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ABSTRACT 

Diabetic neuropathy (DN) is the most common type of neuropathy, with 25-50% of patients 

experiencing pain at any stage of its progression. However, the understanding of the 

pathophysiology of DN is still incomplete. No disease-modifying treatments have yet been 

developed and pain is only treated symptomatically with drugs targeting the central nervous 

system (CNS). These have limited efficacy and can produce serious side effects. Research 

into novel analgesics is turning away from the CNS and now focusing on the peripheral 

nervous system (PNS) and more specifically the pain-sensing neurons (nociceptors) to 

produce better-targeted and safer treatments. However, to this end, a suitable medium-to-high 

throughput screening tool is needed, able to discriminate nociceptors from non-nociceptors 

in a heterogeneous cell population, such as the dorsal root ganglia (DRG). Previously, our lab 

showed a link between the veratridine (VTD)-induced oscillatory (OS) and slow decay (SD) 

calcium response profiles with nociceptors and non-nociceptors, respectively. Here, we 

validated the VTD-response profiles as broad functional markers of these DRG subpopulations 

using mice with genetically ablated nociceptors (1.8-DTA). Then, by using voltage-gated 

sodium channel (VGSC) blockers with different specificities, we demonstrated that the VTD-

Ca2+ imaging assay can be used as a drug screening platform for drugs, individually or in novel 

combinations.  The VTD-Ca2+ imaging assay was then applied in combination with nociceptive 

agonists to investigate the excitability changes in distinct neuronal subpopulations during DN. 

In db/db mice, during the early metabolic phase, small- to medium-diameter nociceptors 

showed 1.4 -fold increased sensitivity to CAP and 1.2-fold increased VGSC excitability. In the 

late, NEU phase, small-diameter nociceptors showed increased sensitivity to CAP (1.6-fold)  

and increased VGSC excitability (1.4-fold), whereas medium nociceptors show decreased 

sensitivity to AITC (1.8-fold) . This is the first study to characterise phase- and subpopulation-

specific excitability changes in the well-established db/db mouse model. Collectively, these 

results point to specific subpopulations of DRG neurons affected during the early and late 

stages of DN. These findings could aid in the better targeting of novel therapies for the 

treatment of DN and pain. Furthermore, we have demonstrated that the VTD-Ca2+ imaging 

assay can be applied as a tool for the characterisation of excitability changes in distinct DRG 

subpopulations during neuropathological conditions such as DN. 
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2 
CHAPTER 1: INTRODUCTION 

1.1. The nervous system and dorsal root ganglia (DRG) neurons  

The nervous system is the most complex body system with a highly organised structure. It is 

composed of two major parts: the central nervous system (CNS), constituting the brain and 

spinal cord; and the peripheral nervous system (PNS), comprising all the nerves connecting 

the CNS to all organs, tissues and skin. The PNS contains sensory (afferent) neurons 

responsible for conveying sensory stimuli to the CNS, where the information is processed and 

a response to the stimuli is generated. The response signal is then relayed through efferent 

neurons and expressed in the form of movement1.  

The sensory branch of the PNS comprises an intricate network of sensory neurons and 

pathways responsible for transducing and transmitting information that organisms can “feel”. 

The cell bodies of sensory neurons are contained within small, ball-like structures called 

ganglia. These can be located at the base of the skull, innervating the head and face, called 

trigeminal ganglia (TG). The cell bodies of the neurons innervating the rest of the body reside 

in ganglia along the spinal column called dorsal root ganglia (DRG) – the focus of this thesis 

(Figure 1.1). The pseudounipolar nature of DRG neurons somata means a single afferent fibre 

(axon), extends briefly from the cell body and then bifurcates into: a short central branch, 

Figure 1.1. Cross section of a spinal cord illustrating the relative position of the dorsal root ganglion 
containing the cell bodies of sensory neurons. Source:  CNX OpenStax. (2012, August 22). Biology [Cross 
section of Spinal Cord], available at https://commons.wikimedia.org/wiki/File:Figure_35_04_04.jpg  
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projecting into the CNS through the spinal cord; and a longer peripheral branch, innervating 

peripheral tissues and terminating in the skin, viscera, tendons, bones and muscles1,2.  

1.1.1. DRG neurons: heterogeneity and classification 

Sensory neurons relay complex information from an abundant variety of innocuous (harmless) 

and noxious (painful) stimuli to the CNS. This richness of sensory potential is supported by the 

complex heterogeneity of DRG neurons. The cell bodies of sensory neurons are intermingled 

together within the DRG, however they are organized into a number of types and subtypes, 

each specialised for the detection of distinct stimuli. These include neurons sensing body 

movement and position (proprioceptors), touch and pressure (mechanoreceptors), itch 

(pruriceptors), temperature (thermoreceptors) and pain (nociceptors). Although a certain level 

of distinct categorisation exists, sensory neurons can also be “polymodal”, or able to integrate 

multiple modalities, e.g., thermal and mechanical stimuli. Additionally, up to 25% of DRG 

nociceptors are normally dormant and only activated upon injury and are thus called “silent 

nociceptors”3,4. 

The basis for the classification of DRG neurons was formed as early as the 1920s by Gasser 

and Erlanger – the first to show a relationship between DRG neurons soma diameter, axon 

myelination degree, signal conduction velocity and fibre projection targets within the spinal 

cord lamina. They established that the smaller the soma diameter, the less the myelin 

sheathing and the slower the conduction velocity but the higher the excitation threshold is, 

and vice versa (Figure 1.2)5,6. From their morphological and electrophysiological observations 

arose the conventional DRG sensory neurons classification as it is known today: mammalian 

sensory neurons can be categorised into three general types: Aβ-fibres, Aδ-fibres and C-

fibres. Further behavioural studies correlated certain modalities with each fibre class5.  
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Aα-fibres are the largest in diameter, with conduction velocities in the range of 80 – 120 m/s. 

Defined by Gasser and Erlanger as motor nerves, the sensory neurons of the proprioceptive 

modality are usually denoted by the Aα-fibre type. They project into the deeper laminae of the 

spinal cord 5. 

Aβ-fibres have large soma diameter, heavily myelinated and with fast conduction velocities 

(30 – 70 m/s). The majority have low thresholds of activation and are dedicated to the detection 

of innocuous mechanical stimuli, such as touch and vibration, stretch and hair deflection 7. Of 

note, a significant proportion (e.g. ~20% of A-fibres in rat) of Aβ-fibres are Aβ-nociceptors, 

conducting in the Aβ conduction velocity range 8. In the spinal cord lamina, Aβ-fibres project 

into laminae III-V 9.  

Aδ-fibres have thin myelination and hence slower signal conduction velocity (5 – 30 m/s) than 

Aβ-fibres. Their size distribution in DRG is skewed, with populations of small- and medium-

sized cells. In the body, Aδ-fibres innervate mostly superficial organs (e.g. the skin). Aδ-fibres 

are associated with the detection of innocuous as well as noxious stimuli. Therefore, they 

include Aδ low-threshold mechanoreceptors (LTMRs) and Aδ nociceptors, responding to 

noxious mechanical and heat stimuli 10. Aδ nociceptors can be further divided into Type I and 

Table 1.1. Table summarising the relationship between neuronal properties and features. CV, conduction 
velocity; S, small; M, medium; L, large sizes of mouse DRG neurons. Based on Basbaum et al. (2009) and Li et al. 
(2011). 



 

 

5 
CHAPTER 1: INTRODUCTION 

Type II Aδ-mechano-heat (AMH) units according to the degree of sensitivity to either stimulus. 

Type I AMH are sensitive to chemical stimuli and have lower threshold to mechanical and 

higher threshold to heat (>53°C) stimuli. Hence, they are suggested to mediate first pain to 

noxious mechanical stimuli. In contrast, Type II AMH have lower heat (<46°C) and higher 

mechanical threshold and are thus suggested to serve the first pain sensation to noxious 

heat11. Activation of Aδ-nociceptors by noxious thermal or mechanical stimuli results in short-

lasting, prickling type of pain. In the spinal cord, Aδ-fibres terminate in laminae I, V (Aδ 

nociceptors) and III (Aδ-LTMRs) 10. 

C-fibres constitute over 50% of all DRG neurons and are of the smallest soma diameter. Their 

axons are unmyelinated and the signal conduction velocity ranges between 0.5 – 2 m/s. They 

are activated by one or a combination of two or more modalities, including temperature shifts, 

pruritogens, chemical irritants and mechanical pressure. Their high activation thresholds to 

these stimuli render the majority, but not all, of them nociceptors. Nociceptive C-fibres 

innervate deep somatic structures, such as the muscles and joints 12. While Aδ-fibre 

nociceptors convey acute and localized nociception, called ‘first’ or fast pain, nociceptive C-

fibres propagate ‘second pain’ which is more diffuse, dull and longer lasting 13. A portion of C-

fibre neurons, termed C-LTMRs, are responsible for propagating innocuous touch stimuli 9.  

Centrally, C-fibres project into the superficial laminae I-III.  

Albeit still used today, fibre classification of DRG neurons does not reflect the full 

heterogeneous spectrum of neuronal function and hence is not an adequate functionality 

predictor on its own.  Neurochemical markers and molecular classifications of DRG neurons 

have become key in building a more complete picture. A comprehensive summary of 

somatosensory cell type markers is presented in Table 1.2. 

More recently, transcriptomic techniques such as microarray, single-cell PCR and RNA 

sequencing (scRNA-seq) have produced their own elaborate DRG classifications. Usoskin et 

al. used scRNA-seq  to analyse 622 DRG neurons, detecting 3900 ± 1880 genes per neuron 

and distributing the neurons into 11 molecularly distinct subtypes with in vivo validation of the 

predicted subpopulations 14. Not long after them, Li et al. performed an even more in-depth 

sequencing of 197 DRG sensory neurons detecting 10950 ± 1218 genes per neuron and 

generating 17 molecularly distinct neuronal subtypes (however, not in vivo validated) 15. Their 

work was later reanalysed and their predicted number of classes reduced to 9 subtypes which 

largely overlapped with the predicted subtypes by Usoskin 16. Most recently, Zeisel et al. 

published a comprehensive scRNA-seq analysis of 1580 DRG neurons, which, merged with 
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that of 

Usoskin’s, delivers the most elaborate molecular classification of DRG sensory neurons to 

date, with a total of 18 neuronal subtypes identified 17.  

1.1.2. DRG neurons excitability 

A non-firing, or ‘resting’ neuron maintains an electrochemical gradient across its membrane 

called a resting membrane potential (RMP). It is determined by the uneven distribution of 

sodium (Na+), potassium (K+), chloride (Cl-), calcium (Ca2+) and organic anions across the 

membrane. The RMP is established by the difference in ion concentrations inside and outside 

the neuron and the relative permeabilities of the membrane to different ions. At rest, there are 

more extracellular Na+ ions than intracellular K+ ions. This concentration difference is 

maintained by Na+/K+ pump cycles, exchanging 3 Na+ out for 2 K+ into the cell.  

At rest, the membrane is more permeable to K+ than Na+, ions, letting them diffuse down their 

concentration gradient to the outside of the cell. Eventually, the free movement of K+ ions, 

Marker Sensory cell type 

Parvalbumin Proprioceptors and Aβ-fibres 

CGRP Peptidergic C fibres, subpopulation of Aδ-fibres 

Substance P Peptidergic C fibres 

NF200 Myelinated Aδ-fibres, Aβ-fibres and proprioceptors 

IB4 Non-peptidergic C-fibres 

Trpv1 Small diameter C-fibres (heat & pain) 

Trpm8 Small diameter C-fibres (cold & pain) 

MrgprD Small diameter C-fibres (noxious mechanical,pain) 

MrgprA3 Small diameter C-fibres (itch) 

MrgprB4 Small diameter C-fibres (innocuous mechanical) 

VGlut3 Non-peptidergic C-fibres (innocuous mechanical, cooling) 

TH Non-peptidergic C-fibres (innocuous mechanical, cooling) 

TrkB Aδ-fibres (innocuous mechanical, cooling) 

Npy2r Aβ-fibres (innocuous mechanical) 

Chondrolectin Aβ-fibres (innocuous mechanical) 

DOR 

Subpopulations of non-peptidergic C fibres and myelinated 

NF200+ fibres 

 

Table 1.2. Summary of the most commonly used markers for neuronal 

subpopulations. Source: Pichon and Chesler 2014 
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unbalanced by the movement of Na+ to the inside, will cause the neuron to have negative 

charge inside and positive charge outside. Due to the established extracellular/intracellular 

charge difference, the excess negatively charged ions on the inside are attracted to the outside 

and vice-versa, accumulating along the inside and outside surfaces of the membrane and 

establishing a negative membrane potential. The membrane is ‘polarised’, causing the RMP of 

an average neuron to be around -70mV (Figure 1.2). Stimulus detection causes membrane 

depolarisation, which even small can activate some VGSCs and increase the Na+ permeability 

of the membrane, producing even greater depolarisation. The ‘threshold’ potential (~ -55mV) 

of a neuron is the critical point at which the membrane is depolarised to elicit an action 

potential (AP). During its depolarised state, the membrane shifts its permeability from K+ to Na+ 

ions, influencing the reversal of the charge difference across it. A critical component of the AP 

is the influx of Ca2+ ions through voltage-gated Ca2+ channels (VGCCs), important for the 

activation of K+ channels (key during repolarisation) and transmitter release 2,18 . Following AP 

generation, the neuron needs to engage cellular mechanisms for Ca2+ ion clearance to avoid 

Ca2+ overflow in the cell and initiate repolarisation. Most of the intracellular Ca2+ is cleared 

through extrusion via the transmembrane Na+/Ca2+ exchanger or Ca2+ ATPase. Alternatively, 

Ca2+ ions can also be sequestered through uptake by the neuronal endoplasmic reticulum via 

its own transmembrane Ca2+ ATPases or into mitochondria 19. All Ca2+ clearance mechanisms 

require energy in the form of ATP to shuttle Ca2+ ions out of the neuronal cytoplasm and play 

an important protective role and influence the shape of the Ca2+ signal and thus AP 19,20.  

The pathway of the signal propagation follows three main steps: transduction, transmission 

and perception. Each of them is carried out through the highly coordinated activation and 

deactivation of all the different ion channels across the membrane, allowing the external 

stimulus to travel through the PNS and be perceived and processed in the CNS. This process 

will be reviewed in more details in the context of pain signalling in the next section of this 

chapter along with some of the key channels and receptor regulators in the signalling pathway.  
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1.2. Pain: the good and the bad  

1.2.1. The pain signalling pathway 

The ability to detect, transmit and perceive pain is a key protective mechanism essential for 

one’s survival. The process of pain signalling is called nociception. It starts with a noxious 

stimulus (chemical, mechanical or thermal) being detected at the terminals of nociceptors. The 

detection of the stimulus activates ion channels and receptors such as transient receptor 

potential activated (TRP) channels. This leads to the influx of Na+ which starts depolarizing the 

membrane, bringing it closer to the activation threshold of voltage-gated sodium channels 

(VGSCs) which act to amplify the signal. Once the threshold potential is reached, local VGSCs 

open simultaneously resulting in complete membrane depolarization and peak potential. The 

external stimulus is transduced into an action potential (AP)21. VGSCs then begin inactivating 

and voltage-gated potassium channels (VGKCs) and K+ leakage channels open allowing K+ 

efflux. This initiates membrane repolarization and subsequently hyperpolarization. Finally, the 

Na+/K+ pump takes over to restore and maintain the RMP (Figure 1.2). In the meantime, the 

AP generated is propagated up the axon driven by the same sequence of ion channels opening 

and closing akin to a chain reaction, going through the DRG cell body and eventually reaching 

the dorsal horn of the spinal cord. Once at the nociceptor’s presynaptic terminal, the AP 

Figure 1.2. A simplified visualisation of the action potential generation in neurons and 
phases of depolarisation and repolarisation and thresholds. Adapted from: Yam et al. 2018 
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causes VGSCs there to open and Na+ to flood in, which in turn activates local voltage-gated 

calcium channels (VGCCs). This results in calcium influx, bringing on a release of 

neurotransmitters such as substance P, CGRP or glutamate. The AP is thus passed over to 

the postsynaptic terminal of a second-order neuron (interneuron), completing the synaptic 

transmission. Finally, from there the signal can be propagated to the brain, where the site of 

pain perception and processing lies 21.   

1.2.2. Pain as a disease   

Dysregulation in any of the signalling steps outlined above can lead to abnormal pain signalling 

producing neuropathic pain. Unlike nociceptive pain, which is transient in nature and benefits 

the individual, neuropathic pain is sustained, usually chronic and evolving throughout the 

neuropathy duration. In its pathological state, pain becomes a serious disease affecting 7-10% 

of people worldwide22,23. Neuropathic pain can arise from a direct injury to the sensory nerves 

or as a complication of a disease such as diabetes mellitus and other metabolic diseases24; 

cancer and chemotherapy25; HIV-infection26, leprosy27 and immune and inflammatory 

responses28 amongst others29. Damage to different pathway components can produce 

different signalling impairments such as decreased or increased AP firing thresholds, causing 

hyper- and hypoexcitability, respectively; dysregulated firing duration and/or degree and 

hence pain intensity (hyper- or hypoalgesia) or inappropriate nociceptive firing in the presence 

of harmless stimuli (allodynia) or in the absence of a stimulus altogether (spontaneous pain 

episodes)30.  
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1.2.3. DRG-expressed channels and receptors involved in pain  

From noxious stimuli detection to pain perception, pain signalling is a highly organised and 

controlled process. It relies on the appropriate expression and function of different voltage-

gated sodium, potassium and calcium channels, leak channels and ligand-gated channels 

(TRPs and acid-sensing ion channels). Among the vast diversity of ion channels implicated in 

pain signalling, several specific families and subtypes have been demonstrated as key 

regulators of sensory neurons excitability (Figure 1.3). Channel subtype-specific changes in 

distribution, density and kinetics are the main drivers of abnormal activity in the afferent 

neurons 21,31,32 . Genetic and pharmacological studies have validated several of them as 

promising drug targets in human conditions of pain signalling malfunction 21,32–34. These include 

DRG-expressed voltage-gated ion channels (VGSCs, VGCCs, VGKCs), channels of the TRP 

family and ligand-gated ion channels and leak channels. Those of them relevant to the 

experiments in this thesis will be discussed in more detail next.  

Figure 1.3. The ion channels involved in the pain signaling pathway.  
Site 1, Transduction: Noxious stimuli are sensed by DRG neuron terminals which activates local VGSCs and 
nonselective cation channels (e.g. TRP channels); Site 2, Propagation: the action potential is propagated along the 
axon driven by the activation of VGSCs, VGKCs. Site 3, Synaptic transmission: action potential reaches DRG cell 
bodies and activates local ion channels which mediate the transmission to the synaptic terminals in the dorsal horn. 
There, VGSCs and VGCCs open to enable neurotransmitter release necessary for the transmission of the signal to 
the CNS where it is processed. TRP, transient receptor potential; VGSC, voltage-gated sodium channel; VGKC, 
voltage-gated potassium channel; VGCC, voltage-gated calcium channel; Source: Waxman et al., (2014) 
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1.2.3.1. Voltage-gated sodium channels 

VGSCs regulate AP firing in all electrically excitable cells, such as skeletal and cardiac muscle 

cells and neurons. Their main role in neurons is to initiate, amplify and propagate the AP. The 

major functional Na+-conducting component of VGSCs is formed by their α-subunit 35, while 

their kinetics and biophysical properties are regulated by their β-subunits 36. In mammals, there 

are nine VGSC α-subunits and thus nine different VGSC isoforms (Nav1.1-Nav1.9) sharing 

overall structural and gating motifs but differing in their expression patterns, pharmacological 

and functional signatures (table 1.3). A 10th VGSC isoform has also been identified (Nax), 

however it does not share the voltage-gating properties of the rest37.  

VGSCs have different sensitivity to pore-blocking toxins, the most extensively used of which 

is tetrodotoxin (TTX). Accordingly, it is used to differentiate TTX-sensitive (TTX-S) from TTX-

resistant (TTX-R) VGSCs. Sodium channels of the PNS can be both TTX-S and TTX-R 38–40. 

Distinct TTX sensitivity has been used to distinguish VGSC biophysical properties and 

Table 1.3. Voltage-gated sodium channel isoforms discovered 
to date with respective gene, tissue distribution and sensitivity 
to tetrodotoxin (TTX). TTX-S, tetrodotoxin-sensitive; TTX-R, 
tetrodotoxin-resistant;TG, trigeminal ganglia; SCG, superior 
cervical ganglia;  ND – not determined. Source: Cummins et al. 
(2020) 

Channel Gene Tissue distribution 
TTX 

sensitivity 

Nav1.1 SCN1A DRG, TG, CNS TTX-S 

Nav1.2 SCN2A CNS TTX-S 

Nav1.3 SCN3A Foetal DRG, CNS TTX-S 

Nav1.4 SCN4A Skeletal muscle TTX-S 

Nav1.5 SCN5A Heart muscle TTX-R 

Nav1.6 SCN8A DRG, TG, CNS TTX-S 

Nav1.7 SCN9A DRG, TG, SCG TTX-S 

Nav1.8 SCN10A DRG, TG TTX-R 

Nav1.9 SCN11A DRG, TG TTX-R 

Nax SCN7A 
Enteric, lung, 

nerve 
ND 
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contributions, particularly in nociceptive neurons. By and large, TTX-S VGSCs are 

characteristic with fast activation and inactivation, whereas TTX-R channels are slowly 

activating and inactivating41 .  

Five VGSC isoforms are expressed in the DRG (Nav1.1, Nav1.6-1.9) and of these, three (Nav1.7-

Nav1.9) are expressed relatively specifically in nociceptors. Although virtually all isoforms have 

been implicated in pain, the contribution to nociception of Nav1.3, Nav1.6, Nav1.7, Nav1.8, and 

Nav1.9 has been the most extensively evidenced42,43. The next part of this chapter will explore 

their role in nociception and pain disorders in more detail by discussing the expression and 

biophysical properties of each as well as evidence from clinical and animal studies.   

• Nav1.3 

Albeit not as strongly implicated in pain as the rest of the channels discussed in this section, 

Nav1.3 is of particular interest as a pain target due to its circumstantial expression pattern. 

Namely, this channel is usually not detectable in the adult, fully developed nervous system but 

its expression is upregulated in DRG neurons as well as second- and third-order neurons of 

the dorsal horn and thalamus under certain pathological conditions such as peripheral nerve 

inflammation and transection 44,45. Nav1.3 has fast activation and inactivation and rapid 

repriming kinetics as well as persistent current that contribute to spontaneous ectopic 

discharges and sustained repetitive firing in injured neurons 31. Due to the absence of isoform-

selective and safe blockers, evidence of its involvement in neuropathic pain stems from 

genetic experiments. Antisense-driven Nav1.3 knockdown studies show both attenuation of 

pain 46  and no effect 47. More recently, knockdown based on adeno-associated virus delivery 

of Nav1.3 short hairpin RNA has been demonstrated to produce amelioration of pain behaviour 

in rodent models of neuropathic pain 48 as well as diabetic neuropathy 49.  

• Nav1.6 

The TTX-S channel Nav1.6 is the most abundantly expressed isoform in the CNS. In the PNS, 

it is present in all parts of the peripheral nerves, but it is especially abundant in the nodes of 

Ranvier, the microscopic myelination gaps along an axon, in myelinated DRG fibres. It is 

expressed constitutively in all DRG sensory neurons, with higher concentration in large, 

NF200+ neurons 50. In fact, Nav1.6 has been shown to contribute to up to 60% of Na+ currents 

in large DRG compared to 34% in small DRG neurons 51. It has a more hyperpolarised 

activation voltage compared with other VGSC isoforms and mediates persistent and resurgent 

Na+ currents contributing to repetitive AP firing 52,53. The role of Nav1.6 in pain signalling has 

been established mainly through genetic studies. While gain of function mutations are linked 

to trigeminal neuralgia in humans 54,  Nav1.6-KO attenuates neuropathic pain in mice 51 and 
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Nav1.6-knockdown decreases TTX-S resurgent DRG currents and mechanical allodynia 55,56. 

Emerging evidence has pointed to the differing temporal upregulated expression of Nav1.6 in 

different stages of neuropathic pain. Different models of neuropathic pain, including nerve 

injury and diabetic neuropathy, show decreased or unchanged levels of expression of Nav1.6 

in DRG in the first 4 weeks of pain 57,58, whereas at later stages there appears to be a consensus 

over the upregulated expression of Nav1.6 in DRG neurons 59,60.  

• Nav1.7 

Nav1.7 is highly expressed in the PNS, predominantly in DRG, TG and sympathetic neurons. 

In DRG neurons, it is detected mainly in Aβ-fibres and C-fibres (nociceptors), along the entirety 

of the neuron 61,62. Other excitable cells expressing Nav1.7 include myenteric neurons, visceral 

sensory neurons and neurons of the olfactory sensory system 63,64 as well as in the 

hypothalamus of rodents 65. In non-excitable cells, it has been demonstrated to have a 

functional role in the pancreatic islet β-cells of some species 66.  

Nav1.7 is TTX-S and, like the rest of the channels from this category, is characteristic with rapid 

activation and inactivation kinetics. However, it has a distinct slow recovery rate from 

inactivation, making it unlikely to contribute to repetitive firing 53,67. Nav1.7 also inactivates 

slowly at negative membrane potentials, which means it can remain open for longer at 

potentials close to RMP. Thus, it contributes to Na+ currents at RMP, generating “ramp 

currents”, important for recruiting other VGSCs (such as Nav1.8) to elicit an AP 53. These 

specific biophysical properties, together with its high expression in fibre terminals, render 

Nav1.7 an AP generator or ‘threshold’ channel, setting the gain in nociceptors. 

The first clues for Nav1.7 implications in pain signalling were provided by genetic and functional 

profiling studies of mutations in the gene encoding it – SCN9A.  Missense mutations in SCN9A 

produce inherited erythromelalgia (IEM), a disorder presenting with severe burning pain in the 

distal extremities in response to mildly warm stimuli (thermal hyperalgesia) 68,69. The 

exaggerated thermal pain phenotype is presumed to be the result of a gain of function (GoF) 

mutations in the SCN9A gene causing hyperpolarized activation of Nav1.7 bringing its 

activation threshold further down. Being easier to activate, even small depolarizing stimuli are 

sufficient to trigger Nav1.7 opening in nociceptors causing allodynia and hyperexcitability 70,71. 

Another dominant GoF mutation in the SCN9A gene, which impairs Nav1.7 rapid inactivation, 

causes a syndrome known as paroxysmal extreme pain disorder 72. The depolarising shift in 

the channel’s fast inactivation produces an increase in resurgent Na+ currents leading to 

enhanced DRG excitability 73,74. Patients suffering from this disorder experience extreme rectal, 

ocular and mandibular pain and erythema 72. Other GoF SCN9A mutations have been identified  
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to occur in up to 30% of patients with diagnosed small-fibre neuropathy, impairing Nav1.7 

kinetics in both directions, i.e. hyperpolarising its activation potential and depolarising its 

inactivation potential in nociceptive Aδ- and C-fibres 75. GoF Nav1.7 variants have also recently 

been associated with diabetic neuropathy 76 - discussed in more detail later. The increased 

Nav1.7 activity in these subjects produces spontaneous firing in DRG neurons causing severe 

pain.  

In contrast, loss of function (LoF) recessive mutations in the SCN9A gene have been linked to 

channelopathy-associated insensitivity to pain (CIP). Affected individuals present with normal 

sensitivity to innocuous stimuli but display painless wounds, fractures and childbirth 77,78 as 

well as, curiously, an inability to smell (anosmia) 63. In this case, the mutations produce a 

truncated variant of the Nav1.7 channel which is not functional. The function of the small fibres 

is impaired while that of large fibres is preserved. Further to that, a recent study investigating 

the role of Nav1.7 in CIP patients in more depth showed that the absence of a functional Nav1.7 

leads to structural changes in the affected afferents as well. They reported a significant 

decrease in intraepidermal nerve fibre (IENF) density of the distal leg and thigh of patients, 

implying a potential role of Nav1.7 in long-term structural integrity in human nociceptors, 

particularly in the distal terminals 78. Additional links between Nav1.7 and human pain disorders 

have also emerged from studies showing that single nucleotide polymorphisms in the Nav1.7 

gene lead to a subtle increase in nociceptor excitability and increased pain sensitivity in pain 

disorders 79,80. Albeit extremely rare, collectively, these mutations strongly support the 

importance of Nav1.7 in the pain signalling pathway and as a target for pain relief.  

Clinical case data has been further supported by animal studies. Nav1.7-knock-out (KO) mice 

have aided significantly in the understanding of the mechanisms of Nav1.7 role in pain. 

Originally, a Nav1.7-/- global KO in mice was lethal due to producing pups unable to feed. It was 

later demonstrated that this was due to the high expression of Nav1.7 in olfactory sensory 

neurons in rodents 64. Knocking the channel out completely prevented blind new-born pups 

from relying on their sense of smell to feed. This insight allowed for the successful generation 

of a robust global Nav1.7-KO model in 2014 by manually supporting KO mouse pups feeding 

81. The optimised Nav1.7-KO model produced mice with near complete acute, inflammatory 

and neuropathic pain deficit.   

Tissue-specific Nav1.7-KO mutants utilising the Cre-recombinase-loxP system have also been 

available for the last decade. The first evidence of Nav1.7 function in pain from such studies 

was supplied by a KO mouse whereby Cre- was driven specifically into Nav1.8-expressing 

neurons, i.e. small-diameter nociceptors, since Nav1.8 is predominantly expressed there. The 
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conditional deletion of Nav1.7 led to a dramatic loss of mechano- and inflammatory pain 

sensitivity 82. Other tissue-specific Nav1.7-KO models employing alternative DRG-targeting 

approaches (e.g. DRG-specific advillin, or neural crest-specific protein Wnt1) produced similar 

phenotypes 83,84.  

Of note, not long ago it was demonstrated that there exist Nav1.7 independent pain states. One 

case study reported a unique CIP patient experiencing chronic neuropathic pain following 

pelvic fractures and lumbar nerve impingement where Nav1.7 signalling was intact 85. Similarly, 

a different study showed that Nav1.7 was not required for the phenotype of chemotherapy-

induced or cancer-induced bone pain in a mouse model 86 suggesting that similar pain 

phenotypes can be driven by different molecular mechanisms.  

Overall, Nav1.7 has been strongly established as a key regulator in DRG excitability, specifically 

in nociceptors. Its dysregulation has been extensively demonstrated to contribute to abnormal 

pain signalling in animal experiments and patients 78. Thus, it has remained as, perhaps, the 

most studied target for analgesic drugs with various Nav1.7 channel blockers being developed 

(discussed in more detail in section 1.3.3.2.) 

• Nav1.8 

Encoded by the SCN10A gene, Nav1.8 is expressed in sensory neurons in the DRG, TG as well 

as nodose ganglion neurons 87,88. In the DRG, it is expressed in up to 90% of both non-

peptidergic (IB4+) and peptidergic (IB4-) small nociceptive fibres 89, however it has been 

shown to be expressed in large myelinated neurons, including LTMR C- and Aβ fibres 

responsible for touch sensation 90 . Elsewhere, it is detected in high quantities in intracardiac 

neurons where it plays a significant role in cardiac electrophysiology 91. Nav1.8 is of the TTX-

R family of VGSCs, but it is characteristic with its own unique biophysical properties. 

Compared to Nav1.9 and TTX-S channels, Nav1.8 is distinguished with a more depolarized 

activation threshold and slow inactivation. What this means is that: 1) Nav1.8 can be activated 

only following the activation of a TTX-S channel and 2) Nav1.8 channels can remain active long 

after other VGSCs have been inactivated, contributing to most of the generated Na+ current 

upon depolarisation 92,93. Nav1.8 also recovers quickly from inactivation and thus, contributes 

to high frequency AP firing when membrane depolarisation is sustained 92.  

Several GoF mutations have emerged from patient cases. An international coalition from 2012 

conducted genetic analyses of 104 small-fibre neuropathy patients. No SCN9A (Nav1.7) 

mutations were identified, but 7 SCN10A mutations were described in 9 of the patients. All of 

them shared similar shifts in the Nav1.8 channel’s kinetics, including hyperpolarization of its 

activation threshold and acceleration in its recovery from inactivation94–96.  This lowered the AP 
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generation threshold and increased the rate of AP firing, thus producing high-frequency 

spontaneous firing even in the absence of stimuli, culminating in DRG hyperexcitability. 

Natural SCN10A LoF mutations have not yet been identified in humans, therefore knowledge 

of Nav1.8’s role in pain has been derived from genetic studies on animal models. The global 

Nav1.8KO mouse showed only moderate analgesia to painful stimuli 97. In a later study, a 

Nav1.8KO mouse model of neuropathic pain displayed no change in its painful phenotype 98. 

These observations contradict those obtained from mice with genetically ablated neurons 

expressing Nav1.8 channels, where animals showed profound loss of pain 99; or knocked-down 

Nav1.8 channel, where TTX-R current was reported to be significantly reduced and spinal 

nerve ligation-induced neuropathic pain behaviour reversed 100. This discrepancy was 

attributed to a key compensatory mechanism being triggered in the global Nav1.8KO, whereby 

Nav1.8 absence induced upregulation of Nav1.7 expression and hence TTX-S current, thus 

preserving the neuropathic pain phenotype 87. However, in a later study, a Nav1.7/Nav1.8 

double KO mouse model displayed reduced inflammatory pain and impaired mechanical and 

thermal acute pain thresholds but developed normal levels of neuropathic pain, implicating 

Nav1.8 is not necessary for nerve injury-induced pain 101. 

Interestingly, Dib-Hajj et al. (1996) observed that Nav1.8 expression and TTX-R current is 

downregulated in injured DRG neurons (following transection of the peripheral nerve), 

however they were upregulated in neighbouring uninjured neurons102. A similar conclusion 

was also reached by Gold et al. (2003) who observed a significant redistribution of Nav1.8 

channels to uninjured neurons adjacent to injured fibres of the sciatic nerve. This was 

accompanied by an increase in the TTX-R current, particularly in uninjured C-fibres and 

partially in thinly myelinated Aδ-fibres following injury, leading to spontaneous activity in these 

neurons 103. Remarkably, Coward et al. (2000) established a time-dependent shift in Nav1.8 

involvement in such neuropathic pain. Overtime, post-injury Nav1.8 upregulation and 

hyperexcitability affected not only uninjured but also the injured nociceptors as well. Therefore, 

considering neuropathic pain in particular, Nav1.8 might be involved via a temporal role shift 

from intact to injured neurons as the injury progresses 104. In contrast to neuropathic pain, the 

contribution of Nav1.8 to inflammatory pain is better established. Different inflammatory 

mediators, such as NGF, TNFα and other cytokines, have been evidenced to modulate Nav1.8 

biophysical properties and causing hyperexcitability in DRG neurons 98,105–108. 

• Nav1.9 

The other DRG-expressed TTX-R channel is Nav1.9, encoded by the SCN11A gene. Unlike 

Nav1.8, however, it is activated at low voltage potentials (approx. -70mV), close to the RMP 
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and produces a persistent current 109. Nav1.9 is expressed in the soma of small-diameter DRG 

and TG neurons. Expression in the PNS is particularly concentrated in non-peptidergic 

nociceptors 110,111. The specific biophysical properties of Nav1.9 and its distribution along 

sensory neurons suggest it may determine the activation threshold of small DRG neurons 109. 

