in Appendix C. The LD1 score 

histogram and LDF generated using PC1, PC2 and PC5 as inputs can be seen in figure 3.86. 

 

Figure 3.85: PC1 score histogram and loading plot for the three months old SOD1G93A and TDP-43Q331K 

mice. 

 

  

Figure 3.86: LD1 score histogram and LDF plot for the three months old SOD1G93A and TDP-43Q331K 

mice. 
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In the PLS-DA analysis using the first three components generated the model with the highest 

accuracy value. The score and weight plot of the first component can be seen in figure 3.87. 

weight plots of the rest of the components can be seen in Appendix C. 

 

Figure 3.87: Component 1 score histogram and weight plot for the three months old SOD1G93A and 

TDP-43Q331K mice. 

 

Despite some background present in PC1 and component one loading plots  biochemically reliable 

peaks were identifiable in both loading plots. The scores of the TDP-43Q331K mice contributed more 

in the positive values of the PC1 loading plot and in the negative values of the component one 

weight plot. Hence, the peaks in the loading/weight plots around 1000 cm-1, 1265 cm-1, 1300 cm-

1, 1335 cm-1, 1440 cm-1 and 1655 cm-1 were considered to have increased in the spectra of this 

group. This was consistent with the findings of the difference spectrum since most of these peaks 

were also present in that spectrum and were shown to have decreased for the SOD1G93A mice. 

The LDA score histogram plot showed that positive values corresponded to the spectra of the 

TDP-43Q331K mice whereas negative values correspond to the spectra of the SOD1G93A mice. The 

LDA loading plot consisted of similar peaks with PCA and PLS loading plots. However, the peak 

around 1446 cm-1 was split into two peaks, a negative one around 1434 cm-1 and a positive one 

around 1460 cm-1. The most prominent peaks in the loading/weight plots of the models and in 

the difference spectra and their tentative peak assignments are summarised in table 3.53. 
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Table 3.53: Summary table of the peaks associated with the three months old SOD1G93A and TDP-

43Q331K mice and tentative peak assignments.  

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

935/940 Proteins     

1000 Proteins (Phenylalanine)     

1065/1070 Lipids, Phospholipids     

1121 Proteins     

1205 Proteins (Phenylalanine, 

Tyrosine, 

Hydroxyproline) 

    

1265 Amide III (proteins), 

Lipids 
    

1300 Amide III (proteins), 

Lipids 
    

1335 Proteins, Nucleic Acids     

1435 Proteins, Lipids     

1445 Proteins, Lipids     

1460 Proteins, Lipids     

1653 Amide I (Proteins), Lipids     
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3.1.5 Study 4: Male mdx Mice Study 

3.1.5.1 Classification performance 

PCA-LDA, PCA-QDA and PLS-DA were used to generate classification models. The performance of 

the models was validated using leave-one-spectrum out (LOOCV), leave-one-mouse-out 

(LOMOCV) and repeated leave-some-mice-out (RLSMOCV) cross-validation (CV). The results for 

the two group models cross-validated using LOSOCV and LOMOCV are presented in section 

3.1.5.1.1. Repeated cross-validation is presented in section 3.1.5.1.2.  

3.1.5.1.1 Two group models 

a) One month old male mdx vs. C57Bl/10 mice 

The predictive capability of the models using different analysis techniques and CV methods can 

be seen in Table 3.54. Using LOMOCV the specificity of both PCA related models has decreased 

leading to a drop in accuracy from 75% to 71.5% in both cases. The PLS-DA model achieved 

sensitivity and specificity values of 78.6% for LOOCV. The LOMO cross-validated PLS-DA model 

demonstrated lower sensitivity leading to an accuracy of 73.2%. The PLS-DA model achieved the 

best accuracy for both CV methods. The PCA related models, however, demonstrated higher 

sensitivity values with a similar accuracy when LOMOCV was used and might therefore be the 

models of choice where detecting the pathology is more important than the overall number of 

correctly classified spectra.  

Table 3.54: Two group PCA-LDA model classification model performance evaluated using different 

CV methods for the one month old male mdx and C57Bl/10 mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

75.0% 75.0% 75.0% 

Leave-one-mouse-

out CV 

75.0% 68.0% 71.5% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

78.6% 71.4% 75.0% 

Leave-one-mouse-

out CV 

75.0% 68.0% 71.5% 

 

PLS-DA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

78.6% 78.6% 78.6% 

Leave-one-mouse-

out CV 

68.0% 78.5% 73.2% 
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The ROC curves for the different techniques and CV methods can be seen in figure 3.88. The area 

under the ROC curves was around 0.70 for all the models generated using PCA. The PLS-DA models 

yielded an AUC of 0.91 and 0.87 for LOSOVC and LOSOVM respectively. 

 

Figure 3.88: ROC curves for the cross validated classification models for the one month old male mdx 

and C57Bl/10 mice. ROC curves for all models using leave-one-spectrum-out and leave-one-mouse-out 

CV are shown. The area under the ROC curve (AUC) for the different models is also displayed.  

 

b) Three months old male mdx vs. C57Bl/10 mice 

This is a more established disease stage for the mdx mice. Thus, the model generated using the 

spectra from three months old mdx aimed to explore the ability of the technique to detect muscle 

pathology at a later disease stage. The predictive capability of all the models increased with age 

and can be seen in Table 3.55. The ROC curves, comparing the three different approaches for 

LOSOCV and LOMOCV can be seen in figure 3.89.  

All models achieved sensitivity, specificity and accuracy values above 80%. The performance of 

the PCA-LDA and PLS-DA models did not change for the different cross-validation methods. The 

sensitivity of the PCA-QDA model decreased slightly when LOMOCV was used, leading to a small 

drop in accuracy. For both CV approaches the PLS-DA model performed better than the PCA 

related models. The area under the ROC curves slightly decreased for the PCA related models 

when LOMOCV was employed. However, the AUC values did not fall below 0.94. The PLS-DA 

models achieved AUROC of 0.99 for both CV methods. 
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Table 3.55: Two group PCA-LDA, PCA-QDA and PLS-DA model classification performance evaluated 

using different CV methods for the three months old male mdx and C57Bl/10 mice. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

90.6% 84.4% 87.5% 

Leave-one-mouse-

out CV 

90.6% 84.4% 87.5% 

 

PCA-QDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

87.5% 90.6% 89.1% 

Leave-one-mouse-

out CV 

84.4% 90.6% 87.5% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

100% 96.9% 98.4% 

Leave-one-mouse-

out CV 

100% 96.9% 98.4% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.89: ROC curves for the cross validated classification models for the three months old male 

mdx and C57Bl/10 mice. ROC curves for all models using leave-one-spectrum-out and leave-one-

mouse-out CV are shown. The area under the ROC curve (AUC) for the different models is also 

displayed.  
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3.1.5.1.2 Repeated cross-validation 

The classification performance of the RLSMOCV PCA-LDA, PCA-QDA and PLS-DA models for 

distinguishing between one month old male mdx and C57Bl/10 mice can be seen in Table 3.56. 

The PCA-QDA model demonstrated the highest sensitivity and accuracy values as well as the most 

balanced sensitivity and specificity and was therefore considered to have achieved the best 

performance.  

Table 3.56: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for one 

month old mdx and C57Bl/10 mice. The mean sensitivity, specificity and accuracy values from the 100 

repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

One month old male 

mdx/C57Bl/10 mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard  

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 76.9% 

(+/-3.7, CoV:4.8%) 

79.8% 

(+/-3.7, CoV:4.6%) 

78.3%  

(+/-2.7, CoV:3.4%) 

PCA-QDA 78.8% 

(+/-4.3, CoV:5.4%) 

               79.8% 

(+/-3.5, CoV:4.4%) 

79.3% 

(+/-2.8, CoV:3.5%) 

PLS-DA 74.1 % 

(+/-3.8, CoV:5.1%) 

82.1%  

(+/-3.5, CoV:4.2%) 

78.1% 

(+/-3.1, CoV:3.9%) 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model for 

the one month old male mdx mice can be seen in figure 3.90. The PCA-LDA and QDA ROC curves 

had a mean AUC of 0.80 and 0.81 respectively whereas the PLS-DA curves demonstrated a mean 

AUC of 0.84. 
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Figure 3.90: ROC curves generated from repeated cross-validation of one month old mdx and 

C57Bl/10 mice. ROC curves are shown for each of the hundred repetitions during cross-validation. The 

mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard 

deviation also displayed. 

 

Table 3.57 displays the classification performance of the cross-validated PCA-LDA, PCA-QDA and 

PLS-DA models for the three months male mdx and C57Bl/10 mice. The PCA-LDA and QDA models 

attained similar accuracy values, with the LDA model achieving a better sensitivity. The PLS-DA 

achieved the highest sensitivity and specificity values, having thus the better performance. The 

coefficients of variability were below 3% for all the performance indices in all the models. 

 

 

 



 

176 
 

Table 3.57: Repeated CV PCA-LDA, PCA-QDA and PLS-DA models classification performance for three 

months old mdx and C57Bl/10 mice. The mean sensitivity, specificity and accuracy values from the 

100 repetitions are shown. Standard deviation and coefficients of variability are also displayed. CoV: 

Coefficient of Variability. 

Three months old 

male mdx/C57Bl/10 

mice 

Sensitivity  

(+/- Standard 

Deviation, CoV) 

Specificity 

(+/- Standard 

Deviation, CoV) 

Accuracy 

(+/- Standard 

Deviation, CoV) 

PCA-LDA 92.4  

(+/-1.6, CoV:1.7%) 

88.5  

(+/-2.5, CoV:2.8%) 

90.5 

 (+/-1.4, CoV:1.5%) 

PCA-QDA 87.8 

 (+/-1.9, CoV:2.2%) 

91.3 

(+/-2.4, CoV:2.6%) 

89.5  

(+/-1.5, CoV:1.7%) 

PLS-DA 100% 

(+/-0, CoV:0%) 

97.7%  

(+/-1.4, CoV:1.4%) 

98.9% 

(+/-0.7, CoV:0.7%) 

 

 

The ROC curves generated in each of the repetitions and the mean ROC curve for each model for 

the three months old male mdx mice can be seen in figure 3.91. The PCA-LDA and QDA ROC curves 

had a mean AUC of 0.97 and 0.96 respectively whereas the PLS-DA curves demonstrated a mean 

AUC of 0.99. 
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Figure 3.91: ROC curves generated from repeated cross-validation of three months old mdx and 

C57Bl/10 mice. ROC curves are shown for each of the hundred repetitions during cross-validation. The 

mean ROC curve (black line) is also shown. The mean AUC value for each model (+/-) one standard 

deviation also displayed.  

 

 

3.1.5.2 Basis of Classification  

3.1.5.2.1 Mean and Difference Spectra  

The mean and difference spectra of the different mice groups were plotted to visually examine 

the most prominent peaks and to identify the major differences between the groups of each 

model. In figures 3.92 and 3.93  the mean spectra of each group (+/-) standard deviation are 

shown.  
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Figure 3.92: Mean Raman spectra for one month old male mdx and C57Bl/10 mice groups. 

The mean spectra for mdx and control mice of one month of age are shown with the dotted lines. The 

shaded areas represent (+/-) one standard deviation from the mean spectrum. The spectra have been 

offset for clarity. 

 

 

 
Figure 3.93: Mean Raman spectra for three months old male mdx and C57Bl/10 mice groups. 

The mean spectra for mdx and control mice of three months of age are shown with the dotted lines. 

The shaded areas represent (+/-) one standard deviation from the mean spectrum. The spectra have 

been offset for clarity. 
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 Figures 3.94 and 3.95 show the mean and difference spectra of the combinations of groups used 

to build the two group models. The mean spectra of the different groups consisted of similar 

peaks. Despite the signal to noise ratio of the spectra acquired with the probe being limited by 

the fluorescent background, biochemically reliable peaks could be seen in the mean and 

difference spectra.  

 

Figure 3.94: Mean and difference spectra of one month old mdx and C57Bl/10 mice. 

a) Mean spectra for one month old mdx and C57Bl/10 mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  

  

 

Figure 3.95: Mean and difference spectra of three months old mdx and C57Bl/10 mice. 

a) Mean spectra for three months old mdx and C57Bl/10 mice and b) difference spectrum. Prominent 

peaks that differ between the two groups are indicated in both graphs.  

 

A decrease in the prominent peaks located around 1000 cm-1, 1044 cm-1, 1300 cm-1, 1330 cm-1, 

1445 cm-1, 1655 cm-1 as the disorder progresses was observed in the difference spectra of the 

mdx mice. Tentative peak assignments for these peaks can be seen in table 3.58. 
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Table 3.58: Prominent Raman peaks in mean and difference spectra of the mdx and C57Bl/10 mice 

and tentative peak assignments. A decrease in these peaks was observed as the disorder progressed 

for the mdx mice. 

 

 

Background subtraction was used to aid identification of more spectral features present in the 

spectra. The background subtracted mean spectra of the different groups can be seen in figures 

3.96 and 3.97. A larger number of peaks were identifiable in these mean spectra. The prominent 

peaks were very similar for the different groups. The peaks between 1240 cm-1 and 1340 cm-1 

were less clearly identifiable in the mean spectrum of the three months old wild-type mice 

compared to the mean spectra of the other groups. 

 

 
 

Figure 3.96: Background subtracted mean spectra of one month old male mdx and C57Bl/10 mice 

groups. The spectra have been offset for clarity and the most prominent peaks have been highlighted. 

Wavenumber (cm-1) Vibrational  

Modes 

Assignment 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging Proteins, Nucleic Acids 

1444 CH2 bending Proteins, Lipids 

1654 C=O stretching, C=C stretch Amide I (proteins), Lipids 
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Figure 3.97: Background subtracted mean spectra of three months old male mdx and C57Bl/10 mice 

groups. The spectra have been offset for clarity and the most prominent peaks have been highlighted. 

Additional shoulder peaks can be seed around 970 cm-1, 1030 cm-1, 1555 cm-1, 1575 cm-1 and 1615 

cm-1. Tentative peak assignments for the peaks present in the background subtracted mean 

spectra are presented in table 3.59.  
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Table 3.59: Prominent Raman peaks in background subtracted spectra and tentative peak 

assignments. Amino acids are specified when the peaks are largely associated with them in the 

literature. 

Wavenumber (cm-1) Vibrational  

Modes  

Assignment 

935 C-C stretching Proteins 

950  Proteins (Valine, Proline, 

Phenylalanine) 

975 CH2 deformation Proteins, Nucleic Acids 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1030 C-H bending Proteins (Phenylalanine, 

Proline) 

1044  Proteins  

1076 C-C stretching, C-O stretching Proteins (Tryptophan), Lipids 

1121 C-C stretching, C-N stretching Proteins, Lipid 

1170 C-H bending Proteins (Tyrosine, 

Phenylalanine) 

1205 v(C-C6H5) Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 

1260 C-N stretching Amide III (proteins), Lipids 

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging Proteins, Nucleic Acids 

1444 CH2 bending Proteins, Lipids 

1550  ν(C-C) Proteins (Tryptohan) 

1570  Ring breathing modes of the 

DNA/RNA bases 

Nucleic Acids 

1615 C=C stretching Proteins (Tyrosine) 

1654 C=O stretching, C=C stretching Amide I (proteins), Lipids 
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3.1.5.2.2 Multivariate Analysis 

The PCA loadings and the linear discriminant function (LDF) as well as the PLS weights were 

plotted in order to illustrate the important peaks for spectral classification in the two group 

models generated using the spectra of one and three months old male mdx and wild-type mice.  

Similar to the previous studies, a combination of the information found in the difference spectra 

and the loading/weight plots was used in an attempt to better understand the differences present 

in the spectra from the different groups. The score histograms and loading/weight plots in which 

the separation of the spectra from the different groups was best for each model are shown in the 

following sections. The loading/weight plots for the rest of the PCs and components used to build 

each model are shown in Appendix C. Tables 3.60 and 3.61 summarise and compare the most 

prominent peaks found in all the loading/weight plots (from all the components used for each 

model) and the ones found in the difference spectra of each two-group model.   

 

a) One month old mdx vs. C57Bl/10 mice 

Only PC2 scores were found to be significantly different between one month old male mdx and 

C57Bl/10 mice (qPC2: 5.4e-06). Since only PC2 was imported to LDA the PCA and LDA score and 

loading plots were identical and can be seen in figure 3.98. 

Figure 3.98: LD1 score histogram and LDF plot for the one month old mdx and C57Bl/10 mice. 
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In the PLS-DA analysis the model generated using the first component demonstrated the highest 

accuracy value. The score histogram and weights plot of component one can be seen in figure 

3.99 

Figure 3.99: Component 1 score histogram and weight plot for the one month old mdx and C57Bl/10 

mice. 

Even though there was some overlap it can be seen from the histogram of the LD scores that 

positive LD1 values had a larger contribution from spectra acquired from the C57Bl/10 mice. This 

could indicate that the peaks located around 936 cm-1, 1000 cm-1, 1044 cm-1, 1304 cm-1, 1336 cm-

1, 1445 cm-1 and 1655 cm-1 were decreased in the spectra of the mdx mice. Similar peaks in the 

opposite direction were found in the PLS weight plot. These peaks were very similar with the 

bands discussed in the previous section demonstrating that changes in muscle’s biochemical 

composition were important for discrimination. The peaks found in the loading plots of PC1 and 

component 1 as well as in the difference spectrum along with their tentative peak assignments 

are summarised in table 3.60. 
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Table 3.60: Summary table of the peaks associated with the one month old male mdx/C57Bl/10 mice 

and tentative peak assignments. In the group column, the group that the peaks were more prominent 

is displayed.  

 
 

b) Three months old male mdx vs. C57Bl/10 mice 

PCs 1 and 2 were found to be significantly different between the three months old mdx and 

C57Bl/10 mice. PC1 demonstrated the largest difference between the different groups followed 

by PC2 (qPC1: 7.6e-09, qPC2: 0.005). The LDA histogram and LDF plot using PC1 and PC2 as input 

variables can be seen in figure 3.101. 

 

Figure 
3.100: PC1 score histogram and loading plot for the three months old male mdx and C57Bl/10 
mice. 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

935 Proteins     C57Bl/10 

1000 Proteins (Phenylalanine)     C57Bl/10 

1045 Proteins (Phenylalanine, 

Proline) 
    

C57Bl/10 

1265 Amide III (proteins), Lipids      

1300 Amide III (proteins), Lipids      

1335 Proteins, Nucleic Acids     C57Bl/10 

1445 Proteins, Lipids     C57Bl/10 

1655 Amide I (proteins), Lipids     C57Bl/10 
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Figure 3.101: LD1 score histogram and LDF plot for the three months old male mdx and C57Bl/10 
mice. 
 

The PLS-DA model was built using the first four PLS components. The PLS weights plot for 
component 1 can be seen in figure 3.102. The PLS score histograms and weight plots for the rest 
of the components can be found in Appendix C.  
 

 

 
Figure 3.102: Component 1 score histogram and weight plot for the three months old male mdx 
and C57Bl/10 mice. 
 
 

Despite some background present in PC1 and PC2 loading plots biochemically reliable peaks were 

identifiable in both loading plots. Interestingly, less background was present in the LDF plot. 

Spectra from C57Bl/10 mice had a larger contribution in the positive values in the LD1 histogram 

and in the negative values in the weight plot of PLS component one. Hence, the peaks around 923 

cm-1, 1001 cm-1, 1045 cm-1, 1330 cm-1, 1446 cm-1 and 1655 cm-1 that were found in the LDF and 

weight plots in the respective directions were considered as increased in the spectra of the wild-

type mice. As can be seen from the histogram of the LDA scores and of the scores from the first 

PLS component most of the spectra of the three months old mice have positive score values 

whereas the spectra of the one month old mice have negative score values (for both models). 

Similar to the findings from study 1, where spectra acquired from female mdx and C57Bl/10 mice 
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were used, the most prominent peaks in the spectra decreased as the disorder progressed. The 

most prominent peaks in the loading/weight plots of the models and in the difference spectra 

and their tentative peak assignments are summarised in table 3.61. 

Table 3.61: Summary table of the peaks associated with three months old mdx mice and tentative 
peak assignments. In the group column, the group that the peaks were more prominent is displayed. 

 

 
 

3.1.6 Study 5: Combined Probe Study 

3.1.6.1 Electrophysiological Recordings 

CMAP amplitude was measured in the hindlimb of SOD1G93A and C57Bl/6 mice with the in-house 

built combined probe. In order to compare the performance of the probe relative to standard 

methods, whenever possible CMAP measurements were also undertaken with the standard 

methods used for electrophysiological recordings (ring electrodes, concentric needle electrode). 

Figure 3.103 shows the measurements acquired with the different methods for both mice groups. 

Recorded CMAP amplitude showed no differences between the combined probe and any of the 

standard methods for the SOD1G93A mice and only differed significantly between the combined 

probe and ring electrodes for the C57Bl/6 mice.  In order to assess the performance of the 

combined probe the CMAP amplitudes from the measurements acquired with the combined 

probe for SOD1G93A and the C57Bl/6 mice were compared. As can be seen in figure 3.104 the 

recordings from the SOD1G93A mice were significantly different (p<0.001) from the C57Bl/6 mice. 

In figure 3.105 the results for the same comparison using the standard methods are shown. 

Wavenumber 

(cm-1) 

Tentative Assignment PCA 

loading 

plots 

LDF PLS 

weight 

plots 

Difference 

Spectrum 

Group 

923 Proteins (Proline)     C57Bl/10 

1000 Proteins (Phenylalanine)     C57Bl/10 

1045 Proteins (Phenylalanine, 

Proline) 
    

C57Bl/10 

1125 Proteins      

1300 Amide III (proteins), 

Lipids 
    

 

1335 Proteins, Nucleic Acids     C57Bl/10 

1445 Proteins, Lipids     C57Bl/10 

1478 Nucleic Acids      

1655 Amide I (Proteins), Lipids     C57Bl/10 
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Figure 3.103: CMAP amplitudes for the SOD1G93A and C57Bl/6 mice recorded using three different 

methods. Mean and standard deviation shown. Asterisks indicate p<0.05 using Turkey post-test 

following mixed effect model repeated measures ANOVA. 

 

 

 

Figure 3.104: CMAP amplitudes for the SOD1G93A and C57Bl/6 mice recorded using the combined 

probe. Mean and standard deviation shown. Asterisks indicate p<0.001 using student’s t-test. 

SOD1
G93A

C57Bl6

0

10

20

30

C
M

A
P

 A
m

p
li

tu
d

e
 (

m
V

) ***

R
in

g E
le

ct
ro

des

N
ee

dle
 E

le
ct

ro
de

C
om

bin
ed

 P
ro

be

0

5

10

15

C
M

A
P

 A
m

p
li

tu
d

e
 (

m
V

)

*

R
in

g E
le

ct
ro

des

N
ee

dle
 E

le
ct

ro
de

C
om

bin
ed

 P
ro

be

0

10

20

30

40

50

C
M

A
P

 A
m

p
li

tu
d

e
 (

m
V

)

*

*

SOD1G93A C57Bl/6 



 

189 
 

 

 

Figure 3.105: CMAP amplitudes for the SOD1G93A and C57Bl/6 mice recorded using standard 

methods. CMAP amplitudes recorded with the ring electrodes (left) and the needle electrode (right). 

Mean and standard deviation shown. Two asterisks indicate p<0.01, four asterisks indicate p<0.0001 

using student’s t-test. 

3.1.6.2 Raman recordings 

Raman recordings were also acquired using the combined probe in order to assess if 

electrophysiological recordings affected the ability of the probe to detect the Raman signal and if 

the recorded spectra were different from the spectra recorded using the Raman probe. 

Background subtracted mean spectra of two groups of three months old SOD1G93A acquired with 

the combined and Raman probes are shown in figure 3.106. As can be seen in the background 

subtracted mean spectra the prominent peaks are the same for the recordings acquired with the 

different probes. 

 

 

Figure 3.106: Background subtracted mean Raman spectra of SOD1G93A mice acquired using the 

Raman and combined probes.  
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Additionally, CMAPs were recorded with the combined probe before and after the Raman 

measurements in order to investigate the effect of the Raman measurements on the 

electrophysiological recordings. As can be seen in figure 3.107 the CMAP amplitudes were not 

significantly different before and after the Raman recordings for any of the groups. 

 

Figure 3.107: CMAP amplitude for SOD1G93A and C57Bl/6 mice before and after the Raman 

recordings. 
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3.1.7 Comparing spectra from different tissues  

A small number of Raman spectra were recorded from femur and tibia bones as well as from 

blood samples acquired from three months old mdx mice in order to examine their Raman 

signature using the fibre optic probe and compare it with that of muscle. The mean spectra can 

be seen in figure 3.108.  

 

Figure 3.108: Mean Raman spectra from muscle, bone and blood of three months old mdx mice. 

The most prominent peaks in the mean spectra of the different organs and blood are indicated. 

 

Despite the signal to noise ratio of the spectra acquired with the probe being limited by the 

fluorescent background, biochemically reliable peaks could be seen in the mean spectra. 

Additionally, clear visual differences were apparent in the mean spectra of the different 

components. The main peaks found in the different mean spectra and their tentative assignments 

are summarised in table 3.62. The references can be found in Appendix A. 
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Table 3.62: Prominent peaks of spectra acquired from muscle, bone and blood and tentative peak 

assignments. 

Wavenumber (cm-1) Tentative 

Assignment 

Muscle Bone Blood  

 955  Hydroxyapatite 

  998 Phenylalanine 

1000   Phenylalanine 

1041   Proline 

  1125 Proteins 

  1215 Proteins 

  1335 Proteins, Nucleic Acids 

1445  1445 Proteins, Lipids 

  1545 Tryptophan 

  1615 Tyrosine, 

Tryptophan, 

Phenylalanine 

1650   Amide I (proteins), 

Lipids 

  

The spectra recorded from bone (positive score values) were clearly separated from the spectra 

acquired from muscle (negative score values) in the PC1 histogram as can be seen in figure 3.109. 

The peaks identified in the loading plot (figure 3.109) were the same peaks with the ones found 

in the mean spectra of the different tissues, with the positive peak around 955 cm-1  being 

associated with the bone spectra and negative peaks around 1000 cm-1, 1044 cm-1, 1445 cm-1 and 

1652 cm-1 being present in the muscle spectra.  
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Figure 3.109: PC1 score histogram and loading plot following PCA on the spectra measured from 

muscle and bone. 

Similarly, blood spectra were clearly separated from the muscle spectra in the histogram plot of 

PC1 scores (figure 3.110). The loading plot was dominated by the much larger peaks found in the 

blood spectra and was thus very similar with the mean blood spectrum. 

 

Figure 3.110: PC1 score histogram and loading plot following PCA on the spectra measured from 

muscle and blood. 

Both leave one-spectrum-out cross-validated PCA-LDA models (muscle/bone, muscle/blood) 

achieved sensitivity, specificity and accuracy values of 100%.  

 

 

 



 

194 
 

3.2 Human Tissue Recordings 
This study aimed to test the ability of the fibre-optic probe to record Raman spectra from ex vivo 

human muscle and to explore the potential of the technique to separate between different 

neuromuscular disorders. Additionally, Raman recordings were also obtained using a Raman 

microscope system in order to compare the performance of the fibre-optic probe with a more 

widely used Raman system. In section 3.1.2.1 the demographic and clinical characteristics of the 

subjects from which the muscle biopsies were acquired as well as the numbers of the muscle 

samples are summarised. A summary of the Raman spectra acquired in this study is presented in 

section 3.1.2.2.   

3.2.1 Summary of experiments 

3.2.1.1 Demographic and Clinical Characteristics 

A total of 77 muscle samples were used in this study. The demographic data of the patients with 

mitochondrial disorders, MND and healthy volunteers can be seen in tables 3.63 to 3.65 

respectively. In table 3.66 the demographic and clinical characteristics of the patients that 

participated in the prospective muscle collection are presented. In that table muscle biopsies are 

placed into groups based on the biopsy findings. The ‘myopathy’ group in the prospective muscle 

collection consisted of muscle samples from patients with different types of myopathies. The 

demographic data of the patients with the different types of myopathies are presented in table 

3.67. 
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Table 3.63: Demographic and clinical characteristics of the patients with mitochondrial disorders. 

The muscle that was sampled from each patient is also shown. 

Variables Whole 

Group 

(n=15) 

M.3243A>G 

(n=11) 

POLG-related 

(n=3) 

Single mtDNA 

deletion (n=1) 

Sex     

Male 9 (60%) 6 2 1 

Female 6 (40%) 5 1 - 

     

Age     

Mean (yrs) 49 46 66.7 29 

Range (yrs) 25-80 25-62 56-80 - 

     

Muscle     

Quadriceps 1 1 - - 

Tibialis Anterior 11 8 2 1 

Vastus Lateralis 2 2 - - 

Hamstrings - - - - 

Deltoid 1 - 1 - 

     

Heteroplasmy (%) 65.2 65.2 N/A N/A 
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Table 3.64: Demographic characteristics and muscle sampled from healthy volunteers. 

