
Verification of Graph Programs with

Monadic Second-Order Logic

Gia Septiana Wulandari

PhD

University of York

Computer Science

January 2021

Abstract

In this thesis, we consider Hoare-style verification for the graph programming language GP 2.

In literature, Hoare-style verification for graph programs has been studied by using exten-

sions of nested conditions called E-conditions and M-conditions as assertions. However, E-

conditions are only able to express first-order properties of GP 2 graphs, while M-conditions

can only express properties of a non-attributed graph. Hence, there is still no logic that can

express monadic second-order properties of GP 2 graphs. Moreover, both E-conditions and

M-conditions may not be easy to comprehend by programmers used to formal specifications

expressed in standard first-order logic.

Here, we present an approach to verify GP 2 graph programs with a standard monadic

second-order logic. We show how to construct a strongest liberal postcondition with respect

to a rule schema and a precondition. We then extend this construction to obtain a strongest

liberal postcondition for arbitrary loop-free programs. Also, we show how to construct a

precondition expressing successful execution of a loop-free program, and failing execution of

a so-called iteration command. These constructions allow us to define a partial proof calculus

that can handle a larger class of graph programs than what can be verified by the calculus

that uses E-conditions and M-conditions as assertions.

Other than partial proof calculus whose assertions are monadic second-order logic, we also

define semantic partial proof calculus. Similar calculus has been introduced in literature,

but here we update the calculus by considering a GP 2 command that was not considered in

existing work.

Contents

Abstract 3

List of Tables 9

List of Figures 11

Acknowledgements 13

Declaration 15

1 Introduction 17

1.1 Motivation . 17

1.2 Thesis aims . 19

1.3 Thesis contributions . 19

1.4 Thesis structure . 20

2 Context 23

2.1 Graph programming . 23

2.1.1 Graphs and graph morphisms . 23

2.1.2 Graph transformation systems . 26

2.1.2.1 Rules and direct derivation . 27

2.1.2.2 Rules with relabelling . 29

2.1.3 The GP 2 programming language . 31

2.1.3.1 Graphs in GP 2 . 32

2.1.3.2 Conditional rule schemata . 34

2.1.3.3 Syntax and operational semantics of graph programs 38

2.2 Verification of graph programs . 41

2.2.1 Verification with Hoare logic . 41

2.2.2 Assertions for graph programs . 43

2.2.3 Hoare calculus for graph programs . 44

2.3 Monadic second-order logic for graphs . 46

2.4 Summary . 49

3 Monadic second-order logic for graph programs 51

3.1 Monadic second-order formulas . 51

3.2 Satisfaction of a monadic second-order formula 56

3.3 Structural induction on monadic second-order formulas 60

3.4 Monadic second-order formulas in rule schema application 63

3.5 Properties of monadic second-order formulas . 71

3.6 Summary . 75

4 Calculating a strongest liberal postcondition 77

5 A strongest liberal postcondition for first-order formulas 81

5.1 Construction of a strongest liberal postcondition 81

5.2 The dangling condition . 83

5.3 From precondition to left-application condition 84

5

Contents

5.4 From left to right-application condition . 91

5.5 From right-application condition to postcondition 97

5.6 Summary . 99

6 Extension to monadic second-order logic 101

6.1 Constructing left and right-application condition by example 101

6.1.1 Constructing left-application condition 102

6.1.2 Constructing right-application condition 104

6.2 From precondition to left-application condition 105

6.3 From left to right-application condition . 111

6.4 From right-application condition to postcondition 118

6.5 Complexity of a strongest liberal postcondition 120

6.6 Summary . 122

7 Graph program verification 123

7.1 Semantic Proof Calculus . 123

7.2 Syntactical Proof Calculus . 130

7.3 Summary . 139

8 Verification case studies 141

8.1 Vertex colouring . 141

8.1.1 Graph program vertex-colouring . 141

8.1.2 Proof tree of vertex-colouring . 142

8.1.3 Proof of implications . 144

8.1.4 Comparison with E-conditions . 145

8.2 Transitive closure . 146

8.2.1 Graph program transitive-closure . 146

8.2.2 Proof tree of transitive-closure . 146

8.2.3 Proof of implications . 148

8.3 Unrooted 2-colouring . 149

8.3.1 Graph program 2-colouring . 149

8.3.2 Case A: 2-colourable input graph . 151

8.3.2.1 Proof tree of 2-colouring (A) 151

8.3.2.2 Proof of implications . 154

8.3.3 Case B: non-2-colourable input graph . 156

8.3.3.1 Proof tree of 2-colouring (B) 156

8.3.3.2 Proof of implications . 156

8.4 Connectedness . 158

8.4.1 Graph program connectedness . 158

8.4.2 Case A: connected input graph . 160

8.4.2.1 Proof tree of is-connected (A) 160

8.4.2.2 Proof of implications . 163

8.4.3 Case B: disconnected input graph . 165

8.4.3.1 Proof tree of is-connected (B) 165

8.4.3.2 Proof of implications . 165

8.5 Summary . 169

6

Contents CONTENTS

9 Soundness and completeness of the proof calculi 171

9.1 Soundness . 171

9.2 Relative completeness . 174

9.3 Summary . 178

10 Conclusions and future work 181

10.1 Conclusions . 181

10.2 Future work . 182

10.2.1 Theorem proving for implications between assertions 182

10.2.2 Automatic construction of invariants . 183

10.2.3 Monadic second-order transductions for reasoning about graph programs183

10.2.4 Relative completeness for monadic second-order Hoare-triples 184

10.2.5 Proof calculus for total correctness of monadic second-order Hoare triples184

10.2.6 Proof obligation for the construction of a strongest liberal postcondition185

References 187

7

List of Tables

2.1 E-condition examples . 44

3.1 Categories of variables and their domain on a graph G 52

4.1 Properties to support the proof of Theorem 4.3 80

6.4 Strongest liberal postcondition over P(n) and isnode 120

8.1 Conditions inside proof tree of vertex colouring 143

8.2 Conditions inside proof tree of transitive-closure 147

8.3 Conditions in the proof tree of 2-colouring (A) 152

8.4 Conditions in the proof tree of 2-colouring (B) 157

8.5 Conditions inside proof tree of is-connected (A) 162

8.6 Conditions inside proof tree of is-connected (B) 167

9

List of Figures

2.1 Graph G from Example 2.1 . 25

2.2 An injective graph morphism f and a non-injective graph morphism g 26

2.3 A pushout and the universal property of pushouts [1] 27

2.4 A pushout . 28

2.5 A rule r ∶ L←K → R . 28

2.6 A direct derivation . 29

2.7 A pullback and the universal property of pullbacks [1] 31

2.8 Non-natural double-pushout . 36

2.9 Abstract syntax of GP 2 programs . 38

2.10 Inference rules for core commands [2] . 39

2.11 Inference rules for derived commands [2] . 39

2.12 Partial correctness rules with E-constraints for core commands[1] 45

3.1 Abstract syntax of monadic second-order formulas 55

3.2 Direct derivation for generalised rule schema . 66

4.1 Constructing SLP(c, r) for r = ⟨L←K → R,Γ⟩ 78

5.1 Generalised rule schema application and strongest liberal postcondition 82

5.2 GP 2 conditional rule schema del = ⟨r1,Γ1⟩ . 82

5.3 GP 2 conditional rule schema copy = ⟨r2,Γ2⟩ . 83

6.1 GP 2 conditional rule schema copy = ⟨r3,Γ3⟩ . 102

6.2 Rule schema isnode . 120

7.1 Calculus SEM of semantic partial correctness proof rules 129

7.2 Calculus SYN of syntactic partial correctness proof rules 138

8.1 Graph program vertex-colouring . 142

8.2 Proof tree for partial correctness of vertex colouring 142

8.3 The partial correctness proof of vertex-colouring with E-condition [1] . . . 145

8.4 Graph program transitive-closure . 146

8.5 Proof tree for partial correctness of ttttransitive-closure 147

8.6 Graph program 2-colouring . 150

8.7 Proof tree for partial correctness of 2-colouring (A) 153

8.8 Proof tree for partial correctness of 2-colouring (B) 156

8.9 Graph program is-connected . 159

8.10 Proof tree for partial correctness of is-connected (A) 161

8.11 Proof tree for partial correctness of is-connected (B) 166

9.1 graph program double . 177

11

Acknowledgements

First of all, I am grateful to God for the opportunity that leads me to complete and present

this thesis. I would also like to thank several people for their help and support during the

development of this thesis.

This thesis would not have been completed without the continuous encouragement of my su-

pervisor, Dr Detlef Plump, who provide guidance, encouragement, and suggestions through-

out my PhD years. His support really helps me enhance my knowledge, especially in problem-

solving. I would also like to thank my examiner, Dr Radu Calinescu, for his precious feedback

during the viva and TAP meetings and Prof Reiko Heckel for his feedback and insight during

the viva.

I am grateful for all love, patience, and support that has been given to me by my family.

I really appreciate Nungki who gives his understanding, support, and encouragement, Arka

and Declan who inspire me to be cheerful and always able to remove my stress; also mamah,

who always support me. Each of them motivates me to reach the finish line of this journey.

I would like to dedicate this thesis to my family, especially my mom, who always support me

as best as she could. May she rest in peace.

I would also like to thank all of the friends I met at the University of York and in the city

of York to make my life very pleasant during my time in York. I am very grateful for the

kindness of the people in room CSE/215. I would like to say thank you to Robert for helping

me review the thesis. Also, to my friends and family in Indonesia for the chats that can

relieve my stress away.

Finally, I would like to acknowledge the Indonesia Endowment Fund for Education (LPDP)

funding that makes my PhD journey possible, also Telkom University that gives me the

opportunity to continue my study.

13

Declaration

I, Gia Septiana Wulandari, declare that this thesis titled, ‘Verification of Graph Programs

with Monadic Second-Order Logic’ and the work presented in it are my own. This work was

done wholly while in candidature for a research degree at this University and has not previ-

ously been presented or submitted for a degree or any other qualification at this University

or any other institution. Where I have consulted or quoted the work of others, this is always

clearly attributed as References.

Some parts of this thesis have been published within the following publications:

• Gia S. Wulandari and Detlef Plump. Verifying a copying garbage collector in GP 2. In

Software Technologies: Applications and Foundations - STAF 2018 Collocated Work-

shops, Toulouse, France, June 25-29, 2018, Revised Selected Papers, pages 479–494,

2018. doi:10.1007/978-3-030-04771-9.

• Gia S. Wulandari and Detlef Plump. Verifying graph programs with first-order logic.

In Proceedings of the Eleventh International Workshop on Graph Computation Models,

volume 330 of Electronic Proceedings in Theoretical Computer Science, pages 181–200,

2020. doi: 10.4204/EPTCS.330.

• Gia S. Wulandari and Detlef Plump. Verifying graph programs with first-order logic

(extended version). ArXiv e-prints, arXiV:2010.14549 [cs.LO], 2020.

• Gia S. Wulandari and Detlef Plump. Verifying graph programs with monadic second-

order logic. In Proceeding of the 13th International Conference on Graph Transforma-

tion (ICGT 2020), volume 12150 of Lecture Notes in Computer Science, pages 257–275,

2020. doi: 10.1007/978-3-030-51372-6

15

Chapter 1

Introduction

We open this thesis by giving the motivation of our research and summarising our contribu-

tions. Then, we describe its structure, giving an overview of the chapters.

1.1 Motivation

Graphs are a natural way to represent complex situations. Graphs can model structures and

their relations in a simple way so that they are relevant for many practical problems. In

computer science, we can find the application of graphs in many areas. We may see them in

data and control flow diagrams, entity-relationship and UML diagrams, Petri nets, pointer

structures, and visualisation of the hardware architecture [3]. The use of mathematical

graph theory in solving practical problems then motivated researchers to study algorithms

that work on graphs, including graph transformation. Unlike studies in graph theory where

in general, the structure of graphs is not changed, graph transformation is an approach for

structural modifications of graphs by applying transformation rules [4]. Intuitively, graph

transformation is a study about how to manipulate graphs with local changes expressed by

rules.

Some programming languages have been built to facilitate the application of graph trans-

formations [5–11]. In his thesis, we focus on the graph programming language GP 2 [11].

GP 2 is a development made from the minimal and computationally complete core language

that was introduced by Habel and Plump [12]. The design of GP 2 was published in [2] and

the language has implemented by Christopher Bak as documented in this PhD thesis [11].

One novel aspect of GP 2, called root nodes, can be used to obtain constant time graph

matching. Another new feature is so-called marks which help to control the rule schema

applications. The power of GP 2 lies in its syntax that is simple, yet able to program every

computable graph function. This implies that graph programs also facilitate formal reason-

ing about programs, which has been studied since 2010 by Poskitt and Plump [1, 13–16].

17

Chapter 1 Introduction

They use Hoare Logic for reasoning and define so-called E-conditions and M-conditions to

express graph properties which are used for pre- and postconditions.

Both E- and M-conditions extend nested graph conditions [17] with support for expres-

sions. The conditions are constructed based on graph morphisms, which may be difficult

to understand by average programmers. For those who are familiar with standard logic,

E- and M-conditions may not be easy to comprehend due to their notation. For exam-

ple, if we want to express that all nodes are labelled with an integer, we can use the

E-condition ∀(a1 , ∃(a1 ∣ int(a))) ∧∀(a1 , ∃(a1 ∣ int(a))) ∧∀(a1 , ∃(a1 ∣ int(a)))
∧∀(a1 , ∃(a1 ∣ int(a))) ∧∀(a1 , ∃(a1 ∣ int(a))). The existence of two quantifiers to ex-

press a universal property of nodes may appear unnatural from the perspective of standard

logic. In standard logic, the use of one quantifier would suffice. For example, in the logic

we introduce in this thesis, the above condition can be simply written as ∀vx(int(lv(x))).
Moreover, E-conditions are limited to the expression of first-order properties of GP 2 graphs.

M-conditions are able to express monadic second-order properties of plain graphs, but not

of GP 2 graphs because they do not contain expressions, marks, or roots.

Another limitation of the Hoare-style verification method introduced in [1] is that it can

only handle programs where every loop-body and every condition of an if/try branching

command is a rule set call. Hence, the approach cannot be used to verify programs with

nested loops, e.g. most of graph programs in [11, 18, 19]. The subset of graph programs that

has no nested loops actually already computationally complete [20]. This means that there

always exists an equivalent graph program without nested loops for any graph programs with

nested loops. However, it is not clear how to get the equivalent program. In addition, many

programs are constructed naturally by using nested loops, e.g. programs that use depth-first

search approach [11] to obtain linear running time [19]. There may not exist an equivalent

graph program without nested loops that is as efficient as the one with nested loops because

it is impossible to encode the DFS strategy without nested loops.

In this thesis, we present the use of standard logic to express monadic second-order properties

of graph programs. We choose standard logic since it may is easier to comprehend by

programmers who does not familiar with morphisms. Moreover, standard logic may be

useful for future work because of the large range of theorem proving environments such as

Isabelle [21, 22], Coq [23], or Z3 [24]. for standard logic and the logic’s vast literature. Using

monadic second-order logic, we can also verify graph programs with stronger properties, such

as the existence of a path or connectedness. The limitation of programs that the proof calculi

in [1] can verify also motivated us to extend the calculi so that we can verify some nested

loops, which are common used in practice, especially for efficient graph programs.

18

1.2 Thesis aims

1.2 Thesis aims

Based on the motivations described above, we derive our main objective of this study, to use

monadic second-order logic in reasoning about graph programs. We then elaborate the aim

into three sub-aims, that are:

1. To define monadic second-order formulas based on standard logic that can express

monadic second-order properties of GP 2 graphs

2. To use monadic second-order formulas as assertions in the Hoare-style verification of

the partial correctness of graph programs

3. To extend the proof calculus of [1] so that it can handle a larger class of programs, in

particular programs with nested loops

1.3 Thesis contributions

This thesis makes contributions regarding the use of monadic second-order logic in the veri-

fication of graph programs. These contributions are described below.

1. Monadic second-order formulas for graph programs.

In this thesis, we define monadic second-order formulas that can be used to express

the counting monadic second-order properties of GP 2 graphs (e.g. connectedness of a

graph, 2-colourability of a graph). To the best of our knowledge, monadic second-order

formulas have never been used as assertions to verify GP 2 programs. We have reported

an earlier version of this work in [25].

2. Monadic second-order formulas as assertions for graph program verification.

This thesis shows how to construct a strongest liberal postcondition with respect to

a given GP 2 conditional rule schema and a precondition in the form of a monadic

second-order formula. Moreover, we show how to construct the following monadic

second-order formulas:

• a strongest liberal postcondition of a loop-free program

• a precondition of a loop-free program that must be satisfied by a graph to have a

successful execution (i.e. produce a graph)

• a precondition of a so-called iteration command that must be satisfied by a graph

to have a failing execution

19

Chapter 1 Introduction

For the construction of a strongest liberal postcondition, we mainly use a similar ap-

proach as the construction of a weakest liberal precondition in [1, 26] and extend it to

MSO logic. We take the main idea of generating a left and right-application condition

with respect to the given assertion and rule schema. However, since we work with

standard logic instead of nested conditions, we use a different technique to generate

the conditions. In addition, here we handle more attributes of graphs such as any-mark

and rootedness.

3. Extension of Hoare calculi for graph programs.

This thesis presents an extension of the partial correctness proof calculus of [1]. The

partial correctness proof calculus presented here can be used to verify programs whose

loop bodies are iteration commands, and the condition of branching commands are

loop-free programs. With this calculus, we are able to verify certain graph programs

with nested loops such as connectedness [19], which has been proven that it is run in

linear time on bounded degree input graph, can not be verified by the calculus. Here,

we show that we are able to verify graph programs that exist in literature [11, 18, 19],

which can not be verified by the framework of [1].

1.4 Thesis structure

The rest of the thesis is divided into several chapters, as follows:

Chapter 2 gives the context of this thesis. This chapter examines related work that is used

as a basis theory for this thesis. This chapter presents preliminaries about graph transforma-

tions and the graph programming language GP 2 to give the basic information about graph

programs we verify in this thesis. In addition, it describes Hoare-style verification of graph

programs that have been done in the literature to give an idea of how we can verify a graph

program with respect to the given assertions. Finally, this chapter presents how standard

logic can be used to express properties of a graph.

Chapter 3 presents monadic second-order formulas that can be used to express properties of

GP 2 graphs. Moreover, we show how we can use the formulas to express properties of GP 2

graphs that depend on morphisms. Here, we also show properties of monadic second-order

formulas by identifying some lemmas and provide proofs of the lemmas.

Chapter 4 describes the intuition on calculating a strongest liberal postcondition. It first

gives us the definition of a strongest liberal postcondition and how can we obtain one over a

given rule schema and precondition (in first-order or monadic second-order formulas). Here,

20

1.4 Thesis structure

we present properties that should hold within the construction to obtain a strongest liberal

postcondition.

Chapter 5 presents a construction of a strongest liberal postcondition with respect to a given

precondition and a rule schema. Here, we limit the pre- and postconditions to closed first-

order so that we can focus on the main idea of transforming the conditions. This chapter

also shows proofs that the construction is sound. Moreover, it shows how we can use the

construction to obtain a weakest liberal precondition over a postcondition and a rule schema.

Chapter 6 gives the complete construction of a strongest liberal postcondition with respect

to a monadic second-order formula (as a precondition) and a rule schema. It describes how

we can extend the construction from the previous chapter to monadic second-order formulas,

knowing the general ideas of the construction. Here, we start from an example to illustrate

how we can extend the construction before we define the construction formally. In addition,

this chapter also discusses the size of the obtained strongest liberal postcondition.

Chapter 7 presents proof calculi for graph program verification. This chapter shows how

we can obtain a strongest liberal postcondition from a given precondition and a loop-free

program. Moreover, we show how we can express properties that must be satisfied by a graph

so that the execution of a loop-free program may yield a graph as a result. Here, we show

how to obtain a monadic second-order formula to express properties of graphs where the

execution of a graph program (of a subclass of programs) on the graphs may yield failure.

This chapter also presents semantic proof calculus and syntactical proof calculus, in the

sense of partial correctness. Semantic proof calculus allows arbitrary assertions as pre- and

postconditions. For syntactic proof calculus, we limit the pre- and postconditions to closed

monadic second-order formulas.

Chapter 8 demonstrates the use of our syntactic proof calculus by proving some graph pro-

grams with various specifications. Graph programs we use as examples in this chapter are:

vertex-colouring, transitive-closure, 2-colouring, and connectedness. Three from

the four programs contain nested loops, and the program connectedness contains a rooted

node. Moreover, for the verification of programs transitive-closure, 2-colouring, and

connectedness, we use specifications in monadic second-order formula which cannot be

expressed in first-order logic.

Chapter 9 discusses the soundness and completeness of the partial correctness proof calculi

provided in Chapter 6. It shows that both semantic and syntactic proof calculus is sound.

The semantic proof calculus is proved to be relatively complete, but the question whether

the syntactic proof calculus is relative complete remains open. However, we give a conjecture

regarding the relative completeness of the syntactic proof calculus in this chapter.

21

Chapter 1 Introduction

Chapter 10 summarises the findings of this thesis. Here, we also propose some future work

in several areas, including the development of a theorem prover to support our syntactic

proof calculus, an extension to total correctness proof calculus, and monadic second-order

transductions for expressing morphisms between initial and final graphs.

22

Chapter 2

Context

This chapter introduces fundamental theories about graph programs, verification of graph

programs, and monadic second-order logic. This chapter is a summary of the existing liter-

ature to support the main result of this thesis.

2.1 Graph programming

This section introduces GP 2 programming language, which is based on graph transformation

systems. A graph transformation is a rule-based modification of graphs [3]. It is a technique

to obtaining a new graph from a given graph by a system that consists of rules. A single-step

transformation is done by considering the morphisms between the given rule and graph. With

its ability to change the structure, graph transformation has been applied in many areas,

such as model transformation [4]. Graph transformation has also been used for describing

biological or chemical processes [27, 28].

2.1.1 Graphs and graph morphisms

A graph is a flexible structure in representing objects and relations between them. There

are three main components in a graph: nodes, edges, and labels. In applications, nodes are

usually used to represent objects, edges to represent relations between objects, and labels to

store information that is needed about the objects or the relations. This study uses graphs

with labelled nodes and with directed and labelled edges, where parallel edges and loops are

acceptable. However, we sometimes use the blank label (◻), which is usually not written on

the graph.

23

Chapter 2 Context

In mathematics, a graph is commonly defined as pair of vertices V and edges E ⊆ V × V .

However, it is not expressive enough to define parallel edges and labels. Moreover, in GP 2

we also need to define nodes and edges’ labels, also rootedness of nodes in a graph.

Definition 2.1 (Label and marks). A label and mark alphabet C = ⟨CLV ,CLE ,CMV ,CME ⟩ is a set

comprising a set CLV of node labels, a set CLE of edge labels, a set CMV of node marks, and a

set CME of edge marks.

In literature, such as in [1, 29], marks are included in labels, so that a graph consists of a

set of nodes, a set of edges, source and target functions, and labelling functions. Here, for

convenience, we separate labels and marks. As in [29], we include root function in a graph

to define the rootedness of nodes in the graph.

Definition 2.2 (Graph over label alphabet). A graph over label and mark alphabet C is a

system G = ⟨VG,EG, sG, tG, lVG , lEG,mV
G, l

E
G, pG⟩ comprising a finite set VG of nodes, a finite set

EG of edges, source and target functions sG, tG ∶ EG → VG, a partial node labelling function

lVG ∶ VG → CLV , a partial edge labelling function lEG ∶ EG → CLE , a partial node marking function

mV
G ∶ VG → CMV , a partial edge marking function mE

G ∶ EG → CME , and a partial rootedness

function pG ∶ VG → {0,1}. For a node (or edge) i in G, lVG =⊥ iff mV
G =⊥ (or lEG =⊥ iff mE

G =⊥),

where ⊥ represents undefined function. A totally labelled graph is a graph whose functions

are total.

One may think that a natural way to express rootedness of a graph is by using a set of

rooted nodes instead of a partial function. However, undefined rootedness is useful in graph

programs [29]. Graphically, we use circles to represent nodes and arrows for edges where the

arrow’s head is attached to the edge’s target while the tail is attached to the source. Labels

of nodes are written inside the circle, and labels of edges are written next to the arrow. Node

identifiers are written outside the circle or not written at all, while edge identifiers are not

written.

Example 2.1 (A graph). Let consider a graph G = ⟨{1,2,3,4},{a, b, c, d},{a↦ 1, b↦ 1, c↦
2, d ↦ 2},{a ↦ 1, b ↦ 2, c ↦ 3, d ↦ 3},{1 ↦ α,2 ↦ β,3 ↦ α,4 ↦ γ},{a ↦ ◻, b ↦ ◻, c ↦ ◻, d ↦
◻},{1↦ none,2↦ none,3↦ none,4↦ none},{a↦ none, b↦ dashed, c↦ none, d↦ none},
{1↦ 0,2↦ 1,3↦ 0,4↦ 0}⟩ over the label alphabet C = ⟨{α,β, γ},{◻},{none},{none, dashed}⟩.
We can represent the graph as an abstract graph as can be seen in Figure 2.1. In this example,

we do not write node and edge identifiers as well as blank label.

There are two notations for the class of graphs over a label alphabet: the class of all graphs

over the label alphabet (including graphs that are not totally labelled), and the class of all

totally labelled graphs over the label alphabet.

24

2.1 Graph programming

VG = {1,2,3,4}
EG = {a, b, c, d}

a b c d

sG 1 1 2 2

tG 1 2 3 3

lEG ◻ ◻ ◻ ◻
mE
G none dashed none none

1 2 3 4

lVG α β α γ

lEG none none none none

(a) Concrete graph

α β

α γ

(b) Abstract graph

Figure 2.1: Graph G from Example 2.1

Definition 2.3 (Classes of graphs [1]). Let C be a label alphabet. We denote by G(C�) the

class of all graphs over C, while G(C) denotes the class of all totally labelled graphs over

C.

To show a relation between two graphs, we often use graph morphisms to express structure-

preserving mappings between graphs. In graph morphisms, structures, labels, and rootedness

are preserved in the relation [29]. In GP 2, in addition to graph morphism, we also have

graph premorphisms which is similar to graph morphisms but not considering node and edge

labels. Formally, graph morphism is defined in Definition 2.4. The definition is similar to

the definition of graph morphisms defined in [29], but here, again, we separate labels and

marks.

Definition 2.4 (Graph morphisms). Let G and H be graphs. A graph morphism g ∶ G→H

is a pair of mapping g = ⟨gV ∶ VG → VH , gE ∶ EG → EH⟩ such that for all nodes and edges in

G, sources, targets, labels, marks, and rootedness are preserved. That is:

1. gV ○ sG = sH ○ gE ,

2. gV ○ tG = tH ○ gE ,

3. lVH(gV (x)) = lVG(x) for all x ∈ VG such that lVG(x) ≠⊥,

4. lEH(gE(x)) = lEG(x) for all x ∈ EG such that lEG(x) ≠⊥,

5. mV
H(gV (x)) =mV

G(x) for all x ∈ VG such that mV
G(x) ≠⊥,

6. mE
H(gE(x)) =mE

G(x) for all x ∈ EG such that mE
G(x) ≠⊥,

7. pH(gV (v)) = pG(v) for all v ∈ VG, such that pG(v) ≠⊥,

where ○ denotes function composition and ⊥ denotes undefined value. A graph morphism

g is injective (surjective) if both gV and gE are injective (surjective). A graph morphism

25

Chapter 2 Context

g ∶ G→H is an isomorphism if g is both injective and surjective, also satisfies lVH(gV (v)) =⊥
for all nodes v with lVG(v) =⊥ and pH(gV (v)) =⊥ for all nodes v with pG(v) =⊥. Furthermore.

we call a morphism g as an inclusion if g(x) = x for all x in G. ◻

Definition 2.5 (Premorphisms [1]). Let us consider graphs L and G. A premorphism

g ∶ L → G consists of two injective functions gV ∶ VL → VG and gE ∶ EL → EG that preserves

sources, targets, and rootedness. ◻

Intuitively, a premorphism g ∶ L→ G is a structure-preserving map that ignores the labels and

rootedness of L and G. On the other hand, a morphism g ∶ L → G is a structure-preserving

map that requires the preservation of labels and rootedness if defined in L.

Example 2.2 (Graph morphism). Let us consider graphs in Figure 2.2. There are two graph

morphisms f and g from graph G to graph H where f is an injective graph morphism while g

is a non-injective graph morphism. We can see from the example that both f and g preserve

sources, targets, and labels.

α

v1

α

v2

e1
e2

G

f

g β

v1

α

v2

α

v3

e1

e2 e3

e4

H

f = ⟨fV ∶ { v1 ↦ v3

v2 ↦ v2
, fE ∶{ e1 ↦ e4

e2 ↦ e3
⟩

g = ⟨gV ∶ { v1 ↦ v3

v2 ↦ v3
, gE ∶{ e1 ↦ e4

e2 ↦ e4
⟩

Figure 2.2: An injective graph morphism f and a non-injective graph morphism g

Example 2.3 (Injective graph premorphism). Considering the graphs and morphism g of

Figure 2.2. The morphism g and

h = ⟨hV ∶
⎧⎪⎪⎨⎪⎪⎩

v1 ↦ v1

v2 ↦ v2

, hE ∶
⎧⎪⎪⎨⎪⎪⎩

e1 ↦ e1

e2 ↦ e2

⟩

are injective premorphisms.

2.1.2 Graph transformation systems

Graph transformation is a study about how to manipulate graphs with rules to change the

structure without erasing important elements that are needed for solving a problem. Graph

transformations derive a graph based on a set of rules.

26

2.1 Graph programming

2.1.2.1 Rules and direct derivation

The idea of graph transformation is to manipulate graphs by rules L⇒ R where both L and

R are graphs. The transformation is done by applying rule L ⇒ R to graph G, that is, by

replacing a subgraph of G that matches with L with R. There are two major approaches in

graph transformation, that are single pushout (SPO) and double pushout (DPO) approach

[3]. The latter is more widely used due to the extra requirement of the dangling condition,

that is, the constraint that prevents the creation dangling edges by a rule application (see

Definition 2.8). In this thesis as well, we are focus only on the DPO approach with injective

matching.

Definition 2.6 (Pushout [1]). Let us consider graph morphisms A → B and A → C, the

pushout of these morphisms is formed by the graph D and graph morphisms B → D and

C →D as in Figure 2.3 if the following properties are satisfied:

1. Commutativity. A→ B →D = A→ C →D

2. Universal Property. For all graph morphisms B →D′ and C →D′ such that A→ B →
D′ = A→ C →D′, there is a unique graph morphism D →D′ such that B →D →D′ =
B →D′ and C →D →D′ = C →D′.

(1)

A B

C D

(a)

=
A B

C D

D′

=

=

(b)

Figure 2.3: A pushout and the universal property of pushouts [1]

Intuitively, D can be obtained by gluing B and C in a common part A. The commutativity

means that whenever the graphs B and C has common items (nodes or edges) in A, these

items are identified in D as well. On the other hand, the universal property asserts that no

other items that are not in B or C exist in D [30].

Example 2.4 (Pushout). Figure 2.4 shows a simple pushout where all morphisms are in-

jective. All nodes and edges are labelled with the blank label.

Habel, Müler, and Plump in [31] show that DPO with injective matching makes the double-

pushout approach more expressive than the non-injective matching. Injective matching

makes the double-pushout approach more expressive because we can have finer control on

transformation than in the traditional framework.

27

Chapter 2 Context

2 1 2

2 3 1 2 3

(PO)

Figure 2.4: A pushout

Definition 2.7 (Rules [1]). A rule r ∶ ⟨L←K → R⟩ over a label alphabet C comprises totally

labelled graphs L,K,R ∈ G(C) and inclusions K → L and K → R. We call L the left-hand

graph, R the right-hand graph, while K is the interface of r. ◻

A rule r in the DPO approach is described by three components: left-hand graph L, interface

K, and right-hand graph R of r. However, rules are sometimes written as r ∶ L⇒ R, without

showing the interface K. In such cases, nodes that correspond in L and R are numbered.

These nodes must be matched and must be preserved. We then establish that K consists of

these nodes. Figure 2.5 shows an example of a rule, with and without interface K written in

the rule. We then establish that K consists of nodes that are preserved, such that EK = ∅.

⇒
1 2

1 2

(a) Interface K is not written

1 2
1 2

1 2
← →

(b) Interface K is written

Figure 2.5: A rule r ∶ L←K → R

Intuitively, a rule r ∶ L ← K → R transforms a graph G by finding a subgraph in G that is

isomorphic to L, let say by isomorphism g, and change elements g(L −K) to R −K. This

means deletion of a node may exist. We need to ensure that deletion of a node must be

accompanied with deletion of edge(s) incident to it so that we can not have a dangling edge

after rule applications.

Definition 2.8 (Dangling condition; match [1]). Let r ∶ L ← K → R be a match, G be a

totally labelled graph, and g ∶ L→ G be an injective graph morphism. The dangling condition

requires that no edge in G − g(L) is incident to any node in g(L −K). When the dangling

condition is satisfied by g, we say that g is a match for r. ◻

28

2.1 Graph programming

Definition 2.9 (Application of a rule [11]). The application of a rule r ∶ ⟨L ← K → R⟩ to a

graph G with a match g ∶ L→ R yields a graph M , written G⇒r,g M , if M ≅H, where H is

constructed from G by applying these steps:

1. Delete all nodes and edges in g(L −K), to produce an intermediate graph D.

2. Add all nodes and edges from R −K with retaining their labels to D, to produce a

graph H.

3. The source of a new edge e ∈ ER −EK , sH(e), is defined as sR(e) if sR(e) ∈ VR − VK .

Otherwise, sH(e) = gV (sR(e)).
4. Target functions are defined analogously.

The above definition of application condition is important in practical use. However, it may

be hard to use it in reasoning at the abstract level. Hence, we also need the definition of rule

application in the DPO approach.

Definition 2.10 (Direct derivation; comatch [1]). Let us consider a rule r ∶ ⟨L ← K → R⟩,
a graph G, and an injective match g ∶ L → G. A direct derivation from G to H, written

G ⇒r,g H or more commonly G ⇒r H, is a pair of natural pushouts, or a double pushout

represented in Figure 2.6. The morphism R →H is then called the comatch of r.

(1)

KL R

D

(2)

HG

Figure 2.6: A direct derivation

◻

When no ambiguity arises, direct derivation is also denoted as G⇒r H, G⇒H, and G⇒R H
if r belongs to a set of rules R. If G ≅H or we have a sequence of direct derivation

G = G0 ⇒r1 G1 ⇒r2⇒ . . .⇒rn Gn =H

with r1, r2, . . . , rn ∈ R, we write G⇒∗

R
H or G⇒∗ H; denoting that G derives H in zero or

more direct derivations.

2.1.2.2 Rules with relabelling

The transformation we discussed until now requires L,K, and R be totally labelled graphs.

Relabelling of an edge can easily be done by deleting and recreating the edge with a new label.

29

Chapter 2 Context

However, relabelling a node is not as easy because of the dangling condition requirements.

One approach to handle relabelling problem this is presented in [32, 33]. The modification

allows K to be a partially labelled graph such that unlabelled nodes in the interface can have

different labels in left and right-hand graph of the rule.

Definition 2.11 (Rule with relabelling [1]). A rule (with relabelling) r ∶ ⟨L ← K → R⟩
over a label alphabet C comprises totally labelled graphs L,R ∈ G(C), a partially labelled

graph K ∈ G(C�), and inclusions K → L and K → R. We call L the left-hand graph, R the

right-hand graph, while K the interface of r. ◻

As before, we sometimes do not write the interface in the rule. In this case, we establish the

interface comprises exactly the numbered nodes in left and right-hand graph with no edge

in the interface. Moreover, all nodes in the interface are unlabelled.

The application of a rule with relabelling is similar to the application of a rule defined in

Definition 2.12 , but with additional treatment for unlabelled nodes [11].

Definition 2.12 (The application of a rule with relabelling [11]). The application of a rule

(with relabelling) r ∶ ⟨L ← K → R⟩ to a graph G with a match g ∶ L → R yields a graph M ,

written G⇒r,g M , if M ≅H, where H is constructed from G by applying these steps:

1. Delete all nodes and edges in g(L − K) and remove the labels of the images of the

unlabelled nodes in K, to produce an intermediate graph D.

2. Add all nodes and edges from R −K with retaining their labels to D, to produce a

graph H.

3. The source of a new edge e ∈ ER −EK , sH(e), is defined as sR(e) if sR(e) ∈ VR − VK .

Otherwise, sH(e) = gV (sR(e)).
4. Target functions are defined analogously.

5. For each unlabelled node v ∈K, lVH(gV (v)) is defined as lVR(v).

In the traditional approach, a direct derivation requires two squares in Figure 2.6 to be

pushouts. For rule with relabelling, a direct derivation requires these squares to be pullbacks

as well.

Definition 2.13 (Pullbacks [1]). Let us consider graph morphisms B → D and C → D, the

pullback of these morphisms is formed by the graph A and graph morphisms A → B and

A→ C as in Figure 2.7 if the following properties are satisfied:

1. Commutativity. A→ B →D = A→ C →D

2. Universal Property. For all graph morphisms A′ → B and A′ → C such that A′ → B →
D = A′ → C → D, there is a unique graph morphism A′ → A such that A′ → A → B =
A′ → B and A′ → A→ C = A′ → C.

30

2.1 Graph programming

(1)

A B

C D

(a)

=
A B

C D

A′

=
=

(b)

Figure 2.7: A pullback and the universal property of pullbacks [1]

Definition 2.14 (Natural pushouts [34]). A diagram (1) as in Figure 2.7 is a natural pushout

if it is both a pushout and a pullback. ◻

The natural double-pushout construction such that we have natural double-pushout is de-

scribed in [11, 29], that are:

1. To obtain D, remove all nodes and edges in g(L − K) from G. For all v ∈ VK

with lVK(v) =⊥ and mV
K(v) =⊥, define lVD(gV (v)) =⊥ and mV

D(gV (v)) =⊥. Also, de-

fine pD(gV (v)) =⊥ for all v ∈ VK where pK(v) =⊥.

2. Add all nodes and edges, with their labels, marks, and rootedness, from R −K to D.

For e ∈ ER − EK , sH(e) = sR(e) if sR(E) ∈ VR − VK , otherwise sH(e) = gV (sR(e)).
Targets are defined analogously.

3. For all v ∈ VK with lVK(v) =⊥ andmV
K(v) =⊥, define lVH(gV (v)) = lVR(v) andmV

H(gV (v)) =
mV
R(v). Also, for the injective morphism R → H and v ∈ VK where pK(v) =⊥, define

pH(g∗V (v)) = pR(v). The resulting graph is H.

Direct derivations transform a host graph via a rule whose the left and right-hand graph

are totally labelled host graphs. However, a conditional rule schema contains a condition,

and its left or right-hand graph may not be a host graph. Hence, we need some additional

requirements for the application of a conditional rule schema on a host graph.

2.1.3 The GP 2 programming language

Graph programs (GP 2) is a graph programming language based on graph transformation and

was developed from the minimal and computationally complete core language introduced by

Habel and Plump [12]. The idea to base the language on rule schemata was introduced in [35],

in order to allow computations on labels. Further refinements of the language are described

in [33, 34]. The power of GP lies in its simple syntax and complete formal semantics that

facilitates formal reasoning. The implementation of GP is described in [36]. GP then was

developed into GP 2 whose initial design is presented in [2]. The up to date documentation

31

Chapter 2 Context

of GP 2 and a description of its implementation can be found in the thesis [11]. A new

concept introduced in [11] is so-called root node which drastically reduce the search space

for rule matches.

2.1.3.1 Graphs in GP 2

There are two kinds of graphs in GP 2: host graphs and rule graphs. A label in a host graph

is a pair of list and mark, while a label in a rule graph is a pair of expression and mark.

Input and output of graph programs are host graphs, while graphs in GP 2 rules are rule

graphs.

We differentiate labels for host graphs and rule graphs because we only want constants as

labels of items in the input and output graphs of a program. However, labels in a rule graph

are expressions that may contain variables. By using expressions as labels, a rule can match

with varying input graphs with different node and edge labels.

In GP 2 graphs, nodes and edges can be marked. Marks are useful in algorithms because they

can let us track which nodes/edges we have visited. Items in GP 2 graphs can be marked

with red, blue, green, grey, and dashed. Grey is reserved for nodes, while dashed is reserved

for edges. Dashed is used instead of grey to make the difference with unmarked edges be

obvious. In a rule graph, we may also have a node/edge marked any as a wildcard to be able

to find a match with any mark other than none.

In literature, such as in [11], the set of marks does not include the mark none. Here, we

include the mark none to differ an unmarked node and node with undefined mark.

Definition 2.15 (GP 2 host graph marks and labels). A set of node marks, denoted by MV ,

is the set {none, red,blue,green,grey}. The set of edge marks, denoted by ME , is the set

{none, red,blue, green, dashed}. The set of lists, denoted by L, consists of all integers and

strings that can be derived from the following abstract syntax:

L ::= empty ∣ GraphExp ∣ L ‘:’ L
GraphExp ::= [‘-’] Digit {Digit} ∣ GraphStr

GraphStr ::= ‘ “ ’ {Character} ’ ” ’ ∣ GraphStr ‘.’ GraphStr

where Character is the set of all printable characters except ‘”’ (i.e. ASCII characters 32,

33, and 35-126), while Digit is the digit set {0, . . . ,9}.

The GP 2 label and mark alphabet is defined as the tuple ⟨L,L,MV ,ME⟩, which is denoted

by L. ◻

32

2.1 Graph programming

The colon operator ‘:’ is used to concatenate list expressions while the dot operator ‘.’ is

used to concatenate strings. The empty list is signified by the keyword empty, where it is

displayed as a blank label graphically.

Basically, in a host graph, a list consists of (list of) integers and strings which are typed

according to hierarchical type system as below:

charstring

int

atomlist

⊇
⊇
⊇⊇

where the domain for list,atom,int,string, and char is Z ∪ Char∗)∗,Z ∪ Char∗,Z,
{Char}∗, and Char respectively.

Definition 2.16 (Labels of rules in GP 2). Let E be the set of all expressions that can be

derived from the syntactic class List in the following grammar:

E ::= List

List ::= empty ∣ Atom ∣ List ‘:’ List ∣ ListVar

Atom ::= Integer ∣ String ∣ AtomVar

Integer ::= [‘-’] Digit {Digit} ∣ ‘(’Integer‘)’ ∣ IntVar

∣ Integer (‘+’ ∣ ‘-’ ∣ ‘*’ ∣ ‘/’) Integer

∣ (indeg ∣ outdeg) ‘(’NodeId‘)’

∣ length ‘(’AtomVar ∣ StringVar ∣ ListVar‘)’

String ::= Char ∣ String ‘.’ String ∣ StringVar

Char ::= ‘ “ ’{Character}‘ ” ’ ∣ CharVar

where ListVar, AtomVar, IntVar, StringVar, and CharVar represent variables of type list,atom,

int,string, and char respectively. Also, NodeId represents node identifiers.

Label alphabet for left and right-hand graphs of a GP 2 rule, denoted by S, is defined as the

tuple E,E, (MV ∪ {any}), (ME ∪ {any}). ◻

Definition 2.17 (GP 2 host graphs and rule graphs). A graph is a rule graph if it is in G(S),
and it is a host graph if it is in G(L).

If we compare the grammars of Definition 2.15 and Definition 2.16, it is obvious that L is

part of expressions that can be derived in the latter grammar. Hence, L ⊂ S, which means

we can consider host graphs as special cases of rule graphs. From here, we may refer ‘rule

graphs’ simply as ‘graphs’, which also means host graphs are included.

Syntactically, a graph in GP 2 is written based on the following syntax:

33

Chapter 2 Context

Graph ::= [Position] ‘∣’ Nodes ‘∣’ Edges

Nodes ::= ‘(’ NodeId [‘(R)’] ‘,’ Label [‘,’ Position] ‘)’

Edges ::= ‘(’ EdgeId [‘(B)’]‘,’ NodeId ‘,’ NodeId ‘,’ Label ‘)’

where Position is a set of floating-point cartesian coordinates to store layout information for

graphical editors, NodeId and EdgeId are sets of node and edge identifiers, and Label is set of

labels as defined in Definition 2.15 and Definition 2.16. Also, (R) in Nodes is used for rooted

nodes while (B) in Edges is used for bidirectional edges. Bidirectional edges may exist in rule

graphs but not in host graphs. In GP 2, we only need to define graphs in G(L) (including

G(S)), such that labels are always defined and nodes without additional information‘(B)’

represent unrooted nodes.

Example 2.5 (A GP 2 graph). Let G be a graph with VG = {1,2,3},EG = {e1, e2}, sG =
{e1 ↦ 1, e2 ↦ 1}, tG = {e1 ↦ 2, e2 ↦ 3}, lVG = {1 ↦ a,2 ↦ b,3 ↦ a + 2}, lEG = {e1 ↦ d, e2 ↦ e},
mV
G = {1 ↦ none,2 ↦ red,3 ↦ none},mE

G = {e1 ↦ none, e2 ↦ dashed}, and pG = {1 ↦ 0,2 ↦
1,3↦ 0}.

The definition of G tells us that G has three nodes named 1, 2, and 3, it has two edges named

e1 and e2, where e1 is an edge from node 1 to node 2, while e2 is an edge from node 1 to

node 3. Respectively, node 1, 2, and 3 are labelled with a, b, and a + 2, where node 2 is red

while the other two nodes has no colour. Edge e1 is labelled with d and has no mark, while

e2 is a dashed edge labelled with e. Node 2 is a rooted node, while the others are unrooted.

Graphically, G can be seen as the following graph:

a

1

b
2

a + 2
3

de

Syntactically in GP 2, G is written as follows:

∣ (1,a) (2[R],b#red) (3,a + 2) ∣ (e1,1,2,d) (e2,1,3,e#dashed)

2.1.3.2 Conditional rule schemata

Like traditional rules in graph transformation that use double-pushout approach, rules in

GP 2 (called rule schemata) consists of a left-hand graph, an interface graph, and a right-

hand graph. GP 2 also allows a condition for the left-hand graph. When a condition exists,

the rule is called a conditional rule schema.

Definition 2.18 (Rule schemata [11]). A rule schema r = ⟨L ← K → R⟩ comprises totally

labelled rule graphs L and R, a graph K containing only unlabelled nodes with undefined

34

2.1 Graph programming

rootedness, and inclusions K → L and K → R. All list expressions in L are simple (i.e. no

arithmetic operators, contains at most one occurrence of a list variable, and each occurrence

of a string sub-expression contains at most one occurrence of a string variable). Moreover,

all variables in R must also occur in L, and every node and edge in R whose mark is any

has a preserved counterpart item in L.

An unrestricted rule schema is a rule schema without restriction on expressions and marks

in its left and right-hand graph. ◻

Remark 2.19. Note that the left and right-hand graph of a rule schema can be rule graphs

or host graphs since a host graph is a special case of rule graphs. In GP 2, we only consider

rule schemata (with restrictions). In this thesis, we use unrestricted rule schemata to be able

to express the properties of the inverse of a rule schema.

In GP 2, a condition can be added to a rule schema. This condition expresses properties that

must be satisfied by a match of the rule schema. The conditions may express structural graph

conditions (e.g. the existence of an edge between two nodes), and also attribute conditions

(e.g. labels of a node in the graph). The variables occur in a rule schema condition must

also occur in the left-hand graph of the rule schema.

Definition 2.20 (Conditional rule schemata [11]). A conditional rule schema is a pair ⟨r,Γ⟩
with r a rule schema and Γ a condition that can be derived from Condition in the grammar

below:

Condition ::= (int ∣ char ∣ string ∣ atom) ‘(’Var‘)’

∣ List (‘=’ ∣ ‘!=’) List

∣ Integer (‘>’ ∣ ‘>=’ ∣ ‘<’ ∣ ‘<=’) Integer

∣ edge ‘(’ NodeId ‘,’ NodeId [‘,’ List [Mark]] ‘)’

∣ not Condition

∣ Condition (and ∣ or) Condition

∣ ‘(’ Condition ‘)’

Var ::= ListVar ∣ AtomVar ∣ IntVar ∣ StringVar ∣ CharVar

Mark ::= red ∣ green ∣ blue ∣ dashed ∣ any

such that all variables that occur in Γ also occur in the left-hand graph of r. ◻

The left-hand graph of a rule schema consists of a rule graph, while a morphism is a mapping

function from a host graph. To obtain a host graph from a rule graph, we can assign constants

for variables in the rule graph. For this, here we define assignment for labels.

In literature, such as [1], label assignment is defined as a mapping from label variables in a

rule graph to a list. Here, we also consider the mark any as a mark variable, which can be

mapped to a node/edge mark.

35

Chapter 2 Context

(NPO) ����(NPO)

Figure 2.8: Non-natural double-pushout

Definition 2.21 (Label assignment). Consider a rule graph L and the set X of all variables

occurring in L. For each x ∈X, let dom(x) denote the domain of x associated with the type of

x. A label assignment for L is a triple αL = ⟨αL, µV , µE⟩ where αL∶X → L is a function such

that for each x ∈ X, αL(x) ∈ dom(x), and µV ∶VL → MV /{none} and µE ∶EL → ME/{none}
are partial functions assigning a mark to each node and edge marked with any. ◻

For a conditional rule schema ⟨L ← K → R, Γ⟩ with the set X of all list variables, set Y

(or Z) of all nodes (or edges) whose mark is any, and label assignment αL, we denote by

Lα the graph L after the replacement of every x ∈ X with αL(x), every mV
L (i) for i ∈ Y

with µMV
(i), and every mE

L (i) for i ∈ Z with µME
(i). Then for an injective graph morphism

g ∶ Lα → G for some host graph G, we denote by Γg,α the condition that is obtained from Γ

by substituting αL(x) for every variable x, g(v) for every v ∈ VL, and g(e) for every e ∈ EL.

The truth value of Γg,α is required for the application of a conditional rule schema. In

addition, the application also depends on the dangling condition. Since a rule schema has an

unlabelled graph as its interface, a natural pushout, i.e. a pushout that is also a pullback,

is required in a rule schema application. This approach is introduced in [37] for unrooted

graph programming.

Note that we require natural double-pushout in direct derivation. We use a natural pushout

to have a unique pushout complement up to isomorphism in relabelling graph transformation

[37, 38]. In [11], a graph morphism preserves rooted nodes while here we require a morphism

to preserve unrooted nodes as well. We require the preservation of unrooted nodes to prevent

a non-natural pushout as can be seen in Figure 2.8 [29]. In addition, we need a natural

double-pushout because we want to have invertible direct derivations.

The natural double-pushout construction such that we have natural double-pushout is de-

scribed in [11, 29], that are:

1. To obtain D, remove all nodes and edges in g(L − K) from G. For all v ∈ VK

with lVK(v) =⊥ and mV
K(v) =⊥, define lVD(gV (v)) =⊥ and mV

D(gV (v)) =⊥. Also, de-

fine pD(gV (v)) =⊥ for all v ∈ VK where pK(v) =⊥.

2. Add all nodes and edges, with their labels and rootedness, from R − K to D. For

e ∈ ER −EK , sH(e) = sR(e) if sR(E) ∈ VR − VK , otherwise sH(e) = gV (sR(e)). Targets

are defined analogously.

36

2.1 Graph programming

3. For all v ∈ VK with lVK(v) =⊥ anf mV
K(v) =⊥, define lVH(gV (v)) = lVR(v) and mV

H(gV (v)) =
mV
R(v). Also, for the injective morphism R → H and v ∈ VK where pK(v) =⊥, define

pH(g∗V (v)) = pR(v). The resulting graph is H.

Direct derivations transform a host graph via a rule whose the left and right-hand graph

are totally labelled host graphs. However, a conditional rule schema contains a condition,

and its left or right-hand graph may not be a host graph. Hence, we need some additional

requirements for the application of a conditional rule schema on a host graph.

Definition 2.22 (Conditional rule schema application). Let us consider a conditional rule

schema r = ⟨L ← K → R, Γ⟩, and host graphs G,H. G directly derives r, denoted by

G⇒r,g H (or G⇒r H), if there exists a premorphism g ∶ L → G and a label assignment αL

such that:

(i) g ∶ Lα → G is an injective morphism,

(ii) Γg,α is true,

(iii) G⇒rg,α,g H.

A rule schema r (without condition) can be considered as a conditional rule schema ⟨r,true⟩,
which means in its application, the point (ii) in the definition above is a valid statement for

every unconditional rule schema r.

Syntactically, a conditional rule schema in GP 2 is written as follows:

RuleDecl ::= RuleId ‘(’ [VarList {‘:’ VarList}] ‘;’ ‘)’

Graphs Interface [where Condition]

VarList ::= Variable {‘,’ Variable} ‘:’ Type

Graphs ::= ‘[’ Graph ‘]’ ‘=>’ ‘[’ Graph ‘]’

Interface ::= interface ‘=’ ‘{’ [NodeId {‘,’ NodeId}]‘}’

Type ::= int ∣ char ∣ string ∣ atom ∣ list

where Condition is the set of GP 2 rule conditions as defined in Definition 2.20 and Variable

represents variables of all types. Graph represent rule graphs, where bidirectional edges may

exist. Bidirectional edges and any-marks are allowed in the right-hand graph if there exist

preserved counterpart item in the left-hand graph.

A rule schema with bidirectional edges can be considered as a set of rules with all possible

direction of the edges. For example, a rule schema with one bidirectional edge between node

u and v can be considered as two rule schemata, where one rule schema has an edge from u

to v while the other has an edge from v to u.

37

Chapter 2 Context

2.1.3.3 Syntax and operational semantics of graph programs

A GP 2 graph program consists of a list of three declaration types: rule declaration, main

procedure declaration, and other procedure declaration. A main declaration is where the

program starts from so that there is only one main declaration allowed in the program, and

it consists of a sequence of commands. For more details on GP 2 programs’ abstract syntax,

see Figure 2.9, where RuleId and ProcId are identifiers that start with lower case and upper

case respectively.

Prog ::= Decl {Decl}
Decl ::= MainDecl ∣ ProcDecl ∣ RuleDecl
MainDecl ::= Main ‘=’ ComSeq
ProcDecl ::= ProcId ‘=’ Comseq
ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall ∣ ProcCall

∣ if ComSeq then ComSeq [else ComSeq]
∣ try ComSeq [then ComSeq] [else ComSeq]
∣ ComSeq ‘!’
∣ ComSeq or ComSeq
∣ ‘(’ ComSeq ‘)’
∣ break ∣ skip ∣ fail

RuleSetCall ::= RuleId ∣ ‘{’ [RuleId { ‘,’ RuleId}] ‘}’
ProcCall ::= ProcId

Figure 2.9: Abstract syntax of GP 2 programs

When executed, rule schemata that exist in the program are applied to the input graph.

If a rule schema can not be applied to the graph, it yields failure. A program can also

execute some commands sequentially by using ‘;’. There also exist if and try as branching

commands, where the program will execute command after then when the condition is

satisfied or else if the condition is not satisfied. However, as we can see in the syntax of GP

2 in Figure 2.9, we have command sequence as the condition of branching commands instead

of a Boolean expression. Here, we say that the condition is satisfied when the execution of

the condition on the initial graph terminates with a result graph (that is, it neither diverges

nor fails) and it is not satisfied if the execution yields failure.

