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Abstract

The work presented in this thesis considers the formation mechanisms of the min­

eral CaC03 . The role of amorphous calcium carbonate (ACC) as a precursor 

to calcite, the most thermodynamically stable CaC03 polymorph, is investigated 

in several systems. Precipitation of CaC03 in bulk solution proceeds via ACC, 

identified using Raman spectroscopy, SEM, TEM and spectrophotometry charac­

terisation techniques. The formation rate and stability of ACC was shown to be 

dependent on the initial solution concentration in the range of [Ca2+]= 2-10 mM.

The amorphous phase of CaC03 is stabilised under moderate degrees of confine­

ment. Precipitation of CaC03 within an annular wedge, formed around the region 

of contact of crossed cylinders, resulted in different crystal morphologies dependent 

upon the surface separation. Single calcite rhombohedra formed at surface separa­

tions greater than 5 /rm, identical to those observed on equivalent surfaces in bulk 

solution. Irregular, multifaceted calcite particles formed at intermediate surface 

separations, whereas only ACC particles were observed at separations below 1 //m. 

There was a rapid transition from ACC into calcite upon the removal of the confin­

ing surface and subsequent incubation in depleted solution. Furthermore, heating 

of an amorphous particle after separation resulted in the transformation into cal­

cite. The stabilisation of the amorphous phase was attributed to kinetic factors, 

since it was shown that ACC would be thermodynamically preferable to calcite at 

only sub-nanometre surface separations, at least three orders of magnitude smaller 

than observed here.

The precipitation of CaC03 is influenced by the substrate properties, which af­

ford control over number density, polymorphism and crystallographic orientation. 

On homogeneous functionalised self-assembled monolayers (SAMs) of mercapto- 

hexadecanoic acid (MHA) on gold, face selective growth of calcite parallel to the

(012) and (015) growth planes was observed, ascribed to favourable interactions 

between the inorganic CaC03 and the organic monolayer. Using patterned SAMs,



formed using the deep-UV photo-lithography method, crystallisation at carboxyl- 

terminated regions resulted in localised undersaturation at polar-terminated re­

gions, demonstrating that crystallisation is dependent upon concentration gradi­

ents. CaC03 crystallisation on weathered mica substrates yielded epitaxial growth 

of calcite in a (001) orientation, parallel to the mica basal cleavage plane. Despite 

a close lattice match between the Ca-Ca spacing parallel to the (001) plane (0.499 

nm) and the adjacent I<+ site spacing on the basal cleavage plane (0.512 nm), 

epitaxial overgrowth did not occur on freshly cleaved mica surfaces. It is pro­

posed that the presence of naturally formed surface crystallites of K2C 0 3 are a 

necessary intermediary for the occurrence of epitaxial calcite. Amorphous-type 

particles, morphologically similar to those characterised in bulk solution, were 

observed during the first 60 s after nucleation on both these substrates, before 

transformation into the crystalline state.

Crystallisation of CaC03 within arrays of sub-picolitre droplets supported on pat­

terned SAMs was affected by the limited solution volume. Calcite crystals formed 

almost exclusively in a tetrahedral configuration, in contrast to the rhombohedral 

particles observed during precipitation from bulk solution. Multiple occupancy of 

droplets was rare after a 24 h growth period, attributed to concentration deple­

tion. As in the other studied systems, sub-micron amorphous-type particles were 

present after short growth times, presenting further evidence for the crystallisation 

of CaCC>3 through an amorphous precursor phase.
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Chapter 1

Background and Theory

1.1 Introduction

The field of crystallisation traverses many disciplines, including chemistry, physics, 

materials science and biology. Control over the orientation, size, morphology, 

organisation and hierarchical assembly has been the focus of significant interest 

for the potential design of new materials across a wide range of fields, including 

pharmaceuticals [1, 2], electronics [3-5], food stuffs [6, 7], ceramics [8, 9] and 

medicine [10]. Amongst recent examples, the properties of ceramic films [11] 

metal nanocrystals [12-15] and semiconductor nanocrystals [16-18] are dependent

on the degree of space control and structural specialty [19, 20],

Current synthesis techniques afford only limited control over the crystallisation 

process and often require high pressures and temperatures or the use of expensive 

screening processes. It remains a technical challenge to control the morphology 

and surface features of these materials. Emerging strategies for the synthesis of 

inorganic materials with controlled morphologies include the use of organic ad­

ditives, functionalised templates and self-assembling organic superstructures. In 

addition, there is significant interest in the directed self-assembly of organie/inor- 

ganic hybrid nanostructures [19], These biomimetic approaches are inspired by 

nature, aiming to develop new synthesis techniques through the study of biomin­

eralisation mechanisms.

1
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Biomineralisation is a widespread natural phenomena, signified by the formation 

of solid inorganic structures, including bones, teeth and shells by living organ­

isms [19]. The mechanisms by which the organisms selectively extract and up­

take elements into the functional structures are receiving significant interest, since 

these biominerals often exhibit remarkable morphologies, with intricate features 

vastly more sophisticated than their synthetic counterparts. Biominerals can be 

characterised by well defined structures, often leading to a higher order hierar­

chical assembly at the nano, micro, and meso levels [21]. Biomineralisation offers 

outstanding control over the composition, morphology, crystallinity, and material 

properties at physiological temperature, pressure, and pH ranges [22]. In addition, 

these materials have been shown to exhibit repair mechanisms, providing a unique 

guide for the fabrication of future materials.

Mineralised deposits are not present in the majority of organisms, yet the biomin­

eralisation phenomenon is still extremely widespread, occurring in all five king­

doms and distributed across some 55 phyla [23]. Exoskeletons in protozoa, skeletal 

plates of echinoderms, mammalian bone and teeth, eggshells and stratoliths, are 

well known examples of this process. Calcium cations are present in around 50% 

of known biominerals, including calcium phosphate, calcium oxalate and calcium 

carbonate. This is unlikely to be coincidental, since calcium ions are fundamen­

tal in many cellular functions [24]. Other known cations observed in biominerals 

include magnesium, iron, barium and zinc [25].

Biominerals have been loosely classified into three categories; amorphous, polycrys­

talline and single crystal [26]. Amorphous minerals have no regular internal atomic 

structure and constitute less than a quarter of known biominerals [23]. These min­

erals are usually metastable with respect to their polycrystalline and crystalline 

counterparts in an absence of biological control. However, when formed with bio­

logical control, amorphous minerals are reportedly stable for the life span of the 

organism [27]. Since there is no preferred form of the amorphous mineral, it can 

be readily moulded into a desired shape by the organism [28, 29]. Polycrystalline 

biominerals exhibit a wide range of morphologies, with complex forms assembling 

from small crystalline components [30]. Single-crystal biominerals often display 

no relation to their internal crystal structure, contradicting the classical definition 

of a single crystal being bounded by smooth, planar faces parallel to the unit cell.
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Figure 1.1 shows two examples of single crystal calcite (C aC03), firstly for a skele­

tal plates of an echinoderm displaying a sponge-like morphology, and secondly for 

a synthetic calcite crystal with planar faces parallel to the unit cell. The elaborate 

structure of the biomineral contrasts with the non-complex structure of synthetic 
calcite.

Figure 1 1: Comparison of single crystal calcite. left Stereom of the biomineral 
echinoderm, with a  higher order hierarchical assembly (taken from reference [31]) 
and right synthetic calcite, morphologically similar to the calcite unit cell (image 
size 20x20 /an).

The work in this thesis is based on the transformation of C aC 03 from an amor­

phous phase into a  crystalline state. C aC 03 exists in three anhydrous polymorphs, 

which in order of decreasing stability are calcite, aragonite and vaterite. A detailed 

description of each is presented in section 1.4. In addition there are two hydrated 

polymorphs, calcium carbonate monohydrate and calcium carbonate hexahydrate 

[3 2 j c aC 0 3 also exists as a  highly unstable amorphous phase, amorphous calcium 

carbonate (ACC), known to act as a precursor phase during biomineralisation. 

C aC 03 was used as a  model biomineral due to the relative ease of precipitation, 

the known occurrence of an amorphous precursor phase (ACC) under certain pre­

cipitation conditions and the wealth of available knowledge, since C aC 03 is the 

most abundant carbonate in nature. C aC 03 is attracting great interest in the 

context of controlling crystallisation [33-37]. Recent studies demonstrated control 

over the polymorphism, nucleation site, crystal morphology and hierarchal struc­

ture of this mineral. Furthermore, C aC 03 has many industrial applications, and 

is used in the manufacturing of plastics, cements, adhesives, medicines and paper.
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Amorphous calcium carbonate was first reported over 100 years ago, when it was 

observed that particular calcium carbonate deposits were isotropic when viewed 

between crossed polarised lenses [38, 39]. It was later shown that these deposits 

did not diffract X-rays, an important characteristic of a crystalline material [40] 

Amorphous calcium carbonate is widespread amongst the Crustacean taxon with 

reported functions including as a temporary storage mineral, to provide mechan­

ical support and as a precursor phase to the crystalline CaCC>3 polymorphs [39]. 

Biogenic ACC often contains considerable quantities of magnesium or phospho­

rous additives, and is reportedly heavily hydrated, with one mole of water per 

mole of calcium carbonate [41]. Synthetic ACC, formed in the absence of addi­

tives, consists of spherical microparticles, shown using thermogravimetric analysis 

to contain less than one third of a molecule of water per unit cell [41], Synthetic 

ACC is reportedly stabilised indefinitely using additives, including polyphospho- 

nates and amino acids. In high pH solutions, ACC reportedly forms as ~50 run 

diameter particles, with the dehydration of the ACC occurring more easily with 

decreasing pH [42]. Similarly, Donners et al. precipitated stable ACC by coating 

the particles with hydrophobic surfactants, preventing the expulsion of water [43],

The stabilisation of ACC is often attributed to kinetic factors, although the for­

mation mechanism is not fully understood. The aim of the work presented here is 

to gain greater insight into these processes. The biological mechanisms involved in 

the formation of biogenic ACC result in the formation of elaborate, defined struc­

tures and are presumably dependent on many complex interactions. The work of 

this thesis investigates several control parameters independently. The nucleation 

pathways of CaC03 on weathered mica and homogeneous SAMs are considered 

in chapters 3 and 4 respectively. Both these surfaces are shown to promote the 

heterogeneous nucleation of CaC03, and ACC is identified during the early growth 

stages on both these surfaces. The effects of a physical confinement on the stabil­

isation of an amorphous phase is investigated in chapter 5, with the stabilisation 

mechanism attributed to a hindrance of water expulsion within the confined sys­
tems. The nucleation pathways of CaC03 within bulk solution are examined in 

chapter 6, with transiently present ACC identified using Raman spectroscopy and 

transmission electron microscopy (TEM). Finally, ACC is reported during precipi­

tation within sub-picolitre droplets in chapter 7. The results presented in the first
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part of chapter 3 do not strictly concern the ACC formation mechanisms, but are 

included as an novel finding, demonstrating that the exact condition of a mica 

surface is an important consideration for the epitaxial growth of CaC03.

The chapter presents an overview of nucléation and growth. Section 1.3.1 describes 

the crystal classification used in this thesis, with the structures of the anhydrous 

CaC03 polymorphs, calcite, aragonite and vaterite presented in section 1.4. The 

general experimental methods used throughout the experiments presented in this 

thesis are described in chapter 2.

1.2 Crystal Formation

The onset of crystallisation is the result of three distinct processes, supersatura­

tion, nucléation and growth. A quantitative theoretical outline of each is presented 

here.

1.2.1 Supersaturation and the Metastable Zone

The driving force for crystallisation is supersaturation, which occurs when the 

amount of dissolved material exceeds the solubility limit of a given substance. 

First described by Lowitz in 1795 [44], supersaturation results from a physical 

change to the solution, most commonly in temperature, pressure or chemical com­

position (additives, evaporation etc.) [45, 46], but can also be induced by acoustic 

waves and electromagnetic fields. Gibbs stated that for supersaturated solutions, 

the free energy of the initial solution is greater than that of the the crystalline 

phase plus the final solution phase [47-49]. Supersaturation is therefore a pre­

requisite to crystallisation. In systems where a single compound crystallises, it is 

often convenient to express the supersaturation in terms of a change in chemical 
potential, A/i, since this is a measure of change in free energy upon the phase 

transformation.
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where Icb denotes the Boltzmann constant and T  is the absolute temperature. 

AP  is the activity product of the reactants, which, for supersaturated solutions 

exceeds the equilibrium activity product, Ksp. AP/Ksp  is a measure of the relative 

supersaturation, a. Relative supersaturation is an important concept in crystal 

growth as it is directly proportional to the difference in Gibbs free energy between 

the bulk phase and the nucleating phase.

AP
K#p ( 1.2)

Writing a in terms of A//

An — —ksTlna (j 3^

For dilute solutions, it is more useful to define a in terms of the saturation con­

centration, caat, and the reactant concentration, c.

c
Csat

For a supersaturated vapour, equation 1.4 can be written

(1.4)

P - (1.5)

where P  and Psat define the saturation vapour pressure and the actual vapour 

pressure respectively.

First stated by De Coppet, there is a finite region of supersaturation within 

which crystallisation proceeds spontaneously via nucleation and growth [50]. This 

metastable zone is commonly referred to as the Ostwald-Miers region with its size 

specific to each solution [51]. Ostwald observed a sharp upper boundary, or su­

persolubility curve, to this region approximately parallel to the solubility curve, 

thus defining three distinct solution states; stable, metastable and unstable (Fig­

ure 1.2). Within unstable solutions, phase separation proceeds by a non-activated
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process known as spinodal decomposition without having to overcome a thermody­

namic barrier [52], Spinodal decomposition is resultant solely upon diffusion with 

two distinct new phases propagating evenly through the bulk phase. In practice, 

however, the onset of spinodal decomposition is extremely rare in nature since the 

metastable zone is almost always limited by the onset of heterogeneous nucleation.

Figure 1.2: The solution state as a function of solute concentration and tempera­
ture. Below the solubility curve the solution is stable and above the supersolubility 
curve the solution is unstable. Between the two curves the solution is metastable 
with phase separation occurring via an activated process know as nucleation.

The metastable zone width has important consequences for the onset of nucle­

ation and the resultant crystal form, since polymorphism, size distribution, defect 

density, and morphology are all parameters dependent upon the degree of metasta­

bility. Impurities, vessel topography, solution agitation rate, bubble formation and 

the rate of cooling are common factors known to influence the metastable zone 

width [53]. Experimentally, the zone width can be readily determined using either 

an isothermal or a poly thermal method [50]. For the isothermal method supersat­

uration is generated by evaporation at a constant rate and at a fixed temperature, 
whereas for the polythermal method supersaturation is achieved by supercooling 

at a fixed concentration. These methods yield the maximum achievable super­

saturation, ACmax, and supercooling, ATmax, values respectively and define the 

boundaries of the metastable zone shown in Figure 1.2



Chapter 1. Background and Theory 8

Numerous theoretical studies have attempted to predict the metastable zone width 

from nucléation kinetics, with success limited to specific systems. Important works 

include those by Kaschiev et al. [54] who related the metastable zone width to 

the nucléation induction time, independent from the number of nuclei and Nyvlt, 

who obtained the zone width from a semi-empirical calculation of the order of 

nucléation based upon the rate of cooling and maximum range of supercooling

[55]. However there remains no universal theoretical model for the prediction of 

metastable zone width general to all conditions, a consequence of which is the 

relatively low level of control achievable in synthetic crystallisation.

1.2.2 Nucléation

Metastable solutions have a tendency to relax into two or more distinct, stable 

phases. The initial part of this process is nucléation, an activated process in which 

a free energy barrier must be exceeded in order to form embryos of a critical size 

[56-58] Once the embryos attain the size of the critical nucleus, growth occurs 

spontaneously following several mechanisms (section 1.2.3). In the absence of 

impurities, solid surfaces or other preferential nucléation sites, nucléation occurs 

within bulk solution by a process known as homogeneous nucléation. Practically, 

however, the presence of dissolved impurities and solid surfaces (vessel walls etc.) 

act as preferential nucléation sites, lowering the free energy nucléation barrier 

in a process known as heterogeneous nucléation. Both nucléation processes are 

described by the classical nucléation theory (CNT), which originates from the 

works of Volmer and Webber in 1926 [59]. An outline of each is presented here.

1.2.2.1 H om ogeneous N ucléation

Homogeneous nucléation begins with the association of atoms or molecules due to 

statistical density fluctuations [60] and is a highly localised process. An interface 

is formed as a result of this phase change, between the small embryos of the new 

phase and the surrounding metastable bulk phase. On an atomic scale there are 

frequent collisions between the embryo and the neighboring bulk phase, with the 

resultant energy dissipating principally amid the translational, vibrational and
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rotational modes of the embryo [61]. Occasionally, the nature of the collision is 

such that that a molecule leaves the embryo due to a fission event, or attaches 

to the embryo due to an inelastic collision (Figure 1.3). These competing events 

occur in a stochastic nature with fission generally more likely than aggregation, 

and only occasionally will an embryo reach the size of the critical nucleus. The 

size of the critical nucleus is determined by several factors, primarily temperature, 

relative supersaturation, molecular volume and interfacial energy [62], Classical 

homogeneous nucleation theory defines the rate of nucleation, J, the net time for 

embryos to reach the critical size. J  is defined as the number of nuclei forming 

per unit time per unit volume. Volmer and Weber and later Becker [63] proposed 

tha t it took the form

J  — Ke~
G m+ q

k T ( 1.6)

where G* denotes the maximum free energy required for the formation of a crit­

ical nucleus, q relates to the energy of diffusion across the interface, kB is the 

Boltzmann constant and T  is the absolute temperature. J  is a decreasing func­

tion of supersaturation, leading to an increaed rate of nucleation with increased 

undercooling. K  is an indeterminate kinetic constant.

o  O

OO o °

o

o
o

Figure 1.3: The formation of a crystalline embryo (blue atoms) within a metastable 
bulk phase (grey atoms) is determined by the aggregation and desorption events 
shown.
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The minimum work required for the formation of a new phase, Wmin can be de­

termined from CNT. The following derivations are adapted from the formation a 

liquid droplet phase within a supercooled vapour at constant pressure and tem­

perature, following the description given by Debenedetti [60]. This is a some­

what simpler calculation than for the formation of a crystalline embryo within a 

metastable liquid, but the underlying principles remain the same. The density of 

embryos is assumed to be sufficiently low that each can be considered in isolation.

Each embryo changes size due to single-molecule events, by the fission and adsorp­

tion events described previously (Figure 1.3). Considering an embryo containing 

n molecules, D(n) denotes the rate at which the embryos changes size. The em­

bryos grow with each single molecular addition onto an embryo containing (n - 1) 

molecules, whilst simultaneously contracting with each single molecular desorption 

from a n sized embryo.

D(n) =  f(n  -  1 )A(n -  l)/?(n -  1) -  f(n)A(n)a{n) (1.7)

where /  denotes the concentration of the respective embryos and A their relative 

surface areas. /?(n -  1) is the flux of single molecules adsorbing at the interface 

of a (n -  1) sized embryo. cv(n) is the dissociation coefficient, defining the flux 

of the molecules leaving the n sized embryos by fission events. /?(n -  1) can be 

readily determined from kinetic theory, since it is a function of known quantities 

such as temperature and molecular volume. However, the coefficient a{n) can­

not be determined from kinetic theory in general [60]. It will be shown that this 

kinetic problem can be considered thermodynamically with the imposition of em­

bryo equilibrium conditions, under the assumption that an equilibrium between 

embryo sizes will exist within the metastable bulk phase. Under the assumption 

that these coefficients do not change at equilibrium, i.e. D(n) =  0, equation 1.7 

can therefore be written as

N (n -  l)A (n  -  l)/3(n -  1) =  N(n)A(n)a(n) (1.8)
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due to the macroscopic reversibility at equilibrium. In this case, N(n -  1) and 

N(n) denote the respective embryo concentrations.

It can be seen from 1.7 that

® ^  = C(n)-J3 (n + 1) (1.9)

such that D(n) defines the rate of n sized embryos formation due to a single 

molecular addition to (n -  1) sized embryos in addition to the single molecular 

subtraction from (n-hl) sized embryos. D(n + 1) defines the rate at which n sized 

embryos vanish due to the addition and subtraction of single molecules. Conse­

quently, the embryo populations do not vary with time when A is independent of 
n. Using 1.8 to solve for a  and substituting into 1.7 it can be shown

p. - -  / ( " - * )  m  „  %
fiA(n — l)N(n  — 1) N(n -  1) ~N(n) (L l°)

when D is independent of n. By summing over all embryo sizes in the range n =  2 

to n =  A, where A is a large, indeterminate number, 1.10 becomes

D =
mN(l) iiAta

AXA+l)

1
^  ~BA{n)N{n)

(1-11)

Therefore the nucleation rate D is determined only by the adsorption coefficient, 

P, the equilibrium embryo distribution N(n) and the ratio of single molecules to 

large sized molecules at equilibrium. The bulk metastable phase consists almost 

entirely of single molecules, consequently the equilibrium and actual droplet con­

centrations are indistinguishable. Over the timescale of the phase transition, /(n )  

must disappear for large n otherwise the system would comprise primarily of the 

liquid phase. N(n) does not vanish for large n, therefore equation 1.11 becomes

1
A

£
n=l

1
pA(n)N(n)

( 1-12)
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It is therefore shown that the kinetic problem arising from the difficulty in calcu­

lating a can be solved by the thermodynamic consideration equilibrium embryo 

concentrations. The minimum work required to form a cluster of n molecules is 

dependent upon surface and bulk contributions

Wmin = *A + ( P -  n V '  +  n[//(7\ F ) -  p(T, P)] (1.13)

where a represents the embryonic surface tension, A is the interfacial area, P  
and F  are the respective pressures of the bulk phase and the embryo and V' 
is the embryonic volume, fi and \ i  are the respective chemical potentials in the 

embryo and bulk phases. For a metastable liquid away from the critical radius the 

embryo can be assumed as incompressible, for which the difference between bulk 

and embryo pressures can be written as

¿ (T ,F ) -» (T ,P )  =  v ' ( F - P )  (U 4 )

where o' is the embryonic molecular volume. Equation 1.13 becomes

Wmtn — <rA + n[n (T, P) — fi(T, P)] =  <rA 4- nAv (1.15)

whereby An denotes the change in chemical potentials between the stable and 

metastable bulk phases. Since the embryonic volume is a measure of n, it follows 

from basic geometry that

A a  n2/3 (L i,,)

Equation 1.15 is of the form

=  an2/3 -  fcn =  2cr2 -  dr3 (117)

where a, b, c and d are positive constants and r is the embryo radius. It follows 

that n is proportional to r3. The work is maximized for a particular value of n,
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i.e. Wmin/n =  0. This is an unstable equilibrium, embryos containing fewer than 

n * molecules will dissolve spontaneously, whereas larger embryos (r >  r*) are 

energetically favourable, as the addition of a single molecule results in a lower free 

energy. Figure 1.4 shows a plot for Wmin as a function of r, giving the total energy 

for embryo formation as a function of surface and bulk free energy terms.

Radius of nucleus, r

Figure 1.4: Plot of AG as function of r for an embryonic phase within a bulk phase. 
AG is dependent on surface (a) and bulk (b) terms, with the critical radius, r*, 
at ÔAG/ôi =  0.

The minimum work required for the formation of an embryo has a maximum value 

at r*, where dG/dr =  0. A nucleus of radius r* (containing n* molecules) is defined 

as a critical nucleus. For a spherical embryo, n*, is given by

n* 32ir 1s
3 l(-A/x).

and the critical radius, r*, is

(1.18)

2a t/ 
r " ( - A / , )

The minimum reversible work required to form a critical embryo is

(1.19)



Chapter 1. Background and Theory 14

IT min
4a3
2762

1Ô7T I" i f  (73/2  1 2

T ” [(—A/i_
( 1.20)

Figure 1 5: Heterogeneous (left) and homogeneous (right) critical nuclei, both of 
radius r  The heterogeneous nucleus is approximated as a truncated homogeneous 
nucleus, at internal angle 6 to the substrate.

The critical nucleus is at unstable equilibrium. Embryos containing fewer than 

n* molecules will spontaneously reduce in size, since each fission process results 

in a lower overall free energy whereas embryos containing more than n* molecules 

will spontaneously increase in size, since each adsorption process lowers the overall 

free energy. This theory assumes the validity of macroscopic thermodynamics for 

very small droplets, such that the surface tension for an embryo containing 10- 

100 molecules is identical to that in flat plane bulk surface tension [64-66], The 

validity of this so called capillarity approximation and additional shortcomings of 

CNT are treated in section 1.2.2.3

1.2.2.2 H eterogeneous N ucléation

In practice, the existence of solids other than the nucleating phase substantially 

reduces the nucléation barrier for embryo formation, resulting in an increased rate 

of nucléation [67]. In the case of the formation of a  crystalline phase within a  melt 

foreign surfaces reduce the surface contribution to the overall free energy since the 

bonds between the molecules in the crystalline phase and the substrate are often 

stronger than the bonds of solvation [49], In the case of the formation of the liquid
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droplet phase from supercooled vapour, the embryo-substrate interfacial energy is 

almost always lower than the embryo-bulk phase interfacial energy, reducing the 

value of AW. The embryo will therefore ’wet’ the substrate, with a larger degree 

of wetting corresponding to a lower nucleation barrier. In addition, the developing 

embryo is distorted, affecting the inter-atomic forces. The following description 

describes classical heterogeneous theory, with extensions to this model discussed 

in section (1.2.2.3). The minimum work of formation for a nucleus forming on a

substrate is given by

W/nin — Sfcc-d&c +  (Efcs Sci)-̂ i>a +  (P — P>']V> -f [^(T, P*) — n(T, -P)]n. (1 21)

where A  again denotes the interfacial area and £  now represents the surface ten­

sions of the respective interfaces. The subscripts denote the various interfaces 

between the bulk phase, 5, the crystalline phase, c and the substrate, s The 

primed and unprimed quantities refer to embryo and bulk quantities respectively. 

n denotes the number of molecules in the embryo. At equilibrium this truncated 

sphere geometry is analogous to that for a water droplet on a surface, a system 

described by Young’s equation [68]. In the case of a crystal nucleus on a substrate 

(Figure 1.5), the following must hold

<Jcs "f* &bc COS 9 — C/jg  ̂j 22)

Where 9 is the substrate-crystalline contact angle, such that an angle of (9 -  0) 

corresponds to a complete wetting of the substrate and a contact angle of (9 =  n) 

corresponds to non-wetting surface and describes homogeneous nucleation The 

surface contribution to heterogeneous nucleation can therefore be written as

abcAbc +  (a-bs -  <rCs)Aba =  nR2crcb[2( 1 +  cos(ir -  9)) +  sin2(ir -  9)cos{n -  6)} (1.23) 

The minimum work required to overcome the nucleation barrier is
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1671-a3 (1 + cos(ir -  fl))2(2 -  cos(7r -  0))
(1.24)4

This expression is of the same form as equation 1.20 with an additional correction 

factor dependent on the substrate-crystalline contact angle.

1.2.2.3 Non-classical Nucléation Theory

There axe many shortcomings associated with classical nucléation theory. Exper­

imentally, CNT has been found to predict nucléation rates which are too low at 

small temperatures and too high at large temperatures [69]. Central to CNT is 

the capillarity approximation, such that the surface tension for an atomic scale 

curved interface is identical to that for a planar interface in bulk solution. The 

capillarity approximation also assumes that atoms in the centre of the embryo be­

have like those within a bulk crystal [70]. These assumptions have been shown to 

be incorrect in several studies where the critical nucleus contains in the region of 

10-50 atoms. Classical theories describing the onset the crystallisation are further 

complicated by the fact that there is a change in local periodic structure in addi­

tion to the change in density. The order in which these processes occur varies with 

different substances. For metastable liquids composed of small molecules a change 

in density succeeds crystallisation, whereas for metastable liquids comprising of 

large molecules, a localised change in density followed by an atomic rearrangement,
resulting in a long range periodic structure.

Several studies have adapted density functional theory (DFT) to describe this 

behaviour, as part of a so called non-classical nucléation theory[70-72]. Here 

the free energy is dependent not only on a single function (embryo radius, R) but 
on an average spherical density profile p(R). DFT treats the embryo phase as an 

inhomogeneous fluid [69, 70], whereby p(r) is expressed in terms of the reciprocal 

lattice vectors h

p{r) =  pa -f pcT,miexplKi'T (1.25)
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where p0 denotes the average density of the metastable bulk phase and pc is the 

density of the crystalline phase, ra* are structural order parameters describing the 

periodic structure of the crystalline phase. In the bulk metastable phase, m* is 

zero since there is no structural order. Nucleation is therefore characterised by an 

infinite set of spatially dependent order parameters mu in contrast to the single 

density parameter characteristic of the vapour-liquid phase transition.

As in the CNT model, the DFT theory describes a small embryo is surrounded 

by the bulk metastable liquid. In this case, however, the order parameters, m* 

are dependent on the distance, r, from the centre of the nucleus. The critical 

nucleus is now described as the saddle point of the space function, yielding a set of 

coupled equations describing the structure and free energy of the critical nucleus. 

The saddle point is conventionally found by minimising the grand canonical po­

tential function, il, with respect to p(r) [69]. By approximating the densities as 

a sum of Gaussians, centred about the crystal lattice sites, the crystal structure 

can be assumed to be harmonic such that all higher order structural parameters, 

Pi, are related to the first order, pi. This Gaussian approximation yields two or­

dinary differential equations for the average density change, po and the structural

parameter pi-

an  = 0
dpQ(r) (1.26)

an  = 0
dmQ(r) (1.27)

These equations can then he solved for a series of Lennard-Jones atoms. The first 

stage of crystallisation results in structuring, whereby p : changes at a fixed density.

After this density change, there is a resultant change in the average density.

1.2.3 Growth

Growth can be defined as the advances at the liquid-solid or vapour-liquid inter­
faces due to condensation from a supersaturated phase. In the case of a molecular
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crystal within a bulk rnetastable solution, the solution-crystal interface will grow 

and dissociate according to similar principles as for heterogeneous nucleation. In­

deed, under certain circumstances, crystal growth can be considered as a special 

case of heterogeneous nucleation for which the interfacial energy of the crystal- 

solution interface is approximately zero [67], In this model, growth proceeds by 

a secondary surface nucleation with the continual addition and incorporation of 
ions into lattice sites at the advancing interface.

Since this is an activated process, the geometry of the lattice site and the bulk- 

phase supersaturation strongly affect the surface growth rate. Kossel proposed 

three types of lattice sites on the crystal surface, kink, step and surface, each with a 

different interfacial energy (Figure 1 .6 ) [73, 74], Kink and step sites have three and 

four faces exposed to the bulk phase respectively and are therefore energetically 

favourable, due to the large number of incomplete bonds within the crystal [7 5 ], 

Surface sites occur on new layers such that only one ’face’ of an adsorbed ion is in 

contact with the growth face, resulting in a lower binding energy. Surfaces with 

a large number of step and kink sites will grow at a faster rate or conversely at a 

lower supersaturation, since these sites propagate with the addition of each ion.

Figure 1 .6 : The three lattice sites as proposed by Kossel. Surface (grey), edge 
(red) and kink (blue) sites with 5, 4 and 3 exposed faces respectively
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Prank and van der Merve [76] proposed a layer-by-layer growth mechanism de­

scribing the surface growth in terms of surface diffusion and step and kink site 

density. Following their deposition from bulk solution, ions diffuse firstly in two 

dimensions across the surface, until reaching a step site and then in one dimension 

across the step site before adsorption at a kink site. This process results in a unit- 

by-unit growth across the step, until the kink works its way to the surface edge to 

complete a new step. The next steps propagate in the same manner, until the layer 

is complete. Although there is an associated energy cost with the adsorption of 

the first ion on a new step (due to an absence of kink sites), this is small compared 

with the energy cost of forming a new layer. Indeed, it is the formation of the new 

layer which leads to the breakdown of the layer-by-layer mechanism.

Once the high index surfaces disappear (those with a high density of steps and 

kinks), growth proceeds with the two-dimensional nucleation of new molecular 

layers on low index surfaces (those containing only surface sites) [77]. This is 

an activated process and is therefore sensitive to the bulk phase supersaturation, 

with the probability of adsorption negligible below a specific critical supersat­

uration. This means that an insignificant growth rate arises at a well defined 

supersaturation ratio (Figure 1.7). Burton, Cabrera and Frank calculated that a 

supersaturation ratio of the order of 50% would be necessary for nucleation on 

saturated surfaces [77, 78]. However, experimental observations showed growth to 

occur at supersaturations of the order of 1% and lower, against the predictions of

the layer-by-layer model.

Burton, Cabrera and Frank proposed a model (BCF model), which satisfactorily 

describes the growth of crystal surfaces at low supersaturations. They suggested 

that surface imperfections, in particular screw dislocations, act as step sites for the 

formation of a new layer. This model does not require two-dimensional nucleation 

at surface sites and adequately describes experimental results at low supersatu­

rations The screw dislocation intersects the surface of an otherwise flat plane, 

creating a monomolecular step [79]. Upon reaching a critical size, this step will 

propagate along the surface, in a self perpetuating rotary manner (Figure 1.8).
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Figure 1 7- Growth rate as a function of supersaturation. According to the layer- 
by-layer model there should be a critical supersaturation, a* below which growth 
cannot occur, whereas growth has been observed at relative supersaturations below
1% (dashed line)

1.2.4 The Growth Surface

When plotted as a function of fluid flow rate to the surface, the growth rate 

generally falls into two regimes, transport and kinetic limited. An idealised growth 

rate versus fluid flow rate is shown in figure 1.9. At a high flow rate, far from 

equilibrium, the growth is governed by the rate at which the surface can grow 

given an essentially infinite supply of reactants and is therefore surface, or kinetic 

limited At a low flow rate, growth is determined by the addition of reactants 

to the growth interface, and is thus transport dependent. Despite the continuous 

motion of the particles at the solid-fluid interface, the supersaturation may be 

reduced by the formation of a boundary layer at a different concentration to the
bulk, due to a hydrodynamic flow rate gradient.
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Figure 1.8: a-d  The progression of a screw dislocation in accordance to the BCF 
model, accounting for growth as supersaturations below 1 %. The screw dislocation 
progresses in an anti-clockwise manner.

1.3 Crystal Classification

Crystal classification assumes an ideal crystal, containing an infinite, rigid arrange­

ment of uniform atomic unit cells [80]. This can be an unsafe assumption since, all 

crystals will exhibit certain defects, including irregular occupation of the lattice 

sites, imperfections in the lattice structure, grain boundaries and edge molecules 

[81, 82]. The presence of impurities can influence the bulk properties of the crystal 

including density [83], carrier mobility [84], melting temperature [85] and periodic 

arrangement. However, these effects are neglected in the following descriptions of 
the crystal state.

The periodic structures of crystals can be described by the arrangements of atoms 

and interatomic forces within the smallest possible unit for which it is possible 

to recreate the crystal by repetition. Such a unit is defined as the unit cell, 
the smallest arrangement of atoms or molecules which can generate the crystal 

through translation operations alone. The unit cell takes the form of a paral­

lelepiped enclosed by three sets of parallel suifaces. Taking one corner as the 

origin, it is possible to define the crystallographic reference system. The edges of 

the parallelepiped define the basis vectors a, b and c, which, along with the angles
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Figure 1.9: Crystal growth rate as a function of fluid flow rate. The system falls 
into two domains, diffusion and kinetic limited growth.

Figure 1.10: The basis vectors a, b, c and the inter-axial angles a, ft and 7  defining 
the crystallographic reference system

between these vectors a, p  and 7  delineate the metric of the cell, and thus the 

crystallographic reference system (Figure 1 .1 0 ). Since the positions of the atoms 

within the unit cell remains constant upon each propagation, there exists an ar­

ray of identical points throughout the crystal. These points represents the crystal 

lattice, such tha t the surroundings of one point are identical to those of all others 

[86].
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The regularity of the atomic arrangement can be described in terms of symmetry 

elements, an operation which leaves the atomic arrangement unchanged upon ar­

bitrary repetition. There are three basic types of symmetry; translation, rotation 

and reflection. Translation occurs when all points undergo equal displacement 

in the same direction, such as to coincide with a second set of points. Transla­

tion is described mathematically with the introduction of the translation vector r, 

bringing any two lattice points into coincidence.

r = ua. + vh + wc (1.28)

where u, v and w are arbitrary integers, or equal to zero. In the case of rotation, 

all points on the axis keep their position. The points are rotated through angle 0, 
until all points coincide with a second set. The multiplicity of an axis defines the 

number of times the points will coincide with a different set upon rotation through 

29 (Figure 1.11). A combination of translation and rotation operations results in 

rototranslation, with rotation about an axis combined with a translation along the 

axial direction producing a ‘screw’ type motion. Reflection, or mirror symmetry, is 

the third fundamental operation, since the resultant change of lattice co-ordinates 

cannot occur from any number of translation and rotation or translation operations 

[87]. In the case of an ideal crystal there are an infinite number of such operations 

which result in lattice coincidence. However, it was demonstrated by Hessel, that 

there are only 32 distinct cases when viewed in terms of the lattice translational 
symmetries, known as the 32 crystallographic point groups [88],

1.3.1 Crystallographic Systems

There are seven distinguishable crystallographic symmetry classes, defined by both 

the symmetry axes and the cell vectors (Table 1.1) [89]. The cubic system has the 

highest symmetry conditions, with the interaxial angles orthogonal and the cell 

vectors identical. The tetragonal system is the result of stretching the cubic 

system along one of its axes, thus loosing the four three-fold symmetry axes asso­
ciated with the cubic system. This forces a and b to be the same length, with c 
free to be any length, with the interaxial angles again orthogonal. Similarly, the
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Figure 1.11: 6 -fold (left) and 3-fold (right) symmetry axes. 0 -Z  can be rotated 
through 6  indistinguishable positions through 27r, whereas there are only 3 indis­
tinguishable positions upon rotation through 27r about the g-Z axis. These are 
two cases for the same lattice

orthorhombic group arises with the unequal stretching of the cubic lattice along 

two axes, yielding 3 twofold axes. In the monoclinic system there are no axial 

restrictions, with the only criteria being that two of the interaxial angles must be 

90 °, ensuing in a single twofold rotation axis. The triclinic system imposes the 

fewest symmetry conditions, with no restrictions on axial lengths or angles, result­

ing in only translational symmetry. The hexagonal system occurs in cases where 

a and b are identical, set at 1 2 0 ° to each other and perpendicular to c. Similar 

constraints are placed on the trigonal (or rhornbohedral) system although in this 

case c is identical to both a and b yielding a single three-fold axis. In the context 

of this thesis, the rhombohedral, orthorhombic, hexagonal and monoclinic systems 

are of significance as they correspond to the unit cells of calcite, aragonite, vaterite 

and mica respectively.