The role of Nav1.9 in neuropathic pain is not fully understood and the literature remains 

controversial. In humans, 7 different mutations have been identified in the SCN11A gene in 

peripheral neuropathy patients which modified the channel properties via various 

mechanisms. These include reducing the current threshold and increasing the firing frequency 

thus increasing DRG excitability and causing patients to experience episodic chronic pain 112–

114 and, in the case of some – cold pain 115. Nerve-injury models of Nav1.9-null mice including 

partial sciatic nerve injury 116, chronic constriction injury 117 and spinal nerve transection 86, 

demonstrated no change in the pain-thresholds of the animals. In contrast, similar to Nav1.8, 

Nav1.9 expression and current in sensory neurons has been reported to be significantly lower 

in different animal models of neuropathic pain, including in DRG  118,119 and TG 120 neurons.  

Inflammatory pain, on the other hand, has been strongly linked to the presence of Nav1.9. 

Several studies assessing the effects of a great diversity of inflammatory agents on Nav1.9KO 

mice were all consistent in their reports, observing reduction in the pain behaviour of these 

animals 116,121–123. It is speculated, that inflammatory mediators act via a G-proteins-dependent 

mechanism to increase Nav1.9 persistent current and lead to spontaneous activity in affected 

sensory neurons 124. 

From all of the above, DRG-expressed VGSCs contribute greatly to various pain states and 

represent attractive targets for novel analgesics in development. Characterising the changes 

in their function in models of neuropathic pain is, therefore, essential for the development of 

better-targeted and safer therapies. However, they are only one avenue of research into 

neuropathic pain.  

1.2.3.2. Transient receptor potential cation channels: TRPV1 and TRPA1 

External stimuli are transduced into APs via the activation of another group of specific cation-

conducting channels expressed in the neuronal membrane. These are the superfamily of 

transient receptor potential (TRP) ion channels which contribute to sensory perception in 

animals. Most lately, the great diversity within TRP channels was categorised into nine animal 

subfamilies: TRPA (ankyrin), TRPV (vanilloid), TRPVL (vanilloid-like), TRPC (canonical), TRPN 

(no mechanoreceptor potential C), TRPM (melastatin), TRPS (soromelastatin), TRPML 

(mucolipin) and TRPP (polycystin). Each of the subfamilies comprises several subtypes of 
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channels with distinct structural homology giving rise to specific signal integration and 

regulation functions. Members of the TRP subfamilies are activated by a great range of stimuli, 

including photosensation, mechanosensation, thermosensation and nociception, some 

integrating two or more modalities. Thus, they are key polymodal cellular sensors (for in depth 

reviews see 125,126). 

ThermoTRP channels represent those members of the families that are particularly sensitive 

to temperature. Of all TRP channels, nine are characteristic with differing ranges of activation 

temperatures (Figure 1.4). TRPV1-4, and TRPM2, 4 and 5 are heat-activated, while TRPA1 and 

TRPM8 are cold-activated 127. Of these, two have received a great amount of interest and have 

been implicated in nociception the most 128,129. Since functional changes in the same two TRP 

channels are also the focus of part of the upcoming experiment chapters, the rest of this 

section will cover the properties and role in pain of these two channels, namely TRPV1 and 

TRPA1.  

• TRPV1 

The TRPV1 (transient receptor potential cation channel subfamily V member 1) channel is the 

first channel of the TRP family to be cloned and have its structure resolved. To date, it is also 

the most studied member of the TRP superfamily due to its intriguing polymodality and role in 

pain 130. Encoded in humans by the TRPV1 gene, it is a nonselective cation channel with a 

ligand- and heat-gated mechanism. In the nervous system, it is mainly expressed in the TG 

and DRG sensory neurons and cranial nerve cervical ganglia neurons innervating organs in 

the head 130,131. In primary afferents, TRPV1 is distributed throughout, from the skin-terminating 

free endings (highest density), along the axons and in the cell bodies, with especially high 

Figure 1.4. Diagram depicting the thermal sensitivity spectrum of thermoTRP channels. 
Source: Latorre et al. (2009) 
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expression rates in small-diameter peptidergic nociceptors demonstrated using reporter mice 

(up to ~82% in the adult mouse DRG) 132.  

The structure of TRPV1 has been studied extensively 130 due to its sophisticated gating, 

regulation and ion selectivity mechanisms. TRPV1 is a cation-permeable channel with a strong 

preference for Ca2+ ions (10-fold more Ca2+ conductance than other ions). Upon TRPV1 

activation, a strong Ca2+ and moderate Na+ influx is triggered, depolarising the membrane 

which, if strong enough, can lead to the activation of voltage-gated ion channels (such as  

Nav1.7) and thus generate an AP 133. 

A homotetrameric membrane protein, TRPV1 possesses a distinct structural complexity to 

which it owes its vulnerability to a range of different stimuli categories. These include vanilloids 

(capsaicin, resiniferatoxin), lipids, noxious heat (≥43°C) and acidic solutions (protons) (pH< 

6.0) 134. Interestingly, each group of stimuli has its distinct site of action on TRPV1. For example, 

vanilloids are lipophilic and have been shown to diffuse through the lipid membrane and bind 

to an intracellular site on TRPV1 135,136. Protons, on the other hand, act exclusively on an 

extracellular acidic site of the channel 137,138, while high temperatures critically change the 

proximal region of the C-terminus 138. The segregation of active sites allows for each stimulus 

to trigger channel gating alone but also for two or more stimuli to act together and cooperate 

to potentiate the channel. For instance, when pH is low, for example during tissue acidosis 

following an injury, local TRPV1 channels have lowered temperature activation thresholds so 

that they can be activated at as low as room temperature 139–141. This facilitates TRPV1 

activation, thus sensitising nociceptors during moderate acidosis in ischemic or inflamed nerve 

tissues, contributing to allodynia and/or hyperalgesia 140. 

TRPV1 has been strongly linked to nociception. Upon an injury, various inflammatory 

molecules (such as bradykinin and prostaglandin E2) are released which together with 

cytokines and neurotrophins have been shown to sensitise TRPV1 to its stimuli through 

phospholipase C, protein kinase A (PKA) or C (PKC) pathways 142–145; or even directly activate 

it (such as some lipid mediators) 146 147. Evidence for the role of TRPV1 in inflammatory pain 

comes from experiments with TRPV1-null mice. The mutant mice showed no capsaicin-

induced pain behaviour and had attenuated inflammation-induced thermal hyperalgesia and 

did not respond to noxious heat 148,149. These observations were confirmed by pharmacological 

experiments with mice injected with a TRPV1 antagonists (such as capsazepine), also 

reporting attenuated thermal hyperalgesia under inflammatory conditions 148,150.  

In neuropathic pain, the evidence of TRPV1 contribution is still contradictory. In TRPV1-null 

mice, pain perception does not change following nerve damage 148,151. However, several animal 
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models of neuropathic pain exhibit decreased pain following pharmacological inhibition of 

TRPV1 152,153. In addition, development of sustained thermal hyperalgesia has been correlated 

with the increased expression of TRPV1 154. Finally, TRPV1 has been implicated in neuropathic 

pain arising as a complication from certain conditions. Elevated expression levels of the thermo 

channel in DRG and dorsal horn have been reported in diabetic neuropathy and cancer-

induced chronic pain models, correlating with hyperalgesia behaviour 58,155,156. Therefore, 

targeting TRPV1 for pain alleviation may prove promising. In fact several TRPV1-targeting 

ligands have been in development and focus appears to be equally on agonists as well as 

antagonists 157.  

• TRPA1 

Another well-studied TRP channel is the TRP ankyrin 1 (TRPA1) channel. TRPA1 is expressed 

in the sensory neurons of the DRG and TG 158, predominantly in, non-peptidergic (IB4+) 

nociceptors 159. It is often co-expressed with TRPV1 in a subset of nociceptive neurons 160 and 

has been suggested to interact with it and form a heteromeric channel 161. Being a Ca2+-

permeable channel, upon TRPA1 activation intracellular Ca2+ levels increase drastically 

leading to neuronal excitation 158.  

Much like TRPV1 and other thermoTRPs, it is activated by a range of stimuli, individually as 

well as simultaneously. These include mechanical perturbations 162, exogenous irritants such 

as cinnamaldehyde (compound in cinnamon), cannabinoids, acrolein (present in tear gas), 

menthol and allyl isothiocyanate (AITC, found in wasabi, radish and mustard) 163–165; as well as 

endogenous molecules released upon tissue damage and inflammation 165. In addition to being 

a chemosensor, TRPA1 has been implied to be activated by cold temperatures (~17°C), 

demonstrated clearly in vitro 160,166,167. However others using heterologous expression systems 

163,168 as well as TRPA1-null mice 169 report contradicting findings on its ability to be activated 

by noxious cold, leaving the role of TRPA1 as a cold sensor highly controversial.  Of note, 

TRPM8 is also activated by menthol and cool temperatures (~25°C), shaping a separate 

population of cells specialised for low temperature sensing 170.  

With high expression levels in nociceptors, TRPA1 has been implicated in acute, inflammatory 

and neuropathic pain. The role of TRPA1 in inflammatory hypersensitivity was first reported in 

a study demonstrating its contribution to the excitatory effects on nociceptors induced by the 

inflammatory mediator bradykinin164. These results were confirmed by a pivotal study showing 

decreased formalin-induced nociceptive response in rodents following TRPA1 

pharmacological blockade and genetic deletion 171. Adopting the same methods, TRPA1 was 
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documented to be involved in mechanical and cold hypersensitivity associated with 

inflammation as well 172–174. 

The involvement of TRPA1 in neuropathic pain was initially suggested by observations made 

in spinal nerve ligated mice, where TRPA1 was downregulated in injured L5 DRG but 

upregulated in uninjured L4 DRG (much like the case with Nav1.8 in the same nerve injury 

model, see section 1.2.3.1, Nav1.8) 175. Similar redistribution of TRPA1 expression was noted 

in other nerve injury models 176–178. Several TRPA1 antagonists 179,180 and TRPA1-/- animal 

models 181–183 have shown attenuated allodynia and hypersensitivity after peripheral nerve 

injury. TRPA1 has been implicated in diabetic neuropathy: its inhibition reduces mechanical 

allodynia and hypersensitivity in rat diabetic neuropathy models 184, while methyglyoxal, an 

abundant glucose metabolite during diabetes, has been shown to activate TRPA1, contributing 

to hyperalgesia 185. 

1.2.3.3. Purinoceptors: P2X purinoceptor 3 (P2X3) 

The P2X purinoreceptor family includes ligand-gated ion channels activated by binding of 

extracellular adenosine 5’-triphosphate (ATP). Apart from providing energy for cellular 

processes, ATP also acts as an important intercellular messenger released locally by damaged 

tissues. It binds P2X receptors expressed by sensory neuronal terminals and cell bodies in the 

periphery and interneurons in the dorsal horn 186,187. There are seven different P2X subunits 

(P2X1-7) expressed in DRG, TG and nodose ganglia. Amongst them, P2X3 is the only subtype 

selectively expressed in small C-fibre nociceptors, particularly the non-peptidergic 

subpopulation 188,189. P2X3 is a trimeric cation channel contributing to up to 96% of ATP-induced 

responses in DRG sensory neurons 186. Upon ATP binding, P2X3 channels activate and are 

desensitized within milliseconds, however ATP dissociation and desensitization recovery can 

take minutes thus limiting repetitive AP firing 190,191. 

Pharmacological studies using P2X3 selective antagonists 192–195 and animal studies using 

P2X3-deficient 196,197 or P2X3-selective-antisense-treated animals 198–200 have demonstrated 

that P2X3, along with its heteromeric assembly with P2X2 (forming P2X2/3), are responsible for 

transmitting persistent, inflammatory and neuropathic pain. For example, the intraplantar 

flinching in P2X3-/- mice was reduced in response to α,β-MeATP and formalin (used to induce 

inflammatory pain in animals) 197, indicating a strong role of DRG P2X3 receptors in 

inflammatory pain. Antisense-driven knockdown of P2X3 confirmed these findings  and 

demonstrated reversal of mechanical allodynia in different neuropathic injury models 199,200. 

Thus, P2X3 has emerged as a promising target for treating pain conditions and several 
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antagonists are in development for treating migraine, itch-associated pain and cancer pain 201–

204. 

To summarise, these sections highlighted the importance of several VGSCs, TRPV1, TRPA1 

and P2X3 in nociception and pathological pain promoting further research into their function 

during chronic pain conditions. These channels form an attractive cohort of targets for efficient 

molecules that can downregulate their function to alleviate pain and have an important function 

as markers of sensory subtypes in DRG characterizing experiments. The study presented here 

focuses on targeting the activation of VGSCs, TRPV1, TRPA1 and P2X3 in order to investigate 

their contribution, as well as that of the neuronal subpopulations they mark, to neuronal 

excitability changes during diabetic neuropathy – the topic of the next section of this chapter. 

1.3. Diabetic neuropathy and pain  

Diabetes mellitus is an umbrella term covering a group of metabolic disorders leading to 

impaired glucose uptake and metabolism by the body. In a healthy organism, its metabolization 

involves several steps, simplified and summarised in Figure 1.5. Glucose molecules are 

obtained from food and metabolised in cells to release energy. Their uptake by the cells from 

the blood relies on the adequate function of the anabolic hormone insulin, secreted by the 

pancreatic β-cells. Its role is to bind to its receptor on the cell membrane of hepatocytes, 

skeletal muscle cells and promote glucose absorption from the blood primarily for energy 

generation (ATP). If not utilized for energy, excess glucose is stored in the form of glycogen 

(chains of glucose molecules) in the muscle and liver tissue or triglycerides (fat) in adipose 

tissue 205,206.  
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1.3.1. Diabetes  

The main characteristic of all diabetic disorders is impaired insulin signalling rendering the 

body unable to regulate blood glucose levels. The result is chronic hyperglycaemia, or 

elevated blood glucose. If uncontrolled, prolonged hyperglycaemia can lead to disabling and 

even fatal acute and chronic complications including cardiovascular disease, kidney damage 

(nephropathy), eye disease (retinopathy) and nerve damage (diabetic neuropathy) 207,208. 

Although diabetic complications are all predominantly caused by excess blood glucose, the 

cause of hyperglycaemia can be different, giving rise to the two main distinct forms of diabetes: 

type 1 (T1D) and type 2 diabetes (T2D). In order to understand the underlying mechanisms of 

diabetic neuropathy and address its research and treatment adequately, one must first 

consider T1D and T2D as the distinct, if not opposite in some respects, diseases that they are, 

which is the aim of this chapter section. A brief outline of the characteristics of each is given 

in table 1.4  

Figure 1.5. Normal physiology of 

glucose metabolism. (1) Food rich in 

sugars and carbohydrates is broken 

apart by the digestive system into its 

constituents, mainly glucose 

molecules. Glucose enters the 

bloodstream; (2) Glucose molecules 

bind to glucose transporters on the 

pancreatic β-cells triggering a 

cascade of events leading to the 

release of insulin; (3) Insulin increases 

the uptake of glucose from the blood 

by target tissues (muscle, liver) for 

energy production and/or storage 

thus decreasing blood glucose 

concentration. Source: Mendes et al. 

(2018) 
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1.3.1.1. Type 1 Diabetes – an autoimmune response 

T1D is now well-recognised as a chronic autoimmune disorder, characteristic with immune-

mediated destruction of the insulin-producing pancreatic β-cells. Their absence leads to a 

marked deficiency in insulin secretion (Figure 1.6b). With no circulating insulin to regulate 

blood glucose levels, hyperglycaemia develops. With insulin unavailable, target cells cannot 

uptake any of the abundance of glucose and become starved and unable to produce energy 

leading to rapid weight loss despite an increase in appetite amongst other symptoms (Table 

1.3). The underlying causes for this devastating process are believed to include a combination 

of genetic susceptibility (with multiple genes altered, typically ones encoding components of 

the immune system) and environmental factors, commonly viral infections, toxins or diet, that 

trigger an autoimmune response 209. The prevalence of T1D is approximately 10% of diabetic 

cases with highest incidence in children and adolescents 209,210. Diagnosis of both diabetes 

Table 1.4. Summary of the main characteristics for diabetes type 1 and 2. Adapted from Ozougwu O. (2013). 

 Type 1 Diabetes Type 2 Diabetes 

Prevalence ~ 10 % ~ 90 % 

Onset Sudden Gradual 

Age of diagnosis Mostly children Mostly adults 

Body mass Low to normal High to obese 

Blood glucose 

levels 
High High 

Blood insulin 

levels 
Low or absent High initially, then decreasing 

Insulin resistance No  High 

Autoantibodies Present No 

Symptoms 

• Abnormal thirst & 

frequent urination 

• Sudden weight loss  

• Fatigue  

• Chronic hunger 

• Blurred vision  

• impaired wound healing  

• Excessive thirst & urination 

• Weight gain 

• Fatigue 

• Blurred vision 

Complications 

• Ketoacidosis 

• Neuropathy 

• Retinopathy 

• Nephropathy 

• Cardiovascular disease 

• Neuropathy 

• Retinopathy 

• Nephropathy 

• Cardiovascular disease 

Treatment Insulin supplementation 

Lifestyle and diet changes, 

thiazolidinedione,  

metformin, sulfonylureas, insulin 

(later stages) 
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types requires fasting blood glucose levels over 7 mmol/L and blood glycated haemoglobin 

levels of 6.5% or higher. To distinguish it from T2D, T1D diagnosis also requires detection of 

diabetes-associated autoantibodies, which can be present up to years before symptomatic 

onset 211. Daily insulin supplementation begins immediately following diagnosis and is normally 

efficient at controlling the disease. Patients usually develop chronic T1D complications over 

approximately 10 years from diagnosis, depending on blood glucose levels management and 

the degree of blood vessels damage 209. The prevalence of symptomatic diabetic neuropathy 

in T1D patients is substantial and consistent.  Two large scale studies from 2020 established 

an average 11-13% prevalence estimate of  symptomatic diabetic neuropathy in T1D 

population, with the proportion approximating 20% in older subgroups 212,213. 

1.3.1.2. Type 2 Diabetes – a lifestyle problem 

In contrast, T2D does not involve an autoimmune response, but is rather more tightly 

influenced by environmental factors, with an especially strong link to the global obesity 

pandemic 214,215. In T2D, initially, insulin is still being produced and secreted, however it cannot 

exercise its effect on target cells (muscle and liver). This state of cell insensitivity to the 

hormone is termed “insulin resistance” (IR) and is the key component distinguishing T2D from 

T1D pathophysiology. Thus, target cells remain “closed” for the high glucose flow from the 

blood. Ironically, the body’s response to IR is to secrete even more insulin, which over time 

leads to β-cell failure and inadequate insulin production 216. 

While genetics, advancing age and ethnicity have been shown to be potential risk factors in 

T2D 217, the driving force behind IR is mainly high sugar and processed carbohydrate 

consumption, sedentary lifestyle and obesity and usually IR develops many years before T2D 

is diagnosed 215,218–220. When the sugar intake is chronically excessive and exceeding energy 

demands, the cells in a healthy body metabolise and store the excess as glycogen (in muscle 

and liver cells) and triglycerides (in liver and adipocytes). With time, muscle and liver cells 

reach full glycogen storage capacity and thus become irresponsive to insulin attempts to store 

more incoming glucose. Still, the body prioritises lowering blood glucose levels, so the excess 

sugar can now only be metabolised into free fatty acids and deposited into new fat cells, 

continuing to increase body weight 221. Thus, in T2D blood levels of glucose as well as insulin 

(hyperinsulinemia) and triglycerides (dyslipidaemia) are abnormally high 222222–224.  With these 

two additional pathophysiological elements, T2D already differs significantly in its natural 

history from T1D. Although symptoms largely overlap between the two types, 
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T2D typically has a much less dramatic presentation, occasionally developing 

Figure 1.6. Insulin production compared between healthy, type 1 diabetes and type 2 diabetes setting. Insulin 
(blue triangles) is released by pancreatic β cells to allow glucose (red circles) uptake by target cells through 
glucose transporters (GLUT 4, pink). In a T1D scenario, insulin production is impaired leading to deficiency in 
insulin signaling to target tissue and no glucose uptake. In a T2D setting, insulin is still being produced, however 
target tissues are saturated with glucose, preventing insulin binding to its receptor and inhibiting further glucose 
uptake. In both T1D and T2D glucose is not cleared from the blood, leading to hyperglycemia. While in T1D cells 
are starved, leading to overall weight loss. Adapted from: Monica Schroeder, Science photo library, in T2D excess 
glucose is diverted to de novo adipose cells generation, contributing to weight gain and in severe cases obesity. 
Source: Monica Schroeder/Science Photo Library, available at: 
https://www.sciencephoto.com/media/706546/view  
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asymptomatically for a prolonged time 215. 

Ninety percent of diabetic patients suffer from T2D. It is most common in older adults (age 

40+) but has been increasingly more often diagnosed in young adults and children due to the 

worldwide rise in sedentary lifestyle and energy-dense diets. These circumstances are also 

propelling the overall T2D high and rising prevalence worldwide 225.  

1.3.2. Diabetic neuropathy 

Diabetic neuropathy (DN) is the most common complication arising from diabetes. DN is an 

impairment of the nerves of the body, caused mainly by prolonged hyperglycaemia damaging 

the microvasculature supplying the nerves (vasa nervorum). This can alter the functions of 

proximal and distal sensory, motor and autonomic nerves and thus damage virtually any organ 

system of the body causing a wide variety of symptoms 226. Worryingly, it is also the most 

problematic diabetic complication with statistics placing it as the most widespread form of 

neuropathy in developed countries. Approximately 50% of diabetic patients develop some type 

of nerve impairment, with neuropathy onset correlating positively with diabetes duration 227,228. 

DN accounts for more patients hospitalised than all other diabetic complications combined 

and is the leading cause of lower limb amputations 229. It thus represents a great economic 

burden for any healthcare system as well as the patients themselves 228.  

The most common type of DN is a symmetric neuropathy of the peripheral, predominantly 

sensory neurons or “distal symmetric polyneuropathy”. Since this form is the focus of this 

thesis, from here on and throughout, “DN” shall refer to distal symmetric polyneuropathy. It 

initially affects the distal nerves, innervating the feet and hands and gradually spreads 

proximally following the “stocking-glove” distribution model 230. Symptoms include 

paraesthesia (prickling sensation), dysesthesia (abnormal sensations), pruritus (itching), 

sensory loss, numbness and loss of balance. However, one particular symptom is deemed so 

debilitating and characteristic for patients that has defined a separate neuropathic condition 

stemming from DN. Pain during DN is experienced by 8 to 50% of DN patients and is clinically 

termed as painful diabetic neuropathy (PDN) 231. Patients suffering with PDN describe pain as 

burning, shooting, stabbing, dull and aching, usually exacerbated at night. Frequently, PDN 

patients present with allodynia and hyperalgesia 232. Although symptoms and progression of 

DN vary from patient to patient, it has been proposed that, overall, positive symptoms 

(prickling, tingling, pain) are characteristic of the early stages of DN, while negative symptoms 

(numbness, loss of sensation) are typical of the late stages, with possible extension of pain 

symptoms into the advanced DN phase 233,234. 
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T1D long-term complications largely overlap with those seen in T2D in their detriment and 

intensity. For decades, DN in T1D and T2D has been considered to be one and the same 

disease brought about by a shared underlying master mechanism – hyperglycaemia. However, 

accumulating evidence points to differences in the pathophysiology underlying T1DN and 

T2DN 231,233,235–239. The next section discusses the common and contrasting features of the two 

diabetes forms and how they may impact the neuropathy progression in each.   

1.3.2.3. T1D and T2D inconsistencies  

Diabetes is ranked 5th globally in disease incidence, affecting 1 in 11 people 225. Albeit the 

lifetime incidence of neuropathies is estimated to be between 10% and 50% for both T1D and 

T2D 228, the superior global prevalence of T2D over T1D (90% vs 10%, respectively) 240 makes 

T2D-associated nerve damage the most common and imperative cause of neuropathies. 

Logically, therefore, if the focus is on treating DN in T2D patients, this prompts the use of T2DN 

pre-clinical models over T1DN ones to dissect the underlying mechanisms driving the 

disease’s progression. Yet, our understanding of painful DN pathology has mostly been 

obtained from streptozotocin (STZ)-induced diabetes in rats, a model of T1D 241,242. Pre-clinical 

model selection has been speculated as an important reason for the failure of translating drug 

efficacy from pre-clinical animal models to patients 242. For example, the involvement of 

oxidative stress 243, the polyol pathway 244 and aldose reductase 245 was confirmed largely by 

studies using the STZ rat (also reviewed in 246). Subsequently, the STZ rat was also 

implemented as a pre-clinical DN model for the development of aldose reductase inhibitors as 

a potential DN-modifying treatment. Indeed, in STZ rats, the novel family of drugs corrected 

DN-induced nerve structure and nerve conduction velocity (NCV) impairments 247. Yet, despite 

the promising pre-clinical data, all clinical trials failed to replicate the drug’s pre-clinical 

efficacy. A meta-analysis of 32 aldose reductase inhibitor clinical trials showed that participants 

were predominantly T2D patients and diagnostic criteria for diabetes were not even stated in 

most of the studies included, highlighting the lack of discrimination between the diabetes types 

248. A very similar drug development course was followed by PKC inhibitors. Most of the pre-

clinical success noticed with this drug class was obtained from STZ rodents, however, PKC 

inhibitors were ineffective in the treatment of DN in human patients 249. 

Evidence for fundamental differences in the underlying mechanisms of T1DN and T2DN is also 

provided by clinical research with patients. In 2012, Callaghan et al. published a 

comprehensive systematic review of 17 clinical studies investigating the effects of glycaemic 

control on DN development in T1D and T2D. It was concluded that intensive glycaemic control 

significantly decreases risk and progression of DN in T1D patients but was only moderately 
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beneficial in T2DN patients 250. Their analysis shows that hyperglycaemia alone is not the 

driving force of DN in T2D. What is more, it strongly accentuates on the concept of T1DN and 

T2DN being separate disease entities 236. Furthermore, painful symptoms have been shown to 

have higher prevalence in T2D patients than T1D 231,239,251. In one of the largest cohort 

observational clinical studies (n = 15,692) of diabetic UK patients, Abbott et al. demonstrated 

that the adjusted risk of painful neuropathy in T2D is double that of T1D patients 231.  

What is more, these observations confirm those reached in studies conducted by Sima and 

Kamiya investigating DN in T1D and T2D rat models of each. They demonstrated that T1DN is 

much more severe than T2DN, with bigger decrease in NCVs and thermal sensitivity latencies 

as well as more acute IENF damage and loss, all reversible with an insulinomimetic compound 

233,252,253. Others showed that in contrast to T1D animals, limited amelioration to the DN 

phenotype was seen in db/db mice too, even when administered 3 times higher doses of 

insulin than T1D animals 254. The contrasting effects of insulin intervention were attributed to 

the different insulin levels, actions and signalling impairments in the two diabetic types. These 

conclusions were a strong indicator of different mechanisms driving DN in T1D and T2D. 

Factors other than hyperglycaemia are now being widely discussed as contributors in the 

development of T2DN with the main focus falling on metabolic syndrome components 

including dyslipidaemia 255, inflammation 256 and IR 257.  

In the next sections, I will address the pathways, conventional and emerging, known to be 

dysregulated during DN, some of which are common for both diabetic types, while others are 

more characteristic of T2DN. 

1.3.3. Mechanisms implicated in (painful) diabetic neuropathy 

Although DN development varies amongst individuals, it is generally accepted that it follows a 

specific temporal and spatial progression. The earliest changes during DN are believed to 

affect the C-fibres leading to an axonal degeneration/regeneration cycle 258. This causes 

‘positive’ symptoms such as pain, tingling, allodynia and hyperalgesia 259. Overtime, 

degeneration prevails resulting in the loss of C-fibres, as well as Aδ-fibres and consequently 

diminished pain sensation. As DN progresses, myelinated A-fibres undergo a 

demyelination/remyelination cycle until complete destruction of the myelin sheath 258,260,261. The 

loss of protection and nutrient supply by the supporting Schwann cells (SCs) (constituting the 

myelin) 261 leads to direct axonal degeneration, resulting in impaired proprioception and touch 

sensation 234. 
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For a long time, DN was argued to either originate from metabolic abnormalities within the 

nerve and Schwan cells or develop secondary to diabetic microvascular complications. It is 

now believed that DN pathogenesis is shaped by an intricate interplay between both vascular 

and metabolic factors at all stages of the disease. Hyperglycaemia, dyslipidaemia and insulin’s 

abundance (hyperinsulinemia, T2D) or absence (insulinopenia, T1D) all affect both the 

microvasculature and the nerves themselves. The next part of this chapter will look into these 

mechanisms in more detail. 

1.3.2.1. Damage to the microvasculature supplying the neurons 

Blood vessels and nerves rely on one another to upkeep their normal function: nerves depend 

on adequate blood flow for oxygen and nutrient supply and blood vessels depend on normal 

nerve function for flow dynamics regulation 262. Excess blood glucose damages smaller blood 

vessels (microvasculature) early on in diabetes progressing towards major blood vessels and 

the heart (macrovasculature) in later stages. The increased number of glucose molecules per 

millilitre of blood flowing through damages the endothelial cells lining the inside walls of 

capillaries supplying the neurons. This leads to increased cell proliferation (hyperplasia), 

thickening of the walls and thus narrowing of the lumen 263,264. Peripheral perfusion to the 

nerves is severely reduced leading to neuronal ischemia. Glucose-induced microvascular 

injuries underlie the development of DN, retinopathy and nephropathy 265. The critically low 

oxygen levels (hypoxia) 266 to the neurons results in progressive neurodegeneration 265,267,268.  

With the extremities (fingers, toes) and also retina, being supplied by the smallest and thus 

most vulnerable capillaries, these areas are typically the first to be affected and to present with 

neuropathic symptoms. The role of vascular factors in DN etiology has been confirmed in 

experiments with diabetic rats where vasodilators corrected NCV deficits caused by 

microvascular complications 269,270.  The role of microvascular damage is further supported by 

clinical trials employing drugs targeting vascular changes in DN patients, reporting slowing of 

the progression of neuropathy and/or improving nerve function 271–273. 

1.3.2.2. Metabolic pathways 

Microvascular complications lie in the heart of the pathogenesis of DN. Triggered by 

hyperglycaemia, a collection of detrimental metabolic pathways is initiated that contribute to 

the damage of the vasa nervorum. Research suggests that hyperglycaemia drives 

microvascular damage through multiple cellular mechanisms, including the formation of 

advanced glycation end products (AGEs) , oxidative stress, polyol pathway, protein kinase C 

(PKC) pathway and others 267. Neurons are damaged not only by the dysfunctional blood 
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supply but also directly by the same hyperglycaemia-triggered pathways that damage 

endothelial cells. These will be discussed in the next sections in the context of direct neuronal 

damage, however the mechanisms by which these processes cause damage in neuronal and 

endothelial cells overlap. Figure 1.7 shows a schematic summary of the main detrimental 

metabolic pathways involved in neurodegeneration. 

 

 

• Dyslipidaemia 

DRG neurons and SCs metabolise free fatty acids (FFAs) as well as glucose for energy. FFAs 

are processed by β-oxidation into nicotinamide (NADH) and flavin (FADH2) adenine 

dinucleotide + hydrogen, which are then used by the mitochondria to produce ATP through 

oxidative phosphorylation 274. Low levels of ROSs are generated as a by-product of this 

Figure 1.7. Metabolic mechanisms of diabetic neuropathy. Factors driving diabetic neuropathy in type 1 
diabetes (T1D, marked with blue dots), type 2 diabetes (T2D, marked with yellow dots), highlighting the 
difference in the pathogenesis between the two diabetic neuropathy types. Factors participating in the 
pathogenesis of both diabetes types (marked with green dots) are or are triggered by hyperglycemia. In 
the end, all mechanisms culminate in the same neurodegenerative events (orange boxes). Adapted from 
Feldman et al (2019) and Pop-Busui et al. (2017) 
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process, usually rapidly cleared by endogenous antioxidants. However, under T2D conditions, 

there is an excess of FFA entering this cycle thus leading to ROS overproduction 275, 

mitochondrial overload and eventually failure, causing metabolic and oxidative damage to SCs 

and DRG neurons 276. Levels of cholesterol are also reported to be increased in the plasma of 

T2D patients 277 (hypercholesterolemia). Similarly, excess cholesterol metabolism leads to the 

accumulation of oxysterols. Oxidised low-density lipoproteins (LDLs), in particular, are able to 

bind specific receptors such as oxidized-LDL-receptor 1 (LOX1), toll-like receptor 4 (TLR4) 

and RAGEs, initiating a cascade of events driving apoptosis such as caspase 3 activation and 

DNA degradation. This all contributes to inflammation and ROS accumulation and ultimately 

SC impairment and neurodegeneration (Figure 1.7). 

 

• Insulin signalling  

The metabolic mechanisms underlying DN that are most investigated are predominantly 

concerning signalling pathways triggered in response to hyperglycaemia that lead to cellular 

damage (polyol pathway, glycation of proteins, oxidative stress and others). However, it is 

important to remember that hyperglycaemia is the result of the primary diabetic insult – 

impaired insulin signalling. Insulin’s complete absence (T1D, late T2D) or abundance (early 

T2D) has been increasingly reported to contribute to the symptoms of T1DN and T2DN as a 

main hyperglycaemia driver but also through direct effects on neurons 278. 

Neurons do not rely on insulin for glucose absorption but take it up via a concentration 

gradient-mediated manner through membrane-expressed glucose transporters (GLUT) 279. 

However, insulin receptors are still expressed by sensory neurons in DRG cell bodies and 

axons 280–282. They are predominantly expressed by small nociceptors with approximately 68% 

of TRPV1-positive neurons expressing the insulin receptor 283. Neuronal expression of the 

receptor for insulin implicates direct signalling dynamics between the hormone and the PNS. 

Indeed, for a couple of decades insulin has been well-established as a potent neurotrophic 

factor, essential for supporting normal neuronal health, growth and function as well as increase 

in neuronal survival 284–286. In vitro, insulin supplementation has been demonstrated to increase 

the rate of neurite generation, length and area in both embryonic sensory neurons and adult 

DRG 287. Similar results were obtained from in vivo studies on nerve injury models 288–290. 

Experiments with rat DRG neurons also show that insulin sensitises TRPV1 by lowering the 

activation threshold and increasing its translocation to the membrane. Such TRPV1 alterations 

are established to contribute to early T2DN positive symptoms, suggesting a direct effect of 

insulin on neuronal excitability 291–293. Therefore, disruption in insulin-neuron signalling can be 

impair neuronal function and contribute to DN just as much as hyperglycaemia itself. 
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In order to evaluate the damaging effects of dysregulated insulin signalling on the nerves 

independently from the effects of glucose in a diabetes setting, one must experimentally sever 

the intimate physiological connection between insulin and blood glucose levels. Achieving this 

has proven challenging, however several studies succeeded and supply the literature with 

perhaps the strongest evidence of insulin’s role in T1DN. STZ-injected rats develop robust 

T1D and DN 294,295. However, the response to STZ can be variable and sometimes STZ injection 

produces a unique phenotype of normal glucose levels (euglycemic) and significantly 

decreased serum insulin. Romanovsky et al. benefited from this abnormal STZ reaction and 

used this cohort of euglycemic rats for their study into the effects of insulin unavailability on 

neuronal health. Despite not being hyperglycaemic, these rats developed sensory 

abnormalities just like animals with high blood glucose levels. They presented with mechanical 

hyperalgesia which was correlated with insulin deficiency and reversed with low dose insulin 

injections 296,297. Similar observations were made in another low insulin/normal glucose animal 

model, the Goto-Kakizaki rat, where severe DN symptoms were apparent after 18 months of 

T1D development 298.  The findings of these two studies support a dependence of neurons on 

insulin for normal cellular health. More importantly, this may explain the marked improvement 

of nerve signalling seen in T1DN animal models and beneficial effects seen in T1DN following 

insulin supplementation, but not T2DN patients, where insulin levels are usually higher than 

normal 299. These studies provide evidence for a strong connection between insulin’s direct 

signalling to neurons and neuropathic complications, but only in the context of T1DN.  