The difference between if and try lies in the host graph that is used after the evaluation of

conditions. For if, the program will use the host graph that is used before the examination of

the condition. Otherwise for try, if the condition is satisfied, then the program will execute

the graph obtained from applying the condition or the previous graph if the condition is not

satisfied. Other than branching commands, there is also a loop command ‘!’ (read as “as

long as possible”). It executes the loop-body as long as the command does not yield failure.

Like a loop in other programming languages, a !-construct can result in non-termination of

a program.

38

2.1 Graph programming

Configurations in GP 2 represents a program state of program execution in any stage. Con-

figurations are given by (ComSeq×G(L)) ∪ G(L) ∪ (fail)), where G(L) consists of all host

graphs. This means that a configuration consists either of unfinished computations, repre-

sented by command sequence together with current graph; only a graph, which means all

commands have been executed; or the special element fail that represents a failure state.

A small step transition relation → on configuration is inductively defined by inference rules

shown in Figure 2.10 and Figure 2.11 where R is a rule set call; C,P,P ′, and Q are command

sequences; and G and H are host graphs.

[Call1]
G⇒R H

⟨R,G⟩→H
[Call2]

G⇏R

⟨R,G⟩→ fail

[Seq1]
⟨P,G⟩→ ⟨P ′,H⟩

⟨P ;Q,G⟩→ ⟨P ′;Q,H⟩ [Seq2]
⟨P,G⟩→H

⟨P ;Q,G⟩→ ⟨Q,H⟩

[Seq3]
⟨P,G⟩→ fail

⟨P ;Q,G⟩→ fail
[Break]⟨break;P,G⟩→ ⟨break,G⟩

[If1]
⟨C,G⟩→+ H

⟨if C then P else Q,G⟩→ ⟨P,G⟩ [If2]
⟨C,G⟩→+ fail

⟨if C then P else Q,G⟩→ ⟨Q,G⟩

[Try1]
⟨C,G⟩→+ H

⟨try C then P else Q,G⟩→ ⟨P,H⟩ [Try2]
⟨C,G⟩→+ fail

⟨try C then P else Q,G⟩→ ⟨Q,G⟩

[Loop1]
⟨P,G⟩→+ H

⟨P !,G⟩→ ⟨P !,H⟩ [Loop2]
⟨P,G⟩→+ fail

⟨P !,G⟩→H

[Loop3]
⟨P,G⟩→∗ ⟨break,H⟩

⟨P !,G⟩→H

Figure 2.10: Inference rules for core commands [2]

[Or1] ⟨P or Q,G⟩→ ⟨P,G⟩ [Or2] ⟨P or Q,G⟩→ ⟨Q,G⟩

[Skip1] ⟨skip,G⟩→ G [Fail] ⟨fail,G⟩→ fail

[If3] ⟨if C then P,G⟩→ ⟨if C then P else skip,G⟩

[Try3] ⟨try C then P,G⟩→ ⟨try C then P else skip,G⟩

[Try5] ⟨try C else Q,G⟩→ ⟨try C then skip else Q,G⟩

[Try4] ⟨try C,G⟩→ ⟨try C then skip else skip,G⟩

Figure 2.11: Inference rules for derived commands [2]

The semantics of programs is given by the semantic function J K that maps an input graph

G to the set of all possible results of executing a program P on G. The application of JP K

to G is written JP KG. The result set may contain proper results in the form of graphs or the

special values fail and ⊥. The value fail indicates a failed program run while ⊥ indicates

a run that does not terminate or gets stuck. Program P can diverge from G if there is an

39

Chapter 2 Context

infinite sequence ⟨P,G⟩ → ⟨P1,G1⟩ → ⟨P2,G2⟩ → Also, P can get stuck from G if there

is a terminal configuration ⟨Q,H⟩ such that ⟨P,G⟩→∗ ⟨Q,H⟩.

Definition 2.23 (Semantic function [2]). The semantic function J K: ComSeq → (G(L) →
2G(L)∪{fail,�}) is defined by

JP KG = {X ∈ (G(L) ∪ {fail})∣⟨P,G⟩→+ X} ∪ {� ∣ P can diverge or get stuck from G}.

A program C can get stuck only in two situations, that is either P contains a command if A

then P else Q or try A then P else Q such that A can diverge from a host graph G,

or P contains a loop B! whose body B can diverge from a host graph G. The evaluation of

such commands gets stuck because none of the inference rules for if-then-else, try-then-else

or looping is applicable. Getting stuck always signals some form of divergence.

We sometimes need to prove that a property holds for all graph programs. For this, we use

structural induction on graph programs by having a general version of graph programs. That

is, ignoring the context condition of the command break such that it can appear outside a

loop. However, when break occur outside the context condition, we treat it as a skip.

Definition 2.24 (Structural induction on graph programs). Proving that a property Prop

holds for all graph programs by induction, is done by:

Base case.

Show that Prop holds for R = {r1, . . . , rn}, where n ≥ 0

Induction case.

Assuming Prop holds for graph programs C,P, and Q, show that Prop

also holds for:

1. P ;Q,

2. ifC thenP elseQ,

3. tryC thenP elseQ, and

4. P !.

The commands fail and skip can be considered (respectively) as a call of the ruleset R = {}
and a call of the rule schema where the left and right-hand graphs are the empty graphs.

Also, the command P or Q can be replaced with the program

if (Delete!; {nothing,add}; zero)thenP elseQ

, where Delete is a set of rule schemata that deletes nodes and edges, including loops.

nothing is the rule schema where the left and right-hand graphs are the empty graphs, add

is the rule schema where the left-hand graph is the empty graph and the right- hand graph

is a single 0-labelled unmarked and unrooted node, and zero is a rule schema that matches

with a 0-labelled unmarked and unrooted node.

As mentioned before, a graph program’s execution may yield a proper graph, failure, or

diverge/get stuck. The last outcome only may happen when a loop exists in the program. In

40

2.2 Verification of graph programs

some cases, we may want to disregard the possibility of diverging or getting stuck such that

we only consider loop-free graph programs. To show that a property holds for a loop-free

program, we also introduce structural induction on loop-free programs.

Definition 2.25 (Structural induction on loop-free programs). Proving that a property Prop

holds for all loop-free programs by induction, is done by:

Base case.

Show that Prop holds for R = {r1, . . . , rn}, where n ≥ 0

Induction case.

Assuming Prop holds for loop-free programs C,P, and Q, show that

Prop also holds for:

1. P or Q,

2. P ;Q,

3. ifC thenP elseQ, and

4. tryC thenP elseQ.

2.2 Verification of graph programs

Poskitt and Plump have studied reasoning about graph programs since 2010 [13–16]. They

use Hoare logic style verification to reason about the programs. They introduced E-condition

and M-condition to express pre- and post-condition a graph in first-order logic and monadic

second-order logic. While E-condition can express first-order properties of GP 2 graphs, M-

condition can express monadic second-order properties of graphs without attribute (not GP 2

graphs). Apart from reasoning about graph programs, Hoare logic verification has also been

used in verification of conventional languages such as Java [39–41].

2.2.1 Verification with Hoare logic

Hoare logic is one approach to the verification of the correctness of programs. Central of

Hoare logic are Hoare triples {pre} P {post} that explain the behaviour of program P in

executing programs on a state satisfying a precondition pre. In this case, the result of the

execution must satisfy the postcondition post. For expressing pre- and postconditions, we

can use assertions languages such as arbitrary mathematical languages or English.

Axioms and inference rules are included in Hoare logic. Axioms serve as a starting point of

the verification for further reasoning. For example, let consider the program skip, that is a

program that terminates immediately without altering program states. The following axiom

41

Chapter 2 Context

would be an obvious axiom for the program:

{pre} skip {pre}

It is obvious because when we execute skip to a state satisfying pre, the program terminates

without doing anything to the state so that pre still holds after the execution.

Unlike axioms, inference rules can not stand on one triple alone. We need to proof other

inference rules and axioms to derive a triple from inference rule. For example, we want to

have inference rule about P ;Q, that is a program that executes P first and then executes Q.

We might need to use other inference rules, axioms, or complete proofs about P and Q that

are individually relative to some midpoint as follows:

{pre} P {mid} {mid} Q {post}
{pre} P ;Q {post}

Hoare triples are used with proof trees as defined in Definition 2.26. Basically, a proof tree

consists of axioms and inference rules, collectively referred to as “proof rules”.

Definition 2.26. Proof tree [1]] If {c} P {d} is an instance of an axiom X then

X {c} P {d}

is a proof tree. If {c} P {d} can be instantiated from the conclusion of an inference rule X,

and there are proof trees T1, . . . , Tn with conclusions that are instances of the n premises of

X, then

X
T1 . . . Tn
{c} P {d}

is a proof tree.

To define what it means for Hoare triples {pre} P {post} to be correct in reasoning about

graph programs, Poskitt in his thesis [1] defines three notions of correctness, that are: partial

correctness, weak total correctness, and total correctness.

Partial correctness is only used to consider the graphs that might result without considering

that the program might diverge, get stuck, or fail so no graphs might occur as a result. So

with this correctness, we can not guarantee the absence of divergence and executions that get

stuck and the absence of failure. Weak total correctness then covers the absence of divergence

and getting stuck, and total correctness completes it with the absence of failure.

42

2.2 Verification of graph programs

Definition 2.27 (Partial correctness [1]). Let c and d be assertions, P be a graph program,

and L be the set of lists (see Definition 2.17). P is partially correct with respect to precon-

dition c and postcondition d if for every graph G ∈ G(L), G satisfies c implies H satisfies d

for every H in JP KG.

Definition 2.28 (Weak total correctness [1]). Let c and d be assertions and P be a graph

program. P is weakly totally correct with respect to a precondition c and postcondition d if P

is partially correct with respect to precondition c and postcondition d and if for every graph

G ∈ G(L) such that G satisfying c, there is no infinite sequence ⟨P,G⟩→ ⟨P1,G1⟩→ ⟨P1,G1⟩→
. . . (divergence), and there is no terminal configuration ⟨Q,H⟩ such that ⟨P,G⟩ →∗ ⟨Q,H⟩
(getting stuck).

Definition 2.29 (total correctness [1]). Let c and d be assertions and P be a graph program.

P is totally correct with respect to a precondition c and postcondition d if P is weakly totally

correct with respect to precondition c and postcondition d and if for every graph G ∈ G(L)
such that G satisfying c, there is no derivation ⟨P,G⟩→∗ fail.

2.2.2 Assertions for graph programs

In his thesis, Poskitt expresses pre- and postcondition using nested conditions with expression

(E-Condition). It is used to reason about the structural properties of graphs. The following

is the simplest form of E-condition:

∃(C)

where C is a graph labelled with expressions. Graph G in G(L) satisfies such an E-condition

when there exists an assignment α from variables in C such that there exists injective mor-

phism from Cα to G. We can also use Boolean negation ¬ to express that no such morphism

exists. So if we want to express ”the graph is loop-free”, we can use the following E-condition:

¬∃(x

y

)

Definition 2.30 (E-condition [14]). An E-condition c over a graph P is of the form true

or ∃(a∣γ, c′), where a ∶ P → C is an injective graph morphism with P,C ∈ G(Exp), γ is an

assignment constraint, and c′ is an E-condition over C. Boolean formulae over E-conditions

over P yield E-conditions over P , that is, ¬c and c1 ∧ c2 are E-conditions over P if c, c1, c2

are E-conditions over P .

More examples of E-condition can be seen in Table 2.1. In the examples, when the domain

of morphism a ∶ P → C can unambiguously be inferred, only the codomain C is written. An

43

Chapter 2 Context

E-condition over a graph morphism whose domain is the empty graph is referred to as an E-

constraint.

Table 2.1: E-condition examples

E-condition is read

c = ∃(x yk) there exists at least one non-looping
edge

d = ∃(x yk — type(x, y)=int∧x < y) there exists at least one pair of adja-
cent integer-labelled nodes, of which
the label of the target node is larger
than that of the source node

e = ¬∃(x
k

i

) there does not exist a node that is
attached to more than one loop

f = ∀(x1 —type(x)=int,¬∃(x1 yk)) no integer-labelled node has an out-
going edge to another node (with
any label)

2.2.3 Hoare calculus for graph programs

Proof rules for partial correctness used by Poskitt and Plump are written in Figure 2.12.

Here, Pre[r, c] is an operation to get the weakest liberal precondition relative to r and c,

that is the weakest condition on a graph such that application of r to the graph will result

in a graph that satisfies c. The use of liberal precondition instead of precondition is used for

partial correctness because the existence of a result graph is not proven in the calculus. The

transformation itself is done by:

1. forming disjunction of E-conditions over the right-hand graph of rule r accounting for

the possible ways in which assertion c and comatches of r might overlap,

2. shift this e-condition over to the left-hand graph of r, and

3. nest the obtained e-condition to obtain an E-constraint such that it universally quan-

tified over all possible matches of r [1].

In addition, we also have App(R) which formalises the applicability of R. It can take a set of

conditional rule schemata R as input and transform it into an E-constraint expressing that

at least one rule schema in the set is applicable. In other words, graph G satisfying App(R)
if there exists direct derivation G⇒R H for graph H, and G satisfying ¬App(R) if there is

no such direct derivation (i.e. applying R to G will lead failure).

Example 2.6. (Pre[r, c]).
Let consider the following rule schema:

44

2.2 Verification of graph programs

[ruleapp]wlp {Pre[r, c] ∨ ¬App({r})} r {c} [ruleapp] {Pre[r, c]} r {c}

[nonapp] {¬App({r})} r {false} [ruleset]
{c} r {d} for each r ∈R

{c} R {d}

[comp]
{c} P {e} {e} P {d}

{c} P ;Q {d} [!]
{inv} R {inv}

{inv} R! {inv ∧ ¬App(R)}

[cons]
c implies c′ {c′} P {d′} d′ implies d

{c} P {d}

[if]
{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}

{c} if R then P else Q {d}

[try]
{c ∧App(R)} R;P {d} {c ∧ ¬App(R)} Q {d}

{c} try R then P else Q {d}

Figure 2.12: Partial correctness rules with E-constraints for core commands[1]

init(x:atom)

x

1

⇒ x ∶ 0
1

and let c denote the E-constraint

∀(a

1

, ∃(a

1

∣ atom (a)) ∨ ∃(a

1

∣a = b ∶ c and atom(b) and c >= 0))

specifying that ”every (unmarked) node is labelled by either an atom or a list comprising an

atom followed by a natural number”.

Recall the first step in transforming Pre[r, c]. From this step, we get condition that expresses

possible ways in which assertion c and comatches of r might overlap, that is:

1. every node that is not in the image of the right-hand graph under the the morphism is

either labelled by an atom or an atom followed by a natural number, and

2. the node in the image of the right-hand graph under the morphism is either labelled

by an atom or an atom followed by a natural number.

Or in E-condition:

45

Chapter 2 Context

∀(x ∶ 0

1

→ x ∶ 0

1

a

2

,∃(x ∶ 0

1

a

2

∣ atom(a)) ∨∃(x ∶ 0

1

a

2

∣a = b ∶ c and atom(b) and c >= 0))

∧ ∀(x ∶ 0

1

→ x ∶ 0

1

,∃(x ∶ 0

1

∣ atom(x ∶ 0)) ∨∃(x ∶ 0

1

∣x ∶ 0 = b ∶ c and atom(b) and c >= 0))

Then by shifting the conditions over to the left hand graph of the rule, we get:

∀(x

1

→ x

1

a

2

,∃(x

1

a

2

∣ atom(a)) ∨∃(x

1

a

2

∣a = b ∶ c and atom(b) and c >= 0))

∧ ∀(x

1

→ x

1

,∃(x

1

∣ atom(x ∶ 0)) ∨∃(x

1

∣x ∶ 0 = b ∶ c and atom(b) and c >= 0))

Finally, by doing the last step of the transformation, we get:

Pre[r, c] = ∀(x

1

∣ atom(x),

∀(x

1

→ x

1

a

2

,∃(x

1

a

2

∣ atom(a)) ∨∃(x

1

a

2

∣a = b ∶ c and atom(b) and c >= 0))

∧ ∀(x

1

→ x

1

,∃(x

1

∣ atom(x ∶ 0)) ∨∃(x

1

∣x ∶ 0 = b ∶ c and atom(b) and c >= 0)))

Example 2.7. (App(R)).
Let consider the following rule schema:

reduce(a,b,c:int)

a

1

b
c

⇒ a

1

where a < b and b < c

For the rule reduce above, the rule is applicable to a graph when there exists two adjacent

nodes and the target node is not incident to any other nodes (otherwise, we will get a dangling

condition because of the removal of the target node). Therefore App({reduce}) is true if

the constraint is satisfied. We can also express this in the following E-constraint:

∃(a

1

b

2

c ∣a < b and b < c, ¬∃(a

1

b

2
c

x

) ∧ ¬∃(a

1

b

2
c

x

) ∧ ¬∃(a

1

b

2

x
c y)

∧ ¬∃(a

1

b

2

x
c y) ∧ ¬∃(a

1

b

2

c
x)).

2.3 Monadic second-order logic for graphs

Nested conditions [26] (also E-conditions as its extension), can also be translated to first-order

logic [17]. In first-order logic, we may have quantification over a single element. Monadic

46

2.3 Monadic second-order logic for graphs

second-order formulas are often considered as an extension of first-order logic. It is a a frag-

ment of second-order logic, where the second-order quantification is limited to quantification

over sets.

In standard logic, a formula consists of vocabulary. A vocabulary σ is a collection of in-

dividual/constant symbols, variable symbols, relation/predicate symbols, function symbols,

connectives, the quantifier symbols, and auxiliary symbols, where every relation and func-

tion symbol has an associated arity [42, 43]. When associated with a structure (e.g. graphs),

formulas the three classes of individual, relation, and functional symbols should be one-one

correspondence should be correspondence with the designated individuals, relations, and

functions of the structure [43].

Let us consider a vocabulary σ, term and formulas of the monadic second-order predicate

calculus over σ is defined inductively as follow [42]:

• Every (first-order and second-order) variable x is a term

• Every constant symbol c is a term

• If t1, . . . , tk are terms and f is a k-ary function symbol, f(t1, . . . , tk) is a term

• If t1 and t2 are terms, t1 = t2 is an (atomic) formula

• If t1, . . . , tk are terms and f is a k-ary relation symbol, f(t1, . . . , tk) is an (atomic)

formula

• If ψ1 and ψ2 are formulas, ψ1 ∧ ψ2, ψ1 ∨ ψ2, and ¬ψ1 are formulas

• If ψ is a formula and x is a (first-order or second-order) variable, ∃x(ψ) and ∀x(ψ)
are formulas

For formulas φ and ψ, the shorthand notation φ⇒ ψ and φ⇔ ψ are often used for ¬φ∨ψ and

(φ⇒ ψ) ∧ (ψ ⇒ φ) respectively. A variable can be free or bounded. A variable is bounded

if there is a quantifier bind the variable. Otherwise, it is a free variable.

Definition 2.31 (Free variables [44]). Let each t, t1, and t2 be a term (i.e. a variable,

constant, or function). The set Free(t) of free variables of t is defined by recursion as

follows:

1. Free(t) = {t}, if t is a variable;

2. Free(t) = {}, if t is a constant;

3. Free(t) = Free(t1, . . . , tn), if t is a function with argument t1, . . . , tn;

47

Chapter 2 Context

4. Free(t) = Free(t1) ∪ Free(t2), if t is in the form t1 ⊕ t2 for ⊕ ∈ {+,−,∗, /, ., ∶}

Then, let c, c1, and c2 be formulas. The set Free(c) of free variables of c is defined by

recursion as follows:

1. Free(c) = Free(t1) ∪ . . . ∪ Free(tn), if c is a predicate with arguments t1, . . . , tn;

2. Free(c) = Free(c1) ∪ Free(c2), if c is in the form c1 ⊖ c2 for a connective symbol ⊖;

3. Free(¬c) = Free(c);

4. Free(c) = Free(c1) − {x}, for a variable x, if c is in the form ∃x(c1) or ∀x(c1);

A formula c is closed if Free(c) = ∅. A closed formula is also called a sentence. A formula

without quantifiers is called open. ◻

Definition 2.32 (Bound Variables [44]). Let c, c1, and c2 be formulas. The set Bound(c)
of bound variables in c is given by:

1. Bound(c) = ∅, if c is a predicate;

2. Bound(c) = Bound(c1) ∪Bound(c2), if c is in the form c1 ⊗ c2 for a connective ⊗;

3. Bound(¬c) = Bound(c);

4. Bound(c) = Bound(c1) ∪ {x}, for a variable x, if c is in the form ∃x(c1) or ∀x(c1);

The sets Free(c) and Bound(c) of a formula c are not always be disjoint. They may also have

the same variable as an element of the sets. See the following examples for more intuition

about free and bound variable.

Next, we define the substitution of a term for a free variable in a term or a formula. The

definition is similar to [44]

Definition 2.33 (Substitutions [44]). Let x be a variable and s, s1, s2 and t be terms where

t is in domain of x based on Table 3.1. The result of substituting t in s for a variable x,

denoted by s[x↦t] is defined recursively as follows:

1. s[x↦t] = if y ≠ x then y else t, when s is a variable y;

2. s[x↦t] = c, when s is a constant c;

3. s[x↦t] = f(t), when s is a function f with argument x;

48

2.4 Summary

4. s[x↦t] = s[x↦t]1 ⊕ s[x↦t]2 , when s is in the form s1 ⊕ s2 for ⊕ ∈ {+,−,∗, /, ., ∶}.

Then, let c, c1, and c2 be formulas. The set c[x↦t] is defined recursively as follows:

1. c[x↦t] = c, if c is true or false;

2. c[x↦t] = p(s[x↦t]1 , . . . , s
[x↦t]
n), if c is a predicate p with argument s1, . . . , sn;

3. c[x↦t] = c[x↦t]1 ⊗ c[x↦t]2 , if c is in the form c1 ⊗ c2 for a connective ⊗;

4. (¬c)[x↦t] = ¬c[x↦t];

5. c[x↦t] = if x ≠ y then ∃y(c[x↦t]1) else ∃y(c1), for a variable y, if c is in the form ∃y(c1);

6. c[x↦t] = if x ≠ y then ∀y(c[x↦t]1) else ∀y(c1), for a variable y, if c is in the form ∀y(c1);

Courcelle and Engelfriet in [45] define some classes of monadic second-order formulas. Some

of them are MS1, MS2, C2MS. MS1 is the class of monadic second-order formulas with

quantification over nodes, while MS2 has quantification over edges. On the other hand, C2MS

has an additional cardinality predicate, known as counting monadic second-order formulas.

Both first-order logic and monadic second-order logic are known to be undecidable [42, 45] in

general. However, there are studies to answer the satisfiability problem of monadic second-

order logic in some classes [45–47]. Courcelle shows that if the property of interest can be

expressed in MS2 logic, then parameterising by the combination of the treewidth of G and the

size of the formula φ, it can be determined in linear time whether the graph has the property

[45, 48]. Moreover, Seese in [46] shows the converse, that if a set of finite, simple, undirected

graphs has a decidable MS2 then it has bounded tree-width. Also, Courcelle in [47] shows

that if the class has a decidable C2MS-satisfiability problem, it has bounded clique-width.

2.4 Summary

In this chapter, we have discussed some literature that becomes a basic theory of this thesis.

We presented the theory about graph transformation systems and introduce the graph pro-

gramming language GP 2. Verification of GP 2 graph programs has been studied by Poskitt

and Plump since 2010 [14–16, 49]. They introduce E-conditions, which is an extension of

nested conditions [17, 26], to express first-order properties of GP 2 graphs and use it in graph

program verification with Hoare calculus. They also define construction to obtain weakest

liberal precondition from a given postcondition and rule schema, which can be used to provide

an axiom in Hoare-style verification.

49

Chapter 2 Context

However, there are some drawback from approach:

• E-conditions are limited to express first-order properties of GP 2 graphs; they can not

express the existence of a path or connectedness

• The construction of weakest liberal precondition does not consider rootedness, wild-

cards (the any-marks), and the command break

• The proof calculi are limited to graphs programs whose every loop body and the con-

dition of every branching command is a rule-set call; so that it can not handle nested

loops

As a first step to tackle the first problem, Poskitt and Plump [16] introduce M-conditions to

express monadic second-order properties of graphs without attributes. However, since GP 2

graphs are attributed, the problem of expressing monadic second-order properties of GP 2

graphs is still an open problem in the literature.

This chapter also discusses the monadic second-order logic. Here, we choose to use standard

logic because it may be useful for programmers who are not familiar with morphisms. In

addition, the vast literature on standard logic may give us an advantage in the future because

we may be able adopt the theories to GP 2 environment.

50

Chapter 3

Monadic second-order logic for graph pro-

grams

This chapter defines monadic second-order formulas that are used as assertions in verification

about graph programs later in Chapter 7. The formulas can be used to express properties

about graphs that are used in GP 2. We can show that a graph has properties expressed by

a formula by showing satisfaction of the formula in the graph.

3.1 Monadic second-order formulas

In this section, we define monadic second-order (MSO) formulas by presenting a syntax. Our

MSO formulas are in the form of standard logic, unlike in [1, 16, 26] where assertions for

graph program verification are in the form of nested conditions. Similar to other languages

in standard logic, our monadic second-order language has logical connectives, variables, con-

stants, auxiliaries, predicates, and functions. However, here we consider GP 2 attributes and

syntax when we define the language so that we can express every property of a GP 2 graph

that are essential in a rule application.

Here, we use logical connectives that are commonly used in standard logic, that are ∧ (and),

∨ (or), and ¬ (not), with logical constants true and false, equality symbols =,≠,>,≥,<,≤,⊂,⊆,

and quantifiers ∃v,∃e,∃l,∃V,∃E, which are reserved for node, edge, label, node set, and edge

set variables respectively. We also use some constants, which are label constants (all elements

in L and label empty), also mark constants none, red,green,blue, green,dashed,grey, and any.

Variables are typed as defined in Definition 3.1. For predicates, we use int, char, string, atom,

edge,path, root as described in Definition 3.4. We also have functions s (source), t (target),

lv (node label), le (edge label), mv (node mark), me (edge mark), indeg, outdeg, length,

card, integer operators +,−,∗, /, label operator ∶ (list concatenation), and string operator .

(concatenation) as described in Definition 3.2.

51

Chapter 3 Monadic second-order logic for graph programs

Definition 3.1 (Variables). A variable is a symbol used to represent an arbitrary element of

a set. The set X is called the domain of a variable x, denoted by dom(x), if x representing

an element of X. Monadic second-order variables are divided into nine categories, based

on their domains, as can be seen in Table 3.1. The node, edge, node-set, edge-set, and list

variables are pairwise distinct, while list, atom, integer, string, and char variables follow the

hierarchy based on their domain, as in GP 2 labels.

Variables in categories SetNodeVar and SetEdgeVar are denoted by a single uppercase letter

that may be followed by an integer as a subscript. On the other hand, we use a single

lowercase letter, which may also be followed by a subscript, to denote variables in other

categories. ◻

Table 3.1: Categories of variables and their domain on a graph G

kind of variables domain

NodeVar VG
SetNodeVar 2VG

EdgeVar EG
SetEdgeVar 2EG

ListVar (Z ∪ (Char)∗)∗
AtomVar Z ∪Char∗

IntVar Z
StringVar Char∗

CharVar Char

We differentiate variables in nine categories for our formulas, which are first-order variables

for nodes, edges, and labels (where labels are typed as in GP 2 labels), and second-order

variables (set variables) for nodes and edges. We do not have set variables for labels since we

have not find its significant effect in expressing graph properties. Moreover, graphs in GP 2

have a finite set of nodes and edges, but the set of labels is infinite.

A node, edge, or label of a graph can be represented by a variable or a function. In our

formulas, functions we use are functions that are used in GP 2 rule labels, rule schema

conditions, and the definition of graphs. In addition, we use a cardinality function to be able

to express more properties of graphs. In [50], counting monadic second-order formulas was

introduced. The formulas have a predicate to express the cardinality (i.e. the number of

elements) of a set in modulo. Here, we use more general expression to express the cardinality

of a set. That is, by using the function card(X) for a node or edge-set variable X. The

function returns the number of elements in the set represented by X.

Definition 3.2 (Functions). A function in monadic second-order formula may represent a

node, a label, or a list. The following are functions used in the formulas:

1. Source and target functions s(x) and t(x) representing nodes, where x is an edge variable

52

3.1 Monadic second-order formulas

2. Node and edge label functions lv(y) and le(x) representing lists, where x is an edge

variable and y is a node variable or a source/target function

3. Node and edge mark functions mv(y) and me(x) representing marks, where x is an edge

variable and y is a node variable or a source/target function

4. Degree functions indeg(y) and outdeg(y) representing integers, where y is a node vari-

able or a source/target function

5. Length function length(z) representing integer, where z is a list variable (or an atom,

integer, string, or char variable)

6. Cardinality function card(X) representing integer, where X is a node-set or edge-set

variable

7. Integer operators z1 + z2, z1 − z2, z1 ∗ z2, and z1/z2 representing integers, where each z1

and z2 can be an integer variable or a function representing an integer

8. String concatenation operator z1 + z2 representing string, where each z1 and z2 can be

a string variable or a function representing a string

9. List concatenation operator z1 ∶ z2 representing list, where each z1 and z2 can be a list

variables or a function representing a list

In standard logic, as described in Chapter 2, other than the formula true and false, predicates

are usually used for atom formulas. Here, we use predicates that are used in conditional rule

schemata. In addition, we use a rootedness predicate to express rootedness of nodes, path

predicate to express the existence of a directed path (see Definition 3.3), and an element

predicate to express the connection between a variable or function representing a node (or

edge) with a node (or edge) set variable.

Definition 3.3 (Directed path [51]). A directed path (with length n ≥ 0 from node a to node

b in a directed graph G is a sequence of edges e1, . . . , en in G, where sG(e1) = a, sG(en) = b,
and for every i = 1, . . . , n − 1, tG(ei) = sG(ei+1). The empty set defines a path from a to a,

and a path of length n ≥ 1 from a to a is called a cycle.

Definition 3.4 (Predicates). A predicate can represent a Boolean value (true or false). The

predicates used in monadic second-order formulas are:

1. Character predicate char(x), where x is a list variable

2. String predicate string(x), where x is a list variable

3. Integer predicate int(x), where x is a list variable

53

Chapter 3 Monadic second-order logic for graph programs

4. Atom predicate atom(x), where x is a list variable

5. Rootedness predicate root(y), where y is a node variable or a source/target function

6. Edge predicate edge(y1, y2), edge((y1, y2, l), edge((y1, y2,m), or edge((y1, y2, l,m), where

y1 and y2 are node variables or source/target functions, l is a list constant, list variable,

or function representing a list, while m is a mark constant

7. Path predicate path(y1, y2) or path(y1, y2,Z), where y1 and y2 are node variables or

source/target functions, and Z is an edge-set variable

8. Element predicates y ∈ Y and z ∈ Z, where y is a node variable or a source/target func-

tion, z is an edge variable, Y is a node-set variable, and Z is an edge-set variable.

From the logical connectives, variables, constants, auxiliaries, predicates, and functions we

have, we then define monadic second-order formulas as an abstract syntax as can be seen in

Figure 3.1. In the syntax, Digit and Character are defined as in Definition 2.15: Character

is the set of all printable characters except ‘”’ (i.e. ASCII characters 32, 33, and 35-126),

and Digit is the digit set {0, . . . ,9}.

For brevity, we write c⇒ d for ¬c∨ d, c⇔ d for (c⇒ d)∧ (d⇒ c), ∀Vx(c) for ¬∃vx(¬c), and

similarly with ∀ex(c),∀lx(c),∀VX(c), and ∀Yx(c). We also sometimes write ∃vx1, . . . , xn(c)
for ∃vx1(∃vx2(...∃vxn(c) . . .)) (also for other quantifiers). Also, we define ’term’ as the set of

variables, constants, and functions in MSO formulas.

Definition 3.5 (Terms). A term is a component of a monadic second-order formula that

represents a node, an edge, a mark, or a list. In monadic second-order formulas, terms are

defined as below:

1. every variable is a term representing an element of its domain

2. every constant is a term representing itself

3. source and target functions are terms representing nodes

4. label functions and list concatenation operator are terms representing lists

5. mark functions are terms representing marks

6. degree functions, length function, cardinality functions, and integer operators are terms

representing integers

7. String concatenation operator is a term representing a string

54

3.1 Monadic second-order formulas

Formula ::= true ∣ false ∣ Elem ∣ Cond ∣ Equal
∣ Formula (‘∧’ ∣ ‘∨’) Formula ∣ ‘¬’Formula ∣ ‘(’Formula‘)’
∣ ‘∃v’ NodeVar ‘(’Formula‘)’
∣ ‘∃e’ EdgeVar ‘(’Formula‘)’
∣ ‘∃l’ (ListVar) ‘(’Formula‘)’
∣ ‘∃V’ SetNodeVar ‘(’Formula‘)’
∣ ‘∃E’ SetEdgeVar ‘(’Formula‘)’

Number ::= Digit {Digit}
Elem ::= Node (‘∈’ ∣ ‘∉’) SetNodeVar ∣ EdgeVar (‘∈’ ∣ ‘∉’) SetEdgeVar
Cond ::= (int ∣ char ∣ string ∣ atom) ‘(’Var‘)’

∣ Lst (‘=’ ∣ ‘≠’) Lst
∣ Int (‘>’ ∣ ‘>=’ ∣ ‘<’ ∣ ‘<=’) Int
∣ edge ‘(’ Node ‘,’ Node [‘,’ Label] [‘,’ EMark] ‘)’
∣ path ‘(’ Node ‘,’ Node [‘,’ SetEdgeVar] ‘)’
∣ root ‘(’ Node ‘)’

Var ::= ListVar ∣ AtomVar ∣ IntVar ∣ StringVar ∣ CharVar
Lst ::= empty ∣ Atm ∣ Lst ‘:’ Lst ∣ ListVar ∣ lv ‘(’Node‘)’ ∣ le ‘(’EdgeVar‘)’
Atm ::= Int ∣ String ∣ AtomVar
Int ::= [‘-’] Number ∣ ‘(’Int‘)’ ∣ IntVar

∣ Int (‘+’ ∣ ‘-’ ∣ ‘*’ ∣ ‘/’) Int
∣ (indeg ∣ outdeg) ‘(’Node‘)’
∣ length ‘(’AtomVar ∣ StringVar ∣ ListVar‘)’
∣ card‘(’(SetNodeVar ∣ SetEdgeVar)‘)’

String ::= ‘ “ ’ Character ‘ ” ’ ∣ CharVar ∣ StringVar ∣ String ‘.’ String
Node ::= NodeVar ∣ (s ∣ t) ‘(’ EdgeVar‘)’
EMark ::= none ∣ red ∣ green ∣ blue ∣ dashed ∣ any ∣ me‘(′EdgeVar‘)′
VMark ::= none ∣ red ∣ blue ∣ green ∣ grey ∣ any ∣ mv‘(′Node‘)
Equal ::= Node (’=’ ∣ ‘≠’) Node ∣ EdgeVar (’=’ ∣ ‘≠’) EdgeVar

∣ Lst (’=’ ∣ ‘≠’) Lst ∣ VMark (’=’ ∣ ‘≠’) VMark
∣ EMark (’=’ ∣ ‘≠’) EMark

Figure 3.1: Abstract syntax of monadic second-order formulas

Remark 3.6. Due to the hierarchical system, a variable x representing a list may represent

a character, string, integer, or atom as well. For practical reason, we consider x as a list

variable unless the type char, string, int, or atom is stated in the formula. For example, x in

the formula ∃lx(mv(y) = x) is a list variable, while x in ∃lx(mv(y) = x ∧ int(x)) is an integer

variable.

In [50], a cardinality predicate p(m,n,X) with n >m ≥ 0 and n ≥ 2 expresses that the number

of elements in X is m in modulo n, e.g. p(0,2,X) expressing the number of elements in a

set X is even. In our setting, this predicate can be expressed by card(X) = k ∗ n +m for some

fresh variable k or (card(X) −m)/n ≠ (card(X) −m − 1)/n. As an example, we can express

p(0,2,X) by card(X) = 2 ∗ k or card(X)/n ≠ (card(X) − 1)/n.

In some cases, we may use first-order formulas instead of monadic second-order formulas. To

55

Chapter 3 Monadic second-order logic for graph programs

have a first-order formula, we only need to omit second-order variables, also logical connec-

tives, functions and predicates that are connected with second-order variables, i.e. symbols

∈, ⊂,⊆, function card, and predicate path.

Definition 3.7 (First-order formulas). A first-order formula is an MSO formula without any

second-order variable, and does not contain symbols ∈,⊂,⊆, also predicate path and function

card. ◻

Example 3.1 (Monadic second-order formulas).

1. ∀vx(mv(x) = none) is a first-order formula expressing “all nodes are unmarked”.

2. ∃VX(∀vx(x ∈ X⇒ mv(x) = none) ∧ card(X) ≥ 2)
is a monadic second-order formula expressing “there exists at least two unmarked

nodes”. Alternatively, we can express it by the first-order formula

∃vx, y(mv(x) = none ∧mv(y) = none ∧ x ≠ y).

3. ∃VX(∀Vx(mv(x) = grey⇔ x ∈ X) ∧ ∃ln(card(X) = 2 ∗ n))
is a monadic second-order formula expresses “The number of grey nodes is even”.

If we check the grammar of our formula, we have MSO over the graphs (i.e. we have set

quantifiers for nodes and edges), but not for the labels. However, note that GP 2 graphs

have attributes. This allows us to express MSO properties of the attributes indirectly. For

example, we can consider an edge-less graph G representing a finite multi-set of lists (if we

have two nodes with the same label) or a finite set of lists (if we do not have two nodes with

the same label) such that every node in G representing a list. By this representation, we can

also express MSO properties of graph attributes.

3.2 Satisfaction of a monadic second-order formula

The satisfaction of a monadic second-order formula c in a graph G relies on assignments.

An assignment of c on G is defined in Definition 3.8. Informally, an assignment is a function

that maps free variables to their domain.

Definition 3.8 (Assignments). Let c be a monadic second-order formula, A,B,C,D, and

E be the set of free node, edge, list, node-set, and edge-set variables in c (respectively).

For a free variable x, dom(x) denotes the domain of variable’s kind associated with x as in

Table 3.1. A formula assignment of c on a host graph G is a tuple α = ⟨αG, αL⟩ of functions

αG = ⟨αV ∶ A → VG, αE ∶ B → EG, α2V ∶ D → 2VG , α2E ∶ E → 2EG⟩, and αL = C → L such that

for each free variable x, α(x) ∈ dom(x). We then denote by cα the MSO formula c after the

replacement of each term y to yα where yα is defined inductively:

56

3.2 Satisfaction of a monadic second-order formula

1. If y is a free variable, yα = α(y);

2. If y is a constant, yα = y;

3. If y = length(x) for some list variable x, yα equals to the number of characters in xα if

x is a string variable, 1 if x is an integer variable, or the number of atoms in xα if x is

a list variable;

4. If y = card(X) for some node-set or edge-set variable X, yα is the number of elements

in Xα;

5. If y is the functions s(x), t(x), lE(x),mE(x), lV(x),mV(x), indeg(x), or outdeg(x), yα is

sG(xα), tG(xα), lEG(xα),mE
G(xα), lVG(xα),mV

G(xα), indegree of xα in G , or outdegree of

xα in G, respectively;

6. If y = x1 ⊕ x2 for ⊕ ∈ {+,−,∗, /} and integers x1
α, x2

α, yα = x1 ⊕Z x2;

7. If y = x1.x2 for some terms x1
α, x2

α, yα is string concatenation x1 and x2;

8. If y = x1 ∶ x2 for some lists x1
α, x2

α, yα is list concatenation x1 and x2

The satisfaction of a formula c in a graph G can be valuated by checking the existence of

an assignment α for c on G such that cα is true in G. A formula’s satisfaction on a graph is

defined in Definition 3.9.

Definition 3.9 (Satisfaction). Let G be a graph and c be a monadic second-order formula.

G satisfies c, written G ⊧ c, if there exists an assignment α such that cα is true in G (denotes

by G ⊧α c). The condition where cα is true is inductively defined:

1. If cα = true (or cα = false), then cα is true (or false);

2. If cα = int(x), char(x), string(x), atom(x), or root(x), cα is true ifff xα ∈ Z, xα ∈ Char, xα ∈
Char∗, xα ∈ Z ∪Char∗, or pG(xα) = 1 respectively.

3. If cα is in the form edge(x1, x2) for some x1, x2 ∈ VG, then cα is true iff there exists an

edge e ∈ EG where sG(e) = x1 and tG(e) = x2. If there is an additional argument l (or

m) for some l ∈ L (or m ∈ M), then in addition to the existence of e with such source

and target, the label (or mark) of e is equal to l (or m).

4. If cα is in the form path(x1, x2) for some x1, x2 ∈ VG, then cα is true iff there exists a

directed path from x1 to x2 (see Definition 3.3). If there is an extra argument E for

E ∈ 2EG , then there is no e ∈ E in the edge sequence of the path.

5. If cα has the form t1 ⊗ t2 where ⊗ ∈ {>,>=,<,<=} and t1, t2 ∈ Z, bα is true if and only if

t1 ⊗Z t2 where ⊗Z is the integer relation on Z represented by ⊗

57

Chapter 3 Monadic second-order logic for graph programs

6. If cα has the form t1 ⊖ t2 where ⊖ ∈ {=,≠} and t1, t2 ∈ VG, t1, t2 ∈ EG, or t1, t2 ∈
∪L∪M{any}, cα is true if and only if t1⊖Bt2 where ⊖B is the Boolean relation represented

by ⊖. Then for t1 = any, cα is true if and only if blue⊖B t2 ∨ red⊖B t2 ∨ green⊖B

t2 ∨ grey⊖B t2 ∨ dashed⊖B t2 is true (and analogously for t2 = any).

7. If cα has the form t1 ⊖ t2 where ⊖ ∈ {=,≠,⊂,⊆} and t1, t2 ∈ 2VG or t1, t2 ∈ 2EG , cα is true

if and only if t1 ⊖B t2 where ⊖B is the Boolean relation represented by ⊖. Also, if cα

has the form t1 ∈ t2 where t1 ∈ VG and t2 ∈ 2VG or t1 ∈ EG and t2 ∈ 2EG , cα is true if and

only if t1 is an element of t2;

8. If cα has the form b1⊘b2 where ⊘ ∈ {∨,∧} and b1, b2 are Boolean expressions, cα is true

if and only if b1 ⊘B b2 where ⊘B is the Boolean operation on B represented by ⊘.

9. If the form of cα is ¬b1 where b1 is a Boolean expression, cα is true if and only if b1 is

false.

10. If cα has the form ∃vx(b) where x is a first-order node variable and b is a Boolean

expression, cα is true if and only if there exists v ∈ VG such that b[x↦v] is true.

11. If cα has the form ∃ex(b) where x is a first-order edge variable and b is a Boolean

expression, cα is true if and only if there exists e ∈ EG such that b[x↦e] is true.

12. If cα is in the form ∃ll(b) where x is a first-order list variable and b is a Boolean

expression, cα is true if and only if there exists l ∈ L such that b[x↦l] is true.

13. If cα has the form ∃VX(b) where x is a node set variable and b is a Boolean expression,

cα is true if and only if there exists V ∈ 2VG such that b[X↦V] is true.

14. If cα has the form ∃EX(b) where x is an edge set variable and b is a Boolean expression,

cα is true if and only if there exists E ∈ EG such that b[X↦E] is true.

where b[x↦i] for a (set) variable x, a constant i, and a Boolean expression b is obtained from

b by changing every occurence of x to i. ◻

The predicate path checks the existence of a (directed) path between two nodes. The pred-

icate path(x, y) for some terms x, y representing nodes can also be expressed by monadic

second-order formulas without using the predicate path, as can be seen in Lemma 3.10.

Lemma 3.10 (The existence of a directed path).

path(x, y) ≡ x = y ∨ ∃EX(∃eu(u ∈ X ∧ s(u) = x) ∧ ∃eu(u ∈ X ∧ t(u) = y)
∧ ¬∃eu(u ∈ X ∧ (s(u) = y ∨ t(u) = x))
∧ ∀eu(u ∈ X ∧ t(u) ≠ y⇒ ∃ev(v ∈ X ∧ s(v) = t(u)))
∧ ∀eu(u ∈ X⇒ ¬∃ev(v ≠ u ∧ v ∈ X ∧ t(v) = t(u))))

58

3.2 Satisfaction of a monadic second-order formula

Proof. From Definition 3.9, recall that path(x, y) is true in a graph G if and only if there exists

an assignment α such that there exists a directed path from xα to yα. From the definition

of directed path (see Definition 3.3), path(x, y) is true if and only if for some assignment α,

xα = yα or there exists edges e1, . . . , en ∈ EG for some n where sG(e1) = xα, tG(en) = yα, and

for all i = 1, . . . , n − 1, tG(ei) = sG(ei+1).

Note that if there is an edge ei for 2 ≤ i ≤ n where sG(ei) = yα, then tG(ei−1) = yα such that

the edge sequence e1, . . . , ei−1 also defines directed path from xα to yα. Similarly, if there is

an edge ei for 1 ≤ i ≤ n− 1 where tG(ei) = xα, then sG(ei+1) = xα such that the edge sequence

ei+1, . . . , en defines directed path from xα to yα. Also, let us consider the case where there

exist ei and ej for 1 ≤ i < j ≤ n where tG(i) = tG(j). If tG(ei) = y, we can define the directed

path from e1, . . . , ei. Otherwise, we can define the directed path from e1, . . . , ei, ej +1, . . . , en.

Hence, we can always assume that there is no edge in the sequence whose source is yα,

or whose target is xα, or whose target is the same with the target of another edge in the

sequence.

With that assumption, let us consider the set of edges X = {e1, . . . , en}. Since sG(e1) = xα,

tG(en) = yα, there is no x ∈ X where sG(x) = yα or tG(x) = xα, and for all ei, tG(ei) = yα or

tG(ei) = sG(ei+1). With support of our assumption, the following formula must be hold:

x = y ∨ ∃EX(∃eu(u ∈ X ∧ s(u) = x) ∧ ∃eu(u ∈ X ∧ t(u) = y)
∧ ¬∃eu(u ∈ X ∧ (s(u) = y ∨ t(u) = x))
∧ ∀eu(u ∈ X ∧ t(u) ≠ y⇒ ∃ev(v ∈ X ∧ s(v) = t(u)))
∧ ∀eu(u ∈ X⇒ ¬∃ev(v ≠ u ∧ v ∈ X ∧ t(v) = t(u))))

From the other hand, if there exists a set of node X such that the above formula is true,

then there exists an edge e1 ∈X whose source is xα and en whose target is yα. If tG(e1) ≠ y,

then there must exists edge e2 ∈ X where sG(e2) = tG(e1), tG(e2) ≠ xα, and tG(e2) ≠ tG(ei)
for i = 1. Similarly, if tG(e2) ≠ y, then there must exists edge e3 ∈ X where sG(e3) = tG(e2),
tG(e3) ≠ xα, and tG(e3) ≠ tG(ei) for i = 1,2. Similar property must hold for all e ∈ X, and

since we have en where t(en) = yα, the sequence e1, . . . , en defines the directed path from xα

to yα.

The problem of checking whether a formula is valid over all (finite) graphs (i.e. ⊧ c?) is

undecidable. Trakhtenbrot’s theorem [42] states ”for every relational vocabulary σ with at

least one binary relation symbol, it is undecidable whether a sentence Φ of vocabulary δ is

finitely satisfiable”. In our monadic second-order formula, we may have binary relation edge

and path.

The problem of checking whether a graph G satisfies a formula c (i.e. G ⊧ c?), or also called

a model checking problem, is also undecidable. The undecidability come from the possibility

59

Chapter 3 Monadic second-order logic for graph programs

of having Boolean sub-expression that does not have any relation with graphs, but only talks

about arithmetic. From our syntax for MSO formulas, it is possible to have a formula (or

subformula) in Peano arithmetic, since we have the integer operator *. Peano arithmetic is

known to be undecidable [52], so we may have a formula where its satisfiability is undecidable.

However, when we do not have multiplications, the possible arithmetic occurring in a formula

will be a Presburger arithmetic, which is known to be decidable [52]. Hence, if a formula

has no multiplication in arithmetic expression or only talks about graph structure, its sat-

isfiability is decidable. It is decidable because there is a finite number of ways of assigning

variables to elements of a host graph. Hence in the worst case, we can try each possibility

to check if an assignment of c on G yields G ⊧ c.

3.3 Structural induction on monadic second-order formulas

In this study, we will need to define or prove some properties related to our MSO formulas.

Here, we define a structural induction on MSO formulas to show that a property holds.

For simplicity, in the structural induction we do not consider the predicates edge and path

because we can express both predicates in another way. For edge(x, y), we can express it

with ∃ez(s(z) = x ∧ t(z) = y). The optional arguments label and mark of the predicate edge,

e.g. the predicate edge(x, y,5,none), can be expressed as:

∃ez(s(z) = x ∧ t(z) = y ∧ le(z) = 5 ∧mez = none).

Then the predicate path(x, y) can also be express by MSO formula as in Lemma 3.10. The

optional argument edge-set variable Y can be added by conjunct the formulas inside the

edge-set quantifier with ¬(Y ⊈ X).

We also do not consider the following forms of formula in structural induction : X = Y,X ≠ Y,

X ⊂ Y, and X ⊆ Y. For node set variables X,Y, we can replace the formulas with:

∀vx((x ∈ X⇒ x ∈ Y) ∧ (x ∈ Y⇒ x ∈ X)), ¬(X = Y),∀vx(x ∈ X⇒ x ∈ Y), and X ⊂ Y ∨X = Y respec-

tively.

Similarly for edge set variables, we only need to change node quantifiers to edge quantifiers.

To get the intuition to prove a property, we always start with proving the property for first-

order formulas before we have the complete proof for monadic second-order formulas. Hence,

we have first-order formulas as a base case for structural induction on monadic second-order

formulas.

To prove properties related to our first-order formulas, we classify first-order formulas into

eight cases, based on their forms. To prove that some properties hold for these cases, we

60

3.3 Structural induction on monadic second-order formulas

define structural induction on first-order formulas. Three cases are defined as base cases

since they are formed from terms while the others are defined as inductive cases since they

can be formed from other FO formulas.

As mentioned before, terms can exist as a variable, a constant, or functions (including oper-

ators). Here, we also define a structural induction on terms, whose base cases are variables

and constants.

Definition 3.11 (Structural induction on first-order terms).

Let Prop be a property. Proving that Prop holds for all terms by structural induction on FO

terms is done by:

• Base case.

Show that Prop holds for all nodes, edges, and lists represented by node, edge, or label

variables and constants.

• Inductive case.

Assuming that Prop holds for lists x1, x2, integers i1, i2, strings s1, s2, a node v, and

an edge e, show that Prop also holds for:

1. integers result of length(x1), and i1 ⊕ i2 for ⊕ ∈ {,−,∗, /}

2. lists result of le(e1) and lv(v1)

3. marks result of me(e1) and mv(v1)

4. strings result of s1.s2

Definition 3.12 (Structural induction on first-order formulas).

Let Prop be a property. Proving that Prop holds for all FO formulas by structural induction

on FO formulas is done by:

• Base case.

Show that Prop holds for:

1. the formulas true and false

2. predicates int(z), char(z), string(z), atom(z) for a list variable z, and root(y) for a

term y representing a node

3. Boolean operations x1 = x2 and x1 ≠ x2 where both x1, x2 are terms representing

nodes, edges, or lists, also y1 ⊖ y2, for terms y1, y2 representing integers and ⊖ ∈
{=,≠,<,≤,>,≥}

• Inductive case.

Assuming that Prop holds for FO formulas c1, c2, show that Prop also holds for FO

formulas c1 ∧ c2, c1 ∨ c2, ¬c1, ∃vx(c1), ∃ex(c1), and ∃lx(c1).

61

Chapter 3 Monadic second-order logic for graph programs

After we prove that a property holds for first-order formulas, we can extend the prove by

showing by structural induction that it also holds for monadic second-order formulas.

Definition 3.13 (Structural induction on terms).

Let Prop be a property. Proving that Prop holds for all terms by structural induction on

terms is done by:

1. Show that Prop holds for all first-order terms, node set variables, and edge set variables.

2. Show that Prop also holds for the integer result of card(X) for any set variable X

Definition 3.14 (Structural induction on monadic second-order formulas).

Let Prop be a property. Proving that Prop holds for all monadic second-order formulas by

structural induction on monadic second-order formulas is done by:

• Base case.

Show that Prop holds for:

1. all first-order formulas

2. Boolean operations in the form x ∈ X or x ∉ X where x and X are terms representing

node (or edge) and set of nodes (or set of edges) respectively

3. Boolean operations in the form x⊗ card(X) for ⊗ ∈ {= . ≠,<,≤,>,≥}, a node (or

edge) set variable X, and a term x representing an integer

• Inductive case.

Assuming that Prop holds for monadic second-order formulas c1, c2, show that Prop

also holds for monadic second-order formulas c1 ∧ c2, c1 ∨ c2, ¬c1, ∃vx(c1), ∃ex(c1),
∃lX(c1), ∃VX(c1), and ∃ex(c1).

In the induction on monadic second-order formulas, we do not consider the Boolean opera-

tions in the form y ⊗ card(X)⊕ z for some ⊗ ∈ {=,≠,<,≤,>,≥},⊕ ∈ {+,−, /,∗}, and terms y, z

representing integers. This is because we can always change them to the form x ⊗ card(X)
where x is an integer operation on y and the inverse of z w.r.t. ⊕.

Later in following chapter, we limit our pre- and postcondition to closed formulas. Closed

formulas can be defined inductively as follows:

1. the formulas true or false

2. predicates int(x), char(x), string(x), atom(x) for some list variable x

3. Boolean operations f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing a

list and neither contains free node/edge variable

62

3.4 Monadic second-order formulas in rule schema application

4. Boolean operations f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing a

node (or edge) and neither contains free node/edge variable or node/edge constant

5. Boolean operation f1 ◇f2 for ◇ ∈ {=,≠,<,≤,>,≥} and some terms f1 and f2 representing

integers and neither contains free node/edge (set) variable

6. Boolean operation x ∈ X for a bounded set variable X and bounded edge variable x, or

a bounded set variable X and a bounded node variable x, x = s(y) or x = t(y) for some

bounded edge variable y

7. ∃lx(c1) for some closed formula c1

8. ∃vx (c1) for some closed formula c1

9. ∃ex (c1) for some closed formula c1

10. ∃VX(c1) for some closed formula c1

11. ∃EX(c1) for some closed formula c1

12. c1 ∨ c2 for some closed formula c1, c2

13. c1 ∧ c2 for some closed formula c1, c2

14. ¬c1 for some closed formula c1, c2

We choose to limit the pre- and postcondition to closed formulas to avoid ambiguity on the

type of variables we use in the formulas. By having closed formulas, we can easily identify a

variable’s type from the quantifier that binds it.