Each of the seven crystallographic systems are associated with a primitive unit cell, 

denoted P. In addition, there are seven non-primitive unique lattice arrangements 

associated with the various crystallographic systems. These are body centred (I) 

with an additional lattice point at the centre of the cell, face centred with an 

additional lattice point at the centre of each face (F) and on individual faces (A), 
(B) or (C). For example, a face centred lattice can have a symmetry in accordance
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Crystal system Symmetry elements Axial restrictions Lattice types

Cubic Four threefold axes a=b=c
<*=£=7=90°

P I F

Tetragonal Single fourfold axis a=b
a=/?=7=90°

P I

Orthorhombic Three twofold axes a—b P C I F
Monoclinic Single two-fold axis a=/3=7=90 P C
Triclinic Translational only Arbitrary P
Hexagonal Single sixfold axis a=b

a=p= 90° 
7=120

P

Trigonal
(Rhombohedral)

Single threefold axis a—b=c 
a=/?=77  ̂90

P

Table 1.1: The seven crystallographic systems, defined in terms of the symmetry 
elements present and the axial restrictions. The 14 Bravais lattice arrangements 
include primitive (P), body centred (I) and face centred on all (F), or individual 
(A), (B) and (C) faces.

with the orthorhombic system whereas a body centred lattice could fall into either 

cubic or tetragonal systems. Together, these 14 unique lattice arrangements make 

up the Bravais lattice, first determined by August Bravais in 1850 [90, 91]

There are exactly 230 possible combinations of symmetry operations (32 point 
groups plus glide and screw planes) with the Bravais translations known as crys­

tallographic space groups. These are conventionally described using Hermann- 

Mauguin (international) notation, and are listed fully in reference [92].

1.3.2 Indexing Faces

A freely growing crystal consists of a small number of flat surface elements governed 

by the thermodynamic conditions of growth (section 1.2.4). The perpendiculars 

to these faces posses a characteristic set of normal angles in accordance to the 

law of angular consistency. The rate at which a face grows is determined by the 

microscopic topography (section 1.2.3) whereby faces with a high density of step 

and kink sites tend towards a faster growth rate than those without these sites. 
Since fast growing faces, soon disappear, the resultant morphology is dominated 

by the slow growth faces. Thus, in most cases, the resultant crystal form is in fact 
a macroscopic version of the unit cell.
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Miller indices are conventionally used for indexing crystal faces, with a family of 

lattice planes defined by vectors l, m and n. More formally, Miller indices are the 

reciprocals of the fractional intercepts which the plane makes with the crystal­

lographic axes [93]. The notation {l,m,n} denotes a family of planes equivalent 

to the lattice symmetry, whereas the notation [l,m,n] denotes a lattice vector, 

(loosely) equivalent to a single plane bisecting points on the crystal lattice. Ex­

amples in this thesis include the (001) muscovite mica basal cleavage plane and 

the {104} calcite unit cell.

1.4 Calcium Carbonate

In the context of the work presented in this thesis, it is worth considering the crys­

talline properties of a particular kind of mineral; carbonates. Carbonates, salts 

containing COf-  groups, are of enormous significance in the context of biomineral­

isation, geology and synthetic crystal growth. Dolomite (CaMg(CC>3)2) is amongst 

the most abundant of the rock-forming carbonates [94, 95], with applications as 
a flux in industrial processes and in horticulture to neutralise soil acidity. Other 

important carbonates include magnesium carbonate (MgCOs) and potassium car­

bonate (K2CO3), widely used in industrial processes. Iron carbonate (FeCOs) is 

used as a ceramic pigment and occasionally as an ore during the production of 

iron. Strontium carbonate (SrC03) is commonly used to make glazes and as a 

colourant in chemical reactions [96] whereas barium carbonate (BaC03) is used in 

ceramics and as a poison. Two important categories of carbonates are the calcite- 

type structures, including MgCOa and FeC03 and the aragonite-type structures 

including SrC03 and BaC03. Calcite and aragonite are in fact the two most stable 

polymorphs of calcium carbonate (CaCOs), each described in further detail below.

1.4.1 Calcite

The structure of calcite can be loosely considered as a modified version of the 

primitive sodium chloride (NaCl) unit cell [91]. For a face centered cubic (NaCl) 
structure, the primitive unit cell takes the form of a rhombohedron in which the
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Figure 1.12: SEM micrographs of the anhydrous polymorphic forms of calcium 
carbonate, from left to right calcite, aragonite and vaterite. Image sizes 5x5 /un.

Calcite Aragonite Vaterite

Crystal System Hexagonal Orthorhombic Hexagonal
Space group R3c (167) mmm (62) P63 (194)
Cell param eters
a(A) 4.99 4.96 7.135
b(A) 7.97
ç(À) 17.06 5.74 16.98
V (Â 3) 121.96 227.08 748.61

Table 1.2: The CaCC>3 unit cell parameters for the CaCC>3 polymorphs calcite, 
aragonite and vaterite.

body diagonal coincides with the 3-fold axis of symmetry of the cubic unit cell. 

Substituting the Na+ ions with Ca2+ and the Cl-  ions with CO2“ results in a 

stretch along the c-axis to accommodate the carbonate ions, such that the angles 

of the translational vectors form angles of approximately 46° [97]. This results in 

a series of alternating Ca2+ and CO2- layers along the c-axis, with the carbonate 

ions taking the form of equilateral triangles lying parallel to the (111) plane. The 

carbonate ions lie in identical orientations within each layer, with a 60° rotation 

between successive layers (Figure 1.13). Important crystal planes in the context 

of the results presented in this thesis are included in the figure.

There are some obvious shortcomings with this analogy, since the Cl atoms are 

centers of symmetry of the NaCl structure, where as the carbonate ions have 

alternating orientations in the calcite structure [94]. The formal description of 

calcite is that of a hexagonal, rhombohedrally-centered unit cell belonging to space 

group R3c, for which the cell parameters are listed in table 1.2.



Chapter 1. Background and Theory 28

Figure 1.13: The crystal structure of calcite, showing the relative atomic positions 
of calcium (blue), oxygen (red) and carbon (black) viewed perpendicular to the 
c-axis. An alternating layered structure is apparent. A single unit cell is shown, 
(green lines) and several important crystallographic planes are indicated.

1.4.2 A ragonite

Aragonite is both the second most common and stable form of C aC 03. Under 

most conditions, aragonite is metastable with respect to calcite, forming within 

a narrower range of chemical and physical conditions. However, aragonite has a 

greater density and hardness in comparison to calcite. Along with calcite, arago- 

nate is an important biomineral with a widespread occurrence in nature [23, 98], 

despite its relative thermodynamic instability.

The structure of aragonite was first determined by Bragg (1924) and Wyckoff 

(1925) [99-101]. Aragonite has an orthorhombic symmetry (space group No. 62), 

with the calcium ions arranged in a pseudohexagonal lattice arrangement parallel 
to the (001) plane. The C 0 3  group is almost indistinguishable from that in calcite, 

although unlike calcite the calcium ions are separated by two distinct layers of
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carbonate ions (Figure 1.14a). [1 0 2 ], The reported atomic co-ordinates are Ca, C 

and 01 at 4(c)(\y,z),  and 02  at 8 (d)(x,y,z).  This gives a total of nine possible 

atomic co-ordinates for each Ca atom, since six of the atomic coordinates could 

be substituted for three atoms located at (4c) and three co-ordinates for 02 at 8 d 

positions [103, 104],

1.4.3 V aterite

Vaterite is the least stable of the anhydrous CaC0 3  polymorphs, readily converting 

into either cal cite or aragonite at low and high temperatures respectively [105- 

107]. Naturally forming vaterite is extremely rare, with very few reported cases 

[105, 106]. However, like aragonite, vaterite exists in many biogenic systems, 

including urinary calculi, gallstones, otoliths, reptilian eggshells and lacklustre 

pearls [108-110]. The vaterite structure can be described as alternating layers 

of calcium and carbonate layers, analogous to calcite and vaterite. However, the 

plane of the carbonate layers is perpendicular to the plane of the layers, with each 

calcium ion coordinated by 6  carbonate molecules, with three from each adjacent 

layer (Figure 1.14b) [111].
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Figure 1.14: The crystal structures of a  aragonite and b vaterite, showing the rel­
ative atomic positions of calcium (yellow), oxygen (red) and carbon (blue) viewed 
perpendicular to the a-axes (adapted from reference [1 1 1 ]).
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Experimental Methods

This section describes the general methods used for the preparation of substrates 

and the precipitation of CaCC>3 in addition to the techniques used for the char­

acterisation of substrates and precipitates. The crystal simulation programs are 

also described.

2.1 Experimental Preparation

Crystallisation is highly sensitive to the presence of impurities, with trace amounts 

of contaminants (surfactants, dust particles, organic molecules) known to dramat­

ically effect both nucleation rates and crystal morphology (section 1.3). A Re­

duction in the quantity of impurities is therefore essential in the reproduction of 

results, with rigorous cleaning procedures undertaken before each experiment.

Preparatory tools (tweezers, scissors, scalpels etc,) were rinsed with ethanol prior 

to use. Preparatory glassware was soaked in a 10% w t/v solution of NaOH for two 

hours in an ultrasonic bath, resulting in a gradual etching of the glass surface and 

the removal of organic contaminants [112]. The sonication provided an additional 
mechanical cleaning and was useful in the removal of larger contaminants. Next the 

glassware was sonicated in milli-Q deionized water (resistively 18.2 Milcm"1) for 15 

minutes to remove any residue. Glass substrates were further cleaned with a 5 min 

immersion in ‘Piranha’ solution, consisting of sulfuric acid (H2SO4) and hydrogen
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peroxide (H2O2) in a 3:1 ratio. All remaining organic particles are removed during 

this violent oxidative reaction [113],

H2S 0 4 +  H20 2 — >h3o + +  h s o 4-  +  o  (2.1)

The curved glass substrates used for the crossed cylinder experiments were un­

able to withstand the high temperatures generated during the piranha reaction 

(>  100°C). As an alternative, the half cylinders were cleaned in a Plasma-Preen 

argon plasma cleaner for 10 minutes at 40% power, after the usual NaOH cleaning 

protocol.

2.2 Substrate Preparation

A large proportion of the work presented in this thesis involves the heterogeneous 

crystal growth on substrates. Glass slides, muscovite mica, and functionalised 

self assembled monolayers (SAMs) were all used as substrates. Glass microscope 

slides (75 x 25 x 2 mm) were cut in half with a diamond tipped scribe, before 

cleaning using the procedures outlined in section 2.1. The preparation of the mica 

and SAM substrates involved more complex procedures and is described in detail 

below.

2.2.1 Muscovite Mica

Microscope-slide sized pieces of muscovite mica (S&J Trading, New York, or 

Watanabe Co. Japan) were cut from large sheets in a laminar flow cabinet (OS 
class) to prevent contamination. Using a scalpel knife and fine point tweezers, 

the mica was cleaved from both sides to an approximate thickness of 20-50 ¿¿m at 

room temperature. The exact treatment of the mica after cleaving is of critical 

importance, since this can affect the adsorption properties and the occurrence of 
epitaxial crystal growth (section 3.1). This conditions to which the mica was ex­
posed after cleaving are referred to hereafter as the weathering conditions. Mica
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weathered at laboratory humidity was left to stand in the laminar flow cabinet, 

with the temperature and humidity monitored using a Testo 450 hygrometer. Mica 

weathered at low humidity (< 10%) was left in a dessicator containing ~20 g cal­

cium hydride (Sigma Aldrich), whereas mica weathered at 100% humidity was 

placed in a dessicator equilibrated with water overnight. Aqueous lithium chloride 

(Sigma Aldrich) solutions were used when an exact humidity was required, with 

the variation in partial vapour pressure with solution concentration taken from 

reference [114]..

2.2.2 Self Assembled Monolayers

The first stage in the formation of SAMs involves the deposition of a gold sub­

strate. The crystalline quality of the gold surface is an important factor for consid­

eration, since this directly affects the close packing of the SAM [115]. Au surfaces 

predominantly exhibit (lll)-oriented terraces, the lowest energy configuration for 

this metal [116]. The number of non (lll)-oriented terraces, in addition to the 

general density of defects, is dependent upon the growth conditions of the metal 
film. Gold films were deposited on either freshly cleaved mica or glass substrates 

cleaned in accordance to section 2.1. The deposition took place in an all metal 

Cressington 308-R vacuum chamber at a nominal pressure of approximately 10"6 
mbar, adapted from the process described by Critchley [117]. Chromium was 

sputtered to a thickness of 2 nm from a 3.2 mm target (Cressington DC 100 Dual 

Output HT Plasma Supply) at a rate not exceeding 1 As"1 to promote adhesion 

and increase mechanical stability. A 50-150 nm gold layer (Goodfellow 99.99%) 

was thermally evaporated from a resistively heated tungsten boat at the same rate 

of 1 As"1 ensuring sample uniformity and a high quality substrate. The substrates 

were then rinsed using copious amounts of Milli-Q water, before drying under a 

nitrogen stream.

SAMs were formed by immersing the gold substrates in 0.1-1 mM solutions of com­

mercial reagent grade thiols (Sigma^Aldrich) in either ethanol (absolute grade) and 

acetic acid (Sigma-Aldrich HPLC grade) mixed in a ratio of 9:1, or dichloromethane 

(DCM) (Fisher Scientific, HPLC grade) solvent, maintained at 4°C. Immersion
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times were varied between 1 and 24 hours and the SAMs were characterised us­

ing XPS and contact angle measurements. Hydrophilic SAMs were formed from 

solutions of mercaptohexadecanoic acid (MHA), whereas hydrophobic SAMs were 

formed from solutions of either octadecane thiol (ODT) or perfluorodecane thiol 

(PDT).

The functional group of the alkylthiol determines the wetting properties and de­

gree of heterogeneous nucleation on the SAMs (section 4.1). The work presented 

in sections 4.3.3 and 7.1 involves crystal growth on patterned SAMs, where the 

surfaces are functionalised to produce specified nucleation regions. The SAMs 

were patterned using a deep UV photolithography method adapted from others 

[118,119]. A hydrophobic SAM, prepared as described previously, was placed on a 

patterned quartz photomask at a distance of 2 cm from a A =  254 nm wavelength 

UV penlight. The photomask included three geometric shapes (circles, squares and 

stripes) each with six possible sizes (range 5-50 /xm). Irradiation times were varied 

between 15 and 120 minutes, after which the samples were thoroughly rinsed with 

ethanol to remove any partially cleaved molecules and other impurities, before 

rinsing with Milli-Q water and drying under a nitrogen stream. The samples were 

subsequently backfilled in MHA for one hour at 4°C before rinsing with Milli-Q 

water. Growth experiments were typically carried out within 10 minutes of re­

moving from solution, since these high-energy surfaces tended to adsorb material 

quickly.

2.3 Crystal Growth

CaC03 was precipitated from aqueous solutions using either double-decomposition 

or gas-diffusion methods. For the double decomposition method, equimolar solu­
tions of CaCl2 (Sigma-Aldrich) and Na2C03 (Sigma-Aldrich) in Milli-Q water were 

combined in equal volumes, following the method described by Lam [120]. The 

majority of experiments were in a concentration range of 1-10 mM, with growth 

periods between five seconds and several days. In most cases, crystal growth was
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terminated by removing the substrate from solution and rinsing with Milli-Q wa­

ter and drying under a nitrogen stream. Precipitation occurred by the following 

pathway,

COf-(aq) +  2 H20(1) —> 2 OH~(aq) +  H2C 03(aq)

2 O ir(aq) +  H2C 03(aq) +  Ca2+(aq) — >■ CaC03(s) +  2H20(1)

For the gas-diffusion method, aqueous solutions of CaCl2 (Sigma-Aldrich) were 

exposed to CO2 generated upon the decomposition of (NH4)2C0 3 within a sealed 

dessicator by the following process [121]

(NH4)2C 03(s) NH3(g) +  (NH4)HC03(s)

(NH4)HC03(s) NH3(g) +  C 02(g) +  H20(1)

C 02 dissolves into the aqueous CaCl2 solution, maintaining supersaturation. CaC03 
precipitates via the following pathway,

2 C 02(aq) +  2 H20(1) —  ̂HC03 (aq) +  C 032"(aq) +  3 H+(aq)

CaCl2(s) +  H20(1) —* Ca2+(aq) +  2 Cl"(aq) +  H20(1)

Ca2+(aq) +  COf~(aq) —> CaC03(s)

The NH3 gas is a base and acts as a proton acceptor, maintaining the pH of the 

solution.

NH3(aq) +  H20(1) — > NHj(aq) +  OH“(aq)
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The termination of gas diffusion growth was the same as described for double 

decomposition growth.

2.4 Characterisation Techniques

The substrates and CaC03 precipitates were characterised using a variety of tech­

niques. SAM-on-gold substrates were characterised using contact angle measure­

ments and X-ray photoelectron spectroscopy (XPS). CaC03 images were obtained 

using optical and electron microscopy, in scanning (SEM) and transmission (TEM) 

modes. Raman spectroscopy was used for polymorphic analysis, whereas calcite 

orientations were verified using X-Ray diffraction. Amorphous lifetimes were de­

termined using UV-Vis spectrophotometry. An brief overview of each is presented 

here.

2.4.1 Contact Angle Measurements

Water contact angle measurements were recorded for the liquid-vapour interfacial 
angle with the solid substrate. This was used for the characterisation of SAMs in 

section 4.3.1. Surface wetting is governed by Young’s equation,

7lvcosO — 7sv — Isl (2.2)

where 7 denotes the surface tensions of the liquid-vapour, solid-vapour and solid- 

liquid interfaces respectively. In cases where 7§l is greater than 'ysv the cosine 

term is negative, resulting in a contact angle greater than 90°. In these cases 

the surface is said to be hydrophobic. Conversely, for hydrophilic surfaces, 7s i  
is less than 'ysv, and the liquid wets the surface. Both advancing and receding 

contact angles were recorded from the point at which the droplet began to move 

across the surface. These values defined the maximum range of angles, since all 
real surfaces display hysteresis, attributed to surface roughness, surfactants and 

energy dissipation during adsorption of liquid molecules [62].
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Contact angles were determined experimentally using an automated FTA 4000 

microdrop system, with a 1 0  picolitre resolution in droplet volume. Advancing 

and receding angles were obtained for each sample, each from a minimum of 2 0  

images under ambient conditions. Each reading was repeated a minimum of three 

times.

Figure 2.1: Substrate-water contact angle for a hydrophilic surface (left) and a 
hydrophobic surface (right). The subscripts LV, LS and SV define the liquid- 
vapour, liquid-substrate and substrate-vapour interfaces respectively.

2.4.2 X PS

The deep-UV photo-patterning of SAMs was characterised using XPS, an analyt­

ical surface spectroscopy, giving quantitative information of the top 1 - 1 0  nm of 

a surface, including chemical state, empirical formula and elemental composition. 

The sample is excited with monochromatic X-ray radiation with the energy of the 

incident photon imparted on the core electrons within an atom. The electrons 

exit the atom if the energy of the incident photon, hu, is greater than the binding 
energy. By conservation of energy,

Binding energy =  hu - kinetic energy

Each element possesses a unique set of XPS peaks when plotting intensity as a 
function of binding energy. From this, the elemental surface composition can be 

determined.
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Experimentally, spectra were obtained using a Thermo Electron Corporation ESCA 

Lab 250 system in accordance with the procedure listed by Shimoda et al. [117]. 

X-rays were emitted from a monochromatic Al Ka source (15kV 150 W) with a 

spot diameter of 0.5 mm, at a base pressure of 10~9 mbar. Pass energies of 150 

eV were used for large area surface scanning and 20 eV for detailed scans. High 

resolution spectra were fitted using Avantage peak fitting algorithms.

2.4.3 Optical Microscopy

Optical images were obtained using either an Olympus BX41 microscope or a 

Nikon eclipse LV100 microscope. Images were recorded at 50x, lOOx, 200x and 

500x magnifications at focal distances between ~0.5 and 1 cm.

2.4.4 Electron Microscopy

Electron microscopy was widely used for a large part of the results presented in this 

thesis, operating in two principle modes, transmission electron microscopy (TEM) 

and scanning electron microscopy (SEM). A brief overview of each is presented

where h is Planck’s constant and p is the relativistic momentum of the electron. 
The electrons are accelerated in an electric field to velocity v\

here,

2.4.4.1 Transmission Electron Microscopy

The wavelength of an electron, A, is given by the de Broglie equation.

(2.3)
P

(2.4)

Ug~D$ UNIVERSITY LIBRARY



Chapter 2. Experimental Methods and, Techniques 38

where mo is the mass of an electron and e is the charge of an electron. A TEM 

operating at a 200 kV potential will accelerate the electrons to approximately 

70% of the speed of light, with reletivistic effects therefore needed to be taken into 

consideration. The electron wavelength is given by

A = - = = L = - = i =  (2.5)

where the first term is a non-relativistic expression and the second term is a 

relativistic correction factor. It follows that the wavelength of electrons accelerated 

at 200 kV is 2.5 x 1012 nm. This suggests a theoretical TEM resolution five orders of 

magnitude greater than for optical microscopy [122]. However, diffraction artefacts 

and spherical and chromatic aberrations prevent the theoretical limit from being 

obtained. Electrons are generated from a thermionic or field emission source, with 

the field emission source used in high resolution (HR) systems. Whereas light 

microscopy utilizes glass lenses to bend a light beam, electron microscopy uses 

electromagnetic lenses to bend an electron beam. The electromagnetic lenses are 

modified solenoids, with the focal length governed by the accelerating voltage of 
the electron beam and the lens field strength. The basic setup of a TEM is shown 

in figure 2.2 adapted from reference [123].

Experimentally, TEM images were obtained using a Phillips CM 200 FEGTEM 

at 200 kV gun voltage, exposure time 3-10 s. Samples were deposited onto 100 x 

100 Cu grids (Agar Scientific) and dried under NY

2.4.4.2 Scanning Electron Microscopy

The lens construction of SEM is similar to that of TEM. However, unlike in TEM 

and optical microscopy, the image is not formed by conventional optical principles 

[124]. In this case, a demagnified spot of electrons is scanned across the surface 

of an electrically conductive specimen. It is therefore often necessary to deposit a 

conductive layer onto the surface before imaging.

A schematic diagram of a basic SEM instrument is shown in figure 2.3. The elec­
trons are produced using field emission or thermionic sources under high vacuum



Chapter 2. Experimental Methods and Techniques 39

Figure 2.2: Schematic diagram showing the components of an TEM column, 
adapted from figure 2.2 in reference [123],

column. A series of two or three condenser lenses then demagnify the spot size 

down to 2 nm. The electron spot is rastered along the surface by a pair of deflector 

coils. The electrons interact with the specimen up to a depth of 1 /an, generating 

the electrons which form the image [125]. Different sources of electrons are pro­

duced when the electron beam interacts with the surface, with secondary electrons 

and back scattered electrons most commonly used for imaging. The SEM images 

presented in this thesis were exclusively obtained in secondary electron mode. A 

complete description of this detector is presented in reference [121]. Secondary 

electrons were collected by a Everhart-Thornley (E-T) detector, located behind a 

positively charged collector screen. Contrast in the image arose due to a change 

in signal intensity at different surface locations.

Experimentally, high resolution SEM images were acquired using a LEO 1530 

FEG-SEM, at a 3 kV operating potential and a 3 mm typical working distance. 

Low resolution SEM images were obtained using either a Phillips XL-30 ESEM 

or a JEOL Neoscope benchtop SEM at a 5-30 kV operating potential and a 5-10 

mm typical working distance. Both techniques operated at a mid-range chamber 

vacuum (~10-3 mbar). In all cases, samples were coated with a layer of 5-10 nm 

Pt to prevent charge accumulation.
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Electron gun

Figure 2.3: Schematic diagram showing the components of an SEM column.
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2.4.5 X-Ray Diffraction

X-Ray diffraction was used to verify SEM orientational analysis of epitaxial calcite 

crystals on mica in section 3.2.2. XRD is non-destructive technique, measuring 

the scattering of X-rays from atoms in the crystal lattice. Destructive interference 

from an array of regular scattering centres (crystal lattice) occurs at most incident 
angles. The incident angles at which constructive interference occurs are defined 

by Bragg’s law[126].

2dsin0 =  nA (2.6)

where d defines the spacing from the diffracted planes, 6 is the incident angle, A 

is the wavelength of the incident beam and n is an integer. In cases of Bragg 

reflection, part of the incident beam is deflected by an angle 29, producing a 

reflection spot in the diffraction pattern. Experimentally, ~ 2 x 2  cm samples were 

mounted vertically, with X-Ray diffraction measurements obtained using a Bruker 

100 system at a resolution of 0.1 theta sec-1 and a 1 min incremental scan rate,

2.4.6 Raman Spectroscopy

Raman spectroscopy is a powerful tool for structural and chemical analysis, where 

the light from a laser source is focused on the sample through a microscope objec­

tive (typically 50 x) and the scattered light is collected through the same lens. The 

collected light passes through various gratings and notch filters leaving only the 

Raman, or inelastically scattered, light. The origin the Raman scattering lies in 

the interaction of vibrational or rotational motions of molecules with electromag­
netic radiation. It should be noted that there is another type of inelastic scattering, 
Brillouin scattering, originating in the translational motion molecules, however the 

frequency shift is minimal and is not applicable here [127], The intensity of the 

Raman scattered light as a function of incident wavelength is dependent on the 

various vibrational and rotational modes present within a molecule and the Raman 

spectrum is therefore unique to each substance. Through a detailed comparison
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with reference databases, substance identification over sub-micron areas is pos­

sible. Raman spectroscopy was used for CaC03 polymorph analysis throughout 

chapters 4 &; 5 and a discussion of the Raman active CaC03 modes is presented 

in section 5.3.2

Experimentally, Raman spectra were acquired using a Renishaw inVia microscope 

equipped with a 785-nm high-performance near-IR (HP-NIR) diode laser with a 

1 yum spot size, using a 50 x objective lens.

2.4.7 UV-VIS Spectrophotometry

Turbidity of ACC suspensions were measured using UV-VIS Spectrophotometry 

in section 6.3.1. Time-driven spectrophotometry measurements were obtained 

using a Perker-Elkin UV-Vis spectroscope at a 500 nm wavelength in transmission 

mode, for a time period of 1200 s. All measurements were taken for 1 ml of solution 

unless otherwise stated, using disposable plastic cuvettes (Fisherbrand). Various 

experimental parameters were investigated and are described in detail in section 
6.3.1.

2.5 Analytical Software

Calcite orientations were determined in accordance to the method outlined by 

Archibald et al. [128] by measuring the interfacial angles around the three-fold 

axis and comparing to simulated crystals in known orientations using the SHAPE 

program, version 7.0 (sections 3.1 and 4.3.2). Side profiles of calcite crystals were 

also calculated in section 3.2.2 in order to show changes in (001) conformations as 
a function of ACC contact angle.

Atomic structures were calculated for muscovite mica using Powdercell (version 

2.4), with cell refinement data taken from the RRUFF database (section 3.1). 

Images were rendered using POV-RAY (version 3.6).

Crystal size distributions were determined using imageJ (version 1.42), with the 

procedure shown in figure 2.4. Firstly the image scale was set before adjusting
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the threshold level and switching to a binary image such that only the C aC 0 3  

particles were visible. The particle size distribution tool gave the number and 

sizes of the particles, which were compared with the original image for verification 

(Figure 2.4).

Figure 2.4: The ImageJ particle size analysis procedure, a  Setting the scale, b 
adjusting the threshold, c switching to binary mode and d analysis of particles.



Chapter 3

Epitaxial Growth of Calcite on 
Mica

This chapter investigates the crystallisation of CaC03 on muscovite mica, a crys­

talline substrate. The surface composition plays an important role in the formation 

of epitaxial calcite crystals, in a (001) orientation parallel to the basal cleavage 

plane of mica. Despite a close lattice match between the CarCa spacing parallel 

to the (001) plane (0.499 nm) and the adjacent K+ site spacing of the mica basal 

cleavage plane (0.512 nm), epitaxial overgrowth does not occur on freshly cleaved 

mica surfaces. However, mica surfaces weathered at ambient (35-40 %) humidity 

for a time period of 30 minutes or greater will support the epitaxial overgrowth of 

calcite. Nanometer sized K2CO3 crystallites are known to form on weathered mica 

surfaces, and it is shown through a variety of ion exchange processes that these 

crystallites are necessary for the epitaxial growth of calcite. Calcium ions do not 

readily adsorb to mica surfaces at the concentrations used here, and it is proposed 

that the K2CO3 crystallites act as specified nucleation sites, where the localised 

concentration of Ca2+ and CO3“ ions is sufficiently high to promote epitaxy.

3.1 Introduction

Mica substrates have long been used to promote the ordered overgrowth of alkali 
and ammonium halides. The first systematic studies of epitaxy were performed

'■ ' 44': • '
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over 80 years ago by Royer, who demonstrated the epitaxial growth of Rbl, KBr 

and KC1 on mica from aqueous solution [129,130]. Using the same system, Schulz 

subsequently obtained the same results for epitaxial growth of Rbl, KF1 and LiCl 

from both the vapour phase and from solution precipitation [131, 132]. It was 

Schultz, along with Lisgarten, who first attributed the epitaxy to a lattice match 

between the (111) plane of alkali halides and the (001) basal mica cleavage plane 

[133].

The face-selective templated growth of calcite (CaC03) has been reported on nu­

merous modified substrates including alkanethiols [134-136], Langmuir monolayers 

[137] and functionalised polymer surfaces [138]. It is a source of ongoing debate as 

to what extent this growth can be considered epitaxial, since the face-selectivity 

arises from favourable chemical interactions between the substrate and a partic­

ular crystalline growth plane as opposed to a direct lattice match between the 

substrate and crystal phase. Examples of true CaC03 epitaxy are less common, 

with lithium niobate [139], dolomite [140] and zabuyelite [141] being notable sub­

strates. The results presented in this chapter are the first systematic study of the 

epitaxial overgrowth of calcite on mica. It is shown that epitaxy is dependent on 

more than a simple lattice match between calcite and mica, and is partly governed 

by a reconfiguration of a mica surface which occurs naturally upon cleaving. It 

is worth first considering the structure of mica, and the nature of this surface 

reconfiguration.

Muscovite mica is often used as a substrate for adsorption of entities ranging 

from small biomolecules to bacteria and cells [142], and it is also a useful model 

surface for a variety of surface techniques, including X-Ray reflectivity, atomic 

force microscopy (AFM), shear force microscopy and surface force measurements 

[143]. This is due to the ease of cleavage along the (001) basal plane to yield an 

atomically smooth surface, free of steps across areas of tens of centimetres squared.

Muscovite mica, ideal formula KAl2(AlSi3)Oio(OlI)2, has a layered pseudo-hexagonal 
structure (Figure 3.1). Each monoclinic unit cell consists of two silicon layers and 

an aluminium layer, tetrahedrally and octahedrally coordinated with oxygen re­
spectively. On average a quarter of the Si4+ ions are substituted with Al3+ cations, 
leading to one negative charge per surface unit cell. Charge neutrality is satisfied
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Figure 3.1: The atomic structure of muscovite mica. Top; Viewed in a (100) 
orientation perpendicular to the basal cleavage plane, showing the layered alumi­
nosilicate layers (aluminium - green, silicon - cream and oxygen - red) bound by 
potassium ions (blue). The gray outline represents the true unit cell. Bottom ; an 
aluminosilicate layer viewed in a (0 0 1 ) orientation, showing the 6 -fold symmetry 
axis associated with the K+ lattice sites.

by a layer of potassium ions occupying hexagonal sites on the surface of the unit 

cell, electrostatically binding adjacent aluminosilicate layers. The low relative 

strength of the ionic bonds between these layers results in a regular cleavage par­

allel to the (001) plane, with the potassium ions dispersed evenly but randomly 

between the new layers upon separation [144], Saturation of the oxygen bonds
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results in an inert, chemically stable surface [145].

Due to the high surface energy of mica, rapid adsorption of water from the atmo­

spheric vapour occurs immediately after cleavage [146]. Consequently, the work of 

cleavage in laboratory air is an order of magnitude smaller than in ultra-high vac­
uum (UHV) [147]. The surface bound water is reported not to completely desorb 

even at temperatures as high as 560 K under UHV [147]. Of a particular interest 

to the work presented here is the interaction between bound potassium ions, car­

bonaceous gases and the adsorbed water film at the mica surface. Several studies 

have reported the fractal like growth of nanoscale crystallites on weathered mica, 

that is freshly cleaved mica left at a fixed humidity for a period of time. By taking 

transmission electron micrographs (TEM) of carbon replicas of weathered mica 

dried for under P2O5 for up to 2 weeks, Christenson and Isrealachvili reported the 

presence of surface crystallites [148] (Figure 3.2 a-b). It was proposed by Chris­

tenson that these were in fact bound K2CO3 crystallites [146], This hypothesis 

has been recently confirmed experimentally in two ways by Reichling et al. [149] 

using high resolution non-contact AFM. For large surface crystallites there was 

a rectangular structure corresponding to the K2CO3 bulk values, whereas small 
crystallites displayed a hexagonal moire’ structure attributed to the interference 

between the mica periodicity that of the K2CO3 crystallite (Figure 3.2 c-d).

The surface density and diameter of these crystallites is known to be dependent 

upon the mica weathering conditions. Reichling found a typical thickness of 1-5 

nm for mica degassed for 2 hours under UHV at 200° C. Larger crystallites up 

to 1 //m in diameter form after prolonged drying at very low humidity (<20 %) 

for a period of days, attributed to an Ostwald ripening process [148]. At higher 

humidity (>50-60%), the K2CO3 crystallites do not appear, coinciding with the 

high solubility of K2CO3 in water (~8 M). If the cleaved mica is dipped in a 

weakly acidic solution (pH =  3) there is an exchange between H+ and K+ ions, 

meaning only hydrogen ions are present on the surface preventing the formation 
of crystalline material.

The work here considers for the first time the effect of K2C 03 crystallites on 

epitaxial growth. Since the size and concentration of the crystallites is dependent 
upon the weathering conditions, namely the humidity, exposure time and the
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drying period, a systematic study of the degree of epitaxy as a function of these 

conditions was undertaken.

Figure 3.2: a,b 1 pm x 1 pm transmission electron micrographs for carbon replicas 
of mica surfaces taken from reference [148]. a Weathered at 100% humidity before 
drying over P 2 0 5  for 2  days, revealing a large number of surface K2 C 0 3  crystallites 
b A single, larger K2 C 0 3  crystallite weathered at 50% humidity for 1  h before 
drying over P 2 0 5  for 2 weeks. c,d High resolution non-contact AFM images of 
K2 C 0 3  crystallites, showing the hexagonal structure (marked angle is 117±5°). 
Taken from reference [149]
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3.2 Results

CaC03 was precipitated on muscovite mica surfaces systematically weathered un­

der a variety of conditions. Changes in the polymorphism, morphology, orientation 

and nucleation density were observed as a function of the precise weathering con­

ditions. CaC03 was precipitated using the double-decomposition method (section 

2.3) in all cases, for a 2 h growth period at a [Ca2+]= 5 mM concentration, unless 

otherwise stated.

3.2.1 Freshly Cleaved Mica

No epitaxy was observed upon the precipitation of CaC03 from solution onto 

freshly cleaved mica (Figure 3.3). For a 2 h growth period at a solution concentra­

tion of [Ca2+]=5 mM there was an increase in the percentage of vaterite, accounting 

for approximately 20 % of the crystals, in comparison to solution crystallisation on 

glass control substrates. The majority of crystals appeared in a (104) orientation 

coinciding with the bounding planes of the calcite unit cell, albeit with no lateral 
alignment of the crystal edges. Finally, there was a low nucleation density of only 

(31± 20) crystals per mm2, significantly lower than the number observed on glass 

control surfaces, and on weathered mica (section 3.2.2).