Variables Healthy 

(n=10) 

Sex  

Male 6 (60%) 

Female 4 (40%) 

  

Age  

Mean (yrs) 33 

Range (yrs) 17-54 

  

Muscle  

Quadriceps - 

Tibialis Anterior - 

Vastus Lateralis - 

Hamstrings 10 
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Table 3.65: Demographic and clinical characteristics of the patients with MND. The muscle that was 

sampled from each patient is also shown. 

Variables MND 

(npatients=14, 

nsamples=16) 

Sex  

Male 6 (42%) 

Female 6 (42%) 

Unknown 2 

  

Age  

Mean (yrs) 63.7 

Range (yrs) 39-81 

Unknown 2 

  

Disease Duration  

Mean (mo) 28.9 

Range (mo) 10-121 

Unknown 2 

  

Muscle  

Quadriceps 9 

Biceps 7 
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Table 3.66: Demographic and clinical characteristics of the patients that participated in the 

prospective muscle collection in Sheffield. The patients are grouped using the biopsy findings. The 

muscle that was sampled from each patient is also shown. 

 

 

Variables  Whole 

Group 

(n=38) 

Myopathic 

(n=15) 

Age-related 

(n=4)  

Non-specific 

(n=12)  

Normal 

(n=7) 

Sex       

Male  19 (50%) 10 1 3 5 

Female  19 (50%) 5 3 9 2 

       

Age       

Mean (yrs)  53 51.5 69.3 55.5 42.6 

Range (yrs)  20-80 22-73 59-80 31-77 20-76 

       

Muscle       

Quadriceps  13 7 2 1 3 

Biceps  10 2 - 6 2 

Deltoid  15 6 2 5 2 

       

Main Symptoms       

Proximal weakness  17 13 1 3 - 

Ataxia  9 - 1 6 2 

Myalgia  4 1 - 2 1 

Incidental CK  3 - - - 3 

Ptosis   1 - 1 - - 

Dysarthria/Dysphagia  2 - 1 - 1 

Muscle stiffness/spasms   1 - - 1 - 

Muscle hypertrophy  1 1 - - - 

Cognitive decline  1 - 1 - - 
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Table 3.67: Demographic and clinical characteristics of the patients with myopathy that participated 

in the prospective muscle collection in Sheffield. The patients are grouped using the biopsy findings. 

The muscle that was sampled from each patient is also shown. 

 

 

 

The samples from the prospective muscle biopsy without neuromuscular disease pathology (table 

3.67: age-related, non-specific changes and normal) were collectively grouped as ‘not myopathy’ 

for the following data analysis. Similarly, the different types of myopathies were all grouped as a 

single ‘myopathy’ group. Finally, the samples acquired from healthy volunteers will be referred to 

as ‘healthy’ in the following sections. 

 

 

3.2.1.2 Raman recordings 

A total of 2500 spectra were recorded from the human muscle samples ex vivo using the fibre-

optic Raman probe. Ten spectra were acquired in each site and were then averaged prior the 

analysis. Thus, 250 spectra were used to generate the PCA-LDA and PLS-DA models. A total of 286 

spectra were acquired using the Raman microscope.  A summary of the spectra acquired for each 

Variables Myopathy 

(n=15) 

Muscular 

dystrophy 

(n=4) 

Metabolic 

myopathy 

(n=1) 

Inclusion 

body 

myositis 

(n=1) 

Statin 

induced 

myopathy 

(n=1) 

Inflammatory 

myopathy 

(n=3) 

Unspecified 

myopathic 

findings 

(n=5) 

Sex        

Male 10 (66.7%) 3 1 1 0 2 2 

Female 5 (33.3%) 1 0 0 1 1 3 

        

Age        

Mean (yrs) 51.5 45 45 56 55 50.3 60.4 

Range (yrs) 22-73 22-72 - - - 25-67 35-73 

        

Muscle        

Quadriceps 7 2 - 1 1 2 1 

Biceps 2 - 1 - - - 1 

Deltoid 6 2 - - - 1 3 
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of the different pathological groups, as these were grouped for the subsequent data analysis can 

be seen in Table 3.68.  

It is also important to note that for the MND group the spectra acquired with the probe and the 

microscope were from different samples. Four samples were examined only using the fibre-optic 

probe. Recordings from the other ten samples were obtained with both the probe and 

microscope. However, the probe spectra were all saturated due to fluorescent signal and it was 

therefore not possible to use them. 

 

 

Table 3.68: Summary table of ex vivo Raman recordings acquired from human muscle samples. 

 

  

 

 

 

 

 

 

Group Number of samples Number of 

Probe 

Spectra 

Number of 

Microscope 

Spectra 

1. Myopathy 15 56 54 

2. Not myopathy 20 59 77 

3. Samples with biopsy result 

and final diagnosis not in 

agreement (Grouped as ‘Not 

Myopathy’ in 3.2.2 sections / 

Grouped as ‘Myopathy’ in 

3.2.3 sections) 

3 8 10 

4. Mitochondrial Disorders 15 41 53 

5. MND Probe Samples: 4 

Microscope Samples: 

10 

87 18 

6. Healthy 10 35 38 
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3.2.2 Biopsy findings 

In the samples acquired from the open muscle biopsies in Sheffield, three samples were from 

patients with a final clinical diagnosis of myopathy but who had a negative biopsy. In the following 

sections these samples are labelled as ‘not myopathy’, according to the biopsy findings. 

3.2.2.1 Classification models performance 

The two group models generated using the spectra of one pathological group (Myopathy, 

Mitochondrial Disorders, MND) and the spectra acquired from the ‘healthy’ muscle samples 

aimed to explore the ability of the technique to detect muscle pathology of different origins and 

separate diseased from healthy muscle. The classification performance of these two group 

models generated using the probe and microscope spectra are presented in sections a-c. 

Subsequently, the potential of the technique to be used as a screening test for neuromuscular 

disorders was investigated with multi-group models. The five-group models presented in section 

d aimed to test the ability of the ex vivo recordings to accurately classify samples in the three 

different pathological groups, the group with no neuromuscular condition (‘not myopathy’ group) 

and the ‘healthy’ group. Finally, the models presented in the last two sections aimed to explore 

the potential of the technique to separate patients with neuromuscular conditions who would 

necessitate a biopsy to further investigate the type of their disease (mitochondrial disorders, 

myopathies) from patients that would not need a biopsy (MND, ‘not myopathy’ group), reducing, 

thus, the number of unnecessary invasive procedures.   

a) Myopathy vs. Healthy  

The predictive capability of the models generated using the probe and microscope spectra can be 
seen in tables 3.69 and 3.70 respectively. The ROC curves comparing the performance of the two 
different analysis and CV methods can be seen in figure 3.111 for the probe models and in figure 
3.112 for the microscope ones.  
As can be seen in table 3.69, when using LOSOCV the ability of both the PCA-LDA and PLS-DA 
probe models to correctly classify spectra decreased with both accuracy values decreasing by 
approximately 10%. For both CV approaches the PLS-DA model performed better than the PCA-
LDA ones, mainly due to much better specificity values.  
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Table 3.69: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘myopathy’ and ‘healthy’ samples. The models were generated using 

the probe spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

77.8% 52.6% 67.4% 

Leave-one-sample-

out CV 

66.7% 44.7% 57.6% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

81.5% 97.4% 88.0% 

Leave-one-sample-

out CV 

70.4% 

 

86.8% 

 

77.2% 

 

 

 

 

Figure 3.111: ROC curves for the cross validated classification models for the ‘myopathy’ and 

‘healthy’ samples. ROC curves for all models generated using the probe spectra using leave-one-

spectrum-out and leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for the 

different models is also displayed.  

 

For the spectra acquired using the microscope Raman system only the PLS-DA models were 

generated since there were no PCs with significantly different scores between the two groups and 

hence PCA-LDA was not undertaken. As can be seen in table 3.70 using LOSOCV the PLS-DA model 

attained decreased accuracy mainly due a drop in the sensitivity.  The AUC was 0.75 for both CV 

approaches.  
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Table 3.70: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘myopathy’ and ‘healthy’ samples. The models were generated using 

the microscope spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV  

No significant PCs No significant PCs No significant PCs 

Leave-one-sample-

out CV 

No significant PCs No significant PCs No significant PCs 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

66.1% 68.6% 67.0% 

Leave-one-sample-

out CV 

55.5% 

 

65.7% 

 

60.0% 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.112: ROC curves for the cross validated classification models for the ‘myopathy’ and 

‘healthy’ samples. ROC curves for the PLS-DA models generated using the microscope spectra using 

leave-one-spectrum-out and leave-one-sample-out CV are shown. The area under the ROC curve 

(AUC) for the different models is also displayed. 

In general, the models generated using the probe spectra performed better than the ones 

generated using the microscope recordings. The LOMO cross-validated PLS-DA probe model 

demonstrated a good performance for separating between ‘myopathy’ from ‘healthy’ samples, 

achieving an accuracy of 77% whereas the microscope model demonstrated an accuracy of 60%, 

with a sensitivity of only 55.5%.  
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b) Mitochondrial Disorders vs. Healthy  

The predictive capability of the models generated using the probe and microscope spectra can be 

seen in tables 3.71 and 3.72 respectively. The ROC curves comparing the performance of the two 

different analysis and CV methods can be seen in figure 3.113 for the probe models and in figure 

3.114 for the microscope ones.  

All the models generated using the probe spectra (table 3.71) attained much better sensitivity 

than specificity values, with all sensitivity values being above 85%, indicating that it was easier for 

the models to correctly classify the diseased spectra. The different cross-validation approaches 

did not have a big impact on the performance of the PCA-LDA model. The LOSO cross-validated 

PLS -DA model demonstrated a decreased ability to correctly classify spectra mainly due to a big 

drop in specificity. The LOSOCV PCA-LDA and PLS-DA models achieved similar accuracy values, 

with the PLS-DA model having slightly more balanced sensitivity and specificity values and a 

slightly better AUC.  

 
 
Table 3.71: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘mitochondrial disorders’ and ‘healthy’ samples. The models were 

generated using the probe spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

88.7% 63.2% 78.0% 

Leave-one-sample-

out CV 

88.7% 60.5% 76.9% 

 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

85.9% 76.3% 81.3% 

Leave-one-sample-

out CV 

85.0% 

 

63.2% 

 

75.8% 
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Figure 3.113: ROC curves for the cross validated classification models for the ‘mitochondrial 

disorders’ and ‘healthy’ samples. ROC curves for all probe models using leave-one-spectrum-out and 

leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for the different models is 

also displayed.  

 

Using LOSOCV did not have a big impact on the performance of the PCA-LDA model, which for 

both methods achieved much better specificity than sensitivity values. The different CV methods 

did have a larger impact on the PLS-DA model, with the leaving-one-sample-out approach yielding 

a considerably lower sensitivity value. Both LOSO cross-validated models attained an accuracy of 

75% but the PCA-LDA model achieved that due to much higher sensitivity value (85.4%) whereas 

the PLS-DA model demonstrated much more balanced sensitivity and specificity values (both 

around 75%). The AUC was 0.83 and 0.81 for the LOSOCV PCA-LDA and PLS-DA models 

respectively.   
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Table 3.72: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘mitochondrial disorders’ and ‘healthy’ samples. The models were 

generated using the microscope spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

85.4% 65.7% 76.3% 

Leave-one-sample-

out CV 

82.9% 65.7% 75.0% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

85.4% 77.1% 81.6% 

Leave-one-sample-

out CV 

75.6% 

 

74.3% 

 

75.0% 

 

  

 

 

Figure 3.114: ROC curves for the cross validated classification models for the ‘mitochondrial 

disorders’ and ‘healthy’ samples. ROC curves for all microscope models using leave-one-spectrum-out 

and leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for the different models 

is also displayed. 

The leave-one-sample-out PCA-LDA probe and microscope models demonstrated similar 

performances, with both models achieving much higher sensitivity (above 80%) than specificity 

values (between 60% and 66%). The LOSO cross-validated PLS-DA probe and microscope models 

achieved similar accuracy values, around 75%. However, the microscope model demonstrated 

more balanced sensitivity and specificity values (both around 75%).   
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c) MND vs. Healthy  

The predictive capability of the models generated using the probe and microscope spectra can be 
seen in tables 3.73 and 3.74 respectively. The ROC curves comparing the performance of the two 
different analysis and CV methods can be seen in figure 3.115 for the probe models and in figure 
3.116 for the microscope ones.  
All the probe models yielded sensitivity, specificity and accuracy values of 100% and an AUC value 

of 1 when separating between ‘MND’ and ‘healthy’ samples.  

Table 3.73: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘MND’ and ‘healthy’ samples. The models were generated using the 

probe spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

100% 100% 100% 

Leave-one-sample-

out CV 

100% 100% 100% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

100% 100% 100% 

Leave-one-sample-

out CV 

100% 100% 100% 

 

 

 

Figure 3.115: ROC curves for the cross validated classification models for the ‘MND’ and ‘healthy’ 

samples. ROC curves for all probe models using leave-one-spectrum-out and leave-one-sample-out CV 

are shown. The area under the ROC curve (AUC) for the different models is also displayed.  
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When LOSOCV was used the PCA-LDA microscope model demonstrated a decreased ability to 

correctly classify spectra mainly due to a drop in specificity. The sensitivity of the PLS-DA model 

decreased slightly but the specificity increased, leading, thus, to an unchanged accuracy value. All 

models maintained a sensitivity value above 93%. For LOSO cross-validation the PLS-DA model 

achieved the best performance, with an accuracy value of 95.1% and an AUC value of 0.99. 

Table 3.74: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘MND’ and ‘healthy’ samples. The models were generated using the 

microscope spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

98.9% 88.6% 95.9% 

Leave-one-sample-

out CV 

95.4% 74.3% 89.3% 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

94.3% 97.1% 95.1% 

Leave-one-sample-

out CV 

93.1% 100% 95.1% 

 

 

Figure 3.116: ROC curves for the cross validated classification models for the ‘MND’ and ‘healthy’ 

samples. ROC curves for all microscope models using leave-one-spectrum-out and leave-one-sample-

out CV are shown. The area under the ROC curve (AUC) for the different models is also displayed.  
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d) Myopathy vs. Mitochondrial Disorders vs. MND vs. Not myopathy vs. Healthy 

The PCA-LDA and PLS-DA five group models generated using all the spectra acquired from the ex 

vivo recordings using the probe and the microscope can be seen in tables 3.75 and 3.76 

respectively. As can be seen in table 3.75 leave-one-sample-out CV caused a decrease in the ability 

of the probe models to correctly classify the spectra (decreased accuracy values for most of the 

groups). The LOSO cross-validated PCA-LDA model achieved much higher specificity than 

sensitivity values for the ‘myopathy’ ‘not myopathy’ and ‘healthy’ groups, with sensitivity values 

below 50% for these three groups. The model demonstrated a better ability to correctly classify 

the spectra acquired from ‘mitochondrial disease’ samples (66% sensitivity) and achieved a 

sensitivity and specificity of 100% for the ‘MND’ group. The PLS-DA LOSO model demonstrated 

similar performance, with the ‘mitochondrial disorders’ and ‘MND’ groups also yielding the 

highest accuracy values and much lower sensitivity than specificity values for the rest of the 

groups.  

Table 3.75: Five group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the probe spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 33.3% 

LOSOCV: 20.4% 

LOOCV: 88.8% 

LOSOCV: 83.2% 

LOOCV: 76.8% 

LOSOCV: 69.6% 

Mitochondrial 

Disorders 

LOOCV: 73.6% 

LOSOCV: 66.0% 

LOOCV: 87.8% 

LOSOCV: 80.7% 

LOOCV: 84.8% 

LOSOCV: 77.6% 

MND LOOCV: 100% 

LOSOCV: 100% 

LOOCV: 100% 

LOSOCV: 100% 

LOOCV: 100% 

LOSOCV: 100% 

Not myopathy LOOCV: 69.0% 

LOSOCV: 47.1% 

LOOCV: 74.2% 

LOSOCV: 71.2% 

LOOCV: 72.4% 

LOSOCV: 62.8% 

Healthy LOOCV: 42.1% 

LOSOCV: 34.2% 

LOOCV: 94.8% 

LOSOCV: 93.4% 

LOOCV: 86.8% 

LOSOCV: 84.4% 

 

PLS-DA  Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 22.3% 

LOSOCV: 38.9% 

LOOCV: 87.6% 

LOSOCV: 83.2% 

LOOCV: 73.6% 

LOSOCV: 73.6% 

Mitochondrial 

Disorders 

LOOCV: 62.3% 

LOSOCV: 75.5% 

LOOCV: 87.8% 

LOSOCV: 79.7% 

LOOCV: 80.8% 

LOSOCV: 78.8% 

MND LOOCV: 100% LOOCV: 100% LOOCV: 100% 
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LOSOCV: 88.9% LOSOCV: 100% LOSOCV: 99.2% 

Not myopathy LOOCV: 55.1% 

LOSOCV: 54.0% 

LOOCV: 74.2% 

LOSOCV: 85.3% 

LOOCV: 67.6% 

LOSOCV: 74.4% 

Healthy LOOCV: 52.6% 

LOSOCV: 31.6% 

LOOCV: 88.2% 

LOSOCV: 92.0% 

LOOCV: 82.8% 

LOSOCV: 82.8% 

 

 

The microscope models yielded very unbalanced sensitivity and specificity values with much 

higher specificity than sensitivity values for most of the groups. Since the one-versus-all approach 

was used to build these models the very high specificity values led to high accuracy. The leave-

one-sample out cross-validated microscope models achieved very low sensitivity values (between 

8.6% and 45.7%) for all the groups apart from the ‘MND’ group, for which sensitivity values above 

95% were attained. In general, the LOSO models generated using the microscope spectra 

achieved lower sensitivity but higher specificity values than the models generated using the probe 

spectra for most of the groups. 

 

Table 3.76: Five group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the microscope spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 28.6% 

LOSOCV: 8.9% 

LOOCV: 93.5% 

LOSOCV: 90.9% 

LOOCV: 80.8% 

LOSOCV: 74.8% 

Mitochondrial 

Disorders 

LOOCV: 34.1% 

LOSOCV: 29.3% 

LOOCV: 93.1% 

LOSOCV: 90.6% 

LOOCV: 84.6% 

LOSOCV: 81.8.6% 

MND LOOCV: 100% 

LOSOCV: 96.6% 

LOOCV: 84.4% 

LOSOCV: 82.4% 

LOOCV: 89.2% 

LOSOCV: 86.7% 

No disease LOOCV: 52.2% 

LOSOCV: 37.3% 

LOOCV: 79.4% 

LOSOCV: 74.0% 

LOOCV: 73.1% 

LOSOCV: 65.4% 

Healthy LOOCV: 25.7% 

LOSOCV: 8.6% 

LOOCV: 93.2% 

LOSOCV: 91.6% 

LOOCV: 85.0% 

LOSOCV: 81.5% 
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PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 23.2% 

LOSOCV: 12.5% 

LOOCV: 92.2% 

LOSOCV: 92.6% 

LOOCV: 78.7% 

LOSOCV: 76.9% 

Mitochondrial 

Disorders 

LOOCV: 43.9% 

LOSOCV: 41.5% 

LOOCV: 83.7% 

LOSOCV: 79.6% 

LOOCV: 78.0% 

LOSOCV: 74.1% 

MND LOOCV: 97.7% 

LOSOCV: 95.4% 

LOOCV: 88.4% 

LOSOCV: 85.9% 

LOOCV: 91.3% 

LOSOCV: 88.8% 

No disease LOOCV: 34.3% 

LOSOCV: 25.4% 

LOOCV: 85.8% 

LOSOCV: 83.6% 

LOOCV: 73.8% 

LOSOCV: 69.9% 

Healthy LOOCV: 48.6% 

LOSOCV: 45.7% 

LOOCV: 92.8% 

LOSOCV: 94.0% 

LOOCV: 87.4% 

LOSOCV: 88.1% 

 

 

e) Myopathy vs. Mitochondrial vs. No need for biopsy vs. Healthy 

The predictive capability of the four group models generated using the probe and microscope 

spectra can be seen in tables 3.77 and 3.78 respectively. In these models the ‘MND’ and ‘not 

myopathy’ groups were placed together in the ‘no need for biopsy’ group. Thus, these models 

were generated in order to explore the ability of the technique to distinguish between 

myopathies, mitochondrial disorders, muscle with pathological findings (more severe ones in case 

of MND and more subtle changes in the ‘not myopathy’ group) for which a biopsy would not be 

necessary and healthy muscle. Using LOSO decreased the ability of all the models to correctly 

classify spectra. For both PCA-LDA and PLS-DA LOSO cross-validated probe models only the 

sensitivity achieved for the mitochondrial disorders was above 60%, with the sensitivities 

demonstrated for all the other groups being below 50%. Specificity values were much higher than 

sensitivity values.  
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Table 3.77: Four group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the probe spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 25.5% 

LOSOCV: 14.8% 

LOOCV: 89.3% 

LOSOCV: 81.1% 

LOOCV: 75.6% 

LOSOCV: 66.8% 

Mitochondrial 

Disorders 

LOOCV: 75.5% 

LOSOCV: 62.9% 

LOOCV: 84.8% 

LOSOCV: 81.7% 

LOOCV: 82.8% 

LOSOCV: 77.6% 

No biopsy LOOCV: 70.5% 

LOSOCV: 49.5% 

LOOCV: 71.0% 

LOSOCV: 66.9% 

LOOCV: 70.8% 

LOSOCV: 59.6% 

Healthy LOOCV: 39.5% 

LOSOCV: 39.5% 

LOOCV: 93.4% 

LOSOCV: 90.1% 

LOOCV: 85.2% 

LOSOCV: 82.4% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 44.4% 

LOSOCV: 33.3% 

LOOCV: 89.8% 

LOSOCV: 83.7% 

LOOCV: 80% 

LOSOCV: 72.8% 

Mitochondrial 

Disorders 

LOOCV: 79.7% 

LOSOCV: 69.8% 

LOOCV: 82.7% 

LOSOCV: 78.7% 

LOOCV: 82.0% 

LOSOCV: 76.8% 

No biopsy LOOCV: 62.5% 

LOSOCV: 48.6% 

LOOCV: 82.1% 

LOSOCV: 80.0% 

LOOCV: 74.0% 

LOSOCV: 66.8% 

Healthy LOOCV: 60.5% 

LOSOCV: 47.4% 

LOOCV: 92.9% 

LOSOCV: 89.2% 

LOOCV:88.0 % 

LOSOCV: 82.8% 

 

The models generated using the microscope spectra were also characterised by very unbalanced 

sensitivity and specificity values for most of the groups and a moderate decrease in the accuracy 

values when LOSO cross-validation was employed. In the LOSO cross-validated PLS-DA model the 

‘no need for biopsy’ and ‘healthy’ groups achieved the highest and most balanced sensitivities 

and specificities, whereas the sensitivities for the other two groups were particularly low for the 

other two groups independently of the analysis and CV methods. 
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Table 3.78: Four group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the microscope spectra. 

PCA-LDA  Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 26.8% 

LOSOCV: 17.9% 

LOOCV: 94.5% 

LOSOCV: 92.2% 

LOOCV: 80.4% 

LOSOCV: 77.6% 

Mitochondrial 

Disorders 

LOOCV: 17.1% 

LOSOCV: 9.8% 

LOOCV: 95.9% 

LOSOCV: 94.7% 

LOOCV: 84.6% 

LOSOCV: 82.5% 

No biopsy LOOCV: 86.4% 

LOSOCV: 84.4% 

LOOCV: 37.1% 

LOSOCV: 31.1% 

LOOCV: 63.6% 

LOSOCV: 59.8% 

Healthy LOOCV: 17.1% 

LOSOCV: 5.7% 

LOOCV: 93.2% 

LOSOCV: 92.8% 

LOOCV: 83.9% 

LOSOCV: 82.2% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 19.6% 

LOSOCV: 8.9% 

LOOCV: 93.0% 

LOSOCV:93.0 % 

LOOCV: 78.7% 

LOSOCV: 76.6% 

Mitochondrial 

Disorders 

LOOCV: 26.8% 

LOSOCV: 24.4% 

LOOCV: 93.1% 

LOSOCV: 91.4% 

LOOCV: 83.6% 

LOSOCV: 81.8% 

No need for biopsy LOOCV: 70.1% 

LOSOCV: 68.8% 

LOOCV: 68.2% 

LOSOCV: 65.9% 

LOOCV: 69.2% 

LOSOCV: 67.5% 

Healthy LOOCV: 74.3% 

LOSOCV: 71.4% 

LOOCV: 78.2% 

LOSOCV: 76.9% 

LOOCV: 77.2% 

LOSOCV: 76.2% 

 

 

f) Need for biopsy vs. No need for biopsy vs. Healthy  

The predictive capability of the three group models generated using the probe and microscope 

spectra can be seen in tables 3.79 and 3.80 respectively. In these models the ‘myopathy’ and 

‘mitochondrial disorders’ were grouped together as for these patients a biopsy would facilitate 

the diagnosis of their neuromuscular conditions. The ‘no need for biopsy’ group consisted of the 

‘MND’ and ‘not myopathy’ spectra as in the previous section. Using LOSO decreased the ability of 

the probe models to correctly classify spectra in all different groups. Both PCA-LDA and PLS-DA 

LOSO cross-validated probe models did not yield very good sensitivity values, with no sensitivity 

value being above 50%. However, this group demonstrated the lowest accuracy values due to 
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lower specificity. For the ‘no need for biopsy’ and ‘healthy’ groups the specificity values achieved 

with both models were much higher than the sensitivity ones, leading, thus, to higher accuracy 

values.  

Table 3.79: Three group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the probe spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Need for biopsy LOOCV: 72.9% 

LOSOCV: 59.8% 

LOOCV: 55.9% 

LOSOCV: 42.0% 

LOOCV: 63.2% 

LOSOCV: 49.6% 

No need for biopsy LOOCV: 57.1% 

LOSOCV: 41.9% 

LOOCV: 82.8% 

LOSOCV: 74.5% 

LOOCV: 72% 

LOSOCV: 60.8% 

Healthy LOOCV: 31.6% 

LOSOCV: 21.1% 

LOOCV: 94.3% 

LOSOCV: 93.3% 

LOOCV: 84.8% 

LOSOCV: 82.4% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Biopsy LOOCV: 64.5% 

LOSOCV: 57.0% 

LOOCV: 69.3% 

LOSOCV: 54.5% 

LOOCV: 67.6% 

LOSOCV: 55.6% 

No biopsy LOOCV: 68.6% 

LOSOCV: 47.6% 

LOOCV: 78.6% 

LOSOCV: 75.2% 

LOOCV: 74.4% 

LOSOCV: 63.6% 

Healthy LOOCV: 55.3% 

LOSOCV: 34.2% 

LOOCV: 93.4% 

LOSOCV: 88.0% 

LOOCV: 87.6% 

LOSOCV: 80.0% 

 

Similar to the probe models, using LOSOCV also decreased most of the accuracy values of the 

microscope models. Both LOSO cross-validated microscope models also demonstrated very 

unbalanced sensitivity and specificity values.  
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Table 3.80: Three group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the microscope spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Need for biopsy LOOCV: 43.3% 

LOSOCV: 40.2% 

LOOCV: 82.0% 

LOSOCV: 81.5% 

LOOCV: 68.9% 

LOSOCV: 67.5% 

No need for biopsy LOOCV: 83.8% 

LOSOCV: 82.5% 

LOOCV: 50.0% 

LOSOCV: 47.0% 

LOOCV: 68.1% 

LOSOCV: 66.1% 

Healthy LOOCV: 2.9% 

LOSOCV: 2.9% 

LOOCV: 94.4% 

LOSOCV: 94.4% 

LOOCV: 83.2% 

LOSOCV: 83.2% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Need for biopsy LOOCV: 55.7% 

LOSOCV: 47.4% 

LOOCV: 80.4% 

LOSOCV: 75.1% 

LOOCV: 72.1% 

LOSOCV: 65.7% 

No need for biopsy LOOCV: 67.5% 

LOSOCV: 62.9% 

LOOCV: 65.2% 

LOSOCV: 64.4% 

LOOCV: 66.4% 

LOSOCV: 63.1% 

Healthy LOOCV: 54.3% 

LOSOCV: 42.9% 

LOOCV: 89.6% 

LOSOCV: 86.5% 

LOOCV: 85.3% 

LOSOCV: 81.1% 
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3.2.2.2 Basis of classification  

3.2.2.2.1 Mean and Difference spectra 

 

The mean and difference spectra of the different groups were plotted to visually examine the 

most prominent peaks and to identify the major differences between the groups of each of the 

two group models. The mean probe spectrum of each group (+/-) one standard deviation can be 

seen in figure 3.117 and the mean microscope spectrum of each group (+/-) one standard 

deviation is shown in figure 3.118.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.117: Mean probe Raman spectra for the different muscle biopsy groups. 

The mean spectra for the different muscle biopsy groups are shown with the dotted lines. The shaded 

areas represent (+/-) one standard deviation from the mean spectrum. The spectra have been offset 

for clarity. 
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Figure 3.118: Mean microscope Raman spectra for the different muscle biopsy groups. 

The mean spectra for the different groups are shown with the dotted lines. The shaded areas 

represent (+/-) one standard deviation from the mean spectrum. The spectra have been offset for 

clarity. 