3.4 Monadic second-order formulas in rule schema applica-

tion

MSO formulas we define in this chapter do not have a node or edge constant because we

want to be able to check the satisfaction of an MSO formula on any given graph. However,

in a rule schema application, we sometimes need to express the properties of the images of

the match or comatch, which is dependent on the left-hand graph or right-hand graph. To

be able to express properties based on a match or comatch, we need to allow some node and

edge constants in MSO formulas. Hence, we define a condition over a graph.

Definition 3.15 (Conditions over a graph). A condition is a monadic second-order formula

without free node and edge variables. A condition over a graph G is a monadic second-order

formula where every free node and edge variable is replaced with node and edge identifiers

63

Chapter 3 Monadic second-order logic for graph programs

in G. That is, if c is a monadic second-order formula and αG is an assignment of free node

and edge variables of c on G, then cαG is a condition over G. ◻

Basically, a condition over a graph is a closed monadic second-order formula that allow node

and edge constants. For a monadic second-order formula c, a graph G, a formula assignment

α = ⟨αG, αL⟩, both cαG and cα are conditions over G.

Example 3.2. Let G and H be graphs where VG = {1,2} and VH = {1}.

1. c1 = ∃ex(s(x) = 1) is a condition over G, also over H

2. c2 = ∀vx(edge(x,1) ∧ indeg(x) = 2) is a condition over G, but not over H

Checking if a graph satisfies a condition over a graph is similar with checking satisfaction

of a FO formula in a graph. However, the satisfaction of condition c in a graph G can be

defined if and only if c is a condition over G.

With a condition over a graph, we can express properties of left and right-hand graphs with

explicitly mentioning node/edge identifiers in the graphs. In graph program verification,

we need to express the initial and output graph’s properties with respect to the given rule

schema. In [1, 26], they express them by showing the satisfaction of a condition on a mor-

phism. Here, we define a replacement graph H of a host graph G with respect to an injective

morphism g, where H is isomorphic to G and there exists an inclusion from the domain of g

to H.

Definition 3.16 (Replacement graph). Let us consider an injective morphism g ∶ L → G

for host graphs L and G. Graph ρg(G) is a replacement graph of G w.r.t. g if ρg(G) is

isomorphic to G with L as a subgraph. ◻

Let consider the injective morphism g ∶ L → G where VG ∩ VL = {v1, . . . , vn} and EG ∩
EL = {e1, . . . , em}. Let also U = {u1, . . . , un} be a set of identifiers not in VL and VG, and

W = {w1, . . . ,wn} be a set of identifiers not in EL and EG. Graph replacement ρg(G) can

be obtained from G by renaming every item g(i) to i for i ∈ VG and i ∈ EG, every vi to ui for

i = 1, . . . , n, and every ei to wi for i = 1, . . . ,m, such that Vρg(G) = (VG − g(VL)) ∪ VL ∪U and

Eρg(G) = (EG − g(EL)) ∪EL ∪W .

From the definition of a replacement graph, it is obvious that a host graph and its replacement

graph are isomorphic. For a host graph G, a host graph L, and a morphism g ∶ L → G, it

is also obvious that there exists an inclusion f ∶ L → ρg(G), because g preserves identifiers,

sources, targets, and labels of L.

64

3.4 Monadic second-order formulas in rule schema application

Example 3.3. Let us consider graphs L and H, also an injective morphism g ∶ L → G as

follows:

α

1

α

2

3
4

L

g
β

v1

α

v2α

v3

e1 e2

e3e4

G

g = ⟨gV ∶
⎧⎪⎪⎨⎪⎪⎩

1↦ v3

2↦ v2
, gE ∶

⎧⎪⎪⎨⎪⎪⎩

3↦ e4

4↦ e3
⟩

Then, ρg(G) is the graph

β

v1

α

2α

1

e1 e2

43

In a rule schema application, an injective morphism g is a match if it satisfies the dangling

condition and the rule schema’s condition (if any). These conditions can be considered

as application conditions of a rule schema. In a rule schema application, we only have

application conditions with respect to the matches, but not comatch. Here, we define a

generalised rule schema that allows us to consider comatches in its applications, and consider

an unrestricted rule schema instead of rule schema. By considering unrestricted rule schema

and application condition for the comatches, the conditional rule schema become inverted.

This address the issue stated in [1] about the disability of constructing strongest liberal

postcondition from the construction of weakest liberal precondition, or vice versa, because

conditional rule schemata are invertible.

Definition 3.17 (Generalised rule schema). Let us consider an unrestricted rule schema

r = ⟨L ← K → R⟩. A generalised rule schema is a tuple w = ⟨r, acL, acR⟩ where acL is a

condition over L and acR is a condition over R. We call acL the left application condition

and acR the right application condition. The inverse of w, written w−1, is then defined as

the tuple ⟨r−1, acR, acL⟩ where r−1 = ⟨R ←K → L⟩. ◻

The application of a generalised rule schema is similar to the application of a rule schema.

However, here we also check the satisfaction of both left and right application conditions in

the replacement of input graph G and final graph H with respect to the match and comatch

respectively.

Definition 3.18 (Application of generalised rule schema). Let w = ⟨r, acL, acR⟩ be a gener-

alised rule schema with an unrestricted rule schema r = ⟨L ←K → R⟩. There exists a direct

derivation from G to H by w, written G⇒w,g,g∗ H (or G⇒w H) iff there exists premorphism

g ∶ L → G and g∗ ∶ R → H and label assignments αL and βR where βR(i) = αL(i) for every

common variable i in L and R, also for every node/edge i where mL(i) =mR(i) = any, such

that:

65

Chapter 3 Monadic second-order logic for graph programs

(1)

KLα Rβ

D

(2)

HGρg(G) ≅acαL Ô∣ ≅ ρg∗(H)⊧ acβR

gincl
g∗

incl

Figure 3.2: Direct derivation for generalised rule schema

(i) g ∶ Lα → G is an injective morphism

(ii) g∗ ∶ Rβ →H is an injective morphism

(iii) ρg(G) ⊧ acαL,

(iv) ρg∗(H) ⊧ acβR,

(v) G⇒rα,g H,

where G⇒rα,g H denotes the existence of natural pushouts (1) and (2) as in the diagram of

Figure 3.2. ◻

Recall the application of conditional rule schema in Definition 2.22. The rule schema’s

condition is clearly can be considered the left-application condition of the rule schema. Since

there is no right-application condition in a conditional rule schema, there is no requirement

about the condition. We can always consider true as the right-application condition of a

conditional rule schema.

Definition 3.19 (Generalised version of a conditional rule schema). Let us consider a

conditional rule schema ⟨r,Γ⟩. The generalised version of r, denoted by r∨, is the gener-

alised rule schema r∨ = ⟨r,Γ∨, true⟩ where Γ∨ is obtained from Γ by replacing the notations

not, ! =, and,or,# with ¬,≠,∧,∨, ‘,′ (comma symbol) respectively. ◻

Lemma 3.20. Let ⟨r,Γ⟩ be a conditional rule schema with r = ⟨L←K → R⟩. Then for any

host graphs G,H,

G⇒r H if and only if G⇒r∨H.

Proof. (Only if). Recall the restrictions about variables and any-mark of a rule schema.

It is obvious that every variable in R is in L and every node/edge with mark any in R is

marked any in L as well. From Definition 2.22, we know that G⇒r H asserts the existence

of αL and premorphism g ∶ L → G such that: 1) g ∶ Lα → G is an injective morphism, 2)

Γα,g is true in G, and 3) G ⇒rα,g ,g H. From 3) and the variable restrictions mentioned

above, it is obvious that there exists morphism g∗ ∶ Rα → H, and ρg∗(H) ⊧ acR because all

graphs satisfy true. Hence, (ii), (iv), and (v) of Definition 3.18 are satisfied. Point 1) then

asserts (i) of Definition 3.18. The fact that Γα,g is true in G from point 2) is then asserts

66

3.4 Monadic second-order formulas in rule schema application

ρg(G) ⊧ Γ∨ because it is obvious that the change of symbols does not change the semantics

of the condition. Moreover, ρg(G) is a replacement graph w.r.t. g such that evaluating Γα,g

in G is the same as evaluating Γα in ρg(G).
(If). Similarly, from Definition 3.18, we know that G ⇒r∨ H asserts the existence of label

assignment αL and premorphism g ∶ L→ G such that: 1) g ∶ Lα → G is an injective morphism,

2)ρg(G) ⊧ Γ∨, and 3)G⇒rα,g ,g H. These obviously assert G⇒r H from Definition 2.22 and

the argument about Γ∨ above.

Remark 3.21. For morphism g ∶ Lα → G, the semantics of Γ in G with respect to g and Γ∨

in ρg(G) is identical. From here, Γ also refers to Γ∨ when it obviously refers to a condition

over L.

Note that the inverse of a rule schema is not always defined, because a rule schema only

allows condition for left-hand graph, and there are some restrictions for left and right-hand

graphs’ labels. Of course, the restrictions are useful in practice. However, since we are

interested in observing the properties of a rule schema application, we also want to know the

properties of the inverse of a rule. In a generalised rule schema, we omit the restrictions that

may exist in a standard rule schema, so that now we can observe properties of the inverse of

a generalised rule schema.

Lemma 3.22. Let w = ⟨r, acL, acR⟩ be a generalised rule schema with an unrestricted rule

schema r = ⟨L ← K → R⟩ and label assignment αL. Then for host graphs G and H with

premorphisms g ∶ L→ G and g∗ ∶ R →H,

G⇒w,g,g∗H if and only if H ⇒w−1,g∗,gG.

Proof.

(Only if.) From the definition of generalised rule schema application (Definition 3.18), we

know that when G⇒w,g,g∗H, it means that there exists label assignment αL and βR where

αL(i) = αR(i) for every common variable i in L and R, and for every node/edge i where

mL(i) =mR(i) = any, such that g ∶ Lα → G and g∗ ∶ Rβ →H are injective morphisms where

(i) ρg(G) ⊧ acαL

(ii) ρg∗(H) ⊧ acβR

(iii) G⇒rα,g H.

These are obviously defines direct derivation H ⇒
(r−1)g∗,α,g∗G such that H ⇒w−1,g∗,gG.

(If). We can apply the above proof analogously.

67

Chapter 3 Monadic second-order logic for graph programs

The application of a rule schema depends on the existence of morphisms. Showing the

existence of a morphism L→ G for host graphs L,G can be done by checking the existence of

the structure of L in G. For this, we define a condition over a graph to specify the structure

and labels of a graph.

Definition 3.23 (Specifying a totally labelled graph). Let us consider a totally labelled

graph L with VL = {v1, . . . , vn} and EL = {e1, . . . , em}. Let X = {x1, . . . , xk} be the set of all

list variables in L, and Type(x) for x ∈X is int(x), char(x), string(x), atom(x), or true if x is

an integer, char, string, atom, or list variable respectively. Let also RootL(v) for v ∈ VL be

a function such that RootL(v) = root(v) if pL(v) = 1, and RootL(v) = ¬root(v) otherwise. A

specification of L, denoted by Spec(L), is the condition over L:

k

⋀
i=1

Type(xi) ∧
n

⋀
i=1

lv(vi) = lVL (vi) ∧ mv(vi) =mV
L (vi) ∧ RootL(vi)

∧
m

⋀
i=1

s(ei) =sL(ei) ∧ t(ei) =tL(ei) ∧ le(ei) = lEL (ei) ∧ me(ei) =mE
L(ei)

Since morphisms require the preservation of sources, targets, labels, and rootedness, we need

to explicitly state rootedness and label of each node, source and target of each edge. Also,

since we also want to specify rule graphs, the type of each variable needs to explicitly stated

as well. Note that we only specify totally labelled graphs, so that the label and rootedness

of a node are always defined.

Example 3.4 (Specification of L). Let us consider the graph L below:

a + b
1

a

2

b
3

d7

where the edge incident to 1 and 2 is edge e1 and the other one is edge e2, and a, b, are

integer variables while d is a list variable. Then, Spec(L) is the condition over L:

int(a) ∧ int(b) ∧ lv(1) = a + b ∧ lv(2) = a ∧ lv(3) = b

∧mv(1) = none ∧ mv(2) = red ∧ mv(3) = none ∧ ¬root(1) ∧ ¬root(2) ∧ root(3)

∧ s(e1) = 1 ∧ t(e1) = 2 ∧ s(e2) = 1 ∧ t(e2) = 3 ∧ le(e1) = d ∧ le(e2) = 7

∧me(e1) = dashed ∧ me(e2) = none

Let us consider a graphG that satisfies Spec(L), where VL = {v1, . . . , vn} and EL = {e1, . . . , em}.

From the definition of Spec(L), the satisfaction means that VL ⊆ VG and EL ⊆ EG, where

sG(e) = sL(e), tG(e) = tL(e), and pG(v) = pL(v) for all v ∈ VL and e ∈ EL. As for la-

bels and marks, if G and L are both host graphs, then there is no variable for the labels

68

3.4 Monadic second-order formulas in rule schema application

and marks so that lVG(v) = lVL (v), lEG(e) = lEL (e),mV
G(v) = mV

L (v), and mE
G(e) = mE

L(e).
However, if G is a host graph and L is a rule graph, then L may contain a label or

mark variable. This means, there must exists a label and assignment α on L such that

lVG(v) = (lVL (v))α, lEG(e) = (lEL (e))α,mV
G(v) = (mV

L (v))α, andmE
G(e) = (mE

L(e))α. This means,

there must exists an inclusion Lα → G.

Proposition 3.24 (Spec(L) and inclusion). Let us consider a rule graph L and a host

graph G where VL ⊆ VG and EL ⊆ EG. Then, G ⊧ Spec(L) if and only if there exists a label

assignment αL such that there exists inclusion g ∶ Lα → G.

Proof. Let us consider the construction of Spec(L). From the definition of Spec, we can see

that there are no node or edge variables in the condition. Hence, G satisfies Spec(L) if and

only if there exists an assignment β for all list variables in Spec(L) and a partial function

µ = ⟨µV ∶ VL → M/{none,dashed}, µE ∶ EL → M/{nonegrey}⟩ for every node/edge, i whose

mark is any such that substituting β(x) for every variable x and µ(i) for every any-mark

associated with i in Spec(L) resulting a valid statement in G.

Let we denote by VL = {v1, . . . , vn}, EL = {e1, . . . , em}, and X = {x1, . . . , xp} the set of all

nodes, edges, and label variables in L. From the semantics of satisfaction, we know that that

G ⊧Spec(L) iff the following formula is true in G:

n

⋀
i=1

lVG(vi) = (lVL (vi))β ∧ mV
G(vi) = (mV

L (vi))µ ∧ RootG(vi)

∧
m

⋀
i=1

sG(ei) = sL(ei) ∧ tG(ei) = tL(ei) ∧ lEG(ei) = (lEL (ei))β ∧ mE
G(ei) = (mE

L(ei))µ

Define g(i) = i for every item i ∈ VL and i ∈ EL (such that identifiers are preserved by g), and

α = ⟨β,µV , µE⟩. We can see from the conjunction above that sources, targets, lists, marks,

and rootedness for each vi and ei are the same in G and L, so that g preserves sources,

targets, lists, marks, and rootedness.

Note that Spec(L) is a condition over L, so a graph satisfying the condition must have node

and edge identifiers of L in the graph. It is obviously not practical, but we can make it

more general by replacing the identifiers with fresh variables such that a graph satisfying the

condition does not necessarily contain identifiers of L.

Definition 3.25 (Variablisation of a condition over a graph). Let us consider a graph L and

a condition c over L where {v1, . . . , vn} and {e1, . . . , em} represent the set of node and edge

constants in c respectively. Let x1, . . . , xn be node variables not in c and y1, . . . , ym be edge

69

Chapter 3 Monadic second-order logic for graph programs

variables not in c. Variablisation of c, denoted by Var(c), is the FO formula

n

⋀
i=1
⋀
j≠i

xi ≠ xj ∧
m

⋀
i=1
⋀
j≠i

yi ≠ yj ∧ c[v1↦x1]...[vn↦xn][e1↦y1]...[em↦ym]

where c[a↦b] is obtained from c by replacing every occurrence of a with b, and c[a↦b][d↦e] =
(c[a↦b])[d↦e]. ◻

Observe that by the variablisation, we only change node and edge constants to node and edge

variables. Hence, when a graph G satisfies a condition over G, graphs that are isomorphic to

G should satisfy the variablisation of the condition. This is because the variablisation does

not change any properties expressed by the condition; it only makes it general so that it does

not depend on node/edge identifiers.

Lemma 3.26. Let us consider a graph L and a condition c over L. For every host graph G

and morphism g ∶ L→ G,

G ⊧ Var(c) if and only if ρg(G) ⊧ c.

Proof. Let V = {v1, . . . , vn} and E = {e1, . . . , em} represent the set of node and edge constants

in c respectively, and X = x1, . . . , xn be node variables not in c and Y = y1, . . . , ym be edge

variables not in c such that Var(c) is the FO formula shown in the definition above.

Let αG be an assignment such that αG(xi) = vi and αG(yi) = ei for all xi ∈X and yi ∈ Y . It is

obvious that (Var(c))αG ≡ c, since we only replace each node/edge variable with the constant

that was replaced by the variable to obtain Var(c). Therefore, ρg(G) ⊧ c iff ρg(G) ⊧Var(c)αG

iff G ⊧Var(c)αG , which means that G satisfies Var(c).

From Proposition 3.24, we understand that a satisfaction of Spec(L) for a graph L in a graph

G also refer to the existence of inclusion Lα → G for some assignment αL. When we consider

variablisation of Spec(L), it means that we do not have node/edge identifiers anymore. So,

instead of inclusion, the variablisation should refer to morphisms.

Lemma 3.27. Let L be a rule graph and G be a host graph. Then, G ⊧ Var(Spec(L))
if and only if there exists a label assignment α such that there exists injective morphism

g ∶ Lα → G.

Proof. G satisfying Var(Spec(L)) if and only if there exists formula assignment γ = ⟨γV , γL.γL⟩
and a mapping µ = ⟨µV ∶ VL →M/{none,dashed}, µE ∶ EL →M/{none,grey}⟩ for every item

i whose mark is any, such that (Var(Spec(L))γ)µ is true in G.

70

3.5 Properties of monadic second-order formulas

If we consider Var(Spec(L))γG , it clearly gives us a condition similar to Spec(L), but with

different identifiers. Let X denotes the set of images of γG, and β ∶ (VL ∪ GL) → X be a

bijective mapping such that Spec(L)β =Var(Spec(L))γG .

Let we denote by VL = {v1, . . . , vn}, EL = {e1, . . . , em}, and X = {x1, . . . , xp} the set of all

nodes, edges, label variables in L. From the semantics of satisfaction, we know that that:

n

⋀
i=1

lVG(β(vi)) = (lVL (vi))γL ∧ mV
G(β(vi)) = (mV

L (vi))µ ∧ RootG(β(vi))

∧
m

⋀
i=1

sG(β(ei)) = sL(ei) ∧ tG(β(ei)) = tL(ei) ∧ lEG(β(ei)) = (lEL (ei))γL ∧ mE
G(β(ei)) = (mE

L(ei))µ

Define g(i) = β(i) for every item i ∈ VL∪EL, and α = ⟨γ,µ⟩. We can see from the conjunction

above that sources, targets, lists, marks, and rootedness for each vi and ei in L is the

same as their the match, so that g ∶ Lα → G preserves sources, targets, lists, marks, and

rootedness.

3.5 Properties of monadic second-order formulas

In the later chapters, we use the monadic second-order formulas as assertions for verifying

graph programs. To prove the soundness of the use of the formulas, we need some basic

properties of the formulas. Here, we present some properties that will be used in the later

chapters.

Lemma 3.28. Let us consider a monadic second-order formula c and two isomorphic host

graphs G and H with isomorphism f ∶ G → H. Let α = ⟨αG, αL⟩ and β = ⟨βH , βL⟩ be

formula assignments where βH(x) = f(αG(x)) for every node and edge variable x in c and

βL(x) = αL(x) for every list variable x in c. Then,

G ⊧α c if and only if H ⊧β c

Proof. Here, we prove the Lemma inductively.

(Base case).

1. If c = true or c = false, it is obvious that G ⊧α c iff H ⊧β c because there is no graph

satisfying false and all graphs satisfy true.

2. If c is a predicate P(x) for P ∈ {int, char, string, atom} and some list variable x, G ⊧α c

iff P(xα) is true in G. Observe that the truth value of P(xα) is actually independent on

G, such that G ⊧ P(xα) iff H ⊧ P(xα). Since βL = αL, P(xα) = P(xβ) so that G ⊧ P(xα)
iff H ⊧ P(xβ).

71

Chapter 3 Monadic second-order logic for graph programs

3. If c = root(x) for some term x representing a node, xβ = g(xα). Note that G and H are

host graphs (which means the rootedness function is a total function). From Definition

2.4 we know that pG(xα) = pH(g(xα)). Hence, root(xα is true in G iff root(xβ) is true

in H.

4. If c = x1⊗x2 for ⊗ ∈ {=,≠, ∈} and terms x1, x2 representing (set of) edges or nodes, xβ1 =
g(xα1) and xβ2 = g(xα2). Because g is injective, we know that xα1 ⊗ xα2 iff g(xα1)⊗ g(xα2).

5. If c = x1⊗x2 for ⊗ ∈ {=,≠,≤,≥} and terms x1, x2 representing lists, xα1 = xβ1 and xα2 = xβ2
(note that lV (xα) = lV (g(xα)) = lV (xβ) for all node variable x in c, and analogously

for lE(x)). Since the truth value of xα1 ⊗ xα2 does not depend on host graphs, xα1 ⊗ xα2
is true in G iff xβ1 ⊗ x

β
2 is true in H.

(Inductive case). Next, we prove the Lemma for the inductive cases. Let c1, c2 be FO

formulas such that G ⊧α c1 iff H ⊧β c1 and G ⊧α c2 iff H ⊧β c2. Also, let cx↦v for some

variable x and constant v represents c after replacement of every free variable x in c with v.

1. If c = ¬c1, G ⊧α ¬c1 iff cα1 is false in G iff cβ1 is false in H iff H ⊧β ¬c1

2. If c = c1 ∨ c2, G ⊧α c1 ∨ c2 iff G ⊧α c1 ∨G ⊧α c2 iff H ⊧β c1 ∨H ⊧β c2 iff H ⊧β c1 ∨ c2

3. If c = c1 ∧ c2, G ⊧α c1 ∧ c2 iff G ⊧α c1 ∧G ⊧α c2 iff H ⊧β c1 ∧H ⊧β c2 iff H ⊧β c1 ∧ c2

4. G ⊧α ∃vx(c1) iff (cα1)[x↦v] for some v ∈ VG is true in G iff (cβ1)[x↦g(v)] is true in H iff

H ⊧β ∃vx(c1)

5. G ⊧α ∃ex(c1) iff (cα1)[x↦e] for some e ∈ EG is true in G iff (cβ1)[x↦g(e)] is true in H iff

H ⊧β ∃ex(c1)

6. G ⊧α ∃lx(c1) iff (cα1)[x↦i] for some i ∈ L is true in G iff (cβ1)[x↦i] is true in H iff H ⊧β

mrm∃lx(c1)

7. G ⊧α ∃VX(c1) iff (cα1)[X↦V] for some V ∈ 2VG is true in G iff (cβ1)[X↦g(V)] is true in H

iff H ⊧β ∃VX(c1)

8. G ⊧α ∃EX(c1) iff (cα1)[X↦E] for some E ∈ 2EG is true in G iff (cβ1)[x↦gEe)] is true in H

iff H ⊧β ∃EX(c1)

Corollary 3.29. Let us consider two isomorphic host graphs G and H, and a FO formula

c. It is true that

G ⊧ c if and only if H ⊧ c

72

3.5 Properties of monadic second-order formulas

Proof. G ⊧ c iff there exists an assignment α = ⟨αG, αL⟩ such that G ⊧α c. By Lemma 3.28,

G ⊧α c iff H ⊧β c for β = ⟨βH , αL⟩ where βH(x) = g(αG(x)) for all node and edge variables

x iff H ⊧ c.

Fact 3.1. Let G be a host graph and c1, c2 be MSO formulas. Then, the following holds:

1. G ⊧ c1 ∨ c2 if and only if G ⊧ c1 ∨G ⊧ c2

2. G ⊧ c1 ∧ c2 if and only if G ⊧α c1 ∧G ⊧α c2 for some assignment α

3. G ⊧ ¬c1 if and only if ¬(G ⊧α c1) for some assignment α

4. VG ≠ ∅ ∧G ⊧ ∃vx(c1) if and only if G ⊧ c1

5. EG ≠ ∅ ∧G ⊧ ∃ex(c1) if and only if G ⊧ c1

6. G ⊧ ∃lx(c1) if and only if G ⊧ c1

7. G ⊧ ∃VX(c1) if and only if G ⊧ c1

8. G ⊧ ∃EX(c1) if and only if G ⊧ c1

Furthermore, the above properties also hold if c1, c2 are conditions over G.

Lemma 3.30. Let us consider a host graphG and a condition c overG. Let V = {v1, . . . , vn} ⊆
VG, E = {e1, . . . , em} ⊆ EG, 2V = {V1, . . . , V2n}, and 2E = {E1, . . . ,E2m}. Then,

1. ∃vx(c) ≡ c[x↦v1] ∨ . . . ∨ c[x↦vn] ∨ ∃vx(x ≠ v1 ∧ . . . ∧ x ≠ vn ∧ c)

2. ∃ex(c) ≡ c[x↦e1] ∨ . . . ∨ c[x↦em] ∨ ∃ex(x ≠ e1 ∧ . . . ∧ x ≠ vm ∧ c)

3. ∃ex(c) ≡ ∃ex(⋁n
i=1(⋁n

j=1 s(x) = vi ∧ t(x) = vj ∧ c[s(x)↦vi,t(x)↦vj])
∨ (s(x) = vi ∧⋀n

j=1 t(x) ≠ vj ∧ c[s(x)↦vi])
∨ (⋀n

j=1 s(x) ≠ vj ∧ t(x) = vi ∧ c[t(x)↦vi])
∨ (⋀n

i=1 s(x) ≠ vi ∧⋀n
i=1 t(x) ≠ vi ∧ c))

4. ∃VX(c) ≡ ∃VX(⋀2n

i=0(Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X⇒ c))

5. ∃EX(c) ≡ ∃EX(⋀2m

i=0(Ei ⊆ X ∧⋀j∈E−Ei
j ∉ X⇒ c))

Proof.

1. ∃vx(c) ≡ ∃vx(((x = v1 ∨ . . . ∨ x = vn) ∨ ¬(x = v1 ∨ . . . ∨ x = vn)) ∧ c)
≡ ∃vx((x = v1 ∧ c) ∨ . . . ∨ (x = vn ∧ c) ∨ (x ≠ v1 ∧ . . . ∧ x ≠ vn ∧ c))
≡ ∃vx(c[x↦v1] ∨ . . . ∨ c[x↦vn] ∨ (x ≠ v1 ∧ . . . ∧ x ≠ vn ∧ c))

73

Chapter 3 Monadic second-order logic for graph programs

≡ c[x↦v1] ∨ . . . ∨ c[x↦vn] ∨ ∃vx(x ≠ v1 ∧ . . . ∧ x ≠ vn ∧ c)
2. Analogous to point 1

3. ∃ex(c) ≡ ∃ex(((s(x) = v1 ∨ . . . ∨ s(x) = vn) ∨ ¬(s(x) = v1 ∨ . . . ∨ s(x) = vn))
∧ (t(x) = v1 ∨ . . . ∨ t(x) = vn ∨ ¬(t(x) = v1 ∨ . . . ∨ t(x) = vn)) ∧ c)

≡ ∃ex((s(x) = v1 ∧ (t(x) = v1 ∨ . . . ∨ t(x) = vn) ∧ c)
. . .

(s(x) = vn ∧ (t(x) = v1 ∨ . . . ∨ t(x) = vn) ∧ c)
(s(x) ≠ v1 ∧ . . . ∧ s(x) ≠ vn ∧ (t(x) = v1 ∨ . . . ∨ t(x) = vn) ∧ c)
(s(x) = vi ∧ (t(x) ≠ v1 ∧ . . . ∧ t(x) ≠ vn) ∧ c)
(s(x) ≠ v1 ∧ . . . ∧ s(x) ≠ vn ∧ (t(x) ≠ v1 ∧ . . . ∧ t(x) ≠ vn) ∧ c)

≡ ∃ex(⋁n
i=1(⋁n

j=1 s(x) = vi ∧ t(x) = vj ∧ c[s(x)↦vi,t(x)↦vj])
∨ (⋀n

j=1 s(x) ≠ vj ∧ t(x) = vi ∧ c[t(x)↦vi])
∨ (s(x) = vi ∧⋀n

j=1 t(x) ≠ vj ∧ c[s(x)↦vi])
∨ (⋀n

i=1 s(x) ≠ vi ∧⋀n
i=1 t(x) ≠ vi ∧ c))

4. ∃VX(c) ≡ ∃VX((v1 ∈ X ∨ v1 ∉ X) ∧ (v2 ∈ X ∨ v2 ∉ X) ∧ . . . ∧ (vn ∈ X ∨ vn ∉ X)⇒ c)
≡ ∃VX(((v1 ∈ X ∧ v2 ∈ X) ∨ (v1 ∈ X ∧ v2 ∉ X)

∨ (v1 ∉ X ∧ v2 ∈ X) ∨ (v1 ∉ X ∧ v2 ∉ X))
∧ (v3 ∈ X ∨ v3 ∉ X) ∧ . . . ∧ (vn ∈ X ∨ vn ∉ X)⇒ c)

≡ ∃VX((({v1, v2} ⊆ X) ∨ ({v1} ⊆ X ∧ v2 ∉ X)
∨ ({v2} ⊆ X ∧ v1 ∉ X) ∨ (v1 ∉ X ∧ v2 ∉ X)))

∧ (v3 ∈ X ∨ v3 ∉ X) ∧ . . . ∧ (vn ∈ X ∨ vn ∉ X)⇒ c)
≡ ∃VX((({v1, v2, v3} ⊆ X) ∨ ({v1, v2} ⊆ X ∧ v3 ∉ X)

∨ ({v1, v3} ⊆ X ∧ v2 ∉ X) ∨ ({v2, v3} ⊆ X ∧ v1 ∉ X)
∨ ({v1} ⊆ X ∧ v2 ∉ X ∧ v3 ∉ X)
∨ ({v2} ⊆ X ∧ v1 ∉ X ∧ v3 ∉ X)
∨ ({v3} ⊆ X ∧ v1 ∉ X ∧ v2 ∉ X)
∨ (v1 ∉ X ∧ v2 ∉ X ∧ v3 ∉ X)))

∧ (v3 ∈ X ∨ v3 ∉ X) ∧ . . . ∧ (vn ∈ X ∨ vn ∉ X)⇒ c)
∧ (v4 ∈ X ∨ v4 ∉ X) ∧ . . . ∧ (vn ∈ X ∨ vn ∉ X)⇒ c)

≡ ∃VX((⋁2n

i=0(Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X))⇒ c)

≡ ∃VX(⋀2n

i=0(Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X⇒ c))

5. Analogous to point 4

74

3.6 Summary

3.6 Summary

This chapter defines monadic second-order formulas that can be used to specify GP 2 graphs.

The formula is defined based on standard logic and considering properties of GP 2 graphs

and properties that may occur in (conditional) rule schemata.

Unlike (counting) monadic second-order formulas defined in [45], here we use the function

card as a cardinality function to express the number of elements in a set of nodes or edges in a

graph. By the defined monadic second-order formulas, we show how to express the existence

of a directed path (with or without the predicate path).

We also show how to use the formulas to express properties of graphs based on (pre)morphisms

that may exist in a rule schema application. We define condition over a graph so that we

can express the properties of graphs with respect to the left-hand graph of a rule schema.

If we have a (pre)morphism g ∶ L → G between the left-hand graph L and a host graph G,

then the morphism satisfies a condition over L when the replacement graph ρg(G) satisfies

the condition. In the simplest case, the replacement graph ρg(G) can be obtained from G

by replacing the identifier g(i) to i, for all node/edge i in L.

This chapter also presents how we can express the specification of a graph L as a condition

over L, such that the condition explicitly expresses the structures, marks, and rootedness of

nodes and edges in L. We also show how we can turn a condition over a graph into a monadic

second-order formula. In addition, we also present some properties of monadic second-order

formulas that can be used later to prove other properties of MSO formulas.

75

Chapter 4

Calculating a strongest liberal postcondi-

tion

In this chapter, we describe the intuition of constructing a strongest liberal postcondition

over a graph program where the precondition is a monadic second-order formula.

For this section, let us consider a first- or monadic second-order formula. A strongest liberal

postcondition is a predicate transformer in the sense of [53] for forward reasoning. It expresses

properties that must be satisfied by every graph result from the application of the input rule

schema to a graph satisfying the input precondition.

Definition 4.1 (Strongest liberal postcondition over a conditional rule schema). An asser-

tion d is a liberal postcondition w.r.t. a conditional rule schema r and a precondition c, if for

all host graphs G and H,

G ⊧ c and G⇒r H implies H ⊧ d.

A strongest liberal postcondition w.r.t. c and r, denoted by SLP(c, r), is a liberal postcondi-

tion w.r.t. c and r that implies every liberal postcondition w.r.t. c and r. ◻

Our definition of a strongest liberal postcondition is different with the definitions in [26, 53,

54] where they define SLP(c, r) as a condition such that for every host graph H satisfying

the condition, there exists a host graph G satisfying c where G ⇒r H. Lemma 4.2 shows

that their definition and ours are equivalent.

Lemma 4.2. Let us consider a rule schema r and a precondition c. Let d be a liberal

postcondition w.r.t. r and c. Then d is a strongest liberal postcondition w.r.t. r and c if

and only if for every graph H satisfying d, there exists a host graph G satisfying c such that

G⇒r H.

77

Chapter 4 Calculating a strongest liberal postcondition

Proof.

(If).

Let H be a host graph satisfying d. Then, there must exists a graph G such that G ⊧ c
and G ⇒r H. Hence, H ⊧ a for any liberal postcondition a from the definition of a liberal

postcondition.

(Only if).

Assume that it is not true that for every host graph H, H ⊧ d implies there exists a host

graph G satisfying c such that G ⇒r H. We show that a graph satisfying d can not imply

the graph satisfying any liberal postcondition w.r.t r and c. From the assumption, there

exists a host graph H such that every host graph G does not satisfy c or does not derive H

by r. In the case of G does not derive H by r, we clearly can not guarantee characteristic

of H w.r.t. c. Then for the case where G does not satisfy c but derives H by r, we also can

not guarantee the satisfaction of any liberal postcondition a over c and r in H because a is

dependent of c. Hence, we can not guarantee that H satisfies all liberal postcondition w.r.t.

r and c.

In [1, 17, 26], a weakest liberal condition is obtained from a given postcondition and a rule

by generating a right application condition, then using the obtained condition to generate

a left-application condition, to finally obtain a weakest liberal precondition. Similarly, here

we use the approach of constructing left and right-application conditions as well, as shown

in Figure 4.1.

acRacL ⟨r, acL, true⟩ Adj(acL, r)

SLP(c, r)c, ⟨r,Γ, true⟩c, ⟨r,Γ⟩

Lift

Shift

Adj ∧SpecD
Post

Figure 4.1: Constructing SLP(c, r) for r = ⟨L←K → R,Γ⟩

To obtain a strongest liberal postcondition from a given precondition c and conditional rule

schema ⟨r,Γ⟩, we obtain the left-application condition acL and the right-application condition

acR w.r.t. the application of the rule schema to obtain a result graph. Here, we consider the

construction for the generalised rule schema instead of the rule schema itself to be able to

apply the construction on the inverse of a rule. Note that from the application of generalised

rule schema (see Definition 3.18), acL must be satisfied by the left morphism, and express

the dangling condition, while acR must be satisfied by the right morphism. Here, c and the

obtained SLP must not contain node/edge identifiers because we should be able to check

the satisfaction of the two on any graph. However, acL and acR may contain node/edge

identifiers in L and R (resp.) because they depend on the left and right-hand graph (resp.).

78

Chapter 4 Calculating a strongest liberal postcondition

We use transformation Lift to construct acL, giving us an updated generalised rule schema,

⟨r, acL, true⟩. Next, since we want to construct acR which must be satisfied by the right

morphism, we need to do adjustment to properties that might be changed due to the rule

application. For this, we use transformation Adj. Because we want to express a strongest

condition, we should also express properties that must be hold in the resulting graph, based

on the rule schema. Hence, we define Shift(⟨r, a, b⟩) for conditions a and b as Adj(a, r)∧SpecD

for SpecD = Spec(R) ∧ dang(R) ∧ b, where dang(R) is a condition over R that expresses the

satisfaction of the dangling condition w.r.t. r−1. If Shift takes suitable acL as the condition

a, it will result in a suitable acR. Note that acR may contain node/edge identifiers of R,

while a postcondition should be a closed monadic second-order formula. We then use Post

to obtain the strongest liberal postcondition.

Theorem 4.3. For any rule schema r and a precondition c, there exist a transformation Lift,

Shift, and Post such that Post(Shift(⟨r,Lift(c, r), true⟩)) is a strongest liberal postcondition.

The proof of the above theorem are presented in Chapter 5 and 6. Chapter chap:FOL shows

us that there exists such constructions to obtain a strongest liberal postcondition over a

first-order formulas, while in Chapter 6, we have a larger class of formulas that is monadic

second-order formulas.

In each chapter, we show that the constructed Post(Shift(⟨r,Lift(c, r), true⟩)) result in a

strongest liberal postcondition by showing that the following properties holds (cf. Figure 4.1):

i) ρg(G) ⊧Lift(c, r) iff G ⊧ c and g satisfies the dangling condition

ii) ρg(G) ⊧ acL implies ρg∗(H) ⊧ AdjLift(c, r), r

iii) ρg(G) ⊧ Lift(c, r) iff ρg(G) ⊧ Adj(Adj(Lift(c, r), r−1))

iv) if H ⊧ Var(SpecD)γ for some label assignment γR, then there exists an injective mor-

phism Rγ →H that satisfies the dangling condition

v) ρg∗(H) ⊧ AdjLift(c, r), r iff ρg∗(H) ⊧ Shift(⟨r,Lift(c, ⟨r,Γ, true⟩⟩))

vi) ρg∗(H) ⊧ Shift(⟨r,Lift(c, ⟨r,Γ, true⟩⟩)) iff H ⊧ Post(Shift(⟨r,Lift(c, r), true⟩))

Table 4.1 shows where we can find the proof of the above properties in Chapter 5 and 6. We

prove properties i). ii), iii), and v) in both chapter, but for point iv) and vi), we only prove

them in Chapter 5 and reuse the Lemma/Proposition in Chapter 6. This is because we use

the same definition for Post, Spec, and Dang for both first-order and monadic second-order

formulas.

79

Chapter 4 Calculating a strongest liberal postcondition

Table 4.1: Properties to support the proof of Theorem 4.3

Property in Chapter 5 in Chapter 6

i) Proposition 5.8 Proposition 6.7

ii) Lemma 5.10 Lemma 6.11

iii) Lemma 5.11 Lemma 6.12

iv) Corollary 5.2 Corollary 5.2

v) Proposition 5.13 Proposition 6.14

vi) Proposition 5.15 Proposition 5.15

In addition to the five properties, we present Theorem 5.16 and Theorem 6.15 to prove that

the constructed Post(Shift(⟨r,Lift(c, r), true⟩)) are indeed a strongest liberal postcondition.

Both theorems then are the main proof of Theorem 4.3 we have above.

80

Chapter 5

A strongest liberal postcondition for first-

order formulas

In this chapter, we introduce a way to construct a strongest liberal postcondition over a graph

program where the precondition is a first-order formula. Here, conditions refer to first-order

formulas, possibly with node or edge constant (i.e. conditions over a graph. However, pre-

and postcondition are limited to closed first-order formula (without node/edge constant)

5.1 Construction of a strongest liberal postcondition

To construct SLP(c, r), we use the generalised version of r to open a possibility of constructing

a strongest liberal postcondition over the inverse of a rule schema. Since a rule schema has

some restriction on the existence of variables and any-mark, a rule schema may not be

invertible. By using the generalised version of a rule schema, we omit this limitation so that

the generalised version of the inverse of a rule schema is also a generalised rule schema so

that we can use the construction for an inversed rule schema as well.

In this thesis, SLP(c, r) is obtained by defining transformations Lift, Shift, and Post. The

transformation Lift transforms the given condition c into a left-application condition w.r.t.

the given rule schema r. Then, we transform the left-application condition to right-application

condition by transformation Shift. Finally, the transformation Post transforms the right-

application condition to a strongest liberal postcondition (see Figure 4.1). Recall the gen-

eralised rule schema application (See Definition 3.18). For a rule schema r = ⟨L ← K → R⟩
and precondition c, the obtained left and right-application condition should satisfies the

properties in the application as well, as can be seen in Figure 5.1.

For a conditional rule schema ⟨r,Γ⟩ with rule schema r = ⟨L ← K → R⟩ and a precondition

c, when a graph G satisfying c and there exists a label assignment αL such that G⇒rα,g H

81

Chapter 5 A strongest liberal postcondition for first-order formulas

(1)

KLα Rβ

D

(2)

H
ã

SLP(c, r)

G
ã
c

ρg(G) ≅acαL Ô∣ ≅ ρg∗(H)⊧ acβR

gincl
g∗

incl

Figure 5.1: Generalised rule schema application and strongest liberal postcondition

del(a,b,c ∶ list; d,e ∶ int)

a

1

b
2

c

3

de

where d ≥ e

⇒ a

1

b
2

d + e

del (a,b,c ∶ list;d,e ∶ int;)
[∣ (1,a) (2,b) (3,c)

∣ (e1,1,2,d) (e2,1,3,e)]
=>
[∣ (1#red,a) (2,b)

∣ (e1,1,2,d + e)]
interface = {1,2}
where d ≥ e

Figure 5.2: GP 2 conditional rule schema del = ⟨r1,Γ1⟩

for some host graph H and injective graph morphism g ∶ Lα → G, acαL = (LiftFO(c, r∨))α

should be satisfied by G w.r.t. g. The replacement graph ρg(G) should satisfies acL which

means acL should consist of the precondition c, rule schema condition Γ, and the dangling

condition.

From the definition of rule schema application (see Definition 2.22), we know that G⇒rα,g

H with injective graph morphism g ∶ Lα → G and label assignment αL obviously assert

the existence of injective morphism g∗ ∶ Rβ → H for some label assignment βR such that

αL(i) = βR(i) for every common element i (see Figure 3.2). The graph replacement ρg∗(H)
then should satisfy acβR = (ShiftFO(⟨r, acL, true⟩))β. The graph condition acR should describe

the elements of the image of the comatch and some properties of c that are still relevant after

the rule schema application.

Basically, acR is already a strongest property that must be satisfied by a resulting graph.

However, it has node/edge constants so that we need to change it into a closed formula so that

we finally obtain a strongest liberal postcondition. This part is done by the transformation

Post.

To give a better idea of the transformations we define in this chapter, we show examples

after each definition. We use the conditional rule schemata del = ⟨r1,Γ1⟩ of Figure 5.2

and copy = ⟨r2,Γ2⟩ of Figure 5.3 and the preconditions q1 = ¬∃ex(mv(s(x)) ≠ none) and

q2 = ∃vx(¬root(x)) as running examples. We denote by Γ1 and Γ2 the GP 2 rule schema

conditions d ≥ e and outdeg(1) ≠ 0 respectively. Also, we denote by r1 and r2 the rule schema

(without condition) of del and copy respectively. Based on Definition 3.19, we have the

generalised version of rule schemata: del∨ = ⟨r1,Γ
∨

1 , true⟩ and copy∨ = ⟨r2,Γ
∨

2 , true⟩.

82

5.2 The dangling condition

copy(a ∶ list)

a

1

where outdeg(1) != 0

⇒ a

1

a

copy (a ∶ list;)
[∣ (1(R),a) ∣]
=>
[∣ (1,a) (2(R),a)

∣ (e1,1,2,empty#dashed)]
interface = {1}
where outdeg(1) != 0

Figure 5.3: GP 2 conditional rule schema copy = ⟨r2,Γ2⟩

5.2 The dangling condition

The dangling condition must be satisfied by an injective morphism g if G ⇒r,g H for some

rule schema r = ⟨L←K → R⟩ and host graphs G,H. Since we want to express properties of

ρg(G) where such derivation exists, we need to express the dangling condition as a condition

over the left-hand graph.

Recall the dangling condition from Definition 2.8. ρg(G) satisfies the dangling condition if

every node v ∈ L −K is not incident to any edge outside L. This means that the indegree

and outdegree of every node v ∈ L −K in L represent the indegree and outdegree of v in G

as well.

Definition 5.1 (Condition Dang). Let us consider an unrestricted rule schema r = ⟨L ←
K → R⟩ where {v1,⋯, vn} is the set of all nodes in L −K. Let indegL(v) and outdegL(v)
denotes the indegree and outdegree of v in L, respectively. The condition Dang(r) is defined

as:

1. if VL − VK = ∅ then Dang(r) = true

2. if VL − VK ≠ ∅ then

Dang(r) =
n

⋀
i=1

indeg(vi) =indegL(vi) ∧ outdeg(vi) =outdegL(vi)

◻

Example 5.1 (Condition Dang). Let us consider r1 and r2 of Figure 5.2 and Figure 5.3.

For r1, node 3 gets deleted by the rule, so that the degree of node 3 in the match must be

the same as the degree of node 3. However, for r2, there is no node gets deleted so that the

dangling condition always true. Hence,

1. Dang(r1) = indeg(3) = 1 ∧ outdeg(3) = 0

2. Dang(r2) = true

83

Chapter 5 A strongest liberal postcondition for first-order formulas

Observation 5.1. Let us consider an unrestricted rule schema r = ⟨L ←K → R⟩. Let G be

a host graph and g ∶ L → G be a premorphism. The dangling condition is satisfied if and

only if ρg(G) ⊧Dang(r).

Proof. From the definition of the dangling condition (see Definition 2.8), the dangling con-

dition is satisfied when no edge in G − g(L) is incident to any node in g(L −K). By the

definition of replacement graph (see Definition 3.16), we can see that G − g(L) is equivalent

to ρg(G)−L because G and ρg(G) only different in node/edge identifiers of the match, which

now gets deleted. Then, evaluating the construct of g(L − K) in G w.r.t. g is the same

as evaluating the L −K in ρg(G). Hence, the dangling condition is satisfied iff no edge in

ρg(G) − L incident to any node in L −K, which means all nodes in L −K only incident to

edges in L. Hence, Dang(r) is true.

Corollary 5.2. For every rule schema r = ⟨L←K → R⟩ and every graph H,

if H ⊧ Var(Spec(R) ∧ Dang(r−1))α for some label assignment αR, then there exists an

injective morphism Rγ →H that satisfies the dangling condition.

Proof. From Lemma 3.27, we know that H ⊧ Var(Spec(Rα)) for some label assignment αR

implies the existence of an injective morphism g∗ ∶ Rα → H. Since Observation 5.1 asserts

the satisfaction of Dang(r−1) implies the satisfaction of the dangling condition w.r.t. r−1,

then H ⊧ Var(Spec(R) ∧Dang(r−1))α implies that the morphism g∗ ∶ Rα → H satisfies the

dangling condition.

5.3 From precondition to left-application condition

Now, we start with transforming a precondition c to a left-application condition with respect

to a generalised rule w = ⟨r, acL, acr⟩. Intuitively, the transformation is done by:

1. Find all possibilities of variables in c representing nodes/edges in the images of a match

and form a disjunction from all possibilities, denoted by SplitFO(c, r);

2. Express the dangling condition as a condition over L, denoted by Dang(r);

3. Evaluate terms and Boolean expression we can evaluate in SplitFO(c, r), Dang(r), and

Γ with respect to the left-hand graph of the given rule, then form a conjunction from

the result of evaluation, and simplify the conjunction.

A possibility of variables in c representing nodes/edges in the images of a match mentioned

above refers to how variables in c can represent node or edge constants in the replacement

84

5.3 From precondition to left-application condition

of the input graph. A simple example would be for a precondition c = ∃vx(c1) for some FO

formula c1 containing a free variable x, c holds on a host graph G if there exists a node v

in G such that cα1 where α(x) = v is true in G. The node v can be any node in G. In the

replacement graph of G, v can be any node in the left-hand graph of the rule schema, or any

node outside it. SplitFO(c, r) is obtained from the disjunction of all these possibilities.

Definition 5.3 (Transformation SplitFO). Let us consider an unrestricted rule schema r =
⟨L ← K → R⟩. where VL = {v1,⋯, vn} and EL = {e1,⋯, em}. Let c be a condition over L

sharing no variables with r (note that it is always possible to replace the label variables in c

with new variables that are distinct from variables in r). We define the condition SplitFO(c, r)
over L inductively as follows:

- Base case.

If c is true, false, or a predicate int(t), char(t), string(t), atom(t), root(t) for

some list variable t, or in the form t1 ⊖ t2 for ⊖ ∈ {= . ≠ . <,≤,>,≥} and some

terms t1, t2,

SplitFO(c, r) = c
- Inductive case.

Let c1 and c2 be conditions over L.

1) SplitFO(c1 ∨ c2, r) = SplitFO(c1, r) ∨ SplitFO(c2, r),
2) SplitFO(c1 ∧ c2, r) = SplitFO(c1, r) ∧ SplitFO(c2, r),
3) SplitFO(¬c1, r) = ¬SplitFO(c1, r),
4) SplitFO(∃vx(c1), r) = (⋁n

i=1SplitFO(c
[x↦vi]
1 , r))∨∃vx(⋀n

i=1 x≠vi ∧SplitFO(c1, r),
5) SplitFO(∃ex(c1), r) = (⋁m

i=1SplitFO(c
[x↦ei]
1 , r)) ∨ ∃ex(⋀m

i=1 x≠ei ∧ inc(c1, r)),
where

inc(c1, r) = ⋁n
i=1(⋁n

j=1 s(x) = vi ∧ t(x) = vj ∧SplitFO(c
[s(x)↦vi,t(x)↦vj]
1 , r))

∨ (s(x) = i ∧ ⋀n
j=1 t(x) ≠ vj ∧SplitFO(c

[s(x)↦vi]
1 , r))

∨ (⋀n
j=1 s(x) ≠ vj ∧ t(x) = vi ∧SplitFO(c

[t(x)↦vi]
1 , r))

∨ (⋀n
i=1 s(x) ≠ vi ∧ ⋀n

j=1 t(x) ≠ vj ∧SplitFO(c1, r))
6) SplitFO(∃lx(c1), r) = ∃lx(SplitFO(c1, r))

where c[a↦b] for a variable a and constant b represents the condition c after the replacement

of all occurrence of a with b. Similarly, c[d↦b] for d ∈ {s(x), t(x)} is also a replacement d with

b. ◻

As can be seen in the definition above, SplitFO of an edge quantifier is not as simple as SplitFO

of a node quantifier. For an edge variable x in a precondition, x may represent any edge in

G. Moreover, the term s(x) or t(x) may represent a node in the image of the match. Hence,

we need to check these possibilities as well. However, if the precondition does not contain

a term s(x) or t(x) for some edge variable x, we do not need to consider nodes that can be

represented by the functions.

85

Chapter 5 A strongest liberal postcondition for first-order formulas

Observation 5.2. Let us consider an unrestricted rule schema r = ⟨L ← K → R⟩ where

VL = {v1,⋯, vn} and EL = {e1,⋯, em}. Let c = ∃ex(c1) be a condition over L. Then, the

following holds:

1. If c1 does not contain the term s(x),
inc(c1, r) = ⋁n

i=1(t(x) = vi ∧SplitFO(c
[t(x)↦vi]
1 , r))∨ ⋀n

i=1(t(x) ≠ vi ∧SplitFO(c1, r))

2. If c1 does not contain the term t(x),
inc(c1, r) = ⋁n

i=1(s(x) = vi ∧SplitFO(c
[s(x)↦vi]
1 , r))∨ ⋀n

i=1(s(x) ≠ vi ∧SplitFO(c1, r))

3. If c1 does not contain the terms s(x) and t(x),
inc(c1, r) = SplitFO(c1, r)

Proof. Let us observe each point of the Observation:

1. If c1 does not contain the term s(x), then for any i, j, c
[s(x)↦vi,t(x)↦vj]
1 = c[t(x)↦vj]

1 , and

c
[s(x)]
1 = c1. The first and the third line of inc(c1, r) is the disjunction of all possibilities

of (t(x)) is one of nodes in L while the second and forth line is about (t(x)) is outside

the match.

2. Analogously to above.

3. If c1 does not contain the terms s(x) and t(x), we know that

c
[s(x)↦vi,t(x)↦vj]
1 = c[t(x)↦vj]

1 = c[s(x)↦vj]
1 = c1 because we do not have nothing to substitute

in c1.

Example 5.2 (Transformation SplitFO). Let us consider q1, q2 we defined in Section 5.1 and

r1, r2 of Figure 5.2 and Figure 5.3. Then based on Definition 5.3,

SplitFO(q1, r1) = ¬ SplitFO(∃ex(mv(s(x)) ≠ none), r1)
= ¬(mv(s(e1)) ≠ none ∨mv(s(e2)) ≠ none∨

∃ex(x ≠ e1 ∧ x ≠ e2 ∧ ((s(x) = 1 ∧mv(1) ≠ none)
∨ (s(x) = 2 ∧mv(2) ≠ none)
∨ (s(x) = 3 ∧mv(3) ≠ none)
∨ (s(x) ≠ 1 ∧ s(x) ≠ 2 ∧ s(x) ≠ 3

∧mv(s(x)) ≠ none))))
SplitFO(q2, r2) = ¬root(1) ∨ ∃vx(x ≠ 1 ∧ ¬root(x))

Since SplitFO(c, r) only disjunct all possibilities of nodes and edges that can be represented by

node and edge variables in c, it should not change the semantic of c. However, we transform

86

5.3 From precondition to left-application condition

a condition c to a condition over L such that we may not be able to check satisfaction

of SplitFO(c, r) in G. However, we can always check its satisfaction in ρg(G) for some

premorphism g ∶ L→ G.

Lemma 5.4. Let us consider a condition c and an unrestricted rule schema r = ⟨L←K → R⟩,
sharing no variables with c. For a host graph G, let g ∶ L→ G be a premorphism. Then,

G ⊧ c if and only if ρg(G) ⊧ SplitFO(c, r).

Proof. Here, we prove the lemma inductively. The texts above the symbol ⇔ bellow refer

to lemmas that imply the associated implication, e.g. L4 refers to Lemma 4.

(Base case).

G ⊧ c L3.28⇔ ρg(G) ⊧ c
⇔ ρg(G) ⊧ SplitFO(c, r)

(Inductive case).

Assuming that for some conditions c1 and c2 over L, the lemma holds.