Variations in the growth time and solute concentration did not result in epitaxial 

growth on freshly cleaved mica. There was no significant increase in the crystal 

number density after a 24 hour growth period (at a [Ca2+]= 5 mM solute concen­

tration) although in this case less than 1% of the CaC03 crystals were identified 

as vaterite.

3.2.2 Weathered Mica

The number density and orientation of CaC03 particles precipitated on mica sur­
faces weathered at ambient humidity were markedly different to those on freshly 

cleaved mica. Figure 3.4 shows crystals precipitated on mica weathered for one 

hour at ambient humidity (36-39%) under the same growth conditions as for fig­
ure 3.3. A two orders of magnitude increase in the crystal number density was
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Figure 3.3: SEM image of C aC 0 3  crystal growth on freshly cleaved mica (2 h 
growth period, [Ca2+] =  5 mM). There is a low crystal number density (31± 20 
per mm2), with no epitaxial calcite crystals. Approximately 20% of the C aC 0 3  

was in the form of vaterite.

observed, with (4200 ±  300) crystals/mm 2  in comparison to the value for freshly 

cleaved mica. In addition, the C aC 0 3  precipitated almost uniquely (> 99%) as 

calcite, predominantly in a (0 0 1 ) orientation, with the projected interfacial angles 

around the 3-fold c-axis all equal to 120° (Figure 3.5). Lateral alignment of the 

interfacial angles was observed over distances spanning the length of the sample 

(maximum recorded length =  8  cm), correlating to the absence of grain bound­

aries at the (001) basal cleavage plane. A 2 h growth period at 5 mM resulted in a 

high surface coverage of single-faceted calcite crystals (as shown in figures 3.4, 3.6 

and 3.8) and these are the growth conditions used for all subsequent weathering 

experiments unless otherwise stated.

The orientations of the epitaxial calcite rhombohedra corresponded to a 60° in­

crement in rotation, a consequence of the pseudo-hexagonal structure of the mica
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Figure 3.4: SEM image of CaC 0 3  growth on mica weathered for 24 hours at room 
humidity 36-39% (2 h growth period, [Ca2+]=5 mM). There is a large calcite 
number density (4200 ±  300 per mm2), with 93 ±  2% of the calcite crystals 
observed in a (0 0 1 ) orientation.

surface. Since there is alignment of the three-fold calcite c-axis and the six-fold 

mica surface, only two unique orientations of calcite are possible, with these direc­

tors denoted upwards and downwards here on (Figure 3.6). Whilst no preference 

between upwards and downwards was observed for any sample, there was a narrow 

distribution of the calcite edge angles, with a study of 30 epitaxial crystals found 

to have a range of 6 °. In addition, three configurations of epitaxial calcitc crys­

tals were observed, relating to the point at which the (0 0 1 ) plane intersected the 

{104} calcite crystal. They were tetrahedral, rhombohedral and intermediate 
configurations with 3, 6  and 9 edges visible respectively. The configuration dis­

tribution was independent of growth time, and concentration (within a 2-10 mM 

range). Calcite configurations as a function of mica weathering conditions were 

not systematically studied.
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Figure 3.5: Left A SHAPE simulated 104 calcite crystal in a (001) orientation, 
whereby the projected calcite angles a  =  ¡3 =  7  =  120°. Right A corresponding 
SEM image of an epitaxial calcite crystal on weathered mica (2 h growth period, 
Ca2+=  5 mM).

Figure 3.6: 500x optical image showing the 60° increment in rotation of the epi­
taxial calcite crystal. Upward and downward configurations are circled.
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XRD measurements confirmed the epitaxial overgrowth of calcite in a (001) orien­

tation, following the procedure outlined in section 2.4.5. The sample used was for 

a 1 hour weathering period and a 2 h growth time, [Ca2+] =  5 mM concentration. 

There was a large background associated with the crystalline substrate, which was 

perpendicular to the plane of the incident and reflected X-ray beam. Five fun­

damental peaks associated with mica could be clearly identified, corresponding to 

the RRUFF database values [150] for the powder diffraction pattern at 29 values 

of 17°, 27°, 37°, 46° and 55° respectively [151]. In addition to the peaks associated 

with mica, two smaller peaks were observed when the intensity was plotted on 

a logarithmic scale, attributed to the (006) and (104) planes of calcite using the 

powder diffraction pattern from reference [151]. The intensity of the (006) peak 

relative to the (104) peak was over 200 times of that observed in a powder diffrac­

tion pattern. The (001) peak cannot be measured directly using XRD operating 

in a standard configuration, The calcite unit cell comprises of six layers of calcium 

ions alternating with six layers of carbonate ions, perpendicular to the oaxis. The 

(006) peak corresponds to scattering from successive carbonate or calcite planes, 

and the (0012) peak corresponding to scattering between adjacent calcium and 

carbonate planes. A (001) peak requires scattering between every sixth calcium 

or carbonate layer, and is therefore more difficult to detect. Since both the (006) 

and (0012) crystallographic planes are parallel to the (001) plane, either could be 

used for identification. However, the (006) peak was chosen due to considerable 

overlapping between the (0012) calcite and the (0014) mica peaks.
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Figure 3.7: 20 XRD spectrum of orientated calcite crystals on mica (2 h growth 
period, [Ca2+] =  5 mM). The mica sheet is perpendicular to the plane of the 
incident and reflected X-ray beam and shows only reflections from layers parallel 
to the basal cleavage plane (no asterisks). Calcite peaks are denoted by asterisks, 
at 20 values of 29° and 32°.
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Rhombohedral Intermediate Tetrahedral

Figure 3.8: Top Representative HR-SEM image for the epitaxial growth of cal- 
cite in a (001) orientation on mica. Three distinct configurations can be seen, 
corresponding to rhombohedral, intermediate and tetrahedral configurations re­
spectively. B ottom  Schematic representation of the 3 conformations viewed top 
down and sideways on.



Chapter 3. Epitaxial Growth of Calcite on Mica 56

3.2.3 Ion Exchanged Mica

The mica was weathered under a variety of conditions, influencing the formation of 

K2CO3 crystallites and the relative degree of epitaxy. Firstly, the relative humidity 

of the weathering process was considered. Freshly cleaved mica was weathered at 

<  5% humidity by placing in a dessicator containing Cafh for 1 hour and 24 hours. 
A total absence of epitaxy was observed in these cases, with a large reduction in 

the number density of crystals in comparison to the weathering at atmospheric 

humidity. Secondly, samples were weathered at 100% humidity in a glove box 

equilibriated with water vapour for 1.5 hours. Again, no epitaxial calcite crystals 

were observed, although in this case the nucleation density of 350±160 per mm2 
was an order of magnitude higher than that observed on freshly cleaved mica 

(31±20 per mm2).

At atmospheric humidity, the degree of epitaxy was dependent upon the weath­

ering period. Freshly cleaved mica resulted in no epitaxy and a low nucleation 

density (section 3.2.1), whereas a 1 hour weathering period at atmospheric hu­

midity yielded epitaxial calcite crystals with a two order of magnitude increase in 

the nucleation density. In addition, weathering periods of 30 minutes, 1.5 h, 2 h, 

24 h, 3 days and 5 days were also considered. Weathering periods greater than 1 

h tended to result in a modest reduction in nucleation density, with 900±200 per 

mm2 after 3 d weathering at atmospheric humidity. Futhermore, there was a slight 

increase in the degree of epitaxy for longer weathering periods, with 100% (001) 

oriented calcite after 3 days weathering at atmospheric humidity. A weathering 

timescale 30 m resulted in a lower nucleation density of G0±30 crystals per mm2, 

with less than 7% of the crystals forming as epitaxial calcite, comparable to the 

values for freshly cleaved mica (Figure 3.9).

The growth of CaCO;¡ on ion exchanged mica surfaces was systematically studied 

in order to understand the nature of the weathering process. In the first case, K+ 

surface ions were exchanged with H+ ions by by immersing the freshly cleaved 

mica in milli-Q water for 5 minutes before weathering at atmospheric humidity 

(35-40%) for 1 hour, 3 days and 5 days, with the control samples for each case 
weathered without prior rinsing. The water treatment of the mica surface inhibited 

the formation of epitaxial calcite crystals, increased the relative amount of vaterite
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Figure 3.9: SEM micrographs of C aC 0 3  precipitates ( 2 h growth period, [Ca2+] 
=  5 mM) on mica surfaces weathered at 35 - 40% humidity for a period of a 0 
min (freshly cleaved), b 30 min, c 1.5 h, d 2h, e 24 h and f 3 d.

and resulted in an overall reduction in the nucleation density (Figure 3.11). For 

water treated mica, weathered for 1 h at 35-40% humidity, the number density 

of C aC 0 3  crystals was comparable to that on fresly cleaved mica with 50±20 per 

mm2. For the second case, the mica substrates were immersed in Milli-Q water 
for five minutes after weathering at 35-40% humidity for periods of 1 hour and 3
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days. This treatment also inhibited epitaxial calcite growth and resulted in a low 

number density of CaCC>3 particles (66±17 per mm2). For a final ion exchange 

experiment, surfaces were immersed in solutions of HC1 (pH=3.0) for 5 minutes 

before weathering for 1 hour at atmospheric humidity. This again inhibited calcite 

epitaxy and resulted in low CaCC>3 particle number density and a greater occurence 

of vaterite (13±4%) (Figure 3.10).
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Figure 3.10: SEM image of CaC0 3  growth on H+ ion exchanged mica substrates, 
weathered for 1  hour at room humidity (36-39%). There is a low CaCC>3 particle 
number density, with no epitaxial calcite growth (2 h growth period, [Ca2+] =  5 
mM).

The humidity of the weathering process was found to strongly effect the relative 

degree of epitaxial calcite growth. Firstly, mica was weathered at <5% humidity 

by placing in a dessicator containing CaH2  for periods of 1 and 24 h. No epitaxial 

calcite was observed in these cases and there was a large reduction in the num­
ber density of crystals in comparison to mica weathered at atmospheric humidity. 

Secondly, mica was weathered at 1 0 0  % humidity in a glove box equilibriated with
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water vapour for 1.5 hours. Again, no epitaxial calcite crystals were witnessed, 

although in this case the nucleation density of 350±160 per mm 2  was an order of 

magnitude higher than that observed on freshly cleaved mica. Subsequent experi­

ments found the optimal weathering conditions to occur upon exposure to a 65-70 

% humidity environment for 1  hour before leaving overnight in a dry environment 

(<15%). The 65-70% environment was created within a dessicatior containing 

aqueous solutions of LiCl at concentrations corresponding to the relative vapour 

pressures in reference [114].

Figure 3.11: SEM images of CaC 0 3  crystallisation (1 li growth period, [Ca2+] =  5 
mM) on mica surfaces weathered under different conditions, a 5 days at 35-40 % 
humidity, b 5 days at 35-40 % humidity followed by 5 min immersion in Milli-Q 
water c 3 days at 35-40 % humidity and d 5 minutes immersion in Milli-Q water 
prior to 3 days weathering at 35-40 % humidity.



Weathering Condition Crystals per mm2 % Calcite % (001) Calcite

Freshly cleaved 31±20 81±7 4±2
0.5 h at 35-40 % humidity 60±30 97±2 7±4
1.0 h at 35-40 % humidity 4200± 300 100 93±2
1.5 h at 35-40 % humidity 1500± 700 97± 2 91 ±1
72 h at 35-40 % humidity 900±200 100 96±2
H+ ion exchanged prior for 1 h at 35-40 57±5 87±4 0
% humidity
5 min water immersion after 1 h at 35- 66±17 100 0
40% humidity
1.5 h weathering at 100 % humidity 350±160 86±9 0

Table 3.1: The effect of mica weathering conditions on the CaCOg nucléation density, polymorphism and percentage of epitaxial calcite 
crystals.
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3.2.4 Early Growth Stages on Mica

CaCC>3 nucleation pathways on weathered mica substrates were determined through 

the morphological analysis of precipitates after a series of short growth times. 

CaC03 was precipitated from 5 mM aqueous solutions using the double decompo­

sition precipitation method for growth periods of 0.5, 1, 2, 4, 6 and 10 minutes. 
Particle morphology was determined using HR-SEM, with samples analysed within 

24 h of crystallisation. It was not possible to determine individual particle poly­

morphism using Raman spectroscopy due to the small particle size. Technical 
difficulties in isolating individual particles prevented electron diffraction measure­

ments.

After a 30 second growth period the CaC03 precipitates were highly irregular, with 

an absence of defined edge features morphologically similar to calcite (Figure 3.12). 

The particles were evenly distributed across the mica surface, with dimensions in 

the range of 50-500 nm. Interestingly, many of the particles had uneven surface 

topographies, indicative of vaterite (Figure 3.12b) although smaller, approximately 

spherical particles consistent with amorphous calcium carbonate were also present 
(Figure 3.12c).

After a growth period of 2 minutes, similar irregular CaC03 particles were present. 

The particle number density was approximately double that for a 30 s growth pe­

riod, yet the dimensions of these particles were in the same 50-500 nm range 

(Figure 3.13a). However, epitaxial calcite crystals were also present, signified by a 

characteristic tetrahedral shape and long range lateral alignment of the interfacial 

angles (Figure 3.13b). The ratio of the number of irregular CaC03 particles in 

relation to the number of calcite crystals was approximately 10:1, However, on 

the estimation that the average dimensions are 1 and 0.3 pm for calcite and ir­
regular CaC03 particles respectively, more than 70% of the total CaC03 material 
was in the form of epitaxial calcite. HR-SEM images of individual precipitates 

are shown in figure 3.14. The calcite crystals had typical dimensions in the range 

of 1-2 pm, although a smaller number of sub-micron crystals were observed. The 

smallest observed tetrahedra calcite particle is shown in figure 3.14c, morpholog­
ically identified by the characteristic 3-fold c-axis. The edges of this particle are 

highly irregular, in contrast to other the well defined calcite particles observed on
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the same sample (Figures 3.14a, c). The projected edges of the tetrahedral were 

approximately 200 nm, and it is speculated that this crystal marks the transition 

between the crystalline calcite and the metastable CaC03 phases.

After a 4 minute growth period there was an increase in the average dimensions 

of the calcite particles to 2-5 /¿m, with no sub-micron calcite particles observed 

(Figures 3.15a, b). No significant increase was witnessed in the number density of 

the calcite particles, with the same ratio between the number of irregular CaC03 
particles and the number of calcite particles as observed for short growth peri­

ods. These particles had the same irregular surface features as for 0.5 and 2 

minute growth periods, with morphological analysis consistent with vaterite (Fig­

ure 3.15c). No regular spherical particles consistent with ACC were observed for 

this growth period, in contrast to a 30 second growth period.

After a 6 minute growth period there was a further increase in the dimensions of 

the calcite particles to 3-6 /¿m (Figure 3.16a-b). Irregular CaCC>3 particles were 

still present at this growth period, with a slight reduction in the ratio between the 

number of these particles to the number of calcite particles of 8:1. Although the 

average dimensions of these irregular was consistent with shorter growth periods 

(Figure 3.16c), the relative increase in the dimensions of the epitaxial calcite crys­

tals meant that these irregular particles accounted for less than 0.1% of the total 

CaC03 precipitates by volume. This trend continued for an 8 minute growth pe­

riod, after which the dimensions of the irregular CaCOs particles were more than 

one order of magnitude smaller than the calcite particles (Figure 3.17c). Figure 

3.17b shows epitaxial calcite crystals on weathered mica after a 1 h growth period, 

for the same solution concentration. Here, no irregular sub-micron particles were 

observed, with all the CaC03 material precipitating as epitaxial calcite.
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Figure 3.12: SEM images for the precipitation of CaCOa on weathered mica after a 
30 s growth period, 5 mM solution concentration, a  Overview, with only irregular 
CaC 0 3  particles present, of average dimensions 200-500 nm. b These irregular 
CaCÛ3  particles had uneven surface topographies, and irregular shapes, consistent 
with vaterite. c Smaller, approximately spherical particles with smooth surface 
features were observed with 50-100 nm feature sizes, consistent with ACC.
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Figure 3.13: SEM overviews for the precipitation of C aC 0 3  on weathered mica 
after a 2 minute growth period, 5 mM solution concentration, a A region mostly- 
populated with irregular particles C aC 0 3  particles, with only a single epitaxial 
calcite particle present, b  A region populated with epitaxial calcite crystals and 
irregular C aC 0 3  particles.
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Figure 3.14: High magnification SEM images for the precipitation of C aC 0 3  on 
weathered mica after a 2 min growth period, 5 mM solution concentration, a 
Both epitaxial calcite crystals and irregular C aC 0 3  particles were present in an 
approximate 1:10 ratio, b An irregular C aC 0 3  particle, morphologically consistent 
with calcite. c the smallest observed calcite particle, defined by the regular 3-fold 
c-axis, although irregular edge features can be seen suggesting a transition from 
the amorphous state to the crystalline state, d A typical calcite tetrahedral with 
lpm  approximate dimensions and well-defined edges.
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Figure 3.15: SEM images for the precipitation of CaCC>3 on weathered mica after 
a 4 minute growth period, 5 mM solution concentration, a Overview, with both 
epitaxial calcite crystals and irregular CaC 0 3  particles observed in an approximate 
1:10 ratio, b A calcite tetrahedral, average edge length ~3  pm. c An irregular 
CaC 0 3  particle with a non-uniform surface topography, consistent with vaterite.
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Figure 3.16: SEM images for the precipitation of C aC 0 3  on weathered mica after 
a 6  minute growth period, 5 mM solution concentration, a Overview, with both 
epitaxial calcite crystals and irregular C aC 0 3  particles observed in an approximate 
1:8 ratio, b A calcite rhombohedral, average edge length ~2.5 /mi. c An irregular 
C aC 0 3  particle with an non-uniform surface topography, consistent with vaterite.
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Figure 3.17: SEM overviews for the precipitation of CaCC>3 on weathered mica 
from a 5 mM solution for a growth period of a 8 minutes, showing irregular CaC 0 3  

particles present in addition to the epitaxial calcite crystals and b  1 h showing 
epitaxial calcite particles and an absence of irregular C aC 0 3  particles.
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3.3 Discussion

The epitaxial growth of alkali halides on freshly cleaved mica surfaces has been 

attributed to a lattice match between the (111) plane of the halide and the (001) 

basal mica cleavage plane although relatively large mismatches have still been re­

ported to promote epitaxial overgrowth up to 23% in the case of NaCl [133]. For 

the epitaxial growth of CaC03 on mica, the spacing between adjacent K+ sites 

on mica is 0.518 nm [128] and the Ca-Ca spacing of calcite in the (001) plane is 
0.499 nm [128], which corresponds to a lattice mismatch below 4%. It is therefore 

a surprising result that the epitaxy of calcite only occurs on weathered mica, and 

that freshly cleaved mica does not support epitaxy. In addition, neither the mica 

weathered at 100% or < 5% humidity, nor ion-exchanged prior to or after weath­

ering at atmospheric humidity, supported the epitaxial growth of calcite. There is 

a difference in the configuration of surface potassium ions between freshly cleaved 

mica and mica weathered under different conditions, which clearly influences the 

epitaxial overgrowth of CaC03.

It was shown by Ostendorf et al. [149] that the adjacent site spacing of the 

K+ ions was 0.57 ±  0.05 nm for the bound potassium carbonate crystallites. This 

corresponds to a lattice mismatch of approximately 14% between calcite in a (001) 

orientation, which is considerably larger than the mismatch between calcite and 

the (001) mica basal cleavage plane. This suggests that although the presence of 

K2C 03 crystallites is a requirement for the formation of epitaxial calcite crystals, 

it is unlikely that the calcite crystals form epitaxially on the crystallites.

One obvious difference between the epitaxial crystallisation of calcite on mica 

and that of the widely reported alkali halides is the relatively weak adsorption of 

Ca2+ to mica. There is a strong adsorption of the alkali metal ions Na+, K+ and 

Cs+ to mica, whereas Ca2+ will only adsorb to mica at concentrations above ap­

proximately 0.1 M due to the high free-energy penalty of dehydrating the heavily 

hydrated calcium ions in solution [152]. This free-energy cost is likely to be exac­

erbated by the presence of competing sodium ions in solution. A second difference 

between the formation of calcite and alkali halides on mica lies in the relative 

saturation concentrations. CaC03 is only sparingly soluble in water ('vlmM),
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approximately 4 orders of magnitude less than NaCl, and it is likely that the sur­

face ionic concentration will influence epitaxial formation of calcite. Indeed it was 

shown by Upreti and Walton [153] that the critical heterogeneous supersaturation 

increases with lattice mismatch.

It is proposed that the K2CO3 crystallites form pseudo-nucleation sites where 

calcium ions may readily approach the mica surface. The crystallites are only 

transiently present, as demonstrated by the ion-exchange experiments, so they 

must only govern the nucleation of calcite at the mica interface and not the sub­
sequent growth. This strengthens the supposition that the epitaxial calcite forms 

on the mica and not the crystallites. In addition, the K2CO3 crystallites act as a 

highly localised source of carbonate ions, yielding surface sites with an increased 

concentration of both calcium and carbonate ions. This hypothesis is supported 

by the data in table 3.1 with the epitaxial calcite number density decreasing with 

weathering period, possibly due to the formation of fewer but larger crystallites 

after prolonged drying periods.

That epitaxial growth is dependent on more than a simple lattice match is not 

limited to the case of calcite on mica. It was shown by Conrad et al. [154] that 
the BaF2 surface is a poor ice nucleator, despite a near perfect lattice match 

because the ice only partially wets the BaF2 surface. The epitaxial growth from 

solution is complicated by the presence of ionic concentration gradients close to 

the surface, affected by hydrated and electrostatic effects. Indeed, in the case 

of calcite, dehydration of the calcium ions is necessary before adsorption at the 

growth face [155].

The first part of the chapter demonstrated that the nature of the mica substrate 

influences a wide range of crystallisation parameters, including the nucleation 

density, orientation and, to some degree, polymorphism. The results presented in 

section 3.2.4 consider the actual CaC03 nucleation pathway on weathered mica. 

Irregular CaC03 particles were observed for short growth periods with the fre­

quency gradually decreasing over time and vanishing altogether after a 1 h growth 

period. In contrast, calcite particles appear at a later time period than the irreg­
ular CaC03 particles, yet increased in size over time. After a 30 s growth period, 
the irregular particles account for 100% of the total precipitated material, falling
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to approximately 30% after a 2 minute growth period and less than 0.1% after 6 
minutes. Only epitaxial calcite was observed after a 1 h growth period. After a 30 

s growth period, there were two types of irregular CaC03 particles: approximately 

spherical with smooth edge features consistent with ACC, and highly uneven sur­

face topographies, consistent with vaterite. After growth periods of 2 minutes and 

more, only the vaterite and calcite type particles were observed.

These results were broadly similar a recent study by Yamanaka et al. [156] using 

AFM to study the heterogeneous nucleation of CaC03 on different substrates, 
including mica. Figure 3.18 is from that work and shows the transition from ACC 

into calcite. There is a close correlation in particle dimensions and morphology 

between figure 3.18b taken from that study and figure 3.14c. This suggests that 

the nucleation of calcite on mica proceeds via an amorphous precursor phase, since 

no calcite tetrahedra are observed with dimensions below 100 nm. Figure 3.18b is 

for a growth period of 15 minutes which does not correlate to the growth periods 

used here. However, irregular CaCC>3 particles were present after 8 minutes, so 

it is feasible that they could remain after 15 minutes. It should be noted that 

no consideration was made for the condition of the mica surface in this study. 
Furthermore, a systematic study of different growth periods was not undertaken.

Yamanaka et al. described a 3-stage growth process during which spherical de­

posits with an approximate radius of 100 nm first nucleated at the mica surface. 

The spherical deposits had a low overall contact angle, attributed to a high affin­

ity between ACC and mica. The second stage involved the lateral growth of the 

deposit perpendicular to the mica surface. In the final stage, there was a transfor­

mation into crystalline calcite. In this model, it is suggested that the calcite crystal 

initially starts in a tetrahedral form, becoming rhombohedron during the growth 

process. This contradicts the findings here, where the calcite configurations were 

not observed to change with time. This model also does not take into account 

the vaterite particles observed here, so an alternative model must be introduced 
(Figure 3.19).

It is proposed that CaCC>3 crystallisation begins with the nucleation of ACC at the 

mica interface. Clearly the condition of the mica substrate is important, and the
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results here suggest that the presence of surface K2CO3 crystallites may be nec­

essary for the heterogeneous nucleation of ACC at the surface. There is a rapid 

conversion from ACC into more thermodynamically stable CaCC>3 polymorphs. 

Vaterite particles account for >90% of the precipitates after 30 s, with the remain­

ing material morphologically similar to ACC. The remaining amorphous particles 

must convert to calcite between 30 s and 2 minutes, since there is no significant 

increase in the number of calcite particles for further growth periods, yet there is 

an absence of spherical particles. The calcite particles must grow at the expense 

of the vaterite particles, with the vaterite particles vanishing after 1 hour due to 

the Ostwald’s step process. Indeed, the Ostwald’s step growth of calcite at the 

expense of vaterite has been reported by Kawano et al. [157].

The model described by Yamanaka et al. does not adequately describe the appear­

ance of tetrahedral, rhombohedra and intermediate calcite configurations, since the 

relative number of particles does not change as a function of time. It is proposed 

here that the calcite configuration is governed by the contact angle formed be­

tween the ACC particle and must therefore be determined before transformation 

into the crystalline (calcite) phase. Otherwise a substantial pinning at the three 

phase boundary would be required.
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Figure 3.18: AFM images of early stage C aC 0 3  growth on a mica surface taken 
from reference [156]. a  Spherical particles, indicative of ACC, b intermediate 
particles and c calcite tetrahedra.

Figure 3.19: Schematic model representing the proposed early stage C aC 0 3  growth 
on a mica surface. Firstly, ACC nucleates at favourable nucleation sites at the 
mica surface. Secondly, the majority of ACC transforms into vaterite, yet a small 
proportion transforms directly into calcite. Thirdly, the calcite particles will grow 
at the expense of vaterite particles, due to an Ostwald’s step process. Finally, all 
the vaterite particles will dissolve as the supersaturation of the system falls.



Chapter 3. Epitaxial Growth of Calcite on Mica 74

3.4 Conclusions

It can be concluded from the work presented in this chapter that the mica surface 

is highly sensitive to details of its exposure to the atmosphere. Despite a close 

lattice match between the CarCa spacing in (001) oriented calcite crystals and the 

adjacent K+ site spacing of the mica basal cleavage plane, epitaxy does not occur 

on freshly cleaved mica. It is proposed that the presence of naturally forming 

surface K2CO3 crystallites is a necessary intermediary for the occurrence of epi­

taxial calcite. Unlike in the case of alkali metal ions, there is normally a large free 

energy cost for the adsorption of calcite to mica. It is proposed that the transient 

K2CO3 crystallites act as localised ion sources, yielding specific surface sites where 

epitaxial growth is preferable. The short growth time experiments suggest that it 

is ACC which first nucleates at the mica surface, before transforming into calcite, 

since no calcite particles with dimensions below 100 nm were observed.



Chapter 4

Crystallisation on Self-Assembled 
Monolayers

This chapter considers the nucleation and growth of CaC03 on self-assembled 

monolayers (SAMs) of alkylthiols on gold. Using homogeneous carboxyl-terminated 

SAMs, a high degree of control over CaCCb polymorphism, orientation and nu­
cleation density is afforded, due to favourable interactions between the inorganic 

mineral and the organic monolayer. An overview of SAMs is presented in section 

4.2, including details of the deep-UV photo-patterning method. The results section 

begins with SAM characterisation data, using water contact angle measurements 

and X-ray photoelectron spectroscopy (XPS) (section 4.3.1). CaC03 crystallisa­

tion on homogeneous SAMs resulted in the exclusive growth of calcite, mainly in 

orientations parallel to the (012) and (015) growth planes. The effects of solute 

concentration, alkanethiol solvent and precipitation method on the crystallisation 

on these surfaces are described in section 4.3.2. Using patterned functionalised 

SAMs, crystallisation is restricted to defined regions, with nucleation suppressed 

elsewhere due to a localised undersaturation (4.3.3). The early growth stages 

of CaC03 on homogeneous SAMs is considered in section 4.3.4, with the results 

broadly analogous to those of CaC03 on weathered mica described in section 

3.2.4. Irregular amorphous particles are initially present, decreasing in number as 
a function of time, and vanishing altogether after growth periods greater than 1 
h. ■ -
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4.1 Introduction

It was shown in section 3.1 that ordered epitaxial calcite growth occurs on crys­

talline mica surfaces weathered under certain conditions. The ordered overgrowth 

of calcite was limited to a (001) orientation, since the epitaxial growth was due in 

part to the lattice match between calcite and mica. The face selective growth of 

calcite in several orientations has been achieved using organic surfaces of alkylthiol- 

on-metal self assembled monolayers (SAMs) [134-136, 158-161]. Using CO2H 

terminated alkylthiols on gold, Aizenberg et al. demonstrated the face-selective 

growth of calcite in 6 different orientations, dependent upon the metal substrate, 

alkyl chain length and the functionalised group [34, 134,162]. The uniform orien­

tation of the crystals formed on each SAM is governed by the specific interfacial 

structure of the oriented, homogeneous SAM, which is in turn controlled by the 

chain length, tilt angle and metal substrate.

Growth on heterogeneous SAMs demonstrates the control over orientation and 

polymorphism of an inorganic material, CaC03 , using a functionalised organic sur­

face. Continuing on from these studies, Aizenberg et al. restricted crystallisation 

to specific nucleation sites using patterned functionalised SAMs [135]. Using the 

micro-contact printing method developed by Whitesides and co workers [163,164], 

the nucleation of CaC03 at favourable nucleation sites on patterned SAMs results 

in mass transport away from less favourable nucleation areas, resulting in regions 

of localised undersaturation across the surface.

This chapter begins with an overview of SAMs, and includes characterisation data 

of both homogeneous and patterned SAMs.

4.2 Structure and Formation of SAMs

SAMs are the result of the spontaneous formation of molecular assemblies on 

defined substrates. There are many different SAM systems including silanes on 

silicon oxides [165] and glass [166], n-alkanoic acids on aluminium oxides [167] and 
silver [168], and organosulphatcs on metal surfaces [169]. However, the most stud­
ied and characterised SAMs are those of alkanethiols on gold [170]. First described
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by Nuzzo and Allara in 1983 [171], alkanethiols on gold SAMs were initially used 

as an alternative to the often unstable Langmuir-Blodgett monolayers. A relative 

ease of preparation and the absence of a stable gold oxide layer under atmospheric 

conditions are reported advantages of these monolayers [172] (the formation of a 

stable AU2 O3  layer has been reported in the presence ozone under UV irradiation 

[173]).

Figure 4.1: Schematic diagram of the components of a mercaptohexadecanoic acid 
SAM. a Functionalised tail group, b alkylthiol chain, c mercapto head group and 
d gold substrate. Showing hydrogen (grey), carbon (green), oxygen (red), sulphur 
(blue) and gold (yellow) atoms to scale

Alkylthiol SAMs have the same basic structure, comprising of a surface active 

head group, an alkyl chain and a functionalised tail group. The general structure 

is R(CH 2 )nSH where R denotes the functionalised tail group (Figure 4.1). The 

head group consists of a mercapto SH group, which forms a true valence bond 

with the gold substrate [174]. This exothermic interaction can be considered as 

the oxidative addition of the S-H bond, followed by the reductive elimination of a 

hydrogen atom [170].

R -S -H  + Aun —► R—S—Au+ + ±H2 (4.1)
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The high free-energies associated with this reaction, of the order of -120 kcal/mol, 

results in a high occupancy of available binding sites, pushing together previously 

adsorbed molecules in the process [62]. The hydrocarbon alkyl chain typically 

consists of between 10 and 18 carbon atoms, with a constant second nearest car­

bon atom distance of 2.52 A[175]. As the alkylthiol chains coalesce, short range, 

dispersive, van der Waals forces result in further close packing. Longer chains 

result in stronger van der Waals interactions, although this is offset by gauche de­

fects and entropic effects in the case of very long chains [115], The van der Waals 

interactions are typically less than -10 kcal/mol however, so it is the chemisorp­
tion of the head groups that is the most significant factor in the close packing 

of the SAMs. The functionalised tail group determines the surface properties of 

the SAM, and commonly includes CF3, CO2H and CH3 groups, and can influence 

the order and packing density during SAM formation. Due to their intrinsic ther­

modynamic stability, SAMs tend to be defect-free and exhibit repair mechanisms 

[134]. The exothermic mercapto bond coupled with the van der Waals attraction 

of alykl chains more than offset free-energy changes due to entropy and thermal 

effects.

For adsorption to Au (111) surfaces, a close packed surface phase exists in which 

the sulphur atoms form a thiolate complex with the gold atoms in a \/3  x \/3 
overlayer [176]. Vibrational spectroscopy studies have revealed that the chains are 

packed in an orthorhombic manner, with two chains per unit cell in an all trans 

conformational state [177]. When the head-head spacing is greater than the touch­

ing van der Waals distance of the alkyl chains, the chains are reported to tilt in 

such a way to maximise the van der Waals interactions, and thus minimise the free 

energy of the system [178, 179]. Fourier transform infrared spectroscopy (FTIR) 

studies have confirmed this, revealing a characteristic tilt a  of ~26-28° from the 

planar normal and a ~52-55° angle /? about the molecular axis for alkanethiols on 
gold (Figure 4.2) [178].

80-90% of the monolayers reportedly form within the first few minutes, due to 

chemisorption of the head group and the straightening out of the alkyl chains, 
with the first of these processes typically 3-4 times faster than the second [180]. 
There is a final ordering process relating to the reorientation of the terminal groups, 
although this occurs over a longer timescale of up to 24 hours. The formation of
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Figure 4.2: Schematic diagram showing the geometry of a SAM, dependent on the 
chain tilt angle a and the chain twist angle ¡3.

the SAMs has been modelled using the Langmuir adsorption isotherm. As each 

head group binds to the surface, the number of available sites decreases

where © is the relative surface coverage and R is a growth constant, giving rise to 

a simple growth law

Here, the growth rate is proportional to the number of binding sites on the surface. 

This model represents an ideal system, since in reality there are intermolecular 

interactions between the adsorbed molecules, with different energies associated 

with adsorption at island domain boundaries as opposed to isolated sites. The 

model also assumes there is no limitation caused by diffusion of adsorbents from 
the bulk liquid phase.

A diffusion limited model takes the form

(4.2)

0  =  1 -  e~m (4.3)

0  = 1_  e- R'tl/2 (4.4)
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when taking into account that 0  =  R’t1/2 in cases where growth is governed 

entirely by diffusion.

The Kisliuk model takes into account different sticking coefficients between covered 

areas and those free of alkanethiols, resulting in a correction term to the Langmuir 

model [181].

~  =  j r ( i - 0 ) ( i  +  fcBe )  (4.5)

where the coefficient R! relates to the effect of diffusion on monolayer formation 

and is proportional to the square root of the diffusion coefficient. The Kisliuk 

factor, ks takes values between 0 and 1 and defines the degree of mobility of the 

precursor, or initially bound, alkylthiols [182]. The resultant surface coverage is

1 +kE)t

0  =  1 +  kEe-XWe)*  (4 -6)

The Kisliuk adsorption isotherm gives an effective approximation of substrate 

coverage, however as in the case of the Langmuir adsorption isotherm, the second 

and third stages of SAM growth are not accounted for [183].

Experimentally, the SAM formation rate is dependent on several control param­

eters. It has been reported that increasing alkyl chain length results in a slower 

initial adsorption [184]. This was found to be the case for both polar (ethanol) 
and non-polar (dichloromethane) solvents, and is a consequence of the reduced 

molecular mobility of the longer chains. At low concentrations, the SAM for­

mation is related to the alkanethiol concentration; at higher concentrations, the 

formation rate is independent, presumably limited by kinetic factors. The chem­
ical nature of the solvent itself affects a number of properties of an alkanethiol 
molecule, including solubility, mobility, steric constraints and polarity [185].
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4.2.1 Patterning of SAMs Using Deep-UV Photolithogra­

p h y

The deep-UV patterning is a three-stage process, with exact experimental details 

listed in section 2.2.2. A single component ^-terminated SAM (usually hydropho­

bic) is formed before exposing to short wavelength, A=254 nm UV light through 

a quartz photomask. This photocleavage process yields a loosely bound sulphate 

group, which XPS studies have shown can be readily removed by rinsing with a 

polar solvent [186]. The high energy UV light reacts with atmospheric oxygen 

atoms, breaking the 0 - 0  bond and creating highly reactive ozone, by a process 

known as ozonolysis [187]. The ozone undertakes non-selective reactions with all 

parts of the thiol group, breaking the mercapto bond and cleaving the thiol. This 

surface is then backfilled in a solution of a y terminated thiol, thus backfilling the 

photocleaved regions. The cleavage rate is dependent on chain length, closepacking 

and UV wavelength [187].