T1D and T2D can be viewed as opposing diseases in view of the insulin availability in each in 

the initial stages of the disease.  In T2D, insulin overproduction and skeletal muscle IR  is 

detected up to 10 years before diagnosis and lasts for the earlier stages of the disease 300. 

Neurons have also been demonstrated to develop IR in vitro 301,302 and in animal models of 

T2DN 286 but not yet in humans. PNS IR in animal models of T2DN was shown to correlate with 

reduced neurite outgrowth 303. Therefore, neuronal IR is another component speculated to 

contribute to neuronal insulin deficiency and the following neuronal damage in T2DN. 

Overall, emerging research implicates insulin signalling as a glucose-independent trigger to 

the progression of DN in both diabetes types, be it due to insulinopenia or insulin resistance.  

• Polyol pathway 

Neuronal glucose uptake is insulin-independent and neurons rely solely on the direct glucose 

supply by the microvasculature 279. Thus, vascular barriers are also their only protection 

against glucose toxicity in a state of hyperglycaemia. Therefore, during hyperglycaemia, when 

endothelial cells lining the blood vessels are damaged, neuronal intracellular glucose 
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concentrations are also abnormally high. Then, instead of undergoing normal metabolism 

through glycolysis, glucose is diverted to metabolic pathways that can result in neurotoxicity304.  

The polyol pathway is one of the first proposed mechanisms underlying hyperglycaemia-

induced neuropathy. Under hyperglycaemic conditions, hexokinase (the first step in the 

glycolysis pathway) is saturated with glucose and another glucose-converting enzyme, aldose 

reductase (AR) takes over. AR converts excess glucose to sorbitol which accumulates 

intracellularly due to its low membrane permeability (Figure 1.7). Sorbitol is an osmolyte and 

increased intracellular sorbitol concentrations generate intracellular osmotic stress. In 

response, the neuron begins compensatory efflux of taurine and myoinositol 305. Myoinositol is 

an essential component of Na+/K+ ATPase and its depletion from neurons leads to impaired 

neuronal physiology 306–309. AR activity also depletes cellular stores of reduced nicotinamide 

adenine dinucleotide phosphate (NADPH), a proton donor for reactions generating nitric oxide 

and regenerating glutathione (antioxidant). This consequence of the polyol pathway activation 

defines the “metabolic flux” hypothesis (see 309). It contributes to the generation and reduced 

clearance of cytoplasmic reactive oxygen species (ROS) which mediate intracellular injuries, 

discussed next.  

• Oxidative stress and reactive oxygen species (ROS) 

Oxidative stress is promoted by two glucose-driven events: ROS generation and the 

impairment of ROS scavenging mechanisms. During hyperglycaemia, mitochondria in neurons 

are overwhelmed and glucose oxidative metabolism increases. This generates superoxide (O2
-

) which is converted to hydrogen peroxide (H2O2) by superoxide dismutase and, under normal 

conditions, H2O2 itself is metabolised by glutathione peroxidase (GP) to harmless water. 

However, as mentioned above, during hyperglycaemia the polyol pathway uses up NADPH, 

which is needed in the glutathione cycle, and thus prevents GP from converting H2O2 to water. 

H2O2 is then diverted to conversion into superhydroxyl free radicals (•OH) exerting oxidative 

stress in the neuron 310,311. Moreover, H2O2 and O2
- can react with nitrite to produce 

peroxynitrite which causes nitrosative stress to the cell 312. Oxidative and nitrosative stress 

result in triggering DNA-strand breaks which activate poly(ADP-ribose) polymerase (PARP). 

This protein is involved in DNA repair and its action depends on NAD+. Overactivation of PARP 

depletes cellular NAD+, also augmented by the polyol pathway. This slows down glycolysis, 

electron transport and ATP-generation rates resulting in neuronal dysfunction and death 311.  

• Disruptions of Schwann cell metabolism 

Schwann cells (SCs) are a type of glial cells supporting neurons and an essential component 

of the PNS. They help in the formation of the myelin sheathing of myelinated afferents as well 
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as the “Remak bundles” – an association of a bundle of C-fibre afferents via non-myelinating 

SCs 313. However, the role of SCs in neuronal health goes beyond myelination as accumulating 

research suggest they provide active metabolic support to axons. Thus, dysregulation of SC 

metabolism and function, such as under diabetic conditions, will ultimately affect neuronal 

function and health 313. SCs express GLUT through which glucose uptake is possible via an 

insulin-dependent manner for metabolism and energy production 314. For example, in a healthy 

environment, glucose is metabolised in the SCs to lactate which is transported to the 

underlying axon for energy production. However, under hyperglycaemic conditions, the 

excess glucose activates the polyol pathway leading to the AR-dependent accumulation of 

sorbitol which has been suggested to lead to SC de-differentiation to immature cells, 

contributing to nerve demyelination and dysfunction 315. Furthermore, SCs are highly efficient 

in lipid metabolism 316. They are able to uptake FFAs, activating a sequence of events leading 

to ATP production. However, during T2D, where extracellular levels of FFA can be very high, 

there is a substrate overload, resulting in metabolic reprogramming of the SC and 

overproduction acylcarnitine molecules. These are then shuttled into the underlying axon, 

where they exercise their toxic effects, contributing to axonal degeneration 274,313. These 

diabetes-induced alterations to SC metabolism, along with evidence for high glucose-induced 

oxidative damage 317,318 are now shaping a novel idea that the disrupted communication 

between SCs and their axons contributes to DN pathogenesis. 

• PKC activity 

Excess glucose increases the rate of glycolysis. In a series of biochemical reactions, this 

eventually leads to the overproduction of complex molecules such as 5-diphosphate-N-

acetylglucosamine (GlcNac) and diacylglycerol (DAG) 319. GlcNac reacts with transcription 

factors to promote lipid dyshomeostasis, inflammation and peripheral nerve injuries 320. 

Similarly, DAG accumulation in the nerves has also been shown to lead to neuronal damage 

via activating PKC. Its activation can cause a myriad of metabolic complications through 

increasing neuronal IR and disturbing Na+/K+ ATPase function and thus signal propagation. It 

has also been demonstrated to impair expression of genes associated with vascular function 

thus contributing to the microvascular complications surrounding neurodegeneration 321.  

• Protein glycation and advanced glycation end products (AGEs) 

Excess glucose levels lead to its reaction with amino acids of proteins to generate potentially 

detrimental products knows as advanced glycation end-product (AGEs) (Figure 1.7). AGEs 

have been shown to accumulate in the peripheral nerves of T2D patients with DN 322. AGEs 

can cross-link essential proteins thus preventing them from functioning properly. Furthermore, 
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AGEs react with AGE receptors (RAGEs) on neurons initiating downstream signalling cascades 

partially mediated by nuclear factor (NF) -κβ activation, leading to neuronal dysfunction and 

loss of nerve cells. This can eventually result in reduced nociception. Events such as 

vasoconstriction, inflammation and loss of neurotrophic support have also been reported to 

occur in rodent PNS as a consequence of AGE-RAGE activation 323,324. 

• Inflammation 

The array of cellular imbalances underlying DN discussed so far are also powerful triggers of 

systemic inflammation in peripheral tissues, including the nerves. Indeed, the role of the 

immune system components has been established in DN patients. For example, T2D patients 

who have DN show higher levels of inflammatory cytokines in their plasma compared to non-

diabetic patients and T2D patients without DN 325. 

In the last decade, pre-clinical experiments and clinical studies have provided strong evidence 

for the role of inflammatory processes in DN of both diabetes types 255,256. The proposed 

mechanism states that glucose-, insulin- and lipid metabolic abnormalities kick-start cycles of 

oxidative/nitrosative, endoplasmic and mitochondrial stress that in turn cause cellular damage 

in the neuron. Neuronal injuries activate multiple downstream kinases (including PKC) and 

redox-sensitive transcriptional factors, such as NF-кB which is responsible for the regulation 

of genes associated with the immune response of the body 326. Activated regulation factors 

trigger a surge of cytokine and chemokine production which enhance existing inflammatory 

responses but also feed back to and amplify the whole process by triggering more cellular 

stress 327. This cascade of events targets not only neurons but endothelial cells of the blood 

vessel walls supplying the nerves, thus further feeding into the vicious damage loop 255,326.  This 

idea is supported by pre-clinical 328–330 and clinical 325,327,331–335 studies. A couple of studies 

demonstrated not only that DN patients have increased serum levels of inflammatory cytokines 

and markers of endothelial dysfunction, but that these were even further increased in patients 

with PDN 325,336, adding to similar evidence from studies with T2DN animal models 337. One 

mechanism by which this is believed to occur is the modification of channels and receptors 

implicated in pain by inflammatory molecules. For instance, the expression density and 

activation thresholds of TRPV1 and TRPA1 have been demonstrated to be modulated during 

inflammation by a range of kinases thus sensitizing nociceptors to painful stimuli following 

injuries 142,338–341. Such and other dysregulations in ion channel activity during DN will be 

discussed in the next, final part of this section. Collectively, these observations strongly 

implicate that inflammatory processes during diabetes contribute greatly to DN and pain 

directly as well as indirectly through feeding into other neurodamaging pathways. 
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1.3.2.3. Ion channel alterations  

As discussed in more detail earlier, ion channels expressed by sensory neurons set and 

govern the overall neuronal excitability. The carefully regulated activity and expression of each 

channel creates a fine balance upon which the normal functioning of the PNS relies. Their 

plasticity, however, allow for modifications of their expression, trafficking and kinetics that may 

result in changes in neuronal excitability. Increased excitability of nociceptors due to such ion 

channel alterations is one of the most widely implicated mechanisms underlying pain during 

DN 313.  

Diabetes triggers multiple signalling pathways that often work together to promote different 

post-translational modifications of ion channels. One of the best studied reactive metabolites 

participating in such detrimental cascades is methylglyoxal - a protein-glycating agent and 

important precursor of AGEs. Its levels increase during diabetes – in fact, one study 

demonstrated that its concentration is especially high in patients with PDN as opposed to 

painless DN. Furthermore, in rodents, administration of methylglyoxal renders them 

hypersensitive to pain 342. Methylglyoxal’s neuron sensitising effect has been linked to post-

translational modifications of Nav.1.8, depolarizing its inactivation threshold. Thus, the 

availability of Nav1.8 at AP threshold is increased and with that, hyperexcitability of the neurons 

expressing it, usually nociceptors, increases, leading to hyperalgesia 342. Methylglyoxal’s 

potential to cause modifications stretches beyond VGSCs, as it has been shown to affect 

TRPA1 too. Like many of TRPA1’s agonists, methylglyoxal is an electrophilic metabolite and is 

able to interact and modify critical cysteine residues on TRPA1 causing a robust activation and 

hyperexcitability in nociceptive neurons 343. A strong link between methylglyoxal and the 

channels TRPA1 and Nav1.8 was demonstrated in experiments by Huang et al. (2016). They 

showed that subcutaneous administration of methylgyoxal in STZ rats produced nociception, 

which was reversed by using antagonists for TRPA1 (A967079) or Nav1.8 (A-803467). In their 

behavioural experiments, they confirmed the association of methylglyoxal in DN with 

mechanical allodynia and thermal hyperalgesia in the STZ rat 344. TRPA1 is further implicated 

in PDN pathogenesis due to its strong activation by ROS – highly abundant during diabetes 

and further enhancing TRPA1 potentiation by methylglyoxal 345.  

There is evidence describing altered expression levels of pronociceptive channels, including 

P2X3 346, TRPV1 58,156, certain VGKCs 347 and VGSCs 60,348–351, albeit, historically, the studies have 

not been consistent in their findings. For instance, in a comprehensive report by Craner et al. 

(2002), expression levels of VGSCs in a T1D rat model were investigated to reveal a significant 

upregulation of Nav1.3, Nav1.6 and Nav1.9, downregulation of Nav1.8 and no change in 
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Nav1.1 and Nav1.7 348. These observations are in accordance with others who also report 

upregulated Nav1.3 expression 58,352 and downregulated Nav1.8 expression 58,353 in diabetic 

animals. However, they contrast with studies describing significant increase in both TTX-S and 

TTX-R currents and upregulated levels of both Nav1.7 and Nav1.8 in DRG cell bodies of 

diabetic rodents 58,349–351,354,355. Albeit their exact nature is still debated, dysregulated channel 

expression, particularly of VGSCs, has been agreed to have a key role in the development of 

neuropathic pain during DN. 

Painful manifestations vary vastly between DN patients - some develop painful symptoms as 

early as pre-diabetes while others never show a painful phenotype 356. Apart from the 

differences between the diabetes forms that may contribute to such variance, genetic 

variances in certain VGSCs have also emerged as possible modulators of an individual's risk 

of developing pain during DN. Nav1.7 has been of particularly great interest as a key 

determinant of neuronal excitability. Specifically, GoF mutations in this channel in a diabetes 

setting have been suggested to produce increased DRG sensitivity. Indeed, multiple variants 

have been discovered in the past years that were associated with PDN 75,357–359. Furthermore, 

a dozen of rare Nav.1.7 variants were recently identified in PDN patients, which correlated with 

earlier diagnosis of PDN, a more severe painful phenotype and greater mechanosensitivity 76. 

Finally, a newly emerging curious hypothesis implicates Nav1.7 along with Nav1.3 in a cause-

effect relationship between diabetes and painful neuropathy. The notion arises from the fact 

that these TTX-S channels are expressed in both DRG as well as pancreatic islet cells. It is 

therefore postulated as a possible model that diabetes as a metabolic disease and peripheral 

neuropathy arise as a result of dysregulation in Nav1.3 and Nav1.7 due to genetically inherited 

mutations. When both channels are dysfunctional, they render both sensory neurons and 

pancreatic cells more susceptible to damage, making diabetes and neuropathy go hand in 

hand. Albeit intriguing, this concept is still in its early stages 360–362. 

1.3.4. Current diabetic neuropathy treatments 

Diabetic neuropathy is the most debilitating complication of diabetes associated with the 

highest risk of mortality 363. Yet, despite the advancing understanding of the underlying 

pathophysiological mechanisms, to date, there are no approved disease-modifying or 

reversing pharmacological therapies for DN 226. This section will focus on the established DN-

modifying interventions and currently recommended pharmacological therapies targeted at 

alleviating the symptoms of PDN. Novel analgesic drugs for PDN that are under development 

will also be briefly discussed. The section will conclude with a short discussion of the possible 

reasons for the lack of adequate disease-modifying therapies. 
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1.3.3.1. Diabetic neuropathy management  

The main approach evidenced to successfully prevent or delay DN progression is glycaemic 

control, usually via insulin supplementation. In T1DN patients, blood glucose management has 

been shown to improve NCVs and vibration thresholds and, when introduced early enough, to 

prevent the development of clinical neuropathy 235. In T1DN patients with severe neuropathy, 

even signs of neuropathy reversal were evident when blood glucose levels were normalised 

via more invasive interventions such as pancreatic and kidney transplantations.  

Albeit a successful approach in T1DN patients, improving glycaemic control in T2DN patients 

for delaying neuropathy progression is not as effective, even when extended to up to 5 years. 

In fact, in the Action to Control Cardiovascular risk in Diabetes (ACCORD) study, such 

prolonged intervention has been shown to be detrimental for T2D subjects as it increases 

hypoglycaemia and excess mortality amongst intensively treated individuals 364,365. Glycaemic 

control may be of minimal benefit for improving T2DN, however its limited efficacy provides 

the valuable insight that hyperglycaemia is certainly not the sole major process driving 

neuropathy progression in T2D and other therapy targets need to be explored. 

Apart from hyperglycaemia, T2D is characteristic with hyperlipidaemia and hyperinsulinemia, 

which have also been widely implicated in the progression of DN in T2D (see section 1.3.2.2. 

Metabolic pathways). Therapies targeted at lowering cholesterol (such as statins) or 

triglyceride levels (such as fibrates) have been suggested to slow DN progression in T2D 

patients, however no randomised clinical trials have evaluated their efficacy clinically 366,367.  

Hyperinsulinemia and insulin resistance (IR), on the other hand, are usually improved via 

weight management through diet and exercise regimes and in extreme cases, weight control 

surgical interventions (such as bariatric surgery). In fact, weight loss has been established as 

the safest and most efficient intervention to lead to remission of diabetes and reversal of 

neuropathy, with noted increase in IENFD, amelioration of small nerve fibre damage, alleviation 

of pain symptoms and improved microvascular function 368,369. The most widely prescribed 

pharmacological therapy targeting IR is metformin. It reduces the amount of glucose released 

in the blood by the liver, thus improving cellular sensitivity to insulin. However, high doses of 

metformin have been linked to vitamin B12 deficiency and a recent study demonstrated an 

inverse correlation between DN severity and vitamin B12 levels, suggesting that metformin 

might not be suitable for patients with severe DN phenotype 370. Other therapies employed that 

target DN progression include supplementation with alpha-lipoic acid (antioxidant) 371 and 

improving microvascular function via blood-pressure lowering drugs (lisinopril, trandolapril) 

271,272. The most sensible approach remains multifactorial risk factor control combining 
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treatments targeting multiple pathophysiological mechanisms simultaneously 

(hyperglycaemia, hypertension, dyslipidaemia, insulin resistance). 

1.3.3.2. Management of painful diabetic neuropathy (PDN) 

Up to a third of diabetes patients develop symptomatic PDN, significantly affecting their quality 

of life. With the lack of pharmacological interventions modifying DN, symptomatic treatment 

remains the best-established way for managing pain 372. The rapid growth in our knowledge of 

pain-driving pathophysiological processes has yielded a plethora of promising therapeutic 

targets in these pathways.   

• Approved therapies for managing painful diabetic neuropathy 

A list of the most widely prescribed pharmacological therapies targeting pain during DN is 

outlined in table 1.5 and the treatment strategy outlined in Figure 1.8. The approved and most 

recommended therapies target the CNS and modify the processing of the pain signal in the 

brain. These include anticonvulsants, antidepressants, and opioids 230. The most widely 

prescribed anticonvulsant drugs are gabapentin and pregabalin, both acting as inhibitors of 

VGCCs thus reducing neuronal excitability. Recommended antidepressants are from one of 

two classes: serotonin and noradrenaline reuptake inhibitors (SNRIs, e.g. duloxetine, 

venlafaxine) or tricyclic antidepressants (TCAs, e.g. amitriptyline, nortriptyline). Both 

anticonvulsant 373–376 and antidepressant 377–380 therapies have been demonstrated to be 

effective at alleviating pain during diabetes and to be relatively well-tolerated. However, they 

are not without adverse effects, the most common of which include dizziness, confusion, 

fatigue and somnolence, which tend to be more severe in older patients 381. Nevertheless, 

generally the benefits of these drugs outweigh the side effects and anticonvulsants and 

antidepressants are thus currently recommended as 1st line treatments for PDN by several 

drug regulatory bodies 376 (Figure 1.8).  
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Opioid prescription, on the other hand, remains controversial.  Albeit pain relief during PDN 

has been achieved with opioids in clinical trials, this drug class brings serious safety concerns. 

Due to their nature, opioids prescribed for treatment of chronic pain can lead to addiction, 

misuse and abuse and are associated with increased mortality due to overdose. Therefore, 

opioids such as tramadol are often only recommended as a 3rd line intervention for moderate-

to-severe pain and only after careful individual benefit-to-risk ratio assessment 382,383.  

Figure 1.8. Currently established treatment strategy for painful diabetic neuropathy. 
Anticonvulsants, serotonin and noradrenaline reuptake inhibitors (SNRIs) and tricyclic 
antidepressants (TCAs) make up first- and second line treatments for painful DN. Opioids are 
generally avoided and only prescribed as a third line treatment in extremely severe cases. In 
the case of first- and second line treatments generate tolerance or generally not well-tolerated, 
a third line alternative or an add-on are topical treatments. Source: Feldman et al (2019) 
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Table 1.5. Current FDA-approved treatments for painful diabetic neuropathy with their therapeutic targets, most 
common side effects and serious adverse effects summarised. Adapted from Azmi et al. (2021) 

Drug Drug class 
 Therapeutic 

target/effect 

Common side 

effects 

Serious side 

effects 

 
Reference 

Gabapentin Anticonvulsant 

 

VGCC inhibitor 

Fatigue, dizziness, 

somnolence, 

headache, dry 

mouth, peripheral 

oedema,  

hepatotoxicity, 

ataxia, Seizures 

following rapid 

discontinuation 

 

Wiffen et 

al. (2017) 
644 

Pregabalin Anticonvulsant 

 

VGCC inhibitor 

Somnolence, 

dizziness, ataxia, 

fatigue,  

Seizures (after 

rapid 

discontinuation) 

 
Derry et al. 

(2019) 645 

Duloxetine 
Antidepressant 

(SNRI) 

 

inhibition of 

serotonin and 

norepinephrine 

reuptake in the 

CNS 

Nausea, 

somnolence, 

dizziness, 

constipation, 

diarrhoea, dry 

mouth, headache, 

insomnia, fatigue 

Seizures, 

hepatotoxicity, 

serotonin 

syndrome, 

glaucoma, 

myocardial 

infarction, cardiac 

arrhythmias 

 

Lunn et al 

(2014) 646 

Amitriptyline 
Antidepressant  

(TCA) 

 

Same as 

duloxetine but 

less selective 

Dry mouth, fatigue, 

headache, 

dizziness, insomnia, 

orthostatic 

hypotension, 

nausea, 

constipation, 

blurred vision, 

somnolence 

Hepatotoxicity, 

heart failure 

exacerbation, 

strokes, seizures, 

serotonin 

syndrome, 

cardiac 

arrhythmias, 

myocardial 

infarction 

 

Moore, 

Derry et al 

(2015) 647 

Tramadol Opioid 

 Inhibition of 

serotonin and 

noradrenaline 

reuptake; μ-

opioid receptor 

agonist 

Somnolence, 

constipation, 

nausea, vomiting, 

light-headedness, 

dizziness,  

respiratory 

depression, 

serotonin 

syndrome, 

seizures, 

hypertension 

 

Duehmke 

et al. 

(2017) 648 

Capsaicin 

8% patch 
Topical  

 
TRPV1 

desensitisation 

Burning, stinging, 

erythema, 

coughing, sneezing 

- 

 Simpson et 

al (2017) 
386 

Lidocaine 

5% patch 
Topical 

 prolongs 

inactivation of 

the fast VGSCs 

Skin irritation, 

rashes, itching, or 

redness, numbness 

- 

 
Derry et al. 

(2014) 649 

Alpha-lipoic 

acid 
Antioxidant 

 ROS scavenger, 

insulin-mimetic 

and anti-

inflammatory 

activity 

- - 

 

Agathos et 

al. (1999) 
650 
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The severity of PDN symptoms is often robust enough to justify the implementation of CNS-

modifying drugs as 1st line treatments. However, the chronic nature of DN demands long-term 

dependence on these therapies increasing the risk of developing drug tolerance, requiring 

higher doses and thus increasing adverse effects severity. Several non-CNS targeted 

therapies have been proposed that have shown success in relieving pain in DN. Topical 

treatments are a popular alternative for patients unable to tolerate the conventional systemic 

treatments. They also present with significantly lower risk of interactions with other 

medications making them a suitable option for patients with polypharmacy 384. The most 

popular topical treatments for DN pain are the capsaicin 8% patch and lidocaine 5% patch. 

Both have demonstrated significant pain reduction comparable to anticonvulsants and TCAs 

and have fewer and less serious side effects 385,386. Capsaicin 8% patches are now FDA-

approved for the treatment of neuropathic pain and both are proposed as 2nd or 3rd line 

treatments 376 (Figure 1.8). Nevertheless, they can cause side effects, e.g. skin irritation, rashes 

and, especially in the case of capsaicin, loss of IENF and altered thermal sensation, which can 

compromise patient compliance 387.  

• Novel pharmacotherapeutic agents in development 

Research into novel analgesic treatments for PDN is also focusing away from the CNS and 

onto the PNS. Table 1.6 presents an inexhaustible list of novel pharmacotherapeutic 

compounds in development for symptomatic pain relief during DN. Here, I will focus on 

discussing those targeted at modifying pain-associated ion channels expressed by 

nociceptors. 

Nociceptive ion channels have become an especially attractive target for novel analgesics due 

to their selective expression in peripheral nociceptive neurons 388. This facilitates the diversion 

of conventional therapies towards nociceptors thus limiting detrimental CNS side effects. At 

the same time, affecting pain signalling at the source by the selective inhibition of specific 

nociceptive channels could enhance drug efficacy. Furthermore, even in the case of limited 

individual drug efficacy, ion channel modulators present the opportunity for combination 

therapies with currently approved treatments (table 1.5), whereby lower doses of both can be 

implemented to limit side effects while benefiting from both drugs’ actions – a concept which 

is being explored with currently approved therapies in DN 389–392. 
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Table 1.6. A range of novel drugs in development for the treatment of painful diabetic neuropathy. Novel analgesic 
pharmacological interventions are targeted at different molecules and pathways. Some have been through clinical trials and 
side effects have been notices, whilst others are still in pre-clinical stages of development. Adapted from Rastogi & Jude (2021) 

Drug Class Known side effects 
Stage of 

development 
Reference 

PF-05089771 Nav1.7 blocker 

Headache, pneumonia, 

upper respiratory 

tract infections 

Phase II McDonnel (2018)  651 

Vixotrigine VGSC blocker  Headaches, dizziness Phase II Hinckley et al. (2021) 396 

VX-150 Nav1.8 blocker 
Nausea, headache, 

vomiting and dizziness 
Phase II 

Vertex Pharmaceuticals 

Incorporated. (2018) 398  

A-803467 Nav1.8 blocker - 
Pre-clinical 

studies 
Jarvis et al (2007) 399 

PF-01247324  Nav1.8 blocker - 
Pre-clinical 

studies 
Payne et al. (2015) 400 

Calcitonin VGSC modulator - 
Pre-clinical 

studies 
Ito et al. (2012) 652 

A-317491 P2X3 blocker - 
Pre-clinical 

studies 

Jarvis et al (2002) 402 

McGraughty et al. 

(2003) 195  

Sinomenine P2X3 blocker 
Injection site flare, 

pruritus, edema 

Pre-clinical 

studies 
Rao et al (2017) 403 

Resiniferatoxin TRPV1 agonist 
Transient burning 

sensation 
Pre-clinical Bishnoi et al (2011) 405 

Tanezumab 
Humanised monoclonal 

IgG2 antibody 

Peripheral edema, 

paraesthesia 
Phase III Bramson et al (2015) 653 

Pooled human 

immunoglobulin 

Immunomodulatory 

agent 
Allergic reactions Phase I Liu et al (2018) 654  

Botulinum Toxin A 

Inhibition of sensory 

neurotransmitters 

release 

Antibody formation and 

immune-related 

complications, are 

reported when a small 

amount of bont-A 

enters the circulatory 

system 

Phase II 

Lakhan et al. (2015) 655 

Salehi et al. (2019) 656 

Park, J. & Park H. 

(2017) 657 

Islet Neogenesis 

Associated Protein 

(INGAP) 

Enhance nerve growth 

from sensory ganglia 
- 

Pre-clinical 

studies 
Tam et al. (2004) 658 

Fidarestat Polyol pathway inhibitor - Phase II 
Hamada and Nakamura 

(2004) 659 

Minalrestat Polyol pathway inhibitor - 
Pre-clinical 

studies 

Yagihashi et al (2001) 
660 

Sulfasalazine NF-κB inhibitor,  

Increase in gas, 

constipation, and 

diarrhea 

Phase II  

Berti-Mattera et al. 

(2008) 661; Liedorp et al. 

(2008) 662 

miR-146a (pro-

inflammatory genes 

suppressant) 

Micro RNA 

supplementation 
-  

Pre-clinical 

studies 
Liu et al. (2017) 663 

VM202 
plasmid containing 

human growth factor 

Infections, diabetic 

retinopathy, peripheral 

edema, and skin ulcers 

Phase II Kessler et al. (2015) 664 
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Of the DRG-expressed ion channels implicated in pain, Nav1.7 has perhaps been of highest 

interest as an analgesic target due to its high expression levels in DRG and strongly evidenced 

role in pathological pain conditions 33. A number of potential Nav1.7 blockers have been under 

development, showing promising results in preclinical studies of DN 393,394. However, none have 

yet been approved for clinical use due to their failure in clinical trials. For instance, a recent 

small trial of the Nav1.7 blocker PF-05089771 in PDN failed to show pain alleviation in patients 

395. Another VGSC inhibitor developed by Biogen, Vixotrigine was believed to be Nav1.7-

selective but has now been redefined as a non-selective VGSC blocker 396. Vixotrigine has 

shown limited efficacy but great tolerability in a phase II clinical trial for trigeminal neuralgia 

compared to placebo and is currently undergoing phase II trial for small fibre neuropathy in 

DN (ClinicalTrials.gov Identifier: NCT03339336). Interestingly, a recent study demonstrated 

that oxcarbazepine (a non-selective VGSC blocker) successfully attenuated pain responses in 

DN patients with irritable nociceptors compared to those with non-irritable nociceptors. This 

suggests that non-selective VGSCs might still find place in the clinical treatment of PDN 

provided that a more detailed patient phenotyping and hence stratification is performed 397.  

Blockers of Nav1.8 have also been of interest for the pharma industry: VX-150 has been 

advanced to phase IIb trials after demonstrating promising efficacy and safety in small fibre 

neuropathy clinical trials 398. Other Nav1.8 blockers such as A-803467 and PF-01247324 have 

shown promising selectivity and antinociceptive effects in preclinical studies 399–401. Similarly, 

several P2X3 blockers have been explored in animal studies (e.g. A-317491 and sinomenine) 

and have successfully relieved hyperalgesia by suppressing overexpression and 

overactivation of P2X3, however confirmation in human studies is lacking 195,402,403. Finally, TRP 

channels have been demonstrated to be particularly curious pain relief targets as both TRP-

channel agonists and antagonists have shown analgesic potential 404–408. Albeit several 

promising novel DN therapies are in ongoing clinical trials (table 1.6), numerous therapies 

targeting various pathogenic molecular mechanisms have shown great promise in preclinical 

studies only to fail to translate to the clinic 409. In fact, analgesics in general have only 2% 

success rate, which is 5 times less than other therapeutic areas. The low development success 

rate has led to gradually decreasing interest and investment in the area of pain therapeutics 

further exacerbating the issue of lack of adequate pain treatments 410. To date, no disease-

modifying pharmacotherapy has been developed for DN and the possible reasons behind this 

will be briefly outlined next. 
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1.3.3.3. Why are there no disease-modifying therapies for diabetic neuropathy? 

The problem with analgesics development for treating PDN extends to DN as a whole with 

currently no disease-modifying therapies available and largely disappointing clinical trial 

outcomes 230. The possible reasons behind this critical issue stretch across all steps in the drug 

development process from the clinical trials design all the way back to in vitro screening of the 

drug candidates. Clinical trials are recommended to introduce improvements in several 

aspects: 

➢ alternative endpoints, particularly focused on monitoring small nerve fibre physiology 

instead of currently recommended large-fibre-focused readouts 411;  

➢ detailed DN diagnosis with stress on underlying pathophysiological driver(s) 411–413 

➢ patient stratification according to key pathophysiological driver(s) of DN for enhanced, 

individualised therapies 414,415 

➢ following on the previous two points, focus on mechanism-based drug testing 

approach as opposed to “one size fits all” approach 

 

The complexity of DN poses great challenges in translating potential treatments from animal 

models to humans 416,417. Suggested improvements in this stage of the drug development 

include the implementation of multiple and improved preclinical screening methods with direct 

clinical equivalents as well as progression through several model systems 411. However, the 

most fundamental issue to consider is the choice of the preclinical model: how well does it 

reflect the DN aspects targeted and how comparable are they to the same aspects in humans? 

Finally, taking yet another step back in the development process, in vitro drug screening would 

also benefit from advanced techniques with improved readout sensitivity that are able to 

precisely separate drug action on target from its off-target effects. Such improvement will aid 

in the advancement of better-targeted and safer drugs towards preclinical and clinical 

development stages. For more details and an extensive analysis of current drug development 

practices and areas of improvement, see Jin et al. (2020) 411. 

Choosing the appropriate animal model of DN and technique to evaluate its phenotype are key 

steps in characterising functional changes and identifying potential treatment targets in the 

neurons. Further considerations for animal and in vitro models of DN will be discussed in more 

details next, followed by the introduction of a novel functional assay developed in our lab which 

we demonstrate to have potential as a simple but sensitive drug screening tool.  
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1.4. Modelling diabetic neuropathy  

So far, this chapter has delved into the details of DN and the known molecular mechanisms 

underlying its pathogenesis in order to highlight the enormity as well as depth of the clinical 

problem that this condition represents. Despite over 50 years of laboratory and clinical 

research, current treatments are far from achieving satisfactory effectiveness and safety 230.  

The development of high-quality therapies depends heavily on the adequate modelling of DN 

components in vitro or in animal models of pre-diabetes, T1D and T2D. To date, several in 

vitro technologies and over 20 rodent models of DN have been introduced offering the 

opportunity to choose the one most closely reflecting the specific DN aspects being 

investigated 418. Although, no model accurately mimics all aspects of DN as manifested in 

humans, in vivo and in vitro models arm researchers with the tools needed to keep advancing 

the understanding of the complex disease that DN is. In this section I will review some of the 

most common in vitro methods for reproducing DN conditions. Then, I will move on to 

discussing the most widely used T1DN and T2DN animal models. Finally, this part of the 

chapter will conclude with a comment on important considerations when selecting a model for 

DN research.  

1.4.1. Modelling diabetic neuropathy in vitro 

As the search for an effective drug to reverse or ameliorate DN progression continues, basic 

research focuses on unravelling the intricate molecular mechanisms propelling its 

development. To this end, tissue and cell culture techniques are especially instrumental 

because they allow for the isolated investigation of complex neuronal responses to different 

stimuli – a clear benefit over in vivo models, where a mixed-cell, global response is taking 

place. Other advantages of cell cultures to consider are, perhaps above all, that they allow for 

tight control over the extracellular environment. Thus, they are ideal for the detailed studying 

of a vast range of cellular processes, including cell death, neurodegeneration, hyper- and 

hypoexcitability and bioenergetics. With the added benefit of allowing for straightforward real-

time imaging and recording, they are also useful for tracking the time kinetics of intracellular 

molecular events, albeit in vivo imaging is now possible too. These advantages render cell 

cultures the perfect platform for high-throughput drug screens. Finally, in vitro techniques 

usually come with fewer ethical issues than using in vivo models of nerve diseases, particularly 

when investigating pain 419.  

The in vitro approach to DN research encompasses several different techniques, such as 

primary and immortalised cultures of dissociated neurons, organotypic explants and, more 
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recently, generation of neuronal cultures via the induced pluripotent stem cell (iPSC) 

technology.  