1) G ⊧ c1 ∨ c2
F3.1⇔ G ⊧ c1 ∨G ⊧ c2

⇔ ρg(G) ⊧ SplitFO(c1, r) ∨ ρg(G) ⊧ SplitFO(c2, r)
F3.1⇔ ρg(G) ⊧ SplitFO(c1, r) ∨ SplitFO(c2, r)

2) G ⊧ c1 ∧ c2
F3.1⇔ G ⊧α c1 ∧G ⊧α c2 for some assignment α

⇔ ρg(G) ⊧β SplitFO(c1, r) ∨ ρg(G) ⊧β SplitFO(c2, r)
where β(x) = α(x) if x ∉ VL; β(x) = g−1(α(x)) otherwise

F3.1⇔ ρg(G) ⊧ SplitFO(c1, r) ∨ SplitFO(c2, r)
3) G ⊧ ¬ c1

F3.1⇔ ¬(G ⊧α c1) for some assignment α

⇔ ¬(ρg(G) ⊧β SplitFO(c1, r))
where β(x) = α(x) if x ∉ VL; β(x) = g−1(α(x)) otherwise

F3.1⇔ ρg(G) ⊧ ¬SplitFO(c1, r)
4) G ⊧ ∃vx(c1)

L3.30⇔ G ⊧ ⋁n
i=1c1

[x↦vi] ∨ ∃vx(⋀n
i=1 x ≠ vi ∧ c1)

⇔ ρg(G) ⊧ ⋁n
i=1 SplitFO(c

[x↦vi]
1 , r) ∨ ∃vx(⋀n

i=1 x ≠ vi ∧ SplitFO(c1, r))
5) G ⊧ ∃ex(c1)

L3.30⇔ G ⊧ ⋁m
i=1c1

[x↦ei] ∨ ∃vx(⋀m
i=1 x ≠ ei ∧ c1)

L3.30⇔ ρg(G) ⊧ ⋁m
i=1 SplitFO(c

[x↦ei]
1 , r) ∨ ∃vx(⋀m

i=1 x ≠ vi ∧ SplitFO(c1, r))
L3.30⇔ ρg(G) ⊧ ⋁m

i=1 SplitFO(c
[x↦ei]
1 , r) ∨ ∃vx(⋀m

i=1 x ≠ vi ∧ inc(c1, r))
6) G ⊧ ∃lx(c1)

F3.1⇔ G ⊧ c1

⇔ ρg(G) ⊧ SplitFO(c1, r)
F3.1⇔ ρg(G) ⊧ ∃lx(SplitFO(c1, r))

87

Chapter 5 A strongest liberal postcondition for first-order formulas

After splitting the precondition into all possibilities of representations, we check the value

of some functions and Boolean operators to check if any possibility violates the precondition

such that we can omit the possibility.

Definition 5.5 (Valuation of c). Let us consider an unrestricted rule schema r = ⟨L←K →
R⟩, a condition c over L, a host graph G, and premoprhism g ∶ L→ G. Let c shares no variable

with L unless c is a rule schema condition. Let also F = {s, t, lv, le,mv,me,indeg,outdeg, length

be the set of function syntax. Let also y ⊕L z for ⊕ ∈ {+,−,∗, /, ∶, .} and y, z ∈ L denotes the

value of y ⊕ z as described in Section 3.3, and fL(z) for a constant z and f ∈ F denotes the

value of f(y) in L. Valuation of c w.r.t. r, written ValFO(c, r), is constructed by applying

the following steps to c:

1. Obtain c′ by changing every term x in c with T (x), where

(a) If x is a constant or variable, T (x) = x
(b) If x = f(y) for f ∈ F,

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fL(y) if f ∈ F /{indeg,outdeg} and y is a constant

or f ∈ {indeg,outdeg} and y ∈ VL − VK
fL(T (x)) if f ∈ {lv,mv}, (y = s(e) or y = t(e)), e ∈ EL

or f ∈ {indeg,outdeg} and T (y) ∈ VL − VK
incon(T (y)) + fL(T (y)) if f = indeg and y ∈ VK
outcon(T (y)) + fL(T (y)) if f = outdeg and y ∈ VK
f(y) otherwise

(c) If x⊕ z for ⊕ ∈ {+,−, /,∗, ∶, .},

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y ⊕L z if y, z ∈ L

T (y)⊕ T (z) if T (y) =∉ L or T (z) =∉ L

T (T (y)⊕ T (z)) otherwise

2. Obtain c” by replacing predicates and Boolean operators x in c′ with B(x), where

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ⊗B z if x = y ⊗ z for ⊗ ∈ {=,≠,≤,≥} and constants y, z

true if x = root(v) for v ∈ rL
false if x = root(v) for v ∉ rL
x otherwise

3. Simplify c” such that there are no subformulas in the form ¬ true,¬(¬a) ¬(a ∨ b),
¬(a ∧ b) for some conditions a, b. We can always simplify them to false, a,¬a∧¬b,¬a∨¬b
respectively.

◻

88

5.3 From precondition to left-application condition

Intuitively, ValFO gives some terms with node/edge constants their value in L. Recall that

if there exists injective morphism g ∶ Lα → G for some label assignment αL, then there must

be an inclusion Lα → ρg(G). This should assert that the value of terms we valuate in L is

equal to their value in ρg(G).

Example 5.3 (Valuation of a graph condition). For rule schemata r1 and r2, SplitFO(q1, r1)
and SplitFO(q2, r2) we obtained in Example 5.2, also rule application conditions Γ1 of r1 and

Γ2 of r2,

1. ValFO(SplitFO(q1, r1), r1)
= ¬(none ≠ none ∨ none ≠ none∨

∃ex(x ≠ e1 ∧ x ≠ e2 ∧ ((s(x) = 1 ∧ none ≠ none)
∨ (s(x) = 2 ∧ none ≠ none)
∨ (s(x) = 3 ∧ none ≠ none)
∨ (s(x) ≠ 1 ∧ s(x) ≠ 2 ∧ s(x) ≠ 3 ∧mv(s(x)) ≠ none))))

≡ ¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ s(x) ≠ 1 ∧ s(x) ≠ 2 ∧ s(x) ≠ 3 ∧mv(s(x)) ≠ none)
Here, we replace the terms s(e1), s(e2) with node constant 1, then replace mv(1), mv(2),
mv(3) with none. Then, we simplify the resulting condition by evaluating none ≠ none

which is equivalent to false.

2. ValFO(SplitFO(q2, r2), r1) = false ∨ ∃vx(x ≠ 1 ∧ ¬root(x))
≡ ∃vx(x ≠ 1 ∧ ¬root(x))

Here, we substitute false for ¬root(1) since the node 1 in L is a rooted node.

3. ValFO(Γ1, r1) = d ≥ e

For this case, we change nothing.

4. ValFO(Γ2, r2) = outcon(1) ≠ 0

In this case, we change outdeg(1) with outcon(1) + 0 because the outdegree of node 1

in L is 0.

Lemma 5.6. Let us consider an unrestricted rule schema r = ⟨L←K → R⟩, a host graph G,

and an injectiva morphism g ∶ Lα → G for a label assignment αL. For a graph condition c,

ρg(G) ⊧ c if and only if ρg(G) ⊧ (ValFO(c, r))α

Proof. Let us consider the construction of ValFO(c) step by step. In step 1, we change terms

x in c with T (x). Here, we change functions s(e), t(e), lv(v),mv(v),
le(e),me(e), lv(s(e)), lv(t(e)),mv(s(e)),mv(t(e)) for e ∈ EL and v ∈ VL with their values

in L. Since Lα → ρg(G) is an inclusion, then sL(e) = sρg(G)(e) and tL(e) = tρg(G)(e).
Also, (lVL (v))α = lVρg(G)

(v), (lEL (e))α = lEρg(G)
(e), (mV

L (v))α = mV
ρg(G)

(v), and (mE
L(e))α =

89

Chapter 5 A strongest liberal postcondition for first-order formulas

mE
ρg(G)

(e) for all v ∈ VG and e ∈ EG such that the replacement does not change the satisfac-

tion of c in ρg(G). Then for function indeg(v) for v ∈ VL − VK , we change it to indegL(x)
due to the dangling condition, and for v ∈ VK , we change it to incon(v) + indegL(v) which

is equivalent to indegG(v) = indegρg(G)(v) because incon(v) = indegG(v) − indegL(v) (and

analogously for outdeg(v)). In step 2, changing Boolean operators whose arguments are con-

stants to their Boolean value clearly does not change the satisfaction in ρg(G). Also, by the

definition of morphism, pL(v) = pρg(G)(v) for all v ∈ VL so that the Boolean value of root(v)
in L is equivalent to the Boolean value of root(v) in ρg(G). Finally, in step 3, simplification

clearly does not change satisfaction.

Finally, we define the transformation Lift, which takes a precondition and a generalised rule

schema as an input and gives a left-application condition as an output. The output should

express the precondition, the dangling condition, and the existing left-application condition

of the given generalised rule schema.

Definition 5.7 (Transformation Lift). Let us consider a generalised rule w = ⟨r, acL, acR⟩
for an unrestricted rule schema r = ⟨L←K → R⟩. Let c be a precondition. A left application

condition w.r.t. c and w, denoted by LiftFO(c,w), is the condition over L:

LiftFO(c,w) = ValFO(SplitFO(c ∧ acL, r) ∧Dang(r), r).

◻

Example 5.4 (Transformation Lift). Let us consider q1, q2,del
∨, and copy∨ we defined in

Section 5.1. Based on Definition 5.7, also from Example 5.1, 5.2, and 5.3, we have

1. LiftFO(q1,del
∨)

= ¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ s(x) ≠ 1 ∧ s(x) ≠ 2 ∧ s(x) ≠ 3 ∧mv(s(x)) ≠ none) ∧ d ≥ e

2. LiftFO(q2, copy
∨) = ∃vx(x ≠ 1 ∧ ¬root(x)) ∧ outcon(1) ≠ 0 ∧ true

≡ ∃vx(x ≠ 1 ∧ ¬root(x)) ∧ outcon(1) ≠ 0

Proposition 5.8 (Left-application condition). Let us consider a host graph G and a gen-

eralised rule w = ⟨r, acL, acR⟩ for an unrestricted rule schema r = ⟨L ← K → R⟩. Let c be

a precondition and αL be a label assignment such that there exists an injective morphism

g ∶ Lα → G.

G ⊧ c and G⇒rα,g H for some host graph H iff ρg(G) ⊧ (LiftFO(c,w))α

Proof. From Lemma 5.6, we know that ρg(G) ⊧ ValFO(SplitFO(c, r) ∧ acL∧Dang(r), r)α iff

ρg(G) ⊧ (SplitFO(c, r) ∧ acL∧Dang(r))α. From 5.4, we know that ρg(G) ⊧ SplitFO(c, r) iff

90

5.4 From left to right-application condition

G ⊧ c. Also, from 5.1, we get that ρg(G) ⊧Dang(r) iff g satisfies the dangling condition.

We also know that ρg(G) ⊧ (Γ∨)α iff Γα,g is true in G because the change of symbols does

not change the semantics of the condition. From the definition of rule schema application,

the satisfaction of the dangling condition and Γα,g is true in G iff G⇒rα,g H for some host

graph H.

Recall the construction of SplitFO(c, r) for a precondition c and an unrestricted rule schema

r. A node/edge quantifier is preserved in the result of the transformation with additional

restriction about x not representing any node/edge in L. Hence in the resulting condition over

L from transformation Lift, every node/edge variable should not represent any node/edge in

L.

Observation 5.3. Let us consider a host graph G and a generalised rule w = ⟨rα, acL, acR⟩
for an unrestricted rule schema r = ⟨L ← K → R⟩, assignment α, and a precondition c. For

every node/edge variable x in LiftFO(c,w), x does not represent any node/edge in L.

Proof. Here we show that for every node/edge variable x, there exists an existential quantifier

over x such that there exists constraint ⋀i∈VLx≠i or ⋀i∈ELx≠i inside the quantifier.

LiftFO(c,w) is a conjunction of ValFO(SplitFO(c, r), r), Dang(r), and ValFO(Γ, r). The trans-

formation ValFO clearly does not remove or change subformulas in the form x ≠ i and does

not add any new node/edge variable. Hence, we just need to show that for every node/edge

variable x in SplitFO(c, r), Dang(r), and Γ, there exists constraint ⋀i∈VLx≠i or ⋀i∈ELx≠i.

We can see from Definition 2.20 that Γ does not have node and edge variable from its

syntax. For Dang(r), it clearly only has one edge variable and there exists constraint ⋀i∈ELx≠i
inside the existential quantifier for the variable. Finally for SplitFO(c, r), since c is a closed

formula, every node/edge variable must be bounded by existential quantifier, such that from

Definition 5.3, the variable must be bounded by existential quantifier with constraint ⋀i∈VLx≠i
or ⋀i∈ELx≠i inside.

5.4 From left to right-application condition

To obtain a right-application condition from a left-application condition, we need to consider

what properties could be different in the initial and the result graphs. Recall that in con-

structing a left-application condition, we evaluate all functions with a node/edge constant

argument and change them with constant, including the constant incon(v) and outcon(v)
when evaluating indeg(v) and outdeg(v) for node v in the interface. In the result graph H,

indegH(v) is clearly equal to incon(v) + indegR(H), and analogous for outdegH(v).

91

Chapter 5 A strongest liberal postcondition for first-order formulas

The Boolean value for x = i for any node/edge variable x and node/edge constant i not in R

must be false in the resulting graph. Analogously, x = i is always true. Also, all variables in

the left-application condition should not represent any new nodes and edges in the right-hand

side.

Definition 5.9 (Adjusment). Let us consider an unrestricted rule schema r = ⟨L←K → R⟩
and a condition c over L. Let c′ be a condition over L that is obtained from c by changing ev-

ery term incon(x) (or outcon(x)) for x ∈ VK with indeg(x)−indegR(x) (or outdeg(x)−outdegR(x)).
Let also {v1,⋯, vn} and {e1,⋯, em} denote the set of all nodes and edges in R −K respec-

tively. The adjusted condition of c w.r.t r, denoted by AdjFO(c, r), is a condition over R that

is defined inductively, where c1, c2 are conditions over L:

1. If c is true or false, AdjFO(c, r) = c′;

2. If c is the predicates int(x), char(x), string(x) or atom(x) for a list variable x, AdjFO(c, r) =
c′;

3. If c = root(x) for some term x representing a node, AdjFO(c, r) = c′

4. If c = x1 ⊖ x2 for some terms x1, x2 and ⊖ ∈ {=,≠,<,≤,>,≥},

AdjFO(c, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

false , if⊖ ∈ {=} and x1 ∈ VL − VK ∪EL or x2 ∈ VL − VK ∪EL,

true , if ⊖ ∈ {≠} and x1 ∈ VL − VK ∪EL or x2 ∈ VL − VK ∪EL,

c′ ,otherwise

5. AdjFO(c1 ∨ c2, r) = AdjFO(c1, r)∨AdjFO(c2, r)

6. AdjFO(c1 ∧ c2, r) = AdjFO(c1, r) ∧AdjFO(c2, r)

7. AdjFO(¬c1, r) = ¬AdjFO(c1, r)

8. AdjFO(∃vx(c1), r) = ∃vx(x ≠ v1 ∧⋯ ∧ x ≠ vn ∧AdjFO(c1, r))

9. AdjFO(∃ex(c1), r) = ∃ex(x ≠ e1 ∧⋯ ∧ x ≠ em ∧AdjFO(c1, r))

10. AdjFO(∃lx(c1), r) = ∃lx(AdjFO(c1, r))

Example 5.5.

Let p1 denotes LiftFO(q1,del
∨) and p2 denotes LiftFO(q2, copy

∨) we obtained in Example 5.4

for q1, q2,del
∨, and copy∨ we defined in Section 5.1. Then based on Definition 5.9,

.
1. AdjFO(p1, r1) = ¬∃ex(x ≠ e1 ∧ s(x) ≠ 1 ∧ s(x) ≠ 2 ∧mv(s(x)) ≠ none) ∧ d ≥ e

2. AdjFO(p2, r2) = ∃vx(x ≠ 1 ∧ x ≠ 2 ∧ ¬root(x)) ∧ outdeg(1) ≠ 1

The main purpose of transformation Adj is to adjust the obtained left-application condition

such that it can be satisfied by the replacement graph of the resulting graph.

92

5.4 From left to right-application condition

Lemma 5.10. Let us consider a host graph G, a generalised rule w = ⟨r, acL, acR⟩ for an

unrestricted rule schema r = ⟨L ←K → R⟩, an injective morphism g ∶ Lα → G for some label

assignment αL, and a precondition c. Let H be a host graph such that G⇒w,g,g∗ H for some

injective morphism g∗ ∶ Rβ → H where βR(i) = αL(i) for all common item i in domain βR

and αL(i). Then,

ρg(G) ⊧ (LiftFO(c,w))α implies ρg∗(H) ⊧ (AdjFO(LiftFO(c,w), r))β

Proof. Note that AdjFO(c, r) does not change any term representing label in c such that

AdjFO(cα, r) ≡ AdjFO(c, r)α for all label assignment αL. Also, note that AdjFO(c, r) does not

contain any variable x in R that does not exist in L. Hence, AdjFO(c, r)α = AdjFO(c, r)β.

Assuming ρg(G) ⊧ cα for c = LiftFO(c,w), we prove that ρg∗(H) ⊧ (AdjFO(c, r))β inductively

bellow:

Base case.

1. If c is true or false, we know that the lemma holds because every graph satisfies true

and no graph satisfies false

2. If c is the predicate int(x), char(x), string(x) or atom(x) for a list variable x, c′ ≡ c

and satisfaction of c is independent on the host graph such that ρg(G) ⊧ cα implies

ρg∗(H) ⊧ c′α and c′α = c′β.

3. If c is the predicate root(x) for some term x representing a node, then x ∉ VL (see

Definition 5.5 point 2), x is a variable representing Vρg(G) − (VL) = Vρg∗(H) − VR (see

Observation 5.3), or x is the function s(x) or t(x) for some edge variable x representing

an edge in Eρg(G) −EL = Eρg∗(H) −ER (see Definition 5.5 point 1(b) and 5.3). Hence,

x representing a node in ρg(G) − L, which is also in ρg∗(H) − R so that if root(x) is

true in ρg(G), root(x) must be true in ρg∗(H), and label assignment has nothing to do

with this.

4. If c = x1 ⊖ x2, if x1 and x2 are terms representing lists, then x1 and x2 independent to

nodes and edges in VL unless x1 or x2 is in the form incon(v)oroutcon(v) for some v ∈ VK
(see Definition 5.5 point 1(b) and 5.3). However, because outcon(v) = outdegρg(G)(v)−
outdegL(v) = outdegρg∗(H)(v) − outdegR(v), then semantics of outcon(v) in ρg(G)
is equivalent to semantics of indeg(v)−indegR(v) in ρg∗(H). Hence, c is either in-

dependent to nodes and edges in VL or contain outcon(x) or incon(x), ρg(G) ⊧ c

implies ρg∗(H) ⊧ c′ = AdjFO(c, r), or c. If c is x1 = x2 and x1 or x2 is a con-

stant in (VL − VK) or in EL, we know that there is no node/edge in ρg∗(H) that

is equal to the constant because the constant gets deleted by the rule, such that

93

Chapter 5 A strongest liberal postcondition for first-order formulas

ρg∗(H) ⊧ false = AdjFO(c, r). Analogously, if c is x1 ≠ x2 and x1 or x2 is a con-

stant in (VL − VK) or in EL, every node/edge in ρg∗(H) does not equal to the node or

edge such that ρg∗(H) ⊧ true = AdjFO(c, r).

Inductive case. Assuming ρg(G) ⊧ cα1 implies ρg∗(H) ⊧ AdjFO(c1, r)β and ρg(G) ⊧ cα2

implies ρg∗(H) ⊧ AdjFO(c2, r)β for some conditions c1, c2 over L,

1. ρg(G) ⊧ (c1 ∨ c2)α implies ρg(G) ⊧ cα1 or ρg(G) ⊧ cα2 implies ρg∗(H) ⊧ AdjFO(c1, r)β

or ρg∗(H) ⊧ AdjFO(c2, r)β, implies ρg∗(H) ⊧ (AdjFO(c1, r) ∨AdjFO(c2, r))β.

2. ρg(G) ⊧ (c1 ∧ c2)α implies ρg(G) ⊧µ cα1 and ρg(G) ⊧µ cα2 for some assignment µ

which implies ρg∗(H) ⊧µ AdjFO(c1, r)β and ρg∗(H) ⊧µ AdjFO(c2, r)β implies ρg∗(H) ⊧
(AdjFO(c1, r) ∧AdjFO(c2, r))β

3. ρg(G) ⊧ ¬cα1 implies ¬(ρg(G) ⊧ µcα1) for some assignment µ which implies ¬(ρg∗(H) ⊧µ

(AdjFO(c1, r))β), implying ρg∗(H) ⊧ ¬(AdjFO(c1, r))β

4. If c = ∃vx(c1), recall that every node variable x in c does not represent node in L.

ρg(G) ⊧ (∃vx(c1))α implies ρg(G) ⊧ (cx↦v1)α for some v ∈ Vρg(G) − VL = Vρg∗(H) − VR
which implies ρg∗(H) ⊧ (AdjFO(c

[x↦v]
1 , r))β. Since v ∉ VR, ρg∗(H) ⊧ (∃vx(x ≠ v1 ∧⋯∧

x ≠ vn ∧AdjFO(c1, r)))β

5. If c = ∃vx(c1), the proof is analogous to above

6. ρg(G) ⊧ (∃lx(c1))α implies ρg(G) ⊧ (cx↦k1)α for some k ∈ L which implies ρg∗(H) ⊧
(AdjFO(c

[x↦k]
1 , r))β = (AdjFO(c1, r)[x↦k])β, which means ρg∗(H) ⊧ (∃lx(AdjFO(c1, r)))β.

Note that any unrestricted rule schema r is invertible. The transformation Adj adjusts a

left-application condition to the properties of the resulting graph w.r.t the given unrestricted

rule schema. This means, adjusting the properties of the resulting graph w.r.t the inverse of

the unrestricted rule schema should resulting in the initial left-application condition.

Lemma 5.11. Let us consider host graph G, a generalised rule w = ⟨r, acL, acR⟩ for an

unrestricted rule schema r = ⟨L ← K → R⟩, and a precondition c. Let g ∶ Lα → R for some

label assignment αL be an injective morphism satisfying the dangling condition. Then

ρg(G) ⊧ AdjFO(AdjFO(LiftFO(c,w), r), r−1)α if and only if ρg(G) ⊧ LiftFO(c,w)α

Proof. Here we prove that ρg(G) ⊧ AdjFO(AdjFO(c, r), r−1) if and only if ρg(G) ⊧ c induc-

tively, where c = LiftFO(c, r):
Base case.

94

5.4 From left to right-application condition

1. If c is true or false, AdjFO(c, r) = c′ = AdjFO(AdjFO(c, r), r−1)

2. If c is the predicate int(x), char(x), string(x) or atom(x) for a list variable x, c′ ≡ c such

that AdjFO(c, r) = c′ = AdjFO(AdjFO(c, r), r−1)

3. If c is the predicate root(x), c′ ≡ c such that AdjFO(c, r) = c′ = AdjFO(AdjFO(c, r), r−1)

4. If c is x1 = x2 for x1 or x2 a node or edge constant in L−K, both x1 and x2 cannot be

constants (see construction of ValFO which is used to construct c). Then, one of them

must be a node or edge variable (which does not represent node in L - see Observation

5.3), or the function s(x) or t(x) for some edge variable x. Observation 5.3 shows us

that x does not representing edge in L, and g satisfies the dangling condition implies

s(x) and t(x) do not represent nodes in ρg(G)− (L−K). Hence, x1 = x2 is always false

in ρg(G). Otherwise for c = x1 ⊖ x2, AdjFO(c, r) = c′ = AdjFO(AdjFO(c, r), r−1).

Inductive case.

Assume that c1 ≡ AdjFO(AdjFO(c1, r), r−1) and c2 ≡ AdjFO(AdjFO(c2, r), r−1) for conditions

c1, c2 over L.

1. ρg(G) ⊧ c1 ∨ c2

iff ρg(G) ⊧ c1 or ρg(G) ⊧ c2

iff ρg(G) ⊧ AdjFO(AdjFO(c1, r), r−1) or ρg(G) ⊧ AdjFO(AdjFO(c2, r), r−1)
iff ρg(G) ⊧ AdjFO(AdjFO(c1, r), r−1)∨
AdjFO(AdjFO(c2, r), r−1) ≡ AdjFO(AdjFO(c, r), r−1)

2. ρg(G) ⊧ c1 ∧ c2 implies ρg(G) ⊧β c1 ∧ ρg(G) ⊧β c2 for some assignment β

iff ρg(G) ⊧β AdjFO(AdjFO(c1, r), r−1) ∧ ρg(G) ⊧β AdjFO(AdjFO(c2, r), r−1))
iff ρg(G) ⊧ AdjFO(AdjFO(c1, r), r−1)∧AdjFO(AdjFO(c2, r), r−1)) ≡ AdjFO(AdjFO(c, r), r−1)

3. ρg(G) ⊧ ¬c1 iff ¬(ρg(G) ⊧ βc1) for some assignment β

iff ¬(ρg(G) ⊧β AdjFO(AdjFO(c1, r), r−1),
iff ρg(G) ⊧ ¬AdjFO(AdjFO(c1, r), r−1) ≡ AdjFO(AdjFO(c, r), r−1)

4. If c = ∃vx(c1),
AdjFO(c, r) = ∃vx(x ≠ v1 ∧⋯ ∧ x ≠ vn ∧AdjFO(c1, r)),
so that AdjFO(AdjFO(c, r), r−1) = ∃vx(AdjFO(AdjFO(c1, r), r−1)).
Hence,

ρg(G) ⊧ AdjFO(AdjFO(c, r), r−1)
iff ρg(G) ⊧ ∃vx(AdjFO(AdjFO(c1, r), r−1))
iff ρg(G) ⊧ ∃vx(c1) = c

5. If c = ∃vx(c1), the proof is analogous to above

95

Chapter 5 A strongest liberal postcondition for first-order formulas

6. If c = ∃lx(c1),
ρg(G) ⊧ AdjFO(AdjFO(c, r), r−1)
iff ρg(G) ⊧ ∃lx(AdjFO(AdjFO(c1, r), r−1))
iff ρg(G) ⊧ ∃lx(c1) = c

Since the construction of AdjFO(AdjFO(c, r), r−1) does not any term representing labels,

AdjFO(AdjFO(cα, r), r−1) ≡ AdjFO(AdjFO(c, r)α, r−1) ≡ AdjFO(AdjFO(c, r), r−1)α. Hence, the

lemma is valid.

Actually, from the transformation Adj we already obtain a right-application condition. How-

ever, we want a stronger condition such that we add the specification of the right-hand graph.

In addition, since the resulting graph should also satisfy the existing right-application of the

given generalised rule schema, and the comatch should also satisfy the dangling condition.

Definition 5.12 (Shifting). Let us consider a generalised rule w = ⟨r, acL, acR⟩ for an un-

restricted rule schema r = ⟨L ← K → R⟩. Right application condition w.r.t. w, denoted by

ShiftFO(w), is defined as:

ShiftFO(w) = AdjFO(acL, r) ∧ acR ∧ Spec(R) ∧ Dang(r−1).

◻

Example 5.6. Let us consider LiftFO(q1,del
∨) and Lift(q2, copy

∨) we obtained in Example

5.4 for q1, q2 we defined in 5.1, and the generalised rule schemata del∨, copy∨ which are the

generalised version of r1, r2 of Figure 5.2 and Figure 5.3. For generalised rule schemata

w1 = ⟨r1,LiftFO(q1,del
∨), true⟩ and w2 = ⟨r2,LiftFO(q2, copy

∨), true⟩, based on Definition 5.12,

3.23, and 5.1, we have

ShiftFO(w1) = ¬∃ex(x ≠ e1 ∧ s(x) ≠ 1 ∧ s(x) ≠ 2 ∧mv(s(x)) ≠ none) ∧ d ≥ e

∧ lv(1) = a ∧ lv(2) = b ∧ le(e1) = d + e ∧mv(1) = red

∧mv(2) = none ∧me(e1) = none ∧ s(e1) = 1 ∧ t(e1) = 2

∧¬root(1) ∧ ¬root(2) ∧ int(d) ∧ int(e)
ShiftFO(w2) = ∃vx(x ≠ 1 ∧ x ≠ 2 ∧ ¬root(x)) ∧ outdeg(1) ≠ 1

∧ lv(1) = a ∧ lv(2) = a ∧ le(e1) = empty ∧mv(1) = none

∧mv(2) = none ∧me(e1) = dashed ∧ s(e1) = 1 ∧ t(e1) = 2

∧¬root(1) ∧ root(2) ∧ indeg(2) = 1 ∧ outdeg(2) = 0

Proposition 5.13 (Shifting). Let us consider a host graph G, a generalised rule w =
⟨r, acL, acR⟩ an unrestricted rule schema r = ⟨L←K → R⟩, an injective morphism g ∶ Lα → G

for some label assignment αL, and a precondition c. Then for host graphs H such that

G ⇒w,g,g∗ H with an right morphism g∗ ∶ Rβ → H where βR(i) = αL(i) for every variable

96

5.5 From right-application condition to postcondition

i in L such that i in R, and for every node (or edge) i where mV
L (i) = mV

R(i) = any (or

mE
L(i) =mE

R(i) = any),

ρg∗(H) ⊧ (AdjFO(LiftFO(c,w)), r)β if and only if ρg∗(H) ⊧ (ShiftFO(⟨r,LiftFO(c,w), acR⟩))β

Proof. From the semantics of conjunction, we know that AdjFO(LiftFO(c,w)), r)β is implied

by ShiftFO(w)β, so now we show that AdjFO(LiftFO(c,w)), r)β implies

ShiftFO(⟨r,LiftFO(c,w), acR⟩))β. That is, ρg∗(H) satisfies acβR ∧ Spec(R)β ∧Dang(r−1)β.

From Definition 3.18, G⇒w,g,g∗ H implies ρg∗(H) ⊧ acβR. From the construction of Spec(R),
Spec(R)β ≡Spec(Rβ) such that ρg∗(H) ⊧Spec(R)β is implied by the injective morphism g∗.

Finally, there is no label variable in Dang(r−1) such that Dang(r−1) ≡Dang(r−1)β, which is

implied by G⇒w,g,g∗ H because nodes in R−K must not incident to any edge in ρg∗(H)−R so

that their indegree and outdegree in R represents their indegree and outdegree in ρg∗(H).

5.5 From right-application condition to postcondition

The right-application condition we obtain from transformation Shift is strong enough to

express properties of the replacement graph of any resulting graph. However, since we need

a condition (without node/edge constant), we define transformation Post.

Definition 5.14 (Formula Post). Let us consider a condition a (possibly contain node/edge

constants). Let {x1,⋯, xn}, {y1,⋯, ym}, and {z1,⋯, zk} denote the set of free node, edge,

and label (resp.) variables in Var(a). A postcondition w.r.t. a, denoted by Post(a), is the

FO formula:

Post(a) = ∃vx1,⋯, xn(∃ey1,⋯, ym(∃lz1,⋯, zk(Var(a)))).

◻

To obtain a closed FO formula from the obtained right-application condition, we only need

to variablise (see Definition 3.25) the node/edge constants in the right-application condition,

then put an existential quantifier for each free variable in the resulting FO formula.

Example 5.7. Let us consider a1 = ShiftFO(⟨r1,LiftFO(q1,del
∨), true)⟩ and

a2 = ShiftFO(⟨r2,LiftFO(q2, copy
∨), true⟩) for q1, q2, r1, r2,del

∨, and copy∨ we defined in Section

97

Chapter 5 A strongest liberal postcondition for first-order formulas

5.1. Then based on Definition 5.14 and 2.32, we have

Post(a1) = ∃vu, v(u ≠ v ∧ ∃ew(∃la,b,d, e(
¬∃ex(x ≠ w ∧ s(x) ≠ u ∧ s(x) ≠ v ∧mv(s(w)) ≠ none) ∧ d ≥ e

∧ lv(u) = a ∧ lv(v) = b ∧ le(w) = d + e ∧mv(u) = red

∧mv(v) = none ∧me(w) = none ∧ s(w) = u ∧ t(w) = v

∧¬root(u) ∧ ¬root(v) ∧ int(d) ∧ int(e))))
Post(a2) = ∃vu, v(u ≠ v ∧ ∃ew(∃la(

∃vx(x ≠ u ∧ x ≠ v ∧ ¬root(x)) ∧ outdeg(u) ≠ 1

∧ lv(u) = a ∧ lv(v) = a ∧ le(w) = empty ∧mv(u) = none

∧mv(v) = none ∧me(w) = dashed ∧ s(w) = u ∧ t(w) = v

∧¬root(u) ∧ root(v) ∧ indeg(v) = 1 ∧ outdeg(v) = 0)))

Proposition 5.15 (Post). Let us consider a host graph G, a generalised rule w = ⟨r, acL, acR⟩
for an unrestricted rule schema r = ⟨L ← K → R⟩, and a precondition c. Then for all host

graph H such that there exists an injective morphism g∗ ∶ Rβ → H for a label assignment

βR,

ρg∗(H) ⊧ (ShiftFO(⟨r,LiftFO(c,w), acR⟩))β iff H ⊧ Post(ShiftFO(⟨r,LiftFO(c,w), acR⟩))β

Proof. From Lemma 3.26, ρg∗(H) ⊧ (ShiftFO(⟨r,LiftFO(c,w), acR⟩))β iff

H ⊧Var(ShiftFO(⟨r,LiftFO(c,w), acR⟩))β. If there is no node (or edge) in H, then there is no

node (or edge) constant in ρg∗(H) since they are isomorphic. Hence, there is no free node

(or edge) variable in Var(ShiftFO(⟨r,LiftFO(c,w), acR⟩))β so that there is no additional node

(or edge) quantifier for Var(ShiftFO(⟨r,LiftFO(c,w), acR⟩))β. If there exists a node (or edge)

in H, then from Fact 3.1, adding an existential quantifier will not change its satisfaction on H.

Hence, H ⊧Var(ShiftFO(⟨r,LiftFO(c,w), acR⟩))β iffH ⊧ Post(ShiftFO(⟨r,LiftFO(c,w), acR⟩))β.

Finally, we show that Post(ShiftFO(⟨r,LiftFO(c, ⟨r,Γ∨, true⟩⟩), true)) is a strongest liberal

postcondition w.r.t. c and ⟨r,Γ⟩. That is, by showing that for all host graph G, G ⊧ c

and G ⇒⟨r,Γ⟩ H implies H ⊧ Post(ShiftFO(⟨r,LiftFO(c, ⟨r,Γ∨, true⟩⟩), true)), and showing

that for all host graph H, H ⊧ Post(ShiftFO(⟨r,LiftFO(c, ⟨r,Γ∨, true⟩⟩), true)) implies the

existence of host graph G such that G ⊧ c and G⇒⟨r,Γ⟩ H.

Theorem 5.16 (Post is a strongest liberal postcondition). Let us consider a precondition c

and a conditional rule schema r = ⟨⟨L←K → R⟩,Γ⟩. Then, Post(ShiftFO(⟨r,LiftFO(c, r∨), true⟩))
is a strongest liberal postcondition w.r.t. c and r.

Proof. Based on the definition of liberal postcondition (see Definition 4.1), true is a liberal

postcondition for any precondition and conditional rule schema because . Hence, there must

98

5.6 Summary

exist a strongest liberal postcondition because we have at least one liberal postcondition for

any precondition and conditional rule schema.

Then, let us also consider c, r,Γ,G,H, g, g∗, α, β as stated in the theorem. From Lemma

3.20, G⇒r H iff G⇒w,g,g∗ H for w = ⟨r,Γ, true⟩, some injective morphisms g ∶ Lα → G and

g∗ ∶ Rβ → H with label assignment αL and βR where βR(i) = αL(i) for every variable i in L

such that i is in R, and for every node (or edge) i where mV
L (i) = mV

R(i) = any (or mE
L(i) =

mE
R(i) = any). For G ⊧ c, from Proposition 5.8, we get that ρg(G) ⊧Lift((c,w))α. Then, from

Lemma 5.10 and Proposition 5.13 we know that ρg∗(H) ⊧Shift(⟨r,Lift(c,w), true⟩)β. Finally,

from Proposition 5.15, we have Post(Shift(⟨r,Lift(c,w⟩, true))) is a liberal postcondition

w.r.t. c and r because H ⊧ Post(Shift(⟨r,Lift(c,w⟩, true))).

To show that d = Post(Shift(⟨r,Lift(c,w⟩, true))) is a strongest liberal postcondition, based

on Lemma 4.2, we need to show that for every graph H satisfying d, there exists a host graph

G satisfying c such that G⇒r H.

From Corollary 5.2 and the way we define Shift(⟨r,Lift(c,w⟩, true) (which clearly implies

Spec(R)∧Dang(r−1) due to the semantic of conjunction), we know there exists injective mor-

phism g′ ∶ Rγ → H that satisfies the dangling condition for some assignment γ. Also, from

Proposition 5.15, H ⊧ Post(Shift(⟨r,Lift(c,w), true⟩))) implies

ρg′(H) ⊧Shift(⟨r,Lift(c,w), true⟩)). Hence, there exists a natural double-pushout bellow

where every morphism is inclusion:

(1)

KRγ Lγ

D

(2)

Aρg′(H)

ρg′H ⊧Shift(⟨r,Lift(c,w), true⟩)) also implies that ρg′(H) ⊧Adj(Lift(c,w), r) from the defi-

nition of Shift and the semantics of conjunction. From Lemma 5.10, this implies A satisfies

Adj(Adj(Lift(c,w), r), r−1), which implies A ⊧ c from Lemma 5.11. Since direct derivations

are invertible, A⇒w H. Hence, A⇒r H.

5.6 Summary

This chapter shows us how can we construct a strongest liberal postcondition over a given

precondition and a (conditional) rule schema, where preconditions are limited to closed first-

order formulas. From the generalised rule schema application we described in the previous

chapter, we know that the match in an application must satisfy the dangling condition and

99

Chapter 5 A strongest liberal postcondition for first-order formulas

the rule schema condition. Hence, the left-application condition must satisfy the properties.

Moreover, we need to consider the given precondition as well since we are only interested in

the graphs satisfying the precondition.

We define the transformation SplitFO by considering all possibilities of node/edge variables

in the given precondition expressing nodes/edges in the given rule schema’s left-hand graph.

The obtained condition is then evaluated based on the left-hand graph to obtain a simpler

condition with respect to the left-hand graph. We then obtain a left-application condition

from the conjunction of this condition, the dangling condition, and the rule schema condition.

To obtain a right application condition that must be satisfied by the comatch of any possible

derivation, we introduce transformation Shift. This transformation basically considers the

difference that may occur due to the deletion of nodes/edges by the given rule schema. We

also add the condition that expresses the specification of the right-hand graph to have a

stronger right-application condition. Finally, we transform the right-application condition

to a closed first-order formula to obtain a liberal postcondition. We then prove that the

obtained liberal postcondition is actually a strongest liberal postcondition.

The approach we use to obtain a strongest liberal postcondition is basically similar to the

approach used in [1, 26] to obtain a weakest liberal precondition with respect to a given

postcondition and a rule (schema). The approach is similar in how it considers all possi-

bilities instance based on morphisms due to the rule schema application, then consider how

the deletion of nodes/edges may affect each of the possibility. However, it is likely that

finding possibilities of variables expressing nodes/edges in a matching is simpler than finding

instances of diagrams based on morphisms. Finding instances in standard logic only consider

the matching between nodes/edges we have in left-hand graph with node/edge variables we

have in the precondition. However, finding instances based on morphisms need to consider

the possibility of adjacency/incidence with other nodes we have in a graph, with considering

marks of the nodes/edges as well.

In [1], it is shown that a weakest liberal precondition is essential in graph program verification

because it can be used as an axiom in Hoare-style verification. However, it is stated that

a strongest liberal postcondition can not be obtained from the construction of a weakest

liberal precondition because rule schemata are not invertible. Here, we are able to construct

a strongest liberal postcondition based on a generalised rule schema, which is invertible.

Hence, we should be able to use the construction we defined in this chapter to obtain a

weakest liberal precondition as well (see Chapter 7).

100

Chapter 6

Extension to monadic second-order logic

In the previous chapter, we have defined the construction of a strongest liberal postcondition

over a closed first-order formula. Here, we extend the construction for monadic second-order

formulas. Before we start with the extension, we first analyse by example the comparison in

constructing a strongest liberal postcondition for first-order formulas and monadic second-

order formulas to find the intuition for the extension.

6.1 Constructing left and right-application condition by ex-

ample

In the previous chapter, we have shown how to construct a strongest liberal postcondition for

first-order formulas. To upgrade it to monadic second-order formulas, we need to consider

functions and predicates of MSO formulas that are not considered in FO formulas. Before

we start to define the construction formally, let us observe the construction by considering

the rule r3 of Figure 6.1. Let us also consider the formulas c1, c2, and c3 below:

● c1 ≡ ∀vx(mv(x) = none)

● c2 ≡ ∃VX(∀vx(x ∈ X⇒ mv(x) = none) ∧ card(X) ≥ 2)

● c3 ≡ ∃VX(∀vx(mv(x) = grey⇔ x ∈ X) ∧ card(X) = 2 ∗ n)

where c1 expresses all nodes are unmarked, c2 expresses there exists at least 2 unmarked

nodes, and c3 expresses the number of grey nodes is even.

Note that the interface of the rule copy is the empty graph. We intentionally does not

preserve the node 1 and have two new nodes instead to see the effect of both removal and

addition of an element in constructing a strongest liberal postcondition.

101

Chapter 6 Extension to monadic second-order logic

copy(a ∶ list)

a

1

⇒ a a

copy (a ∶ list;)
[∣ (1,a)

∣]
=>
[∣ (2#grey,a) (3#grey,a)

∣]
interface = {}
where true

Figure 6.1: GP 2 conditional rule schema copy = ⟨r3,Γ3⟩

6.1.1 Constructing left-application condition

In the previous chapter, the left-application condition is constructed by having transforma-

tions SplitFO, ValFO, LiftFO, and condition Dang. For a rule schema r, the condition Dang(r)
is a condition that expresses the dangling condition. Since the dangling condition is related

to the individual of deleted nodes, first-order formula is enough to express it so that Dang(r)
can be used as in the construction of left-application condition for FO formulas. Dang(r3)
then can be constructed as in the previous chapter (see Definition 5.1), that is:

indeg(1) = 0 ∧ outdeg(1) = 0

For a rule schema r and a precondition c, SplitFO(c, r) forms a disjunction from all possibilities

connection between the node/edge variables in c and nodes/edges in the left-hand graph of

r. In c1, we only have a first-order variables so that as the connection between a node (or

edge) variable x in c1 and left-hand graph node (or edge) i of r3 is either x = i or x ≠ i.
Hence, SplitMSO(c1, r3) should be equal to SplitFO(c1, r3), that is:

¬(mv(1) ≠ none) ∧ ¬∃vx(x ≠ 1 ∧mv(x) ≠ none)

In first-order formulas, a node/edge variable can only represent exactly one node/edge in

a graph. Hence, we can use substitution when we consider a variable x representing a

node/edge i. However, we can not use substitution for set variables. When a node (or edge)

set variable exists, then a connection between a node (or edge) in the left-hand graph will

be either the node is an element of the set represented by the variable or not. Then, we can

have SplitMSO(c2, r3) as follows:

∃VX((1 ∈ X⇒ ¬(1 ∈ X ∧mv(1) ≠ none) ∧ ¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2)
∧ (1 ∉ X⇒ ¬(1 ∈ X ∧mv(1) ≠ none) ∧ ¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2))

102

6.1 Constructing left and right-application condition by example

Similarly, if we denote by c4 the formula ∀vx(mv(x) = grey↔ x ∈ X), then SplitMSO(c3, r3)
should be:

∃VX((1 ∈ X⇒ SplitMSO(c4, r3) ∧ card(X) = 2∗n) ∧ (1 ∉ X⇒ SplitMSO(c4, r3) ∧ card(X) = 2∗n))

where SplitMSO(c4, r3) is:

¬(1 ∉ X ∧mv(1) = grey) ∧ ¬(mv(1) ≠ grey ∧ 1 ∈ X)
∧¬∃vx(x ≠ 1 ∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X)))

Next, the transformation ValMSO. This transformation is done to simplify a condition with

respect to the left-hand graph of the given rule. Since there is no node or edge set variable

in c1, ValMSO(SplitMSO(c1, r3), r3) should be equal to ValFO(SplitMSO(c1, r3), r3), that is:

¬∃vx(x ≠ 1 ∧mv(x) ≠ none)

Since we do not have functions with node/edge set constant as their argument, we only need

to simplify the condition we have so that ValMSO(SplitMSO(c2, r3), r3) should be:

∃VX((1 ∈ X⇒ ¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2)
∧ (1 ∉ X⇒ ¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2))

because mV
L (1) = none so that we change mv(1) ≠ none to false and then simplify the condi-

tion. In addition, for each implication we have, we can simplify the implication by substitut-

ing true for the premise in the right-hand side. For example, for the implication with 1 ∈ X
as the premise, we replace 1 ∈X on the right-hand side of the implication to true.

Similarly, ValMSO(SplitMSO(c3, r3), r3) should be:

∃VX((1 ∈ X⇒ false)
∧ (1 ∉ X⇒ ¬∃vx(x ≠ 1 ∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X))) ∧ card(X)))

because mV
L (1) = none so that mv(1) = grey is false. The implication with 1 ∈ X as premise

can be simplified as 1 ∈ X⇒ false. Then for ValMSO(Dang(r3)), it should be the same as

ValFO(Dang(r3)), that is: true.

Finally, LiftMSO should similar to LiftFO, which is formed from the valuation of the conjunc-

tion of Dang, Split, and the given left-application condition. Let w denotes the generalised

rule schema r∨3 . Since there is no rule schema application condition in r3, left-application con-

dition of w is true so that LiftMSO(c1, r3) is ValMSO(SplitMSO(c1, r3), r3) and LiftMSO(c2, r3)

103

Chapter 6 Extension to monadic second-order logic

is ValMSO(SplitMSO(c2, r3), r3).

6.1.2 Constructing right-application condition

In the previous chapter, we use transformation AdjFO to adjust a left-application condition

such that it can always be satisfied by the resulting graph. In constructing AdjFO, we changed

x = i for some deleted node/edge i of the given rule schema to false and x ≠ i to true because i

is not in the resulting graph so that x cannot be equal to i. However, it gets a lot trickier in

MSO formula because of the function card. If a node gets deleted and the node is a member

of a set of nodes represented by a set variable X, then the deletion change the value of the

cardinality of the set.

We do not have a node/edge set variable in c1, so that Adj for this case should be the same

as in FO formula such that AdjMSO(LiftMSO(c1,w), r3) is:

¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧mv(x) ≠ none)

because we change x ≠ 1 to true and we add constraint x ≠ 2 ∧ x ≠ 3 since 2 and 3 are new

nodes.

The tricky part can be seen in the case of c2. If i ∈X is true and i gets deleted, then cardinality

of X should be changed. For example, when a replacement graph of the input graph satisfies

1 ∈ X ∧ card(X) = 2∗n, then the replacement graph of any resulting graph where 1 is a deleted

node should satisfy card(X) + 1 = 2∗n. Hence, AdjMSO(LiftMSO(c3,w), r3) should be:

∃VX((1 ∈ X⇒ ¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) + 1 ≥ 2)
∧(1 ∉ X⇒ ¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2))

Then, AdjMSO(LiftMSO(c3,w), r) should be: ∃VX((1 ∈ X⇒ false)
∧ (1 ∉ X⇒ ¬∃vx(x ≠ 1 ∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X))) ∧ card(X)))

For the transformation Shift, in the previous chapter, ShiftFO is constructed by forming

conjunction from AdjFO, Dang(r−1), the given right application condition, and Spec(R).
As mentioned before, there is no change in condition Dang for MSO formulas. Similarly,

specification of the right-hand graph will be the same.

Let R denotes the right-hand graph of r3 and New(r3) denotes the conjunction of Dang(r−1
3),

Spec(R), and the combination above, that is:

mv(2) = grey ∧mv(3) = grey ∧ lv(2) = a ∧ lv(3) = a

104

6.2 From precondition to left-application condition

∧ indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0

Then, the condition ShiftMSO(⟨r,LiftMSO(c1,w), true⟩), ShiftMSO(⟨r,LiftMSO(c2,w), true⟩),
and ShiftMSO(⟨r,LiftMSO(c3,w), true⟩) (respectively) should be AdjMSO(LiftMSO(c1,w), r3)∧
New(r3), AdjMSO(LiftMSO(c2,w), r3) ∧New(r3), and AdjMSO(LiftMSO(c3,w), r) ∧New(r3).

From the examples above, we can see that the possibilities of nodes (or edges) becoming an

element of node (or edge) set represented by a variable X is important in the transformation

process. To cover this matter, we define a subset formula for a set which can be used to

represent a subset of the set.

Definition 6.1 (Subset Formula). Let us consider a set of nodes L = {v1, . . . , vn} for some

n ≥ 1. A subset formula for L with respect to a node set variable X has the form c1∧c2∧. . .∧cn
where for i = 1, . . . , n, ci = vi ∈ X or vi ∉ X. The formula true is the only subset formula for

the empty set empty with respect to any set variable.

We say that the subset formula c for L w.r.t X represents a subset M of L if c implies i ∈X
for every i ∈M and c implies j ∉X for every j ∈ L −M . ◻

Example 6.1. For L = {1,2}, both 1 ∈ X ∧ 2 ∉ X and 2 ∈ X ∧ 1 ∈ X are subset formulas for

L with respect to X.

Each subset formula for L represents a subset of L, and each subset of L is represented by a

subset formula for L that is unique up to a reordering of the conjuncts.

6.2 From precondition to left-application condition

From the example we have above, constructing a left-application condition from a precondi-

tion and a rule schema for monadic second-order formulas is similar to what we have done

for first-order formulas. We only have additional possibility of nodes or edges in the left-

hand graph of a given rule schema being an element of a node or edge set represented by set

variables in the precondition.

Definition 6.2 (Transformation Split). Let us consider an unrestricted rule schema r = ⟨L←
K → R⟩. where VL = {v1,⋯, vn} and EL = {e1,⋯, em}. Let 2VL = {V1, . . . , V2n} be the power

set of VL, and d1, . . . , d2n be subset formulas of VL w.r.t. X where for every i = 1, . . . ,2n, di

represents Vi. Similarly, let 2EL = {E1, . . . ,E2m} be the power set of EL, and a1, . . . , a2m be

subset formulas of EL w.r.t. X where for every i = 1, . . . ,2m, ai represents Ei.

105

Chapter 6 Extension to monadic second-order logic

For a condition c over L sharing no variables with r (note that it is always possible to replace

the label variables in c with new variables that are distinct from variables in r), we define

the condition SplitMSO(c, r) over L inductively as follows:

- Base case.

If c is a first-order formula,

SplitMSO(c, r) = SplitMSO(c, r)
If c is in the form x ∈ X or x ∉ X,

SplitMSO(c, r) = c
If c is in the form x⊗ card(X) for ⊗ ∈ {=,≠,<,≤,>,≥},

SplitMSO(c, r) = c
- Inductive case.

Let c1 and c2 be conditions over L.

1) SplitMSO(c1 ∨ c2, r) = SplitMSO(c1, r) ∨ SplitMSO(c2, r),
2) SplitMSO(c1 ∧ c2, r) = SplitMSO(c1, r) ∧ SplitMSO(c2, r),
3) SplitMSO(¬c1, r) = ¬SplitMSO(c1, r),
4) SplitMSO(∃vx(c1), r) = (⋁n

i=1SplitMSO(c
[x↦vi]
1 , r)) ∨ ∃Vx(⋀n

i=1 x≠vi ∧SplitMSO(c1, r),
5) SplitMSO(∃ex(c1), r) = (⋁m

i=1SplitMSO(c
[x↦ei]
1 , r)) ∨ ∃ex(⋀m

i=1 x≠ei ∧ inc(c1, r, x)),
where

inc(c1, r, x) = ⋁n
i=1(⋁n

j=1 s(x) = vi ∧ t(x) = vj ∧SplitMSO(c
[s(x)↦vi,t(x)↦vj]
1 , r))

∨ (s(x) = vi ∧ ⋀n
j=1 t(x) ≠ vj ∧SplitMSO(c

[s(x)↦vi]
1 , r))

∨ (⋀n
j=1 s(x) ≠ vj ∧ t(x) = vi ∧SplitMSO(c

[t(x)↦vi]
1 , r))

∨ (⋀n
i=1 s(x) ≠ vi ∧ ⋀n

j=1 t(x) ≠ vj ∧SplitMSO(c1, r))
6) SplitMSO(∃lx(c1), r) = ∃lx(SplitMSO(c1, r))
7) SplitMSO(∃VX(c1), r) = ∃VX(⋀2n

i=1 di ⇒ SplitMSO(c1, r))
8) SplitMSO(∃EX(c1), r) = ∃EX(⋀2m

i=1 ai ⇒ SplitMSO(c1, r))

where c[a↦b] for a variable or function a and constant b represents the condition c after the

replacement of all occurrence of a with b. ◻

Example 6.2. Let us consider the rule copy = ⟨re,Γ3⟩ of Figure 6.1 and MSO formulas:

a) c1 ≡ ∀vx(mv(x) = none),
b) c2 ≡ ∃VX(∀vx(x ∈ X⇒ mv(x) = none) ∧ card(X) ≥ 2), and

c) c3 ≡ ∃VX(¬∃vx(mV(x) = grey⇔ x ∈ X) ∧ ∃ln(card(X) = 2 ∗ n))

106

6.2 From precondition to left-application condition

From the definition of SplitMSO,

a) SplitMSO(c1, r) = ¬(mv(1) ≠ none) ∧ ¬∃vx(x ≠ 1 ∧mv(x) ≠ none)
b) SplitMSO(c2, r) = ∃VX((1 ∈ X⇒ ¬(1 ∈ X ∧mv(1) ≠ none)

∧¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2)
∧(1 ∉ X⇒ ¬(1 ∈ X ∧mv(1) ≠ none))

∧¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2))
c) SplitMSO(c3, r) = ∃VX((1 ∈ X⇒ d ∧ card(X) = 2∗n) ∧ (1 ∉ X⇒ d ∧ card(X) = 2∗n))

where

d = ¬(1 ∉ X ∧mv(1) = grey) ∧ ¬(mv(1) ≠ grey ∧ 1 ∈ X)
∧¬∃vx(x ≠ 1 ∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X)))

Lemma 6.3. Let us consider a condition c and an unrestricted rule schema r = ⟨L←K → R⟩,
sharing no variables with c. For a host graph G, let g ∶ L→ G be a premorphism. Then,

G ⊧ c if and only if ρg(G) ⊧ SplitMSO(c, r).

Proof. Here, we prove the lemma inductively. The texts above the symbol ⇔ below refer to

lemmas that imply the associated implication, e.g. L4 refers to Lemma 4.

(Base case).

1) If c is a first order formula,

G ⊧ c L5.4⇔ ρg(G) ⊧ SplitFO(c, r)
⇔ ρg(G) ⊧ SplitMSO(c, r)

2) If c is in the form x ∈ X or x⊗ card(X) for ⊗ ∈ {=,≠,<,≤,>,≥},

G ⊧ c L3.28⇔ ρg(G) ⊧ c
⇔ ρg(G) ⊧ SplitMSO(c, r)

(Inductive case).

Assuming that for some conditions c1 and c2 over L, the lemma holds.