Patterned SAMs were formed using deep-UV photolithography for several reasons:

• Only commercially available thiols are required, in contrast with short wave­

length soft-UV photolithography, which requires the bespoke synthesis of 

photo-sensitive thiols. An in depth discussion of soft-UV photolithography 

is included in references [117] and [188]

•  The functionalised tail groups can be substituted for any available thiols, 
making this a highly versatile method •

• The use of an expensive e-beam for the production of PDMS stamps is not 

required, in contrast to micro-contact printing (described in reference [163])

•  There is a near 100 % photo cleavage yield, in contrast to soft UV pho­
tolithography (typically around 50 % [188])
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Surface DCM
Advancing 6 Receding 6

Ethanol 
Advancing 6 Receding 6

MHA 55 ±1 16 ±  1 55 ± 2 15 ±  1
ODT 109 ±  1 99 ±  1 109 ± 2 95 ±  2
Au 84 ± 2 61 ±  1 - -

Table 4.1: Advancing and receding water contact angles for MHA and ODT SAMs 
prepared in DCM and EtOH with acetic acid solvents respectively. The advancing 
and receding contact angle of pure gold surfaces are included

4.3 Results

4.3.1 Characterisation of SAMs

Homogeneous SAMs were characterised using contact angle measurements as de­

scribed in section 2.4.1. Solid-liquid-vapour contact angles were measured for 

water droplets on MHA and ODT surfaces, in addition to Au control surfaces. 

SAMs were prepared in accordance to the procedures described in section 2.2.2, 

using both ethanol with acetic acid and DCM solvents (Table 4.1). There was 

agreement with literature for the hydrophobic ODT SAM, with an advancing an­
gle of (109 ±  2)° when formed in ethanol [189, 190]. A large degree of hysteresis 

was observed for the hydrophilic MHA SAM, with an advancing and receding an­

gles of (55 ±  2)° and (15 ±  1)° respectively, when formed in ethanol. Although 

the advancing angle approached those of Wang et al. [191], it is worth stating 

that there is considerable ambiguity in the literature, with the nature (advancing, 

receding or sessile) of the drop often not stated. Whilst the receding contact an­

gle of gold under UHV has been reported as 0° [192], the measured gold contact 

angle was significantly higher, presumably due to adsorbed impurities at the high 

energy metal surface. However, the measured contact angles were lower for MHA 

surfaces in comparison to bare gold substrates, suggesting that these impurities 

are displaced during the chemisorption of the head group.

Laibinis et al. suggested that a thiolate exchange occurs during the immersion of 

a functionalised SAM in a secondary thioiate solution [193]. This has implications 

during backfilling since the contrast between hydrophilic and hydrophobic regions 
could potentially be reduced. ODT SAMs formed in 0.1 mM ethanol solutions
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were immersed in a 0.1 mM MHA ethanol solution for a time period of 0 - 24 h, 

with advancing and receding water contact angles shown in figure 4.3. A steady 

decrease in contact angle was observed, with the advancing angle falling from (109 

±  2)° initially to (104 ±  2)° after 2 hours. After a 24 h immersion period in a 0.1 

mM MHA ethanol solution the advancing and receding water contact angles were 

(90 ±  2)° and (76 ±  2)°, similar to those values reported by Laibinis et al. [193],

Figure 4.3: Advancing (black squares) and receding (red circles) contact angles as 
a function of immersion time for ODT SAMs in 0.1 mM MHA &; ethanol solution.

The water contact angle data suggest that a significant thiol exchange occurs 

after a 24 hour backfill period, with this effect is likely to be enhanced at the 

boundaries on patterned SAMs, due to reduced Van der Waals interactions. In 

addition, a greater hysteresis between advancing and receding angles was witnessed 

with increased immersion time, indicative of a more disordered surface. From 

these data a 1 hour backfill period was chosen, since although the complete close 

packing of a SAM takes up to 24 hours, the surface degradation associated with 
thiol exchange is more significant.
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The deep-UV photocleavage process was characterised at each stage by XPS, with 

the following surfaces considered:

1. ODT SAMs:- formed from 0.1 mM ethanol solution.

2. Photocleaved surfaces:- ODT SAMs exposed to 254 nm wavelength UV light 

for 60 min before sonication in ethanol for 10 min.

3. Backfilled MHA SAMs:- Photocleaved surfaces immersed in 0.1 mM MHA 

ethanol solutions for 1 h.

4. Control MHA SAMs:- formed directly on fresh Au from 0.1 mM MHA 

ethanol solutions

The relative amount of Au, C, O and S are shown in figure 4.4. It is not possible 

to detect hydrogen using XPS.

The XPS spectra showed surfaces of ODT SAMs to contain the highest percentage 

of carbon, 61.3 %, and the lowest amount of oxygen, 0.5 %. The ratio between 

the relative amount of carbon and gold was 1.69, close to the 1.75 ratio for the 

same system reported by Ishida et al. [191], suggesting the formation of a well 

formed ODT SAM. Photo-cleaved surfaces contained an increased percentage of 

gold, 73.6 %, and a reduced amount of sulphur 0.9 %. There was an apparent 

three-fold reduction in the amount of carbon, 18.8 % in comparison to the ODT 

SAM surface. It is proposed that the remaining carbon originates from alkyl 

chains fragmented during photo-cleavage. There was a significant reduction in 

the amount of sulphur, 0.9 %, suggesting that the fragmented alkyl chains are 

only loosely bonded to the surface, and they are assumed to be displaced during 

backfilling. Comparisons between backfilled and control MHA SAMs shows close 

agreement in relative percentages of oxygen (O la), 8.1 % and 8.4 % and sulphur 

2.1 % and 2.8 % respectively. There was a slight increase in the amount of gold,

37.3 % to 35.3 % and reduction in the amount of carbon, 49.7 % to 52.5 % in 

comparison between the backfilled and control SAMs.

A possible anomaly in the XPS data arises from the relative amount of oxygen 

on the photo-cleaved surface, 6.7 %, which is significantly increased from a pure 

ODT surface, 0.5 %, It is tentatively proposed that oxidation of the gold surface
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occurs during the deep UV process, since it has been shown by others that gold 

will form a stable oxide when irradiated with UV light in the presence of ozone

[173].

Figure 4.4: Relative elemental surface compositions of SAMs at each stage of the 
deep-UV photo-patterning process.

4.3.2 C rystallisation on H om ogeneous SAM s

Oriented, face selective growth of calcite was observed on carboxyl-terminated 

SAMs, formed in solutions of mercaptohexadecanoic acid (MHA). The observed 

orientations were mainly parallel to the (012) and (015) growth planes, in agree­

ment with literature [134, 136]. Calcite crystals in these orientations are shown 

in figure 4.5 along with simulated calcite crystals in these orientations. The cal­

cite orientations on MHA SAMs were different to those observed on weathered 

mica, which facilitated true epitaxial growth in a (001) orientation (Figure 3.4) 

and those on freshly cleaved mica and glass slides, on which no preferential growth 

was observed.
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Several variables were considered in order to find optimal conditions for face se­

lective growth. Calcite was precipitated using both the double decomposition and 

gas diffusion methods outlined in section 2.3 (Figures 4.6, 4.7). A systematic study 

of the number density, particle size and percentage of CaC03 particles forming as 

calcite on three different substrates is summarised in table 4.3. Glass and gold 

substrates were used for control experiments, with a 24 h growth period and a 

[Ca2+]= 8 mM solution concentration chosen. The gold substrates were identical 

to those used to support the SAMs, with 100 nm deposited by thermal evapora­
tion onto glass slides. There was an approximate 5-fold increase in CaC03 number 

density in comparison to growth on glass and gold control substrates, confirming 

previous studies that MHA SAMs promote the nucleation of CaC03. Indeed, the 

number density of CaC03 particles on MHA SAMs was comparable to that on 

weathered mica. Conversely, the average particle size was significantly smaller on 

MHA SAMs in comparison to the control substrates, indicative of a high nucle­

ation rate. CaC03 precipitated uniquely as calcite on MHA SAMs, whereas small 

percentages of aragonite and vaterite were observed on gold and glass substrates. 

Finally, a comparison between the growth methods revealed an approximate dou­

bling in the CaC03 number density and halving in precipitate size on both gold 

substrates and MHA SAMs using the double decomposition growth method in 
comparison to the gas diffusion growth method.

Conditions
(012)

Orientation
(015) Other

E tO H -D D 10 37 53
EtO H -G D 42 44 14
DCM - DD 12 12 76
DCM - GD 18 57 25

Table 4.2: Percentage orientation of calcite crystals on MHA SAMs formed in 0.1 
mM EtOH k  acetic acid and DCM solvent. Crystals formed by double decompo­
sition (DD) and gas diffusion (GD) methods at 5 mM, 12 h growth period

The percentage of face selective calcite growth on MHA SAMs was determined 

as a function of precipitation method and the solvent within which the MHA 

SAM was formed (Table 4.2). The double decomposition growth method yielded 

a higher percentage of face selective growth in (012) and (015) orientations. (012) 
or (015) face selective calcite growth was observed in 47% and 86% of cases for
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Figure 4.5: a, b SEM images of calcite growth on carboxyl-terminated SAMs in 
a (012) and b (015) orientations, c, d Corresponding SHAPE simulations

double decomposition and gas diffusion growth methods respectively (12 h growth 

period, 5 mM concentration, EtOH & acetic acid solvent). A small increase in 

the percentage of (012) and (015) face-selective calcite crystals was observed for 

SAMs formed in EtOH & acetic acid solvent in comparison to those formed in DCM 

solvent (Figures 4.6, 4.7). For identical growth conditions (12 h growth period, 5 

mM gas diffusion method), 86 % and 75 % of calcite crystals were face selective 

for SAMs formed in EtOH with acetic acid and DCM solutions, respectively.
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Figure 4.6: SEM images of face selective growth calcite growth on carboxyl- 
terminated SAMs formed in 0.1 mM DCM MHA solutions. C aC 03 was pre­
cipitated from [Ca2+] =  5mM solutions using a gas diffusion method and b double 
decomposition growth method.
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Figure 4.7: SEM images of face selective growth calcite growth on carboxyl- 
terminated SAMs formed in 0.1 mM ethanol with acetic acid MHA solutions. 
C aC 03 was precipitated from [Ca2+] =  5mM solutions using a gas diffusion method 
and b double decomposition growth method.



Growth Method Gas diffusion Double decomposition
Substrate Glass Gold MHA Glass Gold MHA
Number per mm2 530±200 350±60 3100±600 800±300 1400±200 6800Ü000
Particle size (urn2) 109±30 58±6 25±5 98±20 28±10 9±2
CaJcite percentage 91 90 100 99 93 100

Table 4.3: Nucléation density, particle size and polymorphism for CaC03 particles on glass, gold and MHA SAM substrates for both 
precipitation methods. 8 mM solution concentration, 24 growth period.

C
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4.3.3 Growth on Patterned SAMs

The growth of CaC03 was considered on deep-UV patterned SAMs, formed in 

accordance to the procedure outlined in section 2.2.2. The formation of arrays of 

oriented calcite crystals on patterned SAMs has been reported by Aizenberg and 

others [135, 195, 196]. In these cases the SAMs were patterned by microcontact 

printing [135], or by e-beam lithography [195], whereas the work presented here 

shows the oriented growth of calcite on deep-UV patterned SAMs for first time. 

Section 7.1 considers the growth of CaC03 in picolitre droplets supported on 

patterned SAMs, necessitating the bulk growth of CaC03 on the same surfaces as 

a control.

CaC03 growth on patterned SAMs was attempted using only the gas diffusion 

precipitation method, since this precipitation method was shown to result in a 

slight increase in face-selective calcite growth on homogeneous MHA SAMs (sec­

tion 4.3.2) with precipitation preceded by a slow rise in solution supersaturation. 

SAMs were patterned with circular hydrophilic regions within a hydrophobic back­

ground, with the size and spacing of the circular regions limited by the photo-mask 

design. Patterned calcite growth was obtained on two circular patterns; 20 pm 

diameter circles at a 20 pm edge-edge spacing (Figure 4.8), and 10 pm diameter 

circles at a 14 pm edge-edge spacing (Figure 4.9). The patterned substrates were 

formed in accordance to the procedure described in section 2.2.2.

Multiple calcite crystals (7±2) per site were generally observed on the large circular 

regions after a 12 h growth period, [Ca2+] =  5mM (Figure 4.8). The CaC03 

crystals formed uniquely as calcite, with the absence of aragonite and vaterite 

consistent with the growth on homogeneous SAMs (section 4.3.2). The growth was 

also face selective, with over 70% of crystals in orientations parallel to the (012) and 

(015) growth planes. There was a reduction in the number of crystals per site for 

the 10 pm diameter patterned SAM under the same growth conditions. Again, the 

crystals exclusively formed as calcite, on this occasion with 3±2 crystals per site. 

There was a similarily high percentage of face selective growth, accounting for 65% 

of calcite crystals. The number of calcite crystals per active site was dependent 
on location of the sample in the vessel, with a higher number of crystals per active 

site closer to the air-solution interface. Since the air-solution interface was small
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in comparison to the solution volume, the number of calcite crystals varied as a 

function of distance to the interface (Figure 4.10). Closer to the interface there was 

an increase in the number of calcite crystals, with up to 11 per site. Conversely, 

at a larger distance from the interface, no more than three calcite crystals were 

observed per site. At the larger distance the crystals had typical dimensions of 

8 fim in comparison to the typical crystal dimensions of 4 /xm found closer to 

the interface. This is thought to be a consequence of the precipitation method, 

since supersaturation arises due to the the dissolution of CO2 at the solution- 

air interface. There is therefore a higher supersaturation closer to this interface, 
accounting for the increased nucleation rate and smaller crystal size.
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Figure 4.8: SEM images of CaCC>3 growth on 20 /¿m spaced 20 /mi diameter 
circular patterned SAMs at a  high and b  low magnification. [Ca2+] =  5mM 
double decomposition precipitation method, 12 h growth period.
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Figure 4.9: SEM images of C aC 03 growth on 14 fan  spaced 10 fan diameter 
circular patterned SAMs at a  high and b low magnification [Ca2+] =  5mM double 
decomposition precipitation method, 12 h growth period.
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Figure 4.10: SEM images of CaC 0 3  growth on 25 //in spaced 20 //in diameter 
circular patterned SAMs positioned a the vessel top, closer to the air-solution 
interface and b the vessel bottom, further from the air solution interface. [Ca2+] 
=  5mM double decomposition precipitation method, 12 h growth period.
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4.3.4 Early Growth Stages on SAMs

Analogous to the results presented in section 3.2.4, CaC03 nucleation pathways on 

MHA SAMs were determined through the morphological analysis of precipitates 

after a series of short growth times. After a 1 hour growth period, well defined 

single-crystal calcite with dimensions greater than 1 nm were present on MHA 

SAMs, with an absence of aragonite, vaterite and ACC particles. After growth 

periods less than 1 minute the CaC03 particles were highly irregular, morpho­

logically similar to vaterite and ACC, comparable to the early growth stages on 

mica (section 3.2.4). Here, growth periods of 0.5, 1, 2, 5 and 10 minutes were 

investigated for two initial solution concentrations, 2.5 and 5 inM. Table 4.4 quan­

tifies the relative amounts of irregular CaC03 precipitate, vaterite and calcite as 

a function of growth time in addition to the observed size range of the irregular, 

sub-micron CaC03 precipitates and the average calcite dimensions (defined as the 

largest projected point-to-point distance).

After a 30 second growth period the CaC03 particles were highly irregular, consist­

ing of aggregates of 30-120 nm diameter particles (Figure 4.11). These particles 

were mostly spherical, with apparently smooth surfaces and an absence of the 

well defined interfacial axes associated with calcite. The amorphous nature of 

these particles is shown in figures 4.11b-e. Individual particles are shown in fig­

ures 4.11b,e, however particle aggregation occurred in over 90% of cases (Figure 

4.11c). The particles were morphologically similar to ACC particles precipitated 

from bulk solution (chapter 6) and were markedly different to the irregular CaC03 

particles observed on weathered mica surfaces after the same growth period, which 

had uneven surface topographies similar to vaterite. In addition to the irregular, 

sub-micron CaC03 particles, larger vaterite particles were also present, identified 

by a roughened platelet-like surface. However, no regular calcite particles were 

observed. Similarly, for a 2.5 mM concentration no calcite particles were observed 

after 30 seconds, although in this case there was a higher number density of va­

terite particles (700±200/mm2), and a ~30 fold decrease in the number density 

of sub-micron irregular CaC03 particles (45000±2000/(mm2)) (Figure 4.12).

After a 1 minute growth period, irregular ACC type precipitates were observed 

for initial solution concentrations of 2.5 and 5 mM (Figure 4.13). These particles



Parameter
0.5 1

Growth time (i 
2

min)
5 10 60

ACC number density 
(mm2)-1

1600000 ±  600000 22000 ±  6000 34000 ±  4000 32000 ±  4000 29000 ±  9000 0

ACC diameter size 
range (nm)

30-120 60-240 40-180 30-160 60-120 -

Vaterite number den­
sity (mm2)-1

361 526 40 50 0 0

Calcite number 
density (mm2) ~1

0 370 584 822 1957 6140

Average calcite di­
mensions (//m)

0 2.5 1.8 1.4 2.9 4.8

Table 4.4: CaCC>3 polymorphism and size as a function of growth time for precipitation from 5 mM solutions on MHA SAMs.
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were similar in appearance to those observed after growth periods of 30 seconds, 

although with a significant reduction in particle number density. In addition, 

face selective growth of single crystal calcite was observed at both concentrations, 

parallel to the (012) and (015) growth planes (Figure 4.14). These particles had 

dimensions in the range of 0.8-3 pm, an order of magnitude increase in the dimen­

sions of the ACC- and vaterite- type particles. In addition, transitional particles 

were observed with dimensions in the range of 100 nm and with an apparent 

tetrahedral shape (Figure 4.13c). However, these particles were extremely rare, 

accounting for less than 1% of the analysed particles, and were speculated to be 

close to the transitional point between amorphous and crystalline phases.

Figure 4.15c is an SEM overview of precipitation from 5 mM CaC03 solutions after 

a 2 minute growth period, showing a continuation of the trend observed after a 1 

minute growth period. Irregular CaCC>3 particles were present at both [Ca2+] =

2.5 mM and [Ca2+] =  5mM solution concentrations, with the same characteristic 

spherical shape for a 1 min growth period (Figure 4.15c). Again, face selective 

calcite was observed at both concentrations, with dimensions in the range of 0.8- 

3 pm (Figure 4.15b). On the assumption that there is an order of 10:1 ratio 

between the number of amorphous to single crystal calcite particles and that the 

average dimensions of the amorphous and calcite particles are 100 nm and 1 pm 

respectively, ~99% of the total CaC03 material is in the form of calcite. A similar 

trend was observed after 5 minutes, with both face selective calcite and irregular 

CaC03 particles present at both solution concentrations (Figure 4.16).

After a 10 minute growth period the precipitates were almost entirely in the form 

of single crystal calcite, again with growth fixed to (012) and (015) orientations 

(Figure 4.17). For a 5 mM solution concentration, there were 29000±9000 irregu­

lar, sub-micron particles per mm2, with a 60-120 nm diameter size range. Figure 

4.17c is of a ~100 nm dimension pre-crystal with a tetrahedral morphology, which 

is speculated to be a very early stage calcite particle. In contrast, only regular 

face selective growth of calcite was observed after a 1 h growth period, with no 

irregular sub-micron CaCC>3 or vaterite present at either concentration.
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Figure 4.11: SEM images of CaC 0 3  precipitates on MHA SAMs after a 30 s growth 
period, [Ca2+] =  5mM. a SEM overview, showing aggregates of irregular particles 
b-e High magnification images of individual particles showing b individual and 
aggregates of 20-55 nm diameter ACC particles, c a single aggregation of 20-40 
nm diameter ACC particles, d two individual 40 nm diameter ACC particles and 
2 non spherical, irregular C aC 03 particles and e a single 50 nm diameter ACC 
particle.
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Figure 4.12: SEM overview CaC 0 3  precipitates on MHA SAMs after a 30 s growth 
period as a function of solution concentration, a [Ca2+] =  2.5 mM b [Ca2+] =  5 
mM .
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Figure 4.13: SEM images of C aC 03 precipitates on MHA SAMs after a 1 min 
growth period, [Ca2+] =  5 mM solution, a SEM overview of a region containing 
only irregular C aC 03 precipitates, b  an aggregation of 20-60 nm diameter ACC- 
type particle and c an individual tetrahedral C aC 03 calcite particle, indicative of 
calcite.
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Figure 4.14: SEM overview of CaC 0 3  precipitates on MHA SAMs after a 1 min 
growth period, as a function of solution concentration, a [Ca2+] =  2.5 inM, b 
[Ca2+] =  5 inM. Face selective calcite crystals, parallel to the (012) and (015) 
growth planes were observed at both concentrations, with smaller, irregular CaC 0 3  

precipitates also observed.
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Figure 4.15: SEM images of C aC 03 precipitates on MHA SAMs after a 2 minute 
growth period, [Ca2+] =  5 mM. a SEM overview showing a region of both face 
selective micrometer-sized calcite crystals and irregular ACC-type particles, b 
High magnification image of an individual (012) oriented calcite crystal, c High 
magnification image of 30-60 nm diameter ACC-type particles.
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Figure 4.16: SEM images of C aC 03 precipitates on MHA SAMs after a 5 min 
growth period, [Ca2+] =  5 mM. a SEM overview showing both face selective calcite 
and irregular C aC 03 particles, b an individual ~200 nm calcite tetrahedron, and 
c aggregates of 20-40 nm ACC-type particles.
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Figure 4.17: SEM images of C aC 03 precipitates on MHA SAMs after a 10 min 
growth period, [Ca2+] =  5 mM. a  SEM overview, showing face selective calcite, 
particle dimensions 0.8-2 /nn. b  A high magnification image of a (015) oriented 
calcite crystal, c A high magnification image of an irregular CaCÜ3  with an ap­
parent tetrahedral shape.
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4.4 Discussion

The results demonstrate that the heterogeneous nucléation and growth of CaC03 

can be moderated using functionalised SAMs, with an increased nucléation rate, 
control over polymorphism and orientation on homogeneous SAMs. A comprehen­

sive consideration of the thermodynamics of calcite growth on carboxylic SAMs 

was presented by Travaille and co workers [197], who showed a significant reduc­

tion in the CaC03 nucléation barrier as a result of favourable interactions between 

the (012) calcite growth plane and the functionalised SAM surface. The occur­
rence of the (015) oriented calcite crystals was attributed to a higher initial pH for 

the growth method used here, in agreement with the results reported in reference 

[134].

The growth of CaC03 on patterned SAMs resulted in a control over the nuclé­

ation site, in addition to control over polymorphism and orientation. This was in 

agreement with the work by Aizenberg et al [135], who found a linear relationship 

between the number of crystals in each active site and the site area. It can be 

seen in figure 4.8b that the amount of deposited crystalline material is higher on 

patterned regions in comparison to homogeneous MHA SAMs (the boundary is on 

the left part of this image). This phenomena was reported by Aizenberg et ai, who 

attributed it to the influence of the patterned SAM on mass transport. The nuclé­

ation rate is higher on the carboxylic-terminated hydrophilic areas in comparison 

to the methyl-terminated hydrophobic regions, with the onset of crystallisation at 

the polar regions resulting in mass transport to the growth regions and a localised 

under-saturation at the hydrophobic region. This behaviour is described by the 

diffusion aggregation model (DDA) which predicts the characteristic length scale 
for which nucléation is inhibited [198].

where defines the size of the depleted region, D is a diffusion coefficient (cm2« '1) 

and F (cm '2« '1) is the flux of material to the nucléation site. The diffusion 
coefficient can be found by solving the diffusion equation
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do _  „  <92c 
dt dx2

(4.8)

where c is the localised concentration and x is the position. Taking the experimen­

tal parameters used here,(d =  20/im, t =  43200 s, c =  10 mM), using the value of 

F  quoted by Aizenberg et al. [135] and assuming a saturated solution concentra­

tion of 2.5 mM yields a characteristic length scale of 200 /on. This correlates with 

the results here, where the spacing between adjacent nucleation sites is less than 

the calculated ld, even allowing for an order of magnitude error in the calculated 

value. Within this region, the solution is undersaturated, accounting for a far 

lower nucleation rate at the hydrophobic regions in comparison to homogeneous 

reference surfaces.

The results here suggest that the precipitation of CaC03 on SAMs proceeds via 

an amorphous precursor phase with only amorphous particles present after a 30 

s growth period. Analogous to the CaC03 growth on weathered mica, calcite 

particles were observed after 2 minutes, with the amorphous precipitates vanishing 

over time. However, in this case, ACC particles were observed on the surface after 

a 5 minute growth period, and a lower overall proportion of sub-micron vaterite 

particles. Crystallisation must therefore begin with the heterogeneous nucleation 

at the SAM-solution interface, with the transformation into calcite favoured over 

the transformation into vaterite.

This supposition was confirmed by recent simulations Duffy and co workers [199, 

200], where crystallisation begins with contact between the ACC particle and the 

monolayer. A degree of ordering of the ACC particles influences the structure of 

the monolayer, which in turn results in a further ordering of the ACC particle in a 

positive feedback mechanism. This phenomena has been observed experimentally 

on Langmuir films by DiMasi et al. [201]. The ability of the monolayer to stabilise 

the ACC particle was reportedly dependent on several variables, including surface 

ionization, pH and localised concentration variables. The face selective growth on 

homogeneous SAMs is therefore dependent on more than a lattice match between 

the head group spacing and the Ca-Ca separation.
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4.5 Conclusions

The results in this chapter demonstrate that the crystallisation of CaC03 , an 

inorganic material, on organic carboxyl-terminated SAMs results in control over 

polymorphism, orientation and particle dimensions. This has been reported by 

others, but was included here as control experiments, since these substrates are 

used in chapter 5 of this thesis to promote ordered crystal growth. The short 

growth time experiments on these surfaces suggest that crystallisation is initiated 

through an amorphous precursor phase, before transformation into calcite.

Using patterned SAMs, it was shown that crystallisation can be restricted to 

specified sites, due to depletion zones caused by localised concentration gradients. 

It is believed that this is the first time this principle has been demonstrated using 

the deep-UV photolithography method. Finally, deep-UV patterned SAMs were 

characterised using XPS and contact angle measurements, since these substrates 

are extensively used to support droplet arrays of aqueous solution in chapter 7.



Chapter 5

Crystallisation in Confinement

The work presented in this chapter considers the crystallisation of calcium carbon­

ate on thiol-on-gold self-assembled monolayers (SAMs) between crossed cylinders, 

with the surface separation increasing radially from a region of contact. This an­

nular configuration enables crystallisation to be systematically studied at a con­

tinuous range of surface separations, with the resultant morphology dependent on 

the degree of confinement. At large separations, the crystal habits are equivalent 
to those grown on flat, homogeneous substrates in bulk solution, affording control 

over the orientation, polymorphism and nucleation density. As the surface scparar 

tion tends towards the dimensions of the unconstrained crystals ('-10 /tm), inter­

esting particle morphologies are observed, lacking any of the features associated 

with the three non-hydrated CaC03 polymorphs; calcite, aragonite and vaterite. 

Scanning electron microscopy and Raman spectroscopy suggest the presence of 

significant amounts of amorphous calcium carbonate (ACC), a known precursor 

phase of fundamental importance in the biomineralisation process. These ACC 

particles demonstrate remarkable stability when maintained within the wedge but 
rapidly crystallize on separation of the cylinders. It is shown that ACC is thermo­

dynamically stable only at sub-nanometer surface separations, with the stability 

attributed to kinetic factors.

109
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5.1 Introduction

An important characteristic of the biomineralisation process is its occurrence 

within confined, localised microenvironments, where spatial constraints and chem­
ical conditions can be precisely controlled [23, 26, 27]. In these regions, organisms 

actively select the orientation, morphology and location of the biomineral, with 

known control mechanisms including ion-specific pumps and channels, pH control, 

and specific reactions with organic framework matrices [202]. However, biomimetic 

experiments aiming to study the processes are generally performed in bulk solution. 
There are many crysallisation phenomena however which cannot be satisfactorily 

described in terms of crystallisation from bulk solution. For the crystallisation of 

polyethylene within triblock co-polymers, Balsamo et al. found the melting point 

to decrease with an increased degree of confinement [203]. Another well known 

example is the precipitation of hydroxyapitite nanocrystals within the gaps in col­

lagen fibers during bone formation, which is dependent on confinement [204]. In a 

molecular dynamic simulation, Camara and Bresme predicted solid argon to exist 

in a 1 nm pore at temperatures up to 45 % higher than the argon triple point 

[205].

That confinement influences crystallisation is perhaps unsurprising, considering 

the associated increase in surface area to volume ratio within confined systems. 

The relative importance of interfacial and surface energies therefore becomes aug­

mented [206]. In addition, the kinetics are affected by crystallisation in confine­

ment, particularly in the case of long chained macromolecules. Furthermore, the 

diffusion of material to the growth face is likely to be affected by confinement. 

Several models have been established to study crystallisation in confinement, in­

cluding growth in zeolites within a mesoporous matrix [207], growth of calcium 

phosphate within micelles [208] and within nanometer-sized polymer membranes 

[209, 210]. In one experiment, Loste et al. [211] precipitated CaC03 within a 

track etch membrane, demonstrating that crystal morphology can be determined 
by spatial constraints alone.

Of particular relevance to the work presented here is the precipitation and sub­
sequent stabilisation of ACC within confined volumes. It is accepted that the 

formation of the stable CaC03 polymorphs within living organisms proceeds via
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the crystallisation of ACC into single crystal or polycrystalline phases. In one 

classic study, Aizenberg et al. precipitated ACC between two surfaces bridged by 

an array of micron sized pillars, with nucleation fixed to specified nucleation sites 

[212]. The formation of single crystal or polycrystalline calcite was dependent on 

the pillar separation, and it was proposed that the micropores act as sites for stress 

and water release, since in all cases the resultant pores were larger than the pillar 

diameters.

Previous models were often limited by the fixed geometry of the biological tem­
plate, whereas the model here presents a simple system for the study of crystallisa­

tion of a fluid under varying degrees of confinement. An annular crossed-cylinder 

configuration is used, whereby the surface separation increases radially from a re­

gion of contact (Figure 5.1). A droplet of solution is held in place around the 

region of contact due to capillary action. The cylinder separation, h, as a function 

of distance from the region of contact, d, is given by

h =  (5.1)
¿H

where R is the radius of the glass cylinder (12.7 mm). The change in surface 

separation, Ah, across a 5 /un precipitate at a distance of 100 /¿m from the region 

of contact is considered below.

l , a l (d + Ad)2 d2 dAd h + Ah =  -— ■■ «  —  +
2 R 2 R R (5.2)

where the higher order Ad term is assumed to be negligible.

Ah: dAd
R (5.3)

Substituting in for values of d, Ax and R

. , 10*4 x 0.5 x 10-5 ,
Ah w 12.7.x 10~a =  mAnrn (5.4)
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Due to the small changes in h as a function of d, crystallisation was therefore 

modeled between two parallel plates, h increases from a separation of zero at the 

contact region up to separations greater than 5 mm at the droplet edge. The 

surface separations calculated using equation 5.1 are shown in figure 5.2. The 

central aspect of this system is a large surface to volume ratio in close proximity 

to the region of contact.

Biomineralisation invariably involves heterogeneous nucléation, whereby crystal 

growth occurs at the solid-liquid interface. It was shown in section 4.1 that mono- 
layers of MHA on gold promote the ordered over growth on calcite, in agreement 

with the findings of others [134]. These monolayers were introduced to the crossed 

cylinder setup to promote nucléation and fix crystal orientation and polymorphism 

enabling changes in crystal habit to be established solely as a function of physical 

confinement.

A brief description of procedures is outlined in section 5.2. The results section is 

broadly divided into two parts: characerisation by SEM (section 5.3.1) and Raman 

spectroscopy respectively (section 5.3.2). The thermodynamic stability of ACC 

over calcite is considered in the discussion of results (section 5.4). Finally, TEM 

analysis of focused ion beam (FIB) sections taken from individual precipitates at 

various surface separations are included in section 5.5.

5.2 Experimental Methods

Half-cylindrical glass substrates were cut from tubing with an outer diameter of

25.4 mm and cleaned in accordance to the protocol listed in section 2.1. 50-150 

nm gold films were deposited using the sputter-evaporation technique described 

in section 2.2.2, with a bespoke sample holder created to hold the half cylinders 

(Figure 5.1b). Substrates were left in 0.1 mM solutions of mercaptohexadeeanoic 

acid (MHA) in DCM for 24 hours, maintained at 4° C (section 2.2.2).

Calcium carbonate was precipitated from aqueous solutions using double decom­
position and gas diffusion methods (section 2.3). The crossed cylinders were held 

in place using a specially designed sprung sample holder, and were brought into
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contact by slowly increasing the force applied to the top surface through the ad­

dition of ~  100 g weights. Once in contact, a ~250 /¿I drop of aqueous solution 

was introduced through a pipette. The growth period was varied between 1 and 

24 hours. To terminate crystallisation, the samples were rinsed with milli-Q wa­

ter whilst in contact; before separating and drying under nitrogen. Amorphous 

calcium carbonate was synthesised as a reference for Raman spectroscopy experi­

ments using the procedure described by Koga et al. [213] Briefly, 0.1 M aqueous 

solutions of CaCl2, Na2C03 and NaOH were combined in equal volumes at 4°C, 

before passing through 200 nm pore size filter paper and rinsing with ethanol. 
Raman spectra were obtained within 5 minutes of precipitation.

Surface separations were calculated using equation 5.1, with the region of contact 

identified from SEM images due to a slight deformation of the gold surface (Figure 

5.4). Figure 5.3 shows an overview of the region of contact, including contours 

of equal surface separations up to 200 /zm from the region of contact. Samples 

were usually characterised by Raman microscopy prior to SEM, due to the need 

for a 15 nm Pt conductive layer for SEM (section 2.4.4) which would reduce the 

sensitivity of Raman spectroscopy measurements.
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d

Figure 5.1: a  Schematic diagram for the crossed-cylinder configuration, with radius 
of curvature R. The surface separation h, related to the distance from contact, x, 
by equation 5.1. b Photograph showing the crossed cylinder apparatus, cylinders 
in contact
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Figure 5.2: Surface separation as a function of distance from the contact region, 
according to equation 5.1.

Figure 5.3: SEM overview of the region of contact, O. Contours are equidistant 
from the region on contact, in increments of 50 ¡am.
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Figure 5.4: HR-SEM image of a typical region of contact, signified by a slight 
scratching of the gold surface.
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5.3 Results

5.3.1 SEM Analysis

The nucleation density, orientation and morphology of CaC03 crystals grown at 

surface separations above 10 ¡am were similar to those for crystals grown on the 

isolated control surfaces (Figure 5.5). Non-oriented calcite growth was observed on 

glass substrates, with a nominal percentage aragonite and vaterite present (Figure 

5.6a), whereas the exclusive face-selective growth of calcite was observed on MHA 

SAMs (Figure 5.6b). The effect of the MHA SAM can clearly be seen in figure 5.6, 

accounting for an approximate 50 fold increase in crystal number density using 

both precipitation methods, in agreement with the studies on isolated control 

surfaces (Figure 5.5 ) (section 4.1). Crystals grown using the gas diffusion method 

had maximum dimensions in the range of 5 - 15 /im whereas crystals precipitated 

using the double-decomposition growth method yielded slightly smaller crystals of 

2 - 1 0  /im. The precipitate size was dependent upon the crystallisation method, 

growth period and solute concentration, yet independent of whether the crystals 

were grown at large surface separations or on isolated control surfaces.

Significant changes in crystal habit were observed at surface separations below ~10  

/am (Figure 5.7). The crystals formed without the characteristic 3-fold symmetry 

axis or the rhombohedra faces associated with calcite, with multi-faceted irregular 

edges and flattened top surfaces (Figures 5.7, 5.8). The edge irregularity increased 

with decreasing surface separation, with figure 5.7 b corresponding to a surface 

separation of approximately 5 /im. The appearance of these irregular CaC03 
precipitates was largly independent of the growth conditions. Figure 5.8 shows 

precipitates formed at a ~3  /¿m separation (24 h, gas diffusion method) at a  8 mM 

and b 4 mM concentrations. At both concentrations the precipitates were bounded 

by many small faces morphologically indicative of calcite, but with flattened upper 

surfaces.

The precipitate edges became progressively more irregular with increased confine­

ment, shown in figure 5.9 for the same sample at surface separations of 2 and 

~0.5 /an respectively. At separations of 2 /im and below the regular edge features
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associated with crystalline material were no longer apparent. Instead, an irregu­

lar, rounded edge was observed, characteristic of an amorphous precipitate. An 

overview of the the ~0.4-2 /¿m separation region is shown in figure 5.10a, with a 

higher magnification in figure 5.10b.

The fact that there were no morphological features characteristic of a crystalline 

material suggests that an amorphous precipitate forms at sub-micron separations. 