Figures 3.119 to 3.121 show the mean and difference probe spectra of the combinations of 

groups used to build the two group models. The mean spectra of the different groups consisted 

of similar peaks. A small number of biochemically reliable peaks could be seen in the mean and 

difference probe spectra (table 3.81). 
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Figure 3.119: Mean and difference probe spectra of the ‘myopathy’ and ‘healthy’ samples. 

a) Mean spectra for the ‘myopathy’ and ‘healthy’ samples and b) difference spectrum. Prominent 

peaks are indicated in both graphs. 

 

Figure 3.120: Mean and difference probe spectra of the ‘mitochondrial disorders’ and ‘healthy’ 

samples. 

a) Mean spectra for the ‘mitochondrial disorders’ and ‘healthy’ samples and b) difference spectrum. 

Prominent peaks are indicated in both graphs. 
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Figure 3.121: Mean and difference probe spectra of the ‘MND’ and ‘healthy’ samples. 

a) Mean spectra for the MND and healthy samples and b) difference spectrum. Prominent peaks are 

indicated on the mean spectra. 

 

Table 3.81: Prominent Raman peaks in mean and difference spectra of the different muscle biopsy 

groups and tentative peak assignments.  

 

Figures 3.122 to 3.124 show the mean and difference microscope spectra of the combinations of 

groups used to build the two group models. Similar to the probe spectra, the mean spectra of the 

different groups consisted of similar peaks. A larger number of biochemically reliable peaks could 

be identified in the spectra acquired with the microscope (table 3.82). 

 

 

 

 

 

Wavenumber (cm-1) Vibrational  

Mode * 

Assignment 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1445 CH2 bending, CH2CH3 bending Proteins, Lipids 

1655 C=O stretching, C=C stretching Amide I (proteins), Lipids 
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Figure 3.122: Mean and difference microscope spectra of the ‘myopathy’ and ‘healthy’ samples. 

a) Mean spectra for the myopathic and healthy samples and b) difference spectrum. Prominent peaks 

that differ between the two groups are indicated in both graphs. 

 

 

 

Figure 3.123: Mean and difference spectra microscope of the ‘mitochondrial disorders’ and ‘healthy’ 

samples. 

a) Mean spectra for the ‘mitochondrial disorders’ and ‘healthy’ samples and b) difference spectrum. 

Prominent peaks that differ between the two groups are indicated in both graphs. 
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Figure 3.124: Mean and difference microscope spectra of the ‘MND’ and ‘healthy’ samples. 

a) Mean spectra for the ‘MND’ and ‘healthy’ samples and b) difference spectrum. Prominent peaks 

that differ between the two groups are indicated in both graphs. 

 

Table 3.82: Prominent Raman peaks in mean and difference spectra of the different muscle biopsy 

groups and tentative peak assignments. These peaks were found to be decreased in the 

‘mitochondrial disorders’ and ‘MND’ spectra when these were compared with spectra acquired from 

healthy muscle. 

 

 

Background subtraction was used to aid identification of more spectral features present in the 

spectra. The background subtracted mean spectra of the different groups can be seen in figures 

3.125 and 3.126 for the probe and microscope spectra respectively. A larger number of peaks 

Wavenumber (cm-1) Vibrational  

Mode * 

Assignment 

827 Ring breathing mode Proteins (Tyrosine) 

855 C-C stretching Proteins (Tyrosine, Proline 

Glycogen) 

935 C-C stretching Proteins 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1300 CH2 twisting Amide III (proteins), Lipids 

1335 CH3CH2 wagging Proteins, Nucleic Acids 

1445 CH2 bending, CH2CH3 bending Proteins, Lipids 

1654 C=O stretching, C=C stretch Amide I (proteins), Lipids 
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were identifiable in these mean spectra. The prominent peaks were very similar for the different 

groups. The peaks present in the probe and microscope spectra and their tentative peak 

assignments can be seen in tables 3.83 and 3.84 respectively.  

 

 

 

Figure 3.125: Background subtracted mean probe spectra of the different muscle biopsy groups.  

The spectra have been offset for clarity and the most prominent peaks have been highlighted. 
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Table 3.83: Prominent Raman peaks in the background subtracted spectra of the different muscle 

biopsy groups and tentative peak assignments. 

 

 

 

 

 

 

Wavenumber (cm-1) Vibrational  

Mode * 

Assignment 

935 C-C stretching Proteins 

1000 Phenyl ring breathing mode Proteins (Phenylalanine) 

1040  Proteins  

1075 C-C stretching, C-O stretching Proteins (Tryptophan), Lipids 

1141  Proteins (Valine) 

1175 C-H bending Proteins (Tyrosine, 

Phenylalanine) 

1205 v(C-C6H5) Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 

1260 C-N stretching Amide III (proteins), Lipids 

1300 CH2 twisting Amide III (proteins), Lipids 

1330 C-N stretching 

C-C Stretching 

Proteins 

1410  Proteins, Nucleic acids 

1444 CH2 bending Proteins, Lipids 

1557 ν(C-C) Proteins (Tryptophan) 

1615 C=C stretching Proteins (Tyrosine) 

1650 C=O stretching, C=C stretching Amide I (proteins), Lipids 
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Figure 3.126: Background subtracted mean microscope spectra of the different muscle biopsy 

groups. The spectra have been offset for clarity and the most prominent peaks have been 

highlighted. 
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Table 3.84: Prominent Raman peaks in the background subtracted mean microscope spectra of the 

different muscle biopsy groups and tentative peak assignments. 

Wavenumber (cm-1) Vibrational  

Mode * 

Assignment 

642 C-C twisting Nucleic acids (Bases), 

Proteins (Tyrosine) 

756 Symmetric breathing Proteins (Tryptophan) 

825 Ring breathing Proteins (Tyrosine) 

855 C-C stretching Proteins (Tyrosine, Proline, 

Glycogen) 

935 C-C stretching Proteins 

1002 Phenyl ring breathing mode Proteins (Phenylalanine) 

1044  Proteins  

1076 C-C stretching, C-O stretching Proteins (Tryptophan), Lipids 

1125 C-C stretching, C-N stretching Proteins, Lipid 

1205 v(C-C6H5) Proteins (Phenylalanine, 

Tyrosine, Hydroxyproline) 

1260 C-N stretching Amide III (proteins), Lipids 

1300 CH2 twisting Amide III (proteins), Lipids 

1330 C-N stretching 

C-C Stretching 

Proteins 

1400 Symmetric bending Proteins 

1444 CH2 bending Proteins, Lipids 

1555 ν(C-C) Proteins (Tryptohan) 

1654 C=O stretching, C=C stretching Amide I (proteins), Lipids 

 

The most prominent peaks found in the ex vivo spectra from human tissue were similar with the 

ones found in the spectra acquired in the in vivo experiments and those of major muscle 

components. The peaks between 1260 and 1340 were less clearly identifiable in probe spectra 

compared to both the microscope spectra and most of the spectra acquired in vivo from mice.  

 

3.2.2.2.2 Multivariate statistics 

Multivariate techniques were employed in order to utilise and further elucidate the biochemical 

features present in the spectra. The PCA loadings and the linear discriminant function (LDF) as 
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well as the PLS weights were plotted in order to illustrate the important peaks for spectral 

classification.  

Assigning specific peaks to one of the two groups used in each model was not trivial since the two 

groups were not always clearly separated around zero in the corresponding score histograms or 

score plots. Additionally, the peaks in the loadings or weight plots were most often not centred 

around zero probably due to the presence of background in the spectra. Hence, a combination of 

the information found in the difference spectra and the loading/weight plots was used in an 

attempt to better understand the differences present in the spectra from the different groups. 

The score histograms and loading/weight plots in which the separation of the spectra from the 

different groups was best for each model are shown in the following sections. The score 

histograms and loading/weight plots for the rest of the PCs and components used to build each 

model are shown in Appendix C. Tables 3 and 4 summarise and compare the most prominent 

peaks found in all the loading/weight plots (from all the components used for each model) and 

the ones found in the difference spectra of each two-group model. 

a) Myopathy vs. Healthy  

Using Student’s t-tests followed by fdr correction PC1 and PC4 scores were found to be 

significantly different between the myopathy samples and the samples from healthy volunteers 

(qPC1:0.0014, qPC4: 0.0009). The spectra of the two groups were not clearly separated around zero 

in any of the score histograms. Thus, only the PCA loading plots are shown in this section (figure 

3.127).  

Figure 3.127: PC1 and PC4 and loading plots for the ‘myopathy’ and ‘healthy’ samples. 
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The LDA histogram and LDF plot using PC1 and PC4 as input variables can be seen in figure 3.128. 

Figure 3.128: LD1 score histogram and LDF plot for the ‘myopathy’ and ‘healthy’ samples. 
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In the PLS-DA analysis the model was generated using the first 5 components. Similar to the PCA 

analysis, the spectra were not clearly separated around zero in any of the score histograms 

(Appendix C). The weight plots of the first four components can be seen in figure 3.129. The 

weight plot of the fifth component can be seen in Appendix C. Despite some background present 

in the weight plot of component 1, biochemically relevant peaks were apparent. 

Figure 3.129: PLS component 1,2,3 and 4 weights plots for the ‘myopathy’ and ‘healthy’ samples. 

Using the spectra acquired with the microscope there were no significantly different PC scores 

between the two groups. The PLS-DA model was generated using the first 6 components. The PLS 

weight plots of the first 4 components can be seen in figure 4. The weight plots of components 5 

and 6 can be found in Appendix C. 
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Figure 3.130: PLS component 1,2,3 and 4 weights plots for the ‘myopathy’ and ‘healthy’ samples. 

 

The most prominent peaks found in the probe and microscope spectra and in the 

loading/weight plots of the different analyses are summarised and compared in table 3.85. 

Similar to the results of the previous sections (in vivo recordings) the peaks located around 

935 cm-1, 1000 cm-1, 1040 cm-1, 1300 cm-1, 1330 cm-1, 1445 cm-1 and 1655 cm-1 were also 

found in these spectra and loading plots, indicating, thus, that similar peaks were important 

for classification. These peaks were prominent in loading/weight plots of both the probe’ and 

microscope spectra. 
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Table 3.85: Summary table of the peaks associated with the ‘myopathy’ and ‘healthy’ muscle 

samples and tentative peak assignments. The common peaks in the probe and microscope spectra 

are indicated with bold font.  

 Probe Microscope 

Wavenumber 

(cm-1) 

Tentative 

Assignment 

PCA-

LDA  

PLS-

DA  

Difference 

Spectrum 

PCA-

LDA  

PLS-

DA  

Difference 

Spectrum 

750 Proteins 

(Tryptophan) 
     

 

830 Proteins 

(Tyrosine, 

Tryptophan) 

     
 

879 Proteins 

(Hydroxiproline, 

Tryptophan) 

     
 

935 Proteins       

985 Proteins, 

Nucleic Acids 
 

 
   

 

1000 Proteins 

(Phenylalanine) 

   
 

  

1040 Proteins 

(Phenylalanine, 

Proline) 

      

1181 Proteins 

(Tyrosine) 

      

1300 Amide III 

(proteins), 

Lipids 

      

1335 Proteins, 

Nucleic Acids 
      

1400 Proteins       

1445 Proteins, Lipids       

1655 Amide I 

(proteins), 

Lipids 
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b) Mitochondrial Disorders vs Healthy 

Using the probe spectra PC2 scores were found to be significantly different between 

mitochondrial disorders and healthy samples (qPC2=2.2e-10). The LD1 score histogram and LDF plot 

(identical with PC2 score and loading plots) are shown in figure 3.131. 

Figure 3.131: LD1 score histogram and LDF plot for the ‘mitochondrial disorders’ and ‘healthy’ 

samples. 

In the PLS-DA analysis the model generated using only the first component demonstrated the 

highest accuracy value. The score and weight plot of the first component can be seen in figure 

3.132.  

Figure 3.132: PLS component 1 score histogram and weights plot for the ‘mitochondrial disorders’ 

and ‘healthy’ samples. 
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Using the spectra acquired with the microscope, PC2 was also the only significant PC between 

mitochondrial disorders samples and muscle samples from healthy volunteers (qPC2=5.6e-09) 

(figure 3.133). In the PLS-DA analysis the model generated using the three first components 

demonstrated the highest accuracy value. The score and weight plot of the first component can 

be seen in figure 3.134. 

Figure 3.133: LD1 score histogram and LDF plot for the ‘mitochondrial disorders’ and ‘healthy’ 

samples. 

 

Figure 3.134: PLS component 1 score histogram and weights plot for the ‘mitochondrial disorders’ 

and ‘healthy’ samples. 

 

Even though there was some overlap it can be seen from the histogram of the LD scores that 

positive LD1 values had a larger contribution from spectra acquired from the ‘healthy’ group for 

both the probe and microscope models. This could indicate that the peaks located around 933 

cm-1, 1000 cm-1, 1044 cm-1, 1300 cm-1, 1336 cm-1, 1445 cm-1 and 1655 cm-1 were decreased in the 

spectra acquired from the ‘mitochondrial disorders’ samples. Similar peaks in the opposite 

direction were found in the PLS weight plots. These peaks were very similar with the bands 

discussed in the previous sections demonstrating that changes in muscle’s biochemical 
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composition were important for discrimination. The most prominent peaks found in the loading 

plots and weight plots of the probe and microscope models as well as in the difference spectra 

along with their tentative peak assignments are summarised in table 3.86. 

 

Table 3.86: Summary table of the peaks associated with the ‘mitochondrial disorders’ and ‘healthy’ 

muscle samples and tentative peak assignments. The common peaks in the probe and microscope 

spectra are indicated with bold font. In the group column, the group that the peaks were more 

prominent is displayed.  

 Probe Microscope  

Wavenumber 

(cm-1) 

Tentative 

Assignment 

PCA-

LDA  

PLS-

DA  

Difference 

Spectrum 

PCA-

LDA  

PLS-

DA  

Difference 

Spectrum 

Group 

857 Proteins 

(Tyrosine, 

Proline, 

Glycogen) 

      Healthy 

935 Proteins       Healthy 

1000 Proteins 

(Phenylalanine) 

      Healthy 

1045 Proteins 

(Phenylalanine, 

Proline) 

       

1128 Proteins        

1265 Amide III 

(proteins), 

Lipids 

       

1300 Amide III 

(proteins), 

Lipids 

      Healthy 

1335 Proteins, 

Nucleic Acids 

       

1445 Proteins, 

Lipids 

      Healthy 

1555 Proteins 

(Tryptophan) 

       

1655 Amide I 

(proteins), 

Lipids 

      Healthy 
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c) MND vs Healthy 

Using the spectra acquired with the Raman probe PC3 scores were significantly different between 

the two groups (qPC3=5.1e-19). Thus, the LDA score histogram and LDF plot were identical with the 

PCA score and loading plots and can be seen in figure 3.135. In the PLS-DA analysis 2 components 

were used to generate the model. The score histograms and weight plots for the first 2 PLS 

components are displayed in figure 3.136. 

Figure 3.135: LD1 score histogram and LDF plot for the ‘MND’ and ‘healthy’ samples. 
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Figure 3.136: PLS component 1 and 2 score histograms and weights plots for the ‘MND’ and 

‘healthy’ samples. 

 

PCs 1, 2 and 5 were found to be significantly different between ‘MND’ and ‘healthy’ muscle using 

the microscope spectra. PC2 (figure 3.137) demonstrated the largest difference between the 

different groups followed by PC1. These PCs had a much smaller q-value than PC5 (qPC2: 2.3e-14, 

qPC1: 5.4e-08, qPC5: 0.0021). The score histograms and loading plots of PC1 and PC5 can be seen in 

Appendix C. The LD score histogram and LDF generated using PCs 1,2 and 5 can be seen in figure 

3.138. 
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Figure 3.137: PC2 score histogram and loadings plot for the ‘MND’ and ‘healthy’ samples. 

 

Figure 3.138: LD1 score histogram and LDF plot for the ‘MND’ and ‘healthy’ samples. 

In the PLS-DA analysis the model generated using the first 6 components demonstrated the 

highest accuracy. The score histogram and PLS weight plot for the component 1 are displayed in 

figure 3.139. The weight plots for components 2 to 6 can be found in Appendix C. 
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Figure 3.139: PLS component 1 score histogram and weights plot for the ‘MND’ and ‘healthy’ 

samples. 

 

As can be seen in the histogram of PC2 and the LD scores  positive values had a larger contribution 

from spectra acquired from the ‘healthy’ group for the microscope  model. Thus, the peaks 

located around 855 cm-1, 1000 cm-1, 1300 cm-1, 1445 cm-1 and 1655 cm-1 were considered to have 

been decreased in the spectra acquired from the ‘MND’ samples. Similar peaks in the opposite 

direction were found in the PLS weight plot for component one. However, due to background 

present in the weight plot, the peaks could not be associated easily to one of the two groups. The 

peaks found in the loading plots and weight plots of the probe and microscope models as well as 

in the difference spectra along with their tentative peak assignments are summarised in table 

3.87. 
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Table 3.87: Summary table of the peaks associated with the ‘MND’ and ‘healthy’ muscle samples 

and tentative peak assignments. The common peaks in the probe and microscope spectra are 

indicated with bold font. In the group column, the group that the peaks were more prominent is 

displayed.   

 Probe Microscope  

Wavenumber 

(cm-1) 

Tentative 

Assignment 

PCA-

LDA  

PLS-

DA  

Difference 

Spectrum 

PCA-

LDA  

PLS-

DA  

Difference 

Spectrum 

Group 

830 Proteins 

(Tyrosine) 
       

857 Proteins 

(Tyrosine, 

Proline, 

Glycogen) 

      Healthy 

935 Proteins        

1000 Proteins 

(Phenylalanine) 
      Healthy 

1045 Proteins 

(Phenylalanine, 

Proline) 

       

  Proteins, 

Lipids, 

Phospholipids 

       

1200 Proteins        

1265 Amide III 

(proteins), 

Lipids 

       

1300 Amide III 

(proteins), 

Lipids 

      Healthy 

1335 Proteins, 

Nucleic Acids 
       

1445 Proteins, 

Lipids 

      Healthy 

1555 Proteins, 

Tryptophan 

       

1655 Amide I 

(proteins), 

Lipids 

      Healthy 
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3.2.3 Final diagnosis 

In the samples acquired from the open muscle biopsies in Sheffield, three samples were from 

patients with a final diagnosis of myopathy but who had a negative biopsy. To explore how this 

may have altered the analyses in the following sections these samples are labelled as ‘myopathy’, 

according to the final diagnosis in this chapter. In 3.2.3.1 the main investigations undertaken for 

these samples are presented.  In section 3.2.3.2 the results of the analysis with groups based on 

final diagnosis are presented. 

3.2.3.1 Main Investigations Report 

From the 38 patients that had open muscle biopsies in Sheffield (table 3.66 section 3.1.2.1) 22 

people also underwent an EMG examination. Concordance of the biopsy and EMG findings with 

the final diagnosis was examined for the ‘myopathy’ and ‘not myopathy’ groups and is presented 

in the table below. In this table only the patients that had both a biopsy and an EMG were 

included, and the final diagnosis is the working diagnosis at the time of data analysis. 

Table 3.88: Concordance between EMG and biopsy findings in the ‘myopathy’ and ‘not 

myopathy’ groups. 

 

In order to evaluate the performance of muscle biopsy and EMG the sensitivity, specificity and 

accuracy of the techniques for detecting myopathies were calculated using the final diagnosis. 

The confusion matrices of the techniques for the ‘myopathy’ and ‘not myopathy’ groups can be 

seen in tables 3.89 and 3.90. 

Table 3.89: EMG confusion matrix for ‘myopathy’ and ‘not myopathy’ groups. 

 

 

 

 

 

 

Group Concordant: 

EMG-in 

agreement with 

final diagnosis, 

Biopsy-in 

agreement with 

final diagnosis 

Discordant: 

EMG-in 

agreement with 

final diagnosis, 

Biopsy-not in 

agreement with 

final diagnosis 

Discordant: 

EMG-not in 

agreement with 

final diagnosis, 

Biopsy-in 

agreement with 

final diagnosis 

Concordant: 

EMG-not in 

agreement with 

final diagnosis, 

Biopsy-not in 

agreement with 

final diagnosis  

Final diagnosis: 

Myopathy 

7 1 4 2 

Final diagnosis: 

Not myopathy 

7 0 1 0 

 EMG 

Myopathy Not myopathy 

Final 

Diagnosis 

Myopathy 8 6 

Not myopathy 1 7 
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Table 3.90: Biopsy confusion matrix for ‘myopathy’ and ‘not myopathy’ groups. 

 

 

 

 

The sensitivity, specificity and accuracy of EMG and muscle biopsy are shown in table 3.91. In this 

table Raman data are also shown, the sensitivity, specificity and accuracy of the PLS-DA cross-

validated (LOSO) model generated using the spectra acquired with the fibre-optic probe from the 

‘myopathy’ and ‘not myopathy’ samples  are also shown in order to compare the new technique 

with the already existing diagnostic tests. 

 

Table 3.91: Sensitivity, specificity and accuracy values for detecting myopathies using different 

methods. 

 Muscle Biopsy EMG Raman 

Spectroscopy 

(PLS-DA) 

Sensitivity (%) 83.3 58.0 48.4 

Specificity (%) 100 87.5 41.6 

Accuracy (%) 92.1 68.1 44.7 

 

It is important to note that the diagnostic indices for the EMG are calculated using less samples 

since only 22 patients underwent the EMG examination. Muscle biopsy and Raman spectroscopy 

accuracy values are calculated using data acquired from all 38 patients (see section 3.2.1.1 table 

3.66 for details). 

The muscle biopsy demonstrated the best sensitivity, specificity and accuracy values. EMG 

achieved considerably better specificity than sensitivity, demonstrating thus a better ability to 

correctly classify non-myopathic cases. Finally, Raman spectroscopy was not able to correctly 

classify the samples using the Raman spectra. 

 

3.2.3.2 Classification models performance when using the final clinical diagnosis 

a) Myopathy vs. Healthy 

The predictive capability of the models generated using the probe and microscope spectra can be 
seen in tables 3.92 and 3.93 respectively. The ROC curves comparing the performance of the two 
different analysis and CV methods can be seen in figure 3.140 for the probe models and in figure 
3.141 for the microscope ones.  
As can be seen in table 3.92, when using LOSOCV the ability of both the PCA-LDA probe models 

to correctly classify spectra decreased slightly, whereas the accuracy value increased for the PLS-

DA model, due to an increase in the sensitivity. For both CV approaches the PLS-DA model had 

lower sensitivity but higher specificity values that led to higher accuracy values. The sensitivity 

and specificity values were also more balanced for the PLS-DA models.  

 Biopsy 

Myopathy Not myopathy 

Final 

Diagnosis 

Myopathy 15 3 

Not myopathy 0 20 
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Table 3.92: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘myopathy’ and ‘healthy’ samples. The models were generated using 

the probe spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV 

81.3% 44.7% 67.6% 

Leave-one-sample-

out CV 

78.1% 42.1% 64.7% 

 

 

 

Figure 3.140: ROC curves for the cross validated classification models for the ‘myopathy’ and 

‘healthy’ samples. ROC curves for all models generated using the probe spectra using leave-one-

spectrum-out and leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for the 

different models is also displayed. 

For the spectra acquired using the microscope Raman system only the PLS-DA models were 

generated since there were no PCs with significantly different scores between the two groups. As 

can be seen in table 3.93 using LOSOCV the PLS-DA model attained decreased accuracy due a drop 

in the sensitivity.  The AUC was above 0.70 for both CV approaches.  

 

 

 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

71.9% 97.4% 81.4% 

Leave-one-sample-

out CV 

76.6% 92.1% 82.4% 
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Table 3.93: Two group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods for the ‘myopathy’ and ‘healthy’ samples. The models were generated using 

the microscope spectra. 

PCA-LDA Sensitivity Specificity Accuracy 

Leave-one-spectrum- 

out CV  

No significant PCs  No significant PCs  No significant PCs  

Leave-one-sample-

out CV  

No significant PCs  No significant PCs  No significant PCs  

 

 

 

Figure 3.141: ROC curves for the cross validated classification models for the ‘myopathy’ and 

‘healthy’ samples. ROC curves for all models generated using the microscope spectra using leave-

one-spectrum-out and leave-one-sample-out CV are shown. The area under the ROC curve (AUC) for 

the different models is also displayed.  

In general, the models generated using the probe spectra performed better than the ones 

generated using the microscope recordings. The LOMO cross-validated PLS-DA probe model 

demonstrated a good performance for separating between ‘myopathy’ from ‘healthy’ samples, 

 

PLS-DA 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Leave-one-spectrum- 

out CV 

68.8% 74.3% 70.7% 

Leave-one-sample-

out CV 

59.4% 74.3% 64.6% 
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achieving an accuracy of 82.4% whereas the microscope model demonstrated an accuracy of 

64.6%. 

b) Myopathy vs. Mitochondrial Disorders vs. No need for biopsy vs. Healthy  

The predictive capability of the four group models generated using the probe and microscope 

spectra can be seen in tables 3.94 and 3.95 respectively. In these models the ‘MND’ and ‘not 

myopathy’ groups were placed together in the ‘no need for biopsy’ group. Thus, these models 

were generated in order to explore the ability of the technique to distinguish between 

myopathies, mitochondrial disorders, muscle with pathological findings (more severe ones in case 

of MND and more subtle changes in the ‘not myopathy’ group) for which a biopsy would not be 

necessary and healthy muscle. Using LOSO decreased the ability of all the models to correctly 

classify spectra. For both PCA-LDA and PLS-DA LOSO cross-validated probe models only the 

sensitivity achieved for the mitochondrial disorders was above 60%, with the sensitivities 

demonstrated for all the other groups being below 50%. Specificity values were much higher than 

sensitivity values.  
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Table 3.94: Four group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the probe spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 32.8% 

LOSOCV: 18.7% 

LOOCV: 80.6% 

LOSOCV: 77.4% 

LOOCV: 68.4% 

LOSOCV: 62.4% 

Mitochondrial 

Disorders 

LOOCV: 66.0% 

LOSOCV: 64.1% 

LOOCV: 85.3% 

LOSOCV: 84.8% 

LOOCV: 81.2% 

LOSOCV: 80.4% 

No need for biopsy LOOCV: 58.9% 

LOSOCV: 49.5% 

LOOCV: 73.5% 

LOSOCV: 68.4% 

LOOCV: 68% 

LOSOCV: 61.2% 

Healthy LOOCV: 39.5% 

LOSOCV: 39.5% 

LOOCV: 92.0% 

LOSOCV: 92.0% 

LOOCV: 84.0% 

LOSOCV: 84.0% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 31.1% 

LOSOCV: 26.6% 

LOOCV: 84.9% 

LOSOCV: 72.6% 

LOOCV: 71.2% 

LOSOCV: 60.8% 

Mitochondrial 

Disorders 

LOOCV: 83.0% 

LOSOCV: 69.8% 

LOOCV: 79.7% 

LOSOCV: 79.2% 

LOOCV: 80.4% 

LOSOCV: 77.2% 

No need for biopsy LOOCV: 60.0% 

LOSOCV: 32.6% 

LOOCV: 81.9% 

LOSOCV: 76.1% 

LOOCV: 73.6% 

LOSOCV: 59.6% 

Healthy LOOCV: 52.6% 

LOSOCV: 31.6% 

LOOCV: 93.0% 

LOSOCV: 88.7% 

LOOCV: 87.6% 

LOSOCV: 80.0% 

 

The models generated using the microscope spectra were also characterised by very unbalanced 

sensitivity and specificity values for most of the groups and a moderate decrease in the accuracy 

values when LOSO cross-validation was employed. In the LOSO cross-validated PLS-DA model the 

‘no need for biopsy’ and ‘healthy’ groups achieved the highest and most balanced sensitivities 

and specificities, whereas the sensitivities for the other two groups were particularly low for the 

other two groups independently of the analysis and CV methods.  
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Table 3.95: Four group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the microscope spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 21.9% 

LOSOCV: 21.9% 

LOOCV: 87.9% 

LOSOCV: 85.6% 

LOOCV: 73.1% 

LOSOCV: 71.3% 

Mitochondrial 

Disorders 

LOOCV: 21.9% 

LOSOCV: 14.6% 

LOOCV: 95.9% 

LOSOCV: 95.9% 

LOOCV: 85.3% 

LOSOCV: 84.3% 

No need for biopsy LOOCV: 86.9% 

LOSOCV: 84.2% 

LOOCV: 46.4% 

LOSOCV: 42.1% 

LOOCV: 67.1% 

LOSOCV: 63.6% 

Healthy LOOCV: 11.4% 

LOSOCV: 5.7% 

LOOCV: 92.1% 

LOSOCV: 92.8% 

LOOCV: 82.2% 

LOSOCV: 82.2% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Myopathy LOOCV: 18.9% 

LOSOCV: 4.7% 

LOOCV: 93.7% 

LOSOCV: 91.9% 

LOOCV: 76.9% 

LOSOCV: 72.4% 

Mitochondrial 

Disorders 

LOOCV: 34.1% 

LOSOCV: 24.4% 

LOOCV: 89.8% 

LOSOCV: 86.1% 

LOOCV: 81.8% 

LOSOCV: 77.4% 

No need for biopsy LOOCV: 74.0% 

LOSOCV: 66.4% 

LOOCV: 66.4% 

LOSOCV: 65.0% 

LOOCV: 70.3% 

LOSOCV: 65.7% 

Healthy LOOCV: 57.1% 

LOSOCV: 62.9% 

LOOCV: 81.7% 

LOSOCV: 78.9% 

LOOCV: 78.7% 

LOSOCV: 76.9% 

 

 

c) Need for biopsy vs. No need for biopsy vs. Healthy 

The predictive capability of the three group models generated using the probe and microscope 

spectra can be seen in tables 3.96 and 3.97 respectively. In these models the ‘myopathy’ and 

‘mitochondrial disorders’ were grouped together as for these patients a biopsy would facilitate 

the diagnosis of the neuromuscular conditions. The ‘no need for biopsy’ group consisted of the 

‘MND’ and ‘not myopathy’ spectra as in the previous section. Using LOSO decreased the ability 
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of the probe models to correctly classify spectra in all different groups. Both PCA-LDA and PLS-

DA LOSO cross-validated probe models did not yield very good sensitivity values, with only the 

sensitivity of the ‘need for biopsy’ group being above 50%. However, this group demonstrated 

the lowest accuracy values due to lower specificity. For the ‘no need for biopsy’ and ‘healthy’ 

groups the specificity values achieved with both models were much higher than the sensitivity 

ones, leading, thus, to higher accuracy values. 