1) G ⊧ c1 ∨ c2
F3.1⇔ G ⊧ c1 ∨G ⊧ c2

⇔ ρg(G) ⊧ SplitMSO(c1, r) ∨ ρg(G) ⊧ SplitMSO(c2, r)
F3.1⇔ ρg(G) ⊧ SplitMSO(c1, r) ∨ SplitMSO(c2, r)

2) G ⊧ c1 ∧ c2
F3.1⇔ G ⊧α c1 ∧G ⊧α c2 for some assignment α

⇔ ρg(G) ⊧β SplitMSO(c1, r) ∨ ρg(G) ⊧β SplitMSO(c2, r)
where β(x) = α(x) if x ∉ VL; β(x) = g−1(α(x)) otherwise

F3.1⇔ ρg(G) ⊧ SplitMSO(c1, r) ∨ SplitMSO(c2, r)
3) G ⊧ ¬ c1

F3.1⇔ ¬(G ⊧α c1) for some assignment α

⇔ ¬(ρg(G) ⊧β SplitMSO(c1, r))
where β(x) = α(x) if x ∉ VL; β(x) = g−1(α(x)) otherwise

F3.1⇔ ρg(G) ⊧ ¬SplitMSO(c1, r)
4) G ⊧ ∃vx(c1)

L3.30⇔ G ⊧ ⋁n
i=1c1

[x↦vi]∨∃vx(⋀n
i=1 x ≠ vi ∧ c1)

107

Chapter 6 Extension to monadic second-order logic

⇔ ρg(G) ⊧ ⋁n
i=1 SplitMSO(c

[x↦vi]
1 , r) ∨ ∃Vx(⋀n

i=1 x ≠ vi ∧ SplitMSO(c1, r))
5) G ⊧ ∃ex(c1)

L3.30⇔ G ⊧ ⋁m
i=1c1

[x↦ei]∨∃Vx(⋀m
i=1 x ≠ ei ∧ c1)

L3.30⇔ ρg(G) ⊧ ⋁m
i=1 SplitMSO(c

[x↦ei]
1 , r) ∨ ∃ex(⋀m

i=1 x ≠ ei ∧ SplitMSO(c1, r))
L3.30⇔ ρg(G) ⊧ ⋁m

i=1 SplitMSO(c
[x↦ei]
1 , r) ∨ ∃ex(⋀m

i=1 x ≠ ei ∧ inc(c1, r, x))
6) G ⊧ ∃lx(c1)

F3.1⇔ G ⊧ c1

⇔ ρg(G) ⊧ SplitMSO(c1, r)
F3.1⇔ ρg(G) ⊧ ∃lx(SplitMSO(c1, r))

7) G ⊧ ∃VX(c1)
L3.30⇔ G ⊧ ∃VX(⋁2n

i=0Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X⇒ c1)

F3.1⇔ G ⊧ ⋁2n

i=0Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X⇒ c1

⇔ ρg(G) ⊧ ⋁2n

i=0Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X⇒ SplitMSO(c1, r)

F3.1⇔ ρg(G) ⊧ ∃VX(⋀2n

i=0(Vi ⊆ X ∧⋀j∈V−Vi
j ∉ X⇒ SplitMSO(c1, r)))

⇔ ρg(G) ⊧ ∃VX(⋀2n

i=0(di ⇒ SplitMSO(c1, r)))
8) analogous to point 7

The transformation Val for MSO formulas basically have the same functions as the one for

FO formulas, but with additional valuation for implications we obtained from Split. Then

for condition Dang, we can use the condition Dang(r) we defined in the previous chapter.

Definition 6.4 (Transformation ValMSO). Let us consider an unrestricted rule schema r =
⟨L ← K → R⟩, a condition c over L, a host graph G, and premoprhism g ∶ L → G. Let c

shares no variable with L unless c is a rule schema condition. Valuation of c w.r.t. r, written

ValFO(c, r), is constructed by applying the following steps to c:

1. Obtain c′ and c′′ as defined in Definition 5.5.

2. Obtain c′′′ from c′′ by changing every implication in the form a ⇒ d for some subset

formula a and condition d to a ⇒ dT where dT is obtained from d by changing every

subformula in the form i ∈ X for i ∈ VL or i ∈ EL and set variable X to true if i ∈ X is

implied by a or false otherwise.

3. Simplify c′′′ such that the implications (with subset formula) still preserved, there are

no subformulas in the form ¬ true,¬(¬a) ¬(a ∨ b), ¬(a ∧ b) for some conditions a, b.

Example 6.3. Let d1, d2, and d3 be the conditions SplitMSO(c1, r3), SplitMSO(c2, r3), and

SplitMSO(c3, r3) from Example 6.2. Then,

1. ValMSO(d1, r3) = ¬∃vx(x ≠ 1 ∧mv(x) ≠ none)
Here, since d1 is a first-order logic, we use the same steps as in the previous chapter.

108

6.2 From precondition to left-application condition

2. ValMSO(d2, r3) = ∃VX(∃VX((1 ∈ X⇒ ¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none ∧ card(X) ≥ 2)))
∧ ((1 ∉X ⇒ ¬∃vx(x ≠ 1 ∧ x ∈X ∧mv(x) ≠ none ∧ card(X) ≥ 2))))

Here, we change every mv(1) ≠ none to false because mV
L (1) = none. Also, we change

1 ∈ X on the right-hand side of the first implication to true and the second implication

to false. Finally, we simplify the obtained condition.

3. ValMSO(d3, r3) =
∃VX((1 ∈ X⇒ false)

∧ (1 ∉ X⇒ ¬∃vx(x ≠ 1 ∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X))) ∧ card(X)))
Here, we change every mv(1) ≠ grey to true and mv(1) = grey to false becausemV

L = none.
Them we change 1 ∈ X on the right-hand side of the first implication to true, and false

for the second implication. Similarly, we change 1 ∉ X on the right-hand side of the

first implication to false, and true for the second implication. before we finally simplify

the obtained condition.

Lemma 6.5. Let us consider an unrestricted rule schema r = ⟨L←K → R⟩, a host graph G,

and an injectiva morphism g ∶ Lα → G for a label assignment αL. For a graph condition c,

ρg(G) ⊧ c implies ρg(G) ⊧ (ValMSO(c, r))α

Proof. From Lemma 5.6, we understand that the first step of ValMSO does not change the

semantics of the condition on ρg(G). The second steps gives us an implication because

of the meaning of implication. Finally, the simplification of a formula will not change its

semantics.

The transformation Lift basically only conjunct the conditions we established from the pre-

vious transformations. So there is no important change from the previous chapter.

Definition 6.6 (Transformation Lift). Let us consider a generalised rule w = ⟨r, acL, acR⟩
for an unrestricted rule schema r = ⟨L←K → R⟩. Let c be a precondition. A left application

condition w.r.t. c and w, denoted by LiftMSO(c,w), is the condition over L:

LiftMSO(c,w) = ValMSO(SplitMSO(c ∧ acL, r) ∧Dang(r), r).

◻

Example 6.4. Note that Γ = true and Dang(r3) = indeg(1) = 0 ∧ outdeg(1) = 0 such that

Val(Γ3∧Dang(r3), r3) = true. Hence, LiftMSO(c, copy∨) = ValMSO(SplitMSO(c, r3), r3) for all

c = c1, c2, c3 (from Example 6.2)

Proposition 6.7 (Left-application condition for MSO formulas). Let us consider a host

graph G and a generalised rule w = ⟨r, acL, acR⟩ for an unrestricted rule schema r = ⟨L ←

109

Chapter 6 Extension to monadic second-order logic

K → R⟩. Let c be a precondition and αL be a label assignment such that there exists an

injective morphism g ∶ Lα → G. Then,

G ⊧ c and G⇒w,g,g∗ H for some host graph H iff ρg(G) ⊧ (LiftMSO(c,w))α

Proof. From Lemma 6.3, we know that G ⊧ c implies ρg(G) ⊧ SplitMSO(c, r). Then

G ⇒w,g,g∗ H implies ρg(G) ⊧ acL and the existence of natural double-pushout with match

g ∶ Lα → G. The latter implies the satisfaction of the dangling condition. The satisfac-

tion of the dangling condition implies ρg(G) ⊧Dang(r) based on Observation 5.1, such that

ρg(G) ⊧ SplitMSO(c, r)∧ acL∧Dang(r), and ρg(G) ⊧ SplitMSO(c, r)∧ acL∧Dang(r), r)α from

Lemma 6.5.

Let us consider the definition ValMSO and LiftMSO. The first gives us restrictions on the

simplification we can have, and SplitMSO gives us some forms for node and edge (set) variables

such that these forms must be preserved in Lift based on the definition of LiftMSO.

Definition 6.8 (Lifted form). Let us consider a rule graph L where VL = {v1, . . . , vn} and

EL = {e1, . . . , em}. Let 2VL = {V1, . . . , V2n} be the power set of VL, and d1, . . . , d2n be subset

formulas of VL w.r.t. X where for every i = 1, . . . ,2n, di represents Vi. Similarly, let 2EL =
{E1, . . . ,E2m} be the power set of EL, and a1, . . . , a2m be subset formulas of EL w.r.t. X

where for every i = 1, . . . ,2m, ai represents Ei.

A condition c over L is in lifted form if c is in one of the following forms, which are defined

inductively:

1. the formulas true or false

2. predicates int(x), char(x), string(x), atom(x) for some list variable x

3. Boolean operations f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing a

list and neither contains free node/edge variable

4. Boolean operations f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing a

node (or edge) and neither contains free node/edge variable or node/edge constant

5. Boolean operation f1 ◇f2 for ◇ ∈ {=,≠,<,≤,>,≥} and some terms f1 and f2 representing

integers and neither contains free node/edge (set) variable

6. Boolean operation x ∈ X for a bounded set variable X and bounded edge variable x, or

a bounded set variable X and a bounded node variable x, x = s(y) or x = t(y) for some

bounded edge variable y

7. ∃lx(c1 for some condition c1 over L in lifted form

110

6.3 From left to right-application condition

8. ∃vx (⋀n
i=1, x ≠ vi ∧ c1) for some condition c1 over L in lifted form

9. ∃ex (⋀m
i=1, x ≠ ei ∧ c1) for some condition c1 over L in lifted form

10. ∃VX(⋀2n

i=1 di ⇒ ci) where each ci is a condition over L in lifted form

11. ∃EX(⋀2m

i=1 ai ⇒ ci) where each ci is a condition over L in lifted form

12. c1 ∨ c2 for some conditions c1, c2 over L in lifted form

13. c1 ∧ c2 for some conditions c1, c2 over L in lifted form

14. ¬c1 for some condition c1 over L in lifted form

Lemma 6.9. Let us consider a precondition c and a rule schema r = ⟨⟨L ← K → R⟩,Γ⟩.
Then, LiftMSO(c, r∨) is a condition over L in lifted form.

Proof. Note that LiftMSO(c, r∨) is formed from conjunctions of ValMSO(Dang(r)),

ValMSO(SplitMSO(Γ3, r)), and ValMSO(SplitMSO(c, r)). From the construction of

ValMSO(Dang(r)), it always resulting the formula true. From the syntax of Γ, Γ cannot have

any node or edge variable. However, we may have the predicate edge(u, v#m) for some nodes

u, v in L and some edge markm. We need to change this to ∃ex(s(x) = u ∧ t(x) = v ∧mE(x) = m)
so that ValMSO(SplitMSO(Γ, r)) will be in lifted form; that is form number 9 in Definition

6.8. Then, for ValMSO(SplitMSO(c, r)), we know that c is a closed formula so that every node

and edge (set) variable is bounded by an existential quantifier. By the transformation split,

we always have conjunction as we see in form 8, 9, 10, and 11 of Definition 6.8. Moreover,

by ValMSO, we always change i ∈X for every node or edge i in L to true or false, depends on

the premise of each implication.

6.3 From left to right-application condition

Similar to the previous chapter, to construct a right-application condition we use transforma-

tion Adj. This transformation is the trickiest transformation in obtaining a strongest liberal

postcondition, because this transformation change a condition that express properties of the

initial graph so that it can express properties of the final graph.

Definition 6.10 (Adjusment in MSO logic). Let us consider an unrestricted rule schema

r = ⟨L ← K → R⟩ where VL = {v1, . . . , vn}, EL = {e1, . . . , em}, VK = {u1, . . . , uk}, VR =
{w1, . . . ,wp}, and ER = {z1, . . . , zq}. Let 2VL = {V1, . . . , V2n} be the power set of VL, and

d1, . . . , d2n be subset formulas of VL w.r.t. X where for every i = 1, . . . ,2n, di represents Vi.

Similarly, let 2VK = {U1, . . . , U2k} be the power set of VK , and b1, . . . , b2k be subset formulas

of VK w.r.t. X where for every i = 1, . . . ,2k, bi represents Ui. Also, let 2EL = {E1, . . . ,E2m}

111

Chapter 6 Extension to monadic second-order logic

be the power set of EL, and a1, . . . , a2m be subset formulas of EL w.r.t. X where for every

i = 1, . . . ,2m, ai represents Ei.

For a condition c over L in lifted form, the adjusted condition of c w.r.t. r is defined

inductively as below, where c1, . . . , cs are conditions over L, for s ≥ 2m and s ≥ 2n:

1. If c is the formulas true or false,

AdjMSO(c, r) = c

2. If c is predicate int(x), char(x), string(x), or atom(x) for some list variable x,

AdjMSO(c, r) = c

3. If c is a Boolean operation f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing

a list and neither contains free node/edge variable,

AdjMSO(c, r) = c

4. If c is a Boolean operation f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing

a node (or edge) and neither contains free node/edge variable or node/edge constant,

AdjMSO(c, r) = c

5. If c is a Boolean operation f1 ◇ f2 for ◇ ∈ {=,≠,<,≤,>,≥} and some terms f1 and f2

representing integers and neither contains free node/edge variable or any set variables,

AdjMSO(c, r) = AdjFO(c, r)

6. If c is a Boolean operation x ∈ X for a bounded set variable X and bounded edge variable

x, or a bounded set variable X and a bounded node variable x, x = s(y) or x = t(y) for

some bounded edge variable y,

AdjMSO(c, r) = c

7. If c = ∃lx(c1 for some condition c1 over L in lifted form,

AdjMSO(c, r) = ∃lx(AdjMSO(c1, r))

8. If c = ∃vx (⋀n
i=1, x ≠ vi ∧ c1) for some condition c1 over L in lifted form,

AdjMSO(c, r3) = ∃vx(⋀pi=1, x ≠ wi ∧AdjMSO(c1, r))

9. If c = ∃ex (⋀m
i=1, x ≠ ei ∧ c1) for some condition c1 over L in lifted form,

AdjMSO(c, r) = ∃ex(⋀qi=1, x ≠ zi ∧AdjMSO(c1, r))

10. If c = ∃VX(⋀2n

i=1 di ⇒ ci) where each ci is a condition over L in lifted form or contains

card(X)
AdjMSO(c, r) = ∃VX(⋀v∈VR−VK v ∉X ⋀2k

i=1(bi ⇒ ⋁j∈Wi
c′j))

where c′j = AdjMSO(cj , r)[card(X)↦card(X)+∣(VL−VK)∩Vj∣] and for i = 1, . . . ,2k, Wi is a subset

of {1, . . . ,2n} such that for all j ∈ {1, . . . ,2n}, j ∈Wi iff dj implies bi

112

6.3 From left to right-application condition

11. If c = ∃EX(⋀2m

i=1 ai ⇒ ci) where each ci is a condition over L in lifted form,

construction of AdjMSO(c, r) is analogous to point 10

12. If c = c1 ∨ c2 for some conditions c1, c2 over L in lifted form,

AdjMSO(c, r) = AdjMSO(c1, r) ∨AdjMSO(c2, r)

13. If c = c1 ∧ c2 for some conditions c1, c2 over L in lifted form,

AdjMSO(c, r) = AdjMSO(c1, r) ∧AdjMSO(c2, r)

14. If c = ¬c1 for some condition c1 over L in lifted form,

AdjMSO(c, r) = ¬AdjMSO(c1, r)

Example 6.5.

Let us consider the rule copy of Figure 5.3. Let d1 = LiftMSO(c1, copy
∨), d2 = LiftMSO(c2, copy

∨),
and d3 = LiftMSO(c3, copy

∨) from Example 6.4. Then, based on Definition 6.10,

a) AdjMSO(d1, r3) = adj(d1, r3)
= ¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧mv(x) ≠ none)

Here, d1 is a first-order formula so that d1 = d′1 and AdjMSO(d1, r3) =
AdjFO(d1, r3).

b) AdjMSO(d2, r3) = ∃VX(¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 1)
Here, we first change ∃VX(1 ∈ X ∧ ¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 2)
to ∃VX(¬∃vx(x ≠ 1 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) + 1 ≥ 2). Then, we change

every x ≠ 1 to false and 1 ∉ X to true. We then add constraint x ≠ 2 ∧ x ≠ 3

inside the node existential quantifier, and finally we simplify the obtained

condition.

c) AdjMSO(d3, r) = ∃VX(¬∃vx(x ≠ 2 ∧ x ≠ 3

∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X)))
∧ card(X) = 2∗n)

Here, we change every x ≠ 1 to false and 1 ∉X to true. We then add constraint

x ≠ 2 ∧ x ≠ 3 inside the node existential quantifier, and finally we simplify the

obtained condition.

Lemma 6.11. Let us consider a host graph G, a GP 2 conditional rule schema ⟨r,Γ⟩ with

r = ⟨L ← K → R⟩, an injective morphism g ∶ Lα → G for some label assignment αL, and a

precondition d. Let H be a host graph such that G⇒w,g,g∗ H for some injective morphism

g∗ ∶ Rα →H. Let us denote by c the condition LiftMSO(d, r∨). Then,

ρg(G) ⊧ cα implies ρg∗(H) ⊧ (AdjMSO(c, r))α

Proof. From Lemma 6.9, we know that c = LiftMSO(d, r∨) is in a lifted form. Here, we prove

that the lemma above holds by showing by induction on lifted form that for all condition c

over L in lifted form, ρg(G) ⊧ cα implies ρg∗(H) ⊧ (AdjMSO(c, r))α holds. Base case.

113

Chapter 6 Extension to monadic second-order logic

1. if c = true, then AdjMSO(c, r) = true such that ρg(G) ⊧ cα implies ρg∗(H) ⊧ AdjMSO(c, r))α

holds.

2. if c is predicate int(x), char(x), string(x), or atom(x) for some list variable x, ρg(G) ⊧ cα

means that there exists a list l such that c true when we substitute l for x. Since the

truth value of c does not depend on ρg(G), then ρg(G) ⊧ cα implies ρg∗(H) ⊧ c =
AdjMSO(c, r).

3. if c is a Boolean operation f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms representing

a list and neither contains free node/edge variable, then the truth value of c does not

depend on ρg(G), then ρg(G) ⊧ cα implies ρg∗(H) ⊧ c = AdjMSO(c, r).

4. if c is a Boolean operation f1 = f2 or f1 ≠ f2 where each f1 and f2 are terms representing

a node (or edge) and neither contains free node/edge variable or node/edge constant,

ρg(G) ⊧ cα means that f1 and f2 representing the same node (for c ∶ f1 = f2) or they are

representing different node (for c ∶ f1 ≠ f2) in ρg(G). Note that there is no node/edge

constant in c such that f1, f2 must be node/edge variables, or the function s(x) or t(x)
for some edge variable x. Since the variables must be bounded, then they are bounded

by quantifier in form point 8 or 9 of Definition 6.8, so that f1, f2 cannot represent

nodes/edges in L. Since the nodes/edges represented by f1, f2 is in ρg(G) − (L), then

the nodes/edges must be in ρg∗(H) so that ρg∗(H) ⊧ c = AdjMSO(c, r).

5. if c is a Boolean operation f1 ◇ f2 for ◇ ∈ {=,≠,<,≤,>,≥} and some terms f1 and f2

representing integers and neither contains free node/edge variable or any set variables,

this means that c is a first-order formula. Since we have shown that ρg(G) ⊧ cα implies

ρg∗(H) ⊧ AdjFO(c, r)α (for first-order lifted formula) in Lemma 5.10, then ρg(G) ⊧ cα

implies AdjMSO(c, r)α.

6. if c is a Boolean operation x ∈ X for a bounded set variable X and bounded edge variable

x, or a bounded set variable X and a bounded node variable x, x = s(y) or x = t(y) for

some bounded edge variable y, ρg(G) ⊧ cα implies that there is a node/edge v and

a node/set variable V such that v ∈ V . Since x is bounded, by point 8 of Definition

6.8, v is not in L so that v must be in ρg(G) − L. Hence, v is in ρg∗(H) so that

ρg∗(H) ⊧ x ∈X = AdjMSO(c, r).

Inductive case. Assume that for conditions ci over L (for i = 1, . . . , s where s ≥ 2n and s ≥ 2m)

in lifted form, it is true that ρg(G) ⊧ cαi implies ρg∗(H) ⊧ AdjMSO(ci, r)α. Then,

1. if c = ∃lx(c1 for some condition c1 over L in lifted form, ρg(G) ⊧ cα implies that

there exists a list i such that cα1 is true in ρg(G) when we substitute i for x. From

the assumption, AdjMSO(c1, r)α is true in ρg∗(H) when we substitute i for x. Hence,

ρg∗(H) ⊧ AdjMSO(c, r).

114

6.3 From left to right-application condition

2. if c = ∃vx (⋀n
i=1, x ≠ vi ∧ c1) for some condition c1 over L in lifted form, ρg(G) ⊧ c implies

that there is a node v in ρg(G) such that v is not in L and cα1 is true in ρg(G) when

we substitute v for x. From the assumption, the latter implies AdjMSO(c1, r) is true

in ρg∗(H) when we substitute v for x. Since v is not in L, then v in in ρg(G) − L
which means v is in ρg∗(H) −R, so that ⋀pi=1 v ≠ wi must be true in ρg∗(H). Hence,

ρg∗(H) ⊧ AdjMSO(c1, r)).

3. if c = ∃ex (⋀m
i=1, x ≠ ei ∧ c1) for some condition c1 over L in lifted form, ρg(G) ⊧ c implies

that there is an edge e in ρg(G) such that e is not in L and cα1 is true in ρg(G) when

we substitute e for x. From the assumption, the latter implies AdjMSO(c1, r) is true

in ρg∗(H) when we substitute e for x. Since e is not in L, then e in in ρg(G) − L
which means e is in ρg∗(H) − R, so that ⋀qi=1 e ≠ zi must be true in ρg∗(H). Hence,

ρg∗(H) ⊧ AdjMSO(c1, r)).

4. if c = ∃VX(⋀2n

i=1 di ⇒ ci), ρg(G) ⊧ cα implies that there exists a set node A subset of

Vρg(G) such that for all i = 1, . . . ,2n, di ⇒ ci is true in ρg(G).
If ci does not contain card(X), then ci is in lifted form so that if substituting A for X

in di yields true, ρg(G) ⊧ ci. From assumption, we know that ρg∗(H) ⊧ AdjMSO(ci).
Note that from the rule of inference, if a∧b implies c and a∧¬b implies d, then a implies

c ∨ d. Hence, if substituting A for X is true in bj , ρg∗(H) ⊧ ⋁j∈Wi
AdjMSO(cj , r).

Similar reasoning happens when ci contains card(X). However, the value of card(X)
may changes, depends on di. If di implies some nodes in L −K being members of A,

then the value of card(X) decreases as many as ∣(VL − VK) ∩ Vj ∣. Hence, the value of

card(A) in ρg(G) is the same as the value of card(A) + ∣(VL −VK) ∩Vj∣ in ρg∗(H).

5. If c = ∃EX(⋀2m

i=1 ai ⇒ ci) where each ci is a condition over L in lifted form,

the proof is analogous to point 10

6. If c = c1∨c2, ρg(G) ⊧ cα iff ρg(G) ⊧ cα1 or ρg(G) ⊧ cα2 . From the assumption, ρg(G) ⊧ cα1
implies ρg∗(H) ⊧ AdjMSO(c1, r)α, and ρg(G) ⊧ cα2 implies ρg∗(H) ⊧ AdjMSO(c2, r)α.

Hence, ρg∗(H) ⊧ AdjMSO(c, r).

7. If c = c1 ∧ c2, ρg(G) ⊧ cα iff ρg(G) ⊧ βcα1 and ρg(G)β ⊧ cα2 for some assignment β.

From the assumption, ρg(G) ⊧ βcα1 implies ρg∗(H) ⊧ βAdjMSO(c1, r)α, and ρg(G) ⊧
βcα2 implies ρg∗(H) ⊧ βAdjMSO(c2, r)α. This means, ρg∗(H) ⊧ AdjMSO(c1, r)α ∧
AdjMSO(c2, r)α. Hence, ρg∗(H) ⊧ AdjMSO(c, r).

8. If c = ¬c1, ρg(G) ⊧ cα implies ρg(G) ⊧ βcα1 is false for some assignment β. From as-

sumption, it can imply ¬ρg∗(H) ⊧ βAdjMSO(c1, r)α, such that ρg∗(H) ⊧ AdjMSO(c, r)α.

115

Chapter 6 Extension to monadic second-order logic

Lemma 6.12. Let us consider a host graph G, a GP 2 conditional rule schema ⟨r,Γ⟩ with

r = ⟨L ← K → R⟩, an injective morphism g ∶ Lα → G for some label assignment αL, and a

precondition d. Let us denote by c the condition LiftMSO(d, r∨). Then,

ρg(G) ⊧ cα implies ρg(G) ⊧ AdjMSO(AdjMSO(c, r), r−1)α

Proof. Here, we prove the lemma by induction on lifted form where prop denotes the state-

ment ρg(G) ⊧ cα implies ρg(G) ⊧ AdjMSO(AdjMSO(c, r), r−1)α.

Base case.

1. if c = true or c = false, then AdjMSO(c, r) = c and AdjMSO(AdjMSO(c, r), r−1) = c. Hence,

prop holds.

2. if c is predicate int(x), char(x), string(x), or atom(x) for some list variable x, then

AdjMSO(c, r) = c and AdjMSO(AdjMSO(c, r), r−1) = c. Hence, prop holds.

3. if c is a Boolean operation f1 = f2 or f1 ≠ f1 where each f1 and f2 are terms repre-

senting a list and neither contains free node/edge variable, then AdjMSO(c, r) = c and

AdjMSO(AdjMSO(c, r), r−1) = c. Hence, prop holds.

4. if c is a Boolean operation f1 = f2 or f1 ≠ f2 where each f1 and f2 are terms representing

a node (or edge) and neither contains free node/edge variable or node/edge constant,

then AdjMSO(c, r) = c and AdjMSO(AdjMSO(c, r), r−1) = c. Hence, prop holds.

5. if c is a Boolean operation f1 ◇ f2 for ◇ ∈ {=,≠,<,≤,>,≥} and some terms f1 and f2

representing integers and neither contains free node/edge variable or any set variables,

this means that c is a first-order formula. Since we have shown that prop holds for

first-order lifted formula c, prop holds.

6. if c is a Boolean operation x ∈ X for a bounded set variable X and bounded edge variable

x, or a bounded set variable X and a bounded node variable x, x = s(y) or x = t(y) for

some bounded edge variable y, then AdjMSO(c, r) = c and AdjMSO(AdjMSO(c, r), r−1) =
c. Hence, prop holds.

Inductive case. Assume that for conditions ci over L (for i = 1, . . . , s where s ≥ 2n and s ≥ 2m)

in lifted form, it is true that ρg(G) ⊧ cαi iff ρg(G) ⊧ AdjMSO(AdjMSO(ci, r), r−1)α. Then,

1. if c = ∃lx(c1 for some condition c1 over L in lifted form,

ρg(G) ⊧ cα implies that there exists a list i such that cα1 is true in ρg(G) when we

substitute i for x. From the assumption, AdjMSO(AdjMSO(c1, r), r−1)α is true in ρg∗(H)
when we substitute i for x. Hence, prop holds.

116

6.3 From left to right-application condition

2. if c = ∃vx (⋀n
i=1, x ≠ vi ∧ c1),

AdjMSO(AdjMSO(c, r), r−1) = ∃vx (⋀n
i=1, x ≠ vi ∧AdjMSO(AdjMSO(c1, r), r−1)). From the

assumption, ρg(G) ⊧ AdjMSO(AdjMSO(c1, r), r−1)) implies ρg(G) ⊧ c1 so that prop

holds.

3. if c = ∃ex (⋀m
i=1, x ≠ ei ∧ c1),

AdjMSO(AdjMSO(c, r), r−1) = ∃ex (⋀m
i=1, x ≠ ei ∧AdjMSO(AdjMSO(c1, r), r−1)). From the

assumption, ρg(G) ⊧ AdjMSO(AdjMSO(c1, r), r−1)) implies ρg(G) ⊧ c1 so that prop

holds.

4. if c = ∃VX(⋀2n

i=1 di ⇒ ci),

5. If c = ∃EX(⋀2m

i=1 ai ⇒ ci) where each ci is a condition over L in lifted form,

the proof is analogous to point 10

6. If c = c1 ∨ c2,

AdjMSO(AdjMSO(c, r), r−1) = AdjMSO(AdjMSO(c1, r), r−1)∨AdjMSO(AdjMSO(c2, r), r−1).
From assumption, ρg(G) ⊧ AdjMSO(AdjMSO(c, r), r−1) iff ρg(G) ⊧ c1 ∨ c2 = c.

7. If c = c1 ∧ c2,

AdjMSO(AdjMSO(c, r), r−1) = AdjMSO(AdjMSO(c1, r), r−1)∧AdjMSO(AdjMSO(c2, r), r−1).
From assumption, ρg(G) ⊧ AdjMSO(AdjMSO(c, r), r−1) iff ρg(G) ⊧ c1 ∧ c2 = c.

8. If c = ¬c1,

AdjMSO(AdjMSO(c, r), r−1) = ¬AdjMSO(AdjMSO(c1, r), r−1). From assumption, ρg(G) ⊧
AdjMSO(AdjMSO(c, r), r−1) iff ρg(G) ⊧ ¬c1 = c.

As in the example in Section 6.1, we can construct a right application condition from a

conjunction of Adj, Spec, Dang, and the given right-application condition.

Definition 6.13 (Shifting). Let us consider a generalised rule w = ⟨r, acL, acR⟩ for an un-

restricted rule schema r = ⟨L ← K → R⟩, and a precondition c. Right application condition

w.r.t. w, denoted by Shift(c,w), is defined as:

ShiftMSO(w) = AdjMSO(acL, r) ∧ acR ∧ Spec(R) ∧ Dang(r−1)

◻

Example 6.6. Let us consider d1, d2, d3 as defined in Example 6.5, also r3 of Figure 5.3. Let

w1 = ⟨r3, d1, true⟩, w1 = ⟨r3, d2, true⟩, and w1 = ⟨r3, d3, true⟩. Then, based on Definition 6.13,

117

Chapter 6 Extension to monadic second-order logic

a) ShiftMSO(w1) = ¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧mv(x) ≠ none)
∧mv(2) = grey ∧mv(3) = grey ∧ lv(2) = a ∧ lv(3) = a

∧ indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0

b) ShiftMSO(w2) = ∃VX(¬∃vx(x ≠ 2 ∧ x ≠ 3 ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 1)
∧mv(2) = grey ∧mv(3) = grey ∧ lv(2) = a ∧ lv(3) = a

∧ indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0

c) ShiftMSO(w3) = ∃VX(¬∃vx(x ≠ 2 ∧ x ≠ 3

∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X)))
∧ card(X) = 2∗n)

∧mv(2) = grey ∧mv(3) = grey ∧ lv(2) = a ∧ lv(3) = a

∧ indeg(2) = 0 ∧ indeg(3) = 0 ∧ outdeg(2) = 0 ∧ outdeg(3) = 0

Proposition 6.14 (Right-application condition for MSO formulas). Let us consider a host

graph G, a generalised rule w = ⟨r, acL, acR⟩ an unrestricted rule schema r = ⟨L ← K → R⟩,
an injective morphism g ∶ Lα → G for some label assignment αL, and a precondition d.

Then for host graphs H such that G⇒w,g,g∗ H with an right morphism g∗ ∶ Rβ → H where

βR(i) = αL(i) for every variable i in L such that i in R, and for every node (or edge) i where

mV
L (i) =mV

R(i) = any (or mE
L(i) =mE

R(i) = any),

ρg∗(H) ⊧ (AdjMSO(LiftMSO(d,w)), r)β iff ρg∗(H) ⊧ (ShiftMSO(⟨r,LiftMSO(d,w), r), acR⟩))β

Proof. From the semantics of conjunction, we know that AdjMSO(LiftMSO(d,w)), r)β is im-

plied by ShiftMSO(⟨r,AdjMSO(LiftMSO(d,w)), r⟩), acR))β, so now we show that

AdjMSO(LiftMSO(d,w)), r)β implies ShiftMSO(⟨r,AdjMSO(LiftMSO(d,w)), r), acR⟩))β. From

the proof of Proposition 5.13, we know that ρg∗(H) ⊧ acβR ∧Spec(R)β ∧ Dang(r−1)β.

6.4 From right-application condition to postcondition

The right-application condition we obtain from transformation Shift is strong enough to

express properties of the replacement graph of any resulting graph. To turn the condition

obtained from Shift to a postcondition, we can use Post we defined in the previous Chapter

(see Definition 5.14) because we only need to turn a condition over right-hand graph to a

postcondition. In LiftMSO or ShiftMSO, we never have a set of nodes/edges as a constant.

Hence, we will have set variables as what we have in the precondition, so that the process of

turning the right-application condition to a postcondition must be the same with the one in

FOL.

Example 6.7. Let s1, s2, s3 (resp.) be ShiftMSO(⟨r3,LiftMSO(c1, copy
∨), true⟩),

ShiftMSO(⟨r3,LiftMSO(c2, copy
∨), true⟩), and ShiftMSO(⟨r3,LiftMSO(c3, copy

∨), true⟩) as obtained

118

6.4 From right-application condition to postcondition

in Example 6.6 for c1, c2, c3 defined in Example 6.2 and copy = ⟨r3,Γ3⟩ of Figure 5.3. Then,

based on Definition 5.14,

a) Post(s1) = ∃vy, z(∃la(
¬∃vx(x ≠ y ∧ x ≠ z ∧mv(x) ≠ none)
∧mv(y) = grey ∧mv(z) = grey ∧ lv(y) = a ∧ lv(z) = a

∧ indeg(y) = 0 ∧ indeg(z) = 0 ∧ outdeg(y) = 0 ∧ outdeg(z) = 0))
b) Post(s2) = ∃vy, z(∃la(

∃VX(¬∃vx(x ≠ y ∧ x ≠ z ∧ x ∈ X ∧mv(x) ≠ none) ∧ card(X) ≥ 1)
∧mv(y) = grey ∧mv(z) = grey ∧ lv(y) = a ∧ lv(z) = a))
∧ indeg(y) = 0 ∧ indeg(z) = 0 ∧ outdeg(y) = 0 ∧ outdeg(z) = 0

c) Post(s3) = ∃vy, z(∃la(
∃VX(¬∃vx(x ≠ y ∧ x ≠ z

∧ ((x ∉ X ∧mv(x) = grey) ∨ (mv(x) ≠ grey ∧ x ∈ X)))
∧ card(X) = 2∗n)

∧mv(y) = grey ∧mv(z) = grey ∧ lv(y) = a ∧ lv(z) = a

∧ indeg(y) = 0 ∧ indeg(z) = 0 ∧ outdeg(y) = 0 ∧ outdeg(z) = 0))

To obtain a closed MSO formula from the obtained right-application condition, we only

need to variablise the node/edge constants in the right-application condition, then put an

existential quantifier for each free variable in the resulting FO formula.

Theorem 6.15 (Post). Let us consider a precondition c and a conditional rule schema

r = ⟨⟨L ← K → R⟩,Γ⟩. Then, Post(ShiftMSO(⟨r,LiftMSO(c, r∨), true⟩)) is a strongest liberal

postcondition w.r.t. c and r.

Proof. The proof is really similar to the proof of Theorem 5.16. However, instead of using

Proposition 5.8, Lemma 5.10, Lemma 5.11, and Proposition 5.13, we use (resp.) Proposition

6.7, Lemma 6.11, Lemma 6.12, and Proposition 6.14.

Now, we can obtain a strongest liberal postcondition over a given precondition and condi-

tional rule schema, where the precondition is a closed monadic second-order formula. Here,

we use the notation Slp(c, r) for a strongest liberal postcondition that is obtained from the

construction we obtained here in this chapter.

Definition 6.16 (Slp(c, r), Slp(c, r−1)). Let us consider a conditional rule schema r = ⟨⟨L←
K → R⟩,Γ⟩ and a precondition c, which is a closed monadic second-order formula. A strongest

liberal precondition over c and r, also over c and r−1, (resp.) defined as:

Slp(c, r) = Post(ShiftMSO(⟨r,LiftMSO(c, ⟨r,Γ∨, true⟩), true⟩)).

Slp(c, r−1) = Post(ShiftMSO(⟨r,LiftMSO(c, ⟨r, true,Γ∨⟩),Γ∨⟩)).◻
119

Chapter 6 Extension to monadic second-order logic

6.5 Complexity of a strongest liberal postcondition

Weakest liberal preconditions produced in [1, 17] can produce unwieldy expressions. Poskitt

in [1] mentions that in the worst-case, a factorial blow-up can result in obtaining a weakest

liberal precondition. Similarly, our approach may blow-up the size of condition when we

compute a strongest liberal postcondition.

In our approach, the transformation Split gives the worst blow-up because it considers all

possibilities of variables in the given precondition expressing an element in the matching.

Also, we need to consider all possibilities of nodes (or edges) in the matching to become a

member of node (or edge) sets that are represented by node (or set) variables in the given

precondition.

isnode(a ∶ list)

a

1
⇒ a

1

Figure 6.2: Rule schema isnode

Example 6.8. Let us consider the rule isnode of Figure 6.2. Let P(n) for n = 1,2,3, . . . be

formula ∃vx1, . . . , xn(lv(x1) < 1 ∧ . . . ∧ lv(xn) < n). Table 6.4 shows us the obtained

Slp(P(n),isnode) for some n ∈ {1,2,3,4}. From the table, we can see that we have an

exponential blow-up with respect to the number of node variables we have in the precondition.

Table 6.4: Strongest liberal postcondition over P(n) and isnode

Slp(P(n),isnode) = ∃vy(∃la(mv(y) = none ∧ lv(y) = a ∧ ¬root(y)∧S(n)))
n S(n)

1 a < 1 ∨ ∃vx1(x1 ≠ y ∧ lv(x1) < 1)
2 a < 2 ∨ ∃vx2(x2 ≠ y ∧ a < 1 ∧ lv(x2) < 2)

∨∃vx1(x1 ≠ y ∧ ((lv(x1) < 1 ∧ a < 2) ∨ ∃vx2(x2 ≠ y ∧ lv(x1) < 1 ∧ lv(x2) < 2)))
3 a < 3 ∨ ∃vx3(x3 ≠ y ∧ a < 2 ∧ lv(x3) < 3)

∨∃vx2(x2 ≠ y ∧ ((a < 3 ∧ lv(x2) < 2) ∨ ∃vx3(x3 ≠ y ∧ a < 1 ∧ lv(x2) < 2 ∧ lv(x3) < 3)))
∨∃vx1(x1 ≠ y ∧ ((lv(x1) < 1 ∧ a < 3) ∨ ∃vx3(x3 ≠ y ∧ lv(x1) < 1 ∧ a < 2 ∧ lv(x3) < 3)

∨ ∃vx2(x2 ≠ y ∧ ((lv(x1) < 1 ∧ lv(x2) < 2 ∧ a < 3)
∨ ∃vx3(x3 ≠ y ∧ lv(x1) < 1 ∧ lv(x2) < 2 ∧ lv(x3) < 3)))))

4 a < 4 ∨ ∃vx4(x4 ≠ y ∧ a < 3 ∧ lv(x4) < 4)
∨∃vx3(x3 ≠ y ∧ ((a < 4 ∧ lv(x3) < 3) ∨ ∃vx4(x4 ≠ y ∧ a < 2 ∧ lv(x3) < 3 ∧ lv(x4) < 4)))
∨∃vx2(x2 ≠ y ∧ ((a < 4 ∧ lv(x2) < 3) ∨ ∃vx4(x4 ≠ y ∧ a < 3 ∧ lv(x2) < 2 ∧ lv(x4) < 4)

∨ ∃vx3(x3 ≠ y ∧ ((a < 4 ∧ lv(x2) < 2 ∧ lv(x3) < 3)
∨ ∃vx4(x4 ≠ y ∧ a < 1 ∧ lv(x2) < 2 ∧ lv(x3) < 3 ∧ lv(x4) < 4)))))

∨∃vx1(x1 ≠ y ∧ ((a < 4 ∧ lv(x1) < 1) ∨ ∃vx4(x4 ≠ y ∧ lv(x1) < 1 ∧ a < 3 ∧ lv(x4) < 4)
∨ ∃vx3(x3 ≠ y ∧ ((lv(x1) < 1 ∧ a < 4 ∧ lv(x3) < 3)

∨ ∃vx4(x4 ≠ y ∧ lv(x1) < 1 ∧ a < 2 ∧ lv(x3) < 3 ∧ lv(x4) < 4)
∨ ∃vx2(x2 ≠ y ∧ ((lv(x1) < 1 ∧ lv(x2) < 2 ∧ a < 4)

∨ ∃vx4(x4 ≠ y ∧ lv(x1) < 1 ∧ lv(x2) < 2 ∧ a < 3 ∧ lv(x4) < 4)
∨ ∃vx3(x3 ≠ y ∧ ((lv(x1) < 1 ∧ lv(x2) < 2 ∧ lv(x3) < 3 ∧ a < 4)

∨ ∃vx4(x4 ≠ y ∧ lv(x1) < 1 ∧ lv(x2)
∧ lv(x3) < 3 ∧ lv(x4) < 4)))))))))

120

6.5 Complexity of a strongest liberal postcondition

In the construction of a strongest liberal postcondition, transformation Split forms disjunc-

tion of all way variables in the precondition have connection with elements in the possible

matching. If we have n variables in the precondition, the worst-case scenario would be where

the variables are bounded by nested quantifiers, and where ValMSO does not simplify the

condition obtained from Split.

From Table 6.4 of Example 6.8, we can see that exponential growth might limit us in com-

puting Slp manually since it will take us too much space, and there are many brackets to be

used so that human error is likely to occur.

Formal Statement 1. In the worst-case, the construction of a strongest liberal postcondi-

tion can result in an exponential blow-up with respect to the number of node variables we

have in the precondition.

Now, let us consider the general case, by considering a precondition c with n node variables,

m edge variables, p node set variables, and q edge set variables. Also, let L be the left-hand

graph of the given rule schema and VL = {v1, . . . , vu} and EL = {e1, . . . , ew}.

Now let us recall the definition of Split (Definition 5.3). For each node variable, the trans-

formation forms a disjunction from all possible ways of the variable expressing nodes in the

left-hand graph. Every node variable x may express v1, . . . , vu, or none of them. Hence,

for each variable, the formula is repeated u + 1 times. Hence, we need to check all (u + 1)n

possibilities for all node variables, which result in an exponential blow-up.

For each edge variable y, we need to check all possibilities where the variables express edges

in the match (if any). However, for edge variables, we also need to consider whether an edge

represented by a variable is incident to a node in the match or not. Hence, for each edge

variable, we repeat the given precondition (w + 1 + (u + 1)2) times, such that for all edge

variables, we check (w + 1 + (u + 1)2)m possibilities. In other words, it also results in an

exponential blow-up.

Every node (or edge) in the match may also be a member of a node (or edge) set that is

represented by a node (or edge) set variable. Hence, for each node (or edge) set variable, we

need to consider each possible subset of VL (or EL) being a subset of the set variable. For

this, we have 2u (or 2w) cases to consider for each set. Hence, in total, we have 2up (or 2wq)

cases, so that it also gives an exponential blow-up in the result.

The condition that is obtained by transformation Split may get simplified by ValMSO. How-

ever, in the worst-case, where no function or predicate in the condition expresses the obvious

value with respect to L, we still get the exponential blow-up in the obtained postcondition.

121

Chapter 6 Extension to monadic second-order logic

Quantifiers we have may be nested with mixed type (e.g. node quantifier inside edge quan-

tifier). However, since each kind of variable contributes in exponential blow-up, it will still

give us exponential blow-up in the end.

The transformation Shift also gives another blow-up, but not as much as we have in Split. In

the transformation Shift, we only need to add some conditions that express the specification

of the right-hand graph of the given rule schema. Hence, it is a linear blow-up with respect

to the number of elements in the right-hand graph.

6.6 Summary

This chapter shows how we can obtain a strongest liberal postcondition over a rule schema

and a precondition, which is a closed monadic second-order formula. We extend the con-

struction we have in the previous chapter to cover formulas with cardinality function, element

operator, and quantifiers over set variables. The approach is basically similar, but present-

ing the formal definition and proof for the approach is trickier than what we present in the

previous chapter. This is because the deletion of a node may affect the number of nodes in

the set of nodes represented in the given precondition.

Here, we also argue that the construction may result in an exponential blow-up. This is due

to the need of checking all possibilities of each node/edge variables expressing nodes/edges

in a possible match of the rule schema application.

122

Chapter 7

Graph program verification

This chapter presents proof calculi we can use to verify graph programs. Here, we define

two proof calculi: semantic and syntactic, wherein partial correctness calculus is considered.

The semantic proof calculus uses assertions in semantic definition, while the syntactic proof

calculus uses monadic second-order formulas as assertions.

7.1 Semantic Proof Calculus

In this section, we define a proof calculus, in the sense of partial correctness, where assertions

are arbitrary functions from a graph to a Boolean value (true or false).

Definition 7.1 (Assertions). A semantic assertion is a function a ∶ G(L) → {true, false}. If

for a graph G, a(G) = true, we say that G satisfies a and we write G ⊧ a.

In this thesis, we only focus on partial correctness. For a graph program P and assertions

c and d, triple {c}P {d} is partially correct iff for all graph satisfying c, H ∈ JP KG implies

H ⊧ d.

Definition 7.2 (Partial correctness [14]). A graph program P is partially correct with respect

to a precondition c and a postcondition d, denoted by ⊧ {c} P {d} if for every host graph G

and every graph H in JP KG, G ⊧ c implies H ⊧ d.

To prove that ⊧ {c} P {d} holds for some assertions c, d, and a graph program P , we use

two methods: 1) finding a strongest liberal postcondition w.r.t c and P and prove that the

strongest liberal postcondition implies d, and 2) using proof rules for graph programs, create

a proof tree to show the partial correctness. The first method has been used in classical

programming [53, 55], while the second has been used in graph programming [1] but without

the special command break.

123

Chapter 7 Graph program verification

In the previous chapter, we have defined a strongest liberal postcondition w.r.t. a precondi-

tion and a conditional rule schema. In this chapter, we extend the definition from conditional

rule schemata to graph programs. In addition, we also introduce a weakest liberal precondi-

tion over a graph program.

Definition 7.3 (Strongest liberal postconditions). A condition d is a liberal postcondition

w.r.t. a precondition c and a graph program P , if for all host graphs G and H,

G ⊧ c and H ∈ JP KG implies H ⊧ d.

A strongest liberal postcondition w.r.t. c and P , denoted by SLP(c,P), is a liberal postcon-

dition w.r.t. c and P that implies every liberal postcondition w.r.t. c and P . ◻

Definition 7.4 (Weakest liberal preconditions). A condition c is a liberal precondition w.r.t.

a postcondition d and a graph program P , if for all host graphs G and H,

G ⊧ c and H ∈ JP KG implies H ⊧ d.

A weakest liberal precondition w.r.t. d and P , denoted by WLP(P, d), is a liberal precondition

w.r.t. d and P that is implied by every liberal precondition w.r.t. d and P . ◻

Lemma 7.5. Let us consider a graph program P and a precondition c. Let d be a liberal

postcondition w.r.t. c and P . Then d is a strongest liberal postcondition w.r.t. c and P if

and only if for every graph H satisfying d, there exists a host graph G satisfying c such that

H ∈ JP KG.

Proof.

(If).

Assuming it is true that for every graph H satisfying d, there exists a host graph G satisfying

c such that H ∈ JP KG. Let H be a host graph satisfying d. From the assumption, there exists

a graph G such that G ⊧ c and H ∈ JP KG. Since H ∈ JP KG, H ⊧ a for all liberal postcondition

a over c and P . Hence, H ⊧ d implies H ⊧ a for all liberal postcondition a over c,P such

that d is a strongest postcondition w.r.t. c and P

(Only if).

Assume that it is not true that for every host graph H, H ⊧ d implies there exists a host

graph G satisfying c such that H ∈ JP KG. We show that a graph satisfying d can not imply

the graph satisfying all liberal postcondition w.r.t r and P . From the assumption, there

exists a host graph H such that every host graph G does not satisfy c or H ∉ JP KG. In the

case of H ∉ JP KG, we clearly can not guarantee characteristic of H w.r.t. P . Then for the

case where G does not satisfy c, we also can not guarantee the satisfaction of any liberal

postcondition a over c in H because a is dependent of c. Hence, we can not guarantee that

H satisfying all liberal postcondition w.r.t. r and c.

124

7.1 Semantic Proof Calculus

Lemma 7.6. Let us consider a graph program P and a postcondition d. Let c be a liberal

precondition w.r.t. P and d. Then c is a weakest liberal precondition w.r.t. P and d if and

only if for every graph G G ⊧ c if and only if for all host graphs H, H ∈ JP KG implies H ⊧ d.

Proof. (If).

Suppose that G ⊧ c iff for all host graphs H, H ∈ JP KG implies H ⊧ d. It implies for all

host graphs H, G ⊧ c and H ∈ JP KG implies H ⊧ d. From Definition 7.4, c is a liberal

precondition. Let a be a liberal precondition w.r.t. P and d as well. From Definition 7.4,

for all host graphs H, H ∈ JP KG implies H ⊧ d, and from the premise, G ⊧ c. Hence, c is a

weakest liberal precondition.

(Only if).

Suppose that c is a weakest liberal precondition. From Definition 7.4, if G ⊧ c then H ∈ JP KG

implies H ⊧ d. Let a be a liberal precondition w.r.t P and d. From Definition 7.4, G ⊧ a

implies for all H, H ∈ JP KG implies H ⊧ d. Since for all a, G ⊧ a must imply G ⊧ c, then

H ∈ JP KG implies H ⊧ d must imply G ⊧ c as well.

SLP and WLP for a loop P ! is not easy to construct because P ! may get stuck or diverge.

In [17], the divergence is represented by infinite formulas while in [55], it is represented by

a recursive equation that is not well-defined. In this thesis, for simplicity we only consider

strongest liberal postconditions over loop-free graph programs.

For the conditional commands if/try − then − else, the execution of the command depends

on the existence of a proper host graph as a result of executing a graph program. In [1], there

is an assertion representing a condition that must be satisfied by a graph such that there

exists a path to successful execution, and there is also an assertion representing a condition

that must be satisfied by a host graph such that there exist a path to a failure. Here, we

define assertion SUCCESS for the former and FAIL for the latter.

Definition 7.7 (Assertion SUCCESS). For a graph program P , SUCCESS(P) is the pred-

icate on host graphs where for all host graph G,

G ⊧ SUCCESS(P) if and only if there exists a host graph H with H ∈ JP KG.

◻

Definition 7.8 (Assertion FAIL). Let us consider a graph program P . FAIL(P) is the

predicate on host graphs where for all host graph G,

G ⊧ FAIL(P) if and only if fail ∈ JP KG.

125

Chapter 7 Graph program verification

Note that for a graph program C, FAIL(C) does not necessarily equivalent to ¬SUCCESS(C),
e.g. if C = {nothing,add};zero where nothing is the rule schema where the left and right-

hand graphs are the empty graph, add is the rule schema where the left-hand graph is

the empty graph and the right-hand graph is a single 0-labelled unmarked and unrooted

node, and zero is a rule schema that match with the a 0-labelled unmarked and unrooted

node. For a host graph G where there is no 0-labelled unmarked unrooted node, there is a

derivation ⟨C,G⟩ →∗ H for some host graph H but also a derivation ⟨C,G⟩ →∗ fail such

that G ⊧ SUCCESS(C) and G ⊧ FAIL(C).

Having a strongest liberal postcondition over a loop-free program P w.r.t a precondition c

allows us to prove that the triple {c}P {d} for an assertion d is partially correct. That is,

by showing that d is implied by the strongest liberal postcondition.

Computing SLP(c,R) for a set of rule schemata R basically should be formef from the

disjunction of all strongest liberal postcondition w.r.t c and each rule schema in R. If

the rule set is empty, then SLP(c,R) should be false since there is nothing to disjunct.

Computing SLP(c,P ;Q) should be constructed by having SLP(c,P) and then find strongest

liberal postcondition w.r.t. Q and the resulting formula.

The equation for program composition can be defined the same with the equation for program

composition in [53, 55]. However, for if − then − else command, the command if in classical

programming is followed by an assertion while in graph programs it is followed by a graph

program. Hence, instead of checking the truth value of the assertion on the input graph, we

should check if the satisfaction of SUCCESS and FAIL of the associated program on the input

graph. Then for try − then − else command, which does not exist in classical programming,

we need a equation for the command based on its similarity with if − then − else.

The execution of if/try commands yields two possibilities of results, so we need to check the

strongest liberal postcondition for both possibilities and form the disjunction from them. For

the graph program if C then P else Q, P can be executed if SUCCESS(C) holds and Q

can be executed if FAIL(C) holds. Similarly for try C then P else Q, C;P can be executed

if SUCCESS(C) holds and Q can be executed if FAIL(C) holds.

Proposition 7.9 (Strongest liberal postcondition for loop-free programs). Let us consider

a precondition c and a loop-free program S. Then, the following holds:

1. If S is a set of rule schemata R = {r1, . . . , rn},

SLP(c,R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

SLP(c, r1) ∨ . . . ∨ SLP(c, rn) , , if n > 0,

false , otherwise

2. For loop-free programs C,P, and Q,

126

7.1 Semantic Proof Calculus

(i) If S = P or Q,

SLP(c, S) = SLP(c,P) ∨ SLP(c,Q)
(ii) If S = P ;Q,

SLP(c, S) = SLP(SLP(c,P),Q)
(iii) If S = ifC thenP elseQ,

SLP(c, S) = SLP(c ∧ SUCCESS(C), P) ∨ SLP(c ∧ FAIL(C),Q)
(iv) If S = tryC thenP elseQ,

SLP(c, S) = SLP(c ∧ SUCCESS(C),C;P) ∨ SLP(c ∧ FAIL(C),Q)

Proof. Here, we show that the proposition holds by induction on loop-free programs.

Base case.

1. If S =R = {},

For all host graph G, G ⇏ such that every condition is a liberal postcondition w.r.t.

c and R, false is the strongest among all because we know that there is no graph can

satisfy false.

2. If S =R = {r1, . . . , rn} where n > 0,

(a) H ⊧ SLP(c,R) L7.5⇔ ∃G.G⇒R H ∧G ⊧ c
⇔ ∃G.(G⇒r1 H ∨ . . . ∨G⇒rn H) ∧G ⊧ c
⇔ (∃G.G⇒r1 H ∧G ⊧ c) ∨ . . . ∨ (∃G.G⇒rn H ∧G ⊧ c)
L7.5⇔ H ⊧ SLP(c, r1) ∨ . . . ∨ SLP(c, rn)

Inductive case. Assume the proposition holds for loop-free programs C,P , and Q.