Further evidence of an amorphous phase was obtained by high resolution SEM im­

mediately adjacent to the region of contact, revealing an aggregation of 10-50 mM 

spherical particles, characteristic of amorphous calcium carbonate (ACC) (Figure 

5.11). To further investigate morphological changes arising from confinement, the 

surfaces were taken out of contact (~5 mm) and left in depleted solution for 1 hour 

immediately after growth (Figure 5.12). This resulted in a change in the features 

of the confined precipitates, with well-defined edges and faces. A representative 

sample shown in figure 5.12b presenting evidence for the transformation from ACC 

into calcite.
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Figure 5.5: SEM images of C aC 0 3  growth on MHA SAMs using the gas diffusion 
method ([Ca2+]= 4 mM, for 24 h). a On isolated control surfaces and b millimeter 
separations. Inset: a SHAPE simulated rhombohedral calcite crystal in a (015) 
orientation.
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Figure 5.6: SEM images for C aC 0 3  growth on MHA SAMs using the gas diffusion 
method ([Ca2+]— 8  mM, for 24 h) at millimeter separations, a  directly on glass 
substrates b On an MHA SAM
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Figure 5.7: SEM images for C aC 0 3  growth on MHA SAMs using the gas diffusion 
method ([Ca2+]= 8  inM, for 24 h) at an intermediate surface separation of ~5 /rm. 
a Overview image, with fully faceted calcite crystals towards the top right of the 
image, b  medium magnification, showing multifaceted, irregular calcite crystals 
orientation.
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Figure 5.8: SEM images for C aC 0 3  growth on MHA SAMs using the gas diffusion 
method (24 h growth period) at intermediate surface separations of ~3 /an. a 
[Ca2+]= 8  mM, b [Ca2+]= 4 mM.
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Figure 5.9: SEM images for C aC 0 3  growth on MHA SAMs using the gas diffusion 
method ([Ca2+]= 8  mM, 24 h) at surface separations of a  2  pm and b  ~0.5 pm.
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Figure 5.10: SEM images for C aC 0 3  growth on MHA SAMs at intermediate 
surface separations of ~3 fim. Precipitates were formed using the gas diffusion 
method for a 24 h growth period at a concentration of a  [Ca2+] =  8  mM, b  [Ca2+]= 
4 mM.
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Figure 5.11: HR-SEM images of C aC 0 3  precipitates supported on MHA SAMs 
at a sub-micron surface separation ([Ca2+]— 4 mM, double decomposition growth 
method, 24h). a 25, 000 x magnification b 50, 000 x magnification.
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Figure 5.12: SEM images for C aC 0 3  growth on MHA SAMs using the gas diffusion 
method ([Ca2+]= 4 mM, for 24 h) at an sub-micron surface separation, a  Immedi­
ately after separation, b suspended in depleted solution for 1 h immediately after 
separation.
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5.3.2 Raman Microscopy Analysis

There are important considerations in identifying C aC 0 3  polymorphs from indi­

vidual Raman spectra. The normal calcite vibrational modes were derived by R utt 

and Nicola [214] based upon the correlation method described by Fateley et al. 
[215] and are listed in Table 5.1. Also included are the vibrational Raman modes 

for aragonite and vaterite from references [216] and [217] respectively. The most 

intense lattice vibrational modes are at 155 and 281 cm ~l for calcite [214] and 

145, 180 Sz 208 cm - 1  for aragonite [218]. There are 9 Raman lattice modes for 

vaterite, the most intense at 301 cm ~ 1 and the double degenerate peak centered 

about 106 and 116 cm _ 1  respectively [219].

A substantial overlap occurs between the internal U\ vibrational modes of calcite 

and aragonite, at 1085 and 1089 cm" 1 respectively, whereas vaterite is readily 

distinguished by the distinctive degenerate vx mode centered at 1079 and 1084 

cm-1. Calcite and aragonite were differentiated by the position of the n4  modes at 

either 711 or 721 cm-1. ACC was distinguished from other C aC 0 3  by a significant 

broadening of the internal mode centered at 1083 cm-1, a general broad peak 

from 140-220 cm " 1 and an absence of the u4 vibrational mode between 700-800 

cm "1. Raman spectra of synthetic calcite, aragonite, vaterite and ACC are shown 

in figure 5.13.

Raman spectra were obtained for individual C aC 0 3  precipitates over a continuous 

range of separations. Particles were identified using optical microscopy at a 500x 

magnification, and matched to subsequent SEM images. Raman spectra confirmed 

that precipitates at separations greater than 1 0  (am were indeed calcite, verifying 

SEM morphological analysis. Raman spectra for C aC 0 3  known to have grown at 

intermediate surface separations of 2 - 1 0  /mi were consistent with calcite, albeit 

with a slight broadening of the 1085 cm" 1 peak, as expected for a polycrys­

talline sample [2 2 0 ]. In contrast, Raman spectra of C aC 0 3  precipitates at surface 

separations of 1 micron and less showed features in common with synthetic ACC, 

with an order of magnitude decrease in intensity of the 1085 cm" 1 i/ 4  mode, an 

absence of the v4 and broadening of the lattice modes over 140-220 cm "1. Raman 

spectra of the same particle showed a substantial conversion from ACC into calcite 

upon heating at 180° for lh , as identified by an eight-fold increase in intensity of



In
te

ns
ity

 (
a.

u.
)

Chapter 5. Crystallisation in Confinement 128

the ui mode at 1085 cm-1, and the presence of the previously absent vA mode 711 

cm-1 . The spectra in figures 5.14 and 5.15 were taken after a 24 h growth period, 

ACC was found around the region of contact after a 72 h growth period.

Polymorph Vibrational Mode (cm 
Ui u2 u3 u4

Calcite 1085 n /a 1450 711
Aragonite 1085 w w 700

704
Vaterite 1074 w w 740

1090 750

Table 5.1: The internal Raman active vibrational modes for calcite, aragonite and 
vaterite taken from references [214], [216] and [217] respectively, n / a  denotes no 
Raman active mode where as w denotes a mode which is too weak to readily 
detect.

Figure 5.13: Normalised Raman spectra for synthetic samples of a  calcite, b 
aragonite, c vaterite and d synthetic ACC, taken over a range of 180-1200 cm-1.
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Figure 5.14: Normalised Raman spectra of C aC 0 3  particles precipitated at surface 
separations of a  ~5  mm b ~  5 pm, c ~  and 0.5 pm. d The Raman spectrum for 
synthetic ACC is included for comparison.
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Figure 5.15: Normalised Raman spectra of the same C aC 0 3  particle precipitated 
a  after heating for 1 h at 180° b before heating. Double decomposition growth 
method, [Ca2 +]=5inM, 24 h.
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5.4 Discussion

The SEM and Raman spectroscopy data prove that significant changes in pre­

cipitate morphology occur as a result of confinement within an annular wedge. 

Changes in crystal habit were observed at surface separations as great as 1 0  /nn, 

with multi-faceted, irregular calcite particles devoid of any characteristic 3-fold 

symmetry axes. SEM analysis suggests that the confinement does not greatly in­

fluence the nucleation of the precipitates. The average nucleation density was not 

significantly affected by moderate degrees of confinement, down to surface sepa­

rations of about 1 0  /um, although this was not quantitatively studied. However, 

this is not surprising, since surface separations as small as of tens of nanometres 

are much larger than the critical calcite nucleus, recently reported as ~  1  nm at 

these supersaturations [2 2 1 ].

The average dimensions of particles, ~  5-10, /iin suggest tha t the irregular mor­

phologies occur when the calcite crystals bridge both surfaces. It is difficult to 

determine the extent to which the surface flattening is a kinetic effect due to re­

stricted mass transport between the growing precipitates and the second surface, or 

whether it is due to  actual contact with the second surface. The flattened appear­

ance of the distorted crystals suggest that the particles have grown outwards until 

reaching close proximity of the second surface. When the crossed cylinders are sep­

arated after growth, it is unlikely tha t the imaged crystals would have nucleated 

on the opposing surface, since it is assumed that the bond between the precipitate 

and the surface on which it nucleated is stronger than the adhesion to the sec­

ond surface. The crystal habit became progressively more irregular with increased 

confinement, with SEM observations suggesting all regular edges associated with 

calcite are lost at sub-micron separations. This was confirmed with Ranmn mi­

croscopy, with the precipitate composition changing upon increased confinement,. 

There was increased polycrystallinity at intermediate separations, with the con­

fined particles appearing to consist principally of amorphous calcium carbonate at 

sub-micron separations. The amorphous nature of the sub-micron precipitates was 

further confirmed by their recrystallisation into calcite upon heating or incubation 

in solution.
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Substances confined to porous media display phase transitions shifted from their 

bulk values [206]. Although the overall surface free-energy of the system remains 

constant, there is an increase in the ratio of surface free energy to bulk free en­

ergy in confinement. This arises from an increased surface area-to-volume ratio in 

confined systems, such that the phase with the smaller surface or interfacial free 

energy is favoured. This gives rise to wide range of phenomena such as capillary 

condensation and melting- and freezing point- depression of small particles and 

substances in porous media [222]. Temperature shifts in solid-solid phase transi­

tion [223] and the glass transition [224] in confinement have also bee n repoi ted. 

Changes in the relative polymorph stability of calcium phosphate [22o], globular 

protein (lysozyme) [226] and glycine [227] crystals precipitated from solution in 

various confined systems has been reported. Bulk transitions diminish and in some 

cases vanish altogether under extreme confinement, however this only applies to 

confinement in nanometer-sized pores, a three order of magnitude increase in the 

confinement considered in this study. The importance of the surface free energy 

is not restricted to sub-micron surface separations, however. Capillary rise and 

frost heave are examples of systems where the free energy of the substrate - liq­

uid interface is lower than the substrate - vapour interface. In these cases the 

medium fills with liquid, although in contrast to sub-micron systems, the effect is 

not sufficiently large to shift the bulk melting point.

The capillary condensation of liquid below the bulk melting point of the sul> 

stance is a phenomenon broadly analogous to the stabilisation of an amorphous 

phase (ACC) over a crystal phase (calcite) in confinement. The relative surface 

free energy terms results in the stabilisation of the liquid phase with respect to 

the vapour phase in a pore, and also a liquid phase over a crystalline solid below 

the bulk melting temperature. The transition between amorphous and crystalline 

phases presents a considerably more complex scenario than the transition between 

liquid and vapour phases. Defects, impurities, lattice strains as well as surface 

reconfigurations change the phase transition temperature. ACC, a non-crystalline 

isotropic phase, is approximated to resemble that of a liquid-vapour system. The 

surface free energy of ACC is assumed to be lower than tha t of the anhydrous 

C aC 0 3  polymorphs, due in part to an absence of edges and corners, and con­

tact between ACC and a solid substrate should be more favourable than contact
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between calcite and the substrate.

A calculation is presented showing the maximum surface separation at which ACC 

is thermodynamically favoured over calcite, first described in the recent publication 

based on this work [202]. There are several assumptions made in this calculation, 

firstly that ACC is uniform in density, secondly that it can be approximated as a 

disc of radius r and thickness d (Figure 5.1G) and thirdly that the surfaces are flat 

and form a continuous contact with the substrate.

Figure 5.16: Schematic diagram showing the approximation of ACC as a disc of 
radius r and height d. The ACC particle is located near to the region of contact 
(top surface not shown).

The total free-energy for crystallisation is dependent on a bulk free-energy contri­

bution, A G  buik, and a surface-free energy contribution, A G surf ace. At equilibrium 

the surface and bulk free-energy terms are equal.

The total surface free-energy contribution is the sum of precipitate-substrate and 

precipitate-solution terms, and relates to the difference in surface free-energy be­
tween calcite and ACC at each interface.

A G  A G  surface T A Gfaif- — 0 (5.5)

A G s  —  27T7’2 ( 7 s/calcite ~  1S/ACC)  +  2 n rd  ('fw /ca lc ite  — I w / a c c )  (6 -6 )
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where 7  represents the respective free energies of interfaces formed between various 

components denoted by the subscripts; calcite, ACC, substrate (S) and water (W). 

Equation 5.6 can be written in terms of the C aC 03-solution interface, A 7 1  and 

C aC 0 3 -subst.rate interfaces A 7 4

AG aurf ace =  2nr (rAys + dAyL) • (5.7)

The bulk free energy term is related to the volume of the precipitate.

A GMk =  nr2d ~ ~~~"- (5.8)

where A G ^ s  is the free energy of crystallisation of calcite per mole and Vm is the 

molar volume of calcite. Substituting equations 5.7 and 5.8 into 5.5 and simplifying 

gives

2  (rA'fs +  ¿A j l ) = ~ fd
AG,cryst

VM
(5.9)

This can be written as

+  ( , 10)

The molar volume of calcite is accepted as Vm = 3.7 x 10~5 m 3  [228], and esti­

mations can be made of A74 ~  lOm Jm - 2  and A71 ps 100m Jm ~2 [202]. AG CTyst 

upon the transformation from ACC into calcite can be found from a C aC 0 3  pre­

cipitation diagram. The change in chemical potential upon this transformation 

is obtained by subtracting the chemical potential change for the precipitation of 

ACC from solution from the chemical potential change for the precipitation of 

calcite from solution. Figure 1  of reference [228] gives a value A/T= -7 .3 kT and 

therefore AG „yet =  —18A Jmol~l at 2 0 ° C. Substituting numerical values into 
5.10, and writing d and r  in nm yields
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0.01 0.1
_ _ — |------------

d r
0.24 (5.11)

The minimum radius, r, of the ACC precipitates at sub-micron separations repre­

sented in figure 5.11 is of the order of 103  nm. This yields a d value of the order 

of 0.1 nm according to equation 5.11. Permitting order of magnitude uncertain­

ties in Ays and A'ji gives the thermodynamic stability of ACC over calcite at a 

maximum surface separation of tens of nanometers. This is significantly smaller 

than the observed surface separations at which ACC was stabilised with respect 

to calcite.

There is a large gain in bulk free-energy upon the crystallization of ACC into 

calcite which negates surface free-energy losses at all but the smallest surface 

separations, of the order of 1 nm or less. It can therefore be concluded from these 

calculations that the stability of ACC at large separations must arise from kinetic 

factors. It can be expected that the transformation of ACC into calcite would be 

hindered within confined systems, due to limited contact between precipitate and 

solution. ACC is reportedly stable for long periods when isolated from solution 

and in non-aqueous solvents including ethanol [229]. This is in agreement with the 

results here, where calcite was stabilised with respect to calcite under confinement 

for periods of 72 hours.

The mechanisms of the ACC to calcite transition remains unclear. In particular, 

the expulsion of water during this process is not fully understood. The necessity 

for water expulsion in the transition from ACC into calcite was elucidated during 

the precipitation of CaCOs within cylindrical pores of track-edge membranes [209, 

211]. Single crystals of calcite were obtained within 0.2-5 pm pores which were 

completely filled prior with ACC, whereas polycrystalline calcite was observed in 

large pores only partially filled prior with ACC. These studies support the results 

here, with the stability of ACC dependent on the availability of a dissolution- 
reprecipitation pathway.
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5.5 Focused Ion-Beam Section Analysis

An attem pt was made to examine the crystalline nature of C aC 0 3  precipitates 

over a range of surface separations by taking FIB section of individual particles 

and examining them using TEM. The procedure loosely followed that described 

by Heaney et al. [230], with an SEM micrograph of each stage shown in figure 

5.18. Firstly, a C aC 0 3  particle was selected and a 50 nm thick 20 x 5 pm P t 

strip sputtered as a protective foil during the ion milling. Next, two trenches were 

excavated to a depth of 5 pm each side of the P t strip, using a 30 kV Ga+ beam 

operating at 200 nA (Figure 5.18b at a 45° tilt). One of the channels was cut with 

a shallow angle of approach, to allow for subsequent sample undercutting. The 

sample was further milled to a thickness of approximately 1 0 0  nm at reduced beam 

current (~  pA) to remove any secondary material and enable electron transparency 

(Figure 5.18c). The sample was then undercut (Figure 5.18d) and welded on to a 

transportation tip (Figure 5.18e) before out lifting and welding onto a 100 x 100 

pm TEM grid (Figure 5.18f). TEM images were obtained using a Phillips CM 200 

FEG-TEM.

Samples used in these measurements were prepared in a different way to the 

method described in section 5.2. 100 nm of gold was deposited onto freshly cleaved 

mica, ~50 pm thick, before immersing in solutions of MHA in DCM for 24 h at 

4°C. The mica sheets were then mounted onto the glass cylinders Using carbon 

tape. The surfaces were brought into contact in the same way described in section 

5.2, with C aC 0 3  precipitated using the double decomposition method from 5 mM 

solutions for a 24 h growth period. Samples were prepared in this way due to diffi­

culties in mounting the curved glass substrates onto the FIB sample holder, since 

this required a 2 x 2 mm sample size. The mica substrates were cut to  size after 

crystal growth. Only two samples were prepared in this way: single crystal calcite 

precipitated at a large surface separation (~5 mm) and polycrystalline calcite pre­

cipitated at intermediate surface separations (~5 pm) (Figure 5.19). FIB section 

analysis of C aC 0 3  precipitated at sub-micron separations was not attem pted due 

to financial limitations.

TEM micrographs of the single calcite sections suggest a uniform, single crystal 

structure. Figure 5.20a is for a FIB cross-section at a low magnification, showing
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the mica substrate and a large CaC0 3  crystal separated by the a 1 0 0  nm gold layer, 

as shown by a dark band. There was continuous contact between the crystal and 

substrate, indicative of face selective growth. The protective P t band ea,n be seen 

encasing the CaCOs precipitate. The crystal appears uniform throughout, with 

only a small change in contrast suggesting the presence of few grain boundaries. 

Figure 5.21a is a high resolution TEM image of calcite structure viewed along the 

5-axis, with the Fourier sharpened image shown in figure 5.21b. There images 

show a close agreement with calcite cross sections presented by Yu et a,l. [231].

Figure 5.20b shows a low magnification FIB cross section of the polycrystalline 

calcite sample shown in figure 5.19b, contrasting sharply with the single crystal cal­

cite. Here, multiple grain boundaries are present, defined by the multiple darkened 

bands. Furthermore, the crystal-substrate is highly irregular, only intermittent in 

contact with an absence of straight edge features. A higher magnification image 

of this interface is shown in figure 5 .2 2 a, on which the gold substrate appears as a 

dark band. An overview of a grain boundary is shown in figure 5.22b, with high 

magnification images showing the polycrystalline nature of the precipitate (Figure 

5.23). Here, several lattice directors can be seen, contrasting to the single crystal 

calcite.

Crystallographic orientations were determined from the electron diffraction pat­

terns. A schematic diagram of the setup is shown in figure 5.17. By making the 

small angle approximation to Bragg’s law, the interplanar spacing can be deter­

mined.

■I (5.12)

where R  is the measured spacing and XL is the camera constant dependent on the 

accelerating potential of the electron beam and the magnification of the diffraction 

pattern (A is the wavelength of the incident electrons, L is the distance from the 

sample to the screen). The diffraction patterns C aC 0 3  precipitated at large and 

intermediate surface separations are shown in figures 5.24a and 5.24b respectively. 

At a  large separation the (104) calcite lattice spacing can be seen, whereas a t an 

intermediate surface separation the spacings are indicative of calcite, although with 

a greater distortion. Significant growth planes are marked on the single crystal
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calcite. Although these FIB section studies remain incomplete, it is immediately

apparent that even moderate degrees of confinement influence the crystal growth.

R

Figure 5.17: Geometric configuration of single crystal electron diffraction.
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Figure 5.18: SEM micrographs showing the various stages of the FIB milling 
process, a Sample identification and sputter deposition of P t layer (not shown) 
h coarse excavation of channels, c fine milling, d undercutting, e welding onto 
transportation tip and f  welding onto TEM grid.
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Figure 5.19: SEM micrographs of the C aC 0 3  precipitates prior to FIB milling, 
supported on MHA gold on mica substrates. 5 mM double decomposition growth 
method, 24 h growth, a  single calcite, precipitated at a large surface separations 
(~  5mm), b polycrystalline calcite precipitated a t intermediate surface separations 
(~5 gm).
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Figure 5.20: TEM micrographs of FIB sections for C aC 03 precipitated at a  large 
surface separations (5 mm) and b  intermediate surface separations (~5 ¿mi)
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Figure 5.21: High resolution TEM image of a single crystal calcite FIB cross 
section, a  Original image, b Fourier enhanced image.
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Figure 5.22: TEM overview of a C aC 03 particle precipitated at an intermediate 
surface separation showing a the crystal-substrate interface for and b the presence 
of grain boundaries.
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Figure 5.23: High magnification TEM images of C aC 0 3  precipitated at interme­
diate surface separations.



Chapter 5. Crystallisation in Confinement 145

Figure 5.24: TEM electron diffraction patterns of C aC 0 3  preciptiated at a  large 
surface separations (~5mm), with the (012), (104), (006) and (300) planes iden­
tified from the central point, x, and b intermediate surface separations ( ~ 5  ¿mi) 
showing a greater distortion of the individual spots.
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5.6 Conclusions

It was shown in this chapter that the environment within which a mineral forms 

exhibits significant influence on the resultant crystal morphology. In highly con­

fined systems, in this case around the region of contact of an annular wedge pore, 

ACC, an amorphous precursor phase, is stabilised with respect to calcite, a crys­

talline phase. There was a rapid transition from ACC to calcite upon the removal 

of the confining surface and subsequent incubation in depleted solution. Further­

more, heating of an amorphous particle after separation resulted in a transition 

to a crystalline state. The stabilisation of the amorphous phase was attributed 

to kinetic factors, since it was shown that ACC is thermodynamically preferable 

to calcite at sub-nanometer surface separations, at least three orders of magni­

tude less than observed here! Around the region of contact the solution-particle 

interface is extremely small, and it is proposed that the resultant hindrance of wa­

ter expulsion from the amorphous phase prevents the transition to the crystalline 

phase.

The stabilisation of amorphous calcium carbonate over anhydrous C aC 0 3  poly­

morphs under confinement has implications in the understanding of the biomin­

eralisation processes. Biomineralisation invariably occurs within restricted vol­

umes, and through a wide range of interactions with insoluble matrices and sol­

uble macromolecular entities within these privileged micro-environments, a large 

degree of control over mineralisation process is afforded, including the nucleation 

site, crystal composition and morphology. The crystallisation of an inorganic 

biornineral through an amorphous precursor phase is not restricted to C aC 0 3  

however, with recent reported examples including calcium phosphates and iron 

oxide biomaterials. Since amorphous precursor phases are of obvious significance 

in biomineralisation, the work here shows that organisms may use confinement 

alone as a means for stabilisation, with the results indicating that stabilisation 

will occur at micrometer confinements depending on kinetic considerations. It is 

therefore concluded that although the crystallisation within a confined microenvi­

ronment provides a necessary environment for a variety of controlled interactions, 

it is suggested that confinement alone, and specifically the large surface area to
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volume ratio, which may provide an additional control mechanism over biominer­

alisation.



Chapter 6

Precipitation of Calcium 
Carbonate in Bulk Solution

This chapter considers the nucleation pathways of CaC 0 3  in bulk solution and 

how the occurrence of the amorphous precursor, ACC, is dependent on measurable 

quantities including solution concentration and volume. The early growth stages of 

C aC 0 3  are investigated using spectrophotometry, with the transmitted intensity 

of light related to the size of crystal precipitate. Particles collected during the in 

situ spectrophotometry measurements were analysed using Raman spectroscopy 

to determine polymorphism, and TEM to determine the particle size distributions 

and relative degree of crystallinity. By relating the transmitted intensity to the 

known particle sizes of calcite and ACC, it was possible to determine the solution 

composition at a given time, and thus determine the nucleation pathway.

6.1 Introduction

During the course of the experiments presented in chapters 4 and 5 it was observed 

that the supersaturated CaCC>3 solutions, when mixed in accordance to the double 

decomposition growth method, would go cloudy at concentrations of [Ca2+]= 5  

mM and above (Figure 6.1a). Solutions mixed at concentrations [Ca2+]~ 4 mM 

and below remained clear, with the turbidity of the mixed solution the same 

as for initial CaCl2  and NaaCOs solutions. An intermediate increase in solution

148
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turbidity was observed at concentrations of [Ca2+]= 4.5 mM. The concentration at 

which the solutions appeared cloudy was apparently independent of volume with 

the solutions appearing clear after periods ranging between 5 and 10 minutes, 

depending on concentration and solution volume. This is shown in figure 6 .1 , 

where the solution appears initially cloudy before clearing as the solution converts 

to calcite and settles at the vessel floor.

Since the solution turbidity is clearly dependent on both the size and number 

density of the particles, it is possible to use the attenuation of visible light as a 

means to determine the nucleation pathway for CaCC>3 . It will be shown later in 

this chapter that ACC particles are smaller than calcite particles, and it follows 

that the nucleation density will be higher. Therefore, a solution with a high 

number of ACC particles will contain significantly more scattering centres than 

a solution of calcite particles. This makes it possible to follow the transition 

from ACC to calcite in solution as a function of time. This section considers 

the nucleation of CaC0 3  in from bulk solution with and without Mg2+ additives, 

known to affect the lifetime of ACC.

Induction periods, the elapsed time between the creation of supersaturation and 

the formation of crystal nuclei, have been determined from the transmitted in­

tensity of scattered light for various materials, including calcium oxalate [232], 

dimethyiglyoxime [233], barium sulphate [234, 235], magnesium hydroxide [235, 

236] and magnesium ammonium phosphate [235], Faatz et al. [237] considered 

the precipitation of C aC 0 3  using light scattering and reported that ACC is tran­

siently stable without additives, although a different growth method was used 

to that described here. Similarly, Liu et al analysed the nucleation and growth 

of amorphous calcium carbonate using time resolved static light scattering and 

reported the formation of ACC spherulites [238]

Practically, induction periods, t ind are easier to measure than nucleation rates. 

For spectrophotometry measurements, the nucleation of particles is succeeded by 

a fall in transmitted intensity of light through the solution due to Rayleigh scat­

tering from small particles. The induction period is inversely proportional to the 
nucleation rate, J
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Figure 6.1: Chronological photographs showing a 5mM supersaturated C aC 0 3  

solution in a 1 0 0  ml vessel after a  30 s, b 2 min, c 4 min, d 6  min, e 8  min and f 
1 0  minutes.

( G . l )

According to Beer’s Law, the transmitted intensity, 7, of light through a solution 

is related to the projected areas of the particles in unit volume of suspension, Ap
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Figure G.2: Schematic diagram showing the spectrophotometry cuvette, with the 
transmitted intensity, T, related to the initial intensity, T0 by the path length, L, 
and the effective cross-section of the particles.

, the path length of light in solution, L, and to the intensity of light transmitted 

through pure water, / q [239].

The above is dependent on the following assumptions; 1 ) the absorbing particles 

act independently of each other, regardless of density, 2 ) absorption is uniform 

throughout the sample and 3) absorption is the only interaction between the inci­

dent radiation and the solutes.

In the case of CaCC>3 precipitating in solution, the situation is complicated by the 

sedimentation of calcite particles upon growth to a certain size. Gunn described 

the rate of sedimentation for a similar system, that of barium sulphate, using 

Stokes’ law [235]. That derivation is briefly described here.

Upon reaching a certain size, the crystals will sediment at a terminal velocity, V , 

whereby the weight of the particle is equal to the drag force acting upon it, / .

( 6 .2)

(6.3)
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where /? denotes the ratio of drag forces on a crystalline particle of dimension 2 r  

to tha t of a sphere of radius r  moving at the same velocity. 7  is the ratio of the 

volumes between a crystalline particle of dimension 2 r and an equivalent sphere 

of radius r. p and ps are the respective densities of the crystalline precipitates and 

the spherical particles, g is the acceleration due to gravity and p  is the viscosity 

of the fluid.

There is no change in the amount of transmitted light until the largest particles 

have fallen a distance H  from the free surface of the medium to a point below 

the light beam (Figure 6.2). Substituting H/t  for V  and rearranging equation 6.3 

yields

r(t) =
9pH/3

2*(P$~P)91
(6.4)

giving the last particle to fall through the illuminated zone. The projected area 

in equation 6 . 2  at time t is related to n(r) by

j4.p
dn(r) 

dr (6.5)

where n (r) is the number of particles within a unit volume of size greater than 

r, where each n(r) sized particles has a  true surface area of 4nr2 and a projected 

area of 7rr2.

By differentiating both sides of the equation with respect to t it can be shown that

M r )  _ 9pH/3 d f  f l 0\ \
dr 7T Lr2(p, -  p)91 d t \ n \ I  ) )

giving the measured concentration of particles as a function of change in trans­

mitted intensity over time. In the case C aC 0 3  precipitating from bulk solution, 

the situation is complicated by the fact that there are two particle types: ACC 

and calcite, Due to their small size (r <  ~  100 nm) and lower density, the ACC 

particles will not readily sediment,, and it is assumed that sedimentation occurs 
only for calcite particles.
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6.2 Experimental Methods

CaC 0 3  was precipitated in accordance to the double decomposition method out­

lined in section 2.3. For these experiments, the solutions were stored under a t­

mospheric C 0 2  for a period greater than 3 days, unless otherwise stated. 1  ml 

of solution mixed directly in a 2 ml Plastibrand perspex cuvette. The solutions 

were always mixed in the same order, with 500 ml of Na2 C 0 3  added to 500 ml of 

CaCl2, at a rate not exceeding 500ml/sec to prevent the formation of air bubbles 

in solution. Spectrophotometric measurements commenced within 2 seconds of 

mixing.

In situ spectrophotometry measurements were obtained using a Perkin Elmer 

Lambda 3 5  UV-Vis system, operating in a time-drive mode (A =  500 nrn, ex­

posure time =  Is). The transmitted intensity, / ,  was recorded as a function of 

base intensity, Iq, where Io was measured through an empty cuvette over a time 

period of 1200 s. Monochromatic light of 500 nm wavelength was chosen since the 

empty cuvettes did not absorb significantly at this wavelength, yet over 90% of the 

light was absorbed by a 5 mM CaC0 3  solution 30 s after mixing (Figure 0.3). In 

general, there was no significant difference in absorbance over a 250-650 nm range 

in wavelength, with considerable absorption (greater than 2 0 %) occurring only in 

the UV range.

Raman spectra were obtained for precipitates extracted from CaC 0 3  "solutions 

during in situ spectrophotometric measurements, relating the polymorphism to 

the transmitted light intensity. Approximately 1 0 0  [A of supersaturated C aC 0 3  

solution was extracted from the cuvette during the spectrophotometric measure­

ment before passing through 200 nm filter paper and rinsing with ethanol. The 

precipitates were then transferred onto a glass slide and analyzed using a Raman 

microscope within 5 minutes of extraction. Particles were extracted after growth 

times of 15 s, 1 minutes, 2 minutes and 5 minutes for [Ca2+] solution concentra­

tions of 2.5, 5 and 1 0  mM. Each spectrum was plotted as a function of absolute 

and relative intensity. The absolute intensity shows the difference in peak height 

for the different spectra, with the same exposure time and laser power settings 

used for each experiment. The spectra are normalised between 0 and 1  on the
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relative intensity scale, in order to clearly show the peak broadening inherent in 

amorphous spectra.

TEM images were taken for C aC 0 3  particles extracted from solution after short 

growth periods of 15 s, 1  minute and 5 minutes, at concentrations of [Ca2+] =  2.5 

and 5 mM. Polymer coated 100 x 100 pm Formvar TEM grids were immersed in 

50 ml of supersaturated C aC 0 3  solution for the set growth period before rinsing 

with ethanol and drying under N2. Low magnification images were obtained by 

first viewing the TEM grid using SEM, without first applying a F t layer.

solution 30 s after mixing. A wavelength of A=500 nm was used for the spec­
trophotometry measurements
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6.3 Results

6.3.1 Spectrophotometry Analysis

6.3.1.1 Precipitation of Calcium Carbonate Without Additives

In situ spectrophotometry measurements were recorded during the initial pre­

cipitation of C aC 0 3  from solution, with the induction time dependent upon the 

solution concentration. An immediate fall in intensity was observed for solution 

concentrations of [Ca2+]= 5 mM and above, falling below 10% after 60 seconds at 

a concentration of [Ca2+]= 5 mM. This trend was observed for all concentrations 

in the range of 5-10 mM, with the fall in intensity succeeded by a sharp increase in 

intensity after timescales varying between 60 and 250 s (Figure 6.4). Interestingly, 

a secondary reduction in intensity was observed during the recovery process for all 

cases within the concentration range, yielding a small peak with the width of the 

order of 30s and a fall in intensity between 4 and 10% (Figure 6.4a-g).

At initial concentrations of [Ca2+]= 4 mM and below, the intensity profile was 

considerably different, with no reduction in intensity greater than 5% observed 

during the first 500s. A small reduction in I/Io was observed between 600s and 

800s, of approximately 15% for [Ca2+]= 4 mM and 5% for [Ca2+]= 2 mM. A 
subsequent increase in intensity was witnessed in both these cases, without any 

secondary reductions in I/Io- A solution concentration of [Ca2+]= 4.5 mM marked 

the transition between these two domains, with the intensity minima occurring 

approximately 200s later than for an initial concentration of [Ca2+]~ 5 mM. The 

I/Io minima values were 36% and 2 1 % for [Ca2+]= 4.5 and 5 mM respectively, 

although the rates of recovery of I/I0 values were comparable. A small secondary 

reduction in intensity was again observed at a concentration of [Ca2+]= 4 . 5  mM, 
albeit on this occasion after more than 600s.

Interestingly, the solution pH strongly influenced the solution turbidity (Figure 

6.5). The transmitted intensity through solutions equilibrated with atmospheric 

COa recovered quicker than in the case of solutions made from fresh Milli-Q water. 

Solutions made from fresh Milli-Q water remained turbid over 20 minutes at con­

centrations of [Ca2+]— 5 mM and above. At a concentration of [Ca2+]= 2.5 mM,
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the solutions remained clear regardless of whether the solutions were equilibrated 

with atmospheric C 0 2. The pH was 5.7 for C 0 2-equilibrated CaCl2  solutions and

6.2 for fresh CaCl2  solutions. There was no significant change in pH of the Na2 C 0 3  

solutions, with values of 10.95 and 1 1 . 0 2  for fresh- and C 0 2-equilibrated solutions 

respectively. To further quantify the effect of pH on solution turbidity, a series of 

experiments were undertaken, in all cases taken for [Ca2+]= 10 mM initial solution 

concentrations (figure 6 .6 ). Firstly, the solutions were mixed at a high pH with 

the prior addition of a small volume of NaOII to the CaCl2  solution yielding a pH 

of 9.8 (Figure 6 .6 a). This resulted in the solution remaining turbid over 1200 g, 

with the intensity never recovering above 2 0  %. Secondly, the C 0 2  was bubbled 

through the fresh solutions for 20 min, yielding a CaCl2  pH of 3.8 (Figure 6 .6 b). 

In this case, the solution remained clear throughout, with no fall in intensity ob­

served during 1200 s. Next, C 0 2  equilibrated CaCl2  solutions were mixed with 

fresh Na2 C 0 3  (Figure 6 .6 c) and vice versa (Figure 6 .6 d). In both cases, there was 

a fall and subsequent rise in intensity, similar to the result observed when both 

solutions were C 0 2  equilibrated (Figure 6 .6 e). In contrast, the solutions remained 

turbid when both solutions were made fresh (Figure 6 .6 f).

6.3.1.2 Precipitation of Additive-Stabilised ACC

ACC is reportedly stabilised by various additives, including block co-polymers 

[240], NaOH [213], magnesium salts [241] and phosphonates [242]. The results 

presented here consider the effect of Mg2+ additives on the stability of ACC using 

spectrophotometry. Equal volumes of 10-40 inM MgCl2  and 40 mM ÇaCl2  aque­

ous solutions were combined, yielding solution concentrations'of [Ca2+]= 20 mM, 

[Mg2+]= 5-20 mM. This solution was then mixed with a 20 mM Na2 C 0 3  aqueous 

solution in a 1:1 ratio in a cuvette to initiate precipitation. The final ionic con­

centrations were therefore [Ca2+]= 10 mM, [Mg2+]=  2.5-10 mM and [CO|“ ]= 1 0  

mM. . . . . . . .

The induction time and recovery period increased with the [Mg2+] additive con­

centration (Figure 6.7). A 2.5 mM Mg2+ salt concentration resulted in a 600 s 

increase in the time period for which I /I 0  remained below 25% in comparison to 

the control sample without additives. For Mg2+ ionic concentrations of 5 mM and
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Figure 6.4: In situ spectrophotometry measurements of the transmitted intensity, 
I/Io, as a function of time. [Ca2+] =  a-g 2, 4, 4.5, 5, G, 8  and 10 mM respectively.
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Figure 6 .6 : In situ spectrophotometry measurements for the precipitation of 
C aC 0 3  from 1 0  mM. aqueous solutions under different conditions, a  High initial 
pH, b C0 2  bubbled through prior to mixing, c C 0 2 equilibrated CaCH solution 
only, d COa equilibrated Na2 C 0 3  solution only, bot h solutions CO, equilibrated 
and f  both solutions fresh.
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7.5 mM this period increased to 850 s and 1000 s respectively, whereas a Mg2+ 

ionic concentration of 1 0  mM yielded no recovery in I /I 0  over 1 2 0 0  s. In addition, 

the intensity recovery rates and final intensity values were reduced with increased 

Mg2+ salt concentration (data not shown).

6.3.2 Electrode Measurements

In situ electrode measurements recorded the pH as a function of time for C aC 0 3  

solution concentrations of [Ca2+] =  2.5 mM and [Ca2+] =  5 mM (Figures 6 .8 ). 