Table 3.96: Three group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the probe spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Biopsy LOOCV: 74.4% 

LOSOCV: 70.1% 

LOOCV: 45.9% 

LOSOCV: 40.6% 

LOOCV: 59.2% 

LOSOCV: 54.4% 

No biopsy LOOCV: 43.2% 

LOSOCV: 37.9% 

LOOCV: 81.3% 

LOSOCV: 79.4% 

LOOCV: 66.8% 

LOSOCV: 63.6% 

Healthy LOOCV: 31.6% 

LOSOCV: 26.3% 

LOOCV: 95.8% 

LOSOCV: 94.8% 

LOOCV: 86.0% 

LOSOCV: 84.4% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Biopsy LOOCV: 64.1% 

LOSOCV: 59.8% 

LOOCV: 66.9% 

LOSOCV: 53.4% 

LOOCV: 65.6% 

LOSOCV: 56.4% 

No biopsy LOOCV: 55.3% 

LOSOCV: 43.2% 

LOOCV: 79.4% 

LOSOCV: 78.1% 

LOOCV: 74.0% 

LOSOCV: 64.8% 

Healthy LOOCV: 52.6% 

LOSOCV: 42.1% 

LOOCV: 92.0% 

LOSOCV: 87.3% 

LOOCV: 86.0% 

LOSOCV: 80.4% 
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Table 3.97: Three group PCA-LDA and PLS-DA classification model performance evaluated using 

different CV methods. The models were generated using the microscope spectra. 

PCA-LDA Sensitivity  

 

Specificity 

 

Accuracy 

 

Biopsy LOOCV: 30.5% 

LOSOCV: 24.8% 

LOOCV: 84.5% 

LOSOCV: 80.7% 

LOOCV: 64.7% 

LOSOCV: 60.1% 

No biopsy LOOCV: 86.9% 

LOSOCV: 82.2% 

LOOCV: 30.7% 

LOSOCV: 27.1% 

LOOCV: 59.4% 

LOSOCV: 55.2% 

Healthy LOOCV: 2.9% 

LOSOCV: 5.7% 

LOOCV: 99.6% 

LOSOCV: 90.4% 

LOOCV: 87.8% 

LOSOCV: 88.1% 

 

PLS-DA Sensitivity  

 

Specificity 

 

Accuracy 

 

Biopsy LOOCV: 56.2% 

LOSOCV: 51.4% 

LOOCV: 79.0% 

LOSOCV: 73.5% 

LOOCV: 70.6% 

LOSOCV: 65.4% 

No biopsy LOOCV: 73.3% 

LOSOCV: 65.7% 

LOOCV: 64.3% 

LOSOCV: 62.9% 

LOOCV: 68.9% 

LOSOCV: 64.3% 

Healthy LOOCV: 34.3% 

LOSOCV: 34.3% 

LOOCV: 92.0% 

LOSOCV: 90.4% 

LOOCV: 85.0% 

LOSOCV: 83.6% 
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4. Discussion  

4.1 Animal Experiments 

In general, the results of the in vivo studies demonstrate that the technique was able to 

discriminate between healthy and diseased muscle for different neuromuscular disorders. In 

order to better investigate the potential of fibre-optic Raman spectroscopy to detect muscle 

disease in vivo, different analysis and cross-validation methods that have been successfully used 

in previous Raman spectroscopy studies, were employed. The results of the in vivo work are 

discussed in the following sections. The first hypothesis, presented in section 1.3.2, stated that in 

vivo Raman spectroscopy of muscle can distinguish between neuropathic and myogenic 

disorders. The second hypothesis was that intra-muscular in vivo Raman spectroscopy can detect 

changes over time in the two neuromuscular disorders mouse models used in this study. The 

classification performance of the models generated using spectra acquired from mdx (myopathic) 

and SOD1G93A (neurogenic) mice at two different disease stages are summarized and discussed in 

more detail in section 4.1.1.6. The classification performance of the models using the spectra 

recorded from the one and three months old mice are summarized and discussed in more detail 

in sections 4.1.1.1-4.1.1.2 (mdx mice) and 4.1.1.4-4.1.1.5 (SOD1G93A mice). In general, all the 

above-mentioned models achieved high accuracy values, demonstrating that the technique was 

able to distinguish between neurogenic and myopathic disorders and between different disease 

stages.  

The third hypothesis stated that in vivo Raman spectroscopy of muscle will not cause significant 

muscle injury and impair motor performance in mice. The results addressing this hypothesis are 

discussed in section 4.1.2. Catwalk, rotarod and MRI data show that the technique did not cause 

any extended damage in muscle tissue and did not lead to consistent or extended impairment of 

motor function across the different groups. 

4.1.1 Neurogenic and Myopathic Neuromuscular Disorders: Studies 1 and 4 

4.1.1.1 Summary of the classification performance: mdx mice 

All models generated using the one month old mdx and C57Bl/10 mice displayed accuracy values 

around or above 70%. The PLS-DA models performed better than the PCA-related models, yielding 

accuracy values above 76% with sensitivity values above 80%, specificity values above 70% and 

AUROC above 0.85 for all CV methods. Using spectra acquired from three months old mdx and 

C57Bl/10 generated models that yielded accuracy values above 80%. The PLS-DA models achieved 

the best performance with accuracy values above 90% and AUROC above 0.96 for all different CV 

methods and more balanced sensitivity and specificity values. The two-group models generated 

using spectra of one and three months old mdx mice in general yielded higher sensitivity than 

specificity values indicating that the models were able to correctly classify more spectra obtained 

from the three months old mice. The PLS-DA models were considered to have exhibited the best 

performance due to accuracy values above 88% for all CV methods and higher specificity values 

(above 80%) than the PCA-related models. All coefficients of variability were below 5.4%.  

The models generated using the spectra obtained from male mdx mice also achieved better 

accuracy values for the three months old mice compared to one month old mice. When 

comparing one month old mdx to C57Bl/10 mice, all the models achieved accuracy values above 

71%. Cross-validation methods had a big impact on the ability of the models to correctly classify 



 

249 
 

spectra and using LOSO cross-validation yielded the lowest accuracy values for all three analysis 

methods. Coefficients of variability varied between 3.4% and 5.4%. Unlike the one month old mice 

related models the performance of the models generated using the three months old mice 

spectra did not change considerably for different CV methods for any analysis. The PLS-DA models 

demonstrated the best performance with sensitivity of 100% and specificity around 97% for all 

different CV methods.  

A drop in sensitivity and specificity values when leave- one-mouse-out (or more mice) instead of 

leave-one-spectrum-out was used could indicate that the model does not capture sufficiently 

inter-subject variability within the same pathology group. Hence, it can classify correctly the 

spectra acquired from one mouse less easily when only spectra from other mice are used. In 

general, there was a moderate drop in the accuracy values of most mdx mice models when either 

LOMO or RLSMO cross-validations were used when compared to LOO for all different analysis 

methods. This was larger for the models and indices related to the one month old mice (for both 

male and female mice), with the models generated using the spectra of the three months old mice 

remaining almost unaffected by the different CV methods. Additionally, the coefficients of 

variability of indices associated with the three months old mice were lower than the ones related 

to the one month old mice. Taken together, these findings could indicate that there was a larger 

variability present in the mdx muscle at one month of age than at three months of age. 

 

4.1.1.2 Classification performance and mdx muscle pathology 

There is agreement in the literature that a sudden onset of necrosis takes place in muscle of young 

mdx mice at approximately 3 weeks of age (Beilharz et al., 1992; Grounds and Torrisi, 2004; Roig, 

Roma and Fargas, 2004; Stupka et al., 2004; Radley-Crabb et al., 2014). By approximately 25 days 

there is a peak in necrosis after which it decreases significantly (Grounds et al., 2008).  

At approximately 4 weeks 20%-80% of the mdx limb muscles have been reported to be affected 

and inflammation, phagocytosis of necrotic tissue and early myogenesis are the main processes 

taking place in the dystrophic muscle, with the rest of the muscle fibres being unaffected (Grounds 

and Torrisi, 2004; Grounds et al., 2008; Radley-Crabb et al., 2014) (also in agreement with 

histological analysis in the present study-section 3.1.2.3, figure 3.45). This description of disease 

progression is not specific for gastrocnemius muscle or mdx mice from our colony but indicates 

that there is severe damage in the tissue that might affect a large number of myofibres and can 

explain the good classification at this stage (better than SOD1G93A vs. C57Bl/6 mice). However, 

since the percentage of intact muscle could be up to 80% a large number of spectra might be 

taken from unaffected tissue and thus it might be more difficult to separate from C57Bl/10 mice. 

This abundance of relatively normal tissue may explain why the classification performance is 

lower than that achieved for the older mdx mice. The differences in the spectra acquired from the 

different regions (e.g. regions with inflammation, phagocytosis, early myogenesis, unaffected 

tissue) in the ‘diseased’ muscle, along with potential variability in the amount of affected muscle 

could complicate the process of building a model and lead to the observed decrease in the 

accuracy values when LOSOCV was used compared to LOOCV at this age.   

Around the 8th week of age, necrosis stabilises at a low level of approximately 6% and the cycle of 

necrosis and regeneration continues throughout life, although it is further reduced by 12 months 
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of age (Grounds et al., 2008; Radley-Crabb et al., 2014). However, even if only 3% of mdx muscle 

fibres undergo necrosis every day, approximately 20% of muscle tissue will undergo necrosis in 

the course of a week (Grounds, 2014; Radley-Crabb et al., 2014). The cycle of necrosis and active 

regeneration lasts approximately 3 weeks, hence, about at least 60% of myofibres will be actively 

affected by these processes at any time for adult mice, despite the low level of necrosis (Radley-

Crabb et al., 2014). Although necrosis and degeneration are still present to a smaller degree at 

about three months of age, the main histological findings at this disease stage are centrally 

nucleated muscle fibres indicating significantly higher muscle regeneration present in the mdx 

muscle compared to healthy muscle (Bulfield et al., 1984b; Roig, Roma and Fargas, 2004; Grounds, 

2014; Gutpell, Hrinivich and Hoffman, 2015) (section 3.1.2.3, figure 3.46). Between 2 and 3 

months of age more than 60% of the gastrocnemius muscle myofibres have been shown to have 

centrally located nuclei and percentages of completely unaffected myofibres of hind limb muscles 

as low as 4.53% have been reported (Bulfield et al., 1984b; Roig, Roma and Fargas, 2004; Radley, 

Davies and Grounds, 2008; Gutpell, Hrinivich and Hoffman, 2015). Thus, at this disease stage there 

is mainly regeneration present in the muscle, making it less heterogeneous than the earlier stage 

studied. In addition, there is also less completely unaffected muscle. All of the above could lead 

to better separation between the spectra acquired from healthy and diseased mice (due to less 

amount of unaffected muscle) and the fact that less processes take place in muscle could result 

in models with better ability to capture the inter-spectral and inter-subject variability. This is also 

indicated by the three months old mice models performance being less affected by different CV 

methods and having less variable performance (i.e. smaller coefficients of variability for both male 

and female three months old models compared to one month old mice models). Moreover, the 

fact that different processes are predominant in the muscle at the two different disease stages 

(necrosis and inflammation vs. regeneration) could partially explain the good separation between 

one and three months old mice.  

 

4.1.1.3 Male vs. female mdx mice comparison  

Using the RLSMO cross-validated models to compare female and male performance, the PCA-

related models generated using the male spectra exhibited a better ability to distinguish between 

healthy and diseased tissue at the early disease stage, mainly due to higher specificity values. The 

PLS-DA models achieved similar accuracy values but with the female mice model achieving better 

sensitivity than specificity. When using RLSMOCV to compare the performance of the models 

generated using male three months old mice spectra compared to that of the female models, it’s 

obvious that male mice models performed better with higher sensitivity and specificity values. 

It has been previously shown that there are differences in the dystropathology between male and 

female mdx mice, with male mice experiencing more severe muscle damage at the early disease 

stage (Salimena et al. 2004). At three months of age muscle from male mice presents more 

inflammation and necrosis and less regeneration than female muscle (Salimena et al. 2004). When 

comparing the models generated from female and male mice it is important to acknowledge that 

16 female mice were used per group and only eight male mice per group.  Using a larger number 

of male (for example 16 mice) mice could affect the performance of the models and their 

difference compared to the performance generated using the spectra from the female mice. 
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4.1.1.4 Summary of the classification performance: SOD1G93A mice 

The two-group models generated using the spectra from the one month old SOD1G93A and control 

mice were not able to distinguish between the two groups. There were no PCs with significantly 

different scores between the two groups and the accuracy achieved using PLS-DA was below 50% 

for LOMO cross-validation. Using the spectra acquired from three months old SOD1G93A and 

C57Bl/6 mice, the PCA-LDA models achieved the best performance, with accuracy values above 

77% and sensitivity values around or above 80% for all different CV methods. The coefficients of 

variability were below 5% for all indices. All the two-groups models generated using the spectra 

of one and three months old SOD1G93A demonstrated a very good performance with sensitivity, 

specificity and accuracy values above 82% for all different CV values. The PLS-DA models 

demonstrated the best performance with sensitivity, specificity values about 94% for the different 

CV methods. The AUROC values were above 0.90 for all different analysis and CV methods and 

coefficients of variability remained below 4.5%. Different CV methods did not have a big influence 

on the any of the diagnostic indices. 

 

4.1.1.5 Classification performance and SOD1G93A muscle pathology 

One month of age is a pre-symptomatic disease stage for this mouse model (Mead et al., 2011; 

Bennett et al., 2014). Thus, the inability of the technique to separate between the two groups 

could be due to biochemical changes in the muscle of the SOD1G93A not yet being present or being 

too subtle. Consistent with this, there were no changes observed in the histological analysis of 

one month old SOD1G93A muscle (section 3.1.2.3, figure 3.46). 

As can be seen from the classification performance of the models described above, the changes 

present in the muscle of three months old SOD1G93A were sufficient in order for the technique to 

be able to separate between SOD1G93A  and control mice as well as between one and three months 

old mice. This is an established disease stage for this mouse model and pathology  is readily 

apparent in the histological analysis (section 3.1.2.3, figure 3.47) ; it was therefore expected that 

it would be easier to detect differences in the muscle when compared to the pre-disease onset 

stage (Hegedus, Putman and Gordon, 2007; Mead et al., 2011; Bennett et al., 2014; Chen et al., 

2020).  

 

4.1.1.6 mdx vs. SOD1G93A classification performance summary and limitations 

When comparing one month old mdx and SOD1G93A mice different CV methods did not have a big 

impact on the performance of the models for any of the analyses. All models achieved accuracy 

values above 90% with generally balanced sensitivities and specificities. All the diagnostic indices 

had very low coefficients of variability (below 2.5%). As already mentioned above, the one month 

old SOD1G93A mice are at a pre-disease onset stage whereas the mdx mice are at an early disease 

stage with pathology evident in the muscle. This could also have made the separation between 

the two groups easier.  

When using spectra acquired from the three months old mice the PCA-related models 

demonstrated accuracies above 82%, sensitivities above 87% and specificities above 73%. The 
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PLS-DA model was thought to have demonstrated the best performance due to similar accuracy 

values and more balanced sensitivity and specificity values. Coefficients of variability remained 

below 4.5%. Thus, as the two neuromuscular disorders progressed the ability of the technique to 

separate between the two different groups decreased, as expected. This could be due to similar 

disease-related changes taking place in the muscle, for example regeneration related processes, 

since centrally-nucleated myofibres were found in the histological analysis of both three months 

old mdx and SOD1G93A mice (section 3.1.2.3, figure 3.46 and 3.48). 

For these comparisons it is important to acknowledge the fact that mice with different genetic 

backgrounds were compared and this might have played a role in the ability of the model to 

separate the two groups. Furthermore, the SOD1G93A mouse model is a transgenic model and the 

existence of the transgene might also cause artefacts that could lead to a better separation.  

Notwithstanding the above mentioned limitations, the separation between neurogenic and 

myopathic pathology is a very important finding and possibly the most important one regarding 

clinical translation of the technique. Understanding the origin of the neuromuscular disorder 

could aid and accelerate the diagnostic process, by indicating more helpful diagnostic follow up 

tests (for example in many neurogenic conditions a muscle biopsy would not be necessary). In the 

clinic, neurogenic and myopathic disorders can sometimes be clinically indistinguishable; for 

example, lower motor neurone predominant MND and chronic myopathy can often present with 

similar symptoms and clinical examination findings. Electromoygraphy can usually distinguish 

between the two categories but sometimes difficulties arise as, for example large motor unit 

potentials and late recruitment, that are normally characteristic of denervation, might be also 

present in chronic myopathy (Paganoni and Amato, 2013; Sogawa et al., 2017). Hence, additional 

information on the underlying aetiology of the neuromuscular condition could be very helpful.  

 

4.1.2 Post in vivo Raman spectroscopy recording effects 

Evaluating the extent of muscle damage caused by the needle insertion and the laser light during 

the in vivo Raman recordings is essential in order to investigate the potential of the technique as 

a clinical test. Furthermore, understanding the effect of the recordings on both the locomotion 

and motor performance of the mice and on tissue structure will be of use in determining whether 

in vivo, intra-muscular Raman spectroscopy can be used alongside other biomarkers of disease in 

pre-clinical murine studies.  

The evolution of skeletal muscle injury after a surgically-induced needle injury has been studied 

in rats by Contreras-Muñoz et al (Contreras-Muñoz et al., 2016). In this study it was shown that 

due to degeneration and inflammation following the injury, oedema was apparent in the first 24h 

after the experimental procedure and was then slowly re-absorbed over the following 3 weeks 

(Contreras-Muñoz et al., 2016). To assess short- and long-term effects of the procedure on gait 

and motor function in the present study, rotarod and catwalk recordings were acquired one week 

before the (active and ‘sham’) Raman recordings one day and two weeks post-experiment. Post-

mortem MRI was performed on a small number of mice in order to assess the potential tissue 

damage and its evolution six hours, two days and two weeks post-experiment. 

For three groups (one month old SOD1G93A and C57Bl/6, three months old C57Bl10 mice) the 

‘sham’ recordings were not completed; less mice underwent the ‘sham’ procedure than initially 



 

253 
 

planned. Therefore, the catwalk and rotarod data are also undertaken on fewer mice for these 

groups. This decision was reached after taking into consideration that the mice that had 

undergone the active procedure had not exhibited any consistent change in the rotarod 

performance.  Additionally, no sub-group that had undergone the ‘sham’ procedure showed a 

decreased rotarod performance.   

The results from the motor function assessment tests and the imaging studies are discussed in 

the following sections. 

4.1.2.1 Motor Function Assessment 

4.1.2.1.2 Rotarod Test and post-experiment performance 

The rotarod test is a difficult task that probes muscle strength and condition, as well as motor co-

ordination and balance. It is often used in animal studies to assess motor function and measure 

motor performance (Mead et al., 2011). Mice can be tested on the rotarod at a constant set 

speed, or at an accelerating mode. Advantages of rotarod testing include the fact that it is an 

automated procedure and that there is no need for training in order to be able to administer the 

test (Bennett et al., 2014). The main disadvantage of the test is that it based on a forced exercise 

(Bennett et al., 2014). Moreover, the performance can be quite variable which leads to large 

animal numbers being required for reliable results.  

Initially, it was used by Dunham and Miya for neurological function studies (Dunham and Miya, 

1957). Since then it has been employed in animal studies using various mouse and rat strains. 

Examples of such studies include investigation of the effects of drug administration on animal 

behaviour and motor function, recovery from stroke and traumatic brain injury (Hamm et al., 

1994; Chen et al., 2001; Cenci and Lundblad, 2005). The test has been previously used in both 

mouse models we have employed in this study (SOD1G93A and  mdx) in order to assess changes in 

motor function and muscle weakness due to disease progression (Mead et al., 2011; McDonald 

et al., 2015; Oliván et al., 2015), or due to an intervention such as drug administration in 

treatment studies (Mead et al., 2011; Sali et al., 2012; Potenza et al., 2016; Ito et al., 2017). It 

has, therefore, been used in this study as a gross assessment of the motor function and muscle 

strength following the in vivo Raman procedure injury.  

From the rotarod data of all the groups, with the exception of the 3 months old SOD1G93A mice, 

there is no indication that the in vivo Raman technique causes any impairment of the motor 

function of the mice. Additionally, the active and ‘sham’ procedures do not seem to have a 

different effect on the performance of these mice. Generally, both mdx and control mice seem to 

perform better with less variability in this test than SOD1G93A and C57Bl/6 mice (at all time points 

of rotarod measurements). In keeping with these observations, rotarod performance of SOD1G93A 

mice has been previously shown to vary among different groups from an early age (40 days) and 

most of the mice (SOD1G93A and C57Bl/6) in this study were not able to stay on the rod for 300s 

even at this early disease stage (Mead et al., 2011). Three months old C57Bl/6 mice exhibited a 

more consistent behaviour than one month old control mice. Since C57Bl/6 animals are not 

affected by disease progression this may be attributed to age related behavioural changes, for 

example, getting accustomed to handling.  

The only group that exhibited a significant change in the rotarod performance after the 

experiment is the three months old SOD1G93A mice that have undergone the active Raman 
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experimental procedure. The data acquired from the ‘sham’ mice sub-group followed a similar 

downward trend, but the decrease was not significant. The ‘active Raman’ group performed 

significantly worse only two weeks after the Raman measurements but not in the rotarod 

measurement the day after the experiment. This could suggest that the acute injury was not 

extensive and did not have a bigger impact on muscle function in these mice (as compared to the 

mdx mice, for example). The fact that only the three months old SOD1G93A mice exhibited a 

significantly decreased ability to perform the test two weeks post-experiment could be attributed 

to the fact that the diseased muscle is less able to cope with the long-term effects of the injury 

due to compromised structure and function and worse regenerative capacity. Since the active 

procedure is potentially more severe than the ‘sham’, the long-term injury of this procedure could 

be more extensive and therefore have a larger impact on the rotarod performance of the mice.  

However, it has been previously shown that there is an impairment in the motor function that 

leads to a similar decrease in the rotarod performance of the SOD1G93A mice between 83 days 

(age of our mice at the baseline recording) and 104 days (age of the mice at the two weeks post 

experimental recording) of age due to disease progression (Mead et al., 2011). Hence, it is perhaps 

more likely that the observed change in the rotarod data (or at least part of the change) was due 

to the disease progression in the three weeks interval between the two rotarod measurements 

rather than the experimental procedure. To further investigate the significant change in the 

performance of only one of the two groups and get a better understanding of how these two 

procedures affect motor function at this late disease stage and how much of the observed change 

was due to disease progression by recording the rotarod performance of mice at 104 days of age 

(n=8) that did not have any procedure (section 3.1.2.4.1b, figure 3.53). 

Ordinary one-way ANOVA did not identify a significant difference between the performances of 

the mice that had undergone any of the two procedures and the ‘control’ mice. This along with 

the varying results coming from the two different three months old SOD1G93A sub-groups (active 

and ‘sham’ procedure groups) might reflect the inherent variability of the test, and the fact that 

a larger number of mice is required to understand better if the technique has a more severe long-

term effect on the SOD1G93A  mice. It has been shown before that the rotarod is a variable readout 

for this mouse strain (as also seen in the present data) and large n numbers are required (n=14 

per group suggested by the protocol described in (Mead et al., 2011). Thus, the lack of consistent 

findings for this strain at the third time point might be due to the small number of mice (n=8) used 

in the second post experimental time-point.  

In conclusion, the performance of the mice was not significantly affected by any of the procedures 

one day post-experiment, indicating that the technique does not severely affect the motor 

function of the mice in the first few days post-procedure. As can be seen from the SOD1G93A and 

C57Bl/6 mice the performance of these mice on the rotarod can be quite variable. This renders 

drawing conclusions from the data acquired from the second post-experiment time point more 

difficult due to the smaller animal numbers used at this time point. The rotarod performance of 

the mdx and C57Bl/10 mice was much more consistent and most of the mice completed the full 

test at all three time points, indicating that the procedure did not affect the ability of the 

dystrophic and control mice to perform the rotarod test at any time point. 
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4.1.2.1.3 Catwalk Gait Analysis 

The Catwalk is an automated gait analysis system that can quantitively assess gait and locomotion 

in rodents. The static and dynamic parameters generated by the catwalk system have therefore 

been used in numerous animal studies to assess motor performance and coordination. The main 

advantages of the Catwalk include objectivity, sensitivity and that it is an unforced activity. 

Unforced activities, for example, letting animals walk freely are less stressful for the animals and 

might prove more useful in detecting gait abnormalities, that might be more easily detectable 

during a normal activity. However, the large number of parameters generated can complicate 

choosing the most important ones and the subsequent data analysis. Additionally, the test and 

the manual labelling of the footprints can be time-consuming in studies with large animal 

numbers. 

Catwalk has been extensively employed to characterize the motor phenotype and assess motor 

function in mouse and rat models of neurological, muscular and skeletal disorders that affect 

movement such as Huntington’s Disease (Vandeputte et al., 2010; Abada et al., 2013), Parkinson’s 

Disease (Vandeputte et al., 2010), Multiple Sclerosis (Bernardes, Leite and Oliveira, 2017), 

Amyotrophic Lateral Sclerosis (Mancuso, Oliván, et al., 2011; Mead et al., 2011), Limb Girdle 

muscular dystrophy 2i (Maricelli et al., 2016) and  arthritis (Parvathy and Masocha, 2013b). 

Catwalk was also used to assess coordination and balance of mdx and control mice by Prigonine 

et al., in a study that investigated the existence of cerebellum dysfunction in Duchenne muscular 

dystrophy (Prigogine et al., 2012). It has also been used in studies involving various rodent models 

to assess gait disturbances and the recovery process (with or without treatment) from stroke 

(Parkkinen et al., 2013), peripheral nerve injury (with emphasis on sciatic nerve injury) (Deumens 

et al., 2007; Crowley, Kataoka and Itaka, 2018), skeletal muscle injury (Ninagawa et al., 2013; 

Vieira, Kenzo-kagawa and Cogo, 2016) and knee injury (Gabriel et al., 2007). Viera et al. 

demonstrated a significant change in various gait analysis parameters like stand duration, 

maximum intensity, swing duration, swing speed and stride length post skeletal muscle injury 

caused by injection of snake venom (Vieira, Kenzo-kagawa and Cogo, 2016). Changes in the 

maximum contact area and stance phase duration were reported by et al after a severe crush 

injury of the TA (Ninagawa et al., 2013). 

Pain is expected to cause behavioural adaptations (Gabriel et al., 2007). In the case of pain in the 

limbs these will involve changes in the gait. Moreover, injury of the limb muscles might lead to 

motor function impairment. Catwalk has therefore been used in this study, as in the previous 

studies, involving different types of injuries mentioned above, to investigate gait disturbances and 

motor impairment caused by the in vivo Raman injury. 

The temporal, spatial and kinetic parameters are calculated separately for each paw. Most of 

these parameters are associated with the pressure that the animal puts on the paw and are 

therefore dependent on the animal’s weight (Gabriel et al., 2009). Since the Catwalk recordings 

in this study were acquired over the course of more than three weeks changes in the weight were 

expected especially for the younger mice. Hence, in order to prevent changes in the animal’s 

weight from affecting the results the ratios of the diagonal paw parameters (LF/RH, RF/LH), 

instead of the absolute values (individual paw readings), were used (Liu et al., 2013).  

The analysis of the Catwalk data was done for each group separately as inter-strain or age 

differences can affect locomotion and thus Catwalk performance. Moreover, it is essential to 
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understand whether the experimental procedure affects healthy and diseased muscle tissue 

differently for future preclinical and clinical studies. Tissue undergoing pathological changes due 

to an underlying neuromuscular disorder might have worse regenerative capacity which could 

lead to the procedure having a more severe effect on diseased muscle.  

Motor performance of the mice does not seem to be severely affected by any of the experimental 

procedures for any of the different strains and ages. There are no obvious trends observed in any 

of the parameters and there are no parameters consistently affected across the various groups. 