Primary neuronal cultures are the most widely used method for investigating DN pathogenesis 

in vitro 318,420–425.  Importantly, primary cultures of DRG neurons from an adult rat or mouse 

preserve the broad heterogeneity of the neuronal population within the ganglion. DRG neurons 

can be harvested from healthy, control animals and subjected to DN-inducing stimuli to 

investigate acute pathogenic responses. Alternatively, neurons can be harvested from a 

diabetic animal. This is an excellent example of marrying in vivo and in vitro techniques, 

benefiting from employing an animal model of diabetes as a DN-stimulus and an in vitro 

approach to assess the specific molecular and physiological events. 419. Generation of primary 

neuronal cultures involves the mechanical and/or enzymatic isolation of neurons into a cell 

monolayer which is then maintained in an optimal extracellular environment designed to mimic 

physiological conditions 426.  

DN entails a network of intersecting pathways driving its pathology and the choice of stimulus 

depends on the DN aspect under investigation. Most commonly, generating hyperglycaemic 

conditions is the first consideration, however, the question of the optimal glucose 

concentration used is still a much-debated issue in diabetes and DN studies. The physiological 

blood glucose concentration of healthy rodents is 4-8 mM 427, whereas in diabetic ones levels 

can exceed 20 mM 428–431. However, the vast majority of published in vitro studies using 

neurons in general (that did not investigate diabetes) maintain neuronal cultures in standard 

glucose concentrations of approx. 20-30 mM, depending on the culture medium used, which 

can be considered a hyperglycaemic environment in a diabetes-focused study. It is, therefore, 

advised that modelling of diabetes in vitro requires 7-20 mM additional external glucose in 

order to not deviate from established neuronal culture protocols and still recreate 

hyperglycaemic conditions as accurately as possible 419. Other stimuli that have been 

successfully used in in vitro DN research include pro-oxidants for the assessment of oxidative 

stress 422, methylglyoxal 432 and lipid oxidation products  for the evaluation of hyperglycaemic 

toxicity 433, oxidized low density lipoproteins for studying hyperlipidaemia 434 or serum from 

diabetic patients or animals 342,435.  

Primary cultures are not without limitations. As neurons are non-proliferative, the yield is low 

and each culture requires time-consuming collection of neurons. Notably, due to the nature of 

the process, neuron dissection involves nerve injury, triggering a switch in cultured neurons 

from a “housekeeping” to a “regenerative” phenotype 436 which should be considered when 

assessing neuronal excitability overtime in culture. Finally, the simplified neuronal environment 
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requires caution when interpreting data and demands validation of findings in an in vivo setting 

419.  

An alternative to primary neuronal cultures is the use of immortalised cell lines, such as SH-

SY5Y 437,438, NTERA-2 439 and pheochromocytoma (PC12) 440,441 cells. Most are easy to obtain 

and maintain and provide an unlimited supply of a homogeneous population of cells. They 

have been extensively used in electrophysiological, molecular and biochemical 

neurophysiological research and represent a suitable platform for high-throughput drug 

screens necessitating vast numbers of cells. In addition, the use of cell lines eliminates the 

need to sacrifice animals for each culture, bringing a great ethical and time advantage. 

However, due to cell lines being even a further simplified culture of clonal cells, they do not 

reflect the heterogeneity of adult rodent neurons nor are they capable of developing processes 

such as dendrites and axons 442. 

A promising novel technology in the research of neuronal diseases are iPSCs. By harvesting 

fibroblasts from patients, one can genetically reprogram them into pluripotent cells 443 and then 

stimulate their differentiation into various neuronal cell types, including sensory 444, and SCs445. 

This method holds potential for circumventing a possible problem with interspecies differences 

that may underlie the poor translation of drugs efficacy from established in vitro and in vivo 

techniques to the clinic. 

The study of the intricate pathogenesis of DN has greatly benefited from in vitro models over 

the years. However, regardless of the in vitro model’s advantages and success, findings must 

always be confirmed in an in vivo model to validate the observations when other interfering 

factors are also present, as they would be in the patient.  

1.4.2. Experimental animal models of diabetic neuropathy 

In vivo models of diabetes and DN are instrumental for the understanding of behavioural, 

physiological and structural DN pathology and are key drivers of progress towards successful 

therapy strategies. Compared to in vitro methods, animal models offer the advantage of 

susceptibility to genetic manipulations and higher system complexity. The diseases they are 

tailored to represent are thus closer in pathological resemblance to humans allowing for a 

more holistic interpretation.  However, one big limitation remains the relatively short lifespan 

of rodents, which does not allow for the complete mimicking and investigation of the chronic 

aspects of human (P)DN which progresses over decades to reach irreversibility 241.  
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Over the years, a great diversity of rodent models of T1D and T2D have been developed and 

characterised (for a comprehensive review see 241,446,447). Although none has yet been 

perfected to reflect the human disease in its full complexity, virtually all stages of human 

diabetes and its neuropathic complication have been reproduced by an animal model 

designed for the purpose 241. 

There are three established parameters by which DN is confirmed in a diabetic rodent and the 

animal model is recognized as useful. These represent major aspects of human DN pathology, 

namely:  

1) behaviour – sensory abnormalities are evaluated by assessing thermal and 

mechanical sensitivity; 

2) nerve conduction velocity (NCV) – electrophysiological measures of nerve 

impairment assessing motor and sensory nerve conduction;  

3)  nerve structure – intraepidermal nerve fibre (IENF) density in the animal’s footpad 

is assessed to reveal anatomical evidence of fibre loss. 

Two out of three need to be significantly different from control animals for a neuropathic 

phenotype to be confirmed 448. 

There are three main approaches by which rodent models of diabetes are generated – they 

can be genetically induced, chemically-induced and diet-induced. 

1.4.2.1. Genetically induced models of diabetic neuropathy 

Transgenic rodent models have been developed for both diabetes types. The most widely 

used T1D genetically modified models are the non-obese diabetic (NOD) and B6Ins2Akita mice 

241.  NOD mice develop a T-cell-mediated autoimmune response against their β-cells caused 

by a polygenic immunodeficiency that they carry.  Thus, they spontaneously develop T1D, 

consistent with the pathogenesis in T1D patients. However, due to the polygenic nature of their 

genetic modification, diabetes and DN progression in NOD mice is variable and affected by 

diet, housing conditions and the sex of the animals and DN in this model is still 

undercharacterised 449. Nevertheless, studies using NOD mice have reported hyperalgesia by 

week 8 450 and hypoalgesia by week 12 312. B6Ins2Akita mice have a point mutation in the Ins2 

insulin gene impairing insulin production 451 resulting in T1D by 7 weeks of age (WoA) and the 

gradual development of sensorimotor neuropathy 452. NCV in this model has been reported to 

decrease at 16 WoA 452, however, in another study, B6Ins2Akita mice showed no NCV 



 

 

51 
CHAPTER 1: INTRODUCTION 

impairments even at 24 WoA 453. Considering their current limitations, and the relatively 

controversial literature, DN phenotype in both NOD and B6Ins2Akita mice is still unclear and 

requires further characterisation.  

Research of T2DN has benefited from some excellent transgenic animal models. The most 

popular and best studied are monogenic mouse models carrying a mutation which impairs 

leptin signalling 447. Leptin is a hormone secreted after feeding to signal satiety and suppress 

appetite 454. Mutation in the leptin hormone or its receptor produce ob/ob and db/db mice, 

respectively. Both models develop chronic hyperglycaemia and hyperinsulinemia 428,455. Ob/ob 

mice are considered as an obesity and mild T2D model and DN in this model is understudied, 

however, they are reported to present with thermal hypoalgesia and reduced IENF density and 

sensory and motor NCV at 11 WoA 455.  

Db/db mice are the very first mouse model developed for the investigation of DN 428, shown to 

develop physiologically relevant T2D as early as 4 WoA. Compared to ob/ob mice, DN in the 

db/db mouse model has been better characterised with several studies reporting hyperalgesia 

and allodynia at 8-12 WoA and sensory loss at 12+ WoA accompanied by a significant 

decrease in motor and sensory NCV and IENF density 453,456–459. However, the relatively large 

number of studies using this mouse model has also generated considerable inconsistencies 

with regards to the DN phenotype with some reporting profound sensory anomalies while 

others see no significant differences from control animals 460. Neuropathy severity in the db/db 

mouse is also affected by the choice of mouse strain with hyperglycaemia more stable and DN 

more severe in the C57BKS db/db than C57BL/6 db/db mouse 453,461. Nevertheless, the 

progression of T2D and DN in the db/db mouse is considered to most closely mimic the natural 

history of these conditions in humans 453. Part of the experiments in this thesis involve the 

db/db mouse and this model will be discussed in depth in the relevant chapter (Chapter 5). 

1.4.2.2. Chemically induced models of diabetic neuropathy 

Rodents can also be rendered diabetic via a chemical induction process. The most common 

model of T1D, the streptozotocin (STZ) model, employs this approach. STZ is an alkylating 

compound known to selectively destroy β-cells 462. It is injected in the animal following one of 

two established protocols: either in a single high dose, producing a robust DN  but also bringing 

a high mortality rate due to severe nonspecific toxicity; or in multiple low doses – a less toxic 

approach producing gradual T1D but often with no or only moderate neuropathy phenotype 

463. Although an inexpensive, easy to optimise and adequate model for T1DN research and 

drug tests, the induction’s nature subjects animals to severe distress and potential DNA 
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damage – limitations that might impact measurements of pain responses and other parameters 

464. Furthermore, concerns have been raised over the direct neurotoxicity effects of STZ 465.  

More recently, STZ has been shown to directly activate neuronal TRPA1 resulting in acute 

allodynia 466. Despite its disadvantages, the diabetic STZ rat is by far the most extensively 

researched DN model, generating the vast majority of knowledge on the disease and its painful 

phenotype 242. 

1.4.2.3. Diet-induced models of diabetic neuropathy 

Drastic alterations in rodents’ standard nutrition have also been employed that establish T2DN 

and neuropathic pain by successfully mimicking human metabolic syndrome development. 

Several diet modification strategies have been tried but a high fat diet (HFD), has been 

repeatedly demonstrated to have undeniable success at inducing T2D and neuropathy in mice 

467. Usually, mice on a HFD develop obesity gradually, followed by metabolic imbalances, 

including hyperglycaemia and moderate hyperinsulinemia until T2D is fully established. DN is 

close to follow with decreased sensory NCV, IENF density and thermal hypoalgesia often 

reported in these mice 468. Although inappropriate diet is a leading cause for human T2D 

development too, compared to other approaches of DN induction, the diet approach can be 

time-consuming and its success varies due to influence from animal sex and age, diet duration, 

fat content and fat source. Nevertheless, diet-induced models of DN have proven useful in 

studies of prediabetes and obesity-associated neuropathies 467.  

1.4.2.4. Considerations when selecting a model 

DN progression is undeniably multifactorial and a complete model has not yet been developed 

for either of the diabetes types. Therefore, when selecting a model, it is critical to do so with 

the disease aspect being investigated in mind.  Further to that, model choice must also take 

into consideration factors such as duration and type of stimulus exposure, measurement tools, 

phenotype assessment techniques, and in the case of animals – their sex, age, diabetes type 

being induced, diet and diet duration, and degree of exposure to diabetes-inducing 

compounds and methods. For example, it has been well-documented, that male and female 

mice show significantly different DN phenotypes even when the same diabetes-induction 

approach is used 447. Female mice are more often used as genetically NOD models of diabetes, 

because they develop T1D symptoms much earlier 449, while male rodents are more suitable 

models for nutritionally-induced diabetes. Female rodents have also been reported to show a 

much more muted level of painful DN than males, presumed to be due to influence by specific 

female steroid hormones modulating the release of peptidergic neurotransmitters during pain 
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signalling 469,470. In addition, currently, an imbalance exists in the field of DN research. T1DN 

and its painful aspects are extensively researched (mainly in the STZ model) while clinical 

studies are mostly focused on T2DN cases due to their greater global prevalence. Although 

both diabetes forms lead to DN, it is vital that the model is of the diabetes type the findings will 

be translated to. Ensuring such synchronisation might contribute to closing the gap between 

animal and clinical studies. 

The elaborate study of in vitro and in vivo models of DN would not have been possible without 

the development of powerful techniques and tools. To investigate the neuronal excitability of 

DRG neurons from db/db mice, I employed a functional assay previously developed in our 

laboratory which combines Ca2+ imaging and the VGSC activator veratridine. In the final 

section of this chapter, I will briefly outline the characteristics of the different components of 

this assay and discuss its experimental applications to date. 

1.5. Veratridine-based calcium imaging assay for neuronal excitability  

assessment 

The major goal in neuroscience research is the understanding of the complex patterns of 

neuronal activity and the physiological and molecular events underlying different 

neurodegenerative conditions. To address this, one must be able to record the activity and 

analyse the changes in excitability of nerve cells. Electrophysiology and Ca2+ imaging are the 

two most popular approaches implemented to that purpose. Electrophysiological techniques 

such as voltage clamp, current clamp and patch-clamping are the ‘gold standard’ in 

neurophysiology research, providing direct report of a neuron’s electrical properties with high 

temporal precision 471. However, electrophysiological approaches are often invasive, usually 

requiring the insertion of electrodes in the cell, and limited to assessing only a small subset of 

neurons (most often – a single cell at a time), thus unable to monitor the neuronal dynamics in 

a heterogeneous population such as DRG neurons.  

For the simultaneous assessment of a great number of neurons in a diverse population, a 

medium-to-high throughput approach is more appropriate such as Ca2+ imaging. Furthermore, 

the research for new treatments against pain has been re-targeted from the CNS towards the 

nociceptors in the PNS and, more specifically, the ion channels they expressed  that regulate 

pain signalling. The development of novel, more efficient and safer analgesics creates a need 

to be able to single out and specifically target nociceptors with minimal or no impact on non-

nociceptive cells. To that end, a suitable assay is needed that is not only high throughput but 
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also able to discriminate nociceptors in a heterogeneous DRG neuronal population. Calcium 

imaging is a technique with the potential to answer these requirements. 

1.5.1. Calcium imaging technique 

In the neuron, Ca2+ ions play a central role in various processes across all parts of the nerve 

cell. A charge carrier and an important intracellular messenger, Ca2+ is involved in the 

regulation of neuronal development, apoptosis, neurotransmitter release and membrane 

excitation. At rest, the intracellular Ca2+ ion concentration in the neuron fluctuates between 50 

and 100 nM, however they can rise 100-fold during electrical activity. Therefore, the direct 

measurement of intracellular baseline Ca2+ levels as well as Ca2+ spikes is highly informative of 

a neuron’s activity and excitability 472. By harnessing this neuronal property, Ca2+ imaging can 

directly visualise the Ca2+ status of hundreds of individual neurons simultaneously. Compared 

to electrophysiological methods, it does so in a less invasive way and can be used to track the 

activity of neurons over time. Calcium imaging has been used widely by neuroscientists to 

record activity in neuronal populations 473. The imaging of Ca2+ ions depends highly on the use 

of appropriate Ca2+ sensor indicators. Calcium indicators allow for the real-time monitoring and 

recording of cellular Ca2+ signals in vitro as well as in vivo, discussed next. 

1.5.1.1. Calcium indicators 

To monitor neuronal activity based on intracellular Ca2+ levels, a Ca2+-binding indicator is 

required that would enable the optical measurement of neuronal Ca2+ concentrations. Such 

indicators have been in development since the 1960s 474,475, but it was Tsien et al. that 

revolutionised Ca2+ imaging by introducing a series of highly sensitive fluorescent Ca2+ sensors. 

These Ca2+ indicators alter their spectral properties upon binding free Ca2+ ions. Broadly 

speaking, they can be classified into two main categories: chemical Ca2+ sensors for in vitro 

imaging 476 and genetically encoded Ca2+ indicators (GECIs) for in vivo imaging 477. A summary 

of the structure and general properties of each class is presented in the diagrams of Figure 

1.9. 

 

• Chemical calcium indicators  
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The most successful example of an in vitro chemical Ca2+ indicator is the widely used high-

affinity dye Fura-2. It is the result of the hybridisation of a highly Ca2+-selective chelator with a 

fluorescent chromophore (or fluorophore) 478 (Figure 1.9). Its ester form, Fura-2AM, is its 

membrane-permeable derivative that freely crosses the cell membrane. Once inside the cell, 

cellular esterases cleave the ester bond thus “locking” the dye inside 479. Fura-2 binds Ca2+ 

ions with high affinity (Kd ~ 145 nM), and has a relatively wide Ca2+ sensitivity, ranging between 

~100 nM and ~100 µM 480. The primary advantage of Fura-2 is that it is a ratiometric dye. The 

binding of free intracellular Ca2+ induces conformational changes in Fura-2, shifting its 

excitation wavelength from 380 nm (free Fura-2) to 340 nm (Ca2+-bound Fura-2). Its emission 

wavelength remains stable at ~ 500 nm at either excitation wavelength. The higher the 

intracellular Ca2+ concentration is, the stronger the excitation at 340 nm and the weaker the 

Figure 1.9. Structure and properties of chemical and genetically-encoded calcium indicators. Chemical 
calcium indicators, such as Fura-2, are made of a Ca2+-chelating site and a fluorophore. Binding of Ca2+ 
(red circle) changes the fluorescence emitted. In contrast, genetically-encoded calcium indicators (GECIs) 
are made of three main components: an enhanced green fluorescent protein as a fluorophore, 
calmodulin, which binds Ca2+ and M13, which binds Ca2+-bound calmodulin. The interaction between 
Ca2+-bound calmodulin and M13 leads to conformational intrmolecular changes resulting in an increased 
emitted fluorescence of 515 nm. Source: Grienberger & Konnerth (2012) 
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excitation at 380 nm is. Thus, a quantitative measure of intracellular Ca2+ concentrations can 

be estimated, independently of the intracellular dye concentrations, by calculating the ratio of 

the emissions at the two excitation wavelengths (340/380). The ratiometric property of Fura-2 

makes it a highly popular choice due to eliminating issues with variables such as variable dye 

concentration, unequal cell thickness, dye leaking and photobleaching 481.  

• Genetically encoded calcium indicators 

After the establishment of chemical Ca2+ sensors, protein-based genetically encoded Ca2+ 

indicators (GECIs) were the next big breakthrough as they allowed for the imaging of neuronal 

activity in vivo 477. Their expression can be targeted to specific subpopulations of cells and 

maintained stable over months, allowing for the repeated observation of neurons. Thus, GECIs 

are invaluable in the research of nervous system development, maintenance, learning and 

memory. However, they remain slightly inferior to chemical Ca2+ indicators in terms of their 

signal-to-noise ratios. The most widely used form of GECIs is the single-fluorophore GCaMP 

family. It is composed of three main parts: a circularly permutated enhanced green fluorescent 

protein (eGFP) with the Ca2+-binding protein – calmodulin attached on one end and a 

calmodulin-binding protein M13 on the other. Upon binding free Ca2+, calmodulin interacts with 

M13, which induces a conformational change in eGFP. This results in the increase of emitted 

fluorescence by the fluorophore 477,482 (Figure 1.9).  Substantial progress has been made in 

recent years to develop improved GECIs classes with high-affinity sensors, improved dynamics 

range, kinetics and better signal-to-noise ratio for the reliable detection of neurons with low 

activity rates 483.  

1.5.2.  Activating neurons  

To record neuronal activity in vitro, apart from an appropriate Ca2+ indicator, Ca2+ imaging 

requires neuronal stimulation. This can be by a shift in extracellular conditions (e.g. 

temperature), electrical stimulation or pharmacological agents. Extracellular solutions with 

high K+ concentration are generally used to activate neurons by depolarising the membrane 

potential across the whole neuronal population thus opening multiple voltage-gated ion 

channels simultaneously in the process. Hence, the excitability information derived by such 

stimulation is limited to a ‘yes or no’ interpretation and is impossible to discriminate among 

neuronal subtypes 484.  

1.5.2.1. The constellation pharmacology approach 

Apart from activating all neurons in a population simultaneously, separate neuronal subsets 

can also be targeted by applying specific pharmacological agonists. This method of “profiling” 
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a mixed population of neurons was popularised by Olivera et al. under the term “constellation 

pharmacology” 485,486.  Specifically, they applied a variety of pharmacological agents (e.g. allyl 

isothiocyanate, capsaicin, histamine, ATP, menthol and acetylcholine), as well as agonists 

targeted at voltage-gated ion channels (e.g. TTX, tetraethylammonium – a VGKC blocker) to a 

heterogeneous DRG population of neurons and recorded individual responses by Ca2+ 

imaging. Based on the distinct sets of Ca2+ responses produced by each neuron they were 

able to identify and functionally characterize neuronal subtypes 485,487. The constellation 

pharmacology approach can therefore be applied not only for the functional characterisation 

of neuronal subtypes but also in drug screens to determine the specific selectivity of a drug, 

as well as the degree of any side effects. These can be established by comparing the Ca2+ 

responses induced by markers in control versus drug-treated cells 488; or by pre-establishing 

a Ca2+ response template to high K+ solution in cells and comparing the changes the drug 

would induce to changes induced by ion channel blockers with pre-determined specificity 

485,487,488. Albeit highly informative, this cellular neuropharmacological approach is not without 

limitations. Due to its nature, this method demands the testing of multiple markers in 

succession in order to characterise the constellation of neuronal ion channels and receptors. 

The more detailed the characterisation is, the greater number of agents need to be applied, 

creating lengthy protocols, which cannot be supported due to limitations by other factors, e.g. 

the eventual photobleaching of the Ca2+ indicator used. The need for elaborate, pre-

established Ca2+ response templates as well as the application of high K+ solution as a universal 

neuronal activator during drug screens are further examples of drawbacks of this experimental 

method.  

 1.5.2.2. Veratridine 

One pharmacological agent used in drug screens is veratridine (VTD) due to its ability to 

activate VGSCs. Veratridine is a lipid-soluble alkaloid toxin derived from the seeds of lilaceous 

plants. It was first purified in the 1950s and became commercially available as a 

pharmacological agent in the early 1970s. Initially used mainly as an insecticide, the interest 

in VTD’s neurotoxic properties gradually grew sparking research into its mechanism of action 

on VGSCs 489–491. 
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Veratridine binds reversibly to the S6 VGSC segment – part of the pore domain of the channel. 

The toxin is selective for TTX-S VGSCs and preferably binds them in their open state. Notably, 

voltage-clamp experiments in neurons from rat DRG have shown that VTD can also bind TTX-

R channels although the dissociation rate is much faster than TTX-S channels, leading to 

transient responses 492.  Once bound, VTD locks the channel in its open conformation and 

prevents inactivation by shifting the activation threshold of the channel to a more negative 

potential 493. Thus, VTD leads to an increase in intracellular Na+ levels, depolarising the 

membrane and activating other voltage-gated ion channels resulting in increase in intracellular 

Ca2+ concentrations and increased overall neuronal excitability (Figure 1.10). Of note, for VTD 

to exercise its strong nerve depolarisation effect, the external medium needs to include Na+ 

ions in its composition, as demonstrated by early experiments on frog and single nerve 

fibres489. With its VGSC activator profile confirmed by further electrophysiology 

experiments491,494–496, VTD is now extensively used as a pharmacological tool in drug screening 

protocols to activate sodium channels and test the efficacy of VGSC blockers 497.  

Figure 1.10. Veratridine (VTD) action on voltage-gated sodium channels (VGSCs). VTD 
preferably binds TTX-S VGSCs such as Nav1.7. Upon binding, VTD “locks” the channel in 
its open conformation state, increasing the flux of sodium (Na+) ions into the cell. This 
causes membrane depolarisation and triggers the opening of other voltage-gated 
channels, including voltage-gated calcium channels (VGCCs). Their activation allows for 
the influx of calcium (Ca2+) ions into the cells, increasing the intracellular Ca2+ 
concentration (i[Ca2+]) which can be detected and measured using Ca2+ indicators and 
Ca2+ imaging.  
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1.5.3 Veratridine-induced calcium response profiles as functional 

indicators of DRG neuronal subpopulations 

In DRG, the TTX-S VGSCs available for VTD to bind to are Nav1.6 and Nav1.7. Of the two, 

Nav1.7 is the most predominantly expressed in all DRG, especially nociceptors, whereas 

Nav1.6, although expressed by all DRG neurons, is found mainly in large, non-nociceptive 

neurons 498. Although VTD preferentially binds to TTX-S VGSCs, it does not have specificity to 

a particular isoform. Applying VTD to a mixed population of DRG neurons, therefore, would be 

expected to produce mixed responses based on the constellation of VGSCs (and other 

voltage-gated ion channels) expressed by each neuronal type. 

This concept was elegantly demonstrated previously in our lab by Mohamed et al. 499, in Ca2+ 

imaging experiments with VTD on mouse DRG neurons. They showed that VTD elicited 

heterogeneous Ca2+ responses. Based on their decay rate and oscillation, the responses were 

classified into four distinct VTD-induced Ca2+ response profiles: rapid decay (RD), intermediate 

decay (ID), slow decay (SD) and oscillatory (OS) profile with the SD and OS profiles being the 

most frequently occurring (Figure 1.11 A, B). Additionally, three nociceptive agonists were also 

applied to the neurons after VTD:  

• α,β-methylene adenosine 5'-triphosphate (ATP) to mark non-peptidergic, IB4+ 

nociceptors, 

• allyl isothiocyanate (AITC) – marker of LTMRs and some peptidergic and non-

peptidergic nociceptors  

• capsaicin (CAP) to mark peptidergic nociceptors. 

 

The VTD-response profiles correlated with responses to the nociceptive markers (Figure 1.11 

C) revealing a strong association between the OS profile and nociceptors, whereas the SD 

profile correlated with non-nociceptors. These observations were further confirmed by size 

analysis of the imaged neurons, showing that virtually all OS, ID and RD neurons are small to 

medium diameter, while SD was the most prevalent profile in neurons of large diameter. An 

additional finding of this study was that 25-30% of the identified nociceptors did not respond 

to VTD and were therefore presumed to be the population of high-threshold “silent 

nociceptors”, activated under inflammatory or nerve injury conditions 4 (Figure 1.11 C).    
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Figure 1.11. Veratridine (VTD) applied to mouse DRG neurons produces four distinct VTD-response 
profiles that could be indicative of specific neuronal subpopulations. A) Example traces for each of the 
four distinct VTD-response profiles: Slow decay (SD, top left), rapid decay (RD, top right), intermediate decay 
(ID, bottom left) and oscillatory profile (OS, bottom right). B) Frequency of the occurrence of the VTD-
response profiles in VTD(+) DRG neurons. Most frequent is the OS profile (48 ± 4%), followed by SD (24.4 ± 
4%), RD (13.4 ± 4%) and ID (12.7 ± 2%). C) VTD-response profiles can be correlated to functional markers of 
nociceptors. DRG neurons were applied nociceptive agonists: α,β-methylene ATP, allyl isothiocyanate or 
capsaicin. Neurons responding to at least one of the three agonists applied are defined as nociceptors. 
nociceptors constitute 66% of all DRG neurons. Of them, 64% were of the OS, ID and RD VTD-response 
profiles. Non-nociceptors (neurons insensitive to any of the three nociceptive agonists) constituted 34% of 
all DRG neurons, 51% of which were represented by the SD VTD-response profile. Source: Mohammed et al. 
(2017) 

C 
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Thus, the study generated the first detailed characterisation of VTD responses in DRG neurons 

and their correlation with neuronal subtypes. What is more, it proposed the use of the VTD 

response profiles as broad functional markers of neuronal subpopulation that can discriminate 

nociceptors from non-nociceptors. Importantly, it presented the opportunity of developing the 

VTD-Ca2+ imaging assay into a platform suitable for drug screening as well as characterisation 

of neuropathology phenotypes 499. The promising findings by Mohamed et al. opened the door 

to exploring the possibilities of this assay and laid the foundations of the project described in 

this thesis. 
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1.6.  Aims 

The VTD-Ca2+ imaging assay has shown promise as a suitable technique for neuronal 

characterisation. However, before it can be applied, the link between the VTD-response 

profiles and neuronal subpopulations needs to be strengthened further. Therefore, the first 

aim and its objectives of this study are 

Aim 1: Validation of the VTD-Ca2+ imaging assay as a suitable drug screen platform 

(Chapter 3) 

• Confirm the link between VTD-induced Ca2+ response profiles and neuronal 

subpopulations by: 

o using DRG from mice with genetically ablated nociceptors 

o using specific and non-specific VGSC blockers and analyse the VTD response 

profiles patterns in DRG neurons 

 

Then, I endeavour to investigate the application of the assay as a method for characterising 

the neuropathological phenotype in a diabetic neuropathy model. The db/db mouse is one of 

the most popular models of type 2 diabetes, however, its diabetic neuropathy phenotype is 

still poorly characterised and the accumulated literature on the matter to date is highly 

controversial. Therefore, the second aim and objectives of the research presented here are: 

Aim 2: Application of the VTD-Ca2+ imaging assay and nociceptive agonists to 

characterise changes in excitability in neuronal subpopulations under diabetic 

neuropathy conditions (Chapters 4 and 5).   

• Characterise excitability changes in DRG neurons from healthy mice cultured in vitro 

under hyperglycaemic conditions using the VTD-Ca2+ imaging assay and nociceptive 

markers  

• Characterise morphological and excitability changes in DRG neurons isolated from 

diabetic db/db mice using VTD-Ca2+ imaging assay and nociceptive markers. 

Investigate the distinct excitability changes in the two diabetic neuropathy phases in 

the db/db mouse:  

o Early diabetic neuropathy phase 

o Late diabetic neuropathy phase  
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CHAPTER 2: MATERIALS & METHODS  

2.1 Materials 

2.1.1. Animals: 

C57/BL6 adult male mice (Charles River, Margate, UK), obtained at 5-7 weeks old were used in 

the experiments with healthy mice outlined in this thesis. For experiments investigating effects 

of diabetes on DRG neurons, a total of 12 male diabetic C57BKSdb/db mice (BKS.Cg-

+Leprdb/+Leprdb/OlaHsd) were used and 12 lean littermate mice were used as non-diabetic 

controls (BKS.Cg-+Leprdb/-Leprdb/OlaHsd) (Envigo, The Netherlands). Animals were kept in a 

12h light-dark cycle with free access to food and water. Mice were housed in groups of 3-4 and 

were allowed a week for acclimatisation upon arrival at the Biological Services Unit at the 

University of Sheffield in a temperature- (23 ± 2°C) and humidity- (40-70%) controlled holding 

room. During experimental periods, no animal was left alone in its unit for longer than 24h. All 

efforts were made to minimise animal suffering and reduce the number of mice used in the 

reported studies. All experiments with animals were conducted according to the UK Home Office 

Animals (Scientific Procedures) Act 1986. 

2.1.2 Cell culture reagents 

Name Supplier Catalogue No 

Albumin Bovine fraction V (BSA) Melford 
A1302 

Collagenase Type XI,100X (0.6 mg/mL) Sigma 
C9407 

Dispase, 100X (1 mg/mL) Sigma D4693 

Dulbecco’s Modified Eagle’s Medium/F12 with Glutamax 

medium (DMEM/F-12 + Glutamax) 

GibcoTM life 

technologies 
31331-028 

Dulbecco’s phosphate buffered saline (DPBS), without Ca2+ 

and Mg2+, 0.0095 M (PO4) 
Lonza BE17-512Q 

FBS (fetal bovine serum) – EU approved origin, origin: South 

America 

GibcoTM life 

technologies 10500-064 
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Penicillin/Streptomycin 100X Sigma 
P0781 

Poly-L-orinithine (20µg/mL) Sigma 
P3655 

2.1.3 Pharmacological compounds 

Name Supplier Catalogue No Stock concentration 
Solvent 

4,9-anhydrotetrodotoxin Tocris 6159 300 µM 
water 

A-803467 Abcam Ab120282 10 mM 
DMSO 

Allyl isothiocyanate (AITC) Sigma 377430 100 µM 
- 

Capsaicin Tocris 0462 10 mM 
ethanol 

Isoflurane (IsoFlo®) Abbott B506 100% 
- 

PF-04856264 Sigma 11916 10 mM 
DMSO 

PF-05089771 Sigma-Aldrich PZ0311 20 mM 
DMSO 

Veratridine Abcam Ab120279 5 mM 
ethanol 

α, β-methylene ATP Sigma M6517 10 mM 
water 

 

2.1.4. Reagents, chemicals and solvents 

Name Supplier 
Catalogie No 

Calcium Chloride (anhydrous) 
Melford 

C1103 

D-glucose (anhydrous) 
Fisher Scientific 

G/0500/53 

Dimethylsulfoxide (DMSO) Sigma-Aldrich 276855 

Ethanol, absolute (HPLC grade) Fisher Scientific E/0665DF/17 

Fura-2, AM (20 X 50 µg unit) Molecular Probes F1221 
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HEPES 
Sigma 

H3375 

Magnesium chloride (Anhydrous) 
Melford 

M0535 

Potassium chloride Melford P0515 

Sodium Chloride 
Fisher Scientific 

S/3160/65 

Sodium hydroxide 
Fisher Scientific 

S/4920/53 

Mannitol Sigma-Aldrich 
63559 

 

2.1.5. Tools, equipment and labware 

Name Supplier 
Catalogie No 

Calcium imaging perfusion chamber 
Warner instruments RC-25F 

Cellview™ cell culture dish, PS, 

35/10MM (Glass bottom, one 

compartment) 

Scientific Laboratory 

Supplies LTD - 

Cover glass ø16 mm (0.13-0.17 mm 

thick) 

Scientific Laboratory 

Supplies LTD 
MIC3310 

Disposable Scalpels (Surgical steel 

blades) 
Swann-Morton  0505  

Dumont #5 Forceps Fine Science Tools, FST 15018-10 

Luer-Lok syringes (50 mL) 
Becton Dickinson (BD) 300865 

Minisart® Syringe Filters (0.45 μm, 

Sartorius) 

Appleton woods 25926 

Portex Tubing ,30m non-sterile 

polythene tubing, [ 0.86 mm ID, 1.27 

mm OD] 

Fisher Scientific  
800/110/260  
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2.1.6. Solution and medium recipes 

• DRG neurons digestion mix (stored at -20°) 

o Collagenase XI (0.6 mg/mll) 

o Dispase II (1 mg/ml) 

o DMEM/F-12 + Glutamax 

 

• Standard Extracellular Ringer Solution (stored at room temperature) 

o 140 mM Sodium Chloride, 

o 4 mM Potassium Chloride, 

o 2 mM Calcium Chloride, 

o 1 mM Magnesium Chloride, 

o 10 mM HEPES, 

o 5mM D-glucose (added on the day of experiment)* 

o pH = 7.4 at 25 °C, PH is adjusted with Sodium Hydroxide 

 

• High Potassium Ringer Solution (stored at room temperature) 

o 104 mM Sodium Chloride, 

o 40 mM Potassium Chloride, 

o 2 mM Calcium Chloride, 

o 1 mM Magnesium Chloride, 

o 10 mM HEPES, 

o 5 mM D-glucose (added on day of experiment)* 

o pH = 7.4 at 25 °C, PH is adjusted with Sodium Hydroxide 

*stored  at 5°C once D-glucose is added 

2.2. Methods 

2.2.1. Preparation of mouse dorsal root ganglia neuronal culture   

2.2.1.1 Isolation of DRG 

The mouse was anaesthetized using isoflurane in an anaesthetic machine, then moved to a 

surgical table and culled by cervical dislocation in accordance with Schedule 1 procedures of 

UK Animals (Scientific Procedures) Act 1986. The animal’s spinal column was isolated by careful 

incisions along its length and unnecessary extra tissue (muscle and fat) surrounding it was gently 

shaved off using a scalpel. The spinal column was then cut in half longitudinally, 1-2 vertebrates 
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at a time, using a scalpel in order to be able to access the spinal cord. Halves of the spinal 

column were placed under a light microscope and spinal cord matter pushed away carefully 

using forceps in order to expose the sockets containing DRG underneath. Then DRGs were 

extracted one by one out of the spinal columns with forceps and placed into 35mm dish with 

PBS until end of isolation procedure. Once all DRGs were isolated, long extending axons were 

trimmed whilst still in PBS dish under the light microscope, using a scalpel. For experiments 

investigating mice with Nav1.8-expressing neurons ablated, DRG from Nav1.8Cre-DTA mice 99 

and littermate control mice were stored in ice-cold Hibernate-A medium (Gibco) containing 

penicillin/streptomycin whilst being transported from University College London (approximately 

5-hour journey), after which were dissociated as outlined.  