There was a sharp, instantaneous increase in pH upon the addition of Na2 C 0 3  

solution to the CaCl2  solution (initial pH=6.9) rising to 10.4 and 10.8 for 2.5 mM 

and 5  mM concentrations respectively. In both cases the sharp rise proceeded a 

gradual relaxation towards pH values of approximately 10.2 after 1200 seconds, a t­

tributed to the fall in free Ca2+ and CO2- ions during precipitation. Interestingly, 

the time scale of maximum pH appeared largely independent of concentration, ap­

pearing after approximately 145 and 135 s for 2.5 mM and 5 mM concentrations 

respectively. For a 5 mM C aC 0 3  solution concentration there was an approximate 

correlation in time periods for the maximum pH and maximum turbidity. For a 

[Ca2+]=  2.5 mM solution concentration, the maximum pH occurred more than 5 

minutes before the maximum turbidity (although no significant fall in turbidity 

was recorded at this concentration).

6.3.3 Raman Spectroscopy Measurements

Raman spectra of precipitates collected from [Ca2+]= 2.5 mM solutions were 

markedly different to those for [Ca2+]= 5 and 1 0  mM solutions, with an order 

of magnitude decrease in the amount of material precipitated at the lower concen­

tration. There was no evidence of ACC, with the Raman spectra of precipitates 

collected after all 4 growth times showing the four fundamental calcite peaks in the 

100-1200 cm - 1  range, at 160, 280, 711 and 1085 cm “ 1 respectively, in agreement 

with the literature vah«s [214, 218] (Figure 6.9b). There was a fourfold increase 

in the absolute maximum intensity, of the 1085 cm “ 1 carbonate mode between 15
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Figure 6.7: In situ spectrophotometry measurements for the precipitation of 
C aC 0 3  from [Ca2+]= 10 raM solutions, in presence of Mg2+ salts. The [Mg2+] 
concentrations are listed, in the range of [Ca2+]= 0-10 niM
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Figure 6 .8 : pH (right axis, blue line) and turbidity (left axis, black line) as a 
function of time, for C aC 0 3  solution concentrations of 2.5 mM (top) and 5 niM 
(bottom).
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s and 4  minutes, attributed to a stronger signal from a greater amount of precipi­

tated material.

For a [Ca2+]= 5 mM solution concentration, particles collected after 15 s were 

characteristic of amorphous calcium carbonate, with a  nine-fold increase in full- 

width half-maximum (FWHM) of the 1085 cm - 1  carbonate bending mode, 

an absence of the 711 cm - 1  v4 mode and a broad peak in the range of 140-220 

cm - 1  (Figure 6.10 a, b). This was consistent with literature ACC Raman spectra 

reported by us [202] and others [27]. Spectra of particles collected after 2 minutes 

displayed the four fundamental calcite peaks in the 1 0 0 - 1 2 0 0  cm - 1  range, again 

in agreement with the literature values for calcite [214, 218]. There was a further 

increase in crystallinity after a 5 minute precipitation time with a doubling in 

absolute intensity of the 1085 cm ' 1 k xg carbonate bending mode, in this case 

attributed to the appearance of larger, single crystals after a longer growth time, 

Spectra for particles collected after T minute displayed characteristics associated 

with both calcite and ACC. A small broad peak occurred at 711 cm " 1 associated 

with the calcite internal Eg bending mode. In addition to the broad peak in the 

140-220 cm - 1  associated with ACC, two calcite lattice modes are apparent at 154 

cm" 1 and 280 cm" 1 respectively, albeit less defined than for a two minute growth 

time.

Comparable results occurred for solution concentrations of [Ca2+]=  1 0  mM. Ra­

man spectra of particles collected after 15 s were entirely consistent with ACC, 

whereas spectra of particles collected after 2 and 5 minutes were uniquely calcite. 

After 1  minute, the particles again had Raman spectra with features associated 

with both calcite and ACC, albeit with a slight increase in the degree of crys­

tallinity in comparison to a [Ca2+]~ 5 mM solution concentration. No increase in 

the absolute intensity of the 1085 cm" 1  Ai g carbonate bending mode was observed 

between 2 and 5 minutes a t this concentration. Table 6.1 summarises both the 

absolute intensities and relative broadness of the 1085 cm" 1 carbonate modes for 

the three solution concentrations after 15 s, 1 and 2 minutes.
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Figure 6.9: Raman spectra of CaC03 precipitates as a function of growth time,
2.5 mM CaC03 solution concentration. Top Absolute intensity scale, B ottom
relative intensity scale. Baselines are displaced for different spectra.
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Figure 6.10: Raman spectra of CaC03 precipitates as a function of growth time,
5 mM CaC03 solution concentration. Top Absolute intensity scale, B ottom
relative intensity scale. Baselines are displaced for different spectra.
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Figure 6,11: Raman spectra of CaC03 precipitates as a function of growth time,
10 rnM CaC03 solution concentration. Top Absolute intensity scale, Bottom
relative intensity scale. Baselines are displaced for different spectra.
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Concentration (mM) 15 s 1  min 2  min 5 min

2.5 80/6 50/5 160/8 300/6
5 20/40 20/45 190/8 440/6
1 0 25/45 45/20 330/8 350/8

Table 6.1: The intensity (left of forward slash, arbitrary units) and hill-width, 
half-max (FWHM) (right of forward slash, cm-1) of the 1085 cm - 1  carbonate 
mode as a function of growth time, for initial concentrations of [Ca2+] =  2.5, 5  

and 10 mM.
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6.3.4 EM analysis

An SEM overview of C aC 0 3  particle concentration and polymorphism as a func­

tion of growth time and solution concentration is shown in figure 6 .1 2 , For a 

[Ca2+]= 2.5 mM C aC 0 3  solution concentration there were no large aggregates or 

calcite crystals after 15 s, a small number of calcite crystals after 1  minute ( ~ 2  

per grid area) and an intermediate number (7 ±  2 per grid area) of calcite crystals 

after 5 minutes. Higher magnification SEM images revealed an abundance of sub­

micron particles over the range of growth periods at this concentration with an 

average diameter of 40±20 nm. There was an absence of sub-micron precipitates 

in the regions immediately adjacent to the calcite crystals (Figure 6.13), indicative 

of the localised depletion zones described by Aizenberg ct al [135]

For a [Ca2+]= 5 mM C aC 0 3  solution concentration there was a significant increase 

in the amount of material precipitated for all time periods, as is shown in figure 

6.12. Here, large particle aggregations were observed after 15 s growth periods 

(Figure 6.14a). These particles were apparently spherical with a maximum di­

ameter of approximately 1 0 0  nm, consistent with previous images of ACC [243]. 

Similar results were obtained for a 1  minute growth period at this concentration, 

again with aggregations of spherical particles. In this case however, no calcite 

rhombohedra were observed and both the number and size of sub-micron particles 

were significantly higher. After 5 minutes there was a large number (14±5 per grid 

area) of calcite crystals, with approximate dimensions greater than 2 fan. In ad­

dition, there were smaller sub-micron particles, albeit with an order of magnitude 

reduction in number density.

TEM was used for high magnification morphological analysis with particle crys­

tallinity determined using electron diffraction. Figure 6.16 shows C aC 0 3  pre­

cipitates from a [Ca2+] =  5 mM solution after a 1 minute growth period. The 

diffraction pattern is characteristic of an amorphous material, with no apparent 

crystalline features. Figure 6.17 shows the respective diffraction patterns after a 1 

minute growth period ([Ca2+] =  5 mM ) to that of synthetic calcite nanoparticles, 
which show clear crystalline features.
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For a [Ca2+] =  5 raM solution concentration, the size of the particles was also 

dependent upon the growth period. After 15 s the particles were all amorphous 

with diameters ranging over 8-116 nm (Figure 6.15). Analysis of 44 particles 

found a mean particle diameter of (64±7) nm, with particle aggregation in ~25% 

of cases. Approximately 15% of the particles had a diameter greater than 100 

nm. Interestingly, the mean particle size was significantly lower after a 1 minute 

growth period, with analysis of 272 particles yielding a mean diameter of (26±2) 

nm (Figure 6.21). There was a small number of larger particles, with diameters 

of the order of 80 /mi (clearly shown in figure 6.18). Less than 1% of the particles 

were greater than 1 0 0  nm in diameter, a considerable decrease in comparison to 

the 15 s growth period. It should be noted that no calcite crystals were observed 

after this growth period

After a 5 minute growth period at a [Ca2+] =  5 mM initial solution concentration, 

measurements of 238 particles found a mean diameter of (64±6) nm, comparable 

to a 15 s growth period (Figure 6.18). The distribution in particle sizes is shown 

in figure 6 . 2 2  in the range of 0 - 2 0 0  nm, with an average particle diameter of 

(64±6) nm comparable to a 15 s growth period. Here, however, there was a 

narrower distribution of particle diameters. In addition, there was a number of 

larger particles with diameters up to 500 nm, although these accounted for less 

than 5% of the total number of particles. There was a large degree of aggregation, 

with approximately 90% of the particles over 100 nm in diameter appearing as part 

of an aggregation. The most significant difference at a 5 minute growth period was 

the presence of calcite crystals with dimensions greater than 1  /an. The large size 

of these crystals flooded the field of view of the TEM preventing morphological 

analysis and electron diffraction analysis. The crystals were apparently calcite, 

judging by the clear rhombohedron shape. Although the calcite particles were far 

fewer in number than the sub-micron spherical particles'(14 ± 2  per 1 0 0 x 1 0 0  pm 
grid area), they accounted for the majority of the C aC 0 3  precipitate by volume. 

By estimating that the volume of the calcite crystals is of the order of 100 /¿m3, 

and that the volume of the amorphous particles is of the the order of 0.00025 

/¿m3, each calcite crystal contains over 3 x 105  amorphous particles! Since the 

amorphous particle concentration is of the order of 1 0 0  per /tm2  on the TEM grid, 
approximately 2 0 % of the total material remains as ACC.
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Figure 6.12: SEM overview of C aC 0 3  precipitates on Formvar TEM grids as a 
function of growth time and solution concentration a  2.5 mM, 15 s b  5 mM, 15 s, 
c 2.5 mM, 1 min, d 5 mM, 1 min e 2.5 mM, 5 mins, f  5 mM, 5 mins.
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Figure 6.13: High resolution SEM images of C aC 0 3  precipitates on Formvar TEM 
grids, 2.5 mM concentration, a  15 s growth period, b 5 minutes growth period. 
The depletion region surrounding the calcite crystals can clearly be seen.
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F-igure 6.14: High resolution SEM images of CaCO, precipitates on Formvar TEM 
grids,5 mM solution concentration, a 15 s and b 1 min growth periods showing 
aggregation of sub-micron particles. ’ 6
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Figure C.15: TEM micrographs of C aC 0 3  precipitates ou a Formvar TEM grid, 
for a 15 s growth period and a 5 mM solution concentration, a  Aggregates of 2  

or more particles tended to form, even after short growth periods, b  A region 
of single CaC 0 3  particles, showing a uniform distribution of 50-80 run particles, 
consistent with ACC.
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Figure C.16: aTEM image for CaCOs precipitates on a Formvar TEM grid, for a 
1  minute growth period at a [Ca2+]=5 mM concentration, showing an aggregation 
of 20-60 nm diameter particles, b Electron diffraction pattern of snce a particles, 
showing broad rings characteristic of amorphous calcium carbonate.
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Figure 6.17: a TEM diffraction patterns for C aC 0 3  precipitates on a Formvar 
TEM grid, for a 1 minute growth period at a [Ca2+]= 5 mM concentration, show­
ing broad rings characteristic of amorphous calcium carbonate, b Comparative 
diffraction pattern from a 1 0 0 x 1 0 0  nm calcite particle.
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Figure 6.18: a, b: TEM micrographs of C aC 0 3  precipitates on a Formvar TEM 
grid, for a 1 minute growth period at [Ca2+]=5 mM concentration.
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Figure 6.19: a, b: TEM micrographs of C aC 0 3  precipitates on a  Formvar TEM 
gnd. tor a 5 mam e growth period at a [Ca*+]=5 mM solution concentration Two 
domains oi particle size can be seen. '
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Particle Diameter (nm)

Figure 6.20: C aC 0 3  particle diameters after a 15 second growth period, [Ca2+]= 
5 mM concentration.

crso
O
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Figure 6.21: C aC 0 3  particle diameters after a 1 minute growth period, [Ca2+]= 5
mM concentration.
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Particle Diameter (nm)

Figure 6.22: CaC0 3  particle diameters after a 5 minute growth period, [Ca2+]= 5 
mM concentration.
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6.4 Discussion

The results in this chapter present firm evidence for the formation of a transient 

amorphous precursor phase during the precipitation of CaC0 3  from bulk super­

saturated solution. Since the particle dimensions and relative crystallinity could 

be determined ex situ for known growth periods, it was possible to relate the 

transmitted light intensity of the in situ spectrophotometry measurements to the 

particle composition. For solution concentrations of [Ca2+]= 5 mM and above, 

there was an instantaneous fall in transmitted light intensity, with the ratio I / / 0  

falling to less than 30% after a 15 s growth period. Since both Raman and TEM 

measurements confirmed that only ACC particles are present after this growth 

period, the fall in transmitted intensity was attributed to scattering of light from 

ACC particles.

No fall in transmitted intensity greater than 10% was observed for solution con­

centrations below [Ca2+]= 4.5 mM, suggesting a lower nucleation rate of ACC 

particles at these concentrations. These finding correlated with the Raman spec­

troscopy measurements, which did not reveal any significant broadening of the 

1085 cm" 1 Raman active carbonate mode, indicative of an amorphous phase. The 

SEM results showed that there was a lower number of irregular C aC 0 3  particles 

at the lower concentration, with only limited particle aggregation. However, TEM 

measurements were not taken for this solution concentration, so it is not possible 

to conclusively prove the presence of ACC

These findings were in broad agreement with a recent small angle X-ray study of 

the nucleation and growth of C aC 0 3  by Bolze et a l , who reported a large increase 

in ACC nucleation rate with increased degree of supersaturation [244]. This is 

also in agreement with theoretical models predicting a sharp increase in the nu­

cleation rate with initial degree of supersaturation. In addition to a greater ACC 

nucleation rate at higher supersaturations, Bolze et al also reported the aggrega­

tion of ACC particles to be dependent on the initial solution concentration. At a 

solution concentration of [Ca2+]= 4.5 mM (described in terms of initial reactant 

concentration =  9 mM) there was minimal particle aggregation, whereas at 1 0  

mM (= 20 mM initial reactant concentration), there was a high degree of parti­

cle aggregation, resulting in a short lifetime of the amorphous precursor phase.
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The results presented here support those findings, since there was a large degree 

of particle aggregation and a  more poly-dispersed size distribution a t the higher 

concentration [Ca2+]= 5 mM in comparison to the lower concentration, [Ca2+]=

2 . 5  mM, where very little aggregation was observed.

The transmitted intensity recovery period showed an apparent dependence with 

concentration (Figure 6.4). Since the ACC particle nucleation rate increases with 

solution concentration, it follows that there will be a greater frequency of collision 

of the particles. It has also been proposed that there is a  decrease in the repulsive 

forces between particles in solution at lower reactant concentrations due to  the 

screening of the particle surface charge by the surrounding electrolyte [245]. The 

free-energy gain upon transformation from ACC into calcite will increase with ACC 

particle size and aggregation. This would explain an increase in the increased 

recovery in transmitted intensity for a [Ca2+]= 10 mM initial concentration in 

comparison to a [Ca2+]= 4.5 solution.

The ex situ Raman measurements suggested an increased degree of crystallinity 

after a 1 minute growth period. However, no calcite particles were observed using 

TEM or SEM after this time period. In contrast, a large number of calcite particles 

were apparent at a solution concentration of [Ca2+]= 2.5 mM, indicative of the 

conversion from ACC into calcite. The SEM overview after a 1  minute growth 

period showed well-formed calcite particles with dimensions in excess of 1  pm 

whereas at 5 mM there was an aggregation of sub-micron amorphous type particles.

After a  5 minute growth period, an increase in transmitted intensity was observed 

for all initial solution concentrations greater than [Ca2+]=  4.5 mM. These findings 

correlate with the ex situ measurements, which suggested a significant conversion 

into calcite. The Raman spectra for all concentrations were indistinguishable from 

reference calcite after a 5 minute growth period, although the TEM measurements 

after 5 minutes suggested there was still a high number density of amorphous-type 

particles. It should be noted however tha t the Raman signal for calcite is a t least, 

one order of magnitude stronger than for the amorphous phase. The ACC particles 

in solution must therefore account for the fact that the transmitted intensity was 

lower after 5 minutes than after a 15 minute growth period for all concentrations 
higher than [Ca2+]= 4.0 mM.
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Ballauff et al reported a density of 1.49 g /cm 3  for ACC [245], where as Colfen 

and Volkel reported a density in the range of 1 .1-1.7 g/cm 3  for ACC particles with 

diameters in the range of 2-8 nm, smaller than those observed here [246]. This 

is almost 50% lower than the calcite density of 2.7 g/cm 3. The dimensions of 

the calcite particles were shown using SEM to be a t least one order of magnitude 

larger than the ACC particles, measured after 5 minutes using TEM. Assuming 

the calcite particle to be spherical, and estimating the density of calcite to be twice 

that of ACC, and the radius to be 10 times greater, it follows from equation 6.4 

that the calcite particle will settle at a rate 2 0 0  times faster than ACC particles, It 

therefore follows that the recovery in transmitted intensity is due to a conversion 

from ACC into calcite, with sedimentation of the larger calcite particles resulting 

in fewer scattering centres in solution.

The presence of transient ACC in bulk solution is an agreement with the find­

ings of chapters 3 and 4, proving that ACC acts as a precursor phase during the 

face-selective or epitaxial growth of calcite on substrates. On both mica and SAM 

substrates, the solution concentration did not appear to exert any significant in­

fluence on the formation of ACC particles. However, in bulk solution there was 

a significant reduction in the formation of larger ACC particles below [Ca2+]=

4.5 mM. It follows from equation 1.24 tha t the substrate will act to lower the 

nucléation barriers, whereas there will be a higher activation barrier during the 

homogeneous nucléation of ACC in bulk solution. This effect is likely to be in­

creased at both weathered mica and MHA SAM surfaces, since these both promote 

the growth of calcite, allowing the formation of ACC particles at concentrations 

not observed in bulk solution.

6.5 Conclusions

C aC 0 3  particles were characterised ex-situ using three techniques: Raman mi­

croscopy, SEM and TEM for different growth periods and solution concentrations. 

The formation rate and stability of ACC was shown to be dependent on the initial 

solution concentration in the range of [Ca2 +]~2-10 mM, with an increased rate 

of ACC formation at initial solution concentrations of [Ca2 + ] = 5  mM and higher.
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These findings suggest that ACC acts as a precursor to thermodynamically stable 

C aC 0 3  polymorphs in bulk solution, since the amount of ACC material decreased 

as a function of time.



Chapter 7

Crystallisation in Arrays of 
Picolitre Droplets

Surfaces patterned with regular arrays of circular, hydrophilic regions on a hy­

drophobic background were used to trap droplets of aqueous CaC 0 3  solutions to 

investigate nucleation and growth within small volumes. Fluoroalkyl thiols were 

adsorbed on gold-coated mica surfaces and exposed to short-wavelength (A =  254 

nm) UV light through a quartz photo-mask with regularly spaced, circular holes 

(radius 2-10 /mi). The photo-oxidised fluoroalkylthiols were subsequently replaced 

by backfilling with carboxylic-acid terminated alkylthiols, thus forming an array of 

approximately 2 0 , 0 0 0  circular hydrophilic regions on a hydrophobic background. 

By passing macroscopic volumes of solution across the surfaces, approximately 

hemispherical droplets were trapped on the circular hydrophilic regions, and these 

were stable for long periods when the ambient humidity was kept very close to 

100%. Since each droplet could be considered independently, a statistical''anal­

ysis of the precipitates within each droplet was used to relate the crystal form 

to the both the droplet volume and growth period. After a 24 hour growth pe­

riod, face-selective calcite particles were observed, almost uniquely in a tetrahedral 

configuration. Amorphous calcium carbonate was observed for shorter growth pe­

riods, transforming into calcite after several minutes, analogous to growth in bulk 

solution.

184
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7.1 Introduction

Various substances have been crystallised within restricted volume droplets. Chayen 

et al. [247] crystallised proteins (carboxypeptidase) from 1 - 2  ¡A droplets under oil, 

to eliminate the problem of evaporation. From an industrial perspective, several 

advantages for protein crystallisation using this method were reported; a reduced 

protein consumption, an increase in crystal stability and a greater ease of theoret­

ical predictions, since the volume and composition of the droplet can be precisely 

determined. The crystallisation of the protein lysosome in levitated droplets of 

aqueous solutions has been reported by several groups, determining the induc­

tion time as a function of droplet volume [248, 249]. A recent paper by Tremel 

and co-workers demonstrated the crystallisation of CaC 0 3  in acoustic levitated 

droplets, using wide angle X-ray scattering to prove the formation of CaC 0 3  pro­

ceeds via ACC [250]. Myerson and co-workers [251] developed a technique for the 

crystallisation of organic compounds from droplets of aqueous solutions supported 

on engineered surfaces (feature sizes ~25-750 /¿in). They reported that the poly­

morphism of glycine is dependent on the droplet volume, with a preference for 

unstable polymorphic forms within the smallest droplets.
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Figure 7.1: a Optical image of an array of supersaturated CaC ( ) 3  droplets, b 
resultant SEM image, showing C aC 0 3  particles located within the hydrophilic 
circular regions.

In this project, crystallisation was studied in supersaturated droplets of aque­

ous C aC 0 3  solutions deposited onto patterned functionalised SAMs. The SAMs 

were patterned using the deep-UV photolithography method outlined in section
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Figure 7.2: Schematic diagram showing crystallisation within a single droplet of 
droplet-substrate radius r and droplet-substrate contact angle 9.

2 .2 .2 , with regular arrays of circular, hydrophilic regions upon a hydrophobic back­

ground. Each droplet was considered in isolation due to the almost, instanta­

neous dewetting of the hydrophobic regions. Consequently, crystallisation within 

a droplet exerted no influence on the crystallisation within neighbouring droplets, 

with each patterned substrate therefore supporting arrays of up to 2 0 , 0 0 0  inde­

pendent crystallisation volumes. Part of one such array is presented in figure 7.1, 

showing also the subsequent crystallisation from the droplets onto the patterned 

SAM.

Crystallisation in droplet arrays supported on patterned SAMs has been described 

by others, although the methods used were different to those described here. 

Whitesides and co-workers demonstrated the crystallisation of CuS0 4  and K N 0 3  

with 20-50 /am lateral dimensions [252] whereas Masuda et al. demonstrated col­

loidal crystallisation in droplets on patterned SAMs [253]. However, in both of 

these studies, crystallisation was the result of solvent evaporation, whereas it is be­

lieved that the work presented here demonstrates for the first time crystallisation 

from precipitation reactions in droplet arrays supported on patterned SAMs.

A schematic diagram of an individual droplet, of substrate-droplet interfacial ra­

dius r  and droplet-substrate contact angle 9, is shown in figure 7.2. The droplet 

has two interfaces; droplet-substrate and droplet-air. It is assumed th a t heteroge­

neous nucleat.ion is promoted only at the droplet-substrate interface, since it has 

been shown previously that these surfaces promote the nucleation of C aC 03. The 
droplet-substrate interfacial area, Ads, is dependent only on r

A ds =  7T r2 (7.1)
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whereas the droplet volume V  is dependent on both r  and 6. To determine V  the 

droplet is assumed to take the form of a spherical cap of radius a and cap height h 

(Figure 7.3). This model assumes negligible gravitational effects, with the validity 

of this assumption considered in reference [254]. Using this model, the droplet 

volume V  is related to r  and h by the following

V  =  ^ ( 3 r 2  +  ft2)

where a and h are related by the following equation.

a -
(r 2  +  h2)

2  h

(7.2)

(7.3)

Figure 7.3: Schematic diagram of the spherical cap model, showing droplet volume 
as a function of droplet radius a, droplet-substrate interfacial radius r  and cap 
height, h.

Figure 7.4 defines the edge-to-edge, xedge, and centre-to-centre, xC£nire, droplet 

spacings listed in table 7.1. The radii of the hydrophilic regions were 10, 5, 4 and 

2 nm  corresponding to the geometry of the photomask (Figure 7.5).
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Figure 7.4: Schematic diagram defining the photomask spacings xcentre, xedge and 
radius r.

Droplet Radius, r (¿¿m) X edge ( ^ m ) Xcentre

1 0
2 0 40

5 14 24
4 16 24
2

15 19

Table 7.1: Photomask spacings xcentre and xedge as a function of radius r.

7.2 Experimental Methods

The small radii of the droplets resulted in a rapid rate of evaporation at labora­

tory humidity. It was proposed by Birdi et al. [255] that the rate of evaporation 

of a sessile water droplet on glass is linearly proportional to the radius of the 

liquid-solid interface, yielding a rapid evaporation rate for the droplet radii used 

here. To overcome these problems, all growth experiments were performed in an 

equilibrated glove box maintained at 1 0 0 % humidity by passing steam through 

the glovebox for 1 minute, 20 minutes prior to the crystal growth. C aC 0 3  was 

precipitated using the double decomposition growth method, with ~ 2  ml of super­

saturated C aC 0 3  solution extracted and passed across the patterned substrates. 

Using a vacuum sealant, the samples were sealed within a Petri dish containing a 

small vial of water, ensuring a saturated envirnment. Growth periods were varied 

between 5 minutes and 24 h, at concentrations of 2.5 and 5 mM. Growth was
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Figure 7.5: 400x optical image showing 4 photomask geometries. Radii; a  1 0  /¿m 
b  5 /mi, c 4 /mi and d 2 /mi.

terminated by rinsing surfaces under milli-Q water and drying under a nitrogen 
stream.

Crystal images were obtained using both low- and high-resolution SEM, although 

in this case no conductive P t layer was deposited on the sample, since this made 

it impossible to observe the SAM patterning. Image distortion due to charge 

accumulation was not an inherent problem here due to the small size of the CaC0 3  

precipitates and the presence of a conductive gold substrate.
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7.3 Results

7.3.1 Determination of Droplet Volumes

The droplet volumes were calculated from r  and h values using equation 7.2. r 

values were readily determined on the assumption that they were equal to the pat­

terning size. This assumption was verified by examining droplet arrays in a sealed, 

saturated holder under an optical microscope (Figure 7.6). The droplet diameters 

were equal to those of the photo-mask. Considerable technical issues arose in de­

termining a value for h, since a profile image was required. Light interference from 

adjacent droplets, reflection off the gold surface and the large distanced between 

the droplet and microscope lens significantly reduced the image resolution (Figure 

7 .7 ). High concentration (~5M) CaCl2  droplets were deposited to allow for cross 

sectional imaging under atmospheric conditions, under the assumption that the 

wetting properties would be similar to supersaturated C aC 0 3  solutions at 100% 

humidity. The average height of the 10 /im radii droplets was (3.6±0.6) /mi, with 

the relatively large uncertainty accounting for the limitations in image resolution. 

According to equation 7.2 this yields a cap volume of (590±60)fL «  0.6±0.1 pL.

Measuring the solution-substrate contact angle was more complex than in the case 

of homogeneous MHA SAMs due to a pinning effect at the hydrophilic-hydrophobic, 

border. For the 10 /im radii droplets, an average of 6  sessile contact angles yielded 

a contact angle of (43±6)°. The assumption is made that the contact angle of the 

highly concentrated CaCl2  solution is the same as for the dilute C aC 0 3  aqueous 

solution, which can only be true if 7 $i decreases to exactly compensate for the 

increase in 7 /v, since the surface tension of the concentrated CaCl2  solution is more 

than 10 mNm - 1  higher than water (or dilute C aC 0 3  aqueous solution) [256]. Table

7.2 lists the droplet-substrate interfacial area (Ads), and the measured droplet 

volumes (V4 3 ) for contact angles of 43°, on the assumption tha t the contact angle 

remains constant for each droplet size, hence the same r to h ratio. Also included 

are the droplet volumes at 90° contact angles for comparison (V9 o)-
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r (/mi) Ads (/¿m2) V4 3  (fL) V9 0  (fL)

1 0 314 590±60 2094
5 78.5 70±20 262
4 50 40±20 134
2 12.5 5±3 16.7

Table 7.2: Droplet-substrate interfacial area (Ads) and droplet volumes for contact 
angles of 43° (V43) and 90° V90, as a function of droplet-substrate interfacial radius 
r, calculated using equations 7.1 and 7.2 respectively.

Figure 7.6: Optical images showing arrays of 10 /mi radius droplets of supersat­
urated C aC 0 3  solutions supported on patterned SAMs at two magnifications a, 
b.

Figure 7.7: Side profile of 3 different [Ca2+]= 5 M droplets, 1 0  /mi radius. 

7.3.2 D roplet Size D ependency

The number of CaCOs precipitates per droplet, polymorphism and crystal mor­

phology were dependent on the droplet radius. Other factors known to influence 

these parameters in bulk solution, including the solution concentration and growth 

time, were kept constant here ([Ca2+] =  5 mM, 24 h growth period). The droplet 

occupancy was related to the droplet-substrate interfacial surface area. A low 

resolution SEM overview is shown in figure 7.8 from which the droplet occupancy
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and projected particle sizes were readily determined. A statistical analysis of these 

parameters as a function of droplet radius is shown in table 7.3.

a .

«
%

50 fjm  ^

b  •

20' pm

c -

20 pm

d

10 pm

Figure 7.8: Low-Res SEM overview showing C aC 03 particles as a function of 
droplet radius, a 10 /tm, b 5 gm, c 4 gm and d 2 /tm. [Ca2+]= 5 mM CaCO 
droplet concentration, 24 h growth period.

Parameter Droplet radius (/tm)
10 /tm 5 /tm 4 /tm

Studied droplets 201 80 151
Droplet occupancy (%) 96.5 82 72
Multiple occupancy(%) 8.5 5 9
Average crystal size (/tin2) 1.21T0.48 0.31±0.12 0.25±0.16

Table 7.3: Droplet occupancy, multiple occupancy and average C aC 03 particle 
size as a function of droplet radius. [Ca2+] =  5 mM C aC 03 droplet concentration, 
24 h growth period.

The droplet occupancy was related to the droplet radius, with the 10 /mi radii 

droplets yielding an occupancy of 96.5%. The droplet occupancy decreased with 

radius, at 82% and 72% for radii of 5 and 4 /mi respectively. Using low resolution 

SEM, no C aC 03 particles were observed in 2 /tin radii droplet, since features below 

~200 nm could not be readily resolved. However, subsequent measurements using 
a FEG SEM revealed the occurence of such particles (Figure 7.9)
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Figure 7.9: FEG SEM images of C aC 03 particles precipitated from 2 pm radii 
droplets. 24 li growth period, [Ca2+] =  5mM. a  overview of G droplets,b-c high 
magnification images of individual calcite tetrahedra, impossible to distinguish 
using low-res SEM

There was no significant change in the percentage of droplets with multiple occu­

pancy that is containing more than 1 C aC 03 particle, for droplet radii of 10 and 

4 pm, at 8.5 and 9% respectively. Only 5% of 5 pm radii droplets contained 2 or 

more particles, attributed to the stochastic nature of the crystallisation process.

Interestingly, the C aC 03 particles tended to be located near to the droplet bound­

ary (Figure 7.10). A study of 289 10 pm radii droplets from three different samples
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found 74±4% of C aC 03 particles to be located within 2 ¡am of the droplet bound­

ary, corresponding to only 36% of the total droplet area. In the case of 4 /jiii 

radius droplet arrays under the same growth conditions, a study of 140 individual 

droplets found that 78±6% of particles were located within 1 /zm of the droplet 

edge, corresponding to ~44% of the total droplet area. Although these results are 

statistically significant, it is not thought that this effect exerted any influence on 

the resultant morphology, and is not given any further consideration here.

The particle size distributions were determined from SEM images using ImageJ 

software, following the procedure described in section 2.5. In all cases, the C aC 03 

precipitates from droplets were an order of magnitude smaller than the crystals 

precipitated from bulk solution under equivalent conditions (section 4.3.2). The 

particle size distributions for 10, 5 and 4 /zm radius droplets are shown in figures 

7.11, 7.12 and 7.13 respectively. Unsurprisingly, particles precipitated from the 10 

/zm droplets had the largest projected area of 1.2±0.5 /zm2, falling to 0.31±0.12 

and 0.25±0.16 for /zm2 for 5 and 4 /zm radius droplets respectively. For the smaller 

droplet sizes, no particles with projected areas larger than 1 /zm2 were observed, 

whereas for the 10 /zm radii droplets, particles with projected areas as large as 3 

/zm2 were observed.

a b
•

• ♦ , *

10 pm 10 /im

Figure 7.10: Low-resolution SEM images showing the C aC 03 particle location, 
[Ca2+] =  5 mM, 24 h growth period, a 10 /zm radii droplets where 74±4% of the 
particles were within 2 /zm of the droplet boundary, b 4 /zm radii droplets, where 
78±6% of particles were located within 1 /zm of the droplet boundary.
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60

Figure 7.11: Size distribution of C aC 03 particles precipitated from 10 pm radius 
droplets,’ 24 h growth period, [Ca2+] =  5 mM. 200 pm bin size.

Figure 7.12: Size distribution of C aC 03 particles precipitated from 5 pm radius 
droplets, 24 h growth period, [Ca2+] =  5 mM. 100 pm bin size.
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Figure 7.13: Size distribution of C aC 03 particles precipitated from 4 ¿mi radius 
droplets, 24 h growth period, [Ca2+] =  5 mM. 100 /im bin size.

Figure 7.14: top HR-SEM images of individual face selective calcite tetrahedra, 
observed within 10 /mi radius, 2.5 mM droplets after a 24 h growth period, a  
44% of calcite particles were in a (012) orientation, b 33% of calcite particles were 
in a (015) orientation. The remaining 23% of calcite particles were in a variety 
of orientations, of which c (113) and d (122) were the most frequent, bottom  
SHAPE simulated calcite tetrahedra in corresponding orientations.
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7 .3 .3  P a rtic le  M o rp h o lo g y

The C aC 03 particle morphology was investigated using HR-SEM. In this results 

section, only crystallisation in 10 pm radii droplets is considered. Face selective 

growth of calcite was observed in agreement with the growth on homogeneous 

SAMs from bulk solution (section 4.3,2). 44% and 33% of calcite crystals were 

observed in orientations parallel to the (012) and (015) growth planes respectively, 

whilst the remaining 23% of calcite crystals accounted for a variety of orientations, 

of which (113) and (122) were the most frequently observed (Figure 7.14). These 

measurements were at a [Ca2+] =  2.5 mM solution concentration, 24 h growth

period.

Interestingly, 90±5% of the calcite particles were of a tetrahedral configuration, in 

contrast to the rhombohedral calcite crystals observed during precipitation from 

bulk solution on the same surfaces (section 4,3.2). Single calcite tetrahedra, ori­

ented parallel to the (012) and (015) growth planes, were observed at 5 and 10 

mM concentrations after the same growth period (Figure 7.161>c), although a 

higher number of both non-oriented and multi-faceted calcite particles were also 

present (Figure 7.16d-e). 56% and 42% of C aC 03 particles were of the form of 

oriented, single-faceted, calcite tetrahedra at. 5 and 10 mM respective solution 

concentrations, although the relative calcite orientations were not systematically

studied.

7 .3 .4  G r o w th  T im e  D e p e n d e n cy

Irregular C aC 03 particles were observed after growth periods of 5, 15 and 30 

minutes in contrast to growth periods of 24 h, where only regular calcite particles 

were observed (vaterite particles were also observed after 24 h at a [Ca2+] =  10 

mM concentration, although these accounted for less than 1% of the total number 

of precipitates)(Figure 7.17). A comparative study of precipitate's from 5 mM, 

10 /¿m radii droplets found the relative proportion of these irregular particles to 

decrease with time. Face selective calcite was observed in 32±5, 85±4 and 94 ±4% 

of droplets for time periods of 5, 15 and 30 minute's respectively, with a minimum 

of 50 droplets investigated in each case. The percentage of face selective calcite

Chapter 7. Crystallisation in Arrays of Picolitre Droplets
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after 30 minute and 24 h growth periods was therefore comparable, however after 

30 minutes, amorphous, spherical ~100 nm diameter particles were also present. 

This can be seen in figure 7.17c, showing 8 ACC particles and a single face selective 

calcite crystal within the same droplet.