1. If S = P or Q,

H ⊧ SLP(c, S) L7.5⇔ ∃G.H ∈ JP or QKG ∧G ⊧ c
⇔ ∃G.(H ∈ JP KG ∨H ∈ JQKG) ∧G ⊧ c
⇔ (∃G.H ∈ JP KG ∧G ⊧ c) ∨ (∃G.H ∈ JQKG ∧G ⊧ c)
L7.5⇔ G ⊧ SLP(c,P) ∨ SLP(c,Q)

2. If S = P ;Q,

H ⊧ SLP(c, S) L7.5⇔ ∃G. H ∈ JP ;QKG ∧G ⊧ c
⇔ ∃G,G′. G′ ∈ JP KG ∧H ∈ JQKG′ ∧G ⊧ c
L7.5⇔ ∃G′. G′ ⊧ SLP(c,P) ∧H ∈ JQKG′
L7.5⇔ H ⊧ SLP(SLP(c,P),Q)

3. If S = ifC thenP elseQ,

H ⊧ SLP(c, S)
L7.5⇔ ∃G. G ⊧ c ∧H ∈ JifC thenP elseQKG
⇔ ∃G. G ⊧ c ∧ ((G ⊧ SUCCESS(C) ∧H ∈ JP KG) ∨ (G ⊧ FAIL(C) ∧H ∈

JQKG))
⇔ (∃G. G ⊧ c∧SUCCESS(C)∧H ∈ JP KG)∨ (∃G. G ⊧ c∧FAIL(C)∧H ∈

JQKG)
L7.5⇔ G ⊧ SLP(c ∧ SUCCESS(C), P) ∨ SLP(c ∧ FAIL(C),Q)

127

Chapter 7 Graph program verification

4. If S = tryC thenP elseQ,

H ⊧ SLP(c, S)
L7.5⇔ ∃G. G ⊧ c ∧H ∈ JtryC thenP elseQKG
⇔ (∃G,G′. G ⊧ c∧G′ ∈ JCKG∧H ∈ JP KG′)∨ (∃G. G ⊧ c∧FAIL(C)∧H ∈

JQKG)
L7.5⇔ (∃G′. G′ ⊧ SLP(c,C) ∧H ∈ JP KG′) ∨ SLP(c ∧ FAIL(C),Q)
L7.5⇔ G ⊧ SLP(SLP(c,C), P) ∨ SLP(c ∧ FAIL(C),Q)

To prove the triple {c} P {d} is partially correct for a graph program P , we only need to

show that SLP(c,P) implies d. However for graph programs P containing a loop, obtaining

the assertion SLP(c,P) is not easy. Alternatively, we can create a proof tree (see Definition

2.26) with proof rules to show that {c} P {d} is partially correct. Before we define the proof

rules for partial correctness, we define predicate Break which shows relation between a graph

program and assertions.

Definition 7.10 (Predicate Break). Let us consider a graph program P and assertions c

and d. Break(c,P, d) is the predicate defined by:

Break(c,P, d) holds iff for all derivations ⟨P,G⟩→∗ ⟨break,H⟩,G ⊧ c implies H ⊧ d.

◻

Intuitively, when Break(c,P, d) holds, the execution of break that yields to termination of

P ! will result in a graph satisfying d.

Lemma 7.11. Let us consider a graph program P with invariant c. If P does not contain

the command break, then the following triple holds:

{c} P ! {c ∧ FAIL(P)}

Proof. If P does not contain the command break, then the derivation ⟨P,G⟩→∗ ⟨break,H⟩
must not exist for any host graphs G and H. Hence, Break(c,P, d) is true for any c and

d. Hence, Break(c,P, false) must be true. Since c in an invariant, {c} P {c} is true. If

⟨P !,G⟩ →∗ H for some host graph H, from the semantics of graph programs, ⟨P !,G⟩ →
⟨P !,H⟩ →+ fail. H must satisfy c because c is the invariant of P , and H must satisfy

FAIL(P) because fail ∈ JP KH. Hence, the triple holds.

Definition 7.12 (Semantic partial correctness proof rules). The semantic partial correctness

proof rules for core commands, denoted by SEM, is defined in Figure 7.1, where c, d, and d′

are any assertions, r is any conditional rule schema, R is any set of rule schemata, and C,P ,

and Q are any graph programs. ◻

128

7.1 Semantic Proof Calculus

[ruleapp]slp {c} r {SLP(c, r)}

[ruleapp]wlp {WLP(r, d)} r {d}

[ruleset]
{c} r {d} for each r ∈R

{c} R {d}

[comp]
{c} P {e} {e} P {d}

{c} P ;Q {d}

[cons]
c implies c′ {c′} P {d′} d′ implies d

{c} P {d}

[if]
{c ∧ SUCCESS(C)} P {d} {c ∧ FAIL(C)} Q {d}

{c} if C then P else Q {d}

[try]
{c ∧ SUCCESS(C)} C;P {d} {c ∧ FAIL(C)} Q {d}

{c} try C then P else Q {d}

[alap]
{c} P {c} Break(c,P, d)
{c} P ! {(c ∧ FAIL(P)) ∨ d}

Figure 7.1: Calculus SEM of semantic partial correctness proof rules

The inference rule [ruleset] tells us about the application of a set of rule schemata R. The

rule set R is applied to a graph by nondeterministically choose an applicable rule schema

from the set and apply it to the input graph. Hence, to derive a triple about R, we need to

prove the same triple for each rule schema inside R.

The inference rule [comp] is similar to [comp] in traditional programming. In executing P ;Q,

the graph program Q is not executed until after the execution of P has terminated. So to

show a triple about P ;Q, we need to prove a triple about each P and Q and show that they

are connected to some midpoint such that the midpoint is satisfied after the execution of P

and before the execution of Q.

Like in conventional Hoare logic [56], the rule [cons] is aimed to strengthen the precondition

and weaken the postcondition, or to replace the condition to another condition that seman-

tically equivalent but syntactically different. To show that c′ can be strengthened to c, we

only need to show that c implies c′, and to weaken d′ to d, we need to show that d′ implies

d.

The assertions SUCCESS and FAIL are needed to prove a triple about if command. Recall

that in the execution of if C then P else Q, the program C is first executed on a copy of

G. If it terminates and yields a proper graph as a result, P is executed on G. If C terminates

and results in a fail state, then Q is executed on G.

Similarly, for a triple about try command, we use the two assertions. But for

try C then P else Q, C is not executed on a copy of G, but G itself. When the execution

of C on G terminates and yields a proper graph, P is executed on the result graph. Hence,

the difference with [if] is located in the first of the premises, where we use the sequential

composition of C and P .

129

Chapter 7 Graph program verification

As in traditional programming, we need an invariant to show a triple about loop P !. When

we have proven the existence of an invariant for P , the invariant will hold after any number

of successful executions of P . If P ! terminates, from the semantics of “!” we know that the

last execution of P either yields a fail state (see [Loop2] of Figure 2.10), such that FAIL(P)
must hold, or executing the command break (see [Loop3] of Figure 2.10). In the former case,

we know that the invariant and FAIL(P) must hold from the semantics of GP 2. Then in the

latter case, we use Break(c,P, d) which is defined in Definition 7.10. The triple for loops is

then captured by the rule [alap], so this rule set covers nested loops and breaks as well now.

7.2 Syntactical Proof Calculus

Section 7.1 introduces us to the semantic partial correctness calculus, where assertions are

functions that map graphs to Boolean value. Now, we consider monadic second-order for-

mulas as the functions. In this section we define the construction of SLP, SUCCESS, and

FAIL in monadic second-order formulas. In addition, we also define the syntactic version of

partial correctness proof rules where possible (it will turn out that this is not always can be

done). First, we define the monadic second-order formula App(r) which should represent

the monadic second-order formula of SUCCESS(r).

Definition 7.13 (App(r)). Let us consider a conditional rule schema r ∶ ⟨L ← K → R, Γ⟩.
The formula App(r) is defined as

App(r) = Post(Spec(L) ∧Dang(r) ∧ Γ).

◻

The definition of Post(c), Spec(L), and Dang(r) for a condition c, rule graph L, and rule

schema r, can be found in Definition 5.14, 3.23, and 2.8 respectively.

Lemma 7.14. Let us consider a conditional rule schema r ∶ ⟨L ← K → R, Γ⟩, and a host

graph G,

G ⊧ SUCCESS(r) if and only if G ⊧ App(r).

Proof. (If).

From the definition of Post (see Definition 5.14) and Fact 3.1, we know that G ⊧App(r)
implies G ⊧Var(Spec(L)), such that from Lemma 3.27, we know that there exists injective

morphism g ∶ Lα → G for some label assignment αL. Then from Lemma 3.26, G ⊧App(r)
implies ρg(G) ⊧Dang(r) and ρg(G) ⊧ Γα. From Observation 5.1, ρg(G) ⊧Dang(r) implies g

satisfies the dangling condition, and ρg(G) ⊧ Γα clearly implies Γα,g is satisfied by G. Hence,

130

7.2 Syntactical Proof Calculus

from the definition of conditional rule schema application, we know that G⇒r,g H for some

host graph H such that G ⊧SUCCESS(r).
(Only if).

G ⊧SUCCESS(r) implies G ⇒ H for some host graph H, which implies the existence of

injective morphism g ∶ Lα → G for some label assignment αL such that g satisfies the dangling

condition and G ⊧ Γα,g. The existence of the injective morphism implies G ⊧Var(Spec(L))
from Lemma 3.27, the satisfaction of the dangling condition implies ρg(G) ⊧Dang(r), and

the G ⊧ Γα,g implies ρg(G) ⊧ Γ. Hence, ρg(G) ⊧Spec(L) since Lα → ρg(G) is inclusion

(see Proposition 3.24). Hence, ρg(G) ⊧Spec(L)∧Dang(r) ∧ Γ so that from Lemma 3.26,

G ⊧App(r).

Defining a monadic second-order formula for SUCCESS(r) with a rule schema r is easier

than defining MSO formula for SUCCESS(P) with an arbitrary loop-free program P . This

is because we need to express properties of the initial graph after checking the existence of

derivations. To determine the properties of the initial graph, we introduce the condition

Pre(P, c) for a postcondition c and a loop-free program P . Intuitively, Pre(P, c) expresses

the properties of the initial graph such that we can assert the existence of a host graph

H such that H ⊧ c and H ∈ JP KG. For an example, if there exists host graphs G′ and

H for a given host graph G and rule schemata r1 and r2 such that G ⇒r1 G
′ ⇒r2 H and

H ⊧ true (which also means that G ⊧ SUCCESS(P)), then G′ should satisfy Pre(r2, true)
and G should satisfy Pre(r1,Pre(r2, true)) such that Pre(r1,Pre(r2, true)) can be considered

as SUCCESS(r1; r2) in monadic second-order formula. For more general cases, see Definition

7.15. In the definition, (r∨)−1 refers to the inverse of the generalised r (see Definition 3.19).

Definition 7.15 (Slp, Success, Fail, Pre of a loop-free program). Let us consider a condi-

tion c and a loop-free program S. The monadic second-order formulas Slp(c, S), Pre(c, S),
Success(S), and Fail(S) are defined inductively:

1. If S is a set of rule schemata R = {r1, . . . , rn},

(a) Slp(c, S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Post(c, r∨1) ∨ . . . ∨Post(c, r∨n) if n > 0,

false otherwise

(b) Pre(S, c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Post(c, (r∨1)−1) ∨ . . . ∨Post(c, (r∨n)−1) if n > 0,

false otherwise

(c) Success(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

App(r1) ∨ . . . ∨App(rn) if n > 0,

false otherwise

(d) Fail(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

¬(App(r1) ∨ . . . ∨App(rn)) if n > 0,

false otherwise

2. For loop-free programs C,P, and Q,

131

Chapter 7 Graph program verification

(i) If S = P or Q,

(a) Slp(c, S)=Slp(c,P)∨Slp(c,Q)
(b) Pre(S, c)=Pre(P, c)∨Pre(Q, c)
(c) Success(S) =Success(P)∨Success(Q)
(d) Fail(S) =Fail(P)∨Success(Q)

(ii) If S = P ;Q,

(a) Slp(c, S)=Slp(Slp(c,P),Q)

(b) Pre(S, c)=Pre(P ,Pre(Q, c))
(c) Success(S) =Pre(P,Success(Q))
(d) Fail(S) =Fail(P)∨Pre(P ,Fail(Q))

(iii) If S = ifC thenP elseQ,

(a) Slp(c, S)=Slp(c ∧ Success(C), P)∨Slp(c ∧ Fail(C),Q)
(b) Pre(S, c)=(Success(C)∧Pre(P, c))∨ (Fail(C)∧Pre(Q, c))
(c) Success(S) = (Success(C)∧Success(P)∨ (Fail(C)∧Success(Q))
(d) Fail(S)=(Success(C)∧Fail(P))∨ (Fail(C)∧Fail(Q))

(iv) If S = tryC thenP elseQ,

(a) Slp(c, S)=Slp(c ∧ Success(C),C;P)∨Slp(c ∧ Fail(C),Q)
(b) Pre(S, c) =Pre(C,Pre(P, c))∨ (Fail(C)∧Pre(Q, c))
(c) Success(S) =Pre(C,Success(P))∨ (Fail(C)∧Success(Q))
(d) Fail(S) =Pre(Fail(P),C))∨ (Fail(C)∧Fail(Q))

◻

For a precondition c and a loop-free program S, Slp(c, S) is basically constructed based

on Proposition 7.9. For Pre(S, c), since we want to know the property of the initial graph

based on c that is satisfied by the final graph and S, it works similar with constructing a

weakest liberal precondition from a given postcondition and a program. Here we use [17]

as a reference. However, in the reference the conditional part of if − then − else command

contains an assertion instead of a graph program such that if C is an assertion, following

the setting in [17] we will have Pre(C, c) = C Ô⇒ Pre(P, c) ∧ ¬C Ô⇒ Pre(Q, c). The

difference between assertions and graph programs as condition of a conditional program is,

the satisfaction of the assertion on the initial graph implies that Q can not be executed,

while in our case, G ⊧Success(C) does not always imply that Q can not be executed. Hence,

we change the equation to what we have in the definition above.

Success(S) should express the existence of a proper graph as a final result, which means it

should express the property of the initial graph based on S and the final graph satisfying

true. This is exactly what Pre(true, S) should express. Finally, Fail(S) should express the

property of the initial graph where failure is a result of the execution of S. Since we can

yield failure anywhere is the subprogram of S, we need to disjunct all possibilities.

132

7.2 Syntactical Proof Calculus

Theorem 7.16 (Slp, Pre, Success, and Fail). For all condition c and loop-free program S,

the following holds:

(a) Slp(c, S) is a strongest liberal postcondition w.r.t. c and S

(b) For all host graph G, G ⊧Pre(S, c) if and only if there exists host graph H such that

H ∈ JSKG and H ⊧ c
(c) G ⊧Success(S) if and only if G ⊧SUCCESS(S)
(d) G ⊧Fail(S) if and only if G ⊧FAIL(S)

Proof. Here, we prove the theorem by induction on loop-free graph programs.

Base case.

1. For R = {},
(a) for all host graph G, G ⇏ such that every condition is a liberal postcondition

w.r.t. c and R, false is the strongest among all because we know that there is no

graph can satisfy false

(b) Statement (b) is valid because nothing satisfies false.

(c) BothG ⊧Success(R) andG ⊧SUCCESS(R) always false such thatG ⊧Success(R)
iff G ⊧SUCCESS(R) holds.

(d) Similarly, this point holds because both G ⊧Fail(R) and G ⊧FAIL(R) always

true.

2. If S =R = {r1, . . . , rn} where n > 0,

(a) H ⊧ SLP(c,R) P7.9⇔ H ⊧ SLP(c, r1) ∨ . . . ∨ SLP(c, rn)
T5.16⇔ H ⊧ Post(c, r∨1) ∨ . . . ∨Post(c, r∨n)

(b) ∃H.H ∈ JRKG ∧H ⊧ c
⇔ ∃H.(G⇒r1 H ∨ . . . ∨G⇒rn H) ∧H ⊧ c
⇔ (∃H.G⇒r1 H ∧H ⊧ c) ∨ . . . ∨ (∃H.G⇒rn H ∧H ⊧ c)

D3.18⇔ (∃H.G⇒r∨1
H ∧H ⊧ c) ∨ . . . ∨ (∃H.G⇒r∨n H ∧H ⊧ c)

L3.22⇔ (∃H.H ⇒
(r∨1)

−1 H ∧H ⊧ c)∨ . . .∨ (∃H.H ⇒
(r∨n)

−1 G∧H ⊧ c)
T5.16⇔ G ⊧ Post(c, (r∨1)−1) ∨ . . . ∨Post(c, (r∨n)−1)

(c) H ⊧ SUCCESS(R) ⇔ ∃H.H ∈ JRKG

⇔ ∃H.G⇒r1 H ∨ . . . ∨G⇒rn H

⇔ (∃H.G⇒r1 H) ∨ . . . ∨ (∃H.G⇒rn H)
D7.7⇔ G ⊧ SUCCESS(r1) ∨ . . . ∨ SUCCESS(rn)
L7.14⇔ G ⊧ App(r1) ∨ . . . ∨App(rn)

(d) G ⊧ FAIL(R) ⇔ fail ∈ JRKG

⇔ (¬∃H.G⇒r1 H) ∧ . . . ∧ (¬∃H.G⇒rn H)
D7.7⇔ G ⊧ ¬(SUCCESS(r1) ∨ . . . ∧ SUCCESS(rn))
L7.14⇔ G ⊧ ¬(App(r1) ∨ . . . ∨App(rn))

133

Chapter 7 Graph program verification

Inductive case. Assume (a), (b), (c), and (d) hold for loop-free programs C,P , and Q.

1. If S = P or Q,

(a) H ⊧ SLP(c, S) P7.9⇔ G ⊧ SLP(c,P) ∨ SLP(c,Q)
Ind.⇔ G ⊧ Slp(c,P) ∨ Slp(c,Q)

(b) ∃H.H ∈ JSKG ∧H ⊧ c ⇔ ∃H.(H ∈ JP KG ∨H ∈ JQKG) ∧H ⊧ c
⇔ (∃H.H ∈ JP KG ∧H ⊧ c) ∨ (∃H.H ∈ JQKG ∧H ⊧ c)
Ind.⇔ G ⊧ Pre(P, c) ∨Pre(Q, c)

(c) G ⊧ SUCCESS(S) ⇔ ∃H.H ∈ JP or QKG
⇔ ∃H.H ∈ JP KG ∨H ∈ JQKG
D7.7⇔ G ⊧ SUCCESS(P) ∨ SUCCESS(Q)
Ind.⇔ G ⊧ Success(P) ∨ Success(Q)

(d) G ⊧ FAIL(S) ⇔ fail ∈ JP or QKG
⇔ fail ∈ JP KG ∨ fail ∈ JQKG
D7.8⇔ G ⊧ FAIL(P) ∨ FAIL(Q)
Ind.⇔ G ⊧ Fail(P) ∨ Fail(Q)

2. If S = P ;Q,

(a) H ⊧ SLP(c, S) P7.9⇔ H ⊧ SLP(SLP(c,P),Q)
Ind.⇔ H ⊧ Slp(Slp(c,P),Q)

(b) ∃H.H ∈ JSKG ∧H ⊧ c ⇔ ∃H,G′. G′ ∈ JP KG ∧H ∈ JQKG′ ∧H ⊧ c
Ind.⇔ ∃G′. G′ ⊧ Pre(Q, c) ∧G′ ∈ JP KG
Ind.⇔ G ⊧ Pre(P,Pre(Q, c))

(c) G ⊧ SUCCESS(S) ⇔ ∃H.H ∈ JP ;QKG
⇔ ∃H,G′. G′ ∈ JP KG ∧H ∈ JQKG′
D7.7⇔ ∃G′. G′ ⊧ SUCCESS(Q) ∧G′ ∈ JP KG
Ind.⇔ ∃G′. G′ ⊧ Success(Q) ∧G′ ∈ JP KG
Ind.⇔ G ⊧ Pre(P,Success(Q))

(d) G ⊧ FAIL(S) ⇔ fail ∈ JP ;QKG
⇔ fail ∈ JP KG ∨ ∃H. H ∈ JP KG ∧ fail ∈ JQKH
D7.8⇔ G ⊧ FAIL(P) ∨ ∃H. H ∈ JP KG ∧H ⊧ FAIL(Q)
Ind.⇔ G ⊧ Fail(P) ∨Pre(P,Fail(Q))

3. If S = ifC thenP elseQ,

(a) H ⊧ SLP(c, S)
P7.9⇔ G ⊧ SLP(c ∧ SUCCESS(C), P) ∨ SLP(c ∧ FAIL(C),Q)
Ind.⇔ G ⊧ Slp(c ∧ Success(C), P) ∨ SLP(c ∧ Fail(C),Q)

(b) ∃H.H ∈ JSKG ∧H ⊧ c
⇔ ∃H. ((G ⊧ SUCCESS(C)∧H ∈ JP KG)∨(G ⊧ FAIL(C)∧H ∈ JQKG))∧

H ⊧ c
⇔ (∃H. G ⊧ SUCCESS(C) ∧H ∈ JP KG ∧H ⊧ c)

∨(∃H. G ⊧ FAIL(C) ∧H ∈ JQKG)) ∧H ⊧ c)
Ind.⇔ G ⊧ (Success(C) ∧Pre(P, c)) ∨ (Fail(C) ∧Pre(Q, c))

134

7.2 Syntactical Proof Calculus

(c) G ⊧ SUCCESS(S)
⇔ ∃H.H ∈ JSKG
⇔ ∃H. (G ⊧ SUCCESS(C) ∧H ∈ JP KG) ∨ (G ⊧ FAIL(C) ∧H ∈ JQKG)
⇔ (∃H. G ⊧ SUCCESS(C) ∧ H ∈ JP KG) ∨ (∃H. G ⊧ FAIL(C) ∧ H ∈

JQKG)))
Ind.⇔ G ⊧ (Success(C) ∧ Success(P)) ∨ (Fail(C) ∧ Success(Q))

(d) G ⊧ FAIL(S)
⇔ fail ∈ JSKG
⇔ (G ⊧ SUCCESS(C) ∧ fail ∈ JP KG) ∨ (G ⊧ FAIL(C) ∧ fail ∈ JQKG)
Ind.⇔ G ⊧ (Success(C) ∧ Fail(P)) ∨ (Fail(C) ∧ Fail(Q))

4. If S = tryC thenP elseQ,

(a) H ⊧ SLP(c, S)
P7.9⇔ G ⊧ SLP(SLP(c,C), P) ∨ SLP(c ∧ FAIL(C),Q)
Ind.⇔ G ⊧ Slp(Slp(c,C), P) ∨ Slp(c ∧ Fail(C),Q)

(b) ∃H.H ∈ JSKG ∧H ⊧ c
⇔ (∃H,G′. H ⊧ c∧G′ ∈ JCKG∧H ∈ JP KG′)∨(∃H. H ⊧ c∧FAIL(C)∧H ∈

JQKG)
Ind.⇔ (∃G′. G′ ⊧ Pre(P, c) ∧G′ ∈ JCKG) ∨ (∃H. G ⊧ Fail(C) ∧H ∈ JQKG)) ∧

H ⊧ c)
Ind.⇔ G ⊧ Pre(C,Pre(P, c)) ∨ (Fail(C) ∧Pre(Q, c))

(c) G ⊧ SUCCESS(S)
⇔ ∃H.H ∈ JSKG
⇔ (∃H,G′. G′ ∈ JCKG ∧H ∈ JP KG′) ∨ (∃H. FAIL(C) ∧H ∈ JQKG)
D7.7⇔ (∃G′. G′ ∈ JCKG ∧G′ ⊧ SUCCESS(P)) ∨ (∃H. FAIL(C) ∧H ∈ JQKG)
Ind.⇔ G ⊧ Pre(C,Success(P)) ∨ (Fail(C) ∧ Success(Q))

(d) G ⊧ FAIL(S)
⇔ fail ∈ JSKG
⇔ (∃G′. G′ ∈ JCKG ∧ fail ∈ JP KG) ∨ (G ⊧ FAIL(C) ∧ fail ∈ JQKG)

D7.7,7.8⇔ G ⊧ (SUCCESS(C) ∧ FAIL(P)) ∨ (FAIL(C) ∧ FAIL(Q))
Ind.⇔ G ⊧ (Success(C) ∧ Fail(P)) ∨ (Fail(C) ∧ Fail(Q))

For any loop-free program P , we now can find the monadic second-order formula of SLP,

SUCCESS, and FAIL. However, constructing SLP and SUCCESS of a loop is a challenging

task because a loop may diverge. However, constructing a MSO formula for FAIL of a graph

program with loops is not as challenging if we only consider some forms of graph programs.

In [11], Bak introduced a class of commands that cannot fail. Hence, we can always conclude

that Fail(P) = false if P is a command that cannot fail. Here, we introduce the class of

non-failing commands.

Definition 7.17 (Non-failing commands). The class of non-failing commands is inductively

defined as follows:

135

Chapter 7 Graph program verification

Base case:

1. break and skip are non-failing commands

2. Every call of a rule schema with the empty graph as its left-hand graph is a non-failing

command

3. Every rule set call {r1, . . . , rn} for n ≥ 1 where each ri has the empty graph as its

left-hand graph, is a non-failing command

4. Every command P! is a non-failing command

Inductive case:

1. P ;Q is a non-failing command if P and Q are non-failing commands

2. ifC thenP elseQ is a non-failing command if P and Q are non-failing commands

3. tryC thenP elseQ is a non-failing command if P and Q are non-failing commands

◻

Recall the inference rule [alap] of SEM (see Figure 7.1). To obtain a triple {c} P ! {d} for

some precondition c, postcondition d, and a graph program P !, we need to find Fail(P).
We now can construct Fail(P) if P is a loop-free program as in Definition 7.15, or if P is a

non-failing command.

Now, let us consider P in the form C;Q. For any host graph G, fail ∈ JC;QKG iff fail ∈ JCKG or

H ∈ JCKG∧ fail ∈ JQKH for some host graph H, which means G ⊧ FAIL(C)∨ (SUCCESS(C)∧
FAIL(Q)). We can construct both Fail(C) and Success(C) if C is a loop-free program, and

we can construct Fail(Q) if Q is a loop-free program or a non-failing command. Here, we

introduce the class of iteration commands which is the class of commands where we can

obtain Fail of the commands.

Definition 7.18 (Iteration commands). The class of iteration commands is inductively

defined as follows:

1. Every loop-free program is an iteration command

2. Every non-failing command is an iteration command

3. A command of the form C;P is an iteration command if C is a loop-free program and

P is an iteration command

◻

If S is a loop-free program, we can construct Fail(S) as defined in Definition 7.15. Meanwhile,

if S is a non-failing command, there is no graph G such that fail∈ JSKG such that we can

136

7.2 Syntactical Proof Calculus

conclude that Fail(S) ≡ false. Finally, if S is in the form of C;P for a loop-free program C

and a non-failing program P , fail∈ JSKG for a graph G only if fail∈ JCKG (because P cannot

fail), so that Fail(S) ≡fail(C).

Definition 7.19 (Fail of iteration commands). Let Faillf(C) denotes the formula Fail(C)
for a loop-free program C as defined in Definition 7.15. For any iteration command S,

Fail(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

false if S is a non-failing command

Faillf(S) if S is a loop-free program

Fail(C) if S = C;P for a loop-free program C, a non-failing program P

Theorem 7.20. Let us consider an iteration command S. Then,

G ⊧ Fail(S) if and only if G ⊧ FAIL(S).

Proof. Here, we prove the theorem case by case.

1. If S is a non-failing command, then for any host graph G, fail ∉ JSKG. Hence, there is

no graph satisfying FAIL(S) such that G ⊧ false iff G ⊧ FAIL(S) holds.

2. If S is a loop-free program, G ⊧ Fail(S) iff G ⊧ FAIL(S) holds based on Theorem 7.16.

3. If S is in the form C;P for a loop-free program C and non-failing command P , then

G ⊧ FAIL(C;P) iff fail∈ JC;P KG

iff fail∈ JCKG ∨ ∃G′.G′ ∈ JCKG∧ fail∈ JP KG′

iff fail∈ JCKG

iff G ⊧ FAIL(C)
iff G ⊧ Fail(C)

Now let us consider the proof calculus SEM. There is the assertion SUCCESS(C) and FAIL(C)
where C is the condition of a branching statement, and FAIL(S) for a loop body S. Since we

are only able to construct Success(C) for a loop-free program C and FAIL(S) for an iteration

command S, we do not define the syntactic version for arbitrary graph programs. Hence, we

require a loop-free program as the condition of every branching statement and an iteration

command as every loop body. For the axiom [ruleapp]wlp, we follow the construction in [26]

where a weakest liberal precondition can be constructed using the construction of Slp.

Definition 7.21 (Control programs). A control command is a command where the condition

of every branching command is loop-free and every loop body is an iteration command.

Similarly, a graph program is a control program if all its command are control commands.◻

137

Chapter 7 Graph program verification

[ruleapp]slp {c} r {Slp(c, r)}

[ruleapp]wlp {¬Slp(¬d, r−1)} r {d}

[ruleset]
{c} r {d} for each r ∈R

{c} R {d}

[comp]
{c} P {e} {e} P {d}

{c} P ;Q {d}

[cons]
c implies c′ {c′} P {d′} d′ implies d

{c} P {d}

[if]
{c ∧ Success(C)} P {d} {c ∧ Fail(C)} Q {d}

{c} if C then P else Q {d}

[try]
{c ∧ Success(C)} C;P {d} {c ∧ Fail(C)} Q {d}

{c} try C then P else Q {d}

[alap]
{c} S {c} Break(c, S, d)
{c} S! {(c ∧ Fail(S)) ∨ d}

Figure 7.2: Calculus SYN of syntactic partial correctness proof rules

Lemma 7.22. Let us consider a conditional rule schema r and a closed monadic second-

order formula d. Let Wlp(r, d) = ¬Slp(¬d, r−1). Then for all host graphs G,

G ⊧ Wlp(r, d) if and only if G ⊧ WLP(r, d).

Proof.

G ⊧ Wlp(r, d) iff G ⊧ ¬Post(¬d, (r∨)−1)
iff ¬(∃H,g, g∗.H ⇒

(r∨)−1,g∗,g G ∧H ⊧ ¬d) (Lemma 4.2)

iff ¬(∃H,g, g∗.G⇒(r∨),g,g∗ H ∧H ⊧ ¬d) (Lemma 3.22)

iff ¬(∃H.G⇒r H ∧H ⊧ ¬d) (Def. 3.18)

iff ∀H.G⇒r H implies H ⊧ d) (Def. implication)

iff G ⊧WLP(r, d) (Lemma 7.5)

Now we know the MSO formula for WLP(r, c), SLP(c, r), also SUCCESS(P) and FAIL(P)
for some form of P . Finally, we define a syntactic partial correctness proof for control

programs.

Definition 7.23 (Syntactic partial correctness proof rules). The syntactic partial correctness

proof rules, denoted by SYN, is defined in Figure 7.2, where c, d, and d′ are any conditions,

r is any conditional rule schema, R is any set of rule schemata, C is any loop-free program,

P and Q are any control commands, and S is any iteration command. Outside a loop, we

treat the command break as a skip. ◻

138

7.3 Summary

7.3 Summary

This chapter defines semantic and syntactic partial correctness proof calculi for graph pro-

gram verification. Here, we define both semantic and syntactic calculus because semantic

calculus is more powerful since it is independent on assertion language we use, while syn-

tactic calculus is useful for presentation, as well as in practice. The semantic proof calculus

can be used to verify arbitrary graph programs by Hoare-style verification by using semantic

assertions. On the other hand, syntactic proof calculus can be used to verify a class of graph

programs, called control programs, by using monadic second-order formulas in Hoare-style

verification. However, we can not prove the implication between assertions or the so-called

predicate Break inside the proof calculi.

The proof calculi we have in this chapter is an extension of the partial correctness proof

calculus introduced in [1]. We extend the calculus so that now it can handle graph programs

with command break and nested loop in certain forms. The extension is possible because

we can show how to construct a monadic second-order formula as a precondition that asserts

successful execution of a loop-free program or a failing execution of so-called iteration com-

mands. In addition, we define the predicate Break to consider graph programs containing

the command break. The extension give us an ability to prove larger subset of GP 2 graphs

that are not able to be proven by the proof calculi in [1]. Now, we are able to prove graph

programs that are instroduced in [11, 18, 19], which are proven to be efficient for some classes

of graphs.

We are still not able to prove all GP 2 graph programs, because we still have a limitation

on commands we can have inside a loop, also in branching commands. The limitation occur

because we do not have a construction for SLP over a loop.

139

Chapter 8

Verification case studies

This chapter presents four graph programs: vertex-colouring [1], transitive-closure

[34], 2-colouring [11], and is-connected [57]. Here, we use graph programs existing in the

literature as case studies. For each graph programs, pre- and postconditions are provided,

and we verify the graph programs with respect to the given specifications.

8.1 Vertex colouring

8.1.1 Graph program vertex-colouring

The first example we consider in this chapter is vertex colouring program as seen in Figure 8.1.

We expect the input of the program is a graph where all nodes are unmarked and unrooted,

and all edges are unmarked. From the input graph, we mark all nodes with grey, then

concatenate 1 to the label of all nodes while unmarking the nodes. This concatenation

represents the ”colour” in vertex colouring such that a node with label a ∶ 1 represents a

node with label a and colour 1. Finally, to make sure that all adjacent nodes have different

colour, we use change! to change the colour of one from every two adjacent nodes if they

have the same colour.

Here, we show that the graph program vertex-colouring is partially correct with respect

to the following pre- and postcondition:

141

Chapter 8 Verification case studies

Main = init!;change!

init(a ∶ atom)

a

1
⇒ a ∶ 1

1

change(a,b,c ∶ atom;k ∶ int)

a ∶ k
1

b ∶ k
2

c
⇒ a ∶ k

1

b ∶ k + 1

2

c

Figure 8.1: Graph program vertex-colouring

Precondition:

All nodes and edges are unmarked, all nodes are labelled with an atom, and all

nodes are unrooted.

Postcondition:

All nodes are labelled with a ∶ i for some atom a and integer i; and for all

distinct nodes x and y, if x and y are adjacent, x is labelled by a ∶ i, and y is

labelled by b ∶ j for some integers i and j, then i ≠ j.

8.1.2 Proof tree of vertex-colouring

The proof is presented in the proof tree of Figure 8.2, where assertions used in the proof

tree are defined in Table 8.1. Here, we use the transformation of conditions we defined in

Chapter 6 to obtain strongest liberal postconditions Slp(e,init), and Slp(d,change). Let us

show the process to obtain one of the strongest liberal postconditions as an example. Here,

we choose Slp(d,change) because it is the most complicated one among the three.

[ruleapp]slp {e} init {Slp(e,init)}
[cons]

{e} init {e}
[alap]

{e} init! {e∧Fail(init)}
[cons]

{pre} init! {d}

[ruleapp]slp {d} change {Slp(d,change)}
[cons]

{d} change {d}
[alap]

{d} change! {d∧Fail(change)}
[cons]

{d} change! {post}
[comp]

{pre} mark!;init!;change! {post}

Figure 8.2: Proof tree for partial correctness of vertex colouring

First, we need to change the abbreviations we use in d, such that we obtain:

¬∃vx(mv(x) ≠ none ∨ root(x) ∨ ¬∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))) ∧ ¬∃ex(me(x) ≠ none)

To obtain LiftMSO(d,change), we first need to obtain SplitMSO(d,change), that is:

¬(mv(1) ≠ none ∨ root(1) ∨ ¬∃la, i(lv(1) = a ∶ i ∧ int(i) ∧ atom(a)))

142

8.1 Vertex colouring

Table 8.1: Conditions inside proof tree of vertex colouring

MSO formulas
pre ≡ ∀vx(mv(x) = none ∧ ¬root(x) ∧ atom(lv(x))) ∧ ∀Ex(me(x) = none)
post ≡ d∧∀vx, y(x ≠ y ∧ edge(x, y)⇒ ∃la,b, i, j(atom(a) ∧ atom(b) ∧ int(i) ∧ int(j)

∧ lv(x) = a ∶ i ∧ lv(y) = b ∶ j ∧ i ≠ j))
d ≡ ∀vx(mv(x) = none ∧ ¬root(x) ∧ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))) ∧ ∀ex(me(x) = none)
e ≡ ∀vx(mv(x) = none ∧ ¬root(x) ∧ (atom(lv(x) ∨ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))))

∧ ∀ex(me(x) = none)
Fail(init) ≡ ¬∃vx(mv(x) = none ∧ ¬root(x) ∧ atom(lv(x)))
Fail(change) ≡ ¬∃vx, y(x ≠ y ∧ edge(x, y,none) ∧mv(x) = none ∧mv(y) = none

∧ ¬root(x) ∧ ¬root(y) ∧ ∃la,b, i(lv(x) = a ∶ i ∧ lv(y) = b ∶ i ∧ int(i) ∧ atom(a) ∧ atom(b)))
Slp(e,init)≡
∃vy(mv(y) = none ∧ ¬root(y) ∧ ∃la(lv(y) = a ∶ 1 ∧ atom(a))

∧∀vx(x = y ∨ ((mv(x) = none ∨mv(x) = grey) ∧ ¬root(x)
∧ (mv(x) = none⇒ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a)))))

∧∀ex(me(x) = none)
Slp(d,change)≡
∃vy, z(y ≠ z ∧mv(y) = none ∧mv(z) = none ∧ ¬root(y) ∧ ¬root(z)

∧ ∃la,b, k(mv(y) = a ∶ k ∧mv(z) = b ∶ k + 1 ∧ int(k) ∧ atom(a) ∧ atom(b)) ∧ edge(y, z,none)
∧ ∀vx(x = y ∨ x = z ∨ (mv(x) = none ∧ ¬root(x) ∧ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a)))))

∧∀ex(me(x) = none)

∧¬(mv(2) ≠ none ∨ root(2) ∨ ¬∃la, i(lv(2) = a ∶ i ∧ int(i) ∧ atom(a)))
∧¬∃vx(x ≠ 1 ∧ x ≠ 2 ∧ (mv(x) ≠ none ∨ root(x) ∨ ¬∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))))
∧(¬(me(e1) ≠ none) ∧ ¬∃ex(x ≠ e1 ∧me(x) ≠ none))
such that Val(SplitMSO(d,change),change) is:

¬∃vx(x ≠ 1 ∧ x ≠ 2 ∧ (mv(x) ≠ none ∨ root(x) ∨ ¬∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))))
∧¬∃ex(x ≠ e1 ∧me(x) ≠ none)
because from the rule change, both node 1 and 2 are unmarked, unrooted, and labelled with

a concanation of an atom and integer so that the first two lines can be simplified to true.

Since there is no rule application condition for change, then Γ ≡ true. Also, there is no node

that gets deleted by change such that Dang(change)≡ true. Hence,

LiftMSO(d,change) = ValMSO(SplitMSO(d,change),change).

Next, since the rule change does not delete any node and not adding any new node, then

AdjMSO(LiftMSO(d,change),change) = SplitMSO(d,change),change), such that

ShiftMSO(⟨change,LiftMSO(d,change), true⟩) is:

ValMSO(SplitMSO(d,change),change)∧ s(e1) = 1 ∧ t(e1) = 2 ∧me(e1) = none

∧mv(1) = none ∧mv(2) = none ∧ ¬root(1) ∧ ¬root(2)
∧mv(1) = a ∶ k ∧mv(2) = a ∶ k + 1 ∧ int(k) ∧ atom(a).

Finally, we can obtain Slp(d,change) as in Table 8.1 by transformation Post; that is by

changing all 1s to y, 2s to z, and bound y, z, a, b, and k with existential quantifiers.

143

Chapter 8 Verification case studies

8.1.3 Proof of implications

From the proof tree, we can see that the proof rule [cons] is used several times. As mentioned

before, the implication used in the proof rule need to be proven outside the calculus. Hence,

we also provide the proof of implications to support the partial correctness proof.

1. Proof of pre implies e

From the meaning of conjunction, atom(lv(x)) implies

atom(lv(x)) ∨ ∃la(lv(y) = a ∶ i ∧ int(i) ∧ atom(a)). Hence, pre implies e.

2. Proof of Slp(e,init) implies e

From the semantic of conjunction, Slp(e, init) implies

∀vx((mv(y) = none ∧ ¬root(y) ∧ ∃la(lv(y) = a ∶ 1 ∧ atom(a))) ∧ ∀ex(me(x) = none).
Since ∃la(lv(y) = a ∶ 1 ∧ atom(a)) implies ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a)), also from

the semantic of conjunction we know that ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a)) implies

atom(lv) ∨ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a)),
Slp(e, init) implies e.

3. Proof of e ∧ Fail(init) implies d

e states that all nodes are unmarked and unrooted, and labelled with an atom or con-

catenation of an atom and an integer. Also, that all edges are unmarked. Fail(init)

stated that there is no unmarked unrooted node that is labelled with an atom. Hence,

e ∧ Fail(init) implies

∀vx(mv(x) = none ∧ ¬root(x) ∧ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))) ∧ ∀ex(me(x) = none),
which is equal to d.

4. Proof of Slp(d,change) implies d

Similar to point 2, Slp(d,change) implies

∀vx((mv(x) = none ∧ ¬root(x) ∧ ∃la, k(lv(x) = a ∶ k ∧ int(k) ∧ atom(a)))
∨ (mv(x) = none ∧ ¬root(x) ∧ ∃la, k(lv(x) = a ∶ k + 1 ∧ int(k) ∧ atom(a)))
∨ (mv(x) = none ∧ ¬root(x) ∧ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a)))))

∧∀ex(me(x) = none), which clearly implies

∀vx(mv(x) = none ∧ ¬root(x) ∧ ∃la, i(lv(x) = a ∶ i ∧ int(i) ∧ atom(a))) ∧ ∀ex(me(x) = none).

5. Proof of d ∧ Fail(change) implies post

Since post=d∧∀vx, y(x ≠ y ∧ edge(x, y)⇒ ∃la,b, i, j(atom(a) ∧ atom(b) ∧ int(i) ∧ int(j)
∧ lv(x) = a ∶ i ∧ lv(y) = b ∶ j ∧ i ≠ j)),

we need to proof that Fail(change) implies

∀vx, y(x ≠ y ∧ edge(x, y)⇒ ∃la,b, i, j(atom(a) ∧ atom(b) ∧ int(i) ∧ int(j)
∧ lv(x) = a ∶ i ∧ lv(y) = b ∶ j ∧ i ≠ j)). From the seman-

tics of quantifiers, we know that

144

8.1 Vertex colouring

Fail(change)≡ ∀vx, y(x ≠ y ∧ edge(x, y)⇒ ¬∃la,b, i(atom(a) ∧ atom(b) ∧ int(i)
∧ lv(x) = a ∶ i ∧ lv(y) = b ∶ j)).

The right hand side, with the knowledge that all nodes are labelled with the concate-

nation of an atom and an integer, implies

∃la,b, i, j(atom(a) ∧ atom(b) ∧ int(i) ∧ int(j) ∧ lv(x) = a ∶ i ∧ lv(y) = b ∶ j ∧ i ≠ j)). Hence, d

∧ Fail(change) implies post.

8.1.4 Comparison with E-conditions

In [1], there is a proof for the same graph program (vertex-colouring of Figure 8.1). The

proof can be seen in Figure 8.3.

Figure 8.3: The partial correctness proof of vertex-colouring with E-condition [1]

Note that in the proof of Figure 8.3, there is an assumption that the input graph will never

contain a marked node so that morphisms with marked nodes are not considered in the proof.

If it is considered, the conditions would be much longer.

In this case, there may be no significant difference between the readability of MSO formulas

we use in Table 8.1 and the E-conditions in Figure 8.3. However, Pre(inc,d) may not be easy

to comprehend by some reader because the same construction gets repeated. Such repetition

does not occur in MSO.

145

Chapter 8 Verification case studies

8.2 Transitive closure

8.2.1 Graph program transitive-closure

The second example we use is a graph program to compute transitive closure of a graph, as

can be seen in Figure 8.4. The program takes a graph where all nodes are unmarked and

unrooted and all edges are unmarked as an input. Then, the rule link adds an edge from

node x to node z if they is a node y such that there exists an edge from x to y and from y

to z and there is no edge from x to z. This process is executed repeatedly until there is no

match for the rule.

Main = link!

link(a,b,c,d,e ∶ list)

a

1

b

2

c

3

d e
⇒ a

1

b

2

c

3

d e

where not edge(1,3)

Figure 8.4: Graph program transitive-closure

Here, we want to show that the program transitive-closure is partially correct with

respect to the following pre- and postcondition.

Precondition:

All nodes and edges are unmarked, and all nodes are unrooted.

Postcondition:

All nodes and edges are unmarked, and all nodes are unrooted. Also, for all

distinct nodes x and y, if there is a directed path from x to y then there is an

edge from x to y.

8.2.2 Proof tree of transitive-closure

The proof of the partial correctness of transitive-closure is given by the proof tree of

Figure 8.5, while the assertions that are used in the proof tree are defined in Table 8.2.

To obtain Slp(pre,link) as in Table 8.2, we first find the form of pre without abbreviation,

that is:

¬∃vx(mv(x) ≠ none ∨ root(x)) ∧ ¬∃ex(me(x) ≠ none).
Then, we use the steps defined in Chapter 6, that are:

146

8.2 Transitive closure

[ruleapp]slp {pre} link {Slp(pre,link)}
[cons]

{pre} link {pre}
[alap]

{pre} link! {pre∧Fail(link)}
[cons]

{pre} link! {post}

Figure 8.5: Proof tree for partial correctness of ttttransitive-closure

Table 8.2: Conditions inside proof tree of transitive-closure

MSO formulas
pre ≡ ∀vx(mv(x) = none ∧ ¬root(x)) ∧ ∀ex(me(x) = none)
post ≡ pre ∧∀vx, y(x ≠ y ∧ path(x, y)⇒ edge(x, y))
Fail(link) ≡ ¬∃vx, y, z(x ≠ y ∧ x ≠ z ∧ z ≠ y ∧ edge(x, y,none) ∧ edge(y, z,none) ∧ ¬edge(x, z))
Slp(pre,link)≡
∃vu, v,w(edge(u, v,none) ∧ edge(v,w,none) ∧ edge(u,w,none)

∧mv(u) = none ∧mv(v) = none ∧mv(w) = none ∧ ¬root(u) ∧ ¬root(v) ∧ ¬root(w)
∧ ∀vx(x = u ∨ x = v ∨ x = w ∨ (mv(x) = none ∧ ¬root(x)))
∧ ∃ea,b, c(s(a) = u ∧ t(a) = v ∧ s(b) = v ∧ t(b) = w ∧ s(c) = u ∧ t(c) = w

∧ ∀ey(y = a ∨ y = b ∨ y = c ∨ (s(y) ≠ u ∧ t(y) ≠ w)))
∧∀ex(me(x) = none)

1. Obtain LiftMSO(pre,link)

(a) From Definition 6.2, SplitMSO(pre,link) is:

¬(mv(1) ≠ none ∨ root(1)) ∧ ¬(mv(2) ≠ none ∨ root(2)) ∧ ¬(mv(3) ≠ none ∨ root(3))
∧¬∃vx(x ≠ 1 ∧ x ≠ 2 ∧ x ≠ 3 ∧ (mv(x) ≠ none ∨ root(x)))
∧¬(me(e1) ≠ none) ∧ ¬(me(e2) ≠ none) ∧ ¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧me(x) ≠ none).
Such that Val(SplitMSO(pre,link),link) is:

∧¬∃vx(x ≠ 1 ∧ x ≠ 2 ∧ x ≠ 3 ∧ (mv(x) ≠ none ∨ root(x)))
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧me(x) ≠ none).

(b) The rule application condition for link is Γ = ¬edge(1,3), which is equivalent to

¬∃ex(s(x) = 1 ∧ t(x) = 3). Hence, SplitMSO(Γ,link) is

¬(s(e1) = 1 ∧ t(e1) = 3) ∧ ¬(s(e2) = 1 ∧ t(e2) = 3)
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ s(x) = 1 ∧ t(x) = 3)
such that Val(SplitMSO(Γ,link),link) is:

¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ s(x) = 1 ∧ t(x) = 3).

(c) There is no node that gets deleted by link, such that Dang(link)= true such that

LiftMSO(pre,link) is:

¬∃vx(x ≠ 1 ∧ x ≠ 2 ∧ x ≠ 3 ∧ (mv(x) ≠ none ∨ root(x)))
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧me(x) ≠ none)
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ s(x) = 1 ∧ t(x) = 3)

2. Obtain ShiftMSO(pre,link)

147

Chapter 8 Verification case studies

(a) From Definition 6.10, AdjMSO(LiftMSO(pre,link)) is:

∧¬∃vx(x ≠ 1 ∧ x ≠ 2 ∧ x ≠ 3 ∧ (mv(x) ≠ none ∨ root(x)))
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ x ≠ e3 ∧me(x) ≠ none)
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ x ≠ e3 ∧ s(x) = 1 ∧ t(x) = 3)

(b) From Definition 6.13, ShiftMSO(pre,link) is:

∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ x ≠ e3 ∧me(x) ≠ none)
∧¬∃ex(x ≠ e1 ∧ x ≠ e2 ∧ x ≠ e3 ∧ s(x) = 1 ∧ t(x) = 3)
∧mv(1) = none ∧mv(2) = none ∧mv(3) = none ∧ ¬root(1) ∧ ¬root(2) ∧ ¬root(3)
∧ edge(1,2,none) ∧ edge(2,3,none) ∧ edge(1,3,none).

3. Obtain Slp(pre,link)

Here, we only need to change all node and edge identifiers to fresh variables, then

bound all free variables by existential quantifiers. Hence, we obtain Slp(pre,link) as

written in Table 8.2.

8.2.3 Proof of implications

Again, in the proof tree we use the proof rule [cons] several times so we need to provide the

proof of implications used in the proof rule when it is necessary (i.e. when it is not obvious).

Here, we show the proof of implications we use in the proof tree, that are: Slp(pre,link)

implies pre and pre∧Fail(link) implies post.

1. Proof of Slp(pre,link) implies pre

Let us consider the subformula of Slp(pre,link):

mv(u) = none ∧mv(v) = none ∧mv(w) = none ∧ ¬root(u) ∧ ¬root(v) ∧ ¬root(w)
∧∀vx(x = u ∨ x = v ∨ x = w ∨ (mv(x) = none ∧ ¬root(x))).
From x = u and mv(u) = none ∧ ¬root(u), x = v and mv(v) = none ∧ ¬root(v), also x = w

and mv(w) = none ∧ ¬root(w), we can say that the subformula above implies

∀vx((mv(u) = none ∧ ¬root(u))
∨ (mv(v) = none ∧ ¬root(v))
∨ (mv(w) = none ∧ ¬root(w))
∨ (mv(x) = none ∧ ¬root(x))),

which clearly implies ∀vx(mv(x) = none ∧ ¬root(x)). Hence, Slp(pre,link) implies pre.

2. Proof of pre∧Fail(link) implies c

Note that pre∧Fail(link) implies

pre∧∀vx, y, z(x ≠ y ∧ x ≠ z ∧ y ≠ z ∧ edge(x, y) ∧ edge(y, z)⇒ edge(x, z)).
It is obvious that the formula above implies pre, so that to prove that it implies post,

we only need to show that it also implies ∀vx, y(x ≠ y ∧ path(x, y)⇒ edge(x, y)).
From Lemma 3.10, we know that the predicate x ≠ y ∧ path(x, y) can be expressed by:

148

8.3 Unrooted 2-colouring

∃EX(∃eu, v(u ∈ X ∧ v ∈ X ∧ s(u) = x ∧ t(v) = y)
∧ ∀eu(u ∈ X⇒ (t(u) = y ∨ ∃ev(v ∈ X ∧ s(v) = t(u))),

which is equivalent to ∃ln(P(x, y,n)), where P(x, y,n) is the formula:

∃VX(card(X) = n ∧ ∃eu, v(u ∈ X ∧ v ∈ X ∧ s(u) = x ∧ t(v) = y)
∧ ∀eu(u ∈ X⇒ (t(u) = y ∨ ∃ev(v ∈ X ∧ s(v) = t(u))).

From the meaning of implication, we know that ∀vx, y(∃ln(P(x, y,n))⇒ edge(x, y)) is

true iff ∀vx, y(P(x, y,n)⇒ edge(x, y)) is true for all possible n.

Assuming that ∀vx, y, z(x ≠ y ∧ x ≠ z ∧ y ≠ z ∧ edge(x, y) ∧ edge(y, z)⇒ edge(x, z)) is true,

we show by induction on n that ∀vx, y(P(x, y,n)⇒ edge(x, y)) is true for any n as well.

Base case (n=0),

If n = 0, it is obvious that P(x, y,n) is false because

card(X) = 0 ∧ ∃eu, v(u ∈ X ∧ v ∈ X ∧ s(u) = x ∧ t(v) = y) is equivalent to false. Hence,

P(x, y,n)⇒ edge(x, y) is true for any x, y.

Base case (n=1),

P(x, y,1) implies card(X) = 1 ∧ ∃eu, v(u ∈ X ∧ v ∈ X ∧ s(u) = x ∧ t(v) = y).
If P(x, y,1) is true, then since the cardinality of X is 1, the source of the edge in X

must be x and its target must be y.

Hence, edge(x, y) is true.

Inductive case.

Assuming for some k > 1, ∀vx, y(P(x, y, k)⇒ edge(x, y)) is true. We show that

∀vx, y(P(x, y, k + 1)⇒ edge(x, y)) is true as well.

If P(x, y, k + 1) is true, then ∃eu(u ∈ X ∧ t(u) = y) is true. Let u be the edge in X whose

target is y and let s be the source of u. Then from the hypothesis assumption, P(x,u, k)
implies edge(x,u), which means

P(x,u, k) ∧ edge(u, y)⇒ edge(x,u) ∧ edge(u, y). Since x ≠ y, from the premise we know

that edge(x, y) is true as well.

8.3 Unrooted 2-colouring

8.3.1 Graph program 2-colouring

Next, we consider the graph program 2-colouring of Figure 8.6. This program takes a

graph whose all nodes and edges are unmarked and all nodes are unrooted. The execution of

the program starts with marking one node into red, and repeatedly mark unmarked adjacent

nodes with different colour (blue or red), then repeat the procedure in case the graph is not

a connected graph. Finally, the program checks if there exists two adjacent nodes that has

the same colour. If so, then the program yields fail.

149

Chapter 8 Verification case studies

Main = (init;Colour!)!;if Illegal then fail

Colour = {col blue,col red}
Illegal = {ill blue,ill red}

init(a ∶ list)
a
1

⇒ a
1

col blue(a,b,c ∶ list)
a
1

b
2

c
⇒ a

1

b
2

c
col red(a,b,c ∶ list)

a
1

b
2

c
⇒ a

1

b
2

c

ill blue(a,b,c ∶ list)
a
1

b
2

c
⇒ a

1

b
2

c
ill red(a,b,c ∶ list)

a
1

b
2

c
⇒ a

1

b
2

c

Figure 8.6: Graph program 2-colouring

Here, we show two verifications of the program. One case is where the input graph is two-

colourable, and the other case is where the input graph is non-two-colourable. Hence we

have two specifications, namely pre- and postconditions A and B as written below. In both

specifications, we argue that the postcondition is a stongest postcondition with respect to

the given precondition.