Mice that underwent the ‘sham’ procedure did not exhibit any significant changes in gait at any 

time point. Changes in a small number of gait parameters (either one day or two weeks after the 

procedure) were observed only in some of the groups that underwent the active Raman 

procedure.  

Forelimb base of support (BOS) of one month old mdx mice was decreased a day after the 

experimental procedure. BOS is a parameter related to interlimb coordination. Larger BOS allows 

for more stable gait and an increase in the BOS could make up for an unstable gait (Mead et al., 

2011). The fact that the BOS of the forelimb decreased and the hindlimb BOS did not change 

significantly shows that the procedure did not cause instability. Since the procedure was not 

performed on the front limbs (only in both hind limbs) the observed change in the front limb BOS 

might be due to hindlimb rather than forelimb compensation (e.g. pain when exerting pressure 

on the hind limbs that affects posture and gait, changing, thus, the placement position of the fore 

limbs).  

The LF/RH duty cycle ratio of the one month old mdx mice decreased one day post-experiment. 

This could be due to a decrease in LF duty cycle, an increase in RH duty cycle or both. In this 

instance the duty cycle ratio decrease was due to a post-experiment increase in the RH duty cycle. 

Duty cycle (percentage of stance in the step cycle) could be affected by the stand (duration of 

time the paw is in contact with the glass floor) and swing (duration of time the paw in not in 

contact with the glass floor). In the present data it was an increase in the stand phase of the RH 

step cycle (swing + stand) that led to an increase in the duty cycle. The change in the duration of 

the stand phase was not significant per se (i.e. stand parameter was not significantly larger post-

experiment) but was significantly altered in the context of its percentage in the step cycle. 

Gastrocnemius muscles of the hind limbs (the muscles on which the procedure was performed) 

are related to the end of the stance phase (Krouchev, Kalaska and Drew, 2006; Mancuso et al., 

2011) and have been shown to be important muscles for ankle plantarflexion in mice (Krouchev, 

Kalaska and Drew, 2006; Charles, Cappellari and Hutchinson, 2018). The increase in duty cycle 

may therefore arise from a decreased ability of injured gastrocnemius muscle to push the 

hindlimb off the ground ending, thus, the stance phase and initiating the swing phase (Mancuso 

et al., 2011). This could suggest that putting weight on the injured paw for a longer time is less 

painful than the movement required to lift the foot off the floor.  

The percentage of time spent walking on a diagonal step pattern was found to be significantly 

increased in three months old C57Bl/10 mice at both post-experiment time points in comparison 

with the baseline recordings. It is easier to understand this change when changes in the other 

support stepping patterns are also taken under consideration even if they were not found to be 

significant. There was an upsurge in all step patterns related to support on two paws and support 

on three and four paws had the largest fall at both post-experiment time points (data not shown). 
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Similarly, three months old mdx mice used a significantly reduced three paw stepping pattern two 

weeks after the experimental procedure. Support on four paws was also decreased, although not 

significantly. These changes were compensated mostly by a non-significant increase in the 

diagonal step pattern and less so by an increase in single, griddle and lateral step patterns. 

Normally mice spent approximately 70%-80% of their time walking on a diagonal stepping pattern 

and increased support on more than two paws (three or four) is often associated with instability; 

the mice attempt to make up for an unstable gait using more than two paws (Gabriel et al., 2009; 

Mead et al., 2011a; Maricelli et al., 2016). The decrease in the three and four paw stepping 

patterns in both three months old mdx and C57Bl/10 mice indicates that the experimental 

procedure does not cause reduced gait stability that would urge the mice to rely on more than 

two paws. The increase in the diagonal pattern could result from habituation to the gait analysis 

test (since it was the second and third time that the mice were undertaking it), which could lead 

in the mice walking more normally in subsequent.  

In conclusion, the ‘sham’ procedure appears to be harmless to the motor activity of the mice and 

does not seem to cause any gait disturbances at any time point after the experimental procedure. 

Only inconsistent changes, that were not similar with those reported in other injury paradigms, 

were observed in a small number of gait parameters in three of the groups that underwent the 

active experimental procedure. Hence, the technique was not thought to cause a severe 

impairment of the motor function consistently across the different groups for a long period of 

time.  

4.1.2.2 Tissue Damage Assessment  

MRI can effectively detect oedema and haemorrhage and is therefore used to assess muscle injury 

in preclinical and clinical studies (Lovering, Mcmillan and Gullapalli, 2009; Contreras-Muñoz et al., 

2016). It has been previously used in various murine models including SOD1G93A and mdx mice. 

These studies include monitoring the natural course of the disease in SOD1G93A mice (Mead et al., 

2011) and the effect of gene therapy in mdx mice (Park et al., 2015). Moreover, MRI studies have 

been previously employed to successfully assess induced muscle injury in various murine models 

(Pratt et al., 2012; Contreras-Muñoz et al., 2016). It was therefore used for the evaluation of the 

potential skeletal muscle damage caused by the Raman procedure in this study.  

Due to the small size of the animals’ gastrocnemius muscle, the even smaller potential injury site 

and the lack of certainty that our recordings injure the muscle substantially, experimentation with 

the sample geometry and the scanning parameters was required. T2 weighting was selected as it 

increases the contrast between healthy and injured (or diseased) tissue. This arises from the fact 

that tissue damage (for example muscle injury) results in an inflammatory response which 

includes the formation of oedema (Theodorou, Theodorou and Kakitsubata, 2012). Since water 

has long T2 relaxation time, the tissue site with a higher water content (oedema) appears brighter 

in T2-weighted images than the surrounding normal tissue (Allisy-Roberts and Williams, 2008; 

Pratt et al., 2012). Different imaging techniques have different advantages. The main advantage 

of RARE imaging, which was chosen for this study, is the significant decrease of the time required 

to acquire a complete image. However, in RARE T2 weighted images, T2 relaxation time of fat 

increases resulting thus in a very bright fat signal (Allisy-Roberts and Williams, 2008). Therefore, 

fat suppression was used.  
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Parameters that define high resolution and high contrast MRI images are the following: TE (echo 

time), TR (repetition time), signal to noise ratio (SNR), spatial resolution and slice thickness. Echo 

and repetition times describe specific time intervals during the image acquisition and determine 

the image contrast. Figure 4.1 shows the T2 contrast in the images of two tissues with different 

T2 times (e.g. healthy and injured muscle tissue). Although the signal intensity is higher for both 

tissues for short TEs (TE1 in figure 4.1), the contrast (i.e. the difference of the two signals) is not 

maximum, which in this work might have led to a difficulty in identifying the oedema. As can be 

seen in figure 4.1, the TE for maximum contrast (TE2) is at a region of lower signal intensities 

(longer TE). However, TE must not be too long as this will lead to a very small signal and thus a 

poor SNR (Allisy-Roberts and Williams, 2008). Therefore, identifying and using the optimum TE 

between two specific tissue areas (healthy and injured muscle), required multiple test scans and 

was essential. 

 

Figure 4.1: T2 Contrast.  

Maximum contrast between the tissues with different T2 times is at TE2. Shorter echo time leads to 

higher signals from both tissues but worse contrast. Longer echo time leads to very low signals.  

 

Longer TR also increases the image contrast, but it also increases the overall scan time. Therefore, 

finding an appropriate TR was also very important. Since all noise decreases the contrast between 

tissues, SNR is quite an important factor that influences the image contrast as well (Allisy-Roberts 

and Williams, 2008). Signal averaging is a commonly used signal processing technique that 

increases the strength of the signal in comparison to the noise. In MRI, by increasing the number 

of excitations (Nex) or number of signal averages, each slice is acquired more than once and 

averaged in order to increase the SNR and thus its contrast. However, this again increases the 

scan time and optimisation is necessary.  

Due to the small size of the sample very high resolution images were required in order to be able 

to spot and identify the tissue damage. Reduction of the pixel size (given by the ratio of the FOV 

and the matrix size), which for a 2-D image essentially gives the spatial resolution, and the slice 
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thickness, can only be achieved at the expense of imaging time. However, due to the use of the 

fast spin echo imaging modality, which largely reduced the imaging time, high spatial resolution 

images with an increased SNR (up to 50 image averages) were acquired with an imaging time of 

approximately 2 hours.  

Bright areas in the MRI images that could be attributed to muscle damage due to our active 

Raman procedure were observed six hours post-injury. However, the tissue damage seems to be 

limited. The oedema, although probably still present in one of the mice scanned two days post-

experiment, seemed to have decreased at the second time point and was undetectable in the 

mice scanned at two weeks. No bright areas due to inflammation were identified in the scans of 

the mice that had undergone the ‘sham’ procedure at six hours and two days after the injury, 

although only 2 mice were scanned at each time point. Hence, no mice were scanned at the third 

time point for this procedure.  

4.1.3 mdx Intervention and preclinical MND studies 

Studies 2 and 3 were performed in an attempt to assess the potential of the technique to detect 

more subtle differences or changes in the muscle within each neuromuscular disorder (not 

healthy vs. diseased and neurogenic vs. myopathic). The paradigms used were an intervention 

(study 2; running wheel in mdx mice) or different mouse models of the same disorder (study 3; 

SOD1G93A vs TDP-43).  

4.1.3.1 mdx Intervention Study  

4.1.3.1.1 CK measurements 

Elevated levels of serum CK have been previously reported in both DMD patients and in the mdx 

mice and creatine kinase levels in serum are often used to measure muscle damage and the 

effects of an intervention in studies involving models of DMD (Anderson, Mcintosh and Poettcker, 

1996; Granchelli, Pollina and Hudecki, 2000; Nguyen et al., 2002; De Luca et al., 2005; Spurney et 

al., 2009). Despite the relationship between muscle damage and serum CK not being 

straightforward, CK levels have been previously shown to increase with exercise due to the 

exercise-induced exacerbation of the pathology (De Luca et al., 2005; Hodgetts et al., 2006; Radley 

and Grounds, 2006; Grounds et al., 2008; Spurney et al., 2009). Thus, serum CK was measured as 

a broad indicator of exercised induced muscle damage in the intervention study. As can be seen 

in figure 3.62 (section 3.1.3.1) there was an increase in the serum CK levels of the mdx mice after 

exercise, but the change was not significant. Hodgetts et al. also reported a similar insignificant 

increase in serum CK levels, despite a significant increase in necrotic fibres in limb muscles 

(Hodgetts et al., 2006). Moreover, in our study we did not find a correlation between the 

individual distance run by each mouse and their serum CK levels. This could be due to the fact 

that we did not measure the change in the CK levels due to the exercise but the absolute values 

after the end of the exercise. Interestingly, we also did not observe a significant difference in the 

serum CK level between C57Bl/10 and mdx mice at three months of age. This was probably due 

to the large biological variation of the serum CK levels of individual mice, which a well-known 

problem of this biomarker (Radley and Grounds, 2006; Grounds et al., 2008; Carlson, 2014).  
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4.1.3.1.2 Running Wheel Exercise, Pathology exacerbation and Classification Performance 

It is well established that exercise intensifies myofibril necrosis and deteriorates muscle strength 

in mdx mice (Grounds et al., 2008; De Luca, 2014; Manning and O’Malley, 2015). Since mdx mice 

normally develop a mild phenotype, exercise induced tissue damage that leads to exacerbation 

of muscle pathology and tissue damage is often employed in order to evaluate the efficacy of 

potential new treatments (Radley and Grounds, 2006; Brunelli et al., 2007; Grounds et al., 2008; 

Radley, Davies and Grounds, 2008). Voluntary wheel running and treadmill running are the most 

widely used in vivo running exercises. The main advantages of the wheel running exercise are that 

it is a voluntary activity and that there is no need for extensive training or human intervention. 

Additionally, each individual animal’s voluntary capacity for running can be recorded (De Luca, 

2014). One major disadvantage of that type of exercise is that since it is a voluntary exercise, the 

distance run by individual mice can differ considerably (De Luca, 2014).  Increased damage in mdx 

muscle has been reported following as little as 24 and 48 hours of voluntary exercise, although 

several  studies employ much longer periods of exercise, such as 4 weeks and 60 days(Carter et 

al., 1995; Archer, Vargas and Anderson, 2006; Hodgetts et al., 2006; Landisch, Kosir and Nelson, 

2008). 

In this study we used a single 48-hour epoch of wheel running exercise since it has been previously 

shown to exacerbate the disease in order to assess the potential of the technique to separate 

exercised from non-exercised mice (Radley and Grounds, 2006) . The 48-hour running wheel 

exercise is a quick and relatively easy intervention and allows to study of the induced necrosis 

before the development of new tissue/regeneration (Grounds et al., 2008) . Exercise has a 

different impact on various limb muscles (depending on which muscles are recruited for the 

specific exercise regimes) and this needs to be taken into account. Using a single 24 hour bout of 

exercise Archer et.al showed that damaged myofibres significantly increased in quadriceps 

(P<0.01) and that quadriceps were more damaged than TA, diaphragm and gastrocnemius 

(Archer, Vargas and Anderson, 2006). A significant increase in damaged myofibres in 

gastrocnemius muscle was also observed, albeit less significant than quadriceps (P<0.05). 

Quadriceps were also shown to be more severely affected during running wheel exercise than TA 

after a single 48-hours exercise epoch, with the extent of exercised induced damage being 

insignificant for TA and the percentage of necrotic fibres significantly increasing from 

approximately 8% to approximately 13% for quadriceps (Radley and Grounds, 2006). In the same 

study gastrocnemius muscle was also reported to have reasonable amounts of damage after the 

running wheel exercise (10%-15%) (Radley and Grounds, 2006).  

Since it has been shown that different muscles are affected differently by exercise a combination 

of in vivo and ex vivo measurements were obtained for this study in order to record from as many 

muscles as possible and better evaluate the ability of the technique to detect changes in muscle 

pathology.  

In agreement with the literature, the models generated using the spectra from exercised and non-

exercised TA muscle demonstrated very low sensitivity and specificity values (below 35%), 

indicating that the very limited amount of exercise-induced damage and alterations in muscle 

pathology, previously reported for this muscle, were not enough for separation between 

exercised and non-exercised TA. This was also similar for diaphragm.  
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The models generated using spectra acquired ex vivo from quadriceps achieved accuracy values 

between 63.4% and 71.3% for the different models, suggesting that the more severe changes in 

muscle pathology, reported in the literature, were more easily detectable by the technique. 

However, when LOSOCV was used there was a big drop in the all the diagnostic indices leading to 

accuracy values ranging between 48.5% and 61.4% for the different analysis methods. The sample 

size of quadriceps allowed for six spectra to be recorded from each sample. This in combination 

with the relatively small number of samples (8 exercised and 10 non-exercised samples) and the 

big variability in the performance of the mice (and thus probably the variability in the 

exacerbation of the disease/subject) can probably explain the decrease in the ability of the models 

to correctly classify spectra when LOSO was used. As a large number of spectra were acquired per 

sample, taking out only one spectrum would still leave a lot of information from that muscle in 

the training set, that would allow to correctly classify the left out spectrum. Moreover, since the 

running wheel performance of the mice was quite variable (see figure), the changes in the muscle 

due to exercise will also be variable and would vary considerably between different subjects. 

Thus, the number of samples used might have not been enough to capture this variability. 

The models generated using the spectra acquired from exercised and non-exercised mdx mice in 

vivo from gastrocnemius muscle achieved accuracy values around 70% when LOO was used but 

there was a drop (62%-65.5%) when LOMOCV and RLSMOCV were used. These models also 

demonstrated very unbalanced sensitivity (above 54%) and specificity (above 70%). This indicates 

that the models were able to identify more accurately the spectra from the non-exercised mice. 

The drop in accuracies when LOMOCV was used instead of LOOCV suggests that the model could 

not capture the inter-subject variability sufficiently. The PLS-DA models demonstrated better 

performance with similar accuracy values but more balanced sensitivity and specificity values.  

Since it has been previously reported that gastrocnemius muscle is moderately affected during 

the running wheel exercise, sensitivity, specificity and accuracy values lower than those achieved 

for separating between mdx and C57Bl/10 mice, where a clear difference in muscle pathology is 

present, were expected. As can be seen in figure 3.61 (section 3.1.3.1) the mice that underwent 

the wheel running exercise and active Raman recordings run an average of 6.5km with the total 

distance run by different animals ranging from 0.4 to 21.1 km. Similar total and average run 

distances and large variability in the performance of individual mice have previously been 

reported and as already mentioned above are a big limitation of this intervention (Archer, Vargas 

and Anderson, 2006; Hodgetts et al., 2006; Radley and Grounds, 2006; Radley, Davies and 

Grounds, 2008; De Luca, 2014). For this study the big variability in the individual performances of 

these mice could lead to two problems. Firstly, some of the mice run very small distances and will, 

thus, have limited changes in muscle pathology and may therefore be classified as non-exercised 

mice. Secondly, since the running wheel performance of the mice was quite variable, the changes 

in the muscle due to exercise will also be variable. This in turn will make it more difficult to build 

a model that will be able to sufficiently capture this variability due to exercise will also be variable. 

This, in turn, will make it more difficult to build a model that will be able to sufficiently capture 

this variability and separate the two groups. 

Altogether, the results of this study showed some promise in detecting potentially subtle 

pathological changes, but further histological analysis would be required to understand better 

how variable the pathological changes in the muscles actually were. A better understanding of 
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the correlation between run distance and exacerbation of the pathology could then better 

facilitate a larger study with more homogeneous groups (for example, mice that run above a set 

distance that seemed to be causing clear changes, mice than run below that distance, mice that 

did not exercise). 

 

4.1.3.1.3 Comparing Different Muscles 

Finally, the spectra acquired ex vivo from non-exercised quadriceps, TA and gastrocnemius 

muscles were placed together in the limb muscles group and compared to spectra acquired from 

diaphragm in order to explore the separation achieved by the technique between different 

muscles. Using LOMOCV decreased the ability of all models to correctly classify spectra due to a 

drop in sensitivity in the PCA related models and due to a drop in specificity in the PLS-DA model. 

However, all the models were able to separate between limb muscles and diaphragm with high 

accuracy values. The PLS-DA models yielded better sensitivity than specificity values. Using 

LOMOCV the PCA-LDA model was considered to have achieved the best performance as it 

achieved high accuracy value (93.5%) with the most balanced sensitivity and specificity values 

(both above 80%). Diaphragm has been shown to be more severely affected than the limb muscles 

with severity of pathology that resembles that of the DMD patients (Stedman et al., 1991; Niebroj-

Dobosz, Fidzianska and Glinka, 1997; Grounds et al., 2008). This alongside structural differences 

in the different types of muscle could have led to the very good separation achieved between the 

different muscles. 

 

4.1.3.2 Preclinical MND Study  

4.1.3.2.1 Summary of Classification Performance 

All models generated using the spectra from TDP-43 and TDP-43Q331K mice achieved accuracy 

values above 75% with higher sensitivities (above 75%) than specificities (above 71%). The PLS-

DA models demonstrated the best performance with accuracy values around above 80%. 

Different CV methods had a larger impact on the PLS-DA model compared to the PCA-related 

ones.  

When comparing SOD1G93A mice to TDP-43Q331K, the RLSMO cross-validated PCA-related models 

yielded accuracy values around 77% with very balanced sensitivity and specificity values. The PLS-

DA models achieved much higher sensitivity values (89.7%-96.6%) than the PCA-related ones but 

with much lower specificity values (62%-70%). Hence, despite similar accuracy values achieved 

with all the different analyses, PCA-LDA was considered to have demonstrated the best 

performance.  

 

4.1.3.2.2 SOD1G93A and TDP-43 mouse models: classification performance comparisons and limitations  

In general, the technique was able to separate between TDP-43 mice with and without the Q331K 

gene mutation with similar sensitivity and specificity values to those achieved by the three 

months old SOD1G93A vs. C57Bl/6 mice models (particularly the LOMO and RLSMO cross-validated 

models demonstrated very similar performances) at a disease stage, where phenotypic changes 

are apparent for both mouse models (Mead et al., 2011a; Arnold et al., 2013). The main difference 

between these comparisons is that for the SOD1G93A mice the control mice were the non-
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transgenic C57Bl/6 littermates, whereas for the TDP-43Q331K mice the control mice used were the 

TDP-43 mice, which are transgenic mice in which the human TARDBP gene without the Q331K 

mutation has been inserted. Ideally in each animal study both types of control mice should be 

used as this would give an opportunity to better understand the effect of the artefacts present in 

the data due to the insertion of the transgene in the mouse genome. However, the overall 

classification performance for the TDP mice at a symptomatic disease stage is encouraging.  

As described above good classification performances were achieved by the models generated 

using SOD1G93A and TDP-43Q331K mice spectra. Similar to the comparison between SOD1G93A and 

mdx mice, it also needs to be stressed here that these are different mouse strains. Thus, the 

interpretation of the performance of these models needs to be done with caution as the above 

mentioned factors might cause differences that could facilitate a better ability to classify between 

the two models not due to disease related reasons. Moreover, not much is known yet about the 

TDP-43 mouse model and how well it resembles the human condition, as this is a relatively new 

and not very intensively studied model. It has been shown by Arnold et al. that there is 

denervation present in the TDP-43Q331K muscle and previously undertaken unpublished work from 

my supervisors’ groups has also revealed that CMAP amplitude is significantly lower in the TDP-

43Q331K mice compared to TDP-43 mice (Arnold et al., 2013; Stephenson, Alix, Mead unpublihsed 

data).  

 

4.1.4 Comparison of Raman Spectroscopy performance with existing in vivo biomarkers 

In this section established in vivo methods for studying the natural course of disease in MND and 

DMD preclinical models are compared to Raman spectroscopy.  

 

4.1.4.1 mdx Mouse Model 

Established in vivo biomarkers for monitoring disease progression and treatment efficacy for the 

mdx mouse model include various functional tests, histological analysis and imaging and have 

been presented in section 1.1.3.2.1. In comparison to Raman spectroscopy functional tests do not 

require anaesthesia and are completely non-invasive. However, Raman spectroscopy is a more 

objective technique since it is not confounded by behavioural and weight changes. Additionally, 

the mild phenotype may limit the ability of these techniques to be used as biomarker for this 

mouse model. Despite the limited phenotype, it has been shown that there are histological and 

biochemical changes present in mdx muscle, which could make techniques like Raman 

spectroscopy more suitable to monitor disease progression and alterations due to intervention. 

As already mentioned, the main disadvantage of MRI is that it is a very expensive technique and 

that long acquisition times, and, thus, prolonged anaesthesia, is required in order to get high 

resolution images. This can lead to difficulties in the maintenance of anaesthesia and very careful 

monitoring of physiological parameters is required for prolonged periods of time. This problem is 

not encountered with Raman recordings for which the maintenance of anaesthesia was required 

for much shorter period of time. Histological analysis is the gold standard assessment but requires 

sacrificing the animals and hence cannot be performed longitudinally. 

In the current study, histological analysis showed pathology present in mdx muscle at both one 

and three months of age (section 3.1.2.3, figure 3.45 and 3.46). Raman spectroscopy achieved 



 

264 
 

good separation between the two mice groups (mdx and C57Bl/10 mice) at one month of age, 

better separation at three months of age and also very good separation between one and three 

months old mdx mice. The performance of the mdx mice on the rotarod test was not significantly 

different between one month old mdx and C57Bl/10 mice and between one and three months 

old mdx mice. The rotarod running time did, however, differ significantly between three months 

old mdx and C57Bl/10 mice ( p<0.01). Interestingly, one day after the Raman procedure the three 

months old mdx mice performed better on the rotarod than before and there was no significant 

difference between mdx and control mice at any time point. Thus, in our study in vivo recordings 

utilising biochemical changes present in the muscle were more sensitive in detecting disease at 

an early stage and disease progression between different stages than rotarod.  

 

4.1.4.2 SOD1G93A mouse model 

Similar tests as for the mdx mice are being used as in vivo biomarkers for the SOD1G93A mouse 

model. Hence, the advantages and disadvantages compared to Raman spectroscopy won’t be 

repeated in this section. A previously published work from the group of one of my supervisors will 

be summarised because it gives an insight on how different sensitive biomarkers are for the 

particular SOD1G93A mouse model we used in the current study. This work on the SOD1G93A model 

has shown that the rotarod is the most sensitive readout of motor function decline (Mead et al., 

2011).  The report demonstrated that  different cohorts of mice all experienced a decline in 

rotarod performance from as early as 45 days, a 20% reduction in performance from baseline by 

day 50-60 (for the different cohorts), and with a further decline in performance until 

approximately 130 days (Mead et al., 2011). In this study, both neurological scoring systems and 

gait analysis were shown to be less sensitive, with disease onset, determined as the first change 

in the neurological scale (from 0 to 0.5), being detected around the 70 days of age (for the 

different cohorts). In addition, most of the gait analysis parameters did not show inconsistent 

differences between SOD1 and C57Bl6 mice until after the 75-days time point (Mead et al., 2011). 

Some of the gait parameters, like diagonal and  three limbs support and duty cycle were 

consistently disturbed for all the time points after 75 days, whereas others like stride length and 

stand time were significantly different between the two groups only after 100 days and only at 

specific time points (Mead et al., 2011). However, it was also shown that the rotarod was the 

most variable measure and so larger animal numbers are required for reliable measurements 

(n=14) (Mead et al., 2011). Finally, T2 MRI scans were shown to be able to detect disease 

progression due to muscle atrophy from 60 to 120 days, as lower limb volume normalised to 

animal weight was significantly between Tg and NTg mice at all time-points (60, 90, 120 days) 

(Mead et al., 2011). For the same mouse model, it was shown that running wheel exercise can 

also detect alterations in motor function from an early age (approximately around 45 days) with 

much less variability than rotarod, making it, thus, easier to use smaller animal numbers (Bennett 

et al., 2014).  

In the current study, histological analysis showed pathology present in SOD1G93A muscle at three 

months of age (section 3.1.2.3, figure 3.47) and Raman spectroscopy achieved very good 

separation between the two mice groups (SOD1G93A and C57Bl/6 mice) at three months of age as 

well as between SOD1G93A of one and three months of age. The performance of the SOD1G93A mice 

on the rotarod test was not significantly different between one month old SOD1G93A and C57Bl/6 
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mice. The rotarod running time did, however, differ significantly between three months old 

SOD1G93A and C57Bl/6 mice (p<0.0001) and between one and three months old SOD1G93A mice 

(p<0.01). Additionally, CMAP amplitudes were also shown to differ significantly between Tg and 

control mice at three months of age (section 3.1.6.1, figures 3.104, 3.105).  We did not record any 

CMAPs from one month old SOD1G93A mice. Hence, in vivo Raman recordings, rotarod and 

electrophysiological recordings were all able to separate between SOD1G93A and C57Bl/6. Raman 

spectroscopy and rotarod were also able to detect changes between one and three months old 

SOD1G93A mice and did not detect any changes that would allow a good separation between the 

one month old mice. It would be interesting to further evaluate the potential of in vivo intra-

muscular Raman spectroscopy by undertaking Raman recordings in other time points. For 

example,  around the time point that the first rotarod performance changes were shown for that 

model (between 45 and 60 days) at the above mentioned study (Mead et al., 2011).  

 

4.1.5 Combined Probe Study 

Electrophysiology is one of the mainstays of the diagnostic pathway for neuromuscular disorders. 

Hence, combining Raman spectroscopy with electrophysiological measurements in one probe 

could facilitate incorporation of the new technique in the current diagnostic pathway. Moreover, 

having a combined probe allows for both types of information to be used.  Having the 

electrophysiological output may also allow the Raman measurement to be targeted to particular 

parts of the muscle. For example, it could be targeted to electrophysiologically abnormal and 

normal areas of a given muscle. In addition, the EMG signal could be used to ensure the probe is 

in the muscle of interest, which can be difficult to ascertain from visual inspection/muscle 

palpation alone. 

In order to compare the performance of the combined probe relative to standard methods, CMAP 

measurements were also undertaken with ring electrodes and a concentric needle electrode from 

three months old SOD1G93A and C57Bl/6 mice. As expected, the CMAP amplitudes recorded with 

the combined probe were more similar to the CMAP amplitudes recorded with the needle 

electrode than the ring electrodes for each of the mice groups. This can be attributed to the fact 

that the ring electrodes are recording from all hindlimb muscles, whereas the needle electrode 

and the combined probe electrode are inserted in the gastrocnemius muscle and, hence only 

record the from that muscle. Similar to the recordings acquired using the standard methods 

(section 3.1.6.1, figure 3.105), the recordings obtained with the combined probe from the 

SOD1G93A mice (section 3.1.6.1, figures 3.104) were significantly different (p<0.001) from the 

C57Bl/6 mice.  

Moreover, the adjustments done to the Raman probe in order to be able to acquire 

electrophysiological recordings did not seem to affect the ability of the probe to acquire Raman 

spectra, as can be seen in figure 3.106 (section 3.1.6.2) and the Raman recordings did not cause 

any significant changes in the electrophysiological recordings (section 3.1.6.2, figure 3.107). Of 

course, more rigorous testing is required in order to ensure the probe is acquiring Raman and 

electrophysiological recordings properly. For example, in order to better evaluate the potential 

and sensitivity of the electrophysiological component of the probe, it would be worth attempting 

to record spontaneous EMG activity, as such recordings would have much smaller amplitude (in 
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the microvolt range), and it would, thus, be more difficult to record. This study, does, however, 

demonstrate the potential of a combined EMG/Raman probe.  