High magnification SEM images were used for the morphological analysis of ir­

regular, short growth time C aC 03 particles (Figure 7.18). After 5 minutes the 

precipitates were consistent with the ACC particles, synthesised and characterised 

in chapter 6, consisting of aggregates of 60-150 rim particles (Figures 7.17 b and

7.18 a, b). Irregular C aC 03 particles were observed in 10 /nn radius droplets for 

15-120 minute growth periods, at 2.5, 5 and 10 mM concentrations (Figures 7.17 

d, f) and 7.18 c, d). However, these precipitates displayed a highly non-spherical 

morphology with irregular surface topographies and could not be therefore readily 

classified as ACC. Figure 7.18e is at an apparent intermediate stage, showing a 

broadly tetrahedral shape with irregular edges. Figure 7.18f shows an early stage,
sub-micron calcite crystal, defined by the regular edges.
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Figure 7.15: SEM overview of CaCC> 3  precipitates from [Ca2+] =  5 mM solutions, 
24 hour growth periods for a  5 fim radius droplets and b 10 /zm radius droplets. 
For all droplet radii, the C aC 03 precipitates were observed in the form of face 
selective calcite tetrahedra in over 90% of cases after a 24 h growth period.
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Figure 7.16: SEM images of the precipitation of C aC 03 within 10 /mi radii droplets 
after 24 hours, a, c, e [Ca2+] =  5 mM, b, d, f [Ca2+] =  10 mM. a, b Overview, 
showing the occupancy of 4 respective droplets, c, d individual (012) oriented 
calcite tetrahedra. e non-oriented calcite crystal, f multifaceted calcite particle.
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Figure 7.17: SEM images of C aC 03 particles in 10 pm radius droplets after growth 
periods of a-b 5 minutes, c-d 15 minutes and e-f 30 minutes, a, c, e Overview of 
individual droplets for the respective growth periods as indicated by the darkened 
region (dashed outline in a), a only amorphous-type particles present c e both 
amorphous-type and calcite particles present, b, d, f High magnification images 
of individual irregular C aC 03 particles after the respective growth periods
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a b

2 0 0  n m 1 0 0  nm

C d

2 0 0  nm 2 0 0  nm

e f

1 0 0  nm 1 0 0  nm

Figure 7.18: High magnification SEM images of individual irregular CaCO narti 
cles, precipitated within 10 gm radius droplets, a, b Spherical 60-150 nm diameter 
particles consistent with ACC, 5 minute growth period, 5 mM concentration c ir 
regular C aC 03 precipitates after a 30 minute growth period, 5 mM concentration 
d irregular C aC 03 precipitates after a 2 h growth period, 10 mM concentration’ 
e early stage calcite tetrahedral, 30 minute growth period, 2.5 mM concentration 
f  early stage calcite particle, 2 h growth period 5 mM concentration.
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7.4 Discussion

The droplet occupancy was related to the droplet volume, and was greater than 

70% for the three droplet sizes systematically studied after a 24 h growth pe­

riod. Face-selective growth of calcite in orientations parallel to the (012) and 

(015) growth planes formed the majority of the particles, analogous to growth on 

the same surfaces from bulk solution presented in section 4.3.2. This validates 

the assumption made that nucleation occurs at the droplet-substrate interface as 
opposed to the droplet-air interface, since in that case random orientations would 
be expected.

There was a small distribution in projected particle size within each droplet, with 

the mean particle size decreasing with droplet volume. This is perhaps unsur­

prising considering the volume depends on the radius cubed, leading to an 8-fold 

increase in volume for a doubling in droplet radius. In all cases, the calcite di­

mensions were governed by the amount of material within the droplet, since the 

precipitation of CaC03 on the same surfaces from bulk solution under identical 

conditions yielded an order of magnitude increase in precipitate edge size.1

It is possible to calculate the amount of material which will crystallise into calcite 

for the concentrations used here. The mass of material which will precipitate is 

the product of volume, concentration and molecular weight. Taking the case of a 

10 (jm radius droplet, the volume was estimated to be M).5 pL =  0 5 x 10~15 m3 

For a solution concentration of [Ca2+] =  5 mM, and taking the solubility of calcite 

in water to be 1 inM gives an effective concentration of 4 mM. The molecular 
weight of calcite is approximately 100 g.mol-1 .

0.5 x 10~15ra3 x 4 x  10 SM  x 100g.mol~l x1000 =  2 x 10~13p

= 2 x 1Q~l*kg

The volume is taken as mass/density, where the density of calcite is 2.7 x 103 

kg. The total volume of precipitate is therefore 7.4 x 10~2° m3. If the crystal 

is cubic, the length of each side is equal to the cube root, giving an edge length
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of 0.42 pm. This of the order of the observed calcite edges, although the edges 

were greater than 1pm in some cases. However, the calcite particles were mostly 

tetrahedral. In the case of a regular tetrahedron, the volume is approximately 12% 

of an equivalent cube of the same edge length. Also, there is a large uncertainty 

in the droplet volume, since a contact angle of 90° would yield a volume 4 times 

that used in this calculation. These factors are likely to account for the observed 

edge dimensions greater than 1 pm. Nevertheless, this calculation suggests that 
the supersaturated solution will fully crystallise.

Single droplet occupancy was observed in more than 90% of cases for the three 

droplet sizes systematically studied after a 24 h growth period. This suggests the 

presence of localised concentration gradients within each droplet. The onset of 

crystallisation will result in mass transport to the growth face, which may result 

in an undersaturation of the droplet. If these results are analogous to the growth 

on patterned SAMs, then the depletion zone would be larger than the dimensions 

of the droplet radius. In any case, the effect of localised depletion zones is likely 

to be enhanced due to the limited amount of material within each droplet.

The short growth time experiments were broadly analogous to the results on ho­

mogeneous SAMs from bulk solution, although in this case growth periods less 

than 5 minutes were not considered. The results presented in section 4.3.2 were 

in agreement with other findings, suggesting that the formation of calcite begins 

with the homogeneous nucleation of ACC at the SAM interface. Here, regular ACC 

particles were observed after 5 minutes, and irregular CaC03 particles observed 

after growth periods up to two hours. The relative percentage of face selective 

calcite particles increased as a function of growth period between 5, 15 and 30 

minutes. In some instances, ACC particles were observed within the same droplet, 

as face selective calcite crystals, whereas no ACC particles were observed after 

24 hours. That irregular CaC03 particles were present for longer time periods in 

droplets than in bulk solution suggests that the transition into calcite is in some 
way hindered by the limited volume.

The final observation was the almost exclusive occurrence of tetrahedral calcite 

particles in comparison to the rhombohedral calcite particles observed on equiva­

lent surfaces in bulk solution. As proposed in section 3,3, the configuration of the
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calcite particle is almost certainly determined early in the growth process, presum­

ably by the contact angle formed between the ACC particle and the nucleating 

substrate. A tetrahedral configuration is indicative of a low contact angle between 

ACC particle and substrate, whereas a rhombohedral configuration suggests a high 

contact angle, or an aggregation of ACC particles before transformation. It is fea­

sible that both lateral ACC growth and ACC particle aggregation will be hindered 

within the limited volume droplets, resulting in a higher percentage of tetrahedral 

configurations.

7.5 Conclusions

The results in this chapter show that crystallisation is affected by solution vol­

ume. Whilst the orientation and polymorphism of CaC03 particles formed within 

~picolitre volumes on patterned SAMs were not significantly different to those 

formed on equivalent surfaces from bulk solution, there was a marked change in 

both the configuration and dimensions of the calcite crystals. Calcite crystals 

were observed almost exclusively in a tetrahedral configuration, in contrast to the 

rhombohedral particles observed in bulk. The observed particle dimensions were 

of the order of the calculated values, suggesting that the solution droplet became 

fully depleted after 24 h. That sub-micron ACC particles were observed after 

short growth times (5 minutes-2 hours) but not after 24 hours further supports 

this supposition. It is believed that the effect of localised concentration gradients 

is enhanced in restricted volume systems, accounting for the fact that less than 

10% of the droplets were multiply occupied. Finally, it is believed that this is the 

first time patterned functionalised SAMs have been used to support droplet ar­

rays for the study of crystallisation by a precipitation reaction. This novel method 

is of potential application to many different systems, yielding a cheap and sim­

ple method to study nucléation and growth in many thousand independent small 

droplet volumes.

Chapter 7. Crystallisation in Arrays of Picolitr'e Droplets



Chapter 8 

Conclusions

The work of this thesis presents evidence for the formation of a transient amor­

phous precursor phase during the precipitation of CaC03. The precipitation of 

CaC03 was considered in a variety of different systems, aiming to further under­

stand the crystallisation pathways.

Whereas other studies of crystallisation in confinement were often limited by a 

fixed biological template, the model developed here enabled the systematic study 

of crystallisation under a continuous range of surface separations. Whilst regular 

calcite crystals were observed at large surface separations, analogous to growth 

in bulk solution, ACC was stabilised under moderate degrees of confinement. It 

was shown that ACC is thermodynamically preferable over calcite only at sub­

nanometre surface separations, approximately three orders of magnitude less than 

observed here. The stabilisation of the amorphous phase was attributed to kinetic 

factors, with the small interface between the ACC particles and solution thought 

to hinder the expulsion of water from the amorphous phase.

A novel method for the study of crystallisation within independent solution vol­

umes was developed. Patterned functionalised SAMs were used to support arrays 

of up to 20,000 droplets of supersaturated solution. These droplets were supported 
on MHA SAMs, enabling direct comparison with growth on the same surfaces from 

bulk solution. Calcite crystals were observed almost exclusively in a tetrahedral 
configuration within these droplets, with a low multiple occupancy suggesting a 

depletion of solution. Amorphous-type particles were present during the initial

206
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growth stages, suggesting that transient ACC particles occur during precipitation 

in small volumes.

The CaC03 nucleation pathways in bulk solution were analysed in-situ using spec­

trophotometry and ex-situ using SEM, TEM and Raman spectroscopy. These 

results present clear evidence for the formation of ACC during the initial pre­

cipitation of CaC03 from supersaturated solutions in the concentration range of 

[Ca2+] =  5-10 mM, with the stability of these particles apparently related to the 

concentration. Spectrophotometry measurements suggest that ACC can be sta­

bilised using Mg2+ salts.

Growth on homogeneous SAMs resulted in the face selective growth of calcite in 

orientations parallel to the (012) and (015) growth planes, in agreement with 

the work presented by others. Amorphous-type particles were present during 

the early growth stages on these surfaces, before transforming into calcite after 

longer growth periods. No CaC03 particles could be morphologically identified 

as calcite with edge features below 100 nm, presenting evidence for the formation 

of calcite through an ACC precursor phase on these surfaces. Using patterned 

SAMs, crystallisation was restricted to specified sites, with undersaturation at 

polar-terminated regions a result of a localised depleted solution. It is believed 

that this is the first time that deep-UV photopatterned SAMs have been used to
control the nucleation sites.

Finally, ACC particles were observed during the early growth stages on weathered 

mica analogous to the growth on MHA SAMs, again with no calcite particles with 

dimensions below 100 nm. Furthermore, it was shown that the mica surface is 

highly sensitive to details of its exposure to the atmosphere. Despite a close lat­

tice match between the Ca-Ca spacing of the (001) calcite growth plane and the 

adjacent K+ site spacing of the mica basal cleavage plane, epitaxy does not occur 

on freshly cleaved mica. It is proposed that the presence of naturally forming 

surface K2 C 03 crystallites is a necessary intermediary for the occurrence of epi­
taxial calcite. Unlike in the case of alkali metal ions, there is normally a large free 

energy cost for the adsorption of calcite to mica, It is proposed that the transient 

K2C 03 crystallites act as localised ion sources, yielding specific surface sites where 
epitaxial growth is preferable.
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Future Work

The work in this thesis considered the formation and transformation mechanisms of 

one mineral, CaCCV However, many of the methods developed here are well suited 

to study the crystallisation of a range of inorganic materials. Calcium phosphates 

(CaP), in particular hydroxyapatite (Caio(P04)6(OH)2) are important biominer­

als, widely present in mammalian bone and tooth enamel. The crossed cylinder 

setup developed in chapter 5 presents an ideal configuration to investigate how con­

finement influences mineral formation over a continuous range. Stable amorphous 

calcium carbonate was observed within confined geometries around the region of 

contact, and it would be a point of interest to determine whether amorphous 

calcium phosphate (ACP) is also stabilised under confinement. Other inorganic 

materials without reported amorphous phases, including dolomite (CaM g(C03)2), 

witherite (BaCOa) and gypsum (CaS0 4 .2 H2 0 ) should be considered in this system 

for comparative purposes.

The spectrophotometry experiments in chapter 6 present a simple method for 

determining nuclcation pathways from the scattering of visible light. Provisional 

experiments using CaP, precipitated from two aqueous salt solutions similar to the 

double decomposition method here, suggest the presence of an amorphous precur­

sor phase. Small volumes of solution extracted during these measurements and 

analysed using Raman spectroscopy showed an increase in crystallinity with time. 

The life time of ACP as a function of solute concentration should be determined 
using this system.
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The technique developed to study crystallisation within arrays of picolitre droplets 

perhaps presents the largest scope for development. By placing the sample in a 

sealed cell between crossed-polarisers, in-situ nucleation statistics could be ob­

tained at low magnification, since even sub-micron particles are visible using this 

setup. Furthermore, since amorphous calcium carbonate is isotropic, it can be 

readily distinguished from calcite under crossed-polarisers, enabling realtime mon­

itoring of polymorphic transformations. This system should also be extended 

to study the crystallisation of C aC 03 with various additives. Finally, the SAM 

functionality should be modified to consider the effect of terminal group on the 

nucleation process.

The epitaxial overgrowth of calcite on muscovite mica was demonstrated in chap­

ter 3, and it remains to be determined whether a similar phenomena is observed 

on other types of mica, including phlogopite (KMg3AlSi3Oi0(F,OH)2), biotite 

(K(Mg,Fe)3AlSi3Oio(F,0 1 1 )2 ) and lepidolite (K(Li, Al)a(S i,' Al)4Oi0(F, OII)2). 

Each of these micas has a pseudo-hexagonal surface unit cell, albeit with dif­

ferent site spacings to muscovite mica. The epitaxial overgrowth of calcite should 

therefore be investigated as a function of lattice miss-match. In addition, the ef­

fect of weathering conditions on the overgrowth of other carbonates on muscovite 

mica, including witherite, siderite and magnesite, should be studied.
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ABSTRACT: We report for the first time the conditions under which oriented overgrowth ofcalcite occurs on muscovite mica. 
Calcite grows in a (001) orientation parallel to the basal cleavage plane on mica surfaces that have been weathered at ambient 
humidity (35 -40% ) for periods o f  at least 1 h. but no epitaxy is found on freshly cleaved mica. Nanometer-thin KjCO., 
crystallites are known to form on mica surfaces weathered in this manner, and our experiments show that the presence o f these 
crystallites during the initial stages o f  nucleation and growth is necessary for the epitaxial growth o f  calcite. Calcium ions do not 
adsorb to mica surfaces at the solution concentrations (<20 mM) used in these experiments, and we suggest that the crystallites 
Provide patches on the surface where the local concentration o f  both carbonate and calcium ions is high enough to promote 
epitaxy.

introduction

Epitaxy, or the oriented growth o f  one crystal on another, is 
cuirently receiving considerable attention due to its irnpor- 
fa"ce ^ r  the manufacture o f  thin-film devices. Although most 
abrication involves vapor-deposition methods, many liquid 

° r s<>1utjon-based processes are also used, for example, with 
■fnO films.1 Epitaxial growth from solution has even been 
discussed in relation to varying growth rates o f  gallstones and 

ldney stones,2 The first systematic studies o f  epitaxy were 
carried out as early as 80 years ago by Royer'''4 and involved 

. ordered growth o f  alkali halides (R bl, KBr, KCI, etc.) on 
Nuca from aqueous solutions. Using the same systems. Schulz4 
subsequently obtained almost identical results with vapor 
deposition and solution precipitation, and he and Lisgarten6 
‘'Uiributed the epitaxy to a match between the lattice spacing in 
die (001) cleavage plane o f  mica and the nearest-neighbor 
spacing o f  the ( l  1!) halide surface. However, given that even a 
attiee mismatch o f  23.2% (NaCI on mica6) permits epitaxial 

Ktowth, it is clear that lattice match is not necessarily a 
dominant factor in facilitating epitaxy. In a study o f six 
° rganie compounds growing from solution on 11 single- 
Cfystal substrates,7 little correlation between lattice match 
and preferred orientation was found, and it was concluded 
that effects due to intermolecular forces and growth aniso- 
tropy were more im portant. Similar conclusions have emerged 
tom vapor-phase studies," and it is clear that epitaxy is a often 

highly system specific,7'9
; Muscovite mica is extensively used as a substrate for adsorp- 

bon o f species ranging from small biomolecules to bacteria and 
ce>ls. and it is also the model surface o f  choice for many key 
surface techniques, including X-ray reflectivity, atomic force 
microscopy (AFM ), shear force microscopy, and surface force 
measurements. This is clue to the ease o f cleavage to yield an 
atomically smooth surface, free o f  steps across areas o f  several 
square inches. Mica has a monoclinic layered hexagonal 
structure, with the ideal formula KAbtAlSidOmtOH);,.

* To w hom  correspondence  sh ou ld  be  addressed . E-m ail: h .k .ch ristensonfi! 
■«ects.ac.uk. . . . . . .

P ah s .a ia .o rg /c ry sla l P ub lished  o n  W eb  11/16/2009

The layers consist o f two S i0 4 tetrahedral sheets joined 
together by an AIO(, octahedral sheet, and replacement of 
one in four Si atoms by A1 gives rise to a negative charge that is 
balanced by potassium ions binding the layers together in the 
crystal. It is the relatively weak ionic bonds between the layers 
that leads to the perfect cleavage parallel to the (001) plane, 
with the potassium tons dispersed evenly hut randomly bet­
ween the new layers upon separation,10 Saturation o f the 
oxygen bonds results in an inert and chemically stable surface.

Because o f  its high surface energy, rapid adsorption o f  
water to mica from the atmosphere occurs immediately after 
cleavage,11 Consequently, the work o f  cleavage in laboratory 
air is an order o f  magnitude smaller than in ultrahigh vacuum 
(UHV). The bound water does not desorb completely even at 
high temperatures under UHV. O f particular importance to 
the work presented here is the interaction between the surface 
potassium ions, carbon dioxide, and the adsorbed water on 
air-cleaved mica. This has been shown to lead to the epitaxial 
growth o f thin crystallites on air-cleaved mica surfaces dried 
for a few days at humidities below about 40% (Figure l) .12,13 
The supposition put forward by one o f  us over 15 years 
ago11,12 that these crystals are K^COi has only recently been 
verified by determining the unit cell parameters o f  the crystals 
with A FM .14 The surface density and diameter o f  these 
crystallites are dependent upon the mica weathering condi­
tions, but they are usually only 1 -5  nm thick.15 After air- 
cleaved surfaces are degassed in U H V  at 200 for 2 h, the 
crystallites are 1 -5  nm in diameter,15 but larger crystallites up 
to a micrometer in size form after prolonged drying at very low 
humidities,12 presumably due to an Ostwald ripening process. 
At higher humidities (> 50-60% ), no crystallites are ob­
served, in agreement with the high water solubility o f  
K2COs (~ 8  m). Dissolution o f  the crystallites affects the 
properties o f  water condensed on mica from water vapor, 
and capillary condensates o f  pure water can only be obtained 
if  the potassium ions are exchanged for hydrogen ions 
by dipping the mica surface in a weakly ucidic solution 
(pH =  3).lh The only ions then present on the surface are 
hydrogen ions, which cannot give rise to  any solid solute.

A’’ 2U0y Anwricttn Chemical Society
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'S u re  I .  T r a n s m is s io n  e le c t r o n  m ic ro g r a p h s ^  ( im a g e  s ize  1 x  
/<ni) o f  c a r b o n  re p l ic a s  o f  m ic a  s u r f a c e s :13 (a )  w e a th e r e d  a t  

n)()n/o h u m id i ty  b e fo r e  d r y in g  o v e r  P : 0 5 f o r  2 d a y s ,  re v e a l in g  a 
'ilrge  n u m b e r  o f  s m a l l  K 2C O ,  c ry s ta l l i te s ;  (b )  w e a th e r e d  a t  5 0 %  
h u m id ity  f o r  I h  b e fo r e  d r y in g  o v e r  P j O j  f o r  2  w e e k s , s h o w in g  a  
Slnfile. l a r g e r  K 2C O ! c ry s ta l .  R e p r in te d  f r o m  r e f  12, c o p y r ig h t  1087, 

^ ¡ ih  p e r m is s io n  f r o m  E lse v ie r .

In this paper, we show that muscovite mica can be success­
fully used to support the epitaxial growth o f  cnlcite, but only 
;>fter weathering at low humidity. In particular, freshly 
cleaved mica does not promote epitaxy o f calcite. Face- 
selective, templated growth o f  calcite has been reported on 
substrates such as self-assembled monolayers (SAMs) of 
'"-substituted alkanethiols on gold,17'1* Langmuir mono­
layers,lu~21 functionalized polymer surfaces,33 and a number 
° f  minerals including lithium niobate,31 dolomite-4 and
*abuyelite(Li2CO.,).

As the most abundant and stable o f  the CaCOj poly­
morphs, calcite is o f biological, geological, and industrial 
importance.26 It can be precipitated easily from aqueous 
solution and has a simple trigonal structure defined by a 
si|igle 3-fold e-axis. Calcite is a widely used filler in a range o f 
uiaterials including paints, ceramics, powder coatings, and 
Plastics. Elaborate calcite structures aie common in nature.

and the control mechanisms involved in biomineralization in 
organisms such as sea urchins and molluscs are currently 
receiving significant attention due to the potential for the 
synthesis o f advanced materials and not least because it is 
interesting in its own right.36 Thanks to a large number 
o f studies, there is a wealth o f available knowledge o f the 
nucleation and growth processes o f  calcite, both in vivo and 
in vitro.

Materials and Methods

M ic ro s c o p e -s l id e  s ize  p ie c e s  (7 5  x  2 5  tr im -)  o f  m u s c o v i te  m ic a  
(S & J T r a d in g ,  N e w  Y o r k ,  o r  W a ta m ib e  C o .,  J a p a n )  w e re  c le av e d  
f ro m  b o th  s id e s  to  a  th ic k n e s s  o f  ~ 5 0  /m i  a t  r o o m  te m p e ra tu r e  
( 2 1 - 2 6  °C ). S a m p le s  w e a th e r e d  a t  a m b ie n t  h u m id i ty  ( 3 5 - 4 0 % )  w e re  
c le av e d  in  a  l a m in a r  f lo w  c a b in e t ,  w h e re a s  s a m p le s  w e a th e r e d  a t  
1 0 0 %  h u m id i ty  w e re  c le a v e d  in  a  p r e - e q u i l ib r a te d ,  h u m id  g lo v e b o x  
a n d  left to  s t a n d  a t  1 0 0 %  h u m id i ty  f o r  u p  to  3 d a y s ,  b e fo re  b e in g  
im m e rs e d  v e r tic a lly  in  s o lu t io n .  C a lc iu m  c a r b o n a t e  w a s  p re c ip i ta te d  
f r o m  a q u e o u s  s o lu t io n  u s in g  a  d o u b le  d e c o m p o s i t io n  m e th o d  
a d a p te d  f r o m  th e  p r o c e d u r e  d e s c r ib e d  b y  P a r k  e t  a l. ’7 w h e re b y  e q u a l  
a m o u n ts  o f  4 - 2 0  m M  e q u im o la r  a q u e o u s  s o lu t io n s  o f  C a C L  a n d  
N a jC O i  ( S ig m a - A ld r t c h )  a r e  m ix e d ,  A f te r  a  g ro w th  p e r io d  v a ry in g  
b e tw e e n  5 m in  a n d  2 4  h ,  th e  s a m p le s  w e re  r in s e d  w ith  M illi-Q  w a te r  
b e fo re  d ry in g  u n d e r  a  n i t r o g e n  s t r e a m . S c a n n in g  e le c tro n  m ic ro s c o p y  
(S E M )  im a g e s  w e re  o b ta in e d  u s in g  a  L E O  1530 F E G -S E M  o r  a  
J E O L  N e o s e o p e  b e n c h to p  S E M , fo r  w h ic h  s a m p le s  w e re  c o a l e d  w ith  
a  5 n m  P t  la y e r . C ry s ta l  s ize s  a n d  o r i e n ta t io n s  w e re  d e te rm in e d  u s in g  
Im a g e  J  s o f tw a re ,  w ith  s im u la t io n s  o f  c a lc i te  o r ie n ta t io n s  p e r fo r m e d  
u s in g  S H A P E ,  v .7 .3 .1 .,  w h ic h  p e rm its  th e  m e a s u re m e n t  o f  th e  
im e r f a c ia l  a n g le s  a r o u n d  th e  3 fo ld  e -a x is  a n d  m a tc h e s  th e m  to  th o s e  
o f  a s im u la te d  c a lc ite  c ry s ta l  a t  a  s p e c if ie d  o r ie n ta t io n .38 X -ra y  
d i f f r a c t io n  ( X R D )  a n a ly s is  w a s  d o n e  w i th  a  S ie m e n s  B ru k e r  D 5 0 0  
T h e ta /2 th e tu  X - ra y  p o w d e r  d i f f r a c to m e te r  e q u ip p e d  w ith  
a  1 .5405  A  C u  K a  r a d ia t io n  s o u rc e ,  m e a s u r in g  o v e r  a  10° to  6 0° 
20 r a n g e  a t  a c o u n t in g  r a te  o f  0 .0 1 °  20 s “ 1.

R e s u l t s

Nonorieiitedcalciterhombohedra, bounded by {104} faces, 
were observed on precipitation o f  calcite front a 10 mM 
solution onto freshly cleaved mica (Figure 2a), with ca. 20% 
o f the CaCO.i precipitating as vaterite (cf Table 1). Surfaces 
weathered at ambient humidity (35-40% ) for 3 days prior to 
crystal growth supported the growth o f a high density of 
oriented calcite crystals (Figure 2b,c). The crystals were 
oriented with the [001] axis perpendicular to the substrate, 
as shown morphologically with the interfacial angles around 
the 3-fold e-axes all equal to 120“ and by X R D  (Figure 3). 
Lateral alignment o f the interfacial angles was observed over a 
distance spanning the entire sample, in agreement with the 
absence of grain boundaries on the mica sheets. The orienta­
tions o f  the different calcite rhombohedra corresponded to 
60° increments in rotation, as expected for the 3-fold e-axis on 
the hexagonal mica surface (Figure 2c). Measurements o f the 
relative orientation o f a sample o f  30 adjacent calcite crystals 
showed a narrow distribution o f angles with tt spread o f 6° and 
a standard deviation o f  2°.

X RD  spectra confirmed the epitaxial growth o f calcite, despite 
the large background from the oriented mica substrate 
(Figure 3),39 which was perpendicular to the plane of the incident 
and reflected X-ray beam. The intensity o f the (006) calcite peak 
relative to the (104) peak is 200 times greater than in a powder 
spectrum,39 showing convincingly that the (001) plane o f calcite 
is aligned preponderantly parallel to the mica basal plane.

One hour o f  weathering at 35 -40%  was sufficient to ensure 
that almost all crystals precipitated on the mica were oriented 
(Table 1), and further increase in weathering tended merely to
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F lJ tu re  2. S E M  im a g e s  o f  c a l e i lc  p r e c ip i t a t e d  o n  ( a )  f r e s h ly  c le a v e d  
'" i e a  a n d  (b ,c )  m ic a  w e a th e r e d  a t  3 5 - 4 0 %  h u m id i ty  f o r  3  d a y s ,  
S fo w n  fo r  2 h  ( a ,b )  o r  I h  (c )  f r o m  10 in M  s o lu t io n s .  N o te  th e  
d i f f e r e n t  s c a le s  o f  th e  th r e e  im a g e s .  T h e  r e la t iv e  n u m b e r  d e n s i ty  
° f  c ry s ta l s  a n d  th e i r  s iz e  in  p a n e l  a  c o m p a r e d  w ith  th o s e  in  p a n e l  b  
ls ty p ic a l .  P a n e l  c  s h o w s  e p i ta x ia l  c a l c i te  c r y s ta l s  w ith  a r r o w s  

to  d is t in g u is h  th e  tw o  d i f f e r e n t  o r i e n ta t io n s .

reduee slightly the number density without changing the 
Proportion o f  epitaxial crystals. Na^COj and CaCL solutions 
n'ixed at 10 mM and above were cloudy, in agreement 
vvuh previous observations,’0 whereas solutions below 
'his concentration remained clear. The cloudiness is due to 
|he precipitation o f  amorphous calcium carbonate (ACC) 
hi the form o f  10 50 tint diameter spherules at higher 
sUpersaturations.3,JJ Despite this, the epitaxy did not appear

F ig u re  3 . 2 0 X R D  s p e c t r u m  o f  o r ie n te d  c a lc i te  c ry s ta l s  g ro w n  f o r  2 
h  f r o m  a  10 m M  s o lu t io n  o n  a  s h e e t  o f  w e a th e r e d  m ic a .  T h e  m ic a  
s h e e t  is p e r p e n d ic u l a r  to  th e  p la n e  o f  th e  in c id e n t  a n d  re f le c te d  X - 
r a y  b e a m  a n d  s h o w s  o n ly  re f le c t io n s  f r o m  la y e r s  p a r a l le l  t o  th e  b a s a l  
p la n e .  T h e s e  (n o  a s te r i s k s )  a r e  c o n s id e r a b ly  m o r e  in te n s e  
t h a n  th e  c a lc i te  p e a k s  ( a s te r i s k s )  d u e  to  th e  m u c h  la rg e r  a m o u n t  
o f  m a te r ia l .

l uble I .  N u m b e r D ensity  am i P e rc e n ta g e  O rie n te d  C a lc ite  A ccording  
to  W e a th e r in g  C o n d itio n s“

w e a th e r in g  c o n d it io n
c ry s ta l^  

p e r  m n r
%

c alc ite
% ( 0 0 1 )  
ca lc ite

fresh ly  c leaved 31 ± 2 0 81 ± 7 ' ’ 4 ± 2
0.5  h  a t  3 5 - 4 0 %  h u m id ity 60  ±  30 97 ± 2 ' ’ 7±4
1.0 h a t  3 5 - 4 0 %  h u m id ity 4 2 0 0  ± 3 0 0 100 93  ± 2
1.5 h  a t  3 5 - 4 0 %  h u m id ity 1500 ± 7 0 0 97 ± 2 91 ±  1
72 h  a t  3 5 - 4 0 %  h u m id ity 000  ± 2 0 0 to o 9 6  ± 2
I I 1 ion  e x c h a n g e d  p r io r 57 ± 5 87 ± 4 ' ’ 0

to  1 h a t  3 5 - 4 0 %
h u m id ity
5 m in  IC O  im m e rs io n 66  ±  17 100* 0

a f te r  1 h  a t  3 5 - 4 0 %
h u m id ity

1.5 h  w e a th e r in g  a t  100% 350  ±  160 86 ± 9 ' ’ 0
h u m id ity

" A ll  c ry s ta l  g ro w th  in  10 m M  C a C F  a n d  N a jC O j  s o lu tio n s  fo r  2 h. 
' ’ M a in ly  n o n o r ie n te d  (104} rh o m b o h e d ra .

to depend on the concentration in the range o f 4 20 mM. 
Epitaxial crystals were apparent already after 5 min growth 
time on weathered mica, but there was a range in crystal sizes 
even after 24 h o f  growth.

Mica weathered at 100% humidity in a glovebox for a time 
o f 1.5 h did not support the epitaxial growth o f calcite crystals 
(Table I), and this did not change after weathering for 3 days. 
Likewise, no epitaxy was found with mica weathered for 
3 days at ambient humidity and then immersed for 1 ii in either 
CaCl: or NaiCOy solution before the second solution was 
added to initiate precipitation. No epitaxy could be observed 
when the surface potassium ions o f the mica were exchanged for 
hydrogen ions before crystals were grown (so that no K:CO, 
crystallites can form), whether by ion exchange in HC1 
(pi I 3.0) for 5 min or in Milli-Q water for 1 h. Five minutes 
immersion in water sifter weathering for 1 h was sufficient to 
prevent any epitaxial growth o f  calcite (Table 1), In all cases, 
epitaxy was verified on control samples cut from the original 
weathered mica sheet before treatment by the above methods.

D i s c u s s i o n

The spacing between adjacent K ' sites on mica is 
0.518 nm,2s and the C u -C a  spacing o f calcite in the (001)
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Plane is 0.499 nm,28 corresponding to a lattice mismatch o f  
under 4%, which is a better fit than for most o f the alkali 
halides. On the assumption that lattice match governs epitax- 
ial growth, the surprising fact would not be why epitaxy 
occurs but rather why freshly cleaved mica does not support 
ePitaxy. The obvious difference between freshly cleaved mica 
and mica weathered in a dry atmosphere is the presence of  
KjCO., crystallites on the latter. The mica weathered at 100% 
humidity and the hydrogen mica also lack crystallites, and 
consequently neither supports epitaxy. The effect o f  the 
crystallites must be immediate upon mixing o f  the solutions 
because they dissolve very quickly due to the high solubility 
(8 m) o f  K2C 0 3, as shown by the lack o f  epitaxy when the mica 
Wl's immersed in either the N a2C 0 3 or the CaCI2 solution 
before mixing. Five minutes o f  immersion in water after 
feathering but prior to crystal growth was also enough 
to preclude epitaxy.

Ostendorf et a l.14 found a K +- K + spacing o f  0.57 ±  
0-05 nm for the K2C 0 3 crystallites, giving a lattice mismatch 
between calcite and the K2C 0 3 crystallites o f  ~14% , which is 
considerably larger than that between calcile and mica. 
It hence seems unlikely that the K2C 0 3 crystallites themselves 
Provide the substrate on which epitaxial growth occurs, 
although the results with NaCl on mica show that surprisingly 
large mismatches can give rise to epitaxy. Calcite and the 
alkali halides that show epitaxy on mica differ significantly in 
their respective water solubilities. The saturation concentra­
tions o f the alkali halides are o f  the order o f  1 -1 0  M, 
c°nt pared with a saturation concentration o f  C aC 03 o f  about 
1 ntM or a difference o f  up to 4 orders o f magnitude. The 
concentration o f  ions near a surface must have an important 
influence on the nucleation o f  epitaxial crystals, and it has 
been shown that the critical supersaturation for crystal nu- 
cleation in some cases increases with lattice mismatch." 
Moreover, there is one additional factor that increases the 
difference between alkali halides and calcite. Unlike the alkali 
•Petal ions N a+, K +, and Cs+, which adsorb relatively 
strongly34 to the negatively charged mica surface even from 
dilute (ntillimolar) solution, Ca2+only adsorbs significantly to 
roica surfaces at concentrations above 0.1 M,3 5,36 which is 
•Pitch higher than that o f  the solutions used here. The large 
free-energy cost o f  removing water from the strongly hydrated 
calcium ions hinders adsorption at lower concentrations. The 
Presence o f  sodium ions from the carbonate in our solutions 
would further reduce the adsorption37 by competing for the 
negative sites on the mica surface.

On the weathered mica, however, the thin (only a few 
nanometers thick)14 K2C 0 3 crystallites that are transiently 
Present after mixing the solutions form areas where calcium 
*°ns may more readily approach the surface, and furthermore 
•be K2C 0 3 itself provides a source o f carbonate ions near the 
surface. It seems natural to assume that the nucleation and 
subsequent growth o f  epitaxial calcite crystals are favored by 
•>n enhanced concentration o f  both calcium and carbonate 
•°ns. Furthermore, the observed decrease in the number 
density o f epitaxial calcite crystals at prolonged weathering 
times (Table 1) is consistent with fewer but larger K2C 0 3 
crystals that provide fewer viable nucleation sites, as found in 
•he original investigation o f  the crystallites on mica,12 

These results provide a very clear example o f  how epitaxial 
growth is not necessarily a simple function o f lattice match. 
Epitaxy also requires wetting, as illustrated by the (111) 
surface o f  BaF2, which matches almost perfectly the basal 
face o f  hexagonal ice yet is a poor ice nucleator because ice

only partially wets BaF2( l ! I ) .38 Epitaxial growth o f  ionic 
crystals from aqueous solution is a much more complex 
process than vapor- or liquid-phase epitaxy, involving as it 
must the ion concentration profiles normal to the surface, 
which are affected by electrostatics and hydration effects. 
In addition, there is frequently (as in the case o f calcite) 
the necessity o f dehydration before incorporation into the 
growing crystal.39

Our work demonstra tes yet another surprising consequence 
o f  a relatively short exposure o f  mica to an ambient atmo­
sphere. Clearly, it is essential for those who use mica as a 
model surface to  be fully aware o f  details o f  the historv o f  the 
mica substrate. For example, we note that a recent4" AFM  
study o f calcium carbonate precipitated on mica (from 3 ntM 
solutions o f  N a2C 0 3 and C a (N 0 3)2) presents SEM micro­
graphs o f  calcite crystals on mica that appear similar in 
morphology to our epitaxial calcite crystals. However, the 
authors do not give sufficient details o f  the history o f  the mica 
surfaces for us to be able to make any useful comparison nor 
do they comment on possible epitaxy.