Precondition A:

All nodes and edges are unmarked, and all nodes are unrooted. Also, the graph

is two-colourable (the graph is bipartite).

Postcondition A:

All nodes are marked with blue or red, there is no rooted node, all edges are

unmarked, and each two adjacent nodes are marked with different colour.

Precondition B:

All nodes and edges are unmarked, and all nodes are unrooted. Also, the graph

is non-two-colourable (not a bipartite graph).

Postcondition B:

False.

Recall that in partial correctness calculus, a triple {pre} C {post} is correct if the execution

of program C on a graph satisfying pre results in a graph then the graph must satisfy post.

It does not give us information about the case where the execution yields failure, get stuck,

or diverge,

150

8.3 Unrooted 2-colouring

A program may get stuck or diverge when there is a loop body that does not terminate. For

the program 2-colouring, if we consider the command Colour!, it must be terminate be-

cause it reduces the number of unmarked node. Since init also reduces unmarked node, the

command (init; Colour!)! must be terminate as well. Hence, the program 2-colouring

must be terminate.

Since the program 2-colouring must be terminate, proving the triple

{Precondition B} 2-colouring {Postcondition B} is correct would mean that if 2-colouring

is executed on a graph satisfying Precondition B, then either it yields failure or it result in a

graph satisfying false. Since there is no graph satisfying false, {Precondition B} 2-colouring
{Postcondition B} is correct would mean that the execution of 2-colouring on a graph

satisfying Precondition B will yield failure.

Now let us consider the triple {Precondition A} 2-colouring {Postcondition A}. Proving

the triple is partially correct will only give us information about the case where the execution

of 2-colouring on a graph satisfying Precondition A yields a graph, but not the case where

the execution yields failure. However, we argue argue in Section 8.3.2.1 that the execution

of the program on a graph satisfying Precondition A will not yield fail.

8.3.2 Case A: 2-colourable input graph

8.3.2.1 Proof tree of 2-colouring (A)

The proof is presented in the proof tree of Figure 8.7, where assertions used in the proof tree

are defined in Table 8.3. In the table, we use predicates adj(x, y) and set(x) which is defined

below:

adj(x, y) = edge(x, y) ∨ edge(y, x)
set(x) = (x ∈ X ∨ x ∈ Y) ∧ ¬(x ∈ X ∧ x ∈ Y)

As mentioned above, with the specification in case A, we cannot have the information about

failing case in the execution of 2-colouring on a graph satisfying Precondition A. However,

if we consider the semantics of the program, fail∈ J2-colouring,GK for some graph G iff there

exist a graph H such that < (init;Colour!)!,G >→∗ H and H satisfies Success(Illegal).

Since (init;Colour!)! is a loop, it cannot fail. Also, we argue that it can not get stuck or

diverge because both init and Colour reduce unmarked node which are used in the matching

of every rules in the loop body. Hence, we can conclude that fail∈ J2-colouring]K iff the

output graph of the loop satisfies Success(Illegal).

From the proof tree we can see that the triple {pre} (init;Colour!)! {post} is partially

correct. Since we have convince ourselves that the loop cannot fail, get stuck or diverge,

151

Chapter 8 Verification case studies

Table 8.3: Conditions in the proof tree of 2-colouring (A)

pre ≡
∀Vx(mv(x) = none ∧ ¬root(x)) ∧ ∀Ex(me(x) = none)
∧∃VX,Y(∀vx(set(X))) ∧ ¬∃vx, y(x ≠ y ∧ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y)))
post ≡
∀Vx(¬root(x)) ∧ ∀Ex(me(x) = none)
∧∃VX,Y(∀vx(set(x) ∧ (x ∈ X⇒ mv(x) = red) ∧ (x ∈ Y⇒ mv(x) = blue))

∧ ¬∃vx, y(x ≠ y ∧ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y))
c ≡
∀vx((mv(x) = none ∨mv(x) = blue ∨mv(x) = red) ∧ ¬root(x) ∧ ∀ex(me(x) = none)
∧∃VX,Y(∀vx(set(x)) ∧ ∀vx, y(x = y ∨ (x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)⇒ ¬(adj(x, y)))))

∧ ∀vx((x ∈ X⇒ mv(x) ≠ blue ∧ (x ∈ Y⇒ mv(x) ≠ red)))
Slp(c,init) ≡
∃vz(mv(z) = red ∧ lv(z) = a ∧ ¬root(z)

∧ ∀vx(x = z ∨ (mv(x) = none ∨mv(x) = blue ∨mv(x) = red) ∧ ¬root(x)))
∧ ∀ex(me(x) = none)
∧ ∃VX,Y(set(z) ∧ ∀vx(x = z ∨ set(x))

∧ ∀vx, y(x ≠ z ∧ y ≠ x ∧ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y))⇒ ¬adj(x, y))
∧ ∀vx, y(x = z ∨ (x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y⇒ mv(x) ≠ red))

∧ (z ∈ X ∧ z ∉ Y⇒ ∀vy(y ≠ z ∧ y ∈ X⇒ ¬adj(y, z)))
∧ (z ∉ X ∧ z ∈ Y⇒ ∀vy(y ≠ z ∧ y ∈ Y⇒ ¬adj(y, z)))

Slp(c,Colour) ≡
∃va,b(a ≠ b ∧ (edge(a,b,none) ∨ edge(b, a,none)) ∧ ¬root(a) ∧ ¬root(b)

∧ ((mv(a) = red ∧mv(b) = blue) ∨ (mv(a) = blue ∧mv(b) = red))
∧ ∀vx(x = a ∨ x = b ∨ (¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue)))
∧ ∀ex(mv(x) = none)
∧ ∃VX,Y(set(a) ∧ set(b) ∧ ¬(a ∈ X ∧ b ∈ X) ∧ ¬(a ∈ Y ∧ b ∈ Y)

∧ (a ∈ X ∧ b ∉ X ∧ a ∉ Y ∧ b ∈ Y
⇒ ∀vx(x = a ∨ x = b ∨ set(x))
∧ ∀vx, y((x = a ∧ y = b) ∨ (x = b ∧ y = a)

∨ (x = y ∨ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)⇒ ¬adj(x, y))))
∧mv(a) ≠ blue ∧mv(b) ≠ red
∧ ∀vx(x = a ∨ x = b ∨ ((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y⇒ mv(x) ≠ red))))

∧ (a ∉ X ∧ b ∈ X ∧ a ∈ Y ∧ b ∉ Y
⇒ ∀vx(x = a ∨ x = b ∨ set(x))
∧ ∀vx, y((x = a ∧ y = b) ∨ (x = b ∧ y = a)

∨ (x = y ∨ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)⇒ ¬adj(x, y))))
∧mv(a) ≠ red ∧mv(b) ≠ blue
∧ ∀vx(x = a ∨ x = b ∨ ((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y⇒ mv(x) ≠ red))))))

Fail(Colour)
≡ ¬∃ex((((mv(s(x)) = red ∨mv(s(x)) = blue) ∧mv(t(x)) = none)

∨ ((mv(t(x)) = red ∨mv(t(x)) = blue) ∧mv(s(x)) = none)) ∧ ¬root(s(x)) ∧ ¬root(t(x)))
Fail(init;Colour!) ≡ ¬∃vx(mv(x) = none ∧ ¬root(x))
Fail(Illegal)
≡ ¬∃ex(s(x) ≠ t(x) ∧ ((mv(s(x)) = red ∧mv(t(x)) = red) ∨ (mv(s(x)) = blue ∧mv(t(x)) = blue)))
Success(Illegal)
≡ ∃ex(s(x) ≠ t(x) ∧ ((mv(s(x)) = red ∧mv(t(x)) = red) ∨ (mv(s(x)) = blue ∧mv(t(x)) = blue)))

152

8.3 Unrooted 2-colouring

Subtree I Subtree II[comp]
{ pre } 2colouring { post }

where subtree I is:

[ruleapp]slp { c } init { Slp(c,init) }
[cons]

{ c } init { c }

[ruleapp]slp { c } Colour { Slp(c,Colour) }
[cons]

{ c } Colour { c }
[alap]

{ c } Colour! { c ∧ Fail(Colour) }
[cons]

{ c } Colour! { c }
comp

{ c } init;Colour! { c }
[alap]

{ c } (init;Colour!)! { c ∧ Fail(init;Colour!) }
[cons]

{ pre } (init;Colour!)! { post }

and subtree II is:

[fail]
{ post ∧ Success(Ill) } fail { false }

[cons]
{ post ∧ Success(Ill) } fail { post }

[skip]
{ post ∧ Fail(Ill) } skip { post ∧ Fail(Illegal) }

[cons]
{ post ∧ Fail(Ill) } skip { post }

[if]
{ post } if Illegal then fail! { post }

Figure 8.7: Proof tree for partial correctness of 2-colouring (A)

then it must produce a graph, which must satisfy post. We have proven that post implies

¬Fail(Illegal), so that we can conclude that the execution of the program on a graph

satisfying Precondition A cannot fail and must resulting a graph satisfying Postcondition

B).

In this section, we also use the transformation of conditions as defined in Chapter 6. For an

illustration, here we show how we derive the formula Slp(c,init) as an example.

To obtain Slp(c,init) as in Table 8.3, we first find the form of c without abbreviation, that

is:

¬∃vx((mv(x) ≠ none ∧mv(x) ≠ blue ∧mv(x) ≠ red) ∨ root(x)) ∧ ¬∃ex(me(x) ≠ none)
∧∃VX,Y(¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))

∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red)))

Then, we use the steps defined in Chapter 6, that are:

1. Obtain LiftMSO(c,init)

(a) From Definition 6.2, SplitMSO(c,init) is:

¬((mv(1) ≠ none ∧mv(1) ≠ blue ∧mv(1) ≠ red) ∨ root(1))
∧¬∃vx(x ≠ 1 ∧ (mv(x) ≠ none ∧mv(x) ≠ blue ∧mv(x) ≠ red) ∨ root(x))
∧¬∃ex(me(x) ≠ none) ∧∃VX,Y(
(1 ∈ X ∧ 1 ∈ Y⇒

¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))
∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red))))

153

Chapter 8 Verification case studies

∧ (1 ∈ X ∧ 1 ∉ Y⇒
¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))

∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red))))
∧ (1 ∉ X ∧ 1 ∈ Y⇒

¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))
∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red))))

∧ (1 ∉ X ∧ 1 ∉ Y⇒
¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))

∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red))))
Such that Val(SplitMSO(c,init),init) is:

¬∃vx(x ≠ 1 ∧ (mv(x) ≠ none ∧mv(x) ≠ blue ∧mv(x) ≠ red) ∨ root(x))
∧¬∃ex(me(x) ≠ none) ∧∃VX,Y(
∧ (1 ∈ X ∧ 1 ∉ Y⇒

¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))
∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red))))

∧ (1 ∉ X ∧ 1 ∈ Y⇒
¬∃vx(¬set(x)) ∧ ¬∃vx, y((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y) ∧ (adj(x, y)))))

∧ ¬∃vx((x ∈ X ∧mv(x) = blue ∨ (x ∈ Y ∧mv(x) = red))))

(b) The rule application condition for init is Γ = true

(c) There is no node that gets deleted by init, such that Dang(init)= true such that

LiftMSO(c,init) = Val(SplitMSO(c,init),init)

2. Obtain ShiftMSO(c,init)

(a) From Definition 6.10, AdjMSO(LiftMSO(c,init)) = LiftMSO(c,init) because there

is no node or edge that gets deleted, and no node or edge that gets added by the

rule.

(b) From Definition 6.13, ShiftMSO(c,init) is

LiftMSO(c,init)∧mv(1) = red ∧ ¬root(1) ∧ lv(1) = a

3. Obtain Slp(c,init)

Here, we only need to change all node and edge identifiers to fresh variables, then bound

all free variables by existential quantifiers. Hence, we obtain Slp(c,init) as written in

Table 8.3.

8.3.2.2 Proof of implications

1. Proof of Slp(c,init) implies c

Slp(c,init) implies all nodes except the node that is represented by z are marked

with blue or red or unmarked, and all nodes are unrooted. However, Slp(c,init) also

implies z is red and unrooted as well, so that these implies ∀vx((mv(x) = none ∨
mv(x) = red ∨mv(x) = blue) ∧ ¬root(x)). Also, it is obvious that Slp(c,init) implies

154

8.3 Unrooted 2-colouring

∀ex(me(x) = none) from the meaning of disjunction.

Slp(c,init) also implies the existence of set X and Y such that if x does not equal z,

then the last line of c is true, and if x = z, the last line of c is true as well due to the

last two lines of Slp(c,init).

2. Proof of Slp(c, Colour) implies c

Slp(c, Colour) asserts that the node represented by a and b are either red or blue, and

both nodes are unrooted. Hence, together with

∀vx(x = a ∨ x = b ∨ (¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue))) of

Slp(c, Colour), it implies that all nodes are unrooted, and either unmarked, red, or blue.

This means that Slp(c, Colour) implies ∀vx((mv(x) = none ∨mv(x) = blue ∨mv(x) = red)
∧¬root(x) ∧ ∀ex(me(x) = none) since ∀ex(me(x) = none) is implied as well based on the

meaning of conjunction.

For some set of nodes X and Y , note that Slp(c, Colour) implies a ≠ b, adj(a,b),
and ¬(a ∈ X ∧ b ∈ Y) ∧ ¬(a ∈ Y ∧ b ∈ Y) such that they imply if (x = a ∧ y = b) ∨ (x =
b ∧ y = a) is true then (x = y ∨ (x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)⇒ ¬adj(x, y)) is true as

well. Hence, from the meaning of conjunction and implication, Slp(c, Colour) implies

∀vx, y((x = y ∨ (x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)⇒ ¬adj(x, y))). Similarly, because Slp(c,

Colour) implies set(a) ∧ set(b) and also ∀vx(x = a ∨ x = b ∨ set(x)), Slp(c, Colour) also

implies ∀vx(set(x)).
Slp(c, Colour) also asserts that in the case where x ≠ a ∧ x ≠ b, then if x ∈ X then

mv(x) ≠ blue and if x ∈ Y then mv(x) ≠ red, while also asserts that if a ∈ X then mv(a) ≠ blue,

b ∈ X then mv(b) ≠ blue, a ∈ Y then mv(a) ≠ red, and b ∈ Y then mv(b) ≠ red. Hence,

Slp(c, Colour) also implies ∀vx(x ∈ X⇒
mv(x) ≠ blue ∧ x ∈ Y⇒ mv(y) ≠ red).

3. Proof of pre implies c

pre obviously implies the first two lines of c. Then, since pre implies that all nodes are

unmarked, then all nodes in X or Z must not be coloured so that the last line of c is

also implied.

4. Proof of c∧Fail(init) implies post

c implies that all nodes are unmarked or marked with blue or red, while Fail(init

implies that all nodes are marked. Hence, it implies that all nodes are blue or red.

Since c implies all nodes in X are not blue and all nodes in Y are not red, these implies

all nodes in X are red and all nodes in Y are blue. Hence, c∧Fail(init) implies post.

155

Chapter 8 Verification case studies

Subtree I Subtree II[comp]
{ pre } 2colouring { post }

where subtree I is:

[ruleapp]slp { c } init { Slp(c,init) }
[cons]

{ c } init { c }

[ruleapp]slp { c } Colour { Slp(c,Colour) }
[cons]

{ c } Colour { c }
[alap]

{ c } Colour! { c ∧ Fail(Colour) }
[cons]

{ c } Colour! { c }
comp

{ c } init;Colour! { c }
[alap]

{ c } (init;Colour!)! { c ∧ Fail(init;Colour!) }
[cons]

{ pre } (init;Colour!)! { d }

and subtree II is:

[fail]
{ d ∧ Success(Ill) } fail { false }

[cons]
{ d ∧ Success(Ill) } fail { post }

[skip]
{ d ∧ Fail(Ill) } skip { d ∧ Fail(Illegal) }

[cons]
{ d ∧ Fail(Ill) } skip { post }

[if]
{ post } if Illegal then fail! { post }

Figure 8.8: Proof tree for partial correctness of 2-colouring (B)

8.3.3 Case B: non-2-colourable input graph

8.3.3.1 Proof tree of 2-colouring (B)

The proof is presented in the proof tree of Figure 8.8, where assertions used in the proof tree

are defined in Table 8.4, where assertions Fail used in the proof tree are the same as what

written in Table 8.3. In the table, we use predicates adj and set as defined in the previous

section.

8.3.3.2 Proof of implications

1. Proof of Slp(c,init) implies c

The subformula ∀vx(x = z ∨ (¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue))) as-

serts that all nodes that is not represented by x are unrooted and either unmarked,

blue, or red. However, Slp(c,init) also implies that the node re[resented by z is un-

rooted and red so that Slp(c,init) implies

∀vx(¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue)).
By the meaning of conjunction, it is obvious that Slp(c,init) also implies

∀ex(me(x) = none).
In addition, Slp(c,init) also implies the non-existence of set of nodes X and Y such

that each node (including the node represented by z) is in X or Y but not both, and

156

8.3 Unrooted 2-colouring

Table 8.4: Conditions in the proof tree of 2-colouring (B)

MSO formulas
pre ≡
∀Vx(mv(x) = none ∧ ¬root(x)) ∧ ∀Ex(me(x) = none)
∧¬∃VX,Y(∀vx(set(x)) ∧ ¬∃vx, y(x ≠ y ∧ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y)))
post≡ False
c ≡
∀vx((mv(x) = none ∨mv(x) = blue ∨mv(x) = red) ∧ ¬root(x) ∧ ∀ex(me(x) = none)
∧∀VX,Y(∀vx(set(x)) ∧ ∀vx((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y ∧mv(x) ≠ red))

⇒ ∃vx, y((x ≠ z ∧ (x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y)))
d ≡ ¬Fail(Illegal)
Fail(Illegal) ≡
¬∃vx, y(¬root(x) ∧ ¬root(y) ∧ ((mv(x) = red ∧mv(y) = red) ∨ (mv(x) = blue ∧mv(y) = blue))
∧(edge(x, y,none) ∨ edge(y, x,none)))
Success(Illegal) ≡ ¬ Fail(Illegal)
Fail(init; Colour!) ≡ ¬∃vx(mv(x) = none ∧ ¬root(x))
Fail(Colour) ≡
¬∃vx, y(¬root(x) ∧ ¬root(y) ∧ ((mv(x) = red ∧mv(y) = none) ∨ (mv(x) = blue ∧mv(y) = none))
∧(edge(x, y,none) ∨ edge(y, x,none)))
Slp(c,init) ≡
∃vz(mv(z) = red ∧ ¬root(z) ∧ ∀ex(mv(x) = none)

∧ ∀vx(x = z ∨ (¬root(x) ∧ (mv(x) = none ∨mv(x) = blue ∨mv(x) = red)))
∧ ¬∃VX,Y(((z ∈ X ∧ z ∉ Y) ∨ (z ∈ Y ∧ z ∉ X)) ∧ ∀vx(x = z ∨ set(x))

∧ ¬∃vx, y(x ≠ z ∧ y ≠ z ∧ y ≠ z ∧ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y))
∧ ∀vx(x = z ∨ ((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y⇒ mv(x) ≠ red))
∧ (z ∈ X ∧ z ∉ Y⇒ mv(z) ≠ blue ∧ ¬∃vx(x ∈ X ∧ adj(x, z)))
∧ (z ∉ X ∧ z ∈ Y⇒ mv(z) ≠ red ∧ ¬∃vx(x ∈ Y ∧ adj(x, z))))

Slp(c,Colour) ≡
∃vp,q(p ≠ q ∧ (edge(p,q,none) ∨ edge(q,p,none))

∧ ((mv(p) = red ∧mv(q) = blue) ∨ (mv(p) = blue ∧mv(q) = red)) ∧ ¬root(p) ∧ ¬root(q)
∧ ∀vx(x = p ∨ x = q ∨ (¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue)))
∧ ∀ex(me(x) = none)
∧ ∃VX,Y(((p ∈ X ∧ q ∈ Y) ∨ (p ∈ Y ∧ q ∈ X))

∧ ∀vx(x = p ∨ x = q ∨ set(x)) ∧ (p ∉ X ∨ q ∉ X) ∧ (p ∉ Y ∨ q ∉ Y))
∧ ∀vx(x = p ∨ x = q ∨ ((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y⇒ mv(x) ≠ red)))
∧ ¬∃vx, y(x ≠ p ∧ x ≠ q ∧ y ≠ p ∧ y ≠ q ∧ x ≠ y

∧ ((x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y))
∧ (p ∈ X ∧ q ∈ Y⇒ mv(p) ≠ blue ∧mv(q) ≠ red)
∧ (p ∈ Y ∧ q ∈ X⇒ mv(p) ≠ red ∧mv(q) ≠ blue))

all nodes in X are not blue and all nodes in Y are not red. Also, Slp(c,init) implies

that there is no two adjacent nodes belong to the same set. This means, Slp(c,init)

implies

∀VX,Y(∀vx(set(x)) ∧ ∀vx((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y ∧mv(x) ≠ red))
⇒ ∃vx, y((x ≠ z ∧ (x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y))).

Hence, by the meaning of conjunction and implication, Slp(c,init) implies c.

2. Proof of Slp(c,Colour) implies c

Similarly as above, Slp(c,Colour) implies that if we not considering the node repre-

sented by p and q, if Slp(c,Colour) holds then c holds. However, since Slp(c,Colour)

implies that the nodes represented by p and q are unrooted and either blue or red, then

157

Chapter 8 Verification case studies

the formula ∀vx(¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue)) is implied by

Slp(c,Colour). Also, ∀ex(me(x) = none) is implied by Slp(c,init) from the meaning of

conjunction.

Slp(c,Colour) also asserts the nonexistence of set of nodes X and Y such that when

set(p) and set(q) holds, if p ∈ X then p is not blue and no nodes adjacent to p in X and

if p ∈ Y then p is not red and no nodes adjacent to p in Y (and similarly for y). Hence, c

still holds when we consider the nodes represented by p and q such that Slp(c,Colour)

implies c.

3. Proof of pre implies c

By the meaning of conjunction, it is obvious that pre implies ∀ex(me(x) = none).
By the meaning of disjunction, we also know that ∀vx(¬root(x) ∧mv(x) = none) of

pre implies ∀vx(¬root(x) ∧ (mv(x) = none ∨mv(x) = red ∨mv(x) = blue)). In addition,

since pre implies that all nodes are unmarked, it implies ∀x((x ∈ X⇒ mv(x) ≠ blue)
∧(x ∈ Y⇒ mv(x) ≠ red)) (since the formula is always true if all nodes are unmarked).

Hence, by the meaning of conjunction and quantifiers, pre implies

∀VX,Y(∀vx(set(x)) ∧ ∀vx((x ∈ X⇒ mv(x) ≠ blue) ∧ (x ∈ Y ∧mv(x) ≠ red))
⇒ ∃vx, y((x ≠ z ∧ (x ∈ X ∧ y ∈ X) ∨ (x ∈ Y ∧ y ∈ Y)) ∧ adj(x, y)))

as well so that pre implies c by the meaning of implication.

4. Proof of c∧Fail(init; Colour!) implies ¬Fail(Illegal)

Because Fail(init;Colour!) asserts that there is no unmarked node that is un-

rooted and c asserts that all nodes are rooted and either unmarked, red, or blue,

then c∧Fail(init; Colour!) implies ∀vx(¬root(x) ∧ (mv(x) = red ∨mv(x) = blue)),
i.e. all nodes are unrooted and either blue or red. If we consider the set of nodes X

and Y where all red nodes are in X and all blue nodes are in Y, c asserts that there

are two adjacent nodes that are belong to the same set, hence have the same colour

(either blue or red). In addition, since c also asserts that all edges are unmarked, the

two adjacent nodes must be connected by an unmarked edges. Hence, ¬Fail(Illegal)

must be hold if c and Fail(init;Colour!) is true.

8.4 Connectedness

8.4.1 Graph program connectedness

In this section we consider the graph program is-connected as seen in Figure 8.9. The

program is executed by checking the existence of an unrooted node with no marks and

change it to a red rooted node. The program then execute depth first-search procedure by

finding unrooted node that is adjacent with the red rooted node and change the node to

158

8.4 Connectedness

red, swap the rootedness, and mark the edge between them by dashed and repeat it as long

as possible. The procedure continue by searching a red node that adjacent to red unrooted

node by dashed edge and change the mark of the rooted node to grey while unmarking it,

and move the root to the other node, then reply the procedure. Finally, the program checks

if there still exists an unmarked node. If so, then the program yields fail.

Main = try init then (DFS!;Check)
DFS = forward!;try back else break

Check = if match then fail

init(a ∶ list)
a
1

⇒ a
1

match(a ∶ list)
a
1

⇒ a
1

forward(a,b,c ∶ list)
a
1

b
2

c
⇒ a

1

b
2

c
back(a,b,c ∶ list)
a
1

b
2

c
⇒ a

1

b
2

c

Figure 8.9: Graph program is-connected

Like in the previous section, here we give two sets of specifications. One is the case where

the input graph is connected, and the other one is the case where the input graph is not

connected. The first case should return an empty graph or a graph whose nodes are grey

except for one red rooted node, while the latter case should return failure.

Precondition A:

All nodes and edges are unmarked, and all nodes are unrooted. Also, the graph

is connected, that is, for every nodes x, y, there exists an undirected path1 from

x to y)

Postcondition A:

Either the graph is empty, or there is a node that is marked with red and is

rooted while other nodes are grey and unrooted. All edges are unmarked, and

the graph is connected.

Precondition B:

All nodes and edges are unmarked, and all nodes are unrooted. Also, there

exist two distinct nodes x and y such that there is no undirected path from x

to y.

Postcondition B:

False.

1undirected path is a path that does not consider the direction of the edges in the graph

159

Chapter 8 Verification case studies

Let us consider the semantics of the program is-connected. The program may get stuck or

diverge if there is a loop that does not terminate. However, in this program, both forward!

and DFS! must be terminate because the rules reduces the number of unmarked nodes and

red nodes. Hence, the execution of is-connected on a graph G must either result in a

proper graph, or failure.

Similiar to the previous section, here the postcondition False expresses that there is no

graph that can be the result with the given precondition. Hence, if we prove that the triple

{Precondition B} is-connected {Postcondition B} is partially correct, it will imply that the

execution of is-connected on a graph satisfying Precondition B will not result in a graph,

hence will yield failure. On the other hand, the triple {Precondition A} is-connected

{Postcondition A} does not give us information about the case where the execution of

is-connected on a graph satisfying Precondition A yields failure. However, we argue in

8.4.2.1 that such execution can not yield failure.

8.4.2 Case A: connected input graph

8.4.2.1 Proof tree of is-connected (A)

The proof is presented in the proof tree of Figure 8.10, where assertions used in the proof

tree are defined in Table 8.5.

As mentioned above, with the specification in case A, we cannot have the information about

failing case in the execution of 2-colouring on a graph satisfying Precondition A. However,

if we consider the semantics of the program, fail∈ Jis − connectedKG for some graph G

iff G satisfies Success(init) and there exist a graph H such that < init;DFS!,G >→∗ H

and H satisfies Success(match). Since DFS! is a loop, then it cannot fail. We also believe

that the loop cannot get stuck or diverge. Hence, we can conclude that fail can not be in

Jis-connected,GK if when G satisfies Success(init) then the output graph of init;DFS!

satisfies Success(Illegal).

From the proof tree we can see that the triple {pre} init {c} and {c} DFS! {post} are partially

correct so that by the proof rule [comp] we can conclude that {pre} init;DFS! {post} is

partially correct as well. We have proven that post implies ¬Fail(match), so that we can

conclude that the execution of the program on a graph satisfying Precondition A cannot fail

and must resulting a graph satisfying Postcondition B).

160

8.4 Connectedness

S
u

b
tr

ee
A

[s
k
ip

]
{
p
re
∧

F
a
il
(i
n
i
t
)}

s
k
i
p
{p
re
∧

F
a
il
(i
n
i
t
)}

[c
o
n

s]
{
p
re
∧

F
a
il
(i
n
i
t
)}

s
k
i
p
{p
os
t}

[t
ry

]
{
p
re

}
t
r
y
i
n
i
t
t
h
e
n

(D
F
S
!;
C
h
e
c
k
)
{
p
os
t
}

w
h

er
e

su
b

tr
ee

A
is

:

[r
u

le
ap

p
] s
lp

{
p
re

}
i
n
i
t
{

S
lp
(p
re
,i
n
i
t
)
}

[c
on

s]
{
p
re

}
i
n
i
t
{
c
}

[r
u

le
ap

p
] s
lp

{
c
}
f
o
r
w
a
r
d
{

S
lp
(c
,f
o
r
w
a
r
d
)
}

[c
o
n

s]
{
c
}
f
o
r
w
a
r
d
{
c
}

[a
la

p
]
{
c
}
f
o
r
w
a
r
d
!
{
c
∧

F
a
il
(f
o
r
w
a
r
d
)
}

[c
on

s]
{
c
}
f
o
r
w
a
r
d
!
{
d
}

S
u

b
tr

ee
A

1
[c

o
m

p
]

{
c
}
D
F
S
{
c
}

B
re

a
k
(c
,D
F
S
,p
os
t)

[a
la

p
]

{
c
}
D
F
S
!
{
(c
∧

F
a
il
(D
F
S
))
∨
p
os
t
}

[c
o
n

s]
{
c
}
D
F
S
!
{
p
os
t
}

S
u

b
tr

ee
A

2
co

m
p

{
p
re

}
i
n
i
t
;D
F
S
!;
C
h
e
c
k
{
p
os
t
}

[c
o
n

s]
{
p
re
∧

S
u

cc
es

s(
i
n
i
t
)
}
i
n
i
t
;D
F
S
!;
C
h
e
c
k
{
p
os
t
}

fo
r

S
u

b
tr

ee
A

1
:

[r
u

le
ap

p
] s
lp

{
d
∧

S
u

cc
es

s(
b
a
c
k
)
}
b
a
c
k
{

S
lp
(d
∧

S
u

cc
es

s(
b
a
c
k
),
b
a
c
k
)
}

[c
on

s]
{
d
∧

S
u

cc
es

s(
b
a
c
k
)
}
b
a
c
k
{
c
}

[b
re

a
k
]
{
d
∧

F
a
il
(b
a
c
k
)
}
b
r
e
a
k
{
d
∧

F
a
il
(b
a
c
k
)
}

[c
o
n

s]
{
d
∧

F
a
il
(b
a
c
k
)
}
b
r
e
a
k
{
c
}

[t
ry

]
{
d
}
t
r
y
b
a
c
k
e
l
s
e
b
r
e
a
k
{
c
}

a
n

d
S

u
b

tr
ee

A
2
:

[f
ai

l]
{
fa
ls
e
}
f
a
i
l
{
fa
ls
e
}

[c
on

s]
{
p
os
t
∧

S
u

cc
es

s(
m
a
t
c
h
)
}
f
a
i
l
{

p
o
st

}

[s
k
ip

]
{
p
os
t
∧

F
a
il
(m
a
t
c
h
)
}
s
k
i
p
{
p
os
t
∧

F
a
il
(m
a
t
c
h
)
}

[c
o
n

s]
{
p
os
t
∧

F
a
il
(m
a
t
c
h
)
}
s
k
i
p
{
p
os
t
}

[i
f]

{
p
os
t
}
i
f
m
a
t
c
h
t
h
e
n
f
a
i
l
{
p
os
t
}

F
ig
u
r
e
8
.1
0
:

P
ro

o
f

tr
ee

fo
r

p
a
rt

ia
l

co
rr

ec
tn

es
s

o
f
i
s
-
c
o
n
n
e
c
t
e
d

(A
)

161

Chapter 8 Verification case studies

Table 8.5: Conditions inside proof tree of is-connected (A)

MSO formulas
pre ≡ ∀vx(mv(x) = none ∧ ¬root(x)) ∧ ∀Ex(me(x) = none)

∧ ∀VX(∀vx(x ∈ X) ∨ ∀vx(x ∉ X) ∨ ∃vx, y(x ∈ X ∧ y ∉ X ∧ adj(x, y)))
post ≡ ∀vx(false)

∨ (∃vx(mv(x) = red ∧ root(x) ∧ ∀vy(y = x ∨ (mv(y) = grey ∧ ¬root(y)))) ∧ ∀ex(me(x) = none)
∧ ∀VX(∀vx(x ∈ X) ∨ ∀vx(x ∉ X) ∨ ∃vx, y(x ∈ X ∧ y ∈ X ∧ adj(x, y)))

c ≡
∀ex(me(x) = none ∨me(x) = dashed)
∧∃vx(root(x) ∧mv(x) = red

∧ ∀vy(x = y ∨ ((mv(y) = none ∨mv(y) = red ∨mv(y) = grey) ∧ ¬root(y)))
∧∀VX(∀vx(x ∈ X) ∨ ∀vx(x ∉ X) ∨ ∃vx, y(x ∈ X ∧ y ∉ X ∧ adj(x, y)))
∧∀ex(me(x) = dashed⇒ mv(s(x)) = red ∧mv(t(x)) = red ∧ (¬root(s(x)) ∨ ¬root(t(x))))
∧∀vz(mv(z) = red ∧ ¬root(z)⇒ Success(back))
∧∀vx(mv(x) = grey⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))
d ≡ c ∧ Fail(forward)
Success(back) ≡
∃vx, y(mv(x) = red ∧ root(x) ∧mv(y) = red ∧ ¬root(y) ∧ (edge(x, y,dashed) ∨ edge(y, x,dashed)))
Fail(back) ≡ ¬Success(back)
Fail(init) ≡ ¬∃v(mv(x) = none ∧ ¬root(x))
Fail(match) ≡ Fail(init)
Success(match) ≡ ¬Fail(init)
Fail(DFS) ≡ false
Fail(forward) ≡
¬∃vx, y(mv(x) = red ∧ root(x) ∧mv(y) = none ∧ ¬root(y) ∧ (edge(x, y,none) ∨ edge(y, x,none)))
Slp(pre,init) ≡
∃vy(mv(y) = red ∧ root(y) ∧ ∀vx(x = y ∨ (mv(x) = none ∧ ¬root(x))))
∧∀ex(me(x) = none)
∧∃vz(∀vx(x = z ∨ (upath(x, z) ∧ ∀vy(y = z ∨ x = y ∨ upath(x, y)))))
Slp(c,forward) ≡
∃va,b(∃ec(a ≠ b ∧mv(a) = grey ∧mv(b) = red ∧ ¬root(a) ∧ root(b)

∧ (s(c) = a ∧ (t(c) = b) ∨ (s(c) = b ∧ t(c) = a)) ∧mv(c) = none
∧ f))

f ≡
∀ex(x ≠ c⇒ me(x) = none ∨me(x) = dashed)
∧∀vx(x ≠ a ∧ x ≠ b⇒ ¬root(x) ∧ (mv(x) = red ∨mv(x) = grey ∨mv(x) = none))
∧¬∃VX(((a ∈ X ∧ b ∈ X) ∨ (a ∉ X ∧ b ∉ X))

∧ (a ∈ X ∧ b ∈ X⇒ ∃vx(x ∉ X) ∧ ¬∃vx(x ∉ X ∧ (adj(a, x) ∨ adj(b, x)))
∧ ¬∃vx, y(x ≠ a ∧ x ≠ b ∧ y ≠ a ∧ y ≠ b ∧ x ∉ X ∧ (adj(x, y))))

∧ (a ∉ X ∧ b ∉ X⇒ ∃vx(x ∈ X) ∧ ¬∃vx(x ∈ X ∧ (adj(a, x) ∨ adj(b, x)))
∧ ¬∃vx, y(x ≠ a ∧ x ≠ b ∧ y ≠ a ∧ y ≠ b ∧ x ∉ X ∧ (adj(x, y)))))

∧∀ex(x ≠ c ∧me(x) = dashed⇒ mv(s(x)) = red ∧mv(t(x)) = red ∧ (¬root(s(x)) ∨ ¬root(t(x))))
∧∀vz(z ≠ a ∧ z ≠ b ∧mv(z) = red ∧ ¬root(z)⇒ Success(back))
∧∀vx(x ≠ a ∧ x ≠ b ∧mv(x) = grey

⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))
Slp(d ∧ Success(back),back) ≡
∃va,b(∃ec(a ≠ b ∧mv(a) = grey ∧mv(b) = red ∧ ¬root(a) ∧ root(b)

∧ (s(c) = a ∧ (t(c) = b) ∨ (s(c) = b ∧ t(c) = a)) ∧mv(c) = none
∧ f
∧ ¬∃vy(y ≠ a ∧ y ≠ b ∧mv(y) = none ∧ ¬root(y) ∧ adj(b, y,none))
∧ ¬∃vx, y(x ≠ a ∧ x ≠ b ∧ y ≠ a ∧ y ≠ b

∧mv(x) = red ∧ root(x) ∧mv(y) = none ∧ ¬root(y) ∧ adj(b, y,none))))

162

8.4 Connectedness

8.4.2.2 Proof of implications

1. Proof of pre ∧ Fail(init) implies post

From the meaning of conjunction, pre implies ∀vx(mv(x) = none ∧ ¬root(x)), while

Fail(init) implies ∀vx(mv(x) ≠ none ∨ root(x)). From the meaning of universal quan-

tifiers, we know that ∀vx(mv(x) = none ∧ ¬root(x)) ∧ ∀vx(mv(x) ≠ none ∨ root(x)) im-

plies ∀vx(mv(x) = none ∧ ¬root(x) ∧ (mv(x) ≠ none ∨ root(x))), which implies ∀vx(false).
Hence, it implies post from the meaning of disjunction.

2. Proof of Slp(pre,init) implies c

From the meaning of disjunction, the formula

∃vy(mv(y) = red ∧ root(y) ∧ ∀vx(x = y ∨ (mv(x) = none ∧ ¬root(x)))) implies

∃vx(root(x) ∧mv(x) = red ∧ ∀vy(x = y ∨ ¬root(y))). The formula also implies

∀vx(mv(x) = none ∨mv(x) = red ∨mv(x) = grey) because from the formula we know that

the node represented by y is red and others are unmarked. The formula

∀ex(me(x) = none) clearly implies ∀ex(me(x) = none) ∨me(x) = dashed, while the for-

mula ∀vx(x = 1 ∨ (upath(x,1) ∧ ∀vy(y = 1 ∨ x = y ∨ upath(x, y)))) implies

∀vx, y(x = y ∨ upath(x, y)).
Also, if Slp(pre,init) is true then the implications with

∀ex(me(x) = dashed or (∃vx(mv(x) = red ∧ ¬root(x)) as premise are always true because

Slp(pre,init) implies ∀ex(me(x) = none) which means that all edges are unmarked,

and

∃vy(mv(y) = red ∧ root(y) ∧ ∀vx(x = y ∨ (mv(x) = none ∧ ¬root(x)))) which means there

is exactly one red rooted node while other nodes are unmarked and unrooted.

Finally, Slp(pre,init) asserts that there is one rooted red node while other nodes

are unmarked in addition to the existence of an undirected path between every node.

Hence, if there is an unmarked node in the graph, the red rooted node must be adjacent

to at least one unmarked node so that

∃vx(mv(x) = unmarked)⇒ ∃vx, y(mv(x) = none ∧mv(y) = red ∧ adj(x, y) must hold.

3. Proof of Break(c,DFS, post)

From the semantics of GP 2 commands, when we have the derivation JDFS,GK →∗

Jbreak,HK iff we have the derivation Jforward!,GK →H for a graph H such that

Fail(back) holds on H. From the proof tree of Figure 8.10, we know that {c} forward!
{c∧Fail(forward)} is correct so that H must imply c∧Fail(forward) as well. Hence, H

must satisfy c∧Fail(forward)∧Fail(back) if the input graph G satisfies c.

Let us consider the formula ∃vx(mv(x) = red ∧ ¬root(x))⇒Success(back) of c. If

c∧Fail(forward)∧Fail(back) holds, then Success(back) must not hold so that from the

meaning of implication, we know that ∃vx(mv(x) = red ∧ ¬root(x)) does not hold either.

By the meaning of implication and from the formula

163

Chapter 8 Verification case studies

∀ex(me(x) = dashed⇒ (mv(s(x)) = red ∧ ¬root) ∨ (mv(t(x)) = red ∧ ¬root)) of c, it im-

plies that there is no dashed edge so that together with

∀ex(me(x) = none ∨me(x) = dashed), it implies ∀ex(me(x) = none).
Now let us consider the formula

∃vx(mv(x) = none)⇒ ∃vx, y(mv(x) = red ∧mv(y) = none ∧ adj(x, y) of c. If there is no

dashed edge and there is no red node other than a red rooted node, then from the

formula we know that if an unmarked node exists then there is an unmarked node

adjacent to the red unrooted node. However, Fail(forward) asserts the negation of

that so that we can conclude that there is no unmarked node from the meaning of

implication. Since we have also proven that c∧Fail(forward)∧Fail(back) implies that

all nodes except one red rooted node are either unmarked or grey, then because there

is no unmarked node, the following formula holds:

∃vx(mv(x) = red ∧ root(x) ∧ ∀vy(mv(y) = grey ∧ ¬root(y))).
Hence, c∧Fail(forward)∧Fail(back) implies post so that Break(c,DFS,post) holds.

4. Proof of Slp(c,forward) implies c

Slp(c,forward) implies that if all edges that is not represented by c are unmarked or

dashed, while c representing a dashed edge. Hence, Slp(c,forward) implies

∀ex(mex = none ∨mex = dashed). Similarly, Slp(c,forward) implies all nodes that are

not represented by a and b are unrooted and either unmarked, red, or grey, where

a and b representing grey unrooted node and red rooted node respectively. Hence,

Slp(c,forward) implies ∃vx(mv(x) = red ∧ root(x) ∧ ∀vy(x = y ∨ (¬root(y) ∧ (mv(y) =
none ∨mv(y) = red ∨mv(y) = grey)))).
Slp(c,forward) also implies the nonexixtense of a set of nodes X such that both a and

b both belong to (or not in) the set and there exists an edge that is not in (or in) the

set, but there is no node outside (or in) X that is adjacent to a or b an there are no two

adjacent nodes where one is in X and the other one is not in X. On the other words,

∀VX(∀vx(x ∈ X) ∨ ∀vx(x ∉ X) ∨ ∃vx, y(x ∈ X ∧ y ∉ X ∧ adj(x, y))) is true if Slp(c,forward)

is true.

Note that Slp(c,forward) implies that for all edges that is not represented by c, if it is

dashed then it is adjacent to a red unrooted node. However, Slp(c,forward) also implies

that c is dashed and adjacent to red unrooted node a. Hence, Slp(c,forward) implies

∀ex(me(x) = dashed⇒ mv(s(x)) = red ∧mv(t(x)) = red ∧ (¬root(s(x)) ∨ ¬root(t(x)))).
Slp(c,forward) also implies that Success(back) holds, because we can use the nodes

represented by a and b to satisfy it. Hence, if Slp(c,forward) is true then

∀vz(mv(z) = red ∧ ¬root(z)⇒ Success(back)) always hold.

Finally, Slp(c,forward) implies

∀vx(x ≠ a ∧ x ≠ b ∧mv(x) = grey

⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))
Note that Slp(c,forward) also implies that both nodes represented by a and b are not

164

8.4 Connectedness

grey. Hence, the implication still holds for the case where x = a or x = b. Hence,

Slp(c,forward) implies

∀vx(mv(x) = grey⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))
5. Proof of Slp(d ∧ Success(back),back) implies c

From the meaning of conjunction, we know that Slp(d∧Success(back),back) implies

f, and with the same reason as above (from the fact of a is grey unrooted node, b

is red rooted node, and c is unmarked, we can show as in the previous point that

Slp(d ∧ Success(back),back) implies c.

6. Proof of post ∧ Success(match) implies false

post clearly implies that all nodes are either red or grey, so there must not exist an

unmarked node.

8.4.3 Case B: disconnected input graph

8.4.3.1 Proof tree of is-connected (B)

8.4.3.2 Proof of implications

1. Proof of pre∧ Fail(init) implies post

From the meaning of conjunction, pre implies ∀vx(mv(x) ∧ ¬root(x)), while Fail(init)

stated that ∀vx(mv(x) ≠ none ∨ root(x)). By the meaning of universal quantifier, pre∧
Fail(init) then implies ∀vx(mv(x) ∧ ¬root(x)) ∧ (mv(x) ≠ none ∨ root(x)) which is equiv-

alent to ∀vx(false). From the meaning of disjunction, it is obvious that ∀vx(false)
implies post.

2. Proof of Slp(pre,init) implies c

The formula ∀ex(me(x) = none) of Slp(pre,init) also clearly implies

∀ex(me(x) = none ∨me(x) = dashed) of c by the meaning of disjunction.

Also,

∧∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y))
is directly implied by Slp(pre,init) from the meaning of conjunction.

Slp(pre,init) stated that there exists a node that is red and rooted, while other nodes

are unmarked and unrooted. It clearly implies

∃vx(root(x) ∧mv(x) = red

∧ ∀vy(x = y ∨ ((mv(y) = none ∨mv(y) = red ∨mv(y) = grey) ∧ ¬root(y))).
Since Slp(pre,init) expresses the existence of a red rooted node while other nodes are

unmarked, the formula

∀vx(mv(x) = grey⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))
of c is implied by Slp(pre,init) as well since there is no grey nodes if Slp(pre,init) is true.

165

Chapter 8 Verification case studies

S
u

b
tree

A

[sk
ip

]
{
p
re∧

F
a
il(i

n
i
t)}

s
k
i
p
{
p
re∧

F
ail(i

n
i
t)}

[co
n

s]
{
p
re∧

F
a
il(i

n
i
t)}

s
k
i
p
{p
ost}

[try
]

{
p
re

}
t
r
y
i
n
i
t
t
h
e
n

(D
F
S
!;C

h
e
c
k)

{
p
ost

}

w
h

ere
su

b
tree

A
is:

[ru
leap

p
]s
lp

{
p
re

}
i
n
i
t
{

S
lp(p

re,i
n
i
t)

}
[con

s]
{
p
re

}
i
n
i
t
{
c
}

[ru
lea

p
p

]s
lp

{
c
}
f
o
r
w
a
r
d
{

S
lp(c,f

o
r
w
a
r
d)

}
[co

n
s]

{
c
}
f
o
r
w
a
r
d
{
c
}

[a
la

p
]
{
c
}
f
o
r
w
a
r
d
!{

c∧
F

a
il(f

o
r
w
a
r
d)

}
[co

n
s]

{
c
}
f
o
r
w
a
r
d
!{

d
}

S
u

b
tree

A
1

[co
m

p
]

{
c
}
D
F
S
{
c
}

B
reak(c,D

F
S
,e)

[a
la

p
]

{
c
}
D
F
S
!{

(c∧
F

ail(D
F
S))∨

e
}

[co
n

s]
{
c
}
D
F
S
!{

e
}

S
u

b
tree

A
2

co
m

p
{
p
re

}
i
n
i
t
;D
F
S
!;C

h
e
c
k
{
p
ost

}
[co

n
s]

{
p
re∧

S
u

ccess(i
n
i
t)

}
i
n
i
t
;D
F
S
!;C

h
e
c
k
{
p
ost

}

fo
r

S
u

b
tree

A
1
:

[ru
leap

p
]s
lp

{
d∧

S
u

ccess(b
a
c
k)

}
b
a
c
k
{

S
lp(d∧

S
u

ccess(b
a
c
k),b

a
c
k)

}
[co

n
s]

{
d∧

S
u

ccess(b
a
c
k)

}
b
a
c
k
{
c
}

[b
rea

k
]
{
d∧

F
ail(b

a
c
k)

}
b
r
e
a
k
{
d∧

F
ail(b

a
c
k)

}
[co

n
s]

{
d∧

F
ail(b

a
c
k)

}
b
r
e
a
k
{
c
}

[try
]

{
d
}
t
r
y
b
a
c
k
e
l
s
e
b
r
e
a
k
{
c
}

a
n

d
S

u
b

tree
A

2
:

[fa
il]

{
e
}
f
a
i
l
{
false

}
[co

n
s]

{
e∧

S
u

ccess(m
a
t
c
h)

}
f
a
i
l
{

p
o
st

}

[sk
ip

]
{
false

}
s
k
i
p
{
false

}
[co

n
s]

{
e∧

F
a
il(m

a
t
c
h)

}
s
k
i
p
{
p
ost

}
[if]

{
e
}
i
f
m
a
t
c
h
t
h
e
n
f
a
i
l
{
p
ost

}

F
ig
u
r
e
8
.1
1
:

P
ro

o
f

tree
fo

r
p

a
rtia

l
co

rrectn
ess

o
f
i
s
-
c
o
n
n
e
c
t
e
d

(B
)

166

8.4 Connectedness

Table 8.6: Conditions inside proof tree of is-connected (B)

MSO formulas
pre ≡
∀vx(mv(x) = none ∧ ¬root(x)) ∧ ∀ex(me(x) = none)
∧∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y))
post ≡ false
c ≡
∀ex(me(x) = none ∨me(x) = dashed)
∧∃vx(root(x) ∧mv(x) = red

∧ ∀vy(x = y ∨ ((mv(y) = none ∨mv(y) = red ∨mv(y) = grey) ∧ ¬root(y)))
∧∀vx(mv(x) = grey⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨mv(y) = red∧)))
∧∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y)) ∧ ∀vx(x ∉ X⇒ mv(x) = none)
d ≡ c∧Fail(forward)
e ≡Success(match)
Success(back) ≡
∃vx, y(mv(x) = red ∧ root(x) ∧mv(y) = red ∧ ¬root(y) ∧ (edge(x, y,dashed) ∨ edge(y, x,dashed)))
Fail(back) ≡ ¬Success(back)
Fail(init) ≡ ¬∃v(mv(x) = none ∧ ¬root(x))
Fail(match) ≡ Fail(init)
Success(match) ≡ ¬Fail(init)
Fail(DFS) ≡ false
Fail(forward) ≡
¬∃vx, y(mv(x) = red ∧ root(x) ∧mv(y) = none ∧ ¬root(y) ∧ (edge(x, y,none) ∨ edge(y, x,none)))
Slp(pre,init) ≡
∃va(mv(a) = red ∧ root(a)

∧ ∀vx(x = a ∨ (mv(x) = none ∧ ¬root(x))) ∧ ∀ex(me(x) = none)
∧ ∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y))))

Slp(c,forward) ≡
∃va, b(∃ec(a ≠ b ∧mv(a) = red ∧mv(b) = red ∧ ¬root(a) ∧ root(b)

∧ ((s(c) = a ∧ t(c) = b) ∨ (s(c) = b ∧ t(c) = a)) ∧me(c) = dashed ∧ f))
f ≡
∀ex(x ≠ c⇒ mex = none ∨mex = dashed)
∧∀vy(y ≠ a ∧ y ≠ b⇒ ¬root(y) ∧ (mv(y) = none ∨ ¬root(y) = red ∨ ¬root(y) = grey))
∧∀vx(x ≠ a ∧ x ≠ b ∧mv(x) = grey

⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨mv(y) = red)))
∃vX(a ∈ X ∧ b ∈ X ∧ ∃vx(x ∉ X) ∧ ∀vy(y ∉ X⇒ ¬adj(a, y) ∧ ¬adj(b, y))

∧ ∀vx, y(x ≠ a ∧ x ≠ b ∧ x ∈ X ∧ y ∉ X⇒ ¬adj(x, y)) ∧ ∀vx(x ∉ X⇒ mv(x) = none))
Slp(d ∧ Success(back),back) ≡
∃va, b(∃ec(a ≠ b ∧mv(a) = grey ∧mv(b) = red ∧ ¬root(a) ∧ root(b)

∧ ((s(c) = a ∧ t(c) = b) ∨ (s(c) = b ∧ t(c) = a)) ∧me(c) = none ∧ f
∧ ¬∃vy(y ≠ a ∧ y ≠ b ∧mv(y) = none ∧ ¬root(y) ∧ adj(b, y,none))
∧ ¬∃vx, y(x ≠ a ∧ x ≠ b ∧ y ≠ a ∧ y ≠ b

∧mv(x) = red ∧ root(x) ∧mv(y) = none ∧ ¬root(y) ∧ adj(b, y,none))))

3. Proof of Break(c,DFS,e)

From the semantics of GP 2 commands, when we have the derivation JDFS,GK→∗ Jbreak,HK
iff we have the derivation Jforward!,GK →H for a graph H such that Fail(back) holds on H.

From the proof tree of Figure 8.11, we know that {c} forward! {c∧Fail(forward)} is correct so

that H must imply c∧Fail(forward) as well. Hence, H must satisfy c∧Fail(forward)∧Fail(back)

if the input graph G satisfies c.

c∧Fail(forward)∧Fail(back) clearly implies c. If the formula c holds, we know that the formula

∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y))

167

Chapter 8 Verification case studies

∧∀vx(x ∉ X⇒ mv(x) = none)
holds as well. Since the formula expresses the existence of an unmarked node (which must be

unrooted if we consider ∃vx(mv(x) = red ∧ root(x) ∧ ∀vy(x = y ∨ ¬root(x))) of c), Success(match)

must be hold as well if c holds.

4. Proof of Slp(c,forward) implies c

Slp(c,forward) implies that if all edges that is not represented by c are unmarked or dashed,

while c representing a dashed edge. Hence, Slp(c,forward) implies ∀ex(mex = none ∨mex = dashed).
Similarly, Slp(c,forward) implies all nodes that are not represented by a and b are unrooted

and either unmarked, red, or grey, where a and b representing grey unrooted node and red

rooted node respectively. Hence, Slp(c,forward) implies

∃vx(mv(x) = red ∧ root(x) ∧ ∀vy(x = y ∨ (¬root(y) ∧ (mv(y) = none ∨ mv(y) = red ∨ mv(y) =
grey)))).

Slp(c,forward) also implies the existence of a set of nodes X such that both a and b both

belong to the set and there exists a node that is not in the set, such that no node outside X

adjacent to a or b, or any other nodes in X. Also, all nodes outside X are unmarked. Note that

the nodes represented by a and b are marked so that a ∈ X ∧ b ∈ X ∧ ∀vx(x ∉ X⇒ mv(x) = none)
implies ∀vx(x ∉ X⇒ mv(x) = none). Hence, Slp(c,forward) implies

∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y)) ∧ ∀vx(x ∉ X⇒ mv(x) = none)

Finally, Slp(c,forward) implies

∀vx(x ≠ a ∧ x ≠ b ∧mv(x) = grey

⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))
Note that Slp(c,forward) also implies that both nodes represented by a and b are not grey.

Hence, the implication still holds for the case where x = a or x = b, so that Slp(c,forward)

implies

∀vx(mv(x) = grey⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y))))).

5. Proof of Slp(d∧Success(back),back) implies c

From the meaning of conjunction, we know that Slp(d∧Success(back),back) implies

∃va, b(∃ec(a ≠ b ∧mv(a) = grey ∧mv(b) = red ∧ ¬root(a) ∧ root(b)
∧ ((s(c) = a ∧ t(c) = b) ∨ (s(c) = b ∧ t(c) = a)) ∧me(c) = none ∧ f)).