 

4.1.6. Data Analysis Considerations 

Detection of cosmic rays, saturation of the detector, or very poor SNR can often affect the quality 

of the acquired spectra. Saturation of the detector due to fluorescence, often induced by tissue 

bleeding, and cosmic rays were intermittently encountered during spectral acquisition. Since 

these are easily detectable, when this was the case the acquisition was aborted, and the recording 

was repeated. The spectra were also visually examined prior the analysis and a small number of 

spectra was excluded due to remaining saturation and cosmic rays or due to a very different 

background shape. A more ‘objective’ approach to remove outliers could be developed by 

incorporating an outlier detecting algorithm (for example Q-test) as the first pre-processing step 

of the analysis (Butler et al., 2016). 

Raman spectra often require pre-processing before being analysed. The most commonly 

performed preparatory steps are noise and background removal and normalization (Butler et al., 

2016). Fluctuations of the number of detected photons due to their discrete nature (shot noise), 

dark current present in the detector, background fluctuations due to laser excitation source and 

background instabilities as well as temperature fluctuations of the detector and the laser emitting 

source (1/f component), all contribute to the noise present in the Raman spectra (Smulko & 

Wróbel, 2017; Smulko, Wrobel, & Barman, 2015). In order to reduce spectral noise and enhance 

the quality of the signal, acquisition settings can be altered as a first step. For example longer 

acquisition times and higher laser power can be used or multiple acquisitions for data averaging 

can be implemented (Smulko, Wrobel and Barman, 2015; Butler et al., 2016; Smulko and Wróbel, 

2017). In case of biological specimens and in vivo applications though, as is the case in the current 

study, an increase of the laser power or the acquisition times is limited by the need to avoid tissue 

damage and long examination times. In this study ten spectra were acquired per insertion and 

were subsequently averaged prior the data analysis in order to reduce the noise present in the 

spectra. As a next step, if changes in the acquisition settings are not enough, the spectra are often 

manipulated using techniques like the Savitzky-Golay filter and wavelet denoising (WDN) 

techniques (Trevisan et al., 2012; Butler et al., 2016). Although sometimes necessary, these 

methods often introduce artifacts (such as changes in the peak shape) that can affect classification 

(Smulko, Wrobel and Barman, 2015). Smoothing was not applied in the data prior the analysis in 

order to avoid spectral features degrading (Butler et al., 2016). 

Fluorescence generated in the sample or in the fibres, as well as unfiltered Raman scattering 

generated in the silica optical fibres, and CCD thermal fluctuations can affect the baseline of the 

spectrum and cause an overall background shape (Day and Stone, 2013; Stevens et al., 2014; 

Smulko, Wrobel and Barman, 2015). In order to remove the baseline, a number of techniques 

have been proposed, such as first- or second-order differentiation and polynomial baseline fitting 

(Lieber and Mahadevan-Jansen, 2003). Although often useful in order to remove this big source 

of variation and help focus on the more subtle changes of interest , all of these methods have 

limitations and can lead to the introduction of systematic or non-systematic errors and 

unintended artifacts in the data set (Almond, 2012; Butler et al., 2016). First- or second- order 
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differentiation introduces severe distortions in the Raman band shapes (Lieber and Mahadevan-

Jansen, 2003). Additionally, since the first or second order derivatives do not have a regular 

Raman appearance, complex mathematical fitting algorithms have to be used to get back to a 

conventional Raman form (Lieber and Mahadevan-Jansen, 2003; Butler et al., 2016). Estimation 

and subtraction of the background using polynomial fitting does not necessarily lead to a 

reproduction of the true spectral features and has been previously shown to introduce a large 

false variance in the data set which could result to multivariate techniques not taking into account 

more subtle real variance or to reduced classification performance (Shaver, 2001; Hutchings et 

al., 2009; Almond, 2012; Byrne et al., 2016). Hence, these techniques should be used with caution 

and validation is necessary whenever applied (Shaver, 2001; Hutchings et al., 2009; Almond, 2012; 

Byrne et al., 2016).  

In the current data analysis, mean centering was applied prior to PCA and PLS-DA to scale the data 

and aid comparison. When the baseline is similar between spectra, the mean centering could 

remove the background sufficiently, since the average baseline is contained in the mean 

spectrum. The normalised spectra acquired for Study 1 before and after mean centering can be 

seen in Appendix D (figure D-1). After mean centering a large amount of the background has been 

subtracted from the spectra. No further baseline correction technique was used in the analysis in 

an attempt to better explore the uncorrected data, avoiding the possibility of introducing 

artifacts, and the ability of the multivariate analysis to extract biochemically important 

information despite the presence of the background. The spectra were also normalised prior to 

the multivariate statistical analysis in order to ensure that fluctuations in the intensity will not be 

mistaken as interesting features in the spectrum.  

In general, background is usually represented by the first PCs in PCA-LDA. In this work, the loading 

plots of PC1 displayed a strong background contribution for most of the two-group models. 

However, the PC1 scores were rarely found to be significantly different between the two groups 

and so PC1 was most often excluded from the subsequent analysis steps. In the cases that it was 

found significant, for example in the model generated using the spectra of three months old mdx 

mice, biochemically relevant peaks could be identified despite the background contribution. 

Some background was also present in some of the models in PC2 (section 3.1.2.2.2, figure 3.34), 

whose scores were found to differ significantly between the different groups in most of the 

models. Some of the PLS weight plots, usually from components 2 and 3 (Appendix C, figure C-5, 

C-3) also displayed some background fluorescent signal. Hence, the variation in the fluorescence 

signal across the dataset could play some role in classification. However, biochemically relevant 

peaks, similar to those found in the difference spectra, in the background subtracted mean 

spectra and in loadings/weights plot of the other components are clearly identifiable in these 

loadings/weights plot too and so it cannot be assumed that classification is mainly done due the 

background component of the signal. Background subtraction, by fitting a second order 

polynomial, was attempted in a part of the data set (spectra acquired for study one) and was not 

found to improve the classification performance (data not shown) (Lieber and Mahadevan-

Jansen, 2003). The above findings suggest that multivariate statistical models were able to extract 

and use the subtle spectral features that are important for classification between the different 

groups despite the fluorescent background present in the spectra. However, a more rigorous 

analysis using the above mentioned background subtraction technique and examination of the 
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loading plots could help to further understand the role of the background in spectral classification. 

Additionally, other methods for elimination of the background could also be tested, like green 

glass correction or subtraction of a stainless steel probe spectrum.   

There was some noise contribution present in the loading plots of the later PCs and LVs, for 

example in PLS components (for example components 4 and 5 in C-13 and PC9 in C-10, Appendix 

C). In most of the ‘noisier’ loadings/weights plots relevant peaks could also be identified. 

Optimising the process of component selection could help in better understanding the 

contribution of each one of the components and could lead to a ‘stricter’ selection approach, that 

could denoise the data set further. For example, since during the cross-validation process the 

component selection takes place for each new training set, the times that each component is 

selected over all iterations of a cross-validation can be recorded. Then, only components selected 

in, for example more than 95% of the cross-validation iterations, could be used to build the ‘final’ 

model. This would be very interesting, particularly in combination with the repeated cross-

validation, as in that type of CV there is a very large number of iterations and training sets and 

could result in a more robust assessment of the ‘most important’ components. Of course, if both 

noise and important information are present in a component, as seems to be the case in some of 

the later PCs and LVs, then some noise will still remain in the model if the component is selected 

and some important information might be lost if the component is excluded. Increasing the 

number of animals or samples used per group could also lead in some cases in denoising as the 

loadings and weights plots from the studies that were conducted with eight mice instead of 16 

displayed a larger contribution of noise. 

PCA-LDA and PCA-QDA yielded similar results and PLS-DA demonstrated a better performance 

from the PCA-related algorithms for most of the models. The difference in the performance could 

be due to the fact that PLS analysis finds the variance covariate with the group labels, whereas 

PCA does not and so some predictive information might be missed. In general, no more than 7 

PCs and 8 LVs were used for the generation of the models. 

 

4.1.7 Basis of Classification 

The main peaks found in the spectra recorded from murine muscle in our study were located 

around 935 cm-1, 975 cm-1, 1000 cm-1, 1030 cm-1, 1044 cm-1, 1076 cm-1, 1121 cm-1, 1170 cm-1, 1205 

cm-1, 1260 cm-1, 1300 cm-1, 1335 cm-1, 1444 cm-1, 1550 cm-1, 1570 cm-1, 1610 cm-1, 1654 cm-1. 

Similar peaks, located around 934 cm-1, 1002 cm-1, 1179 cm-1, 1264 cm-1, 1301 cm-1, 1336 cm-1, 

1447 cm-1, 1576 cm-1, 1655 cm-1 and 1737 cm-1,  were reported by Al-Rifai et al. in Raman spectra 

acquired from hindlimb muscles of BALB/c mice (Al-Rifai et al., 2019). Huang et. al measured 

Raman spectra of different organs acquired from C3H/HeN mice (Huang et al., 2011). The peaks 

that they identified as most prominent in skeletal muscle were: 851 cm-1, 962 cm-1, 1065 cm-1, 

1258 cm-1, 1297 cm-1, 1437 cm-1, 1542 cm-1, 1653 cm-1 and 1737 cm-1 (Huang et al., 2011). 

Minamikawa et. al also acquired Raman spectra of skeletal muscle and other components around 

peripheral nerves from Wistar rats (Minamikawa, Harada and Takamatsu, 2015). The main 

skeletal muscle peaks were found to be located at 746 cm-1, 1000 cm-1, 1124 cm-1, 1305 cm-1, 1333 

cm-1, 1450 cm-1, 1550 cm-1, 1581 cm-1, 1650 cm-1 (Minamikawa, Harada and Takamatsu, 2015). 

Pesolet et al. measured the Raman signal of isolated intact muscle fibres from the depressor 
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muscle of the giant barnacle and found the main Raman peaks located around 900, 937, 980, 

1002, 1045, 1128, 1158, 1207, 1300, 1328, 1417, 1450, 1520, 1556, 1586, 1650 cm-1 (Pézolet et 

al., 1980). The prominent Raman bands in the spectra of important muscle components like 

myosin, tropomyosin, actin and collagen can be found in Appendix B. A more detailed comparison 

between the peaks present in the recorded Raman spectra and the spectra of skeletal muscle and 

muscle components found in the literature can be seen in Table 3.24 in section 3.1.2.2.1. 

In recordings acquired in this study the muscle spectrum was also shown to differ considerably 

from that of adjacent tissues like bone and blood (section 3.1.7). In the bone mean spectrum, only 

one peak around 955 cm-1 was clearly identifiable. This strong peak in the region between 950 

cm-1 and 970 cm-1 has been previously shown to be a characteristic peak of hard tissue like bone 

and teeth and has been extensively associated with hydroxyapatite (Appendix A), a major 

component of these tissues (Huang et al., 2011; Buchwald et al., 2012). The blood mean spectrum 

contained the most clearly identifiable peaks. The main peaks were located around 1000 cm-1, 

1125 cm-1, 1215 cm-1, 1335 cm-1, 1445 cm-1, 1545 cm-1 and 1615 cm-1. All these peaks are 

associated with amino acids and proteins and have been previously shown to be present in whole 

blood and red blood cells spectra (Deng et al., 2005; Huang et al., 2011).  

Altogether, the peaks identified in the Raman muscle spectra were consistent with previously 

reported peaks in the literature and differed from the peaks present in different tissues. As 

expected, most of the peaks present in the muscle spectrum were associated with protein 

vibrational modes (for example table 3.23 in section 3.1.2.2.1) due to the high protein content of 

the muscle and many of them were also shown to be present in the spectra of myofibrillar and 

extracellular matrix proteins like myosin, actin, tropomyosin and collagen. As highlighted by 

Pesolet et al., the peak around 935 cm-1 and the strong amide III band located around 1650 cm-1 

indicate an α-helical conformation of the proteins present in the muscle (Pézolet et al., 1980). 

Amide III bands above 1240 cm-1 have also been associated with α-helix structure and the absence 

of a band below 1240 cm-1 in the Amide III (1225-1320) region of the muscle spectra also indicates 

very little β-sheet structure (Pézolet et al., 1988) . 

In general, the Raman spectrum of skeletal muscle is complex due to several overlapping bands 

(different protein bands as well as protein and lipid or nucleic acids overlap). Band overlapping 

often leads to broadening of the Raman peaks, as is often the case with the peaks in the Amide I 

region and was apparent in the mean spectra acquired in the study. Thus, identification of 

individual constituents from Raman spectra acquired from muscle tissue is quite complex. In 

addition to this, multiple molecular pathways and biochemical changes have been implicated in 

the progression of neuromuscular disorders. Hence, an unequivocal understanding of the changes 

occurring in the muscle and, thus, in the recorded spectra could not be formed. 

The most consistent finding across the different two-group models was a decrease of the most 

prominent peaks of the spectra (935 cm-1, 1000 cm-1, 1300-5 cm-1, 1330-5 cm-1, 1445 cm-1 and 

1650) as the disorders progressed, as demonstrated in the difference spectra of the mdx and 

control mice (both ages) and one and three months old mdx mice as well as three months old 

SOD1G93A and control and one and three months old SOD1G93A mice. In general, peak assignments 

on the PC and PLS loads are difficult. As already mentioned in the results section, using the score 

histograms and loadings plots of the PCA and PLS-DA analyses to understand the changes that 

occur in the muscle as the disorders progress is not trivial, due to the scores of the different 
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groups not being perfectly separated around zero in score histograms and/or the peaks not being 

centred around zero in the loading plots. However, biologically relevant peaks were present in 

the loading plots (as these were seen and explained in the background subtracted spectra). 

Additionally, the above mentioned peaks were in the loading plots in the direction, in which the 

spectra of the control (diseased vs. control models) or younger mice (different disease stages 

models) were predominant.   

The peak located around 935 cm-1 has been previously assigned to C-C stretching vibrations of 

protein segments with an  α-helical conformation (Yu, Lippert and Peticolas, 1973; Pézolet et al., 

1988; Stone et al., 2002). This peak has also been highly associated with glycogen (Gautam et al., 

2015).  The sharp band around 1000 cm-1 is one of the few peaks that is widely attributed to only 

one molecule and is related to the breathing mode of the phenyl ring in phenylalanine. The peaks 

located around 1300cm-1 have been attributed to Amide III mode of α -helical proteins as well as 

various bending modes of lipids and nucleic acid bases (Pézolet et al., 1988; Stone et al., 2004; 

Sato et al., 2014). The band near 1335 cm-1 has been attributed to CH3/CH2 wagging modes of 

proteins and nucleic acids (Stone et al., 2002; Al-Rifai et al., 2019). The peak located around 1445 

cm−1 has been assigned to the CH2 bending mode arising from both proteins and lipids (Al-Rifai et 

al., 2019). Finally, a band around 1650 cm−1 is assigned to an amide I mode of α-helical proteins 

and it also includes a contribution from a lipids C=C stretching mode (Sato et al., 2014).  

Hence, the most consistent differences between the spectra appeared to be related to changes 

in the α -helical proteins and lipids present in muscle. As can be seen in the histological images 

(section 3.1.2.3) both neuromuscular disorders there is damage in the diseased muscle structure, 

with inflammation, necrosis, regeneration, myofibre atrophy and hypertrophy being present in 

muscle at different disease stages. Since all the decreased peaks are present in the spectra of 

myofibrillar proteins, like myosin and tropomyosin, a decrease in these peaks could be indicative 

of the various processes and muscle fibre conformations present in the muscle that could result 

in a decreased amount of completely unaffected muscle fibres and myofibrillar proteins. Al-Rifai 

et al. also demonstrated a reduction in the protein related peaks of spectra acquired from BALB/c 

mice hindlimb muscles during the course of ischemic progression, associating, the decrease in the 

protein content with myofibre atrophy and inflammation present in the muscle due to ischaemia 

A large number of atrophic myofibres were also present in the three months old SOD1G93A muscle. 

Dystrophic muscle has also been shown to have higher hydration due to inflammation-induced 

oedema, myofibre necrosis and higher water content of regenerating myofibres (Dunn and Zaim-

Wadghiri, 1999; Radley-Crabb et al., 2014). Since water causes little Raman scattering, it would 

not have a large contribution to the signal (new peaks) but the increased water content could act 

to dilute the signal coming from muscle and, thus, contribute to decreased intensity in the more 

prominent Raman peaks. The peak intensity of the Raman signal has been previously shown to 

depend on water content present in porcine skin samples with a significant decrease of the 

intensities being observed for increasing water content (Kim, Byun and Lee, 2017). Finally, the 

decrease in the bands associated with α -helical conformation of proteins in Amide I and III regions 

as well as around 935 cm-1 was also observed by Gautam et al. in the spectra of fly models of 

different human muscle diseases. Interestingly, oxidative stress, that has been shown to take 

place in the muscle of both mouse models, has been previously demonstrated to cause similar 

structural changes (Dobrowolny et al., 2008; Schill et al., 2016; Rivas-Arancibia et al., 2017).   
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Many more peaks were present in the spectra and loading plots of the PCA and PLS-DA analyses. 

Hence, there are more biochemical features that could contribute to spectral classification and 

further work could potentially elucidate more significant classifying features. A better 

understanding of the changes occurring in the Raman spectra as the different neuromuscular 

disorders progress could allow for a more targeted approach to spectral acquisition, for example 

acquisition of spectra truncated in a limited wavenumber range of interest that could lead to 

decreased acquisition times (Almond, 2012). It is, however, not necessary in order to use the 

technique as a biomarker for neuromuscular disease, so long as the classification depends on 

biochemically relevant differences and can, thus, be reproduced consistently.   
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4.2 Human Tissue Recordings 

Ex vivo measurements were acquired using the fibre-optic probe and a commercial Raman 

microscope system from healthy and diseased muscle tissue and the results are summarised and 

discussed in the following sections. The last hypothesis presented in section 1.3.2 stated that 

Raman spectroscopy of human muscle samples can detect muscle pathology and distinguish 

between neuromuscular diseases. The classification performance of the two group models 

generated using the spectra acquired from healthy and pathological (myopathy, MND and 

mitochondrial disorders) human tissue are summarised and discussed in section 4.2.1.1. Despite 

the limitations of this data set pathological findings were observed in the tissue from patients 

with MND and mitochondrial myopathies and these samples were well separated from healthy 

tissue, supporting, thus, the first half of the hypothesis. The classification performance of the 

multi-group models was hampered by very low sensitivity values for all the groups apart from the 

tissue acquired from MND patients. Thus, as discussed in section 4.2.1.2 in more detail, more 

tissue samples are required to further investigate whereas the technique is able to separate 

effectively between different neuromuscular disorders. 

 

4.2.1 Dataset Limitations 

There were some limitations associated with the human samples, that render the data analysis 

and interpretation of this dataset challenging: 

• For the samples acquired in biopsies (‘myopathy’, ‘not myopathy’ and ‘mitochondrial 

disorders’ groups) a big limitation was that the Raman spectra were not acquired from 

the same samples that underwent histological examination. Instead an extra muscle 

sample was acquired for the purposes of the study. Hence, there is a possibility that 

slightly different pathological features, or indeed, not pathological features could be 

present in the samples that underwent histological examination and the ones from which 

the Raman spectra were acquired.  

• The samples were acquired from different muscles and were harvested in different ways 

(section 2.2.1). Additionally, healthy volunteers and patients were not age-matched. 

Healthy tissue is very difficult to acquire since muscle biopsy is an invasive procedure. 

Finding an adequate number of samples from the same muscles or from age-matched 

volunteers would be quite difficult for this early phase research. 

• The numbers of samples in each group differed considerably and this could introduce bias 

in the models. 

Further limitations related to each one of the groups are discussed in the next sections in the 

context of the classification performance of the models. 
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4.2.2 Biopsy findings: Classification: Summary and Limitations 

4.2.1.1 Two-group models 

4.2.1.1.1 Myopathy vs. Healthy 

The LOSO cross-validated models generated using the probe spectra from ‘myopathy’ and 

‘healthy’ samples achieved accuracy values around 58% for the PCA analysis and 77% for the PLS-

DA analysis. Using LOSOCV instead of LOOCV caused a big drop in both sensitivity and specificity 

values of these models indicating that the variability between different samples (due to biological 

or pathology variance) was not sufficiently captured by the models. The big variability could also 

be the reason for the big difference in the performance in the PCA-LDA and PLS-DA models. 

Interestingly, the loadings plot of the most significant PC and the weights plot of the first PLS 

component were very different for that comparison (which was almost never the case with the in 

vivo and the rest of the ex vivo data), with the first PLS component displaying more biochemically 

relevant features. Since the two models performed so differently it is not easy to draw any certain 

conclusions on the ability of the technique to separate ‘myopathy’ from ‘healthy’ samples but the 

fact that the PLS-DA model demonstrated a good ability to classify between the two groups with 

known biochemical features present in the weights plot is encouraging. 

For the ‘microscope’ data, there were no PCs with significantly different scores between the two 

groups identified, whereas the LOSO cross-validated PLS-DA model achieved an accuracy of 60%, 

which was also considerably decreased compared to LOOCV.  

The main limitation of the ‘myopathy’ group is that it was a very heterogenous group as it included 

different types of myopathy. Since different types of myopathies can cause different histological 

and biochemical changes in the samples, the spectra of this group could have been quite variable. 

For example, while muscle fibre size variation and non-specific signs of regeneration (e.g. internal 

nuclei) are common to myopathies, specific changes are also seen. For example, in the samples 

collected, several were of dystrophic myopathies (n=4) which can also show differing features 

depending upon the exact cause, for example, protein aggregates, fibre type predominance and 

amount of necrosis. Inclusion body myositis (n=1 in the cohort) displays rimmed vacuoles, positive 

aggregates and an inflammatory response which is primarily around the myofibres (Pestronk, no 

date). As, there was only a small number of samples from each type of myopathy, that could 

hinder the identification of the spectral characteristics of each myopathy type. Thus, to improve 

the statistical validity of the models, and render the analysis more representative of the 

classification of new spectra, the models would ideally include a larger number of samples from 

each type of myopathy (Kendall, 2002; Almond, 2012). A larger dataset could lead to a better 

representation of the spectral characteristics of each type of myopathy in the model, in turn 

capturing more accurately the variation in the spectra coming from different types of myopathies.  

A larger data set would also allow for the variability within each patient/sample to be better 

accounted for (Kendall, 2002; Almond, 2012). Thus, further investigation is required in order to 

determine the potential of the technique. 
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4.2.1.1.2 Mitochondrial Disorders vs. Healthy 

A good ability to discriminate between ‘healthy’ and ‘mitochondrial disorders’ samples was 

achieved by all the probe and microscope models with accuracies about 75% for all the different 

analysis and CV methods and the microscope and probe models demonstrated similar 

performances. Higher sensitivities (mostly above 80%) than specificities (above 60%) were 

achieved for almost all the models with only the LOSO cross-validated PLS-DA model displaying 

balanced sensitivity and specificity values around 75%. The different CV methods did not affect 

considerably the ability of most models to correctly classify the spectra. The ‘mitochondrial 

disorders’ groups also consisted of samples from patients with different types of mitochondrial 

diseases but in this case the majority of the samples were from patients with m.3243A>G 

mitochondrial disease (table 3.63, section 3.2.1.1) and this could have potentially led to a ‘less 

variable’ data set. Similar to the results of the in vivo work, the difference spectra and loading 

plots of the probe and microscope models also demonstrated a decrease in the most prominent 

peaks for the diseased samples.  

More samples from different types of mitochondrial disorders could help understand better the 

ability of the technique to discriminate between mitochondrial disorders from healthy tissue and 

between different mitochondrial disorders. 

 

4.2.1.1.3 MND vs. Healthy 

Different samples were probed with the fibre-optic probe (n=4) and the microscope (n=10). The 

probe spectra were collected prior the initiation of this project as preliminary data and there was 

no access to the microscope at that time. The ten ‘MND’ samples that were used in this study and 

were measured using the microscope did not produce reliable spectra using the probe due to an 

excess of fluorescence, that caused saturation of the spectrometer. 

As already mentioned in the results section spectra from only four ‘MND’ samples were acquired 

using the fibre-optic probe, limiting the reliability of the classification performance. Additionally, 

the loadings plots revealed that the classification could have largely relied on periodic features 

present in the spectra of the ‘MND’ samples that could be the result of etaloning. Such features 

were not seen in the spectra or loadings of any other samples/ comparisons.    

Using the microscope spectra accuracy values above 90% were demonstrated for all the models. 

PLS-DA yielded a better performance, with an accuracy of 95.1% and more balanced sensitivity 

and specificity values. This could be partially due to a larger number of components used to build 

the PLS-DA (optimal number of components:8), PCA-LDA (3 significant PCs) that could have led a 

small amount of important information being ‘left out’ by the PCA-LDA model. Similar to the 

results of the in vivo work in the SOD1G93A mice, the difference spectra and loading plots of the 

microscope models also demonstrated a decrease in the most prominent peaks for the diseased 

samples, possibly indicating the translational potential of the technique. 

The main limitation with this comparison is that the ‘MND’ tissue was acquired post-mortem 

whereas the tissue from healthy volunteers was acquired during a surgical procedure. Hence, 

more ‘MND’ samples are required that would ideally be harvested in the same way as the 

‘healthy’ tissue and would allow for a ‘fairer’ comparison. Additionally, it is important to test the 

technique on muscle from MND patients at an earlier disease stage (when the technique would 
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be useful in clinic), as tissue acquired post-mortem may manifest severe disease could thus lead 

to a much better classification performance (when compared to healthy tissue). The very good 

classification performance achieved with the ‘microscope’ models is, however, very encouraging 

and demonstrates that it is worth to further investigate the potential of the technique to detect 

muscle pathology originating from neurological conditions. 

 

4.2.1.2 Multi-group models 

The potential of the technique to be used as a screening tool for neuromuscular disorders was 

investigated with multi-group models. The five-group models (‘myopathy’, ‘mitochondrial 

disorders’, ‘MND’, ‘not myopathy’, ‘healthy’) aimed to test the ability of the ex vivo recordings to 

accurately classify samples in the three different pathological groups, the group with no 

neuromuscular condition (‘not myopathy’ group) and the ‘healthy’ group. The four and three-

group models aimed to explore the potential of the technique to separate patients with 

neuromuscular conditions who would necessitate a biopsy to further investigate the type of their 

disease (mitochondrial disorders, myopathies) from patients that would not need a biopsy (MND, 

‘not myopathy’ group), reducing, thus, the number of unnecessary expensive and invasive 

procedures.  

The common characteristics in the performance of all the different multi-group models 

(probe/microscope, PCA-LDA/PLS-DA) was that most of the groups demonstrated high specificity 

values. For some groups in each model good sensitivity values were also achieved whereas others 

demonstrated very low sensitivities. CV method had a big impact on the ability of the models to 

correctly classify spectra in most of the groups, with most values decreasing considerably when 

LOSO was used. In general, no models managed to achieve sensitivity, specificity and accuracy 

values above 50% for all the groups, mainly due to very low sensitivities achieved for certain ones. 

All together this could suggest that the technique might not be ideal as a screening tool, for which 

a very good sensitivity is required. However, more investigation is required to draw any certain 

conclusions. As already mentioned above the dataset had several limitations, which if overcome, 

might lead to a different result. Groups of larger and equal numbers of samples with well-defined 

pathology could lead to more robust models, that could correctly classify new samples more 

easily. Larger sample numbers could also result in the model being able to better classify new 

samples even if different pathologies are grouped together (for example as ‘biopsy’ group) since 

the model might be able to account better for the variability between the different disorders and 

the different patients. If the models still achieve much better sensitivity that specificity values for 

all the different groups, the classification thresholds could be adjusted to achieve a more balanced 

performance.  

 

4.2.3 Final Diagnosis: Raman Spectroscopy, EMG and Biopsy Comparison 

As already described in the introduction, two of the mainstays of the current diagnostic pathway 

of neuromuscular disorders are electromyography (EMG) and muscle biopsy. The main limitations 

of these techniques are discussed in section 1.1.1. Raman spectroscopy could potentially be used 

in clinic, alongside EMG, using, for example, a combined Raman/EMG probe, as one of the first 

steps in the diagnostic investigations. If Raman spectroscopy manages to be more specific than 
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EMG and can separate disorders within each of the two main groups of neuromuscular disorders 

(myopathic and neurogenic disorders), a combined probe could enhance and specify the 

information currently acquired with EMG. Additionally, the two techniques combined might be 

able to better indicate if biopsy is required for a patient. For this to be achieved models generated 

using larger numbers of Raman spectra with high sensitivity and specificity values for separating 

samples with pathological findings that necessitate a muscle biopsy from the ones that do not 

would be required. Finally, identification of optimum muscle biopsy sites to ensure that muscle 

pathology is properly sampled could also be achieved. 

Diagnostic indices of EMG and muscle biopsy for detecting myopathies EMG were determined for 

the samples acquired from open biopsies in Sheffield (see table 3.66). As can be seen in table 3.90 

in section 3.2.3.1 muscle biopsy demonstrated sensitivity, specificity and accuracy values above 

83%. EMG achieved an accuracy value of 68% with a sensitivity below 60% (table 3.89). 