2.2.1.2 DRG digestion 

The PBS in the dish containing isolated and prepped DRG bodies was replaced with DRG 

digestion mix made up of 1 ml Dulbecco’s Modified Eagle’s Medium/F12 (DMEM/F12) with 

Glutamax medium containing Dispase (1mg/ml) and Collagenase Type XI (0.6 mg/ml). DRGs 

were then left in an incubator for 60 mins at 37°C and 5% CO2 for digestion.  

2.2.1.3 Dissociation of neurons and seeding 

At the end of digestion time, cells were triturated 10 times to ensure tissue separation from 

neurons. Resulting cell suspension was then carefully layered on the surface of 1.5 ml 15% 

Bovine Serum Albumin (BSA) in DMEM/F12. Mixture was centrifuged for 10 minutes at 21° at 

800 g (2000 rpm (rotor no. 4624/ Hettich Rotina 46R centrifuge)) set at minimum deceleration 

speed. The produced cell pellet was then gently washed with DMEM/F12 containing 10% Foetal 

Bovine Serum, 100 units/mL penicillin and 100 μg/mL streptomycin. Mixture was centrifuged 

once more at 200g (1000 rpm) for 3 minutes. Supernatant was removed and cells were 

resuspended in 60 – 100 µl of the above-described DRG culture medium and seeded on 

autoclaved and poly-L-ornithine- coated (20 μg/ml) 16mm glass coverslips with each seeding 

drop being 3-4 μl. Neurons were left in the incubator at 37°C / 5 % CO2 for 1 hour to allow 

adhesion to coverslip surface. Finally, plated cells were carefully flooded with DRG culture 

medium and incubated for a minimum of 24h at 37 °C / 5 % CO2 prior to experiments. 

2.2.1.4. Adjustments to glucose concentration in culture for in vitro hyperglycaemia 

experiments 

Mouse DRG neurons were cultured with standard DMEM/F12 (17.5 mM glucose) with 32.5 mM 

added glucose (total 50 mM) to induce hyperglycaemic, diabetic conditions; control cultures 
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were supplied with DMEM/F12 medium containing default amount of 17.5 mM glucose deemed 

optimal for neuronal survival 318 and were added 32.5 mM mannitol for osmotic control. Additional 

glucose administration to the culture was initiated after 1 day after culturing the neurons and 

maintained for up to 5 days with measurement taken on days 1, 2, 4 and 5 post - glucose addition. 

2.2.2. Calcium imaging of DRG neurons 

2.2.2.1. DRG cells loading with Fura-2AM 

All loading of neurons with a calcium dye took place in the dark. Working concentration of 2 µM 

of the calcium dye Fura-2AM was made up by mixing 1 µl Fura-2AM stock with 1ml standard 

extracellular Ringer solution (see section 2.1.6. Solution and medium recipes). Using a P1000 

pipette, solution was vigorously mixed for up to a minute to ensure complete solubilisation of the 

dye. Coverslips were carefully removed from culture plates with DRG medium and placed in a 

35mm dish, up to three at a time, taking care not to overlap. They were washed once with 

standard extracellular Ringer solution before loaded with Fura-2AM solution and left to incubate 

at 37 °C / 5 % CO2 for 30 minutes. After 30 minutes, Fura-2AM solution was removed and 

replaced with 1 ml standard extracellular Ringer solution and cells were left to incubate at 37 °C 

/ 5 % CO2 for another 15 minutes. Finally, cells were taken out and stored in an opaque container 

outside of incubator for another 15 minutes in order to allow for neurons to adjust to the room 

temperature at which calcium imaging experiments would take place. 

2.2.2.2. Experimental set up  

Recordings were performed at room temperature of 23 ± 2°C. Each Fura-2AM-loaded coverslip 

was mounted on a recording chamber (RC-25F, Warner instruments) and slowly and carefully 

added 1 ml standard extracellular Ringer solution to prevent dehydration of cells. Chamber was 

placed on the stage of an inverted Olympus, IMT-2 microscope fitted with a 40X oil-immersion 

objective (Olympus, 160/-, DPlanApo40UVPL). Due to technical issues this objective was 

replaced with a 40X dry objective. Coverslip surface was examined to locate a suitable field of 

view, comprising of optimal number of cells (20 – 45) and cell density. Simple PCI6 software was 

used for recording set up and image acquisition with background subtraction and ratiometric 

measurements (F350/380 nm). Regions of interest (ROI) were obtained for each cell of interest 

in the selected field, as well as an additional one for the background. Neurons were excited with 

alternating 350 nm and 380 nm light (Cairn Dual OptoLED system) at 1.6 s intervals. Image 

acquisition was carried out using a Hamamatsu C4742-95 camera. Solution perfusion was 

carried out using a perfusion system reliant on gravity at a flow rate of 3 ml/min.  
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2.2.2.3. Recording of calcium responses  

Upon launching of the perfusion system, a laminar stable flow across the coverslip was 

confirmed before recording commenced. Prior to addition of drug solutions during recording, 

neurons were initially perfused with standard extracellular Ringer solution for at least 5 minutes 

to ensure a stable initial calcium trace baseline is established. A wash of minimum of 5 minutes 

with standard extracellular Ringer solution was also included in between drug solution 

perfusions. Finally, high potassium extracellular Ringer solution (KCl, 40 mM) (see 2.1.6. Solution 

and medium recipes, page 66) was perfused at the end of each recording as a universal neuronal 

depolarising means to confirm viable neurons. Neurons irresponsive to high potassium 

extracellular Ringer solution were excluded from analysis. 

2.2.3. Data processing and statistical analysis of calcium imaging data  

2.2.3.1. Analysis of recorded calcium imaging responses 

Viable neurons identified by high potassium extracellular Ringer solution were selected for 

analysis. All recorded traces were analysed using GraphPad Prism 8 software, also used to 

generate all graphs in this thesis. Calcium signal baseline was established from 30 frames of 

signal prior to the addition of any drugs. A calcium response to a drug was identified as an 

increase in F350/380 ratio of 6 standard deviations or more above the mean of the baseline. 

Veratridine (VTD) responses were classified according to the four VTD-response profiles, or 

shapes, outlined previously by Mohammed et al. (2017) 499.   

 

The fractional difference (ΔF/F0) in fluorescence was established prior to amplitude, response 

onset and area under the curve analysis, using the formula: 

 

∆𝐹

𝐹0
 =  

𝐹350 380⁄  −  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

Area under the curve was calculated using a built-in analysis function in GraphPad Prism 8 

implementing the ‘trapezoid’ principle for area under the curve measurement. The measured 

data included a 10-minute stretch of the recording, beginning at VTD application, due to the 

diversity in shapes and decay of VTD responses. Amplitude and response onsets were analysed 

manually using GraphPad Prism 8 for each trace individually.  
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2.2.3.2. Neuronal cell size analysis 

Neuronal cell diameter analysis was carried out using the ImageJ software (version 1.53a for 

Windows). Cell circumference was obtained by manual tracing of each cell’s soma outline. Cell 

area was then calculated by the in-built software formula. The generated cell area was then used 

to calculate cell diameter following the formula:  

 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑑) =  √(
4 𝑥𝐴𝑟𝑒𝑎

𝜋
) 

2.2.3.3. Statistical tests 

The unit used in statistical analysis was the mouse (N). The mean percentage of responsive 

neurons from each culture an N produced was calculated. Upon accumulation of sufficient 

independent samples (independent Ns) for each experiment, means of the Ns of each 

experimental group were compared to each other. To test the frequency distribution of cell sizes 

for normal Gaussian distribution, a normality test was performed (D'Agostino-Pearson and 

Kolmogorov-Smirnov normality tests), which yielded normal Gaussian distribution in all cases. 

To calculate the significant difference between two groups, a Student’s t-test was used. To test 

for significant difference in the mean values between three or more groups, one-way analysis of 

variance (ANOVA) with post Sidak’s multiple comparison test was used. The results are shown 

as the mean ± standard error of the mean (SEM). 

 

 

 

 

 

 



 

 

72 
CHAPTER 2: MATERIALS & METHODS 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

73 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

CHAPTER 3: VALIDATION OF THE DISTINCT 

VERATRIDINE CALCIUM RESPONSE PROFILES AS 

FUNCTIONAL MARKERS FOR NOCICEPTORS AND 

NON-NOCICEPTORS 

 

 

The research presented in this chapter has been published under the title: 

“An unbiased and efficient assessment of excitability of sensory neurons for analgesic 

drug discovery” 

Authors: Zainab A. Mohammed, Katerina K. Kaloyanova and Mohammed A. Nassar 

PAIN. volume: 161, issue: 5, pages: 1100 – 1108; doi: 10.1097/j.pain.0000000000001802, 

Date: May 2020. 

Published under the creative commons CC-BY license. 

 

Authors’ contribution: 

I co-designed, carried out and analysed all experiments presented here, excluding 

experiments with knock-out mice (Figure 3A and C). Contributed to the preparation of figures. 

Contributed to manuscript editing and revisions. 

Zainab Mohammed co-designed and carried out experiments presented in Figure 3A and C; 

and co-designed and contributed to carrying out experiments presented in Figures 4 and 5. 

Also, contributed towards manuscript editing and revisions. 

Mohamed Nassar conceived, designed and supervised all experiments and prepared the 

manuscript. 

 

 

 

 



 

 

74 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

75 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

76 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

77 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

78 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

79 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

80 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

81 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 



 

 

82 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

83 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 

 

 

 

An unbiased and efficient assessment of excitability of 

sensory neurons for analgesic drug discovery 

 

Zainab A. Mohammed, Katerina K. Kaloyanova, Mohammed A. Nassar* 

Department of Biomedical Science, University of Sheffield, S10 2TN, UK 

*Corresponding author m.nassar@sheffield.ac.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

84 CHAPTER 3: VALIDATION OF THE DISTINCT VERATRIDINE CALCIUM RESPONSE PROFILES AS FUNCTIONAL 
MARKERS FOR NOCICEPTORS AND NON-NOCICEPTORS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

85 CHAPTER 4:  ASSESSING EXCITABILITY CHANGES IN DRG NEURONS UNDER IN VITRO HYPERGLYCEMIC 
CONDITIONS 

CHAPTER 4:  ASSESSING EXCITABILITY CHANGES IN 

DRG NEURONS UNDER IN VITRO HYPERGLYCEMIC 

CONDITIONS 

4.1. INTRODUCTION 

The first step in answering this thesis’s research question: “What are the excitability changes 

in DRG neurons during DN?”, was to validate the use of the VTD-profiles as a functional marker 

for nociceptors and non-nociceptors in a heterogeneous neuronal population. In the previous 

chapter, VTD was shown to allow for the study of changes in VGSCs and place them in the 

context of specific neuronal subpopulations. Hence, the VTD-Ca2+ imaging assay was 

established as a suitable tool for the discrimination of neuronal subpopulations. As a result of 

its validation, several potential applications arose.  

For the experiments in this and the next chapter, I apply the VTD-Ca2+ imaging assay together 

with selected nociceptive agonists to characterise diabetes-induced excitability changes in 

DRG neurons exposed to hyperglycaemic conditions. Determining the distinct excitability 

changes occurring in nociceptors and non-nociceptors during DN would provide valuable 

insights into the pathophysiological mechanisms driving DN in sensory neurons. To this end, 

in the current chapter, I used the in vitro-induced hyperglycaemia model. 

In the literature, in vitro-induced hyperglycaemia has been mostly used to investigate the 

effects of acute exposure to high glucose on DRG neurons. Such studies have contributed 

vastly to DN research by demonstrating decreased cell viability 318,423,500,501, ROS rise 423,424,500, 

cell injury 423, increased Nav1.7 expression 351 and increased VGSC currents 424,502 in DRG 

when exposed to high glucose concentrations for up to 48h. However, to our knowledge, there 

are no studies exploring the effects of extended high glucose exposure time past the 48h mark 

on neuronal excitability neither are there studies sorting observed excitability changes to 

neuronal subtypes. Since VGSC currents and expression have been observed to increase in 

DRG neurons as early as 18h of acute high glucose exposure 351,424, we hypothesised that 

extending the exposure time will lead to further VGSC activity increase and neuronal 

excitability changes. Prolonged high glucose exposure of DRG neurons should more closely 

mimic the chronic hyperglycaemic conditions in humans and reflect physiological DN 

progression. Furthermore, apart from the immediate post-translational changes induced by 

hyperglycaemic conditions, transcriptional changes could also have the opportunity to take 

place. In time periods of 24h or less, such important transcriptional changes would be missed, 
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therefore, culturing DRG neurons in high glucose for an extended time period would allow for 

their detection.   

4.2. AIMS 

To assess the excitability changes in DRG neurons from C57BKS mice cultured in 

hyperglycaemic conditions for 1, 2, 4 and 5 days by analysing calcium responses induced by 

the VGSC agonist VTD and the nociceptive markers ATP, AITC and CAP. 

4.3. METHOD 

4.3.1. Glucose concentration and exposure time in in vitro-induced 

hyperglycaemia 

Mouse DRG neurons were cultured with standard DMEM/F-12 (17.5 mM glucose) with 32.5 

mM added glucose (total 50 mM) to induce hyperglycaemic, diabetic conditions. Control 

cultures were supplied with DMEM/F-12 medium containing its standard 17.5 mM glucose 

deemed optimal for neuronal survival 318  and added 32.5 mM mannitol as an osmolarity control 

to the high glucose medium. The hyperglycaemia-inducing glucose concentrations were 

selected on the basis of previous studies which have reported that in vitro glucose 

concentrations in the range from 30 to 45 mM lead to hyperglycaemic stress, oxidative stress, 

ROS elevation and cell injury in DRG neurons - all markers of DN (Table 4.1).  Furthermore, 

45 mM glucose treatment (1.8-fold above control) is similar to the ≥ 1.4-fold increase in blood 

glucose concentration in a person diagnosed as diabetic 503 and within the range of blood 

glucose concentration of diabetic mice 428–431,504 (e.g. db/db mice at 10 WoA have blood glucose 

concentration of ~ 32.7 ± 2.0 mM 504, which keeps increasing as diabetes progresses 

uncontrolled 428). Therefore, a total concentration of 50 mM glucose for the present 

experiments is consistent with other diabetic animal models and human diabetes and should 

ensure a clear-cut hyperglycaemia manifestation. 
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Table  4.1. Studies that used varying concentrations and exposure times of glucose in in vitro 

DRG cultures and the main conclusions reached. 

Team & 

Year 
Type 

Glucose 

concentration 

(mM) 

Glucose 

exposure 

time (h) 

Conclusions 

Russell et 

al. 1999 318 

Embryonic 

rat DRG 
30 – 330 mM 24h- 48h 

Observed concentration-dependent 

neuronal apoptosis and decrease in 

neurite outgrowth at glucose 

concentrations above 50 mM; optimal 

DRG survival and neurite growth require 

25–30 mM basal glucose (optimal 

concentration). 

Russell et 

al. 2002 423 

Primary 

DRG 

neurons 

45 mM 0- 24h 

In vitro as in vivo, variations in 

administered glucose as small as 10 mM 

from basal value (25 mM) induce neuronal 

injury. 

Singh et al. 

2013 349 

E4 

Sprague-

Dawley rat 

DRG 

45 mM 

60 mM 
4h-24h 

Short-term exposure of DRG neurons to 

high glucose concentrations enhance the 

VGSC activity and were attenuated via 

ROS-dependent mechanisms. 

Leinninger 

et al. 2006 
501 

E15 

Sprague-

Dawley rat 

embryos 

45 mM 3-6h 

High glucose promotes convergence of 

Drp1-mediated mitochondrial fission with 

pro-apoptotic proteins, resulting in 

mitochondrial injury and apoptosis. 

Vincent et 

al. 2005 500 

E15 

Sprague-

Dawley 

rats 

45 mM 0-24h 

There were nearly identical levels of DRG 

neuron death at the endpoint with a 2h 

glucose exposure compared with 

prolonged hyperglycaemia for the whole 6 

or 24h time course of the experiment. 

Programmed cell death starts as soon as 

2h. 

 

After isolation and culturing, neurons were left to adjust for 24 hours before adding glucose or 

mannitol as opposed to introducing hyperglycaemia during the first cell flooding. This was to 

ensure that both groups had an equal opportunity to acclimatise to being in culture before the 

introduction of the potentially injurious effects of high glucose. After the addition of high 

glucose, culture was maintained for up to 5 days. Calcium imaging experiments took place at 

days 1, 2, 4 and 5 in high glucose. Therefore, total days in culture are equal to [days after 

adding glucose] + 1, e.g., day 1 of experiments is equal to 1 day in high glucose conditions 

and 2 days in culture overall (Figure 4.1).  
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4.3.2. Calcium imaging 

DRG neurons were loaded with Fura-2 and responses recorded to nociceptive agonists: 

capsaicin (CAP, 200 nM), allyl isothiocyanate (AITC, 100 µM) and α,β-methylene ATP (ATP, 1 

µM) as well as VGSC potentiator veratridine (VTD, 30 µM). Standard calcium imaging protocol 

was followed as outlined in Chapter 2: Materials & Methods, section 2.2.2., page 68 .  

4.4. RESULTS 

4.4.1. The number of available neurons for imaging experiments declines 

with time in culture 

When selecting neurons for Ca2+ imaging experiments, firstly regions of interest (ROI) are 

specified around each neuron from which fluorescence intensity will be recorded. These are 

selected based on the neuron’s health (e.g., “shiny” membrane, absence of granulation, 

consistent round shape), quality and positioning relative to other neurons on the coverslip. 

After 48h in culture, neurite outgrowth and replication of non-neuronal cells begin 505. This 

creates overcrowded networks of overlapping neuronal processes and non-neuronal cells that 

obstruct the neurons in culture from being easily identified and selected for Ca2+ imaging in a 

ROI. We compared the cell yield per mouse per time point (day 1, 2, 4 and 5) in order to 

determine whether the number of available neurons for imaging experiments is affected with 

time. A neuron was defined as “available” if it was easily distinguishable, not overlapping with 

other culture components and hence the fluorescence it would emit would have been 

unobstructed. The total number of neurons for each day decreased as time in culture 

increased (table 4.2). Indeed, when comparing the number of available neurons per mouse for 

each time point, there was a significant decrease in the quantity of available cells for each 

Figure 4.1. A schematic of the experimental protocol used in the current experiments. After 24h of post-
dissociation (Day 1) acclimatisation, DRG neurons were added either glucose or mannitol (Day 2). Calcium 
imaging experiments took place In days 3, 4, 6 and 7 in culture which correspond to days 1, 2, 4 and 5 in high 
glucose conditions, respectively. 
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consecutive day compared to day 1, for both the control and high glucose groups (figure 4.2). 

The number of cells imaged for each condition was 1,871 for CTRL and 1,888 for the 50 mM 

group. By day 5, there was a reduction of 4.2- and 4.7-fold for CTRL and 50 mM group, 

respectively, compared to day 1 (CTRL: from 191.6 ± 20 in d1 to 46 ± 3.8 neurons in d5; 

50mM: from 194 ± 17.9 in d1 to 40.7 ± 11 neurons in d5, p < 0.001). There was no significant 

difference in the number of neurons available between the two conditions for each day. These 

results demonstrated a consistent decrease in the number of neurons available for Ca2+ 

imaging experiments the longer the culture was maintained. 

4.4.2. Time in culture, but not in vitro-induced hyperglycaemia, affects 

responses to nociceptive agonists  

Diabetes has been shown to sensitise nociceptors in DRG neuronal populations from animal 

models of DN as well as in in vitro-induced high glucose conditions 506–509. Therefore, three 

well-established nociceptive agonists were applied: α,β-methylene ATP (ATP), allyl 

isothiocyanate (AITC) and capsaicin (CAP), to see whether in vitro hyperglycaemic conditions 

would lead to the sensitisation of corresponding nociceptive receptor channels and the 

nociceptive subpopulations they mark. Agonists were applied consecutively as opposed to 

Table  4.2. The total number of neurons decreases the longer the culture is maintained. The total 
number of neurons was recorded for each day of culture (1, 2, 4 and 5) and compared between control 
(CTRL) and high glucose-treated (50 mM) neurons. The number of mice (n) is shown in columns next to 
the cell count. 

Figure 4.2. The availability of neurons for Ca2+ imaging declines the longer the culture is maintained. 
Each bar represents the average number of neurons available per mouse for the respective timepoint, 
derived by dividing total cells of each time point by the number of mice (n) they were derived from in 
Table 4.2.  D1, CTRL = 191.6 ± 20.1; 50mM = 194 ± 17.8; D2, CTRL = 128 ± 8.1, 50mM = 132.4 ± 13.1; D4, 
CTRL = 67.5 ± 28, 50mM = 67 ± 28; D5, CTRL = 46 ± 3.8, 50mM = 40.1 ± 11.1; * = significance compared 
to D1 CTRL, *p<0.05, **p<0.01, ***p<0.001; & = significance compared to D1 50mM, &p<0.05, 
&&p<0.01, &&&p<0.001. One-way ANOVA with multiple comparisons 
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added together. In the control group of neurons, responses to AITC in days 4 and 5 were 

significantly lower than day 1 by 2.5- and 2-fold, respectively (decrease from D1 65 ± 3% to 

D4 25.6 ± 7.7% and D5 32.3 ± 1.9%). The percentage of AITC(+) neurons between conditions 

within each day were not significantly different. Thus, the percentage of AITC(+) control 

neurons decreased significantly with time in culture (Figure 4.3 B). In the high glucose group, 

all days of measurements (2, 4 and 5) showed significantly lower response rates to AITC than 

day 1 by 1.4-, 2.2- and 2.7-fold, respectively (decrease from D1 64.8 ± 1.9% to D2 48.1 ± 4.1%, 

D4 30.2 ± 0.7% and D5 24 ± 5.2%) (Figure 4.3 B). The percentage of ATP(+) (Figure 4.3 A) 

and CAP(+) (Figure 4.3 C) neurons was comparable between conditions as well as overtime 

within each condition. Collectively, these results indicate steadily decreasing response rates 

to AITC in cultured DRG neurons with time, irrespective of extracellular glucose levels. 

Figure 4.3. Responses of DRG neurons under control and hyperglycaemic conditions to nociceptive 
agonists.  
A) no significant difference in the responses to ATP between conditions as well as overtime within each 
condition. CTRL: D1=24.1±2.9%, D =22.4±4.8%, D4 = 11.1±1.7%, D5 = 15.65±9.7%; 50mM, D1 = 20±2.7%, 
D2 = 16.5±2%, D4=13.8±1%, D5=17.4±5%; B) The percentage of AITC(+) neurons was significantly 
decreasing with each day spend in culture compared to day 1 (D1) in both the control and hyperglycaemic 
cultures. CTRL: D1 = 65 ±  3%, D2 = 55.1 ± 3.2%, D4 = 25.6 ± 7.7%, D5 = 32.2 ± 1.9%; 50mM, D1 = 64.8 ± 
1.9%, D2 = 48.1 ± 4.1%, D4 = 30.2 ± 0.7%, D5 = 24 ± 5.2%; C) no significant difference in the responses to 
ATP between conditions as well as overtime within each condition. CTRL: D1 = 23.9 ±  4.4%, D2 = 34.1 ± 
5.1%, D4 = 38.8 ± 7.5%, D5 = 37.9 ± 3.1%; 50mM, D1 = 23 ± 3.2%, D2 = 31.1 ± 4.3%, D4 = 43 ± 13.5%, D5 = 
32 ± 2%. * = significance compared to D1 CTRL, *p<0.05, **p<0.01, ***p<0.001; & = significance compared 
to D1 50mM, &p<0.05, &&p<0.01, &&&p<0.001. Where significance is not denoted, the difference is not 
significant. One-way ANOVA with multiple comparisons. Mean±SEM. CTRL=control (open bars); 50mM = 
hyperglycaemic culture (blue bars); D# = day#. ATP=α,β-methylene ATP, AITC=allyl isothiocyanate, 
CAP=capsaicin. On the right handside of each, intracellular calcium signal trace following stimulation with 
the respective agonist, averaged from all responsive neurons (24) from one experiment. Black – average 
trace from one experiment; grey – showing the SEM for each second of the recorded trace; black arrows 
indicate the time point of respective drug application. 
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4.4.3. Time in culture leads to subtle changes in VGSC activity, affected 

by in vitro induced hyperglycaemia 

High glucose concentrations have been reported to cause excitability changes in DRG neurons 

contributing to (P)DN 349. We hypothesised that these changes are likely to involve 

modifications in VGSC activity and thus, will be detected using the VTD-based Ca2+ imaging 

assay. First, we looked at the percentage of VTD-irresponsive neurons – the percentage of 

VTD(-) neurons remained similar from day 1 to day 5 in culture in both the control and 

hyperglycaemic cultures (Figure 4.4 A). The percentage of VTD(-) neurons was also 

comparable between the CTRL and hyperglycaemic groups for each day, with non-significant 

differences. This suggests that neither hyperglycaemic conditions in this model nor time spent 

in culture influence overall VGSC-induced neuronal excitability.  

Next, we classified the VTD(+) neurons into the four VTD-response profiles, in order to detect 

excitability changes within neuronal subpopulations. VTD-response profile rates overtime 

showed no significant differences between days within the CTRL and 50mM groups as well as 

between the CTRL and 50mM groups for each day (Figure 4.4 B,C,D,E).  

 

 

Figure 4.4. Responses to VTD by DRG neurons cultured for 1 to 5 days in high glucose or standard 
conditions. Neither time spent in culture not high glucose levels influenced the responses to VTD in 
cultured DRG neurons.  
A) Percentage of VTD(-) neurons, CTRL: D1 = 27.5 ±  1.4%, D2 = 28 ± 2.1%, D4 = 26.9 ± 4%, D5 = 26.1 
± 6%; 50mM, D1 = 32.1 ± 1.9%, D2 = 22.7 ± 3.6%, D4 = 35.8 ± 10.5%, D5 = 30.1 ± 4.7%; B) Percentage 
of VTD(+) neurons of the SD profile, CTRL: D1 = 20.1 ± 2.8%, D2 = 24.2 ± 3.5%, D4 = 28.5 ± 2.9%, D5 = 
29.7 ± 6.6%; 50mM, D1 = 18.2 ± 2.7%, D2 = 24.8 ± 2.2%, D4 = 22.2 ± 9.4%, D5 = 29 ± 4.2%; C) 
Percentage of VTD(+) neurons of the OS profile, CTRL: D1 = 38.6 ± 2.4%, D2 = 34.2 ± 2.8%, D4 = 40.1 
± 1.6%, D5 = 30.9 ± 5.3%; 50mM, D1 = 35.4 ± 2.3%, D2 = 39.9 ± 3.6%, D4 = 30.1 ± 2.8%, D5 = 29.9 ± 
4.1%; D) Percentage of VTD(+) neurons of the ID profile, CTRL: D1 = 7.4 ± 1.2%, D2 = 6.8 ± 1.4%, D4 = 
4.7 ± 0.5%, D5 = 8.2 ± 3.2%; 50mM, D1 = 7.8 ± 1.1%, D2 = 5.8 ± 1%, D4 = 8.3 ± 2%, D5 = 9 ± 3.3%; E) 
Percentage of VTD(+) neurons of the RD profile, CTRL: D1 = 3.7 ± 0.4%, D2 = 5.6 ± 1.4%, D4 = 0 ± 0%, 
D5 = 4.8 ± 1.1%; 50mM, D1 = 5 ± 1.1%, D2 = 5.6 ± 0.6%, D4 = 2.9 ± 0.3%, D5 = 1.2 ± 1.2%; Where 
significance is not denoted, the difference is not significant. One-way ANOVA with multiple 
comparisons. Mean ± SEM. CTRL = control (open bars); 50mM = hyperglycaemic culture (filled bars);F) 
Intracellular calcium signal trace following stimulation with VTD shaping the responses SD (left) and 
OS (right), averaged from all SD- or OS-profiled neurons (12 and 19, respectively) from one 
experiment.; Black – average trace from one experiment; grey – showing the SEM for each second of 
the recorded trace; black arrows indicate the time point of respective drug application. 
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Further analysis was performed of the average amplitude, time to peak and area under the curve 

(AUC) of the VTD responses for each of the four profiles (Figure 4.5). Significantly smaller 

amplitudes by 1.7-fold were observed in the OS profile in day 5 compared to day 1 of the control 

(decrease from d1 0.47 ± 0.06 to d5 0.27 ± 0.06, p < 0.05) but not the high glucose population 

(Figure 4.5. D). Significant amplitude reduction by 2-fold was also evident in the RD profile between 

control day 1 and control day 5 neurons (decrease from d1 0.39 ± 0.03 to d5 0.2 ± 0.02, p < 0.05) 

(Figure 4.5. J). Similar amplitude trends were evident in the SD and ID profiles, albeit non-

significant (Figure 4.5. A,G). These shifts indicate a possible time-in-culture-dependent effect on 

the Ca2+ signal amplitude in untreated cells. A significantly shorter onset to peak in the OS profile 

was also observed in day 4 high glucose neurons compared to same day control cells (d4 CTRL = 

113.3 ± 29.3 s; d4 50mM = 42.2 ± 9.7 s, p < 0.05), although the sample size (n=2) is too small for 

concrete conclusions (Figure 4.5. E). These observations could point towards an effect increasing 

time in culture exercises on VGSC activation-induced Ca2+ signal strength in nociceptors that is 

attenuated by the presence of high glucose levels.  

Taken together, these results indicate no effect of high glucose conditions on the response rates 

of cultured DRG neurons to nociceptive agonists and the VGSC agonist VTD. However, VTD-

response amplitude changes with time in culture were noticed only in the untreated population of 

neurons, suggesting an effect high glucose conditions on signal amplitudes of nociceptors. 

Furthermore, time in culture might influence the response rates to some nociceptive agonists 

(AITC).  

Figure 4.5. Analysis of the effect time in culture and hyperglycaemic conditions have on VTD-response 
parameters. The amplitudes of neurons responding to VTD with the OS and RD profile were significantly smaller 
on the 5th day in culture in control neurons compared to day 1. A) SD amplitude. CTRL: D1 = 0.39 ± 0.05%, D2 =  
0.37 ± 0.03%, D4 =  0.29 ± 0.18%, D5 = 0.29 ± 0.05%; 50 mM: D1 = 0.44 ± 0.05%, D2 = 0.4 ± 0.04%, D4 = 0.34 ± 
0.08%, D5 = 0.27 ± 0.04%; B) SD onset time to peak. CTRL: D1 = 100.5 ± 9.12%, D2 = 72 ± 13.42%, D4 = 84.8 ± 1%, 
D5 = 93.28 ± 20.36%; 50 mM: D1 = 94.54 ± 18.42%, D2 = 88.08 ± 18.78%, D4 = 74.5 ± 13.1%, D5 = 67 ± 17.23%; 
C) SD AUC. CTRL: D1 = 152.8 ± 35.29%, D2 = 147.4 ± 17.93%, D4 = 86 ± 65.4%, D5 = 108.8 ± 14.73%; 50 mM, D1 = 
152.1 ± 19.79%, D2 = 149.2 ± 13.42%, D4 = 112.5 ± 23.55%, D5 = 92.38 ± 20.71%; D) OS amplitude. CTRL: D1 = 
0.47 ±  0.05, D2 = 0.43 ± 0.02, D4 = 0.34 ± 0.07, D5 = 0.28 ± 0.06; 50mM, D1 = 0.42 ± 0.05, D2 = 0.41 ± 0.01, D4 = 
0.35 ± 0.04%, D5 = 0.33 ± 0.04%; E) OS onset time to peak. CTRL: D1 = 74.78 ± 7.16%, D2 = 74.44 ± 6.28%, D4 = 
113.3 ± 29.25%, D5 = 76.58 ± 8.07%; 50 mM: D1 = 74.96 ± 10.92%. D2 = 79.4 ± 11.8%, D4 = 42.15 ± 9.65%, D5 = 
88.33 ± 5.42%; F) OS AUC. CTRL: D1 = 92 ± 15.94%, D2 = 98.64 ± 12.71%, D4 = 66.35 ± 33.85%, D5 = 63.88 ± 
17.07%; 50 mM: D1 = 81.88 ± 16.03%, D2 = 155 ± 48.06%, D4 = 79.85 ± 15.45%, D5 = 81.53 ± 19.05%; G) ID 
amplitude. CTRL: D1 = 0.44 ± 0.04%, D2 = 0.49 ± 0.07%, D4 = 0.28 ± 0.04%, D5 = 0.36 ± 0.04%; 50 mM, CTRL: D1 
= 0.45 ± 0.08%, D2 = 0.3 ± 0.03%, D4 = 0.34 ± 0.13%, D5 = 0.31 ± 0.03%; H) ID onset time to peak. CTRL: D1 = 
110.7 ± 14.01%, D2 = 98.62 ± 15.14%, D4 = 141.2 ± 55.85%, D5 = 92.4 ± 12.81%; 50 mM: D1 = 112.7 ± 10.32%, D2 
= 114.7 ± 24.73%, D4 = 116.1 ± 9.7%, D5 = 97.3 ± 14.24%; I) ID AUC. CTRL: D1 = 66.16 ± 11.99%, D2 = 81.58 ± 
16.68%, D4 = 13.45 ± 0.95%, D5 = 45.65 ± 10.64%; 50 mM: D1 = 73.46 ± 11.53%, D2 = 61.76 ± 5.87%, D4 = 38.65 
± 10.65%, D5 = 48.1 ± 4.92%; J) RD amplitude. CTRL: D1 = 0.39 ±  0.03, D2 = 0.32 ± 0.05, D4 = no RD neurons 
recorded, D5 = 0.2 ± 0.02; 50mM, D1 = 0.47 ± 0.08, D2 = 0.32 ± 0.02, D4 = 0.19 ± 0.15, D5 = 0.19. K) RD onset time 
to peak. CTRL: D1 = 148.7 ± 8.49%, D2 = 157 ± 27.32%, D4 = no RD neurons recorded, D5 =  158.7 ± 38.49%; 50 
mM: D1 = 147.4 ± 18.58%, D2 = 166.3 ± 13.52%, D4 = 180.8 ± 82.25%, D5 = 123.3 ± 0%; L) RD AUC. CTRL: D1 =  
47.72 ± 8.51%, D2 = 45.98 ± 12.31%, D4 = no RD neurons recorded, D5 = 20.83 ± 4.73%; 50 mM: D1 = 46.3 ± 
7.79%, D2 = 49.74 ± 8.64%, D4 = 22.55 ± 17.85%, D5 = 36.1 ± 0%.* = significance compared to D1 CTRL, *p<0.05. 
Where significance is not denoted, the difference is not significant. One-way ANOVA with multiple comparisons. 
Mean ± SEM. CTRL = control (open bars); 50mM = hyperglycaemic culture (filled bars); D# = day #. 
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4.5. DISCUSSION 

In this chapter, I outlined physiological experiments with DRG neurons under in vitro 

hyperglycaemic conditions. Cells cultured in a high glucose environment over 1, 2, 4 or 5 days 

showed no significant changes in their excitability, nociceptor sensitivity or VTD-induced Ca2+ 

response parameters compared to control. However,  a decrease in the response rate to AITC 

was noted in both treated and untreated neurons as time in culture increased. Furthermore, 

we observed decreasing amplitude of the Ca2+ signal in response to VTD with time in culture 

in control but not in hyperglycaemic neurons, indicating possible extended effect of high 

glucose conditions on VGSC excitability. 