Similarly as the previous point, f implies ∀ex(mex = none ∨mex = dashed) and also

∃vx(mv(x) = red ∧ root(x) ∧ ∀vy(x = y ∨ (¬root(y) ∧ (mv(y) = none ∨ mv(y) = red ∨ mv(y) =
grey))))
because node that is represented by a is unrooted and grey, node that is represented by b is

red and rooted, while edge that is represented by c is unmarked. And with the same reason as

the previous point, we can say that Slp(d∧Success(back),back) implies

∃VX(∃vx(x ∈ X) ∧ ∃vx(x ∉ X) ∧ ∀vx, y(x ∈ X ∧ y ∉ X⇒ ¬adj(x, y)) ∧ ∀vx(x ∉ X⇒ mv(x) = none).

Finally, similarly with the previous point, Slp(d∧Success(back),back) implies

∀vx(x ≠ a ∧ x ≠ b ∧mv(x) = grey

⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y)))))

168

8.5 Summary

when Slp(c,forward) also implies that node represented by b is not grey, while node that is

represented by a is adjacent to a red rooted node. Hence, the implication still holds for the

case where x = a or x = b, so that Slp(d∧Success(back),back) implies

∀vx(mv(x) = grey⇒ ¬∃vy(adj(x, y) ∧ ¬root(y) ∧ (mv(y) = none ∨ (mv(y) = red ∧ ¬root(y))))).

8.5 Summary

In this chapter, we have shown four graph programs that are proven to be partially correct

with respect to the given specifications. In the first case study, vertex-colouring, the

specification can be expressed in first-order formulas, while specifications in the remaining

case studies are not expressible by first-order formulas. The given specification for the second

case study (transitive-closure) requires the expression of the existence of a path between

two nodes. Hence, we use the predicate path, which is not a first-order predicate. The 2-

colourability of a graph (or bipartiteness of a graph) and disconnectedness also cannot be

expressed in first-order formulas since we need to express that the nodes can be divided into

two sets with certain constraints.

Here, we only focus on partial correctness of the programs with respect to the given spec-

ifications. Hence, the proof trees in this chapter give us information in the case where the

execution of the programs terminate and do not fail. However, by considering the semantics

of the programs, we can argue that the program will not fail and must terminate.

For vertex-colouring and transtitive-closure, one can easily show that the programs

are non-failing and terminating. For 2-colouring and is-connected, we argue that the

programs must terminate, and with the help of the proof trees, we show that the programs

fail for one of the preconditions and do not fail for the other.

The proof for 2-colouring and also for disconnectedness are long, relative to the other

two programs. This is due to the existence of branching commands and nested loops. The

formulas we use in the proof trees of 2-colouring and disconnectedness are longer than

the other two. This is due to the complexity of the loop body. In vertex-colouring and

transitive-closure, the loop bodies only containing a rule set call. Hence, every invariant

we need to use is an invariant over a rule set call. This is why we have simpler formulas

when we proof the two programs.

As we can see in all case studies above, we need to prove the correctness of implications and

the predicate Break we use in the proof trees. This is due to the calculus we use, which

does not contain proof rules for proving implications between assertions, or the correctness

of predicate Break. The proofs of implications we use here mostly use the meaning of

169

Chapter 8 Verification case studies

conjunctions, disjunctions, and implications. For the proof of a predicate Break, we need to

use the semantics of graph programs while utilising triples we have in the proof trees.

From the four case studies we have in this chapter, we can say that our proof calculus is

applicable to some graph programs. Especially, it is applicable to a graph program with

depth-first search (DFS) approach, as in connectedness, which is not supported by the

calculus introduced in [1].

170

Chapter 9

Soundness and completeness of the proof

calculi

This chapter discusses the soundness and the relative completeness of proof calculi we defined

in Chapter 7. We show proof that both proof calculi are sound, and that the semantic proof

calculus is relatively complete.

9.1 Soundness

To proof the soundness, we use structural induction on proof tree as defined in Definition

9.1.

Definition 9.1 (Structural induction on proof trees). Let us consider a property Prop. To

prove that Prop holds for all proof trees (that are created from some proof rules) by structural

induction on proof tree is done by:

1. Show that Prop holds for each axiom in the proof rules

2. For each inference rule, assuming that Prop holds for each premise T of the rule (i.e.

upper part of the rule), show that Prop holds for the conclusion as well (i.e. lower part

of the rule).

When we prove that a triple {c}P{d} for assertions c, d and a graph program P is partially

correct by showing that SLP(c,P) implies d, it is obviously sound because of the definition

of a strongest liberal postcondition itself. Then if c and d are monadic second-order formulas

and P is a loop-free program, showing that Slp(c,P) implies d implies that {c}P{d} is

partially correct from Theorem 7.16. Then we also need to prove the soundness of proof

calculus as summarised in Figure 7.1 and Figure 7.2.

171

Chapter 9 Soundness and completeness of the proof calculi

Theorem 9.2 (Soundness of SEM). Let us consider a graph program P and assertions c, d.

Then,

⊢SEM {c} P {d} implies ⊧ {c} P {d}.

Proof. To prove the soundness, we show that the implication holds for each axiom and

inference rule in the proof rule w.r.t. the semantics of graph programs by structural induction

on proof trees.

1. Base case :
(a) [ruleapp]slp. Suppose that ⊢SEM {c} r {d} for a (conditional) rule schema r where

for all graphs H, H ⊧ d iff H ⊧ SLP(c, r). Suppose that G ⊧ c. From Definition

4.1, G⇒r H implies H ⊧ d so that ⊧ {c} P {d}.

(b) [ruleapp]wlp. Suppose that ⊢SEM {c} r {d} for a (conditional) rule schema r where

for all graphs G, G ⊧ c iff H ⊧ WLP(r, c). Suppose that G ⊧ c. From Definition

7.4, G⇒r H implies H ⊧ d so that ⊧ {c} P {d}.

2. Inductive case.

Assume that Prop holds for each premise of inference rules in Definition 7.12 for a

set of rule schemata R, assertions c, d, e, c′, d′, inv, host graphs G,G′,H,H ′, and graph

programs C,P,Q.
(a) [ruleset]. Suppose that ⊢SEM {c} R {d} and G ⊧ c. Since we can have a proof

tree where {c} R {d} is the root, then ⊢SEM {c} r {d} for all r ∈R. From point 1,

this means that ⊧ {c} r {d} for all r ∈R. From the semantics of graph programs,

H ∈ JRKG iff H ∈ JrKG for some r ∈ R. Since for any r ∈ R, H ∈ JrKG implies

H ⊧ d, H ∈ JRKG implies H ⊧ d as well so that ⊧ {c} R {d}.

(b) [comp]. Suppose that ⊢SEM {c} P ;Q {d} and G ⊧ c. ⊢SEM {c} P ;Q {d}, implies

⊢SEM {c} P {e} and ⊢SEM {e} Q {d}. From the semantic of graph programs,

H ∈ JP ;QKG iff there exists G′ such that G′ ∈ JP KG and H ∈ JQKG′. In addition

to the assumption, ⊢SEM {c} P {e} implies G′ ⊧ e, and ⊢SEM {e} Q {d} implies

H ⊧ d so that ⊧ {c} P ;Q {d}.

(c) [cons]. Suppose that ⊢SEM {c} P {d} and G ⊧ c. From the inference rule, we

know that ⊢ {c′} P {d′}, c implies c′ (so that G ⊧ c′), and d′ implies d. From

⊢ {c′} P {d′}, we get that for all host graphs H, H ∈ JP KG implies H ⊧ d′ so that

H ⊧ d. Hence, ⊧ {c} P {d}.

(d) [if]. Suppose that ⊢SEM {c} ifC thenP elseQ {d} and G ⊧ c. From ⊢SEM
{c} ifC thenP elseQ {d}, we get ⊢SEM {c ∧ SUCCESS(C)} P {d} and ⊢SEM
{c∧FAIL(C)} Q {d}. From the former we know that for all host graphs H, if G ⊧
SUCCESS(C) and H ∈ JP KG then H ⊧ d, while from the latter we know that for all

host graphs H, if G ⊧ FAIL(C) and H ∈ JQKG then H ⊧ d. Recall that from the

semantic of graph programs, H ∈ JifC thenP elseQKG iff G ⊧ SUCCESS(C) ∧

172

9.1 Soundness

H ∈ JP KG or G ⊧ FAIL(C)∧H ∈ JQKG. Since both G ⊧ SUCCESS(C)∧H ∈ JP KG

and G ⊧ FAIL(C) ∧H ∈ JQKG implies H ⊧ d, H ∈ JifC thenP elseQKG implies

H ⊧ d such that ⊧ {c} ifC thenP elseQ {d}.

(e) [try]. Suppose that ⊢SEM {c} tryC thenP elseQ {d} and G ⊧ c.
⊢SEM {c} tryC thenP elseQ {d} implies ⊢SEM {c ∧ SUCCESS(C)} C;P {d} and

⊢SEM {c ∧ FAIL(C)} Q {d}. From the former we know that for all host graphs

H, if G ⊧ SUCCESS(C) and H ∈ JC;P KG then H ⊧ d, while from the latter we

know that for all host graphs H, if G ⊧ FAIL(C) and H ∈ JQKG then H ⊧ d.

Recall that from the semantic of graph programs, H ∈ JifC thenP elseQKG

iff G ⊧ SUCCESS(C) ∧ H ∈ JC;P KG or G ⊧ FAIL(C) ∧ H ∈ JQKG. Since both

G ⊧ SUCCESS(C)∧H ∈ JC;P KG and G ⊧ FAIL(C)∧H ∈ JQKG implies H ⊧ d, H ∈
JtryC thenP elseQKG implies H ⊧ d such that ⊧ {c} tryC thenP elseQ {d}.

(f) [alap]. Suppose that ⊢SEM {c} P ! {d} and G ⊧ c. From ⊢SEM {c} P ! {d}, we

know that ⊢SEM {c} P {c} and Break(c,P, d) holds. From ⊢SEM {c} P {c}, we

get that for all host graph H, H ∈ JP KG implies H ⊧ c, while from Definition 7.10

and the true value of Break(c,P, d) we know that for all hsot graphs H, G ⊧ c

and ⟨P,G⟩ →∗ ⟨break;H⟩ implies H ⊧ d. From the semantic of graph programs,

H ∈ JP !KG iff there exist derivation ⟨P,G⟩ →∗ ⟨break;H⟩ or ⟨P !,G⟩ →∗ ⟨P !,H⟩
and ⟨P !,H⟩→+ fail. The first case yields H ⊧ d because of Break(c,P, d). Note

that ⟨P !,G⟩ →∗ ⟨P !,H⟩ is done by having (probably) multiple execution of P

on host graphs, so that from ⊢SEM {c} P {c} we know that H ⊧ c. Then since

⟨P !,H⟩ →+ fail, H ⊧ FAIL(P) so that H ⊧ c ∧ FAIL(C). Hence, H ∈ JP !KG

implies H ⊧ d ∨ (c ∧ FAIL(P)) so that ⊧ {c} P ! {d}.

Theorem 9.3 (Soundness of SYN). Let P be a restricted graph program i.e. graph programs

where for every subprogram in the form ifC thenP elseQ, tryC thenP elseQ, or C!, C

is a loop-free program. Let also c and d be monadic second-order formulas. Then,

⊢SYN {c} P {d} implies ⊧ {c} P {d}.

Proof. The soundness of [ruleapp]slp follows from Theorem 5.16 and Theorem 9.2, while the

soundness of [ruleapp]wlp follows from Theorem 5.16 and Lemma 7.22. The soundness of

[ruleset], [comp], [cons], [if], and [try] follows from Theorem 9.2 and Theorem 7.16 about

defining SUCCESS and FAIL in monadic second-order formulas. Finally, the soundness of

the inference rule [alap] follows from Theorem 9.2 and Theorem 7.20.

173

Chapter 9 Soundness and completeness of the proof calculi

9.2 Relative completeness

A proof calculus is complete when every valid triple can be proven to be correct by the proof

calculus. However, completeness really depends on the kind of assertions we used because the

ability to prove that d can be implied by c for some assertions c and d depends on language

of the assertions.

Let us consider Gödel’s first incompleteness theorem, which says that any consistent formal

system F can be carried out is incomplete if it includes Peano arithmetic [58]. Since we can

express all sentences of Peano arithmetic in (the first-order fragment) of our monadic second-

order formulas, the incompleteness should follows. Because of Peano arithmetic, there can

not be a complete set of inference rule for implication theorem so that instead of discussing

about completeness, here we focus on relative completeness, where we can separate the

incompleteness due to the axioms and inference rules from any incompleteness in deducing

valid assertions [59].

In [1], relative completeness of the proof calculi are shown by showing that {WLP (P, d)} P {d}
can be proven by the calculi for any graph program P and assertion d. Here, we use the

same approach to show that our semantic proof calculus is relative complete.

Theorem 9.4. Let us consider a proof calculus A. Then, for any assertions c, d, and graph

program P , ⊧ {c}P{d} implies ⊢A {c}P{d} (i.e. A is relative complete) if the following hold

for any graph programs S and assertions a, b, e:

(i) ⊢A {WLP (S, e)} S {e}

(ii) if a implies b then ⊢A {b} S {e} implies ⊢A {a} S {e}

Proof. From the definition of weakest liberal precondition (see Definition 7.4), we know that if

⊧ {c} P {d} then c implies WLP(P, d). If the premise of the theorem holds, from (i) we know

that ⊢A {WLP (P, d)} P {d}. Because c implies WLP(P, d) and ⊢A {WLP (P, d)} P {d},

from (ii) we also know that ⊢A {c} P {d}.

Before showing that SEM is relative complete, because of Theorem 9.4, we first show that

for any postcondition d and graph program P , we have ⊢SEM {WLP(P, d)} P {d}. Note that

WLP(P, d) must exist because we always have at least one liberal precondition for any graph

program, that is: true.

Lemma 9.5. Let us consider a graph program S and a postcondition d. Then,

⊢SEM {WLP(S, d)} S {d}

174

9.2 Relative completeness

Proof. Here we prove the lemma by induction on graph programs.

Base case. If S is a (conditional) rule schema r,

⊢SEM {WLP(S, d)} S {d} automatically follows from the axiom

[ruleapp]wlp.

Inductive case.

Assume that for graph programs C,P, and Q, ⊢SEM
{WLP(C,d)} C {d}, ⊢SEM {WLP(P, d)} P {d}, and

⊢SEM {WLP(Q,d)} Q {d}.

(a) If S =R.

If R = {}, then there is no premise to prove so that we

can deduce ⊢SEM {WLP(R, d)} R {d} automatically. If R =
{r1, . . . , rn} for n > 0, ⊢SEM {WLP(r1, d)} r1 {d}, . . . ,⊢SEM
{WLP(rn, d)} rn {d} from [ruleapp]slp. Let e be the asser-

tion WLP(r1, d) ∧ . . . ∧ WLP(rn, d), so that by [cons], ⊢SEM
{e} r1 {d}, . . . ,⊢SEM {e} rn {d}. By [ruleset] we then get that

⊢SEM {e} R {d}. Then by [cons], ⊢SEM {WLP(R, d)} R {d} be-

cause

G ⊧ WLP(R, d)
L7.6⇔ ∀H.H ∈ JRKG⇒H ⊧ d
⇔ ∀H.(H ∈ Jr1KG ∨ . . . ∨H ∈ JrnKG)⇒H ⊧ d
⇔ ∀H.(H ∈ Jr1KG⇒H ⊧ d) ∧ . . . ∧ (H ∈ JrnKG⇒H ⊧ d)
L7.6⇔ G ⊧ WLP(r1, d) ∧ . . . ∧WLP(rn, d)

(b) If S = P ;Q,

From the assumption, ⊢SEM {WLP(P,WLP(Q,d))}P {WLP(Q,d)}
and ⊢SEM {WLP(Q,d)}Q{d}. Then by the inference rule [comp],

we get that ⊢SEM {WLP(P,WLP(Q,d))} P ;Q {d}. Finally by

[cons], we have ⊢SEM {WLP(P ;Q,d)} P ;Q {d} because

G ⊧ WLP(P ;Q,d)
L7.6⇔ ∀H.H ∈ JP ;QKG⇒H ⊧ d
⇔ ∀H,G′.(G′ ∈ JP KG ∧H ∈ JQKG′ ⇒H ⊧ d
⇔ ∀G′.(G′ ∈ JP KG⇒ (∀H.H ∈ JQKG′ ⇒H ⊧ d)
L7.6⇔ ∀G′.(G′ ∈ JP KG⇒ G′ ⊧ WLP(Q,d)
L7.6⇔ G ⊧ WLP(P,WLP(Q,d))

(c) If S = ifC thenP elseQ,

Both ⊢SEM {WLP(P, d)}P {d} and ⊢SEM {WLP(Q,d)}Q{d} fol-

low from the assumption. By [cons], we have:

⊢SEM {WLP(P, d) ∧ (FAIL(C)⇒WLP(Q,d))}P {d} and

175

Chapter 9 Soundness and completeness of the proof calculi

⊢SEM {WLP(Q,d) ∧ (SUCCESS(C)⇒WLP(P, d))}Q{d}.

Let e denotes (SUCCESS(C) ⇒ WLP(P, d)) ∧ (FAIL(C) ⇒
WLP(Q,d)) so that by [cons], we have:

⊢SEM {e ∧ SUCCESS(C)}P {d} and ⊢SEM {e ∧ FAIL(C)}Q{d}.

By [if] we then get that ⊢SEM {e}S {d}, and finally by [cons] we

have ⊢SEM {WLP(S, d)}S {d} because

G ⊧ WLP(ifC thenP elseQ,d)
L7.6⇔ ∀H. H ∈ JifC thenP elseQKG⇒H ⊧ d
⇔ ∀H. ((G ⊧ SUCCESS(C) ∧H ∈ JP KG)

∨ (G ⊧ FAIL(C) ∧H ∈ JQKG))⇒H ⊧ d
⇔ (∀H. (G ⊧ SUCCESS(C) ∧H ∈ JP KG)⇒H ⊧ d)

∧(∀H. (G ⊧ FAIL(C) ∧H ∈ JQKG)⇒H ⊧ d)
⇔ G ⊧ SUCCESS(C)⇒ (∀H. H ∈ JP KG⇒H ⊧ d)

∧G ⊧ FAIL(C)⇒ (∀H. H ∈ JQKG⇒H ⊧ d)
L7.6⇔ G ⊧ (SUCCESS(C)⇒WLP(P, d) ∧ (FAIL(C)⇒WLP(Q,d)

(d) If S = tryC thenP elseQ,

Let e denotes SUCCESS(C) ⇒ WLP(C;P, d) ∧ FAIL(C) ⇒
WLP(Q,d). Similar to point (c), from the assumption

we have ⊢SEM {WLP(Q,d)}Q{d}, which imply ⊢SEM {e ∧
FAIL(C)}Q{d}. Also from the assumption, we have both

⊢SEM {WLP(C,WLP(P, d))}P {WLP(P, d)} and also ⊢SEM
{WLP(P, d)}P {d}. By [comp] and [cons] as case S = P ;Q, ⊢SEM
{WLP(C;P, d)}C;P {d}. Then by [cons] as in if − then − try
case, ⊢SEM {e ∧ SUCCESS(C)}C;P {d} such that by the infer-

ence rule [try] we have ⊢SEM {e}S {d}. Finnaly by [cons], ⊢SEM
{WLP(S, d)}S {d} because

G ⊧ WLP(tryC thenP elseQ,d)
L7.6⇔ ∀H. H ∈ JtryC thenP elseQKG⇒H ⊧ d
⇔ ∀H. ((G ⊧ SUCCESS(C) ∧H ∈ JC;P KG) ∨ (G ⊧ FAIL(C) ∧H ∈ JQKG))

⇒H ⊧ d
⇔ (∀H. (G ⊧ SUCCESS(C) ∧H ∈ JC;P KG)⇒H ⊧ d)

∧(∀H. (G ⊧ FAIL(C) ∧H ∈ JQKG)⇒H ⊧ d)
⇔ G ⊧ SUCCESS(C)⇒ (∀H. H ∈ JC;P KG⇒H ⊧ d)

∧G ⊧ FAIL(C)⇒ (∀H. H ∈ JQKG⇒H ⊧ d)
L7.6⇔ G ⊧ (SUCCESS(C)⇒WLP(C;P, d) ∧ (FAIL(C)⇒WLP(Q,d)

(d) If S = P !,

176

9.2 Relative completeness

From the assumption, ⊢SEM {WLP(P,WLP(P !, d))}P {WLP(P !, d)}.

By [cons] as in P ;Q case, we get ⊢SEM
{WLP(P ;P !, d)}P {WLP(P !, d)} such that by [cons] we

know that ⊢SEM {WLP(P !, d)}P {WLP(P !, d)}. Note that from

Theorem 9.2, this implies ⊧ {WLP(P !, d)}P {WLP(P !, d)}
such that for all host graphs G1, . . . ,Gn, and H where

G2 ∈ JP KG1, . . . ,Gn ∈ JP KGn−1, and ⟨P,Gn⟩ →∗ ⟨break,H⟩,
G ⊧ WLP(P !.d) implies G′ ⊧ WLP(P !.d) and H ⊧ d. Hence,

Break(WLP(P !.d), P, d) holds. Then by the inference rule [alap],

we have ⊢SEM {WLP(P !, d)}P {(WLP(P !, d) ∧ FAIL(P)) ∨ d}
such that by [cons], ⊢SEM {WLP(P !, d)}P {d} because

H ⊧ WLP(P !, d) ∧ FAIL(P) L7.6⇔ fail ∈ JP KH ∧ ∀H ′. H ′ ∈ JP !KH ⇒H ′ ⊧ d
⇒ H ∈ JP !KH ∧ ∀H ′. H ′ ∈ JP !KH ⇒H ′ ⊧ d
⇒ H ⊧ d.

Corollary 9.6. Let us consider a graph program P and assertions c, d. Then,

⊧ {c} P {d} implies ⊢SEM {c} P {d}.

Proof. From Lemma 9.5, we know that for all ⊢SEM {WLP(P, d)} P {d} and because we

have the proof calculus [cons] in the calculus SEM, then the premise of Theorem 9.4 holds

so that ⊧ {c} P {d} implies ⊢SEM {c} P {d}.

In Theorem 9.6, we show the relative completeness of our semantic partial correctness cal-

culus. The proof depends on the existence of WLP.

Main = duplicate!;delete!

duplicate(a ∶ list)
a
1
⇒ a

1

a

delete(a ∶ list)
a
1

a
2
⇒ ∅

Figure 9.1: graph program double

If we consider first-order Hoare-triples, there is strong evidence that such situation can occur.

For example, consider the triple {c} P {d} with c = ∀Vx(mV(x) = none ∧ ¬∃Ey(s(y) = x ∨ t(y) = x))
(all nodes are unmarked and isolated), d = ∀Vx(false) (the graph is empty), and the program

double of Figure 9.1.

It is obvious that ⊧ {c} duplicate!;delete! {d} holds: duplicate! duplicates the number

of nodes while marking the nodes grey, hence its result graph consists of an even number

177

Chapter 9 Soundness and completeness of the proof calculi

of isolated grey nodes. Then delete! deletes pairs of grey nodes as long as possible, so

the overall result is the empty graph. Note that “consists of an even number of isolated

grey nodes” is both the strongest postcondition with respect to c and duplicate!, and the

weakest precondition with respect to delete! and d.

Using SYN one can prove ⊢ {c} duplicate! {e} where e expresses that all nodes are grey

and isolated. However, we argue that our logic cannot express that a graph has an even

number of nodes. This is because pure first-order logic (without built-in operations) cannot

express this property [42] and it is likely that this inexpressiveness carries over to our logic.

As a consequence, one can only prove ⊢ {e} delete! {f} where f expresses that the graph

contains at most one node (because otherwise delete would be applicable). But we cannot

use SYN to prove ⊢ {c} duplicate!;delete! {d}.

From the example above we can see that the expressiveness of assertions play important role

in relative completeness. Courcelle [45, 60] has proven that for a graph G and subsets X,Y

of its vertex set VG, the following properties are not expressible in monadic second-order

logic without counting (either with set of node or set of edges quantifier):

1. The graph has even number of nodes

2. The number of nodes in a graph is a prime number

3. The graph has the same number of red nodes and grey nodes

However, we can express the three properties by the following formulas, respectively:

1. ∃VX(∀vx(x ∈ X) ∧ ∃ln(card(x) = 2 ∗ n))

2. ∃VX(∀vx(x ∈ X) ∧ ¬∃ln,m(n ≠ 1 ∧m ≠ 1 ∧ card(x) = n ∗m))

3. ∃VX,Y(∀vx(mv(x) = red⇔ x ∈ X) ∧ ∀vx(mv(x) = grey⇔ x ∈ Y) ∧ card(X) = card(Y))

With the existence of function card, our formula can express more properties if we compare

it with counting monadic second-order logic in [45]. However, what kind of properties can

not be expressed by our formulas is still an open problem in this thesis. Hence, the relative

completeness of our monadic second-order Hoare-triple is still unknown.

9.3 Summary

In this chapter, we have proven the soundness of our SEM and SYN calculi with respect

to partial correctness. We prove the soundness of SEM by structural induction on a proof

178

9.3 Summary

tree, where the base cases are the proof rules [ruleapp]slp and [ruleapp]wlp. By using the

soundness of strongest liberal postcondition we obtain from Chapter 5 and its connection

with a weakest liberal precondition, we prove that the base cases also hold for SYN such that

the calculus also sound.

Here, we also show the proof of the relative completeness of SEM. By considering relative

completeness, we do not consider any incompleteness in deducing valid assertion (as used

in the proof rule [cons]). In the proof, we can see the importance of having the proof rule

[ruleapp]wlp. The proof rule is important because we need to have a triple about a loop

body with its invariant as the specifications. In the proof, we show that a weakest liberal

postcondition over a loop can be considered the loop body’s invariance.

The proof of the soundness and correctness of SEM actually is not really different from what

has been presented in [1]. However, here we have slightly different proof calculus due to the

existence of the command break, which was not considered in the rule [alap] in [1] because

the command break was added after the thesis was published.

On the other hand, the relative completeness of SYN remains an open problem in this thesis.

However, we conjecture that the calculus is not relative complete due to our monadic second-

order formula’s expressiveness. We do not have concrete proof or counterexample to show

this, but we have strong evidence that the first-order Hoare-triple is not relative complete

due to the expressiveness of first-order formulas, as shown in Section 9.2 by using the graph

program double of Figure 9.1 as example.

179

Chapter 10

Conclusions and future work

In this chapter, we summarise the findings in this thesis. Also, we propose some future work

related to our findings.

10.1 Conclusions

We have defined monadic second-order formulas that can express the properties of GP 2

graphs. The syntax of the formulas is derived from the definition of GP 2 graphs and consid-

ering the syntax of GP 2 rule schema conditions. The formulas can express the structure of

the graphs, labels, marks, rootedness, and conditions that may be expressed by rule schema

conditions. Other than expressing properties of GP 2 graphs in general, here we also present

a way to express properties of a graph with respect to its morphism with another graph. This

is important in graph transformations since we are focus on graphs that have morphisms with

the left-hand graph of rules.

By using the monadic second-order formulas as assertions, we are able to construct a strongest

liberal postcondition with respect to a given precondition and a rule schema, which is proven

to be correct. Moreover, it turns out that once we know a strongest liberal postcondition over

a rule schema, we are able to obtain more assertions, that are: weakest liberal precondition

with respect to a postcondition and a rule schema, assertions that express precondition for

the successful execution of loop-free programs as well as failure execution of a subclass of

commands, namely iteration commands.

From the obtained assertions, we present the extension of partial correctness Hoare-calculus,

called syntactic proof calculus. With this calculus, we are able to verify graph programs that

contain nested loops in certain forms. Other than syntactic proof calculus, in this thesis, we

also present semantic proof calculus. While syntactic proof calculus requires closed monadic

second-order formulas as assertions, semantic proof calculus is an extensional proof calculus

181

Chapter 10 Conclusions and future work

that considers assertions in a semantic way. In this thesis, both calculi are proven to be

sound. Moreover, the semantic proof calculus is also proven to be relatively complete. For

syntactic proof calculus, the relative completeness remains as an open problem.

The semantic proof calculus we present in this thesis can handle any graph programs, while

the syntactic proof calculus has limitation to handle a subclass of programs, namely command

programs. This is due to the ability to express the precondition for successful and fail

execution of loops. In semantic proof calculus, we assume that assertions we use are able to

express these properties. However, we do not have proof to show that these properties can

be expressed in monadic second-order formulas.

In this thesis, we consider the verification of GP 2 graph programs. However, since GP 2 has

many attributes (e.g. marks, expressions as labels, rooted nodes), the approaches we use

here to construct a strongest liberal postcondition should be able to be used to construct a

strongest liberal postcondition w.r.t. graph transformation rule (outside GP 2), as long as

their attributes are covered by GP 2.

Although this thesis may contribute to advancing graph program verification, there are still

many areas for improvement. Our proof calculi assume that the implications used in the

proof rule [cons] can be done outside calculus. However, we have not presented any theory

for theorem proving in this thesis. In addition, in this thesis, we only focus on partial

correctness and not on total correctness.

10.2 Future work

We discuss several areas that can be studied based on the work of this thesis. Here we

discuss problems that are still open in this thesis, and some topics that can be studied from

the results presented in this thesis.

10.2.1 Theorem proving for implications between assertions

From the examples presented in Chapter 7, we showed that proving the implications that are

used in the proof rule [cons] needs a lot of work so that it would be helpful to have formalism

to prove the implications. Pennemann in his thesis [17] proposed a calculus that operates

directly on nested conditions, which can specify first-order properties of plain graphs (not

attributed as in GP 2 graphs). In the thesis, Pennemann investigated a sound and complete

satisfiability algorithm that decides the tautology for a certain fragment of conditions. To

tackle the termination issue in the algorithm, resolution principle [61] is used to present

182

10.2 Future work

deduction rules to handle conjunctive normal form. Another approach of theorem proving

on nested conditions is also presented in [62], which also consider first-order properties of a

graph. However, in this approach, an attributed graph is considered.

For first-order logic, satisfiability problem is known to be undecidable [17, 42]. In general,

the satisfiability problem for monadic second-order logic is also undecidable [45]. However,

in literature, there are studies that discuss satisfiability problem for some classes of monadic

second-order logic [45–47]. Courcelle shows that if the property of interest can be expressed in

monadic second-order logic with edge set quantifier, then parameterising by the combination

of the tree-width of the graph of interest and the size of the formula, it can be determined in

linear time whether the graph has the property [45, 48]. Moreover, Seese in [46] shows the

converse, that if a set of finite, simple, undirected graphs has a decidable monadic second-

order logic with edge set quantifier, then it has bounded tree-width. Also, Courcelle in

[47] shows that if the class has a decidable counting monadic second-order (with additional

predicate even) satisfiability problem, then it has bounded clique-width. Since some studies

show the decidability of some subclasses of monadic second-order logic, we may be able to

explore more about theorem proving when we consider monadic second-order logic than if

we consider first-order logic.

10.2.2 Automatic construction of invariants

In the case studies we have in this thesis, an invariant over a single rule set call is obtained

by using a similar method. We use a disjunction such that a strongest liberal postcondition

over the invariant still implies the invariant. A formal construction technique of invariant for

a rule set call, or maybe even a larger class of commands would to be an interesting topic to

be investigated, because if we can construct an invariant automatically, we may be able to

avoid finding the invariants manually to avoid human errors.

Verification of invariants for attributed graph transformations systems (based on nested

attributed graph condition) has been discussed in [63]. We may use the approach to validate

the construction. We may also investigate the verification approach to help us having the

construction of invariants.

10.2.3 Monadic second-order transductions for reasoning about graph pro-

grams

The downfall of Hoare triple we use in this thesis is that we can not express the morphism

between the initial and the final graph [64]. On the other hand, monadic second-order

183

Chapter 10 Conclusions and future work

transduction was discussed in [45, 50]. The transductions allow us to express the preservation

of nodes and edges after a transformation. By expressing preservation, we may be able to

express the existence of morphism G←D →H in direct derivation G⇒H.

Monadic second-order transduction [45, 50] is a way to express the properties of the resulting

graph based on the input graph. Transduction is defined with a so-called definition scheme.

Intuitively, a definition scheme is a tuple of MSO formulas which then used in MSO trans-

ductions to define a graph G′ from a graph G. In [50], graphs are defined as a tuple of

domain and predicates while for host graphs, we have a tuple of domains and functions. To

deal with the functions, we can view the functions as cases so that we can consider them as

predicates.

After defining a definition scheme in our setting, we then can try to define monadic second-

order transductions with the scheme. Intuitively, monadic second-order transduction with

definition scheme D is an isomorphism class of relation between graphs such that G and H

are related if H can be defined from G by D.

10.2.4 Relative completeness for monadic second-order Hoare-triples

In this thesis, we have a conjecture that first-order Hoare-triples is not relative complete.

To support the conjecture, we give an example of a graph program with the first-order

specification. In order to prove the correctness, we need to express the evenness of nodes in

the graph, which can not be expressed in first-order formulas.

The existence of even number of nodes cannot also be expressed in a monadic second-order

formula without counting [42, 45]. Hence, triples whose specifications are monadic second-

order formulas without counting should not be relative complete as well.

Monadic second-order formulas we defined in this thesis are expressive enough to express

nodes’ evenness, so the example can not work for the formulas. In fact, what kind of graph

properties can not be expressed by our formulas is still an open problem in this thesis.

Hence, we can not yet give a counter-example, nor proof related to monadic second-order

Hoare triples.

10.2.5 Proof calculus for total correctness of monadic second-order Hoare

triples

In this thesis, we only consider partial correctness so that proof of termination and non-failing

must be done outside the calculus. As can be seen in Chapter 7, we show termination by

184

10.2 Future work

giving an argument based on the semantics of graph programs. We also use graph programs’

semantics to argue that a program with certain precondition can not file, by also utilising

proof-tree.

Although we can prove the total correctness of a program with our partial correctness calculus

by giving additional argument on the semantics of graph programs, having the termination

and non-failing proof embedded in the proof calculus would give us more advantage. Poskitt

in [1] defines proof calculi for weak-total correctness and total correctness of Hoare triples

with E-conditions as assertions. We can investigate how our formulas and the command

break affect the calculus. However, the proof calculi in [1] can not handle nested loop.

Having total correctness proof calculus that can handle at least the same class of programs

as we have for partial correctness calculus would be interesting.

10.2.6 Proof obligation for the construction of a strongest liberal postcon-

dition

Chapter 4 of this thesis concludes that we can construct a strong liberal postcondition over a

rule schema and a precondition (in first- or monadic second-order formulas) if we can define

some transformations (i.e. Lift, Shift, and Post) such that some properties hold. Since we

use a similar approach as [1] to construct a strongest liberal postcondition, that is by lifting

and shifting a condition; then we may be able to show that the properties we introduce in

Chapter 4 of this thesis can be applied to other logic (e.g. E-condition).

185

References

[1] Christopher M. Poskitt. Verification of Graph Programs. PhD thesis, The University of

York, 2013. URL http://etheses.whiterose.ac.uk/4700/.

[2] Detlef Plump. The design of GP 2. In Proc. Workshop on Reduction Strategies in Rewrit-

ing and Programming (WRS 2011), volume 82 of Electronic Proceedings in Theoretical

Computer Science, pages 1–16, 2012. doi: 10.4204/EPTCS.82.1.

[3] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals

of Algebraic Graph Transformation. Monographs in Theoretical Computer Science.

Springer-Verlag, 2006.

[4] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and Model

Transformation. Monographs in Theoretical Computer Science. Springer-Verlag, 2015.

[5] Horst Bunke. Attributed programmed graph grammars and their application to

schematic diagram interpretation. IEEE Trans. Pattern Anal. Mach. Intell., 4(6):574–

582, 1982. doi: 10.1109/TPAMI.1982.4767310.

[6] A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES Approach: Language and

Environment, page 487–550. World Scientific Publishing Co., Inc., USA, 1999. ISBN

9810240201.

[7] C. Ermel, M. Rudolf, and G. Taentzer. The AGG Approach: Language and Environment,

page 551–603. World Scientific Publishing Co., Inc., USA, 1999. ISBN 9810240201.

[8] Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 - new features for spec-

ifying and analyzing algebraic graph transformations. In Andy Schürr, Dániel Varró,

and Gergely Varró, editors, Applications of Graph Transformations with Industrial Rele-

vance - 4th International Symposium, AGTIVE 2011, Budapest, Hungary, October 4-7,

2011, Revised Selected and Invited Papers, volume 7233 of Lecture Notes in Computer

Science, pages 81–88. Springer, 2011. doi: 10.1007/978-3-642-34176-2/ 8.

[9] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and

Maria Zimakova. Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol.

Transf., 14(1):15–40, 2012. doi: 10.1007/s10009-011-0186-x.

[10] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. Grgen.net - the expressive,

convenient and fast graph rewrite system. Int. J. Softw. Tools Technol. Transf., 12(3-4):

263–271, 2010. doi: 10.1007/s10009-010-0148-8.

187

http://etheses.whiterose.ac.uk/4700/

References

[11] Christopher Bak. GP 2: Efficient Implementation of a Graph Programming Language.

PhD thesis, Department of Computer Science, University of York, 2015. URL http:

//etheses.whiterose.ac.uk/12586/.

[12] Annegret Habel and Detlef Plump. Computational completeness of programming lan-

guages based on graph transformation. In Proc. Foundations of Software Science and

Computation Structures (FOSSACS 2001), volume 2030 of Lecture Notes in Computer

Science, pages 230–245. Springer, 2001.

[13] Christopher M. Poskitt and Detlef Plump. A Hoare calculus for graph programs. In

Proc. International Conference on Graph Transformation (ICGT 2010), volume 6372

of Lecture Notes in Computer Science, pages 139–154. Springer, 2010. doi: 10.1007/

978-3-642-15928-2/ 10.

[14] Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph programs.

Fundamenta Informaticae, 118(1-2):135–175, 2012. doi: 10.3233/FI-2012-708.

[15] Christopher M. Poskitt and Detlef Plump. Verifying total correctness of graph programs.

In Graph Computation Models (GCM 2012), Revised Selected Papers, volume 61 of

Electronic Communications of the EASST, 2013.

[16] Christopher M. Poskitt and Detlef Plump. Verifying monadic second-order properties

of graph programs. In Proc. International Conference on Graph Transformation (ICGT

2014), volume 8571 of Lecture Notes in Computer Science, pages 33–48. Springer, 2014.

doi: 10.1007/978-3-319-09108-2/ 3.

[17] Karl-Heinz Pennemann. Development of Correct Graph Transformation Systems. PhD

thesis, Department of Computing Science, University of Oldenburg, 2009.

[18] Graham Campbell, Brian Courtehoute, and Detlef Plump. Linear-Time Graph Algo-

rithms in GP 2. In Markus Roggenbach and Ana Sokolova, editors, 8th Conference on

Algebra and Coalgebra in Computer Science (CALCO 2019), volume 139 of Leibniz In-

ternational Proceedings in Informatics (LIPIcs), pages 16:1–16:23, Dagstuhl, Germany,

2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-120-7. doi:

10.4230/LIPIcs.CALCO.2019.16. URL http://drops.dagstuhl.de/opus/volltexte/

2019/11444.

[19] Brian Courtehoute and Detlef Plump. A fast graph program for computing minimum

spanning trees. In Proceedings of the Eleventh International Workshop on Graph Com-

putation Models, volume 330 of Electronic Proceedings in Theoritical Computer Science,

pages 163–180, 2020. doi: 10.4204/EPTCS.330.

[20] Detlef Plump. From imperative to rule-based graph programs. J. Log. Algebraic Methods

Program., 88:154–173, 2017. doi: 10.1016/j.jlamp.2016.12.001.

188

http://etheses.whiterose.ac.uk/12586/
http://etheses.whiterose.ac.uk/12586/
http://drops.dagstuhl.de/opus/volltexte/2019/11444
http://drops.dagstuhl.de/opus/volltexte/2019/11444

References REFERENCES

[21] Tobias Nipkow. Hoare Logics in Isabelle/HOL, pages 341–367. Springer Netherlands,

Dordrecht, 2002. ISBN 978-94-010-0413-8. doi: 10.1007/978-94-010-0413-8 11.

[22] Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL. Springer,

2014. doi: 10.1007/978-3-319-10542-0.

[23] Christine Paulin-Mohring. Introduction to the Coq proof-assistant for practical software

verification. In Bertrand Meyer and Martin Nordio, editors, Tools for Practical Software

Verification, volume 7682, pages 45–95. Springer, 2012.

[24] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph M. Wintersteiger.

Programming Z3. In SETSS 2018, volume 11430 of LNCS, pages 148–201. Springer,

2018. doi: 10.1007/978-3-030-17601-3/ 4.

[25] Gia Wulandari and Detlef Plump. Verifying graph programs with first-order logic. In

Proceedings of the Eleventh International Workshop on Graph Computation Models,

volume 330 of Electronic Proceedings in Theoritical Computer Science, pages 181–200,

2020. doi: 10.4204/EPTCS.330.

[26] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transformation

systems relative to nested conditions. Mathematical Structures in Computer Science,

19:245–296, 2009.

[27] Francesc Rosselló and Gabriel Valiente. Graph transformation in molecular biology. In

Formal Methods in Software and Systems Modeling, volume 3393 of Lecture Notes in

Computer Science, pages 116–133. Springer, 2005. doi: 10.1007/978-3-540-31847-7 7.

[28] Jakob Lykke Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler. Chem-

ical graph transformation with stereo-information. In Graph Transformation - 10th

International Conference, ICGT 2017 Proceedings, volume 10373 of Lecture Notes in

Computer Science, pages 54–69. Springer, 2017. doi: 10.1007/978-3-319-61470-0 4.

[29] Graham Campbell. Efficient graph rewriting. CoRR, abs/1906.05170, 2019. URL

http://arxiv.org/abs/1906.05170.

[30] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars (a survey). In

Proceedings of the International Workshop on Graph-Grammars and Their Application

to Computer Science and Biology, volume 73 of Lecture Notes in Computer Science,

pages 1–69. Springer, 1979. ISBN 3-540-09525-X. URL http://dl.acm.org/citation.

cfm?id=647558.730053.

[31] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph transforma-

tion revisited. Mathematical Structures in Computer Science, 11(5):637–688, 2001. doi:

10.17/S0960129501003425.

189

http://arxiv.org/abs/1906.05170
http://dl.acm.org/citation.cfm?id=647558.730053
http://dl.acm.org/citation.cfm?id=647558.730053

References

[32] Annegret Habel and Detlef Plump. A core language for graph transformation (extended

abstract), 2002.

[33] Sandra Steinert. The Graph Programming Language GP. PhD thesis, The University

of York, 2007.

[34] Detlef Plump. The graph programming language GP. In Symeon Bozapalidis and

George Rahonis, editors, Algebraic Informatics, Third International Conference, CAI

2009, Thessaloniki, Greece, May 19-22, 2009, Proceedings, volume 5725 of Lecture Notes

in Computer Science, pages 99–122. Springer, 2009. doi: 10.1007/978-3-642-03564-7.

[35] Detlef Plump and Sandra Steinert. Towards graph programs for graph algorithms. In

Proc. International Conference on Graph Transformation (ICGT 2004), volume 3256 of

Lecture Notes in Computer Science, pages 128–143. Springer, 2004.

[36] Greg Manning and Detlef Plump. The GP programming system. In Proc. Graph Trans-

formation and Visual Modelling Techniques (GT-VMT 2008), volume 10 of Electronic

Communications of the EASST, 2008.

[37] Annegret Habel and Detlef Plump. Relabelling in graph transformation. In Proc. In-

ternational Conference on Graph Transformation (ICGT 2002), volume 2505 of Lec-

ture Notes in Computer Science, pages 135–147. Springer-Verlag, 2002. doi: 10.1007/

3-540-45832-8.

[38] Ivaylo Hristakiev and Detlef Plump. Attributed graph transformation via rule schemata:

Church-rosser theorem. In Software Technologies: Applications and Foundations - STAF

2016 Collocated Workshops: DataMod, GCM, HOFM, MELO, SEMS, VeryComp, Vi-

enna, Austria, July 4-8, 2016, Revised Selected Papers, pages 145–160, 2016. doi:

10.1007/978-3-319-50230-4.

[39] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Se-

quential and Concurrent Programs. Springer, third edition, 2009.

[40] Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic with

abrupt termination. In Fundamental Approaches to Software Engineering, Third Inter-

nationsl Conference, FASE 2000 Proceedings, volume 1783 of Lecture Notes in Computer

Science, pages 284–303. Springer, 2000. doi: 10.1007/3-540-46428-X 20.

[41] David von Oheimb. Hoare logic for java in isabelle/hol. Concurrency and Computation:

Practice and Experience, 13(13):1173–1214, 2001. doi: 10.1002/cpe.598.

[42] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer

Science. An EATCS Series. Springer, 2004. ISBN 3-540-21202-7. doi: 10.1007/

978-3-662-07003-1.

190

References REFERENCES

[43] Zhongwan Lu. Mathematical Logic for Computer Science, volume 13 of World Scientific

Series in Computer Science. World Scientific, 1989. ISBN 978-9971-50-251-5. doi:

10.1142/0388.

[44] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem

Proving, Second Edition. Dover Publications, Inc., New York, NY, USA, 2015. ISBN

0486780821, 9780486780825.

[45] Bruno Courcelle. Monadic second-order graph transductions. In Jean-Claude Raoult,

editor, CAAP ’92, 17th Colloquium on Trees in Algebra and Programming, Rennes,

France, February 26-28, 1992, Proceedings, volume 581 of Lecture Notes in Computer

Science, pages 124–144. Springer, 1992. doi: 10.1007/3-540-55251-0.

[46] Detlef Seese. The structure of models of decidable monadic theories of graphs. Ann.

Pure Appl. Log., 53(2):169–195, 1991. doi: 10.1016/0168-0072(91)90054-P.

[47] Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a

conjecture by Seese. J. Comb. Theory, Ser. B, 97(1):91–126, 2007. doi: 10.1016/j.jctb.

2006.04.003.

[48] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013. ISBN 978-1-4471-5558-4. doi: 10.1007/

978-1-4471-5559-1.

[49] Christopher M. Poskitt and Detlef Plump. Hoare logic for graph programs. In

Proc. THEORY Workshop at Verified Software: Theories, Tools and Experiments (VS-

THEORY 2010), 2010.

[50] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order

Logic: A Language-Theoretic Approach. Cambridge University Press, New York, NY,

USA, 1st edition, 2012. ISBN 0521898331, 9780521898331.

[51] Kenneth H. Rosen. Discrete mathematics and its applications. McGraw-Hill, seventh

edition, 2012. ISBN 978-0-07-338309-5.

[52] Aaron R. Bradley and Zohar Manna. The calculus of computation - decision procedures

with applications to verification. Springer, 2007. doi: 10.1007/978-3-540-74113-8.

[53] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics.

Texts and Monographs in Computer Science. Springer, 1990. ISBN 978-3-540-96957-0.

doi: 10.1007/978-1-4612-3228-5.

[54] Patrick Cousot. Chapter 15 - methods and logics for proving programs. In Jan Van

Leeuwen, editor, Formal Models and Semantics, Handbook of Theoretical Computer Sci-

ence, pages 841 – 993. Elsevier, Amsterdam, 1990. ISBN 978-0-444-88074-1. doi: https:

191

References

//doi.org/10.1016/B978-0-444-88074-1.50020-2. URL http://www.sciencedirect.

com/science/article/pii/B9780444880741500202.

[55] Clifford B. Jones, A.W. Roscoe, and Kenneth R. Wood, editors. Reflections on the Work

of C.A.R. Hoare. Springer, 2010. doi: 10.1007/978-1-84882-912-1.

[56] Krzysztof R. Apt and Ernst-Ruediger Olderog. Fifty years of hoare’s logic, 2019.

[57] Brian Courtehoute Graham Campbell and Detlef Plump. Fast rule-based graph pro-

grams). ArXiv e-prints, arXiv:2012.11394 [cs.PL], 2020. URL https://arxiv.org/

abs/2012.11394.

[58] Panu Raatikainen. Gödel’s Incompleteness Theorems. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,

winter 2020 edition, 2020.

[59] Stephen A. Cook. Soundness and completeness of an axiom system for program verifi-

cation. SIAM Journal on Computing, 7(1):70–90, 1978. doi: 10.1137/0207005.

[60] Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite

graphs. Inf. Comput., 85(1):12–75, 1990. doi: 10.1016/0890-5401(90)90043-H.

[61] John Alan Robinson. A machine-oriented logic based on the resolution principle. J.

ACM, 12(1):23–41, 1965. doi: 10.1145/321250.321253.

[62] Sven Schneider, Leen Lambers, and Fernando Orejas. Automated reasoning for at-

tributed graph properties. Int. J. Softw. Tools Technol. Transf., 20(6):705–737, 2018.

doi: 10.1007/s10009-018-0496-3.

[63] Sven Schneider, Johannes Dyck, and Holger Giese. Formal verification of invariants for

attributed graph transformation systems based on nested attributed graph conditions. In

Fabio Gadducci and Timo Kehrer, editors, Graph Transformation - 13th International

Conference, ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June 25-26,

2020, Proceedings, volume 12150 of Lecture Notes in Computer Science, pages 257–275.

Springer, 2020. doi: 10.1007/978-3-030-51372-6.

[64] Gia S. Wulandari and Detlef Plump. Verifying a copying garbage collector in GP 2. In

Software Technologies: Applications and Foundations - STAF 2018 Collocated Work-

shops, Toulouse, France, June 25-29, 2018, Revised Selected Papers, pages 479–494,

2018. doi: 10.1007/978-3-030-04771-9.

192

http://www.sciencedirect.com/science/article/pii/B9780444880741500202
http://www.sciencedirect.com/science/article/pii/B9780444880741500202
https://arxiv.org/abs/2012.11394
https://arxiv.org/abs/2012.11394

Index

Γ∨, 66

AdjFO, 92

AdjMSO, 111

αL, 36

αG, 56

αL, 56

L, 32

M, 32

L, 32

µ, 36

ρg(G), 64

LiftFO, 90

LiftMSO, 109

Post, 97

ShiftFO, 96

ShiftMSO, 117

SplitFO, 85

SplitMSO, 105

ValFO, 88

ValMSO, 108

App(r), 130

application of a rule, 28

schema with condition, 37

with relabelling, 30

assignment

formula assignment, 56

bound variable, 48

Break(c,P, d), 128

closed formula, 62

conditions, 63

over a graph, 63

control program, 137

Dang(r), 83

dangling condition, 28

direct derivation, 29

e-condition, 43

FAIL, 125

Fail, 131, 137

first-order formula, 56

free variable, 47

functions, 52

generalised rule schema, 65

GP 2 semantic function, 40

GP 2 syntax, 38

graph, 24

host graph, 33

rule graph, 33

inclusion, 25

induction

on FO formulas, 61

on FO terms, 61

on MSO formulas, 62

on MSO terms, 62

on graph programs, 40

on loop-free programs, 41

on proof tree, 171

iteration commands, 136

labels, 24

host graphs labels, 32

label assignments, 36

rule schema labels, 33

lifted form, 110

marks, 24

morphism, 25

partial correctness, 42, 123

path, 53

193

References

predicates, 53

premorphism, 26

proof tree, 42

pullback, 30

pushout, 27

natural pushout, 31

replacement graph, 64

rule, 28

conditional rule schema, 35

generalised rule schema, 66

rule schema, 34

rule with relabelling, 30

unrestricted rule schema, 34

satisfaction, 57

SEM, 128

semantic partial calculus, 128

Slp, 131

Spec(L), 68

strongest liberal postcondition, 77

subset formula, 105

substitutions, 48

SUCCESS, 125

Success, 131

SYN, 138

syntactic partial calculus, 138

terms, 54

total correctness, 43

variables, 52

Variablisation (Var), 69

weakest liberal precondition, 124

Wlp, 138

194

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Motivation
	1.2 Thesis aims
	1.3 Thesis contributions
	1.4 Thesis structure

	2 Context
	2.1 Graph programming
	2.1.1 Graphs and graph morphisms
	2.1.2 Graph transformation systems
	2.1.2.1 Rules and direct derivation
	2.1.2.2 Rules with relabelling

	2.1.3 The GP2 programming language
	2.1.3.1 Graphs in GP2
	2.1.3.2 Conditional rule schemata
	2.1.3.3 Syntax and operational semantics of graph programs

	2.2 Verification of graph programs
	2.2.1 Verification with Hoare logic
	2.2.2 Assertions for graph programs
	2.2.3 Hoare calculus for graph programs

	2.3 Monadic second-order logic for graphs
	2.4 Summary

	3 Monadic second-order logic for graph programs
	3.1 Monadic second-order formulas
	3.2 Satisfaction of a monadic second-order formula
	3.3 Structural induction on monadic second-order formulas
	3.4 Monadic second-order formulas in rule schema application
	3.5 Properties of monadic second-order formulas
	3.6 Summary

	4 Calculating a strongest liberal postcondition
	5 A strongest liberal postcondition for first-order formulas
	5.1 Construction of a strongest liberal postcondition
	5.2 The dangling condition
	5.3 From precondition to left-application condition
	5.4 From left to right-application condition
	5.5 From right-application condition to postcondition
	5.6 Summary

	6 Extension to monadic second-order logic
	6.1 Constructing left and right-application condition by example
	6.1.1 Constructing left-application condition
	6.1.2 Constructing right-application condition

	6.2 From precondition to left-application condition
	6.3 From left to right-application condition
	6.4 From right-application condition to postcondition
	6.5 Complexity of a strongest liberal postcondition
	6.6 Summary

	7 Graph program verification
	7.1 Semantic Proof Calculus
	7.2 Syntactical Proof Calculus
	7.3 Summary

	8 Verification case studies
	8.1 Vertex colouring
	8.1.1 Graph program vertex-colouring
	8.1.2 Proof tree of vertex-colouring
	8.1.3 Proof of implications
	8.1.4 Comparison with E-conditions

	8.2 Transitive closure
	8.2.1 Graph program transitive-closure
	8.2.2 Proof tree of transitive-closure
	8.2.3 Proof of implications

	8.3 Unrooted 2-colouring
	8.3.1 Graph program 2-colouring
	8.3.2 Case A: 2-colourable input graph
	8.3.2.1 Proof tree of 2-colouring (A)
	8.3.2.2 Proof of implications

	8.3.3 Case B: non-2-colourable input graph
	8.3.3.1 Proof tree of 2-colouring (B)
	8.3.3.2 Proof of implications

	8.4 Connectedness
	8.4.1 Graph program connectedness
	8.4.2 Case A: connected input graph
	8.4.2.1 Proof tree of is-connected (A)
	8.4.2.2 Proof of implications

	8.4.3 Case B: disconnected input graph
	8.4.3.1 Proof tree of is-connected (B)
	8.4.3.2 Proof of implications

	8.5 Summary

	9 Soundness and completeness of the proof calculi
	9.1 Soundness
	9.2 Relative completeness
	9.3 Summary

	10 Conclusions and future work
	10.1 Conclusions
	10.2 Future work
	10.2.1 Theorem proving for implications between assertions
	10.2.2 Automatic construction of invariants
	10.2.3 Monadic second-order transductions for reasoning about graph programs
	10.2.4 Relative completeness for monadic second-order Hoare-triples
	10.2.5 Proof calculus for total correctness of monadic second-order Hoare triples
	10.2.6 Proof obligation for the construction of a strongest liberal postcondition

	References