Interestingly, both tests demonstrated a better ability to correctly classify the non-myopathic 

cases. Finally, Raman spectroscopy was not able to correctly classify the samples using the Raman 

spectra with accuracy values below 50%. This finding is, of course, disappointing, it could, 

however, be due to the heterogeneity of the samples included in the two groups. As already 

mentioned above the myopathy group consisted of different types of myopathies, with only a few 

samples in each type. Similarly, as can be seen in table 3.66 (section 3.2.1.1), the ‘not myopathy’ 

groups consisted of limited numbers of samples with age-related and non-specific pathological 

changes and ‘normal’ ones. The heterogeneity of both groups, and, hence the possibly large 

variability, present in the dataset might have hindered the process of creating a classification 

model with good predictive ability. Larger numbers of samples in each one of the subgroups could 

allow for the variability in the dataset to be more sufficiently capture and, thus, allow for a better 

classification performance. Hence, further investigation is required to understand if and how 

Raman spectroscopy could be used in the clinical setting. 

 

4.2.4 Raman Spectroscopy in the Clinical Setting: Further Considerations 

As already mentioned above the desired performance of a test highly depends on how it will be 

used in the clinical setting. If the aim is to use the developed technique as a screening tool for 

neuromuscular disorders in order to identify which patients show signs of neuromuscular disease 

and would need further examinations (or what type of examinations they might need, for example 

‘biopsy’ and ‘not biopsy’ groups) then high sensitivity values are required, and ROC curves analysis 

could be employed to optimise sensitivity. If the models cannot simultaneously achieve high 

sensitivity and specificity values and the increase in sensitivity leads to a decrease in specificity, 

this approach could lead to increased numbers of examination tests being undertaken as more 

people would be falsely diagnosed as having a disease.  

On the contrary if the aim is to use the test in order to reach a final diagnosis, high specificity 

values are required in order to ensure that a healthy individual or someone with less severe 

muscle problems (for example with age-related changes) will not be misdiagnosed as having a  

neuromuscular disorder. As many neuromuscular disorders are very severe and not treatable (for 

example MND) false positive results could have serious adverse consequences for the patient and 

his family.  
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As already stressed in the previous sections further testing is required to understand the potential 

and limitations of the technique to probe muscle health in vivo. A larger study with more samples 

from patients with different neuromuscular disorders and at different disease stages could be the 

next step to further explore the ability of the technique and the role it could fulfil in the clinical 

setting. 
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4.3 Future Work 

4.3.1 Preclinical Setting 

The present work has demonstrated the ability of in vivo intramuscular Raman spectroscopy to 

detect muscle pathology of different origins at different disease stages in preclinical murine 

models. The project, however, had limitations that could be overcome with future work. Re-

analysing the collected data using a baseline correction method could provide a more thorough 

understanding of the role the background changes in the classification performance of the 

models. Additionally, histological study of tissue acquired from the exercised mdx mice and the 

TDP-43 and TDP-43Q331K could offer a better understanding of the effect of exercise on the muscle 

of individual mdx mice and the changes present in the muscle of the TDP-43 mice. This could lead 

to a better evaluation of the outcome of the respective studies the correlation between existent 

pathology and classification performance.  

In order to better evaluate the technique, a similar study to that undertaken in study 1 can be 

conducted in other disease stages of the mdx and SOD1G93A mouse models. Similarly, a 

comparison of the performance of the Raman recordings with already existing biomarkers could 

be included. Of particular interest would be to use SOD1G93A mice at a young age but when a 

phenotypic change can already be detected (for example around 45 days old mice) and compare 

them to the one three months old mice recordings. Additionally, a study on the effect of 

longitudinal Raman recordings on muscle function could be conducted in order to investigate if 

the technique can be used for repeated measurements on the same subjects. These investigations 

could further elucidate the ability of the technique to detect muscle pathology at different disease 

stages and its potential as a biomarker for monitoring disease progression. Finally, the developed 

technique could be used in other mouse models of these or other neuromuscular disorders. 

 

4.3.2 Clinical Setting 

Ex vivo recordings from human muscle 

The present work has demonstrated the ability of the probe to record spectra from human muscle 

ex vivo. It was clear from the Raman classification models that population and pathology variance 

were not sufficiently captured in the current data sets. In order to better evaluate the 

performance of the technique on human tissue, further analysis of the collected spectra could be 

undertaken (for example background subtraction and different analysis techniques). If these 

models also fail to capture the variance in the data set further work can focus on acquiring more 

‘myopathy’ samples from patients with disorders such as inflammatory myopathy, muscular 

dystrophies and inclusion body myositis in order to build on the already existing samples. 

Subsequently, the developed technique could be used in muscle samples acquired from patients 

with other neuromuscular disorders in order to get a better understanding of the areas that the 

developed technique would be more useful in a clinical setting. 

Translation into clinics 

If the ex vivo results further demonstrate the ability of the probe to detect pathology and separate 

neuromuscular disorders, the next step towards translation will involve building and testing the 

combined Raman/EMG probe. The EMG component of the probe will need to be tested to ensure 
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that recording spontaneous EMG activity (which is in the microvolt range) can be done reliably. 

Tests to ensure the acquisition of reproducible and reliable Raman spectra with good signal to 

noise ratio will also need to be undertaken. In order to be able to use the probe as a clinical in 

vivo tool work will need to be undertaken to ensure reproducible spectral measurements for 

different probes and different systems (Almond, 2012). This step could involve developing 

correction algorithms in order to remove systematic differences in the measurements due to 

different spectrometers being used.  

After developing the probe, a clinical trial will need to be undertaken in order to evaluate the 

performance of the probe in vivo in human muscle, assess the safety of the probe and build a 

dataset of Raman spectra. A feasibility study could be the first step in order to demonstrate the 

performance of the probe in vivo and also test the safety of the probe on patients with different 

neuromuscular disorders before using the probe on a larger scale. A significant in vivo database 

from spectra acquired from healthy muscle and pathological muscle from patients with 

neuromuscular disorders will need to be built in order to develop robust classification models. 

Building this database in vivo ensures that recordings are acquired under the exact same 

conditions that the probe will be used in clinic. It could, however, mean that it will take much 

longer to build a substantially large database that will be able to sufficiently capture population 

and pathology variance. After demonstrating the probe performance in vivo and the safety of the 

probe a larger, randomised trial could take place in order to further evaluate the performance of 

the technique. Being able to compare spectra acquired with different probes and different 

spectrometers would allow for multi-centre clinical trials to take place and larger datasets of 

Raman spectra from patients with different neuromuscular disorders to be created, regularly 

updated and, finally, be shared between different centres.  
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5. Overall Conclusions 
 

In this project a method for recording from muscle in vivo using a fibre-optic Raman probe was 

developed. The results demonstrate the ability of intra-muscular in vivo Raman spectroscopy to 

probe muscle health in vivo in preclinical models of neuromuscular disorders. The developed 

technique was able to detect muscle pathology and accurately distinguish between muscle 

disease originating from different neuromuscular disorders. Moreover, it was shown that the 

recordings did not impair motor function. Further investigation is required in order to better 

understand how sensitive the technique is at subtle changes in muscle pathology due to disease 

progression or an intervention. However, the results highlight the potential of the technique to 

be used in the preclinical setting (for example in preclinical drug studies). 

Parallel to animal studies recordings from human muscle specimens with different types of 

disease were acquired ex vivo. This work demonstrated the ability of the probe to record spectra 

from human muscle and distinguish with good accuracy values between healthy and diseased 

tissue for certain neuromuscular disorders. The spectra acquired from human muscle displayed 

very similar characteristic features as the spectra acquired from animals in vivo highlighting the 

translational potential of the technique. Further work is required in order to better explore the 

ability of the technique to detect different types of muscle disease at different disease stages and 

finally better understand the role that Raman spectroscopy could potentially fulfil in the clinical 

setting. 
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Appendix A 

Raman Shift 

(cm-1) 

Assignment Tissue/Compound 

617 Thymine Thymine (De Gelder et al., 2007) 

618 Phenylalanine Collagen (Frank et al., 1994), Phenylalanine 

(Zhu et al., 2011) 

Proteins Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

620 Phenylalanine Diseased breast tissue (Frank et al., 1994) 

621 Phenylalanine Oesophagus (Stone et al., 2002),  

622 Phenylalanine Phenylalanine (Zhu et al., 2011) 

623 Adenine Adenine (De Gelder et al., 2007) 

662 Cystine Hard mass pilomaxitroma (probably 

collagen shifted peak from collagen peak at 

667) (Cheng et al., 2005) 

664 Valine Valine (De Gelder et al., 2007) 

665 Valine Valine (Zhu et al., 2011) 

666 Guanine, Thymine (DNA)  Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

667 Cystine Collagen type I (Cheng et al., 2005) 

668 Guanine DNA, RNA  (Mahadevan-Jansen, 1996) 

669 Cytosine Oesophagus (Stone et al., 2002) 

Thymine (Puppels et al., 1991) 

740 Thymine Thymine (De Gelder et al., 2007) 

741 Tryptophan Tryptophan (De Gelder et al., 2007) 

742 DNA, Tryptophan Murine blood cells (Huang et al., 2011) 

902 (903 

measured) 

Valine Valine (De Gelder et al., 2007) 

913 Glucose Glucose (Talari et al., 2015)  

914 Glucose Glucose (De Gelder et al., 2007) 

Raman Shifts Table 
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915 Ribose Protein (ribose-5-phospate isomerase) 

(Hartman, Clayton and Thomas, 1973)   

Phenylalanine  Phenylalanine solid (Zhu et al., 2011) 

916 Proline L-Proline (De Gelder et al., 2007) 

917 Deoxyribose DNA (Mahadevan-Jansen, 1996) 

Glutathione Glutathione (De Gelder et al., 2007) 

918 Proline, hydroxyproline Collagen Type I, patient normal skin dermis 

(Talari et al., 2015) 

920 Proline ring/glucose/lactic acid (Stone et al., 2004) 

Proline ring (collagen 

assignment) 

Collagen (Bonnier and Byrne, 2012) 

Glucose Glucose (Mahadevan-Jansen et al., 1998) 

Elastin Elastin (Kendall, 2002) 

Proline ring Ductal carcinoma (breast), Collagen Type I 

measured (Frank, McCreery and Redd, 

1995)  

930 Proline Proline (De Gelder et al., 2007) 

931 Carbohydrates Glycogen solution, solid (Talari et al., 2015) 

Glutathione Glutathione (De Gelder et al., 2007) 

932 Skeletal, α-helix DNA (Puppels et al., 1991), (Stone et al., 

2004) 

933 Proline, hydroxyproline, 

collagen 

Hard mass pilomaxitroma, shifted from 937 

in collagen and skin dermis (Cheng et al., 

2005) 

934 Proline  Type I collagen (Frank, McCreery and Redd, 

1995) 

Collagen Collagen (Bonnier and Byrne, 2012) 

935 Collagen Fibrocystic human breast tissue (Kendall, 

2002) (Redd 1993) 

Proline, valine and protein 

backbone (α-helix 

conformation)/glycogen  

Oesophagus (Stone et al., 2002) 

936 Collagen Collagen (Kendall, 2002) 

937 Glycogen Glycogen (Kendall, 2002)  

α-helix Intact muscle fibre (Pézolet et al., 1980) 
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Proline Infiltrating Duct Carcinoma (Frank, 

McCreery and Redd, 1995) 

Proline, hydroxyproline, 

skeletal of collagen backbone 

Collagen Type I, Skin dermis (Cheng et al., 

2005) 

Collagen type I Skin dermis (Wang et al., 2011) 

Collagen Collagen Type I (Nguyen et al., 2012) 

938 C-C backbone Collagen (Kendall, 2002),  (Mahadevan-

Jansen, 1996) 

940 Proline, Valine Normal human skin (Gniadecka et al., 

1997) 

Triple helix vibration Collagen Type I, dermis (Fendel and 

Schrader, 1998) 

941 Skeletal modes 

(polysaccharides, amylose) 

Oesophagus (Shetty et al., 2006) 

Adenine Adenine (De Gelder et al., 2007) 

948 Valine (m) Valine solution (Zhu et al., 2011) 

Valine (s) Valine (De Gelder et al., 2007) 

950  4-hydroxyproline Increased in malignant breast tissue (Feld 

et al., 1995) 

Most probably due to single 

bond stretching vibrations for 

the amino acids proline and 

valine and polysaccharides 

Normal skin (decreased in BCC) (Gniadecka 

et al., 1997) 

Calcium-phosphate Murine skull and teeth (Huang et al., 2011) 

Deoxyribose Gastric cancer DNA changes (Chen et al., 

2014) 

Cholesterol Cell cultures Escheria coli (Germond et al., 

2018) 

951 Protein α-helix Mouse brain tissue (release of protective 

factors after irradiation) (Jyothi Lakshmi et 

al., 2002) 

Proline (m) Proline (De Gelder et al., 2007) 

Phenylalanine (w) Phenylalanine (De Gelder et al., 2007) 

952 Proline (w) Proline solid (Zhu et al., 2011) 

955 Hydroxyapatite (Manoharan et al., 1992) 

956 Carotenoids Human brain tissue (Mizuno et al., 1994) 
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Carotenoids Brain tissue, Absent in normal tissue 

(Mahadevan-Jansen and Richards-Kortum, 

1997) 

957 Hydroxyapatite, carotenoid, 

cholesterol 

Colon tissue (Stone et al., 2004) 

Carotenoid, Cholesterol Thyroid gland tissue (absent in normal 

tissue) (Rau et al., 2016) 

960 Calcification-Hydroxyapatite Human brain tissue, central neurocytoma 

(Mizuno et al., 1994) 

Calcification-Hydroxyapatite Coronary artery segments (Clarke et al., 

1987) 

Calcification Calcified plaque (Yu, Li and Kuck, 1996) 

Phosphate of Hydroxyapatite Hydroxyapatite and hard mass 

pilomaxitroma (Cheng et al., 2005) 

965 Valine (m) Valine (Zhu et al., 2011) 

966 Hydroxyapatite Calcified plaque (Clarke et al., 1987) 

Triple helix vibrations Collagen type I, normal skin dermis (Fendel 

and Schrader, 1998) 

Hydroxyapatite Breast tissue (Stone et al., 2004) 

950-970 Apatite peak region Osteogenic differentiation of human 

mesenchymal stem cells (Brauchle and 

Schenke-Layland, 2013), (Chiang et al., 

2009) 

971 Cytosine Cytosine (De Gelder et al., 2007) 

972 Collagen Collagen, normal tissue assignments 

(Frank, McCreery and Redd, 1995) 

Glutathione Glutathione (De Gelder et al., 2007) 

975 Ribose  Protein (Hartman, Clayton and Thomas, 

1973) 

Deoxyribose DNA (Mahadevan-Jansen, 1996) 

978  Phosphate ion  Phospholipids, human cervix, human 

cervical biopsies (Mahadevan-Jansen, 

1996) 

983 Tyrosine Tyrosine (De Gelder et al., 2007) 

984 Thymine, Uracil Thymine, Uracil (De Gelder et al., 2007) 

987 Proline Proline (De Gelder et al., 2007) 
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988  Tryptophan, Glutathione Tryptophan, Glutathione (De Gelder et al., 

2007) 

991  Cytosine Cytosine (De Gelder et al., 2007) 

Phenylalanine, NADH Murine stomach, small intestine, colon, 

bladder, lung, brain (Huang et al., 2011) 

992 Proline Proline  (Zhu et al., 2011) 

994 Proline  Proline (De Gelder et al., 2007) 

995 Uracil Uracil (De Gelder et al., 2007) 

1000 Phenylalanine Oral tissue (increased in malignant tissue) 

(Malini et al., 2006) 

NADH free and bound Weak in normal oral tissue (Malini et al., 

2006)  

1001 Phenylalanine Oesophagus (Stone et al., 2004), (Stone et 

al., 2002) 

Phenylalanine Phenylalanine (Kendall, 2002) (Kendall 

unpublished) 

Phenylalanine Increased in malignant breast tissue (Feld 

et al., 1995) 

1002 Phenylalanine Skin dermis, hard mass pilomaxitroma 

(Cheng et al., 2005) 

Phenylalanine Collagen (Frank et al., 1994) 

Hydroxyproline, Tyrosine Type I collagen, placenta (Frank, McCreery 

and Redd, 1995) 

1004, 1005 Phenylalanine (vs) Phenylalanine (De Gelder et al., 2007),  

(Zhu et al., 2011) 

1011 Cytosine Cytosine (De Gelder et al., 2007) 

1014 Tryptophan (Mahadevan-Jansen et al., 1998) 

1015 Glutathione Glutathione (De Gelder et al., 2007) 

Tryptophan Protein (Hartman, Clayton and Thomas, 

1973) 

1016 Tryptophan DNA in water (Kendall, 2002) (Manoharan 

1995) 

1029  Valine Valine (Zhu et al., 2011) 

1030 Phenylalanine (collagen) Collagen Type I, hard mass pilomaxitroma 

(Cheng et al., 2005) 
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Collagen  Collagen (Kendall, 2002)  

1031 Proline Proline (Yu, Li and Kuck, 1996) 

Phenylalanine Normal (increased) and diseased bronchial 

tissue (Huang, McWilliams, Lui, et al., 

2003) 

Phenylalanine Prostate (Stone et al., 2004) 

1032 Phenylalanine Rabbit and human cornea (Erckens et al., 

1997) 

Proline Type I collagen (Frank, McCreery and Redd, 

1995) 

Phenylalanine (collagen) Skin dermis (Cheng et al., 2005) 

Phenylalanine Phenylalanine (Zhu et al., 2011) 

1033 Phenylalanine Differences between normal cells and 

neoplastic cell lines  (Chan et al., 2006) 

1034 Phenylalanine (collagen) Soft mass pilomaxitroma (Cheng et al., 

2005) 

1035 Valine, proline Valine, proline (De Gelder et al., 2007) 

1037 Phenylalanine Phenylalanine (De Gelder et al., 2007) 

1041 Proline  Proline (Zhu et al., 2011) 

1043 Proline Type I collagen (placenta) (Frank, McCreery 

and Redd, 1995) 

1044 Proline Murine serum, colon, bladder, stomach, 

small intestine, lung, brain 17 

1045 Proline Proline (De Gelder et al., 2007) 

1046 Tryptophan  Tryptophan (De Gelder et al., 2007) 

1048 Guanine  Guanine (De Gelder et al., 2007) 

1057 DNA (Puppels, 1999) 

1061 Lipids (Kendall, 2002)  

1070 Collagen, elastin (Kendall, 2002)  

Triglycerides, fatty acids Normal iliac artery (Silveira et al., 2002) 

1071 Apatite Human tooth enamel (Kendall, 2002) 

Glucose Glucose (Krafft et al., 2005) 

1073 Calcium carbonate apatite Calcified atheromatous plaques (arterial 

fragments (Silveira et al., 2002) 
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1074 Triglycerides Adipose tissue from human aorta (Alfano 

et al., 1991) 

Adipose tissue (Kendall, 2002)  

Glucose, triglycerides Measured in Murine Blood, small intestine, 

Colon (Huang et al., 2011), assignment 

from (Krafft et al., 2005), (Silveira et al., 

2002) 

Glutathione Glutathione (De Gelder et al., 2007) 

1076 Lipids Normal oral tissue  

Tryptophan Tryptophan (De Gelder et al., 2007) 

1078 Phospholipids Increased in normal lung tissue (Huang, 

McWilliams, Lui, et al., 2003) 

Lipids, Nucleic acid Measured in human colon and breast 

tissue (diff between cancerous and 

healthy) (Stone et al., 2004) 

Triglyceride Subcutaneous fat in stomach 

(Duraipandian, 2012) 

Tryptophan  Tryptophan solid (Zhu et al., 2011) 

1080 Phospholipids Human brain tissue (Mizuno et al., 1994) 

Typical phospholipids Normal oral tissue (Malini et al., 2006) 

1082 Phospholipids, Nucleic acids Normal human skin (Gniadecka et al., 

1997) 

Lipids Normal human breast tissue, Lipid (Kendall, 

2002) (Redd 1993) 

1083 Proteins (and lipid mode to 

lesser degree) 

Oesophagus (Stone et al., 2002) 

Glycogen Glycogen (Kendall, 2002) (Kendall 

unpublished) 

Proline (m) Proline (De Gelder et al., 2007) 

1084 Lipids Thyroid carcinoma →1086 in normal tissue 

(Rau et al., 2016) 

1095 Phosphate DNA (Mahadevan-Jansen et al., 1998) 

1099 PO-
2 DNA (Mahadevan-Jansen et al., 1998) 

Palmitic Acid, tyrosine Palmitic Acid (De Gelder et al., 2007), 

Tyrosine (Zhu et al., 2011) 

1100 Uracil, collagen Uracil (De Gelder et al., 2007),  
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Collagen solution (Zhu et al., 2011) 

Lipid (Gniadecka et al., 1997) 

1101 DNA Normal/cancerous cervical tissue 

(Kamemoto et al., 2010) 

1102 Collagen Collagen  (Zhu et al., 2011) 

1104 Lipids  (Kendall, 2002) Yu 1996 

1105 Tryptophan Tryptophan (Zhu et al., 2011) 

1120 Tryptophan  Tryptophan solid (Zhu et al., 2011) 

Carotene Measured in murine blood (Huang et al., 

2011) 

1123 Glycogen (Kendall, 2002) Kendall (unpublished) 

Glucose Glucose (Mahadevan-Jansen et al., 1998) 

Lipids, proteins, glucose Oesophagus (Stone et al., 2004) 

Proteins (protein assignment) Small difference between normal lung 

tissue and adenocarcinoma (more intense 

in cancer]) (Huang, Bergholt, et al., 2010) 

1124 Skeletal muscle main Raman 

band 

Human muscle (Minamikawa, Harada and 

Takamatsu, 2015) 

1126 Proteins Protein (Puppels, 1999) 

Phospholipids Human brain tissue (Mizuno et al., 1994) 

Valine  Valine (Zhu et al., 2011) 

Proteins Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

1131 Fatty acids Cholesterol ester, cholesteryl palmitate, 

glyceryl tripalmitate (Krafft et al., 2005) 

1134 Adenine Adenine (De Gelder et al., 2007) 

1143 Glutathione Glutathione (De Gelder et al., 2007) 

1144 Valine  Valine (Zhu et al., 2011) 

1155 Proteins, carotenoids Oesophagus (Stone et al., 2002) 

1156 Carotenoid Human breast carcinoma, Beta carotene 

(Redd 1993)  

Carotenoids Brain tissue present in neurinomas (absent 

in normal tissue) (Mahadevan-Jansen and 

Richards-Kortum, 1997) 
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Proteins Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

Carotenoids Thyroid gland tissue (present in 

normal/abnormal tissue) (Rau et al., 2016), 

(Talari et al., 2015) 

Proteins Thyroid gland tissue ( present in 

normal/abnormal tissue ) (Rau et al., 2016)  

(Talari et al., 2015) 

Thymine  Thymine (De Gelder et al., 2007) 

β- carotene  β-carotene (De Gelder et al., 2007) 

Tyrosine  Tyrosine (Zhu et al., 2011) 

1157 Carotenoid Normal human breast tissue (Kendall, 

2002) (Redd 1993) 

Carotenoid Human breast tissue, acoustic neurinoma, 

beta carotene (Mizuno et al., 1994) 

β-carotene accumulation Atheroma in human coronary arteries 

(Silveira et al., 2002) 

Phenylalanine  Phenylalanine (De Gelder et al., 2007) 

1158 Carotenoid Carotid artery (Feld et al., 1995) 

Carotenoid Normal colon (Kendall, 2002) (Redd 1993) 

Guanine Guanine (De Gelder et al., 2007) 

Phenylalanine Phenylalanine solid (Zhu et al., 2011) 

1160  Tryptophan  Tryptophan (De Gelder et al., 2007) 

Protein Murine blood, colon, small intestine 

(Huang et al., 2011) 

1163  Tyrosine Collagen (Type I), (Cheng et al., 2005) 

1166 Collagen type I Collagen type I (human placenta) (Frank, 

McCreery and Redd, 1995) 

1169 Tyrosine Measured in hard mass pilomaxitroma 

(probably shifted collagen peak) (Cheng et 

al., 2005) 

1170 Tyrosine Oesophagus (Stone et al., 2002) 

1171 Tyrosine Measured in soft mass PMX prob shifted 

collagen peak (Cheng et al., 2005) 
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Phenylalanine, tyrosine Proteins appearing after irradiation (brain 

tissue) (Jyothi Lakshmi et al., 2002) 

1172 Tyrosine Adenocarcinoma (bronchial tissue) (Huang, 

McWilliams, Lui, et al., 2003) 

1173 Cytosine, guanine Guanine–cytosine oligonucleotides (Ruiz-

Chica et al., 2004) 

Proline  Proline solid (Zhu et al., 2011) 

1174 Palmitic Acid  Palmitic Acid (De Gelder et al., 2007) 

1175 Proline  Proline (De Gelder et al., 2007) 

Tyrosine, phenylalanine Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

1180, 1180-1184 Cytosine, guanine, adenine Guanine–cytosine oligonucleotides (Ruiz-

Chica et al., 2004) 

Tyrosine (Miura and Thomas, 1995) 

1190 b-carotene b-carotene (De Gelder et al., 2007) 

1191 Valine Valine (De Gelder et al., 2007) 

1194 Proline Proline (De Gelder et al., 2007) 

1197 Carotenoid (Frank et al., 1994) 

1199 Tryptophan Control and extracted from A549 cells 

protein differences (cisplatin-lung 

adenocarcinoma) (Nawaz et al., 2011) 

Arginine Arginine (Zhu et al., 2011) 

1200 Tyrosine  Tyrosine (De Gelder et al., 2007) 

1201 (1202) Tyrosine Tyrosine solid (Zhu et al., 2011) 

1205 Tyrosine, phenylalanine Bovine Albumin (Kendall, 2002) (Kendall 

unpublished) 

Tyrosine, phenylalanine Amino acid spectra (HORIBA presentation) 

1206 Hydroxyproline Collagen (Frank et al., 1994) 

Hydroxyproline, tyrosine Breast tissue (Stone et al., 2004) 

Hydroxyproline, tyrosine Collagen type I (human placenta) and 

infiltrating duct carcinoma (Frank, 

McCreery and Redd, 1995) 

1207 Tyrosine, phenylalanine Bovine serum albumin (Kendall, 2002)  
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1208 Tryptophan, phenylalanine Bronchial tissue (Huang, McWilliams, Lui, 

et al., 2003) 

Ring breathing modes of the 

DNA/RNA bases, 

amide III (protein) 

Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

1209 Tryptophan, phenylalanine Oesophagus (Stone et al., 2002) 

1210 Hydroxyproline Chicken leg bone (Keller et al., 1994) 

Phenylalanine Phenylalanine solution (Zhu et al., 2011) 

1214 Phenylalanine, tyrosine Phenylalanine (Zhu et al., 2011),  

Tyrosine (De Gelder et al., 2007) 

1215 Tyrosine Tyrosine (Zhu et al., 2011) 

1216 (1618 

measured) 

Proline, phenylalanine Proline, phenylalanine (De Gelder et al., 

2007) 

1220, 1221 Amide III (β-sheet) Oesophagus, prostate (Stone et al., 2004), 

(Stone et al., 2002) 

1224 Amide III (β-sheet) Peak after irradiation-brain tissue (Jyothi 

Lakshmi et al., 2002) 

1237 (1236 

measured too) 

Amide III Human eye lens (Keller et al., 1994) 

1238 Amide III Elastin (Kendall, 2002)  

1239 Amide III Thyroid tissue, several hormones (Rau et 

al., 2016),  

Papillary carcinoma (Teixeira et al., 2009) 

Thymine DNA, RNA (Kendall, 2002)  

1240 One of the two most distinct 

peaks for RNA (with 813) 

Slightly elevated concentration of RNA in 

the transformed cells versus the normal 

cells (Chan et al., 2006) 

Amide III region of β-sheet 

conformations of 

polypeptides→ very intense 

peak (1235-1240) 

Poly-lysine (Lippert, Tyminski and 

Desmeules, 1976) 

Proline Proline (De Gelder et al., 2007), (Zhu et al., 

2011) 

1243 Amide III (collagen) Prostate tissue (Stone et al., 2004) 

Amide III Liver (Keller et al., 1994), 
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Collagen (Kendall, 2002)  

Amide III Chicken leg bone    

Amide III Rabbit lens (Erckens et al., 1997) 

1245 Amide III (random coil) Human brain tissue, glioma grade III 

(Mizuno et al., 1994) 

1246 Amide III Protein (Gniadecka et al., 1997) 

1247 Amide III Diseased breast tissue, collagen (Frank et 

al., 1994)  

Collagen type I, infiltrating ductal 

carcinoma (Frank, McCreery and Redd, 

1995) 

Collagen Fibrocystic human breast tissue (Kendall, 

2002) (Redd 1993) 

Amide III (collagen) Guinea pig skin incisions (Alimova et al., 

2009) 

Amide III Normal squamous cells (human cervical 

tissue) (Kamemoto et al., 2010) 

Collagen Collagen (Zhu et al., 2011) 