In vitro hyperglycaemia has been routinely used to investigate changes in excitability of DRG, 

however predominantly only for short-term exposure. Previous research employing short-term 

in vitro hyperglycaemia has found that high glucose levels cause an increase in TRPV1 

expression and currents in DRG neurons 506,510  as well as changes in VGSCs, including 

increased TTX-R current density 424,502 and increased Nav1.7 expression 351. Based on them, 

we expected that by inducing hyperglycaemia in vitro for short (1-2 days) and long-term (4-5 

days) we will be able to detect changes in the VGSC and nociceptors excitability by Ca2+ 

imaging responses to different agonists. Here, in vitro induced hyperglycaemia did not 

produce the expected effects on DRG neurons excitability. However, there were differences 

in several values which were all associated with the time neurons had spent in culture. These 

findings can be summarised in the following: 

• Decrease in the response rate to AITC in both high glucose-treated and control 

populations (Figure 4.3) 

• Decrease in the VTD-induced Ca2+ response amplitudes of the OS and RD profiles in 

the control population, but not the high-glucose population of cells (Figure 4.5 D, J) 

 

These observations are informative of possible changes in neuronal electrophysiology after 

maintaining neurons in culture for up to 6 days, with or without altered extracellular glucose 

conditions. On the other hand, these findings might be a product of the specifics of the 

particular protocol for culture conditions used (discussed in more detail in Chapter 6). 

Neuronal dissociation and axotomy during the culturing process is injurious to neurons and 

has been well-documented to cause hyperexcitability in small DRG neurons via reducing AP 

threshold and increasing the AP duration and firing frequency 511–513. Furthermore, the 

electrophysiological properties of acutely dissociated neurons are different from neurons 

cultured for 1+ days, with VGSC (such as Nav1.8) and VGCC expression and current density 
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decreasing with time 102,511,514. The gradual decrease in neuronal excitability with time spent in 

culture could indicate neurons ‘settling’ and ‘healing’ after their excitability was increased 

immediately after dissociation due to its injurious nature 515. Here, the decreases in VTD-

response amplitude in nociceptors (OS) (Figure 4.5 D) were focused in the control population, 

whereas the high glucose group of neurons was not affected. The lack of significant decrease 

in nociceptive excitability in the hyperglycaemic population suggests that the high glucose 

environment could be preventing DRG neurons from bringing excitability down to normal 

physiological levels and thus “healing”. Therefore, hyperglycaemia might render restoring 

normal neuronal physiology post-injury slower and more difficult. In an in vivo setting, wound 

healing has been well-documented to be delayed in diabetic rodents 516–518 and in diabetes 

patients 519 and so it is a possibility that a similar delay may occur also to neurons healing from 

damage during diabetes. The slower decrease of neuronal hyperexcitability post-dissociation 

might translate into prolonged pain sensation post-injury caused by diabetes. Currently, no 

clinical studies have explored this idea specifically, however DN patients are known to present 

with exaggerated pain responses to harmless or mild painful stimuli (allodynia and 

hyperalgesia, respectively) 234,356,520, which could support the concept of persistent and/or 

exaggerated wound-induced pain in diabetes patients. In any event, these results can serve 

as a caution for the interpretation of Ca2+ imaging data using ion channel agonists when 

recording responses from primary DRG neuron cultures over time. 

Increased activity of nociceptive ion channels, such as TRPV1, TRPA1 and P2X3 has also been 

reported in DRG neurons during diabetes 58,343,521–523. Here, short- and long-term exposure to 

high glucose conditions did not induce any significant changes in the response rates to the 

nociceptive agonists to these three receptors. Our results directly contradict two studies from 

2018 reporting increased responses to CAP in DRG neurons cultured under high glucose 

conditions 506,510. Lam et al. 506 report a significantly increased response rate to CAP in adult 

mouse DRG neurons cultured in high glucose conditions (25mM) glucose for 7 days. A 

possible reason for this discrepancy might be their choice of control and hyperglycaemic 

glucose concentrations of 5mM and 25mM, respectively. These are not comparable to the 

concentrations used in the experiments from this chapter, or the ones used in the majority of 

in vitro hyperglycaemia studies on DRG neurons 318,423,500. An extracellular glucose 

concentration of 25mM can be considered within the optimal range for neuronal survival in 

culture, whereas a concentration of 5mM has been demonstrated to lead to neuronal apoptosis 

and cellular damage 423. Therefore, the higher rates of CAP responses observed by Lam et al. 

are likely to represent the normal neuronal function, whereas the lower values seen in the 

control population are likely to be indicative of a hypoglycemic effect on CAP responses. Yet, 
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in direct contrast to the observations by Lam et al., others, employing the same experimental 

glucose conditions and exposure time as them, have observed a decrease in CAP-induced 

Ca2+ influx in mature DRG neurons 524. The second study reporting increased CAP-evoked Ca2+ 

responses is by Bestall et al. (2018) who cultured DRG from naïve adult male rats in 50 mM 

glucose for 24 hours. Their study is the closest to ours in experimental design, yet we report 

conflicting results. A possible reason for the inconsistency could be due to a species difference 

(rat vs mouse) and/or the fact that relatively specific DRG were isolated (T1-L5), whereas, here, 

all DRG were isolated for experiments indiscriminately.  Finally, another in vitro study using 

50B11 immortalised rat DRG neuronal cell line reported an increase in responses to AITC 

when neurons were cultured in 66 mM glucose 525. Albeit overlapping with observations in vivo 

343,344, these in vitro results directly contradict ours, perhaps because of the different in vitro 

culture models utilised. An immortalised DRG neuronal cell line would not possess the 

complete arsenal of ion channel, receptors, exchangers and proteins contributing to shaping 

the net response to an agonist and therefore might not necessarily generate a complete 

picture of the final response. Therefore, the cell line may not be representative of the same 

populations of neurons with decreasing sensitivity to AITC.  It is, thus, yet to be confirmed 

whether prolonged exposure to hyperglycaemic conditions in vitro is a suitable method for 

determining functional changes in nociceptive ion channels. 

Neither short- nor long-term exposure to a hyperglycaemic extracellular environment affected 

the VGSC excitability of DRG neurons in my experiments. A literature search found very little 

on the question of prolonged exposure of DRG neurons to high levels of glucose in vitro (40-

60 mM)) and the effect on VGSCs. A number of prior studies have noted an increase in the 

VGSC activity through increased levels of Nav1.7 expression 351 or increased density of TTX-

R currents 349,502 of DRG neurons cultured in up to 60mM glucose for 18-24h. This corresponds 

to day 1 in my experiments, where no significant increase in VTD(+) cells and thus, in contrast 

to previous studies, no increase in overall VGSC activity was observed. There are a couple of 

possible explanations why these data differ. First, the studies reporting increase in VGSC 

activity derived their neurons from rats as opposed to the mouse neurons used here, which 

might account for potential interspecies differences in VGSC excitability during 

hyperglycaemia. However, to the best of our knowledge, there are currently no studies in 

literature comparing VGSC expression levels and activity between mice and rats and the VTD-

Ca2+ imaging assay has yet to be validated in another rodent species. Second, only one study 

used DRG neurons from a mature rodent 502 like ours, however, only small (20-25 µm) L4-L5 

DRG were selected for experiments. This, combined with the species difference (rat vs mouse 

here) and the very low control glucose conditions (5.5 mM) could contribute to the differences 
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in results reported by them and here. All other studies used embryonic DRG neuron cultures 

as opposed to the adult DRG neurons used here. Embryonic DRG neurons require 

supplementation with NGF to support neuronal survival in culture. NGF is known to alter 

electrophysiological properties of cultured DRG neurons 526–530. It has also been widely 

implicated as a key driver of hyperalgesia during DN, with its expression levels significantly 

increased in DRG 456,531. NGF is also demonstrated to sensitise TRPV1 and increase DRG 

responses to capsaicin 532,533. Although the mechanisms of elevated NGF expression during 

diabetes are still unclear, it has been postulated that a hyperglycaemic environment is a trigger 

for increased NGF expression as a protective mechanism of tissues 456. Therefore, the 

combination of supplemented NGF and high glucose to embryonic neurons in culture might 

produce a stronger hyperexcitability phenotype represented by increased VGSC activity 

compared to mature DRG neurons cultured in high glucose in the absence of NGF. Due to its 

role in DN hyperalgesia, addition of NGF to a hyperglycaemic culture could in fact be a sensible 

approach to recreating a physiological DN environment in a DRG culture. This and additional 

culture modifications to replicate DN more closely are discussed in more detail in Chapter 6 

along with further limitations of the current experiment and future directions. 

Taken together, the results from the in vitro-induced hyperglycaemia experiments are 

somewhat informative of events in the DRG culture when maintained for a prolonged time. 

Furthermore, our observation point to subtle changes hyperglycaemia might cause in VGSC 

excitability over extended exposure by maintaining neuronal excitability elevated after 

dissociation. Nevertheless, these experiments did not produce the expected, clear-cut overall 

increase in neuronal excitability after short- and long-term exposure to high glucose, seen in 

similar studies. The most likely reason for this outcome is the limited DN environment that we 

can be recreated in a dish which might not suffice to produce a phenotype strong enough to 

be detected by Ca2+ imaging with VTD and nociceptive agonists in our protocol. The 

multifactorial complexity of DN, especially T2DN, would require an individual extensive study 

of its own to extrapolate its components and optimise an in vitro T2DN model. Due to project 

time restrictions, it was decided to circumvent this lengthy process and opt for proceeding 

with investigating changes in excitability of DRG neurons derived from an in vivo model of 

diabetic neuropathy.  

 

 

 



 

 

100 CHAPTER 4:  ASSESSING EXCITABILITY CHANGES IN DRG NEURONS UNDER IN VITRO HYPERGLYCEMIC 
CONDITIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

101 
CHAPTER 5: ASSESSING THE EXCITABILITY CHANGES IN DRG NEURONS FROM DIABETIC DB/DB MICE 

CHAPTER 5: ASSESSING THE EXCITABILITY CHANGES 

IN DRG NEURONS FROM DIABETIC DB/DB MICE  

5.1. INTRODUCTION 

The last chapter described experiments with DRG neurons under in vitro-induced high glucose 

conditions. Using an in vitro hyperglycaemia model to detect DRG excitability changes serves 

as a more ethical alternative to deriving neurons from diabetic animals. In addition, it reduces 

potential variability between controls and treated cells as both are isolated from the same 

animal as opposed to deriving diabetic cells from a diabetic animal and control cells from a 

healthy one. It also allows for the precise control of external glucose concentration, which 

varies in mouse models of diabetes and DN 419,534. However, inducing hyperglycaemia in vitro 

represents only one, albeit main key drivers of DN pathogenesis– the high glucose levels. 

Furthermore, it is closer to reflecting T1DN rather than T2DN, as T2DN is driven by additional 

mechanisms such as aspects of the metabolic syndrome (insulin resistance, dyslipidaemia), 

together with hyperglycaemia. The many subcomponents and high complexity of T2DN 

pathogenesis renders it extremely difficult to model in vitro with high accuracy 419. Therefore, 

to ensure all components of T2DN were in place, the second hyperglycaemia model I used 

was the T2D C57BL/Ksdb/db mouse model. 

The C57BL/Ksdb/db (just db/db hereon) mouse is an excellent T2D model and, based on the 

established DN model requirements 448, is recognised as one of the most robust existing 

models of DN 453. Its diabetic phenotype was first discovered in 1966 by Hummel et al. 535. It 

wasn’t until 1995, however, that its genetic mutation was identified 536,537. The db/db mouse is 

a homozygous mutant knockout for the leptin receptor. Leptin is a hormone secreted by 

adipose cells and enterocytes in the small intestine after food intake. It controls appetite by 

binding to its receptor in the hypothalamus and inhibiting hunger and feeding behaviour 

(hence often referred to as the ‘satiety hormone’)446,536. The db/db mouse carries a deletion 

mutation in the gene encoding the leptin receptor, resulting in leptin signalling deficiency 536,538. 

Eliminating leptin signalling leads to the mice exhibiting uncontrolled overeating behaviour 

(hyperphagia) simultaneous with decreased activity and thus energy expenditure. Blood 

insulin levels begin elevating at 10-14 days of age (DoA) followed by elevation in fasting blood 

glucose levels and dyslipidaemia (Figure 5.1). At 3-4 weeks of age (WoA), obesity and insulin 

resistance have developed and the phenotype culminates into T2D for the rest of the mouse’s 

lifespan (Figure 5.2) 539.  The severity of the genetically induced disease causes continuous 

uncontrolled rise in blood glucose levels 428 and, at later stages, critical depletion of the insulin-
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secreting pancreatic β-cells 540. This, in combination with the secondary derangements 

brought about by obesity, it leads to death by 10 months of age 541.  

Around 8 WoA, db/db mice develop DN 431. Robertson & Sima were the first to describe the 

electrophysiological and morphometric changes in the nerves of db/db mice and were the first 

to provide a detailed characterisation of the DN phenotype in this model 428,542. Their research 

revealed the key observation that DN progression in the db/db mouse mimics closely the 

phases in human patients. 

The early phase of DN in db/db mice develops at 8–12 WoA and is called ‘metabolic’ (MET). It 

was characterised by severe motor (MNCV) and milder sensory (SNCV) nerve conduction 

velocity impairments as well as mild axonal atrophy in both myelinated and unmyelinated fibres 

(Sima and Robertson, 1978; Norido et al., 1984). The MET phase was later further defined 

behaviourally with the presence of mechanical allodynia, hyperalgesia 456,461,507,543–546 and heat 

hypersensitivity 547,548, albeit the literature is highly controversial (see figure 5.1, Metabolic 

phase). In addition, a MET phase characteristic is that functional and structural deficiencies 

are generally reversible with metabolic interventions (usually, through glycaemic control with 

insulin administration) 429.  

Figure 5.1. An excerpt from a paper by Guest and Rahmoune (2018) characterising the diabetic phenotype of 
a 10-week-old db/db mouse and comparing parameters to a wild type mouse. Source: 504. 
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Figure 5.2. A comprehensive summary of the  available molecular, physiological, behavioural and 
transciptomic research on the db/db mouse model with observations categorised according to diabetic 
neuropathy phases observed by Sima and Robertson (1978). MA, mechanical allodynia; IENF, intraepidermal 
nerve fiber; NCV, nerve conduction velocity; MNCV, motor nerve conduction velocity; SNCV, sensory nerve 

conduction velocity; ↑ denotes an increase, while ↓ denotes a decrease Figure adapted to the db/db mouse 

from 
https://www.sciencedirect.com/science/article/abs/pii/S0095454305701305?via%3Dihub  

MET Phenotype 

↓NCV (incl. MNCV and SNCV) 459,549,640 

Mild axonal atrophy 549 

↓IENF density 459 

Damaged myelin sheath and reduced myelin 

thickness 459 

MA  (↑ overall sensitivity to mechanical stimuli) 
60,461,507,544–546,583 

↓mechanical sensitivity459,460 

≠ thermal sensitivity 460,546 

↑thermal sensitivity 547,569 

↓thermal sensitivity 459 

↑NGF, ↑CGRP, ↑SP  expression 583 

↑ expression of pro-inflammatory 

molecules 544,552,559 

↑ expression of Nav1.6 in large-diameter 

neurons 60 

↑ levels of mTRPA1 507 

 

NEU Phenotype 

↓NCV (incl. MNCV and SNCV) 430,453,551,553,555,665 

Severe axonal atrophy and dystrophy/  

loss of large fibres 550,553,640,666 

Severe ↓IENF density 453,551,553 

Damaged myelin sheath and reduced myelin 

thickness 667 

MA  (↑ overall sensitivity to mechanical 

stimuli) 60,556 

↓mechanical sensitivity 553,555,583 

↑thermal sensitivity 556 

↓thermal sensitivity 430,453,551,553,554 

↑ expression of pro-inflammatory molecules 
430,551,558,559  

↑% of Nav1.6(+) neurons 60 

 

https://www.sciencedirect.com/science/article/abs/pii/S0095454305701305?via%3Dihub
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The late, ‘neuronal’ phase (NEU) in db/db mice develops from ~20 WoA and continues until 

the end of the mouse’s life. It is characterised in the db/db mouse with an exacerbated MET 

phase phenotype of axonopathy and impaired MNCV and SNCV alongside with marked 

decrease of IENF density as well as loss of myelin sheathing 428,429,453,549–553. Most studies agree 

on the presence of structural nerve damage but still report contradicting behavioural findings 

(see figure 5.1, Neuronal phase). For example, 20+ week old db/db mice have been reported 

to present with increased mechanical and thermal sensory thresholds and hypoalgesia by 

some 337,430,453,458,552–555, however others have observed increased sensitivity to mechanical 

stimuli and mechanical allodynia 544,556.  

Additionally, several microarray and RNA-Seq analyses have shown an upregulation of 

immune and inflammatory molecules and pathways 430,552,557–559 in the peripheral nerves of 

db/db mice to begin as early as 8 WoA and continue throughout the rest of the DN progression 

contributing towards peripheral nerve fibre degeneration, as well as pain behaviour in the early 

stages of DN 456. Finally, studies investigating the function, molecular mechanisms and 

expression levels of ion channels during DN in this mouse model are scarce. One study 

reported sustained increased expression levels of the large diameter neurons-associated 

VGSC Nav1.6 in DRG of db/db mice from 8 WoA up until 20 WoA (end of experimental period) 

which was correlated to mechanical allodynia in these mice 60. More recently, Wang et al. 

(2018) reported no increase in total protein expression of either TRPA1 or TRPV1. However, 

membrane-associated TRPA1, but not TRPV1, expression was increased and activity 

upregulated in db/db mice (6-7 WoA), further linked to impaired AMPK signalling and 

mechanical allodynia 507. 

The abundance of behavioural, morphometric, and transcriptomic studies as well as the limited 

molecular research, has highlighted some key phenomena likely to underlie observed T2DN-

associated behaviours in the db/db mouse, however there is no conclusive evidence on the 

pathophysiology of the pain during the progression of DN in T2D. Furthermore, the T1D STZ 

rodent is by far the most widely studied DN model, generating an imbalance in research 

between animal studies and clinical trials, which are largely targeting the T2D population of 

patients 241,418.  This demands more intensive research into the mechanisms driving T2DN. 

Finally, to the best of our knowledge, there are no physiological studies investigating the 

functional changes in db/db mouse DRG neurons during the MET and NEU phases of DN. 

Based on the above rationale, and on the established robustness of its DN phenotype, the T2D 

db/db mouse was selected as a model of DN for these experiments.  
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5.2. AIMS 

To assess the excitability changes and changes in size distribution in specific subpopulations 

of DRG neurons from C57BKSdb/db (db/db) mice, isolated at two different time points: 1) early 

(metabolic, MET) and 2) late (neuronal, NEU) stages of diabetic neuropathy by analysing the 

Ca2+ signals generated in response to the VGSC agonist VTD and nociceptive agonists ATP, 

AITC and CAP. 

To compare excitability changes between the MET and NEU phases of DN in this mouse model 

in order to track the progression of diabetic neuropathy and its effect on DRG physiology. 

5.3. METHODS 

5.3.1. DRG neuron culture from db/db mice 

DRG neurons were collected from db/db (BKS.Cg-+Leprdb/+Leprdb/OlaHsd) mice at 8 -12 

weeks of age (WoA) (metabolic phase) and 22 - 28 WoA (neuronal phase) as well as from lean, 

DN phase-matched control mice (BKS.Cg-+Leprdb/-Leprdb/OlaHsd). Neurons were cultured 

in standard DMEM medium and left to incubate for at least 24 hours before experiments. 

5.3.2. Calcium imaging 

DRG neurons were loaded with Fura-2 and responses recorded to nociceptive agonists: 

capsaicin (CAP, 200 nM), allyl isothiocyanate (AITC, 100 µM) and α,β-methylene ATP (ATP, 1 

µM) as well as VGSC potentiator veratridine (VTD, 30 µM). Standard calcium imaging protocol 

was followed as outlined in Chapter 2: Materials & Methods section 2.2.2., page 68.  

5.4. RESULTS 

5.4.1. The number of DRG neurons derived from db/db mice for each 

phase and condition 

For the following experiments, 24 mice in total were sacrificed (6 MET CTRL, 6 NEU CTRL, 6 

MET db/db and 6 NEU db/db). The total number of neurons imaged for each group is 

presented in table 5.1. The number of neurons used for these experiments from N5 and N6 in 

each phase and condition is generally smaller due to a diversion of some of the cells from 

these cultures to another set of experiments (not described in this thesis). Overall, the total 

numbers of neurons imaged for each phase of each condition were comparable. 
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5.4.2. The overall cell size distribution is shifted towards smaller cells in 

DRG from db/db mice 

The soma diameters of the DRG neurons from db/db and phase-matched lean control mice 

used for the experiments presented here were measured. Neurons from each condition group 

(db/db or lean) and phase (MET or NEU) were pooled for soma diameter analysis. Frequency 

distribution analysis of DRG sizes for each DN phase was performed and plotted as a histogram 

(Figure 5.3). In the MET phase, the median cell diameter was slightly smaller in db/db than in 

lean mice (lean = 21 µm, 2473 cells; db/db = 20.6 µm, 2716 cells) (Figure 5.3A). In the NEU 

phase, the mean cell diameter of DRG from db/db mice was still smaller than lean (lean = 21.4 

µm, 2562 cells; db/db = 19.8 µm, 2562 cells), however here, the distribution of the diabetic 

DRG is shifted to the left (Figure 5.3B).  

Table 5.1 Number of neurons for each mouse (N) of each phase (MET or NEU) for each condition (CTRL 
or db/db). Each cell with cell count represents one mouse’s total cell yield. Twenty-four mice were used in 
total. MET = metabolic phase; NEU = Neuronal phase; CTRL = control (lean);  
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Neurons were classified according to their soma diameter into three categories: small- (<20 

um), medium- (20-30 um) and large (>30 um), consistent with diameter range groupings 

commonly used in other studies 560,561 (Figure 5.4). During the MET phase, the percentage of 

large cells in db/db mice was significantly lower than that of lean cells by ~35%  (lean = 13.1 

± 1.5%, db/db = 8.5 ± 0.7%; p<0.05, n = 6 each) (Figure 5.4 A,B). The vast majority of neurons 

in both lean and db/db mice were small and medium-sized, however, there was no significant 

difference in the percentage of small and medium-sized cells between lean and diabetic mice 

in the MET phase. In the NEU phase,  52% of db/db DRG neurons fell in the small-sized group, 

compared to 37.5% of lean neurons (n = 6 mice from each group, p < 0.05) (Figure 5.4 C,D). 

The increased number of small-diameter cells in diabetic mice was matched by the 

significantly fewer medium-sized cells compared to lean (38% vs 49%, respectively, n = 6 

each, p < 0.05). There was no significant difference observed in the large-sized DRG group. 

Collectively, the results from both DN phases point to a shift in the size distribution of diabetic 

cells towards smaller-diameter and away from medium and large-diameter neurons that starts 

during early and progresses through late DN stages.  

Figure 5.3. Frequency distribution of neuronal diameter sizes from control (lean) and diabetic (db/db) mice 
for each phase of diabetic neuropathy: early, metabolic and late, neuronal. A) Metabolic, lean = 21 µm, 2473 
cells; db/db = 20.6 µm, 2716 cells; B) Neuronal, lean = 21.4 µm, 2562 cells; db/db = 19.8 µm, 2562 cells.  Dotted 
vertical lines represent median for their respective population. Plotted as number of cells observed in each 2 
µm bin of diameter. Lean = grey bars, db/db = light blue bars; darker blue bars represent lean and db/db overlap.  

 A B 
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Figure 5.4. Distribution of neuronal soma diameter in three size groups: small (< 20 µm), medium (20 - 
30 µm) and large (> 30 µm).  A) Percentage of small, medium and large neurons from lean and db/db 
mice derived during the metabolic phase. Lean: small = 41.2 ± 2.9%, medium = 45.7 ± 1.8%, large = 13.1 
± 1.5%; Db/db: small = 43.6 ± 2.8, medium = 48 ± 2.8%, large = 8.5 ± 0.7%; B) Pie chart representation of 
the mean percentage of small, medium and large neurons  from lean and db/db mice of the metabolic 
phase; C) Percentage of small, medium and large neurons from lean and db/db mice derived during the 
neuronal phase. Lean: small = 37.5 ± 3.7%, medium = 48.9 ± 2.5%, large = 13.6 ± 1.4%; Db/db: small = 52 
± 4.8, medium = 38.1 ± 3.3%, large = 9.9 ± 1.6%; D) Pie chart representation of the mean percentage of 
small, medium and large neurons  from lean and db/db mice of the neuronal phase. *p<0.05; Two-tailed 
paired Student’s t-test, shown mean ± SEM. 

 A B 

C D 
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5.4.3. Persistent increase in the sensitivity to capsaicin in small DRG 

neurons from db/db mice 

We wanted to assess DRG neurons from db/db mice for excitability changes in the context of 

nociception. To this end, we applied ATP, AITC and CAP. Each cell can respond to only one 

of the agonists, to a combination of any two (ATP/CAP+, ATP/AITC+ or AITC/CAP+), to all 

three together (all(+)) or none of them (agonist (-), or non-nociceptors). To identify if any of 

these specific populations is affected, we dissected the responses to the three nociceptive 

agonists into all 8 possible response combinations. Diabetes caused an increase of 1.8-fold in 

the number of neurons responding to all three agonists simultaneously (all(+)) (from 3.3 ± 0.7% 

to 6.1 ± 0.9%, p < 0.05) in the MET phase (Figure 5.5A). The increase in this subpopulation, 

together with the non-significant increases in the rest of the CAP(+) subpopulations (Figure 

5.5A), lead to a 1.2-fold increase in the percentage of total CAP(+) DRG neurons in db/db mice 

(Figure 5.5C) (from 28.4 ± 1.8% to 34.2 ± 1.7%, p < 0.05). The total percentages of agonist(-), 

ATP(+) and AITC(+) db/db cells remained comparable to control levels (Figure 5.5C). The 

results from this phase indicate an early on increase in the sensitivity of DRG neurons to 

capsaicin, mainly occurring in one subpopulation of neurons (all(+)). 

Likewise, in the NEU phase, the percentage of all(+) cells remained significantly higher than 

lean controls (1.9-fold, from 1.4 ± 0.2% to 2.7 ± 0.5%, p < 0.05) (Figure 5.5B). Here, the 

percentage of neurons responding to CAP-only as well as ATP and CAP together (ATP/CAP) 

was significantly higher in db/db mice by 1.5-fold (from 10.2 ± 0.9%  to 15.3 ± 1.1%, p < 0.005) 

and 4-fold (from 0.4 ± 0.1% to 1.6% ± 0.4%, p < 0.05), respectively (Figure 5.5B). These rises 

were at the expense of cells responsive to AITC-only, the percentage of which decreased by 

1.3-fold (from 35.7 ± 1.1% to 24.8 ± 1.5% p < 0.01). The changes in response rates within each 

of these individual nociceptive subpopulations brought about a significant 1.3-fold increase in 

the total response rates to CAP (from 31.3 ± 1.2% to 40.7 ± 2.5% p < 0.001) and 1.1-fold 

decrease in total percentage of AITC(+) DRG neurons (from 57.1 ± 0.6%% to 51.3 ± 2.1%, p 

< 0.05) (Figure 5.5D). These findings point to an ever persisting and increasing sensitivity of 

DRG neurons to CAP in the NEU phase, which seems to have spread to affect more 

subpopulations of neurons, coupled with a decreased sensitivity to AITC.  

To further characterise the additional CAP(+) neurons in each phase, the size distribution of 

CAP(+) DRG neurons from db/db and lean mice was analysed. In the MET phase, the medians 

of lean and db/db neuron sizes were 18.8 µm (n = 661 cells) and 19.6 µm (n = 928 cells), 

respectively (Figure 5.6 A). The additional CAP(+) neurons in the db/db mice fell in the 14-26 

µm diameter range (figure 5.6 A). 
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Figure 5.5. The percentage of lean and db/db-derived neurons responsive to nociceptive agonists in each phase of diabetic 
neuropathy. A, B) Percentage of neurons responsive to each nociceptive agonist individually (ATP, AITC, CAP), in combination 
with another (ATP/AITC, ATP/CAP, AITC/CAP), all together (all(+)) or none (agonist(-)) during the metabolic and neuronal 
phases. A) Metabolic, lean: ATP = 1.5 ± 0.4%, AITC = 36.1 ± 1.4%, CAP = 7.9 ± 1%, ATP/AITC = 5.3 ± 1.3%, ATP/CAP = 1.7 ± 1%, 
AITC/CAP = 14.5 ± 1.6%, all(+) = 3.3 ± 0.7%, agonist(-) = 29.8 ± 1.9%; Metabolic, db/db: ATP =1.2 ± 0.4%, AITC =  30.3 ± 2.9%, CAP 
= 10.5 ± 0.8%, ATP/AITC = 5.4 ± 0.6%, ATP/CAP = 1.3 ± 0.3%, AITC/CAP = 16.4 ± 0.9%, all(+) = 6.1 ± 0.9%, agonist(-) = 29 ± 2%. B) 
Neuronal, lean: ATP = 0.9 ± 0.2%, AITC = 35.7 ± 1.1%, CAP = 10.2 ± 0.9%, ATP/AITC = 3 ± 0.5%, ATP/CAP = 0.4 ± 0.1%, AITC/CAP = 
18.9 ± 1.3%, all(+) = 1.4 ± 0.2%, agonist(-) = 29.5 ± 1.3%; Neuronal, db/db: ATP = 1.1 ± 0.2%, AITC =  24.8 ± 1.5%, CAP = 15.3 ± 
1.1%, ATP/AITC = 2.8 ± 0.6 %, ATP/CAP = 1.6 ± 0.3%, AITC/CAP = 21 ± 2.3%, all(+) = 2.7 ± 0.5%, agonist(-) = 30.8 ± 1.8%. Two-tailed 
paired Student’s t-test. C,  D) Total percentage of neurons which responded to each of the three agonists irrespective of the 
response’s nature (e.g., CAP here is the total responses when CAP, ATP/CAP, AITC/CAP and all(+) from Figure 5.5A or C are 
added together). A) Metabolic, lean: Agonist(-) = 30.7 ± 2.1%, ATP = 13.6 ± 3.7%, AITC = 57.3 ± 2.7%, CAP = 28.4 ± 1.7%; Metabolic, 
db/db: Agonist(-) = 30.1 ± 1.5, ATP = 15.4 ± 1.3%, AITC = 56 ± 2.4%, CAP = 34.2 ± 1.7%; D) Neuronal, lean: Agonist(-) = 30.8 ± 1.2%, 
ATP = 6 ± 0.8%, AITC = 57.1 ± 0.6%, CAP = 31.3 ± 1.2%; Neuronal, db/db: Agonist(-) = 31.2 ± 1.8%, ATP = 8.4 ± 1%, AITC = 51.3 ± 
2.1%, CAP = 40.7 ± 2.5%. Multiple comparisons following a One-way ANOVA. *p<0.05, **p<0.005, ***p<0.001. Shown mean ± 
SEM; E) Intracellular calcium signal trace following stimulation with the respective agonist, averaged from all responsive neurons 
(20) of one experiment. Black – average trace from one experiment; grey – showing the SEM for each second of the recorded trace; 
black arrows indicate the approximate time point of respective drug application. 
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Sizes were also grouped into small medium and large. In the MET phase, there was a 

significant increase in the number of CAP(+) db/db neurons of medium-diameter (1.4-fold 

increase, control med 9.8 ± 1.2%; db/db med 13.9 ± 1%, p < 0.05) (Figure 5.6. C). There was 

no significant difference between db/db and control neurons of small- and large-diameter in 

this phase. This suggests that the increased sensitivity to CAP in db/db mice during the MET 

phase is contributed to by medium-diameter neurons but not the small or large cells. Of note, 

the increase in all(+) neurons in the db/db mice during the MET phase (Figure 5.5 A) was also 

contributed for by a population of medium-diameter neurons, where a significant 3.5-fold 

increase in the percentage of medium-sized all(+) neurons was noted (from 0.9 ± 0.3% to 3.1 

Figure 5.6. Size distribution of CAP(+) neurons from control (lean) and diabetic (db/db) mice for each 
phase of diabetic neuropathy: early, metabolic and late, neuronal. A) Metabolic: lean = 18.8µm, 661 cells; 
db/db = 19.6 µm, 2716 cells; B) Neuronal:  lean = 19.9 µm, 789 cells; db/db = 18.8 µm, 1053  cells.  Dotted 
vertical lines represent median for their respective population. Plotted as number of cells observed in each 
2 µm bin of diameter. Lean = grey bars, db/db = light blue bars; darker blue bars represent lean and db/db 
overlap. C) Percentage of small, medium and large CAP(+) neurons from lean and db/db mice derived during 
the metabolic phase. Lean: small =  15.7 ± 1.2%, medium = 9.8 ± 1.2%, large = 0.6 ± 0.1%; Db/db: small = 
17.3 ± 1.5%, medium = 13.9 ± 1%, large = 0.5 ± 0.1%; D) Percentage of small, medium and large CAP(+) 
neurons from lean and db/db mice derived during the neuronal phase. Lean: small =  14.3 ± 1.1%, medium 
= 14.2 ± 2.6%, large = 0.8 ± 1.2%; Db/db: small = 22.9 ± 2.6%, medium = 13.9 ± 1.2%, large = 0.8 ± 0.2%; 
*p<0.05. ***p<0.001; Two-tailed paired Student’s t-test, shown mean ± SEM. 
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±  0.4%, p < 0.001) (Figure 5.7 A), further confirming the all(+) population of neurons as the 

main contributor to the total increase in CAP sensitivity in MET phase db/db mice .   

In the NEU phase, the medians of lean and db/db neuron sizes were 19.9 um (n = 1053 cells)  

and 18.8 µm (n = 789 cells), respectively, with the additional CAP(+) cells from db/db mice 

falling in the 8-20 µm diameter range (Figure 5.6 B). This translated to a significant 1.6-fold 

increase in the number of CAP(+) small-sized db/db neurons in the NEU phase (from 14.3 ± 

1.1% to 22.9 ± 2.6%, p < 0.001) (Figure 5.6 D).  

The drop in AITC(+) neurons in the NEU phase (Figure 5.5 B,D) could be correlated to a 

significant 1.8-fold decrease in the percentage of medium-diameter AITC(+) db/db neurons in 

the NEU phase (from 20.1 ± 1.9% to 11.5 ± 2.2%, p < 0.001), suggesting that the neurons 

losing their AITC sensitivity are of medium-diameter (Figure 5.7 B). 

Together, the changes in the size distribution of CAP(+) neurons during DN progression are 

indicating that the increasing sensitivity to CAP in db/db mice is dynamic, migrating from 

medium to smaller-diameter DRG neurons as neuropathy advances. The common medium-

diameter size between the additional all(+) and CAP(+) db/db neurons of the MET phase 

strengthen the role of the all(+) subpopulation of neurons in the overall increased CAP 

sensitivity.  