We suggest from our results that the crystallites on weathered 
mica K2C 0 3 are able to induce epitaxial growth on mica by 
providing patches on the surface where a considerably higher 
concentration o f  both calcium and carbonate ions is present 
briefly after mixing of the CaCU and N a2C 0 3 solutions.
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Confinement
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Biominerals typically form within localized volumes, affording organisms 
great control over the mineralization process. The influence o f such 
confinement on crystallization is studied here by precipitating CaC03 within 
the confines o f an annular wedge, formed around the contact point o f two 
crossed half-cylinders. The cylinders are functionalized with self-assembled 
monolayers o f mercaptohexadecanoic add on gold. This configuration 
enables a systematic study o f  the effects o f confinement since the surface 
separation increases continuously from zero at the contact point to 
macroscopic (mm) separations. While oriented rhombohedral calcite crystals 

I at large (>10 pm) separations, particles with irregular morphologies and 
Partial crystallinity are observed as the surface separation approaches the 
dimensions o fth e  unconfined crystals (5-10pm ). Further increase in the 
confinement has a significant effect on the crystallization process with 

’ flattened amorphous CaC03 (ACC) particles being formed at micrometer ; 
separations. These ACC particles show remarkable stability when maintained 
within the wedge but rapidly crystallize on separation o fth e  cylinders. A 7 
comparison o f bulk and surface free-energy terms shows that ACCcannot be 5 
thermodynamically stable at these large separations, and the stability is 

; attributed to kinetic factors. This study therefore shows that the en vbonment ; 
I in which minerals form can have a significant effect on their stabtlhy and 

demonstrates that ACC can be stabilized with respect to the crystalline 
t Polymorphs o f CaC03 by confinement alone. That ACC was stabilized at such ; 

large (micrometer) separations is striking, and demonstrates the versatility o f ; 

this strategy, and its potential value in biological systems.

1. Introduction

A fundamental characteristic o f  biological systems is that their 
0rganization and function are based on compartmentalization. 
Indeed, there is an increasing realization that biological and
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chemical reactions can be dramatically 
affected by confinement, stimulating a 
rapidly growing interest in this effect.11,21 
For example, protein folding and macromo- 
lecular interactions can be affected by 
confinement, which mimics the crowded 
environment proteins inhabit in vivo.12,31 
This Full Paper focuses on the influence of  
confinement on one important category o f  
biological processes: biomineralization, the 
generation o f mineral-based structures such 
as bones and teeth by organisms. It has long 
been recognized that biominerals form 
within the confines o f  “privileged environ­
ments” delineated from the organism, where 
spatial constraints and chemical conditions 
can be precisely controlled.14'’31 Within these 
localized microenvironments organisms 
actively select the mineral phase, and deter­
mine the morphology, orientation, and 
location o f  the biomineral product through 
control o f  precursor ions and phases, and via 
interaction with soluble organic macromo­
lecules and insoluble organic matrices.

Although biomineralization invariably 
occurs within restricted volumes, experi­
m ents aiming to mimic these processes are 
generally carried out in  bulk solution. 
However, there are many crystallization 
phenomena, such as die precipitation o f  
hydroxyapatite nanocrystals in die gaps in 

collagen fibers during bone formation, that cannot be adequately 
described in terms o f crystallization from bulk solution.16,71 
Indeed, it is immediately clear that confinement must have a 
significant influence on mineral formation as the relative 
importance o f surface and interfacial energies increases.1®1 In 
addition, the interaction o f  a growing crystal with soluble 
macromolecules and die aggregation behavior o f precursor 
mineral particles will change in constrained volumes.

Naturally, some systems that offer restricted reaction volumes 
have been used to produce crystals widi controlled sizes and 
morphologies. Looking specifically at experiments related to 
biomineralization, surfactant phases including microemulsions 
have been used to prepare particles with a range o f shapes and 
polymorphs (e.g„ References [0-11]), but due to the number o f 
experimental variables and their dynamic nature, these systems 
are not well suited to systematic studies o f  the effects o f 
confinement. Porous single crystals o f  calcite have been grown 
within templates such as colloidal crystals1121 and porous polymer
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Membranes,l13_isl while ice templates have been used to form 
porous hydroxyapatite/coUagen composites.1’61 Showing that the 
local reaction environment can affect crystallization, CaCOj was 
precipitated within deformed collagen matrices and different 
crystal morphologies and polymorphs were obtained according to 
fte extension o f the matrix.117,181 Considering mesoscale environ- 
ments, a low density o f  calcium phosphate (CaP) nanoparticles 
were precipitated within mesoporous silica.1’91 Many investiga­
tions have precipitated hydroxyapatite in association with collagen 
fibrils.120! In a classic study, Glimcher observed that hydroxyapatite 
c°uld nucleate in the hole zones o f  collagen, producing structures 
resembling embryonic bone,171 while approaches such as crystal­
lization during fibrillogenesis171' or in the presence o f anionic 
Polymers1221 have yielded som e evidence o f crystallization in 
fire hole regions. In another article, a polymer-induced 
«quid precursor phase (PILP) o f  CaP was used to infiltrate 
collagen fibrils. Hydroxyapatite crystals nucleated within the gap 
regions o f the fibrils, producing a material structurally similar to 
bone,161

Of particular relevance to the current experiments, a small 
number of studies have investigated how amorphous CaCOj 
(ACC) forms within constrained volumes. While traditional 
models o f CaCOj biomineralization considered this to proceed by 
* combination ofions pumped into the mineral deposition site,141 it 
is now well established that formation o f  calcite and aragonite in 
biological systems frequently proceeds via ACC precursor phases, 
'vbere the ACC precipitated within localized environments 
subsequently crystallizes to give either single-crystal or polycrystal- 
line crystal phases.1’3,231 ACC was precipitated within the confines 
° f the rod-shaped pores perforating track-etch membranes, and 
crystallization yielded single crystals o f calcite with high aspect 
ratios.124,25! precipitation of ACC within a mould comprising two 
planar substrates separated by a regular array of pillars, and 
subsequent controlled nucleation at a single, defined site, yielded 
elther polycrystalline calcite at pillar separations o f less than 
IS p.m, or millimeter-sized calcite crystals at larger separations.1261 
ft was suggested that the micropattem provided a "microsump ’ 
for the release o f excess water during the ACC to calcite transition, 
Which appeared to occur by mass transport between the 
amorphous and crystalline phases. Both o f  these sets o f  
experiments therefore suggest that confinement can strongly 
affect the mechanism o f  crystallization o f  ACC,

In the experiments described here we employ a simple model 
system that enables a systematic investigation of the effect o f a 
restricted crystallization environment on the precipitation of 
CaCOj, CaCOj biominerals are extremely widespread, and much 
° f  our understanding o f biomineralization processes comes from 
studying their formation. It therefore provides an excellent model 

"  - — • ’ i  — *—a  „ l .,o e  t i a l f . r v l in r l e r a  bearinE

F ig u re  1 . a) S c h e m a t ic  d ia g ra m  o f  th e  c r o s s e d -c y lin d e r  co n fig u ra tio n  w ith  
ra d iu s  o f  c u rv a tu re  R, b ) th e  e q u iv a le n t  sp h e re -o n -a -f la t  co n fig u ra tio n , w ith  
th e  s u r fa c e  s e p a ra t io n  h, re la te d  to  th e  d is ta n c e  fro m  c o n ta c t  x, a n d  R by 
E q u a tio n  (1 ), c )  th e  s u r fa c e  se p a ra t io n  h p lo tte d  a s  a fu n c t io n  o f  d is ta n c e  x 
to  th e  c o n ta c t  p o in t , a n d  d ) t h e  d is c  o f  r a d iu s  r  a n d  t h ic k n e s s  d u s e d  to  
m o d e l th e  a m o r p h o u s  p re c ip ita te s .

contact point by.

h ~ R ~  VRz -  x2 «  x1 j2R (1)

[■assembled monolayers (Sanisj oi ---------------
HA) to generate a well-defined surface on which to grow 
stals. Such SAMs are known to promote oriented, face-selective 
>wth o f  CaCOj (calcite) crystals.127,281 A crossed-cylinder 
»figuration creates an annular wedge, which offers separations 
•ging continuously from angstroms to macroscale and enables 
V assay o f  the effects ofconfinement in a single experiment. The 
"face separation ft between crossed cylinders o f  equal radius o f  
mature R is equal to that between a sphere o f  radius R and a flat 
"face (Figure la~c), and is related to the radial distance* from the

Thus, h varies continuously from zero around the contact point 
to 2-3 mm  at the vapor interface of the solution droplet, some 
7-8 mm from the contact point. While the focus of most 
experiments mimicking biomineralization processes is on the 
role o f soluble and insoluble organic macromolecules in 
modulating features such as polymorphism, crystal size, orienta­
tion, and morphology, the current experiments investigate the 
possibility that nature uses confinement alone as a mechanism of 
controlling biomineral formation,

2. Results and D iscu ssion

CaCOj was precipitated by either placing a drop of a metastable 
solution o f calcium carbonate in the wedge and allowing 
precipitation to occur with time, or by placing a drop o f calcium 
chloride solution in the wedge and then exposing foe set-up to 
ammonium carbonate vapor. Precipitation on isolated glass 
surfaces yielded almost identical results for both experimental

1
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Methods, with mostly randomly oriented rhombohedral calcite 
crystals, and the remainder aragonite and/or vaterite. In contrast, 
°riented calcite crystals were obtained on the MHA SAMs, in 
keeping with published data.128,291 Both precipitation methods 
supported the growth of calcite rhombohedra only, although the 
orientation control varied according to the method used. With gas 
diffusion, approximately 85% o f the calcite crystals nucleated 
Parallel to either the (012) or (015) planes, while only 45% of the 
calcite crystals were in these orientations with the double­
decomposition method. This agrees with observations that the 
orientation o f  calcite on MHA SAMs is pH-dependent128' and

hence differs between the double-decomposition and the gas- 
diffusion methods.

The nucleation densities, orientations, and morphologies o f  the 
CaC03 crystals precipitated at surface separations greater than 
10 p.m were similar to those of crystals grown on the isolated control 
surfaces (Figure 2a). Crystals grown using the gas-diffusion method 
had maximum dimensions o f 5-15 pan whereas the double­
decomposition growth method yielded slightly smaller crystals o f 
2-10 (xm, with the size dependent upon the growth period and 
solute concentration, yet independent o f whether the crystals were 
grown on isolated surfaces or at large surface separations. An 
influence o f the dimensions o f the precipitation environment was 
observed at surface separations below « 1 0  p,m, where significant 
changes in the crystal habits were observed. At these separations the 
particles produced were typically « 5  pm  in size for the gas- 
diffusion method (slightly smaller for the double-decomposition 
method) and no longer exhibited well-defined rhombohedral

F ig u re  2 .  R e p re s e n ta t iv e  S E M  im a g e s  o f  C a C O j  p r e c ip ita te d  b e tw e e n  L a a i w m  -T I--- f-l - l r -----¡Vi*  J m | l fta*
.. j  I- j  . j  jki. u u a  u s in g  t h e  g a s -d if fu s io n  m e th o d ,

a t ° A ? e d i|C y ,? d e rS  C ° a*Vsnc th e  f a c e -s e le c t iv e  g ro w th  o f  w e ll-d e fin e d  c a lc ite  F ig u re  3 . R e p re s e n ta t iv e  S E M  im a g e s  o f  C a C 0 3 p re c ip ita te d  b e tw e e n
) t m il l im e t e r s e p a r a  i , . m h A  s u r f a c e s  { [C a 2+] » 4 m M  fo r  M H A * c o a te d  c r o s s e d  c y lin d e rs  u s in g  t h e  g a s -d if fu s io n  m e th o d  w ith

iS ar n 5 c f about 1 0 ,x m t h e p a r t id e s a r e o f i r r e g u la r  [ C a I+ ] =  8 m M  a t  a p p ro x im a te  s u r fa c e  s e p a r a t io n s  o f  a ) 2 p m  a n d
m  o rp  h o  I o e y  w  i di" a SR a tte n e d  to p  s u r fa c e  a n d  g e o m e tr ic  fa c e ts  a ro u n d  th e  c) 0 .5  p m . A s  th e  se p a ra t io n  d e c r e a s e s  th e  p a r t ic le s  b e c o m e  le s s  g e o m e tr ic

, p f iu iu g y w iu i •  r  . a n d  m o r e  a m o r p h o u s  in  c h a ra c te r ,e d g e s  ([C a J+)  =  8 m M  fo r  2 4 h ) .
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ju r e  4 . R e p re se n ta t iv e  h ig h -re so lu t io n  S E M  Im a g e s  o f  s m a lle r  C a C O ,  
r t id e s  fo u n d  b e tw e e n  M H A -c o a te d  c r o s s e d  c y lin d e rs  at a s u h m ic ro rn .  

-r su rfa c e  s e p a ra t io n , a d ja c e n t  to  th e  c o n ta c t  re g io n , ™  P *  
ffusion  m e th o d  w ith  [C a 2+] =  4  m M . a) A fte r  t e rm in a t io n  o f  g ro w th  ^  
•  s u r fa c e s  s t ill in  c o n ta c t  a g g re g a te s  of 1^5-nm s p h e n c a l p a m c K  

o rp h o lo g ica lly  c o n s is t e n t  w ith  A C C ,  a re  fo u n d . ) ?  . . .
'm ln a te d  1 h  a fte r se p a ra t io n  o f  th e  s u r fa c e s  in  th e  e p  e  e  
e p a rt ic le s  e x h ib it  p la n a r  e d g e s  a n d  fa c e s , c o n s is te n t  w i a ra 

'on to  a m o re  c ry s ta ll in e  m a te r ia l.

rms, but were irregular in shape, They were bounded by many 
nail faces morphologically indicative o f calcite, but had flattened 
iper surfaces (Figure 2b). An effect on the particle morphology o 
e constraining volume was apparent in that the edges of the 
irticles became increasingly irregular with greater confinement, 
shown in Figure 3a and b for a surface separation o f « 2  pm and 

0.5 p.m, respectively. At surface separations o f <  . p-m, a is, 
Ithin «100 pm  from the point o f contact, the particles were about 
>pm in diameter, and roughly circular m  shape. With no 
lorphological features characteristic o f a crystalline material, these 
iggested instead an amorphous precipitate ( igure ’)• 
lamination o f tire region dose to contact at a higher resolution 
lowed the presence ofaggregates of 10- 50-nm spherical particles, 
hich are typical o f ACC (Figure 4a). Accordingly the possib.lity 
at the particles precipitated at this degree o f confinement were 
norphous was investigated by studying their stability in solution.

F ig u re  S . R a m a n  s p e c t ra  o f  C a C O )  p re c ip ita te d  b e tw e e n  M H A -c o a te d  
c r o s s e d  c y lin d e rs  a t d if fe re n t s u r fa c e  s e p a r a t io n s  h w ith  p re c ip ita t io n  by 
th e  d o u b le -d e c o m p o s it io n  g ro w th  m e th o d , [C a 3+] - 5 m M . a) h » 3 m m ,  
b) h «  10  p m ,  a n d  c )  h  «  0 .5  p m .  d ) S y n th e t ic  A C C  p re c ip ita te d  fro m  h ig h -  
p H  s o lu t io n s  u s in g  th e  m e th o d  o u t lin e d  by K o g a  e t  a l . 1561

After one 24 h precipitation experiment the cylinders were 
separated to a distance o f approximately 5 mm  and the exposed 
particles were incubated in the (depleted) growing solution for 1 h, 
After this treatment the particles showed clear evidence of 
crystallization to calcite, as suggested by development o f well- 
defined faces and edges (Figure 4b).

That constraining tlie precipitation volume resulted in stabiliza­
tion of amorphous calcium carbonate with respect to calcite wa s also 
confirmed using Raman microscopy o f individual particles. Calcite 
has five fundamental Raman-active peaks (not all visible in 
Figure 5a) and is easily distinguished from aragonite and vaterite by 
the unique position o f the internal Eg modes at 711 cm-1, which 
correspond to the in-plane bending of tire carbonate ions (v.,)!11’1 
Synthetic ACC was differentiated from calcite by 1) file characteristic 
broadening of die internal Alg carbonate bending mode, centered at 
1086 cm"1, ii) a broad peak in the range o f140-220 cm"*, and iii) an 
absence ofthe 711 cm"1i>4 mode (Figure 5d).(n| Raman microscopy 
ofparticles produced at surface separations >10 pm confirmed that 
these were calcite, while the spectra o f the irregular particles grown 
at intermediate separations o f 2-10 pm also corresponded to cakite 
(Figure 5b), albeit with a broadening o f the 1086 cm"1 peak, as 
expected for a polycrystalline sample!521 In contrast, the Raman 
spectra of the CaCOj particles precipitated at Submicrometer 
surface separations (Figure 5c) showed a significant reduction in 
the intensity o f  the 1086 cm” 1 peak, and had several features in 
common with those o f synthetic ACC (Figure 5d), that is, a broad 
140-240 cm"1 peak and the absence o f  an external Eg mode in the 
range of 700-750 cm” *. While most o f the morphological studies 
and fiie Raman spectrum in Figure Sc were for 24 h growth times, 
precipitates after 72 h confinement Showed similar features, A 
comparison o f  the Raman spectra o f the same particles before and 
after heating in a furnace at 180 °C showed substantial conversion 
of ACC into calcite, as shown by an eightfold increase in die 
intensity of the internal A)g carbonate peak 1085 cm"’, and the 
emergence o f a peak at 711 cm" *, which had been previously absent 
(Figure 6).

The changes in the morphologies o f the precipitates with 
surface separation convincingly illustrate that confinement in die
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f ig u r e  6. R a m a n  s p e c t ra  o f  C a C O j  p r e c ip ita te d  b e tw e e n  M H A -c o a te d  
c r o s s e d  c y lin d e rs  u s in g  t h e  g a s -d if fu s io n  m e th o d  a t  |C a 2+j  =  8 m u  
a) b e fo re  a n d  b) a fte r  h e a t in g  o v e rn ig h t  a t  18 0  ° C .  T h e  s p e c t ra  a re  for 
the same particle a t a s u r fa c e  s e p a ra t io n  o f  a p p ro x im a te ly  1.5 p m .  T h e re  
w a s  an  e ig h tfo ld  in te n s ity  In c r e a s e  In  t h e  A l c  in te rn a l c a rb o n a te  b e n d in g  
m o d e  c e n te re d  a t  1 0 8 6 c m “ ',  suggesting a s ig n if ic a n t  c o n v e rs io n  fro m  

A C C  to  c a lc ite .

annular wedge has a significant influence on crystal growth. 
Indeed, the habits o f the particles were strongly modified when 
confined between surfaces as far apart as 10 pm, with flattened 
Particles bounded by irregular, multifaceted edges precipitating. 
The typical dimensions (5-10 pm) o f  the calcite crystals on isolated 
surfaces and atlarge separations suggest that they could potentially 
grow all the way from one surface to the second surface at these 
separations. The flattened calcite surfaces in Figure 2b may 
therefore result from diffusion-limited growth as the crystals 
approach the second surface, or perhaps even from direct contact 
with the second surface.

With increasing confinement, that is, with decreasing surface 
separation, the modification o f  the crystal morphologies from the 
thombohedra produced in bulk solution becomes successively 
more marked until all suggestion o f crystallinity is lost. The Raman 
spectra support the picture provided by the scanning electron 
microscopy (SEM) images, with evidence for increasing poly, 
crystallinity and a greater proportion o f  ACC in tire precipitates as 
the separation decreases. At submicrometer separations the 
confined particles appear to consist primarily o f  amorphous 
CaCOj. That these particles crystallized as calcite, on incubation in 
solution or through heat treatment, is further strong evidence for 
their amorphous character. The very flattened appearance o f the 
amorphous precipitates suggests that the particles have grown 
outwards until they come close to the second surface. When the two 
half-cylinders are separated at the end o f  the growth it would be 
natural to assume that the bond between the precipitate and the 
surface on which it nucleated is stronger than any adhesion to the 
second surface. The flat surface o f the particles viewed by SEM 
therefore corresponds to the surface that has grown towards the top 
substrate. Whether the flattening is mainly a kinetic effect due to 
restrictions on ion flow between the growing precipitates and the 
second surface, or whether in som e cases the structures have 
actually made contact with the second surface, is difficult to 
determine. Our observations also suggest that the nucleation rate is 
not greatly affected by moderate degrees o f confinement, down to 
surface separations of about 10 p-m, although this was not

V > ' l n t e j r ^ i « n c e *  ® 2010 WILEY-VCH Verlag GmbH &

quantitatively studied. This is not surprising, as the separations 
are much larger than the dimensions o f  a critical nucleus, which 
would be expected to have a radius o f only ln m  at the 
supersaturations employed here.

The most surprising feature o f our results is the size o f these 
amorphous precipitates, and the separation between the MHA 
surfaces at which they remain stable. We observe a marked 
increase in stability o f an amorphous phase compared to the crystal 
at surface separations from hundreds o f nanometers up to as much 
as micrometers. These are much larger surface separations than 
those at which confinement effects are usually seen. The effect of 
confinement on the physical properties o f matter is primarily due 
to the increasing importance o f  the surface free energy compared 
to the bulk free energy when the surface-area-to-volume ratio 
increases. This gives rise to phenomena such as melting- and 
freezing-point depression o f substances in porous media, and 
capillary condensation -  the condensation o f liquid from under­
saturated vapor in narrow pores and cracks. Temperature shifts in 
solid-solid phase transitions133* and tire glass transition*34,35* in 
confinement have also been documented, as have changes in the 
relative polymorph stability of crystals precipitated from solu­
tion.*22,3 ,37* However, such confinement effects are usually only 
significant enough to be detectable when the dimension o f the 
confining pores is o f the order o f  100 nm or less. In highly confined 
systems the normal bulk transitions become smeared out and may 
vanish altogether,*8,3®'39* although this usually occurs only in 
nanometer-sized pores, far beyond what we are considering here.

A confinement effect o f some relevance to thi s study is the case of 
capillary condensation o f liquid below the bulk melting point o f the 
substance. Just as the surface free-energy terms stabilize the liquid 
with respect to the vapor in a pore, they also favor the liquid phase 
over a crystalline solid. Liquid therefore condenses from vapor in a 
pore even below the bulk melting point, and the quantitative 
relation between the amount o f condensed liquid and the 
temperature depression below the melting point has recently been 
experimentally determined and correlated with theoretical predic­
tions.*40,41* In these experiments, condensation from saturated 
vapor below the bulk melting point was studied in the same 
geometry as here, around the contact point oftwo crossed cylinders 
o f mica in a surface-force apparatus,*8,42"45* The condensates 
remained liquid below the melting point but their size decreased as 
the temperature decreased, with the surface separation at where 
stable condensates were found typically in the range o f20-100 nm 
for 1-6 °C o f undercooling, in the case o f water.*41*

Phase equilibria involving crystalline phases are considerably 
more complex than those o f fluids (liquids and vapors). The surface 
free energy o f a crystal depends on tire lattice plane of the crystal 
face and is affected by defects, lattice strain, and the possibility of 
surface rearrangements and reconstructions. However, in tire 
absence o f anisotropy, as with amorphous phases such as ACC, we 
may expect a situation comparable to that of a liquid-vapor system. 
The surface free energy o f ACC would be expected to be lower than 
that o f calcite (or vaterite and aragonite), and contact between ACC 
and a solid substrate should be more favorable than contact 
between calcite and the substrate, ACC confined between the two 
MHA surfaces would hence be stabilized with respect to calcite.

Ifwe model the amorphous precipitates close to the contact zone 
as discs o f radius rand thickness d (Figure Id) we can estimate the 
thermodynamic stabilization of a disc of ACC with respect to
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crystallization to calcite. We assume that the surfaces are locally 
flat, and that the total free-energy difference AG consists o f a bulk 
term AGbuik and a surface term AG„urf. The surface free-energy 
change for crystallization is given by

AG,surf : : ^ ( y s / a t c  ~  Xs / a c c )  +  2 ;r rd (V w /c a ic -  Kw / a c c )

: 2rrr(rAys +  dAyL) (2)

Where y s/calc, y s/ACC, yw/ca)c, and y W/ACC are the free energies o f  
the substrate-calcite interface, the substrate-ACC interface, the 
Water-calcite interface, and the water-ACC interface, respec­
tively. Ays and Ayt  are the differences according to Equation (2). 
The bulk term is

AGbuik =  xr2d
AG,cryat

vM
(3 )

Where AGcryst is the free energy o f  crystallization o f calcite per 
mole and VM is the molar volume o f  calcite. At equilibrium

AG =  AG,utf  +  AGb„ik =  0 (4)

and

2(rAys + dAyL) = -rd^%^ "m

# + AG,'cryat

VM

(5)

(6)

The value o f  A Gcryit for the conversion o f ACC to calcite may be 
conveniently found from a precipitation diagram for CaC03 
Polymorphs.146) By subtracting the chemical potential change for 
the precipitation o f  ACC from solution from the change in 
chemical potential for calcite precipitation one obtains tire change 
in chemical potential for the crystallization o f  ACC to calcite. 
Figure 1 o f Reference (46] gives A/i =  -7 .3 kT, or AGcrylt =  
-7 .3 RT -  - 18 kj mol"1 at 20 °C, With VM =  3.7 x 10~s m \  and 
estimating Ays ** 10mj m ~2, Ayi^s lOOmJ m"2, one obtains

fO.Ql 0 .1 \
i,— + T j 0.24 (7)

where d and r are in nm, Although values o f  Ays and Ayi above 
are only order-of-magnitude estimates, it is clear that for r values 
of die order o f micrometers (1000 nm) d is o f  the order o f  0.1 nmi 
We therefore conclude that ACC confined between die surfaces 
cannot be thermodynamically stable at the micrometer- 
scale separations observed. H ie reason for the large difference 
compared to the capillary condensation o f water14*1 may be found 
by comparing the bulk free-energy terms. For confined, under­
cooled water AG =  ATAS =  ATAH/Tm, where AT is the 
temperature depression below the melting point Tm, and this 
AG is only 132 J m ol-1 for water at -6  °C. For equal volumes the 
free-energy decrease on crystallization o f  ACC as calcite is almost 
70 times larger than the free-energy gain on freezing water at 
- 6  °Cl Also, the surface free-energy terms for ACC and calcite are

most likely smaller than for ice and water, further reducing the 
confinement effect, The very large bulk free-energy gain on 
crystallization o f an amorphous phase hence easily dominates 
over surface energy effects at all but the smallest surface 
separations, o f  the order o f 1 nm or less. We note that a similar 
conclusion was reached in a recent model calculation o f the 
transformation o f ACC to calcite,1471

Clearly, thermodynamics cannot explain the presence o f ACC 
between the surfaces in the wedge, and the answer must lie in 
kinetic stabilization. The rate o f the conversion o f ACC into calcite 
may be retarded by confinement, especially if  the crystallization 
proceeds via a dissolution-xeprecipitation mechanism. The 
similarity o f the precipitates after 24 and 72 h growth times 
suggests that the kinetic stabilization is significant. Restricted 
contact between the amorphous precipitates and the solution 
would certainly be expected to be important in this case,

That ACC is stabilized within small volumes with respect to the 
crystalline polymorphs o f CaC03 such as calcite and vaterite has 
implications for our understanding o f biomineralization pro­
cesses. It is generally accepted that organic macromolecules, 
acting in combination with ions such as magnesium and 
phosphate, are involved in the stabilization o f ACC in vivo, tuning 
its stability such that crystallization o f transient ACC can be 
triggered as desired.148,4'*1 The work presented here suggests that in 
addition to soluble additives, organisms may also use confinement 
as a means to stabilize and control the crystallization of amorphous 
precursor phases. That this effect is kinetic rather than 
thermodynamic in origin is intriguing, as is our suggestion that 
this derives from the restricted contact between tire ACC 
precipitates and solution. Synthetic ACC shows long-term stability 
when isolated from aqueous solution, or when precipitated from 
non-aqueous solvents such as ethanol1501 (despite containing a 
similar quantity of structural water to ACC precipitated from 
aqueous solution1511). Sea urchin larval spicules form via a 
precursor ACC phase, within a membrane-bounded compart­
ment, where the membrane is in direct contact with tire surface of 
the spicule; no intermediate water is observed.1521

The role of water in the crystallization o f ACC -  and indeed, 
more generally, the mechanism o f crystallization of ACC -  is 
poorly understood. A recent study examining the formation of sea 
urchin larval spicules showed that these form via a hydrated ACC 
phase, similar in composition to synthetic ACC, which then 
dehydrates to give anhydrous ACC,15*1 Crystallization subse­
quently occurs in the absence o f a well-defined crystallization front 
to give a single crystal o f calcite, possibly via secondary nudeation, 
where crystalline domains trigger tire crystallization o f adjacent 
ACC domains, Aizenberg's study o f ACC crystallization within an 
array o f pillars1261 suggested that a dissolution-reprecipitation 
mechanism operated in this system, Further suggestion that 
contact of ACC with water affects its crystallization was shown by 
crystallization o f ACC within the cylindrical pores o f track-etch 
membranes.124,251 Single crystals o f calcite were obtained within 
small (0.2-5 pm) pores that completely filled with ACC prior to 
crystallization, while polycrystalline particles were obtained in 
larger (10 p-m) pores that only partially filled prior to crystallization, 
thus exposing a large fraction o f  the surface to tire solution. The 
results obtained here support these latter studies, suggesting that 
the availability o f a dissolution-reprecipitation pathway can affect 
the stability and crystallization mechanism of ACC.
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4. Conclusions
We have shown that the environment in which minerals form can 
have a significant effect on their stabilities and mechanisms o f  
crystallization, and demonstrated that ACC can be stabilized with 
respect to the crystalline polymorphs o f  CaC03 by confinement 
alone. That stabilization o f ACC was achieved in the current system 
at micrometer-scale separations clearly demonstrates the versa­
tility o f  this strategy and its potential value in biological systems. 
This effect was readily reversed by removal o f  the confining 
surface, and as the stabilization in our model system appears to be a 
kinetic, rather than a thermodynamic effect, it is envisaged that 
crystallization in this case could also be triggered on introduction 
of a suitable nucleating agent or surface. Therefore, while 
precipitating minerals within localized environments is funda­
mental to biologically controlled biomineralization processes, it 
can be suggested that confinement -  and specifically the large ratio 
o f mineral/organic surface area to mineral volume -  also provides 
organisms with an additional mechanism o f  control over mineral 
formation.

c ry s ta ls  In  k n o w n  o r ie n ta t io n s , a s  s im u la te d  w ith  th e  S H A P E  p ro g ra m , 
R a m a n  s p e c t ra  w e r e  a c q u ire d  u s in g  a  R e n is h a w  In V ia  m ic r o s c o p e  
e q u ip p e d  w ith  a 7 8 5 -n m  h ig h -p e r fo rm a n c e  n e a r- IR  d io d e  la s e r  w ith  a 
1-p m  s p o t  s iz e .

A m o r p h o u s  c a lc iu m  c a r b o n a te  w a s  s y n th e s iz e d  a s  a  re fe re n c e  fo r  
R a m a n  s p e c t ro s c o p y  u s in g  th e  p r o c e d u re  d e s c r ib e d  by K o g a  et a l. [56], 
Briefly , a q u e o u s  C a C I 2 (0 .1  m ) w a s  ra p id ly  m ix e d  w ith  e q u a l a m o u n t s  o f  
N a 2C O j  a n d  N a O H  (b o th  0 . 1 m ) s o lu t io n s  a t 4 ° C ,  b e fo re  f ilte rin g  a n d  
w a s h in g  w ith  e th a n o l.
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4. Experimental
G la s s  t u b in g  w ith  an  o u te r  d ia m e te r  o f  2 5  m m  w a s  c u t  to  p ro d u c e  2 5 -m m -  
lo n g  h a lf-c y lin d e rs . T h e  h a lf-c y lin d e rs  w e re  c le a n e d  by im m e r s in g  in  a 
N a O H  (1096 w /v ) s o lu t io n  fo r 2  h  u n d e r  s o n ic a t io n , fo llo w e d  by 10  m in  in  
a n  a rg o n  p ia s m a  c le a n e r , p r io r  t o  r in s in g  w it h  M illip o re  (1 8 .2  M O )  
w ater. T h e  h a lf-c y lin d e rs  w e r e  coated w ith  a  2 -n m  C r  film, followed b y  a  5 0 -  
1 5 0 -n m  A u  la y e r  (C o o d fe llo w , 9 9 .9 9 9 6 ) u s in g  a  C re s s in g to n  3 0 8 R  h ig h-  
v a c u u m  c o a t in g  s y s t e m , w ith  a d e p o s it io n  ra te  o f  0 .1  n m s ' \  T h e  go ld  
s u r fa c e s  w e re  th e n  fu n c t io n a liz e d  w ith  S A M s  o f  M H A  (S ig m a —A ld ric h  
9 9 % )  by im m e r s in g  th e  h a lf-c y lin d e rs  in  a  d ic h lo r o m e th a n e  s o lu t io n  o f  
M H A  (0.1  m u )  a t  4  ° C  fo r  2 4  h .  S u b s e q u e n t ly , t h e  c y lin d e rs  w e re  r in s e d  In  
d ic h lo ro m e th a n e , d r ie d  u n d e r  n it ro g e n , a n d  m o u n t e d  w ith  t h e  curved 
s u r fa c e s  fa c in g  e a c h  o th e r  w ith  t h e  c y lin d e r  a x e s  o r th o g o n a l to  e a c h  o th e r. 
T h e  s u r fa c e s  w e re  b ro u g h t  in to  c o n ta c t  b y  s lo w ly  in c re a s in g  th e  fo rce  

a p p lie d  to  th e  t o p  s u r fa c e .
C a C O j  w a s  p re c ip ita te d  fro m  a  0 .2 - 0 .3  m L  d ro p  o f  s o lu t io n  ( 4 - 1 0  m M ) 

h e ld  by ca p il la ry  a c t io n  a ro u n d  t h e  c r o s s e d  h a lf-c y lin d e rs  in  c o n ta c t , u s in g  
d o u b le -d e c o m p o s it io n  o r  g a s -d if fu s io n  m e t h o d s . In  th e  d o u b le -d e c o m ­
p o s it io n  m e th o d , e q u im o la r  a q u e o u s  s o lu t io n s  o f  C a C I2 a n d  N a 2C 0 3 
( S ig m a -A ld r ic h )  w e r e  c o m b in e d  in  e q u a l v o lu m e s , a n d  C a C O j  p re c ip ita ­
t io n  o c c u r re d  w ith  t im e  ¡2 5 ). T h e  g a s -d if fu s io n  m e th o d  w a s  p e rfo rm e d  by  
e x p o s in g  a d ro p le t  o f  C aC fy  s o lu t io n s  to  C O j  g e n e ra te d  o n  d e c o m p o s it io n  
o f  ( N H ^ j C O j  in  a  se a le d  d e s ic c a t o r  (5 4 j. In  b o th  c a s e s  p re c ip ita t io n  w a s  
te rm in a te d  a fte r 2 4  h  (7 2  h  in  t h e  c a s e  o f  o n e  e x p e r im e n t )  b y  f lu s h in g  th e  
s y s te m  w ith  M ill i- Q  w a te r  w h ile  th e  surfaces w e r e  s t il l in  c o n ta c t . T h e  h a lf­
c y lin d e rs  w e re  th e n  s lo w ly  s e p a r a te d  a n d  d r ie d  u n d e r  a  s t r e a m  o f  n itro g e n . 
C o n tr o l e x p e r im e n ts  o n  is o la te d  s u r fa c e s  w e re  c a r r ie d  o u t  w ith  b a re  a n d  
M H A -c o a te d  2 5  x  7 5 -m m  g la s s  m ic r o s c o p e  s l id e s .  T h e  c o a t in g  p ro c e d u re  
w a s  id e n t ic a l to  th a t  u s e d  w ith  th e  h a lf-c y lin d e rs , a n d  c ry s ta ll iz a t io n  w a s  
c a rr ie d  o u t  u s in g  th e  g a s -d iffu s io n  a n d  d o u b le -d e c o m p o s it io n  m e t h o d s  by  
s u s p e n d in g  th e  s l id e s  v e r t ic a lly  In  5 0  m L  o f  s o lu t io n .

T h e  p r e c ip ita te s  w e re  im a g e d  w ith  S E M  a n d  a n a ly z e d  u s in g  R a m a n  
m ic ro sc o p y . S E M  w a s  c a rr ie d  o u t  u s in g  e ith e r  a  P h il l ip s  X L - 3 0  E S E M  o r  a 
L e o  15 3 0  G e m in i  F E G - S E M , a fte r  c o a t in g  th e  s a m p le s  w ith  a  5 -n m  lay er o f  
Pt. T h e  re g io n  a ro u n d  th e  c o n ta c t  p o in t  o f  th e  h a lf-c y lin d e rs  w a s  fo u n d  b y  
id e n tify in g  a re g io n  d e v o id  o f  p r e c ip ita te s  o n  t h e  S E M  m ic r o g r a p h s . T h e  
a p p ro x im a te  m a g n itu d e  o f  a for t h e  p r e c ip ita te s  w a s  th e n  d e te rm in e d  b y  
e s t im a t in g  th e  d is t a n c e  to  t h is  c o n ta c t  re g io n , a n d  th e  s u r fa c e  se p a ra t io n  h 
c a lc u la te d  fro m  E q u a t io n  (1 ) , T h e  o r ie n ta t io n s  o f  c a lc ite  c ry s ta ls  w e re  
d e te rm in e d  u s in g  t h e  m e th o d  o u t lin e d  b y  A rc h ib a ld  e t a l, [55] by m e a s u r in g  
th e  p ro je c te d  a n g le s  a r o u n d  t h e  th re e fo ld  e-ax is o f  th e  c a lc ite  
r h o m b o h e d ro n  a n d  m a t c h in g  t h e s e  to  t h e  c o r r e s p o n d in g  a n g le s  o f
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