Thymine, Tyrosine  Thymine, Tyrosine (De Gelder et al., 2007) 

1248 Amide III Collagen (Mahadevan-Jansen et al., 1998) 

Collagen Collagen (Zhu et al., 2011) 

Tyrosine  Tyrosine (Zhu et al., 2011) 

Amide III (collagen) Tendon (Gasior-Głogowska et al., 2010) 

1255 Cytosine (Puppels, 1999) 

Uracil Uracil (De Gelder et al., 2007) 

1256 Glycogen Glycogen (Kendall, 2002) (Kendall 

unpublished) 

1257 Adenine, thymine, RNA bases, 

amide III 

Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

1258 Adenine, cytosine, Amide III, 

Lipids 

Murine muscle and adipose tissue (strong 

peak) (Huang et al., 2011),  

Adenine, cytosine, Amide III, Oesophagus (Stone et al., 2004) 

1259 Amide III Silicone gel (Frank et al., 1994) 
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Guanine, cytosine guanine–cytosine oligonucleotides (Ruiz-

Chica et al., 2004) 

1260 Tyrosine Protein secondary structure (Miura and 

Thomas, 1995) 

Amide III Chicken leg bone (Keller et al., 1994) 

Malignant breast tissue (Feld et al., 1995) 

Amide III  Colon tissue (Stone et al., 2004) 

Structural protein modes of 

tumors  

Breast tissue (Feld et al., 1995),  

1261 Tryptophan Tryptophan (Zhu et al., 2011) 

Thymine Thymine (De Gelder et al., 2007) 

1261-1269: Amide III Found in different states of horse heart 

cytochrome c (Copeland and Spiro, 1985) 

1262 Amide III Benign or normal cervix, benign or normal 

uterus, benign or normal endometrium (Liu 

et al., 1992) 

1263 Amide III Collagen (Kendall, 2002)  

Tyrosine  Tyrosine (Zhu et al., 2011) 

Thymine, adenine Differences between normal cells and 

transformed cell lines (Chan et al., 2006) 

1264 Fatty acids Normal iliac artery (Silveira et al., 2002) 

1265 Amide III Normal breast tissue (Frank, McCreery and 

Redd, 1995), (Chen et al., 2014) 

Amide III (collagen) Bronchial tissue (fresh and fixated) (Huang, 

McWilliams, Lam, et al., 2003) 

Amide III α-helix, collagen, 

tryptophan 

Normal and cancer bronchial tissue (more 

prominent in normal) (Huang, McWilliams, 

Lui, et al., 2003) 

Tyrosine (m) Tyrosine (De Gelder et al., 2007), (Chen et 

al., 2014) 

Amide III Thyroid peak (Law et al., 2017) 

Amide III Healthy and dysplastic gastric tissue in vivo 

(Huang, Bergholt, et al., 2010) 

1266 Proline  Proline (Zhu et al., 2011) 

Amide III Healthy gastric tissue (Chen et al., 2014) 
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Triacylglycerols, 

free fatty acids 

Purchased compounds (Weng et al., 2003) 

α-helix of histones Measured in normal gastric mucosa tissue  

(Chen et al., 2014)  

Amide III Found in intact single mitochondria (Tang 

et al., 2007) 

1267 Amide III Lymph node, diseased breast tissue, 

collagen (Frank et al., 1994),  

Infiltrating ductal carcinoma (breast) 

(Frank, McCreery and Redd, 1995) 

Phospholipid membrane (Mahadevan-Jansen et al., 1998) 

Lipids Normal brain tissue (Malini et al., 2006) 

Proline,   Proline (De Gelder et al., 2007), Tyrosine 

solid (Zhu et al., 2011) 

1268 Amide III  In bovine albumin (Kendall, 2002) (Kendall 

unpublished) 

Phospholipids Normal murine brain tissue (Jyothi Lakshmi 

et al., 2002) 

1269 Amide III (α-helix) Type I collagen (human placenta) (Frank, 

McCreery and Redd, 1995),  

Human brain tissue (Mizuno et al., 1994) 

Amide III Cancerous gastric tissue (Chen et al., 2014) 

α-helix of histones Shifted in cancerous gastric tissue from 

1266(Chen et al., 2014) 

1270-1310 Amide III (α-helix) Intact muscle fibres (Pézolet et al., 

1980)(Pézolet et al., 1988), 

(Sato et al., 2014) 

1300 Amide III (Sato et al., 2014) 

Phospholipids Human brain tissue (Mizuno et al., 1994) 

Lipids-fatty acids Breast (Manoharan et al., 1998) 

Fatty acids Healthy breast tissue (Hanlon et al., 2000) 

Lipids Difference between normal skin tissue and 

BCC (Gniadecka et al., 1997) 

Lipids Peak found in normal brain tissue (Jyothi 

Lakshmi et al., 2002) 
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Lipids Meningioma (Koljenović et al., 2005) 

1301 Lipids Lipid (TPE), Normal human breast tissue 

(Kendall, 2002) 

Lipids Present 24h after stress in brain tissue 

(Jyothi Lakshmi et al., 2002) 

Lipids, phospholipid-intralipid, 

cholesterol derivatives (due to 

fatty acid chains) 

Brain after traumatic brain injury, also in 

compounds (Surmacki et al., 2017) 

Cholesterol, Fatty acids Necrotic core of the atheromatous plaque 

(arteries), normal iliac artery (Silveira et al., 

2002) 

Lipids Strong band in normal breast tissue 

(Chowdary et al., 2009)  (assignment from 

other papers 

Carboxylic acid salts Thyroid peak (Law et al., 2017) 

1302 Collagen Collagen Type I (Cheng et al., 2005) 

Collagen, phospholipids Normal bronchial tissue (Huang, 

McWilliams, Lui, et al., 2003) 

Lipids, collagen Murine stomach, small intestine, colon, 

bladder, lung (Huang et al., 2011) 

Amide III Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

1303 Triglycerides  Adipose tissue (J. J. Baraga, Feld and Rava, 

1992; Joseph J. Baraga, Feld and Rava, 

1992) 

Phospholipid membrane Phospholipid membrane (Mahadevan-

Jansen et al., 1998) 

1304 Adenine, cytosine, lipids Colon small peak (Stone et al., 2004) 

1306 Lipids Human colon (Redd, Frank, et al., 1993) 

1307 Adenine Adenine (De Gelder et al., 2007) 

Lipids, collagen  Thyroid healthy and carcinoma tissues (Rau 

et al., 2016), (Talari et al., 2015) 

Lipids Malaria infected and non-infected spleen 

(Frame et al., 2018)  

Collagen, lipids Soft mass pilomaxitroma (probably shifted 

collagen peak) (Cheng et al., 2005) 

1308 Phenylalanine Phenylalanine (De Gelder et al., 2007) 
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Alanine  Alanine (Zhu et al., 2011) 

1309 Lipids Normal human skin (Gniadecka et al., 

1997) 

Tryptophan, glutathione Tryptophan, glutathione (De Gelder et al., 

2007) 

Collagen, lipids Hard mass pilomaxitroma (probably shifted 

collagen peak) (Cheng et al., 2005) 

1310  Phenylalanine  Phenylalanine (Zhu et al., 2011) 

1311 Amide III Staphylococcal protein A (Kengne-Momo et 

al., 2012) 

1314 Collagen Difference between normal and cancerous 

nasopharyngeal tissue (Lau et al., 2003) 

Cytochrome c Cytosol (Okada et al., 2012) 

Tryptophan Tryptophan (De Gelder et al., 2007) 

1315 Tryptophan Tryptophan (Zhu et al., 2011) 

1316 Guanine DNA, RNA (Mahadevan-Jansen et al., 1998) 

1317 Proline Proline (De Gelder et al., 2007) 

 Valine Valine (De Gelder et al., 2007) 

Typical Phospholipids Normal oral tissue (Malini et al., 2006) 

1330 Tryptophan  Cervix, uterus, ovary (Liu et al., 1992) 

1331 Valine  Valine solid (Zhu et al., 2011) 

α-helix Poly-L-alanine (Koenig and Sutton, 1969) 

1332 Adenine Adenine (De Gelder et al., 2007) 

1333  Glycogen Glycogen (Kendall, 2002) (Kendall 

unpublished) 

Guanine DNA (Mahadevan-Jansen et al., 1998) 

Proline Proline (De Gelder et al., 2007) 

Guanine Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

1334 Glutathione Glutathione (De Gelder et al., 2007) 

1335 Adenine DNA, RNA (Mahadevan-Jansen et al., 1998) 

Collagen, polynucleotide chain Oesophagus (Stone et al., 2002) 
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Collagen, nucleic acids Present only in abnormal bronchial tissue 

(adenocarcinoma) 

Collagen, nucleic acids Murine whole blood, blood pellete, serum, 

stomach, small intestine colon, lung brain, 

kidney, liver, spleen, teeth skull (Huang et 

al., 2011) 

Proline  Proline (Zhu et al., 2011) 

Collagen, nucleic acids Adenocarcinoma in pig kidney tissue 

(Lykina et al., 2018), (Talari et al., 2015) 

No assignment Found in human cancerous nasopharyngeal 

tissue (in vivo) (Ming et al., 2017) 

1336 Polynucleotide chain Colon (Stone et al., 2004) 

Phenylalanine  Phenylalanine (De Gelder et al., 2007) 

Valine Valine solution (Zhu et al., 2011) 

Adenine, guanine (ring 

breathing modes in the DNA 

bases), proteins 

Differences between normal cells and 

transformed cell lines (neoplastic) (Chan et 

al., 2006) 

Collagen, nucleic acid, 

tryptophan 

Hard mass pilomaxitroma (absent in 

normal skin dermis) (Cheng et al., 2005) 

1338 Tryptophan Amino acid (Mahadevan-Jansen et al., 

1998) 

Tryptophan  Tryptophan (De Gelder et al., 2007) 

Amide III (α-helix) Staphylococcal protein A (Kengne-Momo et 

al., 2012) 

Adenine  Lymphoma cells  (Lin et al., 2011)  

1339 Adenine DNA (Mahadevan-Jansen et al., 1998) 

Collagen, nucleic acid, 

tryptophan 

Soft mass PMX (absent in normal skin 

dermis) (Cheng et al., 2005) 

Albumin Albumin, human brain tissue spectra (brain 

tissue injury) (Surmacki et al., 2017) 

Adenine  B DNA fibre (Thomas et al., 1995) 

1340 Tryptophan Amino acid (Erckens et al., 1997) 

Nucleic acid  Increased in colon cancerous tissue 

(Mahadevan-Jansen and Richards-Kortum, 

1997) 

Tryptophan Tryptophan solid (Zhu et al., 2011) 
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1341 Adenine, guanine Stronger in malignant oral tissue (Su et al., 

2012) 

1343 Collagen Type I collagen (Frank, McCreery and Redd, 

1995) 

1365 Guanine, tryptophan (Hartman, Clayton and Thomas, 1973) 

Tryptophan Hard mass PMX (Cheng et al., 2005) 

1366 Tyrosine Tyrosine (Zhu et al., 2011) 

1367 Phospholipids Brain tissue before irradiation (Jyothi 

Lakshmi et al., 2002) 

1368 Glutathione  Glutathione (De Gelder et al., 2007) 

1369 Thymine Thymine (De Gelder et al., 2007) 

1370 Saccharide band Brain tissue (Krafft et al., 2005) 

1371 Adenine, palmitic acid Adenine, palmitic acid (De Gelder et al., 

2007) 

1373 Thymine, adenine, guanine Differences between normal and 

neoplastic cells (Chan et al., 2006) 

1396 Valine Valine (Zhu et al., 2011) 

1398  Valine  Valine (De Gelder et al., 2007) 

1400 Uracil, adenine (Hartman, Clayton and Thomas, 1973) 

1401 Symmetric bending in proteins (Kendall, 2002) 

1403 Glutathione Glutathione (De Gelder et al., 2007) 

1408  Thymine  Thymine (De Gelder et al., 2007) 

Histidine Histidine  

Proteins Quiescent cells cultivated for 14 to 100 

days (Eberhardt et al., 2018) 

1409 Alanine Alanine (De Gelder et al., 2007) 

1410 Proline  Proline (De Gelder et al., 2007) 

1413 Phenylalanine Phenylalanine solid (Zhu et al., 2011) 

1418 (1417 

measured too) 

Uracil Uracil (De Gelder et al., 2007) 

Proline  Proline (De Gelder et al., 2007) 

1419 Adenine Adenine (De Gelder et al., 2007) 

1420-1450 Lipids  Difference between normal and cancerous 

skin (Gniadecka et al., 1997) 
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1421 Palmitic acid  Palmitic acid (De Gelder et al., 2007) 

Adenine, guanine breathing 

modes of DNA, RNA bases 

Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

Adenine, guanine (Puppels et al., 1991) 

1422 Deoxyribose Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

Guanine  Guanine (De Gelder et al., 2007) 

1423 Tryptophan Tryptophan (De Gelder et al., 2007) 

1424 Lipids, deoxyribose Only in healthy thyroid tissue (Rau et al., 

2016)  

1439 Lipids, proteins Human brain tissue (Mizuno et al., 1994) 

1440 Cholesterol, phospholipids 

fatty acid  

Measured in cholesterol, glyceryl 

tripalmitate (Krafft et al., 2005) 

1441 Lipids Predicting laryngeal tissue pathology (Lau 

et al., 2005) 

Cholesterol atheromatous plaque in coronary artery 

(Silveira et al., 2002) 

1442 Lipids Normal human breast tissue (Redd, Feng, 

et al., 1993) 

Lipids, fatty acids Normal breast tissue (Manoharan et al., 

1998) 

Fatty acids Normal breast tissue (Hanlon et al., 2000) 

Fatty acids, lipids, proteins Murine skin, stomach, small intestine, 

colon, bladder, lung (strong peaks) (Huang 

et al., 2011) 

Triglycerides, fatty acids Triglycerides, fatty acids, brain tissue 

(Krafft et al., 2005) 

1443 Elastin Elastin (Kendall, 2002) (Kendall 

unpublished) 

Lipids, proteins Colon, prostate tissue (Stone et al., 2004) 

Proline Proline (De Gelder et al., 2007) 

1444 Lipid Lipid (Redd, Feng, et al., 1993) 

Triglycerides Adipose tissue (human aorta) (J. J. Baraga, 

Feld and Rava, 1992; Joseph J. Baraga, Feld 

and Rava, 1992) 
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1445 Deformation in Collagen Collagen (Kendall, 2002) (Kendall 

unpublished 

Collagen, phospholipids Present in healthy bronchial tissue 

(increased), SCC and adenocarcinoma 

(Huang, McWilliams, Lui, et al., 2003) 

Protein, lipids Increased in cancerous nasopharyngeal 

tissue (Lau et al., 2003) 

Collagen, phospholipids Fresh and fixed bronchial tissue (Huang, 

McWilliams, Lam, et al., 2003) 

Collagen, phospholipids Found in healthy thyroid tissue (Rau et al., 

2016), (Talari et al., 2015) 

1446 Proteins, lipids Oesophagus tissue (Stone et al., 2002) 

1447 Proteins, lipids Decreased in frozen parenchymal placenta 

tissue (Ó Faoláin et al., 2005) 

Phenylalanine Phenylalanine (De Gelder et al., 2007) 

1448 Deoxyribose DNA (Kendall, 2002) (Mahadevan-Janson 

1998) 

Collagen More prominent in human bronchial 

cancerous tissue (Kaminaka et al., 2001) 

Phenylalanine  Phenylalanine (Zhu et al., 2011) 

1460 Lipids, collagen Collagen Type I (Cheng et al., 2005) 

Proline, cytosine Proline (Zhu et al., 2011), Cytosine (De 

Gelder et al., 2007) 

Deoxyribose Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

1462 Deoxyribose DNA  (Mahadevan-Jansen et al., 1998) 

Adenine Adenine (De Gelder et al., 2007) 

1463  Tryptophan Tryptophan (Zhu et al., 2011) 

1465  Palmitic acid Palmitic acid (De Gelder et al., 2007) 

1468 Guanine Guanine (Zhu et al., 2011)  

1480 DNA, vibration of purine bases (Kendall, 2002)  

1481 Palmitic acid Palmitic acid (De Gelder et al., 2007) 

1482 Adenine Adenine (De Gelder et al., 2007) 

1485  Nucleic acids Colon (Boustany et al., 1999) 
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(Adenine, guanine) Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

1486 Tryptophan Tryptophan (De Gelder et al., 2007) 

1487 Nucleic acid Colon (Kendall, 2002)  

1510 Cytosine Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

Adenine, guanine (Puppels et al., 1991) 

1548 Tryptophan Oesophagus (Stone et al., 2004) 

1570 Vibration of purine bases  DNA (Mahadevan-Jansen, 1996) 

Nucleotides Breast cancer (mouse) (Kendall, 2002) 

(Schrader 1995) 

1573 Guanine, adenine, TRP protein Oesophagus (Stone et al., 2004) 

1575 Guanine, adenine Differences between normal cells and 

neoplastic cell lines (Chan et al., 2006) 

1576 Nucleic acids Increased in colon carcinoma (Feld et al., 

1995), (Mahadevan-Jansen and Richards-

Kortum, 1997) 

Tryptophan Tryptophan (De Gelder et al., 2007) 

Guanine Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

1577 Bound and free NADH NADH (Malini et al., 2006) 

Guanine, adenine (Puppels et al., 1991) 

1578 Guanine Oligonucleotide solution (Ruiz-Chica et al., 

2004) 

1578 Phenylalanine Cell lines [49] 

Nucleotides, DNA Breast cancer (mouse, cell culture) 

(Kendall, 2002) 

1579 Tryptophan Tryptophan (Zhu et al., 2011) 

1602  Phenylalanine Increased in abnormal bronchial tissue 

(Huang, McWilliams, Lui, et al., 2003) 

Phenylalanine Phenylalanine (De Gelder et al., 2007) 

1603 Phenylalanine, tyrosine (Stone et al., 2004)  

1610  Tyrosine Colon mucosa (Boustany et al., 1999) 



 

334 
 

Cytosine Oligonucleotide solutions (Ruiz-Chica et al., 

2004) 

1612  Adenine Adenine (De Gelder et al., 2007) 

1615 Tyrosine Tyrosine (Zhu et al., 2011) 

Tyrosine, tryptophan, protein Differences between normal cells and 

transformed cell lines (neoplastic) (Chan et 

al., 2006) 

1616 Tyrosine Bovine Serum Albumin (Kendall, 2002)  

Tyrosine, tryptophan Oesophagus (Stone et al., 2002) 

Tryptophan Tryptophan (De Gelder et al., 2007) 

1617 Tyrosine, phenylalanine (Puppels et al., 1991) 

1618 Tryptophan  Present only in abnormal bronchial tissue 

(Huang, McWilliams, Lui, et al., 2003) 

Free and bound NADH Normal oral tissue (Malini et al., 2006) 

1619 Valine Valine (De Gelder et al., 2007) 

Tryptophan Tryptophan (Zhu et al., 2011) 

1620 Tryptophan, tyrosine, 

phenylalanine, uracil 

(Hartman, Clayton and Thomas, 1973) 

Tryptophan Colon mucosa (Kendall, 2002) 

1633 Valine Valine (De Gelder et al., 2007) 

1637 Amide I Collagen, Diseased breast tissue (Frank et 

al., 1994) 

Amide I (α-helix, β-sheet) Brain tissue (Jyothi Lakshmi et al., 2002) 

1650 Amide I (α-helix) Normal human aorta, bovine insulin, 

human artery (Kendall, 2002) 

Lipids Colon mucosa (Kendall, 2002)  

Typical Phospholipids, Amide I Normal, Malignant oral tissue (Malini et al., 

2006) 

1651 Amide I  Breast tissue and malignant tumors, 

healthy human skin, collagen, ovarian 

cancer (Kendall, 2002) 

1652 Lipids Breast tissue, Lipid (TPE) (Kendall, 2002) 

Amide I (α-helix) a-Poly-L-glutamate, human strateum 

corneum (Kendall, 2002) 



 

335 
 

1652-1653 Lipid Breast (Stone et al., 2004) 

1653 Cytosine Cytosine (De Gelder et al., 2007) 

Lipids Normal human breast tissue, Human Colon 

(Redd 1993) 

Amide I Bovine Albumin (Kendall unpublished) 

1654 Amide I Normal breast tissue (Frank, McCreery and 

Redd, 1995) 

1655 Thymine Thymine (De Gelder et al., 2007) 

Amide I (α-helix) Coronary artery, lymph node, endometrial 

cancer, human strateum corneum (Kendall, 

2002) 

Amide I (Collagen) Collagen type I (Cheng et al., 2005) 

Lipids Normal oral tissue (Malini et al., 2006) 

Collagen, Elastin,  Abnormal bronchial tissue (Huang, 

McWilliams, Lui, et al., 2003) 

1656 Lipids, amide proteins, 

phospholipids 

Control molecules, brain tissue (Jyothi 

Lakshmi et al., 2002) 

1657 Amide I Malignant breast tissue (Feld et al., 1995), 

diseased breast tissue, infiltrating duct 

carcinoma (Frank, McCreery and Redd, 

1995) 

Lipids-Fatty acids Colon (Manoharan et al., 1998), 

Normal breast tissue (Hanlon et al., 2000) 

Triglycerides Atherosclerotic samples (Silveira et al., 

2002) 

1658 Amide I Aorta (J. J. Baraga, Feld and Rava, 1992; 

Joseph J. Baraga, Feld and Rava, 1992) 

Amide I (α-helix) Brain tissue (Jyothi Lakshmi et al., 2002) 

1659 Amide I, collagen Fresh bronchial tissue, increased in 

cancerous tissue (Min et al., 2005) 

Cholesterol Atherosclerotic samples (Silveira et al., 

2002) 

Amide I Benign breast tumor, benign or normal 

ovary, cervix, uterus, uterus cancer, human 

brain tissue, bovine serum albumin 

(Kendall, 2002) 
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1661 Amide I Elastin (Kendall unpublished), Normal 

human skin (Gniadecka et al., 1997) 

1662 Nucleic acids Colon adenocarcinoma (Feld et al., 1995) 

Triglycerides Adipose tissue from human aorta (J. J. 

Baraga, Feld and Rava, 1992; Joseph J. 

Baraga, Feld and Rava, 1992) 

1664 Amide I Collagen (Huang, McWilliams, Lui, et al., 

2003) 

1665 Amide I Skin dermis, soft PMX (Huang, McWilliams, 

Lui, et al., 2003) 

1666 Collagen Bronchial tissue, strongest in cancerous 

tissue (Kaminaka et al., 2001) 

1668 Collagen Collagen (Zhu et al., 2011) 
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Appendix B 
 

Raman spectra associated with skeletal muscle tissue.  

Raman bands in cm-1 

Myosin: 622, 645, 704, 755, 780, 830, 855, 901, 940, 962 (shoulder), 1004, 1033 (1044), 1081, 

1104, 1128, 1160, 1175, 1209, 1244, 1265 (shoulder), 1304, 1320, 1342, 1402, 1423, 1451, 1587, 

1607, 1650 (Carew, Asher and Stanley, 1975) 

Myosin: 620, 640, 750, 828, 903, 938, 1003, 1035, 1077, 1101, 1128, 1155, 1172, 1205, 1246, 

1318, 1340, 1405, 1427, 1449, 1555, 1650 (Kishp and Noda, 1983) 

Tropomyosin: 620, 644, 716, 750, 906, 940, 983, 1006, 1054, 1087, 1106, 1121, 1156, 1172, 

1211, 1253, 1293, 1325, 1342, 1425, 1451, 1460, 1625, 1655 (Frushour and Koenig, 1974)  

Actin: 1000, 1070, 1445, 1650 (acquired from figure) (Huang, Teh, et al., 2010) 

Type I Collagen: 762, 814, 856, 872, 920, 936, 1004, 1030,1240, 1264, 1335, 1445, 1651 

(Kendall, 2002) 

Other Collagen measurements: 

Type I Collagen: 922, 1004, 1032, 1247, 1273, 1325, 1410, 1455, 1668 (Zhu et al., 2011) 

Type I Collagen: 644, 763, 822, 859, 879, 925, 942, 1009, 1084, 1171, 1250, 1278, 1459, 1682 

(Cárcamo et al., 2012) 

Type III Collagen: 762, 819, 858, 896, 924, 941, 1008, 1166, 1251, 1276, 1307, 1451, 1674 

(Cárcamo et al., 2012) 

Glycogen: 709, 761, 853, 937, 1048, 1083,1123, 1258, 1333, 1377,1455 (Kendall, 2002) 

Intact Muscle Fibres: 623, 642, 759, 828, 854, 900,937, 980, 1002, 1045, 1128, 1158, 1207, 

1328, 1417, 1450, 1520, 1556, 1586, 1650 (Pézolet et al., 1980) 

Skeletal Muscle: 851, 962, 1065, 1258, 1297, 1437, 1542, 1653, 1737 (Huang et al., 2011) 

Skeletal Muscle: 746, 1000, 1124, 1309, 1333, 1450, 1550, 1581, 1650 (Minamikawa, Harada 

and Takamatsu, 2015) 

Skeletal Muscle: 934, 1002, 1179, 1264, 1301, 1336, 1447, 1576, 1655, 1737(Al-Rifai et al., 

2019) 
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Appendix C 
 

Animal Experiments 

Study 1 

a) One month old mdx vs. C57Bl/10 

 PCA analysis 

Figure C-1: PC2 loading plot. 

PLS-DA analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-2: PLS Component 1,2,3 and 4 weight plots. 
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b) 3 months old mdx/C57Bl/10 

 

PLS-DA analysis 

 

 

Figure C-3: PLS Component 2,3,4 and 5 weight plots. 
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c) One/Three months old mdx mice 

 

PCA analysis 

 

 

 

 

Figure C-4: PC1, PC2 and PC3 loading plots. 
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PLS-DA analysis 

 

 

 

Figure C-5: PLS Component 2 and 3 weight plots. 
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d) Three months old SOD1G93A/C57Bl/6 

 

PCA Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-6: PC3, PC6 and PC7 loading plots. 
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PLS-DA Analysis 

 

 

 

 

 

 

 

Figure C-7: PLS Component 2 and 3 weight plots. 
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e) One/Three months SOD1G93A mice 

 

PCA Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-8: PC3, PC6 and PC7 loading plots. 

 

 

 

 

 

 

 

 



 

345 
 

PLS-DA Analysis 

                                                                                                                                                                           

 

 

 

 

 

 

 

 

 

 

Figure C-9: PLS Component 2 and 3 weight plots. 
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f) One month old mdx/SOD1G93A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-10: PC1, PC3, PC5, PC6, PC7 and PC9 loading plots 
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PLS-DA Analysis 

 

 

 

Figure C-11: PLS Component 2,3,4 and 5 weight plots. 
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g) Three months old mdx/SOD1G93A 

 PCA Analysis 

Figure C-12: PC2 and PC4 loading plots. 

PLS-DA Analysis 

 

Figure C-13: PLS Component 2,3,4 and 5 weight plots 
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Study 3 

a) TDP-43 vs. TDP-43Q331K 

PCA analysis 

 

 

 

 

 

 

 

 

 

Figure C-14: PC6 loading plot. 
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PLS-DA analysis 

Figure C-15: PLS Component 1,2,3 and 4 weight plots. 
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b) SOD1G93A vs. TDP-43Q331K 

 

 

Figure C-16: PC2 and PC5 loading plots. 

PLS-DA Analysis 

 

Figure C-17: PLS Component 1,2,3 and 4 weight plots. 
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Study 4 

a) three months old mdx mice 

Figure C-1: PC2 loading plot. 

 

Figure C-18: PLS Component 2 and 3 weight plots. 
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Human Tissue Recordings 

‘Mitochondrial Disorders’ vs. ‘Healthy’ samples 

Microscope 

Figure C-19: PLS Component 2 and 3 weight plots. 

 

 

‘MND’ vs. ‘Healthy’ samples 

Microscope 

PCA Analysis 

Figure C-20: PC1 and PC5 loading plots. 
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PLS-DA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-21: PLS Component 2,3,4,5 and 6 weight plots. 
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Appendix D 
 

Figure D-1: Normalised Raman spectra (left) and normalised and mean centred Raman spectra 

(right). 
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Appendix E 
 

Project Main Outputs and Achievements 

• Plesia M, Stevens OA, Lloyd GR, Kendall CA, Coldicott I, Kennerley AJ, Miller G, Shaw PJ, 

Mead RJ, Day JCC, Alix JJP. In Vivo Fiber Optic Raman Spectroscopy of Muscle in Preclinical 

Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy. ACS Chem 

Neurosci. 2021 May 19;12(10):1768-1776. doi: 10.1021/acschemneuro.0c00794.  

• 2017 Winter Science Meeting, The Academy of Medical Sciences, London, November 2017 

(Poster and flash presentation) 

• Conference: SPEC 2018, The International Conference on Clinical Vibrational 

Spectroscopy, Glasgow, United Kingdom, June 2018 (Poster and flash presentation) 

• Conference: North East Postgraduate Conference 2018, Newcastle, November 2018 (Oral 

presenation) 

• Conference 29th International Symposium on ALS/MND 2018, Glasgow, United Kingdom, 

December 2018 (Oral presentation) 

 