Figure 5.7. Distribution of neurons responsive to specific all nociceptive agonists in the MET phase 
or AITC-only in the NEU phase in three size groups: small (< 20 µm), medium (20 - 30 µm) and large 
(> 30 µm).  A) Percentage of small, medium and large neurons responsive to ATP, AITC and CAP 
simultaneously (all(+)) from lean and db/db mice derived during the metabolic phase. Lean: small = 
2.1 ± 1.4%, medium = 0.9 ± 0.3%, large = 0%; Db/db: small = 2.6 ± 0.5%, medium = 3.1 ± 0.4%, large 
= 0.03 ± 0.03%; B) Percentage of small, medium and large neurons responsive only to AITC (AITC(+)) 
from lean and db/db mice derived during the neuronal phase. Lean: small = 11.5 ± 1.3%, medium = 
20.9 ± 1.9%, large = 1.3 ± 0.5%; Db/db: small = 10.6 ± 1.4%, medium = 11.5 ± 2.2%, large = 0.9 ± 0.3%;. 
***p<0.001; Two-tailed paired Student’s t-test, shown mean ± SEM. 
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5.4.4. VGSC activity in small DRG nociceptors from db/db mice is 

increased during the course of diabetic neuropathy 

Diabetic conditions have been shown to lead to an upregulation of VGSCs expression and 

activity, especially during early phases of neuropathy 58.  We hypothesised that the VGSC 

excitability will have also changed in the db/db mice DRG neurons. We used the VTD-Ca2+ 

imaging assay to assess the VGSC excitability in nociceptors (OS VTD-response profile) and 

non-nociceptors (SD VTD-response profile). In the MET phase, responses to VTD showed an 

increase in excitability (Figure 5.8 A): the number VTD-irresponsive (VTD(-)) neurons 

decreased by 1.14-fold (from 36.6 ± 0.7% to 31.5 ± 2.1%, p < 0.005). This decrease was 

matched by the increase in the percentage of VTD(+) cells of the OS profile by 1.16-fold (from 

34.2 ± 1.1% to 39.6 ± 1.1%, p < 0.005). The response rates of the SD, ID and RD VTD-response 

profiles were not significantly different from lean mice (Figure 5.8 A). 

 

 

Figure 5.8. Responses to VTD by DRG neurons derived from lean or db/db mice during the metabolic or neuronal phase 
of diabetic neuropathy. A) Metabolic phase, lean: VTD(-) = 36.6 ± 0.7%, SD = 21 ± 1.1%, OS = 34.2 ± 1.1%, ID = 4.6 ± 0.3%, 
RD = 3.6 ± 0.4%; db/db, VTD(-) = 31.5 ± 2.1%, SD = 20.5 ± 1.4%, OS = 39.6 ± 1.1%, ID = 4.4 ± 0.5%, RD = 3.9 ± 0.2%; B) 
Neuronal phase, lean: VTD(-) =  39.9 ± 2.2%, SD = 22.4 ± 1.7%, OS = 30.8 ± 1.9%, ID = 4.1 ± 0.4%, RD = 2.6 ± 0.6%; db/db, 
VTD(-) = 36 ± 1.3%, SD = 21 ± 1.2%, OS = 34.3 ± 0.7%, ID = 5 ± 0.5%, RD = 3.4 ± 0.4%. One-way ANOVA with multiple 
comparisons. **p<0.005. Mean ± SEM. Open bars = lean (control); filled bars = db/db. C) Intracellular calcium signal trace 
following stimulation with VTD shaping the responses SD (left) and OS (right), averaged from all SD- or OS-profiled neurons 
(12 and 19, respectively) from one experiment.; Black – average trace from one experiment; grey – showing the SEM for 
each second of the recorded trace; black arrows indicate the approximate time point of respective drug application. 
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In contrast, in the NEU phase, there was no significant difference in the total response rate to 

VTD nor within any of the VTD-response profiles, however, albeit non-significant, a trend of 

increased OS responses in db/db neurons persisted (Figure 5.8 B). Of note, there were no 

significant differences in the amplitude, time to peak or AUC of calcium responses between 

db/db mice and controls (data not shown). 

Analysis of the cell size distribution within the MET phase OS population (Figure 5.9 A,C) 

showed that there was no change in size distribution between lean and db/db neurons, but 

there were more OS db/db neurons in the 14-28 µm (small to medium-diameter) size range. 

This suggests that the additional OS neurons of the MET phase in db/db mice (Figure 5.8 A) 

are not focused in one neuronal size specifically but are likely to be mostly medium in diameter. 

Figure 5.9. Size distribution of neurons with the OS VTD-response profile from control (lean) and 
diabetic (db/db) mice for each phase of diabetic neuropathy: early, metabolic (MET) and late, 
neuronal (NEU). A) Metabolic: lean = 20µm, 825 cells; db/db = 20.1 µm, 1048 cells; B) Neuronal:  lean 
= 20.1 µm, 793 cells; db/db = 19.3 µm, 894  cells.  Dotted vertical lines represent median for their 
respective population. Plotted as number of cells observed in each 2 µm bin of diameter. Lean = grey 
bars, db/db = light red bars; darker red bars represent lean and db/db overlap. C) Percentage of small, 
medium and large OS neurons from lean and db/db mice derived during the metabolic phase. Lean: 
small =  15.8 ± 1.8%, medium = 13.9 ± 0.8%, large = 2.1 ± 0.3%; Db/db: small = 16.9 ± 2%, medium = 
18.1 ± 1.3%, large = 1 ± 0.3%; D) Percentage of small, medium and large OS neurons from lean and 
db/db mice derived during the neuronal phase. Lean: small =  13.5 ± 1.7%, medium = 13.6 ± 1.2%, large 
= 1.7 ± 0.3%; Db/db: small = 18.3 ± 1.7%, medium = 12.5 ± 1.6%, large = 1.2 ± 0.3%; *p<0.05; Two-
tailed paired Student’s t-test, shown mean ± SEM. 
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In the NEU phase, we saw an increase in the percentage of OS cells, however It was not 

significant (Figure 5.8 B). Therefore, we looked into the changes in the distribution and 

percentage of OS cells within the different sizes of db/db neurons to see whether the OS 

increase was focused within a particular neuronal subpopulation (Figure 5.9 B,D). There was 

a leftward shift in the distribution of db/db OS neurons, with more OS profiles in the 8-20 µm 

(small-diameter) diameter range (Figure 5.9 B). The additional OS neurons of the NEU phase 

in db/db mice were of small diameter – the percentage of small neurons in db/db mice was 

significantly higher than that of lean mice by 1.4-fold (lean = 13.5 ± 1.5%, db/db = 18.3 ± 1.7%, 

p < 0.05), while there was no significant difference between lean and db/db neurons in the 

small and large diameter groups (Figure 5.9 D). These insights suggest that the increase in 

OS neurons begins in the MET phase in small and, mostly, medium-diameter neurons and 

persists during the NEU phase, focusing into small-diameter neurons of db/db mice.  

We wanted to find out whether the additional OS cells were also CAP(+). To do this, we 

performed isolated analysis of the OS population for the response rates to the ATP, AITC and 

CAP in the 8 possible combinations (Figure 5.10). In the MET phase, there was a significant 

increase of 2.2-fold in the percentage of all(+) OS neurons in db/db compared to lean mice 

(from 6.2 ± 1.3% to 13.4 ± 2.3%, p < 0.05) (Figure 5.10 A). This showed that the additional OS 

cells of the db/db mice in the MET phase were of the ‘all(+)’ population, identified to be also 

Figure 5.10. The percentage of OS neurons from lean and db/db responsive to nociceptive agonists – 
alone or in combinations, in each phase of diabetic neuropathy. A) Responses of OS neurons to agonists 
during the metabolic phase, Lean: ATP = 2.4 ± 0.8%, AITC = 40.2 ± 3.2%, CAP = 4.7 ± 0.7%, ATP/AITC = 12.2 
± 2.9%, ATP/CAP = 3 ± 1%, AITC/CAP = 11.9 ± 1.3%, all(+) = 6.2 ± 1.3%, agonist(-) = 19.4 ± 2.4%; db/db: ATP 
= 2.2 ± 0.7%, AITC = 32.3 ± 2.9%, CAP = 5.7 ± 0.5%, ATP/AITC = 12.1 ± 1.8%, ATP/CAP = 2.5 ± 0.7, AITC/CAP 
=  11.6 ± 1.3%, all(+) = 13.4 ± 2.3%, agonist(-) = 20.3 ± 2%; B) Responses of OS neurons to agonists during 
the neuronal phase, Lean: ATP = 1.7 ± 0.6%, AITC = 48.4 ± 2.1%, CAP = 4.4 ± 2.5%, ATP/AITC = 7.7 ± 1.4, 
ATP/CAP = 0.5 ± 0.2%, AITC/CAP = 13.8 ± 1.2%, all(+) = 3.3 ± 0.5%, agonist(-) = 20.3 ± 2.7%; db/db: ATP = 
2 ± 0.5%, AITC = 32.6 ± 2.7%, CAP = 11.2 ± 1.9%, ATP/CAP = 3 ± 0.7%, ATP/AITC = 7.2 ± 1.5%,  AITC/CAP = 
20.6 ± 1.8%, all(+) = 6 ± 1.5%, agonist(-) = 17.4 ± 2%. Two-tailed paired Student’s t-test. *p<0.05, 
**p<0.005, ***p<0.001. Shown mean ± SEM 
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the main contributor to the overall increase in CAP sensitivity in that phase (Figure 5.5 A,C). 

The same analysis performed on the OS population of neurons in the NEU phase revealed that 

there was an increase in the percentage of OS neurons by responding to CAP alone by 2.5-

fold (from 4.4 ± 2.5% to 11.2 ± 1.9%, p = 0.0559) or with another agonist (ATP/CAP, 5.9-fold, 

from 0.5 ± 0.2% to 3 ± 0.7%, p < 0.005; AITC/CAP, 1.5-fold, from 13.8 ± 1.2% to 20.6 ± 1.8%, 

p < 0.05) (Figure 5.10 B), identified to be amongst the main contributing populations to the 

overall CAP increase noted in the NEU phase in db/db neurons (Figure 5.5 B,D). These 

analyses suggest it is likely that the OS subpopulations of neurons affected by increased VGSC 

excitability could be the same subpopulations affected by increased sensitivity to CAP in each 

phase of DN. 

Taken together, these results suggest that DN leads to an early-phase overall increase in 

VGSC excitability mainly in medium-diameter DRG neurons responsive to multiple nociceptive 

agonists. The concentration of this increase in the OS population confirms that these changes 

are occurring in nociceptors. As DN progresses into the NEU phase, the increased excitability 

of OS neurons shifts to affect small-diameter nociceptors. The subpopulations affected by 

increased VGSC activity overlap with those affected by increased CAP activity, suggesting 

that the same subpopulation of neurons could be affected during the course of DN.    

5.5. DISCUSSION 

The experiments described in this chapter aimed to examine the excitability changes occurring 

during the course of DN in DRG neurons isolated from the well-established T2DN db/db mouse 

model. A significant loss of large neurons was observed in the early, MET phase of DN, 

whereas there was a leftward shift in the size distribution in the late, NEU phase of DN. There 

were functional changes taking place in the DRG neurons of db/db mice during the MET and 

NEU stages of DN. DRG neurons from db/db mice showed increased sensitivity to CAP as well 

as increased VGSC excitability in nociceptors in both DN phases. The neurons with increased 

CAP sensitivity in the MET phase were mainly of medium diameter, expressing the receptors 

for ATP, AITC and CAP simultaneously (P2X3, TRPA1 and TRPV1, respectively), whereas those 

in the NEU phase were small in diameter, expressing TRPV1 alone or with another receptor. 

Parallel to the that, in the NEU phase there was also a significant decrease in the sensitivity to 

AITC, contributed by medium-diameter neurons. Collectively, these results point to distinct 

populations of neurons being affected by changes in excitability in each of the two DN phases: 

mostly medium-diameter nociceptors, expressing P2X3, TRPA1 and TRPV1 in the MET phase; 

and small-diameter TRPV1-expressing nociceptors as well as medium-diameter TRPA1-

expressing neurons in the NEU phase. To our knowledge, we are the first to perform such 
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physiological functional and size characterisation affected DRG subpopulations during DN in 

the db/db mouse . 

5.5.1. Cell size distribution in db/db mice DRG through the course of 

diabetic neuropathy 

In the current study, we show that during the MET phase, there was a significant decrease in 

the number of large-diameter cells, where their percentage in db/db mice was 1.4-fold lower 

than lean. In comparison, during the NEU phase of DN, diabetic mice had a significantly 

increased percentage of small DRG neurons (<20 µm) by nearly 1.4-fold (Figure 5.3 B). At the 

same time, the percentage of medium-diameter (20–30 µm) DRG neurons was reduced as 

well as that of large-diameter neurons (>30 µm), albeit not significantly. These observations 

indicate a potential loss of medium-to-large-diameter neurons during late stages of DN, that 

could possibly have its beginnings in the MET phase.  

Our observations are consistent with those made in the NEU phase by Shi et al. (2013) who 

found 33% neuronal loss in sections of lumbar 5 (L5) DRG of 32/33-week-old db/db mice but 

no change in 5/6-week-old mice. The lost neurons were of medium-to-large diameter (20–40 

µm, according to their size groups). This loss is correlated with hypoalgesia and hyposensitivity 

demonstrated by behavioural experiments 555. Here, we observe a total of 16% decrease in 

neurons from db/db mice of the same size range (~11% medium + ~5% large). The 

discrepancy in the percentages noted by us and Shi et al. could be attributed to the difference 

between the DRGs selected for analysis by them (L5 only) and us (all DRGs along the spinal 

column length). To our knowledge, theirs is the only study that investigated the changes in the 

distribution of DRG neuron sizes in the db/db mouse and in a T2DN model in general. As 

summarised in Figure 5.2, most studies on the db/db mouse model have focused on 

investigating the distal (axonal) as opposed to the more central (DRG) changes induced by 

DN. Therefore, as far as the same mouse model of DN is concerned, the size distribution 

results observed here agree to some extent with those observed in vivo. 

The little information available on diabetes-induced morphological abnormalities at the level of 

DRG from other animal models of DN is controversial. In STZ rat models, a significant reduction 

in the perikaryal volume (size of the neuronal cell body) is noted in the DRG of STZ rats but 

only at 1 month of induced diabetes 562. However, later, Zochodne et al. (2001) report no 

change in size distribution at 2 months but a significant reduction in the perikaryal volume after 

12 months of induced diabetes 563, leading to a shift of the size distribution to the left, 

reminiscent of the one observed in the NEU phase here. In addition, apoptosis is confirmed to 

occur in DRG neurons of STZ rats at 1, 3 and 12 months of age, with large neurons being 



 

 

118 
CHAPTER 5: ASSESSING THE EXCITABILITY CHANGES IN DRG NEURONS FROM DIABETIC DB/DB MICE 

particularly vulnerable 564. On the other hand, several studies confirm that loss of DRG or 

reduced perikaryal volume is evident only in 12-13-month-old rats with chronic DN and not in 

the early stages 563,565–567. Finally, in 10-month-old BB/Wor diabetic rats, a severe loss of small- 

but not large-diameter DRG has been noted 318, contradicting all previous and our own 

research results. Nevertheless, the vast majority of reports from the T1DN rat models outlined 

above are in overall agreement with the study in db/db mice and our results. It appears that 

most agree on some form of DRG neuronal loss to occur in late DN stages and predominantly 

in large-diameter neurons, similar to our observations. The general coherence amongst 

observations from T1DN and T2DN models suggests that the mechanism underlying DRG loss, 

at least in the late stages, is common and therefore likely to be driven by a shared mechanism 

underlying T1D and T2D such as hyperglycaemia. However, it remains unclear whether DRG 

loss preferably affects specific subpopulations and whether it is due to cell soma 

shrinkage563,565,566, dying-back process 567 or apoptosis 318,564, as each has been reported to 

occur.  

5.5.2. Diabetic neuropathy leads to increasing sensitivity to capsaicin in 

db/db mouse DRG neurons 

Capsaicin is an agonist for the noxious heat-gated TRPV1 channel, a non-selective cation 

channel and a marker of peptidergic nociceptive neurons 132. Physiologically, TRPV1 plays a 

key role in the generation of thermal hyperalgesia under inflammatory or tissue injury 

conditions 148,149,568. During the MET phase of DN, our results showed an increase in the total 

responses to CAP (Figure 5.5 C) in medium-diameter (20-30 µm) neurons of db/db mice 

(Figure 5.6 A, B) and therefore, a likely sensitisation or increase in expression levels of its 

receptor TRPV1. We showed that this increase was focused within a specific neuronal 

subpopulation expressing P2X3 (ATP receptor), TRPA1 (AITC receptor) and TRPV1 

simultaneously (the ‘all(+)’ subpopulation) (Figure 5.5 A).  

In their comprehensive 2016 study, Li et al. combined transcriptomic, electrophysiological and 

morphological data from mouse DRG neurons and classified them into 16 molecularly distinct 

subtypes, each with particular set of proteins expressed 15. Referencing the known expression 

ion channels of the identified all(+) subpopulation from our results with their categories 

revealed that it is likely the ‘all(+)’ subpopulation is of the C1 cluster – small (<30 µm according 

to their own size classification), mechano-heat-nociceptors, responding to noxious mechanical 

and thermal stimuli. Another cluster expressing P2X3, TRPA1 and TRPV1 together is the C10 

cluster representing the large-diameter (36-42 um) mechanoreceptors 15. However, this 

cluster was dismissed as a possibility since the diameter of the “all(+)” neurons from our 
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experiments did not exceed 29 µm. Behavioural studies in db/db mice confirm the presence 

of mechanical allodynia during the MET phase of DN (week 6-8) 456,507,547,569. Some report 

mechanical allodynia to occur together with thermal hyperalgesia (TH) 547,548, consistent with 

the suggestion of an early stage sensitisation of mechano-heat-nociceptors. Pain of burning 

quality has also been reported to occur in DN patients, often in parallel to mechanical allodynia, 

prickling, itching, tingling and ‘electric’ pain sensation, mainly in the feet and hands 356,570–573. 

These clinical observations agree with the early-phase behavioural data from db/db mice and 

the suggested increased overall TRPV1 activity we report in db/db DRG neurons. 

Alternatively, referencing the all (+) subpopulation with the DRG subtypes defined by Zeisel et 

al. by using their online search tool for gene combinations 

(http://mousebrain.org/genesearch.html ) revealed that the all(+) neurons are most likely a 

subpopulation of non-peptidergic neurons (particularly, the “PSNP6” group). In turn,  Zeisel et 

al. reference their own classification with that of Usoskin’s and the “PSNP6” group 

corresponds to their NP3 group of neurons. Usoskin et al. describe the NP3 cluster as non-

peptidergic, unmyelinated neurons of small-to-medium diameter (~20 µm). Interestingly, they 

strongly suggest that the NP3 DRG neurons are most likely involved in inflammatory itch and 

pruritus (general itching), thus suggestive of an alternative or additional function of the all(+) 

population in our results. Chronic pruritus has been well-documented as a symptom in DN 

patients, reported by 3 – 49% of diabetics 574,575. Albeit not investigated as a behaviour in the 

db/db mouse model of DN, increased scratching behaviour has been reported in STZ rats and 

linked to DN 576,577. Itch-specific neurons have been identified to be unmyelinated C-fibre 

nociceptors expressing the Mas1-related G-protein-coupled receptor A3 (MrgprA3) 578 as well 

as P2X3, TRPA1 and TRPV1 together 14. Albeit not the only itch-contributing neurons, they were 

defined as essential and sufficient for pruriception 578.  The mechanism underlying the pruritus 

phenotype in DN is still not clear, however, mounting evidence shows that pruriception is 

dependent on the recruitment of TRP channels 579. Specifically, pruriception was shown to be 

alleviated and scratching behaviour reduced in mice after pharmacological blockade of TRPA1 

and TRPV1 580. Furthermore, inflammatory mediators, known to be upregulated during DN, 

such as interleukin (IL-) 2, IL-4, IL- 13, IL-31 and NGF 256,552,557, have also been shown to 

sensitise TRPV1 and TRPA1 and contribute to itching and scratching 577,581. This suggests that 

the increased activity of the all(+) subpopulation of db/db neurons in our results could be 

driven by their exposure to diabetes-driven inflammatory mediators in vivo and could translate 

to increase an increase in itch and scratching behaviour related to DN.  

From the metabolic abnormalities in the early, MET phase arises progressive structural 

damage of the nerve fibres – the characteristic feature of the NEU phase 233,234. This leads to 

http://mousebrain.org/genesearch.html
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the well-established damage and reduction of IENF density as well as loss of myelin sheathing 

and slowing of NCV in animal models and patients 258. In contrast to the positive symptoms 

(pain, prickling etc.) characteristic for the MET phase, the accompanying symptoms of the 

NEU phase are generally negative, i.e. decreased sensory function, numbness, impaired touch 

and vibration perception and in some patients, mechanical and thermal hypoalgesia 372,520. It is 

now well-documented that pain is not just a defining feature of  the MET phase and can develop 

at any stage of DN. In fact, the more severe the sensory deficits become, the higher the risk of 

developing neuropathic pain episodes is 237. Moreover, one of the outcomes of IENF damage 

is bursts of spontaneous activity expressed as pain attacks 237,582. Although the sensory deficit 

symptoms of DN have been well-established to originate from structural nerve damage, the 

mechanisms underlying the paradoxical pain during sensory deficits are still poorly 

understood. 

Here, we report a further increase in total CAP responses, as DN progresses into the NEU 

phase in db/db mice (Figure 5.5 D). Compared to the MET phase, in the NEU phase, this total 

increase is contributed to mostly by small-diameter cells  responding to CAP (Figure 5.6 C,D) 

and thus expressing TRPV1 (Figure 5.5 B). This points to the sensitisation to CAP spreading 

to envelop other subpopulations of DRG neurons, likely focusing on small, C-fibre nociceptors. 

Since the affected population in this phase is of small neurons expressing TRPV1, an increased 

activity in these cells could translate to increased thermal pain sensitivity in vivo. 

Virtually all behavioural studies of db/db mice show increased mechanical and/or thermal pain 

thresholds in the NEU phase 430,453,553–557,583, thus contradicting the increase in TRPV1 activity 

observed here. However, it is worth noting that behavioural thermal sensitivity tests in animals 

are performed using assays such as the ‘hot plate’, ‘Von Frey’ and ‘tail-flick’ methods. These 

tests rely on the cutaneous perception of stimuli and the results are, therefore, affected by the 

integrity of the intraepidermal innervation. Thus, an increase in thermal and mechanical 

thresholds is perhaps more indicative of subcutaneous IENF damage rather than any central 

channel alterations. The conflict between db/db behavioural results of decreased thermal 

sensitivity and the increased TRPV1 activity we report could suggest that there is an ongoing 

central sensitisation, upstream of the subepidermal innervation, by stimuli affecting the DRG 

and not the terminal ends, causing pain of different types, degrees and frequency that might 

not be detected via conventional animal behavioural tests.  

In humans with DN, thermal hyperalgesia has been reported in some patients with mild DN 

early in the disease’s course 584, whereas the advanced phases of the disease are more 

characteristic with patients’ reports of increased thermal perception thresholds 356,585. 
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Nevertheless, heat hyperalgesia is still experienced by some DN patients in the advanced DN 

stages 356. Our results could provide a possible explanation for this by suggesting that 

increased TRPV1 sensitisation and/or expression in DRG is responsible for the increased 

responsiveness to CAP observed and thus might contribute to spontaneous heat pain. 

Consistent with our predictions, the most common combination reported in patients is 

numbness coupled with burning pain and prickling 238,356,586, shown by Baron et al. to occur 

together in 26% of tested DN patients, with the next most common sensory profile being 

episodic pain attacks (16%) 356. The increased TRPV1 activity in  DRG we report and the 

decreased sensitivity to mechanical and thermal stimuli reported by behavioural studies in 

db/db mice in the NEU phase confirm that functional changes can keep exacerbating in the 

soma of DRG neurons despite disconnection from the skin and impaired external inputs 

detection. Therefore, a continuous central sensitisation of TRPV1 in small C-fibre nociceptors 

could be a key player in the development of pain, specifically of burning quality, simultaneously  

with IENF damage and functional sensory deficits in DN patients. 

What could lead to the ongoing central sensitisation of TRPV1 in DRG during DN? As 

mentioned, increased levels of inflammatory mediators have been reported in DRG neurons 

during early and late stages of DN and shown to sensitise TRPV1 by activating kinases such 

as PKC 142–144,256,552,557. Protein kinase C activation by the overproduction of glucose metabolites 

(such as DAG) is also one of the main mechanisms underlying DN development (see Chapter 

1, section 1.3.2.2., page 34). Thus, PKC overactivation by different pathways can lead to the 

hypersensitisation of TRPV1 in DRG 143,144. The levels of one inflammatory mediator in particular 

– NGF, have been reported to be increased in the DRG of db/db mice during the MET phase, 

implied to contribute to the early phase painful phenotype, which could be as a result of NGF 

increasing TRPV1 sensitisation and expression levels 340. Furthermore, insulin, which is 

abundant in the early phase of T2DN, has also been implied in increased TRPV1 activity by 

enhancing its translocation to the membrane and lowering its activation threshold, thus 

facilitating its activation by non-painful stimuli 291–293. Therefore, ongoing central sensitisation 

of TRPV1 could be a potential source of the thermal hyperalgesia and/or pruritus during the 

early, MET phase and of the paradoxical  spontaneous pain during sensory deficits in the late, 

NEU phase. 

5.5.3. Diabetic neuropathy leads to a decrease in the sensitivity to AITC in 

the db/db mouse DRG neurons 

Parallel to the increased sensitivity to CAP, in the NEU phase, we also observed a decrease in 

the percentage of total responses to AITC in db/db mice (Figure 5.5 D). This was caused by a 
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significant drop in the percentage of medium-diameter DRG neurons (Figure 5.7 B) responding 

to AITC only (Figure 5.5 B), (expressing TRPA1). The TRPA1 channel is activated by a variety 

of chemicals, cold temperatures and ROS 163,166,169. Its role in painful DN pathogenesis has also 

been well-documented 184,185,587,588. TRPA1 is activated and sensitised during DN by diabetes-

generated endogenous compound, such as methylglyoxal 343,407,589 and conditions, such as 

oxidative stress 345. This sensitisation of TRPA1 is linked to the DN phenotype of mechanical 

allodynia and hypersensitivity. In db/db mice, one group recently demonstrated that AMPK 

activity is impaired in DRG neurons causing an increase in membrane-associated TRPA1 and 

agonist-evoked TRPA1 currents and mechanical allodynia 507. These findings contradict our 

observations of decrease in AITC response rate and hence possible TRPA1 desensitisation 

and/or decreased expression. However, their report on TRPA1 covers the MET phase of DN 

in the db/db mouse and not the NEU phase, where our observations take place. It is, thus, still 

inconclusive what changes occur in the activity of TRPA1 in the advanced DN stages in this 

mouse model. 

The rest of the limited literature covering changes in TRPA1 activity during DN is largely 

focused on the STZ model of T1D and involves considerable controversy. For example, using  

mice with STZ-induced diabetes, Hiyama et al. demonstrated the involvement of TRPA1 in 

cold, but not mechanical, hypersensitivity in the early DN stage (2 weeks after diabetes 

induction). However, in the late stages (8 weeks after diabetes induction), mechanical 

hyposensitivity and loss of IENFs was shown to occur independently of TRPA1, as TRPA1-KO 

STZ mice developed a neuropathic phenotype comparable to WT STZ mice 590. The 

involvement of TRPA1 in early-phase symptoms of mechanical hypersensitivity in STZ rats was 

further confirmed by others in the literature 588,591. In contrast, increased expression levels and 

activity of TRPA1 in the STZ mice was reported at late stages (5 weeks after diabetes 

induction) and correlated to itch and hypoalgesia, as revealed by the attenuated neuropathic 

symptoms in TRPA1-KO mice and after pharmacological blockade of TRPA1 592. Further to 

that, all TRPA1-related findings derived from the STZ-induced diabetes rodents have to be 

interpreted with caution as Andersson et al. demonstrated a direct activation of TRPA1 by STZ 

in vitro and in vivo, where topical administration evoked TRPA1-dependent polymodal 

hyperalgesia and systemic administration produced acute sensory loss 466. Thus, at this time 

the degree and exact mechanisms underlying the involvement of TRPA1 in DN pain and 

sensory deficits at the different disease phases is still largely uncertain. 

With the literature on the subject being scarce, we can only speculate the possible events 

driving the decrease in AITC responses and therefore TRPA1 activity we see here. It is unlikely 

that TRPA1(+) neurons acquire TRPV1 and contribute to increased CAP responses, since the 
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reduction in AITC responses is noted in medium-diameter cells (Figure 5.7 B), whereas the 

increase in CAP is contributed for by small-diameter cells (Figure 5.6 D). Had there been a 

functional transformation of TRPA1(+) to acquire TRPV1 activity, we would have seen an 

increase in medium-diameter CAP(+) cells in the NEU phase as well as small. Therefore, the 

decrease in AITC responses we report in the NEU phase could be attributed to decreased 

TRPA1 activity due to desensitisation, downregulation of TRPA1 expression or an inhibitory 

mechanism triggered by DN, or, alternatively, due to loss of medium-diameter TRPA1(+) 

neurons. Further experiments in the db/db mouse model tracing TRPA1 expression and 

activity throughout the course of DN are required to confirm or refute these theories. 

5.5.4. DRG neurons form db/db mice have increased VGSC activity in 

cells with the OS VTD-response profile 

DN has been well documented to alter VGSC activity and expression in sensory 

neurons350,424,593,594. Here, we report an increase in VGSC excitability in db/db mice during DN 

(Figure 5.8). The increase in excitability was focused within the neuronal population of the OS 

VTD-response profile, previously confirmed to represent nociceptors 499,595. The increase in 

OS neurons was evident during both phases of DN, however, in the MET phase it occurred in 

small and medium nociceptors (Figure 5.9 A,C), whereas in the NEU phase it was focused only 

within small-diameter nociceptors (Figure 5.9 B,D).  

Is it possible to identify the VGSC contributing to the OS increase? DRG neurons express 

several different VGSCs: Nav1.3, Nav1.6 and Nav1.7 (TTX-S), and Nav1.8 and Nav1.9 (TTX-

R). All have been demonstrated to be altered and to contribute to pain during nerve injury and 

neuropathies 31,360,593,596, including DN 351,352,424,597–600. Veratridine preferably binds TTX-S 

channels in their open-state and prevents them from inactivating 492. Due to the broad selective 

nature of VTD for TTX-S VGSC over TTX-R and not for any VGSC isoform in particular, it is 

difficult to correlate the increase in OS-response neurons seen to increased activity in any 

specific VGSC without further supporting experiments. As each neuron expresses a 

‘constellation’ of ion channels, changed expression levels and/or activity of any of them can 

shape the net VTD response and lead to an increase in a particular VTD-response profile.  

Only one paper investigated the expression levels and activity of a VGSC in the db/db mouse 

DRG during DN. In 2012, Ren et al. assessed the expression levels and activity of Nav1.6 in 

the db/db mouse during the progression of DN. Nav1.6 is a TTX-S VGSC, highly expressed in 

large-diameter DRG neurons, predominantly involved in transmitting tactile information 601 but 

also reported to contribute to painful DN in rodent models 58,593. The research group reported 

significant and persistent (from 8 to 20 WoA) increase of Nav1.6 mRNA and protein in the DRG 
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of db/db mice. This upregulation was speculated to have been driven by the increased 

expression of neurotrophins and inflammatory mediators in the DRG during DN. It was also 

correlated with the demonstrated sustained mechanical allodynia in these mice, further 

implicating Nav1.6 involvement in painful DN 60. These conclusions confirmed the increased 

Nav1.6 expression during DN noted by Craner et al. in the STZ rat 593. We have shown that a 

low dose of a Nav1.6 blocker 4.9-TTX leads to a decrease in the percentage of OS DRG 

neurons in WT mice 595 see Chapter 3). It is then a possibility that the VGSC activity increase 

in OS neurons seen in the DRG of db/db mice here is as a result from increased expression 

levels of Nav1.6 in the DRG. However, it remains rather unlikely, given that Nav1.6 is 

predominantly expressed in large-diameter neurons and we only noted an increase in VGSC 

activity in small and medium neurons. Furthermore, the 4.9-TTX blocker led to a decrease in 

the percentage of SD neurons as well, therefore had there been an upregulation of Nav1.6 in 

the DRG of our diabetic mice, we would have expected it to be reflected by an increase in the 

SD profile as well as the OS. It can therefore be assumed that an upregulation of Nav1.6 is 

unlikely to have contributed to increase in the OS-response profile seen. 

The rest of the TTX-S channels in DRG, Nav1.3 and Nav1.7 upon which VTD acts directly, 

have both been implicated in DN and pain 360. Nav1.3 is another TTX-S channel shown to have 

upregulated expression in DRG neurons, triggered by inflammation and nerve damage 

44,45,602,603. It has also been implicated to have a role in nerve injury-related pain 47,105,604,605, 

however experiments with a Nav1.3 null mutant demonstrated that Nav1.3 is neither necessary 

nor sufficient for the development of such pain 606. In STZ-rat models of painful DN with 

confirmed mechanical allodynia, Nav1.3 is reported to have lasting increased expression 

levels, usually accompanied by alteration in other VGSCs as well 352,593,607. Given the conditional 

upregulation of Nav1.3, it is likely that the inflammatory environment in the db/db mouse has 

increased Nav1.3 expression levels in DRG neurons, which translated in an increased VGSC 

activity, as detected by the increase in the OS population. 

In rats with painful DN, Nav1.7 has been shown to have robustly upregulated expression in 

small DRG neurons 58,350,594,608. We have also previously suggested that increases in the OS 

VTD-response profile rates could be indicative of increase in the activity of Nav1.7 channel in 

DRG (595, see Chapter 3). However, it is unlikely that the increase in OS VTD-profile seen in 

the DRG of db/db mice here is indicative of an increase in Nav1.7 activity or expression levels, 

as Nav1.7 is expressed in all DRG neurons (i.e. nociceptors and non-nociceptors). Had there 

been a significant increase in its expression or activity we would have expected to see this 

reflected by all VTD profiles. 
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The literature on the role of Nav1.8 in painful DN is controversial. Nav1.8 cooperates with 

Nav1.7 in DRG neurons, where Nav1.8 is reliant on Nav1.7’s hyperpolarised activation to 

depolarise the membrane sufficiently for Nav1.8’s activation 92,93. Experiments with global 

Nav1.8KO mice show a compensatory increase in Nav1.7 expression 87. Indeed, in diabetic 

animals downregulation of Nav1.8 is accompanied by an increase in Nav1.7 expression 593.  As 

well as downregulated 353, Nav1.8 is reported to be upregulated in diabetic rat DRGs too 594. In 

addition, one study demonstrated that Nav1.8 expression is unchanged in diabetic STZ mice 

but methylglyoxal, a metabolite formed by excessive glucose, causes post-translational gating 

modifications of Nav1.8 which, together with causing slow inactivation of Nav1.7, contribute to 

the painful phenotype of the diabetic mice 342. It could be the case that Nav1.8 activity or 

expression is upregulated in DRG of db/db mice and contributes to increase in OS, 

Alternatively, if Nav1.8 expression is downregulated during DN, Nav1.7 is expected to take 

over and sustain neuronal excitability and OS levels. 

Nav1.9, a TTX-R VGSC, has also been demonstrated to be upregulated in diabetic DRG 

neurons from STZ rats with allodynia, where the increase of Nav1.9 mRNA and protein was 

observed in neurons of all sizes. The increase is greater in large-diameter neurons, whereas 

its expression in control DRG was primarily by small and medium-diameter neurons 593. It is 

therefore unlikely that Nav1.9 solely contributed to an increase in the OS-VTD profile in small 

DRG neurons of db/db.  

From all the information above, it is most likely that more than one VGSCs could have 

contributed to the increased OS responses we saw in db/db mice. Moreover, other classes of 

ion channels, such as VGKC and VGCC, shape the net Ca2+ signal response to VTD and so, 

any expression or functional changes in them can alter the VTD-profiles produced and 

contribute to the increase seen in OS profile. For example, gabapentin, a widely-prescribed 

VGCC blocker  is effective at alleviating painful symptoms in DN patients 374,609. Thus, functional 

and expression levels in VGCC and other channels should be investigated by further functional 

and biochemical assays.  

5.5.5. Diabetic neuropathy leads to excitability changes in specific 

neuronal subpopulations  

A summary of the known properties of the neuronal subpopulations affected and the changes 

observed is presented in Table 5.2 and Figure 5.11. In the MET phase of db/db mice, the net 

effect was an increase in CAP-responsive cells (Figure 5.5 C) and increase in VGSC excitability 

(Figure 5.8). The additional CAP(+) neurons were mostly medium diameter nociceptors 

(Figure 5.6 A,C) expressing TRPV1, TRPA1 and P2X3 together (i.e., of the “all(+)” population)  
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(Figure 5.5 A). In the same phase, the increased VGSC activity was due to increase in the 

percentage of OS neurons which were also small- to medium diameter nociceptors (Figure 

5.9 A,C) of the all(+) subpopulation (Figure 5.10 A). Thus, there is a considerable overlap 

between the properties of the subpopulations affected by increased CAP and VGSC sensitivity 

in the MET phase in db/db mice.  

In the NEU phase, the net effect was an increased number of CAP-responsive cells (Figure 

5.5D). Here, the additional CAP(+) cells were focused within a subpopulation of small-diameter 

nociceptors (Figure 5.6 B,D) expressing TRPV1 (Figure 5.5 B). Also, the increased VGSC 

activity was attributed to additional OS-profile cells also of small-diameter (Figure 5.9 B,D) and 

also expressing TRPV1 (Figure 5.10 B). Therefore, the subpopulations affected during the NEU 

phase in db/db mice also overlap in their properties. 

The features of the increased VGSC excitability subpopulations largely match those of the cell 

subpopulations identified with hypersensitisation to CAP in each phase. This could indicate a 

possible correlation between the increased TRPV1 sensitivity and VGSC excitability. I.e., the 

same neuronal subpopulations are affected by these two phenomena in DN in the db/db mice: 

predominantly medium-diameter nociceptors expressing P2X3, TRPA1 and TRPV1 together in 

the MET phase; and small-diameter nociceptors expressing TRPV1 in the NEU phase. In 

addition, the drop in AITC-responsive neurons in db/db mice during the NEU phase was 

attributed to a subpopulation of medium-diameter neurons of the OS profile expressing 

TRPA1. Since their parameters differ from those of the neuronal subpopulation affected by 

CAP(+) increase, it is likely that this is a separate effect on a different neuronal subpopulation. 

 

 

Table 5.2. Summary table of the identified properties of the DRG neuronal subpopulations affected in db/db 
mice in the metabolic (MET) and neuronal (NEU) phases of diabetic neuropathy. Net effect for each phase 
shown in the bottom row.  Green background denotes increase, whereas red background denotes a decrease 
observed. VTD = veratridine; VGSC = voltage-gated sodium channel; OS = oscillatory VTD-response profile.  



 

 

127 
CHAPTER 5: ASSESSING THE EXCITABILITY CHANGES IN DRG NEURONS FROM DIABETIC DB/DB MICE 

 

 

 

 

Further experiments including tracing ion channel expression levels throughout the course of 

DN in the db/db mouse are needed in parallel to VTD-Ca2+ imaging to further characterise the 

identity of the specific subpopulations raising DRG neuronal excitability and potentially shaping 

a painful phenotype. The next and final chapter discusses further limitations and 

recommendations for future experiments to build on the results presented in this thesis. 

 

 

 

 

 

Figure 5.11. Graphic summary of the affected subpopulations  of DRG neurons and their known properties in 
db/db mice in the metabolic (MET) and neuronal (NEU) phases of diabetic neuropathy. Dotted outline of 
receptor channels mean that the neuron might express both, one or none of them together with TRPV1. Green 
background denotes increase, whereas red background denotes a decrease observed. 
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CHAPTER 6: LIMITATIONS & FUTURE DIRECTIONS  

Diabetic neuropathy is a debilitating condition significantly affecting the quality of patients’ life, 

especially if accompanied by painful symptoms. Despite decades of animal and clinical 

research, the multifactorial mechanisms driving the positive and negative sensations caused 

by DN are still poorly understood. There are no disease-modifying or reversing drugs approved 

and DN continues to represent a therapeutic challenge 230. The only successful strategy 

remains diabetes prevention via glycaemic control through diet and lifestyle management. To 

date, several treatments have been approved for the symptomatic relief of painful DN, however 

first- and second-line drugs target pain pathways in the CNS and produce modest analgesia 

at the cost of serious, potentially fatal side effects 376.  

In recent years, research into novel analgesic agents for the treatment of pain has turned to 

targeting the PNS to avoid serious CNS adverse effects whilst improving drug efficacy. Several 

promising targets have been identified, the most popular being PNS-expressed ion channels 

implicated in pain for example VGSCs Nav1.7, Nav1.8 and Nav1.9 33,610. Novel ion channel 

blockers or activators drugs are in development and ongoing pre-clinical and clinical studies 

393,394,399–401 (also see Table 1.5). However, a common issue is the poor translation of drug 

efficacy from the animal model to the DN patient with most novel pharmacotherapies failing 

clinical trials. For example the failed translation of aldose reductase- and PKC-inhibitors 

efficacy from the STZ rat model of DN to DN patients 247,249. To design better targeted drugs 

with minimal off-target effects, a better understanding of the mechanisms driving DN pathology 

and its modelling is required as well as a simple, efficient, medium-to-high throughput assay 

able to distinguish nociceptors from non-nociceptors. 

Therefore, the aim of the current study was to aid this process by assessing the neuronal 

excitability changes occurring during DN in DRG neurons in vitro and from a diabetic mouse 

model. We expected that neuronal excitability shifts will be present at different degrees in the 

different subpopulations of neurons within a mixed DRG population. Therefore, first, the VTD-

Ca2+ imaging assay was validated for its ability to discriminate nociceptors from a 

heterogeneous neuronal population and for its use as a potential drug screening tool, as 

outlined in Chapter 3. The next two chapters described following experiments exploring the 

application of the VTD-Ca2+ imaging assay in combination with other nociceptive agonists to 

characterise excitability changes during DN in DRG neurons from healthy mice cultured under 

in vitro hyperglycaemic conditions (Chapter 4) or DRG neurons derived from the diabetic 

db/db mouse model of DN (Chapter 5).  
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In this chapter, discussion will encompass advantages and future perspectives for the VTD-

Ca2+ imaging assay regarding its optimisation and application. I will discuss the main limitations 

of our study with focus on the in vitro DN experiments and how realistic it is to replicate DN in 

a dish as well as using DN mouse models for assessing DRG excitability changes. Finally, the 

key findings and implications of the experiments will be briefly discussed with 

recommendations for future research. 

6.1. Veratridine and Ca2+ imaging as a tool with multiple applications  

This study began with the aim of validating the previously generated results by our lab for the 

use of VTD-induced Ca2+ responses as broad markers for DRG neuronal subpopulations. A 

detailed characterisation of the VTD-responses was carried out previously by our lab 499. Here, 

using DTA mice with genetically ablated nociceptors, I demonstrated a strong link between 

the OS VTD-response profile and nociceptors, whilst non-nociceptors were associated with 

the SD profile (Chapter 3, Figure 2). Thus, the use of the VTD with Ca2+ imaging as a tool for 

assessing neuronal excitability in specific neuronal subpopulations was confirmed and the 

“VTD- Ca2+ imaging assay” was established.  

6.1.2. Advantages 

The VTD-Ca2+ imaging assay’s main advantage is that it allows for the efficient screening of a 

heterogeneous population of neurons. Thus, the VTD response profile pattern generated 

integrates all responses present in the population, which would give a more realistic idea of 

what a drug’s effect would be in a physiological environment. This contrasts with patch-

clamping-based in vitro assays, where the investigated effect might not be detected as a result 

of the low-throughput screening efficiency. The ability to cover a heterogeneous population of 

neurons with a single assay screen is also advantageous over cell-line-based screening 

methods. Often the first choice in novel drug characterisations, heterologous expression 

systems are used to express the target protein against which drugs are screened. However, 

the absence of the full set of ion channels, exchangers and receptors can hide off-target effects 

of the compound investigated. The VTD-Ca2+ imaging assay is able to detect specific 

excitability changes in distinct neuronal subpopulations in each screen. Therefore, the 

development of the assay as a medium-to-high throughput screening tool in primary sensory 

neurons will aid in the complete characterisation of a drug’s efficacy and safety profile, as it 

would appear in a heterogeneous population in vivo. 
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Apart from its functionality, another advantage of our system is the wealth of data generated 

with minimal resources and in a relatively short amount of time. For example, in our 

experiments with db/db mice,  over 6 weeks of imaging experiments, a total of 10 313 neurons 

were imaged from 24 mice, giving an imaging efficiency of approx. 430 neurons per mouse. 

Such recording capacity ensured each animal made a maximum contribution to the study with 

minimal waste of cells. Moreover, the large numbers of neurons for each mouse contributed 

to the validity of the observed phenotype.  

Our screening productivity is comparable to standard Ca2+-imaging of DRG neurons. However, 

here, we employ VTD as a main neuronal exciting agent instead of a high-potassium solution 

(KCl), most commonly used to excite cells in Ca2+ imaging protocols. High-potassium solutions 

directly depolarise the membranes of all neurons in a DRG population, thus activating them 

simultaneously 484. Here, due to VTD’s action on VGSCs, the responses generated are shaped 

by the constellation of ion channels, receptors and exchangers expressed by each neuron. 

Therefore, neuronal responses are more nuanced and thus more informative compared to the 

binary “yes” or “no” information provided by responses to KCl. 

Imaging Ca2+ responses to VTD and agonists in neurons provided us with basic information of 

the response rates to the drugs administered. Moreover, each recording also yielded a vast 

amount of data available for analysis, including measuring the amplitude of Ca2+ responses, 

time to peak and AUC. Each recording also provided an image of the neuronal population 

allowing for the  estimation of neuronal diameter and subsequent analysis of cell size 

distribution.  Such wealth of data allows for the in-depth multifactorial characterisation of the 

responses from each neuronal population imaged and hence the building of a more complete 

picture of the neuronal phenotype under investigation.  

6.1.3. Limitations & Recommendations 

Nevertheless, a major limitation of the VTD-Ca2+ imaging assay is the data analysis component. 

The diversity and abundance of information generated demands comprehensive analysis 

across several softwares. At present, this analysis is manual, with each neuronal trace of 

responses analysed individually. The process is laborious and time-consuming and manual 

data handling can be subject to conscious or unconscious bias.  

Finally, AUC measurements are performed automatically by a software according to a method 

outlined in Chapter 2: Materials & Methods, section 2.2.3.1, page 70. Although facilitating the 

analysis, the application of the same estimation formula on each trace does not produce a 

completely realistic picture of the AUC. The formula computes the AUC of a response to a 
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drug based on a pre-specified baseline, which is the average value of the signal during the 30 

seconds prior to adding the drug. Assuming a perfectly steady and horizontal baseline, areas 

under the curve calculated will be near 100% accurate for all traces. However, occasionally, 

even the slightest fluorescent dye bleaching during an experiment can cause a small deviation 

of the resting calcium baseline and transiently or steadily shift it. If this shift is within the 30 

seconds specified for baseline, they are incorporated into the baseline calculations and lead 

to gain or loss of estimated AUC depending on whether the trace has been shifted upwards 

or downwards, respectively. Albeit infrequent, such cases occur and can “pollute” the 

estimated overall AUC value averaged for the whole neuronal population.  

Therefore,  perhaps the optimisation that this assay would benefit from the most, is automation 

of the data analysis process. Automating the calculation and tabulation of parameters will 

significantly reduce human error and the time taken. Furthermore, it would allow for the 

integration of a more complex formula for the AUC estimation which would account for 

potential deviations in the baseline of the Ca2+ signal.   

To develop a full picture of the usefulness of VTD-response profiles, the assay needs to be 

further developed. For example, at present, the assay has only ever been applied to mouse 

DRG neurons. Further characterisation using rat and human DRG (hDRG) would elucidate 

differences in DRG excitability between species. Transcriptomic analysis of rodent and hDRG 

have demonstrated different levels of expression of some pain-related ion channels. Chang et 

al. showed that Nav1.7 had higher expression levels in hDRG than mouse DRG, whereas 

mouse DRG had higher expression of Nav1.8 611. Therefore, the VTD-response patterns 

produced by hDRG might be significantly different from that of rodent DRG, highlighting 

potential interspecies functional discrepancies. This could provide insights into why certain 

analgesics have shown efficacy in rodents but not in humans. Adapting the VTD-Ca2+ imaging 

assay to examine responses in hDRG would, therefore, benefit drug screening programmes. 

The VTD-Ca2+ imaging assay can also be advanced by conducting more experiments with 

genetically modified animals (e.g., KO models of certain VGSCs, or knock-in for GCAMP Ca2+ 

sensors to allow in vivo imaging) as well as ion channel-blocking or activating drugs of various 

specificities. This would allow for the in-depth interrogation of each VTD-response profile and 

the contributing ion-channel(s) that shape it. This is of particular importance for clarifying the 

identity of the ID and RD profiles, which, although underrepresented, have a very distinct VTD-

response shape of a single, transient peak.   

Finally, experiments using DRG exposed to an inflammatory or injury-like in vitro environment 

(e.g. inflammatory soup-induced 612) would aid in the characterisation of the population of 
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“silent nociceptors”, believed to be “unsilenced” under such conditions 3,4.  It is hypothesised 

these neurons express predominantly TTX-R channels 499, but it is yet to be determined what 

VTD-profile they will produce once activated. 

6.1.4. Applications  

The confirmation of the VTD-Ca2+ imaging assay as a tool able to discriminate excitability 

changes between nociceptors and non-nociceptors has opened many doors for its potential 

uses. Its application as a drug screening assay was tapped into during the experiments with 

pharmacological channel blockers presented in Chapter 3. They demonstrated that the VTD 

responses produced by a certain drug can be informative of its specificity to nociceptors and 

degree of side effects on non-nociceptors. Moreover, we demonstrated that the assay can be 

used for investigating the effect of combining lower doses of 2 (or more) drugs to improve 

efficacy and minimise off-target effects. Combination therapies have been undergoing clinical 

trials and, in many cases, have proven more successful than individual ones and placebo 613–

618, however the majority are still targeting the CNS. It would be interesting to see whether 

such approach can be applied to novel molecules targeting PNS-expressed ion channels. This 

can facilitate the analgesic drug development process, whereby failed ion channel-modulating 

agents can be resurrected into combination therapies instead of developing novel ones. This 

makes the VTD-Ca2+ imaging assay a suitable platform for pre-clinical drug tests on primary 

cultures of heterogeneous neurons. Furthermore, by using a primary culture of human DRG 

(hDRG) neurons, this could help bridge the translational gap between pre-clinical and clinical 

research. Thus, VTD-Ca2+ imaging can be used to assess the efficacy and safety of channel 

blockers and activators downstream of the VGSC activation step in the process of AP 

generation and propagation. However, a limitation to bear in mind is that, as a drug screening 

tool, the VTD-Ca2+ imaging assay would not be able to provide information on the efficacy of 

drugs inhibiting initial transducing events, e.g., blockers of TRP channels. This is because 

signal transduction is a step prior to VGSC activation, where VTD exercises its action. 

The VTD-Ca2+ imaging assay can also be applied for the characterisations of DRG excitability 

phenotype in the context of different neuropathological conditions. In Chapter 5, I described 

and discussed experiments with DRG from the db/db mouse model of DN. In a DN setting, the 

assay was able to detect excitability changes in nociceptors expressed as increase in the 

percentage of neurons with the OS profile (Figures 5.8, 5.9, 5.10). The assay can be applied 

in other DRG-sensitisation models, such as paclitaxel-induced peripheral neuropathy 619 or 

inflammatory conditions 612. It would also be interesting to compare VTD-response profiles 

produced by a T1DN rodent model, such as the STZ-induced model of DN, to those generated 
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by the db/db mouse. A comparison of this nature can elucidate DN-driving mechanisms in the 

different induced diabetes animal models and provide insights into the discrepancies seen in 

neuropathic complications between the two diabetes types. 

Finally, the VTD-Ca2+ imaging assay can contribute for the validation of stem cell differentiation 

protocols 620. Research efforts have been focused into the development of functional DRG 

cultures derived from iPSC for the study of peripheral neuropathies 621. How well such novel 

cultures compare to natural human DRG could be determined by comparing the VTD-

response profiles both will produce. Thus, one can estimate whether the expression of the 

constellation of ion channels in the membrane of stem cell-derived neurons is comparable to 

the physiological, natural DRG neuron. 

6.2. Modelling diabetic neuropathy in a dish – a realistic goal or an 

unfeasible challenge? 

It is common practice when investigating the pathology of a disease to replicate its aspects on 

cultured cells in vitro in order to study the mechanisms in a controlled and isolated 

environment. In vitro high glucose conditions have been used as a way of modelling DN 

extensively and have largely contributed to our knowledge of the mechanisms underlying 

diabetic neuropathy and pain 318,420–425. In the experiments outlined in the present study, in vitro-

induced hyperglycaemia did not produce the expected increase in neuronal excitability as 

increased VGSC activity 351,424,502 or increase in responses to nociceptive agonists implied 

elsewhere 506,510,525, as the response rates remained comparable to control (Figures 4.3, 4.4). 

It is difficult to explain this outcome, but it might be related to differences between the age and 

type of the DRG used, differences in glucose concentration and exposure time used by me 

and others, as well as other variables in the culture conditions. 

Our in vitro results contradict virtually all previous studies using in vitro high glucose 

conditions, which report increase in CAP-evoked currents or VGSC activity or 

expression351,424,456,502,506,510,531,622. As discussed in detail in chapter 4, the possible reasons for 

these discrepancies are the extensive use of embryonic or neonatal DRGs by others 351,424,502,506 

as opposed to adult DRG used here; the use of rat DRG 349,351,502,510 or immortalised rat DRG 

cell line 622 rather than mouse DRG used here; and the selection of specific DRG for culturing 

and experiments, e.g. lumbar DRGs 502,506,510 or only those of 20-25 µm 502 as contrasted with 

the isolation of DRG from the full spinal column length here, which might account for a potential 

“dilution” of a high glucose-driven excitability changes. 
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With our in vitro experimental design differing substantially in one or more aspects form others, 

we can only speculate how the conditions we introduced could be amended to achieve a high 

glucose-driven increase in DRG excitability. One thing to consider can be the degree and 

duration of hyperglycaemia exposure itself. Albeit well-supported by studies investigating its 

acute effects, the extracellular glucose concentration of 50mM used here might not have been 

potent enough to produce an effect on neuronal excitability represented by changes in VGSC 

activity detected in the VTD-response profile patterns generated. Also, in the present 

experiments, glucose concentration was increased to hyperglycaemic levels acutely after 24h 

and glucose in the medium was not replenished daily to maintain high concentration. DRG 

neurons have higher energy requirements and metabolic rates compared to other cells and 

tissues 318,623. Their energy demands are likely to be even higher than normal for the first 24h 

following dissociation for culture as the neuron’s metabolic rate is altered to support axonal 

regeneration 624. Hence, cultured neurons might metabolise the available sugar abundance 

and re-adapt to control glucose levels in the 24 hours before experiments begin. Although, to 

our knowledge, this does not seem to be a practice in similar studies, daily replenishing of 

glucose in the medium might be an avenue worth exploring for Ca2+ imaging experiments with 

neurons cultured for more than 24h.  

Another possible explanation for the absence of a hyperexcitability phenotype in our 

experiments is the lack of the full spectrum of DN aspects driving neurodegeneration. 

Historically, DN’s pathology was largely believed to be “glucocentric”. This is true to a large 

extent, as high blood glucose levels are toxic for the vasa nervorum, the neurons themselves 

and the Schwann cells supporting them. However, it is now known that glucose-independent 

mechanisms work in synergy with hyperglycaemia-driven processes to produce DN and pain. 

The major pathways were introduced in detail in Chapter 1: Introduction, section 1.3.3. One of 

the main glucose-independent triggers of neuronal damage in a DN setting is dysregulated 

insulin signalling. Insulin is an important neurotrophic factor for neuronal growth and is often 

added to neuronal culture media for trophic support 623. Poor insulin availability, as in T1D and 

late stages of T2D, as well as insulin overabundance, like in early T2D, both contribute to 

neuronal health damage, independently of hyperglycaemic conditions 286,296–298,303. For the 

experiments outlined in Chapter 4, the DRG cultures were not supplied with any insulin. Thus, 

the in vitro DN conditions we designed were closer to replicating those in T1DN and late T2DN, 

where neurons are in an environment with excess glucose and little insulin. Supplementation 

of the DRG culture with excess insulin together with high glucose levels might have brought 

culture conditions closer to those in early T2DN and might have produced detectable neuronal 

excitability changes. However, adding insulin to the culture at any concentration would still 
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introduce its trophic support effects to the cells, which may play down or negate 

hyperglycaemia-induced neuronal damage. In fact, it is possible that the large quantity of 

available insulin, at least in the initial stages of T2D, is responsible for maintaining neuronal 

health and, to an extent counteract the neurodegenerative effects of hyperglycaemia during 

T2D. This might explain the less aggressive symptomatic expression of T2DN compared to 

T1DN in the early stages of diabetes 233,252,253. Insulin’s production cessation due to β-cell 

destruction in T2DN advanced stages might then be responsible for the rapid progression of 

DN symptoms in the later stages of T2DN. This idea is reinforced in studies by Huang et al. 

who cultured mature sensory neurons with high insulin and normal glucose levels and reported 

increased hexokinase activity and ATP synthesis amongst other events. Hexokinase drives the 

first committed step of glycolysis, hence its upregulated activity indicates augmented glucose 

metabolism and energy generation 625. In an in vitro hyperglycaemic setting, this could 

ameliorate the effects of high glucose on the neuronal health and thus mask a neuropathic 

phenotype. In another study, the group demonstrated that maintaining STZ-rat-derived DRG 

neurons in high glucose and supplementing them with insulin led to improved mitochondrial 

function. Furthermore, administering low dose insulin injection to STZ rats improved their 

sensory phenotype but without affecting hyperglycaemia in the rodent 626. Their results call for 

caution when considering supplying in vitro cultures with insulin. Despite the growing evidence 

of its role in the DN pathogenesis, due to the hormone’s nature it would be challenging to tease 

out its beneficial from neurodegenerative effects in vitro. Nevertheless, neuronal IR is a well-

evidenced feature of T2DN 627 and future research into modelling DN in vitro should explore 

its adequate implementation in a culture model. 

NGF is another trophic factor, considered an essential component of neonatal DRG culture 

protocols 628–630. NGF expression is also upregulated in animal models of injury 631,632 and 

inflammation 340, including DN 456,531,567,633. In animal models of both T1DN 531,633,634 and T2DN 

(db/db mice 456), increased levels of NGF are detected and correlated to increased pain 

sensitivity. Although the mechanisms behind its increased expression are unclear, it is 

speculated that NGF levels increase during DN as a neuroprotective response to the metabolic 

stressors accompanying the disease 456. From all of the above, neurotrophic factors such as 

NGF and insulin might be key drivers in the pathogenesis of DN and hence valuable 

components to include in an in vitro model, however should undergo careful consideration 

before being implemented and resulting outcomes should be interpreted with their trophic 

effects in mind. 

Other components of DN pathology that have been directly introduced in in vitro DN models 

include pro-oxidants for replicating oxidative stress (Purves et al 2001), methylglyoxal for 
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direct glucose toxicity modelling 432 and oxidised LDLs to directly model hyperlipidaemia 434. 

Although elucidative of the mechanism via which each might contribute to DN in isolation,  no 

studies have yet modelled an in vitro DN environment incorporating several components 

together. Such an approach might pose difficulties, since an environment with a number of 

variables is less susceptible to tight control and manipulation. Nevertheless, identifying the 

optimal number and types of components able to be successfully and sustainably introduced 

in an in vitro neuronal environment might allow for a modelling of DN in a dish closer to that in 

humans. 

Finally, a limitation of extending culture time to 6 days is the reduced number of neurons 

available for imaging with time. Twenty-four hours after plating, neurons start extending 

neurites and by day 3 in culture a dense axonal network is present 505. In addition, proliferation 

of non-neuronal cells such as fibroblasts, satellite glia and SCs begins. This can obstruct 

neurons from being easily identified and selected for imaging experiments. The reduced 

availability of neurons as time in culture progresses inevitably leads to fewer cells imaged per 

day due to the limited number of coverslips and animals (Table 4.2, Figure 4.2). The reduced 

number of available neurons and hence ROIs of sufficiently good clarity for recording can be 

an important source of  data variability. Unfortunately, to our knowledge, controlling neurite 

outgrowth without aggressive treatments that might introduce a phenotype is unfeasible.  

Future experiments might benefit from exploring compounds preventing minimising the 

amount of non-neuronal cells proliferation in culture,  such antimitotic agents, e.g. 5-fluoro-2'-

deoxyuridine 635,636 although caution should be taken when interpreting data from cultures 

containing additional elements. Alternatively, the restricted number of available neurons after 

2 or more days in vitro can be compensated for by increasing the total sample size for the time 

point to ensure statistically valid quantity of data. 

6.3. Studying excitability of DRG neurons derived from diabetic 

animals 

The second big aim of the present study was to assess for excitability changes present in DRG 

neurons derived from diabetic db/db mice. This was also an opportunity to explore the 

application of the VTD-Ca2+ imaging assay as a tool for characterising the excitability 

phenotype of DN in sensory neurons. The VTD-Ca2+ imaging assay detected changes in VGSC 

excitability expressed as an increase in the OS profile in both phases of DN in db/db mice 

(Figures 5.8, 5.9, 5.10). Nociceptive agonists revealed an increase in the sensitivity to CAP 

which persisted and increased into the late, NEU phase of DN (Figures 5.5, 5.6, 5.7). We 

speculated it is likely that the functional changes observed start in a subpopulation of small-
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to-medium nociceptors and later affect small, TRPV1-expressing nociceptors as DN 

progresses (Table 5.2, Figure 5.11). These results implicate specific neuronal subpopulations 

affected at early and late stages of DN and could serve as a foundation for further research 

into them and the molecular mechanisms driving excitability changes. Their further 

characterisation will, in turn, aid the identification of specific targets for the development of 

pain-alleviating or DN-modifying therapies. In addition, this is the first study to investigate 

physiological excitability changes in the db/db mouse in both phases of DN.  

The db/db mouse is perhaps the most widely used model of T2D due to the collection of 

advantages they bring over other diabetic models (Table 6.1). The robust development of 

diabetes and subsequent complications follow closely the natural progression in human 

patients, making them also one of the most preferred models of DN 453. Perhaps the main 

advantage of this model is that DRG neurons are chronically exposed to neurodegenerative 

DN conditions that go beyond hyperglycaemia, including oxidative stress, hyperinsulinemia 

and IR, inflammation and dyslipidaemia. We and others 431,637 have demonstrated that isolating 

and culturing DRG from db/db mice in standard medium and conditions produces a DN 

phenotype, hence allowing for their studying without supplementing the culture with additional 

elements complicating data interpretation.   
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Table  6.2. List of some disadvantages of the T2D db/db mouse model of diabetic neuropathy. 

Disadvantages References 

Short lifespan (30 – 40 WoA) 
668 

Leptin signalling impairments are much less severe in human patients 
669 

Leptin-based mouse models are often infertile, and generating significant 

numbers is time consuming. 447 

Impairment of leptin signalling might have indirect consequences on other 

biochemical pathways 
669,670 

DN phenotype depends on strain used (C57BKS vs C57BL/6) 
453,459,671 

 

Table  6.1. List of some advantages of the T2D db/db mouse model of diabetic neuropathy. 

Advantages References 

Parallels human T2D and pathogenesis to a very high degree: 

• Persistent hyperglycaemia 

• Obesity 

• Dyslipidaemia: persistent high blood cholesterol and 

triglyceride levels 

• Insulin resistance 

• Inflammation 
456,458,541,549,666,671 

Mimics human DN progression qualitatively and temporally: 

• Hyperalgesia and allodynia 8-12 weeks 

• Thermal and mechanical hypoalgesia after 12 weeks* 

• Decreased NCV 

• Loss of large myelinated fibres 

• Axonal atrophy and dystrophy 

• Loss, shrinkage and breakdown of myelin 

T2D phenotype validated with anti-diabetic drugs 
672–674 

Shown to exhibit a pre-diabetic state 
675 

Develop severe hyperglycaemia and display advanced stages of the 

disease without the need of any external diet or pharmacological 

interventions that could disturb the natural phenotype 418,453,676 
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The db/db mouse does not come without some disadvantages, outlined in table 6.2. Perhaps 

the main disadvantage, and a limitation of these experiments, is that the db/db mouse strain, 

like every genetically modified disease model, presents with lower genetic differences thus 

producing lower variability in DN onset and/or progression. This is in contrast to humans, 

where different DN patients present with different degrees and timings of functional and 

structural changes 638. Despite that, however, a similar trend is observed in both the db/db 

animal model and DN patients, whereby the early phase of DN is regulated by complex 

metabolic drivers producing contradicting behavioural reports in the db/db mouse (see table 

4.2) and varying degrees of sensitivity changes in patients 639. On the other hand, the sensitivity 

loss and structural changes during the late DN phase is well documented in both, animal 

models 252,453,640 and humans 230,234,639. This perhaps implicates the db/db mouse as a more 

suitable model for investigating the late, structural effects on sensory neurons during DN. 

However, studies reporting positive functional and behavioural changes in the animal model 

during early phase DN could still benefit a subpopulation of patients experiencing similar 

events. 

DN is characteristic with its stocking-and-glove distribution, affecting the toes and feet first, 

followed closely by the fingers and hands 641. Each dorsal horn afferent nerve is dedicated to 

innervating a specific area of skin or organ, i.e., its dermatome. The nerves innervating the 

areas affected first by DN are lumbar spinal nerves 4 and 5 (L4 and L5) for the toes and feet, 

and cervical spinal nerves 6, 7 and 8 as well as sacral spinal nerve 1 (C6, C7, C8 and S1, 

respectively) for the fingers and hands. Often, studies exploring functional and structural 

changes in the nerves during DN would isolate only DRG from L4/L5, noting functional and 

structural alterations 254,337,544–546,637,642,643. In the present study, DRG from the whole length of 

the spinal column were isolated for studying DN. Assuming that the DN phenotype is 

concentrated largely in the lumbar DRG, then dissection of all DRG indiscriminately could lead 

to “dilution” of the neuropathic phenotype and milder excitability changes being observed as 

opposed to isolating specific DRGs. Future studies can explore this concept by preparing DRG 

cultures from specific spinal column segments of nerves evidenced to be highly affected in 

DN, such as the lumbar nerves. This would provide a focused investigation of DN effects on 

specific organs and body areas and should be interpreted as part of the bigger picture of the 

DN pathogenesis. It would be interesting to see a meta-analysis of studies using all DRGs as 

opposed to specific ones from diabetic animals and whether the results obtained via these two 

different approached differ substantially. 

One potential source of weakness in this study, which could have affected the neuronal 

excitability phenotype, is the decision to culture dissociated DRG from db/db mice in a 
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standard environment. That is, isolated DRG were not maintained in high glucose conditions, 

neither was insulin, NGF or other DN-characteristic elements added to the medium. Upon 

being faced with this choice when designing the experiments, we addressed relevant literature 

and established that virtually all studies using DRG from animal models of DN did not alter the 

culture medium to reflect DN conditions. Hence, the decision was made to undertake the same 

approach with the present experiments and observe the phenotype produced. Had it been the 

case that no significant differences were noticed between control and diabetic animal neurons, 

then experimental design would have been modified to introduce a modified DRG medium 

reflecting DN conditions. Since excitability changes were observed early in the course of the 

experimental period, it was agreed to proceed with the current method. However, it would be 

interesting to see whether maintaining neurons in a high glucose/NGF/insulin medium prior to 

experiments would produce a starker phenotype to the one observed here. 

The scope of this study was limited to Ca2+ imaging experiments and some analysis of cell size 

and distribution. These were isolated experiments, unsupported by our own behavioural, 

structural, or other data. Further experiments are needed to fully understand the mechanisms 

underlying the DN-induced changes in neuronal excitability observed here. Is the increase in 

excitability in nociceptors due to altered expression and/or activity levels of a particular VGSC? 

Is the increase in sensitivity to CAP due to increased TRPV1 expression or simply enhanced 

activation? Immunohistochemistry experiments tracing changes in expression levels of ion 

channels during the MET and NEU phases of DN implicated would contribute to answering 

these questions. Are neurons from diabetic mice shrinking or apoptotic? Quantitative analysis 

of neurons’ apoptotic tendencies throughout DN progression (e.g., using nuclei-labelling 

techniques) can provide insights. Further experiments would add to the physiological data 

provided by this research and contribute to a complete study on the DN phenotype 

progression in the db/db mouse sensory neurons.  

6.4. CONCLUSION 

The journey of this project started with the establishment of the VTD-Ca2+ imaging assay as 

able to discriminate between nociceptors and non-nociceptors via the VTD-response profiles 

generated by DRG neurons. It was then taken forward towards different applications including 

as a screening platform for ion channel blockers, individually or in combination, assessing their 

efficiency and safety. The application of the VTD-Ca2+ imaging assay as a tool for 

characterising neuropathological conditions was explored in the context of diabetic 

neuropathy in vitro as well as in vivo. By employing VTD-Ca2+ imaging as well as nociceptive 

agonists, we demonstrated that diabetic neuropathy produces excitability changes in distinct 
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subpopulation of DRG neurons from T2D db/db mice in the early, MET and late, NEU phase of 

the disease’s course. This is the first detailed physiological characterisation of the diabetic 

neuropathy-driven excitability changes at the different phases in the T2D db/db mouse model. 

Identifying distinct neuronal subpopulations affected during DN could aid in their better 

targeting by novel pharmacological interventions developed. Finally, the VTD-Ca2+ imaging 

assay can have multiple applications, including as a screening platform and disease and iPSCs 

characterisation tool. In the future, this work can take several directions, for example focusing 

on the improvement of the VTD-Ca2+ imaging assay and its analysis process; and/or further 

characterisation of the db/db mouse model of DN and the identity of the neurons most affected 

during the different stages. Overall, this research hopes to eventually contribute to elucidating 

the complex mechanisms underlying diabetic neuropathy and aid in bridging the gap between 

pre-clinical and clinical research for treating this currently untreatable disease. 
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